

Summary of Contents
Preface
1. Installation
2. Introducing MySQL
3. Introducing PHP
4. Publishing MySQL Data on the Web
5. Relational Database Design
6. Structured PHP Programming
7. A Content Management System
8. Content Formatting with Regular Expressions
9. Cookies, Sessions, and Access Control
10. MySQL Administration
11. Advanced SQL Queries
12. Binary Data
A. Manual Installation Instructions
B. MySQL Syntax Reference
C. MySQL Functions
D. MySQL Column Types
Index

PHP & MYSQL: NOVICE
TO NINJA

BY KEVIN YANK
5TH EDITION

PHP & MySQL: Novice to Ninja
by Kevin Yank
Copyright © 2012 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
Technical Editor: Diana MacDonald
Indexer: Fred Brown
Editor: Kelly Steele
Cover Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embodied in
critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the
information herein. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors and SitePoint
Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or
by the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book
uses the names only in an editorial fashion and to the benefit of the trademark
owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.
48 Cambridge Street Collingwood VIC Australia 3066

Web: www.sitepoint.com
Email: business@sitepoint.com

About the Author

Kevin Yank has been building websites for over 15 years, and
has produced numerous books, articles, courses, newsletters,
and podcasts on the subject. Hired as SitePoint’s first staff writer
in 2001, Kevin wrote the then new company’s first book, Build
Your Own Database Driven Website Using PHP & MySQL.
Five editions later and you are reading the latest incarnation of
that very book. He went on to co-author two more books
(Simply JavaScript and Everything You Know About CSS Is
Wrong!), and has written for the SitePoint Tech Times email
newsletter and co-hosted the SitePoint Podcast. As
learnable.com’s Chief Instructor, Kevin produced popular online
courses on topics including JavaScript, PHP and MySQL, and
HTML and CSS. He also provided help and advice for
instructors building other new additions to the Learnable library
of online courses. These days, Kevin is CTO at Avalanche
Technology Group, a creator and distributor of digital products
and services in the Australian and worldwide markets. He lives in
Melbourne, Australia with his partner Jessica and their dog, cat,
and two guinea pigs. Kevin has a passion for making web
technology easy to understand for anyone.

technology easy to understand for anyone.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-
understand content for Web professionals. Visit
http://www.sitepoint.com/ to access our blogs, books,
newsletters, articles, and community forums.

To my parents, Cheryl and
Richard, for making all this
possible

Preface
PHP and MySQL have changed. Back in 2001, when I wrote
the first edition of this book (it was called Build Your Own
Database Driven Web Site with PHP & MySQL back then),
readers were astonished to discover that you could create a site
full of web pages without having to write a separate HTML file
for each page. PHP stood out from the crowd of programming
languages, mainly because it was easy enough for almost anyone
to learn and free to download and install. The MySQL
database, likewise, provided a simple and free solution to a
problem that, up until that point, had been solvable only by
expert programmers with corporate budgets. Back then, PHP
and MySQL were special—heck, they were downright
miraculous! But over the years, they have gained plenty of fast-
moving competition. In an age when anyone with a free
WordPress account can set up a full-featured blog in 30 seconds
flat, it’s no longer enough for a programming language like PHP
to be easy to learn; nor is it enough for a database like MySQL
to be free. Indeed, as you sit down to read this book, you
probably have ambitions that extend beyond what you can throw
together using the free point-and-click tools of the Web. You
might even be thinking of building an exciting new point-and-
click tool of your own. WordPress, after all, is built using PHP
and MySQL, so why limit your vision to anything less? To keep
up with the competition, and with the needs of more demanding
projects, PHP and MySQL have had to evolve. PHP is now a
far more intricate and powerful language than it was back in
2001, and MySQL is a vastly more complex and capable

2001, and MySQL is a vastly more complex and capable
database. Learning PHP and MySQL today opens up a lot of
doors that would have remained closed to the PHP and MySQL
experts of 2001. That’s the good news. The bad news is that, in
the same way that a butter knife is easier to figure out than a
Swiss Army knife (and less likely to cause self-injury!), all these
dazzling new features and improvements have indisputably made
PHP and MySQL more difficult for beginners to learn. Worse
yet, PHP has completely abandoned several of the beginner-
friendly features that gave it a competitive advantage in 2001,
because they turned out to be oversimplifications, or could lead
inexperienced programmers into building websites with gaping
security holes. This is a problem if you’re the author of a
beginner’s book about PHP and MySQL. PHP and MySQL
have changed, and those changes have made writing this book a
lot more difficult. But they have also made this book a lot more
important. The more twisty the path, the more valuable the map,
right? In this book, I’ll provide you with a practical look at
what’s involved in building a database driven website using PHP
and MySQL. If your web host provides PHP and MySQL
support, you’re in great shape. If not, I’ll show you how to install
them on Windows, Mac OS X, and Linux computers, so don’t
sweat it. This book is your map to the twisty path that every
beginner must navigate to learn PHP and MySQL today. Grab
your favorite walking stick; let’s go hiking!

Who Should Read This Book
This book is aimed at intermediate and advanced web designers
looking to make the leap into server-side programming. You’ll
be expected to be comfortable with simple HTML, as I’ll make

use of it without much in the way of explanation. No knowledge
of Cascading Style Sheets (CSS) or JavaScript is assumed or
required, but if you do know JavaScript, you’ll find it will make
learning PHP a breeze, since these languages are quite similar.
By the end of this book, you can expect to have a grasp of
what’s involved in building a database driven website. If you
follow the examples, you’ll also learn the basics of PHP (a
server-side scripting language that gives you easy access to a
database, and a lot more) and Structured Query Language
(SQL—the standard language for interacting with relational
databases) as supported by MySQL, the most popular free
database engine available today. Most importantly, you’ll come
away with everything you need to start on your very own
database driven site!

What’s in This Book
This book comprises the following 12 chapters. Read them in
order from beginning to end to gain a complete understanding of
the subject, or skip around if you only need a refresher on a
particular topic.

Chapter 1: Installation

Before you can start building your database driven
website, you must first ensure that you have the right tools
for the job. In this first chapter, I’ll tell you where to
obtain the two essential components you’ll need: the PHP
scripting language and the MySQL database management
system. I’ll step you through the setup procedures on
Windows, Linux, and Mac OS X, and show you how to

Windows, Linux, and Mac OS X, and show you how to
test that PHP is operational on your web server.

Chapter 2: Introducing MySQL

Although I’m sure you’ll be anxious to start building
dynamic web pages, I’ll begin with an introduction to
databases in general, and the MySQL relational database
management system in particular. If you have never
worked with a relational database before, this should
definitely be an enlightening chapter that will whet your
appetite for what’s to come! In the process, you’ll build
up a simple database to be used in later chapters.

Chapter 3: Introducing PHP

Here’s where the fun really starts. In this chapter, I’ll
introduce you to the PHP scripting language, which you
can use to build dynamic web pages that present up-to-
the-moment information to your visitors. Readers with
previous programming experience will probably only need
a quick skim of this chapter, as I explain the essentials of
the language from the ground up. This is a must-read
chapter for beginners, however, as the rest of this book
relies heavily on the basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web

In this chapter you’ll bring together PHP and MySQL,
which you’ll have seen separately in the previous chapters,
to create some of your first database driven web pages.
You’ll explore the basic techniques of using PHP to
retrieve information from a database and display it on the
Web in real time. I’ll also show you how to use PHP to
create web-based forms for adding new entries to, and

modifying existing information in, a MySQL database on
the fly.

Chapter 5: Relational Database Design

Although you’ll have worked with a very simple sample
database in the previous chapters, most database driven
websites require the storage of more complex forms of
data than you’ll have dealt with at this point. Far too many
database driven website designs are abandoned
midstream or are forced to start again from the beginning,
because of mistakes made early on during the design of
the database structure. In this critical chapter you’ll learn
the essential principles of good database design,
emphasizing the importance of data normalization. If
you’re unsure what that means, then this is definitely an
important chapter for you to read!

Chapter 6: Structured PHP Programming

Techniques to better structure your code are useful in all
but the simplest of PHP projects. The PHP language
offers many facilities to help you do this, and in this
chapter, I’ll cover some of the simple techniques that exist
to keep your code manageable and maintainable. You’ll
learn to use include files to avoid having to write the same
code more than once when it’s needed by many pages of
your site, and I’ll show you how to write your own
functions to extend the built-in capabilities of PHP and to
streamline the code that appears within your scripts.

Chapter 7: A Content Management System

In many ways the climax of the book, this chapter is the
big payoff for all you frustrated site builders who are tired

big payoff for all you frustrated site builders who are tired
of updating hundreds of pages whenever you need to
make a change to a site’s design. I’ll walk you through the
code for a basic content management system that allows
you to manage a database of jokes, their categories, and
their authors. A system like this can be used to manage
simple content on your website; just a few modifications,
and you’ll have a site administration system that will have
your content providers submitting content for publication
on your site in no time—all without having to know a
shred of HTML!

Chapter 8: Content Formatting with Regular Expressions

Just because you’re implementing a nice, easy tool to
allow site administrators to add content to your site
without their knowing HTML, that content can still be
jazzed up, instead of settling for just plain, unformatted
text. In this chapter, I’ll show you some neat tweaks you
can make to the page that displays the contents of your
database—tweaks that allow it to incorporate simple
formatting such as bold or italicized text, among other
options.

Chapter 9: Cookies, Sessions, and Access Control

What are sessions, and how are they related to cookies, a
long-suffering technology for preserving stored data on the
Web? What makes persistent data so important in current
ecommerce systems and other web applications? This
chapter answers all those questions by explaining how
PHP supports both cookies and sessions, and explores
the link between the two. You’ll then put these pieces
together to build a simple shopping cart system, as well as

together to build a simple shopping cart system, as well as
an access control system for your website.

Chapter 10: MySQL Administration

While MySQL is a good, simple database solution for
those without the need for many frills, it does have some
complexities of its own that you’ll need to understand if
you’re going to rely on a MySQL database to store your
content. In this section, I’ll teach you how to perform
backups of, and manage access to, your MySQL
database. In addition to a couple of inside tricks (like
what to do if you forget your MySQL password), I’ll
explain how to speed up your database when it gets slow,
and how to link together the data in your database in
useful ways.

Chapter 11: Advanced SQL Queries

In Chapter 5 we saw what was involved in modeling
complex relationships between pieces of information in a
relational database like MySQL. Although the theory was
quite sound, putting these concepts into practice requires
that you learn a few more tricks of Structured Query
Language. In this chapter, I’ll cover some of the more
advanced features of this language to help you juggle
complex data like a pro.

Chapter 12: Binary Data

Some of the most interesting applications of database
driven web design include some juggling of binary files.
Online file storage services are prime examples, but even
a system as simple as a personal photo gallery can benefit
from storing binary files (that is, pictures) in a database for
retrieval and management on the fly. In this chapter, I’ll

retrieval and management on the fly. In this chapter, I’ll
demonstrate how to speed up your website by creating
static copies of dynamic pages at regular intervals—using
PHP, of course! With these basic file-juggling skills in
hand, you’ll go on to develop a simple online file storage
and viewing system, and learn the ins and outs of working
with binary data in MySQL.

Where to Find Help
PHP and MySQL are moving targets, so chances are good that,
by the time you read this, some minor detail or other of these
technologies has changed from what’s described in this book.
Thankfully, SitePoint has a thriving community of PHP
developers ready and waiting to help you out if you run into
trouble, and we also maintain a list of known errata for this book
you can consult for the latest updates.

The SitePoint Forums

The SitePoint Forums are discussion forums where you can ask
questions about anything related to web development. You may,
of course, answer questions, too. That’s how a discussion forum
site works—some people ask, some people answer and most
people do a bit of both. Sharing your knowledge benefits others
and strengthens the community. A lot of fun and experienced
web designers and developers hang out there. It’s a good way to
learn new stuff, have questions answered in a hurry, and just
have fun. The SitePoint Forums include separate forums for PHP
and MySQL:

PHP: http://www.sitepoint.com/forums/forumdisplay.php?
34-PHP

Databases & MySQL:
http://www.sitepoint.com/forums/forumdisplay.php?88-
Databases-amp-MySQL

The Book’s Website

Located at http://www.sitepoint.com/books/phpmysql5/, the
website that supports this book will give you access to the
following facilities:

The Code Archive

As you progress through this book, you’ll note a number of
references to the code archive. This is a downloadable ZIP
archive that contains each and every line of example source code
that’s printed in this book. If you want to cheat (or save yourself
from carpal tunnel syndrome), go ahead and download the
archive.

Updates and Errata

No book is perfect, and we expect that watchful readers will be
able to spot at least one or two mistakes before the end of this
one. The Errata page on the book’s website will always have the
latest information about known typographical and code errors.

The SitePoint Newsletters

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email
newsletters such as the SitePoint newsletter, PHPMaster,
CloudSpring, RubySource, DesignFestival, and BuildMobile.
In them you’ll read about the latest news, product releases,
trends, tips, and techniques for all aspects of web development.
Sign up to one or more of these newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you’re unable to find an answer through the forums, or if you
wish to contact us for any other reason, the best place to write is
books@sitepoint.com. We have a well-staffed email support
system set up to track your inquiries, and if our support team
members are unable to answer your question, they’ll send it
straight to us. Suggestions for improvements, as well as notices
of any mistakes you may find, are especially welcome.

Conventions Used in This
Book
You’ll notice that we’ve used certain typographic and layout
styles throughout this book to signify different types of
information. Look out for the following items.

Code Samples

Code in this book will be displayed using a fixed-width font, like
so:
<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds
were singing and the kids were all back at
school.</p>

If the code is to be found in the book’s code archive, the name
of the file will appear at the top of the program listing, like this:

example.css
.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word
excerpt:

example.css (excerpt)
 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the
new code will be displayed in bold:
function animate() {
 new_variable = "Hello";
}

Also, where existing code is required for context, rather than
repeat all the code, a … will be displayed:
function animate() {
 …
 return new_variable;
}

Some lines of code are intended to be entered on one line, but
we’ve had to wrap them because of page constraints. A ↵
indicates a line break that exists for formatting purposes only,
and should be ignored.
URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-
style-she
↵ets-come-of-age/");

Tips, Notes, and Warnings

Tip: Hey, You!

Tips will give you helpful little pointers.

Note: Ahem, Excuse Me …

Notes are useful asides that are related—but not
critical—to the topic at hand. Think of them as
extra tidbits of information.

Important: Make Sure You
Always …

… pay attention to these important points.

Warning: Watch Out!

Warnings will highlight any gotchas that are likely
to trip you up along the way.

Chapter 1

Installation
In this book, I will guide you as you take your first steps beyond
the static world of building web pages with the purely client-side
technologies of HTML, CSS, and JavaScript. Together, we’ll
explore the world of database driven websites and discover the
dizzying array of dynamic tools, concepts, and possibilities that
they open up. Whatever you do, don’t look down! Okay,
maybe you should look down. After all, that’s where the rest of
this book is. But remember, you were warned! Before you build
your first dynamic website, you must gather together the tools
you’ll need for the job. In this chapter, I’ll show you how to
download and set up the two software packages required. Can
you guess what they are? I’ll give you a hint: their names feature
prominently on the cover of this book! They are, of course, PHP
and MySQL. If you’re used to building websites with HTML,
CSS, and perhaps even a smattering of JavaScript, you’re
probably familiar with uploading the files that make up your site
to a certain location. It might be a web hosting service you’ve
paid for, web space provided by your Internet Service Provider
(ISP), or maybe a web server set up by the IT department of the
company that you work for. In any case, once you copy your
files to any of these destinations, a software program called a
web server is able to find and serve up copies of those files
whenever they’re requested by a web browser like Internet
Explorer, Google Chrome, Safari, or Firefox. Common web
server software programs you may have heard of include
Apache HTTP Server (Apache) and Internet Information
Services (IIS). PHP is a server-side scripting language. You
can think of it as a plugin for your web server that enables it to
do more than just send exact copies of the files that web
browsers ask for. With PHP installed, your web server will be
able to run little programs (called PHP scripts) that can do tasks
like retrieve up-to-the-minute information from a database and
use it to generate a web page on the fly before sending it to the
browser that requested it. Much of this book will focus on
writing PHP scripts to do exactly that. PHP is completely free to

download and use. For your PHP scripts to retrieve information
from a database, you must first have a database. That’s where
MySQL comes in. MySQL is a relational database
management system, or RDBMS. We’ll discuss the exact
role it plays and how it works later, but briefly it’s a software
program that’s able to organize and manage many pieces of
information efficiently while keeping track of how all those pieces
of information are related to each other. MySQL also makes that
information really easy to access with server-side scripting
languages such as PHP, and, like PHP, is completely free for
most uses. The goal of this first chapter is to set you up with a
web server equipped with PHP and MySQL. I’ll provide step-
by-step instructions that work on recent Windows and Mac OS
X, so no matter what flavor of computer you’re using, the
instructions you need should be right here.[1]

Your Own Web Server
If you’re lucky, your current web host’s web server already has
PHP and MySQL installed. Most do—that’s one of the reasons
why PHP and MySQL are so popular. If your web host is so
equipped, the good news is that you’ll be able to publish your
first database driven website without having to shop for a web
host that supports the right technologies. However, you’re still
going to need to install PHP and MySQL yourself. That’s
because you need your own PHP-and-MySQL-equipped web
server on which to test your database driven website before you
publish it for all the world to see. When developing static
websites, you can simply load your HTML files directly from
your hard disk into your browser to see how they look. There’s
no web server software involved when you do this, which is fine,
because web browsers can read and understand HTML code all
by themselves. When it comes to dynamic websites built using
PHP and MySQL, though, your web browser needs some help!
Web browsers are unable to understand PHP scripts; rather,
PHP scripts contain instructions for a PHP-savvy web server to
execute in order to generate the HTML code that browsers can
understand. So, in addition to the web server that will host your
site publicly, you also require your own private web server to
use in the development of your site. If you work for a company
with an especially helpful IT department, you may find there’s
already a development web server provided for you. The typical

already a development web server provided for you. The typical
setup is that you must work on your site’s files on a network
drive hosted by an internal web server that can be safely used for
development. When you’re ready to deploy the site to the
public, your files are copied from the network drive to the public
web server. If you’re lucky enough to work in this kind of
environment, you can skip most of this chapter; however, you’ll
want to ask the IT boffins responsible for the development
server the same questions I’ve covered in the section called
“What to Ask Your Web Host”. That’s because you’ll need to
have that critical information handy when you start using the PHP
and MySQL support they’ve so helpfully provided.

Windows Installation
In this section, I’ll show you how to start running a PHP-and-
MySQL-equipped web server on a Windows XP, Windows
Vista, or Windows 7 computer. If you’re using an operating
system other than Windows, you can safely skip this section. The
easiest way to get a web server up and running on Windows is
to use a free software package called XAMPP for Windows.
This all-in-one program includes built-in copies of Apache, PHP,
and MySQL. Let me take you through the process of installing it.

Note: The Do-it-yourself
Option

In past editions of this book, I recommended
that you set up Apache, PHP, and MySQL
individually, using the official installation
packages for each. This is a good practice for
beginners, I argued, because it gives you a
strong sense of how these pieces all fit together.
Unfortunately, this meant that many readers
spent their first few hours in “PHP Land”
wrestling their way through a protracted
sequence of detailed installation instructions.
Worse still, sometimes the finer points of these
became outdated due to some subtle change to
one of the software packages. Nowadays, I
strongly believe that the best way to learn PHP
and MySQL is to start using them right away.
The quicker and more hassle-free the installation

The quicker and more hassle-free the installation
process, the better. That’s why I ask you to use
XAMPP in this edition. In addition, there’s every
chance you’re just dabbling in this stuff, so why
junk up your computer with a bunch of separate
but interdependent pieces of software that will
be tricky to remove? Nevertheless, if you’re a
die-hard do-it-yourselfer, a tech-savvy power
user, or if you simply reach the end of this book
and wonder how the pros do it, I’ve included a
detailed set of installation instructions for
individual packages in Appendix A. Feel free to
follow them instead of the instructions in this
section if you’re that way inclined.

1. Download the latest version of XAMPP for Windows
from the Apache Friends website (you’ll need to scroll
down to find the download links). Grab the Installer
version that is recommended (as of this writing, XAMPP
for Windows 1.7.7 is 81MB in size), then double-click
the file to launch the installer, as shown in Figure 1.1.

Figure 1.1. The XAMPP Installer

Note: User Account
Control (UAC) warning

Depending on the version of Windows
you’re using and your exact system
configuration, the XAMPP installer may
display the warning message shown in
Figure 1.2. Although this message is a
little alarming at first, be assured it’s no
big deal. It simply recommends not to
install XAMPP in C:\Program Files as you
do most programs due to problems this
will cause with file permissions. The
installer defaults to installing in C:\xampp
anyway.

Figure 1.2. XAMPP may warn you about
“User Account Control (UAC)”

2. The installer will prompt you for a location to install
XAMPP. The default of c:\xampp shown in Figure 1.3 is
an ideal choice, but if you have feel strongly about
installing it elsewhere (such as on a different drive), go
ahead and specify your preferred location. Just avoid the
usual C:\Program Files (or similar) location, since
XAMPP requires permissions that Windows restricts for
files in that folder.

Figure 1.3. The default destination folder is a good choice

3. The installer will prompt you with a number of options.
The default selections shown in Figure 1.4 are probably
what you want at this stage. If you like to keep a clean
desktop, you might want to uncheck the Create a
XAMPP desktop icon checkbox. If you want your
Apache and MySQL servers running at all times (rather
than having to start them manually whenever you sit down
to do some development), you can check the Install
Apache as service and Install MySQL as service
checkboxes. In the following instructions, though, I’ll
assume you haven’t.

Figure 1.4. The default options are fine

4. Once the installer has completed, you’ll be prompted to
start the XAMPP Control Panel. Click No so that I can
show you how to start it the conventional way. Once its
work is done, the installer will quit.

5. At this point, I recommend shutting down and restarting
your computer (even though the XAMPP installer won’t
ask you to). In my testing, the next steps failed to work
until I restarted my system, and posts on the XAMPP
support forum support this.

Once the installation is complete and your system has restarted,
you can fire up the XAMPP Control Panel. You’ll find it on the
Start menu under All Programs > Apache Friends > XAMPP >
XAMPP Control Panel. An orange XAMPP icon will appear in
your Windows System Tray (although by default it will disappear
after a few seconds), and the XAMPP Control Panel
Application shown in Figure 1.5 will open.

Figure 1.5. The XAMPP Control Panel

Click the Start buttons next to Apache and MySql (sic) in the
Modules list to launch the Apache and MySQL servers built into
XAMPP. A green Running status indicator should appear next to
each server in the list. Depending on your Windows version and
configuration, you’ll probably receive a Windows Firewall alert
for each server, like the one in Figure 1.6. This will happen when
the servers attempt to start listening for browser requests from
the outside world.

Figure 1.6. This security alert tells you Apache is doing its job

If you want to make absolutely sure that only you can access
your development servers, click Cancel. You’ll still be able to
connect to the web server using a browser running on your own
computer. In some cases, however, it can be handy to access
your server from another computer on your network (such as
from a co-worker’s machine, to demonstrate the amazing
website you have built); for this reason, I recommend selecting
the Private networks, such as my home or work network option
and clicking Allow access.

Tip: Why doesn’t my server
start?

If your Apache or MySQL server fails to start,
there are a number of possible causes. By far the
most common reason is that you already have a
web server (be it another copy of Apache or
Microsoft’s Internet Information Services) or
MySQL server running on your computer. Look
around your Start menu and the Uninstall a
program section of your Windows Control Panel
to see if you can spot another installation of
Apache HTTP Server or MySQL in order to
shut off or uninstall. There’s another program
similar to XAMPP called WampServer, which, if
installed, could be the cause of the problem. If
you think you might have Microsoft’s own web
server—Internet Information Services (IIS)—
running on your system, you can try following
Microsoft’s instructions for shutting it down. Still

stuck? The advice in the XAMPP for Windows
FAQ might help, especially if you’re running
Skype (as it can interfere with web servers in
some network configurations).

Once both servers appear to be running smoothly, click the
Admin… button next to Apache. Launch your web browser and
load http://localhost/xampp/, the XAMPP for Windows admin
page shown in Figure 1.7.

Figure 1.7. The admin page provided by XAMPP confirms your
Apache web server is running

If you see this page it means your web server is up and running,
because the page you’re looking at was loaded from it! Notice
that the URL in your browser’s address bar starts with
http://localhost/ (some modern browsers will hide the protocol,
“http://”); localhost is a special hostname that always points
to your own computer. Throughout this book, whenever you
want to load a web page from your own web server, you’ll use a
URL that starts with http://localhost/. When you’re done working
with the XAMPP Control Panel, shut it down by clicking the Exit
button. Alternatively, you can just close the window, which will

button. Alternatively, you can just close the window, which will
leave the XAMPP icon in the Windows System Tray (if you
have configured it to remain visible). Clicking the icon will
promptly launch the XAMPP Control Panel again when you
need it.

Important: XAMPP Control
Panel Leaves the Lights On

When you exit the XAMPP Control Panel, the
Apache and MySQL servers will keep running
on your system. If you’ve finished coding for the
day, I’d advise you to click the Stop button for
each of these servers to shut them down before
you quit the XAMPP Control Panel. There’s no
sense slowing down those Facebook games you
play in the evening by running unnecessary
servers!

Set the MySQL Root Password in
XAMPP

Once you’ve set up your Windows computer with the proper
servers, you now need to assign a root password for MySQL in
XAMPP. MySQL only allows authorized users to view and
manipulate the information stored in its databases, so you’ll need
to tell MySQL who’s authorized and who isn’t. When MySQL
is first installed, it’s configured with a user named “root” that has
access to do most tasks without entering a password. Therefore,
your first task should be to assign a password to the root user so
that unauthorized users are prohibited from tampering with your
databases.

Important: Why bother?

It’s important to realize that MySQL, just like a
web server, can be accessed from any computer
on the same network. If you’re working on a
computer connected to the Internet, then,
depending on the security measures you’ve
taken, anyone in the world could connect to your
MySQL server. The need to pick a difficult-to-

MySQL server. The need to pick a difficult-to-
guess password should be immediately obvious!

XAMPP makes it easy to resolve this and other configuration
security issues with your new servers. With the Apache and
MySQL servers running, open this address in your web browser:
http://localhost/security/. Alternatively, you can click the Security
link in the menu on the XAMPP administration page. This page
will list any security issues that XAMPP can identify with your
current server configuration. Among them, you should see “The
MySQL admin user root has NO password.” Scroll down past
the table and click the link that will fix the problems listed. The
very first section of the resulting form will prompt you to set a
MySQL root user password. Go ahead and set one you’ll
remember. Leave the PhpMyAdmin authentification (sic) set to
cookie, and use the option to save the password to a file if you
think you might forget it (but beware that the password will be
saved where a person using your computer could find it). Click
the Password changing button to change your password, then
stop and start your MySQL server using the XAMPP Control
Panel. Seriously, don’t forget this password. It’s a pain to
change it if you do, but I’ll show you how in Chapter 10. Here’s
a spot for you to record your MySQL root password in case
you need to:

Note: My MySQL Root
Password (Windows)

root user password:

Note: XAMPP Directory
Protection

XAMPP’s security page will also warn you that
your web pages are accessible to anyone on
your network. While this is technically true, I’m
not too worried if a co-worker or family member
could stumble on my work-in-progress website;
furthermore, most home and office network
configurations will prevent people outside your
network from accessing the web server running
on your computer. That said, if you want to

on your computer. That said, if you want to
follow XAMPP’s advice to set a username and
password that will be required to view pages on
your web server, feel free to set one.

Mac OS X Installation
In this section, I’ll show you how to start running a PHP-and-
MySQL-equipped web server on a Mac computer running Mac
OS X version 10.5 (Leopard). If you’re not using a Mac, you
can safely skip this section. Mac OS X distinguishes itself by
being the only consumer OS to install both Apache and PHP as
components of every standard installation. (For that matter, it
also comes with Ruby, Python, and Perl—all of which are
popular web programming languages.) That said, they take a few
tweaks to switch on, and you will need a MySQL database
server as well. The simplest way to handle it is to ignore the
built-in software and install everything you need in a convenient,
all-in-one package. MAMP (which stands for Mac, Apache,
MySQL, and PHP) is a free all-in-one program that includes
built-in copies of recent versions of the Apache web server,
PHP, and MySQL. Let me take you through the process of
installing it.

Note: The Do-it-yourself
Option

In past editions of this book, I recommended
that you set up the built-in versions of Apache
and PHP that come with Mac OS X, and install
MySQL using its official installation package.
This is a good practice for beginners, I argued,
because it gives you a strong sense of how these
pieces all fit together. Unfortunately, this meant
that many readers spent their first few hours in
“PHP Land” wrestling their way through a
protracted sequence of detailed installation
instructions. Worse still, sometimes the finer
points of these became outdated due to some
subtle change to one of the software packages.
Nowadays, I strongly believe that the best way
to learn PHP and MySQL is to start using them
right away. The quicker and more hassle-free the

right away. The quicker and more hassle-free the
installation process, the better. That’s why I ask
you to use MAMP in this edition. There’s also
every chance you’re just dabbling in this stuff, so
why spend time tweaking the innards of your
operating system when you can leave them safely
set to the factory defaults? Nevertheless, if
you’re a die-hard do-it-yourselfer, a tech-savvy
power user, or if you simply reach the end of this
book and wonder how the pros do it, I’ve
included a detailed set of installation instructions
for the individual packages in Appendix A. Feel
free to follow them instead of the instructions in
this section if you’re that way inclined.

1. Download the latest version from the MAMP website
(you want the free MAMP, not the commercial MAMP
PRO). After downloading the file (as of this writing,
MAMP 2.0.5 is about 116MB in size), double-click it to
unzip the installer (MAMP.pkg). Then double-click it to
launch the MAMP Installer, which is shown in Figure 1.8.

Figure 1.8. The MAMP package

Important: Look Out
Below!

The next step is a tricky one. Make sure
you read on first before clicking blindly
through the installer!

2. During the installation, you’ll be prompted to choose
whether or not to perform a standard installation. At this
step, instead of clicking the Install button, click Customize.
This will give you the opportunity to deselect MAMP
PRO (which the installer will otherwise sneakily install in
the hopes that you’ll decide to buy it after all). This is
especially important because the free MAMP will display
a worrying warning message at startup if MAMP PRO is
installed.

Tip: Miss this step?

If you missed this step and allowed the
installer to put MAMP PRO on your
system, it’s easy enough to remove. Open
your Applications folder, double-click on
the new MAMP PRO folder, and double-
click to run the MAMP PRO Uninstaller.
Click each checkbox in the Uninstaller
window. Once they’re all checked, click
Uninstall. Quit the Uninstaller.

Browse to your Applications folder and find the new MAMP
folder there. Open it, and double-click the MAMP icon inside to
launch MAMP. As MAMP starts up, the following will happen.
First, the MAMP window shown in Figure 1.9 will appear. The
two status indicators will switch from red to green as the built-in
Apache and MySQL servers start up. Next, MAMP will open
your default web browser and load the MAMP welcome page,
shown in Figure 1.10.

Figure 1.9. The MAMP window

Figure 1.10. The MAMP welcome page confirms Apache, PHP, and
MySQL are up and running

If you see this page it means your web server is up and running,
because the page you’re looking at was loaded from it! Notice
that the URL in your browser’s address bar starts with
http://localhost:8888/ (some modern browsers will hide the
protocol, “http://”); localhost is a special hostname that
always points to your own computer. The “8888” is the port

always points to your own computer. The “8888” is the port
number that the browser is using to connect to your computer.
Every server running on a computer listens on a unique port
number. Usually, websites are hosted on port 80, and browsers
use that to connect when no port number is specified by the
URL. By default, MAMP comes configured so that Apache will
listen on port 8888 and MySQL will listen on port 8889. This
ensures that MAMP will work even if your Mac already has a
web server installed and listening on port 80, or a MySQL
server listening on port 3306 (the standard MySQL server
port).[2] The code and instructions in the rest of this book will
assume your web server is running on port 80 and your MySQL
server is on port 3306. Now would be a good time to see if
MAMP will run happily using these standard port numbers.
Here’s how:

1. In the MAMP window, click Stop Servers. Wait for the
indicators to turn red.

2. Click the Preferences… button and navigate to the Ports
tab.

3. Click the Set to default Apache and MySQL ports button
so that Apache will use port 80 and MySQL will use port
3306. Click OK.

4. Click Start Servers. MAMP will prompt you to enter your
password, because running a server on an “official”
Internet port number like 80 requires administrator
privileges.

If both indicators turn green, click the Open start page button
again, and verify that the MAMP welcome page shows up this
time with a URL starting with http://localhost/ (no port number).
If so, you’re in good shape! If one or both indicators don’t turn
red in step 1, or if the welcome page fails to load correctly, in all
likelihood you have yourself a port conflict. Somewhere on your
Mac is another web or MySQL server that’s already using one
or both of those ports. One place to check is the Sharing icon in
System Preferences. If Web Sharing is enabled, Mac OS X’s
built-in Apache server is running (normally on port 80). Another
option is to try shutting down various applications. Under some
conditions, Skype for Mac has prevented MAMP’s MySQL
server from launching for me, for example. If, in the end, you’re
only able to make MAMP run happily on its default port
numbers (8888 and 8889), go ahead and use them. Whenever
this book mentions a URL starting with http://localhost/, you’ll

this book mentions a URL starting with http://localhost/, you’ll
have to add the port number (http://localhost:8888/), and when
the time comes to connect to MySQL, I’ll tell you how to
specify a nonstandard port number. One last change to make to
the default MAMP configuration is to switch on PHP error
display. By default, when you make a serious mistake in your
PHP code (and believe me, we all make plenty!), MAMP’s
Apache server will produce a blank web page. As a developer
needing to figure out what you typed wrong, that’s rather
unhelpful; I’d much prefer to see a detailed error message in my
browser window. The reason why MAMP comes with the error
display switched off is so that if you decide to host a publicly
accessible website using it, visitors to the site won’t see
embarrassing error messages when you make a mistake. What’s
embarrassing on a public website, however, is practically
essential in the development stage. To switch on PHP error
display, open the MAMP folder in your Mac’s Applications
folder. From there, drill down into bin/php/. This php folder will
contain a subfolder for each version of PHP that comes with
MAMP. You can double-check in MAMP’s Preferences to be
sure, but it’s probably configured to run the most recent version,
so open that folder (it’s php5.3.6 in my copy of MAMP 2.0.5),
and then open the conf subfolder. Open the php.ini file in your
favorite text editor (TextEdit will work fine), and look for these
lines:
; Print out errors (as a part of the output).
For production web
↵ sites,
; you're strongly encouraged to turn this
feature off, and use
↵ error logging
; instead (see below). Keeping display_errors
enabled on a
↵ production web site
; may reveal security information to end users,
such as file paths
↵ on your Web
; server, your database schema or other
information.
display_errors = Off

Change the Off in that last line to On and save the file. Now
click Stop Servers, then Start Servers in MAMP to restart
Apache with the new configuration. That’s it—PHP will now
display helpful (if a little soul-crushing) error messages. When
you’re done working with MAMP, shut it down (along with its

built-in servers) by clicking the Quit button in the MAMP
window. And when you’re next ready to do some work on a
database driven website, just fire it up again!

Set the MySQL Root Password in
MAMP

Once MAMP is up and running on your Mac with the relevant
servers, your very next action should be to assign a root
password for MySQL. MySQL only allows authorized users to
view and manipulate the information stored in its databases, so
you’ll need to tell MySQL who’s authorized and who’s not.
When MAMP first installs MySQL, it’s configured with a user
named “root” that has access to perform most tasks. The
password for this user is “root”—not exactly Fort Knox! Hence
why your first task should be to assign a new password to the
root user, preventing any tampering with your databases.

Important: Why bother?

It’s important to realize that MySQL, just like a
web server, can be accessed from any computer
on the same network. So if you’re working on a
computer connected to the Internet, depending
on the security measures you’ve taken, anyone in
the world could connect to your MySQL server.
The need to pick a password that’s difficult for
anyone to guess should be immediately obvious!

To set your MySQL root password, first make sure MAMP and
its servers are running. Then open the Mac OS X Terminal
application (found in the Utilities folder in the Applications folder)
and type these commands (hitting Enter after each one):

1. cd /Applications/MAMP/Library/bin/

This navigates to the Library/bin/ subfolder of your
MAMP installation, which is where the Terminal utility
programs are kept.

2. ./mysqladmin -u root -p password "newpassword"

Replace newpassword with the new password you want

Replace newpassword with the new password you want
to assign to your MySQL root user. When you hit Enter
you’ll be prompted to enter the current password: root.

3. Quit Terminal.

Your password is now set, but this creates a new problem:
MAMP itself needs unrestricted access to your MySQL server
so that it can control it. If you click the Open start page button in
MAMP at this point, you’ll receive an error message: “Error:
Could not connect to MySQL server!” Obviously, we need to
tell MAMP what our new MySQL root password is. You must
edit several files in the MAMP folder to make it work again.
You can open each of these files in TextEdit, or whichever text
editor you prefer to use.

Warning: Editing PHP Scripts
in Mac OS X with TextEdit

TextEdit has a nasty habit of mistaking .php files
for HTML documents when opening them, and
attempting to display them as formatted text. To
avoid this, you must select the Ignore rich text
commands checkbox in the Open dialog box.

/Applications/MAMP/bin/mamp/index.php

Find the line that looks like this:
$link =
@mysql_connect(':/Applications/MAMP/tmp/mysql/mysql.sock',

 'root', 'root');

Replace the second 'root' with your new MySQL root
password (that is, 'newpassword').

/Applications/MAMP/bin/phpMyAdmin/config.inc.php

This is a large file, so you may need to use your text
editor’s Find feature to locate these lines:
$cfg['Servers'][$i]['user'] = 'root';
↵ // MySQL user
$cfg['Servers'][$i]['password'] = 'root';
↵ // MySQL password (only needed

↵ // with 'config' auth_type)

Again, replace the second 'root' with your new

Again, replace the second 'root' with your new
MySQL root password (that’s 'newpassword').

/Applications/MAMP/bin/checkMysql.sh ,
/Applications/MAMP/bin/quickCheckMysqlUpgrade.sh ,
/Applications/MAMP/bin/repairMysql.sh ,
/Applications/MAMP/bin/stopMysql.sh ,
/Applications/MAMP/bin/upgradeMysql.sh

The contents of each of these little files starts out looking a
little like this (this is checkMysql.sh):
/bin/sh
/Applications/MAMP/Library/bin/mysqlcheck -
-all-databases --check
↵ --check-upgrade -u root -proot
↵ --
socket=/Applications/MAMP/tmp/mysql/mysql.sock

See that -proot? The p stands for “password” and the
rest is the password. Change it to your new password (-
pnewpassword). Make the same change to each of
these five files.

With all those changes made and saved, MAMP should work
normally again, with your MySQL server nice and secure from
outside intrusion! Oh, and don’t forget this password. It’s kind
of a pain to change it if you do (I’ll show you how in
Chapter 10). Here’s a spot for you to record your MySQL root
password in case you need to.

Note: My MySQL Root
Password (Mac)

root user password:

Linux Installation
These days, most people who run Linux as their operating
system of choice are tech-savvy enough to know how to install
software like Apache, PHP, and MySQL. Indeed, they
probably feel strongly about how they should be installed, which
would doubtlessly clash with any instructions I’d provide here. If
this describes you, go ahead and install the most recent versions
of Apache, PHP, and MySQL that you’re comfortable installing,

of Apache, PHP, and MySQL that you’re comfortable installing,
using whichever package manager or build process pushes your
buttons. Nothing in this book is going to be so advanced that the
minutiae of how you configure these packages will matter. That
said, just in case you’re one of the rare Linux users who could
use some guidance on installing, I’ve included a detailed set of
instructions for Linux users in Appendix A.

What to Ask Your Web Host
While you tinker with PHP and MySQL on your own computer,
it’s a good idea to start collecting the information you’ll need
when it comes time to deploy your first database driven website
to the public. Here’s a rundown of the details you should ask of
your web host. First, you’ll need to know how to transfer files to
your web host. You’ll be uploading PHP scripts to your host the
same way you normally send the HTML files, CSS files, and
images that make up a static website; so if you already know
how to do that, there’s no need to bother your host. If you’re
just starting with a new host, however, you’ll have to be aware
of what file transfer protocol it supports (FTP or SFTP), as well
as knowing what username and password to use when
connecting with your (S)FTP program. You also must know
what directory to put files into so that they’re accessible to web
browsers. In addition, you’ll require a few details about the
MySQL server your host has set up for you. It’s important to
know the host name to use in order to connect to it (possibly
localhost), and your MySQL username and password, which
may or may not be the same as your (S)FTP credentials. Your
web host will probably have provided an empty database for
you to use, which prevents you from interfering with other users’
databases who may share the same MySQL server with you. If
they have provided this, you should establish the name of that
database. Have you taken all that in? Here’s a spot to record the
information you’ll need about your web host.

Note: My Hosting Details

File transfer protocol (circle one):

FTP

SFTP

SFTP
(S)FTP host name:

(S)FTP username:

(S)FTP password:

MySQL host name:

MySQL username:

MySQL password:

MySQL database name:

Your First PHP Script
It would be unfair of me to help you install everything, but then
stop short of giving you a taste of what a PHP script looks like
until Chapter 3. So here’s a morsel to whet your appetite. Open
your favorite text or HTML editor and create a new file called
today.php. Type this into the file:

chapter1/today.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>Today’s date (according to this web
server) is
 <?php

 echo date('l, F jS Y.');

 ?>
 </p>
 </body>

 </body>
</html>

Important: It’s a Letter, Not a
Number

The most important line of the code is this one:
 echo date('l, F jS Y.');

Unfortunately, it’s also the one most people type
wrong when reading this book. See the
character before the comma? It’s not the number
one (1), it’s a lowercase L (l).

Warning: Editing PHP Scripts
in Windows with Notepad

To save a file with a .php extension in Notepad,
you’ll need to either select All Files as the file
type, or surround the filename with quotes in the
Save As dialog box. Otherwise, Notepad will
unhelpfully save the file as today.php.txt, which
will fail to work.

Warning: Editing PHP Scripts
in Mac OS X with TextEdit

Be careful when using TextEdit to edit .php files,
as it will save them in Rich Text Format with an
invisible .rtf filename extension by default. To
save a new .php file, you must first remember to
convert the file to plain text by selecting Format
> Make Plain Text (⇧+⌘+T) from the TextEdit
menu. TextEdit also has a nasty habit of
mistaking existing .php files for HTML
documents when opening them, and attempting
to display them as formatted text. To avoid this,
you must select the Ignore rich text commands
checkbox in the Open dialog box.

Tip: Try a Free IDE!

As you can tell from the preceding warnings, the

As you can tell from the preceding warnings, the
text editors provided with current operating
systems are a touch unsuitable for editing PHP
scripts. However, there are a number of solid
text editors and Integrated Development
Environments (IDEs) with rich support for
editing PHP scripts that you can download for
free. Here are a few that work on Windows,
Mac OS X, and Linux:

NetBeans

http://www.netbeans.org/features/php/
Aptana

http://www.aptana.com/php
Komodo Edit

http://www.activestate.com/komodo_edit/

If you’d prefer not to type out all the code, you can download
this file—along with the rest of the code in this book—from the
code archive. See the Preface for details on how to download
the code archive. Save the file, and move it to the web root
directory of your local web server.

Note: Where’s my server’s
web root directory?

If you’re using an Apache server that you
installed manually, the web root directory is the
htdocs directory within your Apache installation
(that’s C:\Program Files\Apache Software
Foundation\Apache2.2\htdocs on Windows and
/usr/local/apache2/htdocs on Linux). For the
Apache server built into XAMPP, the web root
directory is the htdocs directory within your
XAMPP installation directory. You can reach it
simply by choosing from the Start menu: All
Programs > Apache Friends > XAMPP >
XAMPP htdocs folder. If the Apache server
you’re using is built into Mac OS X, the web
root directory is
/Library/WebServer/Documents. It can be easily

/Library/WebServer/Documents. It can be easily
accessed by clicking the Open Computer
Website Folder… button under Web Sharing in
the Sharing preference panel in System
Preferences. The Apache server built into
MAMP has a web root directory in the htdocs
folder inside the MAMP folder
(/Applications/MAMP/htdocs). If you prefer
using another folder as your web root, you can
change it on the Apache tab of the MAMP
application’s Preferences. This facility makes it
especially easy to switch between multiple web
development projects by pointing MAMP at
different folders.

Open your web browser of choice, and type
http://localhost/today.php (or http://localhost:port/today.php if
Apache is configured to run on a port other than the default of
80) into the address bar to view the file you just created.[3]

Important: You Must Type
the URL

You might be used to previewing your web
pages by double-clicking on them, or by using
the File > Open… feature of your browser.
These methods tell your browser to load the file
directly from your computer’s hard drive, so
they won’t work with PHP files. As previously
mentioned, PHP scripts require your web server
to read and execute the PHP code they contain
before sending the HTML code that’s generated
to the browser. Only by typing the URL
(http://localhost/today.php) will your browser
request the file from your web server for this to
happen.

Figure 1.11 shows what the web page generated by your first
PHP script should look like.

Figure 1.11. See your first PHP script in action!

Neat, huh? If you use the View Source feature in your browser,
all you’ll see is a regular HTML file with the date in it. The PHP
code (everything between <?php and ?> in the code above) was
interpreted by the web server and converted to normal text
before it was sent to your browser. The beauty of PHP, and
other server-side scripting languages, is that the web browser
can remain ignorant—the web server does all the work! If
you’re worried that the code you typed made little sense to you,
rest assured that you’ll be up to speed on exactly how it works
by the end of Chapter 3. If the date is missing, or if your browser
prompts you to download the PHP file instead of displaying it,
something is amiss with your web server’s PHP support. If you
can, use View Source in your browser to look at the code of the
page. You’ll probably see the PHP code right there in the page.
Since the browser fails to understand PHP, it just sees <?php …
?> as one long invalid HTML tag, which it ignores. Double-
check that you’ve requested the file from your web server rather
than your hard disk (that is, the location bar in your browser
shows a URL beginning with http://localhost/), and make sure
that your web server supports PHP. You should be fine as long
as you followed the installation instructions earlier in this chapter.

Full Toolbox, Dirty Hands
You should now be fully equipped with a web server that
supports PHP scripts, a MySQL database server, and a basic
understanding of how to use each of these. You should even
have gotten your hands dirty by writing and successfully testing
your first PHP script! If the today.php script didn’t work for
you, drop by the SitePoint Forums and we’ll be glad to help you

figure out the problem. In Chapter 2, you’ll learn the basics of
relational databases and start working with MySQL. I’ll also
introduce you to the language of database: Structured Query
Language. If you’ve never worked with a database before, it’ll
be a real eye-opener!

[1] Linux users, you’ll find instructions in Appendix A, because I
suspect that most of you will probably want to install it your own
way, regardless of what I write here.

[2] Of course, there are no guarantees that another application
won’t be using port 8888 or 8889 on your system! I’ve had
trouble with Playback by Yazsoft (an application for streaming
media to game consoles like the Xbox 360 and PlayStation 3),
which uses port 8888 when it is running. If in doubt, try a
different port number!

[3] If you installed Apache on Windows, you may have selected
the option to run it on port 8080. If you’re using MAMP, it’s
configured by default to run Apache on port 8888.

Chapter 2

Introducing MySQL
In Chapter 1, we installed and set up two software programs: the
Apache web server with PHP, and the MySQL database server.
If you followed my recommendation, you would have set them
up using an all-in-one package like XAMPP or MAMP, but
don’t let that diminish your sense of accomplishment! As I
explained in that chapter, PHP is a server-side scripting language
that lets you insert instructions into your web pages that your
web server software (in most cases, Apache) will execute before
it sends those pages to browsers that request them. In a brief
example, I showed how it was possible to insert the current date
into a web page every time it was requested. Now, that’s all well
and good, but it really gets interesting when a database is added
to the mix. In this chapter, we’ll learn what a database is, and
how to work with your own MySQL databases using Structured
Query Language.

An Introduction to Databases
A database server (in our case, MySQL) is a program that can
store large amounts of information in an organized format that’s
easily accessible through programming languages like PHP. For
example, you could tell PHP to look in the database for a list of
jokes that you’d like to appear on your website. In this example,
the jokes would be stored entirely in the database. The
advantage of this approach is twofold: First, instead of writing an
HTML page for each joke, you could write a single PHP script
that was designed to fetch any joke from the database and
display it by generating an HTML page for it on the fly. Second,
adding a joke to your website would be a simple matter of
inserting the joke into the database. The PHP code would take
care of the rest, automatically displaying the new joke along with
the others when it fetched the list from the database. Let’s run

the others when it fetched the list from the database. Let’s run
with this example as we look at how data is stored in a database.
A database is composed of one or more tables , each of which
contains a list of items, or things. For our joke database, we’d
probably start with a table called joke that would contain a list
of jokes. Each table in a database has one or more columns , or
fields. Each column holds a certain piece of information about
each item in the table. In our example, our joke table might have
one column for the text of the jokes, and another for the dates on
which the jokes were added to the database. Each joke stored
in this way would be said to be a row or entry in the table.
These rows and columns form a table that looks like Figure 2.1.

Figure 2.1. A typical database table containing a list of jokes

Notice that, in addition to columns for the joke text (joketext)
and the date of the joke (jokedate), I’ve included a column
named id. As a matter of good design, a database table should
always provide a means by which we can identify each of its
rows uniquely. Since it’s possible that two identical jokes could
be entered on the same date, we can’t rely upon the joketext
and jokedate columns to tell all the jokes apart. The function of
the id column, therefore, is to assign a unique number to each
joke so that we have an easy way to refer to them and to keep
track of which joke is which. We’ll take a closer look at
database design issues like this in Chapter 5. To review, the
table in Figure 2.1 is a three-column table with two rows, or
entries. Each row in the table contains three fields, one for each
column in the table: the joke’s ID, its text, and the date of the
joke. With this basic terminology under your belt, you’re ready

joke. With this basic terminology under your belt, you’re ready
to dive into using MySQL.

Using phpMyAdmin to Run
SQL Queries
Just as a web server is designed to respond to requests from a
client (a web browser), the MySQL database server responds
to requests from client programs. Later in this book, we’ll write
our own MySQL client programs in the form of PHP scripts, but
for now we can use a client program that comes bundled with
both XAMPP and MAMP: phpMyAdmin. phpMyAdmin is itself
a sophisticated web application written in PHP. Besides being
included in XAMPP and MAMP, phpMyAdmin is provided by
most commercial web hosts who offer PHP and MySQL as a
tool for developers to manage their websites’ MySQL
databases. Much like PHP and MySQL, phpMyAdmin’s
ubiquity makes it an attractive tool for beginners to learn and use.

Note: Don’t have
phpMyAdmin?

If you opted to follow the manual setup
instructions in Appendix A rather than use the
all-in-one package offered by XAMPP or
MAMP to set up your web server, you probably
don’t have phpMyAdmin installed on your
server. The good news is that you can download
and install it from the phpMyAdmin website,
where instructions are provided.

If you’re using XAMPP on Windows, you can access
phpMyAdmin by clicking the Admin… button next to MySql
(sic) in the XAMPP Control Panel window, as shown in
Figure 2.2.

Figure 2.2. Click the Admin… button to open phpMyAdmin

To access phpMyAdmin using MAMP on Mac OS X, click the
Open start page button in the MAMP window. Then click the
phpMyAdmin tab at the top of the screen, as shown in
Figure 2.3.

Figure 2.3. You can access phpMyAdmin from MAMP’s start page

Either way, you should now have phpMyAdmin open in your
default web browser, which should look like Figure 2.4. As of
this writing, XAMPP includes the more recent (and better-

this writing, XAMPP includes the more recent (and better-
looking) version 3.4 of phpMyAdmin, so I’ll be showing
screenshots of that. If you’re using the older version 3.3, it won’t
look quite as nice, but it should work just the same.

Figure 2.4. If you can see this, you have phpMyAdmin

If you go clicking around phpMyAdmin, you’ll discover all the
tools you need to manage every aspect of your MySQL server
and the data it contains. For now, I’m going to ignore all of those
features and focus on a particular one: the SQL query window.
See the row of buttons just beneath the phpMyAdmin logo?
Clicking the second icon, indicated in Figure 2.5, opens the SQL
query window shown in Figure 2.6.

Figure 2.5. Click the second button …

Figure 2.6. … to open the SQL query window

Into that big, empty text box you can type commands to ask
your database server questions or make it perform tasks. Let’s
try a few simple commands to take a look around your MySQL
server. The MySQL server can actually keep track of more than
one database. This allows a web host to set up a single MySQL
server for use by several of its subscribers, for example. So,
your first step after connecting to the server should be to choose
a database with which to work. First, let’s retrieve a list of
databases on the current server. Type this command into the
SQL query window, then click Go:

SQL query window, then click Go:

 SHOW DATABASES

You might think at first that nothing has happened, but you
should now see the results in the main phpMyAdmin window, as
shown in Figure 2.7.

Figure 2.7. The query results are displayed in the main
phpMyAdmin window

Your list of databases might be as long as the one shown in
Figure 2.7, or if you’re running MAMP it may only contain two
critical databases. XAMPP uses additional databases to store
configuration of its own, whereas MAMP is designed to avoid
cluttering up your MySQL server with its own data. Either way,
you will have databases named information_schema and
mysql. The MySQL server uses the first database, named
information_schema, to keep track of all the other databases
on the server. Unless you’re doing some very advanced stuff,
you’ll probably leave this database alone. The second database,
mysql, is special too. MySQL uses it to keep track of users,
their passwords, and what they’re allowed to do. We’ll steer

their passwords, and what they’re allowed to do. We’ll steer
clear of this for now, but we’ll revisit it in Chapter 10 when we
discuss MySQL administration. A third database, named test ,
is a sample database that’s included with MySQL out of the box
(again, MAMP does away with this database so you can start
clean). If you see it in the list, you can delete the test database
because you’ll be creating your own database in a moment.
Deleting stuff in MySQL is called “dropping” it, and the
command for doing so is appropriately named:

 DROP DATABASE test

If you type this command into the SQL query window and click
Go, phpMyAdmin will probably display an error message:
"DROP DATABASE" statements are disabled. This message
indicates that a safety feature built into phpMyAdmin is
preventing you from running dangerous-looking queries like this
one. If you want to be able to drop databases (and this is
probably a good ability to have, given the amount of
experimentation I’m going to encourage you to do in this book),
there is a way to do so tucked away in phpMyAdmin. In the
main phpMyAdmin window, click the Databases tab (the
leftmost tab at the top of the main window area). You’ll be
presented with a list of databases on the server, with a checkbox
next to each. Check the one you want to delete (test in this
case); then click the Drop button at the bottom-right of the list as
shown in Figure 2.8.

Figure 2.8. The ability to drop a database in phpMyAdmin is well
hidden

phpMyAdmin presents one last prompt to make sure you mean
to obliterate the database. If you confirm this, MySQL will
obediently delete the database, and phpMyAdmin will display a
message to verify it was successful. Note that there are other
potentially hazardous commands you can send to MySQL in
addition to DROP DATABASE, but phpMyAdmin won’t always
protect you if you make a mistake. You have to be very careful
to type your commands correctly in the SQL query window,
otherwise you can destroy your entire database—along with all
the information it contains—with a single command!

Structured Query Language
The commands we’ll use to direct MySQL throughout the rest of
this book are part of a standard called Structured Query
Language, or SQL (pronounced as either “sequel” or “ess-cue-
ell”—take your pick). Commands in SQL are also referred to as
queries; I’ll use these two terms interchangeably. SQL is the
standard language for interacting with most databases, so, even if
you move from MySQL to a database like Microsoft SQL
Server in the future, you’ll find that the majority of commands are
identical. It’s important that you understand the distinction
between SQL and MySQL. MySQL is the database server
software that you’re using. SQL is the language that you use to
interact with that database.

Tip: Learn SQL in Depth

In this book, I’ll teach you the essentials of SQL
that every PHP developer needs to know. If you
decide to make a career out of building database
driven websites, it pays to know some of the
more advanced details of SQL, especially when
it comes to making your sites run as quickly and
smoothly as possible. To dive deeper into SQL,
I highly recommend the book Simply SQL by

I highly recommend the book Simply SQL by
Rudy Limeback.

Creating a Database
When the time comes to deploy your first database driven
website on the Web, you’re likely to find that your web host or
IT department has already created a MySQL database to use.
Since you’re in charge of your own MySQL server, however,
you’ll need to create your own database to use in developing
your site. It’s just as easy to create a database as it is to delete
one. Open the SQL query window again, and type this
command:

 CREATE DATABASE ijdb

I chose to name the database ijdb, for Internet Joke
Database,[4] because that fits with the example I gave at the
beginning of this chapter: a website that displays a database of
jokes. Feel free to give the database any name you like, though.

Note: Case Sensitivity in SQL
Queries

Most MySQL commands are not case-sensitive,
which means you can type CREATE DATABASE,
create database, or even CrEaTe
DaTaBaSe, and it will know what you mean.
Database names and table names, however, are
case-sensitive when the MySQL server is
running on an operating system with a case-
sensitive file system (such as Linux or Mac OS
X, depending on your system configuration).
Additionally, table, column, and other names
must be spelled exactly the same when they’re
used more than once in the same query. For
consistency, this book will respect the accepted
convention of typing database commands in all
capitals, and database entities (databases, tables,
columns, and so on) in all lowercase.

columns, and so on) in all lowercase.
Now that you have a database, you need to tell phpMyAdmin
that you want to use it. You’ve probably noticed by now that the
left-hand sidebar in the main phpMyAdmin window contains a
list of all the databases on your MySQL server. When you
clicked Go to run your CREATE DATABASE command (you did
click Go, didn’t you?), this sidebar updated to show your new
database’s name in a drop-down menu, as shown in Figure 2.9.

Figure 2.9. phpMyAdmin autoselects your new database for you

It’s nice of phpMyAdmin to autoselect your new database for
you, but you’ll need to know how to select it yourself. Click the
home button (the first in the row of icons beneath the
phpMyAdmin logo) to go back to the home page of
phpMyAdmin. The sidebar will once again display a list of all
databases on your server. To select a database to work with,
just click its name in the sidebar. With your database selected,
click the Query window button again to open a new SQL query
window. This query window is slightly different from the last one:
the caption for the text box now says Run SQL query/queries on
database ijdb. Commands typed into this query window will run
on your new database, instead of your MySQL server as a
whole.

Figure 2.10. You must open a new query window to work with this
database

You’re now ready to use your database. Since a database is
empty until you add tables to it, our first order of business is to
create a table that will hold your jokes (now might be a good
time to think of some!).

Creating a Table
The SQL commands we’ve encountered so far have been
reasonably simple, but as tables are so flexible, it takes a more
complicated command to create them. The basic form of the
command is as follows:

 CREATE TABLE table_name (
 column1Name
 column1Type
 column1Details,
 column2Name
 column2Type
 column2Details,
 …
) DEFAULT CHARACTER SET charset ENGINE=InnoDB

Let’s continue with the joke table I showed you in Figure 2.1.
You’ll recall that it had three columns: id (a number), joketext
(the text of the joke), and jokedate (the date on which the joke
was entered). This is the command to create that table:

 CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Looks scary, huh? Let’s break it down:

CREATE TABLE joke (

This first line is fairly simple; it says that we want to create

This first line is fairly simple; it says that we want to create
a new table named joke. The opening parenthesis (()
marks the beginning of the list of columns in the table.

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

This second line says that we want a column called id that
contains an integer (INT); that is, a whole number. The
rest of this line deals with special details for the column:

1. First, when creating a row in this table, this column
cannot be left blank (NOT NULL).

2. Next, if we don’t specify a value for this column
when we add a new entry to the table, we want
MySQL to automatically pick a value that’s one
more than the highest value in the table so far
(AUTO_INCREMENT).

3. Finally, this column is to act as a unique identifier
for the entries in the table, so all values in this
column must be unique (PRIMARY KEY).

joketext TEXT,

This third line is super simple; it says that we want a
column called joketext, which will contain text (TEXT).

jokedate DATE NOT NULL

This fourth line defines our last column, called jokedate;
this will contain a date (DATE) that cannot be left blank
(NOT NULL).

) DEFAULT CHARACTER SET utf8

The closing parenthesis ()) marks the end of the list of
columns in the table. DEFAULT CHARACTER SET utf8
tells MySQL that you’ll be storing UTF-8 encoded text in
this table. UTF-8 is the most common encoding used for
web content, so you should employ it in all your database
tables that you intend to use on the Web.

ENGINE=InnoDB

This tells MySQL which storage engine to use to create
this table. Think of a storage engine as a file format. When
building a website, you’ll typically choose to use the JPEG
format for the photos on your site, but stick with the PNG

format for the photos on your site, but stick with the PNG
format for the images that make up your site design. Both
formats are supported by browsers, but they each have
strengths and weaknesses. Likewise, MySQL supports
multiple formats for database tables. The InnoDB format
is by far the best choice for website databases like the one
we’ll build in this book. The older MyISAM format is the
default, however, so we must tell MySQL that we want it
to create an InnoDB table.

Note that we assigned a specific data type to each column we
created. id will contain integers, joketext will contain text, and
jokedate will contain dates. MySQL requires you to specify in
advance a data type for each column. This helps to keep your
data organized, and allows you to compare the values within a
column in powerful ways, as we’ll see later. For a list of MySQL
data types, see Appendix D. Now, if you type the above
command correctly and click Go, the main phpMyAdmin
window will confirm that the query executed successfully, and
your first table will be created. If you made a typing mistake,
phpMyAdmin will tell you there was a problem with the query
you typed, and will try to indicate where it had trouble
understanding what you meant. Let’s have a look at your new
table to make sure it was created properly. Type the following
command into the SQL query window, and click Go:

 SHOW TABLES

phpMyAdmin should display the output shown in Figure 2.11.

Figure 2.11. phpMyAdmin lists the tables in the currently selected
database

This is a list of all the tables in your database (which we named
ijdb). The list contains only one table: the joke table you just
created. So far, everything seems fine. Let’s take a closer look
at the joke table itself using a DESCRIBE query:

 DESCRIBE joke

 DESCRIBE joke

As you can see in Figure 2.12, there are three columns (or fields)
in this table, which appear as the three rows in this table of
results. The details are a little cryptic, but if you look at them
closely, you should be able to figure out what they mean. It’s
nothing to be worried about, though. You have better things to
do, like adding some jokes to your table!

Figure 2.12. phpMyAdmin lists the columns in the joke table as
rows

We need to look at just one more task before we do that,
though: deleting a table. This task is as frighteningly easy as
deleting a database with a DROP DATABASE command—except
that phpMyAdmin won’t protect you here. Don’t run this
command with your joke table, unless you actually do want to
be rid of it! If you really want to try it, be prepared to re-create
your joke table from scratch:

 DROP TABLE tableName

Inserting Data into a Table
Your database is created and your table is built; all that’s left is
to put some jokes into the database. The command that inserts
data into a database is called, appropriately enough, INSERT .
This command can take two basic forms:

 INSERT INTO tableName SET
 column1Name = column1Value,
 column2Name = column2Value,
 …

 INSERT INTO tableName
 (column1Name, column2Name, …)

 (column1Name, column2Name, …)
 VALUES (column1Value, column2Value, …)

So, to add a joke to our table, we can use either of these
commands:

 INSERT INTO joke SET
joketext = "Why did the chicken cross the road? To get to the other
↵ side!",
jokedate = "2012-04-01"

 INSERT INTO joke
(joketext, jokedate) VALUES (
"Why did the chicken cross the road? To get to the other side!",
"2012-04-01")

Note that in both forms of the INSERT command, the order in
which you list the columns must match the order in which you list
the values. Otherwise, the order of the columns isn’t important.
Go ahead and swap the order of the column and value pairs and
try the query. As you typed the query, you’ll have noticed that
we used double quotes (") to mark where the text of the joke
started and ended. A piece of text enclosed in quotes this way is
called a text string, and this is how you represent most data
values in SQL. For instance, the dates are typed as text strings,
too, in the form "YYYY-MM-DD". If you prefer, you can type text
strings surrounded with single quotes (') instead of double
quotes:

 INSERT INTO joke SET
joketext = 'Why did the chicken cross the road? To get to the other
↵ side!',
jokedate = '2012-04-01'

You might be wondering what happens when there are quotes
used within the joke’s text. Well, if the text contains single
quotes, you would surround it with double quotes. Conversely, if
the text contains double quotes, surround it with single quotes. If
the text you want to include in your query contains both single
and double quotes, you’ll have to escape the conflicting
characters within your text string. You escape a character in
SQL by adding a backslash (\) immediately before it. This tells
MySQL to ignore any “special meaning” this character might

MySQL to ignore any “special meaning” this character might
have. In the case of single or double quotes, it tells MySQL not
to interpret the character as the end of the text string. To make
this as clear as possible, here’s an example of an INSERT
command for a joke containing both single and double quotes:

 INSERT INTO joke
(joketext, jokedate) VALUES (
'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only a
↵ joke!',
"2012-04-01")

As you can see, I’ve marked the start and end of the text string
for the joke text using single quotes. I’ve therefore had to escape
the three single quotes (the apostrophes) within the string by
putting backslashes before them. MySQL would see these
backslashes and know to treat the single quotes as characters
within the string, rather than end-of-string markers. If you’re
especially clever, you might now be wondering how to include
actual backslashes in SQL text strings. The answer is to type a
double-backslash (\\), which MySQL will treat as a single
backslash in the string of text. Now that you know how to add
entries to a table, let’s see how we can view those entries.

Viewing Stored Data
The command that we use to view data stored in database
tables, SELECT , is the most complicated command in the SQL
language. The reason for this complexity is that the chief strength
of a database is its flexibility in data retrieval. At this early point
in our experience with databases, we need only focus on fairly
simple lists of results, so let’s consider the simpler forms of the
SELECT command here. This command will list everything that’s
stored in the joke table:

 SELECT * FROM joke

Read aloud, this command says “select everything from joke.” If
you try this command, your results will resemble Figure 2.13.

Figure 2.13. phpMyAdmin lists the full contents of the joke table

If you were doing serious work on such a database, you might
be tempted to stop and read all the hilarious jokes in the
database at this point. To save yourself the distraction, you might
want to tell MySQL to omit the joketext column. The
command for doing this is as follows:

 SELECT id, jokedate FROM joke

This time, instead of telling it to “select everything,” we told it
precisely which columns we wanted to see. The result should
look like Figure 2.14.

Figure 2.14. You can select only what you need

What if we’d like to see some of the joke text? As well as being
able to name specific columns that we want the SELECT
command to show us, we can use functions to modify each
column’s display. One function, called LEFT, enables us to tell
MySQL to display a column’s contents up to a specified number
of characters. For example, let’s say we wanted to see only the
first 20 characters of the joketext column. Here’s the
command we’d use:

 SELECT id, LEFT(joketext, 20), jokedate FROM joke

The results are shown in Figure 2.15.

Figure 2.15. The LEFT function trims the text to a specified length

See how that worked? Another useful function is COUNT, which
lets us count the number of results returned. If, for example, you
wanted to find out how many jokes were stored in your table,
you could use the following command:

 SELECT COUNT(*) FROM joke

 SELECT COUNT(*) FROM joke

As you can see in Figure 2.16, you have just one joke in your
table.

Figure 2.16. The COUNT function counts the rows

So far, the examples we’ve looked at have fetched all the entries
in the table; however, you can limit your results to only those
database entries that have the specific attributes you want. You
set these restrictions by adding what’s called a WHERE clause to
the SELECT command. Consider this example:

 SELECT COUNT(*) FROM joke WHERE jokedate >= "2012-01-01"

This query will count the number of jokes that have dates greater
than or equal to January 1, 2012. In the case of dates, “greater
than or equal to” means “on or after.” Another variation on this
theme lets you search for entries that contain a certain piece of
text. Check out this query:

 SELECT joketext FROM joke WHERE joketext LIKE "%chicken%"

This query displays the full text of all jokes containing the text
“chicken” in their joketext column. The LIKE keyword tells
MySQL that the named column must match the given pattern.[5]

In this case, the pattern we’ve used is "%chicken%". The %
signs indicate that the text “chicken” may be preceded and/or
followed by any string of text. Conditions may also be combined
in the WHERE clause to further restrict results. For example, to
display knock-knock jokes from April 2012 only, you could use
the following query:

 SELECT joketext FROM joke WHERE
joketext LIKE "%knock%" AND
jokedate >= "2012-04-01" AND
jokedate < "2012-05-01"

Enter a few more jokes into the table (for example, the “Knock-
Knock” joke mentioned earlier) and experiment with SELECT
queries (for ideas, see Chapter 4). You can do a lot with the

queries (for ideas, see Chapter 4). You can do a lot with the
SELECT command, so I’d encourage you to become quite
familiar with it. We’ll look at some of its more advanced features
later, when we need them.

Modifying Stored Data
Having entered data into a database table, you might find that
you’d like to change it. Whether you’re correcting a spelling
mistake, or changing the date attached to a joke, such alterations
are made using the UPDATE command. This command contains
elements of the SELECT and INSERT commands, since the
command both picks out entries for modification and sets column
values. The general form of the UPDATE command is as follows:

 UPDATE tableName SET
 colName = newValue, …
WHERE conditions

So, for example, if we wanted to change the date on the joke we
entered earlier, we’d use the following command:

 UPDATE joke SET jokedate = "2013-04-01" WHERE id = "1"

Here’s where that id column comes in handy, enabling you to
easily single out a joke for changes. The WHERE clause used here
works just as it did in the SELECT command. This next
command, for example, changes the date of all entries that
contain the word “chicken”:

 UPDATE joke SET jokedate = "2010-04-01"
WHERE joketext LIKE "%chicken%"

Deleting Stored Data
Deleting entries in SQL is dangerously easy, which you’ve
probably noticed is a recurring theme. Here’s the command
syntax:

 DELETE FROM tableName WHERE conditions

 DELETE FROM tableName WHERE conditions

To delete all chicken jokes from your table, you’d use the
following query:

 DELETE FROM joke WHERE joketext LIKE "%chicken%"

Warning: Careful with That
Enter Key!

Believe it or not, the WHERE clause in the DELETE
command is optional. Consequently, you should
be very careful when typing this command! If
you leave the WHERE clause out, the DELETE
command will then apply to all entries in the
table. The following command will empty the
joke table in one fell swoop:

 DELETE FROM joke

Scary, huh?

Let PHP Do the Typing
There’s a lot more to the MySQL database server software and
SQL than the handful of basic commands I’ve presented here,
but these commands are by far the most commonly used. At this
stage, you might be thinking that databases seem a little
cumbersome. SQL can be tricky to type, as its commands tend
to be long and verbose compared to other computer languages.
You’re probably dreading the thought of typing in a complete
library of jokes in the form of INSERT commands. Don’t sweat
it! As we proceed through this book, you’ll be surprised at how
few SQL queries you actually type by hand. Generally, you’ll be
writing PHP scripts that type your SQL for you. For example, if
you want to be able to insert a bunch of jokes into your
database, you’ll typically create a PHP script for adding jokes
that includes the necessary INSERT query, with a placeholder for

that includes the necessary INSERT query, with a placeholder for
the joke text. You can then run that PHP script whenever you
have jokes to add. The PHP script prompts you to enter your
joke, then issues the appropriate INSERT query to your MySQL
server. For now, however, it’s important to gain a good feel for
typing SQL by hand. It will give you a strong sense of the inner
workings of MySQL databases, and will make you appreciate
all the more the work that PHP will save you! To date, we’ve
only worked with a single table, but to realize the true power of a
relational database, you’ll need to learn how to use multiple
tables together to represent potentially complex relationships
between the items stored in your database. I’ll cover all this and
more in Chapter 5, in which I’ll discuss database design
principles and show off some more advanced examples. In the
meantime, we’ve accomplished our objective, and you can
comfortably interact with MySQL using the phpMyAdmin query
window. In Chapter 3, the fun continues as we delve into the
PHP language, and use it to create several dynamically generated
web pages. If you like, you can practice with MySQL a little
before you move on by creating a decent-sized joke table (for
our purposes, five should be enough). This library of jokes will
come in handy when you reach Chapter 4.

[4] With a tip of the hat to the Internet Movie Database.

[5] In case you were curious, LIKE is case-insensitive, so this
pattern will also match a joke that contains “Chicken,” or even
“FuNkYcHiCkEn.”

Chapter 3

Introducing PHP
PHP is a server-side language. This concept may be a little
difficult to grasp, especially if you’ve only ever designed websites
using client-side languages like HTML, CSS, and JavaScript. A
server-side language is similar to JavaScript in that it allows you
to embed little programs (scripts) into the HTML code of a web
page. When executed, these programs give you greater control
over what appears in the browser window than HTML alone
can provide. The key difference between JavaScript and PHP is
the stage of loading the web page at which these embedded
programs are executed. Client-side languages like JavaScript are
read and executed by the web browser after downloading the
web page (embedded programs and all) from the web server. In
contrast, server-side languages like PHP are run by the web
server, before sending the web page to the browser. Whereas
client-side languages give you control over how a page behaves
once it’s displayed by the browser, server-side languages let you
generate customized pages on the fly before they’re even sent to
the browser. Once the web server has executed the PHP code
embedded in a web page, the result takes the place of the PHP
code in the page. All the browser sees is standard HTML code
when it receives the page, hence the name “server-side
language.” Let’s look back at the today.php example presented
in Chapter 1:

chapter3/today.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>Today’s date (according to this web
server) is
 <?php

 echo date('l, F jS Y.');
 ?>
 </p>
 </body>
</html>

Most of this is plain HTML except the line between <?php and
?> is PHP code. <?php marks the start of an embedded PHP
script and ?> marks its end. The web server is asked to interpret
everything between these two delimiters and convert it to regular
HTML code before it sends the web page to the requesting
browser. The browser is presented with the following:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>Today’s date (according to this web
server) is
 Sunday, April 1st 2012.
 </p>
 </body>
</html>

Notice that all signs of the PHP code have disappeared. In its
place the output of the script has appeared, and it looks just like
standard HTML. This example demonstrates several advantages
of server-side scripting:

No browser compatibility issues

PHP scripts are interpreted by the web server alone, so
there’s no need to worry about whether the language
features you’re using are supported by the visitor’s
browser.

Access to server-side resources

In the above example, we placed the date according to
the web server into the web page. If we had inserted the
date using JavaScript, we’d only be able to display the
date according to the computer on which the web
browser was running. Granted, there are more impressive

browser was running. Granted, there are more impressive
examples of the exploitation of server-side resources,
such as inserting content pulled out of a MySQL database
(hint, hint …).

Reduced load on the client

JavaScript can delay the display of a web page
significantly (especially on mobile devices!), as the
browser must run the script before it can display the web
page. With server-side code this burden is passed to the
web server, which you can make as beefy as your
application requires (and your wallet can afford).

Basic Syntax and Statements
PHP syntax will be very familiar to anyone with an understanding
of JavaScript, C, C++, C#, Objective-C, Java, Perl, or any
other C-derived language. But if these languages are unfamiliar to
you, or if you’re new to programming in general, there’s no need
to worry about it. A PHP script consists of a series of
commands, or statements. Each statement is an instruction that
must be followed by the web server before it can proceed to the
next instruction. PHP statements, like those in the
aforementioned languages, are always terminated by a semicolon
(;). This is a typical PHP statement:
echo 'This is a test!';

This is an echo statement, which is used to generate content
(usually HTML code) to send to the browser. An echo
statement simply takes the text it’s given and inserts it into the
page’s HTML code at the position of the PHP script where it
was contained. In this case, we’ve supplied a string of text to be
output: 'This is a test!'. Notice
that the string of text contains HTML tags (and
), which is perfectly acceptable. So, if we take this
statement and put it into a complete web page, here’s the
resulting code:

chapter3/echo.php
<!DOCTYPE html>
<html lang="en">
 <head>

 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p><?php echo 'This is a
test!'; ?></p>
 </body>
</html>

If you place this file on your web server and then request it using
a web browser, your browser will receive this HTML code:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>This is a test!</p>
 </body>
</html>

The today.php example we looked at earlier contained a slightly
more complex echo statement:

chapter3/today.php (excerpt)
echo date('l, F jS Y.');

Instead of giving echo a simple string of text to output, this
statement invokes a built-in function called date and passes it
a string of text: 'l, F jS Y.'. You can think of built-in
functions as tasks that PHP knows how to do without you
needing to spell out the details. PHP has many built-in functions
that let you do everything, from sending email to working with
information stored in various types of databases. When you
invoke a function in PHP—that is, ask it to do its job—you’re
said to be calling that function. Most functions return a value
when they’re called; PHP then behaves as if you’d actually just
typed that returned value instead in your code. In this case, our
echo statement contains a call to the date function, which
returns the current date as a string of text (the format of which is
specified by the text string in the function call). The echo
statement therefore outputs the value returned by the function
call. You may wonder why we need to surround the string of text
with both parentheses ((…)) and single quotes ('…'). As in

with both parentheses ((…)) and single quotes ('…'). As in
SQL, quotes are used in PHP to mark the beginning and end of
strings of text, so it makes sense for them to be there. The
parentheses serve two purposes. First, they indicate that date is
a function that you want to call. Second, they mark the beginning
and end of a list of arguments that you wish to provide, in order
to tell the function what you want it to do.[6]In the case of the
date function, you need to provide a string of text that describes
the format in which you want the date to appear.[7] Later on,
we’ll look at functions that take more than one argument, and
we’ll separate those arguments with commas. We’ll also
consider functions that take no arguments at all. These functions
will still need the parentheses, even though there will be nothing
to type between them.

Variables, Operators, and
Comments
Variables in PHP are identical to variables in most other
programming languages. For the uninitiated, a variable can be
thought of as a name given to an imaginary box into which any
literal value may be placed. The following statement creates a
variable called $testVariable (all variable names in PHP
begin with a dollar sign) and assigns it a literal value of 3:
$testVariable = 3;

PHP is a loosely typed language. This means that a single
variable may contain any type of data, be it a number, a string of
text, or some other kind of value, and may store different types
of values over its lifetime. The following statement, if you were to
type it after the aforementioned statement, assigns a new value to
the existing $testVariable. Where it used to contain a
number, it now contains a string of text:
$testVariable = 'Three';

The equals sign we used in the last two statements is called the
assignment operator , as it’s used to assign values to variables.
Other operators may be used to perform various mathematical
operations on values:
$testVariable = 1 + 1; // assigns a value of 2

$testVariable = 1 + 1; // assigns a value of 2
$testVariable = 1 - 1; // assigns a value of 0
$testVariable = 2 * 2; // assigns a value of 4
$testVariable = 2 / 2; // assigns a value of 1

From these examples, you can probably tell that + is the
addition operator , - is the subtraction operator , * is the
multiplication operator , and / is the division operator .
These are all called arithmetic operators, because they
perform arithmetic on numbers. Each arithmetic line ends with a
comment. Comments enable you to describe what your code is
doing. They insert explanatory text into your code—text that the
PHP interpreter will ignore. Comments begin with // and they
finish at the end of the same line. If you want a comment to span
several lines, start it with /*, and end it with */. The PHP
interpreter will ignore everything between these two delimiters.
I’ll be using comments throughout the rest of this book to help
explain some of the code I present. Returning to the operators,
one that sticks strings of text together is called the string
concatenation operator :
$testVariable = 'Hi ' . 'there!'; // assigns a
value of 'Hi there!'

Variables may be used almost anywhere that you use a literal
value. Consider this series of statements:
$var1 = 'PHP'; // assigns a value of
'PHP' to $var1
$var2 = 5; // assigns a value of 5
to $var2
$var3 = $var2 + 1; // assigns a value of 6
to $var3
$var2 = $var1; // assigns a value of
'PHP' to $var2
echo $var1; // outputs 'PHP'
echo $var2; // outputs 'PHP'
echo $var3; // outputs '6'
echo $var1 . ' rules!'; // outputs 'PHP rules!'
echo "$var1 rules!"; // outputs 'PHP rules!'
echo '$var1 rules!'; // outputs '$var1
rules!'

Note the last two lines in particular. You can include the name of
a variable right inside a text string and have the value inserted in
its place if you surround the string with double quotes instead of
single quotes. This process of converting variable names to their
values is known as variable interpolation ; however, as the last

values is known as variable interpolation ; however, as the last
line demonstrates, a string surrounded with single quotes will not
interpolate the variable names it contains.

Arrays
An array is a special kind of variable that contains multiple
values. If you think of a variable as a box that contains a value,
an array can be thought of as a box with compartments where
each compartment is able to store an individual value. The
simplest way to create an array in PHP is to use the array
command:
$myArray = array('one', 2, '3');

This code creates an array called $myArray that contains three
values: 'one', 2, and '3'. Just like an ordinary variable, each
space in an array can contain any type of value. In this case, the
first and third spaces contain strings, while the second contains a
number. To access a value stored in an array, you need to know
its index. Typically, arrays use numbers as indices to point to the
values they contain, starting with zero. That is, the first value (or
element) of an array has index 0, the second has index 1, the
third has index 2, and so on. Therefore, the index of the nth
element of an array is n–1. Once you know the index of the
value you’re interested in, you can retrieve that value by placing
that index in square brackets after the array variable name:
echo $myArray[0]; // outputs 'one'
echo $myArray[1]; // outputs '2'
echo $myArray[2]; // outputs '3'

Each value stored in an array is called an element of that array.
You can use an index in square brackets to add new elements,
or assign new values to existing array elements:
$myArray[1] = 'two'; // assign a new value
$myArray[3] = 'four'; // create a new element

You can also add elements to the end of an array using the
assignment operator as usual, but leaving empty the square
brackets that follow the variable name:
$myArray[] = 'the fifth element';
echo $myArray[4]; // outputs 'the fifth
element'

element'

While numbers are the most common choice for array indices,
there’s another possibility. You can also use strings as indices to
create what’s called an associative array . It’s called this
because it associates values with meaningful indices. In this
example, we associate a date (in the form of a string) with each
of three names:
$birthdays['Kevin'] = '1978-04-12';
$birthdays['Stephanie'] = '1980-05-16';
$birthdays['David'] = '1983-09-09';

The array command also lets you create associative arrays, if
you prefer that method. Here’s how we’d use it to create the
$birthdays array:
$birthdays = array('Kevin' => '1978-04-12',
'Stephanie' =>
 '1980-05-16', 'David' => '1983-09-09');

Now, if we want to know Kevin’s birthday, we look it up using
the name as the index:
echo 'My birthday is: ' . $birthdays['Kevin'];

This type of array is especially important when it comes to user
interaction in PHP, as we’ll see in the next section. I’ll
demonstrate other uses of arrays throughout this book.

User Interaction and Forms
For most database driven websites these days, you need to do
more than dynamically generate pages based on database data;
you must also provide some degree of interactivity, even if it’s
just a search box. Veterans of JavaScript tend to think of
interactivity in terms of event listeners, which let you react
directly to the actions of the user; for example, the movement of
the cursor over a link on the page. Server-side scripting
languages such as PHP have a more limited scope when it comes
to support for user interaction. As PHP code is only activated
when a request is made to the server, user interaction occurs
solely in a back-and-forth fashion: the user sends requests to the
server, and the server replies with dynamically generated
pages.[8] The key to creating interactivity with PHP is to

pages.[8] The key to creating interactivity with PHP is to
understand the techniques we can employ to send information
about a user’s interaction, along with a request for a new web
page. As it turns out, PHP makes this quite easy.

Passing Variables in Links

The simplest way to send information along with a page request
is to use the URL query string . If you’ve ever seen a URL
containing a question mark that follows the filename, you’ve
witnessed this technique in use. For example, if you search for
“SitePoint” on Google, it will take you to a URL that looks like
this one to see the search results:

http://www.google.com/search?hl=en&q=SitePoint

See the question mark in the URL? See how the text that follows
the question mark contains your search query (SitePoint)?
That information is being sent along with the request for
http://www.google.com/search. Let’s code up an easy example
of our own. Create a regular HTML file called name.html (no
.php filename extension is required, since there will be no PHP
code in this file) and insert this link:

chapter3/links1/name.html (excerpt)
Hi, I’m
Kevin!

This is a link to a file called name.php, but as well as linking to
the file, you’re also passing a variable along with the page
request. The variable is passed as part of the query string, which
is the portion of the URL that follows the question mark. The
variable is called name and its value is Kevin. To restate, you
have created a link that loads name.php, and informs the PHP
code contained in that file that name equals Kevin. To really
understand the effect of this link, we need to look at name.php.
Create it as a new HTML file, but, this time, note the .php
filename extension: this tells the web server that it can expect to
interpret some PHP code in the file. In the <body> of this new
web page, type the following:

chapter3/links1/name.php (excerpt)
<?php
$name = $_GET['name'];

$name = $_GET['name'];
echo 'Welcome to our website, ' . $name . '!';
?>

Now, put these two files (name.html and name.php) onto your
web server, and load the first file in your browser (the URL
should be like http://localhost/name.html, or
http://localhost:8888/name.html if your web server is running on a
port other than 80). Click the link in that first page to request the
PHP script. The resulting page should say “Welcome to our
website, Kevin!”, as shown in Figure 3.1.

Figure 3.1. Greet users with a personalized welcome message

Let’s take a closer look at the code that made this possible. This
is the most important line:

chapter3/links1/name.php (excerpt)
$name = $_GET['name'];

If you were paying close attention in the section called “Arrays”,
you’ll recognize what this line does. It assigns the value stored in
the 'name' element of the array called $_GET to a new variable
called $name. But where does the $_GET array come from? It
turns out that $_GET is one of a number of variables that PHP
automatically creates when it receives a request from a browser.
PHP creates $_GET as an array variable that contains any values
passed in the URL query string. $_GET is an associative array,

passed in the URL query string. $_GET is an associative array,
so the value of the name variable passed in the query string can
be accessed as $_GET['name']. Your name.php script assigns
this value to an ordinary PHP variable ($name), then displays it
as part of a text string using an echo statement:

chapter3/links1/name.php (excerpt)
echo 'Welcome to our website, ' . $name . '!';

The value of the $name variable is inserted into the output string
using the string concatenation operator (.) that we looked at in
the section called “Variables, Operators, and Comments”. But
look out: there is a security hole lurking in this code! Although
PHP is an easy programming language to learn, it turns out it’s
also especially easy to introduce security issues into websites
using PHP if you’re unaware of what precautions to take. Before
we go any further with the language, I want to make sure you’re
able to spot and fix this particular security issue, since it’s
probably the most common on the Web today. The security
issue here stems from the fact that the name.php script is
generating a page containing content that is under the control of
the user—in this case, the $name variable. Although the $name
variable will normally receive its value from the URL query string
in the link on the name.html page, a malicious user could edit the
URL to send a different value for the name variable. To see how
this would work, click the link in name.html again. When you see
the resulting page (with the welcome message containing the
name “Kevin”), take a look at the URL in the address bar of
your browser. It should look similar to this:

http://localhost/name.php?name=Kevin

Edit the URL to insert a tag before the name, and a
tag following the name:

http://localhost/name.php?name=Kevin

Hit Enter to load this new URL, and note that the name in the
page is now bold, as shown in Figure 3.2.[9]

Figure 3.2. Easy exploitation will only embolden attackers!

See what’s happening here? The user can type any HTML code
into the URL, and your PHP script includes it in the code of the
generated page without question. If the code is as innocuous as a
 tag there’s no problem, but a malicious user could include
sophisticated JavaScript code that performed some low action
like stealing the user’s password. All the attacker would have to
do is publish the modified link on some other site under the
attacker’s control, and then entice one of your users to click it.
The attacker could even embed the link in an email and send it to
your users. If one of your users clicked the link, the attacker’s
code would be included in your page and the trap would be
sprung! I hate to scare you with this talk of malicious hackers
attacking your users by turning your own PHP code against you,
particularly when you’re only just learning the language. The fact
is that PHP’s biggest weakness as a language is how easy it is to
introduce security issues like this. Some might say that much of
the energy you spend learning to write PHP to a professional
standard is spent on avoiding security issues. The sooner you’re
exposed to these issues, however, the sooner you become
accustomed to avoiding them, and the less of a stumbling block
they’ll be for you in future. So, how can we generate a page
containing the user’s name without opening it up to abuse by
attackers? The solution is to treat the value supplied for the
$name variable as plain text to be displayed on your page, rather
than as HTML to be included in the page’s code. This is a subtle
distinction, so let me show you what I mean. Open up your
name.php file again and edit the PHP code it contains so that it

name.php file again and edit the PHP code it contains so that it
looks like this:[10]

chapter3/links2/name.php (excerpt)
<?php
$name = $_GET['name'];
echo 'Welcome to our website, ' .
 htmlspecialchars($name, ENT_QUOTES, 'UTF-8')
. '!';
?>

There’s a lot going on in this code, so let me break it down for
you. The first line is the same as it was previously, assigning to
$name the value of the 'name' element from the $_GET array.
The echo statement that follows it is drastically different, though.
Whereas previously, we simply dumped the $name variable,
naked, into the echo statement, this version of the code uses the
built-in PHP function htmlspecialchars to perform a critical
conversion. Remember, the security hole occurs because in
name.html, HTML code in the $name variable is dumped
directly into the code of the generated page, and can therefore
do anything that HTML code can do. What
htmlspecialchars does is convert “special HTML
characters” like < and > into HTML character entities like <
and >, which prevents them from being interpreted as HTML
code by the browser. I’ll demonstrate this for you in a moment.
First, let’s take a closer look at this new code. The call to the
htmlspecialchars function is the first example in this book of
a PHP function that takes more than one argument. Here’s the
function call all by itself:
htmlspecialchars($name, ENT_QUOTES, 'UTF-8')

The first argument is the $name variable (the text to be
converted). The second argument is the PHP constant[11]

ENT_QUOTES, which tells htmlspecialchars to convert single
and double quotes in addition to other special characters. The
third parameter is the string 'UTF-8', which tells PHP what
character encoding to use to interpret the text you give it.

Note: The Perks and Pitfalls
of UTF-8 with PHP

You may have discerned that all the example

You may have discerned that all the example
HTML pages in this book contain the following
<meta> tag near the top:
<meta charset="utf-8">

This tag tells the browser receiving this page that
the HTML code of the page is encoded as
UTF-8 text.[12] In a few pages, we’ll reach the
section called “Passing Variables in Forms” on
building HTML forms. By encoding your pages
as UTF-8, your users can submit text containing
thousands of foreign characters that your site
would otherwise be unable to handle.
Unfortunately, many of PHP’s built-in functions,
such as htmlspecialchars, assume you’re
using the much simpler ISO-8859-1 (or Latin-1)
character encoding by default. Therefore, you
need to let them know you’re using UTF-8 when
utilizing these functions. If you can, you should
also tell your text editor to save your HTML and
PHP files as UTF-8 encoded text; this is only
required if you want to type advanced characters
(such as curly quotes or dashes) or foreign
characters (like “é”) into your HTML or PHP
code. The code in this book plays it safe and
uses HTML character entities (for example,
’ for a curly right quote), which will
work regardless.

Open up name.html in your browser and click the link that now
points to your updated name.php. Once again, you’ll see the
welcome message “Welcome to our website, Kevin!” As you
did before, modify the URL to include and tags
surrounding the name:

http://localhost/name.php?name=Kevin

This time when you hit Enter, instead of the name turning bold in
the page, you should see the actual text that you typed as shown
in Figure 3.3.

Figure 3.3. It sure is ugly, but it’s secure!

If you view the source of the page, you can confirm that the
htmlspecialchars function did its job and converted the <
and > characters present in the provided name into the <
and > HTML character entities, respectively. This prevents
malicious users from injecting unwanted code into your site. If
they try anything like that, the code is harmlessly displayed as
plain text on the page. We’ll make extensive use of the
htmlspecialchars function throughout this book to guard
against this sort of security hole. No need to worry too much if
you’re having trouble grasping the details of how to use it just at
the minute. Before long, you’ll find its use becomes second
nature. For now, let’s look at some more advanced ways of
passing values to PHP scripts when we request them. Passing a
single variable in the query string was nice, but it turns out you
can pass more than one value if you want to! Let’s look at a
slightly more complex version of the previous example. Open up
your name.html file again, and change the link to point to
name.php with this more complicated query string:[13]

chapter3/links3/name.html (excerpt)
<a href="name.php?
firstname=Kevin&lastname=Yank">Hi,
 I’m Kevin Yank!

This time, our link passes two variables: firstname and
lastname. The variables are separated in the query string by an
ampersand (&, which must be written as & in HTML—yes,

ampersand (&, which must be written as & in HTML—yes,
even in a link URL!). You can pass even more variables by
separating each name=value pair from the next with an
ampersand. As before, we can use the two variable values in our
name.php file:

chapter3/links3/name.php (excerpt)
<?php
$firstName = $_GET['firstname'];
$lastName = $_GET['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstName, ENT_QUOTES,
'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES,
'UTF-8') . '!';
?>

The echo statement is becoming quite sizable now, but it should
still make sense to you. Using a series of string concatenations
(.), it outputs “Welcome to our website,” followed by the value
of $firstName (made safe for display using
htmlspecialchars), a space, the value of $lastName (again,
treated with htmlspecialchars), and finally an exclamation
mark. The result is shown in Figure 3.4.

Figure 3.4. Create an even more personalized welcome message

This is all well and good, but we still have yet to achieve our goal
of true user interaction, where the user can enter arbitrary

information and have it processed by PHP. To continue with our
example of a personalized welcome message, we’d like to invite
the user to type their name and have it appear in the resulting
page. To enable the user to type in a value, we’ll need to use an
HTML form.

Passing Variables in Forms

Rip the link out of name.html and replace it with this HTML
code to create the form:[14]

chapter3/forms1/name.html (excerpt)
<form action="name.php" method="get">
 <div><label for="firstname">First name:
 <input type="text" name="firstname"
id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname"
id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

The form this code produces is shown in Figure 3.5.

Figure 3.5. Make your own welcome message

Note: Function Over Form

Note: Function Over Form

This form is quite plain looking, I’ll grant you.
Some judicious application of CSS would make
this and all other examples in this book more
attractive. Since this is a book about PHP and
MySQL, however, I’m sticking with the plain
look. Check out SitePoint’s The CSS3
Anthology for advice on styling your forms with
CSS.

This form has the exact same effect as the second link we looked
at in the section called “Passing Variables in Links” (with
firstname=Kevin&lastname=Yank in the query string),
except that you can now enter whichever names you like. When
you click the submit button (labeled GO), the browser will load
name.php, and add the variables and their values to the query
string for you automatically. It retrieves the names of the
variables from the name attributes of the <input
type="text"> tags, and obtains the values from the text the
user types into the text fields.

Note: Apostrophes in Form
Fields

If you’re burdened with the swollen ego of most
programmers (myself included), you probably
took this opportunity to type your own name
into this form. Who can blame you? If your last
name happens to include an apostrophe (for
example, Molly O’Reilly), the welcome message
you saw may have included a stray backslash
before the apostrophe (that is, “Welcome to our
website, Molly O\'Reilly!”) . This bothersome
backslash is due to a PHP security feature called
magic quotes , which we’ll learn about in
Chapter 4. Until then, please bear with me.

The method attribute of the <form> tag is used to tell the
browser how to send the variables and their values along with
the request. A value of get (as used in name.html above) causes
them to be passed via the query string (and appear in PHP’s

them to be passed via the query string (and appear in PHP’s
$_GET array), but there is an alternative. It can be undesirable—
or even technically unfeasible—to have the values appear in the
query string. What if we included a <textarea> tag in the form,
to let the user enter a large amount of text? A URL whose query
string contained several paragraphs of text would be ridiculously
long, and would possibly exceed the maximum length for a URL
in today’s browsers. The alternative is for the browser to pass
the information invisibly, behind the scenes. Edit your name.html
file once more. Modify the form method by setting it to post:[15]

chapter3/forms2/name.html (excerpt)
<form action="name.php" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname"
id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname"
id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

This new value for the method attribute instructs the browser to
send the form variables invisibly as part of the page request,
rather than embedding them in the query string of the URL. As
we are no longer sending the variables as part of the query string,
they stop appearing in PHP’s $_GET array. Instead, they are
placed in another array reserved especially for “posted” form
variables: $_POST. We must therefore modify name.php to
retrieve the values from this new array:

chapter3/forms2/name.php (excerpt)
<?php
$firstname = $_POST['firstname'];
$lastname = $_POST['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstname, ENT_QUOTES,
'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES,
'UTF-8') . '!';
?>

Figure 3.6 shows what the resulting page looks like once this
new form is submitted.

Figure 3.6. This personalized welcome is achieved without a query
string

The form is functionally identical to the previous one; the only
difference is that the URL of the page that’s loaded when the
user clicks the GO button will be without a query string. On the
one hand, this lets you include large values (or sensitive values
such as passwords) in the data that’s submitted by the form
without their appearing in the query string. On the other hand, if
the user bookmarks the page that results from the form’s
submission, that bookmark will be useless, as it lacks the
submitted values. This, incidentally, is the main reason why
search engines use the query string to submit search terms. If you
bookmark a search results page on Google, you can use that
bookmark to perform the same search again later, because the
search terms are contained in the URL. Sometimes, you want
access to a variable without having to worry about whether it
was sent as part of the query string or a form post. In cases like
these, the special $_REQUEST array comes in handy. It contains
all the variables that appear in both $_GET and $_POST. With
this variable, we can modify our form processing script one more
time so that it can receive the first and last names of the user
from either source:[16]

chapter3/forms3/name.php (excerpt)

chapter3/forms3/name.php (excerpt)
<?php
$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstname, ENT_QUOTES,
'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES,
'UTF-8') . '!';
?>

That covers the basics of using forms to produce rudimentary
user interaction with PHP. We’ll look at more advanced issues
and techniques in later examples.

Control Structures
All the examples of PHP code we’ve seen so far have been
either one-statement scripts that output a string of text to the web
page, or a series of statements that were to be executed one
after the other in order. If you’ve ever written programs in other
languages (JavaScript, Objective-C, Ruby, or Python), you
already know that practical programs are rarely so simple. PHP,
just like any other programming language, provides facilities that
enable you to affect the flow of control . That is, the language
contains special statements that you can use to deviate from the
one-after-another execution order that has dominated our
examples so far. Such statements are called control structures.
Don’t understand? Don’t worry! A few examples will illustrate it
perfectly. The most basic, and most often used, control structure
is the if statement. The flow of a program through an if
statement can be visualized as in Figure 3.7.

Figure 3.7. The logical flow of an if statement[17]

Here’s what an if statement looks like in PHP code:
if (condition)
{
 … conditional code to be executed if condition
is true
}

This control structure lets us tell PHP to execute a set of
statements only if some condition is met. If you’ll indulge my
vanity for a moment, here’s an example that shows a twist on the
personalized welcome page example we created earlier. Start by
opening up name.html for editing again. For simplicity, let’s alter
the form it contains so that it submits a single name variable to
name.php:[18]

chapter3/if/name.html (excerpt)
<form action="name.php" method="post">
 <div><label for="name">Name:
 <input type="text" name="name" id="name">
</label>
 </div>
 <div><input type="submit" value="GO"/></div>

 <div><input type="submit" value="GO"/></div>
</form>

Now edit name.php. Replace the PHP code it contains with the
following:

chapter3/if/name.php (excerpt)
$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}

Now, if the name variable passed to the page has a value of
'Kevin', a special message will be displayed as shown in
Figure 3.8.

Figure 3.8. It’s good to be the king

If a name other than Kevin is entered, this example becomes
inhospitable: the conditional code within the if statement fails to
execute, and the resulting page will be blank! To offer a warmer
welcome to all the plebs with names other than Kevin, we can
use an if-else statement instead. The flow of an if-else
statement is shown in Figure 3.9.

Figure 3.9. The logical flow of an if-else statement

The else portion of an if-else statement is tacked onto the
end of the if portion:[19]

chapter3/ifelse1/name.php (excerpt)
$name = $_REQUEST['name'];

$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}
else
{
 echo 'Welcome to our website, ' .
 htmlspecialchars($name, ENT_QUOTES, 'UTF-
8') . '!';
}

Now if you submit a name other than Kevin, you should see the
usual welcome message shown in Figure 3.10.

Figure 3.10. You gotta remember your peeps

The == used in the condition above is the equal operator, which
is used to compare two values to see whether they’re equal.

Warning: Double Trouble

Remember to type the double-equals (==). A
common mistake among beginning PHP
programmers is to type a condition like this with
a single equals sign:

a single equals sign:
if ($name = 'Kevin') // Missing
equals sign!

This condition is using the assignment operator
(=) that I introduced back in the section called
“Variables, Operators, and Comments”, instead
of the equal operator (==). Consequently,
instead of comparing the value of $name to the
string 'Kevin', it will actually set the value of
$name to 'Kevin'. Oops! To make matters
worse, the if statement will use this assignment
operation as a condition, which it will consider to
be true, so the conditional code within the if
statement will always be executed, regardless of
what the original value of $name happened to
be.

Conditions can be more complex than a single check for
equality. Recall that our form examples would receive a first and
last name. If we wanted to display a special message only for a
particular person, we’d have to check the values of both names.
To do this, edit name.html back to the two-field version of the
form:[20]

chapter3/ifelse2/name.html (excerpt)
<form action="name.php" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname"
id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname"
id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

Next, open up name.php and update the PHP code to match the
following (I’ve highlighted the changes in bold):

chapter3/ifelse2/name.php (excerpt)
$firstName = $_REQUEST['firstname'];
$lastName = $_REQUEST['lastname'];
if ($firstName == 'Kevin' and $lastName ==
'Yank')
{

{
 echo 'Welcome, oh glorious leader!';
}
else
{
 echo 'Welcome to our website, ' .
 htmlspecialchars($firstName, ENT_QUOTES,
'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES,
'UTF-8') . '!';
}

This updated condition will be true if and only if $firstName
has a value of 'Kevin' and $lastName has a value of 'Yank'.
The and operator in the condition makes the whole condition
true only if both comparisons are true. A similar operator is the
or operator, which makes the whole condition true if one or
both of two simple conditions are true. If you’re more familiar
with the JavaScript or C forms of these operators (&& and || for
and and or, respectively), that’s fine—they work in PHP as
well. Figure 3.11 shows that having just one of the names right in
this example fails to cut the mustard. We’ll look at more
complicated conditions as the need arises. For the time being, a
general familiarity with if-else statements is sufficient.

Figure 3.11. Frankly, my dear …

Another often-used PHP control structure is the while loop.
Where the if-else statement allowed us to choose whether or
not to execute a set of statements depending on some condition,
the while loop allows us to use a condition to determine how
many times we’ll execute a set of statements repeatedly.
Figure 3.12 shows how a while loop operates.

Figure 3.12. The logical flow of a while loop

Here’s what a while loop looks like in code:
while (condition)
{
 … statement(s) to execute repeatedly as long

 … statement(s) to execute repeatedly as long
as condition is true
}

The while loop works very similarly to an if statement. The
difference arises when the condition is true and the statement(s)
are executed. Instead of continuing the execution with the
statement that follows the closing brace (}), the condition is
checked again. If the condition is still true, the statement(s) are
executed a second time, and a third, and will continue to be
executed as long as the condition remains true. The first time the
condition evaluates false (whether it’s the first time it’s checked,
or the 101st), the execution jumps immediately to the statement
that follows the while loop, after the closing brace. Loops like
these come in handy whenever you’re working with long lists of
items (such as jokes stored in a database … hint, hint), but for
now I’ll illustrate with a trivial example, counting to ten:

chapter3/count10.php (excerpt)
$count = 1;
while ($count <= 10)
{
 echo "$count ";
 ++$count;
}

This code may look a bit frightening, I know, but let me talk you
through it line by line:

$count = 1;

The first line creates a variable called $count and assigns
it a value of 1.

while ($count <= 10)

The second line is the start of a while loop, the condition
being that the value of $count is less than or equal (<=) to
10.

{

The opening brace marks the beginning of the block of
conditional code for the while loop. This conditional
code is often called the body of the loop, and is executed
over and over again, as long as the condition holds true.

echo "$count ";

This line simply outputs the value of $count, followed by
a space. To make the code as readable as possible, I’ve
used a double-quoted string to take advantage of variable
interpolation (as explained in the section called “Variables,
Operators, and Comments”), rather than use the string
concatenation operator.

++$count;

The fourth line adds one to the value of $count
(++$count is a shortcut for $count = $count + 1—
either one would work).

}

The closing brace marks the end of the while loop’s
body.

So here’s what happens when this code is executed. The first
time the condition is checked, the value of $count is 1, so the
condition is definitely true. The value of $count (1) is output,
and $count is given a new value of 2. The condition is still true
the second time it’s checked, so the value (2) is output and a
new value (3) is assigned. This process continues, outputting the
values 3, 4, 5, 6, 7, 8, 9, and 10. Finally, $count is given a
value of 11, and the condition is found to be false, which ends
the loop. The net result of the code is shown in Figure 3.13.

Figure 3.13. PHP demonstrates kindergarten-level math skills

The condition in this example used a new operator: <= (less
than or equal). Other numerical comparison operators of this

than or equal). Other numerical comparison operators of this
type include >= (greater than or equal), < (less than), >
(greater than), and != (not equal). That last one also works
when comparing text strings, by the way. Another type of loop
that’s designed specifically to handle examples like the previous
one—in which we’re counting through a series of values until
some condition is met—is called a for loop . Figure 3.14 shows
the flow of a for loop.

Figure 3.14. The logical flow of a for loop

Here’s what it looks like in code:
for (declare counter; condition; increment
counter)
{
 … statement(s) to execute repeatedly as long
as condition is true
}

The declare counter statement is executed once at the start of
the loop; the condition statement is checked each time through
the loop before the statements in the body are executed; the
increment counter statement is executed each time through the
loop after the statements in the body. Here’s what the “counting
to 10” example looks like when implemented with a for loop:

chapter3/count10–for.php (excerpt)
for ($count = 1; $count <= 10; ++$count)
{
 echo "$count ";
}

As you can see, the statements that initialize and increment the
$count variable join the condition on the first line of the for
loop. Although, at first glance, the code seems a little more
difficult to read, putting all the code that deals with controlling the
loop in the same place actually makes it easier to understand
once you’re used to the syntax. Many of the examples in this
book will use for loops, so you’ll have plenty of opportunity to
practice reading them.

Hiding the Seams
You’re now armed with a working knowledge of the basic
syntax of the PHP programming language. You understand that

syntax of the PHP programming language. You understand that
you can take any HTML web page, rename it with a .php file
name extension, and inject PHP code into it to generate page
content on the fly. Not bad for a day’s work! Before we go any
further, however, I want to stop and cast a critical eye over the
examples we’ve discussed so far. Assuming your objective is to
create database driven websites that hold up to professional
standards, there are a few unsightly blemishes we need to clean
up. The techniques in the rest of this chapter will add a coat of
professional polish that can set your work apart from the crowd
of amateur PHP developers out there. I’ll rely on these
techniques throughout the rest of this book to ensure that, no
matter how simple the example, you can feel confident in the
quality of the product you’re delivering.

Avoid Advertising Your Technology
Choices

The examples we’ve seen so far have contained a mixture of
plain HTML files (with names ending in .html) and files that
contain a mixture of HTML and PHP (with names ending in
.php). Although this distinction between file types may be useful
to you, the developer, there’s no reason for your users to know
which site pages rely on PHP code to generate them.
Furthermore, although PHP is a very strong choice of technology
to build almost any database driven website, the day may come
when you want to switch from PHP to some new technology.
When it does, do you really want all the URLs for dynamic
pages on your site to become invalid as you change the file
names to reflect your new language of choice? These days,
professional developers place a lot of importance on the URLs
they put out into the world. In general, URLs should be as
permanent as possible, so it makes no sense to embrittle them
with little “advertisements” for the programming language you
used to build each individual page. An easy way to eliminate
filename extensions in your URLs is to take advantage of
directory indexes. When a URL points at a directory on your
web server, instead of a particular file, the web server will look
for a file named index.html or index.php inside that directory, and
display that file in response to the request. For example, take the
today.php page that I introduced at the end of Chapter 1.

today.php page that I introduced at the end of Chapter 1.
Rename it from today.php to index.php. Then, instead of
dropping it in the root of your web server, create a subdirectory
named today and drop the index.php file in there. Now, load
http://localhost/today/ in your browser (or
http://localhost:8888/today/ or similar if you need to specify a
port number for your server). Figure 3.15 shows the example
with its new URL. This URL omits the unnecessary .php
extension, and is shorter and more memorable—desirable
qualities when it comes to URLs today.

Figure 3.15. A more fashionable URL

Use PHP Templates

In the simple examples we’ve seen so far, inserting PHP code
directly into your HTML pages has been a reasonable approach.
As the amount of PHP code that goes into generating your
average page grows, however, maintaining this mixture of HTML
and PHP code can become unmanageable. Particularly if you
work in a team of not-so-savvy web designers, PHP-wise,
having large blocks of cryptic PHP code intermingled with the
HTML is a recipe for disaster. It’s far too easy for designers to
accidentally modify the PHP code, causing errors they’ll be

accidentally modify the PHP code, causing errors they’ll be
unable to fix. A much more robust approach is to separate out
the bulk of your PHP code so that it resides in its own file,
leaving the HTML largely unpolluted by PHP code. The key to
doing this is the PHP include statement . With an include
statement, you can insert the contents of another file into your
PHP code at the point of the statement. To show you how this
works, let’s rebuild the “count to ten” for loop example we
looked at earlier. Start by creating a new directory called
count10, and create a file named index.php in this directory.
Open the file for editing and type in this code:

chapter3/count10/index.php
<?php
$output = '';(1)
for ($count = 1; $count <= 10; ++$count)
{
 $output .= "$count ";(2)
}

include 'count.html.php';(3)

Yes, that’s the complete code for this file. It contains no HTML
code whatsoever. The for loop should be familiar to you by
now, but let me point out the interesting parts of this code:

(1)
Instead of echoing out the numbers 1 to 10, this script will
add these numbers to a variable named $output. At the
start of this script, therefore, we set this variable to contain
an empty string.

(2)

This line adds each number (followed by a space) to the
end of the $output variable. The .= operator you see here
is a shorthand way to add a value to the end of an existing
string variable, by combining the assignment and string
concatenation operators into one. The longhand version of
this line is $output = $output . "$count ";, but the
.= operator saves you some typing.

(3)

This is an include statement, which instructs PHP to
execute the contents of the count.html.php file at this
location.[21] Finally, you might have noticed that the file
doesn’t end with a ?> to match the opening <?php. You
can put it in if you really want to, but it’s unnecessary. If a
PHP file ends with PHP code, there’s no need to indicate

PHP file ends with PHP code, there’s no need to indicate
where that code ends—the end of the file does it for you.
The big brains of the PHP world generally prefer to leave it
off the end of files like this one that contain only PHP code.

Since the final line of this file includes the count.html.php file, you
should create this next:

chapter3/count10/count.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Counting to Ten</title>
 </head>
 <body>
 <p>
 <?php echo $output; ?>
 </p>
 </body>
</html>

This file is almost entirely plain HTML, except for the one line
that outputs the value of the $output variable. This is the same
$output variable that was created by the index.php file. What
we’ve created here is a PHP template: an HTML page with
only very small snippets of PHP code that insert dynamically
generated values into an otherwise static HTML page. Rather
than embedding the complex PHP code that generates those
values in the page, we put the code to generate the values in a
separate PHP script—index.php in this case. Using PHP
templates like this enables you to hand over your templates to
HTML-savvy designers without worrying about what they might
do to your PHP code. It also lets you focus on your PHP code
without being distracted by the surrounding HTML code. I like
to name my PHP template files so that they end with .html.php.
As far as your web server is concerned, though, these are still
.php files; the .html.php suffix serves as a useful reminder that
these files contain both HTML and PHP code.

Many Templates, One Controller

What’s nice about using include statements to load your PHP
template files is that you can have multiple include statements
in a single PHP script, as well as have it display different

in a single PHP script, as well as have it display different
templates under various circumstances! A PHP script that
responds to a browser request by selecting one of several PHP
templates to fill in and send back is commonly called a
controller. A controller contains the logic that controls which
template is sent to the browser. Let’s revisit one more example
from earlier in this chapter: the welcome form that prompts a
visitor for a first and last name. We’ll start with the PHP template
for the form. For this, we can just reuse the name.html file we
created earlier. Create a directory named welcome and save a
copy of name.html called form.html.php into this directory. The
only code you need to change in this file is the action attribute
of the <form> tag:

chapter3/welcome/form.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Form Example</title>
 </head>
 <body>
 <form action="" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname"
id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname"
id="lastname"></label>
 </div>
 <div><input type="submit" value="GO">
</div>
 </form>
 </body>
</html>

As you can see, we’re leaving the action attribute blank. This
tells the browser to submit the form back to the same URL it
received it from: in this case, the URL of the controller that
included this template file. Let’s take a look at the controller for
this example. Create an index.php script in the welcome
directory alongside your form template. Type the following code
into this file:

chapter3/welcome/index.php
<?php

<?php
if (!isset($_REQUEST['firstname']))
 (1)
{
 include 'form.html.php';
 (2)
}
else
 (3)
{
 $firstName = $_REQUEST['firstname'];
 $lastName = $_REQUEST['lastname'];
 if ($firstName == 'Kevin' and $lastName ==
'Yank')
 {
 $output = 'Welcome, oh glorious leader!';(4)
 }
 else
 {
 $output = 'Welcome to our website, ' .
 htmlspecialchars($firstName, ENT_QUOTES,
'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES,
'UTF-8') . '!';
 }

 include 'welcome.html.php';
 (5)
}

This code should look quite familiar at first glance; it’s a lot like
the name.php script we wrote earlier. Let me explain the
differences:

(1)

The controller’s first task is to decide whether the current
request is a submission of the form in form.html.php or not.
You can do this by checking if the request contains a
firstname variable. If it does, PHP will have stored the
value in $_REQUEST['firstname']. isset is a built-in
PHP function that will tell you if a particular variable (or
array element) has been assigned a value or not. If
$_REQUEST['firstname'] has a value,
isset($_REQUEST['firstname']) will be true. If
$_REQUEST['firstname'] is unset,
isset($_REQUEST['firstname']) will be false. For the
sake of readability, I like to put the code that sends the form
in my controller first. We need this if statement to check if

in my controller first. We need this if statement to check if
$_REQUEST['firstname'] is not set. To do this, we use
the not operator (!). By putting this operator before the
name of a function, you reverse the value that function
returns—from true to false, or from false to true. Thus, if the
request does not contain a firstname variable, then
!isset($_REQUEST['firstname']) will return true, and
the body of the if statement will be executed.

(2) If the request is not a form submission, the controller
includes the form.html.php file to display the form.

(3)

If the request is a form submission, the body of the else
statement is executed instead. This code pulls the
firstname and lastname variables out of the $_REQUEST
array, and then generates the appropriate welcome message
for the name submitted.

(4) Instead of echoing the welcome message, the controller
stores the welcome message in a variable named $output.

(5)
After generating the appropriate welcome message, the
controller includes the welcome.html.php template, which
will display that welcome message.

All that’s left is to write the welcome.html.php template. Here it
is:

chapter3/welcome/welcome.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Form Example</title>
 </head>
 <body>
 <p>
 <?php echo $output; ?>
 </p>
 </body>
</html>

That’s it! Fire up your browser and point it at
http://localhost/welcome/ (or http://localhost:8888/welcome/ or
similar if you need to specify a port number for your web
server). You’ll be prompted for your name, and when you
submit the form, you’ll see the appropriate welcome message.
The URL should stay the same throughout this process. One of
the benefits of maintaining the same URL throughout this process

the benefits of maintaining the same URL throughout this process
of prompting the user for a name and displaying the welcome
message is that the user can bookmark the page at any time
during this process and gain a sensible result; whether it’s the
form page or the welcome message that’s bookmarked, when
the user returns, the form will be present once again. In the
previous version of this example, where the welcome message
had its own URL, returning to that URL without submitting the
form would have generated a broken welcome message
(“Welcome to our website, !”), or a PHP error message,
depending on your server configuration.

Note: Why so forgetful?

In Chapter 9, I’ll show you how to remember
the user’s name between visits.

Bring on the Database
In this chapter, we’ve seen the PHP server-side scripting
language in action as we’ve explored all the basic language
features: statements, variables, operators, comments, and control
structures. The sample applications we’ve seen have been
reasonably simple, but we’ve still taken the time to ensure they
have attractive URLs, and that the HTML templates for the
pages they generate are uncluttered by the PHP code that
controls them. As you may have begun to suspect, the real
power of PHP is in its hundreds (even thousands) of built-in
functions that let you access data in a MySQL database, send
email, dynamically generate images, and even create Adobe
Acrobat PDF files on the fly. In Chapter 4, we’ll delve into the
MySQL functions built into PHP, and see how to publish the
joke database we created in Chapter 2 to the Web. This chapter
will set the scene for the ultimate goal of this book: creating a
complete content management system for your website in PHP
and MySQL.

[6] I’m fairly sure they’re called arguments because that’s what
often happens when you try to tell someone what to do.

often happens when you try to tell someone what to do.

[7] A full reference is available in the online documentation for the
date function.

[8] To some extent, the rise of Ajax techniques in the JavaScript
world in recent years has changed this. It’s now possible for
JavaScript code—responding to a user action such as mouse
movement—to send a request to the web server, invoking a
PHP script. For the purposes of this book, however, we’ll stick
to non-Ajax applications. If you’d like to learn all about Ajax,
check out jQuery: Novice to Ninja by Earle Castledine and
Craig Sharkie.

[9] You might notice that some browsers will automatically
convert the < and > characters into URL escape sequences (%3C
and %3E, respectively), but either way PHP will receive the same
value.

[10] In the code archive for this book, you’ll find the updated files
in the links2 subfolder.

[11] A PHP constant is like a variable whose value you’re unable
to change. Unlike variables, constants don’t start with a dollar
sign. PHP comes with a number of built-in constants like
ENT_QUOTES that are used to control built-in functions like
htmlspecialchars.

[12] UTF-8 is one of many standards for representing text as a
series of ones and zeros in computer memory, called character
encodings. If you’re curious to learn all about character
encodings, check out The Definitive Guide to Web Character
Encoding .

[13] The updated version of the files may be found in the code
archive in the links3 subfolder.

[14] The updated version of the files are in the forms1 subfolder
in the code archive.

[15] The updated files are in forms2 in the code archive.

[15] The updated files are in forms2 in the code archive.

[16] The files in the code archive are located in the forms3
subfolder.

[17] This diagram and several similar ones in this book were
originally designed by Cameron Adams for the book, Simply
JavaScript (Melbourne: SitePoint, 2006), which we wrote
together. I have reused them here with his permission, and my
thanks.

[18] I’ve placed the updated versions of the files in the if
subfolder in the code archive.

[19] This updated version of the example is located in the ifelse1
subfolder in the code archive.

[20] The updated files for this version of the example are in the
ifelse2 subfolder in the code archive.

[21] Outside of this book, you’ll often see includes coded with
parentheses surrounding the filename, as if include were a
function like date or htmlspecialchars, which is far from the
case. These parentheses, when used, only serve to complicate
the filename expression, and are therefore avoided in this book.
The same goes for echo, another popular one-liner.

Chapter 4

Publishing MySQL Data
on the Web
This is it—the stuff you signed up for! In this chapter, you’ll learn
how to take information stored in a MySQL database and
display it on a web page for all to see. So far, you’ve installed
and learned the basics of MySQL, a relational database engine,
and PHP, a server-side scripting language. Now you’re ready to
learn how to use these tools together to create a true database
driven website!

The Big Picture
Before we leap forward, it’s worth taking a step back for a clear
picture of our ultimate goal. We have two powerful tools at our
disposal: the PHP scripting language and the MySQL database
engine. It’s important to understand how these will fit together.
The whole idea of a database driven website is to allow the
content of the site to reside in a database, so that content may be
pulled dynamically from the database to create web pages for
viewing on a regular browser. So, at one end of the system you
have a visitor to your site using a web browser to request a
page. That browser expects to receive a standard HTML
document in return. At the other end you have the content of
your site, which sits in one or more tables in a MySQL database
that only understands how to respond to SQL queries
(commands). As shown in Figure 4.1, the PHP scripting
language is the go-between that speaks both languages. It
processes the page request and fetches the data from the
MySQL database (using SQL queries just like those you used to
create a table of jokes in Chapter 2). It then spits it out
dynamically as the nicely formatted HTML page that the
browser expects.

Figure 4.1. PHP retrieves MySQL data to produce web pages

Just so it’s clear and fresh in your mind, this is what happens
when there’s a visitor to a page on your database driven website:

1. The visitor’s web browser requests the web page from
your web server.

2. The web server software (typically Apache) recognizes
that the requested file is a PHP script, so the server fires
up the PHP interpreter to execute the code contained in
the file.

3. Certain PHP commands (which will be the focus of this
chapter) connect to the MySQL database and request the
content that belongs in the web page.

4. The MySQL database responds by sending the requested
content to the PHP script.

5. The PHP script stores the content into one or more PHP
variables, then uses echo statements to output the content
as part of the web page.

6. The PHP interpreter finishes up by handing a copy of the
HTML it has created to the web server.

7. The web server sends the HTML to the web browser as
it would a plain HTML file, except that instead of coming
directly from an HTML file, the page is the output
provided by the PHP interpreter. The browser has no
way of knowing this, however. From its perspective, it’s
requesting and receiving a web page like any other.

Creating a MySQL User
Account

Account
In order for PHP to connect to your MySQL database server, it
will need to use a username and password. So far, all that your
joke database contains is a number of pithy bon mots, but
before long it may contain sensitive information like email
addresses and other private details about the users of your
website. For this reason, MySQL is designed to be very secure,
giving you tight control over what connections it will accept and
what those connections are allowed to do. In Chapter 1, we set
the password for the root user of your MySQL database server.
Now, you could use that username and password to connect
your PHP scripts to your MySQL server, but you really
shouldn’t. The root user is an all-powerful administration
account; if the password for that account fell into the wrong
hands, a malicious user could wreak serious havoc. In most
cases, there will be other layers of security preventing this from
happening (for example, a firewall that prevents connections to
your database from outside your web host’s network), but it’s
better to be safe than sorry. Instead, you should create a new
user account with only the specific privileges it needs to work on
the ijdb database that your website depends upon. Let’s do
that now:

1. Open up phpMyAdmin as you did in Chapter 2:

On Windows, open the XAMPP Control Panel
and click the Admin… button next to MySql (sic)
to launch phpMyAdmin in your browser.

On Mac OS X, launch MAMP and click the Open
start page button if the start page fails to open
automatically. Click the phpMyAdmin tab at the
top of the start page to load phpMyAdmin.

2. Click the ijdb database in the list on the left-hand side of
the phpMyAdmin interface, as shown in Figure 4.2.

Figure 4.2. Select the ijdb database

3. In the main part of the interface, above the list of tables in
your database (of which there should be only one
—joke), click the Privileges tab.

Figure 4.3. Click the Privileges tab

4. You should now be looking at the list of Users having
access to “ijdb” shown in Figure 4.4.

Figure 4.4. Just who has access to ‘ijdb’?

As you can see, only the root user has access to the ijdb
database at this point.[22]

5. Click the Add a new User link at the bottom of the list,
and fill in the new user details as follows:
User name

(Use text field) ijdbuser If you prefer, you can
just name the user ijdb. It’s common to give an
account restricted to accessing a single database
the name of that database. I’ve chosen to name it

the name of that database. I’ve chosen to name it
ijdbuser in this book to help clarify the distinction
between the name of the database (ijdb) and the
user account that is allowed to access it (ijdbuser).

Host

(Local) localhost Because your MySQL
database server is running on the same computer as
your web server, we can restrict this account to
only accept connections from localhost. If you
needed to accept connections from other
computers too, you would leave the default option
of Any host alone.[23]

Password

(Use text field) mypassword This is just the
password I’m going to use in this book. You
should probably have your own unique password,
and remember it for later use in the PHP scripts
you’re going to write.

6. Under Database for user, select Grant all privileges on
database “ijdb”. This will give the account carte blanche
to do anything it likes to the ijdb database, but only that
database.

7. Under Global privileges, leave everything unchecked. The
options here would enable the account to execute specific
query types on any database. We want to keep this
account restricted to our single database.

8. At the bottom of the form, click Go.

As shown in Figure 4.5, phpMyAdmin should confirm that
you’ve added a new user, even showing you the SQL queries it
sent to the database server to do it. Don’t worry about learning
these queries; they’re documented in the MySQL manual if you
ever need to look them up, but it’s usually much easier just to
use phpMyAdmin to manage access to your MySQL server.

Figure 4.5. phpMyAdmin shows you what you’ve done

Connecting to MySQL with
PHP
Before you can retrieve content from your MySQL database for
inclusion in a web page, you must know how to establish a
connection to MySQL from inside a PHP script. So far, you’ve
used a PHP web application called phpMyAdmin to connect to
your database. Just as the PHP scripts in phpMyAdmin can
connect directly to a running MySQL server, so too can your
own PHP scripts; support for connecting to databases like
MySQL is provided by the PHP Data Objects (PDO) extension
that is built into PHP. Here’s how you use PDO to establish a
connection to a MySQL server:
new PDO('mysql:host=hostname;dbname=database',
'username',
 'password')

For now, think of new PDO as a built-in function, just like the
date function we used in Chapter 3. If you’re thinking “Hey,
functions can’t have spaces in their names!”, you are smarter
than the average bear, and I’ll explain exactly what’s going on
here in a moment. In any case, it takes three arguments:

1. A string specifying the type of database (mysql:), the
hostname of the server (host=hostname;), and the name
of the database (dbname=database).

2. The MySQL username you want PHP to use.

3. The MySQL password for that username.

You may remember from Chapter 3 that PHP functions usually
return a value when they’re called. This new PDO “function”
returns a value called a PDO object that identifies the connection
that’s been established. Since we intend to make use of the

that’s been established. Since we intend to make use of the
connection, we should hold onto this value by storing it in a
variable. Here’s how that looks, with the necessary values filled
in to connect to your database:

chapter4/connect/index.php (excerpt)
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');

As described, the exact values of the three function parameters
may differ for your MySQL server; at the very least, you’ll need
to substitute in the password you set for your ijdbuser user
(assuming you used a different password to mypassword, the
one I chose). What’s important to see here is that the value
returned by new PDO is stored in a variable named $pdo. The
MySQL server is a completely separate piece of software from
the web server; therefore, we must consider the possibility that
the server may be unavailable or inaccessible due to a network
outage, or because the username/password combination you
provided is rejected by the server, or because you just forgot to
start your MySQL server! In such cases, new PDO won’t run,
and throw a PHP exception. If you’re wondering what it means
to “throw a PHP exception,” brace yourself—you’re about to
discover some more features of the PHP language! A PHP
exception is what happens when you tell PHP to perform a
task, and it’s unable to do it. PHP will try to do what it’s told
but will fail, and in order to tell you about the failure, it will throw
an exception at you. As a responsible developer, it’s your job to
catch that exception and do something about it.

Warning: Catch!

If you don’t catch an exception, PHP will stop
running your PHP script and display a
spectacularly ugly error message. That error
message will even reveal the code of your script
that threw the error. In this case, that code
contains your MySQL username and password,
so it’s especially important to avoid the error
message being seen by users!

To catch an exception, you should surround the code that might
throw an exception with a try-catch statement :
try

try
{
 … do something risky
}
catch (ExceptionType $e)
{
 … handle the exception
}

You can think of a try-catch statement like an if-else
statement, except that the second block of code is what happens
if the first block of code fails to run. Confused yet? I know I’m
throwing (no pun intended) a lot of new concepts at you, but let
me put it all together and show you what we have; I think it will
make more sense that way:
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'idjbuser',
 'mypassword');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database
server.';
 include 'output.html.php';
 exit();
}

As you can see, this code is a try-catch statement. In the try
block at the top, we attempt to connect to the database using
new PDO. If this succeeds, we store the resulting PDO object in
$pdo so that we can work with our new database connection.
But if our database connection attempt fails, PHP will throw a
PDOException, which is the type of exception that new PDO
throws. Our catch block, therefore, says that it will catch a
PDOException (and store it in a variable named $e). Inside that
block, we set the variable $output to contain a message about
what went wrong. We then include the template output.html.php.
This is a generic template that simply outputs the value of the
$output variable:

chapter4/connect/output.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Script Output</title>
 </head>

 </head>
 <body>
 <p>
 <?php echo $output; ?>
 </p>
 </body>
</html>

Finally, after outputting the message, the last statement in the
catch block calls the built-in exit function. exit is the first
example in this book of a function that can be called with no
parameters. When called this way, all this function does is cause
PHP to stop executing the script at this point. This ensures that
the rest of the code in our controller (which in most cases will
depend on a successful database connection) will not be
executed if the connection has failed. I hope that the
aforementioned code is now making some sense to you. Feel
free to go back to the start of this section and read it all again if
you’re lost—there were a number of tricky concepts in there.
Once you have a firm grip on the code, however, you’ll probably
realize that I’ve still left one mystery unexplained: PDOs. Just what
exactly is new PDO, and when I said it returns a “PDO object,”
just what exactly is an object?

A Crash Course in Object Oriented
Programming

You may have noticed the word “object” beginning to creep into
my vocabulary in the previous section. PDO is the PHP Data
Objects extension, and new PDO returns a PDO object. In this
section, I’d like to explain what objects are all about. Perhaps
you’ve come across the term object oriented programming
(OOP) in your own explorations of PHP or of programming in
general. OOP is an advanced style of programming that’s
especially suited to building really complex programs with a lot of
moving parts. Most programming languages in active use today
support OOP; some of them even require you to work in an
OOP style. PHP is a little more easygoing about it, and leaves it
up to the developer to decide whether or not to write their
scripts in the OOP style. So far, we’ve written our PHP code in
a simpler style called procedural programming , and we’ll
continue to do so for most of this book. Procedural style is well
suited to the relatively simple projects we’ll tackle here. Some
very complex and successful PHP projects are written in the
procedural programming style (you’ve heard of WordPress,

procedural programming style (you’ve heard of WordPress,
right?). That said, the PDO extension that we’ll use to connect to
and work with a MySQL database is designed in the object
oriented programming style. What this means is that rather than
simply calling a function to connect to MySQL and then calling
other functions that use that connection, we must first create a
PDO object that will represent our database connection, and
then use the features of that object to work with the database.
Creating an object is a lot like calling a function. In fact, you’ve
already seen how to do it:

chapter4/connect/index.php (excerpt)
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword
 ');

The new keyword tells PHP that you want to create a new
object. You then leave a space and specify a class name, which
tells PHP what type of object you want to create. Just as PHP
comes with a bunch of built-in functions that you can call, PHP
comes with a library of classes that you can create objects from.
new PDO, therefore, tells PHP to create a new PDO object; that
is, a new object of the built-in PDO class. In PHP an object is a
value, just like a string, number, or array. You can store an
object in a variable or pass it to a function as an argument—all
the same stuff you can do with other PHP values. Objects,
however, have some additional useful features. First of all, an
object behaves a lot like an array in that it acts as a container for
other values. As we saw in Chapter 3, you can access a value
inside an array by specifying its index (for example,
birthdays['Kevin']). When it comes to objects, the
concepts are similar but the names and code are different. Rather
than accessing the value stored in an array index, we say that
we’re accessing a property of the object. Instead of using
square brackets to specify the name of the property we want to
access, we use arrow notation ; for instance, $myObject-
>someProperty:
$myObject = new SomeClass(); // create an
object
$myObject->someProperty = 123; // set a
property's value
echo $myObject->someProperty; // get a
property's value

Whereas arrays are normally used to store a list of similar

Whereas arrays are normally used to store a list of similar
values (such as an array of birthdays), objects are used to store
a list of related values (for example, the properties of a database
connection). Still, if that’s all objects did, there wouldn’t be much
point to them: we might just as well use an array to store these
values, right? Of course, objects do more. In addition to storing
a collection of properties and their values, objects can contain a
group of PHP functions designed to bring us more useful
features. A function stored in an object is called a method (one
of the more confusing names in the programming world, if you
ask me). To call a method, we again use arrow notation
—$myObject->someMethod():
$myObject = new SomeClass(); // create an
object
$myObject->someMethod(); // call a method

Just like standalone functions, methods can take arguments and
return values. At this stage, this is probably all sounding a little
complicated and pointless, but trust me: pulling together
collections of variables (properties) and functions (methods) into
little bundles called objects results in much tidier and easier-to-
read code for certain tasks—working with a database being just
one of them. One day, you may even want to develop custom
classes that you can use to create objects of your own devising.
For now, however, we’ll stick with the classes that come
included with PHP. Let’s keep working with the PDO object
we’ve created, and see what we can do by calling one of its
methods.

Configuring the Connection

So far, I’ve shown you how to create a PDO object to establish a
connection with your MySQL database, and how to display a
meaningful error message when something goes wrong:
<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database
server.';

server.';
 include 'output.html.php';
 exit();
}

Assuming the connection succeeds, though, you need to
configure it before use. You can configure your connection by
calling some methods of your new PDO object. Our first task is to
configure how our PDO object handles errors. You’ve already
learned how to use a try-catch statement to handle any
problems PHP might run into when connecting to your database;
however, by default, PDO switches to a “silent failure” mode
after establishing a successful connection,[24] which makes it
more difficult for us to find out when something goes wrong and
handle it gracefully. We’d like our PDO object to throw a
PDOException any time it fails to do what we ask. We can
configure it do to so by calling the PDO object’s
setAttribute method:

chapter4/connect/index.php (excerpt)
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

The two values we’re passing as arguments are constants, just
like the ENT_QUOTES constant that you learned to pass to the
htmlspecialchars function in Chapter 3. Don’t be thrown by
the PDO:: at the start of their names; that just indicates that these
constants are part of the PDO class that we’re using, rather than
constants built into the PHP language itself. Essentially, what
we’re saying with this line is that we want to set the PDO
attribute that controls the error mode (PDO::ATTR_ERRMODE) to
the mode that throws exceptions
(PDO::ERRMODE_EXCEPTION).[24] Next, we need to configure
the character encoding of our database connection. As I
mentioned briefly in Chapter 3, you should use UTF-8 encoded
text in your websites to maximize the range of characters users
have at their disposal when filling in forms on your site. By
default, when PHP connects to MySQL, it uses the simpler
ISO-8859-1 (or Latin-1) encoding instead of UTF-8.
Therefore, we now need to set our new PDO object to use the
UTF-8 encoding. If you go searching, you’ll find several ways to
set the character encoding of a MySQL connection, but the most
reliable way is to run this SQL query: SET NAMES "utf8". The
PDO object we have stored in $pdo has a method called exec
that we can use to send SQL queries to the database to be
executed. Here’s what that looks like:

executed. Here’s what that looks like:
chapter4/connect/index.php (excerpt)

 $pdo->exec('SET NAMES "utf8"');

Although I fully expect the exec method to run just fine, if it did
fail to execute the query for some reason (let’s say our MySQL
server fell over immediately after we connected to it), we should
be prepared to catch the PDOException that it would throw.
The easiest way to do so is to tuck our configuration statements
into the same try block where we first create our PDO object.
The complete code that we use to connect to MySQL and then
configure that connection, therefore, is this:

chapter4/connect/index.php (excerpt)
<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database
server.';
 include 'output.html.php';
 exit();
}

To polish off this example, let’s display a status message that
indicates when everything has gone right. Here’s the complete
code of our controller:

chapter4/connect/index.php
<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database

 $output = 'Unable to connect to the database
server.';
 include 'output.html.php';
 exit();
}

$output = 'Database connection established.';
include 'output.html.php';

Fire up this example in your browser (if you put the index.php
and output.html.php files in a directory named connect on your
web server, the URL will be along the lines of
http://localhost/connect/). If your MySQL server is up and
running, and everything is working properly, you should see the
message indicating success in Figure 4.6.

Figure 4.6. A successful connection

If PHP is unable to connect to your MySQL server, or if the
username and password you provided are incorrect, you’ll
instead see a similar screen to that in Figure 4.7. To make sure
your error-handling code is working properly, you might want to
misspell your password intentionally to test it out.

Figure 4.7. A connection failure

This error message might be fine for visitors to your site, but
what if you see this message unexpectedly while working on your
site? How are you supposed to fix it? Well, the first step should
be to find out exactly what’s gone wrong. You can do that by
tweaking the catch block that displays the error message:

chapter4/connect/index.php (excerpt)
catch (PDOException $e)
{
 $output = 'Unable to connect to the database
server.';
 include 'output.html.php';
 exit();
}

In order to diagnose and fix this error, we’d like to see some
more detail about the problem by including it in the error
message that’s displayed. We can do that using the exception
we’ve just caught. If you look closely at the first line of the
catch block, you can see that in addition to telling PHP that
we’re willing to catch a PDOException, we’re asking it to store
the exception in a variable called $e. When an exception is
caught, the value stored in that variable is actually another PHP
object; in fact, all exceptions are represented by PHP objects!
Like the PDO object we have stored in $pdo, the
PDOException object has properties we can access and
methods we can call. In order to find out what caused the

methods we can call. In order to find out what caused the
exception, we can ask for the error message stored in the
exception:
catch (PDOException $e)
{
 $output = 'Unable to connect to the database
server: ' .
↵ $e->getMessage();
 include 'output.html.php';
 exit();
}

As you can see, we’re calling the getMessage method on the
object stored in $e, and tacking the value it returns onto the end
of our error message using the string concatenation operator (.).
With that change in place, Figure 4.8 shows what the error
message will look like if you have the wrong password in your
PHP code.

Figure 4.8. The detailed error message resulting from an incorrect
password

If you instead made a typing mistake when you specified the
character set for the connection to use, you’ll receive the detailed
error message seen in Figure 4.9.

Figure 4.9. The detailed error message resulting from an invalid
character set

If you’re curious, try inserting some other mistakes in your
database connection code (for example, a misspelled database
name) and observe the detailed error messages that result. When
you’re done, and your database connection is working correctly,
go back to the simple error message. This way your visitors
won’t be bombarded with technical gobbledygook if a genuine
problem emerges with your database server. With a connection
established and a database selected, you’re ready to begin using
the data stored in the database.

Note: PHP Automatically
Disconnects

You might be wondering what happens to the
connection with the MySQL server after the
script has finished executing. If you really want
to, you can force PHP to disconnect from the
server by discarding the PDO object that
represents your connection. You do this by
setting the variable containing the object to null:
$pdo = null; // disconnect from the
database server

database server

That said, PHP will automatically close any open
database connections when it finishes running
your script, so you can usually just let PHP clean
up after you.

Sending SQL Queries with
PHP
In Chapter 2, we connected to the MySQL database server
using phpMyAdmin, which allowed us to type SQL queries
(commands) and view the results of those queries immediately.
The PDO object offers a similar mechanism—the exec method:
$pdo->exec(query)

Here, query is a string containing whatever SQL query you want
to execute. Indeed, we used exec in the section called
“Configuring the Connection” to send the SET NAMES "utf8"
query that establishes the character set to be used by the
database connection. As you know, if there’s a problem
executing the query (for instance, if you made a typing mistake in
your SQL query), this method will throw a PDOException for
you to catch. Consider the following example, which attempts to
produce the joke table we created in Chapter 2:

chapter4/createtable/index.php (excerpt)
try
{
 $sql = 'CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY
KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8
ENGINE=InnoDB';
 $pdo->exec($sql);
}
catch (PDOException $e)
{
 $output = 'Error creating joke table: ' . $e-
>getMessage();
 include 'output.html.php';
 exit();
}

$output = 'Joke table successfully created.';
include 'output.html.php';

include 'output.html.php';

Note once again that we use the same try-catch statement
technique to handle possible errors produced by the query. This
example also uses the getMessage method to retrieve a detailed
error message from the MySQL server. Figure 4.10 shows the
error that’s displayed when, for example, the joke table already
exists.

Figure 4.10. The CREATE TABLE query fails because the table
already exists

For DELETE, INSERT, and UPDATE queries (which serve to
modify stored data), the exec method returns the number of
table rows (entries) that were affected by the query. Consider
the SQL command following, which we used in Chapter 2 to set
the dates of all jokes that contained the word “chicken”:

chapter4/updatechicken/index.php (excerpt)
try
{
 $sql = 'UPDATE joke SET jokedate="2012-04-01"
 WHERE joketext LIKE "%chicken%"';
 $affectedRows = $pdo->exec($sql);
}
catch (PDOException $e)
{
 $output = 'Error performing update: ' . $e-

 $output = 'Error performing update: ' . $e-
>getMessage();
 include 'output.html.php';
 exit();
}

By storing the value returned from the exec method in
$affectedRows, we can display the number of rows affected
by this update:

chapter4/updatechicken/index.php (excerpt)
$output = "Updated $affectedRows rows.";
include 'output.html.php';

Figure 4.11 shows the output of this example, assuming there’s
only one “chicken” joke in your database.

Figure 4.11. The number of database records updated is displayed

If you refresh the page to run the same query again, you should
see the message change as per Figure 4.12. It indicates that no
rows were updated, since the new date being applied to the
jokes is the same as the existing date.

Figure 4.12. MySQL lets you know when you’re wasting its time

SELECT queries are treated a little differently, as they can retrieve
a lot of data and PHP provides ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the exec method works just fine. The
query does something to your database, and you get the number
of affected rows (if any) from the method’s return value. SELECT
queries, however, require something a little fancier than exec.
You’ll recall that SELECT queries are used to view stored data in
the database. Instead of only affecting the database, SELECT
queries have results—we need a method to return them. The
query method looks just like exec in that it accepts an SQL
query as an argument to be sent to the database server; what it
returns, however, is a PDOStatement object, which represents
a result set containing a list of all the rows (entries) returned
from the query.

chapter4/listjokes/index.php (excerpt)
try
{
 $sql = 'SELECT joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();

>getMessage();
 include 'error.html.php';
 exit();
}

Just as before, errors are displayed using a very simple PHP
template:

chapter4/listjokes/error.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Script Error</title>
 </head>
 <body>
 <p>
 <?php echo $error; ?>
 </p>
 </body>
</html>

Provided that no error was encountered in processing the query,
this code will store a result set (in the form of a PDOStatement
object) into the variable $result. This result set contains the
text of all the jokes stored in the joke table. As there’s no
practical limit on the number of jokes in the database, the result
set can be quite big. I mentioned back in Chapter 3 that the
while loop is a useful control structure for dealing with large
amounts of data. Indeed, you could use a while loop here to
process the rows in the result set one at a time:
while ($row = $result->fetch())
{
 … process the row
}

The condition for the while loop is probably different to the
conditions you’re used to, so let me explain how it works.
Consider the condition as a statement all by itself:
$row = $result->fetch();

The fetch method of the PDOStatement object returns the
next row in the result set as an array (we discussed arrays in
Chapter 3). When there are no more rows in the result set,
fetch returns false instead.[25] Now, the above statement
assigns a value to the $row variable, but, at the same time, the
statement as a whole takes on that same value. This is what lets
you use the statement as a condition in the while loop. Since a
while loop will keep looping until its condition evaluates to

while loop will keep looping until its condition evaluates to
false, this loop will occur as many times as there are rows in
the result set, with $row taking on the value of the next row each
time the loop executes. All that’s left to figure out is how to
retrieve the values out of the $row variable each time the loop
runs. Rows of a result set returned by fetch are represented as
associative arrays, with the indices named after the table columns
in the result set. If $row is a row in our result set,
$row['joketext'] is the value in the joketext column of
that row. Our goal in this code is to store away the text of all the
jokes so that we can display them in a PHP template. The best
way to do this is to store each joke as a new item in an array,
$jokes:

chapter4/listjokes/index.php (excerpt)
while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

With the jokes pulled out of the database, we can now pass
them along to a PHP template (jokes.html.php) for display. To
summarize, here’s the complete code of the controller for this
example:

chapter4/listjokes/index.php
<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

try
{
 $sql = 'SELECT joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)

catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';

All that’s left to complete this example is to write the
jokes.html.php template. In this template, we need to display the
contents of an array for the first time, rather than just a simple
variable. The most common way to process an array in PHP is
to use a loop. We’ve already seen while loops and for loops;
the foreach loop is particularly helpful for processing arrays:
foreach (array as $item)
{
 … process each $item
}

Instead of a condition, the parentheses at the top of a foreach
loop contain an array, followed by the keyword as, and then the
name of a new variable that will be used to store each item of the
array in turn. The body of the loop is then executed once for
each item in the array; each time that item is stored in the
specified variable so that the code can access it directly. It’s
common to use a foreach loop in a PHP template to display in
turn each item of an array. Here’s how this might look for our
$jokes array:
<?php
foreach ($jokes as $joke)
{
?>
 … HTML code to output each $joke
<?php
}
?>

With this blend of PHP code to describe the loop and HTML
code to display it, the code looks rather untidy. Because of this,
it’s common to use an alternative way of writing the foreach
loop when it’s used in a template:
foreach (array as $item):

foreach (array as $item):
 … process each $item
endforeach;

Here’s how this form of the code looks in a template:
<?php foreach ($jokes as $joke): ?>
 … HTML code to output each $joke
<?php endforeach; ?>

With this new tool in hand, we can write our template to display
the list of jokes:

chapter4/listjokes/jokes.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Here are all the jokes in the database:
</p>
 <?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p><?php echo htmlspecialchars($joke,
ENT_QUOTES, 'UTF-8');
 ?>
 </p>
 </blockquote>
 <?php endforeach; ?>
 </body>
</html>

Each joke is displayed in a paragraph (<p>) contained within a
block quote (<blockquote>), since we’re effectively quoting
the author of each joke in this page. Because jokes might
conceivably contain characters that could be interpreted as
HTML code (for example, <, >, or &), we must use
htmlspecialchars to ensure that these are translated into
HTML character entities (that is, <, >, and &) so
that they’re displayed correctly. Figure 4.13 shows what this
page looks like once you’ve added a couple of jokes to the
database.

Figure 4.13. All my best material—in one place!

Tip: You Can Use foreach to
Loop through a Result Set,
Too!

Remember how we used a while loop in our
controller to fetch the rows out of the
PDOStatement result set one at a time?

chapter4/listjokes/index.php (excerpt)
while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

It turns out PDOStatement objects are designed
to behave just like arrays when you pass them to
a foreach loop. You can therefore slightly
simplify your database processing code using a
foreach loop instead of a while loop:
foreach ($result as $row)
{
 $jokes[] = $row['joketext'];
}

I’ll be using this tidier foreach form in the rest
of this book.

Inserting Data into the
Database

Database
In this section, I’ll demonstrate how to use the tools at your
disposal to enable site visitors to add their own jokes to the
database. If you want to let visitors to your site enter new jokes,
you’ll obviously need a form. Here’s a template for a form that
will fit the bill:

chapter4/addjoke/form.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Add Joke</title>
 <style type="text/css">
 textarea {
 display: block;
 width: 100%;
 }
 </style>
 </head>
 <body>
 <form action="?" method="post">
 <div>
 <label for="joketext">Type your joke
here:</label>
 <textarea id="joketext" name="joketext"
rows="3" cols="40">
 </textarea>
 </div>
 <div><input type="submit" value="Add">
</div>
 </form>
 </body>
</html>

Once submitted, this form will request the same PHP script that
generated the form—the controller script (index.php)—as we’ve
seen before. You’ll notice, however, that instead of leaving the
action attribute empty (""), we set its value to ?. As we’ll see
in a moment, the URL used to display the form in this example
will feature a query string, and setting the action to ? strips that
query string off the URL when submitting the form. Figure 4.14
shows what this form looks like in a browser.

Figure 4.14. Another nugget of comic genius is added to the
database

When this form is submitted, the request will include a variable,
joketext, that contains the text of the joke as typed into the
text area. This variable will then appear in the $_POST and
$_REQUEST arrays created by PHP. Let’s tie this form into the
preceding example, which displayed the list of jokes in the
database. Add a link to the top of the list that invites the user to
add a joke:

chapter4/addjoke/jokes.html.php (excerpt)
<body>
 <p>Add your own joke
</p>
 <p>Here are all the jokes in the database:</p>

Like the form, this link points back to the very same PHP script
used to generate this page, but this time it adds a query string (?
addjoke), indicating the user’s intention to add a new joke. Our
controller can detect this query string and use it as a signal to
display the “Add Joke” form instead of the list of jokes. Let’s
make the necessary changes to the controller now:

chapter4/addjoke/index.php (excerpt)
if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

This opening if statement checks if the query string contains a
variable named addjoke. This is how we detect that the user

variable named addjoke. This is how we detect that the user
clicked the new link. Even though there is no value specified by
the query string (?addjoke) for the addjoke variable, it does
create it, which we can detect with
isset($_GET['addjoke']). When we detect this variable,
we display the form by including form.html.php, and then exit.
Once the user fills out the form and submits it, that form
submission results in another request to this controller. This we
detect by checking if $_POST['joketext'] is set:

chapter4/addjoke/index.php (excerpt)
if (isset($_POST['joketext']))
{

To insert the submitted joke into the database, we must execute
an INSERT query using the value stored in
$_POST['joketext'] to fill in the joketext column of the
joke table. This might lead you to write some code like this:
$sql = 'INSERT INTO joke SET
 joketext="' . $_POST['joketext'] . '",
 jokedate="today’s date"';
$pdo->exec($sql);

There is a serious problem with this code, however: the contents
of $_POST['joketext'] are entirely under the control of the
user who submitted the form. If a malicious user were to type
some nasty SQL code into the form, this script would feed it to
your MySQL server without question. This type of attack is
called an SQL injection attack , and in the early days of PHP it
was one of the most common security holes that hackers found
and exploited in PHP-based websites.[26] These attacks were so
feared, in fact, that the team behind PHP added some built-in
protection against SQL injections to the language; it still remains
enabled by default in many PHP installations today. Called
magic quotes , this protective feature of PHP automatically
analyzes all values submitted by the browser and inserts
backslashes (\) in front of any “dangerous” characters like
apostrophes—which can cause problems if they’re included in
an SQL query inadvertently. The problem with the magic quotes
feature is that it causes as many problems as it prevents. First of
all, the characters that it detects and the method it uses to sanitize
them (prefixing them with a backslash) are only valid in some
circumstances. Depending on the character encoding of your site
and the database server you’re using, these measures may be
completely ineffective. Second, when a submitted value is used
for some purpose other than creating an SQL query, those

for some purpose other than creating an SQL query, those
backslashes can be really bothersome. I mentioned this briefly in
Chapter 3 when, in the welcome message example, the magic
quotes feature would insert a spurious backslash into the user’s
last name if it contained an apostrophe. In short, magic quotes
was a bad idea, so much so that it’s scheduled to be removed
from PHP in version 6. In the meantime, however, you have to
deal with the problems it creates in your code. The easiest way
to do this is to detect if magic quotes is enabled on your web
server and, if so, to undo the modifications it has made to the
submitted values.[27] Thankfully, the PHP Manual provides a
snippet of code that will do this:

chapter4/addjoke/index.php (excerpt)
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE,
&$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key]
[stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] =
stripslashes($v);
 }
 }
 }
 unset($process);
}

Don’t try to understand the inner workings of this code. To keep
it short, I’ve used several advanced PHP features that we’re yet
to cover—and one or two others that are beyond the scope of
this book. Just drop this code into the top of your controller—
and indeed any other PHP script that will receive user input in
the form of query variables or a form submission (or, as we’ll
learn in Chapter 9, browser cookies). And be assured that from
this point forward, I’ll remind you whenever this code is required
by an example.[28] With the damage done by magic quotes
reversed, you’re now free to use submitted values in your SQL

reversed, you’re now free to use submitted values in your SQL
queries the right way: using prepared statements. A prepared
statement is an SQL query that you’ve sent to your database
server ahead of time, giving the server a chance to prepare it for
execution—but not actually execute it. The SQL code in
prepared statements can contain placeholders that you’ll supply
the values for later, when the query is to be executed. When
filling in these placeholders, PDO is smart enough to guard
against “dangerous” characters automatically. Here’s how to
prepare an INSERT query and then execute it safely with
$_POST['joketext'] as the text of the joke:
$sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = "today's date"';
$s = $pdo->prepare($sql);
$s->bindValue(':joketext', $_POST['joketext']);
$s->execute();

Let’s break this down one statement at a time. First, we write
out our SQL query as a PHP string and store it in a variable
($sql) as usual. What’s unusual about this INSERT query,
however, is that no value is specified for the joketext column;
instead, it contains a placeholder for this value (:joketext).
Don’t worry about the jokedate field just now—we’ll circle
back to it in a moment. Next, we call the prepare method of
our PDO object ($pdo), passing it our SQL query as an
argument. This sends the query to the MySQL server, asking it
to prepare to run the query. MySQL can’t run it yet—there’s no
value for the joketext column. The prepare method returns a
PDOStatement object (yes, the same kind of object that gives
us the results from a SELECT query), which we store in $s. Now
that MySQL has prepared our statement for execution, we can
send it the missing value(s) by calling the bindValue method of
our PDOStatement object ($s). We call this method once for
each value to be supplied (in this case, we only need to supply
one value: the joke text), passing as arguments the placeholder
that we want to fill in (':joketext') and the value we want to
fill it with ($_POST['joketext']). Because MySQL knows
we’re sending it a discrete value, rather than SQL code that
needs to be parsed, there’s no risk of characters in the value
being interpreted as SQL code. Using prepared statements,
SQL injection vulnerabilities simply aren’t possible! Finally, we
call the PDOStatement object’s execute method to tell
MySQL to execute the query with the value(s) we’ve
supplied.[29] The lingering question in this code is how to assign

supplied.[29] The lingering question in this code is how to assign
today’s date to the jokedate field. We could write some fancy
PHP code to generate today’s date in the YYYY-MM-DD format
that MySQL requires, but it turns out that MySQL itself has a
function to do this: CURDATE:
$sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
$s = $pdo->prepare($sql);
$s->bindValue(':joketext', $_POST['joketext']);
$s->execute();

The MySQL function CURDATE is used here to assign the current
date as the value of the jokedate column. MySQL actually has
dozens of these functions, but I’ll introduce them only as
required. Appendix C provides a reference describing all
commonly used MySQL functions. Now that we have our
query, we can complete the if statement we started earlier to
handle submissions of the “Add Joke” form:

chapter4/addjoke/index.php (excerpt)
if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext',
$_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' .
$e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

But wait! This if statement has one more trick up its sleeve.
Once we’ve added the new joke to the database, instead of
displaying the PHP template as previously, we want to redirect
the user’s browser back to the list of jokes. That way they are
able to see the newly added joke among them. That’s what the

able to see the newly added joke among them. That’s what the
two lines highlighted in bold at the end of the if statement above
do. In order to achieve the desired result, your first instinct might
be to allow the controller to simply fetch the list of jokes from the
database after adding the new joke, and displaying the list using
the jokes.html.php template as usual. The problem with doing
this is that the list of jokes, from the browser’s perspective,
would be the result of having submitted the “Add Joke” form. If
the user were then to refresh the page, the browser would
resubmit that form, causing another copy of the new joke to be
added to the database! This is rarely the desired behavior.
Instead, we want the browser to treat the updated list of jokes
as a normal web page that’s able to be reloaded without
resubmitting the form. The way to do this is to answer the
browser’s form submission with an HTTP redirect [30]—a
special response that tells the browser “the page you’re looking
for is over here.” The PHP header function provides the means
of sending special server responses like this one, by letting you
insert specific headers into the response sent to the browser. In
order to signal a redirect, you must send a Location header
with the URL of the page to which you wish to direct the
browser:
header('Location: URL');

In this case, we want to send the browser back to the very same
page: our controller. We’re asking the browser to submit another
request, this time without a form submission attached to it, rather
than sending the browser to another location. Since we want to
point the browser at our controller (index.php) using the URL of
the parent directory, we can simply tell the browser to reload the
current directory, which is expressed as a period (.). Here are
the two lines that redirect the browser back to our controller
after adding the new joke to the database:

chapter4/addjoke/index.php (excerpt)
 header('Location: .');
 exit();
}

Tip: $_SERVER['PHP_SELF'] is
the URL of the Current Page

Another common means of obtaining the URL of
the current page in PHP is with
$_SERVER['PHP_SELF']. Like $_GET,

$_SERVER['PHP_SELF']. Like $_GET,
$_POST, and $_REQUEST, $_SERVER is an array
variable that’s automatically created by PHP. It
contains a whole bunch of information supplied
by your web server. In particular,
$_SERVER['PHP_SELF'] will always be set to
the URL of the PHP script that your web server
used to generate the current page. Unfortunately,
because the web server automatically translates
a request for http://localhost/addjoke/ to a
request for http://localhost/addjoke/index.php,
$_SERVER['PHP_SELF'] will contain the latter
URL. Redirecting the browser to . lets us
preserve the shorter, more memorable form of
the URL. For this reason, I’ve avoided using
$_SERVER['PHP_SELF'] in this book;
however, I thought you might like to know what
it does, since it’s so commonly used in basic
PHP examples around the Web.

The rest of the controller is responsible for displaying the list of
jokes as before. Here’s the complete code of the controller:

chapter4/addjoke/index.php
<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE,
&$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key]
[stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] =
stripslashes($v);
 }
 }
 }
 unset($process);
}

if (isset($_GET['addjoke']))

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext',
$_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' .
$e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

try
{
 $sql = 'SELECT joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)

catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';

As you review this to ensure it all makes sense to you, note that
the code that connects to the database by creating a new PDO
object must come before any of the code that runs database
queries. A database connection is unnecessary to display the
“Add Joke” form, though, so that code can come at the very top
of the controller script. Load this up and add a new joke or two
as per Figure 4.15 to the database via your browser.

Figure 4.15. Look, Ma—no SQL!

There you have it. With a single controller (index.php) pulling the
strings, you’re able to view existing jokes in—and add new

strings, you’re able to view existing jokes in—and add new
jokes to—your MySQL database.

Deleting Data from the
Database
In this section, we’ll make one final enhancement to our joke
database site. Next to each joke on the page, we’ll place a
button labeled Delete; when clicked, it will remove that joke
from the database and display the updated joke list. If you like a
challenge, you might want to take a stab at writing this feature
yourself before you read on to see my solution. Although we’re
implementing a brand new feature, we’ll mainly be using the
same tools as employed in the previous examples in this chapter.
Here are a few hints to start you off:

You’ll still be able to do it all with a single controller script
(index.php).

The SQL DELETE command will be required, which I
introduced in Chapter 2.

To delete a particular joke in your controller, you’ll need
to identify it uniquely. The id column in the joke table
was created to serve this purpose. You’re going to have
to pass the ID of the joke to be deleted with the request
to delete a joke. The easiest way to do this is to use a
hidden form field.

At the very least, take a few moments to think about how you’d
approach this. When you’re ready to see the solution, read on!
To begin with, we need to modify the SELECT query that fetches
the list of jokes from the database. In addition to the joketext
column, we must also fetch the id column so that we can identify
each joke uniquely:

chapter4/deletejoke/index.php (excerpt)
try
{
 $sql = 'SELECT id, joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-

 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

We also have to modify the while loop that stores the database
results into the $jokes array. Instead of simply storing the text
of each joke as an item in the array, we store both the ID and
text of each joke. One way to do this is to make each item in the
$jokes array an array in its own right:

chapter4/deletejoke/index.php (excerpt)
while ($row = $result->fetch())
{
 $jokes[] = array('id' => $row['id'], 'text' =>
$row['joketext']);
}

Note: The foreach version

If you’ve already switched to using a foreach
loop to process your database result rows, that
will work just fine too:
foreach ($result as $row)
{
 $jokes[] = array('id' =>
$row['id'], 'text' =>
 $row['joketext']);
}

Once this while loop runs its course, we’ll have the $jokes
array, each item of which is an associative array with two items:
the ID of the joke and its text. For each joke ($jokes[n]), we
can therefore retrieve its ID ($jokes[n]['id']) and its text
($jokes[n]['text']). Our next step is to update the
jokes.html.php template to retrieve each joke’s text from this
new array structure, as well as provide a Delete button for each
joke:

chapter4/deletejoke/jokes.html.php (excerpt)
<?php foreach ($jokes as $joke): ?>
 <form action="?deletejoke" method="post">
 (1)
 <blockquote>
 <p>
 <?php echo
htmlspecialchars($joke['text'], ENT_QUOTES,(2)
 'UTF-8'); ?>
 <input type="hidden" name="id" value="<?

 <input type="hidden" name="id" value="<?
php
 echo $joke['id']; ?>">
 (3)

 <input type="submit"
value="Delete">
 (4)
 </p>
 </blockquote>
 </form>
 (5)
<?php endforeach; ?>

Here are the highlights of this updated code:

(1)
Each joke will be displayed in a form, which, if submitted,
will delete that joke. We signal this to our controller using
the ?deletejoke query string in the action attribute.

(2)
Since each joke in the $jokes array is now represented by
a two-item array instead of a simple string, we must update
this line to retrieve the text of the joke. We do this using
$joke['text'] instead of just $joke.

(3)

When we submit the form to delete this joke, we send along
the ID of the joke to be deleted. To do this, we need a form
field containing the joke’s ID, but we’d prefer to keep this
field hidden from the user; that’s why we use a hidden form
field (<input type="hidden">). The name of this field is
id, and its value is the ID of the joke to be deleted
($joke['id']). Unlike the text of the joke, the ID is not a
user-submitted value, so there’s no need to worry about
making it HTML-safe with htmlspecialchars. We can
rest assured it will be a number, since it’s automatically
generated by MySQL for the id column when the joke is
added to the database.

(4)
This submit button (<input type="submit">) submits
the form when clicked. Its value attribute gives it a label of
Delete.

(5) Finally, we close the form for this joke.

Note: This Markup Could Be
Better

If you know your HTML, you’re probably

If you know your HTML, you’re probably
thinking that those <input> tags belong outside
of the blockquote element, since they aren’t a
part of the quoted text (the joke). Strictly
speaking, that’s true: the form and its inputs
should really be either before or after the
blockquote. Unfortunately, making that tag
structure display clearly requires a little
Cascading Style Sheets (CSS) code that’s really
beyond the scope of this book. Rather than
teach you CSS layout techniques in a book
about PHP and MySQL, I’ve decided to go
with this imperfect markup. If you plan to use
this code in the real world, you should invest
some time into learning CSS (or at least secure
the services of a CSS guru); that way you can
take complete control of your HTML markup
without worrying about the CSS required to
make it look nice.

Figure 4.16 shows what the joke list looks like with the Delete
buttons added.

Figure 4.16. Each button can delete its respective joke

All that remains to make this new feature work is to update the
controller. It can then process the form submission that results
from clicking one of our new Delete buttons:

chapter4/deletejoke/index.php (excerpt)
if (isset($_GET['deletejoke']))
{
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

This chunk of code works exactly like the one we added to
process the “Add Joke” code earlier in the chapter. We start by
preparing a DELETE query with a placeholder for the joke ID
that we wish to delete.[31] We then bind the submitted value of
$_POST['id'] to that placeholder and execute the query. Once
that query is achieved, we use the PHP header function to ask
the browser to send a new request to view the updated list of
jokes.

Important: Why Not a Link?

If you tackled this example yourself, your first
instinct might have been to provide a Delete
hyperlink for each joke, instead of going to the
trouble of writing an entire HTML form
containing a Delete button for each joke on the
page. Indeed, the code for such a link would be
much simpler:
<?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p>
 <?php echo

 <?php echo
htmlspecialchars($joke['text'],
ENT_QUOTES,
 'UTF-8'); ?>
 <a href="?deletejoke&id=<?
php echo $joke['id'];
 ?>">Delete
 </p>
 </blockquote>
<?php endforeach; ?>

In short, hyperlinks should never be used to
perform actions (such as deleting a joke); they
must only be used to provide a link to some
related content. The same goes for forms with
method="get", which should only be used to
perform queries of existing data. Actions must
only ever be performed as a result of a form with
method="post" being submitted. The reason
why is that forms with method="post" are
treated differently by browsers and related
software. If you were to submit a form with
method="post" and then click the Refresh
button in your browser, for example, the
browser would ask if you’re certain you wish to
resubmit the form. Browsers have no similar
protection against resubmission when it comes to
links and forms with method="get". Similarly,
web accelerator software (and some modern
browsers) will automatically follow hyperlinks
present on a page in the background, so that the
target pages will be available for immediate
display if the user clicks one of those links. If
your site deleted a joke as a result of a hyperlink
being followed, you could find your jokes being
deleted automatically by your users’ browsers!

Here’s the complete code of the finished controller. If you have
any questions, make sure to post them in the SitePoint Forums!

chapter4/deletejoke/index.php
<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE,
&$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)

 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key]
[stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] =
stripslashes($v);
 }
 }
 }
 unset($process);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext',
$_POST['joketext']);
 $s->execute();

 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' .
$e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['deletejoke']))
{
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

try
{
 $sql = 'SELECT id, joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = array('id' => $row['id'], 'text' =>
$row['joketext']);
}

include 'jokes.html.php';

include 'jokes.html.php';

Mission Accomplished
In this chapter, you learned all about PHP Data Objects (PDO),
a collection of built-in PHP classes (PDO, PDOException, and
PDOStatement) that allow you to interface with a MySQL
database server by creating objects and then calling the methods
they provide. While you were at it, you also picked up the basics
of object oriented programming (OOP), no mean feat for a PHP
beginner! Using PDO objects, you built your first database
driven website, which published the ijdb database online and
allowed visitors to add and delete jokes. In a way, you could say
this chapter achieved the stated mission of this book: to teach
you how to build a database driven website. Of course, the
example in this chapter contained only the bare essentials. In the
rest of the book, I’ll show you how to flesh out the skeleton you
learned to build in this chapter. In Chapter 5, we return to the
SQL Query window in phpMyAdmin. We’ll learn how to use
relational database principles and advanced SQL queries to
represent more complex types of information, and give our
visitors credit for the jokes they add!

[22] If you’re wondering why the root user is listed twice, it’s
because MySQL actually comes configured with two root user
accounts: one for accepting connections from the IP address
127.0.0.1, and another for accepting connections from the
hostname localhost. Normally 127.0.0.1 and localhost both refer
to your own computer, but, depending on how you connect, it
may see the connection coming from one or the other. We’ll
explore this issue in greater detail in Chapter 10.

[23] For now, I strongly recommend you stick with a Local
account. Any host accounts can cause problems that we’ll
explore in Chapter 10.

[24] You can read about the details of PDO’s error-handling
modes in the PHP Manual.

[25] This is one case where asking a PDO object to do something
it cannot do (as fetch cannot return the next row when there
are no rows left in the result set) will not throw a

are no rows left in the result set) will not throw a
PDOException. If it did, we’d be unable to use the fetch
method in a while loop condition the way we do here.

[26] In many programming niches, SQL injection attacks are still
surprisingly effective, as developers don’t expect them. Consider
this remarkable attempt to cause traffic cameras to drop their
databases: “SQL Injection Licence (sic) Plate Hopes to Foil
Euro Traffic Cameras.”

[27] You can disable magic quotes—and save your web server a
lot of work—by setting the magic_quotes_gpc option in your
php.ini file to Off. To make sure your code still functions if this
setting is changed, however, you should still deal with magic
quotes in your code when it’s enabled.

[28] In Chapter 6, I’ll show you how to reduce the burden of
repeatedly including this code snippet in your controller code.

[29] Yes, this PDOStatement method is called execute, unlike
the similar method of PDO objects, which is called exec. PHP
has many strengths, but consistency isn’t one of them.

[30] HTTP stands for HyperText Transfer Protocol, and is the
language that describes the request/response communications
that are exchanged between the visitor’s web browser and your
web server.

[31] You might think that a prepared statement is unnecessary in
this instance to protect our database from SQL injection attacks,
since the joke ID is provided by a hidden form field invisible to
the user. In fact, all form fields—even hidden ones—are
ultimately under the user’s control. There are widely distributed
browser add-ons, for example, that will make hidden form fields
visible and available for editing by the user. Remember: any value
submitted by the browser is ultimately suspect when it comes to
protecting your site’s security.

Chapter 5

Relational Database
Design
Since Chapter 2, we’ve worked with a very simple database of
jokes, composed of a single table named, appropriately enough,
joke. While this database has served us well as an introduction
to MySQL databases, there’s more to relational database design
than can be understood from this simple example. In this chapter,
we’ll expand on this database and learn a few new features of
MySQL, in an effort to realize and appreciate the real power
that relational databases have to offer. Be forewarned that I will
cover several topics only in an informal, nonrigorous sort of way.
As any computer science major will tell you, database design is a
serious area of research, with tested and mathematically
provable principles that, while useful, are beyond the scope of
this text. For more complete coverage of database design
concepts and SQL in general, pick up a copy of Simply SQL. If
you’re really into learning the hard principles behind relational
databases, Database in Depth (Sebastopol: O’Reilly, 2005) is
a worthwhile read.

Giving Credit Where Credit Is
Due
To start off, let’s recall the structure of our joke table. It
contains three columns: id, joketext, and jokedate.
Together, these columns allow us to identify jokes (id), and
keep track of their text (joketext) and the date they were
entered (jokedate). For your reference, here’s the SQL code
that creates this table and inserts a couple of entries:[32]

chapter5/sql/jokes1.sql
Code to create a simple joke table

Code to create a simple joke table

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Adding jokes to the table

INSERT INTO joke SET
joketext = 'Why did the chicken cross the road?
To get to the other
↵ side!',
jokedate = '2009-04-01';

INSERT INTO joke
(joketext, jokedate) VALUES (
'Knock-knock! Who\'s there? Boo! "Boo" who?
Don\'t cry; it\'s only a
↵ joke!',
"2009-04-01"
);

Now, let’s say we wanted to track another piece of information
about our jokes: the names of the people who submitted them. It
would be natural to add a new column to our joke table for this.
The SQL ALTER TABLE command (which we’ve yet to see) lets
us do exactly that. Open up phpMyAdmin as you did in
Chapter 2, select your database (ijdb if you used the name I
suggested), and type this command:

 ALTER TABLE joke ADD COLUMN authorname VARCHAR(255)

This code adds a column called authorname to your table. The
type declared is a variable-length character string of up to
255 characters, VARCHAR(255)—plenty of space for even
very esoteric names. Let’s also add a column for the authors’
email addresses:

 ALTER TABLE joke ADD COLUMN authoremail VARCHAR(255)

For more information about the ALTER TABLE command, see
Appendix B. Just to make sure the two columns were added
properly, we’ll ask MySQL to describe the table to us:[33]

 DESCRIBE joke

This should give you a table of results like the one in Figure 5.1.

Figure 5.1. Our joke table now contains five columns

Looks good, right? Obviously, to accommodate this expanded
table structure, we’d need to make changes to the HTML and
PHP form code we wrote in Chapter 4 that allowed us to add
new jokes to the database. Using UPDATE queries, we could
now add author details to all the jokes in the table. But before
we spend too much time on such changes, we should stop and
consider whether this new table design was the right choice here.
In this case, it turns out it wasn’t.

Rule of Thumb: Keep Entities
Separate
As your knowledge of database driven websites continues to
grow, you may decide that a personal joke list is too limited. In
fact, you might receive more submitted jokes than you have
original jokes of your own. Let’s say you decide to launch a
website where people from all over the world can share jokes
with each other. Adding the author’s name and email address to
each joke certainly makes a lot of sense, but the method we
used above leads to potential problems:

What if a frequent contributor to your site named Joan
Smith changed her email address? She might begin to
submit new jokes using the new address, but her old
address would still be attached to the jokes she’d
submitted in the past. Looking at your database, you

submitted in the past. Looking at your database, you
might simply think there were two people named Joan
Smith who had submitted jokes. She might inform you of
the change of address, and you may try to update all the
old jokes with the new address, but if you missed just one
joke, your database would still contain incorrect
information. Database design experts refer to this sort of
problem as an update anomaly .

It would be natural for you to rely on your database to
provide a list of all the people who’ve ever submitted
jokes to your site. In fact, you could easily obtain a
mailing list using the following query:

 SELECT DISTINCT authorname, authoremail
FROM joke

The word DISTINCT in the above query stops MySQL
from outputting duplicate result rows. For example, if Joan
Smith submits 20 jokes to your site, using the DISTINCT
option would cause her name to only appear once in the
list instead of 20 times. Then, if for some reason, you
decided to remove all the jokes that a particular author
had submitted to your site, you’d remove any record of
this person from the database in the process, and you’d
no longer be able to email him or her with information
about your site! Database design experts call this a delete
anomaly . As your mailing list might be a major source of
income for your site, it’s unwise to go throwing away an
author’s email address just because you disliked the jokes
that person submitted.

You have no guarantee that Joan Smith will enter her
name the same way each time; consider the variations:
Joan Smith, J. Smith, Smith, Joan—you catch my drift.
This makes keeping track of a particular author
exceedingly difficult, especially if Joan Smith also has
several email addresses she likes to use.

These problems—and more—can be dealt with very easily using
established database design principles. Instead of storing the
information for the authors in the joke table, let’s create an

information for the authors in the joke table, let’s create an
entirely new table for our list of authors. Just as we have an id
column in our joke table to identify each joke with a unique
number, we’ll use an identically named column in our new table
to identify our authors. We can then use those author IDs in our
joke table to associate authors with their jokes. The complete
database layout is shown in Figure 5.2.

Figure 5.2. The authorid field associates each row in joke with a
row in author

These tables show that there are three jokes and two authors.
The authorid column of the joke table establishes a
relationship between the two tables, indicating that Kevin Yank
submitted jokes 1 and 2 and Joan Smith submitted joke 3.
Notice that since each author now only appears once in the

Notice that since each author now only appears once in the
database, and independently of the jokes submitted, we’ve
avoided all the potential problems just outlined. What’s really
important to note about this database design is that we’re storing
information about two types of things (jokes and authors), so
it’s most appropriate to have two tables. This is a rule of thumb
that you should always keep in mind when designing a database:
each type of entity (or “thing”) about which you want to be
able to store information should be given its own table. To
set up the aforementioned database from scratch is fairly simple
(involving just two CREATE TABLE queries), but since we’d like
to make these changes in a nondestructive manner (that is,
without losing any of our precious knock-knock jokes), we will
use the ALTER TABLE command again. First, we remove the
author-related columns in the joke table:

 ALTER TABLE joke DROP COLUMN authorname

 ALTER TABLE joke DROP COLUMN authoremail

Now, we create our new table:

 CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Finally, we add the authorid column to our joke table:

 ALTER TABLE joke ADD COLUMN authorid INT

If you prefer, here are the CREATE TABLE commands that will
create the two tables from scratch:

chapter5/sql/2tables.sql (excerpt)
Code to create a simple joke table that stores
an author ID

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT

 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Code to create a simple author table

CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

All that’s left to do is add some authors to the new table, and
assign authors to all the existing jokes in the database by filling in
the authorid column.[34] Go ahead and do this now if you like
—it should give you some practice with INSERT and UPDATE
queries. If you’re rebuilding the database from scratch, however,
here’s a series of INSERT queries that will do the trick:

chapter5/sql/2tables.sql (excerpt)
Adding authors to the database
We specify the IDs so they are known when we
add the jokes below.

INSERT INTO author SET
 id = 1,
 name = 'Kevin Yank',
 email = 'thatguy@kevinyank.com';

INSERT INTO author (id, name, email)
VALUES (2, 'Joan Smith', 'joan@example.com');

Adding jokes to the database

INSERT INTO joke SET
 joketext = 'Why did the chicken cross the
road? To get to the
↵ other side!',
 jokedate = '2012-04-01',
 authorid = 1;

INSERT INTO joke (joketext, jokedate, authorid)
VALUES (
 'Knock-knock! Who\'s there? Boo! "Boo" who?
Don\'t cry; it\'s only
↵ a joke!',
 '2012-04-01',
 1
);

INSERT INTO joke (joketext, jokedate, authorid)

INSERT INTO joke (joketext, jokedate, authorid)
VALUES (
 'A man walks into a bar. "Ouch."',
 '2012-04-01',
 2
);

SELECT with Multiple Tables
With your data now separated into two tables, it may seem that
you’re complicating the process of data retrieval. Consider, for
example, our original goal: to display a list of jokes with the name
and email address of the author next to each joke. In the single-
table solution, you could gain all the information needed to
produce such a list using a single SELECT query in your PHP
code:
try
{
 $sql = 'SELECT joketext, authorname,
authoremail FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['authorname'],
 'email' => $row['authoremail']
);
}

With our new database layout, this would, at first, no longer
seem possible. As the author details of each joke are no longer
stored in the joke table, you might think that you’d have to fetch
those details separately for each joke you wanted to display. The
code required would involve a call to the PDO query method
for each and every joke to be displayed. This would be messy

for each and every joke to be displayed. This would be messy
and slow. As your database of jokes increased in size, the
overhead of all those queries would drag down your site’s
performance in a big way. Taking all this into account, it would
seem that the “old way” was the better solution, despite its
weaknesses. Fortunately, relational databases like MySQL are
designed to make it easy to work with data stored in multiple
tables! Using a new form of the SELECT statement, called a join
, you can have the best of both worlds. Joins allow you to treat
related data in multiple tables as if they were stored in a single
table. Here’s what the syntax of a simple join looks like:

 SELECT columns
FROM table1 INNER JOIN table2
 ON condition(s) for data to be related

In your case, the columns we’re interested in are id and
joketext in the joke table, and name and email in the
author table. The condition for an entry in the joke table to be
related to an entry in the author table is that the value of the
authorid column in the joke table is equal to the value of the
id column in the author table. Let’s look at an example of a
join. The first two queries show you what’s contained in the two
tables—they’re unnecessary to perform the join. The third query
is where the action’s at:

 SELECT id, LEFT(joketext, 20), authorid FROM joke

The results of this query are shown in Figure 5.3.

Figure 5.3. A peek at the contents of the joke table

 SELECT * FROM author

The results of this query are shown in Figure 5.4.

Figure 5.4. A peek at the contents of the author table

 SELECT joke.id, LEFT(joketext, 20), name, email
FROM joke INNER JOIN author
 ON authorid = author.id

Finally, Figure 5.5 shows the results of this query.

Figure 5.5. The results of your first join

See? The results of the third SELECT—a join—group the values
stored in the two tables into a single table of results, with related
data correctly appearing together. Even though the data is stored
in two tables, you can still access all the information you need to
produce the joke list on your web page with a single database
query. Note in the query that, since there are columns named id
in both tables, you must specify the name of the table when you
refer to either id column. The joke table’s id is referred to as
joke.id, while the author table’s id column is author.id. If
the table name is unspecified, MySQL won’t know which id
you’re referring to, and will produce the error shown in
Figure 5.6:

 SELECT id, LEFT(joketext, 20), name, email
FROM joke INNER JOIN author
 ON authorid = id

Figure 5.6. MySQL has a low tolerance for ambiguity

Now that you know how to access the data stored in your two
tables efficiently, you can rewrite the code for your joke list to
take advantage of joins:

chapter5/jokes/index.php (excerpt)
try

try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['name'],
 'email' => $row['email']
);
}

include 'jokes.html.php';

You can then update your template to display the author
information for each joke:

chapter5/jokes/jokes.html.php (excerpt)
<?php foreach ($jokes as $joke): ?>
 <form action="?deletejoke" method="post">
 <blockquote>
 <p>
 <?php echo
htmlspecialchars($joke['text'], ENT_QUOTES,
↵ 'UTF-8'); ?>
 <input type="hidden" name="id" value="<?
php echo
↵ $joke['id']; ?>">
 <input type="submit" value="Delete">
 (by <a href="mailto:<?php
 echo
htmlspecialchars($joke['email'], ENT_QUOTES,
 'UTF-8'); ?>"><?php
 echo htmlspecialchars($joke['name'],
ENT_QUOTES,
 'UTF-8'); ?>)
 </p>
 </blockquote>

 </blockquote>
 </form>
<?php endforeach; ?>

The resulting display is shown in Figure 5.7.

Figure 5.7. I wrote all the best ones myself

The more you work with databases, the more you’ll come to
realize the power of combining data from separate tables into a
single table of results. Consider, for example, the following
query, which displays a list of all jokes written by Joan Smith:

 SELECT joketext
FROM joke INNER JOIN author
 ON authorid = author.id
WHERE name = "Joan Smith"

The results that are output from this query, shown in Figure 5.8,
come only from the joke table, but the query uses a join to let it
search for jokes based on a value stored in the author table.
There will be plenty more examples of clever queries like this

throughout the book, but this example alone illustrates that the
practical applications of joins are many and varied, and, in
almost all cases, can save you a lot of work!

Figure 5.8. Joan’s joke

Simple Relationships
The type of database layout for a given situation is usually
dictated by the form of relationship that exists between the data
that it needs to store. In this section, I’ll examine the typical
relationship types, and explain how best to represent them in a
relational database. In the case of a simple one-to-one
relationship , a single table is all you’ll need. An example of a
one-to-one relationship is the email address of each author in our
joke database. Since there will be one email address for each
author, and one author for each email address, there’s no reason
to split the addresses into a separate table.[35] A many-to-one
relationship is a little more complicated, but you’ve already
seen one of these as well. Each joke in our database is
associated with just one author, but many jokes may have been
written by that one author. This joke–author relationship is
many-to-one. I’ve already covered the problems that result from
storing the information associated with a joke’s author in the
same table as the joke itself. In brief, it can result in many copies
of the same data, which are difficult to keep synchronized and
waste space. If we split the data into two tables and use an ID
column to link them together (making joins possible as shown
before), all these problems disappear. A one-to-many
relationship is simply a many-to-one relationship seen from the
opposite direction. As the joke–author relationship is many-to-
one, the author–joke relationship is one-to-many (there is one
author for, potentially, many jokes). This is easy to see in theory,
but when you’re coming at a problem from the opposite
direction, it’s less obvious. In the case of jokes and authors, we
started with a library of jokes (the many) and then wanted to
assign an author to each of them (the one). Let’s now look at a
hypothetical design problem where we start with the one and

hypothetical design problem where we start with the one and
want to add the many. Say we wanted to allow each of the
authors in our database (the one) to have multiple email
addresses (the many). When an inexperienced person in
database design approaches a one-to-many relationship like this
one, often the first thought is to try to store multiple values in a
single database field, as shown in Figure 5.9.

Figure 5.9. Never overload a table field to store multiple values as is
done here

This would work, but to retrieve a single email address from the
database, we’d need to break up the string by searching for
commas (or whatever special character you chose to use as a
separator); it’s a not-so-simple, potentially time-consuming
operation. Try to imagine the PHP code necessary to remove
one particular email address from a specific author! In addition,
you’d need to allow for much longer values in the email column,
which could result in wasted disk space because the majority of
authors would have just one email address. Now take a step
back, and realize that this one-to-many relationship is just the
same as the many-to-one relationship we faced between jokes
and authors. The solution, therefore, is also the same: split the
new entities (in this case, email addresses) into their own table.
The resulting database structure is shown in Figure 5.10.

Figure 5.10. The authorid field associates each row of email with
one row of author

one row of author

Using a join with this structure, we can easily list the email
addresses associated with a particular author:

 SELECT email
FROM author INNER JOIN email
 ON authorid = author.id
WHERE name = "Kevin Yank"

Many-to-many Relationships
Okay, you now have a steadily growing database of jokes
published on your website. It’s growing so quickly, in fact, that
the number of jokes has become unmanageable! Your site
visitors are faced with a mammoth page that contains hundreds
of jokes without any structure whatsoever. We need to make a
change. You decide to place your jokes into the following
categories: Knock-knock jokes, “Crossing the road” jokes,
Lawyer jokes, Light bulb jokes, and Political jokes.
Remembering our rule of thumb from earlier, you identify joke
categories as a new entity, and create a table for them:

 CREATE TABLE category (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Now you come to the daunting task of assigning categories to
your jokes. It occurs to you that a “political” joke might also be
a “crossing the road” joke, and a “knock-knock” joke might
also be a “lawyer” joke. A single joke might belong to many
categories, and each category will contain many jokes. This is a
many-to-many relationship. Once again, many inexperienced
developers begin to think of ways to store several values in a
single column, because the obvious solution is to add a
category column to the joke table and use it to list the IDs of
those categories to which each joke belongs. A second rule of
thumb would be useful here: if you need to store multiple
values in a single field, your design is probably flawed. The
correct way to represent a many-to-many relationship is by using

correct way to represent a many-to-many relationship is by using
a lookup table . This is a table that contains no actual data, but
lists pairs of entries that are related. Figure 5.11 shows what the
database design would look like for our joke categories.

Figure 5.11. The jokecategory table associates pairs of rows from
the joke and category tables

The jokecategory table associates joke IDs (jokeid) with
category IDs (categoryid). In this example, we can see that
the joke that starts with “How many lawyers …” belongs to both
the Lawyers and Light bulb categories. A lookup table is created
in much the same way as is any other table. The difference lies in
the choice of the primary key. Every table we’ve created so far
has had a column named id that was designated to be the
PRIMARY KEY when the table was created. Designating a
column as a primary key tells MySQL to forbid two entries in
that column from having the same value. It also speeds up join
operations based on that column. In the case of a lookup table,
there is no single column that we want to force to have unique
values. Each joke ID may appear more than once, as a joke may
belong to more than one category, and each category ID may
appear more than once, as a category may contain many jokes.
What we want to prevent is the same pair of values appearing in
the table twice. And, since the sole purpose of this table is to
facilitate joins, the speed benefits offered by a primary key
would come in very handy. For this reason, we usually create
lookup tables with a multicolumn primary key as follows:

lookup tables with a multicolumn primary key as follows:

 CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
 PRIMARY KEY (jokeid, categoryid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

This creates a table in which the jokeid and categoryid
columns together form the primary key. This enforces the
uniqueness that’s appropriate to a lookup table, preventing a
particular joke from being assigned to a specific category more
than once, and speeds up joins that make use of this table. [36]

Now that your lookup table is in place and contains category
assignments, you can use joins to create several interesting and
practical queries. This query lists all jokes in the Knock-knock
category:

 SELECT joketext
FROM joke INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE name = "Knock-knock"

As you can see, this query uses two joins. First, it takes the
joke table and joins it to the jokecategory table; then it takes
that joined data and joins it to the category table. As your
database structure becomes more complex, multijoin queries like
this one become common. The following query lists the
categories that contain jokes beginning with “How many lawyers
…”:

 SELECT name
FROM joke INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE joketext LIKE "How many lawyers%"

And this query—which also makes use of our author table to
join together the contents of four tables—lists the names of all
authors who have written knock-knock jokes:

 SELECT author.name

 SELECT author.name
FROM joke INNER JOIN author
 ON authorid = author.id
INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE category.name = "Knock-knock"

One for Many, and Many for
One
In this chapter, I explained the fundamentals of good database
design, and we learned how MySQL and, for that matter, all
relational database management systems provide support for the
representation of different types of relationships between entities.
From your initial understanding of one-to-one relationships, you
should now have expanded your knowledge to include many-to-
one, one-to-many, and many-to-many relationships. In the
process, you learned a few new features of common SQL
commands. In particular, you learned how to use a SELECT
query to join data spread across multiple tables into a single set
of results. With the increased expressiveness that multiple
database tables bring, you’re now equipped to extend the simple
“joke list” site you assembled in Chapter 4 to include authors
and categories, and that’s exactly what Chapter 7 will be all
about. Before you tackle this project, however, you should take
some time to add to your PHP skills. Just as you spent this
chapter learning some of the finer points of MySQL database
design, Chapter 6 will teach you some of the subtleties of PHP
programming—which will make the job of building a more
complete joke database site much more fun.

[32] If you ever need to re-create your database from scratch,
you can use phpMyAdmin to drop all the tables and then go to
the Import tab of the now-empty ijdb database and feed it this
SQL file. phpMyAdmin will run all the commands it contains,
thereby restoring the database. In this way, you can use the .sql
files in the code archive for this book as database snapshots to

load up whenever you need them.

[33] Instead of typing the DESCRIBE query yourself, you could
just select the joke table in phpMyAdmin and click the
Structure tab. At this point in your database administration
career, though, it’s advisable to take every opportunity you can
to become familiar with SQL queries like DESCRIBE.

[34] For now, you’ll have to do this manually. But rest assured, in
Chapter 7 we’ll see how PHP can insert entries with the correct
IDs automatically, reflecting the relationships between them.

[35] There are exceptions to this rule. For example, if a single
table grows very large with lots of columns, some of which are
rarely used in SELECT queries, it can make sense to split those
columns out into their own table. This can improve the
performance of queries on the now-smaller table.

[36] If you like, you can use the CREATE TABLE and INSERT
commands in Example 7.1 to create the jokecategory table
from scratch (and others, including the jokes within the tables) to
follow along.

Chapter 6

Structured PHP
Programming
Before we plow headlong into the next enhancements of our
joke database, let’s spend a little time honing your “PHP-fu.”
Specifically, I want to show you a few techniques to better
structure your code. Structured coding techniques are useful in
all but the simplest of PHP projects. Already in Chapter 3,
you’ve learned how to split up your PHP code into multiple files:
a controller and a set of associated templates. This lets you keep
the server-side logic of your site separate from the HTML code
used to display the dynamic content generated by that logic. In
order to do this, you learned how to use the PHP include
command. The PHP language offers many such facilities to help
you add structure to your code. The most powerful of these is
undoubtedly its support for object oriented programming
(OOP), which we touched on briefly in Chapter 4. But there’s
no need to learn all the complexities of OOP to build complex
(and well-structured) applications with PHP;[37] thankfully, there
are also opportunities for structuring your code through the more
basic features of PHP. In this chapter, I’ll explore some simple
ways to keep your code manageable and maintainable without
requiring you to become a total programming wizard (though you
might still like to become one later on!).

Include Files
Even very simple PHP-based websites often need the same
piece of code in several places. You already learned to use the
PHP include command to load a PHP template from inside
your controller; it turns out you can use the same feature to save
yourself from having to write the same code again and again.
Include files (also known as just includes) contain snippets of

Include files (also known as just includes) contain snippets of
PHP code that you can then load into your other PHP scripts
instead of having to retype them.

Including HTML Content

The concept of include files came long before PHP. If you’re an
old codger like me (which, in the Web world, means you’re over
25), you may have experimented with Server-side Includes
(SSIs) . A feature of just about every web server out there, SSIs
let you put commonly used snippets of HTML (and JavaScript,
and CSS) into include files that you can then use in multiple
pages. In PHP, include files most commonly contain either pure
PHP code or, in the case of PHP templates, a mixture of HTML
and PHP code. But you don’t have to put PHP code in your
include files. If you like, an include file can contain strictly static
HTML. This is most useful for sharing common design elements
across your site, such as a copyright notice to appear at the
bottom of every page:

chapter6/static-footer/footer.inc.html.php
<div id="footer">
 The contents of this web page are copyright
© 1998–2012
 Example Pty. Ltd. All Rights Reserved.
</div>

This file is a template fragment —an include file to be used by
PHP templates. To distinguish this type of file from others in your
project, I recommend giving it a name ending with .inc.html.php.
You can then use this fragment in any of your PHP templates:

chapter6/static-footer/samplepage.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Sample Page</title>
 </head>
 <body>
 <p id="main">
 This page uses a static include to display
a standard
 copyright notice below.
 </p>
 <?php include 'footer.inc.html.php'; ?>

 <?php include 'footer.inc.html.php'; ?>
 </body>
</html>

Finally, here’s the controller that loads this template:
chapter6/static-footer/index.php

<?php
include 'samplepage.html.php';
?>

Figure 6.1 shows what the page looks like in the browser.

Figure 6.1. A static include displays the site’s copyright notice

Now all you need to do to update your copyright notice is to edit
footer.inc.html.php. No more time-consuming, error-prone find-
and-replace operations! Of course, if you really want to make
your life easier, you can just let PHP do the work for you:

chapter6/dynamic-footer/footer.inc.html.php
<p id="footer">
 The contents of this web page are copyright
©
 1998–<?php echo date('Y'); ?> Example
Pty. Ltd.
 All Rights Reserved.
</p>

</p>

Including PHP Code

On database driven websites, almost every controller script must
establish a database connection as its first order of business. As
we’ve already seen, the code for doing this is fairly substantial:
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

At some 12 lines long, it’s only a slightly cumbersome chunk of
code, but having to type it at the top of every controller script
can quickly become annoying. Many new PHP developers will
often omit essential error checking to save typing (for example,
by leaving out the try-catch statement in this code), which can
result in a lot of lost time looking for the cause when an error
does occur. Others will make heavy use of the clipboard to copy
pieces of code like this from existing scripts for use in new ones.
Some even use features of their text editor software to store
useful pieces of code as snippets for frequent use. But what
happens when the database password or some other detail of
the code changes? Suddenly you’re on a treasure hunt to find
every occurrence of the code in your site to make the necessary
change—a task that can be especially frustrating if you’ve used
several variations of the code that you need to track down and
update. Figure 6.2 illustrates how include files can help in this
situation. Instead of repeating the code fragment in every file that
needs it, write it just once in a separate file—known as the
include file. That file can then be included in any other PHP files

include file. That file can then be included in any other PHP files
that need to use it.

Figure 6.2. Include files allow several scripts to share common
code

Let’s apply this technique to create the database connection in
our joke list example to see how it works in detail. First, create a
file called db.inc.php [38] and place the database connection
code inside it:

chapter6/jokes/db.inc.php
<?php
try
{
 $pdo = new

 $pdo = new
PDO('mysql:host=localhost;dbname=ijdb',
'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

As you can see, include files are just like normal PHP files, but
typically they contain snippets of code that are only useful within
the context of a larger script. Now you can put this db.inc.php
file to use in your controller:

chapter6/jokes/index.php
<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE,
&$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key]
[stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] =
stripslashes($v);
 }
 }
 }
 unset($process);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';

 include 'form.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 include 'db.inc.php';
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext',
$_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' .
$e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['deletejoke']))
{
 include 'db.inc.php';
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();

 exit();
}

include 'db.inc.php';
try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['name'],
 'email' => $row['email']
);
}

include 'jokes.html.php';

As you can see, wherever our controller needs a database
connection, we can obtain it simply by including the db.inc.php
file with an include statement. And because the code to do this
is a simple one-liner, we can make our code more readable by
using a separate include statement just before each SQL query
in our controller. Previously, we established a database
connection at the top of the controller, regardless of whether the
code that followed would end up needing one or not. When
PHP encounters an include statement, it puts the current script
on hold and runs the specified PHP script. When it’s finished, it
returns to the original script and picks up where it left off. Include
files are the simplest way to structure PHP code. Because of
their simplicity, they’re also the most widely used method. Even
very simple web applications can benefit greatly from using
include files.

Types of Includes

The include statement we’ve used so far is actually only one of
four statements that can be used to include another PHP file in a
currently running script:

include

require

include_once

require_once

include and require are almost identical. The only difference
between them is what happens when the specified file is unable
to be included (that is, if it doesn’t exist, or if the web server
doesn’t have permission to read it). With include, a warning is
displayed and the script continues to run. With require, an
error is displayed and the script stops.[39] In general, you should
use require whenever the main script is unable to work without
the included script. I do recommend using include whenever
possible, however. Even if the db.inc.php file for your site is
unable to load, for example, you might still want to let the script
for your front page continue to load. None of the content from
the database will display, but the user might be able to use the
Contact Us link at the bottom of the page to let you know about
the problem! include_once and require_once work just like
include and require, respectively—but if the specified file
has already been included at least once for the current page
request (using any of the four statements described here), the
statement will be ignored. This is handy for include files
performing a task that only needs to be done once, like
connecting to the database. Figure 6.3 shows include_once in
action. In the figure, index.php includes two files:
categories.inc.php and top10.inc.php. Both files use
include_once to include db.inc.php, as they both need a
database connection in order to do their job. As shown, PHP
will ignore the attempt to include db.inc.php in top10.inc.php
because the file was already included in categories.inc.php. As a
result, only one database connection is created.

result, only one database connection is created.

Figure 6.3. Use include_once to avoid opening a second database
connection

include_once and require_once are also useful for loading
function libraries, as we’ll see in the section called “Custom
Functions and Function Libraries”.

Shared Include Files

In all the examples I’ve shown you so far, I’ve assumed that the
include file is located in the same directory on your web server
as the file(s) that use it. Often, this is an invalid assumption! On
many sites, you’ll want to share include files among scripts that
span potentially complex directory structures. A solid candidate
for a shared include file would be the database connection
include, db.inc.php. So the question is, when the include file is in
a different directory, how does a PHP script find it? The most
obvious method is to specify the location of the include file as an

obvious method is to specify the location of the include file as an
absolute path . Here’s how this would look on a Windows
server:[40]

<?php include 'C:/Program Files/Apache Software
Foundation/Apache2.2
↵/htdocs/includes/db.inc.php'; ?>

And here’s the code on a Linux server:
<?php include
'/usr/local/apache2/htdocs/includes/db.inc.php';
?>

While this method will work, it’s undesirable because it ties your
site’s code to your web server configuration. Ideally, you should
be able to drop your PHP-based website onto any PHP-
enabled web server and just watch it run. This is particularly
important because many developers will build a site on one
server, then deploy it publicly on a different server. That’s
impractical if your code refers to drives and directories that are
specific to one particular server. And, even if you do have the
luxury of working on a single server, you’ll be kicking yourself if
you ever need to move your website to another drive/directory
on that server. A better method is to let PHP keep track of the
document root of your web server, then specify the path from
that location. The document root is the directory on your server
that corresponds to the root directory of your website. For
example, to make index.php available at
http://www.example.com/index.php, you’d have to place it in the
document root directory on the www.example.com web server.
In any PHP script, you can obtain the document root of your
web server using $_SERVER ['DOCUMENT_ROOT']. As I briefly
explained in Chapter 4, $_SERVER is an array variable that’s
automatically created by PHP, just like $_GET, $_POST, and
$_REQUEST. $_SERVER contains a whole bunch of information
supplied by your web server, including
$_SERVER['DOCUMENT_ROOT']. Here’s an example:
<?php include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php'; ?>

This will work on Windows, Mac, and Linux servers with either
Apache or Internet Information Services (IIS) installed.[41]

Another excellent candidate for a shared include file is the

snippet of code that we used to reverse the changes to submitted
values made by PHP’s misguided magic quotes feature, which
we looked at in Chapter 4. Simply drop this code into its own
file:

chapter6/includes/magicquotes.inc.php
<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE,
&$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key]
[stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] =
stripslashes($v);
 }
 }
 }
 unset($process);
}

From this point on, you can use this include file to remove the
effects of magic quotes with a single line at the top of your
controller scripts:
<?php
include $_SERVER['DOCUMENT_ROOT'] .
'/includes/magicquotes.inc.php';

I’ll use the two shared include files discussed in this section—the
database connection script and the magic quotes removal script
—in many of the examples from this point forward in the book.
You’ll be able to follow along too, as long as the two files in
question (db.inc.php and magicquotes.inc.php) can be found in a
directory called includes situated in the document root directory
of your web server.

Custom Functions and
Function Libraries
By this point, you’re probably quite comfortable with the idea of
functions. A function in PHP that you can invoke at will, where
you’d usually provide one or more arguments for it to use, and
often receiving a return value as a result. You can use PHP’s
vast library of functions to do just about anything a PHP script
could ever be asked to do, from retrieving the current date
(date) to generating graphics on the fly (
imagecreatetruecolor). But what you may be unaware of is
that you can create functions of your own! Custom functions,
once defined, work just like PHP’s built-in functions, and they
can do anything a normal PHP script can do. Let’s start with a
really simple example. Say you had a PHP script that needed to
calculate the area of a rectangle given its width (3) and height
(5). Thinking back to your basic geometry classes in school, you
should recall that the area of a rectangle is its width multiplied by
its height:
$area = 3 * 5;

But it would be nicer to have a function called area that simply
calculated the area of a rectangle given its dimensions:

chapter6/calculate-area/index.php (excerpt)
$area = area(3, 5);

As it happens, PHP has no built-in area function, but clever
PHP programmers like you and me can just roll up our sleeves
and write the function ourselves:

chapter6/calculate-area/area-function.inc.php
<?php
function area($width, $height)
{
 return $width * $height;
}

This include file defines a single custom function: area. The <?
php marker is probably the only line that looks familiar to you in
this code. What we have here is a function declaration ; let me
break it down for you one line at a time:

function area($width, $height)

The keyword function tells PHP that we wish to
declare a new function for use in the current script. Then,
we supply the function with a name (in this case, area).
Function names operate under the same rules as variable
names—they are case-sensitive, must start with a letter or
an underscore (_), and may contain letters, numbers, and
underscores—except, of course, that there’s no dollar
sign prefix. Instead, function names are always followed
by a set of parentheses ((…)), which may or may not be
empty. The parentheses that follow a function name
enclose the list of arguments that the function will accept.
You should already be familiar with this from your
experience with PHP’s built-in functions. For example,
when you use date to retrieve the current date as a PHP
string, you provide a string describing the format you want
the date to be written in within the parentheses. When
declaring a custom function, instead of giving a list of
values for the arguments, you give a list of variable names.
In this example, we list two variables: $width and
$height. When the function is called, it will therefore
expect to be given two arguments. The value of the first
argument will be assigned to $width, while the value of
the second will be assigned to $height. Those variables
can then be used to perform the calculation within the
function.

{

Speaking of calculations, the rest of the function
declaration is the code that performs the calculation, or
does whatever else the function is supposed to do. That
code must be enclosed in a set of braces ({…}), so here’s
the opening brace.

return $width * $height;

You can think of the code within those braces as a
miniature PHP script. This function is a simple one,
because it contains just a single statement: a return
statement. A return statement can be used in the code
of a function to jump back into the main script

of a function to jump back into the main script
immediately. When the PHP interpreter hits a return
statement, it immediately stops running the code of this
function and goes back to where the function was called.
It’s sort of an ejection seat for functions! In addition to
breaking out of the function, the return statement lets
you specify a value for the function to return to the code
that called it. In this case, the value we’re returning is
$width * $height—the result of multiplying the first
parameter by the second.

}

The closing brace marks the end of the function
declaration.

In order to use this function, we must first include the file
containing the function declaration:

chapter6/calculate-area/index.php
<?php
include_once 'area-function.inc.php';
$area = area(3, 5);

include 'output.html.php';

Technically, you could write the function declaration within the
controller script itself, but by putting it in an include file you can
reuse the function in other scripts much more easily. It’s tidier,
too. To use the function in the include file, a PHP script need
only include it with include_once (or require_once if the
function is critical to the script). Avoid using include or
require to load include files that contain functions; as explained
in the section called “Types of Includes”, that would risk defining
the functions in the library more than once and covering the
user’s screen with PHP warnings. It’s standard practice (but not
required) to include your function libraries at the top of the script,
so that you can quickly see which include files containing
functions are used by any particular script. What we have here
are the beginnings of a function library—an include file that
contains declarations for a group of related functions. If you
wanted to, you could rename the include file to geometry.inc.php
and add to it a whole bunch of functions to perform various
geometrical calculations.

geometrical calculations.

Variable Scope and Global Access

One big difference between custom functions and include files is
the concept of variable scope. Any variable that exists in the
main script will also be available and can be changed in the
include file. While this is useful sometimes, more often it’s a pain
in the neck. Unintentionally overwriting one of the main script’s
variables in an include file is a common cause of error—and one
that can take a long time to track down and fix! To avoid such
problems, you need to remember the variable names in the script
that you’re working on, as well as any that exist in the include
files your script uses. Functions protect you from such problems.
Variables created inside a function (including any argument
variables) exist only within that function, and disappear when the
function has run its course. In programmer-speak, the scope of
these variables is the function; they’re said to have function
scope . In contrast, variables created in the main script outside
of any function are unavailable inside functions. The scope of
these variables is the main script, and they’re said to have global
scope . Okay, but beyond the fancy names, what does this really
mean for us? It means that you can have a variable called, say,
$width in your main script, and another variable called $width
in your function, and PHP will treat these as two entirely
separate variables! Perhaps more usefully, you can have two
different functions each using the same variable names, and
they’ll have no effect on each other because their variables are
kept separate by their scope. On some occasions, you may
actually want to use a global-scope variable (global variable
for short) inside one of your functions. For example, the
db.inc.php file creates a database connection for use by your
script and stores it in the global variable $pdo. You might then
want to use this variable in a function that needed to access the
database. Disregarding variable scope, here’s how you may
write such a function:
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

function totalJokes()
{

{
 try
 {
 $result = $pdo->query('SELECT COUNT(*) FROM
joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

 return $row[0];
}

Note: Shared Database
Include in Use!

Note that the first line of this controller script
uses a shared copy of the db.inc.php file in the
includes directory, as discussed earlier in the
section called “Shared Include Files”. Make sure
you’ve placed a copy of this file (and the
associated error.html.php file that it uses to
display errors) in the includes directory in your
server’s document root; otherwise, PHP will
complain that it’s unable to find the db.inc.php
file.

The problem here is that the global variable $pdo (shown in
bold) is unavailable within the scope of the function. If you
attempt to call this function as it is, you’ll receive the errors
shown in Figure 6.4.

Figure 6.4. The totaljokes function cannot access $pdo

Now, of course, you could just add an argument to the
totaljokes function and send it the value of $pdo that way,
but having to pass this value to every function that needs
database access would become quite tedious. Instead, let’s use
the global variable directly within our function. There are two
ways to do this. The first is to import the global variable into the
function’s scope:

chapter6/totaljokes-global1/totaljokes-function.inc.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

function totalJokes()
{
 global $pdo;
 try
 {
 $result = $pdo->query('SELECT COUNT(*) FROM
joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

 return $row[0];
}

The global statement, shown here in bold, lets you give a list of

The global statement, shown here in bold, lets you give a list of
global variables (separated by commas, if you want to import
more than one) that you want to make available within the
function. Programmers call this importing a variable. This is
different from passing the variable as an argument, because if you
modify an imported variable inside the function, the value of the
variable changes outside the function, too. The alternative to
importing the variable is to use the $GLOBALS array:

chapter6/totaljokes-global2/totaljokes-function.inc.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

function totalJokes()
{
 try
 {
 $result = $GLOBALS['pdo']->query('SELECT
COUNT(*) FROM joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

 return $row[0];
}

As you can see, all we’ve done here is replace $pdo with
$GLOBALS['pdo']. The special PHP array $GLOBALS is
available across all scopes (for this reason, it’s known as a
superglobal), and contains an entry for every variable in the
global scope. You can therefore access any global variable
within a function as $GLOBALS['name'], where name is the
name of the global variable (without a dollar sign). The
advantage of using $GLOBALS is that you can still create a
separate function-scope variable called $pdo if you want. Other
special PHP arrays that are superglobal, and are therefore
accessible inside functions, include $_SERVER, $_GET, $_POST,
$_COOKIE, $_FILES, $_ENV, $_REQUEST, and $_SESSION.
See the page on superglobals in the PHP Manual for full details.

Structure in Practice:
Template Helpers
To cap this chapter off, let’s make a start on a function library
you can actually use. There are few functions more tedious to
call in the PHP language than htmlspecialchars. As I
explained in Chapter 3, every time you wish to output some
piece of text that was submitted by a user, you need to use
htmlspecialchars to prevent hackers from inserting malicious
code into your page. For example, this is the code we’ve used to
output user-submitted jokes in our joke list examples so far:

chapter6/jokes/jokes.html.php (excerpt)
<?php echo htmlspecialchars($joke['text'],
ENT_QUOTES, 'UTF-8'); ?>

As well as htmlspecialchars being an inordinately long
function name, it takes three arguments—two of which are
always the same! Because outputting text as HTML is such a
common task in PHP template code, let’s write a much shorter
function that does this for us:

chapter6/includes/helpers.inc.php (excerpt)
<?php
function html($text)
{
 return htmlspecialchars($text, ENT_QUOTES,
'UTF-8');
}

With this custom html function, we can call
htmlspecialchars with a lot less typing!
<?php echo html($joke['text']); ?>

We can take this even further by writing a second custom
function, htmlout, that takes the value generated by the first and
outputs it:

chapter6/includes/helpers.inc.php
<?php
function html($text)
{
 return htmlspecialchars($text, ENT_QUOTES,
'UTF-8');

'UTF-8');
}

function htmlout($text)
{
 echo html($text);
}

I like to name these little convenience functions that make writing
templates easier template helpers . Here’s what our joke listing
template looks like when we use these helpers:

chapter6/jokes-helpers/jokes.html.php
 <?php include_once
$_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Add your own joke
</p>
 <p>Here are all the jokes in the database:
</p>
 <?php foreach ($jokes as $joke): ?>
 <form action="?deletejoke" method="post">
 <blockquote>
 <p>
 <?php htmlout($joke['text']); ?>
 <input type="hidden" name="id"
value="<?php echo
 $joke['id']; ?>">
 <input type="submit" value="Delete">
 (by <a href="mailto:<?php
htmlout($joke['email']); ?>">
 <?php htmlout($joke['name']); ?>
)
 </p>
 </blockquote>
 </form>
 <?php endforeach; ?>
 </body>
</html>

Important: Helpers Belong in
the Shared includes Directory

the Shared includes Directory

Like db.inc.php and magicquotes.inc.php, the
helpers.inc.php file belongs in the shared includes
directory under your server’s document root, as
described in the section called “Shared Include
Files”.

As you write templates with more and more user-submitted
content in them, these little gems will come in very handy indeed!
While you’re at it, update the controller script to use the shared
includes db.inc.php and magicquotes.inc.php:

chapter6/jokes-helpers/index.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
↵ '/includes/magicquotes.inc.php';
if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext',
$_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' .
$e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

}

if (isset($_GET['deletejoke']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';
try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e-
>getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['name'],
 'email' => $row['email']

 'email' => $row['email']
);
}

include 'jokes.html.php';

The Best Way
In this chapter, I have helped you to rise above the basic
questions of what PHP can do for you, and begin to look for the
best way to code a solution. Sure, you can approach many
simple scripts as lists of actions you want PHP to do for you, but
when you tackle site-wide issues such as database connections,
shared navigation elements, visitor statistics, and access control
systems, it really pays off to structure your code carefully. We’ve
now explored a couple of simple but effective devices for writing
structured PHP code. Include files let you reuse a single piece of
code across multiple pages of your site, greatly reducing the
burden when you need to make changes. Writing your own
functions to put in these include files lets you build powerful
libraries of functions that can perform tasks as needed and return
values to the scripts that call them. These new techniques will
pay off in a big way in the rest of this book. If you want to take
the next step into structuring your PHP code, you’ll want to
explore PHP’s object oriented programming (OOP) features.
The section on Classes and Objects in The PHP Manual has
some useful information on the subject, but for a more complete
guide you’ll want to check out PHP Master: Write Cutting-
edge Code. In Chapter 7, you’ll use all the knowledge you’ve
gained so far, plus a few new tricks, to build a content
management system in PHP. The aim of such a system is to
provide a customized, secure, web-based interface that enables
you to manage the contents of your site’s database, instead of
requiring you to type everything into phpMyAdmin by hand.

[37] Indeed, possibly the most-used PHP application today,
WordPress, is not written in the OOP style.

[38] The current convention of naming include files with a .inc.php
extension allows you to easily identify them among ordinary PHP

extension allows you to easily identify them among ordinary PHP
scripts, while at the same time ensuring that they’re identified and
processed as PHP scripts by the web server and the
development tools you use. In practice, though, you can name
include files however you like. Previously, it was common to
simply give include files an .inc extension, but unless the web
server was specifically configured to process such files as PHP
scripts or protect them from being downloaded, there was a
security risk: users who guessed the names of your include files
could download them as plain text and gain access to sensitive
information (such as database passwords) that appeared in the
source code.

[39] In production environments, warnings and errors are usually
disabled in php.ini. In such environments, a failed include has
no visible effect (aside from the lack of content that would
normally have been generated by the include file), while a failed
require causes the page to stop at the point of failure. When a
failed require occurs before any content is sent to the browser,
the unlucky user will see nothing but a blank page!

[40] I recommend always using forward slashes in your paths,
even when you’re working with a Windows server. PHP is smart
enough to do the conversion for you, and using forward slashes
saves you from having to type double-backslashes (\\) to
represent single backslashes in PHP strings.

[41] The one place where you’re unable to count on
$_SERVER['DOCUMENT_ROOT'] is on a server running the
Common Gateway Interface (CGI) version of PHP. The CGI
specification does not require the web server to inform PHP of
the document root directory for the site, so this value will usually
be absent on such configurations. Thankfully, CGI installations of
PHP are increasingly rare, and should certainly be avoided in
production environments. If you followed the installation
instructions for PHP in this book, you can rest assured that
$_SERVER['DOCUMENT_ROOT'] will work.

Chapter 7

A Content Management
System
To make the leap from a web page that displays information
stored in a database to a completely database driven website,
we need to add a content management system (CMS). Such
a system usually takes the form of a series of web pages, access
to which is restricted to users who are authorized to make
changes to the site. These pages provide a database
administration interface that allows a user to view and change the
information stored in the database without bothering with the
mundane details of SQL queries. We built the beginnings of a
CMS at the end of Chapter 4, where we allowed site visitors to
add and delete jokes using a web-based form and a Delete
button, respectively. While impressive, these are features that
you’d normally exclude from the interface presented to casual
site visitors. For example, you’d want to prevent visitors from
adding offensive material to your website without your
knowledge. And you definitely don’t want just anyone to be
able to delete jokes from your site. By relegating those
dangerous features to the restricted-access site administration
pages, you avoid the risk of exposing your data to the average
user, and you maintain the power to manage the contents of your
database without having to memorize SQL queries. In this
chapter, we’ll expand on the capabilities of our joke
management system to take advantage of the enhancements we
made to our database in Chapter 5. Specifically, we’ll allow a
site administrator to manage authors and categories, and assign
these to appropriate jokes. As we have seen, these
administration pages must be protected by an appropriate
access-restriction scheme. One approach would be to configure
your web server to protect the relevant PHP files by prompting
users for valid usernames and passwords. On Apache servers,
you can do this with an .htaccess file that lists authorized users.

you can do this with an .htaccess file that lists authorized users.
Another method protects the administration pages with PHP
itself. This option is generally more flexible and produces a much
slicker result, but it takes a bit more work to set up. I’ll show
you how it’s done in Chapter 9. For now, let’s focus on building
the pages that will make up your CMS.

The Front Page
At the end of Chapter 5, your database contained tables for
three types of entities: jokes, authors, and joke categories. This
database layout is represented in Figure 7.1. Note that we’re
sticking with our original assumption that we’ll have one email
address per author.

Figure 7.1. The structure of the finished ijdb database contains
three entities

If you need to recreate this table structure from scratch, here are
the SQL queries to do so, along with some sample data:

chapter7/sql/ijdb.sql
CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE category (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
 PRIMARY KEY (jokeid, categoryid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Sample data
We specify the IDs so they are known when we
add related entries

INSERT INTO author (id, name, email) VALUES
(1, 'Kevin Yank', 'thatguy@kevinyank.com'),
(2, 'Joan Smith', 'joan@example.com');

INSERT INTO joke (id, joketext, jokedate,
authorid) VALUES
(1, 'Why did the chicken cross the road? To get
to the other side!',
↵ '2012-04-01', 1),
(2, 'Knock-knock! Who\'s there? Boo! "Boo" who?

(2, 'Knock-knock! Who\'s there? Boo! "Boo" who?
Don\'t cry; it\'s
↵ only a joke!', '2012-04-01', 1),
(3, 'A man walks into a bar. "Ouch."', '2012-04-
01', 2),
(4, 'How many lawyers does it take to screw in a
lightbulb? I can\'t
↵ say: I might be sued!', '2012-04-01', 2);

INSERT INTO category (id, name) VALUES
(1, 'Knock-knock'),
(2, 'Cross the road'),
(3, 'Lawyers'),
(4, 'Walk the bar');

INSERT INTO jokecategory (jokeid, categoryid)
VALUES
(1, 2),
(2, 1),
(3, 4),
(4, 3);

The front page of the content management system, therefore, will
contain links to pages that manage these three entities. The
following HTML code produces the index page shown in
Figure 7.2:

chapter7/admin/index.html
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Joke CMS</title>
 </head>
 <body>
 <h1>Joke Management System</h1>

 Manage Jokes
 Manage Authors

 Manage Joke
Categories

 </body>
</html>

Figure 7.2. The Joke CMS index page offers three links

Each of these links points to a different subdirectory in our code:
jokes, authors, and categories. Each directory will contain the
controller (index.php) and associated templates needed to
manage the corresponding entities in our database.

Managing Authors
Let’s begin with the code that will handle adding new authors,
and deleting and editing existing ones. All of this code will go in
the authors subdirectory. The first information we’ll present to an
administrator needing to manage authors is a list of all authors
currently stored in the database. Code-wise, this is the same as
listing the jokes in the database. As we’ll want to allow
administrators to delete and edit existing authors, we’ll include
buttons for these actions next to each author’s name. Just like the
Delete buttons we added at the end of Chapter 4, these buttons
will send the ID of the associated author, so that the controller
knows which author the administrator wishes to edit or delete.
Finally, we’ll provide an Add new author link that leads to a
form similar in operation to the Add your own joke link we
created in Chapter 4. Here’s the controller code to do this:

chapter7/admin/authors/index.php (excerpt)

chapter7/admin/authors/index.php (excerpt)
// Display author list
include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM
author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from the
database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name'
=> $row['name']);
}

include 'authors.html.php';

There should be no surprises for you in this code, but do note
that the database connection is created using the shared include
file (db.inc.php) stored in the includes directory under the
document root. Here’s the template that the code uses to display
the list of authors:

chapter7/admin/authors/authors.html.php (excerpt)
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>(1)
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Authors</title>
 </head>
 <body>
 <h1>Manage Authors</h1>
 <p>Add new author</p>(2)

 <?php foreach ($authors as $author): ?>

 <form action="" method="post">(3)
 <div>

 <div>
 <?php htmlout($author['name']); ?
>(4)
 <input type="hidden" name="id"
value="<?php
 echo $author['id']; ?>">
 <input type="submit" name="action"
value="Edit">(5)
 <input type="submit" name="action"
value="Delete">
 </div>
 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>
 </body>
</html>

Again, this code should be fairly familiar to you by now. A few
points of interest:

(1)
This template will use the same shared include file we
developed in Chapter 6 to make outputting values safely
with htmlspecialchars less tedious.

(2) This link sends a query string (?add) to our controller so
that it can tell when the user wants to add a new author.

(3)

Notice the empty action attribute. When submitted, this
form will be asking our controller either to edit or to delete
the author. In Chapter 4, we used a query string (?
deletejoke) in the action attribute to signal the action to
be performed to our controller. Since the action to be
performed will be up to the user in this example, we’ll use a
different method of communicating it to the controller.

(4) Here we use our custom htmlout function to output each
author’s name safely.

(5)

This form contains two submit buttons: one to edit the
author and another to delete the author. We’ll give each
button the same name attribute value (action) so that our
controller will be able to tell which button was clicked just
by checking the submitted value for that name
($_POST['action']).

Figure 7.3 shows the list of authors produced by this template.

Figure 7.3. The maintenance of author details begins with the
Manage Authors interface

Deleting Authors

When the user clicks one of the Delete buttons, our controller
should remove the corresponding author from the database using
the author’s ID submitted with the form. As we’ve seen before,
this is frighteningly easy to do, but there’s added complexity
here. Remember that our joke table has an authorid column
that indicates the author responsible for any given joke. When
we remove an author from the database, we must also remove
any references to that author in all tables. Otherwise, our
database might contain jokes associated with nonexistent
authors. We have three possible ways to handle this situation:

We prohibit users from deleting authors that are
associated with jokes in the database.

When we delete an author, we also delete any jokes
attributed to that author.

When we delete an author, we set the authorid of any

When we delete an author, we set the authorid of any
jokes attributed to that author to NULL to indicate that
they have no author.

When we take measures like these to preserve the relationships
in our database, we are said to be protecting the database’s
referential integrity . MySQL, like most database servers,
supports a feature called foreign key constraints that can do
this automatically. By setting up these constraints, you can
instruct MySQL to take any of the steps listed in order to keep
your data properly related. We’ll look at foreign key constraints
in Chapter 10, but we won’t use them here. If we did we’d be
defining some of the behavior of our CMS in our PHP code,
while defining other aspects of its behavior in our database
design. If we did this, and then later decided that we wanted to
change how deleting an author worked (for example, preventing
the user from deleting authors with any jokes to their name),
we’d need to remember to make adjustments in both places.
Instead, we can keep our author-deleting logic all in our PHP
code, making life easier for whoever might need to make
changes to your code in the future (even if it’s you!). Since most
authors would like us to give credit when using their jokes, we’ll
choose the second option: delete all associated jokes when we
delete an author. This also saves us from having to handle jokes
with NULL values in the authorid column when we display our
library of jokes. As we’ll be deleting jokes, there’s yet another
layer of complexity to consider. Jokes may be assigned to
categories by means of entries in the jokecategory table.
When we delete jokes, we must also ensure that such entries are
removed from the database. In summary, our controller will
delete an author, any jokes belonging to that author, and any
category assignments that pertain to those jokes. The code to do
all this is rather lengthy, as you might imagine. Take your time to
read through it and see if you can understand how it works:

chapter7/admin/authors/index.php (excerpt)
 if (isset($_POST['action'])
and $_POST['action'] == 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // Get jokes belonging to author

 // Get jokes belonging to author
 try
 {
 $sql = 'SELECT id FROM joke WHERE authorid =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error getting list of jokes to
delete.';
 include 'error.html.php';
 exit();
 }

 $result = $s->fetchAll();

 // Delete joke category
entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
jokeid = :id';
 $s = $pdo->prepare($sql);
 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category entries
for joke.';
 include 'error.html.php';
 exit();
 }

 // Delete jokes belonging to author
 try
 {
 $sql = 'DELETE FROM joke WHERE authorid =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();

 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting jokes for author.';
 include 'error.html.php';
 exit();
 }

 // Delete the author
 try
 {
 $sql = 'DELETE FROM author WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Although this code will be mostly familiar to you, there are a few
new twists, which are highlighted in bold. The first element that
may seem unfamiliar is the if statement that triggers it all:

chapter7/admin/authors/index.php (excerpt)
if (isset($_POST['action']) and $_POST['action']
== 'Delete')

As we saw in the section called “Managing Authors”, the user
asks for an author to be deleted by clicking the Delete button
next to the author name. Since the button’s name attribute is set
to action, we can detect this button click by checking if
$_POST['action'] is set, and if so, check if its value is
'Delete'. Next, there’s this statement:

chapter7/admin/authors/index.php (excerpt)
 $result = $s->fetchAll();

At this point in the script, we’ve just executed a SELECT query
to retrieve all the jokes belonging to the author that we’re about
to delete. With this list of jokes in hand, we’re going to execute a

to delete. With this list of jokes in hand, we’re going to execute a
series of DELETE queries, one for each joke, to delete all the
category entries for that joke. But that’s the thing—we’re yet to
actually have the list of jokes in hand! Let me explain. Normally
when we perform a SELECT query, we use the condition of a
while loop or a foreach loop to retrieve each row of the
results, one at a time:
while ($row = $result->fetch())

foreach ($result as $row)

When we process the result of a query this way, PHP actually
retrieves each row from the database as the loop requests it, and
throws it away when it moves on to the next row. This saves
PHP from having to use a lot of memory to hold onto all the
rows of results at once. Most of the time, we developers have no
need to know that PHP is taking this clever shortcut. But every
once in a while, we’ll want to send another SQL query to the
MySQL server before we’ve worked through all the results of
the previous query. That’s exactly what’s about to happen in this
code if we aren’t careful: we’ve just run a SELECT query to ask
for a list of all jokes belonging to a particular author, and as we
work through that list, we’d like to perform a DELETE query for
each one. The problem is, as far as MySQL knows, it will still be
busy sending us the results of the SELECT query; we can’t just
interrupt it and ask for it to start running DELETEs! Doing so
would cause our DELETEs to fail with an error. That’s where the
fetchAll method comes in. By calling this method on our
prepared statement ($s), we ask PHP to retrieve the entire set
of results for the query and store them in a PHP array
($result):

chapter7/admin/authors/index.php (excerpt)
 $result = $s->fetchAll();

We can now loop through this array with a foreach loop just as
we’d normally loop through a PDOStatement object to retrieve
each row one at a time. The difference now is that PHP will hold
onto all the results at once, which frees us up to send more
queries to MySQL. And that’s where the third novel piece of
code in our author-deleting script comes in:

chapter7/admin/authors/index.php (excerpt)
 // Delete joke category entries

 // Delete joke category entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
jokeid = :id';
 $s = $pdo->prepare($sql);

 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }

With this code, we run a DELETE query to remove the
jokecategory entries for each joke from the database. Your
first impulse might be to begin with a foreach loop, but instead
we start by creating a single prepared statement. This code
demonstrates the second big advantage of prepared statements
(which we first learned about in Chapter 4).[42] Once you’ve
prepared a statement, you can execute it over and over again,
assigning its placeholders different values each time. In this case,
we want to execute essentially the same DELETE query, but using
a different joke ID in the WHERE clause each time. By using the
same prepared statement for each of these queries, we can save
MySQL the trouble of scrutinizing the SQL code for each query
and coming up with a plan for how to do what we’re asking.
Instead, MySQL reads the SQL code once when we prepare
the statement; it figures out the most efficient way to perform
such a DELETE operation, and then it simply executes that same
plan over and over, using each of the IDs that we send it in turn.
With this in mind, look again at this fragment of code: it should
make a lot more sense now. First, it creates a prepared
statement from the SQL code with a placeholder in it. Then it
uses a foreach loop to work through the result set of the
preceding SELECT query. It executes the newly prepared
DELETE query once for each joke using bindValue to set the
:id placeholder in the query to the joke’s ID. Make sense?
Don’t worry if you have to read all that a couple of times to
understand it. It’s some of the most complex PHP code you’re
going to see in this book! When you’re satisfied, go ahead and
try deleting one of the authors from your database. Use

try deleting one of the authors from your database. Use
phpMyAdmin to verify that all the author’s jokes and their
category entries are also deleted. The categories themselves
should remain, even if they have no jokes left in them.

Tip: Confirm on Delete

As a challenge, try adding a confirmation prompt
to this process. If you’ve yet to dive in and try
some coding, use the code in the code archive
for this chapter as a starting point. Modify your
controller to respond to the Delete button by
simply displaying another template, this one
prompting the user to confirm the action. When
the user submits the form in this page, it should
trigger the code in the controller that actually
deletes the data. This second form will also have
to submit in a hidden field the ID of the author to
be deleted.

Adding and Editing Authors

You could implement the Add new author link at the top of the
author list page the same way you did the Add your own joke
link in Chapter 4. Instead of prompting the user for the text of
the joke, you’d instead prompt for the author’s name and email
address. But our author management page includes a new,
related feature: the ability to edit existing authors. Since both
features will require the user to fill in a similar form, let’s tackle
both at once and kill two birds with one stone. Here’s the code
for the form template that will be used for both adding and
editing authors:

chapter7/admin/authors/form.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>

 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>"
method="post">
 <div>
 <label for="name">Name: <input
type="text" name="name"
 id="name" value="<?php
htmlout($name); ?>"></label>
 </div>
 <div>
 <label for="email">Email: <input
type="text" name="email"
 id="email" value="<?php
htmlout($email); ?>"></label>
 </div>
 <div>
 <input type="hidden" name="id" value="<?
php
 htmlout($id); ?>">
 <input type="submit" value="<?php
htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

Note the six PHP variables that are inserted into the content of
this page:

$pageTitle

sets the title and top-level heading (<h1>) for this page
$action

sets the value passed in the query string when the form is
submitted

$name

sets the initial value of the form field for the author’s name
$email

sets the initial value of the form field for the author’s email
address

$id

sets the value of the hidden form field for the author’s
database ID

$button

$button

sets the label of the form’s submit button

These variables enable us to use the form for two purposes:
creating new authors and editing existing ones. Table 7.1 shows
the values we’d like to assign to every variable in each instance.
Table 7.1. Variable values for dual-mode author
form

Template
variable

New author
value

Existing author
value

$pageTitle 'New Author' 'Edit Author'
$action 'addform' 'editform'
$name '' (empty string) existing name
$email '' (empty string) existing email address
$id '' (empty string) existing author ID
$button 'Add author' 'Update author'

So, here’s the controller code that loads the form in “new author
mode” when the Add new author link is clicked:

chapter7/admin/authors/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Author';
 $action = 'addform';
 $name = '';
 $email = '';
 $id = '';
 $button = 'Add author';

 include 'form.html.php';
 exit();
}

When the user submits the form in this mode, you can detect it
by watching for $_GET['addform']:

chapter7/admin/authors/index.php (excerpt)
if (isset($_GET['addform']))
{

{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO author SET
 name = :name,
 email = :email';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

When the user clicks one of the Edit buttons in the author list,
you can use the same form, but this time you need to load the
author’s existing details from the database:

chapter7/admin/authors/index.php (excerpt)
if (isset($_POST['action']) and $_POST['action']
== 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name, email FROM author
WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching author details.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 $pageTitle = 'Edit Author';
 $action = 'editform';
 $name = $row['name'];
 $email = $row['email'];
 $id = $row['id'];
 $button = 'Update author';

 include 'form.html.php';
 exit();
}

You can detect the form submitted in this mode by watching for
$_GET['editform']. The code for processing this form
submission is very similar to how you add a new author, but
instead of issuing an INSERT query, it issues an UPDATE query:

chapter7/admin/authors/index.php (excerpt)
if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE author SET
 name = :name,
 email = :email
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

That’ll do the trick! Go ahead and try the completed author
management system, which includes our new dual-mode form

template shown in Figure 7.4. Make sure you can add, edit, and
delete authors smoothly. If you see any error messages, go back
and make sure you typed the code exactly as it appears here. If
you become stuck, try using the completed code from the code
archive and then compare it with your own.

Figure 7.4. I’ll bet she’s funny …

Managing Categories
The roles of the authors and joke categories in the database
really are very similar. They both reside in tables of their own,
and they both serve to group jokes together in some way. As a
result, categories can be handled with code very similar to what
we just developed for authors, but with one important exception.
When we delete a category, we must avoid simultaneously
deleting any jokes that belong to that category, because those
jokes may also belong to other categories. We could check each
joke to see if it belonged to any other categories, and only delete
those that did not, but rather than engage in such a time-
consuming process, let’s allow for the possibility of including

consuming process, let’s allow for the possibility of including
jokes in our database with no assigned category. These jokes
might be invisible to our site’s visitors (depending on how we
decide to display jokes), but would remain in the database in
case we wanted to assign them to a category later on. Thus, to
delete a category, we also need to delete any entries in the
jokecategory table that refer to that category:

chapter7/admin/categories/index.php (excerpt)
 // Delete joke associations with this category
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
categoryid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing jokes from
category.';
 include 'error.html.php';
 exit();
 }

 // Delete the category
 try
 {
 $sql = 'DELETE FROM category WHERE id =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category.';
 include 'error.html.php';
 exit();
 }

Other than this one detail, category management is functionally
identical to author management. The complete code for the four
files involved will follow. This code also relies on the shared
include files db.inc.php, magicquotes.inc.php, and
helpers.inc.php introduced in Chapter 6:

chapter7/admin/categories/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Category';
 $action = 'addform';
 $name = '';
 $id = '';
 $button = 'Add category';

 include 'form.html.php';
 exit();
}

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO category SET
 name = :name';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted category.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action']
== 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name FROM category WHERE
id = :id';
 $s = $pdo->prepare($sql);

 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching category details.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 $pageTitle = 'Edit Category';
 $action = 'editform';
 $name = $row['name'];
 $id = $row['id'];
 $button = 'Update category';

 include 'form.html.php';
 exit();
}

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE category SET
 name = :name
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted
category.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action']

if (isset($_POST['action']) and $_POST['action']
== 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // Delete joke associations with this category
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
categoryid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing jokes from
category.';
 include 'error.html.php';
 exit();
 }

 // Delete the category
 try
 {
 $sql = 'DELETE FROM category WHERE id =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

// Display category list
include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM
category');

category');
}
catch (PDOException $e)
{
 $error = 'Error fetching categories from
database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $categories[] = array('id' => $row['id'],
'name' => $row['name']);
}

include 'categories.html.php';

chapter7/admin/categories/categories.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Categories</title>
 </head>
 <body>
 <h1>Manage Categories</h1>
 <p>Add new category</p>

 <?php foreach ($categories as $category):
?>

 <form action="" method="post">
 <div>
 <?php htmlout($category['name']);
?>
 <input type="hidden" name="id"
value="<?php
 echo $category['id']; ?>">
 <input type="submit" name="action"
value="Edit">
 <input type="submit" name="action"
value="Delete">
 </div>
 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>

 <p>Return to JMS home</p>
 </body>
</html>

chapter7/admin/categories/form.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>"
method="post">
 <div>
 <label for="name">Name: <input
type="text" name="name"
 id="name" value="<?php
htmlout($name); ?>"></label>
 </div>
 <div>
 <input type="hidden" name="id" value="<?
php
 htmlout($id); ?>">
 <input type="submit" value="<?php
htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

chapter7/admin/categories/error.html.php
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Script Error</title>
 </head>
 <body>
 <p>
 <?php echo $error; ?>
 </p>
 </body>
</html>

Managing Jokes
Along with adding, deleting, and modifying jokes in our
database, we also have to be able to assign categories and
authors to our jokes. Furthermore, we’re likely to have many
more jokes than authors or categories. To try to display a
complete list of jokes, as we did for the authors and categories,
could result in an unmanageably long list with no easy way to
spot the joke we’re after. We need to create a more intelligent
method of browsing our library of jokes.

Searching for Jokes

Sometimes we may know the category, author, or some of the
text in a joke with which we want to work, so let’s support all
these methods for finding jokes in our database. When we’re
done, it should work like a simple search engine. The form that
prompts the administrator for information about the desired joke
must present lists of categories and authors. Let’s start with the
controller code that fetches these details from the database:

chapter7/admin/jokes/index.php (excerpt)
// Display search form
include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM
author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from
database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name'
=> $row['name']);
}

}

try
{
 $result = $pdo->query('SELECT id, name FROM
category');
}
catch (PDOException $e)
{
 $error = 'Error fetching categories from
database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $categories[] = array('id' => $row['id'],
'name' => $row['name']);
}

include 'searchform.html.php';

This code builds two arrays for use by the searchform.html.php
template: $authors and $categories. We’ll use each of these
arrays to build a drop-down list in our search form:

chapter7/admin/jokes/searchform.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes</title>
 </head>
 <body>
 <h1>Manage Jokes</h1>
 <p>Add new joke</p>
 <form action="" method="get">
 <p>View jokes satisfying the following
criteria:</p>
 <div>
 <label for="author">By author:</label>
 <select name="author" id="author">
 <option value="">Any author</option>
 <?php foreach ($authors as $author): ?
>
 <option value="<?php
htmlout($author['id']); ?>"><?php
 htmlout($author['name']); ?>

 htmlout($author['name']); ?>
</option>
 <?php endforeach; ?>
 </select>
 </div>
 <div>
 <label for="category">By category:
</label>
 <select name="category" id="category">
 <option value="">Any category</option>
 <?php foreach ($categories as
$category): ?>
 <option value="<?php
htmlout($category['id']); ?>"><?php
 htmlout($category['name']); ?>
</option>
 <?php endforeach; ?>
 </select>
 </div>
 <div>
 <label for="text">Containing text:
</label>
 <input type="text" name="text"
id="text">
 </div>
 <div>
 <input type="hidden" name="action"
value="search">
 <input type="submit" value="Search">
 </div>
 </form>
 <p>Return to JMS home</p>
 </body>
</html>

As you can see in each select list, we generate a series of
option items using a PHP foreach loop. The value of each
option is the author or category ID, and the text label of each
option is the author or category name. Each of the drop-downs
begins with an option with no value, which can be left alone to
leave the corresponding field out of the search criteria. Note also
that the form’s method attribute is set to get so that it’s
possible to bookmark the results of a search, since the form
values will be submitted in the URL query string. You should
generally apply this method to any search form you write. The
finished form appears in Figure 7.5. It’s up to the controller to
use the values submitted by this form to build a list of jokes that
satisfies the criteria specified. Obviously, this will be done with a

SELECT query, but the exact nature of that query will depend on
the search criteria specified. Because the building of this SELECT
statement is a fairly complicated process, let’s work through the
controller code responsible a little at a time.

Figure 7.5. Search for a classic

To start, we define a few strings that, when strung together, form
the SELECT query we’d need if no search criteria whatsoever
had been selected in the form:

chapter7/admin/jokes/index.php (excerpt)
if (isset($_GET['action']) and $_GET['action']
== 'search')
{
 include $_SERVER['DOCUMENT_ROOT'] .

 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // The basic SELECT statement
 $select = 'SELECT id, joketext';
 $from = ' FROM joke';
 $where = ' WHERE TRUE';

You might find the WHERE clause in this code a little confusing.
The idea here is for us to be able to build on this basic SELECT
statement, depending on the criteria selected in the form. These
criteria will require us to add to the FROM and WHERE clauses
(portions) of the SELECT query. But, if no criteria were specified
(that is, the administrator wanted a list of all jokes in the
database), there would be no need for a WHERE clause at all!
Because it’s difficult to add to a WHERE clause that’s nonexistent,
we need to come up with a “do nothing” WHERE clause that will
have no effect on the results unless added to. Since TRUE is
always true, WHERE TRUE fits the bill nicely.[43] Our next task is
to check each of the possible constraints (author, category, and
search text) that may have been submitted with the form, and
adjust the three components of our SQL query accordingly.
First, we deal with the possibility that an author was specified.
The blank option in the form was given a value of "", so if the
value of that form field (stored in $_GET['author']) is not
equal to '' (the empty string), an author has been specified and
we must adjust our query:

chapter7/admin/jokes/index.php (excerpt)
 $placeholders = array();

 if ($_GET['author'] != '') // An author is
selected
 {
 $where .= " AND authorid = :authorid";
 $placeholders[':authorid'] =
$_GET['author'];
 }

As we’ve seen before, .= (the append operator) is used to
tack a new string onto the end of an existing one. In this case, we
add to the WHERE clause the condition that the authorid in the
joke table must match the value of a placeholder, :authorid.
We’re going to want the value of that placeholder to be
$_GET['author'], but we can’t use bindValue to set it,

$_GET['author'], but we can’t use bindValue to set it,
because we’re yet to have a prepared statement object to call it
on; at this stage, our query is still spread across our three strings
($select, $from, and $where). Eventually, we’ll combine
these strings together to create a prepared statement; in the
meantime, we’ll store our placeholders in a PHP array variable
($placeholders), with the name of each placeholder as the
array index. Next, we handle the specification of a joke
category:

chapter7/admin/jokes/index.php (excerpt)
 if ($_GET['category'] != '') // A category is
selected
 {
 $from .= ' INNER JOIN jokecategory ON id =
jokeid';
 $where .= " AND categoryid = :categoryid";
 $placeholders[':categoryid'] =
$_GET['category'];
 }

As the categories associated with a particular joke are stored in
the jokecategory table, we need to add this table to the query
to create a join. To do this, we simply tack INNER JOIN
jokecategory ON id = jokeid onto the end of the $from
variable. This joins the two tables on the condition that the id
column (in the joke table) matches the jokeid column (in
jokecategory). With the join in place, we can then apply the
criterion specified in the form submission—that the joke belongs
to the specified category. By adding to the $where variable, we
can require the categoryid column (in jokecategory) to
match a particular category ID (:categoryid). Again, we store
the value that we want to assign to this placeholder
($_GET['category']) in the $placeholders array. Handling
search text is fairly simple thanks to the LIKE SQL operator that
we learned way back in Chapter 2:

chapter7/admin/jokes/index.php (excerpt)
 if ($_GET['text'] != '') // Some search text
was specified
 {
 $where .= " AND joketext LIKE :joketext";
 $placeholders[':joketext'] = '%' .
$_GET['text'] . '%';
 }

We add percent signs (%) to the start and end of
$_GET['text'] to get our placeholder value in this case.
Remember that LIKE treats percent signs as wildcards, so in this
case we’re looking for joketext values that contain the value of
$_GET['text'], but which may contain any other text before
or after that value. Now that we’ve assembled the component
parts of our SQL query, we can put them together and use it to
retrieve and display our jokes:

chapter7/admin/jokes/index.php (excerpt)
 try
 {
 $sql = $select . $from . $where;
 $s = $pdo->prepare($sql);
 $s->execute($placeholders);
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching jokes.';
 include 'error.html.php';
 exit();
 }

 foreach ($s as $row)
 {
 $jokes[] = array('id' => $row['id'], 'text'
=>
 $row['joketext']);
 }

 include 'jokes.html.php';
 exit();
}

Take particular notice of the line highlighted in bold. Because we
have the values of all our placeholders stored in a PHP array
variable ($placeholders), we can use a handy feature of the
execute method: it lets us supply an array containing the values
that we want to assign to the placeholders in our prepared
statement, rather than having to use bindValue separately for
each one. Slick! The template to display these jokes will include
Edit and Delete buttons for each joke. To keep the page as
organized as possible, it will structure the results using an HTML
table:

chapter7/admin/jokes/jokes.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes: Search Results</title>
 </head>
 <body>
 <h1>Search Results</h1>
 <?php if (isset($jokes)): ?>
 <table>
 <tr><th>Joke Text</th><th>Options</th>
</tr>
 <?php foreach ($jokes as $joke): ?>
 <tr>
 <td><?php htmlout($joke['text']); ?
></td>
 <td>
 <form action="?" method="post">
 <div>
 <input type="hidden" name="id"
value="<?php
 htmlout($joke['id']); ?>">
 <input type="submit"
name="action" value="Edit">
 <input type="submit"
name="action" value="Delete">
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>
 <?php endif; ?>
 <p>New search</p>
 <p>Return to JMS home</p>
 </body>
</html>

The search results will display as shown in Figure 7.6.

Figure 7.6. A classic is found

Tip: Nothing to Report

If you’re up for a challenge, try adding a little
code to this template to gracefully handle the
case where no jokes satisfy the criteria specified
in the search form. Right now, the template
simply outputs nothing where the search results
table should be.

Adding and Editing Jokes

At the top of the joke search form, we have our usual link to
create a new joke:

chapter7/admin/jokes/searchform.html.php (excerpt)
 <p>Add new joke</p>

Let’s implement this feature now. The code will be very similar
to what we used to create new authors and categories, but in
addition to specifying the joke text, the page must allow an
administrator to assign an author and categories to a joke. As
with authors and categories, we can use the same form template
for creating new jokes and editing existing jokes. Let’s take a
look at the important elements of this form. We begin with a
standard text area into which we can type the text of the joke. If
we’re editing an existing joke, we’ll populate this field with that
joke’s text ($text):

chapter7/admin/jokes/form.html.php (excerpt)

 <div>
 <label for="text">Type your joke here:
</label>
 <textarea id="text" name="text" rows="3"
cols="40"><?php
 htmlout($text); ?></textarea>
 </div>

Next, we’ll prompt the administrator to select the author who
wrote the joke:

chapter7/admin/jokes/form.html.php (excerpt)
 <div>
 <label for="author">Author:</label>
 <select name="author" id="author">
 <option value="">Select one</option>
 <?php foreach ($authors as $author): ?
>
 <option value="<?php
htmlout($author['id']); ?>"<?php
 if ($author['id'] == $authorid)
 {
 echo ' selected';
 }
 ?>><?php
htmlout($author['name']); ?></option>
 <?php endforeach; ?>
 </select>
 </div>

Again, we’ve seen this kind of drop-down before (for example,
in the joke search form), but the important difference is that we
want to control the initial selection in the drop-down menu when
we’re editing an existing joke. The code in bold inserts the
attribute selected into the <option> tag if the ID of the
corresponding author ($author['id']) matches the author ID
of the existing joke ($authorid). Next, we need to prompt the
administrator to select the categories the joke should belong to.
A drop-down list is unsuitable because we want the
administrator to be able to select multiple categories. Thus,
we’ll use a series of checkboxes (<input
type="checkbox">)—one for each category. Since we have
no way of knowing in advance the number of checkboxes we’ll
need, the matter of setting their name attribute becomes an
interesting challenge. What we’ll do is use a single variable for
all the checkboxes; thus, all the checkboxes will have the same

name. To be able to receive multiple values from a single variable
name, we must make that variable an array. Recall from
Chapter 3 that an array is a single variable with compartments,
each of which can hold a value. To submit a form element as part
of an array variable, we simply add a pair of square brackets to
the end of the name attribute (making it categories[] in this
case).

Tip: A Multiple Selection List

Another way to submit an array is with a
<select multiple="multiple"> tag. Again,
you’d set the name attribute to end with square
brackets. What will be submitted is an array of
all the option values selected from the list by
the user. Feel free to experiment with this
approach by modifying the form to present the
categories as a list of option elements;
however, be aware that many users won’t realize
that they’re able to select multiple options from
the list by holding down Ctrl (⌘ on a Mac).

With all of our checkboxes named the same, we’ll need a way to
identify which particular checkboxes have been selected. To this
end, we assign a different value to each checkbox—the ID of the
corresponding category in the database. Thus, the form submits
an array containing the IDs of all the categories to which the new
joke should be added. Again, since we need to edit an existing
joke, we’ll include some code to output selected if the joke
already belongs to the corresponding category. This we’ll
indicate in our controller by setting $category['selected']
to TRUE:

chapter7/admin/jokes/form.html.php (excerpt)
 <fieldset>
 <legend>Categories:</legend>
 <?php foreach ($categories as
$category): ?>
 <div><label for="category<?php
htmlout($category['id']);
 ?>"><input type="checkbox"
name="categories[]"
 id="category<?php
htmlout($category['id']); ?>"

htmlout($category['id']); ?>"
 value="<?php
htmlout($category['id']); ?>"<?php
 if ($category['selected'])
 {
 echo ' checked';
 }
 ?>><?php
htmlout($category['name']); ?></label></div>
 <?php endforeach; ?>
 </fieldset>

Other than these details, the form will work just like the other
add/edit forms we’ve built. Here’s the complete code:

chapter7/admin/jokes/form.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 <style type="text/css">
 textarea {
 display: block;
 width: 100%;
 }
 </style>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>"
method="post">
 <div>
 <label for="text">Type your joke here:
</label>
 <textarea id="text" name="text" rows="3"
cols="40"><?php
 htmlout($text); ?></textarea>
 </div>
 <div>
 <label for="author">Author:</label>
 <select name="author" id="author">
 <option value="">Select one</option>
 <?php foreach ($authors as $author): ?
>
 <option value="<?php
htmlout($author['id']); ?>"<?php
 if ($author['id'] == $authorid)
 {

 {
 echo ' selected';
 }
 ?>><?php
htmlout($author['name']); ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <fieldset>
 <legend>Categories:</legend>
 <?php foreach ($categories as
$category): ?>
 <div><label for="category<?php
htmlout($category['id']);
 ?>"><input type="checkbox"
name="categories[]"
 id="category<?php
htmlout($category['id']); ?>"
 value="<?php
htmlout($category['id']); ?>"<?php
 if ($category['selected'])
 {
 echo ' checked';
 }
 ?>><?php
htmlout($category['name']); ?></label></div>
 <?php endforeach; ?>
 </fieldset>
 <div>
 <input type="hidden" name="id" value="<?
php
 htmlout($id); ?>">
 <input type="submit" value="<?php
htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

Figure 7.7 shows what the form will look like.

Figure 7.7. The hits just keep on coming

Let’s now turn our attention back to the controller, which will
display and then handle the submission of this form in both its
modes. When the user clicks the Add new joke link, we need to
display the form with all its fields blank. None of this code should
be unfamiliar. Take your time, look over it, and make sure it all
makes sense to you. If you’re unsure what a particular variable is
for, go find it in the form template and identify its purpose:

chapter7/admin/jokes/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Joke';
 $action = 'addform';
 $text = '';
 $authorid = '';
 $id = '';
 $button = 'Add joke';

 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // Build the list of authors
 try
 {

 {
 $result = $pdo->query('SELECT id, name FROM
author');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of authors.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $authors[] = array('id' => $row['id'],
'name' => $row['name']);
 }

 // Build the list of categories
 try
 {
 $result = $pdo->query('SELECT id, name FROM
category');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of
categories.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $categories[] = array(
 'id' => $row['id'],
 'name' => $row['name'],
 'selected' => FALSE);
 }

 include 'form.html.php';
 exit();
}

Note especially that we’re setting the 'selected' item in each
of the arrays stored in the $categories array to FALSE. As a
result, none of the category checkboxes in the form will be
selected by default. When the user clicks the Edit button next to
an existing joke, the controller must instead load the form with its
fields populated with the existing values. This code is similar in
structure to the code we used to generate the empty form:

structure to the code we used to generate the empty form:
chapter7/admin/jokes/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action']
== 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, joketext, authorid FROM
joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching joke details.';
 include 'error.html.php';
 exit();
 }
 $row = $s->fetch();

 $pageTitle = 'Edit Joke';
 $action = 'editform';
 $text = $row['joketext'];
 $authorid = $row['authorid'];
 $id = $row['id'];
 $button = 'Update joke';

 // Build the list of authors
 try
 {
 $result = $pdo->query('SELECT id, name FROM
author');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of authors.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $authors[] = array('id' => $row['id'],
'name' => $row['name']);
 }

 // Get list of categories containing this joke

 // Get list of categories containing this joke
 try
 {
 $sql = 'SELECT categoryid FROM jokecategory
↵WHERE jokeid = :id';(1)
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of selected
categories.';
 include 'error.html.php';
 exit();
 }

 foreach ($s as $row)
 {
 $selectedCategories[] =
$row['categoryid'];(2)
 }

 // Build the list of all categories
 try
 {
 $result = $pdo->query('SELECT id, name FROM
category');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of
categories.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $categories[] = array(
 'id' => $row['id'],
 'name' => $row['name'],
 'selected' => in_array($row['id'],
$selectedCategories));(3)
 }

 include 'form.html.php';
 exit();
}

In addition to fetching the details of the joke (ID, text, and author
ID), this code fetches a list of categories to which the joke in
question belongs:

(1)
The SELECT query is straightforward, since it’s simply
fetching records from the jokecategory lookup table. It
grabs all the category IDs associated with the joke ID for
the joke that the user wishes to edit.

(2) This foreach loop stores all the selected category IDs into
an array variable, $selectedCategories.

(3)

And here’s the big trick: while building the list of all
categories for the form to display as checkboxes, we check
each category’s ID to see if it’s listed in our
$selectedCategories array. The built-in function
in_array does this for us automatically. We store the
return value (either TRUE or FALSE) in the 'selected'
item of the array that represents each category. This value
will then be used by the form template (as we’ve already
seen) to select the appropriate checkboxes.

That takes care of generating the form in each of its two modes;
now let’s look at the controller code that processes the form
submissions. Since we’re submitting an array for the first time
(the list of selected category checkboxes), the code processing
this form will feature a couple of new tricks as well. It starts off
fairly simply as we add the joke to the joke table. As an author
is required, we make sure that $_POST['author'] contains a
value. This prevents the administrator from choosing the Select
One option in the author select list (that choice has a value of "",
the empty string):

chapter7/admin/jokes/index.php (excerpt)
if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 if ($_POST['author'] == '')
 {
 $error = 'You must choose an author for this
joke.
 Click ‘back’ and try
again.';
 include 'error.html.php';
 exit();

 exit();
 }

 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE(),
 authorid = :authorid';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['text']);
 $s->bindValue(':authorid',
$_POST['author']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke.';
 include 'error.html.php';
 exit();
 }

 $jokeid = $pdo->lastInsertId();

The last line in the above code uses a method that we’ve yet to
see: lastInsertId. This method returns the number assigned
to the last inserted entry by the AUTO_INCREMENT feature in
MySQL. In other words, it retrieves the ID of the newly inserted
joke, which we’ll need in a moment. I expect you’re a little foggy
on how to write the code that adds the entries to
jokecategory based on which checkboxes were checked.
First of all, we’ve never seen how a checkbox passes its value to
a PHP variable before. Additionally, we need to deal with the
fact that these particular checkboxes will submit into an array
variable. A typical checkbox will pass its value to a PHP variable
if it’s checked, and will do nothing when it’s unchecked.
Checkboxes without assigned values pass 'on' as the value of
their corresponding variables when they’re checked. However,
we’ve assigned values to our checkboxes (the category IDs), so
this isn’t an issue. The fact that these checkboxes submit into an
array actually adds quite a measure of convenience to our code.
In essence, we’ll receive from the submitted form either:

an array of category IDs to which we’ll add the joke

nothing at all (if none of the checkboxes were checked)

nothing at all (if none of the checkboxes were checked)

In the latter case, there’s nothing to do—no categories were
selected, so we have nothing to add to the jokecategory table.
If we do have an array of category IDs to process, however,
we’ll use a foreach loop to issue an INSERT query for each ID
(using a single prepared statement):

chapter7/admin/jokes/index.php (excerpt)
 if (isset($_POST['categories']))
 {
 try
 {
 $sql = 'INSERT INTO jokecategory SET
 jokeid = :jokeid,
 categoryid = :categoryid';
 $s = $pdo->prepare($sql);

 foreach ($_POST['categories'] as
$categoryid)
 {
 $s->bindValue(':jokeid', $jokeid);
 $s->bindValue(':categoryid',
$categoryid);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error inserting joke into
selected categories.';
 include 'error.html.php';
 exit();
 }
 }

 header('Location: .');
 exit();
}

Note the use of the $jokeid variable, which we obtained from
lastInsertId. That takes care of adding new jokes. The form
processing code for editing existing jokes is predictably similar,
with two important differences:

It uses an UPDATE query instead of an INSERT query to
store the joke’s details in the joke table.

It removes all existing entries for the joke from the
jokecategory table before INSERTing entries for the
selected checkboxes in the form.

Here’s the code. Take the time to read through it and make sure
it all makes sense to you:

chapter7/admin/jokes/index.php (excerpt)
if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 if ($_POST['author'] == '')
 {
 $error = 'You must choose an author for this
joke.
 Click ‘back’ and try
again.';
 include 'error.html.php';
 exit();
 }

 try
 {
 $sql = 'UPDATE joke SET
 joketext = :joketext,
 authorid = :authorid
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':joketext', $_POST['text']);
 $s->bindValue(':authorid',
$_POST['author']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted joke.';
 include 'error.html.php';
 exit();
 }

 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
jokeid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();

 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing obsolete joke
category entries.';
 include 'error.html.php';
 exit();
 }

 if (isset($_POST['categories']))
 {
 try
 {
 $sql = 'INSERT INTO jokecategory SET
 jokeid = :jokeid,
 categoryid = :categoryid';
 $s = $pdo->prepare($sql);

 foreach ($_POST['categories'] as
$categoryid)
 {
 $s->bindValue(':jokeid', $_POST['id']);
 $s->bindValue(':categoryid',
$categoryid);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error inserting joke into
selected categories.';
 include 'error.html.php';
 exit();
 }
 }

 header('Location: .');
 exit();
}

Deleting Jokes

The last feature to implement is the Delete button displayed next
to each joke. The controller code responsible for this feature
mirrors the code we wrote for the author and category Delete
buttons, with only minor adjustments. For example, besides
deleting the selected joke from the joke table, it must also
remove any entries in the jokecategory table for that joke.

remove any entries in the jokecategory table for that joke.
Here’s the code. There’s nothing new here, but take a look and
make sure you’re comfortable with everything that’s going on:

chapter7/admin/jokes/index.php (excerpt)
if (isset($_POST['action']) and $_POST['action']
== 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // Delete category assignments for this joke
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
jokeid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing joke from
categories.';
 include 'error.html.php';
 exit();
 }

 // Delete the joke
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Summary

There are still a few minor tasks that our content management
system is incapable of. For example, it’s unable to provide a
listing of just the jokes that don’t belong to any category—and
this listing could be very handy as the number of jokes in the
database grows. You might also like to sort the joke lists by
various criteria. These particular capabilities require a few more
advanced SQL tricks that we’ll see in Chapter 11.

Note: Some Code We’ve Left
Behind

If you were to scrutinize closely the code archive
for this chapter, you might notice that I’ve also
tweaked the joke list page (in the joke folder) to
remove the Add your own joke link and the
Delete buttons. Because these features weren’t
designed to work with the new database
structure we developed in this chapter, I’ve
removed them for now. In the section called “A
Challenge: Joke Moderation” in Chapter 9, I
challenge you to find a way to handle user-
submitted jokes in an elegant way.

If we ignore these little details for the moment, you’ll see that you
now have a system that allows a person without SQL or
database knowledge to administer your database of jokes with
ease! Together with a set of PHP-powered pages through which
regular site visitors can view the jokes, this CMS allows us to set
up a complete database driven website that can be maintained
by a user with absolutely no database knowledge. And if you
think that sounds like a valuable commodity to businesses
looking to be on the Web today, you’re right! In fact, only one
aspect of our site requires users to have special knowledge
(beyond the use of a web browser): content formatting. If we
wanted to enable administrators to include rich-text formatting in
the jokes they entered, we could invite them to type the
necessary HTML code directly into the New Joke form. To
preserve this formatting, we’d then echo out the content of our
jokes “raw” instead of using our htmlout function. This is
unacceptable for two reasons: first, we’d have to stop accepting
joke submissions from the general public, otherwise we’d be

joke submissions from the general public, otherwise we’d be
opening the door to attackers submitting harmful code in their
jokes; our site would then display these unfiltered, since we’d no
longer be passing our content through htmlspecialchars.
Second, as we stated way back in the introduction to this book,
one of the most desirable features of a database driven website
is that people can be responsible for adding content despite
being unfamiliar with technical mumbo jumbo like HTML. If we
require knowledge of HTML for a task as simple as dividing a
joke into paragraphs, or applying italics to a word or two, we’ll
have failed to achieve our goal. In Chapter 8, I’ll show you how
to use some of the features of PHP that make it simpler for your
users to format content without knowing the ins and outs of
HTML. We’ll also revisit the Submit your own joke form, and
discover how we can safely accept content submissions from
casual site visitors.

[42] In case it’s slipped your mind, the first big advantage of
prepared statements is that they can contain placeholders, to
which you can assign values safely without worrying about SQL-
injection attacks.

[43] In fact, the “do nothing” WHERE clause could just be WHERE
1, since MySQL considers any positive number true. Feel free to
change it if you like it better.

Chapter 8

Content Formatting with
Regular Expressions
We’re almost there! We’ve designed a database to store jokes,
organized them into categories, and tracked their authors. We’ve
learned how to create a web page that displays this library of
jokes to site visitors. We’ve even developed a set of web pages
that a site administrator can use to manage the joke library
without knowing anything about databases. In so doing, we’ve
built a site that frees the resident webmaster from continually
having to plug new content into tired HTML page templates, and
from maintaining an unmanageable mass of HTML files. The
HTML is now kept completely separate from the data it
displays. If you want to redesign the site, you simply have to
make the changes to the HTML contained in the PHP templates
that you’ve constructed. A change to one file (for example,
modifying the footer) is immediately reflected in the page layouts
of all pages in the site. Only one task still requires knowledge of
HTML: content formatting. On any but the simplest of
websites, it will be necessary to allow content (in our case,
jokes) to include some sort of formatting. In a simple case, this
might merely be the ability to break text into paragraphs. Often,
however, content providers will expect facilities such as bold or
italic text, hyperlinks, and so on. Supporting these requirements
with our current code is deceptively easy. In the past couple of
chapters, we’ve used htmlout to output user-submitted content:

chapter7/jokes/jokes.html.php (excerpt)
<?php htmlout($joke['text']); ?>

If, instead, we just echo out the raw content pulled from the
database, we can enable administrators to include formatting in
the form of HTML code in the joke text:
<?php echo $joke['text']; ?>

Following this simple change, a site administrator could include
HTML tags that would have their usual effect on the joke text
when inserted into a page. But is this really what we want? Left
unchecked, content providers can do a lot of damage by
including HTML code in the content they add to your site’s
database. Particularly if your system will be enabling nontechnical
users to submit content, you’ll find that invalid, obsolete, and
otherwise inappropriate code will gradually infest the pristine
website you set out to build. With one stray tag, a well-meaning
user could tear apart the layout of your site. In this chapter,
you’ll learn about several new PHP functions that specialize in
finding and replacing patterns of text in your site’s content. I’ll
show you how to use these capabilities to provide a simpler
markup language for your users that’s better suited to content
formatting. By the time we’ve finished, we’ll have completed a
content management system that anyone with a web browser can
use—no knowledge of HTML required.

Regular Expressions
To implement our own markup language, we’ll have to write
some PHP code to spot our custom tags in the text of jokes and
then replace them with their HTML equivalents. For tackling this
sort of task, PHP includes extensive support for regular
expressions. A regular expression is a short piece of code that
describes a pattern of text that may occur in content like our
jokes. We use regular expressions to search for and replace
patterns of text. They’re available in many programming
languages and environments, and are especially prevalent in web
development languages like PHP. The popularity of regular
expressions has everything to do with how useful they are, and
absolutely nothing to do with how easy they are to use—because
they’re not at all easy. In fact, to most people who encounter
them for the first time, regular expressions look like what might
eventuate if you fell asleep with your face on the keyboard.
Here, for example, is a relatively simple (yes, really!) regular
expression that will match any string that might be a valid email
address:
/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

Scary, huh? By the end of this section, you’ll actually be able to
make sense of that. The language of a regular expression is
cryptic enough that, once you master it, you may feel as if you’re
able to weave magical incantations with the code that you write.
To begin with, let’s start with some very simple regular
expressions. This is a regular expression that searches for the
text “PHP” (without the quotes):
/PHP/

Fairly simple, right? It’s the text for which you want to search
surrounded by a pair of matching delimiters. Traditionally,
slashes (/) are used as regular expression delimiters, but another
common choice is the hash character (#). You can actually use
any character as a delimiter except letters, numbers, or
backslashes (\). I’ll use slashes for all the regular expressions in
this chapter.

Tip: Escape Delimiter
Characters

To include a forward slash as part of a regular
expression that uses forward slashes as
delimiters, you must escape it with a preceding
backslash (\/); otherwise, it will be interpreted
as marking the end of the pattern. The same
goes for other delimiter characters: if you use
hash characters as delimiters, you’ll need to
escape any hashes within the expression with
backslashes (\#).

To use a regular expression, you must be familiar with the regular
expression functions available in PHP. preg_match is the most
basic, and can be used to determine whether a regular
expression is matched by a particular text string. Consider this
code:

chapter8/preg_match1/index.php
<?php
$text = 'PHP rules!';

if (preg_match('/PHP/', $text))

if (preg_match('/PHP/', $text))
{
 $output = '$text contains the string
“PHP”.';
}
else
{
 $output = '$text does not contain the string
“PHP”.';
}

include 'output.html.php';

In this example, the regular expression finds a match because the
string stored in the variable $text contains “PHP”. This example
will therefore output the message shown in Figure 8.1 (note that
the single quotes around the strings in the code prevent PHP
from filling in the value of the variable $text).

Figure 8.1. The regular expression finds a match

By default, regular expressions are case-sensitive; that is,
lowercase characters in the expression only match lowercase
characters in the string, and uppercase characters only match
uppercase characters. If you want to perform a case-insensitive
search instead, you can use a pattern modifier to make the
regular expression ignore case. Pattern modifiers are single-
character flags following the ending delimiter of an expression.
The modifier for performing a case-insensitive match is i. So
while /PHP/ will only match strings that contain “PHP”, /PHP/i
will match strings that contain “PHP”, “php”, or even “pHp”.
Here’s an example to illustrate this:

chapter8/preg_match2/index.php
<?php

<?php
$text = 'What is Php?';

if (preg_match('/PHP/i', $text))
{
 $output = '$text contains the string
“PHP”.';
}
else
{
 $output = '$text does not contain the string
“PHP”.';
}

include 'output.html.php';

Again, as shown in Figure 8.2, this outputs the same message
despite the string actually containing “Php”.

Figure 8.2. No need to be picky …

Regular expressions are almost a programming language unto
themselves. A dazzling variety of characters have a special
significance when they appear in a regular expression. Using
these special characters, you can describe in great detail the
pattern of characters that a PHP function like preg_match will
search for. To show you what I mean, let’s look at a slightly
more complex regular expression:
/^PH.*/

The caret (^), the dot (.), and the asterisk (*) are all special
characters that have a specific meaning inside a regular
expression. Specifically, the caret means “the start of the string,”
the dot means “any character,” and the asterisk means “zero or
more of the preceding character.” Therefore, the pattern

more of the preceding character.” Therefore, the pattern
/^PH.*/ matches not only the string “PH”, but “PHP”, “PHX”,
“PHP: Hypertext Preprocessor”, and any other string beginning
with “PH”. When you first encounter it, regular expression syntax
can be downright confusing and difficult to remember, so if you
intend to make extensive use of it, a good reference might come
in handy. The PHP Manual includes a very thorough regular
expression reference, but let’s start with the basics. Here are
some of the most commonly used regular expression special
characters (try not to lose too much sleep memorizing these),
and some simple examples to illustrate how they work:

^ (caret)

The caret matches the start of the string. This excludes any
characters—it considers merely the position itself.

$ (dollar)

A dollar character matches the end of the string. This
excludes any characters—it considers merely the position
itself:

/PHP/ Matches 'PHP rules!' and 'What is
PHP?'

/^PHP/ Matches 'PHP rules!' but not 'What
is PHP?'

/PHP$/ Matches 'I love PHP' but not 'What
is PHP?'

/^PHP$/ Matches 'PHP' and no other string.

. (dot)

This is the wildcard character. It matches any single
character except a newline (\n):[44]

/^...$/ Matches any three-character string
(no newlines).

* (asterisk)

An asterisk requires that the preceding character appears
zero or more times. When matching, the asterisk will be
greedy, including as many characters as possible. For
example, for the string 'a word here, a word
there', the pattern /a.*word/ will match 'a word
here, a word'. In order to make a minimal match (just
'a word'), use the question mark character (explained
shortly).

+ (plus)

This character requires that the preceding character
appears one or more times. When matching, the plus will
be greedy (just like the asterisk) unless you use the
question mark character.

? (question mark)

This character makes the preceding character optional. If
placed after a plus or an asterisk, it instead dictates that
the match for this preceding symbol will be a minimal
match (also known as non-greedy or lazy matching),
including as few characters as possible:

/bana?na/ Matches 'banana' and 'banna', but
not 'banaana'.
/bana+na/ Matches 'banana' and 'banaana',
but not 'banna'.
/bana*na/ Matches 'banna', 'banana', and
'banaaana',
 but not 'bnana'.
/^[a-zA-Z]+$/ Matches any string of one or more
letters only.

| (pipe)

The pipe causes the regular expression to match either the
pattern on the left of the pipe, or the pattern on the right.

(…) (round brackets)

Round brackets define a group of characters that must
occur together, to which you can then apply a modifier

occur together, to which you can then apply a modifier
like *, +, or ? by placing it after the closing bracket. You
can also refer to a bracketed portion of a regular
expression later to obtain the portion of the string that it
matched:

/^(yes|no)$/ Matches the strings 'yes' and 'no'
only.
/ba(na)+na/ Matches 'banana' and 'banananana',

 but not 'bana' or 'banaana'.
/ba(na|ni)+/ Matches 'bana' and 'banina',

 but not 'naniba'.

[…] (square brackets)

Square brackets define a character class . A character
class matches one character out of those listed within the
square brackets. A character class can include an explicit
list of characters (for instance, [aqz], which is the same
as (a|q|z)), or a range of characters (such as [a-z],
which is the same as (a|b|c|…|z). A character class can
also be defined so that it matches one character that’s not
listed in the brackets. To do this, simply insert a caret (^)
after the opening square bracket (so [^a] will match any
single character except ‘a’).

Let’s see all these in action:
/[12345]/ Matches '1a' (contains ‘1’) and
'39' (contains ‘3’),

 but doesn’t match 'a' or '76'.
/[^12345]/ Matches '1a' (contains ‘a’) and
'39' (contains ‘9’),

 but not '1', or '54'.
/[1-5]/ Equivalent to /[12345]/.
/^[a-z]$/ Matches any single lowercase
letter.
/^[^a-z]$/ Matches any single character not a
lowercase letter.
/[0-9a-zA-Z]/ Matches any string containing a

/[0-9a-zA-Z]/ Matches any string containing a
letter or number.

If you want to use one of these special characters as a literal
character to be matched by the regular expression pattern,
escape it by placing a backslash (\) before it:
/1\+1=2/ Matches any string containing
'1+1=2'.
/\$\$\$/ Matches any string containing
'$$$'.

There are also a number of so-called escape sequences that
will match a character that’s either not easily typed, or a certain
type of character:

\n

This sequence matches a newline character.
\r

This matches a carriage-return character.
\t

This matches a tab character.
\s

This sequence matches any whitespace character, which
includes any newline, carriage-return, or tab character; it’s
the same as [\n\r\t].

\S

This matches any nonwhitespace character, and is the
same as [^ \n\r\t].

\d

This matches any digit; it’s the same as [0-9].
\D

This sequence matches anything but a digit, and is the
same as [^0-9].

\w

This matches any “word” character. It’s the same as [a-
zA-Z0-9_].

zA-Z0-9_].
\W

This sequence matches any “non-word” character, and is
the same as [^a-zA-Z0-9_].

\b

This code is a little special because it doesn’t actually
match a character. Instead, it matches a word boundary
—the start or end of a word.

\B

Like \b, this won’t match a character. Rather, it matches
a position in the string that is not a word boundary.

\\

This matches an actual backslash character. So if you
want to match the string “\n” exactly, your regular
expression would be /\\n/, not /\n/ (which matches a
newline character). Similarly, if you wanted to match the
string “\\” exactly, your regular expression would be
/\\\\/.

Important: \\ becomes
\\\\
To use your regular expression with a
PHP function like preg_match, you need
to write it as a PHP string. Just like
regular expressions, however, PHP uses
\\ to indicate a single backslash in a PHP
string. A regular expression like /\\n/
must therefore be written in PHP as
'/\\\\n/' to work properly. PHP takes
the four backslashes to mean two
backslashes, which is what you want your
regular expression to contain.

Believe it or not, we now have everything we need to be able to
understand the email address regular expression I showed you at
the start of this section:
/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

/

The slash is the starting delimiter that marks the beginning
of the regular expression.

^

We match the beginning of the string to make sure that
nothing appears before the email address.

[\w\.\-]+

The name portion of the email address is made up of one
or more (+) characters that are either “word” characters,
dots, or hyphens ([\w\.\-]).

@

The name is followed by the @ character.
([\w\-]+\.)+

Then we have one or more (+) subdomains (such as
“sitepoint.”), each of which is one or more “word”
characters or hyphens ([\w\-]+) followed by a dot (\.).

[a-z]+

Next, there’s the top-level domain (for example, “com”),
which is simply one or more letters ([a-z]+).

$

Finally, we match the end of the string, to make sure that
nothing appears after the email address.

/i

The slash is the ending delimiter marking the end of the
regular expression. The pattern modifier i following the
slash indicates that the letters in the regular expression
(such as [a-z]) should be treated case-insensitively.

Got all that? If you’re feeling anything like I was when I first
learned regular expressions, you’re probably a little nervous.
Okay, so you can follow along with a breakdown of a regular
expression that someone else wrote for you, but can you really
come up with this gobbledygook yourself? Don’t sweat it: in the
rest of this chapter, we’ll look at a bunch more regular

rest of this chapter, we’ll look at a bunch more regular
expressions, and before you know it you’ll be writing
expressions of your own with confidence.

String Replacement with
Regular Expressions
As you may recall, we’re aiming in this chapter to make it easier
for non-HTML-savvy users to add formatting to the jokes on
our website. For example, if a user puts asterisks around a word
in the text of a joke (for example, 'Knock *knock*…'), we’d
like to display that joke with HTML emphasis tags around that
word (Knock knock…'). We can detect the
presence of plain-text formatting such as this in a joke’s text
using preg_match with the regular expression syntax we’ve just
learned; however, what we need to do is pinpoint that formatting
and replace it with appropriate HTML tags. To achieve this, we
need to look at another regular expression function offered by
PHP: preg_replace. preg_replace, like preg_match,
accepts a regular expression and a string of text, and attempts to
match the regular expression in the string. In addition,
preg_replace takes another string of text and replaces every
match of the regular expression with that string. The syntax for
preg_replace is as follows:
$newString = preg_replace(regExp, replaceWith,
oldString);

Here, regExp is the regular expression, and replaceWith is the
string that will replace matches in oldString. The function returns
the new string with all the replacements made. In that code, this
newly generated string is stored in $newString. We’re now
ready to build our joke formatting function.

Emphasized Text

In Chapter 6, we wrote a helper function, htmlout, for
outputting arbitrary text as HTML. This function is housed in a
shared include file, helpers.inc.php. Since we’ll now want to
output text containing plain-text formatting as HTML, let’s add a
new helper function to the file for this purpose:

new helper function to the file for this purpose:
chapter8/includes/helpers.inc.php (excerpt)

function markdown2html($text)
{
 $text = html($text);

 … Convert plain-text formatting to HTML

 return $text;
}

The plain-text formatting syntax we’ll support is a simplified form
of Markdown, created by John Gruber.

Markdown is a text-to-HTML conversion tool for web
writers. Markdown allows you to write using an easy-to-
read, easy-to-write plain-text format, then convert it to
structurally valid XHTML (or HTML).

 -- the Markdown home page
Since this helper function will convert Markdown to HTML, it’s
named markdown2html. This function’s first action is to use the
html helper function to convert any HTML code present in the
text into HTML text. We want to avoid any HTML code
appearing in the output except that which is generated from
plain-text formatting.[45] Let’s start with formatting that will
create bold and italic text. In Markdown, you can emphasize
text by surrounding it with a pair of asterisks (*), or a pair of
underscores (_). Obviously, we’ll replace any such pair with an
 and tag.[46] To achieve this, we’ll use two regular
expressions: one that handles a pair of asterisks and one that
handles a pair of underscores. Let’s start with the underscores:
/_[^_]+_/

Breaking this down:

/

We choose our usual slash character to begin (and
therefore delimit) our regular expression.

_

There’s nothing special about underscores in regular
expressions, so this will simply match an underscore

expressions, so this will simply match an underscore
character in the text.

[^_]

A sequence of one or more characters that aren’t
underscores.

_

The second underscore, which marks the end of the
italicized text.

/

The end of the regular expression.

Now, it’s easy enough to feed this regular expression to
preg_replace, but we have a problem:
 $text = preg_replace('/_[^_]+_/',
'emphasized text',
↵$text);

The second argument we pass to preg_replace needs to be
the text that we want to replace each match with. The problem
is, we have no idea what the text that goes between the
and tags should be—it’s part of the text that’s being
matched by our regular expression! Thankfully, another feature
of preg_replace comes to our rescue. If you surround a
portion of the regular expression with round brackets (or
parentheses), you can capture the corresponding portion of the
matched text and use it in the replacement string. To do this,
you’ll use the code $n , where n is 1for the first parenthesized
portion of the regular expression, 2 for the second, and so on, up
to 99 for the 99th. Consider this example:
$text = 'banana';
$text = preg_replace('/(.*)(nana)/', '$2$1',
$text);
echo $text; // outputs 'nanaba'

So $1 is replaced with the text matched by the first round-
bracketed portion of the regular expression ((.*)—zero or
more non-newline characters), which is ba in this case. $2 is
replaced by nana, which is the text matched by the second
round-bracketed portion of the regular expression ((nana)).
The replacement string '$2$1', therefore, produces 'nanaba'.
We can use the same principle to create our emphasized text,

We can use the same principle to create our emphasized text,
adding a pair of round brackets to our regular expression:
/_([^_]+)_/

These brackets have no effect on how the expression works at
all, but they create a group of matched characters that we can
reuse in our replacement string:

chapter8/includes/helpers.inc.php (excerpt)
 $text = preg_replace('/_([^_]+)_/',
'$1', $text);

The pattern to match and replace pairs of asterisks looks much
the same, except we need to escape the asterisks with
backslashes, since the asterisk character normally has a special
meaning in regular expressions:

chapter8/includes/helpers.inc.php (excerpt)
 $text = preg_replace('/*([^*]+)*/',
'$1', $text);

That takes care of emphasized text, but Markdown also
supports creating strong emphasis (tags) by
surrounding text with a pair of double asterisks or underscores
(**strong emphasis** or __strong emphasis__). Here’s
the regular expression to match pairs of double underscores:
/__(.+?)__/s

The double underscores at the start and end are straightforward
enough, but what’s going on inside the round brackets?
Previously, in our single-underscore pattern, we used [^_]+ to
match a series of one or more characters, none of which could
be underscores. That works fine when the end of the emphasized
text is marked by a single underscore, but when the end is a
double underscore we want to allow for the emphasized text to
contain single underscores (for example,
__text_with_strong_emphasis__). “No underscores
allowed,” therefore, won’t cut it—we must come up with some
other way to match the emphasized text. You might be tempted
to use .+ (one or more characters, any kind), giving us a regular
expression like this:[47]

/__(.+)__/s

The problem with this pattern is that the + is greedy—it will

The problem with this pattern is that the + is greedy—it will
cause this portion of the regular expression to gobble up as many
characters as it can. Consider this joke, for example:
__Knock-knock.__ Who’s there? __Boo.__ Boo who?
__Aw, don’t cry
↵ about it!__

When presented with this text, the regular expression above will
see just a single match, beginning with two underscores at the
start of the joke and ending with two underscores at the end.
The rest of the text in between (including all the other double
underscores) will be gobbled up by the greedy .+ as the text to
be emphasized! To fix this problem, we can ask the + to be non-
greedy by adding a question mark after it. Instead of matching as
many characters as possible, .+? will match as few characters as
possible while still matching the rest of the pattern, ensuring we’ll
match each piece of emphasized text (and the double-
underscores that surround it) individually. This gets us to our final
regular expression:
/__(.+?)__/s

Using the same technique, we can also come up with a regular
expression for double-asterisks. This is how the finished code for
applying strong emphasis ends up looking:

chapter8/includes/helpers.inc.php (excerpt)
 $text = preg_replace('/__(.+?)__/s',
'$1',
↵ $text);
 $text = preg_replace('/**(.+?)**/s',
'$1',
↵ $text);

One last point: we must avoid converting pairs of single asterisks
and underscores into and tags until after we’ve
converted the pairs of double asterisks and underscores in the
text into and tags. Our markdown2html
function, therefore, will apply strong emphasis first, then regular
emphasis:

chapter8/includes/helpers.inc.php (excerpt)
function markdown2html($text)
{
 $text = html($text);

 // strong emphasis
 $text = preg_replace('/__(.+?)__/s',
'$1',
↵ $text);
 $text = preg_replace('/**(.+?)**/s',
'$1',
↵ $text);

 // emphasis
 $text = preg_replace('/_([^_]+)_/',
'$1', $text);
 $text = preg_replace('/*([^*]+)*/',
'$1', $text);
 …
 return $text;
}

Paragraphs

While we could choose characters to mark the start and end of
paragraphs just as we did for emphasized text, a simpler
approach makes more sense. Since your users will type the
content into a form field that allows them to create paragraphs
using the Enter key, we’ll take a single newline to indicate a line
break (
) and a double newline to indicate a new paragraph
(</p><p>). As I explained earlier, you can represent a newline
character in a regular expression as \n. Other whitespace
characters you can write this way include a carriage return (\r)
and a tab space (\t). Exactly which characters are inserted into
text when the user hits Enter depends on the user’s operating
system. In general, Windows computers represent a line break
as a carriage return followed by a newline (\r\n), whereas Mac
computers used to represent it as a single carriage return
character (\r). These days, Macs and Linux computers use a
single newline character (\n) to indicate a new line.[48] To deal
with these different line-break styles, any of which may be
submitted by the browser, we must do some conversion:
 // Convert Windows (\r\n) to Unix (\n)
 $text = preg_replace('/\r\n/', "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = preg_replace('/\r/', "\n", $text);

Note: Regular Expressions in

Note: Regular Expressions in
Double Quoted Strings

All the regular expressions we’ve seen so far in
this chapter have been expressed as single-
quoted PHP strings. The automatic variable
substitution provided by PHP strings is
sometimes more convenient, but they can cause
headaches when used with regular expressions.
Double-quoted PHP strings and regular
expressions share a number of special character
escape codes. "\n" is a PHP string containing a
newline character. Likewise, /\n/ is a regular
expression that will match any string containing a
newline character. We can represent this regular
expression as a single-quoted PHP string
('/\n/') and all is well, because the code \n
has no special meaning in a single-quoted PHP
string. If we were to use a double-quoted string
to represent this regular expression, we’d have
to write "/\\n/"—with a double-backslash.
The double-backslash tells PHP to include an
actual backslash in the string, rather than
combining it with the n that follows it to
represent a newline character. This string will
therefore generate the desired regular
expression, /\n/. Because of the added
complexity it introduces, it’s best to avoid using
double-quoted strings when writing regular
expressions. Note, however, that I have used
double quotes for the replacement strings ("\n")
passed as the second parameter to
preg_replace. In this case, we actually do
want to create a string containing a newline
character, so a double-quoted string does the
job perfectly.

With our line breaks all converted to newline characters, we can
convert them to paragraph breaks (when they occur in pairs) and
line breaks (when they occur alone):
 // Paragraphs

 // Paragraphs
 $text = '<p>' . preg_replace('/\n\n/', '</p>
<p>', $text) . '</p>';
 // Line breaks
 $text = preg_replace('/\n/', '
', $text);

Note the addition of <p> and </p> tags surrounding the joke
text. Because our jokes may contain paragraph breaks, we must
make sure the joke text is output within the context of a
paragraph to begin with. This code does the trick: the line breaks
in the text will now become the natural line- and paragraph-
breaks expected by the user, removing the requirement to learn
anything new to create this simple formatting. It turns out,
however, that there’s a simpler way to achieve the same result in
this case—there’s no need to use regular expressions at all!
PHP’s str_replace function works a lot like preg_replace,
except that it only searches for strings instead of regular
expression patterns:
$newString = str_replace(searchFor, replaceWith,
oldString);

We can therefore rewrite our line-breaking code as follows:
chapter8/includes/helpers.inc.php (excerpt)

 // Convert Windows (\r\n) to Unix (\n)
 $text = str_replace("\r\n", "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = str_replace("\r", "\n", $text);

 // Paragraphs
 $text = '<p>' . str_replace("\n\n", '</p><p>',
$text) . '</p>';
 // Line breaks
 $text = str_replace("\n", '
', $text);

str_replace is much more efficient than preg_replace
because there’s no need for it to apply the complex rules that
govern regular expressions. Whenever str_replace (or
str_ireplace, if you need a case-insensitive search) can do
the job, you should use it instead of preg_replace.

Hyperlinks

While supporting the inclusion of hyperlinks in the text of jokes
may seem unnecessary, such a feature makes plenty of sense in

may seem unnecessary, such a feature makes plenty of sense in
other applications. Here’s what a hyperlink looks like in
Markdown:[49]

[linked text](link URL)

Simple, right? You put the text of the link in square brackets, and
follow it with the URL for the link in round brackets. As it turns
out, you’ve already learned everything you need to match and
replace links like this with HTML links. If you’re feeling up to the
challenge, you should stop reading right here and try to tackle the
problem yourself! First, we need a regular expression that will
match links of this form. The regular expression is as follows:
/\[([^\]]+)]\(([-a-z0-9._~:\/?
#@!$&'()*+,;=%]+)\)/i

This is a rather complicated regular expression. You can see
how regular expressions have gained a reputation for being
indecipherable! Squint at it for a little while, and see if you can
figure out how it works. Grab a pen and break it into parts if you
need to. If you have a highlighter pen handy, you might use it to
mark the two pairs of parentheses (()) used to capture portions
of the matched string: the linked text ($1) and the link URL ($1).
Let me break it down for you:

/

As with all our regular expressions, we choose to mark its
beginning with a slash.

\[

This matches the opening square bracket ([). Since
square brackets have a special meaning in regular
expressions, we must escape it with a backslash to have it
interpreted literally.

([^\]]+)

First of all, this portion of the regular expression is
surrounded with round brackets, so the matching text will
be available to us as $1 when we write the replacement
string. Inside the round brackets, we’re after the linked
text. Because the end of the linked text is marked with a
closing square bracket (]), we can describe it as one or

closing square bracket (]), we can describe it as one or
more characters, none of which is a closing square
bracket ([^\]]+).

]\(

This will match the closing square bracket that ends the
linked text, followed by the opening round bracket that
signals the start of the link URL. The round bracket needs
to be escaped with a backslash to prevent it from having
its usual grouping effect. (The square bracket doesn’t
need to be escaped with a backslash because there is no
unescaped opening square bracket currently in play.)

([-a-z0-9._~:\/?#@!$&'()*+,;=%]+)

Again, the round brackets make the matching text
available to us as $2 in the replacement string. As for the
gobbledygook inside the brackets, it will match any
URL.[50] The square brackets contain a list of characters
that may appear in a URL, which is followed by a + to
indicate that one or more of these acceptable characters
must be present. Within a square-bracketed list of
characters, many of the characters that normally have a
special meaning within regular expressions lose that
meaning. ., ?, +, *, (, and) are all listed here without the
need to be escaped by backslashes. The only character
that does need to be escaped in this list is the slash (/),
which must be written as \/ to prevent it from being
mistaken for the end-of-regular-expression delimiter.
Note also that to include the hyphen (-) in the list of
characters, you have to list it first. Otherwise, it would
have been taken to indicate a range of characters (as in a-
z and 0-9).

\)

This escaped round bracket matches the closing round
bracket ()) at the end of the link URL.

/i

We mark the end of the regular expression with a slash,
followed by the case-insensitivity flag, i.

We can therefore convert links with the following PHP code:

chapter8/includes/helpers.inc.php (excerpt)
 $text = preg_replace(
 '/\[([^\]]+)]\(([-a-z0-9._~:\/?
#@!$&\'()*+,;=%]+)\)/i',
 '$1', $text);

As you can see, $1 is used in the replacement string to substitute
the captured link text, and $2 is used for the captured URL.
Additionally, because we’re expressing our regular expression as
a single-quoted PHP string, you have to escape the single quote
that appears in the list of acceptable characters with a backslash.

Putting It All Together

Here’s our finished helper function for converting Markdown to
HTML:

chapter8/includes/helpers.inc.php (excerpt)
function markdown2html($text)
{
 $text = html($text);

 // strong emphasis
 $text = preg_replace('/__(.+?)__/s',
'$1',
↵ $text);
 $text = preg_replace('/**(.+?)**/s',
'$1',
↵ $text);

 // emphasis
 $text = preg_replace('/_([^_]+)_/',
'$1', $text);
 $text = preg_replace('/*([^*]+)*/',
'$1', $text);

 // Convert Windows (\r\n) to Unix (\n)
 $text = str_replace("\r\n", "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = str_replace("\r", "\n", $text);

 // Paragraphs
 $text = '<p>' . str_replace("\n\n", '</p><p>',
$text) . '</p>';
 // Line breaks
 $text = str_replace("\n", '
', $text);

 // [linked text](link URL)
 $text = preg_replace(
 '/\[([^\]]+)]\(([-a-z0-9._~:\/?
#@!$&\'()*+,;=%]+)\)/i',
 '$1', $text);

 return $text;
}

For added convenience when using this in a PHP template, we’ll
add a markdownout function that calls markdown2html and
then echoes out the result:

chapter8/includes/helpers.inc.php (excerpt)
function markdownout($text)
{
 echo markdown2html($text);
}

We can then use this helper in our two templates that output joke
text. First, in the admin pages, we have the joke search results
template:

chapter8/admin/jokes/jokes.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes: Search Results</title>
 </head>
 <body>
 <h1>Search Results</h1>
 <?php if (isset($jokes)): ?>
 <table>
 <tr><th>Joke Text</th><th>Options</th>
</tr>
 <?php foreach ($jokes as $joke): ?>
 <tr valign="top">
 <td><?php markdownout($joke['text']);
?></td>
 <td>
 <form action="?" method="post">
 <div>
 <input type="hidden" name="id"
value="<?php
 htmlout($joke['id']); ?>">
 <input type="submit"

 <input type="submit"
name="action" value="Edit">
 <input type="submit"
name="action" value="Delete">
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>
 <?php endif; ?>
 <p>New search</p>
 <p>Return to JMS home</p>
 </body>
</html>

Second, we have the public joke list page:
chapter8/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Here are all the jokes in the database:
</p>
 <?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p>
 <?php markdownout($joke['text']); ?>
 (by <a href="mailto:<?php
htmlout($joke['email']); ?>">
 <?php htmlout($joke['name']); ?>
)
 </p>
 </blockquote>
 <?php endforeach; ?>
 </body>
</html>

With these changes made, take your new plain-text formatting
for a spin! Edit a few of your jokes to contain Markdown syntax
and verify that the formatting is correctly displayed.

Tip: Use the PHP Markdown

Tip: Use the PHP Markdown
Library

What’s nice about adopting a formatting syntax
like Markdown for your own website is that
there’s often plenty of open-source code out
there to help you deal with it. Your newfound
regular expression skills will serve you well in
your career as a web developer, but if you want
to support Markdown formatting on your site,
the easiest way to do it would be to not write all
the code to handle Markdown formatting
yourself! Instead, a quick Google search will find
you the PHP Markdown project, from which
you can download a markdown.php file that you
can drop in your site’s includes folder. You can
then use the Markdown function it contains in
your markdown2html helper function:
function markdown2html($text)
{
 $text = html($text);

 include_once
$_SERVER['DOCUMENT_ROOT'] .
↵ '/includes/markdown.php';
 return Markdown($text);
}

Go ahead and give this a try. Make sure your
formatting still works, and then curse me for
dragging you through the ordeal of regular
expressions when you could have avoided it.
(Seriously, it’s a handy skill.)

Real World Content
Submission
It seems a shame to have spent so much time and effort on a
content management system that’s really easy to use, when the
only people who are actually allowed to use it are the site
administrators. Furthermore, while it’s extremely convenient for

administrators. Furthermore, while it’s extremely convenient for
an administrator not having to edit HTML when making updates
to the site’s content, submitted documents still need to be
transcribed into the “Add new joke” form, and any formatted
text converted into Markdown—a tedious and mind-numbing
task, to say the least. What if we put the “Add new joke” form in
the hands of casual site visitors? If you recall, we actually did this
in Chapter 4 when we put an Add your own joke link on our
public joke list page, through which users could submit their own
jokes. At the time, this was simply a device that demonstrated
how INSERT statements could be made from within PHP scripts,
and we’ve since removed it (because it was incompatible with
some changes we made to our database structure), but given
how easy Markdown is to write, it sure would be nice to put a
joke submission form back in the hands of our visitors. In the
next chapter, we’ll introduce access control to your joke
database, making your website one that could survive in the real
world. Most importantly, you’ll limit access to the admin pages
for the site to authorized users only. But perhaps more excitingly,
we will revisit the idea of accepting joke submissions from your
visitors.

[44] If you put an s pattern modifier at the end of your regular
expression, the dot character will also match newlines.

[45] Technically, this breaks one of the features of Markdown:
support for inline HTML. “Real” Markdown can contain HTML
code, which will be passed through to the browser untouched.
The idea is that you can use HTML to produce any formatting
that is too complex to create using Markdown’s plain-text
formatting syntax. Since we don’t want to allow this, it might be
more accurate to say we’ll support Markdown-style formatting.

[46] You may be more accustomed to using and <i> tags for
bold and italic text; however, I’ve chosen to respect the most
recent HTML standards, which recommend using the more
meaningful and tags, respectively. If bold text
doesn’t necessarily indicate strong emphasis in your content, and
italic text isn’t representative of emphasis, you might want to use
 and <i> instead.

 and <i> instead.

[47] The s pattern modifier at the end of the regular expression
ensures that the dot (.) will truly match any character, including
newlines.

[48] In fact, the type of line breaks used can vary between
software programs on the same computer. If you’ve ever
opened a text file in Notepad to see all the line breaks missing,
you’ve experienced the frustration this can cause. Advanced text
editors used by programmers usually let you specify the type of
line breaks to use when saving a text file.

[49] Markdown also supports a more advanced link syntax
where you put the link URL at the end of the document, as a
footnote. But we won’t be supporting that kind of link in our
simplified Markdown implementation.

[50] It will also match some strings that are invalid URLs, but it’s
close enough for our purposes. If you’re especially intrigued by
regular expressions, you might want to check out RFC 3986, the
official standard for URLs. Appendix B of this specification
demonstrates how to parse a URL with a rather impressive
regular expression.

Chapter 9

Cookies, Sessions, and
Access Control
Cookies and sessions are two of those mysterious technologies
that are almost always made out to be more intimidating and
complex than they really are. In this chapter, I’ll debunk those
myths by explaining in simple language what they are, how they
work, and what they can do for you. I’ll also provide practical
examples to demonstrate each. Finally, we’ll use these new tools
to provide sophisticated access control to the administration
features of your Internet Joke Database site.

Cookies
Most computer programs these days preserve some form of
state when you close them. Whether it be the position of the
application window, or the names of the last five files that you
worked with, the settings are usually stored in a small file on your
system so that they can be read back the next time the program
is run. When web developers took web design to the next level,
and moved from static pages to complete, interactive online
applications, there was a need for similar functionality in web
browsers—so cookies were born. A cookie is a name-value
pair associated with a given website, and stored on the computer
that runs the client (browser). Once a cookie is set by a website,
all future page requests to that same site will also include the
cookie until it expires or becomes out of date. Other websites
are unable to access the cookies set by your site, and vice versa,
so, contrary to popular belief, they’re a relatively safe place to
store personal information. Cookies in and of themselves are
incapable of compromising a user’s privacy. Illustrated in
Figure 9.1 is the life cycle of a PHP-generated cookie.

Figure 9.1. The life cycle of a cookie

(1)
First, a web browser requests a URL that corresponds to a
PHP script. Within that script is a call to the setcookie
function that’s built into PHP.

(2)
The page produced by the PHP script is sent back to the
browser, along with an HTTP set-cookie header that
contains the name (for example, mycookie) and value of
the cookie to be set.

(3)
When it receives this HTTP header, the browser creates
and stores the specified value as a cookie named
mycookie.

(4)
Subsequent page requests to that website contain an HTTP
cookie header that sends the name/value pair
(mycookie=value) to the script requested.
Upon receipt of a page request with a cookie header, PHP

(5)
Upon receipt of a page request with a cookie header, PHP
automatically creates an entry in the $_COOKIE array with
the name of the cookie ($_COOKIE['mycookie']) and its
value.

In other words, the PHP setcookie function lets you set a
variable that will automatically be set by subsequent page
requests from the same browser. Before we examine an actual
example, let’s take a close look at the setcookie function:
setcookie(name
 [, value
 [, expiryTime
 [, path
 [, domain
 [, secure
 [,
 httpOnly
]
]
]
]
]
])

Note: Square Brackets
Indicate Optional Code

The square brackets ([…]) indicate portions of
the code that are optional. Leave out the square
brackets when using the syntax in your code.

Like the header function we saw in Chapter 4, the setcookie
function adds HTTP headers to the page, and thus must be
called before any of the actual page content is sent. Any
attempt to call setcookie after page content has been sent to
the browser will produce a PHP error message. Typically,
therefore, you’ll use these functions in your controller script
before any actual output is sent (by an included PHP template,
for example). The only required parameter for this function is
name , which specifies the name of the cookie. Calling
setcookie with only the name parameter will actually delete
the cookie that’s stored on the browser, if it exists. The value
parameter allows you to create a new cookie, or modify the
value stored in an existing one. By default, cookies will remain
stored by the browser, and thus will continue to be sent with

stored by the browser, and thus will continue to be sent with
page requests until the browser is closed by the user. If you want
the cookie to persist beyond the current browser session, you
must set the expiryTime parameter to specify the number of
seconds from January 1, 1970 to the time at which you want the
cookie to be deleted automatically. The current time in this
format can be obtained using the PHP time function. Thus, a
cookie could be set to expire in one hour, for example, by setting
expiryTime to time() + 3600. To delete a cookie that has a
preset expiry time, change this expiry time to represent a point in
the past (such as one year ago: time() – 3600 * 24 * 365).
Here are two examples showing these techniques in practice:
// Set a cookie to expire in 1 year
setcookie('mycookie', 'somevalue', time() + 3600
* 24 * 365);

// Delete it
setcookie('mycookie', '', time() – 3600 * 24 *
365);

The path parameter lets you restrict access to the cookie to a
given path on your server. For instance, if you set a path of
'/admin/' for a cookie, only requests for pages in the admin
directory (and its subdirectories) will include the cookie as part
of the request. Note the trailing /, which prevents scripts in other
directories beginning with /admin (such as /adminfake/) from
accessing the cookie. This is helpful if you’re sharing a server
with other users, and each user has a web home directory. It
allows you to set cookies without exposing your visitors’ data to
the scripts of other users on your server. The domain parameter
serves a similar purpose: it restricts the cookie’s access to a
given domain. By default, a cookie will be returned only to the
host from which it was originally sent. Large companies,
however, commonly have several host names for their web
presence (for example, www.example.com and
support.example.com). To create a cookie that’s accessible by
pages on both servers, you would set the domain parameter to
'.example.com'. Note the leading ., which prevents another
site at fakeexample.com from accessing your cookies on the
basis that their domain ends with example.com. The secure
parameter, when set to 1, indicates that the cookie should be
sent only with page requests that happen over a secure (SSL)

sent only with page requests that happen over a secure (SSL)
connection (that is, with a URL that starts with https://). The
httpOnly parameter, when set to 1, tells the browser to prevent
JavaScript code on your site from seeing the cookie that you’re
setting. Normally, the JavaScript code you include in your site
can read the cookies that have been set by the server for the
current page. While this can be useful in some cases, it also puts
the data stored in your cookies at risk should an attacker figure
out a way to inject malicious JavaScript code into your site. This
code could then read your users’ potentially sensitive cookie
data and do unspeakable things with it. If you set httpOnly to 1,
the cookie you’re setting will be sent to your PHP scripts as
usual, but will be invisible to JavaScript code running on your
site. While all parameters except name are optional, you must
specify values for earlier parameters if you want to specify values
for later ones. For instance, to call setcookie with a domain
value, you also need to specify a value for the expiryTime
parameter. To omit parameters that require a value, you can set
string parameters (value, path, domain) to '' (the empty string)
and numerical parameters (expiryTime, secure) to 0. Let’s now
look at an example of cookies in use. Imagine you want to
display a special welcome message to people on their first visit to
your site. You could use a cookie to count the number of times a
user had been to your site before, and only display the message
when the cookie was not set. Here’s the code:

chapter9/cookiecounter/index.php
<?php

if (!isset($_COOKIE['visits']))
{
 $_COOKIE['visits'] = 0;
}
$visits = $_COOKIE['visits'] + 1;
setcookie('visits', $visits, time() + 3600 * 24
* 365);

include 'welcome.html.php';

This code starts by checking if $_COOKIE['visits'] is set. If
it isn’t, it means the visits cookie has yet to be set in the user’s
browser. To handle this special case, we set
$_COOKIE['visits'] to 0. The rest of our code can then
safely assume that $_COOKIE['visits'] contains the number
of previous visits the user has made to the site. Next, to work

of previous visits the user has made to the site. Next, to work
out the number of this visit, we take $_COOKIE['visits'] and
add the value 1. This variable, $visits, will be used by our
PHP template. Finally, we use setcookie to set the visits
cookie to reflect the new number of visits. We set this cookie to
expire in one year’s time. With all the work done, our controller
includes the PHP template welcome.html.php:

chapter9/cookiecounter/welcome.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Cookie counter</title>
 </head>
 <body>
 <p>
 <?php
 if ($visits > 1)
 {
 echo "This is visit number $visits.";
 }
 else
 {
 // First visit
 echo 'Welcome to my website! Click here
for a tour!';
 }
 ?>
 </p>
 </body>
</html>

Figure 9.2 shows what this example looks like the first time a
browser visits the page. Subsequent visits look like Figure 9.3.

Figure 9.2. The first visit

Figure 9.3. The second visit

Before you go overboard using cookies, be aware that browsers
place a limit on the number and size of cookies allowed per
website. Some browsers will start deleting old cookies to make
room for new ones after you’ve set 20 cookies from your site.
Other browsers will allow up to 50 cookies per site, but will
reject new cookies beyond this limit. Browsers also enforce a
maximum combined size for all cookies from all websites, so an
especially cookie-heavy site might cause your own site’s cookies
to be deleted. For these reasons, do your best to keep the

to be deleted. For these reasons, do your best to keep the
number and size of the cookies your site creates to a minimum.

PHP Sessions
Because of the limitations I’ve just described, cookies are
inappropriate for storing large amounts of information. If you run
an ecommerce website that uses cookies to store items in
shopping carts as users make their way through your site, it can
be a huge problem; the bigger a customer’s order, the more
likely it will run afoul of a browser’s cookie restrictions. Sessions
were developed in PHP as the solution to this issue. Instead of
storing all your (possibly large) data as cookies in your visitor’s
web browser, sessions let you store the data on your web
server. The only value that’s stored in the browser is a single
cookie containing the user’s session ID—a long string of letters
and numbers that serves to identify that user uniquely for the
duration of their visit to your site. It’s a variable for which PHP
watches on subsequent page requests, and uses to load the
stored data that’s associated with that session. Unless configured
otherwise, a PHP session automatically sets a cookie in the
user’s browser that contains the session ID. The browser then
sends that cookie, along with every request for a page from your
site, so that PHP can determine to which of potentially numerous
sessions-in-progress the request belongs. Using a set of
temporary files that are stored on the web server,[51] PHP keeps
track of the variables that have been registered in each session,
and their values. Before you can go ahead and use the spiffy
session-management features in PHP, you should ensure that the
relevant section of your php.ini file has been set up properly. If
you’re using one of the all-in-one packages described in
Chapter 1 (like XAMPP or MAMP), or if you’re using a server
that belongs to your web host, it’s probably safe to assume this
has been done for you. Otherwise, open your php.ini file in a text
editor and look for the section marked [Session] (say that ten
times fast!). Beneath it, you’ll find around 20 options that begin
with the word session. Most of them are fine as they are, but
there are a few crucial ones you’ll want to check:
session.save_handler = files
session.save_path = "C:\WINDOWS\TEMP"
session.use_cookies = 1

session.use_cookies = 1

session.save_path tells PHP where to create the temporary
files used to track sessions. It must be set to a directory that
exists on the system, or you’ll receive ugly error messages when
you try to create a session on one of your pages. On Mac OS X
and Linux systems, /tmp is a popular choice. In Windows, you
could use C:\WINDOWS\TEMP, or some other directory if you
prefer (D:\PHP\SESSIONS, for example). With these
adjustments made, restart your web server software to allow the
changes to take effect. You’re now ready to start working with
PHP sessions. Before we jump into an example, let’s quickly
look at the most common session management functions in PHP.
To tell PHP to look for a session ID, or start a new session if
none is found, you simply call session_start. If an existing
session ID is found when this function is called, PHP restores the
variables that belong to that session. Since this function attempts
to create a cookie, it must come before any page content is sent
to the browser, just as we saw for setcookie above:
session_start();

To create a session variable that will be available on all pages in
the site when accessed by the current user, set a value in the
special $_SESSION array. For example, the following will store
the variable called password in the current session:
$_SESSION['password'] = 'mypassword';

To remove a variable from the current session, use PHP’s
unset function:
unset($_SESSION['password']);

Finally, should you want to end the current session and delete all
registered variables in the process, clear all the stored values and
use session_destroy:
$_SESSION = array();
session_destroy();

For more detailed information on these and the other session-
management functions in PHP, see the relevant section of the
PHP Manual. Now that we have these basic functions under our
belt, let’s put them to work in a simple example.

A Simple Shopping Cart

This example will consist of a controller script feeding two PHP
templates:

a product catalog, through which you can add items to
your shopping cart

a checkout page, which displays the contents of the user’s
shopping cart for confirmation

From the checkout page, the order could then be submitted to a
processing system that would handle the details of payment
acceptance and shipping arrangements. That system is beyond
the scope of this book, but if you’d like to try one I’d
recommend playing with PayPal, which is quite easy to set up.
The documentation page should be well within reach of your
PHP skills at this point. Let’s start with the controller code that
sets up the list of items we’ll have for sale in our online store. For
each item, we wish to list a description and a price per unit. For
this example, we’ll code these details as a PHP array. In a real-
world system, you would probably store these details in a
database, but I’m using this method so that we can focus on the
session code. You should already have all the knowledge to put
together a database driven product catalog, so if you’re feeling
ambitious, go ahead and write it now. Here’s the code for our
list of products:

chapter9/shoppingcart/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

$items = array(
 array('id' => '1', 'desc' => 'Canadian-
Australian Dictionary',
 'price' => 24.95),
 array('id' => '2', 'desc' => 'As-new
parachute (never opened)',
 'price' => 1000),
 array('id' => '3', 'desc' => 'Songs of the
Goldfish (2CD set)',
 'price' => 19.99),
 array('id' => '4', 'desc' => 'Simply
JavaScript (SitePoint)',

JavaScript (SitePoint)',
 'price' => 39.95));

Each item in this array is itself an associative array of three items:
a unique item ID, the item description, and the price. It’s no
coincidence that this looks like an array of results we might build
from querying a database. Now we’re going to store the list of
items the user placed in the shopping cart in yet another array.
Because we’ll need this variable to persist throughout a user’s
visit to your site, we’ll store it using PHP sessions. Here’s the
code that’s responsible:

chapter9/shoppingcart/index.php (excerpt)
session_start();
if (!isset($_SESSION['cart']))
{
 $_SESSION['cart'] = array();
}

session_start either starts a new session (and sets the
session ID cookie), or restores the variables registered in the
existing session, if one exists. The code then checks if
$_SESSION['cart'] exists, and, if it doesn’t, initializes it to an
empty array to represent the empty cart. That’s all we need to
display a product catalog using a PHP template:

chapter9/shoppingcart/index.php (excerpt)
include 'catalog.html.php';

Let’s look at the code for this template:
chapter9/shoppingcart/catalog.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Product Catalog</title>
 <style>
 table {
 border-collapse: collapse;
 }
 td, th {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>

 <body>
 <p>Your shopping cart contains <?php
 echo count($_SESSION['cart']); ?> items.
</p>(1)
 <p>View your cart</p>(2)
 <table border="1">
 <thead>
 <tr>
 <th>Item Description</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($items as $item): ?>
 <tr>
 <td><?php htmlout($item['desc']); ?>
</td>
 <td>
 $<?php echo
number_format($item['price'], 2); ?>(3)
 </td>
 <td>
 <form action="" method="post">(4)
 <div>
 <input type="hidden" name="id"
value="<?php
 htmlout($item['id']); ?>">
 <input type="submit"
name="action" value="Buy">
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 <p>All prices are in imaginary dollars.</p>
 </body>
</html>

Here are the highlights:

(1)
We use the built-in PHP function count to output the
number of items in the array stored in the
$_SESSION['cart'].

(2)
We provide a link to let the user view the contents of the
shopping cart. In a system that provided checkout facilities,
you might label this link Proceed to Checkout.
We use PHP’s built-in number_format function to display

(3)
We use PHP’s built-in number_format function to display
the prices with two digits after the decimal point (see the
PHP Manual for more information about this function).

(4) For each item in the catalog, we provide a form with a Buy
button that submits the unique ID of the item.

Figure 9.4 shows the product catalog produced by this template.

Figure 9.4. The completed product catalog

Now, when a user clicks one of the Buy buttons, our controller
will receive a form submission with $_POST['action'] set to
'Buy'. Here’s how we process this in the controller:

chapter9/shoppingcart/index.php (excerpt)
if (isset($_POST['action']) and $_POST['action']
== 'Buy')
{
 // Add item to the end of the
$_SESSION['cart'] array
 $_SESSION['cart'][] = $_POST['id'];
 header('Location: .');
 exit();
}

}

We add the product ID of the item to the $_SESSION['cart']
array before redirecting the browser back to the same page, but
without submitted form data, thereby ensuring that the user can
refresh the page without adding the item to the cart again. When
the user clicks the View your cart link, our controller will receive
a request with $_GET['cart'] set. Here’s how our controller
will handle this:

chapter9/shoppingcart/index.php (excerpt)
if (isset($_GET['cart']))
{
 $cart = array();
 $total = 0;
 foreach ($_SESSION['cart'] as $id)
 {
 foreach ($items as $product)
 {
 if ($product['id'] == $id)
 {
 $cart[] = $product;
 $total += $product['price'];
 break;
 }
 }
 }

 include 'cart.html.php';
 exit();
}

What this code does is build an array ($cart) much like the
$items array, except that the items in $cart reflect the items
the user has added to the shopping cart. To do this, it uses two
nested foreach loops. The first loops through the IDs in
$_SESSION['cart']. For each of these IDs, it uses the second
foreach loop to search through the $items array looking for a
product whose ID ($product['id']) is equal to the $id from
the cart. When it finds the product, it adds it to the $cart array.
At the same time, this code tallies the total price of the items in
the shopping cart. Each time the second foreach loop finds the
product in the cart, it adds its price ($product['price']) to
the $total. The break command tells PHP to stop executing
the second foreach loop, since it’s found the product it has
been searching for. Once the $cart array is built, we load the
second of our two PHP templates, cart.html.php. The code for

second of our two PHP templates, cart.html.php. The code for
cart.html.php is very similar to the product catalog template. All
it does is list the items in the $cart array instead of the $items
array. It also outputs the total in the footer of the table:

chapter9/shoppingcart/cart.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Shopping Cart</title>
 <style>
 table {
 border-collapse: collapse;
 }
 td, th {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <h1>Your Shopping Cart</h1>
 <?php if (count($cart) > 0): ?>
 <table>
 <thead>
 <tr>
 <th>Item Description</th>
 <th>Price</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td>Total:</td>
 <td>$<?php echo number_format($total,
2); ?></td>
 </tr>
 </tfoot>
 <tbody>
 <?php foreach ($cart as $item): ?>
 <tr>
 <td><?php htmlout($item['desc']); ?>
</td>
 <td>
 $<?php echo
number_format($item['price'], 2); ?>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>

 </tbody>
 </table>
 <?php else: ?>
 <p>Your cart is empty!</p>
 <?php endif; ?>
 <form action="?" method="post">
 <p>
 Continue shopping or
 <input type="submit" name="action"
value="Empty cart">
 </p>
 </form>
 </body>
</html>

Once you have filled your cart with goodies, Figure 9.5 shows
the output of this template.

Figure 9.5. A full cart

This template also provides an Empty cart button that causes the
controller script to unset the $_SESSION['cart'] variable,
which results in a new, empty shopping cart. Here’s the code:

chapter9/shoppingcart/index.php (excerpt)

chapter9/shoppingcart/index.php (excerpt)
if (isset($_POST['action']) and $_POST['action']
== 'Empty cart')
{
 // Empty the $_SESSION['cart'] array
 unset($_SESSION['cart']);
 header('Location: ?cart');
 exit();
}

And Figure 9.6 shows what the cart looks like once emptied.

Figure 9.6. Avoid going home empty-handed!

That’s it! Here’s the complete code for the controller, with all the
pieces assembled:

chapter9/shoppingcart/index.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

$items = array(
 array('id' => '1', 'desc' => 'Canadian-
Australian Dictionary',

Australian Dictionary',
 'price' => 24.95),
 array('id' => '2', 'desc' => 'As-new
parachute (never opened)',
 'price' => 1000),
 array('id' => '3', 'desc' => 'Songs of the
Goldfish (2CD set)',
 'price' => 19.99),
 array('id' => '4', 'desc' => 'Simply
JavaScript (SitePoint)',
 'price' => 39.95));

session_start();
if (!isset($_SESSION['cart']))
{
 $_SESSION['cart'] = array();
}

if (isset($_POST['action']) and $_POST['action']
== 'Buy')
{
 // Add item to the end of the
$_SESSION['cart'] array
 $_SESSION['cart'][] = $_POST['id'];
 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action']
== 'Empty cart')
{
 // Empty the $_SESSION['cart'] array
 unset($_SESSION['cart']);
 header('Location: ?cart');
 exit();
}

if (isset($_GET['cart']))
{
 $cart = array();
 $total = 0;
 foreach ($_SESSION['cart'] as $id)
 {
 foreach ($items as $product)
 {
 if ($product['id'] == $id)
 {
 $cart[] = $product;
 $total += $product['price'];
 break;
 }
 }

 }
 }

 include 'cart.html.php';
 exit();
}

include 'catalog.html.php';

Access Control
One of the most common reasons for building a database driven
website is that it allows the site owner to update the site from any
web browser, anywhere! But, in a world where roaming bands
of jubilant hackers will fill your site with viruses and
pornography, you need to stop and think about the security of
your administration pages. At the very least, you’ll want to
require username and password authentication before a visitor to
your site can access the administration area. There are two main
ways of doing this:

configure your web server software to require a valid login
for the relevant pages

use PHP to prompt the user and check the login
credentials as appropriate

If you have access to your web server’s configuration, the first
option is often the easiest to set up, but the second is by far the
more flexible. With PHP, you can design your own login form,
even embed it into the layout of your site if you wish. PHP also
makes it easy to change the credentials required to gain access,
or manage a database of authorized users, each with their own
credentials and privileges. In this section, you’ll enhance your
joke database site to protect sensitive features with
username/password-based authentication. In order to control
which users can do what, you’ll build a sophisticated role-based
access control system. “What does all this have to do with
cookies and sessions?” you might wonder. Well, rather than
prompting your users for login credentials every time they wish to
view a confidential page or perform a sensitive action, you can
use PHP sessions to hold onto those credentials throughout their

use PHP sessions to hold onto those credentials throughout their
visit to your site.

Database Design

Depending on the type of application you’re working on, you
may need to create a new database table to store the list of
authorized users and their passwords. In the case of the joke
database site, you already have a table to do the job—the
author table shown in Figure 9.7.

Figure 9.7. The existing structure of the author table

Rather than track authors and users separately, let’s extend this
existing database table so that authors can log in to your site.
Some authors in the database may never log in, and may exist
only to be given credit for jokes. Other authors may never write
a joke, existing only to give a person administrative access to the
site. But for those users who do both, it will be more elegant to
have their details stored in this one table, rather than spread
across two different tables. We can use each author’s email
address as a username, but to do this, we’ll want to ensure that
each author in the database has a unique email address. We can
achieve this with an ALTER TABLE ADD UNIQUE command.
Use phpMyAdmin’s Query window to run this command:[52]

 ALTER TABLE author ADD UNIQUE (email)

With this change made, MySQL will now generate an error if
you try to create a new author with the same email address as an
existing author. Now all this table needs is an extra column to
store each author’s password:

 ALTER TABLE author ADD COLUMN password CHAR(32)

Note that we refrain from using the NOT NULL modifier on this
column, so some authors may have no password. When we
write the PHP code that uses this column, we’ll simply prevent
authors with no password from logging in. Note the column type:
CHAR(32). It’s a big no-no to store users’ actual passwords in
your database. Many users share a bad habit of reusing the same
password across many different websites. It’s an expected
courtesy, therefore, as a site administrator, to scramble the
passwords your users give you, so that even if your database
were stolen out from under you, those passwords would be
useless to an attacker trying to gain access to your users’
accounts on other websites. A typical method of scrambling
passwords is to use the md5 function built into PHP:
$scrambled = md5($password . 'ijdb');

Adding 'ijdb' to the end of the password supplied by the user
before scrambling it ensures that the scrambled password in your
site’s database is different to the scrambled version of the same
password in another site’s database. Security experts call this
salt, as in “add a dash of salt before you scramble the eggs.”

Note: A Note from the
Security Experts

Security experts will tell you that using the same
salt for every password in your database is
asking for trouble, since an attacker who’s able
to figure out your salt (by obtaining a copy of
your site’s code, for example) will be one step
closer to guessing the original passwords based
on the scrambled versions in your database. Of
course, those same security experts will tell you
that rather than write your own password-
handling code, you should rely on a proven
solution developed by security experts like
themselves. This example provides a basic level
of security with plenty of room for improvement
if you’re interested in doing a little research.

The md5 function creates a string exactly 32 characters long
made up of apparently random letters and numbers. Although the

made up of apparently random letters and numbers. Although the
same password will always generate the same string of 32
characters, it’s effectively impossible to guess the password that
was used to generate a given 32-character string. By storing only
these strings in your database, you’ll be able to check if a user
has entered the correct password. Unlike the VARCHAR column
type, a column of type CHAR(32) will only store values exactly
32 characters long. This added regularity makes your database
perform faster. Since the md5 function always generates a string
32 characters long, we can safely take advantage of this speed
boost. It turns out that MySQL has an MD5 function that
performs the same task. Go ahead and store a password for
your own author entry—or create one from scratch if you need
to—now:

 UPDATE author SET password = MD5('passwordijdb')
WHERE id = 1

Note that you have to tack onto your desired password the
same suffix ('ijdb' in this example) that you’re using in your
PHP code. Next, we need to store the list of sensitive actions
each author is permitted to do. While you could simply give
every logged-in user carte blanche—blanket permission to do
absolutely anything—on most sites it will make greater sense to
have more granular control over what each user’s able to do.
Let’s build a new table that will contain a list of roles that you’ll
be able to assign to each of your authors. Each author may have
one or more of these roles assigned to them. An author who’s
assigned the role of Content Editor, for example, would be able
to edit jokes in your CMS. This type of system is called role-
based access control :

 CREATE TABLE role (
 id VARCHAR(255) NOT NULL PRIMARY KEY,
 description VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Each role will have a short string ID and a longer description.
Let’s fill in a few roles now:

 INSERT INTO role (id, description) VALUES
('Content Editor', 'Add, remove, and edit jokes'),
('Account Administrator', 'Add, remove, and edit authors'),

('Site Administrator', 'Add, remove, and edit categories')

Finally, we will need a lookup table to assign roles to users in a
many-to-many relationship:

 CREATE TABLE authorrole (
 authorid INT NOT NULL,
 roleid VARCHAR(255) NOT NULL,
 PRIMARY KEY (authorid, roleid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

While you’re at it, assign yourself the Account Administrator
role:

 INSERT INTO authorrole (authorid, roleid) VALUES
(1, 'Account Administrator')

That takes care of the database. Now let’s turn our attention to
the PHP code that will use these new database structures.

Controller Code

Obviously, access control is a feature that will be handy in many
different PHP projects. Therefore, like our database connection
code and view helpers, it makes sense to write as much of our
access control code as possible as a shared include file, so that
we can then reuse it in future projects. Rather than try to guess
what functions our shared include file should contain, let’s start
by modifying our controller code as if we already had the include
file written. You’ll recall that our administration pages start with
an ordinary HTML page that displays the menu shown in
Figure 9.8.

Figure 9.8. No protection required on this page

Your instinct might be to protect this page, but in fact it contains
no sensitive information, so we can safely leave it alone. Each of
the three links, however, point to a PHP controller script that
performs all sorts of sensitive operations:

/admin/jokes/index.php

Searches for, displays, adds, edits, and removes jokes
from the system. Only users with the Content Editor role
should be able to perform these actions.

/admin/authors/index.php

Lists, adds, edits, and removes authors from the system.
Users with the Account Administrator role only should be
able to perform these actions.

/admin/categories/index.php

Lists, adds, edits, and removes categories from the
system. Only users with the Site Administrator role should
be able to perform these actions.

Each of these controllers, therefore, should check if the user is
currently logged in and assigned the required role before
proceeding. If the user has yet to log in, a login form should be
displayed. If the user is logged in but lacks the required role, it
should display an appropriate error message. If we imagine that
we already have functions to achieve all these actions, here’s
what the code might look like:

chapter9/admin/authors/index.php (excerpt)

chapter9/admin/authors/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Account Administrator'))
{
 $error = 'Only Account Administrators may
access this page.';
 include '../accessdenied.html.php';
 exit();
}

… The rest of the controller code is unchanged.

We add similar code to each of our other two controllers, but
with the appropriate role specified for each:

chapter9/admin/categories/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Site Administrator'))
{
 $error = 'Only Site Administrators may access
this page.';
 include '../accessdenied.html.php';
 exit();
}

… The rest of the controller code is unchanged.

… The rest of the controller code is unchanged.

chapter9/admin/jokes/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Content Editor'))
{
 $error = 'Only Content Editors may access this
page.';
 include '../accessdenied.html.php';
 exit();
}

… The rest of the controller code is unchanged.

From each of these blocks of code, we can see that we have the
following tasks ahead of us:

Write the login form, login.html.php.

Write the “access denied” error page,
accessdenied.html.php.

Write the shared include file access.inc.php containing the
following functions:
userIsLoggedIn

Checks if the user’s already logged in, or if the user
has just submitted the login form with a correct
email address and password.

userHasRole

Checks if the user who’s logged in has been
assigned the specified role in the database.

Since the login form and the error page will be shared by all
three of our controllers, we’ll put them in the admin directory
alongside index.html. The code for the error page is completely
straightforward. All it does is output the $error variable set by
the controller:

chapter9/admin/accessdenied.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Access Denied</title>
 </head>
 <body>
 <h1>Access Denied</h1>
 <p><?php htmlout($error); ?></p>
 </body>
</html>

The login form takes a little more thought. Here’s the code:
chapter9/admin/login.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Log In</title>
 </head>
 <body>
 <h1>Log In</h1>
 <p>Please log in to view the page that you
requested.</p>
 <?php if (isset($loginError)): ?>(1)
 <p><?php htmlout($loginError); ?></p>
 <?php endif; ?>
 <form action="" method="post">(2)
 <div>
 <label for="email">Email: <input
type="text" name="email"
 id="email"></label>
 </div>
 <div>
 <label for="password">Password: <input
type="password"(3)
 name="password" id="password">

 name="password" id="password">
</label>
 </div>
 <div>
 <input type="hidden" name="action"
value="login">(4)
 <input type="submit" value="Log in">
 </div>
 </form>
 <p>Return to JMS home
</p>(5)
 </body>
</html>

The form takes an email address and a password, as you might
expect.

(1)

If the user submits the login form with an incorrect email
address or password, the user will be denied access, simply
being presented with the login form again. We need a way
to tell the user what went wrong in this situation; this
template will check if a variable named $loginError
exists, and if so, will display it above the form.

(2)

The <form> tag has an empty action attribute, so this
form will be submitted back to the same URL that
produced it. Thus, if the user’s login attempt is successful,
the controller will display the page that the browser
originally requested.

(3)
Notice the second <input> tag has its type attribute set to
password. This tells the browser to hide the value that the
user types in, to shield the password from prying eyes.

(4)

This hidden field will be submitted with the form, to act as a
signal to the userIsLoggedIn function that the user has
submitted this form in an attempt to log in. You might be
tempted simply to put the name="action" attribute on the
submit button’s <input> tag and watch for that—but if the
user submits the form by hitting Enter while editing one of
the two text fields, the submit button will not be sent with
the form. Using a hidden field like this ensures that the
action variable will be submitted no matter how the
submission is triggered.

(5)
A user might request a protected page by accident, or might
be unaware that a page is protected until they see the login

(5) be unaware that a page is protected until they see the login
form. We therefore provide a link back to an unprotected
page as a way out.

This form will take care of people logging in, but we also want to
provide a way for a logged-in user to log out. Just as our
userIsLoggedIn function will detect submissions of the login
form to log users in, we can also make it detect the submission of
a logout form to log users out. Let’s add this form to the bottom
of each protected page:

chapter9/admin/logout.inc.html.php
<form action="" method="post">
 <div>
 <input type="hidden" name="action"
value="logout">
 <input type="hidden" name="goto"
value="/admin/">
 <input type="submit" value="Log out">
 </div>
</form>

Again, we use a hidden action field to signal the user’s
intentions. The goto field indicates where we wish to send the
user who’s just logged out. To add this form to all our protected
pages, simply add the necessary include command to the
bottom of each template:

chapter9/admin/authors/authors.html.php (excerpt)
 …
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

chapter9/admin/categories/categories.html.php (excerpt)
 …
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

chapter9/admin/jokes/jokes.html.php (excerpt)
 …
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

chapter9/admin/jokes/searchform.html.php (excerpt)
 …
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

Function Library

Finally, we can look at writing the shared include file,
access.inc.php. Our code demands a lot from this humble file,
but having written all the code that depends on it ahead of time,
we have a fairly good idea of what it needs to do. Let’s review.
This file must define two custom functions:

userIsLoggedIn

This function should return TRUE if the user is logged in, or
FALSE if not. This function should also detect and handle a
couple of special cases:

If the current request contains a submission of the
login form, as indicated by the hidden field in the
form (which sets $_POST['action'] to
'login'), it should check if the submitted
username and password are correct. If they are, it
should log in the user and return TRUE. Otherwise,
it should set the global variable $loginError to an
appropriate error message, and return FALSE.

If the current request contains a submission of the
logout form, as indicated by the hidden field in the
form (which sets $_POST['action'] to
'logout'), it should log out the user and redirect
the browser to the URL specified by
$_POST['goto'].

userHasRole

This function should look in the database and check if the
currently logged-in user has been assigned the role that’s
passed to the function. If the role has been assigned, the
function should return TRUE; if not, it should return FALSE.

function should return TRUE; if not, it should return FALSE.

Let’s work through these two functions a few lines at a time:
chapter9/includes/access.inc.php (excerpt)

<?php

function userIsLoggedIn()
{
 if (isset($_POST['action']) and
$_POST['action'] == 'login')
 {

We start with the userIsLoggedIn function. The first deed it
does is check if the login form has been submitted:

chapter9/includes/access.inc.php (excerpt)
 if (!isset($_POST['email']) or
$_POST['email'] == '' or
 !isset($_POST['password']) or
$_POST['password'] == '')
 {
 $GLOBALS['loginError'] = 'Please fill in
both fields';
 return FALSE;
 }

Next, before we go looking in the database, we should make
sure that the user has filled in a value for both the email address
and password. If either of these were not submitted, or were
submitted as an empty string, we set the global $loginError
variable (using the special $GLOBALS array we looked at in
Chapter 6) and return FALSE. Now that we’ve checked that an
email address and password were actually submitted, we can
look for a matching author in the database. Our first task is to
scramble the submitted password to match the scrambled
version that will be stored in the database:

chapter9/includes/access.inc.php (excerpt)
 $password = md5($_POST['password'] .
'ijdb');

Next, we’ll query the database for a matching author record.
Since this is an undertaking we’ll have to do more than once in
this code, we’ll write another custom function to do it:

chapter9/includes/access.inc.php (excerpt)
function databaseContainsAuthor($email,
$password)

$password)
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT COUNT(*) FROM author
 WHERE email = :email AND password =
:password';
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $email);
 $s->bindValue(':password', $password);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

This code should be quite familiar to you by now. We start by
connecting to the database using our shared db.inc.php include
file.[53] We then use our usual approach to execute a prepared
SELECT query containing our two submitted values—the email
address and the scrambled password. This database query will
count the number of records in the author table that have a
matching email address and password. If the number returned is
greater than zero, we return TRUE; if not, we return FALSE. Back
in the userIsLoggedIn function, we can call our new
databaseContainsAuthor function:

chapter9/includes/access.inc.php (excerpt)
 if (databaseContainsAuthor($_POST['email'],
$password))
 {

If the database contains a matching author, it means the user
filled out the login form correctly and we have to log in the user.
But what exactly does “log in the user” mean? There are two
approaches to this, both of which involve using PHP sessions:

You can log in the user by setting a session variable as a
“flag” (for example, $_SESSION['loggedIn'] =
TRUE). On future requests, you can just check if this
variable is set. If it is, the user is logged in, and the
isUserLoggedIn function can return TRUE.

You can store the “flag” variable as well as the submitted
email address and scrambled password in two additional
session variables. On future requests, you can check if
these variables are set. If they are, you can use the
databaseContainsAuthor function to check if they still
match an author stored in the database. If they do, the
isUserLoggedIn function can return TRUE.

The first option will give better performance, since the user’s
credentials are only checked once—when the login form is
submitted. The second option offers greater security, since the
user’s credentials are checked against the database every time a
sensitive page is requested. In general, the more secure option is
preferable, since it allows you to remove authors from the site
even while they’re logged in. Otherwise, once a user is logged in,
they’ll stay logged in for as long as their PHP session remains
active. That’s a steep price to pay for a little extra performance.
So, here’s the code for the second option:

chapter9/includes/access.inc.php (excerpt)
 session_start();
 $_SESSION['loggedIn'] = TRUE;
 $_SESSION['email'] = $_POST['email'];
 $_SESSION['password'] = $password;
 return TRUE;
 }

And finally, of course, if the user submits a login form with
incorrect values, we need to ensure the user is logged out, set an
appropriate error message, and return FALSE:

chapter9/includes/access.inc.php (excerpt)
 else

 else
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 $GLOBALS['loginError'] =
 'The specified email address or
password was incorrect.';
 return FALSE;
 }
 }

That takes care of processing the login form. The second special
case we need to handle is the logout form. This one’s much
simpler—so much so that the code should be self-explanatory:

chapter9/includes/access.inc.php (excerpt)
 if (isset($_POST['action']) and
$_POST['action'] == 'logout')
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 header('Location: ' . $_POST['goto']);
 exit();
 }

Finally, if neither of the two special cases are detected, we
simply check if the user is logged in using the session variables
we’ve already discussed:

chapter9/includes/access.inc.php (excerpt)
 session_start();
 if (isset($_SESSION['loggedIn']))
 {
 return
databaseContainsAuthor($_SESSION['email'],
 $_SESSION['password']);
 }
}

That takes care of userIsLoggedIn. Now let’s look at
userHasRole . This function really just performs a complex
database query: Given an author’s email address (stored in the
session), and a role ID (passed to the function), we need to
check if the specified author has been assigned that role. This
query will involve three database tables, so let’s look at the SQL

query will involve three database tables, so let’s look at the SQL
code in isolation:
SELECT COUNT(*) FROM author
INNER JOIN authorrole ON author.id = authorid
INNER JOIN role ON roleid = role.id
WHERE email = :email AND role.id = :roleId

We join the author table to the authorrole table by matching
up the author table’s id field with the authorrole table’s
authorid field. We then join those with the role table by
matching up the authorrole table’s roleid field with the role
table’s id field. Finally, with our three tables joined, we use the
WHERE clause to look for records with the email address and role
ID we’re after. From there, it’s just a matter of writing the PHP
code to execute this query and interpret the results:

chapter9/includes/access.inc.php (excerpt)
function userHasRole($role)
{
 include 'db.inc.php';

 try
 {
 $sql = "SELECT COUNT(*) FROM author
 INNER JOIN authorrole ON author.id =
authorid
 INNER JOIN role ON roleid = role.id
 WHERE email = :email AND role.id =
:roleId";
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $_SESSION['email']);
 $s->bindValue(':roleId', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author
roles.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else

 {
 return FALSE;
 }
}

Understand all that? Save your changes, and try visiting some of
the protected pages. If you gave yourself the Account
Administrator role as I suggested, you should be able to visit and
use the Manage Authors section of the admin pages. The other
sections should display the appropriate “access denied” errors.
Also try clicking the Log out button on any of the protected
admin pages. These should return you to the admin index, and
prompt you to log in again if you try to access a protected page
afterwards. If you have any problems, check your code using
whatever error messages you see as a guide. For easy reference,
here’s the completed access.inc.php file:

chapter9/includes/access.inc.php
<?php

function userIsLoggedIn()
{
 if (isset($_POST['action']) and
$_POST['action'] == 'login')
 {
 if (!isset($_POST['email']) or
$_POST['email'] == '' or
 !isset($_POST['password']) or
$_POST['password'] == '')
 {
 $GLOBALS['loginError'] = 'Please fill in
both fields';
 return FALSE;
 }

 $password = md5($_POST['password'] .
'ijdb');

 if (databaseContainsAuthor($_POST['email'],
$password))
 {
 session_start();
 $_SESSION['loggedIn'] = TRUE;
 $_SESSION['email'] = $_POST['email'];
 $_SESSION['password'] = $password;
 return TRUE;
 }
 else

 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 $GLOBALS['loginError'] =
 'The specified email address or
password was incorrect.';
 return FALSE;
 }
 }

 if (isset($_POST['action']) and
$_POST['action'] == 'logout')
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 header('Location: ' . $_POST['goto']);
 exit();
 }

 session_start();
 if (isset($_SESSION['loggedIn']))
 {
 return
databaseContainsAuthor($_SESSION['email'],
 $_SESSION['password']);
 }
}

function databaseContainsAuthor($email,
$password)
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT COUNT(*) FROM author
 WHERE email = :email AND password =
:password';
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $email);
 $s->bindValue(':password', $password);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author.';
 include 'error.html.php';

 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

function userHasRole($role)
{
 include 'db.inc.php';

 try
 {
 $sql = "SELECT COUNT(*) FROM author
 INNER JOIN authorrole ON author.id =
authorid
 INNER JOIN role ON roleid = role.id
 WHERE email = :email AND role.id =
:roleId";
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $_SESSION['email']);
 $s->bindValue(':roleId', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author
roles.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }

 }
}

Managing Passwords and Roles

Now that we’ve added passwords and roles to the database, we
should update our author admin pages so that they can
manipulate these aspects of authors. First, let’s add to the author
add/edit form a Set password field, as well as a set of
checkboxes for choosing the roles that the user should be
assigned:

chapter9/admin/authors/form.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>"
method="post">
 <div>
 <label for="name">Name: <input
type="text" name="name"
 id="name" value="<?php
htmlout($name); ?>"></label>
 </div>
 <div>
 <label for="email">Email: <input
type="text" name="email"
 id="email" value="<?php
htmlout($email); ?>"></label>
 </div>
 <div>
 <label for="password">Set password:
<input type="password"
 name="password" id="password">
</label>
 </div>
 <fieldset>
 <legend>Roles:</legend>
 <?php for ($i = 0; $i < count($roles);
$i++): ?>
 <div>
 <label for="role<?php echo $i; ?>">

 <label for="role<?php echo $i; ?>">
<input
 type="checkbox"
 name="roles[]" id="role<?php echo
$i; ?>"
 value="<?php htmlout($roles[$i]
['id']); ?>"<?php
 if ($roles[$i]['selected'])
 {
 echo ' checked';
 }
 ?>><?php htmlout($roles[$i]
['id']); ?></label>:
 <?php htmlout($roles[$i]
['description']); ?>
 </div>
 <?php endfor; ?>
 </fieldset>
 <div>
 <input type="hidden" name="id" value="<?
php
 htmlout($id); ?>">
 <input type="submit" value="<?php
htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

The Set password field is a little special because, when it’s left
blank, it should cause the controller to leave the user’s current
password alone. Remember that because we store only
scrambled passwords in the database, we’re unable to display a
user’s existing password in the form for editing. The role
checkboxes are a lot like the category checkboxes we created
for the joke add/edit form in Chapter 7, with one notable
difference. Since we’re using strings instead of numbers for our
role IDs in the database, we’re unable to use the IDs to generate
the <input> tags’ id attributes. The id attribute can’t contain
spaces. We therefore have to go a little out of our way to
generate a unique number for each role. Instead of using a
foreach loop to step through our array of roles, we use an old-
fashioned for loop:

chapter9/admin/authors/form.html.php (excerpt)
 <?php for ($i = 0; $i < count($roles); $i++): ?
>

The counter variable $i starts at 0 and each time through the
loop it’s incremented by one. We can therefore access each role
within the loop as $roles[$i], and we can also use $i to build
our unique id attributes:

chapter9/admin/authors/form.html.php (excerpt)
 id="role<?php echo $i; ?>"

Now you can update the controller to handle these new fields.
The code for the password field is straightforward, and the code
for the role checkboxes is nearly identical to what we wrote to
process joke categories. I’ve highlighted the changes in bold
below. Take a look, and satisfy yourself that you understand
everything that’s going on:

chapter9/admin/authors/index.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Account Administrator'))
{
 $error = 'Only Account Administrators may
access this page.';
 include '../accessdenied.html.php';
 exit();
}

if (isset($_GET['add']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';
 $pageTitle = 'New Author';
 $action = 'addform';
 $name = '';
 $email = '';
 $id = '';
 $button = 'Add author';

 // Build the list of roles
 try
 {
 $result = $pdo->query('SELECT id,
description FROM role');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of roles.';
 include 'error.html.php';
 exit();
 }
 foreach ($result as $row)
 {
 $roles[] = array(
 'id' => $row['id'],
 'description' => $row['description'],
 'selected' => FALSE);
 }
 include 'form.html.php';
 exit();
}

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO author SET
 name = :name,
 email = :email';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted author.';
 include 'error.html.php';
 exit();
 }

 $authorid = $pdo->lastInsertId();
 if ($_POST['password'] != '')

 if ($_POST['password'] != '')
 {
 $password = md5($_POST['password'] .
'ijdb');
 try
 {
 $sql = 'UPDATE author SET
 password = :password
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':password', $password);
 $s->bindValue(':id', $authorid);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error setting author password.';
 include 'error.html.php';
 exit();
 }
 }
 if (isset($_POST['roles']))
 {
 foreach ($_POST['roles'] as $role)
 {
 try
 {
 $sql = 'INSERT INTO authorrole SET
 authorid = :authorid,
 roleid = :roleid';
 $s = $pdo->prepare($sql);
 $s->bindValue(':authorid', $authorid);
 $s->bindValue(':roleid', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error assigning selected role
to author.';
 include 'error.html.php';
 exit();
 }
 }
 }
 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action']

if (isset($_POST['action']) and $_POST['action']
== 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name, email FROM author
WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching author details.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 $pageTitle = 'Edit Author';
 $action = 'editform';
 $name = $row['name'];
 $email = $row['email'];
 $id = $row['id'];
 $button = 'Update author';

 // Get list of roles assigned to this author
 try
 {
 $sql = 'SELECT roleid FROM authorrole WHERE
authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of assigned
roles.';
 include 'error.html.php';
 exit();
 }
 $selectedRoles = array();
 foreach ($s as $row)
 {
 $selectedRoles[] = $row['roleid'];

 $selectedRoles[] = $row['roleid'];
 }
 // Build the list of all roles
 try
 {
 $result = $pdo->query('SELECT id,
description FROM role');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of roles.';
 include 'error.html.php';
 exit();
 }
 foreach ($result as $row)
 {
 $roles[] = array(
 'id' => $row['id'],
 'description' => $row['description'],
 'selected' => in_array($row['id'],
$selectedRoles));
 }
 include 'form.html.php';
 exit();
}

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE author SET
 name = :name,
 email = :email
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted author.';
 include 'error.html.php';
 exit();

 exit();
 }

 if ($_POST['password'] != '')
 {
 $password = md5($_POST['password'] .
'ijdb');
 try
 {
 $sql = 'UPDATE author SET
 password = :password
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':password', $password);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error setting author password.';
 include 'error.html.php';
 exit();
 }
 }
 try
 {
 $sql = 'DELETE FROM authorrole WHERE
authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing obsolete author
role entries.';
 include 'error.html.php';
 exit();
 }
 if (isset($_POST['roles']))
 {
 foreach ($_POST['roles'] as $role)
 {
 try
 {
 $sql = 'INSERT INTO authorrole SET
 authorid = :authorid,
 roleid = :roleid';
 $s = $pdo->prepare($sql);

 $s = $pdo->prepare($sql);
 $s->bindValue(':authorid',
$_POST['id']);
 $s->bindValue(':roleid', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error assigning selected role
to author.';
 include 'error.html.php';
 exit();
 }
 }
 }
 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action']
== 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

 // Delete role assignments for this author
 try
 {
 $sql = 'DELETE FROM authorrole WHERE
authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing author from
roles.';
 include 'error.html.php';
 exit();
 }
 // Get jokes belonging to author
 try
 {
 $sql = 'SELECT id FROM joke WHERE authorid =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();

 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error getting list of jokes to
delete.';
 include 'error.html.php';
 exit();
 }

 $result = $s->fetchAll();

 // Delete joke category entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE
jokeid = :id';
 $s = $pdo->prepare($sql);

 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category entries
for joke.';
 include 'error.html.php';
 exit();
 }

 // Delete jokes belonging to author
 try
 {
 $sql = 'DELETE FROM joke WHERE authorid =
:id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting jokes for author.';
 include 'error.html.php';
 exit();
 }

 // Delete the author
 try
 {
 $sql = 'DELETE FROM author WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

// Display author list
include $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM
author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from the
database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name'
=> $row['name']);
}

include 'authors.html.php';

That’s it! Take your enhancements for a spin and give yourself
ultimate power by assigning yourself all the roles! Make sure
everything works, and if it doesn’t, fix it. Just for kicks, try
changing your own password while you’re logged in. You should
be kicked out to the login form with the next link or button you

be kicked out to the login form with the next link or button you
click, where you can enter your new password to log back in.

A Challenge: Joke Moderation

It’s all well and good to follow along with the code that I
present, but it’s quite another to write a significant new feature
yourself. Now is a good time to try your hand at planning and
building a major feature for the joke database website. For the
past few chapters, we’ve been so focused on the administration
pages that the public side of the site hasn’t progressed much. In
fact, it’s gone backwards. Before we removed the Add your
own joke link and Delete buttons, the main page of our joke
database site looked like Figure 9.9.

Figure 9.9. The joke list we left behind

Obviously, those Delete buttons had to go, but what about that
Add your own joke link? Originally, this link went to the form
shown in Figure 9.10.

Figure 9.10. Another nugget of comic genius is added to the
database

When submitted, this form inserted a new joke into the database
with no associated author or categories (because our database
didn’t contain those features at the time). Those features would
be easy enough for you to add if you wanted to, however;
what’s not easy to deal with is the possibility of abuse. Launch
the site with a publicly accessible joke submission form like this,
and spammers will be filling up your database with junk in no
time! How would you deal with this problem? Remove the
feature? Force authors to email their submissions to a content
editor? Think about it: there must be a way to preserve this “easy
submission” feature without having your front page filled with
spam. Is it necessary for new joke submissions to appear on the
site immediately? What if you add a new column to the joke
table called visible that could take one of two values: 'YES'
and 'NO'? Newly submitted jokes could automatically be set to
'NO', and be prevented from appearing on the site if you simply
added WHERE visible='YES' to any query of the joke table
where the results are intended for public viewing. Jokes with
visible set to 'NO' would wait in the database for review by a

visible set to 'NO' would wait in the database for review by a
Content Editor, who could edit each joke and assign it an author
and categories before making it visible, or just delete it as
unwanted. To create a column that can contain either of two
values, of which one is the default, you’ll need a new MySQL
column type called ENUM:

 ALTER TABLE joke ADD COLUMN
visible ENUM('NO', 'YES') NOT NULL

Since we declared this column as required (NOT NULL), the first
value listed within the parentheses ('NO' in this case) is the
default value, which is assigned to new entries if no value is
specified in the INSERT command. All that’s left for you to do is
modify the administration system, enabling Content Editors to
make hidden jokes visible. A simple checkbox in the joke
add/edit form should do the trick. You also may want to modify
the joke search form to allow Content Editors to search only for
visible or hidden jokes. If you begin with the code as we left it in
Chapter 6, newly submitted jokes won’t have an author
associated with them. How to deal with that I’ll leave up to you.
The Add your own joke form could prompt visitors to include
contact information with their submissions, which Content
Editors could then use to identify and assign authors to submitted
jokes. A more challenging solution might be to invite authors to
sign up, set a password, and then log in before submitting new
jokes. There’s no right answer, but I challenge you to find a way
to deal with the issue, and build that into your Internet Joke
Database site. You have all the tools you need: set aside some
time and see what you can build if you put your mind to it. If you
get stuck, the SitePoint PHP Forum is a friendly place to gain
answers to your questions.

The Sky’s the Limit
In this chapter, you learned about the two main methods of
creating persistent variables—those variables that continue to
exist from page to page in PHP. The first stores the variable in
the visitor’s browser in the form of a cookie. By default, cookies
terminate at the end of the browser session, but by specifying an
expiry time, they can be preserved indefinitely. Unfortunately,

expiry time, they can be preserved indefinitely. Unfortunately,
cookies are fairly unreliable because you have no way of
knowing when the browser might delete your cookies, and
because some users occasionally clear their cookies out of
concern for their privacy. Sessions, on the other hand, free you
from all the limitations of cookies. They let you store an unlimited
number of potentially large variables. Sessions are an essential
building block in modern ecommerce applications, as we
demonstrated in our simple shopping cart example. They’re also
a critical component of systems that provide access control, like
the one we built for your joke content management system. At
this point, you should be equipped with all the basic skills and
concepts you need to build your very own database driven
website. While you may be tempted to skip the challenge of
building a complete system for safely accepting public
submissions, I encourage you to give it a try. You already have
all the skills necessary to build it, and there is no better way to
learn than to make a few mistakes of your own to learn from. At
the very least, set this challenge aside for now and come back to
it when you’ve finished this book. If you can tackle it with
confidence, you may wish to try another challenge. Want to let
users rate the jokes on the site? How about letting joke authors
make changes to their jokes, but with the backup of requiring an
administrator to approve the changes before they go live on the
site? The power and complexity of the system is limited only by
your imagination. In the rest of this book, I’ll cover more
advanced topics that will help optimize your site’s performance
and solve some complex problems using less code. Oh, and of
course we’ll explore more exciting features of PHP and
MySQL! In Chapter 10, we’ll take a step away from our joke
database and have a close-up look at MySQL server
maintenance and administration. We’ll learn how to make
backups of our database (a critical task for any web-based
company), to administer MySQL users and their passwords, and
to log in to a MySQL server if you’ve forgotten your password.

[51] PHP can also be configured to store sessions in your
MySQL database; however, this is only necessary if you need to
share session data between multiple web servers.

[52] In this chapter, I’ll show you the SQL commands needed to
modify the database we’ve built up to this point. If you need to
recreate the database from scratch, the necessary commands are
provided in the ijdb.sql file in the code archive for this chapter.

[53] We use include instead of include_once here, since the
$pdo variable that db.inc.php creates will be unavailable outside
this function. Code elsewhere in our application that requires a
database connection will therefore have to include db.inc.php
again.

Chapter 10

MySQL Administration
At the core of most well-designed content-driven sites is a
relational database. In this book, we’ve used the MySQL
Relational Database Management System (RDBMS) to create
our database. MySQL is a popular choice among web
developers because it’s free, and because MySQL servers are
fairly simple to set up. As I demonstrated in Chapter 1, armed
with proper instructions a new user can have a MySQL server
up and running in less than five minutes—under two if you
practice a little! If all you want is a MySQL server to play with a
few examples and experiment a little, the initial installation
process we went through in Chapter 1 is likely to be all you’ll
need. If, on the other hand, you want to set up a database back
end to a real live website—perhaps a site your company
depends on—there are a few more fundamentals you’ll need to
learn before you can rely on a MySQL server day-in, day-out.
First, we’ll look at backups. Backing up data that’s important to
you or your business should be an essential item on any
administrator’s list of priorities. Because administrators usually
have more interesting work to do, though, backup procedures
are often arranged once out of necessity and deemed “good
enough” for all applications. If, until now, your answer to the
question, “Should we back up our databases?” has been, “It’s
okay; they’ll be backed up along with everything else,” you really
should read on. I’ll show you why a generic file-backup solution
is inadequate for many MySQL installations, and I’ll demonstrate
the right way to back up and restore a MySQL database. Next,
it’s time we looked more closely at how to control access to
your MySQL database. I showed you the basics early in this
book, but it turns out there are some tricky details that can make
your life difficult if you don’t understand them. Oh, and I’ll show
you how to regain control of your MySQL server should you
forget your password! Then we’ll turn our attention to
performance, and how to keep your SELECT queries running

performance, and how to keep your SELECT queries running
quickly. With the careful application of database indexes (a skill
many working PHP developers lack, surprisingly), you can keep
your database speedy even as it grows to contain thousands (or
even hundreds of thousands) of rows. Finally, I’ll show you how
to use a relatively new feature of MySQL—foreign keys—to
express the structure of your database, and how each of the
tables it contains are related to one another. As you can see, this
chapter’s a real mixed bag, but by the end of it you’ll understand
MySQL a whole lot better!

Backing Up MySQL
Databases
Like web servers, most MySQL servers are expected to remain
online 24 hours a day, seven days a week. This makes backups
of MySQL database files problematic. Because the MySQL
server uses memory caches and buffers to improve the efficiency
of updates to the database files stored on disk, these files may be
in an inconsistent state at any given time. Since standard backup
procedures involve merely copying system and data files,
backups of MySQL data files are unreliable, as there’s no
guarantee the files that are copied are in a fit state to be used as
replacements in the event of a crash. Furthermore, as many
website databases receive new information at all hours of the
day, standard backups can provide only periodic snapshots of
database data. Any information stored in the database that’s
changed after the last backup will be lost in the event that the live
MySQL data files are destroyed or become unusable. In many
situations, such as when a MySQL server is used to track
customer orders on an ecommerce site, this is an unacceptable
loss. Facilities exist in MySQL to keep up-to-date backups that
are largely unaffected by server activity at the time at which the
backups are generated. Unfortunately, they require you to set up
a backup scheme specifically for your MySQL data, completely
apart from whatever backup measures you’ve established for the
rest of your data. As with any good backup system, however,
you’ll appreciate it when the time comes to use it.

Database Backups Using

Database Backups Using
phpMyAdmin

The browser-based MySQL administration tool we’ve been
using throughout this book, phpMyAdmin, also offers a
convenient facility for obtaining a backup of your site’s database.
Once you’ve selected your database, click the Export tab as
shown in Figure 10.1.

Figure 10.1. Click Export to save a backup of your database

The default Export options, to perform a Quick export in SQL
format, are perfect for our needs. Just click Go and your
browser will download an ijdb.sql file (assuming your database is
named ijdb). If you open this file in a text editor, you’ll find it
contains a series of SQL CREATE TABLE and INSERT
commands that, if run on a blank database, would reproduce the
current contents of your database. Yes, a MySQL database
backup is just a series of SQL commands! To restore your
database from a backup file like this one, first make sure your
database is empty (select all the tables on the Structure tab and
from the With selected menu choose Drop); then just click the
Import tab and select the backup file from your computer (as
before, the other default options on this page are fine). Moments
later, the contents of your database will be restored to their
previous state. In this way, we can use phpMyAdmin to create
backups of our databases. phpMyAdmin connects to the
MySQL server to perform backups, rather than accessing
directly the MySQL database data files. The backup it produces
is therefore guaranteed to be a valid copy of the database,
instead of merely a point-in-time snapshot of the database files
stored on disk, which may be in a state of flux as long as the
MySQL server is running.

Database Backups Using mysqldump
phpMyAdmin makes it really easy to obtain a database backup
whenever the mood strikes you, but the best backups are
automated, and an automated backup tool phpMyAdmin is not.
As you’ll already know if you’ve ever worked with MySQL on
Linux, the MySQL database server software comes with a
handful of utility programs designed to be run from the command
prompt. One of these programs is mysqldump. When run,
mysqldump connects to a MySQL server (in much the same way
as PHP does) and downloads the complete contents of the
database(s) you specify. It then outputs the series of SQL
commands required to create a database with those same
contents. If you save the output of mysqldump to a file, you’ll
have yourself the same kind of backup file that phpMyAdmin
can generate for you!

Warning: New to the
Command Prompt?

If you’re unfamiliar with your operating system’s
command prompt, some of the instructions that
follow may likely confuse you. Don’t sweat it! If
you find yourself floundering, feel free to skip
ahead to the next section of this chapter.
Practically speaking, there’s no real need to set
up automated MySQL backups on your
development server. When you shut down
XAMPP at the end of the day, whatever backup
software you run on your computer (you do
back up your computer, don’t you?) will be able
to back up your MySQL database files in their
dormant state. As for the production MySQL
server you use when you launch your website to
the Internet at large, any good web host will
handle your MySQL backups for you. You’ll
probably only need to set up automated MySQL
backups if you launch and manage your own
production database server. I’m going to assume

production database server. I’m going to assume
that if that’s a job you’re tackling, you’re already
familiar with using the command prompt on your
operating system of choice. That said, if you’re a
Windows user especially keen to learn this stuff,
I wrote an article back in 2002 called Kev’s
Command Prompt Cheat Sheet that will fill
you in on the basics.

The following command (typed all on one line) connects to the
MySQL server running on the local machine as user root with
password password, and saves a backup of the ijdb database
into the file ijdb.sql:[54]

 mysqldump -u root -ppassword ijdb > ijdb.sql

To restore this database after a server crash, you could again
feed this SQL file to phpMyAdmin;[55] alternatively, you could
use the mysql utility program:

 mysql -u root -ppassword ijdb < ijdb.sql

This command connects to the MySQL server, selects the ijdb
database, and feeds in our backup file as a list of SQL
commands to be executed. But how do we bridge the gap
between these snapshots to maintain a database backup that’s
always up to date?

Incremental Backups Using Binary
Logs

As I mentioned, many situations in which MySQL databases are
used would make the loss of data—any data—unacceptable. In
cases like these, we need a way to bridge the gaps between the
backups we made using phpMyAdmin or mysqldump as recently
described. The solution is to configure the MySQL server to
keep a binary log, a record of all SQL queries that were
received by the database, and which modified the contents of the
database in some way. This includes INSERT, UPDATE, and
DELETE statements (among others), but excludes SELECT
statements. The basic idea of a binary log is that you should be
able to restore the contents of the database at the very moment

able to restore the contents of the database at the very moment
at which a disaster occurs. This restoration involves applying a
backup (made using phpMyAdmin or mysqldump), and then
applying the contents of the binary logs that were generated after
that backup was made. You can also edit binary logs to undo
mistakes that might have been made. For example, if a co-
worker comes to you after accidentally issuing a DROP TABLE
command, you can export your binary log to a text file and then
edit that file to remove the command. You can then restore the
database using your last backup and then running the edited
binary log. In this way, you can even preserve database changes
that were made after the accident. And, as a precaution, you
should probably also revoke your co-worker’s DROP privileges.
To tell your MySQL server to keep binary logs, you need to edit
the server’s my.ini (Windows) or my.cnf (OS X or Linux)
configuration file. This is a simple text file with a list of options
that control some of the finer points of how your MySQL server
works. In many cases, MySQL is installed without a
configuration file, and simply runs with the default settings. In this
situation, you’ll need to create a new file and set the appropriate
option.

Note: Where does
my.ini/my.cnf belong?

On Windows, XAMPP comes with a my.ini file
already made for you:
C:\xampp\mysql\bin\my.ini. You can open it in
Notepad to make changes. On OS X, the
MySQL server built into MAMP will look for a
/etc/my.cnf file to read when it starts up. You
may have some trouble creating this file (Finder
generally keeps you from messing with files in
sensitive locations like this); you’ll need to create
it elsewhere, and then use a sudo mv command
in Terminal to move it to /etc with administrator
privileges:

 sudo mv my.cnf /etc/

To enable binary logging, you add a log-bin setting to the

To enable binary logging, you add a log-bin setting to the
[mysqld] section of your configuration file. If you’re creating a
new configuration file from scratch, you’ll have to type the
[mysqld] section heading yourself on the first line before adding
the setting on the next line. The log-bin setting tells MySQL
where to store the binary log files and what name to give them.
On Windows, for example, you might want it to store them in
your MySQL data directory:[56]

[mysqld]
log-bin="C:/xampp/mysql/data/binlog"

On OS X, MAMP’s logs folder is a good place for them:
[mysqld]
log-bin=/Applications/MAMP/logs/binlog

Both these examples tell MySQL to create files named
binlog.000001, binlog.000002, and so on. A new file will be
created each time the server flushes its log files; in practice, this
occurs whenever the server is restarted.

Tip: Store Binary Logs on
Another Hard Disk

If possible, you should store your binary logs on
a hard disk other than the one where your
MySQL database files are stored. That way, if a
hard disk goes bad, you won’t lose both your
database and your backups!

With your new configuration file in place, restart your MySQL
server. From now on, the server will create binary log files. To
make sure, check the location you specified to verify that a new
log file was created when the server started up. Obviously,
binary logs can take up a lot of space on an active server. For
this reason, it’s important to tell MySQL to delete obsolete
binary logs whenever you perform a full backup. This is easy to
do if you use mysqldump to perform your backup:

 mysqldump -u root -ppassword --flush-logs
↵ --master-data=2 --delete-master-logs ijdb > ijdb.sql

The --flush-logs option tells the MySQL server to close the
current binary log file and start a new one, as if the MySQL

current binary log file and start a new one, as if the MySQL
server had been restarted. The --master-data=2 option
instructs mysqldump to include a comment at the end of the
ijdb.sql file that indicates the name of the new binary log file; this
will contain the first changes that are made to the database
following the full backup. Finally, the --delete-master-logs
command tells mysqldump to delete the binary log files that are
no longer needed, now that a full backup has taken place. In the
event of a disaster, as long as you have a full backup and the
binary log files that were generated after the backup was made,
restoring your database should be fairly simple. Set up a new,
empty MySQL server, then apply the full backup as described in
the previous section. All that’s left is to apply the binary logs
using the mysqlbinlog utility program. mysqlbinlog’s job is to
convert the data format of MySQL binary logs into SQL
commands that you can run on your database. Say you had two
binary log files that you needed to apply after restoring your most
recent full backup. You can generate an SQL text file from the
two files using mysqlbinlog, and then apply that file to your
MySQL server just as you would a file generated by
mysqldump:

 mysqlbinlog binlog.000041 binlog.000042 > binlog.sql
 mysql -u root -ppassword < binlog.sql

MySQL Access Control Tips
In Chapter 2, I mentioned that the database called mysql, which
appears on every MySQL server, is used to keep track of users,
their passwords, and what they’re allowed to do. In Chapter 4, I
showed you how to use phpMyAdmin to create another user
account, with access only to your website’s database. The
MySQL access control system is fully documented in Chapter 5
of the MySQL Reference Manual. In essence, user access is
governed by the contents of five tables in the mysql database:
user, db, host, tables_priv, and columns_priv. If you
plan to edit these tables directly using INSERT, UPDATE, and
DELETE statements, I suggest you read the relevant section of the
MySQL manual first. But, for us mere mortals, phpMyAdmin

MySQL manual first. But, for us mere mortals, phpMyAdmin
provides all the tools you’ll need to manage access to your
MySQL server. As a result of the way the access control system
in MySQL works, there are a couple of idiosyncrasies of which
you should be aware if you’re going to be responsible for
controlling access to a MySQL server.

Host Name Issues

When you create users that can log in to the MySQL server only
from the computer on which that server is running (for example,
you require them to log in to the server and run the mysql
command prompt utility from there, or to communicate using
server-side scripts like PHP), you may ask yourself what to
enter in the Host field of phpMyAdmin’s Add a new User form.
Imagine the server is running on www.example.com. Should you
specify the Host as www.example.com or localhost? The
answer is that both are unreliable to handle all connections. In
theory, if, when connecting, the user specifies the host name
either with the mysql command prompt utility program, or with
PHP’s PDO class, that host name will have to match the entry in
the access control system. However, as you probably want to
avoid forcing your users to specify the host name a particular
way (in fact, users of the mysql utility program are likely to want
to steer clear of stating the host name at all), it’s best to use a
workaround. For users who need the ability to connect from the
machine on which the MySQL server is running, it’s best to
create two user entries in the MySQL access system: one with
the actual host name of the machine (www.example.com, for
example), the other with localhost. Of course, you’ll have to
grant/revoke all privileges to both user entries individually, but
it’s the only workaround that you can really rely upon. Another
problem commonly faced by MySQL administrators is that user
entries whose host names contain wild cards (for example,
%.example.com) may fail to work. When MySQL’s access
control system behaves unexpectedly, it’s usually due to the way
MySQL prioritizes the user entries. In particular, it orders entries
so that more specific host names appear first (for example,
www.example.com is absolutely specific, %.example.com is
less specific, and % is totally unspecific). In a fresh installation,[57]

the MySQL access control system contains two anonymous user

the MySQL access control system contains two anonymous user
entries (these allow connections to be made from the local host
using any username—the two entries support connections from
localhost and the server’s actual host name, as described
before), and two root user entries. The problem just described
occurs when the anonymous user entries take precedence over
our new entry because their host name is more specific. Let’s
look at the abridged contents of the user table on
www.example.com, a fictitious MySQL server, where we’ve
just added a new account for a user named Jess. The rows are
sorted in the order in which the MySQL server considers them
when it validates a connection:

Host User Password
localhost root encrypted value
www.example.com root encrypted value
localhost
www.example.com
%.example.com jess encrypted value

As you can see, since Jess’s entry has the least specific host
name, it comes last in the list. When Jess attempts to connect
from www.example.com, the MySQL server matches her
connection attempt to one of the anonymous user entries (a
blank User value matches anyone). Since a password is
unnecessary for these anonymous entries, and presumably Jess
enters her password, MySQL rejects the connection attempt.
Even if Jess managed to connect without a password, she would
be given the very limited privileges that are assigned to
anonymous users, as opposed to the privileges assigned to her
entry in the access control system. The solution is either to make
your first order of business as a MySQL administrator the
deletion of those anonymous user entries (DELETE FROM
mysql.user WHERE User=""), or to give two more entries to
all users who need to connect from localhost (that is, entries for
localhost and the actual host name of the server):

Host User Password
localhost root encrypted value
www.example.com root encrypted value
localhost jess encrypted value

localhost jess encrypted value
www.example.com jess encrypted value
localhost
www.example.com
%.example.com jess encrypted value

As it’s excessively burdensome to maintain three user entries
(and three sets of privileges) for each user, I recommend that
you remove the anonymous users, unless you have a particular
need for them:

Host User Password
localhost root encrypted value
www.example.com root encrypted value
%.example.com jess encrypted value

Locked Out?

Like locking your keys in the car, forgetting your password after
you’ve spent an hour installing and tweaking a new MySQL
server can be an embarrassment—to say the least! Fortunately,
if you have administrator access to the computer on which the
MySQL server is running, or if you can log in as the user you set
up to run the MySQL server, all is well. The following procedure
will let you regain control of the server.

Warning: Command Prompt
Knowledge Assumed

Again, I’m going to go ahead and assume in this
section that if you’re locked out of your MySQL
server, you know how to use your system’s
command prompt. If you’re using the MySQL
server bundled with XAMPP or MAMP on
your development machine, there’s probably no
mission-critical data stored in your database, and
the easiest way to recover from a lost root
password will usually be just to reinstall your
server and start from scratch. That said, if you’re

a Windows user, my trusty old Kev’s
Command Prompt Cheat Sheet article should
provide everything you need to get going.

First, you must shut down the MySQL server. If you normally
do this using the mysqladmin command prompt utility, which
requires your forgotten password, you’ll instead need to kill the
server process to shut it down. Under Windows, use Task
Manager to find and end the MySQL process, or simply stop
the MySQL service if you’ve installed it as such. Under OS X or
Linux, use the ps command, or look in the server’s PID file in
the MySQL data directory to determine the process ID of the
MySQL server; then terminate it with this command:

 kill pid

pid is the process ID of the MySQL server. This should be
enough to stop the server. Do not use kill -9 (a forced kill)
unless absolutely necessary, as this may damage your data files.
If you’re forced to do so, however, the next section provides
instructions on how to check and repair those files. Now that the
server’s down, you must restart it using the skip-grant-
tables option. You can do this by adding the option to your
MySQL server’s my.ini or my.cnf configuration file (see the
instructions for setting up such a file in the section called
“Incremental Backups Using Binary Logs”):
[mysqld]
skip-grant-tables

This instructs the MySQL server to allow unrestricted access to
anyone. Obviously, you’ll want to run the server in this mode as
briefly as possible, to avoid the inherent security risks. Once
you’re connected to your server (using phpMyAdmin or the
mysql command prompt utility), change your root password to a
memorable one:

 UPDATE mysql.user SET Password=PASSWORD("newpassword")
 WHERE User="root"

Finally, disconnect, shut down your MySQL server, and remove

Finally, disconnect, shut down your MySQL server, and remove
the skip-grant-tables option. That does it—and nobody
ever has to know what you did. As for locking your keys in your
car, you’re on your own there.

Indexes
Just like the index in this book makes it a lot easier to find every
mention of a particular topic in its pages, a database index can
make it much easier for MySQL to find the records you’ve
asked for in a SELECT query. Let me give you an example. As
the Internet Joke Database grows, the joke table might grow to
contain thousands, if not hundreds of thousands of rows. Now
let’s say PHP asks for the text of a particular joke:
SELECT joketext FROM joke WHERE id = 1234

In the absence of an index, MySQL must look at the value of the
id column in each and every row of the joke table, one by one,
until it finds the one with the value 1234. Worse yet, without an
index, MySQL has no way of knowing that there is only one
row with that value, so it must also scan the rest of the table for
more matching rows to make sure it gets them all! Computers
are fast, and good at menial labor, but in the web development
game where half seconds count, large tables and complex WHERE
clauses can easily combine to create delays of 30 seconds or
more! Fortunately for us, this query will always run quickly, and
that’s because the id column of the joke table has an index. To
see it, open phpMyAdmin, select the joke table, and click the
Structure tab. There, below the list of columns in the table, you’ll
see the list of indexes shown in Figure 10.2.

Figure 10.2. Each of our tables already has a single index

Take a look at the Column column; this index lists the values of
the id column. From the name in the Keyname column,
PRIMARY, you might even guess where this index came from: it
was created automatically when we told MySQL to make the id

was created automatically when we told MySQL to make the id
column the primary key of this table. Remember how we defined
the id column of the table:
CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

In fact, “key” is just a fancy way to say “index” in database
parlance, and a primary key is just an index named PRIMARY that
requires each value in the table for that particular column to be
unique. Note in Figure 10.2 that the Unique property of the
index is Yes. What all this boils down to is that every database
table we’ve created so far has an index on its id column. Any
WHERE clause that seeks a particular id value will be able to find
the record with that value quickly, because it will be able to look
it up in the index. You can confirm this by asking MySQL to
explain how it performs a particular SELECT query. To do this,
just add the command EXPLAIN at the start of the query:
EXPLAIN SELECT joketext FROM joke WHERE id = 1

Note: Use Real Values to See
Real Results

Note that I’ve specified a joke ID of 1 in this
query, which actually exists in my database. Had
I used a made-up value like 1234, MySQL is
smart enough to know that this ID didn’t exist in
the joke table and wouldn’t even try to fetch
results from the table.

If you run this EXPLAIN query in phpMyAdmin, you will have a
similar view to Figure 10.3.

Figure 10.3. These results confirm that the SELECT query will use
the PRIMARY index

By the same mechanism, an SQL query that joins two tables
together using id values (for example, finding the author that
goes with each joke using the value of the authorid column)

goes with each joke using the value of the authorid column)
will be able to find related records quickly. Now consider this
SELECT query, which fetches all jokes by a particular author:
SELECT * FROM joke WHERE authorid = 2

Ask MySQL to EXPLAIN this SELECT, and Figure 10.4 shows
the result.

Figure 10.4. Those NULLs indicate slowness

As you can see, MySQL is unable to find an index to assist with
this query, so it is forced to perform a complete scan of the table
for results. We can speed up this query by adding an index to the
table for the authorid column.

Note: But surely author IDs
are already indexed?

Yes, the id column of the author table has an
index by virtue of it being the primary key for
that table. This won’t help in the case of this
query, however, which has no involvement with
the author table at all. The WHERE clause in this
case is looking for a value in the authorid field
of the joke table, which is without an index.

In phpMyAdmin, select the joke table, click the Structure tab,
then under Indexes use the form to “Create an index on 1
columns.” This will give you the Create a new index form shown
in Figure 10.5.

Figure 10.5. Creating a new index for the authorid column

Fill out the form as shown:

Set the Index name to match the name of the column it will
index (although you could actually call it anything you
like).

Choose to create a plain INDEX as opposed to a
PRIMARY index (the table already has one), a UNIQUE
index (there’s no requirement for each joke to have a
unique author), or FULLTEXT index (an index used for
searching large amounts of text).

Select the column to index—authorid in this case.
Leave the Size field blank to index the full value of the
column (as opposed to, say, just the first few characters
of a text column).

Click Save, and you should see the second index listed along
with the PRIMARY index. Ask MySQL to EXPLAIN the SELECT
query again to confirm that it will use your new authorid index
this time. It might be tempting to index each and every column in
your database, but I’d advise against it. Not only do indexes
require extra disk space, but every time you make a change to
the contents of your database (with an INSERT or UPDATE
query, for example), MySQL has to spend time rebuilding all
affected indexes! For this reason, you should usually add the
indexes required to keep your website’s SELECT queries speedy
and no more.

Multicolumn Indexes

But wait! Not every table we’ve created so far has an id

column. What about the jokecategory table?
CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
 PRIMARY KEY (jokeid, categoryid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

This table’s primary key is made up of two columns: jokeid
and categoryid. Figure 10.6 shows what this index looks like
in phpMyAdmin.

Figure 10.6. Indexes can contain multiple columns

A multicolumn index like this is called a composite index . It’s
great at speeding up queries that involve both indexed columns,
like this one that checks if joke ID 3 is in category ID 4 (it is):
SELECT * FROM jokecategory WHERE jokeid = 3 AND
categoryid = 4

A two-column index like this one can also be used as a one-
column index on the first column in the list. In this case, that’s the
jokeid field, so this query will also use the index to list the
categories that joke ID 1 belongs to:
SELECT name
FROM jokecategory
 INNER JOIN category ON categoryid =
category.id
WHERE jokeid = 1

Foreign Keys
By now, you should be used to the concept of a column in one
table pointing to the id column in another table to represent a
relationship between the two tables. For example, the authorid
column in joke points to the id column in author to record
which author wrote each joke. In database design lingo, a
column that contains values that match those in another table is

column that contains values that match those in another table is
called a foreign key. That is, we say that authorid is a foreign
key that references the id column in author. Up to this point,
we’ve simply designed tables with foreign key relationships in
mind, but these relationships have not been enforced by
MySQL. That is, we’ve made sure to only store values in
authorid that correspond to entries in the author table. But if
we carelessly inserted an authorid value without any matches
for an author record, MySQL would do nothing to stop us; as
far as MySQL is concerned, authorid is just a column that
contains whole numbers. MySQL supports a feature called
foreign key constraints , which you can use to record
relationships between tables like this one explicitly and have
MySQL enforce them. You can include foreign key constraints
in your CREATE TABLE commands, or you can add foreign key
constraints to existing tables using ALTER TABLE:

chapter10/sql/ijdb.sql (excerpt)
CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT,
 FOREIGN KEY (authorid) REFERENCES author (id)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

ALTER TABLE joke
ADD FOREIGN KEY (authorid) REFERENCES author
(id)

You can also use phpMyAdmin to create foreign key
constraints. First, you must make sure the foreign key column
(authorid in this case) has an index. MySQL will create this
index for you automatically if you use either of these two queries,
but phpMyAdmin requires you to do it yourself. Thankfully, we
already added an index to authorid. Next, on the Structure tab
for the joke table, click Relation view as shown in Figure 10.7.

Figure 10.7. Clicking Relation view to edit the foreign keys in a
table

The resulting page shows each of the columns in the table, and
lets you configure a foreign key constraint for each one that has
an index. For the authorid column, under Foreign key
constraint (INNODB) choose `ijdb .̀`author .̀`id ̀(where ijdb is
the name of your database). Leave the Internal relation option
blank,[58] and leave the ON DELETE and ON UPDATE menus
set to RESTRICT as shown in Figure 10.8, then click Save.

Figure 10.8. Setting up a foreign key in phpMyAdmin

With this foreign key constraint in place, MySQL will reject any
attempt to insert into joke an authorid value that fails to
correspond to an entry in the author table; furthermore, it will
stop you from deleting an entry in the author table unless you
first remove any joke records that point to it. Perhaps best of
all, however, in phpMyAdmin if you click on a value in the
authorid column while browsing the joke table, you will now
be taken immediately to the corresponding row in the author
table! Because MySQL (and therefore phpMyAdmin) now
understands the structure of your database, it can help you
navigate it. To make sure you’ve got the hang of it, go ahead and
create a foreign key constraint to represent each of the
relationships between your tables. See if you can do it without
peeking at the list of ALTER TABLE commands following (hint:
there are four others):
ALTER TABLE jokecategory
ADD FOREIGN KEY (jokeid) REFERENCES joke (id)

ALTER TABLE jokecategory
ADD FOREIGN KEY (categoryid) REFERENCES category
(id)

(id)

ALTER TABLE authorrole
ADD FOREIGN KEY (authorid) REFERENCES author
(id)

ALTER TABLE authorrole
ADD FOREIGN KEY (roleid) REFERENCES role (id)

Note: A Word on Referential
Actions

Instead of rejecting attempts to delete or update
records that have foreign keys pointing to them
(for example, preventing you from deleting
authors who still have jokes associated with
them), you can perform a referential action .
This involves configuring a foreign key constraint
in MySQL to automatically resolve the conflict.
It can do this either by cascading the operation
(that is, deleting any jokes associated with the
author that you’re deleting), or by setting the
values of any affected foreign key columns to
NULL (setting the authorid of the author’s
jokes to NULL). That’s what the ON
RESTRICT and ON UPDATE options for the
foreign key constraint in phpMyAdmin are all
about. It can be tempting to use this feature to let
MySQL take care of what happens to affected
jokes when a user deletes an author or a
category. It’s certainly easier to select an option
in phpMyAdmin than it is to write the PHP code
to automatically delete related jokes before
removing an author. The problem with doing this
is that it splits the logic of your website into two
places: your PHP code and the foreign key
constraints. No longer will you be able to see
and control everything that happens when you
delete a joke by just looking at the PHP
controller responsible for doing that job. For this
reason, most experienced PHP developers

(myself included) prefer to avoid using referential
actions in foreign key constraints. In fact, some
developers prefer to avoid using foreign key
constraints altogether!

Better Safe than Sorry
Admittedly, this chapter hasn’t been the usual nonstop, action–
packed codefest to which you may have become accustomed by
now. But our concentration on these topics—the backup and
restoration of MySQL data, the inner workings of the MySQL
access control system, the improvement of query performance
with indexes, and the enforcement of the structure of your
database with foreign keys—has armed you with the tools you’ll
need to set up a MySQL database server that will stand the test
of time, as well as endure the constant traffic your site will
attract. In Chapter 11, we’ll return to the fun stuff and learn
some advanced SQL techniques that can make a relational
database server perform tricks you may never have thought
possible.

[54] To run mysqldump and the other MySQL utility programs,
you need to be in the bin directory of your MySQL installation
(or the /Applications/MAMP/Library/bin folder on a Mac with
MAMP installed, or the mysql subdirectory of your XAMPP
installation), or that directory must be added to the system path.

[55] Unlike the SQL files created by phpMyAdmin’s Export
facility, mysqldump backups include commands to drop the
tables if they happen to exist before creating them, so you don’t
have to worry if your database isn’t empty first.

[56] Note that MySQL configuration files use slashes (/) instead
of backslashes (\) in Windows filepaths.

[57] All-in-one installers like XAMPP and MAMP tend to differ
in this respect.

[58] The Internal relation setting lets you record a relationship

[58] The Internal relation setting lets you record a relationship
between tables in phpMyAdmin without actually creating a
foreign key constraint (or even an index for the column) in the
database. This enables you to navigate from table to table more
easily in phpMyAdmin, but MySQL won’t enforce the
relationship in any way.

Chapter 11

Advanced SQL Queries
As you’ve worked through the construction of the Internet Joke
Database website, you’ve had opportunities to explore most
aspects of Structured Query Language (SQL). From the basic
form of a CREATE TABLE query to the two syntaxes of INSERT
queries, you probably know many of these commands by heart
now. In an effort to tie up some loose ends in this chapter, we’ll
look at a few more SQL tricks that we’ve yet to come across—
some having been a bit too advanced to delve into before now.
As is typical, most of these will expand on your knowledge of
what’s already the most complex and potentially confusing SQL
command available to you: the SELECT query.

Sorting SELECT Query Results
Long lists of information are always easier to use when they’re
presented in some kind of order. To find a single author in a list
from your author table, for example, could become an exercise
in frustration if you had more than a few dozen registered authors
in your database. Fortunately, there’s an optional part of the
SELECT query that lets you specify a column by which your table
of results should be sorted. Let’s say you wanted to print out a
listing of the entries in your author table for future reference.
Here’s a short list of a table of authors, with the result in
Figure 11.1:

 SELECT id, name, email FROM author

Figure 11.1. An unsorted list of authors

The entries are unsorted, which is fine for a short list like this; it
would be easier, though, to find a particular author’s email
address (that of Amy Mathieson, for example) in a very long list
of authors—say a few hundred or so—if the authors’ names
appeared in alphabetical order. Here’s how you’d create that
ordering (as seen in Figure 11.2):

 SELECT id, name, email FROM author ORDER BY name

Figure 11.2. Authors sorted by name

The entries now appear sorted alphabetically by their names.
Just as you can add a WHERE clause to a SELECT statement to
narrow down the list of results, you can also add an ORDER BY
clause to specify a column by which a set of results should be
sorted. Adding the keyword DESC after the name of the column
allows you to sort the entries in descending order, as shown in
Figure 11.3:

 SELECT id, name, email FROM author ORDER BY name DESC

Figure 11.3. Authors in descending name order

You can actually use a comma-separated list of several column
names in the ORDER BY clause to have MySQL sort the entries
by the first column, then sort any sets of tied entries by the
second, and so on. Any of the columns listed in the ORDER BY
clause may use the DESC keyword to reverse the sort order.
Obviously in a large table, MySQL must do a lot of work to sort
the result set. You can ease this burden by setting up indexes for
columns (or sets of columns) that you expect to use to sort result
sets, as we learned in Chapter 10.

Setting LIMITs
Often, you might work with a large database table but only be
interested in a few entries within it. Let’s say you wanted to track
the popularity of different jokes on your site. You could add a
column named timesviewed to your joke table. Start it with a
value of zero for new jokes, and add one to the value of the
requested joke every time the joke is viewed, to keep count of
the number of times each joke in your database has been read.
The query that adds one to the timesviewed column of a joke
with a given ID is as follows:
try
{
 $sql = 'UPDATE joke SET
 timesviewed = timesviewed + 1
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();
}
catch (PDOException $e)
{
 $error = 'Error updating joke view count.';
 include 'error.html.php';
 exit();
}

You might use this joke view counter to present a “Top 10
Jokes” list on the front page of your site, for example. Using
ORDER BY timesviewed DESC to list the jokes from highest
timesviewed to lowest, you’d just have to pick the first ten
values from the top of the list. But if you have thousands of jokes
in your database, retrieving that entire list to gain a mere ten

in your database, retrieving that entire list to gain a mere ten
results would be quite wasteful in terms of the processing time
and server system resources required, such as memory and CPU
load. However, if you use a LIMIT clause, you can specify a
certain number of results to be returned. As stated, in this
example you need only the first ten:
$sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id
 ORDER BY timesviewed DESC
 LIMIT 10';

Although it’s much less interesting, you could eliminate the word
DESC and retrieve the ten least popular jokes in the database.
Often, you’ll want to let users view a long list of entries—for
example, the results of a search—but display only a few at a
time.[59] Think of the last time you went looking through pages of
search engine results to find a particular website. You can use a
LIMIT clause to do this sort of action; simply specify the result
with which the list will begin, and the maximum number of results
to display. The query below, for example, will list the 21st to
25th most popular jokes in the database:
$sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id
 ORDER BY timesviewed DESC
 LIMIT 20, 5';

Remember, the first entry in the list of results is entry number
zero. Thus, the 21st entry in the list is entry number 20.

Database Transactions
In some situations, you may wish to perform a series of multiple
SQL queries and have them take effect all at once. An advanced
feature called transactions makes this possible. Let’s say your
site’s database contained tables listing the products for sale on
your site, the number of each product available in inventory, and
the orders placed by visitors to your site. When a visitor places
an order, you’d like to update your inventory to reflect the
purchased item(s) at the same time as you add to the list of
orders. If one of these updates occurred before the other,

orders. If one of these updates occurred before the other,
there’s a risk that another visitor to your site might view a page
and see an inconsistent state: for example, your site might show
that the ten widgets you had for sale are now sold out, but only
nine have been ordered. Transactions let you perform complex
multiquery operations as a group to take effect simultaneously.
To begin a transaction, just send a START TRANSACTION SQL
command:

 START TRANSACTION

You can then perform your series of SQL queries as you
normally would. When you’re done and ready for all the changes
to be committed to the database at once, send a COMMIT SQL
command:

 COMMIT

Transactions also let you change your mind. If you’re partway
through your group of queries and decide you don’t want to
perform the queries after all, just use a ROLLBACK command:

 ROLLBACK

ROLLBACK is especially useful for dealing with errors. If you’ve
run a first query in a transaction successfully but the second one
gives you an error, you can use ROLLBACK to cancel the effects
of the first query, in order to rethink your strategy. In a PHP
script, your PDO object offers methods to make working with
transactions very convenient. Begin a transaction with the
beginTransaction method, then commit it with the commit
method or cancel it with the rollBack method:
try
{
 $pdo->beginTransaction();
 … perform a series of queries…

 $pdo->commit();
}
catch (PDOException $e)
{
 $pdo->rollBack();

 $pdo->rollBack();
 $error = 'Error performing the transaction.';
 include 'error.html.php';
 exit();
}

Note: Transactions Require
InnoDB

Support for transactions is one of the reasons
we’ve always used the newer InnoDB table type
(ENGINE=InnoDB) when creating database
tables in this book. MySQL’s older MyISAM
table type does not support transactions.

Column and Table Name
Aliases
In some situations, it may be more convenient to refer to
MySQL columns and tables using different names. Let’s take the
example of a database used by an airline’s online booking
system; this example actually came up in the SitePoint Forums
when I was first writing this book. The database structure can be
found in airline.sql in the code archive if you want to follow
along. To represent the flights offered by the airline, the database
contains two tables: flight and city. Each entry in the
flight table represents an actual flight between two cities—the
origin and destination of the flight. Obviously, origincityid
and destinationcityid are columns in the flight table;
other columns record information like the date and time of the
flight, the type of aircraft, the flight numbers, and the various
fares. The city table contains a list of all the cities to which the
airline flies. Thus, both the origincityid and
destinationcityid columns in the flight table will just
contain IDs referring to entries in the city table. Now, consider
these queries. To retrieve a list of flights with their origins, here’s
what you do:

 SELECT flight.number, city.name
FROM flight INNER JOIN city

FROM flight INNER JOIN city
 ON flight.origincityid = city.id

Figure 11.4 shows the results.

Figure 11.4. Flights with their origins

To obtain a list of flights with their destinations, the query is very
similar:

 SELECT flight.number, city.name
FROM flight INNER JOIN city
 ON flight.destinationcityid = city.id

Again, Figure 11.5 shows the results.

Figure 11.5. Flights with their destinations

Now, what if you wanted to list both the origin and destination of
each flight with a single query? That’s reasonable, right? Here’s a
query you might try:

 SELECT flight.number, city.name, city.name
FROM flight INNER JOIN city
 ON flight.origincityid = city.id
INNER JOIN city
 ON flight.destinationcityid = city.id

Try this query, and phpMyAdmin will display an error: #1066 -
Not unique table/alias 'city'. Why does this fail? Have another
look at the query, and this time focus on what it actually says,
rather than what you expect it to do. It tells MySQL to join the
flight, city, and city (yes, twice!) tables. This attempt at

flight, city, and city (yes, twice!) tables. This attempt at
joining the same table twice is what produces the error message.
But even without this error, the query lacks sense. It attempts to
list the flight number, city name, and city name (twice again) of all
entries obtained, by matching up the origincityid with the
city id, and the destinationcityid with the city id. In other
words, the origincityid, destinationcityid, and city id
must all be equal. Even if this query worked, it would result in a
list of all flights where the origin and the destination are the same.
Unless your airline offers scenic flights, it’s unlikely there’ll be
any entries that match this description. What we need is a way to
use the city table twice without confusing MySQL. We want to
be able to return two different entries from the city table—one
for the origin and one for the destination—for each result. If we
had two copies of the table—one called origin and one called
destination—this would be much easier to do, but why
maintain two tables that contain the same list of cities? The
solution is to give the city table two unique aliases (temporary
names) for the purposes of this query. If we follow the name of a
table with AS alias in the FROM portion of the SELECT query,
we can give it a temporary name by which we can refer to it
elsewhere in the query. Here’s that first query again (to display
flight numbers and origins only), but this time we’ve given the
city table origin as its alias:

 SELECT flight.number, origin.name
FROM flight INNER JOIN city AS origin
 ON flight.origincityid = origin.id

The query still works the same way and the results remain
unchanged, but for long table names it can save some typing.
Consider, for example, if we’d given aliases of f and o to
flight and origin, respectively. The query would be much
shorter as a result. Let’s now return to our problem query. If we
refer to the city table twice using different aliases, we can use a
three-table join (in which two of the tables are actually one and
the same) to achieve the effect we want:

 SELECT flight.number, origin.name, destination.name
FROM flight INNER JOIN city AS origin
 ON flight.origincityid = origin.id
INNER JOIN city AS destination
 ON flight.destinationcityid = destination.id

 ON flight.destinationcityid = destination.id

You can see the expected results in Figure 11.6.

Figure 11.6. Flights with origins and destinations

You can also define aliases for column names. We could use this
to differentiate the two name columns in our table of results:

 SELECT f.number, o.name AS origin, d.name AS destination
FROM flight AS f INNER JOIN city AS o
 ON f.origincityid = o.id
INNER JOIN city AS d
 ON f.destinationcityid = d.id

The very readable result is in Figure 11.7.

Figure 11.7. Flights with origins and destinations clearly labeled

You could use this same technique to add a messaging system to
the Internet Joke Database website, whereby one author could
send a message to another author on the site. The table of sent
messages would reference the author table twice: once for the
sender of the message, and another for the recipient. If you’re
keen for a fresh challenge, try building this system.

GROUPing SELECT Results
In Chapter 2, you saw the following query, which tells you how
many jokes are stored in your joke table:

 SELECT COUNT(*) FROM joke

 SELECT COUNT(*) FROM joke

The MySQL function COUNT used in this query belongs to a
special class of functions called aggregate functions or group-
by functions , depending on where you look. A complete list of
these functions is provided in Chapter 11 of the MySQL Manual
and in Appendix C. Unlike other functions, which affect each
entry individually in the result of the SELECT query, summary
functions group together all the results and return a single result.
In the aforementioned example, for instance, COUNT returns the
total number of result rows. Let’s say you want to display a list
of authors along with the number of jokes they have to their
names. Your first instinct might be to retrieve a list of all the
authors’ names and IDs, then use COUNT to count the number of
results when you SELECT the jokes with each author’s ID. The
PHP code (presented without error handling, for simplicity)
would look a little like this:
// Get a list of all the authors
$result = $pdo->query('SELECT id, name FROM
author');

// Read all of the authors
foreach ($result as $row)
{
 $authors[] = array(
 'id' => $row['id'],
 'name' => $row['name']
);
}

// Get count of jokes attributed to an author
$sql = 'SELECT COUNT(*) AS numjokes FROM joke
WHERE authorid = :id';
$s = $pdo->prepare($sql);

// Process each author
foreach ($authors as $author)
{
 $s->bindValue(':id', $author['id']);
 $s->execute();
 $row = $s->fetch();
 $numjokes = $row['numjokes'];

 // Display the author & number of jokes
 $output .= htmlspecialchars($author['name'],
ENT_QUOTES, 'UTF-8')

ENT_QUOTES, 'UTF-8')
 . " ($numjokes jokes)
";
}

Note the use of AS in the second query to give a friendlier name
(numjokes) to the result of COUNT(*). This technique will work,
but will require n+1 separate queries (where n is the number of
authors in the database). Having the number of queries depend
on a number of entries in the database is always worth avoiding,
as a large number of authors would make this script
unreasonably slow and resource-intensive. Fortunately, another
advanced feature of SELECT comes to the rescue! If you add a
GROUP BY clause to a SELECT query, you can tell MySQL to
group the query results into sets, the results in each set sharing a
common value in the specified column. Aggregate functions like
COUNT then operate on those groups, rather than the entire result
set as a whole. The next query, for example, lists the number of
jokes attributed to each author in the database:

 SELECT author.name, COUNT(*) AS numjokes
FROM joke INNER JOIN author
 ON authorid = author.id
GROUP BY authorid

The results shown in Figure 11.8 confirm that we’ve obtained
our per-author joke count with a single SELECT query.

Figure 11.8. Number of jokes per author

Note that you could have specified GROUP BY author.id and
achieved the same result (since, as stipulated in the FROM clause,
these columns must be equal). GROUP BY author.name would
also work in most cases, but as there’s always the possibility,
however slight, that two different authors might have the same
name (in which case their results would be lumped together), it’s
best to stick to the ID columns, which are guaranteed to be
unique for each author.

LEFT JOINs

You can see from the results just shown that Kevin Yank has
three jokes to his name, and Jessica Graham has one. What they
conceal is that there’s a third and fourth author, Amy Mathieson
and Michael Yates, who have no jokes. Since there are no
entries in the joke table with authorid values that match either
of the absent authors’ ID, there will be no results that satisfy the
ON clause in the aforementioned query and they’ll be excluded
from the table of results. About the only practical way to
overcome this challenge with the tools we’ve seen so far would
be to add another column to the author table and store the
number of jokes attributed to each author in that column.
Keeping that column up to date, however, would be a real pain,
because we’d have to remember to update it each time a joke
was added, removed, or changed (for example, if the value of
authorid was changed) in the joke table. To keep it all
synchronized, we’d have to use transactions whenever we made
such changes as well. Quite a mess, to say the least! Besides the
INNER JOINs we’ve used so far, MySQL provides another
type of join. Called a left join, it’s designed for this type of
situation. To understand how left joins differ from standard joins,
we must first recall how inner joins work. As shown in
Figure 11.9, MySQL performs a standard join of two tables by
listing all possible combinations of the rows of those tables. In a
simple case, a standard join of two tables with two rows apiece
will contain four rows: row 1 of table 1 with row 1 of table 2,
row 1 of table 1 with row 2 of table 2, row 2 of table 1 with row
1 of table 2, and row 2 of table 1 with row 2 of table 2. With all
these result rows calculated, MySQL then looks to the ON
condition for guidance on which rows should be kept (for
example, those where the id column from table 1 matches the
authorid column from table 2).

Figure 11.9. Inner joins take all possible combinations of rows

The reason why this solution is unsuitable for our purposes is that
we’d like to also include rows in table 1 (that is, author) that
don’t match any rows in table 2 (joke). A left join does exactly
what we need: it forces a row to appear in the results for each
row in the first (left-hand) table, even if no matching entries are
found in the second (right-hand) table. Such forced rows are
given NULL values for all columns in the right-hand table. To
perform a left join between two tables in MySQL, simply type
LEFT JOIN instead of INNER JOIN within the FROM clause.
Here’s our revised query for listing authors and the number of
jokes to their credit:

 SELECT author.name, COUNT(*) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id

A couple of important points to note about this query:

We must type author LEFT JOIN joke, rather than
joke LEFT JOIN author. The order in which we list
the tables to be joined is significant. A LEFT JOIN will
only force all rows from the table on the left to appear in
the results. In this example, we want every row in the
author table to appear in the results.

We must use GROUP BY author.id, rather than GROUP
BY authorid. author.id is the id field of the author
table, whereas authorid is the authorid field of the
joke table. In all previous SELECT queries, our join has
guaranteed that these would always have matching values;
however, when the LEFT JOIN creates a forced row
based on a row in the author table that has no matching
row in the joke table, it assigns a value of NULL to all
columns in the joke table. This includes the authorid
field. If we used GROUP BY authorid, the query would
group all our authors with no jokes together, since they all
share an authorid value of NULL following the LEFT
JOIN.[60]

If you type that query right, you should achieve the results shown
in Figure 11.10.

Figure 11.10. Something’s not quite right …

Wait just a minute! Suddenly Amy Mathieson and Michael Yates
have one joke apiece. That can’t be right, surely? In fact, it is—
but only because the query is still wrong. COUNT(*) counts the
number of rows returned for each author. If we look at the
ungrouped results of the LEFT JOIN, we can see what’s
happened:

 SELECT author.name, joke.id AS jokeid
FROM author LEFT JOIN joke
 ON authorid = author.id

Figure 11.11 reveals that Amy Mathieson and Michael Yates do
have rows—the rows that are forced because there are no
matching rows in the right-hand table of the LEFT JOIN (joke).
The fact that the joke ID value is NULL has no effect on
COUNT(*); it still counts it as a row.

Figure 11.11. Ungrouped results

If, instead of *, you specify an actual column name (say,
joke.id) for the COUNT function to look at, it will ignore NULL
values in that column and give us the count we want:

 SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id

The long-awaited results are shown in Figure 11.12.

Figure 11.12. At last!

Limiting Results with HAVING
What if we wanted a list of only those authors that had no jokes
to their name? Once again, let’s look at the query that many
developers would try first:

 SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
WHERE numjokes = 0
GROUP BY author.id

This will cause phpMyAdmin to spit out the error #1054 -
Unknown column 'numjokes' in 'where clause'. By now, you’re

Unknown column 'numjokes' in 'where clause'. By now, you’re
probably unfazed that it failed to work as expected. The reason
why WHERE numjokes = 0 caused an error has to do with the
way MySQL processes result sets. First, MySQL produces the
raw, combined list of authors and jokes from the author and
joke tables. Next, it processes the ON portion of the FROM
clause and the WHERE clause so that only the relevant rows in the
list are returned (in this case, rows that match authors with their
jokes, and which have a numjokes value of 0). Finally, MySQL
processes the GROUP BY clause by grouping the results
according to their authorid, COUNTing the number of entries in
each group that have non-NULL joke.id values, and producing
the numjokes column as a result. Notice that the numjokes
column is actually created after the GROUP BY clause is
processed, and that happens only after the WHERE clause does
its stuff. Hence the error message—the WHERE clause is looking
for a numjokes column that is yet to be created. If you wanted
to exclude jokes that contained the word “chicken” from the
count, you could use the WHERE clause without a problem,
because that exclusion doesn’t rely on a value that the GROUP BY
clause is responsible for producing. Conditions that affect the
results after grouping takes place, however, must appear in a
special HAVING clause. Here’s the corrected query:

 SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id
HAVING numjokes = 0

The expected results are shown in Figure 11.13.

Figure 11.13. Our least prolific authors

Some conditions work both in the HAVING and the WHERE
clauses. For example, if we wanted to exclude a particular
author by name, we could do this by using author.name !=
'Author Name' in either the WHERE or HAVING clause; that’s
because, regardless of whether you filter out the author before or
after you group the results, the same results are returned. In such

after you group the results, the same results are returned. In such
cases, it’s always best to use the WHERE clause, because
MySQL is better at optimizing such queries internally so they
happen faster.

Further Reading
In this chapter, you rounded out your knowledge of Structured
Query Language (SQL) as supported by MySQL. We focused
predominantly on features of SELECT that allow you to view
information stored in a database with an unprecedented level of
flexibility and power. With judicious use of the advanced features
of SELECT, you can have MySQL do what it does best,
lightening the load on PHP in the process. There are still a few
isolated query types that we’ve yet to see, and MySQL offers a
whole library of built-in functions to do tasks like calculate dates
and format text strings (see Appendix C). To become truly
proficient with MySQL, you should also have a firm grasp on the
various column types offered by MySQL. The TIMESTAMP type,
for example, can be a real time-saver (no pun intended). All of
these are fully documented in the MySQL Manual, and briefly
covered in Appendix D. For more detailed coverage of the
features of SQL covered in this chapter—and a whole lot more
that wasn’t—I highly recommend the book Simply SQL by
Rudy Limeback.

[59] I’ve written an article that explores this technique in greater
detail at sitepoint.com, entitled Object Oriented PHP: Paging
Result Sets.

[60] You may find you have to read this a few times to
understand it. That’s because this is by far the subtlest aspect of
the SQL language you’ll find in the book.

Chapter 12

Binary Data
All the examples of database driven websites we’ve seen so far
have dealt with sites based around textual data. Jokes, authors,
categories … all these elements can be fully represented with
strings of text. But what if you ran, say, an online digital photo
gallery to which people could upload pictures taken with digital
cameras? For this idea to work, visitors need to be able to
upload their photos to our site, and we need the ability to keep
track of them. In this chapter, you will develop a system
whereby users can upload binary files (images, documents …
whatever!) and have them stored on your web server for display
on your site. There are several techniques you’ll need to learn on
the way, though, and I’ll cover all of these in this chapter:
working with files in PHP, handling uploaded files in PHP, and
storing and retrieving binary data in MySQL. As we learn to
juggle files with PHP, we’ll also take the opportunity to relieve
some of the load on your web server with the help of
semidynamic pages.

Semidynamic Pages
As the owner of a successful—or soon-to-be successful—
website, site traffic is probably worth encouraging.
Unfortunately, high site traffic can be just what a web server
administrator dreads—especially when that site’s primarily
composed of dynamically generated, database driven pages.
Such pages use a great deal more horsepower on the computer
that runs the web server software than do plain old HTML files,
because every page request is like a miniature program that runs
on that computer. While some pages of a database driven site
must always display current-to-the-second data taken from the
database, others do not. Consider the front page of a website
like sitepoint.com. Typically, it presents a digest of what’s new

like sitepoint.com. Typically, it presents a digest of what’s new
and fresh on the site. But how often does that information
actually change? Once an hour? Once a day? And how
important is it that visitors to your site see those changes the
instant they occur? Would your site really suffer if changes took
effect after a slight delay? By converting high-traffic dynamic
pages into semidynamic equivalents—static pages that are
regenerated dynamically at regular intervals to freshen their
content—you can significantly reduce the toll that the database
driven components of your site take on your web server’s
performance. Say that you have a controller script
—index.php—that uses a PHP template to generate your front
page, which provides a summary of new content on your site.
Through examining the server logs, you’ll probably find that this
is one of the most requested pages on your site. If you ask
yourself some of the questions just mentioned, you’ll realize that
there’s no need to dynamically generate this page for every
request. As long as it’s updated every time new content is added
to your site, it’ll be as dynamic as it needs to be. Instead of using
a controller script to handle every request for the front page of
your site, you can use the PHP code to generate a static
snapshot of the PHP template’s output and put this snapshot
online—in place of the dynamic version—as index.html. This
little trick will require some reading, writing, and juggling of files.
PHP is perfectly capable of accomplishing this task, but we’re
yet to cover the functions we’ll need:

file_get_contents

This function opens a file and reads the contents, returning
them in the form of a PHP string. The file can be stored on
the server’s hard disk, or PHP can load it from a URL
just like a web browser would. If an error occurs, the
function returns FALSE instead.

file_put_contents

This function opens a file and writes the specified data into
it. You can optionally specify settings such as whether the
data should be added to the end of the existing file, rather
than replacing the file completely (the default).[61]

file_exists

This function checks if a file with a specific name exists or

This function checks if a file with a specific name exists or
not. If the file exists, the function returns TRUE; otherwise,
it returns FALSE.

copy

This function performs a run-of-the-mill file copy
operation.

unlink

This function deletes a file from the hard disk.

Do you see where we’re headed? If not, I assure you that you
will in a moment. Let’s begin with a dead-simple controller script
and template for displaying a list of the three most recent jokes in
the databases of the Internet Joke Database, as we last left it in
Chapter 10:

chapter12/recentjokes/controller.php
<?php

include_once $_SERVER['DOCUMENT_ROOT'] .
'/includes/db.inc.php';

try
{
 $sql = 'SELECT id, joketext FROM joke
 ORDER BY jokedate DESC
 LIMIT 3';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array('text' => $row['joketext']);
}

include 'jokes.html.php';

chapter12/recentjokes/jokes.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>

 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Recent Jokes</title>
 <link rel="canonical" href="/recentjokes/">
 </head>
 <body>
 <p>Here are the most recent jokes in the
database:</p>
 <?php foreach ($jokes as $joke): ?>
 <?php markdownout($joke['text']); ?>
 <?php endforeach; ?>
 </body>
</html>

Normally, you’d name the controller script index.php, so that a
browser request for http://www.example.com/recentjokes/
would run the controller script and build the list of jokes on the
fly. However, the controller is named controller.php in this case.
A browser that knew this filename could still request the
controller, but as indicated by the <link rel="canonical">
tag[62] in the jokes.html.php template, we still expect most
visitors to access the page as
http://www.example.com/recentjokes/. Instead of triggering the
controller, though, browsers that request this URL will hit a static
version of the page that’s been prepared in advance. To
generate this static version, we’ll write another script:
generate.php. It will be the responsibility of this script to load
controller.php—the dynamic version of your front page—as a
web browser would, then to write an up-to-date static snapshot
of the page as index.html. If anything goes wrong in this process,
you’ll want to hold onto the existing version of index.html; we’ll
make this script write the new static version into a temporary file
(tempindex.html), then copy it over index.html if all is well. We
start out by setting some PHP variables to configure the URL of
the PHP script we wish to load, the temporary filename to use in
the process, and the name of the static page we wish to create:

chapter12/recentjokes/generate.php (excerpt)
<?php
$srcurl =
'http://localhost/recentjokes/controller.php';
$tempfilename = $_SERVER['DOCUMENT_ROOT'] .
 '/recentjokes/tempindex.html';

 '/recentjokes/tempindex.html';
$targetfilename = $_SERVER['DOCUMENT_ROOT'] .
 '/recentjokes/index.html';

Important: $srcurl Must Be a
URL

Resist the temptation to set $srcurl to the
filename of controller.php on your web server. In
order for this script to retrieve the page
produced by the controller.php script, it must
request the script using a URL that points to
your web server. If you pointed the script
directly at the file, it would receive the code of
the controller.php script itself rather than the
HTML output it produces.

Now, to do the work. We start out by deleting the temporary
file, in case it was previously left lying around by a failed
execution of this script. We use file_exists to check if the file
exists, then unlink to delete it if it does:

chapter12/recentjokes/generate.php (excerpt)
if (file_exists($tempfilename))
{
 unlink($tempfilename);
}

Now we can load the dynamic page (controller.php) by
requesting its URL with file_get_contents. Since we’re
requesting the file as a URL rather than directly using its filename,
the PHP script will be processed by the web server before we
receive it, so what we’ll end up with is essentially a static HTML
page:

chapter12/recentjokes/generate.php (excerpt)
$html = file_get_contents($srcurl);
if (!$html)
{
 $error = "Unable to load $srcurl. Static page
update aborted!";
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

With the page contents tucked away in the $html variable, we

With the page contents tucked away in the $html variable, we
now want to write them into a static HTML file. The
file_put_contents function makes this a piece of cake:

chapter12/recentjokes/generate.php (excerpt)
if (!file_put_contents($tempfilename, $html))
{
 $error = "Unable to write $tempfilename.
Static page update
↵ aborted!";
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

The static page has now been written into a temporary file, so
we should copy the temporary file and paste over the previous
version of the static file using copy. We can then delete the
temporary file with unlink:

chapter12/recentjokes/generate.php (excerpt)
copy($tempfilename, $targetfilename);
unlink($tempfilename);

Now, whenever generate.php is executed, a fresh copy of
index.html will be generated from controller.php. Go ahead and
request generate.php with your browser, then load the
recentjokes directory (for example, http://localhost/recentjokes/).
You should see the contents of the generated index.html file.

Note: Errors Due to File
Permissions

Particularly on Mac OS X and Linux servers, the
script could be tripped up if it has insufficient
privileges to copy and delete files in this
directory on your server. If generate.php outputs
errors that indicate this, you’ll need to make the
directory containing these files writable by your
web server. Usually, this can be done with a
simple chmod command:

chmod 777 /path/to/recentjokes/

Check with your web host if you need help

setting permissions to make a directory PHP-
writable on your site.

Of course, it would be a pain to have to manually request the
generate.php script whenever the content of your site changes.
The easiest way to automate this process is to include the
generate.php script from within the code of your site’s content
management system whenever a joke is added, updated, or
removed from the site. If a page is quite complex, it may be
difficult to find all the right places within your CMS to regenerate
its static version. Alternatively, you may simply wish to set up
your server to run generate.php at regular intervals—say, every
hour. Under Windows, you can use the Task Scheduler to run
php.exe (a standalone version of PHP included with XAMPP
and other distributions of PHP for Windows) automatically every
hour. Just create a batch file called generate.bat that contains this
line of text:

chapter12/recentjokes/generate.bat
@C:\xampp\php\php.exe generate.php

Adjust the paths and filenames as necessary, then set up Task
Scheduler to run generate.bat every hour. Done! Under OS X or
Linux, you can do a similar thing with cron—a system-level utility
that lets you define tasks to be run at regular intervals. Type man
crontab at your system’s Terminal prompt to read about how
you can set up tasks for cron. The task you’ll set cron to run will
be very similar to the Windows task just discussed. MAMP
includes a standalone version of PHP that you can run with cron
(it’s /Applications/MAMP/bin/php/php5.3.6/bin/php in the
version I’m using). For experienced cron users in a hurry, here’s
what the line in your crontab file should look like:
0 0-23 * * *
/Applications/MAMP/bin/php/php5.3.6/bin/php
↵/path/to/generate.php > /dev/null

Handling File Uploads
Okay, we can now juggle files we’ve created ourselves. The
next piece of the puzzle is to accept files uploaded by visitors to
your site, and handle them just as deftly. We’ll start with the
basics: let’s write an HTML form that allows users to upload

basics: let’s write an HTML form that allows users to upload
files. HTML makes this quite easy with its <input
type="file"> tag. By default, however, only the name of the
file selected by the user is sent. To have the file itself submitted
with the form data, we need to add
enctype="multipart/form-data" to the <form> tag:
<form action="index.php" method="post"
 enctype="multipart/form-data">
 <div><label for="upload">Select file to
upload:
 <input type="file" id="upload"
name="upload"></label></div>
 <div>
 <input type="hidden" name="action"
value="upload">
 <input type="submit" value="Submit">
 </div>
</form>

As we can see, a PHP script (index.php, in this case) will handle
the data submitted with this form. Information about uploaded
files appears in a array called $_FILES that’s automatically
created by PHP. As you’d expect, an entry in this array called
$_FILES['upload'] (from the name attribute of the <input>
tag) will contain information about the file uploaded in this
example. However, instead of storing the contents of the
uploaded file, $_FILES['upload'] contains yet another array.
We therefore use a second set of square brackets to select the
information we want:

$_FILES['upload']['tmp_name']

Provides the name of the file stored on the web server’s
hard disk in the system temporary file directory, unless
another directory has been specified using the
upload_tmp_dir setting in your php.ini file. This file is
only kept as long as the PHP script responsible for
handling the form submission is running. So, if you want to
use the uploaded file later on (for example, store it for
display on the site), you need to make a copy of it
elsewhere. To do this, use the copy function described in
the section called “Semidynamic Pages”.

$_FILES['upload']['name']

Provides the name of the file on the client machine before

Provides the name of the file on the client machine before
it was submitted. If you make a permanent copy of the
temporary file, you might want to give it its original name
instead of the automatically generated temporary filename
that’s described.

$_FILES['upload']['size']

Provides the size (in bytes) of the file.
$_FILES['upload']['type']

Provides the MIME type of the file. (It is sometimes
referred to as file type or content type, an identifier
used to describe the file format; for example,
text/plain, image/png, and so on.)

Remember, 'upload' is just the name attribute of the <input>
tag that submitted the file, so the actual array index will depend
on that attribute. You can use these variables to decide whether
to accept or reject an uploaded file. For example, in a photo
gallery we’d only really be interested in JPEG, and possibly GIF
and PNG files. These files have MIME types of image/jpeg,
image/gif, and image/png, respectively, but to cater for
differences between browsers,[63] you should use regular
expressions to validate the uploaded file’s type:
if (preg_match('/^image\/p?jpeg$/i',
$_FILES['upload']['type']) or
 preg_match('/^image\/gif$/i',
$_FILES['upload']['type']) or
 preg_match('/^image\/(x-)?png$/i',
$_FILES['upload']['type']))
{
 … Handle the file…
}
else
{
 $error = 'Please submit a JPEG, GIF, or PNG
image file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

See Chapter 8 for help with regular expression syntax. While
you can use a similar technique to disallow files that are too large
(by checking the $_FILES['upload']['size'] variable), I

(by checking the $_FILES['upload']['size'] variable), I
advise against it. Before this value can be checked, the file is
already uploaded and saved in the temporary directory. If you
try to reject files because you have limited disk space and/or
bandwidth, the fact that large files can still be uploaded (even
though they’re deleted almost immediately) may be a problem
for you. Instead, you can tell PHP in advance the maximum file
size you’ll accept. There are two ways to do this. The first is to
adjust the upload_max_filesize setting in your php.ini file.
The default value is 2MB, so if you want to accept uploads
larger than that, you’ll need to change that value immediately.[64]

The second method is to include a hidden <input> field in your
form with the name MAX_FILE_SIZE, and the actual maximum
file size you want to accept with this form as its value. For
security reasons, this value can’t exceed the
upload_max_filesize setting in your php.ini, but it does
provide a way for you to accept different maximum sizes on
different pages. The following form, for example, will allow
uploads of up to one kilobyte (1024 bytes):
<form action="upload.php" method="post"
 enctype="multipart/form-data">
 <p><label id="upload">Select file to upload:
 <input type="hidden" name="MAX_FILE_SIZE"
value="1024">
 <input type="file" id="upload"
name="upload"></label></p>
 <p>
 <input type="hidden" name="action"
value="upload">
 <input type="submit" value="Submit">
 </p>
</form>

Note that the hidden MAX_FILE_SIZE field must come before
any <input type="file"> tags in the form, so that PHP is
apprised of this restriction before it receives any submitted files.
Note also that this restriction can easily be circumvented by
malicious users who simply write their own form without the
MAX_FILE_SIZE field. For fail-safe security against large file
uploads, use the upload_max_filesize setting in php.ini.

Assigning Unique Filenames

As I explained, to keep an uploaded file you need to copy it to

As I explained, to keep an uploaded file you need to copy it to
another directory. And while you have access to the name of
each uploaded file with its $_FILE['upload']['name']
variable, there’s no guarantee that two files with the same name
will not be uploaded. In such a case, storage of the file with its
original name may result in newer uploads overwriting older
ones. For this reason, you’ll usually want to adopt a scheme that
allows you to assign a unique filename to every uploaded file.
Using the system time (which you can access using the PHP
time function), you can easily produce a name based on the
number of seconds since January 1, 1970. But what if two files
happen to be uploaded within one second of each other? To
help guard against this possibility, we’ll also use the client’s IP
address (automatically stored in $_SERVER['REMOTE_ADDR']
by PHP) in the filename. Since you’re unlikely to receive two
files from the same IP address within one second of each other,
it’s acceptable for most purposes:
// Pick a file extension
if (preg_match('/^image\/p?jpeg$/i',
$_FILES['upload']['type']))
{
 $ext = '.jpg';
}
else if (preg_match('/^image\/gif$/i',
$_FILES['upload']['type']))
{
 $ext = '.gif';
}
else if (preg_match('/^image\/(x-)?png$/i',
 $_FILES['upload']['type']))
{
 $ext = '.png';
}
else
{
 $ext = '.unknown';
}

// The complete path/filename
$filename = 'C:/uploads/' . time() .
$_SERVER['REMOTE_ADDR'] . $ext;

// Copy the file (if it is deemed safe)
if (!is_uploaded_file($_FILES['upload']
['tmp_name']) or
 !copy($_FILES['upload']['tmp_name'],
$filename))

$filename))
{
 $error = "Could not save file as $filename!";
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

Important to note in this code is the use of the
is_uploaded_file function to check if the file is “safe.” All
this function does is return TRUE if the filename it’s passed as a
parameter ($_FILES['upload']['tmp_name'] in this case)
was uploaded as part of a form submission. If a malicious user
loaded this script and manually specified a filename such as
/etc/passwd (the system password store on Linux servers), and
you had failed to use is_uploaded_file to check that
$_FILES['upload'] really referred to an uploaded file, your
script might be used to copy sensitive files on your server into a
directory where they’d become publicly accessible over the
Web! Thus, before you ever trust a PHP variable that you
expect to contain the filename of an uploaded file, be sure to use
is_uploaded_file to check it. A second trick I’ve used in the
aforementioned code is to combine is_uploaded_file and
copy together as the condition of an if statement. If the result of
is_uploaded_file($_FILES['upload']['tmp_name']) is
FALSE (making !is_uploaded_file($_FILES['upload']
['tmp_name']) TRUE), PHP will know immediately that the
entire condition will be TRUE when it sees the or operator
separating the two function calls. To save time, it will refrain from
bothering to run copy, so the file won’t be copied when
is_uploaded_file returns FALSE. On the other hand, if
is_uploaded_file returns TRUE, PHP goes ahead and copies
the file. The result of copy then determines whether or not an
error message is displayed. Similarly, if we’d used the and
operator instead of or, a FALSE result in the first part of the
condition would cause PHP to skip evaluating the second part.
This characteristic of if statements is known as short-circuit
evaluation , and it works in other conditional structures such as
while and for loops, too. Finally, note that I’ve used UNIX-
style forward slashes (/) in the path, despite it being a Windows
path. If I’d used backslashes, I would’ve had to replace them
with double-backslashes (\\) to stop PHP from interpreting
them as escaped characters. PHP is smart enough to convert

them as escaped characters. PHP is smart enough to convert
forward slashes in a filepath to backslashes when it’s running on
a Windows system. Since we can also use single slashes (/) as
usual on non-Windows systems, adopting forward slashes in
general for filepaths in PHP will make your scripts more
portable.

Recording Uploaded Files in
the Database
So, you’ve created a system whereby visitors can upload JPEG,
GIF, and PNG images and have them saved on your server …
but this book was supposed to be about database driven
websites—right? If we used the system as it stands now, the
submitted images would need to be collected from the folder in
which they’re saved, then added to the website by hand! If you
think back to the end of Chapter 9 when I suggested you
develop a system that enabled site visitors to submit jokes to be
stored in the database ready for quick approval by a content
administrator, you’ll know there must be a better way! MySQL
has several column types that allow you to store binary data. In
database parlance, these column types let us store BLOBs
(Binary Large OBjects); however, the storage of potentially
large files in a relational database is often a bad idea. While
there’s convenience in having all the data located in one place,
large files lead to large databases, and large databases lead to
reduced performance and humongous backup files. The best
alternative is usually to store the filenames in the database. As
long as you remember to delete files when you delete their
corresponding entries in the database, everything should work
the way you need it to. Since we’ve seen all the SQL code
involved in this time and again, I’ll leave the details to you. As
usual, the SitePoint Forum community is there to offer a helping
hand if necessary. In cases where you’re dealing with relatively
small files—for example, head shots for use in a staff directory—
the storage of data in MySQL is quite practical. In the rest of this
chapter, I’ll demonstrate how to use PHP to store binary files
uploaded over the Web in a MySQL database, and how to
retrieve those files for download or display.

retrieve those files for download or display.

Binary Column Types

As with most database driven web applications, the first factor to
consider is the layout of the database. To keep this example
separate from the Internet Joke Database, I recommend creating
a new database for it:

 CREATE DATABASE filestore

If this isn’t possible (for example, if you’re working on a hosted
MySQL server where you’re only allowed a single database), go
ahead and stick with your existing database. For each file that’s
stored in our database, we’ll store the filename, the MIME type
(for example, image/jpeg for JPEG image files), a short
description of the file, and the binary data itself. Here’s the
CREATE TABLE statement to create the table:

chapter12/sql/filestore.sql (excerpt)
CREATE TABLE filestore (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 filename VARCHAR(255) NOT NULL,
 mimetype VARCHAR(50) NOT NULL,
 description VARCHAR(255) NOT NULL,
 filedata MEDIUMBLOB
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Most of this syntax should be familiar to you; however, the
MEDIUMBLOB column type is new. If you consult the MySQL
Column Type Reference in Appendix D, you’ll find that
MEDIUMBLOB is the same as MEDIUMTEXT, except that it
performs case-sensitive searches and sorts. In fact, there’s no
difference between binary data and blocks of text from
MySQL’s point of view—both are just long strings of bytes to
be stored in the database. MySQL just applies a bunch of extra
rules to text column types to ensure that the expected sorting
behavior and character encoding conversions are performed
transparently. Aside from the increased performance you gain
from avoiding these extra rules, MySQL provides BLOB column
types like MEDIUMBLOB to support situations in which you might
need to compare the contents of one binary file with another. In
such cases, you’d want the comparison to be case-sensitive, as
binary files may use byte patterns that are the equivalent to

binary files may use byte patterns that are the equivalent to
alphabetical letters; for example, you’d want to distinguish the
byte pattern that represents “A” from that representing “a,”
which a MEDIUMTEXT column would consider equal.
MEDIUMBLOB is one of several BLOB column types designed to
store variable-length binary data. These column types differ from
one another only in two aspects: the maximum size of the data a
particular value in the column can contain, and the number of
bytes used to store the length of each data value. The different
binary column types are listed with these details in Table 12.1.
Table 12.1. Binary Column Types in MySQL

Column type Maximum size Space required per entry
TINYBLOB 255B Data size + 1 byte
BLOB 65KB Data size + 2 bytes
MEDIUMBLOB 16.7MB Data size + 3 bytes
LONGBLOB 4.3GB Data size + 4 bytes

As you can see, the table we’ve created will be able to store files
up to 16.7MB in size. If you think you’ll need larger files, you
can bump the filedata column up to a LONGBLOB. Each file
will occupy one more byte in the database, because MySQL will
require that extra byte in order to record larger file sizes, but
you’ll be able to store files up to 4.3GB (assuming that your
operating system allows files of this size)! If you took my advice
to create this table in a separate database, you’ll need a new
db.inc.php file to enable this example to connect to the database:

chapter12/filestore/db.inc.php
<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=filestore',
 'filestoreuser', 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';

 include 'error.html.php';
 exit();
}

Storing Files

With the database ready and waiting, the next step is to create a
PHP controller script and template that lets users upload files
and store them in the database. You can hold off copying the
code in the next two sections; I’ll present the completed code at
the end of the chapter. Here’s the code for the form—there
should be no surprises here:

chapter12/filestore/files.html.php (excerpt)
<form action="" method="post"
enctype="multipart/form-data">
 <div>
 <label for="upload">Upload File:
 <input type="file" id="upload"
name="upload"></label>
 </div>
 <div>
 <label for="desc">File Description:
 <input type="text" id="desc" name="desc"
 maxlength="255"></label>
 </div>
 <div>
 <input type="hidden" name="action"
value="upload">
 <input type="submit" value="Upload">
 </div>
</form>

As you’ll know from your reading in this chapter, this form will
create a temporary file on the server and store the name of that
file in $_FILES['upload']['tmp_name']. It also creates
$_FILES['upload']['name'] (the original name of the file),
$_FILES['upload']['size'] (the file size measured in
bytes), and finally, $_FILES['upload']['type'] (the MIME
type of the file). Inserting the file into the database is a relatively
straightforward process: read the data from the temporary file
into a PHP variable, then use that variable in a standard MySQL
INSERT query. Again, we make use of is_uploaded_file to
make sure the filename we use does, in fact, correspond to an
uploaded file before we start any of this. Here’s the code:

chapter12/filestore/index.php (excerpt)

chapter12/filestore/index.php (excerpt)
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_POST['action']) and $_POST['action']
== 'upload')
{
 // Bail out if the file isn't really an upload
 if (!is_uploaded_file($_FILES['upload']
['tmp_name']))
 {
 $error = 'There was no file uploaded!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }
 $uploadfile = $_FILES['upload']['tmp_name'];
 $uploadname = $_FILES['upload']['name'];
 $uploadtype = $_FILES['upload']['type'];
 $uploaddesc = $_POST['desc'];
 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 try
 {
 $sql = 'INSERT INTO filestore SET
 filename = :filename,
 mimetype = :mimetype,
 description = :description,
 filedata = :filedata';
 $s = $pdo->prepare($sql);
 $s->bindValue(':filename', $uploadname);
 $s->bindValue(':mimetype', $uploadtype);
 $s->bindValue(':description', $uploaddesc);
 $s->bindValue(':filedata', $uploaddata);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error storing file!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Viewing Stored Files

Armed with the code that accepts file uploads and stores them in
a database, you’re halfway home. But you still need to be able to
pull that data out of the database to use it. For our purposes, this
will mean sending the file to a requesting browser. Once again,
this turns out to be a relatively straightforward process. We
simply retrieve the data for the requested file from the database
and send it to the web browser. The only tricky part is to send
the browser information about the file:

the file size

so that the browser can display accurate download-
progress information to the user

the file type

so that the browser knows what to do with the data it
receives; that is, display it as a web page, text file, or
image, or offer to save the file

the filename

without specifying this, the browser will assume all files
downloaded from our script have the same filename as
our controller script

All this information is sent to the browser using HTTP headers ,
which is information that precedes the transmission of the file
data itself. As we’ve already seen, sending HTTP headers via
PHP is quite easy using the header function, but as headers
must be sent before plain content, any calls to this function must
come before anything is output by your script. The file size is
specified with a Content-length header:

chapter12/filestore/index.php (excerpt)
 header('Content-length: ' .
strlen($filedata));

strlen is a built–in PHP function that returns the length of the
given string. Since binary data is just a string of bytes as far as
PHP is concerned, you can use this function to count the length
(in bytes) of the file data. The file type is specified with a

(in bytes) of the file data. The file type is specified with a
Content-type header:

chapter12/filestore/index.php (excerpt)
 header("Content-type: $mimetype");

Finally, the filename is specified with a Content-disposition
header:
 header("Content-disposition: inline;
filename=$filename");

You could use the following code to fetch a file with a given ID
from the database, and send it to the browser:
include 'db.inc.php';

try
{
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
}
catch (PDOException $e)
{
 $error = 'Database error fetching requested
file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

$file = $s->fetch();
if (!$file)
{
 $error = 'File with specified ID not found in
the database!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

$filename = $file['filename'];
$mimetype = $file['mimetype'];
$filedata = $file['filedata'];

header('Content-length: ' . strlen($filedata));
header("Content-type: $mimetype");
header("Content-disposition: inline;

header("Content-disposition: inline;
filename=$filename");

echo $filedata;
exit();

One final trick we can add to this code is to allow a file to be
downloaded, instead of viewed, if the user so desires. Web
standards suggest that the way to do this is to send a Content-
disposition of attachment instead of inline. Here’s the
modified code. It checks if $_GET['action'] equals
'download', which would indicate that this special file type
should be sent:
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error fetching requested
file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {
 $error = 'File with specified ID not found
in the database!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
 $disposition = 'inline';
 if ($_GET['action'] == 'download')

 if ($_GET['action'] == 'download')
 {
 $disposition = 'attachment';
 }
 header('Content-length: ' .
strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition;
filename=$filename");

 echo $filedata;
 exit();

Unfortunately, many older browsers generally ignore the
Content-disposition header, deciding what to do with a file
based on the Content-type header instead—especially when it
comes after the Content-disposition header. To achieve the
desired download behavior in as many browsers as possible,
make sure the Content-type header comes before the
Content-disposition header. Then replace the file’s actual
MIME type with a generic Content-type of application/
octet-stream (which is required to force a download in older
browsers):

chapter12/filestore/index.php (excerpt)
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error fetching requested
file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {

 {
 $error = 'File with specified ID not found
in the database!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
 $disposition = 'inline';

 if ($_GET['action'] == 'download')
 {
 $mimetype = 'application/octet-stream';
 $disposition = 'attachment';
 }

 // Content-type must come before Content-
disposition
 header('Content-length: ' .
strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition;
filename=$filename");

 echo $filedata;
 exit();

Putting It All Together
You’ll find the complete file store example following. It combines
all the elements given previously with some simple code that will
list the files in the database, and allow them to be viewed,
downloaded, or deleted. As always, this code is available in the
code archive. First, the controller script:

chapter12/filestore/index.php
<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_POST['action']) and $_POST['action']
== 'upload')
{
 // Bail out if the file isn't really an upload
 if (!is_uploaded_file($_FILES['upload']
['tmp_name']))

['tmp_name']))
 {
 $error = 'There was no file uploaded!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }
 $uploadfile = $_FILES['upload']['tmp_name'];
 $uploadname = $_FILES['upload']['name'];
 $uploadtype = $_FILES['upload']['type'];
 $uploaddesc = $_POST['desc'];
 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 try
 {
 $sql = 'INSERT INTO filestore SET
 filename = :filename,
 mimetype = :mimetype,
 description = :description,
 filedata = :filedata';
 $s = $pdo->prepare($sql);
 $s->bindValue(':filename', $uploadname);
 $s->bindValue(':mimetype', $uploadtype);
 $s->bindValue(':description', $uploaddesc);
 $s->bindValue(':filedata', $uploaddata);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error storing file!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['action']) and
 ($_GET['action'] == 'view' or
$_GET['action'] == 'download') and
 isset($_GET['id']))
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata

 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error fetching requested
file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {
 $error = 'File with specified ID not found
in the database!';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
 $disposition = 'inline';

 if ($_GET['action'] == 'download')
 {
 $mimetype = 'application/octet-stream';
 $disposition = 'attachment';
 }

 // Content-type must come before Content-
disposition
 header('Content-length: ' .
strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition;
filename=$filename");

 echo $filedata;
 exit();
}

if (isset($_POST['action']) and $_POST['action']
== 'delete' and

 isset($_POST['id']))
{
 include 'db.inc.php';

 try
 {
 $sql = 'DELETE FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error deleting requested
file.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

include 'db.inc.php';

try
{
 $result = $pdo->query(
 'SELECT id, filename, mimetype,
description
 FROM filestore');
}
catch (PDOException $e)
{
 $error = 'Database error fetching stored
files.';
 include $_SERVER['DOCUMENT_ROOT'] .
'/includes/error.html.php';
 exit();
}

$files = array();
foreach ($result as $row)
{
 $files[] = array(
 'id' => $row['id'],
 'filename' => $row['filename'],
 'mimetype' => $row['mimetype'],
 'description' => $row['description']);

 'description' => $row['description']);
}

include 'files.html.php';

Next, the PHP template that includes the upload form and list of
files:

chapter12/filestore/files.html.php
<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>PHP/MySQL File Repository</title>
 </head>
 <body>
 <h1>PHP/MySQL File Repository</h1>

 <form action="" method="post"
enctype="multipart/form-data">
 <div>
 <label for="upload">Upload File:
 <input type="file" id="upload"
name="upload"></label>
 </div>
 <div>
 <label for="desc">File Description:
 <input type="text" id="desc" name="desc"
 maxlength="255"></label>
 </div>
 <div>
 <input type="hidden" name="action"
value="upload">
 <input type="submit" value="Upload">
 </div>
 </form>

 <?php if (count($files) > 0): ?>

 <p>The following files are stored in the
database:</p>

 <table>
 <thead>
 <tr>
 <th>Filename</th>
 <th>Type</th>
 <th>Description</th>
 </tr>

 </tr>
 </thead>
 <tbody>
 <?php foreach($files as $f): ?>
 <tr>
 <td>
 <a href="?action=view&id=<?php
htmlout($f['id']); ?>
 "><?php htmlout($f['filename']); ?
>
 </td>
 <td><?php htmlout($f['mimetype']); ?>
</td>
 <td><?php htmlout($f['description']);
?></td>
 <td>
 <form action="" method="get">
 <div>
 <input type="hidden"
name="action"
 value="download"/>
 <input type="hidden" name="id"
 value="<?php
htmlout($f['id']); ?>"/>
 <input type="submit"
value="Download"/>
 </div>
 </form>
 </td>
 <td>
 <form action="" method="post">
 <div>
 <input type="hidden"
name="action" value="delete"/>
 <input type="hidden" name="id"
 value="<?php
htmlout($f['id']); ?>"/>
 <input type="submit"
value="Delete"/>
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>

 <?php endif; ?>
 </body>
</html>

And just to be thorough, the database connection include file:
chapter12/filestore/db.inc.php

<?php
try
{
 $pdo = new
PDO('mysql:host=localhost;dbname=filestore',
 'filestoreuser', 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database
server.';
 include 'error.html.php';
 exit();
}

Note that this uses a different database (filestore) than the
Internet Joke Database site and user (filestoreuser). If you
prefer to put the filestore table in the ijdb database along
with everything else that’s in there, you can just use the shared
db.inc.php include file instead. With all these files in place and
the database set up, fire up your browser and take a look. The
empty repository should produce a page like the one in
Figure 12.1.

Figure 12.1. The Empty Repository

Upload a few files and you should see them listed in a table, as
shown in Figure 12.2.

Figure 12.2. A couple of files on board

Click on a filename and the file should be displayed in the
browser (assuming the file is of a type that your browser
supports). In addition, try out the Download and Delete buttons
provided for each file. They should work as you would expect.
This example demonstrates all the techniques you need in order
to juggle binary files with PHP and MySQL, and I invite you to
think of some creative uses of this code. Consider, for example,
a file archive to which users must provide a username and
password before they’re allowed to view or download the files.

password before they’re allowed to view or download the files.
If a user enters an incorrect username/password combination,
your script can display an error page instead of sending the file
data. Another possibility would be a script that sends different
files depending on the details submitted by the form.

Large File Considerations
In systems like those we’ve just developed, large files present
some unique challenges to the developer. I’ll explain these here
briefly, but fully developed solutions to these problems are
beyond the scope of this book.

MySQL Packet Size

By default, MySQL rejects commands (packets) that are longer
than 1MB. This default puts a reasonably severe limit on the
maximum file size you can store, unless you’re prepared to write
your file data in 1MB chunks using an INSERT followed by
several UPDATEs. Increase the maximum packet size by setting
the max_allowed_packet option in your my.cnf or my.ini file.
Refer to the MySQL manual for more information on this issue.

PHP Memory Limit

PHP is configured by default to consume no more than 8MB of
memory for the processing of any particular request. If your
script needs to read a file whose size is close to or even larger
than that limit, your browser will likely display an ugly error
message about PHP having been unable to allocate memory. To
fix this issue, edit your server’s php.ini file and change the value
of the memory_limit setting to a more generous figure.

PHP Script Timeout

PHP is configured by default to kill PHP scripts that run for more
than 30 seconds. Needless to say, for large downloads over
slow connections, this limit will be reached fairly quickly. Use
PHP’s set_time_limit function to set an appropriate time
limit for the download, or simply set the time limit to zero, which

limit for the download, or simply set the time limit to zero, which
allows the script to run to completion, however long it takes. But
only do this if you’re positive your script will always terminate,
and not run forever!

The End
In this chapter, we completed our exploration of PHP and
MySQL with a practical look at handling file uploads and storing
binary data in MySQL databases. Admittedly, this is a rather
arbitrary place to end this book; there are plenty of other aspects
of PHP and MySQL that you could explore, some of which
could be called no less basic or essential than binary data. PHP
in particular—with its “batteries included” philosophy of packing
as much functionality as possible directly into the language in the
form of built-in functions—could fill ten books this size. Exactly
which aspects you’ll need to learn before tackling any particular
project will vary wildly. Having worked as a professional PHP
developer for many years now, I have to admit that I remain
unfamiliar with most of the functionality that PHP has to offer.
There’s just so much available to explore. That’s why very few
people bother to print out the PHP Manual in its entirety. By far
the best way to cement your newfound knowledge of PHP and
MySQL is to put it to work: build your own database driven
website from scratch using the techniques covered in this book.
Publish it on the Web, and ask for feedback from real, live users.
Chances are they’ll push you to make improvements to the site
that you might lack the knowhow to implement right away. These
real-world requirements should direct your further exploration of
PHP and MySQL—and there’s plenty more to be learned! A
great resource on your adventures would be a copy of
SitePoint’s PHP Master: Write Cutting-edge Code. Beginning
with an exploration of PHP’s object oriented programming
features, it builds on that foundation to demonstrate efficient
ways of tackling some of the problems we looked at in this
book, and many more that we didn’t. If you end up tackling
more than one project, you may find yourself writing the same
pieces of code over and over again. Rather than spending time
perfecting your own collection of shared include files, you might
like to spend some time learning a PHP framework such as Zend

like to spend some time learning a PHP framework such as Zend
Framework, CakePHP, or Symfony. Each of these frameworks
represent many thousands of hours’ work by PHP experts
who’ve developed ready-made solutions for the most common
problems tackled by PHP developers. By using these solutions in
your own projects, you can focus on writing the code to solve
the problems that are unique to your project and waste less time
reinventing the wheel. Each framework has its own philosophy,
strengths, and weaknesses, and finding the right one for you will
take some work. If you plan on becoming a professional PHP
developer, however, you’ll find it time well spent. However you
proceed from this point, rest assured you’re starting out with a
solid grounding in the essentials. That’s more than can be said for
many developers working today. Take that advantage and use it.
Most importantly, go out there and write some code!

[61] For full details of the available options, check out the PHP
Manual.

[62] For a full description of the <link rel="canonical">
tag, check out the Google Webmaster Central Blog.

[63] The exact MIME type depends on the browser in use.
Internet Explorer uses image/pjpeg for JPEG images and
image/x-png for PNG images, while Firefox and other
browsers use image/jpeg and image/png, respectively.

[64] A second restriction, affecting the total size of form
submissions, is enforced by the post_max_size setting in
php.ini. Its default value is 8MB, so if you want to accept really
big uploads you’ll need to modify that setting, too.

Appendix A. Manual
Installation Instructions
In Chapter 1, I recommended using a packaged solution like
XAMPP or MAMP to set up a PHP-capable web server and
MySQL database server on your computer. Especially when
you’re just starting out, it’s useful to have your development web
server bundled together so that you can switch it on and off—
even throw it away and start from scratch all at once, whenever
you need to. That said, the time may come when you want to do
it all yourself, if only to understand how all the parts fit together.
In this appendix, I’ll walk you through a manual installation
process on each of the three major platforms that PHP and
MySQL support: Windows, OS X, and Linux.

Windows
Installing MySQL

You can download MySQL free of charge. Simply proceed to
the MySQL Downloads page and click the Download link for
the free MySQL Community Server. This will take you to a page
with a list of download links for the current recommended
version of MySQL (as of this writing, it’s MySQL 5.5.22). At
the top of the list you’ll see links for Windows 64-bit and
Windows 32-bit. If you’re positive you’re running a 64-bit
version of Windows, go ahead and click the Download button
next to Windows (x86, 64-bit), MSI Installer to download the
package (about 33MB in size). If you know you’re running a
32-bit version of Windows, or if you’re at all unsure, click the
Download button next to Windows (x86, 32-bit), MSI Installer
to download that package (about 31MB); it will work even if it
turns out you’re running a 64-bit version of Windows. Once
you’ve downloaded the file, double-click it and go through the
installation as you would for any other program. Choose the
Typical option when prompted for the setup type, unless you
have a particular preference for the directory in which MySQL is
installed. When you reach the end, you’ll be prompted to choose
whether you want to Launch the MySQL Instance Configuration

whether you want to Launch the MySQL Instance Configuration
Wizard. Go ahead and launch it, and choose Detailed
Configuration, which we’ll use to specify a number of options
that are vital to ensuring compatibility with PHP. For each step in
the wizard, select the options indicated here:

1. Server Type

Assuming you’re setting up MySQL for development
purposes on your desktop computer, choose Developer
Machine.

2. Database Usage

Although any of these options will work fine with the
examples in this book, go with the default Multifunctional
Database option.

3. InnoDB Tablespace Settings

This lets you control where your database files are stored.
The default option of storing them in your MySQL
Installation Path is perfect for a development server. No
need to touch anything here.

4. Connection Limit

Select Decision Support (DSS)/OLAP to optimize
MySQL for a relatively modest number of connections.

5. Networking Options

Uncheck the Enable Strict Mode option to ensure
MySQL’s compatibility with older PHP code that you
might need to use in your own work.

6. Default Character Set

Select Best Support For Multilingualism to tell MySQL to
assume you want to use UTF-8 encoded text, which
supports the full range of characters in use on the Web
today.

7. Windows Options

Allow MySQL to be installed as a Windows Service
that’s launched automatically. Select Include Bin Directory
in Windows PATH to make it easier to run MySQL’s
administration tools from the command prompt.

8. Security Options

8. Security Options

Go ahead and set a password for the MySQL root user
account, which grants full access to all databases stored in
your MySQL server. Leave the other options alone.

Once the wizard has completed, your system should now be fully
equipped with a running MySQL server! To verify that the
MySQL server is running properly, type Ctrl+Alt+Del and
choose the option to open the Task Manager. On the Processes
tab, click the Show processes from all users button unless it’s
already selected. If all is well, the server program (mysqld.exe)
should be listed. It will also start up automatically whenever you
restart your system.

Installing PHP

The next step is to install PHP, so head over to the PHP
Downloads page. There are two versions of PHP 5.4.x for
Windows: VC9 Non Thread Safe and VC9 Thread Safe. Talk
about confusing! You definitely want a Thread Safe version of
PHP. The Non Thread Safe versions are unsuitable for use as a
plugin for Apache. Download the Zip package of the VC9
Thread Safe release of PHP. PHP was designed to run as a
plugin for existing web server software such as Apache or
Internet Information Services, so before you can install PHP, you
must first set up a web server. Many versions of Windows come
with Microsoft’s powerful Internet Information Services (IIS)
web server, but not all do. Windows XP Home, Windows Vista
Home, and Windows 7 Home Basic (among others) are without
IIS, so you need to install your own web server on these
versions of Windows if you want to develop database driven
websites. On top of that, assorted versions of Windows come
with different versions of IIS, some of which vary dramatically in
how you configure them to work with PHP. With that in mind, if
you’re still considering IIS, you should know it’s relatively
uncommon to host websites built using PHP with IIS in the real
world. It’s generally less expensive and more reliable to host
PHP-powered sites on servers running some flavor of the Linux
operating system, with the free Apache web server installed.
About the only reason for hosting a PHP site on IIS is if your
company has already invested in Windows servers to run
applications built using ASP.NET (a Microsoft technology built
into IIS), and you want to reuse that existing infrastructure to

into IIS), and you want to reuse that existing infrastructure to
host a PHP application as well. Although it’s by no means a
requirement, it’s generally easiest to set up your development
server to match the environment your website will be deployed in
publicly as closely as possible. For this reason, I recommend
using the Apache web server —even for development on a
Windows computer. If you insist (or your boss insists) on hosting
your PHP-based site using IIS, you’ll find the necessary
installation instructions in the install.txt file contained in the PHP
zip package you downloaded from the PHP website. If you need
to install Apache on your computer, surf on over to the Apache
Lounge website and download the latest version of Apache (as
of writing it’s version 2.4.1). Once the ZIP file has downloaded,
right-click it and choose Extract All… to extract the file’s
contents into a folder. Inside, you’ll find a couple of text files
containing installation instructions. The first is a reminder to
download and install the latest Microsoft Visual C++
Redistributable Package. Go ahead and do that now. When
you’re done, drag the .exe file you downloaded to the Recycle
Bin. Next, the installation instructions will tell you to drag the
Apache24 folder that you extracted from the ZIP file to the root
of your C: drive, so that Apache will be installed in
C:\Apache24. (It’s possible to change this path if you really want
to, but it’s a bit of a pain to edit the relevant configuration files so
I recommend just going with it.) Now Apache is installed, but to
launch it for the first time (and configure it to run automatically at
system startup), you’ll need to open a Command Prompt. On
your Start Menu, find All Programs > Accessories > Command
Prompt, then right-click on Command Prompt and choose Run
as administrator. This will drop you in a window showing the
current directory (C:\Windows\system32 on my system):

 C:\Windows\system32>

At the end of this prompt, you’ll see a cursor blinking away.
Type C: and hit Enter to make sure you’re working on C: drive,
then type cd \Apache24\bin and hit Enter to switch to the
C:\Apache24\bin folder:

 C:\Windows\system32>
 C:

C:\Windows\system32>
 cd \Apache24\bin

 cd \Apache24\bin

C:\Apache24\bin>

Now, to launch Apache for the first time, type httpd.exe and
hit Enter:

 C:\Apache24\bin>
 httpd.exe

If all goes well, it should look like nothing is happening. There
won’t be another prompt; your command will just sit there
running. On the other hand, you might receive an error message
like this:

 C:\Apache24\bin>
 httpd.exe
(OS 10013)An attempt was made to access a socket in a way forbidden
by its access permissions. : AH00072: make_sock: could not bind to
address [::]:80(OS 10013)An attempt was made to access a socket in a
way forbidden by its access permissions. : AH00072: make_sock:
could not bind to address 0.0.0.0:80AH00451: no listening sockets
available, shutting downAH00015: Unable to open logs

C:\Apache24\bin>

This overwhelming error is Apache’s way of telling you that you
already have a web server running on your computer, listening
for web browsers to connect on port 80 (the standard port for
web servers). Check if you have IIS running, or another copy of
Apache (perhaps bundled in a package like XAMPP?). Shut it
down, then try launching Apache from the Command Prompt
again. With Apache up and running, open your web browser of
choice and type http://localhost into the location bar. Hit Enter,
and you should see a page like that shown in Figure A.1,
confirming Apache is working correctly.

Figure A.1. You can take my word for it!

Close your browser and return to the Command Prompt. Shut
down Apache by hitting Ctrl+C. After a moment, there’ll be
another prompt:

 C:\Apache24\bin>
 httpd.exe

C:\Apache24\bin>

You probably don’t want to have to open a Command Prompt
every time you need to run Apache. Instead, type httpd.exe -
k install to install Apache as a system service. Here’s what
you should see:

 C:\Apache24\bin>
 httpd.exe -k install
Installing the Apache2.4 service
The Apache2.4 service is successfully installed.
Testing httpd.conf....
Errors reported here must be corrected before the service can be
↵started.

But you might see this instead:

 C:\Apache24\bin>
 httpd.exe -k install
Installing the Apache2.4 service
(OS 5)Access is denied. : AH00369: Failed to open the WinNT service
↵ manager, perhaps you forgot to log in as Adminstrator?yoss

If that’s the case, it means you neglected to right-click and
choose Run as administrator when launching Command Prompt
above. Try again with a Command Prompt window running as
administrator. With Apache set up as a system service, close the
Command Prompt and navigate to C:\Apache24\bin in Windows
Explorer. In that folder, you’ll find a file named
ApacheMonitor.exe. This is a program that will help you monitor
and control your Apache server now that it’s set up as a service.
Pin it to your Start Menu (or, if you prefer, create a shortcut to it
and put that wherever you like in your All Programs menu), then
launch it. A new Apache Monitor icon will appear in your system
tray (you may need to customize your system tray to keep it
visible). Click the icon, and you’ll see the Apache2.4 system
service listed. Hover over that service and a fly-out menu will

appear with options to Start, Stop, and Restart the server.
Choose Start to fire up Apache. The icon will change to show a
tiny green arrow that indicates Apache is running.

Figure A.2. The green light means Apache is up and running

You can also use the Apache Monitor icon to stop Apache
running, once you’ve finished your web development work for
the day.
With Apache standing on its own two feet, you can now install
PHP. Follow these steps:

1. Unzip the file you downloaded from the PHP website into
a directory of your choice. I recommend C:\php and will
refer to this directory from this point forward, but feel free
to choose another directory if you like.

2. Find the file called php.ini-development in the PHP folder
and make a duplicate copy of it. The easiest way to do it
is to right-click and drag the file’s icon, drop it in the same
Explorer window, and choose Copy Here from the pop-
up menu. You’ll be left with a new file named along the
lines of php - Copy.ini-development (depending on the
version of Windows you’re using). Find this new file and
rename it to php.ini. Windows will ask if you’re sure
about changing the filename extension (from .ini-dist to
.ini); click Yes.

Important: Windows
Hides Known Filename
Extensions by Default

When you rename the file to php.ini, you
might notice that the new filename
appearing next to the icon is actually just
php. If this happens, it’s because your
copy of Windows is set up to hide the
filename extension if it recognizes it. Since
Windows knows that .ini files are
Configuration Settings files, it hides this
filename extension. As you can imagine,

filename extension. As you can imagine,
this feature can cause a certain amount of
confusion. When you return to edit the
php.ini file in the future, it would help to
be able to see its full filename so that you
could tell it apart from the php.gif and
php.exe files in the same folder. To switch
off filename extension hiding, open the
Windows Control Panel and search for
Folder Options. Open the Folder Options
window and switch to the View tab.
Under Files and Folders, uncheck the
Hide extensions for known file types
checkbox, as shown in Figure A.3.

Figure A.3. Make filename extensions
visible for all files

3. Open the php.ini file in your favorite text editor. If you
have no particular preference, just double-click the file to
open it in Notepad. It’s a large file with a lot of confusing

options, but look for the line that begins with doc_root
(Notepad’s Edit > Find… feature will help). Out of the
box, the line looks like this:
doc_root =

To the end of this line, add the path to your web server’s
document root directory. For the Apache server, this is
the htdocs folder in the main Apache web server
directory. If you installed Apache in the default location,
the path should be "C:\Apache24\htdocs". If you installed
it elsewhere, find the htdocs folder and type its path:
doc_root = "C:\Apache24\htdocs"

Just a little further down in the file, look for the line that
begins with ; extension_dir, remove the semicolon
from the start of the line, and set it so that it points to the
ext subfolder of your PHP folder:
extension_dir = "C:\php\ext"

Scroll further down in the file and you’ll see a bunch of
lines beginning with ;extension=. These are optional
extensions to PHP, disabled by default. We want to
enable the MySQL extension so that PHP can
communicate with MySQL. To do this, remove the
semicolon from the start of the php_mysqli.dll line:
extension=php_mysqli.dll

Warning: php_mysqli, not
php_mysql
Just above the line for php_mysqli.dll
there is a line for php_mysql.dll. The i
in php_mysqli stands for improved.
You want to enable the new improved
MySQL extension. The one without the i
is obsolete, and some of its features are
incompatible with current versions of
MySQL.

Keep scrolling even further down in the file, and look for a
line that starts with ;session.save_path. Once again,
remove the semicolon to enable this line, and set it to your
Windows Temp folder:
session.save_path = "C:\Windows\Temp"

Save the changes you made and close your text editor.

That takes care of setting up PHP. Now you can set up your
Apache server to use it as a plugin:

1. Launch Notepad (or your text editor of choice) and
choose File > Open…. Browse to the conf subfolder in
your Apache installation folder (by default,
C:\Apache24\conf), and select the httpd.conf file located
there. In order to make this file visible for selection, you’ll
need to select All Files (*.*) from the file type drop-down
menu at the bottom of the Open window.

2. Look for the existing line in this file that begins with
DirectoryIndex, shown here:
<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>

This line tells Apache which filenames to use when it looks
for the default page for a given directory. Add index.php
to the end of this line:
<IfModule dir_module>
 DirectoryIndex index.html index.php
</IfModule>

3. The remaining options in this long and intimidating
configuration file should be fine as is. All you need to do is
add the following lines to the very end of the file:
LoadModule php5_module
"C:/php/php5apache2_4.dll"
AddType application/x-httpd-php .php
PHPIniDir "C:/php"

Make sure the LoadModule and PHPIniDir lines point
to your PHP installation directory, and note the use of
forward slashes (/) instead of backslashes (\) in the
paths.

Important: PHP and
Apache Versions

Historically, major new versions of the
Apache server have required new
versions of the .dll file you see referenced
in the LoadModule line, and sometimes

in the LoadModule line, and sometimes
PHP lags behind new Apache releases.
At the time of this writing, for example,
the Windows PHP distribution doesn’t
actually include a php5apache2_4.dll file!
If you take another look in your PHP
installation directory, you’ll probably see
there are files named php5apache2_2.dll
and php5apache2_3.dll in there. These
files were provided for use with Apache
2.2 and 2.3, respectively. By the time you
read this, it’s possible that Apache has
undergone another major release, which
might need yet another new .dll file. For
example, Apache 2.5 might require you to
use a new file named php5apache2_5.dll.
If indeed there is no file to match the
version of Apache you’ve installed, return
to the Apache Lounge download page;
you should find it available for download
there (for example, php5apache2_4.dll-
php-5.4-win32.zip). Download the ZIP
file, extract it, and drop the missing .dll file
in your PHP installation folder. Apache
will now be able to find it where your
LoadModule command says it should be.

4. Save your changes and close Notepad.
5. Restart Apache using the Apache Monitor system tray

icon. If all is well, Apache will start up again without
complaint. If Apache fails to start, try launching it from the
Command Prompt again (as previously); this will give you
a more detailed error message. Chances are you made a
small mistake when editing httpd.conf.

6. Double-click the Apache Monitor icon to open the
Apache Service Monitor window. If PHP is installed
correctly, the status bar of this window should indicate the
version of PHP you’ve installed, as shown in Figure A.4.

7. Click OK to close the Apache Service Monitor window.

Figure A.4. The PHP version number indicates Apache is
configured to support PHP

With MySQL, Apache, and PHP installed, you’re ready to start
working with your new web server!

OS X
The following instructions assume you’re running Mac OS X
10.6 (Snow Leopard) or later. If you’re running an earlier
version of OS X, you should stick with the all-in-one option.

Installing MySQL

Start by visiting the The MySQL Downloads page. Click the
Download link for the free MySQL Community Server. This will
take you to a page with a long list of download links for the
current recommended version of MySQL (as of this writing, it’s
MySQL 5.5.22). You’ll be presented with the list of downloads
shown in Figure A.5. Which one you need to choose depends
on your operating system version and platform architecture. If
you know your Mac has a 64-bit processor, you can safely pick
the Mac OS X ver. 10.6 (x86, 64-bit), DMG Archive version. If
you’re at all unsure, your best bet is the Mac OS X ver. 10.6
(x86, 32-bit), DMG Archive version; all it requires is that you
have an Intel-based Mac (to be sure, check the processor
information in the About This Mac window, which you can
access from the Apple menu). The 32-bit version is the safe bet,

access from the Apple menu). The 32-bit version is the safe bet,
since it will run on 64-bit systems too.

Figure A.5. The 32-bit version of MySQL for Intel processors will
work on most current Macs

Once you’ve downloaded the mysql-version-
osxversion-platform.dmg file, double-click it to mount the disk
image. As shown in Figure A.6, it contains the installer in .pkg
format, as well as a MySQLStartupItem.pkg file. Double-click
the installer, which will guide you through the installation of
MySQL.

Figure A.6. The MySQL Mac OS X package contains lots of
goodies

With MySQL is installed, you can launch the MySQL server.
Open a Terminal window[65] and type this command:

 Machine:~ user$
 sudo /usr/local/mysql/bin/mysqld_safe

Note: What to Type

The Machine:~ user$ portion (where
Machine is your computer’s name) represents
the prompt that’s already displayed. You only
need to type the command, which is shown in
bold.

When you’ve typed the command, hit Enter. This command
runs the mysqld_safe script with administrator privileges, which
will require you to input your password. A status message will
confirm that MySQL is running. Once MySQL is running, you
can switch it to background execution by typing Ctrl+Z to stop
the process, and then typing this command to let it continue
running in the background:

 Machine:~ user$
 bg

You can then quit the Terminal application and MySQL will
continue to run as a server on your system. When you want to
shut down the MySQL server, open a new Terminal window
and type this command:

 Machine:~ user$
 sudo /usr/local/mysql/bin/mysqladmin shutdown

Though you’ll gain plenty of geek cred for memorizing these
commands, there’s a much less tedious way to control your
MySQL server. Back in the installation disk image shown in
Figure A.6, you’ll notice a file named MySQL.prefPane.

Double-click this to install a new pane in Mac OS X’s System
Preferences, and the window shown in Figure A.7 will open.

Figure A.7. The MySQL System Preferences pane

This window will tell you if your MySQL server is running or not,
and lets you start it up and shut it down with the click of a
button! Presumably, you’ll want your system to launch the
MySQL server at startup automatically, so that you can avoid
having to repeat the above process whenever you restart your
system. The system preferences pane has a checkbox that does
this, but for this checkbox to do anything you must first install the
MySQLStartupItem.pkg from the installation disk image. When
you have everything set up the way you want it, you can safely
drag the MySQL installation disk icon on your desktop to the
trash, then delete the .dmg file you downloaded. One last task
you’ll want to do is add the /usr/local/mysql/bin directory to your
system path. Doing this enables you to run programs like
mysqladmin and mysql in the Terminal without typing out their full
paths. Pop open a new Terminal window and type these
commands:

 Machine:~ user$
 sudo su
 Password:
 (type your password)

 sh-3.2#
 echo '/usr/local/mysql/bin' >> /etc/paths.d/mysql
 sh-3.2#
 exit

Close the Terminal window and open a new one to allow this
change to take effect. Then, with your MySQL server running,
try running the mysqladmin program from your home directory:

 Machine:~ user$
 mysqladmin status

If everything worked the way it’s supposed to, you should see a
brief list of statistics about your MySQL server.

Installing PHP

Mac OS X 10.5 (Leopard) comes with Apache 2.2 and PHP 5
built right in! All you need to do is switch them on:

1. Open System Preferences (System Preferences… on the
Apple menu).

2. In the main System Preferences menu, click Sharing under
Internet & Wireless.

3. Make sure that Web Sharing is checked, as shown in
Figure A.8.

Figure A.8. Enable Web Sharing in Mac OS X

4. Quit System Preferences.
5. Open your browser, type http://localhost into the address

bar, and hit Enter. Your browser should display the
standard Apache welcome message shown in Figure A.9.

Figure A.9. The standard Apache welcome page

With this procedure complete, Apache will be run at startup
automatically on your system. You’re now ready to enhance this
server by enabling PHP support:

1. In the Finder menu bar, choose Go > Go to folder
(⇧+⌘+G), and type /private/etc/apache2/ before clicking

(⇧+⌘+G), and type /private/etc/apache2/ before clicking
Go.

2. In the Finder window that opens, there should be a file
named httpd.conf. This is the Apache configuration file.
By default, it’s read-only. Right-click the file and choose
Get Info (⌘+I) to open the file’s properties. Scroll down
to the bottom of the httpd.conf Info window to find the
Sharing & Permissions setting. By default, the settings in
this section are disabled. Click the little lock icon shown in
Figure A.10 to enable them. Enter your password when
prompted.

Figure A.10. Click the lock to make changes to these
settings

To make this file editable, change the value in the Privilege
column for everyone to Read & Write, as shown in
Figure A.11.

Figure A.11. Set the permissions for everyone to Read &
Write

3. Back in the Finder window for the apache2 folder, right-
click in the background of the folder window and choose

Get Info to open the folder’s properties. As in the
previous step, set the Sharing & Permissions settings from
everyone to Read & Write.

4. Finally, double-click the httpd.conf file to open it in
TextEdit.

5. In the httpd.conf file, search for this line:
#LoadModule php5_module
libexec/apache2/libphp5.so

Enable this command by deleting the hash (#) character at
the start of the line.

6. Save your changes, and close the file.
7. If you like to tidy up after yourself, you can go back and

reset the privileges on the httpd.conf file and the apache2
folder. This will keep other users of your computer from
making changes to the Apache configuration.

8. Open a Terminal window and type this command to
restart Apache:

 Machine:~ user$
 sudo /usr/sbin/apachectl restart

Type your password when prompted.
9. Load http://localhost in your browser again to ensure that

Apache is still running. Give it a minute if it’s not available
right away. If it fails to come back up, open Console (in
the Utilities subfolder of Applications). In the sidebar
under /var/log, select apache2 > error_log to view the
Apache error log and look for clues as to what went
wrong. If you’re still stuck, you could head over to the
SitePoint Forums for help.

Your computer is now equipped with an Apache web server
with PHP support. If you need to make changes to Apache’s
configuration, you know how to edit its httpd.conf file using the
instructions above. The PHP plugin, however, has its own
configuration file, named php.ini. You need to edit that file to tell
PHP how to connect to your MySQL server. With the version
of PHP built into Mac OS X, there is no php.ini file by default—
PHP just runs with the default settings. In order to modify those
settings, you’ll need to open Terminal and copy the
/private/etc/php.ini.default file to /private/etc/php.ini:

 Machine:~ user$
 cd /private/etc

 Machine:etc user$
 sudo cp php.ini.default php.ini
 Password:
 (type your password)

To make this new php.ini file editable by users like yourself, use
the same procedure described above for editing httpd.conf: in
Finder use Go > Go to folder to open /private/etc, modify the
permissions of both the php.ini file and the folder that contains it,
then open the file with TextEdit. Scroll down through the file or
use Edit > Find > Find… (⌘+F) to locate the
mysql.default_socket option. Edit this line of the php.ini file
so that it looks like this:
mysql.default_socket = /tmp/mysql.sock

You should only have to add the portion in bold. Scroll down
further to locate the mysqli.default_socket option
(mysqli, not mysql), and make the same change:
mysqli.default_socket = /tmp/mysql.sock

Save your changes, quit TextEdit, and restore the file and
directory permissions if you want to. Finally, open a Terminal
window and type this command to restart Apache once more:

 Machine:~ user$
 sudo /usr/sbin/apachectl restart

Type your password when prompted. Once Apache is up and
running again, load http://localhost in your browser once more to
make sure that all is well. And we’re done! With MySQL,
Apache, and PHP installed, you’re ready to get to work.

Linux
This section will show you the procedure for manually installing
Apache, PHP, and MySQL under most current distributions of

Apache, PHP, and MySQL under most current distributions of
Linux. These instructions were tested under Ubuntu 10.04.4;
however, they should work on other distributions such as
Fedora, Debian, openSUSE, and Gentoo without much trouble.
The steps involved will be very similar, almost identical. Most
Linux distributions come with a package manager of one kind
or another. Ubuntu’s Synaptic Package Manager is a graphical
front end to APT, the Debian package manager. Other
distributions use the older RPM package manager. Regardless of
which distribution you use, prepackaged versions of Apache,
PHP, and MySQL should be readily available. These
prepackaged versions of software are really easy to install;
unfortunately, they also limit the software configuration options
available to you. For this reason—and because any attempt to
document the procedures for installing the packaged versions
across all popular Linux distributions would be doomed to failure
—I will instead show you how to install them manually. If you
already have Apache, PHP, and MySQL installed in packaged
form, feel free to use those versions. If you encounter any
problems, you can always uninstall the packaged versions and
return here to install them by by hand.

Installing MySQL

Start by downloading MySQL. Simply proceed to the MySQL
Downloads page and click the Download link for the free
MySQL Community Server. This will take you to a page with a
long list of download links for the current recommended version
of MySQL (as of this writing, it’s MySQL 5.5.22). Make sure
Linux – Generic is selected from the menu near the top of the list
of files to download. Now you need to choose the package that
corresponds to your system architecture. If you’re positive
you’re running a 64-bit version of Linux, go ahead and
download the Linux – Generic 2.6 (x86, 64-bit), Compressed
TAR Archive package (about 177MB in size). If you’re running
a 32-bit version of Linux, download the Linux – Generic 2.6
(x86, 32-bit), Compressed TAR Archive package (about
171MB); this will still work even if it turns out you’re running a
64-bit version of Linux. Click the Download button next to
whichever version is right for you. Once you’ve downloaded the
file, open a Terminal and log in as the root user:

 user@machine:~$

 user@machine:~$
 sudo su

You will, of course, be prompted for your password. Change
directories to /usr/local and unpack the downloaded file:

 root@machine:/home/user#
 cd /usr/local
 root@machine:/usr/local#
 tar xfz ~user/Desktop/mysql-version-linux2.
↵6-platform.tar.gz

The second command assumes you left the downloaded file on
your desktop, which is the Desktop directory in your home
directory. You’ll need to replace user with your username,
version with the MySQL version you downloaded, and
platform with the architecture and compiler version of the
release you downloaded; this is so that the command matches
the path and filename of the file you downloaded exactly. On my
computer, for example, the exact command looks like this:

 root@mythril:/usr/local#
 tar xfz ~kyank/Desktop/mysql-5.5.22-linux2.
↵6-x86_64.tar.gz

After a minute or two, you’ll be returned to the command
prompt. A quick ls will confirm that you now have a directory
named mysql-version-linux-platform . This is what it looks like
on my computer:

 root@mythril:/usr/local#
 ls
bin games lib mysql-5.5.22-linux2.6-x86_64 share
etc include man sbin src

Next, create a symbolic link to the new directory with the name
mysql to make accessing the directory easier. Then enter the
directory:

 root@machine:/usr/local#
 ln -s mysql-version-linux-platform mysql
 root@machine:/usr/local#
 cd mysql

While you can run the server as the root user, or even as yourself

While you can run the server as the root user, or even as yourself
(for example, if you were to install the server in your home
directory), you should normally set up a special user on the
system whose sole purpose is to run the MySQL server. This
will remove any possibility of an attacker using the MySQL
server as a way to break into the rest of your system. To create
a special MySQL user, type the following commands (still
logged in as root):

 root@machine:/usr/local/mysql#
 groupadd mysql
 root@machine:/usr/local/mysql#
 useradd -g mysql mysql

Now give ownership of your MySQL directory to this new user:

 root@machine:/usr/local/mysql#
 chown -R mysql .
 root@machine:/usr/local/mysql#
 chgrp -R mysql .

MySQL is now installed, but before it can do anything useful, its
database files need to be installed, too. Still in the new mysql
directory, type the following command:

 root@machine:/usr/local/mysql#
 scripts/mysql_install_db --user=mysql

If this command generates an error about libaio.so, you’ll need
to install that library before trying again. On Ubuntu Linux, you
can do that with a simple apt-get:

 root@machine:/usr/local/mysql#
 apt-get install libaio1
 root@machine:/usr/local/mysql#
 scripts/mysql_install_db --user=mysql

Now everything’s prepared for you to launch the MySQL server
for the first time. From the same directory, type the following
command:

 root@machine:/usr/local/mysql#
 bin/mysqld_safe --user=mysql &

If you see the message mysql daemon ended, the MySQL
server was prevented from starting. The error message should
have been written to a file called hostname.err (where
hostname is your machine’s host name) in MySQL’s data
directory. You’ll usually find that this happens because another
MySQL server is already running on your computer. If the
MySQL server was launched without complaint, the server will
run (just like your web or FTP server) until your computer is shut
down. To test that the server is running properly, type the
following command:

 root@machine:/usr/local/mysql#
 bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server
should be displayed. If you receive an error message, check the
hostname.err file to see if the fault lies with the MySQL server
upon starting up. If you retrace your steps to ensure you
followed the process described above, and this fails to solve the
problem, a post to the SitePoint Forums will help you pin it
down in little time. If you want your MySQL server to run
automatically whenever the system is running, you’ll have to set it
up to do so. In the support-files subdirectory of the mysql
directory, there’s a script called mysql.server that can be added
to your system startup routines to do this. For most versions of
Linux, you can do this by creating a link to the mysql.server
script in the /etc/init.d directory, then create two links to that:
/etc/rc2.d/S99mysql and /etc/rc0.d/K01mysql. Here are the
commands to type:

 root@machine:/usr/local/mysql#
 cd /etc
 root@machine:/etc#
 ln -s /usr/local/mysql/support-files/mysql.server
↵ init.d/
 root@machine:/etc#
 ln -s /etc/init.d/mysql.server rc2.d/S99mysql
 root@machine:/etc#
 ln -s /etc/init.d/mysql.server rc0.d/K01mysql

That’s it! To test that this works, reboot your system, and
request the status of the server with mysqladmin as you did

request the status of the server with mysqladmin as you did
earlier. You should now take a moment to set a root user
password. Run the bin/mysql_secure_installation program to do
this:

 root@machine:/usr/local/mysql#
 ./bin/mysql_secure_installation

Note: Having trouble
removing test database?

If the mysql_secure_installation program appears
to struggle dropping the test database, don’t
worry about it. This is a problem in the
packaging of the MySQL database for Linux:
the data/test folder (where the test database
files are stored) contains a file named .empty that
MySQL fails to recognize, and therefore will not
delete. If you delete this file yourself, MySQL
will be able to drop the test database.

One final task you might like to do for the sake of convenience is
to place the MySQL client programs—which you’ll use to
administer your MySQL server later on—in the system path. To
this end, you can place symbolic links to mysql, mysqladmin, and
mysqldump in your /usr/local/bin directory:

 root@machine:/etc#
 cd /usr/local/bin
 root@machine:/usr/local/bin#
 ln -s /usr/local/mysql/bin/mysql .
 root@machine:/usr/local/bin#
 ln -s /usr/local/mysql/bin/mysqladmin .
 root@machine:/usr/local/bin#
 ln -s /usr/local/mysql/bin/mysqldump .

Once you’ve done this, you can log out of the root account.
From this point on, you can administer MySQL from any
directory on your system:

 root@machine:/usr/local/bin#
 exit

 user@machine:~$
 mysqladmin -u root -p status

Installing PHP

As mentioned, PHP is more a web server plugin module than a
program. There are actually three ways to install the PHP plugin
for Apache:

as a CGI program that Apache runs every time it needs to
process a PHP-enhanced web page

as an Apache module compiled right into the Apache
program

as an Apache module loaded by Apache each time it
starts up

The first option is the easiest to install and set up, but it requires
Apache to launch PHP as a program on your computer every
time a PHP page is requested. This activity can really slow down
the response time of your web server, especially if more than one
request needs to be processed at a time. The second and third
options are almost identical in terms of performance, but the third
option is the most flexible, since you can add and remove
Apache modules without having to recompile it each time. For
this reason, we’ll use the third option. Assuming you don’t
already have Apache running on your computer (and don’t
simply want to install it automatically with, say, sudo apt-get
install apache2 on Ubuntu Linux), surf on over to the
Apache HTTP Server Project and look for the version of
Apache described as “the best available version” (as of this
writing it’s version 2.4.1). Once you get to the Download page,
scroll down to find the links to the various versions available. The
one you want is Unix Source, shown in Figure A.12. Both the
.tar.gz or the .tar.bz2 are the same; just grab whichever archive
format you’re used to extracting.

Figure A.12. This is the one you need

What you’ve just downloaded is actually the source code for the
Apache server. The first step, then, is to compile it into an
executable binary installation. Pop open a Terminal, navigate to
the directory where the downloaded file is located, extract it, and
then navigate into the resulting directory:

 user@machine:~$
 cd Desktop

 user@machine:~/Desktop$
 tar xfz httpd-version.tar.gz

 user@machine:~/Desktop$
 cd httpd-version

The first step in compiling Apache is to configure it to your
requirements. Most of the defaults will be fine for your purposes,
but you’ll need to enable dynamic loading of Apache modules
(like PHP), which is off by default. Additionally, you should
probably enable the URL rewriting feature, upon which many
PHP applications rely (although it’s unnecessary for the
examples in this book). To make these configuration changes,
type this command:

 user@machine:~/Desktop/httpd-version$
 ./configure --enable-so
↵ --enable-rewrite

A long stream of status messages will scroll up your screen. If
the process stops with an error message, your system may be
missing some critical piece of software that’s required to compile
Apache. Some Linux distributions lack the essential development
libraries or even a C compiler installed by default. Installing these
should enable you to return and run this command successfully.

should enable you to return and run this command successfully.
Current versions of Ubuntu, however, should come with
everything that’s needed. After several minutes, the stream of
messages should come to an end:

…
config.status: creating build/rules.mk
config.status: creating build/pkg/pkginfo
config.status: creating build/config_vars.sh
config.status: creating include/ap_config_auto.h
config.status: executing default commands

 user@machine:~/Desktop/httpd-version$

You’re now ready to compile Apache. The one-word command
make is all it takes:

 user@machine:~/Desktop/httpd-version$
 make

Again, this process will take several minutes to complete, and
should end with the following message:

…
make[1]: Leaving directory `/home/user/Desktop/httpd-version'

 user@machine:~/Desktop/httpd-version$

To install your newly compiled copy of Apache, type sudo
make install (the sudo is required, since you need root
access to write to the installation directory).

 user@machine:~/Desktop/httpd-version$
 sudo make install

Enter your password when prompted. As soon as this command
has finished copying files, your installation of Apache is
complete. Navigate to the installation directory and launch
Apache using the apachectl script:

 user@machine:~/Desktop/httpd-version$
 cd /usr/local/apache2

 user@machine:/usr/local/apache2$

 user@machine:/usr/local/apache2$
 sudo bin/apachectl -k start

You’ll likely see a warning message from Apache complaining
that it was unable to determine the server’s fully qualified domain
name. That’s because most personal computers come without
one. Don’t sweat it. If instead you elected to use your Linux
distribution’s package installer to install Apache, you should be
able to fire it up with a command like this (on Ubuntu):

 user@machine:~$
 sudo service apache2 start

Fire up your browser and type http://localhost into the address
bar. If Apache is up and running, you should see a welcome
message like the one in Figure A.13.

Figure A.13. You can take my word for it!

As with your MySQL server, you’ll probably want to configure
Apache to start automatically when your system boots. If you
installed Apache with a package installer, it’s likely to be already
set up for you. The procedure to set this up is similar to that for
MySQL; just copy and link the apachectl script from your
Apache installation:

 user@machine:/usr/local/apache2$
 sudo su
 root@machine:/usr/local/apache2#
 cd /etc
 root@machine:/etc#
 ln -s /usr/local/apache2/bin/apachectl init.d/
 root@machine:/etc#

 root@machine:/etc#
 ln -s /etc/init.d/apachectl rc2.d/S99httpd
 root@machine:/etc#
 ln -s /etc/init.d/apachectl rc0.d/K01httpd

To test that this works, restart your computer and then hit the
http://localhost page in your browser again. With a shiny new
Apache installation up and running, you’re now ready to add
PHP support to it. To start, download the PHP Complete
Source Code package from the PHP Downloads page. Again,
the .tar.gz and .tar.bz2 versions are identical; just download
whichever one you’re used to extracting. The file you
downloaded should be called php-version.tar.gz (or .bz2). Pop
open a new Terminal window, navigate to the directory
containing the downloaded file, extract it, and move into the
resulting directory:

 user@machine:~$
 cd Desktop

 user@machine:~/Desktop$
 tar xfz php-version.tar.gz

 user@machine:~/Desktop$
 cd php-version

To install PHP as an Apache module, you’ll need to use the
Apache apxs program. This will have been installed along with
the Apache server if you followed the instructions to compile it
yourself. But if you used your distribution’s package manager to
install Apache, you may need to install the Apache development
package to access Apache apxs. You should be able to install
this package by using the same package manager you used to
install Apache. For example, on Ubuntu, you can use apt-get
to install it as follows:

 user@machine:~$
 sudo apt-get install apache2-dev

Now, to install PHP you must be logged in as root:

 user@machine:~/Desktop/php-version$
 sudo su
[sudo] password for user: (type your password)

 root@machine:/home/user/Desktop/php-version#

The first step is to configure the PHP installation program by
telling it which options you want to enable, and where it should
find the programs it needs to know about (such as Apache apxs
and MySQL). The command should look like this (all on one
line):

 root@machine:/home/user/Desktop/php-version#
 ./configure
↵ --prefix=/usr/local/php --with-apxs2=/usr/local/apache2/bin/apxs
↵ --with-mysqli=/usr/local/mysql/bin/mysql_config

The --prefix option tells the installer where you want PHP to
be installed (/usr/local/php is a good choice). The --with-
apxs2 option tells the installer where to find the Apache apxs
program mentioned. When installed using your Linux
distribution’s package manager, the program is usually found at
/usr/bin/apxs2. If you compiled and installed Apache yourself as
described before, however, it will be in the Apache binary
directory, at /usr/local/apache2/bin/apxs. The --with-mysqli
option tells the installer where to find your MySQL installation.
More specifically, it must point to the mysql_config program in
your MySQL installation’s bin directory
(/usr/local/mysql/bin/mysql_config). Again, a parade of status
messages will appear on your screen. When it stops, check for
error messages and install any files it identifies as missing. On a
default Ubuntu 10.04.4 installation, for example, you’re likely to
see an error complaining about an incomplete libxml2 installation.
To correct this particular error, open Synaptic Package
Manager, then locate and install the libxml2-dev package
(libxml2 should already be installed). Alternatively, at the
Terminal prompt, just run apt-get install libxml2-dev.
Once it’s installed, try the configure command again. After
you watch several screens of tests scroll by, you’ll be returned to
the command prompt with the comforting message “Thank you
for using PHP.” The following two commands will compile and
then install PHP:

then install PHP:

 root@machine:/home/user/Desktop/php-version#
 make
 root@machine:/home/user/Desktop/php-version#
 make install

Take a coffee break. This will take some time. Upon completion
of the make install command, PHP will be installed in
/usr/local/php (unless you specified a different directory with the
--prefix option of the configure script). Now you just need to
configure it. The PHP configuration file is called php.ini. PHP
comes with two sample php.ini files called php.ini-development
and php.ini-production. Copy these files from your installation
work directory to the /usr/local/php/lib directory, then make a
copy of the php.ini-development file and call it php.ini:

 root@machine:/home/user/Desktop/php-version#
 cp php.ini* /usr/local/
↵php/lib/
 root@machine:/home/user/Desktop/php-version#
 cd /usr/local/php/lib
 root@machine:/usr/local/php/lib#
 cp php.ini-development php.ini

You may now delete the directory from which you compiled
PHP—it’s no longer needed. We’ll worry about fine-tuning
php.ini shortly. For now, we need to tweak Apache’s
configuration to make it more PHP-friendly, so locate your
Apache configuration file. It can usually be found in the conf
subdirectory of your Apache installation
(/usr/local/apache2/conf/httpd.conf), or in
/etc/apache2/apache2.conf if you installed Apache with a
package manager. To edit this file you must be logged in as root,
so launch your text editor from the Terminal window where
you’re still logged in as root:

 root@machine:/usr/local/php/lib#
 cd /usr/local/apache2/conf
 root@machine:/usr/local/apache2/conf#
 gedit httpd.conf

Go right to the bottom of the file and add these lines to tell

Go right to the bottom of the file and add these lines to tell
Apache that files with names ending in .php should be treated as
PHP scripts:
<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

That should do it. Save your changes and restart your Apache
server:

 root@machine:/usr/local/apache2/conf#
 /usr/local/apache2/bin/
↵apachectl -k restart

If it all goes according to plan, Apache should start up without
any error messages. If you run into any trouble, the helpful
individuals in the SitePoint Forums (myself included) will be
happy to help.

[65] To open a Terminal window, launch the Terminal application,
which you can find in the Utilities folder in the Applications
folder.

Appendix B. MySQL
Syntax Reference
This appendix describes the syntax of the most commonly used
SQL statements in MySQL, as of version 5.5.22 (current as of
this writing). The following conventions are used in this reference:

Commands are listed in alphabetical order for easy
reference.

Optional portions of each command are surrounded by
square brackets ([]).

Lists of elements from which one element must be chosen
are surrounded by braces ({}), with the elements
separated by vertical bars (|).

An ellipsis (…) means that the preceding element may be
repeated.

The query syntax documented in this appendix has been
simplified in several places by the omission of the alternative
syntax, and of keywords that performed no function, but which
were originally included for compatibility with other database
systems. Query features having to do with some advanced

systems. Query features having to do with some advanced
features such as transactions have also been omitted. For a
complete, up-to-date reference to supported MySQL syntax,
see the MySQL Reference Manual.

SQL Statements
Implemented in MySQL
ALTER TABLE
ALTER [IGNORE] TABLE tbl_name
 action
 [, action …]

In this code, action refers to an action as defined as follows.
ALTER TABLE queries may be used to change the definition of a
table without losing any of the information in that table (except in
obvious cases, such as the deletion of a column). Here are the
main actions that are possible:

ADD [COLUMN] create_definition [FIRST | AFTER
column_name]

This action adds a new column to the table. The syntax for
create_definition is as described for the section called “
CREATE TABLE ”. By default, the column will be added to
the end of the table, but by specifying FIRST or AFTER

the end of the table, but by specifying FIRST or AFTER
column_name , you can place the column wherever you
like. The optional word COLUMN performs no actual
function—leave it off unless you particularly like to see it
there.

ADD INDEX [index_name] (index_col_name, …)

This action creates a new index to speed up searches
based on the column(s) specified. You may assign a name
to your indexes by specifying the index_name; otherwise,
a default name based on the first column in the index will
be used. When creating an index based on CHAR and/or
VARCHAR columns, you can specify a number of
characters to index as part of index_col_name (for
example, myColumn(5) will index the first five characters
of myColumn). This number must be specified when
indexing BLOB and TEXT columns.

ADD FULLTEXT [index_name] (index_col_name, …)

This action creates a full-text index on the column(s)
specified. This special type of index allows you to perform
complex searches for text in CHAR, VARCHAR, or TEXT
columns using the MATCH MySQL function. For full
details, see the MySQL Reference Manual.

ADD FOREIGN KEY [index_name] (index_col_name,
…) reference_definition

On InnoDB tables, this creates a foreign key constraint,
requiring the values in this index to correspond to

requiring the values in this index to correspond to
matching entries in another table. reference_definition
specifies the table and column(s) that are referenced by
the constraint:
REFERENCES tbl_name (index_col_name, …)
 [ON DELETE { RESTRICT | CASCADE |
SET NULL | NO ACTION }]

 [ON UPDATE {
RESTRICT | CASCADE | SET NULL | NO ACTION
}]

The optional ON DELETE and ON UPDATE portions of
reference_definition specify what should happen to
entries in this table when the corresponding entry in the
referenced table is deleted or updated. For full details, see
the MySQL Reference Manual.

ADD PRIMARY KEY (index_col_name, …)

This action creates an index for the specified row(s) with
the name PRIMARY, identifying it as the primary key for
the table. All values (or combinations of values) must be
unique, as described for the ADD UNIQUE action below.
This action will cause an error if a primary key already
exists for the table. index_col_name is defined as it is for
the ADD INDEX action before.

ADD UNIQUE [index_name] (index_col_name, …)

This action creates an index on the specified columns, but

This action creates an index on the specified columns, but
with a twist: all values in the designated column—or all
combinations of values if more than one column is
included in the index—must be unique. The parameters
index_name and index_col_name are defined as they
are for the ADD INDEX action.

ALTER [COLUMN] col_name {SET DEFAULT value |
DROP DEFAULT}

This action assigns a new default value to a column (SET
DEFAULT), or removes the existing default value (DROP
DEFAULT). Again, the word COLUMN is completely
optional and has no effect.

CHANGE [COLUMN] col_name create_definition

This action replaces an existing column (col_name) with a
new column, as defined by create_definition (the syntax
of which is as specified for the section called “ CREATE
TABLE ”). The data in the existing column is converted, if
necessary, and placed in the new column. Note that
create_definition includes a new column name, so this
action may be used to rename a column. If you want to
leave the name of the column unchanged, however,
remember to include it twice (once for col_name and
once for create_definition), or use the MODIFY action
below.

DISABLE KEYS , ENABLE KEYS

When you insert a large number of records into a table,

When you insert a large number of records into a table,
MySQL can spend a lot of time updating the index(es) of
the table to reflect the new entries. Executing ALTER
TABLE … DISABLE KEYS before you perform the inserts
will instruct MySQL to postpone those index updates.
Once the inserts are complete, execute ALTER TABLE …
ENABLE KEYS to update the indexes for all the new
entries at once. This will usually save time over performing
the updates one at a time.

DROP [COLUMN] col_name

Fairly self-explanatory, this action completely removes a
column from the table. The data in that column is
irretrievable after this query completes, so be sure of the
column name you specify. COLUMN, as usual, can be left
off; it just makes the query sound better when read aloud.

DROP PRIMARY KEY , DROP INDEX index_name , DROP
FOREIGN KEY index_name

These actions are quite self-explanatory: they remove
from the table the primary key, index, or foreign key
constraint, respectively.

MODIFY [COLUMN] create_definition

Nearly identical to the aforementioned CHANGE action, this
action lets you specify a new declaration for a column in
the table, but assumes the name will remain the same.
Thus, you simply have to re-declare the column with the

same name in the create_definition parameter (as
defined for the section called “ CREATE TABLE ”). As
before, COLUMN is completely optional and does nothing.
Although convenient, this action is not standard SQL
syntax, and was added for compatibility with an identical
extension in Oracle database servers.

ORDER BY col_name

This action lets you sort a table’s entries by a particular
column. However, as soon as new entries are added to
the table or existing entries modified, ordering can no
longer be guaranteed. The only practical use of this action
would be to increase performance of a table that you
sorted regularly in a certain way in your application’s
SELECT queries. Under some circumstances, arranging the
rows in (almost) the right order to begin with will make
sorting quicker.

RENAME [TO] new_tbl_name

This action renames the table. The word TO is completely
optional, and does nothing. Use it if you like it.

table_options

Using the same syntax as in the CREATE TABLE query,
this action allows you to set and change advanced table
options. These options are fully documented in the
MySQL Reference Manual.

ANALYZE TABLE
ANALYZE TABLE tbl_name
 [, tbl_name …]

This function updates the information used by the SELECT query
in the optimization of queries that take advantage of table
indexes. It pays in performance to run this query periodically on
tables whose contents change a lot over time. The table(s) in
question are locked as “read-only” while the analysis runs.

BEGIN
BEGIN

BEGIN performs the same action as START TRANSACTION.

COMMIT
COMMIT

Once a transaction has been started (that is, autocommit mode
has been disabled) with START TRANSACTION, MySQL collects
the changes made to the database so that they may be applied
simultaneously. A COMMIT query applies all those changes at
once, ending the transaction.

CREATE DATABASE
CREATE DATABASE [IF NOT EXISTS]
 db_name

This action simply creates a new database with the given name
(db_name). This query will fail if the database already exists
(unless IF NOT EXISTS is specified), or if you lack the required
privileges.

CREATE INDEX
CREATE [UNIQUE | FULLTEXT] INDEX index_name ON
tbl_name
 (col_name
 [(length)], …)

This query creates a new index on an existing table. It works
identically to ALTER TABLE ADD {INDEX | UNIQUE |
FULLTEXT}, described in the section called “ ALTER TABLE ”.

CREATE TABLE
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
 [
 db_name.]
 tbl_name

 tbl_name
 { [(create_definition, …)]

 [
 table_options
]
 [
 [IGNORE | REPLACE]
 select_statement
]

 | LIKE [
 db_name.]
 old_tbl_name }

Where create_definition is:
{ col_name
 type
 [NOT NULL]
 [DEFAULT default_value
]

 [AUTO_INCREMENT]
 [PRIMARY KEY]

 | PRIMARY KEY (index_col_name, …)

 | INDEX [
 index_name
] (index_col_name, …)

 | UNIQUE [INDEX]
 [
 index_name

 index_name
] (index_col_name, …)

 | FULLTEXT [
 index_name
] (index_col_name, …)

 | FOREIGN KEY [
 index_name
] (index_col_name, …)
 REFERENCES tbl_name (index_col_name,
…)
 [ON DELETE { RESTRICT | CASCADE | SET
NULL | NO ACTION }]

 [ON UPDATE { RESTRICT | CASCADE |
SET NULL | NO ACTION }]}

In this code, type is a MySQL column type (see Appendix D),
and index_col_name is as described for ALTER TABLE ADD
INDEX in the section called “ ALTER TABLE ”. CREATE TABLE is
used to create a new table called tbl_name in the current
database (or in a specific database if db_name is specified). If
TEMPORARY is specified, the table disappears when the
connection that created it is terminated. A temporary table
created with the same name as an existing table will hide the
existing table from the current client session until the temporary
table is deleted or the session ends; however, other clients will
continue to see the original table. Assuming TEMPORARY is not
specified, this query will fail if a table with the given name already
exists, unless IF NOT EXISTS is specified (in which case the

exists, unless IF NOT EXISTS is specified (in which case the
query is ignored). A CREATE TABLE query will also fail if you
lack the required privileges. Most of the time, the name of the
table will be followed by a series of column declarations
(create_definition above). Each column definition includes the
name and data type for the column, and any of the following
options:

NOT NULL

This specifies that the column may not be left empty
(NULL). Note that NULL is a special “no value” value,
which is quite different from, say, an empty string (''). A
column of type VARCHAR, for instance, which is set NOT
NULL may be set to '' but will not be NULL. Likewise, a
NOT NULL column of type INT may contain zero (0),
which is a value, but it may not contain NULL, as this is not
a value.

DEFAULT default_value

DEFAULT lets you specify a value to be given to a column
when no value is assigned in an INSERT statement. When
there’s no value given in an INSERT statement, NULL
columns (that is, columns where the NOT NULL option
isn’t set) are normally assigned a value of NULL. When
DEFAULT is specified, NOT NULL columns will instead be
assigned a “default default value”: an empty string (''),
zero (0), '0000-00-00', or a current timestamp,

zero (0), '0000-00-00', or a current timestamp,
depending on the data type of the column.

AUTO_INCREMENT

As described in Chapter 2, an AUTO_INCREMENT column
will automatically insert a number that is one greater than
the current highest number in that column when NULL is
inserted. AUTO_INCREMENT columns must also be NOT
NULL, and be either a PRIMARY KEY or UNIQUE.

PRIMARY KEY

This option specifies that the column in question should be
the primary key for the table; that is, the values in the
column must identify uniquely each of the rows in the
table. This forces the values in this column to be unique,
and speeds up searches for items based on this column by
creating an index of the values it contains.

UNIQUE

Very similar to PRIMARY KEY, this option requires all
values in the column to be unique, and indexes the values
for high-speed searches.

In addition to column definitions, you can list additional indexes
you wish to create on the table using the PRIMARY KEY, INDEX,
UNIQUE, FULLTEXT, and FOREIGN KEY forms of
create_definition. See the descriptions of the equivalent forms
of ALTER TABLE in the section called “ ALTER TABLE ” for
details. The table_options portion of the CREATE TABLE query

details. The table_options portion of the CREATE TABLE query
is used to specify advanced properties of the table, such as
DEFAULT CHARACTER SET utf8 and the ENGINE=InnoDB,
and is described in detail in the MySQL Reference Manual. The
select_statement portion of the CREATE TABLE query allows
you to create a table from the results of a SELECT query (see the
section called “ SELECT ”). When you create this table, it’s
unnecessary to declare separately the columns that correspond
to those results. This type of query is useful if you want to obtain
the result of a SELECT query, store it in a temporary table, and
then perform a number of SELECT queries upon it. Instead of
defining a table from scratch, you can instead instruct MySQL to
create the new table using the same structure as another table.
Rather than a list of create_definitions and the table_options,
simply end the CREATE TABLE query with LIKE, followed by the
name of the existing table.

DELETE
DELETE [LOW_PRIORITY]
 [QUICK]
 [IGNORE]
 { FROM tbl_name

 [WHERE where_clause
]

 [ORDER BY order_by_expr
]

 [LIMIT rows
]

 | tbl_name
 [, tbl_name …]
 FROM table_references

 [WHERE where_clause
]

 | FROM tbl_name
 [, tbl_name …]
 USING table_references

 [WHERE where_clause
] }

The first form of this query deletes all rows from the specified
table, unless the optional (but desirable) WHERE or LIMIT clauses
are specified. The WHERE clause works the same way as its twin
in the SELECT query (see the section called “ SELECT ”). The
LIMIT clause simply lets you specify the maximum number of
rows to be deleted. The ORDER BY clause lets you specify the
order in which the entries are deleted, which, in combination with
the LIMIT clause, allows you to perform actions such as delete
the ten oldest entries from the table. The second and third forms
are equivalent, and enable you to delete rows from multiple
tables in a single operation, in much the same way as you can
retrieve entries from multiple tables using a join in a SELECT
query (see the section called “ SELECT ”). The table_references

query (see the section called “ SELECT ”). The table_references
work the same way as they do for SELECT queries (you can
create simple joins or outer joins), while the WHERE clause lets
you narrow down the rows that are considered for deletion. The
first list of tables (tbl_name [, tbl_name …]), however,
identifies from the table_references the tables where rows will
actually be deleted. In this way, you can use a complex join
involving a number of tables to isolate a set of results, then delete
the rows from only one of those tables. The LOW_PRIORITY
option causes the query to wait until there are no clients reading
from the table before performing the operation. The QUICK
option attempts to speed up lengthy delete operations by
changing the way it updates the table’s index(es). The IGNORE
option instructs MySQL to refrain from reporting any errors that
occur while the delete is performed.

DESCRIBE/DESC
{DESCRIBE | DESC} tbl_name
 [
 col_name | wild
]

This command supplies information about the columns, a specific
column (col_name), or any columns that match a pattern
containing the wild cards % and _ (wild) that make up the
specified table. The information returned includes the column

specified table. The information returned includes the column
name, its type, whether it accepts NULL as a value, whether the
column has an index, the default value for the column, and any
extra features it has (for example, AUTO_INCREMENT).

DROP DATABASE
DROP DATABASE [IF EXISTS]
 db_name

This is a dangerous command. It will immediately delete a
database, along with all its tables. This query will fail with an
error if the database does not exist (unless IF EXISTS is
specified, in which case it will fail silently), or if you lack the
required privileges.

DROP INDEX
DROP INDEX index_name ON tbl_name

DROP INDEX has exactly the same effect as ALTER TABLE
DROP INDEX, described in the section called “ ALTER TABLE ”.

DROP TABLE
DROP TABLE [IF EXISTS]
 tbl_name

 tbl_name
 [, tbl_name, …]

This query completely deletes one or more tables. This is a
dangerous query, since the data can never be retrieved once
this action is executed. Be very careful with it! The query will fail
with an error if the table doesn’t exist (unless IF EXISTS is
specified, in which case it will fail silently) or if you lack the
required privileges.

EXPLAIN
The explain query has two very different forms. The first,
EXPLAIN tbl_name

is equivalent to DESCRIBE tbl_name or SHOW COLUMNS FROM
tbl_name . The second format,
EXPLAIN select_statement

where select_statement can be any valid SELECT query, will
produce an explanation of how MySQL would determine the
results of the SELECT statement. This query is useful for finding
out where indexes will help speed up your SELECT queries, and
for determining if MySQL is performing multi-table queries in
optimal order. See the STRAIGHT_JOIN option of the SELECT
query in the section called “ SELECT ” for information on how to

query in the section called “ SELECT ” for information on how to
override the MySQL optimizer and control this order manually.
See the MySQL Reference Manual for complete information on
how to interpret the results of an EXPLAIN query.

GRANT
GRANT priv_type
 [(column_list)], …
 ON {tbl_name | * | *.* | db_name.*}
 TO username
 [IDENTIFIED BY 'password'], …
 [WITH GRANT OPTION]

GRANT adds new access privileges to a user account, and creates
a new account if the specified username does not yet exist. It
may also change the password if IDENTIFIED BY
'password' is used on an account that already has a password.
See the MySQL Reference Manual for a complete description
of this and other queries that may be used to manage user
accounts.

INSERT
INSERT [LOW_PRIORITY | DELAYED]
 [IGNORE]
 [INTO]
 tbl_name

 tbl_name

 { [(col_name, …)] VALUES (expression, …),
…

 | SET col_name=expression,
col_name=expression, …

 | [(col_name, …)] SELECT … }

 [ON DUPLICATE KEY UPDATE
col_name=expression
 [, …]
]

The INSERT query is used to add new entries to a table. It
supports three general options:

LOW_PRIORITY

The query will wait until there are no clients reading from
the table before it proceeds.

DELAYED

The query completes immediately from the client’s point
of view, and the INSERT operation is performed in the
background. This option is useful when you wish to insert
a large number of rows without waiting for the operation
to complete. Be aware that the client will not know the
last inserted ID on an AUTO_INCREMENT column when a
DELAYED insert is performed (for example, PHP’s PDO

DELAYED insert is performed (for example, PHP’s PDO
lastInsertId method will fail to work correctly).

IGNORE

Normally, when an insert operation causes a clash in a
PRIMARY KEY or UNIQUE column, the insert fails and
produces an error message. This option allows the insert
to fail silently; the new row is not inserted, but no error
message is displayed.

The word INTO is entirely optional, and has no effect on the
operation of the query. As you can see above, INSERT queries
may take three forms. The first form lets you insert one or more
rows by specifying the values for the table columns in
parentheses. If the optional list of column names is omitted, the
list(s) of column values must include a value for every column in
the table, in the order in which they appear in the table. The
second form of INSERT can be used only to insert a single row,
but, very intuitively, it allows you to assign values to the columns
in that row by giving them in col_name=value format. In the
third and final form of INSERT, the rows to be inserted result
from a SELECT query. Again, if the list of column names is
omitted, the result set of the SELECT must contain values for
each and every column in the table, in the correct order. A
SELECT query that makes up part of an insert statement may not
contain an ORDER BY clause, and you’re unable to use the table
into which you’re inserting in the FROM clause. Columns to which
you assign no value (for example, if you leave them out of the

you assign no value (for example, if you leave them out of the
column list) are assigned their default. By default, inserting a
NULL value into a NOT NULL field will also cause that field to be
set to its default value; however, if MySQL is configured with the
DONT_USE_DEFAULT_FIELDS option enabled, this sort of
INSERT operation will cause an error. For this reason, it’s best
to avoid them. The optional ON DUPLICATE KEY UPDATE
clause takes effect when the INSERT query attempts to add a
new entry to the table that would introduce a duplicate value
disallowed by a unique index or primary key. Instead of the
query failing with an error, this clause specifies how the existing
entry in the table should be updated. The form of this clause is
very similar to an UPDATE statement: it specifies one or more
columns and the new value that should be assigned to each. See
the section called “ UPDATE ” for more information.

LOAD DATA INFILE
LOAD DATA [LOW_PRIORITY | CONCURRENT]
 [LOCAL] INFILE
 'file_name.txt' [REPLACE | IGNORE] INTO
TABLE tbl_name

 [FIELDS
 [TERMINATED BY 'string']

 [
 [OPTIONALLY] ENCLOSED BY
'char']

 [ESCAPED BY 'char']
]

 [LINES [STARTING BY '']
 [TERMINATED BY 'string']
]

 [IGNORE number LINES]

 [(col_name, …)]

The LOAD DATA INFILE query is used to import data from a
text file either on the MySQL server, or on the LOCAL (client)
system (for example, a text file created with a SELECT INTO
OUTFILE query). The syntax of this command is in the code, but
I’d refer you to the MySQL Reference Manual for a complete
explanation of this query and the issues that surround its use.

OPTIMIZE TABLE
OPTIMIZE TABLE tbl_name
 [, tbl_name …]

Much like a hard-disk partition becomes fragmented if existing
files are deleted or resized, MySQL tables become fragmented
as you delete rows and modify variable-length columns (such as
VARCHAR or BLOB) over time. This query performs the database

VARCHAR or BLOB) over time. This query performs the database
equivalent of a defrag on the table, reorganizing the data it
contains to eliminate wasted space. It’s important to note that a
table is locked while an optimize operation occurs, so if your
application relies on a large table being constantly available, that
application will grind to a halt while the optimization takes place.
In such cases, it’s better to copy the table, optimize the copy,
and then replace the old table with the newly optimized version
using a RENAME query. Changes made to the original table in the
interim will be lost, so this technique is only appropriate for some
applications.

RENAME TABLE
RENAME TABLE tbl_name TO new_table_name
 [, tbl_name2 TO …, …]

This query quickly and conveniently renames one or more tables.
This differs from ALTER TABLE tbl_name RENAME in that all
the tables being renamed in the query are locked for the duration
of the query, so that no other connected clients may access
them. As the MySQL Reference Manual explains, this assurance
of atomicity lets you replace a table with an empty equivalent; for
example, if you wanted to safely start a new table once a certain
number of entries was reached:
CREATE TABLE new_table (…);
RENAME TABLE old_table TO backup_table,
new_table TO old_table;

new_table TO old_table;

You can also move a table from one database to another by
specifying the table name as db_name.tbl_name , as long as
both tables are stored on the same physical disk, which is usually
the case. You must have ALTER and DROP privileges on the
original table, as well as CREATE and INSERT privileges on the
new table, in order to perform this query. A RENAME TABLE
query that fails to complete halfway through will automatically be
reversed, so that the original state is restored.

REPLACE
REPLACE [LOW_PRIORITY | DELAYED]
 [INTO]
 tbl_name

 { [(col_name, …)] VALUES (expression, …),
…

 | [(col_name, …)] SELECT …

 | SET col_name=expression,
col_name=expression, … }

REPLACE is identical to INSERT, except that if an inserted row
clashes with an existing row in a PRIMARY KEY or UNIQUE
column, the old entry is replaced with the new.

REVOKE

REVOKE
REVOKE priv_type
 [(column_list)], …
 ON {tbl_name | * | *.* | db_name.*}
 FROM user, …

This function removes access privileges from a user account. If
all privileges are removed from an account, the user will still be
able to log in but unable to access any information. See the
section called “MySQL Access Control Tips” in Chapter 10 for
a complete description of this query.

ROLLBACK
ROLLBACK

Once a transaction has been started (that is, autocommit mode
has been disabled) with START TRANSACTION, MySQL collects
the changes made to the database so that they may be applied all
at once. A ROLLBACK query discards all those changes,
canceling the transaction.

SELECT
SELECT [select_options]
 select_expression, …
 [INTO {OUTFILE | DUMPFILE} 'file_name'
export_options

export_options
]

 [FROM table_references

 [WHERE where_definition
]

 [GROUP BY {col_name | col_pos
} [ASC | DESC], …]

 [HAVING where_definition
]

 [ORDER BY {col_name | col_pos
} [ASC | DESC], …]

 [LIMIT [
 offset,]
 rows
]
]

SELECT is the most complex query in SQL, and is used to
perform all data retrieval operations. This query supports the
following select_options, which may be specified in any sensible
combination simply by listing them, separated by spaces:

ALL , DISTINCT , DISTINCTROW

Any one of these options may be used to specify the

Any one of these options may be used to specify the
treatment of duplicate rows in the result set. ALL (the
default) specifies that all duplicate rows appear in the
result set, while DISTINCT and DISTINCTROW (they have
the same effect) specify that duplicate rows should be
eliminated from the result set.

HIGH_PRIORITY

This option does exactly what it says: it assigns a high
priority to the SELECT query. Normally, if a query is
waiting to update a table, all read-only queries (such as
SELECT) must yield to it. A SELECT HIGH_PRIORITY,
however, will go first.

STRAIGHT_JOIN

Forces MySQL to join multiple tables specified in the
table_references portion of the query in the order
specified there. If you think MySQL’s query optimizer is
doing it the slow way, this argument lets you override it.
See the section called “Joins” for more information.

SQL_BUFFER_RESULT

This option forces MySQL to store the result set in a
temporary table. This frees up the tables employed in the
query for use by other processes, while the result set is
transmitted to the client.

SQL_CACHE

This option instructs MySQL to store the result of this
query in the query cache, an area of memory set aside by

query in the query cache, an area of memory set aside by
the server to store the results of frequently run queries so
that there’s no need to recalculate them from scratch if the
contents of the relevant tables are still the same. MySQL
can be configured so that only queries with the
SQL_CACHE option are cached. If the query cache is
disabled, this option will have no effect.

SQL_NO_CACHE

This option instructs MySQL to avoid storing the result of
this query in the query cache (see the previous option).
MySQL can be configured so that every query is cached
unless it has the SQL_NO_CACHE option. If the query
cache is disabled, this option will have no effect.

SQL_CALC_FOUND_ROWS

For use in conjunction with a LIMIT clause, this option
calculates and sets aside the total number of rows that
would be returned from the query if no LIMIT clause
were present. You can then retrieve this number using
SELECT FOUND_ROWS() (see Appendix C).

select_expression defines a column of the result set to be
returned by the query. Typically, this is a table column name, and
may be specified as col_name , tbl_name.col_name , or
db_name.tbl_name.col_name , depending on how specific
you need to be for MySQL to identify the column that you’re
referring to. select_expressions can refer to other expressions

referring to. select_expressions can refer to other expressions
apart from the database column; simple mathematical formulas
including column names as variables, and complex expressions
calculated with MySQL functions may also be used. Here’s an
example of the latter, which will give the date one month from
now in the form “January 1, 2010”:
SELECT DATE_FORMAT(DATE_ADD(CURDATE(), INTERVAL
1 MONTH), '%M %D,
 %Y')

select_expressions may also contain an alias or assigned name
for the result column, if the expression is followed with [AS]
alias (the AS is entirely optional). This expression must be used
when referring to that column elsewhere in the query (for
example, in WHERE and ORDER BY clauses), as follows:
SELECT jokedate AS jd FROM joke ORDER BY jd ASC

MySQL lets you use an INTO clause to output the results of a
query into a file instead of returning them to the client. The most
typical use of this clause is to export the contents of a table into a
text file containing comma-separated values (CSV). Here’s an
example:
SELECT * INTO OUTFILE '/home/user/myTable.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED
BY '"'
 LINES TERMINATED BY '\n'
 FROM myTable

The file to which the results are dumped must not exist
beforehand, or this query will fail. This restriction prevents an

beforehand, or this query will fail. This restriction prevents an
SQL query from being used to overwrite critical operating
system files. The created file will also be world-readable on
systems that support file security, so consider this before you
export sensitive data to a text file that anyone on the system can
read. DUMPFILE may be used instead of OUTFILE to write only
a single row to the file, without row or column delimiters. It can
be used, for example, to dump a BLOB stored in the table to a file
(SELECT blobCol INTO DUMPFILE …). For complete
information on the INTO clause, see the MySQL Reference
Manual. For information on reading data back from a text file,
see the section called “ LOAD DATA INFILE ”. The FROM clause
contains a list of tables from which the rows composing the result
set should be formed, along with instructions on how they should
be joined together. At its most basic, table_references is the
name of a single database table, which may be assigned an alias
with or without using AS as described for select_expression
beforehand. If you specify more than one table name, you’re
performing a join. These are discussed in the section called
“Joins” shortly. The where_definition in the WHERE clause sets
the condition for a row to be included in the table of results sent
in response to the SELECT query. This may be a simple condition
(for example, id = 5), or a complex expression that makes use
of MySQL functions and combines multiple conditions using
Boolean operators (AND, OR, NOT). The GROUP BY clause lets
you specify one or more columns (by name, alias, or column
position, where 1 is the first column in the result set) for which
rows with equal values should be collapsed into single rows in

rows with equal values should be collapsed into single rows in
the result set. This clause should normally be used in combination
with the MySQL grouping functions such as COUNT, MAX, and
AVG, described in Appendix C, to produce result columns that
give summary information about the groups created. By default,
the grouped results are sorted in ascending order of the grouped
column(s); however, the ASC or DESC argument may be added
following each column reference to explicitly sort that column’s
results in ascending or descending order, respectively. Results
are sorted by the first column listed, then tying sets of rows are
sorted by the second, and so on. Note that the WHERE clause is
processed before GROUP BY grouping occurs, so conditions in
the WHERE clause may not refer to columns that depend on the
grouping operation. To impose conditions on the post-grouping
result set, you should use the HAVING clause instead. This
clause’s syntax is identical to that of the WHERE clause, except
the conditions specified here are processed just prior to returning
the set of results, and are not optimized. For this reason, you
should use the WHERE clause whenever possible. For more
information on GROUP BY and the HAVING clause, see
Chapter 11. The ORDER BY clause lets you sort results
according to the values in one or more rows before they’re
returned. As for the GROUP BY clause, each column may be
identified by a column name, alias, or position (where 1 is the
first column in the result set), and each column may have an ASC
or DESC argument to specify that sorting occurs in ascending or
descending order, respectively (ascending is the default). Rows

descending order, respectively (ascending is the default). Rows
are sorted initially by the first column listed, then tying sets of
rows are sorted by the second, and so on. The LIMIT clause
instructs the query to return only a portion of the results it would
normally generate. In the simplest case, LIMIT n returns only
the first n rows of the complete result set. You can also specify
an offset by using the form LIMIT x, n . In this case, up to n
rows will be returned, beginning from the x th row of the
complete result set. The first row corresponds to x = 0, the
second to x = 1, and so on.

Joins

As recently described, the FROM clause of a SELECT query lets
you specify the tables that are combined to create the result set.
When multiple tables are combined in this way, it’s called a join.
MySQL supports several types of joins, as defined by the
following supported syntaxes for the table_references
component of the FROM clause:
 table_ref

 table_references, table_ref

 table_references
 [CROSS] JOIN table_ref

 table_references INNER JOIN
table_ref
 join_condition

 table_references
STRAIGHT_JOIN table_ref

 table_references LEFT
[OUTER] JOIN table_ref
 join_condition
 { OJ table_ref LEFT OUTER JOIN table_ref ON
cond_expr }

 table_references NATURAL
[LEFT [OUTER]
] JOIN table_ref

 table_references RIGHT
[OUTER] JOIN table_ref
 join_condition

 table_references NATURAL
[RIGHT [OUTER]
] JOIN table_ref

where table_ref is defined as:

where table_ref is defined as:
table_name [
 [AS] alias]
 [USE INDEX (key_list)]

 [IGNORE INDEX (key_list)]

and join_condition is defined as one of the following:
ON cond_expr

USING (column_list)

Don’t be disheartened by the sheer variety of join types; I’ll be
explaining how each of them works. The most basic type of join,
an inner join, produces rows made up of all possible pairings of
the rows from the first table with the second. You can perform
an inner join in MySQL either by separating the table names with
a comma (,) or with the words JOIN, CROSS JOIN, or INNER
JOIN (these are all equivalent). It’s common—especially in older
PHP code—to use the comma (,) form to create an inner join,
and then use the WHERE clause of the SELECT query to specify a
condition, in order to narrow down which of the combined rows
are actually returned (for example, to match up a primary key in
the first table with a column in the second); however, this is
generally considered untidy and bad practice today. Instead, the
INNER JOIN syntax followed by a join_condition should be
used. The ON form of the join_condition puts the condition(s)

required to join two tables right next to the names of those
tables, keeping the WHERE clause for conditions unrelated to the
join operations. As a final alternative, the USING
(column_list) form of join_condition lets you specify
columns that must match between the two tables. For example:
SELECT * FROM t1 INNER JOIN t2 USING (tid)

This is equivalent to:
SELECT * FROM t1 INNER JOIN t2 ON t1.tid =
t2.tid

STRAIGHT_JOIN works in the same way as an inner join, except
that the tables are processed in the order listed (left first, then
right). Normally, MySQL selects the order that will produce the
shortest processing time, but if you think you know better, you
can use a STRAIGHT_JOIN. The second type of join is an outer
join, which is accomplished in MySQL with LEFT/RIGHT
[OUTER] JOIN (OUTER is completely optional, and has no
effect). In a LEFT outer join, any row in the left-hand table that
has no matching rows in the right-hand table (as defined by the
join_condition), will be listed as a single row in the result set.
NULL values will appear in all the columns that come from the
right-hand table. The { OJ … } syntax is equivalent to a
standard left outer join; it’s included for compatibility with other
ODBC (Open Database Connectivity) databases. RIGHT outer
joins work in the same way as LEFT outer joins, except in this
case, it’s the table on the right whose entries are always
included, even if they lack a matching entry in the left-hand table.

included, even if they lack a matching entry in the left-hand table.
Since RIGHT outer joins are nonstandard, it’s usually best to
stick to LEFT outer joins for cross-database compatibility. For
some practical examples of outer joins and their uses, see
Chapter 11. Natural joins are “automatic” in that they
automatically match up rows based on column names that are
found to match between the two tables. Thus, if a table called
joke has an authorid column referring to entries in an author
table whose primary key is another authorid column, you can
perform a join of these two tables on that column very simply
(assuming there are no other columns with identical names in the
two tables):
SELECT * FROM joke NATURAL JOIN author

Unions

A union combines the results from a number of SELECT queries
to produce a single result set. Each of the queries must produce
the same number of columns, and these columns must be of the
same type. The column names produced by the first query are
used for the union’s result set:
SELECT …
 UNION [ALL | DISTINCT]
 SELECT …
 [UNION [ALL | DISTINCT]
 SELECT …] …

By default, duplicate result rows in the union will be eliminated so

that each row in the result set is unique. The DISTINCT option
can be used to make this clear, but it has no actual effect. The
ALL option, on the other hand, allows duplicate results through to
the final result set.

SET
SET option = value, …

The SET query allows you to set a number of options both on
your client and on the server. For example, you can SET
autocommit = 0 to disable autocommit mode for the current
session. In effect, this is like running START TRANSACTION, and
then running it again automatically after every COMMIT or
ROLLBACK. With autocommit off, you always have a transaction
open, and queries like INSERT, UPDATE, and DELETE will not
take effect until you COMMIT them. For a complete list of the
options that may be SET, refer to the MySQL Reference
Manual.

SHOW
The SHOW query may be used in a number of forms to obtain
information about the MySQL server, the databases, and the
tables it contains. Many of these forms have an optional LIKE
wild component, where wild is a string that may contain
wildcard characters (% for multiple characters, _ for just one) to

wildcard characters (% for multiple characters, _ for just one) to
filter the list of results. Each of the forms of the SHOW query are
described here:

SHOW DATABASES [LIKE wild]

This query lists the databases that are available on the
MySQL server.

SHOW [OPEN] TABLES [FROM db_name] [LIKE wild]

This query lists the tables (or, optionally, the currently
OPEN tables) in the default or specified database.

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name
] [LIKE wild]

When FULL is not used, this query provides the same
information as a DESCRIBE query (see the section called “
DESCRIBE/DESC ”). The FULL option adds a listing of the
privileges you have on each column to this information.
SHOW FIELDS is equivalent to SHOW COLUMNS.

SHOW INDEX FROM tbl_name [FROM db_name]

This query provides detailed information about the indexes
that are defined on the specified table. See the MySQL
Reference Manual for a guide to the results produced by
this query. SHOW KEYS is equivalent to SHOW INDEX.

SHOW TABLE STATUS [FROM db_name] [LIKE wild]

This query displays detailed information about the tables in
the specified or default database.

the specified or default database.
SHOW STATUS [LIKE wild]

This query displays detailed statistics for the server. See
the MySQL Reference Manual for details on the meaning
of each figure.

SHOW VARIABLES [LIKE wild]

This query lists the MySQL configuration variables and
their settings. See the MySQL Reference Manual for a
complete description of these options.

SHOW [FULL] PROCESSLIST

This query displays all threads running on the MySQL
server and the queries being executed by each. If you lack
the process privilege, you’ll only see threads executing
your own queries. The FULL option causes complete
queries to be displayed, rather than only the first 100
characters of each (the default).

SHOW GRANTS FOR user

This query lists the GRANT queries that would be required
to recreate the privileges of the specified user.

SHOW CREATE TABLE table_name

This query displays the CREATE TABLE query that would
be required to reproduce the specified table.

START TRANSACTION

START TRANSACTION

Once a transaction has been started (that is, autocommit mode
has been disabled) with START TRANSACTION, MySQL collects
the changes made to the database so that they may be applied all
at once (with COMMIT) or discarded (with ROLLBACK).

TRUNCATE
TRUNCATE [TABLE]
 tbl_name

A TRUNCATE command deletes all the rows in a table, just like a
DELETE command with no WHERE clause. TRUNCATE, however,
takes a number of shortcuts to make the process go much faster,
especially with large tables. In effect, TRUNCATE performs a
DROP TABLE query, followed by a CREATE TABLE query to re-
create an empty table.

UPDATE
UPDATE [LOW_PRIORITY]
 [IGNORE]
 tbl_name
 SET col_name = expr
 [, …]

 [WHERE where_definition
]

 [ORDER BY …]

 [LIMIT #
]

The UPDATE query updates existing table entries by assigning
new values to the specified columns. Columns that aren’t listed
are left alone, except columns with the TIMESTAMP type (see
Appendix D). The WHERE clause lets you specify a condition
(where_definition) that rows must satisfy if they’re to be
updated, while the LIMIT clause lets you specify a maximum
number of rows to be updated.

Warning: Avoid Omitting
WHERE or LIMIT
If WHERE and LIMIT are unspecified, every row
in the table will be updated!

The ORDER BY clause lets you specify the order in which entries
are updated. This is most useful when combined with the LIMIT
clause; together they let you create queries like “update the ten
most recent rows.” An UPDATE operation will fail with an error if
the new value assigned to a row clashes with an existing value in
a PRIMARY KEY or UNIQUE column, unless the IGNORE option is

a PRIMARY KEY or UNIQUE column, unless the IGNORE option is
specified; in this case the query will simply have no effect on that
particular row. The LOW_PRIORITY option instructs MySQL to
wait until there are no other clients reading the table before it
performs the update. Like the DELETE query (see the section
called “ DELETE ”), UPDATE has an alternate form that can affect
multiple tables in a single operation:
UPDATE [LOW_PRIORITY]
 [IGNORE]
 tbl_name
 [, tbl_name …]
 SET col_name = expr
 [, …]

 [WHERE where_definition
]

USE
USE db_name

This simple query sets the default database for MySQL queries
in the current session. Tables in other databases may still be
accessed as db_name.tbl_name .

Appendix C. MySQL
Functions
MySQL provides a sizeable library of functions to format and
combine data within SQL queries in order to produce the
desired results in the preferred format. This appendix provides a
reference to the most useful of these functions, as implemented in
MySQL as of version 5.5.22 (current this writing). For a
complete, up-to-date reference to supported SQL functions, see
the MySQL Reference Manual.

Control Flow Functions
IFNULL(expr1, expr2)

This function returns expr1 unless it’s NULL, in which case
it returns expr2.

NULLIF(expr1, expr2)

This function returns expr1 unless it equals expr2, in
which case it returns NULL.

IF(expr1, expr2, expr3)

If expr1 is TRUE (that is, not NULL or 0), this function
returns expr2; otherwise, it returns expr3.

returns expr2; otherwise, it returns expr3.
CASE value WHEN [compare-value1] THEN result1
[WHEN …] [ELSE else- result] END

This function returns result1 when value=compare-
value1 (note that several compare-value/result pairs can
be defined); otherwise, it returns else-result , or
NULL if none is defined.

CASE WHEN [condition1] THEN result1 [WHEN …]
[ELSE else-result] END

This function returns result1 when condition1 is TRUE
(note that several condition/result pairs can be defined);
otherwise, it returns else-result, or NULL if none is
defined.

Mathematical Functions
ABS(expr)

This function returns the absolute (positive) value of expr.
SIGN(expr)

This function returns -1, 0, or 1 depending on whether
expr is negative, zero, or positive, respectively.

MOD(expr1, expr2) , expr1 % expr2

This function returns the remainder of dividing expr1 by

This function returns the remainder of dividing expr1 by
expr2.

FLOOR(expr)

This function rounds down expr (that is, it returns the
largest integer value that is less than or equal to expr).

CEILING(expr) , CEIL(expr)

This function rounds up expr (that is, it returns the smallest
integer value that’s greater than or equal to expr).

ROUND(expr)

This function returns expr rounded to the nearest integer.
Note that this function’s behavior when the value is
exactly an integer plus 0.5 is system-dependent. Thus, you
should avoid relying on any particular outcome when
migrating to a new system.

ROUND(expr, num)

This function rounds expr to a number with num decimal
places, leaving trailing zeros in place. Use a num of 2, for
example, to format a number as dollars and cents. Note
that the same uncertainty about the rounding of 0.5 applies
as discussed for ROUND.

EXP(expr)

This function returns e expr , the base of natural logarithms
raised to the power of expr.

LOG(expr)

This function returns ln(expr), or loge(expr), the natural
logarithm of expr.

LOG(B, expr)

This function returns the logarithm of expr with the
arbitrary base B.

Note: From High School
Mathematics …

LOG(B, expr) = LOG(expr) /
LOG(B)

LOG10(expr)

This function returns the base-10 logarithm of expr.
POW(expr1, expr2) , POWER(expr1, expr2)

This function returns expr1 raised to the power of expr2.
SQRT(expr)

This function returns the square root of expr.
PI()

This function returns the value of π (pi).
COS(expr)

This function returns the cosine of expr in radians (for
example, COS(PI()) = -1).

example, COS(PI()) = -1).
SIN(expr)

This function returns the sine of expr in radians (for
example, SIN(PI()) = 0).

TAN(expr)

This function returns the tangent of expr in radians (for
example, TAN(PI()) = 0).

ACOS(expr)

This function returns the arc cosine (cos-1 or inverse
cosine) of expr (for example, ACOS(-1) = PI()).

ASIN(expr)

This function returns the arc sine (sin-1 or inverse sine) of
expr (for example, ASIN(0) = PI()).

ATAN(expr)

This function returns the arc tangent (tan-1 or inverse
tangent) of expr (for example, ATAN(0) = PI()).

ATAN(y, x) , ATAN2(y, x)

This function returns the angle (in radians) made at the
origin between the positive x axis and the point (x,y); for
example, ATAN(1, 0) = PI() / 2.

COT(expr)

This function returns the cotangent of expr (for example,
COT(PI() / 2) = 0).

COT(PI() / 2) = 0).
RAND() , RAND(expr)

This function returns a random, floating point number
between 0.0 and 1.0. If expr is specified, a random
number will be generated based on that value, which will
always be the same.

LEAST(expr1, expr2, …)

This function returns the smallest of the values specified.
GREATEST(expr1, expr2, …)

This function returns the largest of the values specified.
DEGREES(expr)

This function returns the value of expr (in radians) in
degrees.

RADIANS(expr)

This function returns the value of expr (in degrees) in
radians.

TRUNCATE(expr, num)

This function returns the value of floating point number
expr truncated to num decimal places (that is, rounded
down).

BIN(expr)

This function converts decimal expr to binary, equivalent
to CONV(expr, 10, 2).

to CONV(expr, 10, 2).
OCT(expr)

This function converts decimal expr to octal, equivalent to
CONV(expr, 10, 8).

HEX(expr)

This function converts decimal expr to hexadecimal,
equivalent to CONV(expr, 10, 16).

CONV(expr, from_base, to_base)

This function converts a number (expr) in base
from_base to a number in base to_base. Returns NULL if
any of the arguments are NULL.

String Functions
ASCII(str)

This function returns the ASCII code value of the left-
most character in str, 0 if str is an empty string, or NULL if
str is NULL.

ORD(str)

This function returns the ASCII code of the left-most
character in str, taking into account the possibility that it
might be a multibyte character.

CHAR(expr, …)

CHAR(expr, …)

This function creates a string composed of characters, the
ASCII code values of which are given by the expressions
passed as arguments.

CONCAT(str1, str2, …)

This function returns a string made up of the strings passed
as arguments joined end to end. If any of the arguments
are NULL, NULL is returned instead.

CONCAT_WS(separator, str1, str2, …)

This is CONCAT “with separator” (WS). This function is the
same as CONCAT, except that the first argument is placed
between each of the additional arguments when they’re
combined.

LENGTH(str) , OCTET_LENGTH(str) , CHAR_LENGTH(str) ,
CHARACTER_LENGTH(str)

All of these return the length in characters of str.
CHAR_LENGTH and CHARACTER_LENGTH, however, take
multibyte characters into consideration when performing
the count.

BIT_LENGTH(str)

This function returns the length (in bits) of str (that is,
BIT_LENGTH(str) = 8 * LENGTH(str)).

LOCATE(substr, str) , POSITION(substr IN str)

This function returns the position of the first occurrence of

This function returns the position of the first occurrence of
substr in str (1 if it occurs at the beginning, 2 if it starts
after one character, and so on). It returns 0 if substr
doesn’t occur in str.

LOCATE(substr, str, pos)

This is the same as LOCATE(substr, str), but it begins
searching from character number pos.

INSTR(str, substr)

This function is the same as LOCATE(substr, str), but
with the argument order swapped.

LPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length
len. Lengthening is accomplished by inserting padstr to
the left of the characters of str (for example, LPAD('!',
'5', '.') = '....!').

RPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length
len. Lengthening is accomplished by inserting padstr to
the right of the characters of str (for example,
RPAD('!','5','.') = '!....').

LEFT(str, len)

This function returns the left-most len characters of str. If
str is shorter than len characters, str is returned with no
extra padding.

extra padding.
RIGHT(str, len)

This function returns the right-most len characters of str.
If str is shorter than len characters, str is returned with no
extra padding.

SUBSTRING(str, pos, len) , SUBSTRING(str FROM pos
FOR len) , MID(str, pos, len)

This function returns a string up to len characters long
taken from str beginning at position pos (where 1 is the
first character). The second form of SUBSTRING is the
ANSI standard.

SUBSTRING(str, pos) , SUBSTRING(str FROM pos)

This function returns the string beginning from position pos
in str (where 1 is the first character) and going to the end
of str.

SUBSTRING_INDEX(str, delim, count)

MySQL counts count occurrences of delim in str, then
takes the substring from that point. If count is positive,
MySQL counts to the right from the start of the string,
then takes the substring up to but not including that
delimiter. If count is negative, MySQL counts to the left
from the end of the string, then takes the substring that
starts right after that delimiter, and runs to the end of str.

LTRIM(str)

This function returns str with any leading whitespace
trimmed off.

RTRIM(str)

This function returns str with any trailing whitespace
trimmed off.

TRIM([[BOTH | LEADING | TRAILING] [remstr]
FROM] str)

This function returns str with either whitespace (by
default) or occurrences of the string remstr removed from
the start of the string (LEADING), end of the string
(TRAILING), or both (BOTH, the default).

SOUNDEX(str)

This function produces a string that represents how str
sounds when read aloud. Words that sound similar should
have the same “soundex string.” For example:
SOUNDEX("tire") = "T600"
SOUNDEX("tyre") = "T600"
SOUNDEX("terror") = "T600"
SOUNDEX("tyrannosaur") = "T6526"

SPACE(num)

This function returns a string of num space characters.
REPLACE(str, from_str, to_str)

This function returns str after replacing all occurrences of
from_str with to_str.

from_str with to_str.
REPEAT(str, count)

This function returns a string made up of str repeated
count times, an empty string if count <= 0, or NULL if
either argument is NULL.

REVERSE(str)

This function returns str spelled backwards.
INSERT(str, pos, len, newstr)

This function takes str, and removes the substring
beginning at pos (where 1 is the first character in the
string) with length len, then inserts newstr at that position.
If len = 0, the function simply inserts newstr at position
pos.

ELT(N, str1, str2, str3, …)

This function returns the N th string argument (str1 if N =
1, str2 if N = 2, and so on), or NULL if there’s no
argument for the given N.

FIELD(str, str1, str2, str3, …)

This function returns the position of str in the subsequent
list of arguments (1 if str = str1, 2 if str = str2, and so
on).

FIND_IN_SET(str, strlist)

When strlist is a list of strings of the form
'string1,string2,string3,…', this function returns

'string1,string2,string3,…', this function returns
the index of st****r in that list, or 0 if str is not in the list.
This function is ideally suited (and optimized) for
determining if str is selected in a column of type SET (see
Appendix D).

MAKE_SET(bits, str1, str2, …)

This function returns a list of strings of the form
'string1,string2,string3,…' using the string
parameters (str1 , str2 , and so on) that correspond
to the bits that are set in the number bits. For example, if
bits = 10 (binary 1010), bits 2 and 4 are set, so the
output of MAKE_SET will be 'str2,str4'.

EXPORT_SET(bits, on_str, off_str[, separator[,
number_of_bits]])

This function returns a string representation of which bits
are—and are not—set in bits. Set bits are represented by
the on_str string, while unset bits are represented by the
off_str string. By default, these bit representations are
comma-separated, but the optional separator string lets
you define your own. By default, up to 64 bits are read;
however, number_of_bits lets you specify that a smaller
number be read. For example:
EXPORT_SET(10, 'Y', 'N', ',', 6) =
'N,Y,N,Y,N,N'

LCASE(str) , LOWER(str)

This function returns str with all letters in lowercase.
UCASE(str) , UPPER(str)

This function returns str with all letters in uppercase.
LOAD_FILE(filename)

This function returns the contents of the file specified by
filename (an absolute path to a file readable by MySQL).
Your MySQL user should also have file privileges.

QUOTE(str)

This function returns str surrounded by single quotes, and
with any special characters escaped with backslashes. If
str is NULL, the function returns the string NULL (without
surrounding quotes).

Date and Time Functions
DAYOFWEEK(date)

This function returns the weekday of date in the form of
an integer, according to the ODBC standard (1 = Sunday,
2 = Monday, 3 = Tuesday … 7 = Saturday).

WEEKDAY(date)

This function returns the weekday of date in the form of
an integer (0 = Monday, 1 = Tuesday, 2 = Wednesday

an integer (0 = Monday, 1 = Tuesday, 2 = Wednesday
… 6 = Sunday).

DAYOFMONTH(date)

This function returns the day of the month for date, from 1
to 31.

DAYOFYEAR(date)

This function returns the day of the year for date, from 1
to 366—remember leap years!

MONTH(date)

This function returns the month for date, from 1 (January)
to 12 (December).

DAYNAME(date)

This function returns the name of the day of the week for
date (for example, 'Tuesday').

MONTHNAME(date)

This function returns the name of the month for date (for
example, 'April').

QUARTER(date)

This function returns the quarter of the year for date (for
example, QUARTER('2005-04-12') = 2).

WEEK(date [, mode])

This function returns the week of the year for date by
default in the range 0-53 (where week 1 is the first week

of the year), assuming that the first day of the week is
Sunday. By specifying one of the mode values in
Table C.1, you can alter the way this value is calculated.
Table C.1. Modes for week calculations

mode
Week
starts

on

Return
Value
Range

Week 1

0 Sunday 0 to 53 first week that starts in
this year

1 Monday 0 to 53 first week that has more
than 3 days in this year

2 Sunday 1 to 53 first week that starts in
this year

3 Monday 1 to 53 first week that has more
than 3 days in this year

4 Sunday 0 to 53 first week that has more
than 3 days in this year

5 Monday 0 to 53 first week that starts in
this year

6 Sunday 1 to 53 first week that has more
than 3 days in this year

7 Monday 1 to 53 first week that starts in
this year

this year
YEAR(date)

This function returns the year for date, from 1000 to
9999.

YEARWEEK(date) , YEARWEEK(date, first)

This function returns the year and week for date in the
form 'YYYYWW'. Note that the first or last day or two of
the year may often belong to a week of the preceding or
following year, respectively. For example:
YEARWEEK("2006-12-31") = 200701

HOUR(time)

This function returns the hour for time, from 0 to 23.
MINUTE(time)

This function returns the minute for time, from 0 to 59.
SECOND(time)

This function returns the second for time, from 0 to 59.
PERIOD_ADD(period, num_months)

This function adds num_months months to period
(specified as 'YYMM' or 'YYYYMM') and returns the value
in the form 'YYYYMM'.

PERIOD_DIFF(period1, period2)

This function returns the number of months between

This function returns the number of months between
period1 and period2 (each of which should be specified
as 'YYMM' or 'YYYYMM').

DATE_ADD(date, INTERVAL expr type) ,
DATE_SUB(date, INTERVAL expr type) , ADDDATE(date,
INTERVAL expr type) , SUBDATE(date, INTERVAL expr
type)

This function returns the result of either adding or
subtracting the specified interval of time to or from date (a
DATE or DATETIME value). DATE_ADD and ADDDATE are
identical, as are DATE_SUB and SUBDATE. expr specifies
the interval to be added or subtracted and may be
negative if you wish to specify a negative interval, and
type specifies the format of expr, as shown in Table C.2.
If date and expr involve only date values, the result will
be a DATE value; otherwise, this function will return a
DATETIME value. Here are a few examples to help you
see how this family of functions works. The following both
return the date six months from now:
ADDDATE(CURDATE(), INTERVAL 6 MONTH)

DATE_ADD(CURDATE(), INTERVAL '0-6'
YEAR_MONTH)

The following all return this time tomorrow:
ADDDATE(NOW(), INTERVAL 1 DAY)

SUBDATE(NOW(), INTERVAL -1 DAY)

SUBDATE(NOW(), INTERVAL -1 DAY)

DATE_ADD(NOW(), INTERVAL '24:0:0'
HOUR_SECOND)

DATE_ADD(NOW(), INTERVAL '1 0:0'
DAY_MINUTE)

Table C.2. Interval types for date
addition/subtraction functions

type Format for expr
SECOND number of seconds
MINUTE number of minutes
HOUR number of hours
DAY number of days
MONTH number of months
YEAR number of years
MINUTE_SECOND 'minutes:seconds'
HOUR_MINUTE 'hours:minutes'
DAY_HOUR 'days hours'
YEAR_MONTH 'years-months'
HOUR_SECOND 'hours:minutes:seconds'
DAY_MINUTE 'days hours:minutes'
DAY_SECOND 'days hours:minutes:seconds'

TO_DAYS(date)

TO_DAYS(date)

This function converts date to a number of days since year
0. It allows you to calculate differences in dates (that is,
TO_DAYS(date1) - TO_DAYS(date2) = days between
date1 and date2).

FROM_DAYS(days)

Given the number of days since year 0 (as produced by
TO_DAYS), this function returns a date.

DATE_FORMAT(date, format)

This function takes the date or time value date and returns
it formatted according to the formatting string format,
which may contain as placeholders any of the symbols
shown in Table C.3.
Table C.3. DATE_FORMAT symbols (2004-01-01
01:00:00)

Symbol Displays Example
%M Month name January
%W Weekday name Thursday
%D Day of the month with English suffix 1st
%Y Year, numeric, 4 digits 2004
%y Year, numeric, 2 digits 03
%a Abbreviated weekday name Thu

%d Day of the month 01
%e Day of the month 1
%m Month of the year, numeric 01
%c Month of the year, numeric 1
%b Abbreviated month name Jan
%j Day of the year 001

%H Hour of the day (24 hour format,
00-23) 01

%k Hour of the day (24 hour format,
0-23) 1

%h Hour of the day (12 hour format,
01-12) 01

%I Hour of the day (12 hour format,
01-12) 01

%l Hour of the day (12 hour format,
1-12) 1

%i Minutes 00

%r Time, 12 hour (hh:mm:ss AM/PM) 01:00:00
AM

%T Time, 24 hour (hh:mm:ss) 01:00:00
%S Seconds 00
%s Seconds 00

%p AM or PM AM

%w Day of the week, numeric
(0=Sunday) 4

%U Week (00-53), Sunday first day of
the week 00

%u Week (00-53), Monday first day
of the week 01

%X
Year of the week where Sunday is
the first day of the week, 4 digits
(use with %V)

2003

%V Week (01-53), Sunday first day of
week (%X) 53

%x Like %X, Monday first day of week
(use with %v) 2004

%v Week (01-53), Monday first day
of week (%x) 01

%% An actual percent sign %
TIME_FORMAT(time, format)

This function is the same as DATE_FORMAT, except that
the format string may only contain symbols referring to
hours, minutes, and seconds.

CURDATE() , CURRENT_DATE

This function returns the current system date in the SQL

This function returns the current system date in the SQL
date format 'YYYY-MM-DD' (if used as a date) or as
YYYYMMDD (if used as a number).

CURTIME() , CURRENT_TIME , CURRENT_TIME()

This function returns the current system time in the SQL
time format 'HH:MM:SS' (if used as a time) or as HHMMSS
(if used as a number).

NOW() , SYSDATE() , CURRENT_TIMESTAMP ,
CURRENT_TIMESTAMP() , LOCALTIME , LOCALTIME() ,
LOCALTIMESTAMP , LOCALTIMESTAMP()

This function returns the current system date and time in
SQL date/time format 'YYYY-MM-DD HH:MM:SS' (if
used as a date/time) or as YYYYMMDDHHMMSS (if used as a
number).

UNIX_TIMESTAMP() , UNIX_TIMESTAMP(date)

This function returns either the current system date and
time, or the specified date/time as the number of seconds
since 1970-01-01 00:00:00 GMT.

FROM_UNIXTIME(unix_timestamp)

The opposite of UNIX_TIMESTAMP, this function converts
a number of seconds from 1970-01-01 00:00:00 GMT to
'YYYY-MM-DD HH:MM:SS' (if used as a date/time) or
YYYYMMDDHHMMSS (if used as a number), local time.

FROM_UNIXTIME(unix_timestamp, format)

This function formats a UNIX timestamp according to the
format string, which may contain any of the symbols listed
in Table C.3.

SEC_TO_TIME(seconds)

This function converts some number of seconds to the
format 'HH:MM:SS' (if used as a time) or HHMMSS (if
used as a number).

TIME_TO_SEC(time)

This function converts a time in the format 'HH:MM:SS'
to a number of seconds.

Miscellaneous Functions
DATABASE()

This function returns the currently selected database name,
or an empty string if no database is currently selected.

USER() , SYSTEM_USER() , SESSION_USER()

This function returns the current MySQL username,
including the client host name (for example,
'kevin@localhost'). The SUBSTRING_INDEX function
may be used to obtain the username alone:
SUBSTRING_INDEX(USER(), "@", 1) = 'kevin'

CURRENT_USER()

CURRENT_USER()

This function returns the user entry in the MySQL access
control system that was used to authenticate the current
connection—and which controls its privileges—in the
form 'user@host'. In many cases, this will be the same
as the value returned by USER, but when entries in the
access control system contain wild cards, this value may
be less specific (for example, '@%.mycompany.com').

PASSWORD(str)

This is a one-way password encryption function that
converts any string (typically a plain-text password) into
an encrypted format precisely 16 characters in length. A
particular plain-text string always will yield the same
encrypted string of 16 characters; thus, values encoded in
this way can be used to verify the correctness of a
password without actually storing the password in the
database. This function uses a different encryption
mechanism to UNIX passwords; use ENCRYPT for that
type of encryption.

ENCRYPT(str [, salt])

This function uses standard UNIX encryption (via the
crypt() system call) to encrypt str. The salt argument is
optional, and lets you control the seed that’s used for
generating the password. If you want the encryption to
match a UNIX password file entry, the salt should be the

match a UNIX password file entry, the salt should be the
two first characters of the encrypted value you’re trying to
match. Depending on the implementation of crypt() on
your system, the encrypted value may only depend on the
first eight characters of the plain-text value. On systems
where crypt() is unavailable, this function returns NULL.

ENCODE(str, pass_str)

This function encrypts str using a two-way password-
based encryption algorithm with password pass_str. To
subsequently decrypt the value, use DECODE.

DECODE(crypt_str, pass_str)

This function decrypts the encrypted crypt_str using two-
way password-based encryption with password pass_str.
If the same password is given that was provided to
ENCODE, the original string will be restored.

MD5(string)

This function calculates an MD5 hash based on string.
The resulting value is a 32-digit hexadecimal number. A
particular string will always produce the same MD5 hash;
however, MD5(NOW()) may be used, for instance, to
obtain a semi-random string when one is needed (as a
default password, for instance).

LAST_INSERT_ID()

This function returns the last number that was
automatically generated for an AUTO_INSERT column in

the current connection.
FOUND_ROWS()

When you execute a SELECT query with a LIMIT clause,
you may sometimes want to know how many rows would
have been returned if you omitted a LIMIT clause. To do
this, use the SQL_CALC_FOUND_ROWS option for the
SELECT query (see Appendix B), then call this function in
a second SELECT query. Calling this function is
considerably quicker than repeating the query without a
LIMIT clause, since the full result set doesn’t need to be
sent to the client.

FORMAT(expr, num)

This function formats a number expr with commas as
“thousands separators” and num decimal places (rounded
to the nearest value and padded with zeros).

VERSION()

This function returns the MySQL server version (for
example, '5.1.34').

CONNECTION_ID()

This function returns the thread ID for the current
connection.

GET_LOCK(str, timeout)

If two or more clients must synchronize tasks beyond
what table locking can offer, named locks may be used

what table locking can offer, named locks may be used
instead. GET_LOCK attempts to obtain a lock with a given
name (str). If the named lock is already in use by another
client, this client will wait up to timeout seconds before
giving up waiting for the lock to become free. Once a
client has obtained a lock, it can be released either using
RELEASE_LOCK or by using GET_LOCK again to obtain a
new lock. GET_LOCK returns 1 if the lock was successfully
retrieved, 0 if the time specified by timeout elapsed, or
NULL if some error occurred. GET_LOCK is not a MySQL
command in and of itself; it must appear as part of another
query. For example:
SELECT GET_LOCK("mylock", 10)

RELEASE_LOCK(str)

This function releases the named lock that was obtained
by GET_LOCK. It returns 1 if the lock was released, 0 if
the lock wasn’t locked by this thread, or NULL if the lock
doesn’t exist.

IS_FREE_LOCK(str)

This function checks if the named lock is free to be
locked. It returns 1 if the lock was free, 0 if the lock was
in use, or NULL if an error occurred.

BENCHMARK(count, expr)

This function repeatedly evaluates expr count times for
the purposes of speed testing. The MySQL command line

the purposes of speed testing. The MySQL command line
client allows the operation to be timed.

INET_NTOA(expr)

This function returns the IP address represented by the
integer expr. See INET_ATON to create such integers.

INET_ATON(expr)

This function converts an IP address expr to a single
integer representation. For example:
INET_ATON('64.39.28.1') = 64 * 2553 + 39 *
2552 + 28 * 255 + 1
 = 1063751116

Functions for Use with GROUP
BY Clauses
Also known as summary functions, the following are intended
for use with GROUP BY clauses, where they’ll produce values
based on the set of records making up each row of the final
result set. If used without a GROUP BY clause, these functions will
cause the result set to be displayed as a single row, with a value
calculated based on all the rows of the complete result set.
Without a GROUP BY clause, mixing these functions with columns
where there are no summary functions will cause an error,
because you’re unable to collapse those columns into a single
row and gain a sensible value.

row and gain a sensible value.

COUNT(expr)

This function returns a count of the number of times that
expr had a non-NULL value in the ungrouped result set. If
COUNT(*) is used, it will simply provide a count of the
number of rows in the group, irrespective of NULL values.

COUNT(DISTINCT expr [, expr …])

This function returns a count of the number of different
non-NULL values (or sets of values, if multiple expressions
are provided).

AVG(expr)

This function calculates the arithmetic mean (average) of
the values appearing in the rows of the group.

MIN(expr) , MAX(expr)

This function returns the smallest or largest value of expr
in the rows of the group.

SUM(expr)

This function returns the sum of the values for expr in the
rows of the group.

STD(expr) , STDDEV(expr)

This function returns the standard deviation of the values
for expr in the rows of the group (either of the two
function names may be used).

function names may be used).
BIT_OR(expr) , BIT_AND(expr)

This function calculates the bit-wise OR and the bit-wise
AND of the values for expr in the rows of the group,
respectively.

Appendix D. MySQL
Column Types
When you create a table in MySQL, you must specify the data
type for each column. This appendix documents all the column
types that MySQL provides as of version 5.5.22 (current this
writing). In this reference, many column types can accept
optional parameters to further customize how data for the
column is stored or displayed. First, there are the M and D
parameters, which are indicated (in square brackets when
optional) immediately following the column type name. The
parameter M is used to specify the display size (that is, maximum
number of characters) to be used by values in the column. In
most cases, this will limit the range of values that may be
specified in the column. M may be any integer between 1 and
255. Note that for numerical types (for example, INT), this
parameter doesn’t actually restrict the range of values that may
be stored. Instead, it causes spaces (or zeros in the case of a
ZEROFILL column—see further on for details) to be added to
the values so that they reach the desired display width when
they’re displayed. Additionally, storing values longer than the
specified display width can cause problems when the values are
used in complex joins, and thus should be avoided whenever
possible. The parameter D lets you specify how many decimal

possible. The parameter D lets you specify how many decimal
places will be stored for a floating-point value. This parameter
may be set to a maximum of 30, but M should always allow for
these places (that is, D should always be less than or equal to M –
2 to allow room for a zero and a decimal point). The second
type of parameter is an optional column attribute. The
attributes supported by the different column types are listed for
each; to enable them, simply type them after the column type,
separated by spaces. Here are the available column attributes
and their meanings:

ZEROFILL

Values for the column always occupy their maximum
display length, as the actual value is padded with zeros.
This option automatically sets the UNSIGNED option as
well.

UNSIGNED

The column may accept only positive numerical values (or
zero). This restriction frees up more storage space for
positive numbers, effectively doubling the range of positive
values that may be stored in the column, and should
always be set if you know that there’s no need to store
negative values.

BINARY

By default, comparisons of character values in MySQL
(including sorting) are case-insensitive. However,

(including sorting) are case-insensitive. However,
comparisons for BINARY columns are case-sensitive.

For a complete, up-to-date reference to supported SQL column
types, see the MySQL Reference Manual.

Numerical Types
TINYINT[(M)]

Description:

A tiny integer value
Attributes allowed:

UNSIGNED, ZEROFILL
Range:

-128 to 127 (0 to 255 if UNSIGNED)
Storage space:

1 byte (8 bits)
SMALLINT[(M)]

Description:

A small integer value
Attributes allowed:

UNSIGNED, ZEROFILL
Range:

-32768 to 32767 (0 to 65535 if UNSIGNED)
Storage space:

2 bytes (16 bits)
MEDIUMINT[(M)]

Description:

A medium integer value
Attributes allowed:

UNSIGNED, ZEROFILL
Range:

-8588608 to 8388607 (0 to 16777215 if
UNSIGNED)

Storage space:

3 bytes (24 bits)
INT[(M)]

Description:

A regular integer value
Attributes allowed:

UNSIGNED, ZEROFILL
Range:

-2147483648 to 2147483647 (0 to 4294967295
if UNSIGNED)

Storage space:

4 bytes (32 bits)
Alternative syntax:

INTEGER[(M)]
BIGINT[(M)]

Description:

A large integer value
Attributes allowed:

UNSIGNED, ZEROFILL
Range:

-9223372036854775808 to
9223372036854775807 (0 to
18446744073709551615 if UNSIGNED)

Storage space:

8 bytes (64 bits)
Notes:

MySQL performs all integer arithmetic functions in
signed BIGINT format; thus, BIGINT UNSIGNED
values over 9223372036854775807 (63 bits) will
only work properly with bit functions (for example,
bit-wise AND, OR, and NOT). Attempting integer
arithmetic with larger values may produce
inaccurate results due to rounding errors.

FLOAT[(M, D)] , FLOAT(precision)

Description:

A floating point number
Attributes allowed:

ZEROFILL
Range:

0 and ±1.175494351E-38 to ±3.402823466E+38
Storage space:

4 bytes (32 bits)
Notes:

precision (in bits), if specified, must be less than or
equal to 24, or else a DOUBLE column will be
created instead.

DOUBLE[(M, D)] , DOUBLE(precision)

Description:

A high-precision floating point number
Attributes allowed:

ZEROFILL
Range:

0 and ±2.2250738585072014-308 to
±1.7976931348623157E+308

Storage space:

8 bytes (64 bits)
Notes:

precision (in bits), if specified, must be greater than
or equal to 25, or else a FLOAT column will be
created instead (see earlier). precision may not be
greater than 53.

Alternative syntax:

DOUBLE PRECISION[(M,D)] or REAL[(M,D)]
DECIMAL[(M [, D])]

Description:

A floating point number stored as a character string
Attributes allowed:

ZEROFILL
Range:

As for DOUBLE, but constrained by M and D (see
Notes)

Storage space:

Depends on the stored value. For a value with X
digits before the decimal point and Y digits after, the
storage space used is approximately (X + Y) × 4 ÷
10 bytes.

Notes:

If D is unspecified, it defaults to 0 and numbers in
this column will have no decimal point or fractional
part. If M is unspecified, it defaults to 10.

Alternative syntax:

NUMERIC([M [,D]])
BIT(M)

Description:

An M-bit binary value, where M can be 1 to 64. In
other words, a series of M digits, each of which
may be 1 or 0.

Range:

As constrained by M

As constrained by M
Storage space:

M + 2 bytes (8 × M + 16 bits)
Notes:

Intended for storing sets of Boolean (true or
false) flags. To write BIT values, use the form
b'ddd…', where each digit d can be 1 (to indicate
“true”) or 0 (to indicate “false”). For example, an
8-bit binary value where all the flags are true is
b'11111111'.

Character Types
CHAR(M)

Description:

A fixed-length character string
Attributes allowed:

BINARY
Maximum length:

M characters
Storage space:

M bytes (8 × M bits)

M bytes (8 × M bits)
Notes:

CHAR values are stored as strings of length M, even
though the assigned value may be shorter. When
the string is shorter than the full length of the field,
spaces are added to the end of the string to bring it
exactly to M characters. Trailing spaces are
stripped off when the value is retrieved. CHAR
columns are quicker to search than variable-length
character column types such as VARCHAR, since
their fixed-length nature makes the underlying
database file format more regular. M may take any
integer value from 0 to 255, with a CHAR(0)
column able to store only two values: NULL and ''
(the empty string), which occupy a single bit.

Alternative syntax:

CHARACTER(M)
VARCHAR(M)

Description:

A variable-length character string
Attributes allowed:

BINARY
Maximum length:

M characters
Storage space:

Length of stored value, plus 1 byte to store length
(2 bytes if M > 255)

Notes:

As VARCHAR values occupy only the space they
require, there’s usually no point specifying a
maximum field length M of anything less than 255
(the maximum for MySQL versions before 5.0.3).
From 5.0.3 onward, MySQL will let you specify a
maximum length up to 65,535 characters; however,
65,535 also happens to be the maximum number of
bytes of data that a single table row is allowed to
contain, so in practice you’ll want to stick to much
smaller limits, or consider a more appropriate
column type like TEXT. Strings longer than the
specified limit will be chopped to the maximum
length when inserted. MySQL versions before
5.0.3 would strip trailing spaces from values before
they were stored, but this usually unexpected (and
nonstandard) behavior has been removed and
values are stored as supplied in MySQL 5.0.3 and
later.

Alternative syntax:

CHARACTER VARYING(M)
BINARY(M)

Description:

A fixed-length binary string
Maximum length:

M characters
Storage space:

M bytes (8 × M bits)
Notes:

Just like CHAR, except MySQL treats the values
stored in this column as non-textual byte strings.

VARBINARY(M)

Description:

A variable-length binary string
Maximum length:

M characters
Storage space:

Length of stored value, plus 1 byte to store length
Notes:

Just like VARCHAR, except MySQL treats the
values stored in this column as non-textual byte
strings.

TINYBLOB , TINYTEXT

Description:

A short, variable-length character string
Maximum length:

255 characters
Storage space:

Length of stored value, plus 1 byte to store length
Notes:

These types are basically equivalent to
VARCHAR(255) BINARY and VARCHAR(255),
respectively. However, these column types do not
trim trailing spaces from inserted values. The only
difference between TINYBLOB and TINYTEXT is
that the former performs case-sensitive
comparisons and sorts, while the latter does not.

BLOB , TEXT

Description:

A variable-length character string
Maximum length:

Maximum length:

65,535 characters (65KB)
Storage space:

Length of stored value, plus 2 bytes to store length
Notes:

The only difference between BLOB and TEXT is that
the former performs case-sensitive comparisons
and sorts, while the latter does not.

MEDIUMBLOB , MEDIUMTEXT

Description:

A medium, variable-length character string
Maximum length:

16,777,215 characters (16.8MB)
Storage space:

Length of stored value, plus 3 bytes to store length
Notes:

The only difference between MEDIUMBLOB and
MEDIUMTEXT is that the former performs case-
sensitive comparisons and sorts, while the latter
does not.

LONGBLOB , LONGTEXT

LONGBLOB , LONGTEXT

Description:

A long, variable-length character string
Maximum length:

4,294,967,295 characters (4.3GB)
Storage space:

Length of stored value, plus 4 bytes to store length
Notes:

The only difference between LONGBLOB and
LONGTEXT is that the former performs case-
sensitive comparisons and sorts, while the latter
does not.

ENUM(value1, value2, ...)

Description:

A set of values from which a single value must be
chosen for each row

Maximum Length:

One value chosen from up to 65,535 possibilities
Storage space:

1 to 255 values: 1 byte (8 bits)

256 to 65,535 values: 2 bytes (16 bits)
Notes:

Values in this type of field are stored as integers
that represent the element selected. 1 represents
the first element, 2 the second, and so on. The
special value 0 represents the empty string '',
which is stored if a value is assigned that doesn’t
appear in a column declaration. NOT NULL columns
of this type default to the first value in the column
declaration if no particular default is assigned.

SET(value1, value2, ...)

Description:

A set of values, each of which may be set or not set
Maximum length:

Up to 64 values in a given SET column
Storage space:

1 to 8 values: 1 byte (8 bits)

9 to 16 values: 2 bytes (16 bits)

17 to 24 values: 3 bytes (24 bits)

25 to 32 values: 4 bytes (32 bits)

25 to 32 values: 4 bytes (32 bits)

33 to 64 values: 8 bytes (64 bits)
Notes:

Values in this type of field are stored as integers
representing the pattern of bits for set and unset
values. For example, if a set contains eight values,
and in a particular row the odd values are set, the
binary representation 01010101 becomes the
decimal value 85. Values may therefore be
assigned either as integers, or as a string of set
values, separated by commas (for example,
'value1,value3,value5,value7' = 85).
Searches should be performed either with the LIKE
operator, or the FIND_IN_SET function.

Date/Time Types
DATE

Description:

A date
Range:

'1000-01-01' to '9999-12-31', and '0000-
00-00'

00-00'
Storage space:

3 bytes (24 bits)
TIME

Description:

A time
Range:

'-838:59:59' to '838:59:59'
Storage space:

3 bytes (24 bits)
DATETIME

Description:

A date and time
Range:

'1000-01-01 00:00:00' to '9999-12-31
23:59:59'

Storage space:

8 bytes (64 bits)
YEAR

Description:

A year
Range:

1901 to 2155, and 0000
Storage space:

1 byte (8 bits)
Notes:

You can specify a year value with a four-digit
number (1901 to 2155, or 0000), a four-digit string
('1901' to '2155', or '0000'), a two-digit
number (70 to 99 for 1970 to 1999, 1 to 69 for
2001 to 2069, or 0 for 0), or a two-digit string
('70' to '99' for 1970 to 1999, '00' to '69'
for 2000 to 2069). Note that you cannot specify
the year 2000 with a two-digit number, nor the
year 0 with a two-digit string. Invalid year values
are always converted to 0.

TIMESTAMP[(M)]

Description:

A timestamp (date/time), in YYYYMMDDHHMMSS
format

Range:

19700101000000 to some time in 2037 on current

19700101000000 to some time in 2037 on current
systems

Storage space:

4 bytes (32 bits)
Notes:

An INSERT or UPDATE operation on a row that
contains one or more TIMESTAMP columns will
automatically update the first TIMESTAMP column in
the row with the current date/time. This lets you use
such a column as the “last modified date/time” for
the row. Assigning a value of NULL to the column
will have the same effect, thereby providing a
means of “touching” the date/time. You can also
assign actual values as you would for any other
column. Allowable values for M are 14, 12, 10, 8,
6, 4, and 2, and correspond to the display formats
YYYYMMDDHHMMSS , YYMMDDHHMMSS ,
YYMMDDHHMM , YYYYMMDD , YYMMDD , YYMM , and
YY respectively. Odd values from 1 to 13
automatically will be bumped up to the next even
number, while values of 0 or greater than 14 are
changed to 14.

Index
Symbols

$ (dollar sign), end of string, Regular Expressions
$_FILES[], Handling File Uploads
$srcurl, Semidynamic Pages
% (percent sign), Searching for Jokes
&& (double ampersand), and operator, Control Structures
(…) round brackets, Regular Expressions
* (asterisk)

multiplication operator, Variables, Operators, and
Comments
zero or more of the preceding characters, Regular
Expressions

+ (plus sign)
addition operator, Variables, Operators, and Comments
pattern modifier, Regular Expressions

- (minus sign), subtraction operator, Variables, Operators, and
Comments
--delete-master-logs option (mysqldump), Incremental Backups
Using Binary Logs
--master-data=2 option (mysqldump), Incremental Backups
Using Binary Logs
-> (arrow notation), A Crash Course in Object Oriented

-> (arrow notation), A Crash Course in Object Oriented
Programming
-flush-logs option (mysqldump), Incremental Backups Using
Binary Logs
. (dot), any character, Regular Expressions
.= (append operator), Searching for Jokes
/ (forward slash)

delimiter, Regular Expressions
division operator, Variables, Operators, and Comments

= (equals sign), assignment operator, Variables, Operators, and
Comments
== (double-equals), equal operator, Control Structures
? (question mark), Regular Expressions
[…] square brackets

character class, Regular Expressions
optional code, Cookies

\ (backslash)
with apostrophes in PHP, Passing Variables in Forms
escape delimiter, Regular Expressions

^ (caret), start of string, Regular Expressions
| (vertical bar), pipe, Regular Expressions
|| (double vertical bar), or operator, Control Structures
‘ (apostrophe), form fields, Passing Variables in Forms

A

ABS(), Mathematical Functions

ABS(), Mathematical Functions
absolute paths, Shared Include Files
access control, Access Control, A Challenge: Joke Moderation

controller code, Controller Code, Controller Code
databases, Database Design, Database Design
example, A Challenge: Joke Moderation
function library, Function Library, Function Library
MySQL, MySQL Access Control Tips, Locked Out?

host name issues, Host Name Issues
locked out?, Locked Out?

passwords and roles, Managing Passwords and Roles,
Managing Passwords and Roles
user accounts

GRANT, GRANT
MySQL, Creating a MySQL User Account
REVOKE, REVOKE

ACOS(), Mathematical Functions
actions, hyperlinks, Deleting Data from the Database
ADDDATE(), Date and Time Functions
addition operator (+), Variables, Operators, and Comments
aggregate functions, GROUPing SELECT Results
aliases, tables, Column and Table Name Aliases
ALTER TABLE, Giving Credit Where Credit Is Due, Rule of
Thumb: Keep Entities Separate, ALTER TABLE , ALTER
TABLE
ALTER TABLE ADD UNIQUE, Database Design
ANALYZE TABLE, ANALYZE TABLE
and operator (&&), Control Structures

and operator (&&), Control Structures
any character (.), Regular Expressions
Apache server, versions, Installing PHP
apostrophe ('), form fields, Passing Variables in Forms
append operator (.=), Searching for Jokes
arguments, PHP statements, Basic Syntax and Statements
arithmetic operators, Variables, Operators, and Comments
arrays, PHP, Arrays
arrow notation (->), A Crash Course in Object Oriented
Programming
ASCII(), String Functions
ASIN(), Mathematical Functions
assignment operator (=), Variables, Operators, and Comments
associative arrays, Arrays
asterisk (*)

multiplication operator, Variables, Operators, and
Comments
zero or more of the preceding characters, Regular
Expressions

ATAN(), Mathematical Functions
ATAN2(), Mathematical Functions
authors, Managing Authors, Adding and Editing Authors

adding and editing, Adding and Editing Authors, Adding
and Editing Authors
deleting, Deleting Authors, Deleting Authors

AUTO_INCREMENT, Adding and Editing Jokes
AVG(), Functions for Use with GROUP BY Clauses

B

backing up MySQL databases, Backing Up MySQL
Databases, Incremental Backups Using Binary Logs

incremental backups using binary logs, Incremental
Backups Using Binary Logs
mysqldump, Database Backups Using mysqldump
phpMyAdmin, Database Backups Using phpMyAdmin

backslash (\)
with apostrophes in PHP, Passing Variables in Forms
escape delimiter, Regular Expressions

BEGIN, BEGIN
BENCHMARK(), Miscellaneous Functions
BIGINT, Numerical Types
BIN(), Mathematical Functions
binary column types in MySQL, Binary Column Types
binary data, Binary Data, The End

example, Putting It All Together, Putting It All Together
large files, Large File Considerations
recording uploaded files in the database, Recording
Uploaded Files in the Database, Viewing Stored Files

binary column types, Binary Column Types
storing files, Storing Files
viewing stored files, Viewing Stored Files, Viewing
Stored Files

semidynamic pages, Semidynamic Pages

semidynamic pages, Semidynamic Pages
uploading files, Handling File Uploads, Semidynamic
Pages

binary logs, incremental backups of MySQL databases,
Incremental Backups Using Binary Logs
BIT, Numerical Types
BIT_AND(), Functions for Use with GROUP BY Clauses
BIT_LENGTH(), String Functions
BIT_OR(), Functions for Use with GROUP BY Clauses
BLOB, Binary Column Types, Character Types
break, A Simple Shopping Cart

C

caret (^), start of string, Regular Expressions
CASE, Control Flow Functions
case sensitivity in SQL queries, Creating a Database
catch block, Configuring the Connection
categories, CMS, Managing Categories, Managing Categories
CEIL(), Mathematical Functions
CEILING(), Mathematical Functions
CHAR, Character Types
CHAR(), String Functions
CHAR_LENGTH(), String Functions
character class, Regular Expressions
character MySQL column types, Character Types, Character
Types
CHARACTER_LENGTH(), String Functions

CHARACTER_LENGTH(), String Functions
checkboxes, Adding and Editing Jokes
classes

character class […], Regular Expressions
PHP, A Crash Course in Object Oriented Programming

CMS (content management systems), A Content Management
System, Summary

authors, Managing Authors, Adding and Editing Authors
adding and editing, Adding and Editing Authors,
Adding and Editing Authors
deleting, Deleting Authors, Deleting Authors

categories, Managing Categories, Managing Categories
example, Managing Jokes, Deleting Jokes

adding and editing, Adding and Editing Jokes,
Adding and Editing Jokes
deleting, Deleting Jokes
searching, Searching for Jokes, Searching for Jokes

front page, The Front Page
column names aliases, Column and Table Name Aliases
columns

binary column types in MySQL, Binary Column Types
defined, An Introduction to Databases
DESCRIBE/DESC, DESCRIBE/DESC
types, MySQL Column Types, Date/Time Types

character types, Character Types, Character Types
date/time types, Date/Time Types
numerical types, Numerical Types, Numerical

numerical types, Numerical Types, Numerical
Types

command prompts, MySQL, Database Backups Using
mysqldump
comments, PHP, Variables, Operators, and Comments
COMMIT, COMMIT
composite indexes, Multicolumn Indexes
CONCAT(), String Functions
CONCAT_WS(), String Functions
configuration, connecting MySQL with PHP, Configuring the
Connection, Configuring the Connection
confirmation on delete, Deleting Authors
CONNECTION_ID(), Miscellaneous Functions
content formatting (see formatting)
content management systems (see CMS)
Content-disposition header, Viewing Stored Files
Content-length header, Viewing Stored Files
Content-type header, Viewing Stored Files
control (see access control)
control structures, PHP, Control Structures, Control Structures
controllers

access control, Controller Code, Controller Code
PHP templates, Many Templates, One Controller

CONV(), Mathematical Functions
cookies, Cookies, Cookies
copy, Semidynamic Pages
COS(), Mathematical Functions
COT(), Mathematical Functions

COT(), Mathematical Functions
COUNT(), LEFT JOINs, Functions for Use with GROUP BY
Clauses
CREATE DATABASE, CREATE DATABASE
CREATE INDEX, CREATE INDEX
CREATE TABLE, Rule of Thumb: Keep Entities Separate,
CREATE TABLE
CURDATE(), Date and Time Functions
CURRENT_DATE(), Date and Time Functions
CURRENT_TIME(), Date and Time Functions
CURRENT_TIMESTAMP(), Date and Time Functions
CURRENT_USER(), Miscellaneous Functions
CURTIME(), Date and Time Functions

D

data, Binary Data
(see also binary data)
inserting into MySQL tables, Inserting Data into a Table
LOAD DATA INFILE, LOAD DATA INFILE

databases, Creating a Database
(see also MySQL; relational databases; SELECT; SQL)
access control, Database Design, Database Design
COMMIT, COMMIT
CREATE DATABASE, CREATE DATABASE
DATABASE(), Miscellaneous Functions
DROP DATABASE, Creating a Table, DROP
DATABASE

DATABASE
indexes, Indexes
INSERT, Inserting Data into a Table, Let PHP Do the
Typing, Rule of Thumb: Keep Entities Separate
recording uploaded files, Recording Uploaded Files in the
Database, Viewing Stored Files

binary column types, Binary Column Types
storing files, Storing Files
viewing stored files, Viewing Stored Files, Viewing
Stored Files

ROLLBACK, ROLLBACK
SQL queries and database transactions, Database
Transactions
test databases

removing, Installing MySQL
XAMPP, Using phpMyAdmin to Run SQL
Queries

USE, USE
date and time MySQL column types, Date/Time Types
date and time MySQL functions, Date and Time Functions, Date
and Time Functions
DATE_ADD(), Date and Time Functions
DATE_FORMAT(), Date and Time Functions
DATE_SUB(), Date and Time Functions
DAYNAME(), Date and Time Functions
DAYOFMONTH(), Date and Time Functions
DAYOFWEEK(), Date and Time Functions

DAYOFWEEK(), Date and Time Functions
DAYOFYEAR(), Date and Time Functions
DECIMAL, Numerical Types
DECODE(), Miscellaneous Functions
DEGREES(), Mathematical Functions
DELETE, Deleting Stored Data
delete anomalies, Rule of Thumb: Keep Entities Separate
deleting

authors: CMS, Deleting Authors, Deleting Authors
CMS, Deleting Jokes
confirmation on, Deleting Authors
data from a MySQL database, Deleting Data from the
Database, Deleting Data from the Database
DELETE, DELETE
stored data in MySQL, Deleting Stored Data
test databases, Installing MySQL

delimiters, regular expressions, Regular Expressions
DESCRIBE, Creating a Table
DESCRIBE/DESC, DESCRIBE/DESC
DISTINCT option, Rule of Thumb: Keep Entities Separate
division operator (/), Variables, Operators, and Comments
document root, Shared Include Files
dollar sign ($), end of string, Regular Expressions
domain parameter (setcookie), Cookies
dot (.), any character, Regular Expressions
DOUBLE, Numerical Types
double ampersand (&&), and operator, Control Structures
double vertical bar (||), or operator, Control Structures

double vertical bar (||), or operator, Control Structures
double-equals (==), equal operator, Control Structures
double-quoted PHP strings and regular expression, Paragraphs
DROP DATABASE, Creating a Table, DROP DATABASE
DROP INDEX, DROP INDEX
DROP TABLE, Incremental Backups Using Binary Logs,
DROP TABLE

E

echo, Basic Syntax and Statements
editing

authors: CMS, Adding and Editing Authors, Adding and
Editing Authors
CMS, Adding and Editing Jokes, Adding and Editing
Jokes

elements, arrays, Arrays
ELT(), String Functions
emphasized text, string replacement with regular expressions,
Emphasized Text, Emphasized Text
ENCODE(), Miscellaneous Functions
ENCRYPT(), Miscellaneous Functions
end of string ($), Regular Expressions
ENUM, Character Types
equal operator (==), Control Structures
equals sign (=), assignment operator, Variables, Operators, and
Comments

Comments
escape delimiter (\), Regular Expressions
escape sequences, list of, Regular Expressions
exceptions, PHP, Connecting to MySQL with PHP
EXP(), Mathematical Functions
expiryTime parameter (setcookie), Cookies
EXPLAIN, EXPLAIN
EXPORT_SET(), String Functions
expressions (see regular expressions)

F

FIELD(), String Functions
file_exists, Semidynamic Pages
file_get_contents, Semidynamic Pages
file_put_contents, Semidynamic Pages
files, Include Files

(see also include files)
assigning unique filenames, Assigning Unique Filenames
large files, Large File Considerations
LOAD DATA INFILE, LOAD DATA INFILE
permissions, Semidynamic Pages
storing, Storing Files
uploading, Handling File Uploads, Semidynamic Pages
viewing stored files, Viewing Stored Files, Viewing Stored
Files

FIND_IN_SET(), String Functions
FLOAT, Numerical Types

FLOAT, Numerical Types
FLOOR(), Mathematical Functions
flow of control, Control Structures
for loop, Control Structures
foreach loop, Handling SELECT Result Sets, Deleting Authors,
A Simple Shopping Cart
foreign key constraints, Deleting Authors, Foreign Keys
foreign keys, MySQL, Foreign Keys, Foreign Keys
FORMAT(), Miscellaneous Functions
formatting, Content Formatting with Regular Expressions , Real
World Content Submission

regular expressions, Regular Expressions, Regular
Expressions
string replacement, String Replacement with Regular
Expressions , Putting It All Together

emphasized text, Emphasized Text, Emphasized
Text
example, Putting It All Together, Putting It All
Together
hyperlinks, Hyperlinks
paragraphs, Paragraphs

forms
passing variables in: PHP, Passing Variables in Forms,
Passing Variables in Forms
variables, Adding and Editing Authors

forward slash (/)
delimiter, Regular Expressions
division operator, Variables, Operators, and Comments

division operator, Variables, Operators, and Comments
FOUND_ROWS(), Miscellaneous Functions
FROM_DAYS(), Date and Time Functions
FROM_UNIXTIME(), Date and Time Functions
front page, CMS, The Front Page
functions

declarations, Custom Functions and Function Libraries
libraries, Custom Functions and Function Libraries,
Variable Scope and Global Access, Putting It All
Together, Function Library, Function Library
MySQL, MySQL Functions, Functions for Use with
GROUP BY Clauses

control flow functions, Control Flow Functions
date and time functions, Date and Time Functions,
Date and Time Functions
mathematical functions, Mathematical Functions
miscellaneous functions, Miscellaneous Functions
string functions, String Functions, String Functions
summary functions, Functions for Use with
GROUP BY Clauses

PDO, Connecting to MySQL with PHP
PHP, Custom Functions and Function Libraries, Variable
Scope and Global Access
scope, Variable Scope and Global Access

G

GET_LOCK(), Miscellaneous Functions
global access: PHP, Variable Scope and Global Access,
Variable Scope and Global Access
global scope, Variable Scope and Global Access
GRANT, GRANT
GREATEST(), Mathematical Functions
GROUP BY, MySQL functions, Functions for Use with
GROUP BY Clauses
group-by functions, GROUPing SELECT Results
GROUPing SELECT results, GROUPing SELECT Results

H

HAVING, SQL queries, Limiting Results with HAVING
headers

HTTP headers, Viewing Stored Files
PHP, Inserting Data into the Database

HEX(), Mathematical Functions
host name, MySQL access control, Host Name Issues
HOUR(), Date and Time Functions
HTML, including HTML content: PHP, Including HTML
Content
htmlspecialchars, Passing Variables in Links
HTTP

headers, Viewing Stored Files
redirect, Inserting Data into the Database

httpOnly parameter (setcookie), Cookies
hyperlinks

actions, Deleting Data from the Database
string replacement with regular expressions, Hyperlinks

I

IDEs (Integrated Development Environments), Your First PHP
Script
if statements, Control Structures
IF(), Control Flow Functions
IFNULL(), Control Flow Functions
import, Variable Scope and Global Access
include files, Include Files, Shared Include Files

HTML content, Including HTML Content
PHP code, Including PHP Code, Including PHP Code
shared, Shared Include Files
types of includes, Types of Includes

include statements, Use PHP Templates, Many Templates, One
Controller
include_once, Types of Includes, Custom Functions and
Function Libraries
incremental backups using binary logs, Incremental Backups
Using Binary Logs
indexes

CREATE INDEX, CREATE INDEX
DROP INDEX, DROP INDEX

DROP INDEX, DROP INDEX
MySQL, Indexes, Multicolumn Indexes

INET_ATON(), Miscellaneous Functions
INET_NTOA(), Miscellaneous Functions
INNER JOINs, LEFT JOINs
InnoDB, Database Transactions
INSERT, Inserting Data into a Table, Let PHP Do the Typing,
Rule of Thumb: Keep Entities Separate, INSERT
INSERT(), String Functions
inserting data into a MySQL database, Inserting Data into the
Database, Inserting Data into the Database
installation, Installation, Full Toolbox, Dirty Hands, Manual
Installation Instructions , Installing PHP

MySQL
Linux, Linux Installation, Installing MySQL,
Installing MySQL
Mac OS X, Mac OS X Installation, Set the
MySQL Root Password in MAMP, Installing
MySQL
Windows, Windows Installation, Set the MySQL
Root Password in XAMPP, Installing MySQL

PHP
Linux, Linux Installation, Installing PHP, Installing
PHP
Mac OS X, Mac OS X Installation, Set the
MySQL Root Password in MAMP, Installing PHP
Windows, Windows Installation, Set the MySQL
Root Password in XAMPP, Installing PHP,

Root Password in XAMPP, Installing PHP,
Installing PHP

web servers, Your Own Web Server
your first PHP script, Your First PHP Script

INSTR(), String Functions
INT, Numerical Types
Integrated Development Environments (IDEs), Your First PHP
Script
interactivity

passing variables
in forms, Passing Variables in Forms, Passing
Variables in Forms
in links, Passing Variables in Links, Passing
Variables in Links

PHP, User Interaction and Forms, Passing Variables in
Forms

IS_FREE_LOCK(), Miscellaneous Functions

J

joins
about, SELECT with Multiple Tables
left joins, LEFT JOINs
SELECT, Joins, Joins

K

keys
foreign key constraints, Deleting Authors, Foreign Keys
foreign keys, Foreign Keys

kill, Locked Out?

L

LAST_INSERT_ID(), Miscellaneous Functions
LCASE(), String Functions
LEAST(), Mathematical Functions
LEFT JOINs, LEFT JOINs
left joins, SQL queries, LEFT JOINs
LEFT(), String Functions
LENGTH(), String Functions
libraries, Custom Functions and Function Libraries, Variable
Scope and Global Access, Putting It All Together, Function
Library, Function Library
LIMITs, SQL queries, Setting LIMITs
links, passing variables in: PHP, Passing Variables in Links,
Passing Variables in Links
Linux, Linux, Installing PHP

installation, Linux Installation
MySQL installation, Installing MySQL, Installing MySQL
PHP installation, Installing PHP, Installing PHP

lists, multiple selection lists, Adding and Editing Jokes
LOAD DATA INFILE, LOAD DATA INFILE

LOAD DATA INFILE, LOAD DATA INFILE
LOAD_FILE(), String Functions
localhost, Host Name Issues
LOCALTIME(), Date and Time Functions
LOCALTIMESTAMP(), Date and Time Functions
LOCATE(), String Functions
Location headers, Inserting Data into the Database
LOG(), Mathematical Functions
LOG10(), Mathematical Functions
logs, binary logs, Incremental Backups Using Binary Logs
LONGBLOB, Binary Column Types, Character Types
LONGTEXT, Character Types
lookup tables, many-to-many relationships, Many-to-many
Relationships
LOWER(), String Functions
LPAD(), String Functions
LTRIM(), String Functions

M

Mac OS X
installation, Mac OS X Installation, Set the MySQL Root
Password in MAMP
MySQL installation, Installing MySQL
PHP installation, Installing PHP

magic quotes, Passing Variables in Forms, Inserting Data into the
Database
MAKE_SET(), String Functions

MAKE_SET(), String Functions
MAMP

compared to XAMPP, Using phpMyAdmin to Run SQL
Queries
MySQL root password, Set the MySQL Root Password
in MAMP
using, Mac OS X Installation

many-to-many relationships, relational databases, Many-to-
many Relationships, Many-to-many Relationships
many-to-one relationships, Simple Relationships
Markdown, Putting It All Together
MAX(), Functions for Use with GROUP BY Clauses
md5, Database Design
MD5(), Miscellaneous Functions
MEDIUMBLOB, Binary Column Types, Character Types
MEDIUMINT, Numerical Types
MEDIUMTEXT, Character Types
memory, PHP limit, PHP Memory Limit
methods, A Crash Course in Object Oriented Programming
Microsoft Windows

installation, Windows Installation, Set the MySQL Root
Password in XAMPP
MySQL installation, Installing MySQL
PHP installation, Installing PHP, Installing PHP

MID(), String Functions
MIN(), Functions for Use with GROUP BY Clauses
minus sign (-), subtraction operator, Variables, Operators, and

minus sign (-), subtraction operator, Variables, Operators, and
Comments
MINUTE(), Date and Time Functions
MOD(), Mathematical Functions
modifying stored data in MySQL, Modifying Stored Data
MONTH(), Date and Time Functions
MONTHNAME(), Date and Time Functions
multiple selection lists, Adding and Editing Jokes
multiplication operator (*), Variables, Operators, and Comments
my.cnf, Incremental Backups Using Binary Logs
my.ini, Incremental Backups Using Binary Logs
MySQL, Introducing MySQL, Let PHP Do the Typing,
Publishing MySQL Data on the Web, Mission Accomplished,
MySQL Administration, Better Safe than Sorry

about, Installation, The Big Picture
access control, MySQL Access Control Tips, Locked
Out?

host name issues, Host Name Issues
locked out?, Locked Out?

backups, Backing Up MySQL Databases, Incremental
Backups Using Binary Logs

incremental backups using binary logs, Incremental
Backups Using Binary Logs
mysqldump, Database Backups Using mysqldump
phpMyAdmin, Database Backups Using
phpMyAdmin

column types, MySQL Column Types, Date/Time Types
character types, Character Types, Character Types

character types, Character Types, Character Types
date/time types, Date/Time Types
numerical types, Numerical Types, Numerical
Types

connecting with PHP, Connecting to MySQL with PHP,
Configuring the Connection

configuring, Configuring the Connection,
Configuring the Connection
OOP, A Crash Course in Object Oriented
Programming

databases, An Introduction to Databases, Creating a
Database
deleting data from the database, Deleting Data from the
Database, Deleting Data from the Database
foreign keys, Foreign Keys, Foreign Keys
functions, MySQL Functions, Functions for Use with
GROUP BY Clauses

control flow functions, Control Flow Functions
date and time functions, Date and Time Functions,
Date and Time Functions
mathematical functions, Mathematical Functions
miscellaneous functions, Miscellaneous Functions
string functions, String Functions, String Functions
summary functions, Functions for Use with
GROUP BY Clauses

indexes, Indexes, Multicolumn Indexes
inserting data into the database, Inserting Data into the
Database, Inserting Data into the Database

Database, Inserting Data into the Database
installation

Linux, Linux Installation, Installing MySQL,
Installing MySQL
Mac OS X, Mac OS X Installation, Set the
MySQL Root Password in MAMP, Installing
MySQL
Windows, Windows Installation, Set the MySQL
Root Password in XAMPP, Installing MySQL

packet size, MySQL Packet Size
phpMyAdmin: SQL queries, Using phpMyAdmin to Run
SQL Queries
root password

in MAMP, Set the MySQL Root Password in
MAMP
in XAMPP, Set the MySQL Root Password in
XAMPP

SELECT result sets, Handling SELECT Result Sets,
Handling SELECT Result Sets
sending SQL queries in PHP, Sending SQL Queries with
PHP
SQL basics, Structured Query Language
SQL statements, MySQL Syntax Reference, USE

ALTER TABLE, ALTER TABLE , ALTER
TABLE
ANALYZE TABLE, ANALYZE TABLE
BEGIN, BEGIN

COMMIT, COMMIT
CREATE DATABASE, CREATE DATABASE
CREATE INDEX, CREATE INDEX
CREATE TABLE, CREATE TABLE
DELETE, DELETE
DESCRIBE/DESC, DESCRIBE/DESC
DROP DATABASE, DROP DATABASE
DROP INDEX, DROP INDEX
DROP TABLE, DROP TABLE
EXPLAIN, EXPLAIN
GRANT, GRANT
INSERT, INSERT
LOAD DATA INFILE, LOAD DATA INFILE
OPTIMIZE TABLE, OPTIMIZE TABLE
RENAME TABLE, RENAME TABLE
REPLACE, REPLACE
REVOKE, REVOKE
ROLLBACK, ROLLBACK
SELECT (see SELECT)
SET, SET
SHOW, SHOW
START TRANSACTION, START
TRANSACTION
TRUNCATE, TRUNCATE
UPDATE, UPDATE
USE, USE

stored data, Viewing Stored Data, Deleting Stored Data

stored data, Viewing Stored Data, Deleting Stored Data
deleting, Deleting Stored Data
modifying, Modifying Stored Data
viewing, Viewing Stored Data

tables, Creating a Table, Inserting Data into a Table
creating, Creating a Table
inserting data, Inserting Data into a Table

typing commands using PHP, Let PHP Do the Typing
user accounts, Creating a MySQL User Account
XAMPP, Using phpMyAdmin to Run SQL Queries

mysqlbinlog, Incremental Backups Using Binary Logs
mysqldump, backing up MySQL databases, Database Backups
Using mysqldump

N

name parameter, Cookies
new keyword, A Crash Course in Object Oriented
Programming
Notepad, Your First PHP Script
NOW(), Date and Time Functions
NULLIF(), Control Flow Functions
numerical comparison operators, Control Structures
numerical MySQL column types, Numerical Types, Numerical
Types

O

O

object oriented programming (OOP), connecting MySQL with
PHP, A Crash Course in Object Oriented Programming
OCT(), Mathematical Functions
OCTET_LENGTH(), String Functions
one-to-many relationships, Simple Relationships
one-to-one relationships, Simple Relationships
OOP (object oriented programming), connecting MySQL with
PHP, A Crash Course in Object Oriented Programming
operators

and operator, Control Structures
append operator, Searching for Jokes
arithmetic operators, Variables, Operators, and
Comments
equal operator, Control Structures
numerical comparison operators, Control Structures
or operator, Control Structures
PHP, Variables, Operators, and Comments
string concatenation operator, Variables, Operators, and
Comments

OPTIMIZE TABLE, OPTIMIZE TABLE
or operator (||), Control Structures
ORD(), String Functions
ORDER BY clause (SELECT), Sorting SELECT Query Results
OS X

installation, Mac OS X Installation, Set the MySQL Root
Password in MAMP

Password in MAMP
MySQL installation, Installing MySQL
PHP installation, Installing PHP

P

packet size, MySQL, MySQL Packet Size
pages

front page, The Front Page
semidynamic pages, Semidynamic Pages

paragraphs, string replacement with regular expressions,
Paragraphs
PASSWORD(), Miscellaneous Functions
passwords

access control, Managing Passwords and Roles,
Managing Passwords and Roles
MySQL root password

MAMP, Set the MySQL Root Password in
MAMP
XAMPP, Set the MySQL Root Password in
XAMPP

security, Database Design
path parameter (setcookie), Cookies
pattern modifiers, Regular Expressions
PDO (PHP Data Objects), Connecting to MySQL with PHP
PDOException, Configuring the Connection
percent sign (%), Searching for Jokes
PERIOD_ADD(), Date and Time Functions

PERIOD_ADD(), Date and Time Functions
PERIOD_DIFF(), Date and Time Functions
permissions, files, Semidynamic Pages
PHP, Introducing PHP, Bring on the Database, Structured PHP
Programming, The Best Way

about, Installation
arrays, Arrays
connecting MySQL to PHP, Connecting to MySQL with
PHP, Configuring the Connection
control structures, Control Structures, Control Structures
custom functions and function libraries, Custom Functions
and Function Libraries, Variable Scope and Global
Access
disconnecting from MySQL, Configuring the Connection
exceptions, Connecting to MySQL with PHP
include files, Include Files, Shared Include Files

HTML content, Including HTML Content
PHP code, Including PHP Code, Including PHP
Code
shared, Shared Include Files
types of includes, Types of Includes

installation
Linux, Linux Installation, Installing PHP, Installing
PHP
Mac OS X, Mac OS X Installation, Set the
MySQL Root Password in MAMP, Installing PHP
Windows, Windows Installation, Set the MySQL

Windows, Windows Installation, Set the MySQL
Root Password in XAMPP, Installing PHP,
Installing PHP

interactivity, User Interaction and Forms, Passing
Variables in Forms

passing variables in forms, Passing Variables in
Forms, Passing Variables in Forms
passing variables in links, Passing Variables in
Links, Passing Variables in Links

memory limit, PHP Memory Limit
MySQL commands, Let PHP Do the Typing
script timeout, PHP Script Timeout
sending SQL queries with: MySQL, Sending SQL
Queries with PHP
sessions, PHP Sessions, A Simple Shopping Cart
syntax and statements, Basic Syntax and Statements
template helpers, Structure in Practice: Template Helpers,
Structure in Practice: Template Helpers
templates, Use PHP Templates, Many Templates, One
Controller
URLs, Avoid Advertising Your Technology Choices
variables, operators and comments, Variables, Operators,
and Comments

PHP Markdown library, Putting It All Together
PHP scripts

about, Your Own Web Server, The Big Picture
editing

in Mac OS X with TextEdit, Set the MySQL Root

in Mac OS X with TextEdit, Set the MySQL Root
Password in MAMP, Your First PHP Script
in Windows with Notepad, Your First PHP Script

timeouts, PHP Script Timeout
your first PHP script, Your First PHP Script

phpMyAdmin
authentication, Set the MySQL Root Password in
XAMPP
backing up MySQL databases, Database Backups Using
phpMyAdmin
SQL queries, Using phpMyAdmin to Run SQL Queries

PI(), Mathematical Functions
pipe (|), Regular Expressions
placeholders, Inserting Data into the Database
plus sign (+)

addition operator, Variables, Operators, and Comments
pattern modifier, Regular Expressions

port numbers, Mac OS X Installation
POSITION(), String Functions
POW(), Mathematical Functions
POWER(), Mathematical Functions
prepared statements, Inserting Data into the Database
procedural programming, A Crash Course in Object Oriented
Programming
properties, PHP, A Crash Course in Object Oriented
Programming

Q

Q

QUARTER(), Date and Time Functions
queries (see SQL queries)
question mark (?), Regular Expressions
QUOTE(), String Functions

R

RADIANS(), Mathematical Functions
RAND(), Mathematical Functions
referential actions, Foreign Keys
referential integrity, Deleting Authors
regular expressions

about, Regular Expressions, Regular Expressions
string replacement, String Replacement with Regular
Expressions , Putting It All Together

emphasized text, Emphasized Text, Emphasized
Text
example, Putting It All Together, Putting It All
Together
hyperlinks, Hyperlinks
paragraphs, Paragraphs

relational databases, Relational Database Design, One for Many,
and Many for One

(see also MySQL; SELECT; SQL)
keeping entities separate, Rule of Thumb: Keep Entities

keeping entities separate, Rule of Thumb: Keep Entities
Separate, Rule of Thumb: Keep Entities Separate
many-to-many relationships, Many-to-many
Relationships, Many-to-many Relationships
SELECT with multiple tables, SELECT with Multiple
Tables, SELECT with Multiple Tables
simple relationships, Simple Relationships, Simple
Relationships
tables, Giving Credit Where Credit Is Due

relationships
between tables, Rule of Thumb: Keep Entities Separate
many-to-many, Many-to-many Relationships, Many-to-
many Relationships
simple, Simple Relationships, Simple Relationships

RELEASE_LOCK(), Miscellaneous Functions
removing (see deleting)
RENAME TABLE, RENAME TABLE
REPEAT(), String Functions
REPLACE, REPLACE
REPLACE(), String Functions
require compared to include, Types of Includes
require_once, Types of Includes
REVERSE(), String Functions
REVOKE, REVOKE
RIGHT(), String Functions
role-based access control, Access Control, Database Design
roles, access control, Managing Passwords and Roles,
Managing Passwords and Roles

Managing Passwords and Roles
ROLLBACK, Database Transactions, ROLLBACK
root passwords

MySQL root password in MAMP, Set the MySQL Root
Password in MAMP
MySQL root password in XAMPP, Set the MySQL
Root Password in XAMPP

root user, MySQL, Creating a MySQL User Account
round brackets (…), Regular Expressions
ROUND(), Mathematical Functions
rows

defined, An Introduction to Databases
GROUP BY, MySQL functions, Functions for Use with
GROUP BY Clauses
TRUNCATE, TRUNCATE

RPAD(), String Functions
RTRIM(), String Functions

S

scope, variables, Variable Scope and Global Access, Variable
Scope and Global Access
scripts (see PHP scripts)
searching, CMS, Searching for Jokes, Searching for Jokes
SEC_TO_TIME(), Date and Time Functions
SECOND(), Date and Time Functions
secure parameter (setcookie), Cookies

secure parameter (setcookie), Cookies
security

passwords, Database Design
PHP, Passing Variables in Links
SQL injection attacks and magic quotes, Inserting Data
into the Database

SELECT, SELECT , Unions
about, Viewing Stored Data
DISTINCT option, Rule of Thumb: Keep Entities
Separate
GROUPing SELECT results, GROUPing SELECT
Results
joins, Joins, Joins
multiple tables, SELECT with Multiple Tables, SELECT
with Multiple Tables
result sets in MySQL, Handling SELECT Result Sets,
Handling SELECT Result Sets
sorting SELECT query results, Sorting SELECT Query
Results
unions, Unions

semidynamic pages, binary data, Semidynamic Pages
Server-side Includes (SSIs), Including HTML Content
servers, web servers, Your Own Web Server
SESSION_USER(), Miscellaneous Functions
sessions, PHP, PHP Sessions, A Simple Shopping Cart
SET, SET , Character Types
setcookie, Cookies
shared include files: PHP, Shared Include Files

shared include files: PHP, Shared Include Files
shopping cart example, A Simple Shopping Cart, A Simple
Shopping Cart
short-circuit evaluation, Assigning Unique Filenames
SHOW, SHOW
SIGN(), Mathematical Functions
simple relationships, relational databases, Simple Relationships,
Simple Relationships
SIN(), Mathematical Functions
skip-grant-tables, Locked Out?
SMALLINT, Numerical Types
sorting SELECT query results, Sorting SELECT Query Results
SOUNDEX(), String Functions
SPACE(), String Functions
SQL (Structured Query Language), ALTER TABLE

(see also SELECT; MySQL)
about, Structured Query Language
SQL injection attacks, Inserting Data into the Database
statements implemented in MySQL, MySQL Syntax
Reference, USE

ALTER TABLE, ALTER TABLE , ALTER
TABLE
ANALYZE TABLE, ANALYZE TABLE
BEGIN, BEGIN
COMMIT, COMMIT
CREATE DATABASE, CREATE DATABASE
CREATE INDEX, CREATE INDEX

CREATE INDEX, CREATE INDEX
CREATE TABLE, CREATE TABLE
DELETE, DELETE
DESCRIBE/DESC, DESCRIBE/DESC
DROP DATABASE, DROP DATABASE
DROP INDEX, DROP INDEX
DROP TABLE, DROP TABLE
EXPLAIN, EXPLAIN
GRANT, GRANT
INSERT, INSERT
LOAD DATA INFILE, LOAD DATA INFILE
OPTIMIZE TABLE, OPTIMIZE TABLE
RENAME TABLE, RENAME TABLE
REPLACE, REPLACE
REVOKE, REVOKE
ROLLBACK, ROLLBACK
SELECT (see SELECT)
SET, SET
SHOW, SHOW
START TRANSACTION, START
TRANSACTION
TRUNCATE, TRUNCATE
UPDATE, UPDATE
USE, USE

SQL queries, Advanced SQL Queries, Further Reading
case sensitivity, Creating a Database
column and table name aliases, Column and Table Name
Aliases

Aliases
database transactions, Database Transactions
GROUPing SELECT results, GROUPing SELECT
Results
HAVING, Limiting Results with HAVING
in links, Setting LIMITs
left joins, LEFT JOINs
phpMyAdmin, Using phpMyAdmin to Run SQL Queries
sending in PHP: MySQL, Sending SQL Queries with
PHP
sorting SELECT query results, Sorting SELECT Query
Results
statements implemented in MySQL, ALTER TABLE ,
USE

SQRT(), Mathematical Functions
square brackets […]

character class, Regular Expressions
optional code, Cookies

SSIs (Server-side Includes), Including HTML Content
start of string (^), Regular Expressions
START TRANSACTION, START TRANSACTION
state, cookies, Cookies
statements, PHP, Basic Syntax and Statements
STD(), Functions for Use with GROUP BY Clauses
STDDEV(), Functions for Use with GROUP BY Clauses
str_replace, Paragraphs
string concatenation operator, Variables, Operators, and
Comments

Comments
strings

double-quoted PHP strings and regular expressions,
Paragraphs
escape sequences, Regular Expressions
MySQL functions, String Functions, String Functions
pattern matching, Regular Expressions
replacement with regular expressions, String Replacement
with Regular Expressions , Putting It All Together

Structured Query Language (see SQL)
SUBDATE(), Date and Time Functions
SUBSTRING(), String Functions
SUBSTRING_INDEX(), String Functions
subtraction operator (-), Variables, Operators, and Comments
SUM(), Functions for Use with GROUP BY Clauses
summary functions, Functions for Use with GROUP BY Clauses
superglobal, Variable Scope and Global Access
syntax, PHP, Basic Syntax and Statements
SYSDATE(), Date and Time Functions
SYSTEM_USER(), Miscellaneous Functions

T

tables
aliases, Column and Table Name Aliases
ALTER TABLE, Giving Credit Where Credit Is Due,
Rule of Thumb: Keep Entities Separate, ALTER TABLE

Rule of Thumb: Keep Entities Separate, ALTER TABLE
, ALTER TABLE
ALTER TABLE ADD UNIQUE, Database Design
ANALYZE TABLE, ANALYZE TABLE
CREATE TABLE, Rule of Thumb: Keep Entities
Separate, CREATE TABLE
defined, An Introduction to Databases
DROP TABLE, Incremental Backups Using Binary Logs,
DROP TABLE
INNER JOINs, LEFT JOINs
INSERT, INSERT
LEFT JOINs, LEFT JOINs
MySQL, Creating a Table, Inserting Data into a Table
OPTIMIZE TABLE, OPTIMIZE TABLE
relational databases, Giving Credit Where Credit Is Due
relationships, Rule of Thumb: Keep Entities Separate
RENAME TABLE, RENAME TABLE
REPLACE, REPLACE
SELECT with multiple tables, SELECT with Multiple
Tables, SELECT with Multiple Tables
TRUNCATE, TRUNCATE
UPDATE, Modifying Stored Data, UPDATE

TAN(), Mathematical Functions
templates

fragments, Including HTML Content
helpers, Structure in Practice: Template Helpers
PHP, Use PHP Templates, Many Templates, One
Controller, Structure in Practice: Template Helpers,

Controller, Structure in Practice: Template Helpers,
Structure in Practice: Template Helpers

test databases
removing, Installing MySQL
XAMPP, Using phpMyAdmin to Run SQL Queries

TEXT, Character Types
TextEdit, Set the MySQL Root Password in MAMP, Your First
PHP Script
time and date MySQL column types, Date/Time Types
time and date MySQL functions, Date and Time Functions, Date
and Time Functions
TIME_FORMAT(), Date and Time Functions
TIME_TO_SEC(), Date and Time Functions
timeouts, PHP scripts, PHP Script Timeout
TIMESTAMP, Date/Time Types
TINYBLOB, Binary Column Types, Character Types
TINYINT, Numerical Types
TINYTEXT, Character Types
TO_DAYS(), Date and Time Functions
transactions

SQL queries and database transactions, Database
Transactions
START TRANSACTION, START TRANSACTION

TRUNCATE, TRUNCATE
TRUNCATE(), Mathematical Functions
try-catch statements, Connecting to MySQL with PHP
types

MySQL column types, MySQL Column Types,

MySQL column types, MySQL Column Types,
Date/Time Types

character types, Character Types, Character Types
date/time types, Date/Time Types
numerical types, Numerical Types, Numerical
Types

U

UCASE(), String Functions
unions, SELECT, Unions
UNIX_TIMESTAMP(), Date and Time Functions
unlink, Semidynamic Pages
UPDATE, Modifying Stored Data, UPDATE
update anomalies, Rule of Thumb: Keep Entities Separate
upload_max_filesize, Handling File Uploads
uploading files, Handling File Uploads, Semidynamic Pages
UPPER(), String Functions
URLs

PHP, Avoid Advertising Your Technology Choices
query strings, Passing Variables in Links

USE, USE
user accounts

GRANT, GRANT
MySQL, Creating a MySQL User Account
REVOKE, REVOKE

USER(), Miscellaneous Functions

USER(), Miscellaneous Functions
userHasRole, Controller Code, Function Library
userIsLoggedIn, Controller Code, Function Library
UTF-8, PHP, Passing Variables in Links

V

values, PHP, A Crash Course in Object Oriented Programming
VARBINARY, Character Types
VARCHAR, Character Types
variable interpolation, Variables, Operators, and Comments
variables

forms, Adding and Editing Authors
PHP, Variables, Operators, and Comments

passing variables in forms, Passing Variables in
Forms, Passing Variables in Forms
passing variables in links, Passing Variables in
Links, Passing Variables in Links
scope, Variable Scope and Global Access,
Variable Scope and Global Access

VERSION(), Miscellaneous Functions
versions, PHP and Apache, Installing PHP
vertical bar (|), pipe, Regular Expressions
viewing stored data in MySQL, Viewing Stored Data

W

web hosts, what information to ask, What to Ask Your Web
Host
web root directory, Your First PHP Script
web servers, installation, Your Own Web Server
WEEK(), Date and Time Functions
WEEKDAY(), Date and Time Functions
while loop, Control Structures, Handling SELECT Result Sets
Windows

installation, Windows Installation, Set the MySQL Root
Password in XAMPP
MySQL installation, Installing MySQL
PHP installation, Installing PHP, Installing PHP

X

XAMPP
directory protection, Set the MySQL Root Password in
XAMPP
MySQL root password, Set the MySQL Root Password
in XAMPP
Windows, Windows Installation

Y

YEAR, Date/Time Types
YEAR(), Date and Time Functions

YEARWEEK(), Date and Time Functions

V413HAV
Typewritten Text
V413HAV

