-

<

HANDS-ON
DATABASE

AN INTRODUCTION TO DATABASE
DESIGN AND DEVELOPMENT

STEVE CONGER

HANDS-ON DATABASE

AN INTRODUCTION TO DATABASE DESIGN AND DEVELOPMENT

Steve Conger
Seattle Central Community College

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney HongKong Seoul Singapore Taipei Tokyo

Editorial Director: Sally Yagan

Editor in Chief: Eric Svendsen

Executive Editor: Bob Horan

Product Development Manager: Ashley Santora
Editorial Project Manager: Kelly Loftus

Editorial Assistant: Jason Calcafio

Director of Marketing: Patrice Lumumba Jones
Senior Marketing Manager: Anne Fahlgren
Marketing Assistant: Melinda Jensen

Production Project Manager: Renata Butera
Creative Art Director: Jayne Conte

Cover Designer: Suzanne Behnke

Cover Art: Kheng Guan Toh/Fotolia, Inc

Media Editor: Denise Vaughn

Media Project Manager: Lisa Rinaldi

Full-Service Project Management: Chitra Sundarajan/Integra Software Services Pvt. Ltd.
Printer/Binder: Edwards Brothers

Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Palatino

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is
not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2012 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle River,
New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Conger, Steve.
Hands-on database : an introduction to database design and development / Steve Conger.
p. cm.
Includes index.
ISBN-13: 978-0-13-610827-6 (alk. paper)
ISBN-10: 0-13-610827-X (alk. paper)
1. Database design. I. Title.
QA76.9.D26C644 2012
005.74'3—dc22
2010032774

10987654321

Prentice Hall
is an imprint of

PEARSON

ISBN 10: 0-13-610827-X

A .
www.pearsonhighered.com ISBN 13: 978-0-13-610827-6

www.pearsonhighered.com

To Maureen, Bryan, and Chelsea

This page intentionally left blank

Preface ix

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

BRIEF CONTENTS

Who Needs a Database? 1

Gathering Information 20
Requirements and Business Rules 44
Database Design 60

Normalization and Design Review 80
Physical Design 100

SQL 123

Is It Secure? 151

Appendix A Using Microsoft Access with the Book 171
Appendix B SQL Server Express 178

Appendix C Visio 181

Appendix D Common Relational Patterns 186

Glossary 190

Index

193

This page intentionally left blank

CONTENTS

Preface ix

Chapter 1 WHO NEEDS A DATABASE 1

Overview of Relational Databases and Their Uses 1

The Situation 1

The Opportunity 5

Getting the Scope 7

The First Interview 8

Identifying the Big Topics 10

Writing the Statement of Work 11

Reviewing the Statement of Work 13

The Statement of Work 13

Documentation 15
Things We Have Done 16 e Vocabulary 16
Things to Look Up 16 e Practices 17 e Scenarios 17

Chapter 2 GATHERING INFORMATION 20

Interviews, Observations, and Reviewing Documents 20

Looking at the Documents 20

Preparing for the Interview 29

The Interview 30

The Questionnaire 31

Tutoring Services Questionnaire 32

Tutors at Work 33

Documentation 35
Things We Have Done 35 e \Vocabulary 35
Things to Look Up 35 e Practices 36
Scenarios 36 e Suggestions for Scenarios 43

Chapter 3 REQUIREMENTS AND BUSINESS RULES 44

Getting Started 44

Review of the Issues 45

Requirements 47

Business Rules 50

Review of Requirements and Business Rules with Terry 51

A Little Bit of Grammar 52

Entities and Attributes 55

Candidate Keys 56

Documentation 57
Things We Have Done 57 e Vocabulary 57
Things to Look Up 58 e Practices 58
Scenarios 58

vii

viii Contents

Chapter 4 DATABASE DESIGN 60
Entity Relation Diagrams 60
Designing the Database 60
Documentation 77
Things We Have Done 77 e Vocabulary 77
Things to Look Up 77 e Practices 77 e Scenarios 78

Chapter 5 NORMALIZATION AND DESIGN REVIEW 80
The Design Review 80
Final Content Review 96
Documentation 97
Things We Have Done 97 e Vocabulary 97
Things to Look Up 98 e Practices 98
Scenarios 98 e Suggestions for Scenarios 99

Chapter 6 PHYSICAL DESIGN 100
Choosing the Management System 100
Creating the Database 102

Documentation 119
Things We Have Done 119 e Vocabulary 119
Things to Look Up 119 e Practices 120 e Scenarios 121

Chapter 7 SQL 123
Running Queries 123
Testing the Database 130
Joins 139
Inserts, Updates, and Deletes 143
Creating a Trigger 145
Documentation 147
Things We Have Done 148 e Vocabulary 149
Things to Look Up 149 e Practices 149 e Scenarios 150

Chapter 8 ISIT SECURE? 151
The Issue 151
Where to Start 151
Analyzing Security Needs 154
Threats 157
Finding Solutions 160
Documentation 167
Things We Have Done 167 e Vocabulary 167
Things to Look Up 167 e Practices 168 e Scenarios 169

Appendix A: Using Microsoft Access with the Book 171
Appendix B: SQL Server Express 178

Appendix C: Visio 181

Appendix D: Common Relational Patterns 186

Glossary 190
Index 193

PREFACE

Many students taking an introductory database course need hands-on experience.
Typically, they are under pressure to finish quickly with a certificate or degree and get
to work. They need to get actual practice in the process of designing and developing
databases that they can apply in their future employment. They need to create tables,
enter data, and run SQL queries.

This book is designed for them.

Hands-on Database: An Introduction to Database Design and Development focuses on
the process of creating a database. It guides the students through the initial conception
of the database. It covers gathering of requirements and business rules, the logical and
physical design, and the testing of the database. It does this through a continuous nar-
rative that follows a student, Sharon, as she designs and constructs a database to track
the tutoring program at her school. It shows some of her missteps as well as her suc-
cesses. Students get hands-on experience by doing practices and developing scenarios
that parallel the narrative.

After completing this book, students will have a good sense of what is involved in
developing and creating a database. Following is a list of the book outcomes. A student
who has completed this book will be able to

* give a general definition of a relational database

identify a variety of ways to gather database requirements

define business rules for a database

e create an entity design for a database

* normalize a design up to Third Normal Form

develop a database in a given DBMS

e run SQL queries against sample data to test requirements and business rules
¢ define the general security context of a database and its users

* document the process of database design and development

THE SCENARIO APPROACH

The scenario approach is at the heart of the book. It informs both the narrative and the
exercises. A scenario in its essence is a story problem. It provides a context from which
to work. It is much easier for a student to understand database design if he or she sees
it as a solution to a particular set of problems. There is an emphasis on defining busi-
ness rules and then testing the database design against those rules. The scenarios also
provide a sense of process. They give the student some guidance in how to go about
defining and developing a database. I would argue that even computer science stu-
dents could benefit from this approach. It would allow them to experience how the
concepts they have learned can be applied to the actual development process.

The scenario that makes up the body of the book describes Sharon, a database
student, in the process of creating a database to manage the school’s tutoring program.
She encounters several problems. The way the tutoring sessions are scheduled is awk-
ward and inefficient. The reports that the manager of the program needs to make are
difficult and time consuming to put together. It is also difficult, at times, to track the
tutors” hours. Sharon sees a database as a solution to these problems and sets about
defining its requirements, designing it, and building a prototype. She enters some sam-
ple data and then tests the database using SQL to enter and retrieve the information
required. Finally, she looks carefully at the security issues inherent in the database.

At the end of each chapter, after the practices, there are four additional scenarios
for the student to develop. The Wild Wood Apartments scenario involves creating a
database to manage a chain of apartment buildings. Vince’s Vintage Vinyl Record
Shop offers a scenario of a small shop owner who needs a database to handle his inven-
tory, sales, and purchases. Grandfield College leads students through the process of

X

Preface

making a database to track what software the school owns, the licensing for that soft-
ware, on what machines the software is installed, and what users have access to those
machines. The WestLake Research Hospital scenario involves creating a database to
track a double-blind drug study for a new antidepressant.

The scenarios are meant to be complex enough to keep the student involved but
simple enough not to overwhelm the novice. Each scenario presents different challenges.
Students could work on some or all the scenarios, or they could be broken into groups
with each group assigned one of the scenarios. The scenarios are open ended, that is,
they offer room for student creativity and innovation. The students and the instructor
are free to define many of the parameters and business rules as they proceed. But each
scenario, in each chapter, has specific deliverables that help keep the students on track.

OTHER FEATURES

Process Driven

The book models the process of developing a database from the beginning through the
final stages. It provides students with tools and techniques for discovering require-
ments and business rules. It also provides them with suggestions for organizing and
managing all the complex details that go into developing a database. The book empha-
sizes the need to understand the data and the relationships among the data. It shows
them the value of carefully designing a database before actually implementing it. Then
when the database is first developed, it emphasizes the need to test it, to make sure it
meets the requirements and business rules before deploying the database. Finally, it
emphasizes the need to secure a database against both accidental and intentional
threats.

Normalization

Normalization is an important but complex issue in database development. Anyone
who works with databases is expected to have some knowledge of normalization. For
this reason, I believed it important to introduce the students to the concepts and vocabu-
lary of normalization. But, because this is an introductory book focused on the process of
development and design, I discussed only the first three normal forms. I have found that
most databases that achieve at least the Third Normal Form are functional, if not opti-
mal, in design. That being said, I do believe anyone working in databases should become
familiar with all the normal forms and principles of normalizations. In the “Things to
Look Up” segment of Chapter 4, I direct students to look up the other normal forms and
pick one of them to explain to other students. Also, in Appendix D, “Common Relational
Patterns,” the last example shows an ERD of a database that has been normalized beyond
Third Normal Form.

SQL

Chapter 7 in Hands-on Database contains an extensive introduction to SQL. It covers
SELECT statements, of course, using a variety of criteria, as well as using scalar func-
tions, especially date and time functions, and various aggregate functions. Inner and
outer joins are discussed. INSERT, UPDATE, and DELETE statements are introduced.
The chapter also illustrates the use of Views and provides an example of a stored proce-
dure and a trigger. Chapter 8 looks at stored procedures in terms of how they can be
used to protect data integrity and security. SQL commands related to Logins and per-
missions are also introduced.

Perhaps more important than the specific SQL commands presented is the con-
text in which they are introduced. In the text, Sharon uses SQL to test the requirements
and business rules of the Tutor Management database. In the scenarios, students use
SQL to test the requirements and business rules of the databases they have created. In
Chapter 8, they see SQL as a tool for securing a database. By presenting it in this way,
students see SQL as a vital part of database development and not just an academic
exercise.

Security

Security issues are discussed at several points in the book. It is brought into consider-
ation during the information-gathering phases in Chapters 2 and 3. But it is dealt with
in detail in Chapter 8.

Chapter 8 attempts to show the student a structured approach to security. It looks
at each user of the database and creates a table that delineates exactly what permis-
sions that user needs on each object in the database. It applies a similar technique for
analyzing threats to the database. Then it introduces the concept of roles as collections
of permission. It shows how a developer could create an application layer of views and
procedures and then assign roles and permissions to those objects rather than to the
underlying tables.

Finally, the chapter discusses the importance of disaster management and of cre-
ating a set of policies and procedures for recovering from any conceivable disaster.

Software Used by the Book

The book uses Microsoft SQL Express 2008 R2 for the database and Microsoft Visio
2010 for the database diagramming. The SQL Express software is offered free from
Microsoft. At the time of writing this Introduction, SQL Express is available at
http://www.microsoft.com/express/Database/. This is, of course, subject to
change. But one can always go to the Microsoft site and type SQL Server Express in
the Bing search box. This will list the current download URL.

I selected SQL Server Express because it is readily available and because it pro-
vides a more realistic and complete database management system experience than
Microsoft Access, which is often used in classroom settings. SQL Server Express lets the
students experience managing multiple databases in a single management environ-
ment. The SQL Express Management Studio also contains a query analyzer that allows
students to easily run SQL queries and view the results. Unlike Access, SQL Server
Express supports stored procedures and triggers. Finally, again unlike Access, SQL
Express provides a rich set of security features that are more typical of commercial
database management systems. If, however, an instructor prefers or must use Microsoft
Access, Appendix A explains how to substitute it for SQL Server. The appendix notes
the variations in practices and examples in each chapter required for the adaption.

Other database software such as MySQL or Oracle could also be adopted for use
with the book. Although the book uses SQL Server Express, its focus is on the process of
developing and designing a database. The principles of this process are applicable to
any DBMS.

Microsoft Visio is readily available to students for schools that belong to the
Microsoft Developers Network Academic Alliance (MSDNAA). It can also be purchased
at a significant discount from places like the Academic Superstore and other academic
outlets. Visio offers a range of tools and templates that help make diagramming and mod-
ifying diagrams easy and enjoyable for students. Appendix C offers additional instruc-
tion in how to use the Database Model template in Visio 2010. Of course, other modeling
software could be easily substituted, or students could be asked to simply draw their
models on graph paper. What is important are the concepts, not the particular tools.

CHAPTER CONVENTIONS

Each chapter contains several elements other than the narrative about Sharon. These
elements are meant to provide greater depth and to provoke the student to think about
some of the broader implications of the material.

Things You Should Know

These extended sections provide background and descriptions of various aspects of data-
base development and design. In many ways, they function like the more traditional text-
book. They provide definitions, explanations, and examples that provide a deeper, more
comprehensive context to the things that Sharon is doing in the narrative.

Preface

Xi

http://www.microsoft.com/express/Database/

Xii

Preface

Things to Think About

These are sidebars that invite the student to consider questions about the processes or
topics under discussion. The questions in these sections do not have definite answers.
They are meant to encourage thought and discussion.

Cautions

Cautions are found in the margins of the text. Their purpose is to warn the students
about potential mistakes or common errors.

Documentation

This section is found at the end of each chapter. It provides a summary of how a student
would go about documenting the activities conducted during the chapter.

Things to Look up

This section is also found at the end of each chapter. It guides students to other resources
and topics not fully covered in the book.

Vocabulary

Vocabulary is an important part of any discipline. Anyone who wants to work in the
database field will be expected to know and understand certain terms.

Vocabulary words are highlighted in margins and are repeated in an exercise at
the end of each chapter where the student is asked to match the word with the defini-
tion. SQL terms are listed in tables at the ends of Chapters 6 and 8. The terms are also
defined in the Glossary at the end of the book.

Practices

Practices are found at the end of each chapter. They are designed to give each student
hands-on experience with the materials of the chapter. Most practices are self-contained,
but some do build on each other. In particular, the practices for Chapter 5 and 6 are
related. In Chapter 5, the students build a Pizza database, and in Chapter 6, they query
that database with SQL.

Scenarios

As mentioned earlier, Scenarios are the life of the book. There are four scenarios which
students build on throughout the book. Their purpose is to provide students with the
full experience of developing a database, from identifying the initial concept to testing
the fully built database. For students, the most effective use of these scenarios would be
to follow one or more of the scenarios throughout the entire term.

Outline

The book contains eight chapters, four appendixes, and a glossary. It is meant to be
just long enough to be covered fully in a single term. Following is an outline of the
book with a summary of each chapter’s narrative and a list of the outcomes for that
chapter.

Chapter 1: Who Needs a Database

NARRATIVE Sharon, a student at a community college, applies to become a tutor for
database-related subjects at the school. She discovers they use spiral notebooks and
spreadsheets to manage the tutoring information. She suggests to the supervisor that
they could benefit from a database and offers to build it. The supervisor agrees to the
project. Sharon interviews her and gets a sense of what the overall database will entail
and drafts a statement of scope. She and the supervisor discuss the statement and make
some modifications.

OUTCOMES

* Define relational databases

* Understand the position of relational databases in the history of databases
¢ Identify major relational database management systems

¢ Identify main characteristics of relational databases

¢ Understand SQL's role in relational database

* Recognize some indications of where a database could be useful

* Define a statement of scope for a given database scenario

Chapter 2: Gathering Information

NARRATIVE Now that she has the scope of the database, Sharon begins to gather infor-
mation about the data the database will need to capture and process. First, she looks at
the spiral notebooks that have been used to schedule tutoring sessions. She also looks at
the spreadsheets the supervisor develops for reports and other related documents.
Then she arranges an interview with several of the tutors and an additional interview
with the supervisor, and creates a questionnaire for students who use the tutoring ser-
vices. Finally, she spends an afternoon in the computer lab, observing how students
schedule tutoring and how the actual tutoring sessions go.

OUTCOMES

* Review documents to discover relevant entities and attributes for database
e Prepare interview questions and follow up

® Prepare questionnaires

® Observe work flow for process and exceptions

Chapter 3: Requirements and Business Rules

NARRATIVE Having gathered all this information, Sharon must figure out what to do
with it. She searches through her notes for nouns and lists them. Then she looks at
the lists to see if there are additional topics, or subjects. Then she groups which
nouns go with which topics. For each topic area, Sharon identifies some candidate
keys. Next, she looks through her notes to determine what the business rules of
the tutoring program are. She lists the rules and makes notes for further questions.
The rules seem complex, and Sharon remembers something from a systems analysis
class about UML diagrams called Use Case diagrams. She uses these diagrams to
graphically show how each actor—tutor, student, and supervisor—interacts with the
database.

OUTCOMES

e Use nouns from notes and observations to discover database elements
¢ Group elements into entities and attributes

¢ Define business rules

¢ Develop Use Case diagrams to model requirements

Chapter 4: Database Design

NARRATIVE Sharon is ready to design the database. She looks at her topics lists and dia-
grams an initial set of entities, using Visio. She analyses the relationships among the
entities, adding linking tables wherever she finds a many-to-many relation. Then she
adds the other items from her list to the appropriate entities as attributes. For each
attribute, she assigns a data type. She reviews the design to ensure that she has captured
all the data and the business rules.

Preface

xiii

Xiv

Preface

OUTCOMES

* Use the database modeling template in Microsoft Visio

¢ Create entities and add attributes

* Determine the appropriate relationship between entities
* Resolve many-to-many relationships with a linking table

Chapter 5: Normalization and Design Review

NARRATIVE Now, with the help of an instructor, Sharon checks to make sure the data-
base conforms to the rules of normalization. She reviews the database thus far with her
supervisor.

OUTCOMES

e Evaluate entities against first three normal forms
e Adjust the relational diagram to reflect normalization

Chapter 6: Physical Design

NARRATIVE Sharon builds a prototype of the database, creating all the tables and setting
up the relationships. When she has it set up, she enters 5 or 10 rows of sample data so
she can test the database.

OUTCOMES

* Implement a physical design of the database based on the logical ERDs
* Choose appropriate data types for columns
* Enter sample data into tables

Chapter 7: SQL

NARRATIVE Sharon writes some SQL queries to see if she can get the needed information
out of the database. She tests for database requirements.

OUTCOMES

e Name the main events in the development of SQL

* Run SELECT queries with a variety of criteria

* Join two or more tables in a query

e Use the aggregate functions COUNT, AVG, SUM, MIN, and MAX
¢ INSERT, UPDATE, and DELETE records

¢ Use SQL to test business rules

Chapter 8: Is it Secure?

NARRATIVE In this chapter, Sharon looks at the security needs of the database. It is im-
portant to give everyone the access that they require to do the things they need to do.
But it is also important to protect the database objects and data from either accidental or
intentional damage. Sharon discovers that security is complex and requires careful
planning.

OUTCOMES

* Analyze security needs and restrictions for users of the database
* Analyze threats to database integrity

e Understand the concepts of authentication and authorization

e Create logins and users

¢ Create roles

Appendixes

USING MICROSOFT ACCESS WITH THE BOOK A quick overview of using Microsoft Access
instead of SQL Server with the book. It looks at each chapter and shows how you would
use Access and what adjustments you will need to make to the practices and scenarios.

SQL SERVER EXPRESS An overview of how to use the SQL Server Management Studio to
create and access databases in SQL Server Express.

visio An overview of the Visio environment, with a special focus on the database
templates.

COMMON RELATIONAL PATTERNS A review of some of the most common relational pat-
terns students will encounter in database design such as the Master/Detail relation,
weak entities, linking tables, and so on.

GLOSSARY OF TERMS Glossary of all vocabulary terms.

SUPPLEMENTS

The following online resources are available to adopting instructors at www.
pearsonhighered.com/irc:

Instructor’s Manual—It contains a chapter outline and answers to all end-of-
chapter questions for each chapter of the text.

PowerPoint Presentations—These feature lecture notes that highlight key text terms
and concepts. Professors can customize the presentation by adding their own slides or
by editing the existing ones.

Test Item File—An extensive set of multiple choice, true/false, and essay-type
questions for each chapter of the text. Questions are ranked according to difficulty level
and referenced with page numbers from the text. The Test Item file is available in
Microsoft Word format and as the computerized Prentice Hall TestGen software, with
WebCT, Blackboard, Angel, D2L, and Moodle-ready conversions.

TestGen—A comprehensive suite of tools for testing and assessment. It allows
instructors to easily create and distribute tests for their courses, either by printing and
distributing through traditional methods or by online delivery via a local area network
(LAN) server. TestGen features Screen Wizards to assist you as you move through the
program, and the software is backed with full technical support.

Image Library—A collection of the text art organized by chapter. This collection
includes all of the figures, tables, and screenshots from the book. These images can be
used to enhance class lectures and PowerPoint slides.

CourseSmart eTextbooks Online—CourseSmart (www.coursesmart.com) is an
exciting new choice for students looking to save money. As an alternative to purchas-
ing the print textbook, students can purchase an electronic version of the same con-
tent and save up to 50% off the suggested list price of the print text. With a
CourseSmart etextbook, students can search the text, make notes online, print out
reading assignments that incorporate lecture notes, and bookmark important pas-
sages for later review.

ACKNOWLEDGMENTS

I would first of all like to acknowledge my patient and enthusiastic students who
worked through draft versions of this text and provided invaluable feedback. I would
also like to thank Pearson Prentice Hall and especially Bob Horan and Kelly Loftus,
who provided support, encouragement, and advice throughout the lengthy process of
completing this book. I also could not have written the book without the careful and
diligent feedback from the reviewers:

Preface

Xv

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
www.coursesmart.com

XVi

Preface

Georgia Brown, Northern lllinois University
Geoffrey D. Decker, Northern Illinois University
George Federman, Santa Barbara City College
Jean Hendrix, University of Arkansas at Monticello
Stephen L. Hussey, St. Louis University
Chunming Gao, Michigan Technological University
David Law, Alfred State College

Seongbae Lim, St. Mary’s University

Tina Ostrander, Highline Community College
Michele Parrish, Durham Technical Community College
Richard Scudder, University of Denver

Elliot B. Sloane, Villanova University

Lee Tangedahl, University of Montana

Finally, I would like to acknowledge my family, who showed enormous patience

with the hours I spent at my computer.

ABOUT THE AUTHOR

When he first started working on his English degree, a professor told Steve Conger that
an English major can be used in a variety of ways. His subsequent career proved that.
After graduation, he worked for over a year in the Coeur d’Alene Idaho school district,
assisting children with learning disabilities. Then, for six years he worked for the U.S.
Forest Service as a surveyor’s assistant, while going to graduate school in the off-seasons.
After graduating, he moved to western Washington, where he worked as a nurse’s aide
until he was hired to teach at Seattle Central Community College. As a part-time instruc-
tor who owned a computer, he realized early that he could teach more sections and earn
more money teaching computer classes than he could teaching English composition.
Despite this varied career path, Steve has never regretted his English degree or given up
his love of writing.

Steve Conger has taught at Seattle Central Community College for over twenty
years. He helped design the current successful Information Technology Program, and
for the last several years, he has taught database and programming courses using
Microsoft SQL Server and .Net programming languages. For several years, he has been
a board member for the statewide Working Connections workshops, which offer
affordable IT training to college instructors. Currently, Working Connections is spon-
sored by Bellevue College’s Center for Excellence.

Steve Conger has a master’s degree in English from the University of Idaho and a
bachelor’s degree in Literary Studies from Gonzaga University.

Currently, he lives in Eatonville, Washington, with his wife and two children. His
two other children live in the area and have kindly provided him and his wife with
three grandchildren.

Xvii

This page intentionally left blank

CHAPTER 1

Who Needs a Database

OVERVIEW OF RELATIONAL DATABASES AND THEIR USES

This chapter introduces Sharon, a college student who is working toward a degree in Database Development
and Administration. She signs up to become a tutor and realizes that the tutoring program is in desperate
need of a database to track tutoring sessions. She volunteers to develop it and after some discussions
defines a statement of work for the database.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

" Define relational databases

® Understand the position of relational databases in the history of databases
® Identify major relational database management systems

" Jdentify main characteristics of relational databases

® Understand SQL’s role in relational database

" Recognize some indications of where a database could be useful

" Define a statement of work for a given database scenario

THE SITUATION

Sharon is a student taking database classes. She is near the end of her program and has done quite well. Like any
student, she could really use some extra money and has decided to inquire about tutoring. She has noticed that
many students seem to struggle with relational database concepts, particularly in the early classes, and she is
fairly sure there would be a demand for her services.

The administrator of the tutoring program at the college is named Terry
Lee. Terry invites Sharon into her office and offers her a seat. She smiles. RELATIONAL DATABASE

“So you want to tutor?” A type of database that stores data

“Yes. I think I would be gOOd atit.” in tables that are related to each

“What subjects do you think you could tutor?” other by means of repeated columns

“I was thinking especially of database-related topics. I can do relational called keys.
design and SQL [Structured Query Language]. I think I can tutor Microsoft
Access, SQL Server, and even other database management systems. I can also do
some database programming.”

Terry nods. “That’s good. We do have some requests for tutoring in those
areas, but so far no one to provide the tutoring. Before you can begin, you will Itinvolvesorganizing data into tables
need to get recommendations from two instructors who teach in the area you °F entities and then determining the

. .. . ,, relationships among them. SQL is
want to tutor. Also you will need to do a short training session. the language relational databases
Sharon smiles, “That’s no prOblem'” use to create their objects and to
“Good.” Terry rises from her seat. “Let me show you how things work.” modify and retrieve data.

RELATIONAL DESIGN

2 Chapter 1 ¢ Who Needs a Database

DELIMITED FILES

These have some sort of character
separating columns of data. The
delimiter is often a comma or tab,
but can be any non-alphanumeric
character. In fixed length files, the
length in characters of each column
is the same.

DATA INTEGRITY

It refers to the accuracy and the
correctness of the data in the
database.

REDUNDANCY

It refers to storing the same data
in more than one place in the
database.

L'e; Things You Should Know

Databases

A database, at its simplest level, is a collection of related data. It doesn’t have to be electronic. The card
catalogs that libraries used to have were certainly databases. A scientist’s spiral notebook where he or
she keeps notes and observations could be considered a database, so too could a phone or address
book. When we say “database,” though, we usually mean electronic databases, databases that run on
computers.

Flat File Databases

The simplest form of an electronic database is the flat file database. Flat files usually consist of a file
which stores data in a structured way. A common format for flat file databases is the delimited file. In a
delimited file, each piece of data is separated from the next piece by some “delimiter,” often a comma
or a tab. The end of a row is marked by the new-line character (usually invisible). It is important, if the
file is to be read correctly, that each row contain the same number of delimiters. Another kind of flat
data file is the fixed-width data file. In such files, all the columns share a fixed width in characters. These
flat files can be read by a computer program and manipulated in various ways, but they have almost no
protections for data integrity, and they often contain many redundant elements.

Redundancy refers to repeating the same data more than once. It can occur in a number
of ways. Data could be repeated over and over again in the same file. For instance, the following
example shows an equipment checkout list.

Notice how in Table 1-1 Nancy Martin’s name is repeated, and it would be repeated as many
times as she checks out equipment. Another type of redundancy occurs when the same data is
stored in different files. For instance, you might have a file of club members that stores Nancy’s name
and address, and then a separate file for fee payments that repeats her name and address. One
problem with this system is that, other than having to type in everything several times, each time you
reenter the same data, there is a greater chance of mistyping it or making a mistake of some kind.
Another problem occurs when you need to change her address. Say Nancy moves and she notifies
the person at the desk in the club about her change of address. The desk clerk changes the address
in the membership file, but fails to change it, or to notify someone in billing to change it, in the fee
payment file. Now when the club sends out a bill or statement of fees, it goes to the wrong address.
It is always best to enter each piece of data in one and only one place.

Spreadsheets, such as Excel, can also be used as flat file databases. Spreadsheets offer a great deal
more functionality than simple delimited files. Cells can be given a data type such as “numeric” or “date
time.” This helps ensure that all the entries in a given column are of the same type. You can also define
valid ranges for data (e.g., you can stipulate that a valid term grade is between the numbers 0 and 4).
Spreadsheets usually contain data tools that make it possible to sort and group data. Most spreadsheets
also contain functions that allow the user to query the data. But despite these enhancements, spread-
sheets still share many of the redundancy and data integrity problems of other flat file formats.

Hierarchical Databases

The most common database model before the relational model was the hierarchical database.
Hierarchical databases are organized in a tree-like structure. In such a database, one parent table can
have many child tables, but no child table can have more than one parent.

This sounds abstract, and it is. One way to visualize it is to think of the Windows (or, for that
matter, the Mac or Linux) file system. The file system has a hierarchical structure. You have a direc-
tory, under which there can be subdirectories, and in those subdirectories, there can be other subdi-
rectories or files. You navigate through them by following a path.

C:\Users\ITStudent\Documents\myfile.txt

This tree-like organization is very logical and easy to navigate, but it does present some of the
same problems of redundancy, data integrity, and comparability of data. It is not uncommon for

I Equipment Checkout
Member ID Member Name Date Time Equipment No.
23455 Nancy Martin 2/10/2010 4 PM 2333
45737 Taylor Smith 2/10/2010 4:15 PM 3331
23455 Nancy Martin 2/10/2010 4:45 PM 2221

Chapter 1 ¢ Who Needs a Database

= | B |3
File Edit Format View Help
LeaseNumber ,AptNumber ,Rentamount ,Startbate,LastName,FirstName -
10106104 ,104,850,2006-02-01 00:00:00,Carter,Cecilia r
10106106 106,1150,2006-01-01 00:00:00,Hi11,Ryan
10106202 ,202,1400,2006-01-01 00:00:00,Kim,Susan
10506201 ,201,850,2006-01-05 00:00:00,martins,Thomas
20106102 ,102,1400,2006-02-01 00:00:00,Banner ,Mary
20106204 ,204,850,2006-02-01 00:00:00,Nichols,Tara
30106103 ,103,1150,2006-03-01 00:00:00,UnderHi11,Brenda
30106203 ,203,1150,2006-03-01 00:00:00,Carrol,Lawrence E
30106205 ,205,1400,2006-03-01 00:00:00,Aadison,Lester
30106306 .306 1150,2006-03-01 00:00:00, Andersnn ,Tracy il
30206304 304,850, 2006 03-02 00:00:00, sanders Mart1n
401206206 206 :L‘I.SO 2006-04-01 00:00: Dﬂ JDhnstDn Tom

|| 50504105 ,105,1400,2004-05-05 00:00:00,Kim, 5anue1
60205201 201 850, 2005 06-02 00:00:00, sanders Jason | 3
70106301 ,b301,950,2005-07-01 00:00:00,mohn, Heather
8012005 .201.1250.2005-03-01 DO:OD:OO,DanieTS.Steven -

— ———— |

the same data to be repeated in more than one place in the tree. Whenever data is repeated, there
is a risk of error and inconsistency. It can also be very difficult to compare a piece of data from one
branch of the database with a piece from an entirely different branch of the database.

THINGS TO THINK ABOUT

Hierarchical databases are still in use in many
institutions. This is especially true of large insti-
tutions such as banks and insurance companies
that adopted database technologies early.
These institutions invested heavily in the
development of these databases and have com-
mitted decades of data to their files. Although
database technologies have improved, they
are reluctant to commit the time and money

and to incur the risk of redeveloping their
databases and translating their vast stores of
existing data into new formats.

The basic philosophy is, if it still works, let well
enough alone. Most companies are conservative
about their databases, for understandable reasons.

What do you think companies like Microsoft
or Oracle have to do to convince companies to
upgrade to their newest database products?

FIGURE 1-1 Delimited Text
Example

hm‘l
Calibri
B I U~
- A~

Font

- |11

S iy
Paste

& @8-

Clipboard 7

Fage Layout

AN

Formulas

- =[] &

FEES N

EE -

Alignment

Data

General
$*% v

-0 00

]
Number

Review

Styles

View

Team
g=lInert =
3 Delete ~

E} Format =

Cells

@

AT A

Sort & Find &

Filter = Select -

Editing

F4 - ("

7| -mom

| A | 8 | ¢
1 generator Egid Version
hwb0708c A
84330
51183938
84387
B4385
10260333
51183935
84383
51183934
hwb0708k A
10260379
51183933
51183932
2007enad
B4375
2007ena2
BA366
51183930
51183928
Ba36d
51183926

2 s

84359
quakes - ¥J

2]

Datetime Lat

July 08, 20
6 July 08, 20
1 July 08, 20
6 July 08, 20
6 July 08, 20
1 July 08, 20
1 July 08, 20
6 July 08, 20
1 July 08, 20

July 08, 20
1 luly 08, 20
1 July 08, 20
1 July 08, 20
7 luly 08, 20
6 July 08, 20
6 July 08, 20
6 luly 08, 20
1 July 08, 20
1 July 08, 20
6 July 08, 20
1 July 08, 20

6 Julv08. 20

36.11
57.7027

39.422!' -173.09?!

53.199%

58.195
33.5055
37.5547
60.4053
38.0933
35.59%9
321958
37.9082
36.7938
-21.651
53.8308

46.938
63.5916
38.8347
36.5628
521372
36.8682
60.3464

[

L
Lon
-83.97
-155.661

-166.922
-155.285
-116.577
-118.8711
-141.764
-122.845
-83.36
-116.623
-118.558
-121.347
-68.059
-164.891
155.553
-146.796
-122.8
-121.162
-174.82
-121.601
-143.131

I

G

Magni tuds Depth

1.7
18
23
3.8
11
16
11
12
16
1.6
2.5

H | 1
NST\par
4.5 9\par
99.9 07\par
5.9 26\par
429 21\par
0 06\par
10.2 20\par
10.3 18\par
0.3 07\par
11 15\par
8.7 S\par
0.9 26\par
4.4 8\par
5.7 11\par
131.6 113\par
83.8 15\par
32 44\par
0 16\par
3 9\par
4 8\par
25 11\par
6.7 38\par

0.5 11\par
L

FIGURE 1-2 Excel Spreadsheet

3

4 Chapter 1 ¢ Who Needs a Database

FIGURE 1-3 Hierarchical
Database Model

KEYS

In relational databases, each table
usually has one column designated
as a primary key. This key uniquely
identifies each row in the table. This
primary key becomes a foreign key
when it is repeated in another table
to create a link between the tables.

Accounts

Savings

Customer 1 Customer 2 Customer 3

Checking

Customer 1

Relational Databases

By far, the most popular type of database for at least the last 30 years is the relational database. The
idea for relational databases came from a man named Edgar F. Codd in 1970. He worked for IBM,
and he wrote a paper on, at that time, a new theoretical design for databases. This design would be
based on the mathematics of set theory and predicate logic. He formulated the basics of the relational
design in 12 rules. The first rule, called the “information rule,” states, “All information in a relational
database is represented explicitly at the logical level and in exactly one way—values in tables.”

Briefly, in the relational model data would be organized into tables. Even the information about
the tables themselves is stored in tables. These tables then define the relationships among themselves
by means of repeating an attribute or column from one table in another table. These repeating
columns would be called “keys.” He also specified that the logical design of a database should be
separate and independent of physical design considerations such as file types, data storage, and
disk writing and reading functions. He specified that there should be a “data sublanguage” that can
perform all data-related tasks. SQL has evolved into this language. We will discuss it more thoroughly
in a later chapter. For a discussion of Codd’s 12 rules, see Wikipedia at http://en.wikipedia.org/wiki/
Codd’s_12_rules.

This may sound complex, and it certainly can be, but it solved many of the problems that
plagued the databases of the day. One of those problems was data redundancy. As mentioned
earlier, redundancy refers to the need to store the same data in more than one place in the da-
tabase.

In a relational database, the redundancy is minimized. A bank would enter the customer’s
data only once, in one place. Any changes would be made only in one place. The only redundancy
allowed is the repetition of a key column (or columns) that is used to create relationships among
the tables. This significantly reduces the chances of error and protects the integrity of the data in
the database.

Another problem the relational design helped solve was that of relating data from different
parts of the database. In many of the previous database designs, a programmer had to write a rou-
tine in a language like Fortran or Cobol to extract the data from various parts of the database and
compare them. In a well-designed relational database, every piece of data can be compared or joined
with any other piece of data. The relational design was a huge step forward in flexibility.

The chief drawback of a relational database is the inherent complexity of the design. It is
fairly easy to design a bad database that will not do what a client needs it to do. In a bad database
design, you may find that you cannot enter the data you need to enter. This is often the result
of an error in how the relationship was created. It may also not be possible to retrieve the data

http://en.wikipedia.org/wiki/Codd�s_12_rules
http://en.wikipedia.org/wiki/Codd�s_12_rules
http://en.wikipedia.org/wiki/Codd�s_12_rules

Chapter 1 ¢ Who Needs a Database

Lin Microsoft SQL Server Manage ———
file Edit View OQuery Project Debug Tools Window Community Help
) New Query | Ly | EH D &1y |5 W & | g |
%7 | TutorManagement * | ¥ Execute b v 1D iq-|:|] @mﬂ = 2ieE {"3‘!'
Object Explorer » & X 50QLQuerylsql - local\..\Steve (53))° | Object Explorer Details - %
Cgnnect ~ !g 4] =3 1{ Select * from Student TI
= | \sqlepress (SQL Server 10.0. |
@ (3 Databases
@ [Security
@ 3 Server Objects
@ [Replication
@ 3 Management =
= Reauts | [y Messages
Swdertiey SwdentLasmiame StudentFrsthame SwdertFhone StudentEmad Stuc|
1 005001010 | Mn Ly H65EEITES hmin@hatmal com F
2 SB000TO0E Bradbury FRon ZOEEEETIS rbradburyEmars org M
3 S80001009 Caros Juan 2065559134 CardosZ3@hotmail com M
4 990001000 Peterson Laura 2065559318 NULL F
1 990001002 Carter Shannon 2065554301 shannon@carer.org F
€ 990001003 Matinez Sandy 2065551158 sancym@gmateom
7 950001004 Mouyen L 2065552938 ltar@yahoo.com "
8 930001005 Zukof Mork NULL NULL NUI
9 990001006 Taylor Patty 206555729 pW7@maketplocecom F
10 990001007 Thomas Lawrence NULL NULL M
Fl m v || & Q- | (local)\sqlexpress (10.0 SP1) Steu-PC\SQM.M | TutorManagement | 00:00:01 | 10 rows
Output >3 x
FIGURE 1-4 SQL Server
Relational Database Manager
Ready Ln1 Col22 th22 INS ;2?:\{;29 an SQL Query and
Customer ID(PK) | Last Name | First Name | Address City State
(C41098X3D~__ | Carson Lewis 121 Center Street | Seattle | WA
CV1099B1 Riadison Sarah 1324 Broadway Seattle WA
D345XU24 Brow Lisa 2201 Second Ave | Seattle | WA
Transaction ID | Transaction Type | Transastion Date~.] Customer ID(FK)| Amount .
- FIGURE 1-5 P K
10002345 Deposit 2009-2-1216:25:06 | (C41098XD | 1245.76 and Foreign Key Relations
10002346 Deposit 2009-2-12 10:277+3] .CV1099B1 500.00 Between a Customer Table and a
10002347 Withdrawal 2009-2-13 14:45:57 A(&H 098X3 200.00 Transaction Table

that you need. Because of the complexity of relational design, it is crucial that you follow a design
process that clarifies both the nature of the data you wish to store and the structure of the data-
base. That is what this book is designed to help you with.

The chief advantages in a well-designed relational database are data integrity and flexibility.
These two advantages have made it the most commonly used database model for the past
30 years or so.

THE OPPORTUNITY

They walk from Terry’s office down the hall to the computer lab. Terry stops at the
front desk. “The computer lab is one of our designated tutoring areas, and I suspect
the one where most of your sessions would be scheduled.” She picks up a clipboard
containing several pieces of paper. “We have 2 pages for each week—an AM one and
a PM one. At the beginning of the month, tutors enter their availability for each day,

6

Chapter 1 ¢ Who Needs a Database

the durations for which they are available that day, and the courses they can tutor for.
Students sign up for particular sessions. Tutoring is free for the students as long as they
are enrolled in the class for which they are getting tutored.”

“How do you check that?”

“Right now, it is mostly a matter of trust.”

“How long is each tutoring session?”

“Tutoring sessions are for 30 minutes each, and a tutor can only do 30 sessions or
15 hours a week.”

“What if you set up a time slot and nobody signs up?”

“As long as you show up when scheduled, we will pay you for the time. The pay,
by the way, is $10.50 an hour.”

“Thanks.” Sharon looks over the notebook. “Just out of curiosity, what do you do
with the schedules at the end of the month?”

“Actually, I take them back to my office every two weeks and type them into vari-
ous spreadsheets to make reports to the people who pay for the tutoring and to deter-
mine the pay for the tutors themselves.”

Sharon turns to Terry and says, “You know, you could really use a database. It
would make it much simpler to track schedules and availability, and it could make
doing your reports much easier.”

Terry sighs. “I've known that for some time, but we just can’t find anyone willing
to take on the task. The school’s database administrator is much too busy, and no one
else feels competent or has the time to take on the task.”

Sharon hesitates a little and then says, “I might be able to put a database
together.”

Terry looks hopeful. “Really? That would be wonderful. We even have some
money in our budget so we could pay you something for your work.”

“] am still learning database,” Sharon cautions, “but I am pretty sure I could make
you something that would meet most of your needs.”

“Good, why don’t you come by tomorrow about this time, and we will talk
about it.”

“I will be there.”

THINGS TO THINK ABOUT

There are many situations that could be improved
with the addition of a database. Whenever there
is a large amount of complex data to handle, a
database is likely to provide the best solution.
There are times, however, when the data
involved is modest in scope and complexity
that a relational database may be an overkill.

Relational databases are complex to develop
and maintain.

The benefits when dealing with large
amounts of data are worth the costs in devel-
opment time and maintenance. But, sometimes,
the best solution is simply a spreadsheet such
as Excel.

|§, Things You Should Know

RDBMS

A relational database management system (RDBMS) is, as its name suggests, a system for managing
relational databases. As a minimum, an RDBMS needs to allow a user to create one or more data-
bases and the objects associated with that database such as tables, relationships, views, and queries.
It also needs to support basic maintenance such as backing up the database and restoring it from a
backup file. Moreover, it needs to support security, making sure that users and groups have access
only to the databases and data that they are authorized to use.

Most commercial RDBMSs offer many features beyond these basic ones. Most include tools for
monitoring and optimizing the performance of their databases. Many include reporting services to

Chapter 1 ¢ Who Needs a Database 7

I Some Relational Database Management Systems
RDBMS Comments URL
ORACLE The biggest and the first commercial RDBMS. http://Awww.Oracle.com

Powers many of the world’s largest companies

SQL Server Microsoft’s RDMS product. Ships in many versions designed for
different company needs. Also powers many large enterprises

DB2 IBM’s RDBMS

MySQL The most popular open source RDBMS, currently owned by SUN

PostGres SQL Another free, open source RDBMS. It is older and some would

say more powerful than MySQL

ACCESS Microsoft's desktop database

http:/Awww.microsoft.com/sgl/default. mspx

http:/Awww306.ibm.com/software/data/db2/9/
http:/Avww.MySgl.com
http://www.postgresql.org/

http://office.microsoft.com/en-us/access/default.

aspx?ofcresset=1

format and present the results of queries. Some even include complex business intelligence packages
for analyzing business trends and patterns. Table 1-2 describes the most common RDBMSs, with a
link to their home Web sites.

GETTING THE SCOPE

After Sharon leaves Terry’s office, she goes to one of the instructors, a professor named
Bill Collins, from whom she hopes to get a recommendation. He is sitting in his office
and smiles when he opens the door for her. “Come on in. How can I help you today?”
She tells about her plan to tutor and asks for a recommendation. He says he will be
happy to provide one. Then Sharon tells him about the possibility of making a database.

She says, “I've got a thousand ideas about how the database should look and what
should be in it.”

Bill cautions her, “Be careful not to get ahead of yourself. You need to remember
you are not making this database for yourself. You are making it for a client. You need
to listen carefully to what Terry and the other people who will use the database say
about what they need and not get trapped by preconceived notions. The first thing you
need to do is get as clear an idea as possible about what the database is intended to do.”

“A statement of scope?”

“Yes, that would be a good place to start, but I would go farther and make a com-
plete statement of work. That would include the scope, but it would also contain some
discussion of the background, the objectives of the project, and a tentative timeline. I
have some samples I can share with you. Listen, if you need any help or advice on this
project, feel free to ask me.”

“Thank you. Thank you very much.”

Things You Should Know L—'t”

Statement of Work

A statement of work is a preliminary document that describes, in general, the work that needs to be
done on a project. Often this is prepared by the people who want the work to be done and offered
to contractors for bidding. But sometimes, as in this case, it can be used as an initial clarification of
the task at hand.

It is important to have something like a statement of work for any major project so that every-
one knows what is expected. Without it, people often find, sometimes late in the process, that differ-
ent individuals have very different expectations about what the project should contain. A statement
of work is also a good reference throughout the project to keep everyone on track and focused.
The statement is preliminary and can be altered as the needs of the project change or grow. But, by

Caution
w It is easy to get carried away
with your own excitement about
a database project. You may be able to
see several possible solutions and want
to start designing right away. But it is
critically important that you delay
designing until you have a clear idea of
what the client wants and needs.
Patience and the ability to listen are
among the most important skills of a
database developer.

STATEMENT OF SCOPE

A statement of scope is a short
statement of one or more paragraphs
that says in clear, but general, terms
what the project will do. A statement
of work is a more complete
statement about the objectives and
timeline of the project.

http://www.Oracle.com
http://www.microsoft.com/sql/default.mspx
http://www306.ibm.com/software/data/db2/9/
http://www.MySql.com
http://www.postgresql.org/
http://office.microsoft.com/en-us/access/default.aspx?ofcresset=1
http://office.microsoft.com/en-us/access/default.aspx?ofcresset=1

8 Chapter 1 ¢ Who Needs a Database

CROW’S FEET NOTATION

A type of entity relation diagram
where the relationships are depicted
using lines and 0Os. These are more
descriptive of relationships than the
diagrams using simple arrows.

I Statement of Work Elements
Element Description
History Describes the reason for the project, usually a problem with the current

system or an opportunity to provide new services. May describe the various
steps and efforts that led to the current state of the project

Scope Provides a general statement of the requirements and expectations of the
project. It states only the high-level requirements and does not get into
specifics. It does not go into detail about how things are to be done.

It may include some general constraints such as time or budget limits

Obijectives The things the project is intended to achieve. Objectives aren’t about
creating specific elements of the database, for instance, but about what
the database is supposed to achieve, that is, why the client wants the
database in the first place

Tasks and Breaks the project into discrete tasks. Each task should have an estimated
Deliverables duration and concrete deliverables

referring to the statement of work, you can guarantee that any changes or additions are a matter of
discussion and not just assumed by one of the parties.
Table 1-3 delineates a few of the elements that can appear in a statement of work.

THE FIRST INTERVIEW

The next day Sharon sits in Terry’s office. She has brought a notebook in which she has
written down some of the key questions she knows she will need to ask. Sharon knows
it is important to be prepared and focused for any interview. She has also brought a dia-
gram of a database she created for a nonprofit to show Terry as an example of the work
she has done on database creation.

Terry says, “Thanks for coming in. You have no idea how long and how much
we’ve wanted a database for the tutoring program. We have to generate several reports
each term to justify our funding. It has gotten so that creating reports takes most of my
time. It keeps us from doing things to improve the program. We also really need to be
able to track what works and what doesn’t better.”

Sharon nods, “I really hope I can help. I've brought an example of a database I
made for Capital Charities to show that I do have some experience creating databases.
We did this as part of a project for a Database class.”

Terry looks at the diagram as Sharon explains it.

“Capital Charities provides funds for basic utilities, food, and occasional repairs
for poor families on a one-time, emergency basis. They needed to be able to track their
contributors and their contributions. That was one part of the database. That data is
stored in the contributor and contribution tables. That line between them indicates a
one-to-many relationship. It uses what is called “crow’s feet” notation. It shows that
each contributor has contributed at least once and may have contributed many times.
The crow’s foot, those three lines, points to the many sides of the relationship. The other
part of the database tracks the types and amounts of assistance given to each client. The
client information is entered into the Client table.”

She points to the ClientNotes entity, “There can be 0 or many notes about any cli-
ent. Each client receives assistance at least once. That was a business rule of the charity.
They only wanted to list as clients those they had actually given assistance to. Each act
of assistance is associated with a particular councilor and can involve several different
types of assistance. That is the reason for the AssistanceDetail table.”

“It looks complex.”

“It is a little. But I also built some forms and reports that made it such that the
Capital Charities staff didn’t have to navigate the database directly. It made it a lot
easier to use.”

Chapter 1 ¢ Who Needs a Database 9

Capital Charities:

Providing the basic necessities for those in need

- Contribution
Contributor

PK | ContributionKey

PK | ContributerKey

H--F<FK1| ContributerKey

ContributorLastName ContributionDate
ContributorFirstName ContributionAmount
ContributorAddress1
ContributorAddress2
ContributorCity
ContributorState .
i lientNot
ContributorPostal Client Clienihotes
ContributorPhone . PK ClientNoteKey
ContributorEmail PK | ClientKey H-
ClientLastName ClientNoteDate
ClientFirstName FK1| ClientKey
ClientAddress1 ClientNoteText
ClientAddress2
- ClientCity
Assistance
: ClientState
PK | AssistanceKey ClientPostal
- - - - H- ClientPhone
AssistanceDate ClientEmail
FK1/| ClientKey ClientAddedDate
FK2| CouncilorKey
26 II Councilor
I
X K " PK | CouncilorKey AssistanceType
I
! CouncilorLastName PK | AssistanceTypeKe:
X CouncilorFirstName
AssistanceTypeName

AssistanceDetail

PK | AssistanceDetailKey

FK1 | AssistanceKey

FK2 | AssistanceTypeKey

:ss!stanceﬁmount FIGURE 1-6 Sample Entity
ssistanceNotes Diagram for a Nonprofit

“Well, it certainly looks like you should be capable of doing this for us. What do
you need from me?”

“You have already started suggesting some of the things I want to talk about
today—things you want the database to do. What I need to get from you today is a clear
sense of what you want the database to do for you. I don’t need the specifics yet, just
general statements of what you want to see and what the database needs to do to be
useful to you.”

Terry hesitates, “OK . . . Where do I start?”

“You already suggested a couple of things. You need to track what works and
what doesn’t. How would you determine that something is working or not working?”

Things You Should Know IE;

You should always go to an interview prepared. In this initial interview, you should be prepared to
help the client get started on the right track and have questions that help focus them on the impor-
tant aspects of the database. But you don’t want to guide them toward some preconceived notion
of what the database should be. Rather, your questions should help them guide you to a clearer
understanding of what they need out of a database.

“Well, part of it is how many students are using the tutoring services. What cours-
es are they taking tutoring for, and how the tutoring they receive helps them succeed

10 Chapter 1 * Who Needs a Database

ENTITIES

An entity is something that the
database is concerned with, about
which data can be stored, and
which can have relationships with
other entities.

in their courses? Do they get better grades? Does tutoring stop them from dropping the
class? I know these are a bit vague and difficult to track.”

“That’s OK. What about scheduling tutors and students. What do you need to
track to do that?”

“Well, we need to track tutors, of course, and what classes they can tutor for. We
need to track their schedules so we know what times they are available. We need to
know which students sign up for each session, and ideally we should be able to check
that they are actually taking the course for which they are getting tutoring.”

“Do you need to track demographic information for students?”

“If we could, that would be great. It would make our reporting much easier.
Several of our grants are targeted at particular groups of students. We would have to
guarantee that such information would remain private.”

“What other reports do you need to make?”

“I need to know how many hours each tutor worked in a pay period. I need to
know how many students each tutor saw. I also need to know how many unduplicated
students were seen each term.”

“Unduplicated?”

“Yes, individual students. A single student could get several sessions of tutoring.
For some reports, we need to know how many individual students we are serving—not
just how many sessions we have scheduled.”

“Can you think of anything else?”

“We really need to know if a student actually got the tutoring they signed up for.
Sometimes a student will sign up and then not show up for the actual session. It might
also be good to know what courses students want tutoring in where we are not offer-
ing it. Maybe you could provide a way for students to request tutoring for courses or
subjects.”

“Anything else?”

“Nothing I can think of right now.”

“OK. What I am going to do is take this and write up a statement of work
describing the database, the objectives, and a tentative timeline. Then we can look at
it and see if it really describes the database you need. If it doesn’t, we can adjust it.
When it does, we can use it to refer back to keep us on track so that we don’t get lost
in the details later.”

“Thanks,” Terry stands up. “I actually think we can do this. You really seem to
know what you are doing. I am looking forward to it.”

Sharon smiles, though she doesn’t feel nearly as confident in her abilities. “I am
looking forward to it too.”

IDENTIFYING THE BIG TOPICS

Sharon goes to the school cafeteria and gets a cup of coffee. She sits down to go over her
notes. She knows it is important to review them while the interview is still fresh in her
mind. The first thing she needs to do is to identify the big topics. What is the database
about? What are the major components going to be? “Well, tutoring,” she says to herself,
“that is the big topic.” But what does tutoring include? She takes out a pencil and starts a
list, “Tutors, of course, and students and the tutoring schedule.” She writes them in the list:

tutors

students

tutoring schedule
“Is there anything else? Anything I am missing?” She frowns as she concentrates for a
moment. “Courses! Tutors tutor for specific courses, and students are supposed to be
registered in those courses in order to get tutoring.” She adds it to the list. Students also
should be able to request tutoring for specific courses. She adds requests to the list.

tutors

students

Chapter 1 ¢ Who Needs a Database 11

tutoring schedule
courses

requests

She thinks a bit longer. “We need to track whether students attended the sessions they
scheduled. That is important, but is it a new topic? It could be part of scheduling.”
Terry wanted one more thing, she remembers. She wanted to track student success. To
Sharon that seems like a different topic entirely. She recalls that Bill Collins in his class
always insisted that a good database like a good table should be focused on a single
topic. She decides to leave the list as it is.

Things You Should Know L'e;

Identifying the major topics of a database is an important exercise. It helps provide a clearer sense of
just what the database is about. It is also the first step toward identifying the “entities” that will be
used in the database design.

One way to begin identifying the major themes is to look at the nouns in your notes. See if they
cluster together around certain themes. These themes are most likely the major topics of your database.
We will look at this technique more closely later when we talk about defining entities and attributes.

It is important to note that a database may contain several themes, but all those themes should
relate to a single overarching topic like tutoring. If there is more than one overarching topic, it may
indicate that you should develop additional databases.

WRITING THE STATEMENT OF WORK

Now that she has the big topics in mind, she begins to compose the statement of work.
She begins with the history. The history is a statement of the problem. It can narrate
how the current situation came to be the way it is. Sharon thinks about the things she
saw and the things that Terry told her.

For a long time the tutoring program has used a paper schedule to sign stu-
dents up for tutoring. Tutors identify their schedule for a two-week period,
and then a schedule is printed and placed in the computer lab. Students look
through the schedule for sessions that match courses they are taking and the
times they have available. This system has worked and continues to work, but
it has several significant problems. For one, it can be difficult for students to
find appropriate tutoring sessions. The paper forms are difficult to navigate
and understand. Additionally, it is very difficult for the tutoring program to
track the students using the tutoring. It is difficult or impossible to track demo-
graphic information. It is also difficult to assure that students are enrolled in
the courses they receive tutoring in. Even tracking tutors” hours can be difficult.

A database with a client application could significantly improve the situ-
ation, by providing a flexible, searchable schedule for students; better tracking
of demographics and eligibility; and better tracking of hours tutored.

She pauses. That was hard to get going, but once she got started, it flowed pretty well.

The tutoring database will be designed to manage the tutoring program at
the college.

She isn’t real happy with that as an opening sentence. She modifies it a little and
forges ahead. It proves to be a lot harder than she imagined. The statement has to include
all the general points but still be concise enough to give a clear indication of the purpose
and functions of the database. After a lot of effort, she had this preliminary statement:

The tutoring database will manage data for the tutoring program at the col-
lege. It will track available tutors and the courses they can tutor. It will also
track each tutor’s tutoring schedule. The database will store demographic

ATTRIBUTES

These define entities. (The entity
customer has attributes like name
and address).

12 Chapter 1 * Who Needs a Database

CONSTRAINTS

These are limits on what the
database will do. Later we will see
that you can also set constraints on
the types and range of data that can
be entered into a column in a table.

information for students who register for tutoring. This information will be
private and used only to generate general reports which include no personal
information. Students, who have registered, will be able to sign up for avail-
able tutoring sessions for courses in which they are enrolled. The database
will track whether students attended their scheduled sessions.

Sharon looks it over carefully. What about the data about student success? Should that
be a part of this database, or should that be a separate project? She decides to set it aside
until she has talked with Terry.

She also wonders if she should state some of the things the database won’t do.
Things such as the following;:

The database can be used to get the hours worked for each tutor, but it will not
process pay or provide any payroll information.

The database will not validate student information against the school’s registra-
tion database.

For the moment, she can’t think of any other constraints.

She consults an example her instructor gave her to look at. The next step is to set out
the objectives for the database. She spends some time thinking about this. Most of the ob-
jectives are spelled out in the scope. She pulls out some of the main points and makes a list.

e Streamline the process by which tutors enter their schedules and students sign up
for them.

e Improve tracking of demographic data of students using the tutoring program.

e Improve tracking of tutors” hours and students’ use of tutoring sessions

Next she needs to add tasks and a timeline. She jots down some notes on a paper.
The first thing she will have to do is to gather information. She needs to know all the
relevant data and processes. How long will that take? She makes a rough guess of two to
three weeks. Then she will have to evaluate all the information she has gathered and use
it to start developing a list of business rules and the first rough model of the data. That
could take another couple weeks. Next she will have to refine and normalize the model.
Sharon thinks she can do this in two or three days. Then she needs to actually make the
database. That won't take long. She can probably do that part in a couple of hours. What
then? Sharon muses for a while. The last part may take a fair amount of time. She will need
to test the database and make sure that it meets all of Terry’s needs. She will also have to
test for security issues and privacy. That could take two or more weeks of intense work.
Where does that put her? Sharon calculates and taking the longer times in each case comes
up with nine or ten weeks. None of this is counting the fact that it will take a completely
different development project to create a client application for Terry, the tutors, and stu-
dents to interact with the database. But, Sharon says to herself, one project at a time.

Sharon almost has everything she needs for the statement of work, but there is still
something missing. After a while it occurs to her: Every task should also have a deliver-
able, something concrete she can show Terry to let her know that the database is on track.

Sharon spends the next couple of hours completing her statement of work.

THINGS TO THINK ABOUT

Estimating Times
One of the most difficult things for anyone
who is new to developing databases is estimat-
ing the time it will take to complete the various
tasks. Experience will help, but before you have
enough experience how do you even begin to
quess an appropriate time?

There are some techniques that can help.
One is to make a weighted average. To do this,
write down your most optimistic time estimate—

your best guess at the probable time it will
take if everything goes perfect—and your most
pessimistic time estimate—if everything goes
wrong. Add them all together, but multiply your
most probable estimate by 3, then divide the sum
by five.

(0O+Pt X 3+p)/5

What other ways can you think of to help your
time estimates be more accurate?

Chapter 1 ¢ Who Needs a Database

REVIEWING THE STATEMENT OF WORK

The following afternoon Sharon returns to Terry’s office and shows her the statement.
As Terry looks it over, Sharon says, “It is important that we both are clear about what
we are working on. I don’t want to go off and make a database and then find out it is
not what you had in mind at all.”

“No, I can see that is a really good idea.” She sets the paper down. “What about
the surveys of student success?”

“I thought about that, and I am not sure. Sometimes I think that does belong in
this project, and other times, I think that it is a separate project on its own. I am not sure
how we could get objective data on their success, but we could include evaluations
by students or a quarterly survey. If we build the database as I have described it, we
should be able to add the success-tracking features later or we could look at adding a
second database devoted to tracking student success.”

“OK, I can live with that. It would be nice if you could validate student information.”

“Yes, but I don’t really know how to do that. I also think it unlikely that I would
be granted the permissions I would need on the school’s registration database. You
might be able to get the school’s developers to look at that piece later.”

“Fair enough. One other thing you don’t have here, and I am not sure we talked
about it, but it would be nice if students could request tutoring in courses that we don’t
currently have tutors for. It would help us know where the need is and where we need
to try to recruit new tutors.”

“That shouldn’t be a problem. I can add that.”

“Good. What do you need to proceed?”

“Well, let’s go over the tasks and timeline. First, I am going to need to gather some
information. I am going to need to see how you have been doing things. I will need to
talk to some tutors, and maybe some students, and I probably need to see the reports
you make to ensure that the database contains all the information you require. Then I
will need to analyze all the information I get and begin to make a data model. After all
that, I can actually make the database and test it.”

Terry studies the timeline. “This is very clear and well done. How realistic do you
think this timeline is?”

Sharon smiled. “It represents my very best guess. It could go faster if everything
works out well, but it could also go slower if I encounter problems. I tried to be very con-
servative on the times, so I think there is a good chance it can be completed on schedule.”

“Good, it would be ideal if the database could be in place by the beginning of
next term.”

Sharon warns, “There is another piece to all this. A client application needs to be
developed so you, the students, and tutors can interact safely and easily with the data-
base. But that is really a separate project.”

Terry smiles. “You're right. We can tackle that when we have finished with the
database.”

“Tell you what, I will come by tomorrow with a revised version of this statement,
and I will give you a preliminary plan of where we go next.”

Terry stood up and put out her hand to shake. “Sounds good. I look forward to
working with you on this.”

THE STATEMENT OF WORK

Home, later. Sharon revised the statement of work to include student requests. Here is
her completed statement of work:

STATEMENT OF WORK: TUTORING DATABASE PROJECT

History

For a long time the tutoring program has used a paper schedule to sign stu-
dents up for tutoring. Tutors identify their schedule for a two-week period,

13

14

Chapter 1 ¢ Who Needs a Database

and then a schedule is printed and placed in the computer lab. Students
look through the schedule for sessions that match courses they are taking
and the times they have available. This system has worked and continues to
work, but it has several significant problems. For one, it can be difficult for
students to find appropriate tutoring sessions. The paper forms are difficult
to navigate and understand. Additionally, it is very difficult for the tutoring
program to track the students using the tutoring. It is difficult or impossible
to track demographic information. It is also difficult to assure that students
are enrolled in the courses they receive tutoring in. Even tracking tutors’
hours can be difficult.

A database with a client application could significantly improve the sit-
uation, by providing a flexible, searchable schedule for students; better track-
ing of demographics and eligibility; and better tracking of hours tutored.

Scope

The tutoring database will manage data for the tutoring program at the col-
lege. It will track available tutors and the courses they can tutor. It will also
track each tutor’s tutoring schedule. The database will store demographic
information for students who register for tutoring. This information will be
private and used only to generate general reports which include no personal
information. Students who have registered will be able to sign up for avail-
able tutoring sessions for courses in which they are enrolled. The database
will track whether students attended their scheduled sessions. It will also
track student requests for tutoring in additional courses and subjects.

Constraints

The database can be used to get the hours worked for each tutor, but it will
not process pay or provide any payroll information. The database will not
validate student information against the school’s registration database.

Objectives

e Streamline the process by which the tutors enter their schedules and
students sign up for them.

e Improve tracking of demographic data of students using the tutoring
program.

¢ Improve tracking of tutors” hours and students’ use of tutoring sessions.

e Track student requests for additional tutoring.

Tasks and Timeline

1. Gathering Data: This task will consist in a number of interviews,
questionnaires, and observations. Time allotted: 3 weeks.

Deliverable: A list of scheduled interviews and observations and text of
the questionnaires.

2. Analyzing Data: The data gathered will be analyzed to determine
business rules and preliminary data modeling. Time allotted: 2 weeks.

Deliverable: List of business rules—their basic entities and attributes—to
be reviewed.

3. Normalization: The data model will be completed with entities and
relationships normalized. Time allotted: 1 week.

Deliverables: Entity relation diagram for review.

4. Building the physical database: The data model will be translated to
the RDBMS. Tables containing columns with specific data types and
relational and other constraints created. Time allotted: 3 days.

Deliverables: The schema of the database for review.

Chapter 1 ¢ Who Needs a Database

5. Testing and Security: Sample data will be entered, and each of
the business rules and requirements will be tested. General database
security and security related to business rules will also be tested. Time
allotted: 3 weeks.

Deliverables: Documented test results.

6. Database Completion and installation: Final changes and correc-
tions are made. Sample data will be removed, and the database in-
stalled on a server. Final testing for server access and connections.
Time allotted: 2 weeks.

Deliverables: The working database.

Total time between beginning of project and end: 11 weeks, 3 days.

DOCUMENTATION

Documentation is a lot like flossing: Nobody likes to do it, and far more claim to do
it than actually do. Developers want to work on their plan. The last thing they want
to do, generally, is to take time out and describe what they are developing and how
they are going about it. And yet, like flossing, few things are as important to a healthy
database enterprise.

Imagine you have been hired to work as a data administrator for some company.
They have a large and complex database, but the former administrator, who was also
the developer, left no documentation. To do your job properly, you need to understand
what each object in the database is meant to do. You also need to know what it is sup-
posed to do and how data is processed. Managers expect you to be able to provide them
with the data they need when they need it. Some pieces probably make sense right
away, but several pieces remain obscure. You try to ask people about them, but manag-
ers are not database designers and, generally, they don’t have a clue. Many of the peo-
ple who were involved in the creation of the database have moved on, and it is difficult
to get a clear sense of the original intentions or purpose of the database. Eventually you
may solve the problems, but you will have spent countless hours in investigation, hours
that could have been saved by a little documentation.

Documentation is one of the most important and one of the most neglected
aspects of any database project. When you look at a database built by someone else,
or even one that you may have made some time ago, it is often difficult to see why
certain decisions were made, why the tables are the way they are, and why certain
columns were included or left out. Without documentation, it can take a great deal of
research and guesswork to understand the database. You may never understand all
of its original logic.

So what does it mean to document a database? There are really two main aspects
that need to be documented: the structure of the database itself and the process by
which the database was developed.

Documenting the existing structure of the database includes describing the tables,
the columns and their data types, and the relations between tables and any other data-
base objects and constraints. This kind of documentation is often called a “data diction-
ary.” Anyone can use this dictionary to look up any table and find out what columns
it contains and what key fields it contains. He or she can also look up a column and
determine its data type and what constraints, if any, were placed on the column. This is
important information for anyone who needs to maintain the database or for applica-
tion developers who wish to build software based on the database.

Documenting the process of developing the database should include recording
the original intent of the database, the problems that it was meant to solve, the business
rules to which it must conform, and important decisions that were made throughout
the process. This information is essential to anyone who needs to maintain or modify
the database. Such an individual needs to first understand why the database is as it is.

15

16

Chapter 1 ¢ Who Needs a Database

Then he or she needs to understand how his or her changes will affect the original pur-

poses of the database.

As part of the development process, you should keep one or more notebooks in
which you put all the documents and notes related to the project. The first thing you
should add is the statement of work. The statement of work is one of the first and most
important pieces of documentation. The history section captures the original reasons
for developing the database. The scope and objectives provide insight into the specific
tasks the database was intended to perform.

In the following scenario sections and in the rest of the book, there will be “to do”
items that are labeled “Documentation” to help you record your development process.

Things We Have Done

In this chapter we have

identified a situation in which a database could prove
valuable

reviewed briefly the history of databases

identified some of the components of relational databases
such as entities and key fields

Vocabulary

Match the definitions to the vocabulary words:

1.
2.

3.
4.

O O 0 g O U1

12.
13.

observed an interview to gather general information about
a database

® broke the general information into major topics

used the major topics to develop a statement of work for the
database

Attribute — a. A type of database that uses “relations,” tables, to store and relate tables.
Foreign key — b. The process of organizing data into tables or entities and then determining the relations
among them.
Statement of work — c. The language relational databases use to create their objects and to modify and retrieve data.
Primary key — d. These files have some sort of character separating columns of data. The delimiter is often a
comma or tab, but it can be any non-alphanumeric character.
. Data integrity — e. Files where the length in characters of each column is the same.
. Redundancy — f. Refers to the accuracy and the correctness of the data in the database.
. Delimited files — g. Refers to storing the same data in more than one place in the database.
. Relational database — h. This key uniquely identifies each row in the table.
. Entity — i. This key is the primary key repeated in another table to create a link between the tables.
. Relational design — j. A short statement of one or more paragraphs that says in clear, but general, terms what the
project will do.
. SQL — k. Something that the database is concerned with, about which data can be stored.
Constraints — 1. Things that define aspects of entities.
Fixed width files —m. Limits on what the database will do.

— n. A document including the scope, objectives, and timeline for a given project.

Things to Look Up

1.

2.

Look up Codd’s twelve rules. Choose one of the rules to
explain to your fellow students.

Look up the history of SQL. How many revisions of the
standard have there been? What was added in the most
recent one?

. Use the Internet to look up database-related jobs. Make a

brief report summarizing what you find.

. A recent trend for major commercial database developers is

to offer free “Express” versions of their databases. Microsoft
has SQL Express, Oracle has Oracle Express, and DB2 has DB2
Express. Go to the company Web sites, and look up these

Express editions. What features does each one have? What
limits do they have? How do they compare to each other?

. For some time, there have been attempts to move beyond

relational databases, to find some new data model. One
direction has been to move toward object-oriented data-
bases. Another area of research is into XML-based data-
bases. Choose one of these to look up, and write a brief
summary of what the model entails and what is the
current status of the model.

. Look up statements of work. What are some additional

elements that can be included?

Practices

1. Think about keeping a home budget. Would it be better
to keep the budget in spreadsheets or to create a budget
database? Write a couple of paragraphs that describe your
choice and at least three reasons to justify it.

2. Think of a small business or nonprofit that you know that
could use a database. Explain why you think a database
would help the business. List the benefits the business or
nonprofit would gain from a database.

3. An entity is something the database is concerned with. For
instance, a movie rental business would probably have an
entity called DVD. Attributes are things that describe the
entity. Make a list of possible attributes for a DVD entity.

4. You are going to interview a small business owner about
creating a database for his sandwich shop and bakery. Make
a list of questions for this initial interview. Remember at this
point you just want the big picture and major requirements.
Don’t get too deep into the details.

5. Think about the sandwich shop and bakery in Question 4.
List what you think the major topics would be.

6. A dentist office wants a database to track its appointments.
The specifics of what they want to track are as follows:

All customers of the dental office

Customer appointments

Which dentist serves each customer at the appointment
Which assistants assist each dentist

In brief what services were provided at the appointment

I N

The database will not track bills and payments (they have a
separate software for this purpose).
Write a statement of scope for the dental office database.

Scenarios

These scenarios are designed to give you the opportunity to
experience database development from beginning to end. Each
has its own unique challenges. The scenarios can be pursued
individually or in small groups. I would suggest choosing one
scenario that interests you to follow throughout the term. Later,
if you are so inclined, you can return and work through some
of the others.

WILD WOOD APARTMENTS

Wild Wood Apartments owns 20 different apartment com-
plexes in Washington, Oregon, California, and Idaho. Each
apartment complex contains anywhere from 10 to 60 separate
apartments, of varying sizes. All apartments are leased with a
six-month or yearlong lease.

It is the company’s practice to hire one of the tenants to
manage each apartment complex. As manager, he or she needs
to admit new tenants to the building, collect rents from exist-
ing tenants, and close out leases. The manager also needs to
maintain the apartments by conducting any repairs, replace-
ments, or renovations. These can be billed back to the parent
company. For acting as manager, the tenant gets free rent and a
stipend. The stipend varies depending on the size of the apart-
ment building.

Each manager is expected to send a report to the Wild
Wood Apartments company headquarters in San Francisco
every quarter. This report summarizes the occupancy rate, the

Chapter 1 © Who Needs a Database 17

7. List the major themes for the dentist office database in
Practice 6.

8. How long do you think it would take to gather the informa-
tion needed to make the dentist office database in Practice
6? Discuss what steps you think would be involved and
how long it might take you to build the database.

9. Look around the school or think of some businesses or non-
profits with whom you are familiar. Identify at least one
situation in which a database could be of help.

a. Describe why a database would improve the situation.
b. Describe what the major topics of this database would be.
c. Write a statement of work for this database.

10. An instructor has been keeping all his grade books in Excel
for years. He has a separate spreadsheet for every course.
In the spreadsheet, he tracks the scores for every assign-
ment and test and then assigns term grades based on the
overall averages. Whenever a former student contacts
him requesting a letter of recommendation or whenever
the administration requests information concerning a stu-
dent in a previous term, he has to open and search several
spreadsheets to get the student’s information.

a. What are some of the advantages a database would
have over the current system for this instructor?

b. What would be some of the major topics for the
database?

c. Write a statement of work for the preceding database.

total revenues in rent, the total expenses in maintenance and
repairs, and so on. Currently, managers fill out a paper form
and mail it back to headquarters. Many apartment managers
have complained that preparing this report is a very difficult
and time-consuming process. Also, the managers at corporate
headquarters have expressed concerns about the accuracy and
verifiability of the reports.

To allay these concerns and to improve the ease and effi-
ciency with which the apartment managers conduct their daily
business, the company is proposing to develop a centralized
database that can be used by the managers to track the daily busi-
ness of their apartment building and to prepare their reports.

To do

1. List the major topics for this database

2. Write a draft statement of work. Include a brief history, a
statement of scope, objectives, and a preliminary timeline.

3. Documentation: Start a notebook, either electronically
or physically, to record your progress with the scenario
database. Add the statement of work and any notes to
the notebook.

VINCE'S VINYL

Vince Roberts runs a vintage record shop in the University dis-
trict. His shop sells 45’s, LPs, and even old 76 RPM records.

18 Chapter 1 ¢ Who Needs a Database

Most of his stock is used—he buys used vinyl from custom-
ers or finds them at yard sales and discount stores—but he
does sell new albums that are released on vinyl. For a couple
of years, he has kept most of his inventory either in his head
or in a spiral notebook he keeps behind the sale counter. But
his inventory and his business have grown to where that is far
from sufficient.

Vince is looking for someone to make him a database. He
knows he needs to get a better handle on several aspects of
his business: He needs to know the extent and condition of his
inventory. He needs to know the relative value of his inventory—
some records are worth a fortune; some are nearly worthless. He
also needs to track where, from whom, and for how much he
purchased his stock. He needs to track his sales. He often is not
entirely sure how much money he has spent or how much money
he has earned.

In addition he would like to allow customers to make spe-
cific requests and notify them if a requested item comes in.
More generally he would like to make an e-mail list of inter-
ested customers in order to let them know about new items of
interest.

Someday, he would like to expand his business online.
But he knows he needs to have everything under control
before then.

To do

1. List the major topics for this database.

2. Write a draft statement of work. Include a brief his-
tory, a statement of scope, objectives, and a preliminary
timeline.

3. Documentation: Start a notebook, either electronically
or physically, to record your progress with the scenario
database. Add the statement of work and any notes to
the notebook.

GRANDFIELD COLLEGE

The law requires that any business, including a school, track
its software. It is important to know what software the school
owns, in what versions, and what the license agreement for that
software is. There are several different licensing schemes. The
least restrictive is a “site” license which allows an institution
to have a copy of the software on any machine on the business
property. Other licenses specify a certain number of active cop-
ies for an institution but don’t worry about which machine or
user has the copy. The more restrictive licenses do specify one
copy per specific machine or user.

Whatever the license agreement for particular software, it is
essential for the institution to know which software is installed
on which machine, where that machine is located, and which
users have access to that machine. It is also important to track
when the software is uninstalled from a machine and when a
machine is retired.

An additional useful feature of any software-tracking
database would be to track software requests from users to
determine (1) if a copy of the software is available and (2) if
it is something that should be purchased. All installations are
reviewed and must be approved.

For now the school just wants the database to track fac-
ulty and staff computers and software. Software for student
machines is a separate and complex issue and will be treated as
a separate project at a later time.

To do

1. List the major topics for this database.

2. Write a draft statement of work. Include a brief history,
a statement of scope, objectives, and a preliminary
timeline.

3. Documentation: Start a notebook, either electronically
or physically, to record your progress with the scenario
database. Add the statement of work and any notes to
the notebook.

WESTLAKE RESEARCH HOSPITAL

A hospital is conducting a double blind test of a new depression
drug. It will involve about 20 doctors and about 400 patients.
Half of the patients will get the new drug, and half will get tra-
ditional Prozac. Neither the doctors nor the patients will know
who is getting which drug. Only two test supervisors will know
who is getting what. The test will last about 18 months. Each
doctor will see 20 patients initially, though it is expected some
patients will drop out over time. Each patient will be coming
in twice a month for a checkup and interviews with their doc-
tor. The drugs will be dispersed in a generic bottle by the two
supervisors, one of whom is a pharmacist.

To track this study, the hospital will need a database. It
will need to track patients” information from their first screen-
ing through each of their interviews. In particular, they are
looking at whether the patient seems more depressed or less,
what their appetite is like, are they sleeping, and what kind of
activities they are engaged in, if any. Also, they will be look-
ing for specific physical side effects such as rashes, high blood
pressure, irregular heart rhythms, or liver or kidney problems.

Doctors need to be able to see their own patient’s informa-
tion, but not that of any other doctor’s patients. They also need
to be able to enter blood pressures, blood test results, the depres-
sion indicators, their own notes, and so on for each session.

Patients should be able to see their own medical profile, the
doctor’s notes, and nothing else.

Only the two researchers should be able to see everything;:
all patient information, all doctors’ notes, and which drug each
patient is being given.

There is always some danger of spying by other companies
interested in similar drugs, so in addition to the security of the
blind test, the database needs to be secured against outside
intrusion as well.

To do

1. List the major topics for this database.

2. Write a draft statement of work. Include a brief history, a
statement of scope, objectives, and a preliminary timeline.

3. Documentation: Start a notebook, either electronically
or physically, to record your progress with the scenario
database. Add the statement of work and any notes to
the notebook.

SUGGESTIONS FOR SCENARIOS

Scan the scenario descriptions and list the nouns. Identify the
important nouns, the ones that describe features of the poten-
tial database. These should be your major topics. Each scenario
should have at least four major themes. Some have more.

All of what you need for the history and statement of scope
is present in the scenario descriptions. You are not expected to

Chapter 1 ¢ Who Needs a Database 19

invent anything new at this stage, even though you might have
ideas about other things the database could do.

At this point, the timeline is pure guesswork. Just give it
your best guess. Think about what the deliverables will be, even
though a lot of them involve things you haven’t worked with
yet. Use the statement of work in the chapter as a guide.

20

CHAPTER 2

Gathering Information

INTERVIEWS, OBSERVATIONS, AND REVIEWING DOCUMENTS

Now that she has the scope of the database, Sharon begins to gather information about the data the
database will need to capture and process. First, she looks at the sheets that have been used to schedule
tutoring sessions. She also looks at the spreadsheets the supervisor develops for reports and other related
documents. Then she arranges an interview with several of the tutors and a couple of students. As a
follow-up, she creates a questionnaire for students who use the tutoring services. Finally, she spends an
afternoon in the computer lab, observing how students schedule tutoring and how the actual tutoring
sessions go.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

= Review documents to discover relevant entities and attributes for database
B Prepare interview questions and follow up
¥ Prepare questionnaires

® Observe work flow for process and exceptions

LOOKING AT THE DOCUMENTS

Sharon has arranged to meet with Terry early in the morning. She arrives on time, and Terry greets her. “Let’s
go look at how students sign up for tutoring now.”

Sharon follows Terry to the lab. On the counter of the service station at the front of the lab, there is
a clipboard with sign-in sheets for tutoring. Each sheet is for one week. Across the top are the days of
the week. Down the left margin are times. Tutors mark the times they are available and what topics they
are tutoring by listing their name and the class they are tutoring for in a time slot. Students sign up for a
time slot.

Sharon looks at the sheets. “I presume TT stands for tutor and CL for class and ST for student. Is that
correct?”

Tracy nods, “Yes that is correct.”

“Is this all the information you have about the tutoring sessions? How do you know if the student showed
up or not?”

Chapter 2 ¢ Gathering Information

Tutoring for the Week of 4/12 to 4/16/2009

Monday Tuesday Wednesday Thursday Friday
9:00 AM TT: 1T 1T TT:Aimes TT:
CL: CL: CL: CL:(Math 290) CL:
ST: ST: ST: ST:Laura Jones ST:
TT: TT: 1T TT:Carson TT:
CL: CL: CL: CL: (ITC 110) CL:
ST ST ST ST ST
TT: 1T TT: Johnson TT:
CL: CL: CL: (ITC 224) CL:
ST ST ST Shanna Taylor ST
9:30 Am TT:Johnson TT: TT:Carson TT: TT:Johnson
CL:(ITC224) CL: CL: (ITC 110) CL: CL:(ITC 224)
ST: ST: ST:Peter Laws ST: ST:Bob Green
TT: 1T TT:Johnson 1T TT:
CL: CL: CL: (ITC 224) CL: CL:
ST: ST: ST:Sara Lewis ST: ST:
1T 1T 1T 1T TT:
CL: CL: CL: CL: CL:
ST: ST: ST: ST: ST:
10:00AM TT: 1T TT: 1T TT:Stevens
CL: CL: CL: CL: C:(Math 100)
ST: ST: ST: ST: ST:Thomas Seth
1T 1T 1T 1T TT:
CL: CL: CL: CL: CL:
ST: ST: ST: ST: ST:
1T TT: 1T TT: 1T
CL: CL: CL: CL: CL:
ST ST ST ST ST
10:30AM TT: TT:Mary L TT: TT:Mary L TT:Stevens
CL: CL:(ENG 101) CL: CL:(ENG 101) CL:(Math 100)
ST: ST:Ly Poon ST: ST: ST:Thomas
TT: TT:Sanderson 1T TT: 1T
CL: CL:(ITC 110) CL: CL: CL:
ST ST: Anderson ST ST ST
TT: 1T TT: 1T TT:
CL: CL: CL: CL: CL:
ST: ST: ST: ST: ST
11:00AM TT: TT:Mary TT: TT:Mary TT:Stevens
CL: L CL:(ENG 101) CL: L CL:(ENG 101) CL:(Math 100)
ST ST: Snodgrass ST ST:Martin Yang ST:Brown
1T TT: 1T TT: 1T
CL: CL: CL: CL: CL:
ST: ST ST ST: ST
TT: 1T TT: 1T TT:
CL: CL: CL: CL: CL:
ST ST: ST ST: ST

21

FIGURE 2-1 Morning Tutoring

Appointments

22 Chapter 2 ¢ Gathering Information

FIGURE 2-1 Continued

REQUIREMENT

This is something a database must
do. For instance, it must keep track
of tutors and the classes for which
they can tutor.

WORK SHADOWING

It means following and observing
persons as they go through their
work routine.

DOMAIN

This is the focus of the database. If
the database is about the tutoring
program, its domain is “tutoring.”

STAKEHOLDER

Anyone with a “stake” in the final
product. Anyone who will use or be
affected by the database.

EXCEPTION

A variation in how things are done
or recorded, an alternate process.

Monday Tuesday Wednesday Thursday Friday
11:30AM TT: TT:Mary L TT: TT:Mary L TT:

CL: CL:(ENG 101) CL: CL:(ENG 101) CL:
ST: ST: ST: ST: ST
TT: 1T TT: 1T TT:
CL: CL: CL: CL: CL:
ST: ST: ST: ST: ST
1T 1T 1T 1T TT:
CL: CL: CL: CL: CL:
ST ST: ST ST: ST

[i

= Things You Should Know

Gathering Information

Before you can actually begin designing a database, you must understand what data the database
needs to store and how that data will be used. It is tempting to think you understand the gist of what is
going on and start sketching out tables and columns, but it is always better to wait. Gather information.
Make sure that you understand exactly what the customer needs to store in the database and why.
Gathering information is a complex task. Most projects have many facets that need to be
accounted for. It can be quite daunting, but there are some basic steps to help you proceed.

e Initial interviews with the chief stakeholders (the managers or executives initiating the data-
base project)

e Review of business documents to identify data elements

e Interviews with stakeholders

e Questionnaires

e Work shadowing (observing the flow of information)

The initial interview should provide the overview of the database. In it, you define the domain
of the database, that is, what business tasks and information the database is meant to handle. You
may get a few specific requirements in this initial interview, but the primary goal should be to get a
clear picture of why the database is needed and what, in general, it is meant to do.

One of the first tasks should be to review any business documents. Business documents consist
of forms and reports related to the data, but they can also include things like memos, organizational
charts, mission statements, company goals, plans, and so on. Reviewing documents allows you to
begin to make a list of what kind of content your database will have. It is important to ask about any
abbreviation or item you don’t understand.

Next, you should identify the chief stakeholders. A stakeholder is anyone who will interact with
the database directly or indirectly. A stakeholder is anyone who has a “stake” in the results.
Stakeholders include the managers and the employees who will work with the database. They prob-
ably also include IT staff who will develop, maintain, and support the database. They may also include
direct customers and business partners.

Once you have identified stakeholders, you should arrange interviews with each group or
possibly with all the stakeholders together. The purpose of the interviews is to get each stakeholder’s
perspective on what data the database needs to store for their use and how they will need to process
that data.

Questionnaires may be more efficient to gather some types of information. Through this meth-
od, you can often get responses from more people than in an interview. Questionnaires are best for
technical information and closed-ended questions that require simple, straightforward answers.

Finally, it is extremely valuable to watch how people work with the system they currently have.
You can observe the “flow” of the data, how it is captured, and how it is used. It is also a valuable way
to discover exceptions to the rule: “Oh, we always give Mr. Johnson a discount, he has been such a
good customer” or “Sometimes we waive the fee. It is up to the clerk.” If your database doesn’t allow
for common exceptions, it may prove too rigid to be useful.

“I use these sheets but I also have the tutor’s reports. Each tutor is supposed to fill
out a short report form for each session time they sign up. In fact, the reports are my

Chapter 2 ¢ Gathering Information 23

primary source of data. The sign-up sheets are just a check to make sure that I have all
the report forms. Some tutors are a little lax about turning them in.”

“Do you have any of those forms that I could look at?”

Terry smiles, “Of course.” She walks behind the desk. “We keep the forms here for
the tutors.”

Sharon takes one of the forms and looks at it briefly. “It seems simple enough.”

Terry nods. “It is quite simple. We wanted the tutors to focus on tutoring, not on
paper work.”

Tutor Session Report Form

Tutor Name

Session Date

Session Time

Student ID

Student Name (NA if no student signed up)
Materials covered (NS if no show)

Sharon asks, “Does it give you the information you need to make your reports.”

Terry smiles wryly. “That’s difficult to say. I use them, but it’s certainly not easy to
make my reports from them.”

Sharon says, “Maybe you can show me some of the reports you need to make and
explain what you have to do to complete them.”

“No problem, let’s go back to my office.

Things You Should Know l?;

Reviewing Business Documents

The forms and reports a business uses to gather and disseminate information are an invaluable
source for understanding several aspects of a business’ data needs. For one thing, they provide clear
insights into the daily business processes. They show how information is gathered about various
transactions and then how that information is passed to other people and departments. Studying
business documents can reveal not only what information is needed but also when and in what
sequence. Second, carefully scanning the forms and reports will reveal many, perhaps most, of the
individual pieces of data the database will need to contain. Business documents can reveal how
the data will be used, that is, how it will be summarized, analyzed, and presented.

There are several kinds of basic business documents that can be relevant. Two of the most
important documents are forms and reports. Forms are documents, either on paper or on the
computer, that businesses use to capture data. They are used to “input” things like new customer
information, sale details, or an employee’s hours. Reports are documents that present “output” from
the system. They summarize and analyze the data that was collected through forms and other means
or the current status of inventory.

Several other types of documents can also be useful when trying to get a picture of the data
that a database needs to process. Manuals and procedures can give you a sense of how things are
processed, or, at least, how they are supposed to be processed. Memos and letters can provide
some insight into issues that can arise in the system and also provide a sense of how the information
moves through an organization and who is responsible for what parts of the information. Annual
reports offer insights into the state of the organization and into what function the proposed
database might serve within the broader business context. Even mission statements and goals can
be useful. A database should be supportive of the mission and contribute to one or more of the
stated goals.

In her office, Terry logs into her computer and brings up Excel. She opens a
spreadsheet. “Here is an example of a simple time sheet.”

FIGURE 2-2 Tutor Session
Report Form

Caution
Make sure you understand all

the terms and abbreviations on
the forms and reports you review.

FORM

A document, paper or electronic,
that is used to gather data.

REPORT

A document, paper or electronic,
used to display summarized or
formatted data.

PROCEDURES

Documents that describe the
approved steps for completing some
business process. For example, a
“How to” document.

24 Chapter 2 ¢ Gathering Information

FIGURE 2-3 Tutor Pay
Spreadsheet 1

FIGURE 2-4 Total and
Unduplicated Total

Tutor Pay
For weeks beginning 4/6/2009 and 4/16/2009
Tutor Week1 Week2 Total Hours Wage Gross Pay
Aimes, Tabatha 05 2 2.5 $ 1050 $ 2625
Carson, Karen 8 10 18 $ 1050 $ 189.00
Johnson, Luke 3 45 75 $ 1050 $ 7875
Lewis, Mary 1 35 45 $ 1050 $ 4725
Sanderson, Nathan 3 3 6 $ 1050 $ 6300
Stevens, Robert 4 5. 95 $ 1050 $ 99.75
Totals 19.5 28.5 48 $ 504.00

Sharon looks over the spreadsheet. “You get the hours for each tutor by going
over those sign-up sheets and the report forms?”

“Yes.”

“I imagine that can be labor intensive and error prone.”

“You can only imagine. I used to assign this task to work-study students. But, no
matter how good they were or how much I trusted them, I never felt confident until
I'had rechecked all the materials. So now I just do the payroll report myself.”

“I think we can make this task a lot easier with a database and a lot more accurate.
What other reports do you have to make?”

“Well, one important report is total student usage. For this, I report the total of all
sessions attended by students in a term and then the unduplicated count of students.”

“Unduplicated means you only count each individual student once. Is that
correct?”

“Yes. We need to know how many total tutoring sessions are attended, but we
also need to know how many individual students are taking advantage of the
tutoring.”

Tutorial Usage Term 1, 2009
2500 2345

2000

1735

1500

1000

500

Total Unduplicated

“Here are three other important reports. The first two charts cover demographics
and the third those topics that are most sought after.”

Sharon looks at the charts carefully for a moment and then asks a question: “How
do you get the demographic information?”

Terry sighs, “It's not always easy. As long as the tutors remember to put in the
students’ ID numbers, I can locate the students on the school’s Enrollment database.
I can get their gender and ethnicity information there. If there is no student number
for a particular student on any of the forms turned in, I can usually locate the student
on the school’s Enrollment database by searching for his or her last name and compar-
ing that with the classes he or she is enrolled in and the topics he or she is seeking
tutoring in. The hardest part is actually the unduplicated counts. I have to manually
eliminate duplicates.”

Chapter 2 ¢ Gathering Information 25

Unduplicated Student Count by Gender

FIGURE 2-5 Unduplicated
Count by Gender

Unduplicated Student Count By Ethnicity

NAmer
2%

FIGURE 2-6 Unduplicated
Ethnicities

Unduplicated Students by Subject Area

FIGURE 2-7 Unduplicated
Subjects

26 Chapter 2 ¢ Gathering Information

FIGURE 2-8 Report Statistics 1

THINGS TO THINK ABOUT

Are there other forms you would have asked to What other kinds of forms could be relevant
look at, if you were Sharon? to the Tutor database?

“That sounds like way too much work.”

“Believe me it is. But many of our grants depend on ethnicity reports. We must
show that we are serving a diverse population. Here is the actual spreadsheet I use to
create the charts.”

Report Statistics
Fall Term 2010
Students
Total Usage 2345 Workforce Retraining 247
Unduplicated Usage 1735
Difference 670
Unduplicated Demographics
Male 937
Female 798
Total 1735
Ethnicity
White 868
AfAm 312
Asian 312
Pacls 121
NAmer 35
Other 87
Total 1735
By Subject Area
ACC 139
BUS 121
ENG 347
HIS 139
ITC 139
MAT 607
SCI 243
Total 1735

Sharon looked over the spreadsheet. “You have to gather all that information by
hand? I have just a couple of questions about some of the abbreviations. Does ‘Pacls’
mean ‘Pacific Islanders’?”

“Yes.”

“Also what does “Workforce Retraining’ refer to?”

“Several students received are identified as workforce retraining. Usually they are
students who have lost their jobs and have been given government grants to return to
school. Workforce retraining will pay for tutoring for those students.”

“How are other students covered?”

“We get some money from different federal grants. Often these are tied to the
diversity of the students we serve. Some are paid from funds at the college.”

Chapter 2 ¢ Gathering Information 27

“Does the database need to track which students qualify for which funding?”

“No, I can handle that. If I can just get the basic counts and statistics easily, it will
make my life a hundred percent better.”

=
Types of Database
Relational databases can serve different needs for different users. These different needs can require
different setups and structures.

One common usage of a relational database is as a Transaction database. A Transaction data-
base, as its name suggests, records the data from immediate transactions such as sales or orders in
real time, as they happen. These databases can be attached to a point of sale at a cash register, or
they can be behind Web forms such as at Amazon.com or eBay. Transaction databases are optimized
for speed and efficiency. Nobody wants a long wait while his or her order is being processed. Also,
given the global nature of business, it is essential that many of these databases be as available as
possible, preferably 24 hours a day seven days a week.

Another common use for a database is as a management information system (MIS). The
purpose of an MIS is to use the data to provide data managers the information they need to manage
an organization. An MIS focuses on data analysis. It is used to query data to return reports on things
like total monthly sales, number of products sold, total shipping costs, and so on.

The MIS bases its reports on the data gathered by the Transaction database. In a simple
situation like the tutoring program, where the number of users is relatively small, the Transaction
database and the MIS database may be the same physical database. But in enterprise organiza-
tions, they are usually separated. The types of queries that an MIS runs to retrieve the data
for reports would slow down the performance of the Transaction database more than is accept-
able. So, typically, the data are periodically copied or shipped from the Transaction database
to the MIS.

Increasingly, DBMS software is including tools for business intelligence. Business intelligence
moves beyond management systems. Business intelligence systems mine data for patterns and trends
that might help a business improve its offerings or services. A company, for instance, might analyze
its customer data to find the ages and incomes of the customers who buy a particular product. They
might look out for what other products those customers have purchased in a six-month period
before or after the purchase of a particular product. They might look for a trend related to current
advertising or a current event.

Data mining, exploring data sets looking for useful trends, is related to the idea of maintaining
data warehouses. The concept of a data warehouse is to bring together all the data that an organi-
zation generates, not just the transactions that are recorded in formal databases, but also the
memos, letters, minutes from meetings, and other documents any organization generates. The data

warehouse brings them all together in a way in which and a place where data can be extracted and
compared.

Things You Should Know

THINGS TO THINK ABOUT

Why do you think the idea of data warehouses
and data mining hold such an attraction to
organizations? What are some of the benefits an

organization could get from using business intel-
ligence tools?

The concept of the data warehouse is obviously very attractive, but it has proven very difficult
to bring about in practice. New RDBMSs have included tools to incorporate more heterogeneous
data such as documents, but it is still difficult to compare data from the different sources. One
development that holds the promise of making data warehousing a reality is XML. XML is a set of
technologies based on Unicode. XML is marked up text that follows a few simple rules. Ideally, an
XML document is self-describing, that is, the markup tags tell a user what the text between consists
of. Increasingly, business documents are saved as XML. (It is now the default format for Microsoft
documents.) Tools have been developed for querying XML, allowing a user to extract and compare
pieces of documents. RDBMS systems have also added data types and tools to store and manipulate
XML documents. These developments may make data warehousing a fully realized business tool.

TRANSACTION DATABASE

A database that is optimized to
keep track of transactions such as
sales or purchases in real time.

MANAGEMENT INFORMATION
SYSTEM

A database optimized for queries
that return summary information
about transactions.

BUSINESS INTELLIGENCE

A set of tools for analyzing trends
and patterns in business data.

DATA MINING

Using business intelligence
techniques on a variety of data
sources brought together in a data
warehouse.

XML

Marked up Unicode text that follows
a few strict rules—increasingly used
as a file format for documents and
data transferal.

28 Chapter 2 ¢ Gathering Information

OPEN-ENDED QUESTIONS

Questions that don’t have a fixed
answer and that involve getting a
participant’s opinion or thoughts
on a topic.

THINGS TO THINK ABOUT

The confidentiality of data in a database is a competitors could use to gain a competitive
major issue for many companies. The database edge. Can you think of some ways that you
may contain private information about employ- could assure a client that you will keep all their
ees or clients, or it may contain data that data confidential?

Sharon stands up. “Thank you. Looking at these reports will help me a lot. They
give me a much better idea of what kind of data the database needs to track and store.
Do you think I could get some copies to look at? I think I would also like to see exam-
ples of reports you have to make to your funding sources.”

Terry hesitates for a moment, “I think I can do that—but some samples might
have confidential information on them.”

“I understand. You can give me blank ones, or you can black out private informa-
tion. I promise not to divulge any information that could even remotely be considered
private. I'll even sign something to that effect if you want.”

“That shouldn’t be necessary. I will get copies of the things I showed you and the
other reports and get them to you tomorrow. What’s next?”

“Thanks. The next thing I really need to do is interview some of the tutors and, if
possible, a student or two to get their perspective. It is a good idea to have some repre-
sentation of all the stakeholders. Is there a good time to do that?”

Terry thinks for a minute. “We have a tutor’s meeting once a month. The next one
is the day after tomorrow at 9:00 AM in Room 301. Would that work?”

“Yes that would work just fine, thank you.”

“I'll ask the tutors if they know of any students willing to attend.”

Sharon pauses a moment, thinking, and then asks, “How long do these meet-
ings last?”

Terry says, “About an hour.”

“And how many minutes can I use of it?”

Terry thinks for a minute. “I think we can give you 45 minutes of it.”

“Thank you. I will see you then.”

L'e; Things You Should Know

Interviews

Interviews can be an excellent way of gathering information. They are especially good for asking
“open-ended questions.” Open-ended questions are questions that don’t have a definite answer. You
can ask questions such as, “What is the best thing about the current system?” or “What would you
most like to see out of a new system?” You can also ask questions such as, “describe what a typical
sale is like” or “walk me through the process of registering a new customer.”

There are several things to think about when conducting interviews:

You need to make sure you capture the points of view of every stakeholder group. It is not
enough to get the manager’s perspective on what a database should contain and do. You also need
to get the perspective of the people who are going to work with the data every day. You need to get
the opinions and needs of the IT people who will have to support and maintain the system. It is also
likely that you will want to get some reaction and ideas from customers who will also be affected by
the new system.

Often it is a good idea to get these opinions in separate interviews. You don’t want those who
work with the system to be intimidated or influenced by their managers. But if you can’t conduct the
interviews separately, try to get as many different groups of stakeholders together as you can and, if
possible, arrange an outside facilitator—someone with no stake in the system, whose whole purpose
is to make sure the process unfolds as fairly and completely as possible.

If you are conducting the interviews, it is absolutely vital that you be prepared. Know what
guestions you want to ask ahead of time. Know how much time you want to devote to each

Chapter 2 ¢ Gathering Information =~ 29

question. Also know how much time you can allot for follow-up questions or clarifications. Lay out
the rules and timelines at the beginning of the interview so that everyone understands the process.
During the interview, you must act as a facilitator. As such, your chief responsibilities will be to ask
the questions and make sure everyone has a chance to respond. It is important to keep people on
track and to politely cut them off if they veer too far from the subject or if their response is too long
for the time allotted and will prevent others from having their turn. It is a delicate process, because
you want as full an answer as possible.

Because facilitating is such a complex task, you should not complicate it further by also being
the note taker. If you attempt to take notes, you will find either that you have to pause the interview
while you record the responses or that you will continue with the interview and your notes will be
incomplete. Neither is optimal. Assign this task to someone else, or use a recording device.

PREPARING FOR THE INTERVIEW

That evening Sharon makes some notes for questions to ask during the interview. It is
important that she ask the right questions. She jots down a few questions for the tutors.

* How do you set your schedule?

* How does a typical tutoring session go?

* What do you enter into the “topics covered” section of the report?
* How do you cancel a session?

Next she thinks of some questions to ask the students.

* How do you figure out what tutoring is available?
* How do you sign up for a session?
* Would you be willing to enter demographic information to get tutoring?

Sharon takes out her laptop and works out an interview plan.

Total time: 45 minutes.
Tutor Interview Allow 5 minutes for introductions.
Question For Time Allotted
How do you set your schedule? Tutors 5 minutes
How do you sign up for a tutoring session? What would Students 3 minutes
make the process easier?
What do you typically put in the section of the tutor report Tutors 2 minutes
labeled “Materials Covered"?
How do you check to see if a student is in the class he or Tutors 3 minutes
she is to be tutored for?
Why do you sometimes not get the students’ ID number? Tutors 2 minutes
How do you cancel a session? Tutors, students 5 minutes
Would you be willing to enter your demographic information Students 2 minutes
to get tutoring?
What is the number one thing you would like to see changed Tutors, students 8 minutes
in the current system?
What part of the current system do you like? Tutors, students 5 minutes
Time for follow-up questions Tutors, students 5 minutes

Sharon looks over the plan. It looks good on paper, but it is a pretty tight schedule.
She is going to have to keep close track of the time. She is also worried about keeping
notes. It will be almost impossible to both keep notes and facilitate the session. Then she
remembers a digital recorder she had bought to record class lectures. She hadn’t used it
much because she found she preferred to type the lecture notes directly into her laptop,
but for this interview, it would be perfect. Now she felt ready and could relax.

Caution
Always prepare for an interview.

Conducting an interview
without planning, at best, will result in
an interview that is less focused than it
could be and, at worst, could result in
an awkward disaster that could erode
confidence in you and the database
project.

FIGURE 2-9 Tutor Interview
Plan

30 Chapter2 ¢ Gathering Information

Caution
If possible, use a recorder or have

someone else take notes. It is
almost impossible to facilitate a meeting
and take notes too.

THE INTERVIEW

Sharon arrives a few minutes early for the monthly tutors” meeting. She waits for a
moment at the door of Room 301, reviewing the questions and the timing in her mind.
She had to make sure the answers were concise, which could be difficult. People tended
to want to talk and go off on tangents and accounts of personal experience. Shortly after
Sharon arrives, Terry walked up and opened the room. “Good Morning,” she said.
Over the next five minutes, several people arrived and took seats. When it is time for
the meeting to start, Terry stands in front of the classroom and introduces Sharon.

Sharon stands and smiles, “Good morning. I think the first thing we should do is
introduction. Most of you probably know each other, but I would like to know you
better. Just tell your name and what you tutor, or, if you are a student, give me your
name and what subject you are getting tutoring for. We can start with you.” She points
to a young man sitting in the back corner of the room.

Sharon listens as the people in the room introduce themselves. She jots down
their first names as they do the introduction. There are nine tutors and two stu-
dents. Sharon is surprised to learn during that one of the tutors is not a student at the
school. He is in fact an MBA student from another school. Terry explains, “Not all our
tutors are our students. We utilize people from the community and other schools
who want to participate in our tutoring program.” A tenth tutor arrives late. Sharon
smiles as he enters and asks him to introduce himself. Then, with a glance at the
clock, Sharon begins: “As Terry said, I am working on building a database to help
keep track of tutoring. I hope it will make all your lives a little easier. To build it,
I need to understand what you do better, and what you would like to see, so I am
going to ask you some questions. We don’t have much time this morning, only about
30 minutes, so we are going to have to keep the answers pretty short. I will leave you
with my email so you can let me know of things that you forgot about or didn’t have
a chance to tell me or any questions you might have. Also, I am going to record your
answers on my digital recorder, if no one objects. It will help me to focus on your
answers.”

Sharon asks her first question. One tutor explains how she figures out her schedule.
The hours she is in class are obviously unavailable. But she also looks at the meeting
times for the classes she is tutoring. It doesn’t make much sense to schedule tutoring
sessions for when the students would be in class. Then she decides how many hours
she can devote based on her own class work and other activities. The other tutors nod
in agreement. “That’s pretty well how we do it too.”

Terry chimes in: “Tutors can work any number of hours up to the maximum of
15 a week.”

Sharon looks at the students. “Jason, Sandy, how do you sign up for a session, and
what would make the process easier?”

Jason looks at Sandy. She nods, so he answers first. “I go into the computer lab
and look at the sign-up sheets. First, I see what time slots are available, and then I look
at who the tutor is. If I can, I choose a tutor I know and like. It can be really hard some-
times to see what is available. The sheets can get pretty messy, and it can be really hard
to read some tutors” handwriting.”

Sandy adds. “It would be nice if there were some easy way to search for all the
sessions that go with a class and see the time and tutors. It would be really nice if you
could look ahead too. I would love to schedule a series of sessions for a month or more,
but the sheets don’t go out that far.”

“The next question is for the tutors, and it is pretty specific. I've seen the report
forms you are supposed to fill out for each session, and I was wondering what exactly
you put in the box labeled ‘Materials covered.””

A female tutor, Sharon glanced at the list to recall her name—Ann, replies: “It var-
ies, sometimes I put a subject in like ‘quadratic equations,” or ‘ratios’; sometimes I put in
a specific lesson number.” Another tutor replies, “I teach English. I usually put down
things like ‘paragraphing,” or ‘agreement’ or ‘sentence fragments.” We don’t put down
everything in detail, just the gist of what we covered.”

Chapter 2 ¢ Gathering Information 31

Sharon thinks of a quick follow-up question for Terry. “Is that enough? Do you
get the information you need?”

Terry nods, “Yes, I really only need a general sense of what was covered.”

Sharon looks at her list of questions. “This one is for the tutors again. How do you
check to see if a student is registered in the class he or she is requesting tutoring in?
How about you, Nathan?”

She has noticed that Nathan, one of the tutors, seems to be a bit reluctant. He is
sitting with his arms crossed in a protective stance, and his expression is not as friendly
as most of the others. He takes a few seconds before he answers. “I usually don’t check.
I generally trust the students. We really don’t have a good way to check anyway. We
don’t have rosters for the classes, and we can’t really look it up.” He pauses again for a
moment and then adds, “I like the current system. It’s flexible and easy to understand.
Everybody is familiar with it. I am afraid that changing things will just make it all more
complicated.”

THINGS TO THINK ABOUT

Change, such as creating a new database, affect
people’s lives at work. It means a change in the
way they have always done things.

Some people anticipate change with excite-
ment, looking forward to a new and hopefully
better way to do things. Others are less enthusias-
tic. Some are actually resentful or see it as a threat.

Don’t be too quick to dismiss the negative
attitudes. They may well have valid reasons for
feeling as they do.

What would be the best way to handle such
resistance in an interview? Do you think it would
help to try to anticipate some of the objections
beforehand?

Sharon smiles and says, “That’s good to know. I really hope that, in the end, this
database will make everyone’s life easier, but you can help keep me honest. If some-
thing makes things more complicated as we develop this, let me know, and we will see
if we can fix it.”

Sharon proceeds with the rest of the interview questions. She finds out that
student IDs are missed because the form is filled out after the session and sometimes
the tutor forgets to ask for it before the student leaves. Also, Mary tells her that the
forms can be turned in a couple of different ways. They can be left after each session at
the desk for Terry to pick up. They also can be kept by the tutor and turned in directly
to Terry at the end of the pay period. Sharon also realizes, hearing the discussion, that
canceling sessions was going to be a complicated matter, one that she was going to have
to follow up on. The two students present are willing to enter their demographic infor-
mation and don’t have any concerns, but Sharon isn’t sure everyone will feel the same.
The one thing everyone would like to see changed is the scheduling process. And, the
one thing everyone likes about the current system is its flexibility.

When the interview is over, Sharon glances at the clock. Three minutes to spare.
She thanks everyone for their participation and turns off her digital recorder. Before she
leaves the meeting to Terry, she asks if any of the tutors would be willing to let her
shadow them as they go through a couple of tutoring sessions. Mary Lewis said that
would be fine. “When would you like to do it?”

“When is your next session?”

“Tomorrow at 11:00 A.M. in the computer lab.”

“OK, I'll meet you there.”

THE QUESTIONNAIRE

Sharon still has some questions about how the students who use the tutoring services
will interact with the database. She suspects it will be very hard to get an interview set
up with enough students to constitute a representative sample, so she decides to create
a simple questionnaire that the tutors can give their students after a session.

Caution

w Go over your notes or recording
within twenty-four hours. It is

important to review them while the

memory of the interview is still fresh.

32 Chapter2 ¢ Gathering Information

Caution

w Make sure your questions are
clear and not ambiguous. If

possible, have two or three other people

review your questions to make sure

they are asking what you meant to ask.

CLOSED-ENDED QUESTIONS

Multiple-choice, true and false, and
ranked-value questions—questions
with a definite answer.

Tutoring Services Questionnaire

1. Would you be willing to enter demographic information such as gender and
ethnicity to sign up for tutoring?
a. Yes
b. No
2. Would you be willing to list the classes in which you are currently enrolled?
a. Yes
b. No
3. Which is the most important factor when you are looking for a tutoring session to
sign up for?
a. The particular tutor
b. The time slot
c. Neither of the above
4. When you can’t make a tutoring session, which do you do most often?
a. Leave a note on the schedule
b. Contact the tutor by email or phone
c. Contact the tutoring office
d. Simply not show for the session
5. Which of the following best describes the process of finding a session and sign-
ing up?
a. Difficult and confusing
b. Not as easy as it should be
c. Not too difficult
d. Easy
6. If you could sign up online, which layouts would you prefer. Rank them in order
of preference
a. _ View all available tutoring sessions for all classes
b. __View all available tutoring sessions for a specific class
c. __View all available tutoring sessions for a given date
d. _ View all available sessions for a specific tutor

She prints it out. She will show it to Terry after her session with the tutor
tomorrow.

-
.
Questionnaires

Questionnaires are best for “closed-ended” questions. Closed-ended questions are questions that
can be answered with a yes or no, by multiple choice, or by ranking a set of values. They are good for
quick assessments of processes or attitudes toward a system.

Questionnaires have some advantages over interviews. They can be quicker and easier to
arrange than interviews. They can also be less expensive because they take less of the stakeholder’s
time. With interviews, you can get responses from a wider number of stakeholders. Questionnaires
can be easier to summarize and evaluate than interviews.

But they also have some disadvantages. For one thing, it is harder to evaluate the accuracy or
honesty of the response. In an interview, you have all the nonverbal clues to guide you, and you have
the ability to ask an immediate follow-up question. With the questionnaire, you have only what is on
paper. Also questionnaires are not good for open-ended and complex questions. Generally, people
don’t want to write long blocks of text in response to a question.

Interviews and questionnaires are, of course, not exclusive. Both can be useful. If you use a
guestionnaire, there are a couple of things of which you have to be careful. First, make sure your
questions are not ambiguous. Words can often be taken to mean two or more entirely different
things. You know what you mean, but with a questionnaire, you won't be there to clarify. It is always
a good idea to have two or three people read your questions and make sure that they are indeed
asking what you meant them to ask. Second, make sure you get a representative response. That is,
make sure that your questionnaire is given to enough people in enough different situations in order
to get the fairest and most accurate response.

Things You Should Know

Chapter 2 ¢ Gathering Information 33

THINGS TO THINK ABOUT

Consider the following questions:

What are the top 5 things you do at work each day?
Would this work better as a question in an interview or on a questionnaire? Why?

TUTORS AT WORK

The next day at 10:55 A.M. Sharon shows up at the computer lab. Mary Lewis arrives at
the same time. They greet each other, and Mary begins explaining the process. She
walks over toward the clipboard. “The first thing I do is look at the schedule here to see
if anyone is signed up. I also look to see if I know the student. If I've worked with them
before, it helps me have some idea of what they need.”

Sharon thinks about that a second. “That’s got to be hard. English is a big subject.
How do you know or have any idea what a student is going to need?”

Mary laughs, “It’s not really that bad. Tutoring is always tied to a specific class.
So, I know what the instructor covers in that class and have a pretty good idea of what
most students have trouble with.”

They have to wait for a moment because a student is rummaging through the
papers. He looks a little frustrated. Mary offers, “Can I help?”

He looks up. “I am looking for a math tutor.”

“What class is that?”

“Math 110.”

“I think John tutors for that class. Let me look.” She scans the sheets. “Yes. He has
two sessions this afternoon and two tomorrow afternoon. Here.” She points out the
sessions on the paper. He signs his name under the first one.

“Thanks. They should make it easier to find what you need. Thanks again.”

“Now I can see what we have going today.” She glances at the paper. “Looks like
I have a new student today, a Mark somebody—I can’t really read the last name.”

Mary goes to the desk and gets one of the Tutor Session Report forms. “I always
fill this out first thing. Some tutors don’t bother to fill them out until they are due for
payroll. That’s hard. It is almost impossible to remember everything.” She enters her
name, the date, and the time. As she finishes, she glances at her watch. “Looks like
Mark is running late.”

Sharon asks, “Does that mess up the rest of your schedule?”

“No, if I have another session immediately after, I will just cut this short. If I don’t
have one right after, I might go a bit long.”

“So you may be working more than you're getting paid for?”

Mary smiles, “It balances out.”

Mark shows up and apologizes for being late. Mary asks him to spell his last name
so she can put it on the form. Then she introduces Sharon. “She’s watching me today to
get some ideas for a database, if that is alright with you.”

“Sure, no problem.”

“What can I help you with today?”

Mark is having a problem with the bibliography for his research paper. Mary leads
him over to a computer reserved for tutors and begins to show him how to cite different
types of sources. When the session is finished, she says, “Well, Mark, I hope that helps.”

Mark replies, “Thanks, yes that does help very much.”

THINGS TO THINK ABOUT

Can you think of some other insights you can eliminated, for business reasons. But, how do

gain by observing people actually working with — you think workers would react to a database

the data? application that enforces strict procedural rules
Business managers may actually want some without any room for exception?

common exceptions to the process to be

34

Chapter 2 ¢ Gathering Information

After he leaves, Mary enters the materials covered in the Tutor Report Form.

Sharon asks, “What do you do with the report form when you are done with it?”

“That’s a good question. You can give it to the people at the desk to pass on to
Terry, but nobody does that. The desk workers are busy, and it’s easy for them to mislay
a piece of paper. So generally we just keep them ourselves until they’re due.”

“It must be pretty easy to lose them that way too.”

“It can be if you aren’t organized—and some of the tutors aren’t. They can have
troubles sometimes.”

“Do you have another session today?”

Mary nods. “Yes, in a couple of hours. I have class in between. Let’s take a look.”

Mary goes back to the clipboard and searches through the papers. “Looks like
nobody is signed up yet.”

“You get paid anyway, right?”

“Yes,” Mary says, “but the problem is, if over half your sessions go unfilled for a
month, Terry will reduce the number of sessions you can offer.”

“I didn’t know that. Is that a rule that always applies?”

“Yeah, it’s a rule, though Terry might let it slide for an extra month if you think
you can get business to pick up.”

Mary reaches into her notebook and pulls out a sheet of paper. “Here, Terry gives
this to all the tutors. It states some of the basic rules. I am surprised she didn’t give it to
you.”

Sharon glances at the paper:

YOUR RESPONSIBILITY AS A TUTOR

e Schedule your availability every two weeks.

e You can tutor a maximum of 15 hours in a week.

o Show up for every session even if no students are scheduled and stay the length of
the session.

 Fill out a session form for every session.

e Turn in all session forms on the 10th and 20th of each month.

Never do a student’s homework for them.

You are there to help them understand how to do their homework: If it comes to
my attention that you have been doing students’ homework, you could lose your tu-
toring privileges.

If you have fewer than half of your sessions filled in a 4-week period, you will
be asked to reduce the number of sessions you offer.

“Thanks, this is really helpful. I will meet you back here for the next appointment.
Just out of curiosity, what do you do if no one shows up?”
“Usually, I just work on my own homework.”

!55 Things You Should Know

|L— 3

Work Shadowing

It is important to see how the data that your database is going to store are actually used in day-
to-day business processes. You can ask people to describe what they do, and you can review the
procedure manuals, but there is no substitute for actually watching people at work.

There are several insights you can gain from this: One is to see the actual flow of data, how it
is captured, how it is transmitted to the next stage, and how it is transformed or changed in the
process. It also lets you observe how frequently something is used and its relative importance. Perhaps
the most important thing work observations can provide you is information about exceptions and
undocumented processes. When people describe their jobs, they tend to describe the main activities

Chapter 2 ¢ Gathering Information 35

they are supposed to do, the ones that match their job description. They tend to forget all the little
things they do that are not part of the job description, shortcuts, or exceptions. “Well, I am supposed
to give this to Jill and then she gives it to John, but Jill is very busy, so | usually give it directly to John.”
“Oh, we never charge Mr. Clemson a late fee. He has a hard time getting around since his stroke and
we know he is always good for the payment, so we just waive the fee.” If your database rules are too
strict to allow some of these kinds of exceptions, it may prove too rigid to actually use.

DOCUMENTATION

It is important to keep a record of your information-gathering process. A list of the busi-
ness documents you looked at, along with your questions and answers about each, can
prove invaluable later when you are reviewing your database for completeness.
Summaries of interviews and questionnaire results are also important. All these docu-

ments should be kept in a project notebook.

Things We Have Done

In this chapter we have

* looked over documents and reports to gather information
about the data the database will need to store
e prepared an interview

Vocabulary

Match the definitions to the vocabulary words:

. Closed-ended question —
. Domain —
. Business intelligence —
. Exception —
Form —

5J1H>DJNH
o N T

e conducted the interview
e prepared a questionnaire
e followed a tutor to observe the actual work process

Anyone who has a stake in the process

A document for gathering data input

A document for displaying summarized data

A question that has no set answer

A collection of all the various types of business information including

databases and documents

. Transaction database —
. Open-ended question —
. Procedure —
. Data mining —
10. Report —
11. XML —
12. Management information system —
13. Requirement —
14. Data warehouse —
15. Stakeholder —
16. Work shadowing —

O 0w g

BoBE mFe e T®

transactions

Things to Look Up

1. Information gathering is often presented as a part of
Systems Design and Analysis. Look up “Systems Analysis
and Design Life Cycle.” What are the parts of this life
cycle? How do you think this relates to database
development?

2. Look up “Joint Application Development” or JAD. Briefly
describe the process. Do you think this would work with
database development?

A multiple-choice question

A set of tools for analyzing business trends

Something the database needs to do to be successful

An alternate way of doing a process

Marked up Unicode text that follows a set of a few strict rules
A database optimized for queries that summarize transaction data
The official steps and rules for completing some process

The purpose or subject of a database

Combining data in a variety of formats for trends and patterns
Observing workers handling data on the job

A database optimized for storing and processing real-time

3. Search for an article on database design. Does it have any
discussion of information gathering? If so, what steps does
it suggest?

4. What does the term “business intelligence” mean? What
tools does the Microsoft business intelligence suite that
ships with SQL Server contain?

5. Look up “Management Information Systems.” What are
some of the features that are associated with such systems?

36 Chapter2 ¢ Gathering Information

Practices

1. Look at any common receipt from a grocery store or a res-
taurant. List all the potential data elements on the receipt.
What abbreviations of terms you don’t understand? Make a
list of questions you would ask someone if you were going
to make a database to store this data.

2. Here is a report from a college help desk database.

List the stakeholders who should be interviewed.

3. Using the form from Practice 2, see what abbreviations or
terms you don’t understand. Make a list of questions you
would ask if you were going to make a database to store
this data.

4. Create a questionnaire for the users of the form in Practice 2
with 4 or 5 questions. Your goal should be to understand
how and when they use the form.

R#: 44331

Status: In Process

User: Michael Lawrence

C#: NA Rm: 21768 P#: NA

Date Entered

8/19/2010 6:00 PM

Assigned to:

David Betting

Assigned On:

8/20/2010 11:00 AM

in 3157) before Michael

Description: Please quickly install a computer from order 317026 (faculty ones

setup, and we'll add his special needs after he’s here. | think his old dead computer
is there, but he might want something from it. Ticket is a level 1.

gets here to start work next week. Standard staff office

T Notes: New computer is in place. Old computer is at my office. — D. Betting

FIGURE 2-10 Help Desk Report

5. Here is a form to create a new account at a Web-based 7. Tomorrow you are going to interview several students who

company:

*Email Address

belong to various clubs aforementioned in Practice 6 and
their faculty advisors. You will have one hour to conduct the
interview. Think about what questions you might ask, and

“Last Name make a plan like the one Sharon made on page 20 for the
First Name interview.

Address 8. Create a questionnaire to follow up on the interview in
City Question 7. It will be distributed in each of the next campus
State club meetings.

*Home Phone 9. Think about some job that you have held. Can you list two or
*Zip Code three exceptions—that is, things you did that were different

*Enter a Password
*Confirm Password
*Enter a Password Hint

You have an interview with a manager at the company. List
at least 3 questions you would ask him about this form.

than the standard procedures, such as shortcuts or one-time
variations? (If you can’t think of a job, think of your class-
room experience. Have you ever seen an instructor make an
exception for a class or a student?) List the rules and the
exceptions, and briefly comment on why a database should
or should not allow for each of them.

6. You are going to create a database to track clubs and 10. Think of a job you held, or, if you haven’t held a job, think of

activities on campus. Make a list of some of the types of doc-
uments you would like to look at.

yourself as a student. What would somebody doing a job
shadow on your day observe?

Scenarios

Each of the scenarios has different requirements. Each is docu- ~ some samples of various forms and reports. The first example

mented differently. is of a spreadsheet to keep track of leases at one apartment

complex:

WILD WOOD APARTMENTS

As a follow-up on your initial interview with the project coor-

dinators, Wild Wood Apartments has agreed to show you

Apartment Number Lease Number Lessee Name Start Date End Date Rent Amount ($) Deposit ($) Current
201 201050109 Charles Summers 5/1/2009 5/1/2010 1,500.00 3,500.00 1
110 110060109 Marilyn Newton 6/1/2009 12/1/2009 1,200.00 2,900.00 1
306 306060109 Janice Lewis 6/1/2009 6/1/2010 1,250.00 3,000.00 1
102 102060109 Larry Thomas 6/1/2009 6/1/2010 1,250.00 3,000.00 1
209 209060109 Mark Patterson 6/1/2009 12/1/2009 1,450.00 3,400.00 1

Chapter 2 ¢ Gathering Information 37

The second example is of a spreadsheet used to track rent payments.

Date Name Apartment Lease Number Amount paid ($) Late
7/1/2009 Martin Scheller 203 203011208 1,200.00
7/1/2009 Roberta Louise 311 311060108 1,400.00
7/1/2009 Sue Tam IR 1,400.00
7/1/2009 Laura Henderson 207 207020209 1,350.00
7/1/2009 Thomas Jones 110 110010109 1,200.00
7/2/2009 Shannon Hall 205 205010109 1,350.00
7/2/2009 Bob Newton 104 104030209 1,250.00
7/9/2009 Dennis Smith 209 1,400.00 X

The third is an example of tracking maintenance requests and responses.

Apartment Resolution B Expense T expense

Number Date Problem Type Resolution Date O] (9)
303 7/5/2009 Left burner out on range electrical Electriction rewired 7/10/2009 150.00 -
201 7/5/2009 Water wastage from floor Replaced flooring with 7/21/2009 200.00 350.00

overflowing bathtub new tile

101 7/6/2009 Dishwasher backing up plumbing Filter clogged; cleared it 7/6/2009 35.00 -
207 7/15/2009 Hole in plaster walls Patched hole 7/17/2008 - 250.00
113 7/15/2009 Refrigerator failed utilities New refrigerator 7/20/2009 690.00 -

Finally, here is an example of the report that each apartment manager must turn in to the main office quarterly.

Wild Wood Apartments
Quarterly Report
Building # #12
Address 1321 Eastlake, Seattle, WA. 98123
Quarter Spring Year
Total Apartments Currently Occupied Percent No. changing tenants
45 40 89% | 13 |
Revenues
Total Rent Revenue 175,500.00
Expenses
Utilities 2,450.00
Maintenance 11,298.00
Repairs 9,790.00
Insurance 5,340.00
New Tenant Cleaning 10,400.00
Wages 19,200.00
Total Expenses 58,478.00
Unrecovered Rents 3,200.00
Total Profit/Loss 113,822.00

FIGURE 2-11 Wild Wood
Quarterly Report

Job Shadow Report

I followed apartment manager for the Eastlake Apartments, Joe
Kindel, for four hours on March 1, 2010. It was the day the rents
were due. Joe’s apartment is also his office. The first thing he
did after he opened up and let me in was to pick up a locked

box that was chained to the floor just outside his apartment
door. “The tenants can drop in their rents here,” he told me.
Joe took the box inside, unlocked it, and pulled out the
checks while his computer started up. When it was ready, he
began entering the renters’ names, apartment numbers, and

38 Chapter2 ¢ Gathering Information

payment amounts into a spreadsheet. While he was working, a
tenant came in and handed him a check. He thanked him and
added it to the pile. When he had finished, he checked his list
against a list of tenants. He told me that three had not paid their
rent yet.

He called each of the three. The first did not answer, so he
left a message. “I am not too worried about him,” Joe told me.
“He isn’t always on time, but he always pays within the 5-day
grace period.”

I asked about the grace period. Joe answered me, “The com-
pany allows a renter to be up to 5 days late without a penalty. If
you pay after that, there is a $100.00 penalty tacked on to
the rent.”

He called the second renter. She was at home and asked if
he could wait until the 10th. Joe said, “OK” and then explained
to me, “She’s an older woman and dependent on social security
and retirement checks. I give her a little more leeway. The com-
pany lets me because she has lived here forever and has always
been a good tenant. This last one though is just no good.” He
picked up the phone and called. He got no answer, and there
was no answering machine. Joe told me that he was about ready
to evict this last tenant. He is habitually late, and he is actually
two months behind in his rent. Joe tells me how difficult it is to
actually evict someone.

While he is telling me stories about past evictions, the phone
rang. A woman in apartment 211 told him that her stove wasn’t
working. Joe opened a second spreadsheet and entered some of

the details. He also wrote some notes on a pad of paper. He
reassured the woman that he would deal with it quickly and
promised to come by in the afternoon.

After four hours, I thanked Joe for his time and left him to
his lunch.

To do

1. Make a list of questions that you would ask about these
forms and reports.

2. Identify the stakeholders for Wild Wood Apartments.

3. Create a plan for an hour-long interview with represen-
tatives of these stakeholders. Then meet with the
instructor to discuss possible answers to the questions.

4. Create a questionnaire of at least 5 questions for the
managers of the 20 apartment buildings.

5. Look at the Job Shadow Report. Do you see any excep-
tions to the general rules? Do you see any new business
rules uncovered? What additional questions arise from
the report?

VINCE'S VINYL

Vince hasn’t kept very complex records, but he does have a few
things he can show you. The first thing he has is an example of
the notes he takes when he purchases an album from a
customer.

Date 5/14/2009
Seller's Name Seller's Phone Number Album Notes Condition Paid ($)
John Raymond 206.555.2352 Rubber Soul Amer. Not British vers. 2nd edition, fair 4
good Sleeve
Marylin Tayler 206.555.0945 Led Zepplin IV Not orig. Sleeve damaged, vinyl good good 4.75
Jennifer Louis 206.555.4545 Gift of the flower to Rare Donovan, box set, box cond. excellent 12.25
the Garder poor, but vinyl excellent
Laura Hall 206.555.2080 Dark Side of the Moon good 4.45

Here is an example of a sale to a customer:

Date 5/12/2009
Customer Album Price ($) Tax($) Total ($)

John Larson Dylan, Blond 19.95 1.65 21.60
on Blond

Tabitha Snyder ~ America 5.95
Joni Mitchell, Blue 6.25
Joan Baez, Ballads 4.20 1.36 17.76

Brad Johnson McCartney, Venus 5.00 0.42 5.42
and Mars

Maureen Decemberists, 15.50

Carlson The Crane wife
Muddy Waters 7.75 1.92975 25.18

Job Shadow Report

I sat with Vince for a full day of work. The morning was quiet,
and Vince spent the time sorting through a stack of albums that
he had purchased earlier in the week. He took each one out of
the sleeve and inspected it carefully. “Sometimes I catch things

that I didn’t see when I actually purchased it,” he explained to
me. “It is too late now, of course, to do anything about it, but I
want to be fair to the people I sell it to.” He put a sticker on the
cover and put “good” and a price of $6.50. I asked him about
how he classified and priced things. He told me he had four
levels: mint, good, fair, and poor. Mint was only for things that
were nearly perfect. Good meant there were no scratches and the
vinyl was not warped and not too worn. Fair meant the vinyl
was a bit more worn and might have a light scratch or two. Poor
meant the vinyl was scratched and probably warped. He didn’t
buy poor vinyl unless it was an extremely rare album. Prices
were based on what he thought the album would bring. He
based it mostly on experience.

After a while, a customer came in. He asked if Vince had seen
a copy of an old album. He commented that he didn’t think it
had ever made the transition to CD. Vince said he had seen it, but
he didn’t have a copy currently, but if the customer wanted he
would take his name and number and let him know when
he next got a copy. The customer agreed and then, after look-
ing around for about 20 minutes, returned to the counter with
5 albums. Vince wrote down each album title and the price and
then added the prices on a hand calculator. The total came to
$35.50. Vince said, “Make it thirty, and we’ll call it good.” Vince

explained that it was good for business. It made the customer feel
good, and they were more likely to come back. Several more
customers came in, and their transactions followed a similar
pattern.

In the afternoon, a customer came in with a stack of albums
he wanted to sell to Vince. Vince went through the albums,
taking each one out of its sleeve and inspecting it. In the end, he
split the albums into two piles. He told the customer he was
interested in the first pile of about 12 albums and would offer
him $20.00 for them. The customer pulled one album out of the
pile Vince had selected and said, “I thought this one might be
worth a little more. It is a first print.” Vince looked at it again.
“Yes it is, but it is scratched and only in fair condition. Still, I'll
make it $25 if that makes it seem more fair to you.” The cus-
tomer agreed. Vince told him he wasn’t really interested in the
second pile of albums. The customer could either take them
back or Vince would put them on his 5-for-a-dollar pile. The
customer chose to leave them.

Vince put the albums in a pile by his desk. Several more
customers came and went. Vince chatted pleasantly with all of
them. Several purchased an album or two. At about four, Vince
turned the open sign in his window to closed, and I thanked
him for his time and left.

To do

1. Study Vince’s sample notebook entries. Make a list of
questions you would ask about the data in them.
2. Identity the stakeholders in Vince’s record store.

Chapter 2 ¢ Gathering Information 39

3. Prepare an interview with Vince and two of his best cus-
tomers: one who both sells albums to Vince and buys
and one who mostly just buys. Then meet with the
instructor to discuss possible answers to the questions.

4. Create a questionnaire for those who sell albums to
Vince about changes they would like to see in the
process.

5. Look at the Job Shadow Report for Vince. Do you see any
exceptions? What additional business rules do you see?
What additional questions does the report raise?

GRANFIELD COLLEGE

The software management team has several spreadsheets to
keep track of software. They show you several samples. The
first is just a listing of software:

Software Version Company License Type

Windows Vista Business, Service Microsoft MS Site
Pack 2

MS Office 2007 Microsoft MS Site
Visual Studio Professional 2008 Microsoft MS Instuctional
PhotoShop CSS3 Adobe Adobe1
Filezilla 5 FileZilla Open Source
German 25 LanguageSoft LanguageSoft1

The second is a key to the different licensing agreements

and types:

Licence Type Start Date End Date Terms Pricing Pricing Unit

MS Site 7/1/2005 7/1/2010 Can install as many copies as needed on campus and on laptops 12,500 5 years
controlled by the school. Includes all service patches, updates, and
version changes

Ms Instructional 7/1/2005 7/1/2010 Used for instructional purposes only. Cannot be used for school 3,000 5 years
development projects

Adobe1 7/1/2009 7/1/2010 Reduced price per installed copy, max of 25 active copies 450 Per active copy

Open Source 7/1/2009 7/1/2020 Free for use as long as registered 0

LanguageSoft1 7/1/2009 7/1/2010 25 copies 5,200 For 25 copies

Here is an example of the list of who has what software

CCS Number Location Assigned User
3214 Rm214 Cardwell
Software Install date Rmv Date
Vista Business 5/3/2008

Ms Office 5/3/2008

PhotoShop 6/4/2008

DreamWeaver 6/4/2008

CCS Number Location Assigned User
3114 Rm212 Larson
Software Install Date Rmv Date
Vista Business 4/15/2008

MsOffice 4/15/2008

Visual Studio Pro 6/12/2009

DreamWeaver 6/14/2009 7/12/2009

40 Chapter 2 ¢ Gathering Information

And, finally here is sample of a request for new software:

Requests
CCS Number User Request Date Software Reason Response Response Date Status
2123 Johnson 5/20/2009 Camtasia | am conducting several online classes. We don’t currently have 5/24/2009 Pending

| need to be able to create visual
demos to post to the class Web site

a license for Camtasia but
will explore acquiring one

Job Shadow Report

I spent the day on 4/12/2010 following Sheri, a member of the
software management team at Grandfield College. The first
thing she did after settling into her office was check a spread-
sheet that listed pending installations. She showed me the list
and told me that she had about six installations to do that morn-
ing. She also noted that it was the most boring part of her job.
“Nothing like watching the progress bar on the monitor for
hours at a time,” she said. Next, she checked her emails. There
were three requests for additional software. She opened a
spreadsheet and entered the request information. She told me
that she would check later to see if the school had the software
or if it was something they would have to purchase. If it was a
purchase, she would have to get permission. She replied to each
of the emails to acknowledge their request.

After noting the requests, she looked again at the installa-
tion to be done. She went to a cupboard and pulled out some
disks. She told me that some software can be installed from a
network drive, but for some she has to bring the media. She
also grabbed a notebook. We went to the first office. She spoke
for a few moments with the woman who occupied the office.
They laughed at a few things. Sheri said that with luck the
installations should take no more than 30 minutes. The woman
left the office to let Sheri work. Sheri logged into the computer
as administrator and slipped in a DVD. She started the
install.

I asked her about the notebook. Sheri told me that she
carried it for two reasons. If there were any problems with the
install that she couldn’t solve, she would write down the error
messages and take them to the other techs to resolve. She also
would note in the book whether the installation was a success
or not. She didn’t put it in the spreadsheet until the installation
was complete and successful.

The rest of the morning, Sheri moved from office to office
installing software. On that day, at least, there were no major
installation issues. While we waited, she told me about other
days that didn’t go so easily. She told me about how difficult it
could be to troubleshoot a bad install, and how obscure and
undocumented settings could require hours of research before
they were discovered and resolved.

The installations were finished by lunch. After lunch, Sheri
checked with the department receiving new software and
packages. There were several that had arrived. Sheri carefully
unpackaged each arrival and noted each in a spreadsheet.
Then she checked the licensing agreements. Some she knew,
others she had to check, often looking up the licensing agree-
ment online. “Everybody is different,” she told me. “Some let
you install the software anywhere on-site. Some will only

allow a certain number of copies. Some can be placed on a
server, while some only allow client installations. Some are
tied to a particular user. It would make my life easier if things
were consistent.”

Late in the afternoon, Sheri received a call for an instructor
requesting disks for a piece of software. She told him “sure,” if
he would come up and get it. He arrived at the door shortly
afterward. She gave him the disks and made him sign for them
in a notebook. “I'll have them back to you tomorrow morning,”
he said. Sheri explained, “There are two or three instructors
who have administrative privileges on their machines. They do
their own installations and their own support.” I asked if they
track the software on those instructors’ machines. Sheri told me
that they do as best as they can, but the instructors can do pretty
much as they want. To get the admin privileges, they have to
sign a release saying they won’t violate any licensing agree-
ments and that they accept the fact that the school IT staff will
not support their computers.

Following this, it was time to quit. Sheri shut down her
computer. I thanked her for allowing me to follow her and
wished her “good evening.”

To Do

1. Study the samples given earlier. Make a list of questions
you would ask about the data in them.

2. Identify the stakeholders in the software-tracking
system.

3. Prepare a plan for a one-hour interview with representa-
tives of the stakeholders listed earlier. Then meet with
the instructor to discuss possible answers to the
questions.

4. Create a questionnaire for faculty and staff about changes
they would like to see in the request process.

5. Review the job shadowing report. Do you see any excep-
tions? Do you see any additional business rules? What
additional questions does the report raise?

WESTLAKE RESEARCH HOSPITAL

The drug study is unique in many ways. For one, the forms and
the type of information they capture are more complex. For
another, privacy rules make it difficult to shadow doctors or
researchers. But, still, if you are going to create a database, you
must begin to gather the requirements and figure out what data
are needed to be tracked.

Here is the Initial Medical History Form that each patient is
asked to fill out:

Chapter 2 ¢ Gathering Information

Initial Medical History Form

Name Date

Birth Date

Address

City State Zip
Phone Email

Group no.: Nervous disorder [Jyes [no

Agreement no.: Any form of cancer [Jyes [no

List any prescription or nonprescription medicines you are currently taking.

List any known allergies to medicines.

Have you ever been told you had one of the following?

High blood pressure [yes

Heart trouble [yes [no
Disease or disorder of the digestive tract [yes [no
Disease of the kidney [Jyes [no
Diabetes [yes [dno

Arthritis [yes [no

Hepatitis [1yes [Jno

Malaria [yes [dno

Disease or disorder of the blood? (describe)
Any physical defect or deformity? (describe)

Any vision or hearing disorders? (describe)

Any life-threatening conditions? (describe)

Any contagious disorders? (describe)

How would you describe your depression?

a. Severe and continuous
b. Severe but intermittent

¢. Moderate and continuous
d. Moderate but intermittent

When did your depression first begin?
Which of the following symptoms have you experienced

L] Sleep difficulties

L] Loss of appetite

L] Loss of libido

L] Inability to leave house

[Anxiety in social situations
O Thoughts of suicide

Briefly describe your history of depression. Include any earlier attempts at treatment.

Lung disorder [1yes [1no

I no

(continued)

41

42 Chapter 2 ¢ Gathering Information

Is there a history of depression in your family?

L1 Yes
] No

If yes, explain -

The next form is the form the doctor would fill out for each patient visit.

Patient Visit Form
Vitals

Blood Pressure

Weight
Pulse

Does the patient believe his/her depression

[Has increased
[Decreased
L] Remained the same
Check all symptoms the patient has experienced.
[Sleep difficulties
] Loss of appetite
L] Loss of libido
L] Inability to leave house
L] Anxiety in social situations
[Thoughts of suicide

List any additional symptoms or side effects

Doctor’s Notes

Recommendation:

O Continue with study
] Drop from study

If drop, explain -

Job Shadow Report “The first thing I do in the morning,” he told me, “is review
the day’s appointments.” He turned on the computer and
showed me the way it is currently done. The secretary sends an
email with a table of the patients and times of the appointments.
He prints out the list and then goes to his cabinet to pull out the

The doctors and the directors of the study were reluctant to
allow me to observe them with an actual patient, but one of the
doctors, Dr. Lewis, did agree to sit with me and walk me
through the process of a patient visit.

files of the individual patients for review. He reviews their
initial medical history and the notes of previous visits. He
makes some notes on a notepad for each patient.

When the first patient arrives, he greets them and asks how
they are doing. He told me he keeps it casual, but he notes any
complaints or signs of deepening depression. Then he goes
through the parts of the Patient Visit Form. The nurse has
already taken the patients’ blood pressure, heart rate, and
weight. He looks at them, and if the blood pressure is high, or if
there has been a dramatic change in one of the measures since
the last visit, he asks the patient about it. The he asks about their
depression. He doesn’t necessarily use the exact words of the
form or follow it in order, but he makes sure he covers all of it.
He records a few notes in a notebook while the patient talks but
waits until the patient leaves to write most of the summary. He
also waits until the end to make his recommendation to contin-
ue or to drop the patient from the study.

Iasked Dr. Lewis how he makes that determination. He told
me that it is a judgment call. Most of the time it’s in the patient’s
interest to continue with the study, but if the patient is showing
signs of significant side effects or if the patient seems in eminent
danger of doing harm to himself or herself, he would recom-
mend the patient be dropped and given alternative or more

Suggestions for Scenarios

It is obvious these scenarios don’t have all the information that
you need. Focus your questions on making sure you under-
stand all the bits of data you will need to make your database.
You, your team, if you are working with a group, and your
instructor can decide on the answers to these questions. As you
discuss possible answers, several real-world issues may arise

Chapter 2 ¢ Gathering Information 43

aggressive treatment. I asked if there were any other reasons for
dropping a patient. He said that some patients were dropped
from the study because of lack of participation, because they
didn’t show up for appointments, or were inconsistent in taking
their medications. He also noted he always worried that such
patients were possibly the most depressed and needed the
most help.

To do

1. Study the forms given earlier. Make a list of questions
you would ask about the data in them.

2. Identify the stakeholders in the drug study.

3. Prepare for a one-hour interview with representatives of
the stakeholders listed earlier. Then meet with the
instructor to discuss possible answers to the interview
questions.

4. Create a questionnaire for doctors about what they think
would help improve the process.

5. Review the Job Shadow Report. Do you see any excep-
tions? Do you find any additional business rules in the
account? What additional questions does the report
raise?

that add a great deal of complexity to the database design.
Handling some of these complexities can be a good exercise, but
students and instructors should feel free to simplify where
needed. Too much complexity can be overwhelming to some-
one just beginning to develop databases.

CHAPTER 3

Requirements and
Business Rules

Having gathered all the information about the database she can, Sharon must figure out what to do with it.
She decides to review her notes to identify all the issues with the current system. First, she looks again at
the issues with the current database. This helps her refocus on the purpose of the database. Then she lists
the requirements for the database. Next, she clarifies the business rules that define how the data are
gathered and used. With all this analysis done, she begins to identify the specific attributes the database
must contain. She reviews the materials including the forms and reports and identifies the key nouns. Then
she begins to organize them into entities and attributes. Finally, she identifies some candidate keys for the
entities.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

" Identify the issues with the current database

® Define and list requirements

® Define business rules

® Search materials for nouns to define entities and attributes
" Jdentify candidate keys for entities

GETTING STARTED

Sharon feels a bit overwhelmed by all the information she has gathered. How is she going to organize it in a way
that makes sense and helps her determine the structure and design of the database? She pulls out a notebook
and tries to sketch a plan of action. It is not easy. She decides to give her instructor, Bill, a call. Luckily, he is in
the office and picks up the phone. She explains her dilemma, “I need a plan, some way to make sense of all this
material.”

Bill thinks for a moment and then says, “Here is what I usually do: I go through the materials and iden-
tify all the issues with the current system. That helps me get the purpose of the database back in focus.
Usually the reason for developing a database is to fix those issues. Next, I look at all the requirements. What
exactly does the database need to do? Remember to look at it from each user’s perspective. Then I would
go through the materials and identify all the business rules. The rules can give you clues as to what data
must be included and how people will use them. Some of it can be incorporated into the database, and
some will have to be implemented in the client application that will need to be developed at some point.
Does that help?”

Sharon replies, “Enormously, I don’t know how to thank you enough.”

Bill laughs, “No problem. Just make a good database.”

44

Chapter 3 ¢ Requirements and Business Rules 45

Things You Should Know ‘?

Client/Server Relations

A server is a program that makes a “service” or resource available for a “client” that requests it. For
instance, a Web server makes a Web page available to a browser that requests the page to view.

Some computers are called “servers.” Generally, this means that they are optimized to run
server software. They often have more processing power and memory than other computers. They
also often run an operating system that has tools to monitor and balance service requests such as
Windows Server 2008.

Most database management programs also act as servers. They make database resour-
ces such as data available to the programs that request them. The requesting program is called
a client. The client could be a Web page or a windows program or even another database
requesting data.

It is important to note that what makes a server or a client so is the relationship between them:
A server provides services requested by a client. The server and client can be on the same physical
machine, or they can be on separate machines in different parts of the world.

Request
web page
containing

data

—
Request o el —
I—

data and reply

|| ||[—
) e page

with data

Database

Web Browser
Server

Typically users access the database through a client application such as a Windows program or
a Web page. Most users do not have the skills or the patience to navigate a relational database to
find the data they need. They require an application to query the database, to return and organize
the data in ways that they can use. In addition, giving users direct access to the database poses
numerous security risks and issues.

Database design is one major task. Designing the client application or applications for the
database is another major task. In Chapter 8, we will briefly explore some of the tools and processes
involved in creating a simple client application for the Tutor database.

REVIEW OF THE ISSUES

Sharon pulls out her notes. She looks at the notes from her first discussion with Terry.
Terry had mentioned a couple of issues with the current system. For one, she found it
difficult to determine student demographics for her reports. For another, Terry noted
that sometimes it was difficult to determine even how many hours an individual tutor
worked in a given time period.

The interview had revealed additional issues. Tutors sometimes found it difficult
to keep track of report sheets. They didn’t fill them out on time, lost the papers before
the turn-in date, or turned them in late. Students found it difficult to locate the right
tutor for their class on the sign-up sheet.

Next, Sharon reviewed the results of her questionnaire. She had received about
80 responses, which was quite good. She had spent some time and summarized the
results. She looked at that summary sheet now.

e About 80% would be willing to enter demographic information including ethnicity.
* 95% would be willing to enter their current classes.

SERVER

A program that offers services to
requesting programs.

FIGURE 3-1 Client Server

CLIENT

A program that requests a service
from a server.

46 Chapter 3 ¢ Requirements and Business Rules

PROBLEM DOMAIN

The business problem the database
is meant to address.

® About 70% said the time slot was the most important factor; 25% said the tutor,
and 5% said neither of the above.

* Of students who canceled a tutoring session, 30% said they left a note on the
schedule form. About 12% said they called the desk, and about 5% said they called
the tutoring office. About 15% said they simply didn’t show up. A total of 28 of the
students put an NA, and several of them also noted they had never canceled a
session.

¢ For question 5 on the difficulty of signing up, 40% found it confusing, 30% found
it not as easy as it should be, 23% said not too difficult, and 7% said easy.

¢ The consensus on ways to look for sessions was b, ¢, d, a.

The questionnaire reinforced the idea that locating an appropriate session and
signing up are important issues.

THINGS TO THINK ABOUT

It is always good to review what you have already What do you think would be some of
done. Database development is an iterative the dangers of just forging ahead in a purely
process. You have to constantly go back and linear way?

refine what you have already done.

Finally, Sharon reviews her notes from her observation of tutoring sessions. The
issue of the difficulties students experience signing up recurred again, plus the occa-
sional difficulty of reading a student’s name from the schedule. A couple of additional
issues were uncovered. Tutoring times can overlap, run long, or be cut short. Sharon
wonders if this is just inevitable or if some mechanism can be built into the scheduling
to help fix it. The last issue she notes is that Mary said there were different ways to turn
in the tutoring report. Either the tutor could turn in the report at the computer lab desk,
or the tutor could hold the reports and turn them in to Terry on the due date. Sharon
believes having two ways to turn in the reports contributes to the issue of lost or late
reports.

Sharon sits down and jots down the issues she has uncovered:

e It is difficult to get and track demographic information.

¢ It is difficult to summarize and confirm individual tutors’ tutoring hours.

* A related issue: getting the tutoring session reports filled out and turned in
on time.

e It can be difficult to find an appropriate tutoring session in the paper schedule.

e It can be difficult to read the schedule.

* Times can overlap, run long, or be cut short.

Sharon sits back. These are the issues her database will be designed to solve. Just to be
sure, Sharon reviews the original statement of work again. In the History section, it says
the following;:

This system has worked and continues to work, but it has several signifi-
cant problems. For one, it can be difficult for students to find appropriate
tutoring sessions. The paper forms are difficult to navigate and under-
stand. Additionally, it is very difficult for the tutoring program to track the
students using the tutoring. It is difficult or impossible to track demo-
graphic information. It is also difficult to assure that students are enrolled
in the courses they receive tutoring in. Even tracking tutors” hours can be
difficult.

Her review has revealed the same issues that were identified in the original statement
of work. So now that she is confident she understands the problem domain, she is ready
to move on.

Chapter 3 ¢ Requirements and Business Rules 47

REQUIREMENTS

The next thing Bill said to do was to go through her notes again and identify all the
requirements, the things the database must do. Once again Sharon returns to the state-
ment of work. The Scope section lays out the general requirements clearly:

The Tutoring database will manage data for the tutoring program at the col-
lege. It will track available tutors and the courses they can tutor. It will also
track each tutor’s tutoring schedule. The database will store demographic
information for students who register for tutoring. This information will be
private and used only generate general reports which include no personal
information. Students, who have registered, will be able to sign up for avail-
able tutoring sessions for courses in which they are enrolled. The database
will track whether students attended their scheduled sessions. It will also
track student requests for tutoring in additional course and subjects.

He also noted that she should look at it from different users’ points of view. What does
the database need to do for the tutor? What does it need to do for Terry? What does
it need to do for the student? The next step is to work these requirements out in
greater detail.

Things You Should Know !’55

Requirements

A database requirement is something the database needs to have or do in order to meet the business
needs of the organization for which it is being built. For instance, in the Tutoring database, if Terry
needs to make reports on student gender and ethnicity, then the database must have attributes that
store those values. It is a requirement of the database. Another requirement might be that, for legal
and privacy reasons, the personal data of students must be secured so that only those with valid
reasons and permission can view or edit them.

There are different kinds of database requirements:

e Data requirements. This refers to the attributes the database must contain in order to store all
the information an organization needs for its activities. To record a point-of-sale transaction, for
example, the database would need to have attributes for the sale number, the date, the cus-
tomer, the items and quantities purchased, and the prices of those items among others.

e Report requirements. Most databases need to generate several different kinds of reports,
summary information often gathered from several different entities. The entities must contain
the data needed to make these reports, as mentioned earlier, but also be related in a way that
makes it possible to bring the various pieces of data together. This is a function of relational
design which we shall look at in detail in the next chapter.

e Access and Security Requirements. Often some, or all, of the data in a database are confi-
dential. Databases typically contain core business information that could be of great value of to
a competitor, or it may contain things such as credit card numbers or social security numbers
that could pose financial and legal risks if revealed to the wrong people. An essential require-
ment of most databases is to develop a security schema that determines who has access to
what data. Anyone without the proper authentication credentials should be excluded.

Chapter 2 looked at most of the techniques for gathering requirements: interviews, questionnaires,
review of documents, and job shadowing. From those, it is necessary to distill the requirements into a
usable list. One of the techniques, used in this chapter, is to look at the requirements in terms of each
user who will interact with the database. What does the database need to do and contain for that user
to successfully complete his or her tasks? The chapter starts with the higher-level approaches, looking at
the general requirements first and then getting down to the detail of what attributes and entities the
database needs to contain. This approach can help organize what is admittedly a complex task.

Finally, it is essential to review the requirements you find with those who will be using the
database. Having a full understanding of the requirements is crucial if you are to develop a successful
database. Leaving out requirements, even small ones, may render the entire database useless to the
organization.

REQUIREMENT

Something the database must do in
order to meet the business needs of
an organization.

48 Chapter 3 ¢ Requirements and Business Rules

Caution
w It is essential that you include
security considerations in your
planning from the beginning. Too often
developers wait until after the database
has been designed and developed to
think about the security issues of a
database. Adding security as an
afterthought can result in an insecure
database, vulnerable to data theft or to
accidental violations that can result in
a loss of data integrity.

Thinking about this, Sharon remembers that Professor Collins had told her to
make sure that she looked at the requirements in terms of each of the stakeholders for
the database. That gives her a place to start. First, she will look at the tutors. What does
the database have to do for each tutor? She writes out a list:

* Allow tutors to enter their monthly schedules.

e Allow tutors to view the schedule to see for which sessions students have
signed up.

¢ Allow tutors to cancel a session.

* Allow tutors to fill out and submit a session report.

She ponders for a moment trying to decide if there is anything else the database has to
do for tutors. It has to allow their hours to be tracked for payment. But that requirement
seems to belong more to the tutoring administrator.

Sharon next decides to list all the requirements she can for students. For them, the
database must do the following:

* Allow students to register for tutoring (includes entering demographic data and
current courses).

¢ Allow students to view session schedule.

¢ Allow students to sign up for session.

¢ Allow students to cancel a session.

Sharon isn’t sure of the last one. Are students allowed to cancel their own sessions? She
will have to check with Terry when they review the requirements together.

Thinking of Terry, Sharon decides to list the requirements for the tutoring admin-
istrator next. For Terry, the database must do the following;:

¢ Allow her to view session schedules.

¢ Allow her to add and remove tutors.

¢ Allow her to add and remove courses.

e Allow her to view students’ requests.

e Allow her to view and summarize session reports.

Sharon thinks about this for a moment. There are other reports Terry needs to view,
besides just reports on the sessions. And it might be possible that she needs to be able to
generate new reports. Sharon adds a few more items to Terry’s list of requirements:

¢ View and generate reports.
e Summarize tutor hours for payroll.

There will be a couple more actors who will be involved in the database. In addition to
the tutoring administrator, there will need to be a database administrator. He or she
will need to maintain the database by backing it up regularly, and will need to maintain
its security, especially for student information. IT staff members will need to make the
database available over the network and secure access to it. Sharon decides not to list
these for the moment.

Another set of requirements involves access and security. Sharon knows that she
will have to fully develop these in the database itself, but for now she just makes a few
notes. First, she looks at the access requirements for Terry:

¢ The database administrator should have select access to all the data. That means
he or she can view all the data in the tables.

¢ The database administrator needs to be able to add, edit, and remove records for
tutors and courses.

* The database administrator should be able to create queries as needed.

¢ The database administrator should not be able to create or remove tables or other
database objects.

The last one she will have to check with Terry, but her basic instinct is that no one
except the database administrator should be able to add or remove database objects.

Chapter 3 ¢ Requirements and Business Rules 49

THINGS TO THINK ABOUT

For the moment, disregard any malicious intent the data in a database if every user could access
by a user. What do you think would happen to and change every other user’s data?

Next, she thinks about the tutor:

e A tutor needs to be able to enter and edit his or her own schedules but no
one else’s.

* A tutor needs to be able to enter a session report.

e A tutor needs to be able to cancel one of his or her own sessions, but no one else’s.

¢ A tutor should not be able to see student information.

Lastly, she looks at students:

¢ A student must be able to view all available sessions.

* A student must be able to enter his or her own demographic information.

* A student must be able to enter the courses in which he or she is currently
enrolled.

¢ A student should be able to cancel one of his or her own sessions, but no one else’s.

Things You Should Know LS;

Access and Security

Security involves determining who has access to database objects and data and what kind of access
they should have. The following table lists some of the types of access a user can have. Each type of
access also represents a set of SQL commands. SQL will be covered in more detail in Chapter 7 and
Security in Chapter 8.

I Types of Database Permissions

Type of Access Description
Create The permission to make new database objects such as tables or views
Alter The permission to modify database objects
Drop The permission to remove database objects
Select The permission to see data in a table or view
Update The permission to modify data in a table
Insert The permission to add data rows to a table
Delete The permission to remove data rows from a table
Execute The permission to run database executables such as stored procedures

Sharon makes a list of all the requirements she has identified.
The database must do the following:

e Allow tutors to enter their monthly schedules.

e Allow tutors to view the schedule to see which sessions have students signed up.
e Allow tutors to cancel a session.

e Allow tutors to fill out and submit a session report.

e Track and summarize tutor hours.

e Track and summarize student demographic data.

¢ Track and summarize tutoring sessions by subject area.

e Allow the administrator to view session schedules.

e Allow the administrator to add and remove tutors.

USER ACCESS

It refers to what objects and data
in a database a user has permission
to use.

50 Chapter 3 ¢ Requirements and Business Rules

BUSINESS RULE

A rule that covers the way data are
acquired, stored, or processed.

TRIGGER

A database code, usually written in
SQL, which executes when
“triggered” by an event such as an
insert or a delete.

e Allow the administrator to add and remove courses.

¢ Allow the administrator to view student requests.

e Allow the administrator to view and summarize session reports.

e Allow students to register for tutoring (includes demographic data and current
courses).

e Allow students to view session schedule.

¢ Allow students to sign up for session.

¢ Allow students to cancel a session.

e Secure student demographic information.

Sharon looked over her requirements. Do they provide the data needed to resolve all
the issues she had identified? It should be easier for Terry to get demographic informa-
tion. Most students will enter it, and those who don’t will need to at least enter their
student ID. That will make it easier to look them up on the school’s system. The Session
entity data should make it easy to track tutor’s hours and the session usage. It should
also make it much easier for students to locate appropriate sessions by time, class, and
tutor. She isn’t sure it will help with the sessions running over time, but the database
should solve most of the issues.

BUSINESS RULES

Sharon is starting to feel a little better. Listing the requirements is a big step toward
being able to design the database. Next, she needs to list the business rules. Business
rules, she knows, are rules about how the data are captured and used and what limits
or constraints are placed on the data. Some of these rules can be enforced in the data-
base, and some will need to be built into the client application that is built on the
database. Once again, she looks through her notes.

Lft"‘“ Things You Should Know

Business Rules

Business rules describe the rules that govern the way data are acquired, stored, and used by the
business. They are important for a database developer, who must make sure the database he or
she develops can support all the business rules and operations. Some of the business rules can be
enforced directly in the database. For instance, consider a database to track students’ grades and
grade-point averages. If the school is on a 4-point system, most databases will support putting a
“constraint” on the grade column that limits the value to a number between 0.0 and 4.0. A data-
base developer can also limit the length of a column. If all states are to be represented by the two-
letter abbreviation, then the length of the column can be set to two. There are several other ways
to enforce rules within the database as well. But some kinds of rules require extra-programming to
enforce. If a library has a limit of 20 items out at a time, for instance, there is no way to enforce this
rule in the data table. It is possible though to create a “trigger,” which will query the database
every time someone checks out an item to see how many items are currently out. It can then flag
or block a checkout if it exceeds the number of items. (We will talk more about triggers and proce-
dures in chapter 8.) Still other business rules can only be enforced in the client application through
which users will interact with the database.

First, Sharon knows the database is going to create a couple of new rules: Students
must register for tutoring, and they must enter their current courses. As part of that
registration, students will be encouraged to enter their demographic information. As
Sharon understands it, they can’t be forced to enter it, but she will check back with
Terry. Students must be registered in the courses they want to be tutored for. Those are
some of the business rules that apply specifically to students.

Next, Sharon tries to identify the business rules that apply to tutors. Here Sharon
finds she still has some major questions. Do tutors enter their own contact information?
She assumes that Terry will want to control that information. Are all tutors also

Chapter 3 ¢ Requirements and Business Rules

students? She remembers from the interview that one of the tutors was an MBA student
from a different college, so not all tutors are students of the same college. She knows
that tutors enter their schedules every two weeks and that they are limited to 15 hours
total a week. Tutors are paid for scheduled sessions even if no student shows up. She
also knows from the form she was shown while job shadowing that if a tutor has too
many empty sessions, the maximum hours could be reduced. In fact, that was spelled
out on the Responsibilities form. She shuffles through her papers until she finds it: “If
you have fewer than half of your sessions filled in a 4-week period, you will be asked to
reduce the number of sessions you offer.”

Now, thinks Sharon, “What do I know about the tutoring sessions themselves?”
She starts to list what she has learned:

e Students sign up for tutoring sessions.

¢ Tutoring sessions are 30 minutes long.

e Tutors fill out a session report for every session they are scheduled for even if no
student is scheduled or the student doesn’t show.

¢ Tutors must show up for scheduled sessions even if no one is signed up.

Some of the most puzzling aspects of the session for Sharon were the rules around can-
celing. From the interview, she knew that tutors could cancel a session if there was no
one scheduled. If someone were scheduled, they were required to try to contact the
student scheduled. But what happened if the tutor couldn’t contact the student? She
also knew students could cancel a session, but were there any limits to that? And, were
there any penalties for frequent cancelations for either the student or the tutor? She
would have to ask Terry that.

While thinking of Terry, Sharon tries to identify some of the business rules related
to the administrator’s reports:

e Tutors” hours are calculated from the session schedule and session reports.
® Term reports are based on unduplicated student counts.

Sharon also realizes she doesn’t know the rules for handling requests.
Sharon makes a list of all the rules she has so far:

e Students must register for tutoring and enter their current courses.

¢ Students are encouraged but not required to enter demographic data including
ethnicity.

® The administrator will enter tutor information.

* Not all tutors are students of this college (so they won’t all have a student ID).

e Tutors are limited to a maximum of 15 hours a week.

* Tutors are paid for scheduled sessions even if no student is scheduled or if the
scheduled student fails to show.

e If over ¥ of a tutor’s sessions have no students signed up over a 4-week period,
tutors may have their maximum weekly hours reduced.

e Students sign up for tutoring sessions.

¢ Tutoring sessions are 30 minutes long.

e Tutors fill out a session report every session they are scheduled for even if no stu-
dent is scheduled or the student doesn’t show.

¢ Tutors must show up for scheduled sessions even if no one is signed up.

¢ Tutors can cancel a session if no student is signed up. If a student is signed up for
the session, the tutor must try to contact the student.

¢ A student can cancel a session.

¢ Tutors” hours are calculated from the session schedule and session reports.

¢ Term reports are based on unduplicated student counts.

REVIEW OF REQUIREMENTS AND BUSINESS RULES WITH TERRY

Sharon calls Terry and sets up an appointment for the afternoon. When she arrives,
Terry invites her in and offers her a chair. Sharon pulls out the printed use cases she
made earlier. She tells Terry, “I made these diagrams to help review the database

51

52 Chapter 3 ¢ Requirements and Business Rules

Caution
w It is critical that you review the
requirements and business riles
with the clients for the database. You
need to ensure that you haven't forgot-
ten any requirements or misunderstood
any of the business rules. It is also
important that you document each of
the requirements and business rules so
that everyone involved is clear on what
they have agreed to. Use cases and
other diagrams are an important part of
documentation, but you should also
write them out.

FIGURE 3-2 Tutor Session Report
Form

requirements. Sometimes pictures are much clearer than just words.” Sharon explains
the elements of the use case and then goes over the diagrams one at a time. She also
shows Terry her list of requirements. “Do they cover everything the database needs to
do or did I forget something?” Terry studies them for a moment and then says, “That
looks complete to me. I wonder, though, if students should be allowed to cancel
sessions.”

Sharon responds, “Actually that brings me to a couple of questions I have about
the business rules. The whole process of canceling a session is a bit confusing to me. As
I understand it, a tutor can cancel a session if no student is scheduled. If a student is
scheduled, they must try to notify the student. What happens if they can’t notify the
student?”

Terry muses, “It depends on the reason for canceling. If it is possible to make the
session, the tutor should meet the student. Often, though, it’s not. In that case, we leave
a note on the schedule and at the computer desk.”

“How about the students? How do they cancel?”

“Typically, they just don’t show up. Sometimes they call me or the tutor.”

“Is there any penalty for missing a session?”

“We have a general rule that if a student misses more than 3 sessions, they are no
longer eligible for tutoring, though it is not always enforced.”

“Thank you.” Sharon pulls out the list of business rules. “I identified these other
business rules. If you could look at them and tell me what I missed or what I got
wrong.”

Terry nods, “Those look good to me.”

Sharon asks, “The rule about reducing a tutor’s hours—is that always
enforced.”

Terry smiles, “No, but we really can’t afford to have our tutors sitting around get-
ting paid for doing nothing. If it is a pattern, I do have to reduce the hours sometimes.
It is not necessarily the tutor’s fault. It may just be that the students that term don’t need
a tutor, or maybe they don’t know tutoring is available.”

Sharon picks up the diagrams and the rules. “Thank you, Terry. I think I am ready
to start putting things together. The next thing [will show you will be the design for the
database.”

A LITTLE BIT OF GRAMMAR

Now that Sharon has got a clear sense of what the issues, requirements, and rules are
for the database, she feels ready to start brainstorming the major content of the data-
base. The task is daunting though. Where does she start? She remembers a technique
her professor Bill Collins taught them. She can start by just listing all the nouns she has
encountered.

She remembers her first list of topics

e Tutor

e Student
e Session
* Request

Next she looks at the Tutor Session Report form.

Tutor Session Report Form

Tutor Name

Session Date

Session Time

Student ID

Student Name (NA if no student signed up)
Materials covered (NS if no show)

Chapter 3 ¢ Requirements and Business Rules 53

There are several fields on the form. She writes them down:

student ID, session date, session time, tutor name, student name, and materials
covered.
She looks at the scheduling form:

Tutoring for the Week of 4/12 to 4/16/2009
Monday Tuesday Wednesday Thursday Friday

9:00 AM TT: TT: TT: TT:Aimes TT:
CL: CL: CL: CL:(Math 290) CL:
ST: ST: ST: ST:Laura Jones ST:
TT: TT: TT: TT:Carson TT:
CL: CL: CL: CL: (ITC 110) CL:
ST: ST ST: ST: ST:
TT: TT: TT: Johnson TT:
CL: CL: CL: (ITC 224) CL:
ST ST ST Shanna Taylor ST

7o

From it, she can gather “tutor,” “class,” and “student.” There are also time indica-
tors for “month,” “week,” “year,” “time,” and “weekday.”

Then she scans the reports Terry gave her. A lot of this material is summarized so
it is a little harder to get information. The payroll report, for instance, is all summarized
and calculated data.

Tutor Pay
For weeks beginning 4/6/2009 and 4/16/2009
Tutor Week1 Week2 Total Hours Wage Gross Pay
Aimes, Tabatha 05 2 2.5 $ 1050 $ 2625
Carson, Karen 8 10 18 $ 1050 $ 189.00
Johnson, Luke 3 45 75 $ 1050 $ 7875
Lewis, Mary 1 3.5 45 $ 1050 $ 4725
Sanderson, Nathan 3 3 6 $ 1050 $ 63.00
Stevens, Robert 4 5.5 95 $ 1050 $ 9975
Totals 19.5 28.5 48 $ 504.00

The main thing the database needs to provide for is the tutor name or ID and the
hours worked grouped by week, month, and year. Sharon remembers that as a rule,
you should not store calculated fields in a database. You can always recreate the calcu-
lation in a query, and it will be more accurate because it is based on live data. The hours
per week and the total hours can be calculated from the number of sessions a tutor has
on the schedule.

The form that Terry bases her reports on also contains a great deal of summarized
information.

For a moment, she ponders the word “unduplicated.” But, “unduplicated” is an
adjective rather than a noun. It is describing something in the database, not a new ele-
ment in itself. But “gender,” “ethnicity,” “workforce retraining,” and “subject area” can
count as nouns. Time also crops up again in terms of “Fall Term 2010.” That implies
“quarter” and “year.”

Sharon listens carefully to the notes she recorded during her interview with the
tutors and students. Many of the same nouns show up. Sharon notes the noun

FIGURE 3-3 Scheduling Form

FIGURE 3-4 Tutor Payroll

Caution
w It is easy to get the data
attributes confused with the
attributes themselves. An attribute is a
general descriptor of an entity. For
instance, “Last Name” would be an
attribute of a Customer entity, but
“John Smith” is a type of data that
would be stored in that attribute.
Attributes are the column heads that
describe the data. One way to think of it
is that on a computerized form, the
attributes are in the labels and the data
are what are entered into the textboxes.

54 Chapter 3 ¢ Requirements and Business Rules

FIGURE 3-5 Report Statistics

Report Statistics
Fall Term 2010
Students
Total usage 2345
Unduplicated usage 1735
Difference 610
Unduplicated Demographics
Gender
Male 937
Female 798
Total 1735
Ethnicity
White 868
AfAm 312
Asian 312
Pacls 121
NAmer 35
Other 87
Total 1735
By Subject Area

ACC 139
BUS 121
ENG 347
HIS 139
ITC 139
MAT 607
SCI 243
Total 1735

Workforce Retraining 247

“schedule.” It also appears in her notes about the observation of Mary’s tutoring

session.
Sharon looks at her list of nouns so far.

tutor, session, student ID, student name, session date, session time, tutor
name, weekday, materials covered, class name, gender, ethnicity, subject area,

schedule, term, year, month, workforce retraining, subject area, request

It is not a very long list, but it is a place to start from. The next step she knows is to list
them into related groups. Again, she can use the original big themes she identified as a
starting place. She writes down the word “tutor.” Which elements go with tutor?

Tutor
Tutor Name

She thinks about Class name, but classes don’t just belong to the tutor. Students take
classes, and a tutoring session is focused on a class, so class must be a separate group.

So now she has

Tutor Class

Tutor Name Class Name

Chapter 3 ¢ Requirements and Business Rules

There are also student, session, and request groups, of course. She adds the groups:

Tutor Class Student Session Request
Tutor Name Class Name Student ID Session Date
Student Name Session Time
Gender Term
Ethnicity Year
Month

Materials Covered

That leaves “Schedule” and “Subject area.” From the report, she knows that the subject
area is broader than just the class. It actually maps pretty well to the class department,
such as ENG or MAT. She places it with the Class group. “She wonders if ‘schedule’ is
just a synonym for ‘Session’.” She decides to hold it aside for the moment. Another
issue she sees is in Session. Quarter, Year, and Month are really redundant. All that
information can be gathered from the Date itself. She makes the modifications and then

scans her list so far:

Tutor Class Student Session Request
Tutor Name Class Name Student ID Session Date
Subject Area Student Name Session Time
Gender Materials Covered
Ethnicity

She knows she can modify this list to some extent. Student Name and Tutor Name
can be divided into first and last name. The Class Name can be divided into depart-
ment, class number, and section. She also knows she needs to add term and year.
Sharon isn’t sure what additional demographic information Terry needs. She will
have to talk to her again and get a precise list. She also isn’t sure how much
information the database will need to store about each tutor. Again, she will have to
ask. She knows that a Session will also contain at least a tutor, a student, a class, and
materials covered, so she adds them. Finally, she can be sure that a request will con-
tain a student name or ID, a class name, and the date of the request. Now her list
looks like this:

Tutor Class Student Session Request
Tutor First Name Class Name Student ID Session Date Class Name
Tutor Last Name Department Student Last Name Session Time Request Date
Class Number Student First Name Term Student ID
Term Gender Year
Year Ethnicity Month
Section Materials Covered

ENTITIES AND ATTRIBUTES

Sharon looks at her lists of nouns. She knows that the big items, the group headings
such as Tutor, Class, Student, Session, and Request, will probably be entities in her
database design. The items listed under them will be attributes, or things that describe
or belong to the entity. She also knows the list is not complete. It is only a beginning, but
it does give her a good place to start when she gets down to the details of designing the
database.

55

56 Chapter 3 ¢ Requirements and Business Rules

COMPOSITE KEY

A key that consists of more than
one attribute.

NATURAL KEY

A key made from one or more of an

T

entity’s “natural” attributes.

SURROGATE KEY

An artificially created key, often
just auto-incremented numbers.

L& Things You Should Know

Entities and Attributes

As was mentioned in Chapter 1, entities are things that a database is concerned with, such as stu-
dents, inventory, orders, or courses, and so on. Attributes are aspects of entities. They are things that
describe an entity or belong to it. Entities are a part of the logical design of a database. The logical
design is independent of any database management system. It doesn’t take into account any of the
implementation issues such as file locations or sizes or database tuning and efficiency. Logic design is
concerned only with defining the entities, their attributes, and their relations to other entities.

One of the great features of logical design is that it is the same no matter what software or
operating system you are using. Most entities will become tables in the final database, but there is
not always a one-to-one correspondence. Entities, attributes, and relations will be covered in much
greater depth in the next few chapters.

CANDIDATE KEYS

Although she knows it is early in the process, Sharon decides to start identifying some
potential keys. She knows that keys are used to uniquely identify each record in a data-
base and to relate records to each other that are stored in different tables. So she begins
trying to find some candidate keys.

Lf’e; Things You Should Know

Candidate Keys

Ideally, every entity should have a key attribute—one attribute that uniquely identifies an instance of
that entity. Candidate keys are attributes that could possibly be used as identifying attributes. There
is much discussion as to what makes a good candidate. It must be unique. That means it can never
occur twice in the same entity. Last names, for instance, don't make good candidate keys. It is far too
probable that more than one person will share the same last name. Telephone numbers might make
a good candidate key, if all that needs to be unique is the household. Many Web sites use email
addresses.

If there is no good candidate key singly, attributes can be combined to form a “composite
key.” For example, in an Appointment entity in a database tracking dental appointments, the date is
not unique because several people could have appointments on the same day. The date and time
together are not necessarily unique, because more than one appointment could be scheduled at the
same time. The date, time, and patient name or ID should be unique, however. In combination, they
are a candidate to be the entity’s key.

Keys that are based on attributes that belong naturally to the entity are sometimes called
“natural keys.” Many advocate the use of natural keys because they protect data from accidental
duplication. No two households, for instance, should have the same telephone number. If you acci-
dentally enter a household a second time, the database management system will throw an error
because the phone number of the second row will conflict with the uniqueness requirement of a
primary key. Others argue, however, that all keys should be arbitrary. They argue that it is very diffi-
cult to always find a natural key and that often designers have to resort to awkward composite
(multi-attribute) keys that add to a database’s redundancy. Instead, they advocate just assigning a
number to each instance of an entity. These are sometimes called “surrogate keys.” Surrogate keys
guarantee that the key will always be unique. However, it provides less protection against acciden-
tally repeating an instance. A new instance (row) could be identical in every aspect except the key
attribute. There will be much more discussion of these topics in later chapters.

Sharon starts with Tutor. What would uniquely identify a tutor? The tutor’s name
is one idea, especially if you combined the first and last names. There are not many
tutors, and the chance of any two tutors having exactly the same name is slight, but it
does exist. Although it is not listed, students have student IDs, which could be used to
uniquely identify each student. Most tutors are also students and would have a student

Chapter 3 ¢ Requirements and Business Rules 57

ID, but not all tutors are students. Perhaps there is some sort of employee ID. She will
have to ask Terry. Each course has a unique name so that could be a potential key for
that entity.

For the session, the session date or the session time, perhaps in combination, could
be a key, but that wouldn’t really be unique because different tutors could have ses-
sions on the same day at the same time. If the tutor ID was added to the key, that could
be unique.

After all the analysis, Sharon feels ready to get to work on the logical design of the
database.

DOCUMENTATION

Requirements and business rules are an essential part of the documentation of any
database. A developer needs to refer to them many times during the development pro-
cess. She needs to constantly check to see if the database is meeting all the requirements. Is
anything being left out? Are there elements that weren't in the initial requirements? And,
if there are, should they be added to the requirement list, or should they be removed?
When the database is completed, the requirements and business rules guide how the
database is tested. The developer should look at each requirement and rule and make sure
the database satisfies it. Terry, for instance, requires the database to be able to produce
reports with unduplicated counts of students. The database must be tested to make sure
this is possible. If it isn't, then it must be adjusted until it is.

Additionally, anytime someone needs to change the database, make an addition,
or replace it all together, that person will need to review the original requirements to
see if the changes add to them or alter them in some way. If no one documented the
original requirements and rules, the person will have to recreate them by talking to the
users of the database. He or she will, in short, have to do the whole process of gathering
requirements over again. If the database has been in use for a long time, this can be dif-
ficult. Often, many of the people involved in the original development of the database
have retired or left for other jobs. It is possible that no one will remember exactly the
reasons for creating the original database.

The requirements and business rules for a database should be clearly marked and
stored with the other database documentation.

The initial attempts listing nouns and dividing them into attributes do not neces-
sarily need to go into the formal database documentation, but it is a good idea to keep
them and other project notes in a folder or notebook of some kind. It is always useful to
be able to review your notes and revisit why you made the decisions you did. You may
find that you need to modify the original ideas based on later evidence.

Things We Have Done

In this chapter we have ¢ organized the nouns into preliminary entities and
e revisited the problem domain by reviewing the issues with attributes
the current system ¢ looked for attributes that could serve as candidate keys, that
¢ reviewed the business rules for the tutoring database is, attributes that could potentially work as primary keys for
¢ reviewed the materials collected in the previous chapters and the entities

extracted nouns that may become entities and attributes

Vocabulary
Match the definitions to the vocabulary words:
1. User access — a. A program that requests a service
2. Server — b. A key that consists of more than one attribute
3. Surrogate key — c¢. A program in SQL that is triggered by a database event

4. Actor — d. A program that offers a service to requesting programs

58 Chapter 3 * Requirements and Business Rules

. Requirement
. Natural key —
. Client
. Trigger —
. Composite key —
10. Business rule —
11. Problem domain —

© ® oy
A me 70 w0

Things to Look Up

1. Look up “Requirement Analysis” on the Web. What kinds
of topic headings do you find?
2. Look up two or more definitions for “Business Rules.”

Practices

Use the following scenario for each of the practice exercises:

You have been asked to build a database for a pet foster and
adoption shelter. The agency is a nonprofit that takes in stray or
abandoned pets and places them with foster caregivers until the
pet is adopted. Foster caregivers are volunteers, though they
must first be screened. The database needs to track all animals
in its care, their species, breed, name, and condition. It also
needs to track all approved foster caregivers and the animals
currently in their care. Foster caregivers are also supposed
to turn in monthly reports on the animals in their care. The
database also needs to track the adoptions of the animals.

Currently, volunteers come into the shelter and fill out a
paper form. After a background check, they are added to a file.
Some volunteers complain that they are never contacted again.
The shelter staff admits, they tend to go with foster caregivers
they know, and some people get forgotten in the file. The shel-
ter has also occasionally lost track of an animal in foster care
when the caregiver failed to turn in the monthly reports.
Another recurring problem is that when someone comes into
the shelter looking to adopt, it is not always easy or even possi-
ble to let them know about all the animals available for
adoption.

Scenarios

WILD WOOD APARTMENTS

The Wild Wood Management team is ready to see some results.
You have a meeting with them at the end of the week. It is time
to analyze and organize all the information. Look back at the
material from the last chapters.

1. Make a list of issues with the current system.

2. Make a list of the database requirements for each stake-
holder involved in the database.

3. Make a list of business rules.

List some major security rules for the database.

5. Take a look at each of the forms, and make a list of all the
nouns in them. Do the same for the interview, the ques-
tionnaire, and the Job Shadow Report. Then set up some
preliminary entities and attributes.

=

A key based on one or more “natural” attributes of an entity

A rule about how data are acquired, stored, or processed

The general problem area with which a database is concerned

An artificial key, often just an incremented number

Something a database must do to meet a business need

A person or program that makes some use of the database

The permissions a user has to use or view database objects and data

3. Look up an article on the Web that discusses natural versus
surrogate keys in databases. Which does the author prefer?
4. What are some additional plusses or minuses of each?

Ideally, the shelter would like people to be able to register
as a volunteer online. They would like to be able to call up a list
of all available foster volunteers. They would also like to be able
to pull up all the animals of the kind a potential adopter is inter-
ested in and know exactly where those animals are and who is
caring for them.

1. Make a list of some of the major issues with the current sys-
tem used in the shelter.

2. Identity who the major actors are and list them.

3. Would animals be an actor in this database? Explain why or
why not.

4. Make a list of requirements for each of the actors showing
how he or she would interact with the database.

5. Make a list of business rules for the shelter.

6. What might be some of the shelter database security
issues?

7. Make a list of all the nouns in the description of the shelter.

8. Take the list from 7, and determine what you think would
be the major entities.

9. List the attributes for each of the entities you listed in 8.

10. Identify some candidate keys.

6. Identify some candidate keys.
7. Documentation: Store the list of the requirements and
business rules in your database notebook.

VINCE'S VINYLS

You are eager to show Vince some progress on the database.
You sit down to analyze all the materials you have gathered to
see if you can make some sense of them. Make sure you review
the material in the previous two chapters.

1. Make a list of issues with the current system.

2. Make a list that shows the database requirements for
each stakeholder involved in the database.

3. Make a list of business rules.

4. List some major security rules for the database.

5. Take alook at each of the forms, and make a list of all the
nouns in them. Do the same for the interview, the ques-
tionnaire, and the Job Shadow Report. Then set up some
preliminary entities and attributes.

6. Identify some candidate keys.

7. Documentation: Store the list of the requirements and
business rules in your database notebook.

GRANDFIELD COLLEGE

It is imperative that the college get the software tracking database
online as soon as possible. You have assured the management
team that you will be able to show some progress very soon. It is
time to set down and review all the forms and materials.

1. Make a list of issues with the current system.

2. Make a list of the database requirements for each stake-
holder involved in the database.

3. Make a list of business rules.

List some major security rules for the database.

5. Take alook at each of the forms, and make a list of all the
nouns in them. Do the same for the interview, the ques-
tionnaire, and the Job Shadow Report. Then set up some
preliminary entities and attributes.

6. Identify some candidate keys.

7. Documentation: Store the list of the requirements and
business rules in your database notebook.

=

WESTLAKE RESEARCH HOSPITAL

The drug study is set to begin in just a few months’ time. It is
important to make some progress toward the database. It is
time to gather all the materials you have collected and try to
make some sense of them.

1. Make a list of issues with the current system.
2. Make a list of the database requirements for each stake-
holder involved in the database.

Chapter 3 ¢ Requirements and Business Rules 59

i

Make a list of business rules.

List some major security rules for the database.

5. Take a look at each of the forms, and make a list of all the
nouns in them. Do the same for the interview, the ques-
tionnaire, and the Job Shadow Report. Then set up some
preliminary entities and attributes.

6. Identify some candidate keys.

7. Documentation: Store the list of the requirements and

business rules in your database notebook.

=

SUGGESTIONS FOR SCENARIOS

Review all the documents and interviews from the last chapter.
It will probably be necessary to talk with your instructor or
other students to answer some of the questions about you sce-
nario that have not yet been answered. A certain amount of
invention is expected here.

Look at the requirements in terms of each user or actor. It
is much easier to do it this way rather than trying to just make
a general list of requirements. The actor gives you a clearer
focus on what the database needs to do in a particular
instance. The same holds true of the database security. It
is much easier to understand in terms of each actor’s access
needs.

When making the initial list of nouns, don’t try to dis-
tinguish between entities and attributes. Just list them in
the order you encounter them. Save the analysis until you
are done.

When you do the analysis, remember entities are major
themes or elements. They will tend to stand out. If you find a lot
of words clustered around a single topic, that topic is likely the
entity and the words clustered around it are probably
attributes.

It is good to remember that this is a very preliminary stage
of analysis. There aren’t any absolutely right or wrong answers
at this stage.

CHAPTER 4

Database Design

ENTITY RELATION DIAGRAMS

Having organized her materials and determined the business rules, in this chapter, Sharon begins the logical
design of the Tutoring database. Using Microsoft Visio, she defines the database entities, their attributes, and
the relationships among them.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:
= Use the database modeling template in Microsoft Visio
" Create entities and add attributes
" Determine the appropriate relationship between entities
" Resolve many-to-many relationships with a linking table

DESIGNING THE DATABASE

Sharon is ready to prepare the logical design of the database. The logical design, she knows, is separate from any
consideration of which DBMS the database is going to be developed on. It doesn’t take into account how the files
will be stored or accessed. It ignores any features or limitations of the target DBMS. It is focused purely on the
logical structure of the entities and their relationships with each other.

THINGS TO THINK ABOUT

The logical design of a database is the same no matter what What is the advantage of separating the logical from the
the RDBMS is going to be. physical design?
Physical design is specifically tailored to the features and
limits of a particular RDBMS.
LOGICAL DESIGN For this process, she is going to use the data-modeling template in Microsoft Visio

The entity relation design without ~and create a new entity relation diagram or ERD. (For a complete description of open-
regard to what RDBMS or system it ing the entity diagram in Visio, see Appendix C.)
will be on.

PHYSICAL DESIGN

The design adapted to the RDBMS
and system constraints and
features.

60

Chapter 4 ¢ Database Design 61

B
Things You Should Know .

Entity Relation Diagrams

As the name suggests, an entity relation diagram (ERD) is a diagram of entities, their attributes, and the ~ ERDS (ENTITY RELATION
relations among the entities. Most ERDs represent the entities as rectangles divided into three horizontal ~ DIAGRAMS)

parts—the entity name, the primary key, and then the other attributes—and two or more vertical parts, One common method of depicting
the first containing information about keys and indexes, and the second containing the attribute name. entities and relations in a diagram.

EntityName

PK | PrimaryKey

Attribute1
Attribute2

FIGURE 4-1 Entity

Attributes in bold are required attributes.

Relationships between entities can be represented in different ways. In Microsoft Visio, the
default way is as a line with an arrow on one end. The arrow always points to the one side of a
relation, usually the side with a primary key. We discuss all these concepts more in the following
sections. Here is an example using the arrow-headed line for the relationship:

Building

PK | BuildingKey

BuildingName Room
Address PK | RoomKey
City <
ﬁiasttiﬂcode RoomNumber
RoomDescription
FK1 | BuildingKey lr:le?;cﬁ :h-in Arrow Symbol for

The relationship can also be represented in “crow’s feet” notation. You can change the rela-
tionship representation in Visio by going to the Database tab on the ribbon and selecting “Display
Options.”

Database Document Options

General | Table Relationship |

Show ————— Name display
v Relationships " Show verb phrase

E : v Forward text

[T Cardinality ¥ Inverse text
I” Referential actions " Show physical name
(+ Don't display name

FIGURE 4-3 Crow's Feet Option

62 Chapter4 ¢ Database Design

The crow’s feet notation actually conveys more information about a relationship than the
arrow notation. Look at the following example that uses the same two entities but uses the crow’s
feet notation.

Building
PK | BuildingKey
BuildingName Room
Address
PK | RoomKe
City +tO------ HoomAey
State RoomNumber
FIGURE 4-4 Crow's F PostalCode RoomDescription
URE 4-4 Crow’s Feet FK1 | BuildingKey
Notation
The end with three lines is the “crow’s foot.” It is the many side of the relation. The straight
line and 0 on the building or one side mean that a building can have zero to many rooms. The
straight line before the crow’s foot indicates that every room must be associated with one
building.
Although it may seem a bit confusing at first, this book will use the crow’s foot notation.
You will often encounter this notation in your database work, and it is good to get familiar with
it as soon as possible. We won't, however, in this book, worry about all the subtle nuances of
the notation.
Sharon opens a new data model template in Visio and drags an entity symbol
onto the grid.
n Hume gn Design Data Review V'rm. . & _
g5l
;:-"L Choese a Template Database Model Diagram (US units)
. ..pm —~- m o g?;;;n:;tna‘;g'ﬁ:;;?n databases using IDEF1X and
[[c] “lose Recently Used Templates =
[.-,\-'r_ {
| B
[Eliecent ‘ =
I Database Mode! UML Model
—Print Diagram (US units) | Diagram (US units)
E‘w ve & Send Template Categories
EIp 1!;1, e
Tl az) | H]
gkm Business Engineering
Other Ways to Get Started
FIGURE 4-5 New Database P S i R oo MR
Model Diagram

She increases the zoom to 100% so she can see the entities better. She clicks on
the new entity to select it and sets its name in the definition property: Tutor.

File Home Insert Design
: @'J Tf@'] @
3 [¥] Ruler [Page Breaks E'

Task

Full | [] Grid [V] Guides
Screen

Views Show

Zoom Visual Aids

D3 | ﬁjw N‘nse
Zoom rynamlc Gri ‘_5". New Window gﬁ

£ Fit to window | [0 AutoConnect

= Arrange Al

Switch Macros Add-Ons

Panes~ = Page Width E Connection Points I:‘_, Cascade Windows *

Window Matros

Shapes
More Shapes
Quick Shapes

B B b Bt bt Baine bl i Bt Ll S Ll T8

13

| Entity Relationship (US units)

Object Relational (U5 units)
' Entity Relationship (US units)

&]-D Relationship

n View f Parentto

== category
E Entity S Category

& Categoryto —fG Dynamic
5

child +— connector

BT P T T v) P e o

M 4 » M| Page-1 TJ

@

Tutor

| & Categories:
:'gf Definition

Primary ID
Indexes

2 | Tiggen
b | Check
Extended

Notes

Pallélnf.l Width: 0.5 in. Height: 0.889 in. Angle: 0* | English [U.5)

Chapter 4 ¢ Database Design 63

FIGURE 4-6 Visio Entity

Next she selects the columns property and keys in the first attribute name
TutorKey. She clicks on the check box to make it the primary key. Right now Sharon
isn’t worried about the data types of the columns. They are important, and in the
design phase, it is a good idea to have some sense of what data type a particular at-
tribute will require, but choosing specific data types belongs more to the physical
side of database development. For now, Sharon is focusing on identifying all the
entities, attributes, and relationships. We will discuss data types thoroughly in

Chapter 6.

M 4 b M| Page-1 /%3 14 [w] >
© Categories:
E‘ Definition
g & Columns Physical Name | Data Type Ich'dl PK | No| Add |
Lt Primary ID | | Tutorkey char(10) M | M Tutor ~|
g | Indexes ' O 0O Remove I
b Triggers — 1 }
[Bxtended L —I
Notes ”un:' _p
4 I 4‘_‘ Move Down I
Show: (Portable data type (¢ Physical data type (Micros..
x

B2 a0m% O=Ua®E QB

FIGURE 4-7 Setting Primary Key

Now she types in the other attributes. She decides to use a naming convention
that puts the entity name at the front of every attribute name. For instance, every
tutor will have a first name and a last name in the database, so she names the attri-
butes TutorFirstName and TutorLastName. It can get a bit awkward and make for long
names, but it makes it clear which entity an attribute belongs to. Foreign keys, she
decides, will be named the same as their corresponding primary keys.

64

NAMING CONVENTIONS

Chapter 4 ¢ Database Design

A set of rules or suggestions that
promote consistency in the naming
of database objects.

Caution

A lack of naming conventions
can lead to confusion and can
make it much harder to maintain or
extend a database.

L& Things You Should Know

Naming Conventions

Naming conventions vary book to book, individual to individual, and company to company. The most
important thing is to be consistent. Some people like to put “tbl” before all table names, but that
doesn’t make sense for the logical design. Entities are not yet tables. Some people always name enti-
ties with a plural noun on the theory that each entity will contain multiple instances or rows. Others
always name them with a singular noun on the theory that they are an abstract representation of an
element of the database.

THINGS TO THINK ABOUT

Why do you think it is important to be consistent What role do you think naming conventions
in naming? What would be the disadvantage of could play in documenting a database?
not being consistent?

Attribute names are another issue. Ideally no two attributes in a database should
have the same name, with perhaps the exception of foreign keys, which often retain the
name of the primary key to which they relate. The problem is that many entities have
the same or similar attributes. A Customer entity, for instance, will have a LastName,
FirstName, Address, and City. But an Employee entity also has these attributes. One
way to differentiate them is to put the entity name in front of the attribute name or
some abbreviation of the table name. Often these are separated with underscores, such
as Customer_LastName or Cust_LastName.

Key attributes are also a naming issue. Often the key attribute is called an ID, like
CustomerID or EmployeelD. Often the foreign key retains the name of the primary key
it relates to. But the foreign key doesn’t have to have the same name as its associated
primary key. (It does have to have the same or at least a compatible data type.) If a for-
eign key is not named the same as the primary key, it should be named something that
makes it clear that it is in fact a foreign key, and it should be clear what primary key it
relates back to.

This book uses the following naming conventions:

e Entities and tables are named as single nouns like Tutor, Student, and Session.

o Attributes are named with the entity name followed by the attribute name. There
are no underscores between. Each new word is capitalized: TutorLastName,
StudentLastName, and so on. This can make for long attribute names, but it makes
for maximum clarity.

* Primary keys end with the word “Key”: TutorKey, StudentKey, and so on. Foreign
keys retain the name of the primary key.

It is important to note that there is nothing standard about these conventions.
There are many different conventions that are equally valid. The important thing is to
be consistent and clear.

Following is a table with some equivalencies.

I Term Equivalencies
Logical Design Physical Design Theoretical
Entity Table Relation
Attribute Column, field Attribute

Row, record Tuple

Chapter 4 ¢ Database Design 65

Entities and attributes are used to describe the elements in logical design. Most
often the entities become the tables, and the attributes become columns or fields when
implementing the database in a particular DBMS. A row or record is one complete set of
data—one customer, for instance, or one inventory item. “Relation” is a theoretical term
for a table, and “tuple” is a theoretical term for a row of data. You can encounter these
terms in more advanced books on database.

Though these categories are not as absolute as the table might make them seem,
we will try to be consistent in our use of terms.

When Sharon finishes, her Tutor entity looks like this:

Tutor

PK | TutorKey

TutorLastName
TutorFirstName
TutorPhone
TutorEmail
TutorHireDate
TutorCourse

Sharon looks at the entity for a moment. Something about it bothers her. Then it
hits her. What if a tutor tutors for more than one course? She could modify the entity to
look like this:

Tutor

PK | TutorKey

TutorLastName
TutorFirstName
TutorPhone
TutorEmail
TutorHireDate
TutorCourse1
TutorCourse2
TutorCourse3

But as she looks at it, she knows it is wrong. What if a tutor does only tutor for
one class? That means two of the attributes would always be null. What if a tutor
tutored for four classes? There would be no place to put the fourth one. And, she real-
izes, if someone wanted to find out what tutors tutored a specific class, he or she would
have to always query three separate columns to be sure. Also, if her memory serves
her, the entity violates the first normal form. (Normal forms and normalization will be
covered in detail in Chapter 5.)

Sharon revises the Tutor entity one more time. She realizes that course doesn’t
belong to Tutor. It is an entity in itself, with its own attributes and its own key. She cre-
ates another entity called Course.

Tutor Course

PK | TutorKey PK | CourseKey
TutorLastName CourseName
TutorFirstName CourseDescription
TutorPhone
TutorEmail
TutorHireDate
TutorStatus

FIGURE 4-8 Tutor Entity
Version 1

FIGURE 4-9 Tutor Entity
Revision 1

FIGURE 4-10 Tutor and Course
Entities

66 Chapter 4 ¢ Database Design

FIGURE 4-13 One-to-One

Relationships

Sharon looks at the two entities, trying to determine what kind of relationship ex-
ists between the two. It puzzles her for a moment and then she realizes it is a many-to-
many relationship. One tutor can tutor for many courses, and each course can have
many tutors. She smiles as she remembers her instructor in class going over just this
situation again and again. “Whenever you have a many-to-many relationship, you
must always make a linking table.”

I? Things You Should Know

Relationships
There are three kinds of relationships that can exist between entities:

® one to one
® one to many
® many to many

One to One

In databases, a one-to-one relationship is rare, but it can be useful. A one-to-one relationship speci-
fies that for each row in the primary entity, there can be one and no more than one related record in
the secondary entity. In a one-to-one relationship, the primary key of the first entity is often the pri-
mary key of the second entity.

In crow’s feet notation, one-to-one relationships can be represented in two ways:

FIGURE 4-11 Zero or one FIGURE 4-12 Exactly One

One use for this kind of relationship is to express a class/subclass relationship. Say a database
is keeping a list of different resources. The resources can be in any of several different media, and the
attributes to describe each media are significantly different. If you put all the attributes in one
Resource entity, each entry will have several nulls for the attributes it doesn’t need. To solve this, you
can break the Resource entity into several one-to—one relationships.

Resource

PK | ResourceKey

ResourceTitle
ResourceType

Magazine

Video

Book

PK,FK1 | ResourceKey

PK,FK1 | ResourceKey

PK,FK1 | ResourceKey

VideoFormat MagazineName

VideoDateReleased BookPublisher m:gzz::z{z;t; .
VideoLength BookYear gazi
BookCity MagazinePage
BookISBN

The entities mentioned earlier don’t include all the relevant attributes, just enough to show the
relationship. Notice that each entity has the same primary key. That means each resource will appear

Chapter 4 ¢ Database Design

once in the resource table and exactly once in one of the resource type tables. To get a clearer sense
of this relationship, look at the following tables based on this design.

ResourceKey ResourceTitle ResourceType
235091 > Database Programming with ADO Book
244088 PhotoShop Basics Video
qC2002117> Data Binding with LINQ Magazine
202883 Relational Algebra Book
ResourceKey BookPublisher BookYear BookCity BookISBN
235091 > Westland Press 2005 San Francisco 123-77-6576-X
202883 PL University Press 1998 Seattle 234-11-2345-0
ResourceKey MagazineName Magazinelssue MagazineVolume MagazinePage
@11) Visual Studio Magazine March 2008 3 76

One-to-one relationships are sometimes also used as part of a security structure. A single
entity may be broken into two entities. One will contain publicly viewable content and the sec-
ond private content. For example, an employee’s information might be broken into two entities.
The first one contains nonsensitive content such as the employee’s name, department, business
phone number, and position title. The second table contains sensitive material such as the
employee’s social security number, home address, home phone, and salary information. There is
a one-to-one relationship between the tables. Each employee has exactly one related record in
the private table.

Employee EmployeePrivate
PK | EmployeeKey PK,FK1 | EmployeeKey
1l 1l
EmployeeDept K a EmployeeSocialSecurity
EmployeeBusinessPhone EmployeeAddress
EmployeTitle EmployeeSalary

It should be noted, this is not necessarily the best way to deal with security issues. There are
many ways to allow the public aspects of the Employee entity to be accessed while protecting the
private information. Creating a view or using a stored procedure (see Chapter 7) to control which
columns a user can access is generally a better strategy.

One to Many

Most of the entities in any relational database will have a one-to-many relationship. A one-to-
many relationship means that for each record in the primary entity there can be many associated
records in the secondary or child entity. There are two crow’s feet symbols for one-to-many
relationships:

FIGURE 4-18 Zero or More FIGURE 4-19 At Least One or More

For an example of a one-to-many relationship, consider the relationship between a department
in a business and its employees. Each department can contain zero or more employees. Each employee
belongs to one department.

FIGURE 4-14 Resource Table

FIGURE 4-15 Book Table

FIGURE 4-16 Magazine Table

FIGURE 4-17 One to One for
Security

67

68 Chapter 4 ¢ Database Design

FIGURE 4-20 One to Many

Department
PK | DepartmentKey Employee
PK | EmployeeKey
DepartmentName O ----- FS
DepartmentPhone EmployeelLastName
DepartmentRoom EmployeeFirstName
FK1 | DepartmentKey

You need to enter the department information only once in the Department table. You use the
primary key to link the table to a child table by repeating it in that table as a foreign key. The foreign
key can repeat as often as needed in the child table.

FIGURE 4-21 Department Table DepartmentKey DepartmentName DepartmentPhone DepartmentRoom
ACC Accounting (206)555-1234 SB201
IT Information Technology (206)555-2468 NB100
FIGURE 4-22 Employee Table EmployeeKey EmployeeLastName EmployeeFirstName DepartmentKey
FB2001D Collins Richard IT
BN2004N Faulkner Leonore T
NC2004M Brown Carol ACC
LL20060 Anderson Thomas T
Caution
It is important that you do not
create a “cross relationship.”
There is a temptation to think that
because a department contains
employees, the Department entity should D
contain a foreign key for employee. plafulEin?
Doing this will create an impossible PK | DepartmentKey Employee
situation. In effect, a department will
only be able to contain a single DepartmentName | PK | EmployeeKey
employee. The second employee will DepartmentPhone FO-----
create a conflictwith the DepartmentKey, DepartmentRoom o S EmployeeL?StName
which cannot repeat. This is a fairly FK1 | EmployeeKey EmployeeFirstName
common error among novice designers. FK1 | DepartmentKey

It often isn’t discovered until the attempt
to enter data into the tables fails.

FIGURE 4-23 Cross-Relationship Error

Many to Many

Many-to-many relationships are common, and they are legitimate relationships in logical terms, but
no database can implement them. A many-to-many relationship means that each record in the pri-
mary entity can have many related records in a second entity and each record in the second entity
can have many related records in the primary entity.

The symbol for a many-to-many relationship has a crow’s foot on both sides of the relation-
ship, as shown in the following figure:

N v
/] AN

FIGURE 4-24 Many to Many

Visio doesn’t contain a symbol for this relationship.
For an example, consider the relationship between Subscribers and an entity designed to store
a list of various magazines. Each customer can subscribe to many magazines, and each magazine can
be subscribed to by many customers. That creates a many-to-many relationship.

Magazine

PK | MagazineKey

Subscriber

PK

SubscriberKe

MagazineName
MagazinePrice

/N

SubscriberLastName
SubscriberFirstName
SubscriberAddress
SubscriberCity
SubscriberState
SubscriberPostalCode

Chapter 4 ¢ Database Design

FIGURE 4-25 Many-to-Many
Relationship

In any RDBMS, a many-to-many relationship must be resolved into two one-to-many relation-
ships. This is done by creating a linking entity. In this case, the Magazine and the Subscriber entities
are linked by a Subscription entity. A subscriber subscribes to one or more magazines. A magazine
can be subscribed to by zero-to-many subscribers. Often, as in this case, creating the linking entity
reveals a forgotten or undiscovered entity, Subscription is more than a linking entity. It is a legitimate

entity with attributes of its own.

Magazine

PK | MagazineKey

MagazineName
MagazinePrice

S

Subscription

PK

SubscriptionKey

FK1
FK2

SubscriptionStartDate
MagazineKey
SubscriberKey

Subscriber

PK | SubscriberKey

SubscriberAddress
SubscriberCity
SubscriberState

SubscriberLastName
SubscriberFirstName

SubscriberPostalCode

FIGURE 4-26 Linking Table

The following tables show how these entities would be translated into a database. These are,
of course, much simplified. A real database would contain many more columns of essential informa-
tion such as the subscription length, the magazine type (e.g., weekly and quarterly), the magazine
publisher information, and so on. Also for the subscribers, it would be necessary to distinguish

between the billing address and the shipping address, since they are not necessarily the same.

MagazineKey MagazineName MagazinePrice
TM2K1 Time 35.50
NW2K1 Newsweek 36.40

FIGURE 4-27 Magazine Table

69

70 Chapter 4 ¢ Database Design

SubscriberKey Subscriber Subscriber Subscriber Subscriber Subscriber Subscriber
LastName FirstName Address City State PostalCode

4231 Johnson Leslie 101 Best Ave. Seattle WA 98007

4333 Anderson Mark 1200 Western Blvd Tacoma WA 98011

5344 Manning Tabitha 100 Westlake Seattle WA 98008

FIGURE 4-28 Subscriber Table

FIGURE 4-29 Subscription Table

FIGURE 4-30 Linking Table Two

LINKING ENTITY

An entity which resolves a many-
to-many relationship into two one-
to-many relationships.

COMPOSITE KEY

A key that consists of more than
one column.

SURROGATE KEY

A random or arbitrary key often
generated by just incrementing
numbers.

FIGURE 4-31 Book Table

SubscriptionKey MagazineKey SubscriberKey SubscriptionStartDate
1004 TM2K1 4333 1/15/2009

1005 NW2K1 4333 1/15/2009

1006 NW2K1 4231 2/1/2009

1007 TM2K1 5344 2/15/2009

Sometimes, however, the linking entity only serves to resolve the many-to-many relationship.
Consider the relationship between authors and books. Each book can have several authors, and each
author can author several books. This relationship can be resolved with a linking table as in the fol-
lowing figure:

Book Author
PK | BookKeyISBN PK | AuthorKey
BookTitle AuthorLastName
BookPublisher AuthorFirstName
BookYear T
T BookAuthor

PK,FK1 | BookKeyISBN
— O PK,FK2 |Authorkey PO——

It is not uncommon for a linking entity to have a composite key made up of the foreign keys
from the two tables whose relationship it resolves. Another note: You may have noticed in the earlier
diagrams that most relationships are represented by dashed lines. The preceding relationships and
the one-to-one relationships are represented as solid lines. Visio distinguishes between identifying
and nonidentifying relationships. An identifying relationship is one where the foreign key in the child
table is also a part of the primary key of that child table. For instance, AuthorKey is both a foreign key
and part of the composite primary key in the entity BookAuthor. A nonidentifying relationship is one
in which the foreign key is not a part of the primary key of the child table.

Following are some examples of how these entities would be translated into tables in a data-
base. Notice how the Head First Object Oriented Analysis and Design book has three authors.

BookKeyISBN BookTitle BookPublisher BookPublisherYear
0-07-222513-0 Java 2 Beginners Guide Oracle Press 2002
0674019999-1 After the Ice Harvard 2003
0-596-00867-8 Head First Object O'Reilly 2007
Oriented Analysis and
Design

Chapter 4 ¢ Database Design 71

FIGURE 4-32 Author Table

AuthorKey AuthorLastName AuthorFirstName
HSCHLT Schildt Herbert
SMITHN Mithen Steven
BMCLAU McLaughlin Brett
GPOLLIC Pollice Gary
DWEST West David
BookKeylSBN AuthorKey
0-07-222513-0 HSCHLT
0674019999-1 SMITHN
0-596-00867-8 BMCLAU
0-596-00867-8 GPOLLIC
0-596-00867-8 DWEST

Sharon adds a linking entity to resolve the many-to-many relationship.

Tutor

PK | TutorKey Course
TutorLastName PK | CourseKey
TutorFirstName c N
TutorPhone ourseName
TutorEmail @R >O——H CourseDescription
TutorHireDate [T O< PK,FK1 | CourseKey
TutorStatus PK,FK2 | TutorKey

Now Tutor has a one-to-many relationship with TutorCourse, and Course has a
one-to-many relationship with TutorCourse, also. That is, one tutor can tutor for many
courses, and one course can have many tutors. The composite key, which consists of the
two foreign keys TutorKey and CourseKey, ensures that the same tutor won't be linked
with the same course twice.

As she looks at her work, Sharon realizes that Student would have the same rela-
tionship with Course that Tutor does. One student can enroll in many courses, and one
course can contain many students. It is another many-to-many relationship. Sharon
adds a Student entity to her diagram. She reviews the attributes carefully to make sure
she has all the demographic information included. Then she adds the linking tables and
makes the relationship. Here is her whole diagram so far:

In the Student entity, Sharon decides to specify ethnicity as a foreign key. Her
idea is that she will create a lookup table for the different ethnicities.

One big thing remains to be done. Sharon still needs to define the tutoring ses-
sions themselves. Many databases have a central entity where everything is tied
together. For this database, it is the Session entity. She reviews her notes. A session
must have a date and time. It needs a course and a tutor. The student is optional
because not every session that is available will be taken. She comes up with this
entity diagram:

FIGURE 4-33 Linking Table
BookAuthor

Caution
Always resolve a many-to-many

relationship by creating a
linking table. An unresolved many-to-
many relationship will cause your
database to fail.

FIGURE 4-34 TutorCourse
Linking Table

72 Chapter 4 ¢ Database Design

FIGURE 4-35 Tutor ERD 1

FIGURE 4-36 Session Entity

Tutor
PK | TutorKey Course
TutorLastName PK | CourseKey
TutorFirstName CourseName
TutorPhone
TutorEmail TutorCourse >O—H CourseDescription
TutorHireDate O PK,FK1 | CourseKey +
TutorStatus PK,FK2 | TutorKey
— StudentCourse
PK,FK1 | StudentKey
PK | StudentKey —H——O<| PK,FK2 | CoursekKey PO
StudentlLastName
StudentFirstName
StudentPhone
StudentEmail
StudentGender
StudentAge
StudentCitizen
StudentWorkForceRetraining
EthnicityKey
Session
PK SessionDate
PK SessionTime
PK TutorKey
PK CourseKey
StudentKey
StudentLastName
SessionStatus
SessionMaterialCovered

She is a bit uncomfortable with a four-attribute composite key, but it takes all four
to uniquely identify a session, and she thinks Session won’t have any child relations.
She is also unsure of the attribute session status. SessionStatus, as she is thinking about
it, would contain a value like “completed” if a student showed up and received tutor-
ing, or “canceled” if the student did not—or maybe “tutor canceled” and “student can-
celed,” respectively. She would also need a value if the session remained unused.

Another issue with Session, she realizes, is that there is a limit to the number of ses-
sions a student can sign up for, and, for that matter, a limit to how many sessions a tutor can
teach in a given time. She remembers that Bill, her professor, called these issues of cardinal-
ity. They can be important considerations for design and enforcing business rules, but
generally they cannot be enforced in a database through the relationships themselves.

THINGS TO THINK ABOUT

Composite versus surrogate keys Surrogate keys, like an identity or autonum-

Composite keys provide better protection for er, remove those data redundancies but do
data integrity because they prevent accidental ~N0thing to protect data integrity.
entry of identical information, but they can get Most database specialists choose one or the

awkward and can result in more redundant Other, but all advise not to mix them.
information. Which do you think is the better option?

Chapter 4 ¢ Database Design 73

Things You Should Know IE;
Cardinality

Relationships can also have a property called cardinality. Cardinality refers to the number of allowed
related rows between entities. The usual one-to-many relationship assumes that for each one record
in the primary key entity, there can be any number of related rows in the foreign key entity. This is
often expressed with an infinity sign. But a one-to-many relationship can have limits on the number
of related rows. For example, say an Account entity can have no more than five email addresses in a
related Email entity. That would mean that the relationship has a maximum cardinality of five. Let's
also say that each account must have at least one email account. That would make the minimum
cardinality of the relationship one.

RDBMSs really don‘t have ways to enforce cardinality rules directly. Usually, these kinds of rules
are enforced by means of triggers and other extra-database code.

Next, Sharon adds a lookup entity for Ethnicity.

Things You Should Know |§;
Types of Entities

As you have seen in the preceding discussion, entities can play various roles in a database. It can be
useful when designing a database to identify what roles different entities play.

Ethnicity

PK | EthnicityKey

EthnicityDescription

Domain Entities

Domain entities are the entities that relate directly to the business of the database. In a database to
track customer orders, for instance, domain entities would probably include ones like Customer,
Order, Inventory, and so on. In Sharon’s Tutor database, the domain entities so far include Tutor,
Student, Session, and Course.

Linking Entities

Linking entities are used to resolve many-to-many relationships into two one-to-many relationships.
In Sharon'’s database, the TutorCourse and StudentCourse entities serve this purpose. Without these
linking entities, RDBMSs would be unable to resolve the relationships between the entities involved,
and the database would fail.

Lookup Entities

Lookup entities are essentially utility entities. They store lists of data that other tables need to look
up, such as state names or abbreviations, country names, months of the year, postal codes, or any
number of other things. Lookup entities help ensure consistency in data entry. If you want to use the
two-letter abbreviation for a state rather than the full state name, a lookup table can help enforce it.
Lookup tables also help protect against typing and other data entry errors.

Weak Entities

A weak entity is an entity that is dependent on another entity for its meaning. Consider, for instance,
a situation where you needed to track an employee and his or her dependents. You can't just list a
certain number of dependents in the Employee entity because you cannot know ahead of time how
many dependents any one employee may have. It is also not a good idea just to list them separated
by commas in a character attribute. It is better to create a separate entity called Dependents.

The Dependent entity is weak, because it depends on the Employee for meaning.

Another common weak entity relationship is the master/detail relationship. Typically an
order, purchase, or sale is broken into two tables: the master CustomerOrder table and the child
OrderDetail table.

CARDINALITY

The number of permitted records in
arelated entity.

MAXIMUM CARDINALITY

The highest number permitted.

MINIMUM CARDINALITY

The smallest number permitted.

TRIGGERS

Executable scripts of SQL code that
are triggered by an event such as an
insert, update, or delete. They can
be used to enforce business rules
that cannot be enforced by database
design alone.

FIGURE 4-37 Lookup Entity

74 Chapter 4 ¢ Database Design
FIGURE 4-38 Weak Entity
Employee
PK | EmployeeKey
EmployeeLastName o< Dependent
EmployeeFirstName PK DependentKe
DependentKey
PK,FK1 | EmployeeKey
DependentLastName
DependantFirstName
CustomerOrder
PK | OrderKey
OrderDetalil
OrderDate O === PK |OrderDetailKey
CustomerKey
FK1 | OrderKey
ltemKey
. . OrderDetailQuantity
FIGURE 4-39 Master/Detail relation

A good way to understand this is to look at a receipt.

WestlLake Grocery Emporium

(206-555-2020)

TerminallD 002
Merchant# 02340606060
Visa

HHHHHH## #1234

SALE

Date 2/1/2010
Bread 2.15

Milk 1.66
Eggs 1.25
Hamburger 4.62
Subtotal 9.68

Tax 0.00
Total due 9.68

The top of the receipt contains all the information necessary to identify the general transaction.
It contains the order number, the date, the customer card number, possibly the employee code, and
so on. The middle of the receipt contains the line items of the order, the specific items purchased, and
the quantity purchased. The bottom of the receipt contains summary information. (In a database, this
is achieved through queries.) The OrderDetail entity is dependent on the CustomerOrder for its mean-
ing and is therefore a weak entity. It is also sometimes referred to as a master/detail relationship.

Here is a table of relationship types:

I Entity Roles
Entity Roles Description
Domain Entity describing a core business element of the database
Linking Entity used to resolve a many-to-many relationship into two
one-to-many relationships
Lookup Entity used to store lookup values and help ensure data

Weak (master/detail)

integrity and consistency

An entity that depends on another entity for its meaning

Finally Sharon reviews all her entities.
As she reviews, she looks at each attribute and determines if it should be required
or not. If the data in the attribute are critical to the integrity of the data in the database, it
should be required. But if the data are not immediately known—such as which student
might sign up for a session—or if it is not critical or if it is optional, it should not be re-
quired. You don’t want to burden the process by forcing the users to enter data they may
not have. For instance, you wouldn’t want to force a tutor or student to invent an email
address if he or she doesn’t have one. But, equally, you don’t want the user to leave out
necessary data.
After her review, she has this logical design for the Tutoring database.

Tutor

PK

Chapter 4 ¢ Database Design 75

TutorCourse

TutorKey "

TutorLastName
TutorFirstName
TutorPhone
TutorEmail
TutorHireDate
TutorStatus

Course

PK

CourseKey

CourseName
CourseDescription

O PK,FK1 | CourseKey
PK,FK2 | TutorKey

Student

PK

StudentKey

FK1

StudentiLastName
StudentFirstName
StudentPhone
StudentEmail
StudentGender

StudentAge

StudentCitizen
StudentWorkForceRetraining
EthnicityKey

StudentCourse

PK,FK1
PK,FK2

StudentKey
CourseKey

R

FIGURE 4-40 Tutor ERD Two

Ethnicity

PK

EthnicityKey

EthnicityDescription

Session
PK SessionDate
PK SessionTime
O< PK,FK1 | TutorKey
PK,FK1 | CourseKey
FK2 StudentKey
StudentLastName

SessionStatus
SessionMaterialCovered

couldn’t require that a student enter the demographic information.

The required fields are in bold. For the Student table, Sharon knew that by law she

Now Sharon looks over the diagram one more time. She decides it might be a

good exercise to define what role each entity is playing in her design. First, she identi-
fies the domain entities:

e Tutor

¢ Student
e Course
e Session

76 Chapter 4 ¢ Database Design

Next, she lists her linking entities:

¢ StudentCourse
e TutorCourse

She has only one lookup entity, which is Ethnicity. So far she has no weak entities.

THINGS TO THINK ABOUT

What is the benefit of reviewing the entities according to the role they play in design?

Looking over her list, Sharon realizes there is one domain entity that she still
hasn’t included. That is the Request entity, which allows students to request tutoring in
areas where it is not already provided. Her first instinct is to link the Request entity to
the Student entity, but then she has second thoughts. Does she really want to force a
student to register to request tutoring for a course where there isn’t tutoring currently?
The student making the request is quite probably not being tutored at the moment. Still
she would like to link the table into the rest of the database. As she understands it, the
Course table will contain all the courses for a quarter.

Here, then, is her final Entity Relationship Diagram.

Tutor TutorCourse
PK | TutorKey PK,FK1 | CourseKey

H O9 PK,FK2 | TutorKey

TutorLastName
TutorFirstName

TutorPhone =+
TutorEmail
TutorHireDate Course
TutorStatus
PK | CourseKey Request
CourseName FH--- - -GS Pk RequestKey
CourseDescription
FK1 | CourseKey
RequestDate
RequestStatus
RequestStudentName
Sk RequestStudentiD
PK | StudentKey RequestStudentEmail
StudentCourse RequestNotes
StudentlLastName PK,FK1 | StudentKey
StudentFirstName —O< PK,FK2 | CourseKey SR
StudentPhone
StudentEmail Session
StudentGender -
StudentAge PK SessionDate
StudentCitizen PK SessionTime
StudentWorkForceRetraining e O< PK,FK1 | TutorKey
FK1 | EthnicityKey PK,FK1 | CourseKey
FK2 StudentKey
StudentLastName
SessionStatus
SessionMaterialCovered
Ethnicity

PK | EthnicityKey

EthnicityDescription

FIGURE 4-41 Final ERD Before Review

Chapter 4 ¢ Database Design 77

Before taking this diagram to Terry, Sharon decides to have her instructor Bill
Collins review it. She emails him, requesting an appointment, and attaches the diagram
so he can go over it before they meet. Within minutes, he sends an email back, agreeing
to meet the next morning. He said he would look over the design and make sure that it
was normalized.

DOCUMENTATION

Diagrams often communicate more clearly than words. It is important to keep ERDs in
your database notebook. It is also a good idea to keep a history of diagrams. As your
design progresses, you will make changes to the diagrams, adding and removing enti-
ties and attributes. Rather than just discarding the older diagrams, it can be valuable to
keep dated versions of the ERD along with notes defining what changes were made and
why. Coming back later, this can help you or a later developer understand the thought
process that culminated in the final database design.

Things We Have Done

In this chapter we have * added attributes to entities
e analyzed and created relationships among our entities

¢ worked through the logical design of the database
¢ identified the roles the entities play in our design

e created entities

Vocabulary

Match the definitions to the vocabulary words:

. Cardinality —

1 a. The entity relation design without regard to what RDBMS or system it will be on
2. Composite keys — b. The design adapted to the RDBMS and system constraints and features
3. Crow’s feet notation — ¢ One common method of depicting entities and relations in a diagram
4. Domain entities — d. A set of rules or suggestions that promote consistency in the naming of database objects
5. Entity relation diagrams — e. Notation for relationships that uses lines and circles to depict cardinality
6. Linking entity — f. An entity which resolves a many-to-many relationship into two one-to-many relationships
7. Logical design — g. Refers to the number of permitted records in a related entity
8. Lookup entity — h. An entity that depends on another entity for its meaning
9. Maximum cardinality — 1. The highest number permitted
10. Minimum cardinality — j. The smallest number permitted
11. Naming conventions — k. Arandom or arbitrary key often generated by just incrementing numbers
12. Physical design — 1. An entity that captures a chief element of the business problem
13. Surrogate keys — m. Executable scripts of SQL code that are triggered by an event such as an insert,
update, or delete.
14. Triggers — n. A key that consists of more than one column
15. Weak entities — 0. Are used to store a set of values that can be looked up, such as state abbreviations

or zip codes

Things to Look Up

1. Look up other database-naming conventions. Is there one
that makes the most sense to you? Explain why?

2. Look up Entity Relation Diagrams. What other ways of
diagramming entities and relations did you find?

3. Look for online tutorials on relational database design.
Make a list of the five best. Share with the class to make a
resource list of tutorials.

Practices

1. Create an entity to describe the products in a sandwich
shop. These can include sandwiches, of course, but also pas-
tries and drinks.

2. Which attributes of the products entity should be required?

3. Which attributes would make a good primary key?

4. Here are two entities. (Only the primary keys are included.)
What kind of relationship exists between these entities?
Explain.

78 Chapter 4 ¢ Database Design

FIGURE 4-42 Recipe

Ingredient

PK | RecipeKey

PK | IngredientKey

5. Create a diagram that shows how you would resolve the
relationship in Practice 4.

6. An instructor has decided that he needs a relational data-
base to store grades in. He has defined the following three
entities: Student, Course, and Assignment. What kind of
relationship exists between these entities?

7. Create an entity relation diagram for the instructor’s data-
base. Don’t worry about the attributes, but give each entity
a primary key attribute. Remember to watch out for many-
to-many relationships.

8. A dentist office has three dentists, two hygienists, five
dental assistants, and two administrative assistants to
maintain the office paper work. They are creating a

Scenarios
WILD WOOD APARTMENTS

The managers at Wild Wood Apartments are anxious to see
some progress on their database. They have answered your
questions and now want to see some results. They really want
the new database to be in place before the beginning of the new
fiscal year in July. It is time to design the database.

1. Review all the requirements and business rules.

2. Define your entities and attributes and the relations that
exist between them.

3. Create a logical model using crow’s feet notation in Visio
or hand draw it on graph paper, if you prefer.

4. Add all the entities and their attributes. You don’t need
to worry about data types for now.

5. Identify the key fields for each entity and the foreign
keys.

6. Analyze the diagram. Identify which role (i.e., domain,
linking, lookup, or weak) each entity plays in your
database.

7. Have another student or a group review it for the
following:

a. Are all the major components of the Wildwood
Apartments business model represented by domain
entities?

b. Does each entity contain the appropriate attributes to
fully describe it and meet the business rules you have
gathered so far?

c. Does every entity have an appropriate primary key
defined?

d. Are all many-to-many relationships resolved into
one-to-many relationships by linking tables?

database to track appointments and also to track who
works with each patient. So far the database developer has
defined the following entities: Employee (which includes
all categories of employee including the dentists),
Customer, and Appointment. Which entities have many-
to-many relationships?

9. Create an ERD that shows the relationships among the enti-
ties in the dentist office mentioned in Practice 9. Remember
several employees (a dentist, an assistant, a hygienist, etc.)
can be involved in a single appointment for a customer.

10. Look at the diagram for Practice 8. Identify which entities
are domain entities, which are linking entities, which are
lookup, and which, if any, are weak entities.

e. Are the relationships valid (no cross relationships)?
Isthe appropriate entity defined as the one side of a
one-to-many relationship? Do the tables have appro-
priate foreign keys? Also check for other such issues.

f. Are lookup tables used for attributes that have a set
list of values?

8. Documentation: Be sure to store your ERDS in your da-
tabase notebook.

VINCE'S VINYL

Vince is convinced he is losing money on several of his transac-
tions. He is anxious to get the new database in place to help him
get control over his business. He has been polite but keeps
checking on your progress. It is time to show some results.

Create a logical design of Vince’s database. Use the follow-
ing steps:

1. Review all the requirements and business rules that you
have gathered from your interviews and after reviewing
Vince’s records.

2. Define your entities and attributes and the relations that
exist between them.

3. Create a logical model using crow’s feet notation in Visio
or hand draw it on graph paper, if you prefer.

4. Add all the entities and their attributes. You don’t need
to worry about data types for now.

5. Identify the key fields for each entity and the foreign
keys.

6. Analyze the diagram. Identify which role (i.e., domain,
linking, lookup, or weak) each entity plays in your
database.

7. Have another student or a group review it for the
following;:

a. Are all the major components of the Vince’s business
model represented by domain entities?

b. Does each entity contain the appropriate attributes to
fully describe it and meet the business rules you have
gathered so far?

c. Does every entity have an appropriate primary key
defined?

d. Are all many-to-many relationships resolved into
one-to-many relationships by linking tables?

e. Are the relationships valid (no cross-relationships)? Is
the appropriate entity defined as the one side of a
one-to-many relationship? Do the tables have appro-
priate foreign keys? Also check for other such issues.

f. Are lookup tables used for attributes that have a set
list of values?

8. Documentation: Be sure to store your ERDs in your da-
tabase notebook.

GRANDFIELD COLLEGE

A team from the Software Alliance could show up any day. The
IT services manager is eager to get the tracking database in
place. It is time to show some progress. Create the logical de-
sign of the database following these steps:

1. Review all the requirements and business rules.

2. Define your entities and attributes and the relations that
exist between them.

3. Create a logical model using crow’s feet notation in Visio
or hand draw it on graph paper, if you prefer.

4. Add all the entities and their attributes. You don’t need
to worry about data types for now.

5. Identify the key fields for each entity and the foreign keys.

6. Analyze the diagram. Identify which role (i.e., domain,
linking, lookup, or weak) each entity plays in your
database.

7. Have another student or a group review it for the
following;:

a. Are all the major components of the software tracking
system represented by domain entities?

b. Does each entity contain the appropriate attributes to
fully describe it and meet the business rules you have
gathered so far?

c. Does every entity have an appropriate primary key
defined?

d. Are all many-to-many relationships resolved into
one-to-many relationships by linking tables?

e. Are the relationships valid (no cross-relationships)? Is
the appropriate entity defined as the one side of a
one-to-many relationship? Do the tables have appro-
priate foreign keys? Also check for other such issues.

f. Are lookup tabtles used for attributes that have a set
list of values?

8. Documentation: Be sure to store your ERDs in your
database notebook.

Chapter 4 ¢ Database Design 79

WESTLAKE RESEARCH HOSPITAL

It is imperative that the database be ready before the actual clin-
ical trials begin. The staff at Westlake is anxious to see some re-
sults. It is time you show them the logical design of their data-
base. Follow these steps:

1. Review all the requirements and business rules.

2. Define your entities and attributes and the relations that
exist between them.

3. Create a logical model using crow’s feet notation in Visio
or hand draw it on graph paper, if you prefer.

4. Add all the entities and their attributes. You don’t need
to worry about data types for now.

5. Identify the key fields for each entity and the foreign
keys.

6. Analyze the diagram. Identify which role (i.e., domain,
linking, lookup, or weak) each entity plays in your
database.

7. Have another student or a group review it for the
following;:

a. Are all the major components of the clinical trial rep-
resented by domain entities?

b. Does each entity contain the appropriate attributes to
fully describe it and meet the business rules you have
gathered so far?

c. Does every entity have an appropriate primary key
defined?

d. Are all many-to-many relationships resolved into
one-to-many relationships by linking tables?

e. Are the relationships valid (no cross-relationships)?
Is the appropriate entity defined as the one side of a
one-to-many relationship? Do the tables have appro-
priate foreign keys? Also check for other such
issues.

f. Lookup tables are used for attributes that have a set
list of values.

8. Documentation: Be sure to store your ERDs in your da-
tabase notebook.

SUGGESTION FOR THE SCENARIOS

These scenario exercises are probably the most difficult in the
book. The first suggestion is to not panic. Creating ERDs is an
iterative process. No one expects you to have a perfect diagram
on the first attempt. The trick is to add entities one at a time.
Don’t try to imagine the whole diagram all at once. Look at each
entity separately. Does it have the appropriate attributes? Is the
primary key defined? After the main entities are on the dia-
gram, look at the relationships between two entities at a time.
What kind of relationship do they have? Do you need a linking
table? Also check for other such issues. Remember, also, that
some entities have no direct relationship between them. Don’t
fall into the trap of trying to relate every entity to every other
entity.

Discussion helps. Others can see issues and approaches that
you might have missed. It is always good to have another pair
of eyes looking over your work.

CHAPTER 5

Normalization and
Design Review

Sharon takes her entity relation diagram to her database professor, Bill Collins. Together they review it for
completeness and conformity to the first three normal forms. Then Sharon takes the design to Terry for a final
discussion and review before beginning the physical design of the database.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

" Evaluate an entity against the first three normal forms

= Remove all repeating lists or arrays (First Normal Form)
" Remove functional dependencies (Second Normal Form)
B Remove all transitive dependencies (Third Normal Form)
Understand the importance of design review

THE DESIGN REVIEW

Sharon knocks on Professor Collins’s door early in the morning. He greets her and offers a chair. He has the
diagram printed out with a few handwritten notes and arrows. He shows her the diagram and begins to explain
his notes. “This is a pretty good diagram. You have all the basic elements in place.”

“I owe it all to what I learned in your class.”

“Thanks.” He looks at the diagram, “I think we should begin by looking at the entities and making sure
they are all properly normalized. Then we should check to make sure all the relationships are correct, and
finally, we can discuss whether the diagram completely captures everything needed to meet the business
requirements.”

“Sound’s good. Let’s start.”

“OK, let’s start with normalization. First, we will see if it conforms to the first normal form.”

;’ Things You Should Know

Normalization

Normalization is the process of removing anomalies and redundancies from database design. There are three specific kinds of
anomalies that can occur in database design:

NORMALIZATION
e Insertion an0m§|les The process of removing anomalies
e Update anomalies and redundancies from database
¢ Deletion anomalies design.

80

Chapter 5 ¢ Normalization and Design Review 81

Insertion Anomalies

An insertion anomaly occurs when you can’t enter certain information because you are missing some
other information. Consider, for example, a case, where a company has a business rule that every employee
must be assigned to a project. They have set up the Employee entity in their database to look like this:

Employee

PK | EmployeeKey

EmployeeLastName
EmployeeFirstName
ProjectName
ProjectDescription

The data in the table would look like this:

EmployeeKey | EmployeeLastiName | EmployeeFirstiName | ProjectName | ProjectDescription
4123 Brown Richard DB245 New Employee database
4124 Sanderson Lisa DB134 Tune the point of

Sales database
4215 Lewis Wallace DB245 New Employee database

The project is required. A new employee, who hasn’t been assigned a project, cannot be
entered into the table. One strategy is to create a dummy project for new employees. But this is a bad
idea. It puts meaningless data in your database and is a risk to data integrity.

Update Anomalies

Update anomalies occur when the same data is stored in more than one place. If the data needs to be
changed or “updated,” the user has to find every instance of that data and change it to make sure the
data is consistent. It is all too easy to miss an instance or to make a mistake on one of the records so
that it reads differently from the others. In the example given earlier, for instance, employees Brown
and Lewis are working on the same project. Suppose the project name was changed by management.
When the database is updated, the project name is changed for all employees in the project except for
Lewis. Now if someone queries the database, it would look like Lewis and Brown are working on differ-
ent projects.

THINGS TO THINK ABOUT

How do you think it would affect the users of a database to have these anomalies appear after the
database had been put into production?

This may seem unlikely with the three records shown earlier, but imagine a data table with
hundreds or thousands of records. Whenever there is redundancy—the same data repeated in sev-
eral places—update anomalies are likely to occur.

Deletion Anomalies

The preceding table also illustrates how deletion anomalies occur. A deletion anomaly happens when
deleting one piece of data accidentally deletes all information about a different piece of data. For
instance, the Employee table mentioned earlier. If Lisa Sanderson were to quit and be deleted from
the table, we would also lose all information about the project DB134. Even if she were the only
employee assigned to the project, information about the project should be available after she leaves.

Normal Forms

Over the years, database experts have developed a series of “normal forms.” Each form was designed
to eliminate one or more of these anomalies. The normal forms are as follows:

e First Normal Form
e Second Normal Form
e Third Normal Form

INSERTION ANOMALY

This is when you can’t enter data
because some other data is missing.

FIGURE 5-1 Employee Entity

FIGURE 5-2 Employee Table

UPDATE ANOMALY

An instance where the same
information must be updated in
several different places.

DELETION ANOMALY

Where deleting one piece of data
inadvertently causes other data to
be lost.

81

82 Chapter 5 ¢ Normalization and Design Review

NORMAL FORMS

Each normal form is a set of rules
designed to reduce or eliminate
various anomalies.

FIGURE 5-3 Album Table Not

Normalized

FIGURE 5-4 Contact

Spreadsheet (a)

e Boyce Codd Normal Form
e Fourth Normal Form

e Fifth Normal Form

e Domain Key Normal Form

The first three normal forms are the most critical for developing a working database. The other
normal forms add refinements that are valuable but not as critical.

The concepts of normalization and the process of “normalizing” can be quite difficult to
master initially. To help, we will look at two different examples.

A Note on Terminology

In the following examples, the term “entity” is used to describe the logical structure as seen in design.
The term “table” is used for physical manifestation of the entity which contains actual rows of data.

Example 1

The first example looks at a simple database to track albums, artists, and songs. Here is the first
incarnation of the table.

This table could potentially fall prey to all three anomalies. If the ArtistCountry was required, it
would be impossible to insert a new album if you did not know the country of the artist. If you
deleted an album, you could accidently remove all data about a given artist. Updating tracks could be
difficult and result in errors because of the way they are listed in the cell.

Album Tracks Artist ArtistCountry
Abby Road Here comes the sun, Octopus Garden, Beatles UK
Something, etc.
Blond on Blond Rainy Day Woman, Sad eyed lady of Bob Dylan us
the lowlands, Stuck in Memphis with
the mobile blues again

Example 2

Converting a spreadsheet into a relational database is a common task for database developers. The
task is not as straightforward as it might seem. Although you can often import data from a spread-
sheet directly into a database management system, spreadsheets are almost never well designed for
relational databases. The following figure is a spreadsheet that stores contact information for a uni-
versity. Some sample rows are included.

The contact list works fairly well as a spreadsheet, but it presents several difficulties for a data-
base developer. For one thing, there is a great deal of redundancy. Among others, the Building and
BuildingAddress entities repeat numerous times. While this may seem innocuous enough, it does
present the possibility of update anomalies. Consider what would need to be done if the IT
Department moved to the Broadway Edison building. The building code, building name, and address
would have to be changed for every employee that works in the IT Department. If any row remains
unchanged, the information for that employee would be incorrect. When a value is repeated many
times, such mistakes can happen quite easily.

LastName/Dept. | FirstName | Phone BuildingCode | Building BuildingAddress
Able Susan 206.555.2356 | BE Broadway Edison | 1700 Broadway
Admissions 206.555.1000 | BE Broadway Edison | 1700 Broadway
Anderson Elliot 206.555.1029 | SA South Annex 1650 Broadway
Anderson Jolene 206.555.9001 | SA South Annex 1650 Broadway
Bradley Lisa 206.555.2323 | BE Broadway Edison | 1700 Broadway
Brown Martin 206.555.1200 | SA South Annex 1650 Broadway
Information 206.555.1200 | SA South Annex 1650 Broadway
Technology

Chapter 5 ¢ Normalization and Design Review 83

Office | Dept. Type Status | Title Email
314 HUM Instruction| FT Professor sable@university.edu
124 ADM
212 T [nstruction| PT Professor eanderson@univeristy.edu
113 T Instruction| PT Professor janderson@university.edu
114 MAT Staff FT Program Assistant,

Lab Assistant Ibradely@university.edu
201 T Exempt Dean IT mbrown@university.edu
200

The spreadsheet is also open to deletion anomalies. Consider what would happen if Martin
Brown were to quit and be removed from the list. The position of Dean would also be lost. While it
is extremely unlikely that all the Deans would quit at once, it still points out a problem. Removing
one thing, a person, requires that you also remove another thing, a department.

Insertion anomalies could also occur. If Office and Phone were required, it would be impossible
to insert a new employee until he or she had been assigned an office and a phone.

First Normal Form

The First Normal Form [FN1] involves getting rid of repeating groups or arrays. Each attribute should
contain only a single value of a single type. This means a couple of things. For one, all the values
under an attribute should be about the same thing. An attribute called “Email,” for instance, should
contain emails only, no phone or pager numbers. A second meaning is that each value stored under
an attribute should be a single value, not an array or list of values. It would be wrong, for example,
to store two or three emails for the same person separated by commas.

An entity is in First Normal Form if

e Every attribute represents only one value.
e There are no repeating groups or arrays.
e Each row is unique.

Example 1

This Album table does not meet the criteria for First Normal Form. The main problem is in the Track
column. The column Track contains a list of songs rather than a single value. This would make it very
difficult to locate information about any single song.

One solution that often occurs to novice database developers is to enumerate a list of columns such
as Track1, Track2, Track3, and so on, to some arbitrary number of tracks. This also violates the First
Normal Form by creating a repeating group. Say, for argument’s sake, you made 13 track columns. What
happens to an album with fourteen tracks? What if an album has only one or two tracks? Also consider
what you would need to do to find any individual track. You would need to query 13 separate columns.

The following table is in First Normal Form:

AlbumTitle Track Artist ArtistCountry
Abby Road Here comes the sun Beatles UK
Abby Road Octopus’s Garden Beatles UK
Abby Road Something Beatles UK
Blond on Blond | Rainy Day Woman Bob Dylan us

Blond on Blond | Sad Eyed Lady of the lowlands Bob Dylan usS

Blond on Blond | Stuck in Mobile with the Memphis | Bob Dylan uS
blues again

It is obvious from looking at the preceding table that First Normal Form is not sufficient. Every
column contains a single value, and there are no arrays or repeating groups, but there is a great deal
of redundancy.

FIGURE 5-5 Contact
Spreadsheet (b)

FIRST NORMAL FORM

It removes all repeating groups or
arrays.

FIGURE 5-6 Album Table in 1NF

84 Chapter 5 ¢ Normalization and Design Review

FIGURE 5-7 Department and
Name Separated

Example 2

In our spreadsheet example, the first attribute LastName/Dept. stores two different types of values,
last names and department names. The attribute Title also has an issue. Lisa Brown has two titles,
“Program Assistant” and “Lab Assistant.” In First Normal Form, each row of an attribute must
contain only a single value.

It may not be obvious at first why these things are a problem. Think about it from the
point of view of someone querying the database. If they want to find a department’s phone
number, they have to search through all the faculty and staff names to find it. They could apply
various filters, such as searching for values that have no status or position, but that is not guar-
anteed to return just what they want. A database user expects to be able to just ask for the
department names and find them. The Title column is even more problematic for the database
searcher. Suppose you want to find all the employees who have the title “Lab Assistant.”
When the attribute contains a list of values, you can’t simply search for that title. You would
have to use some kind of pattern search or string function to extract the title from the list.
There is also no way to ensure consistency or data integrity when you have a list of values for
an attribute.

To get the data to conform to First Normal Form, the first thing to do is to separate LastName
and Dept. into two attributes. Since there is already a Dept. attribute, call the new attribute
DeptName. Here is the first half of the spreadsheet with the correction:

LastName | FirstiName | DeptName Phone BuildingCode | Building
Able Susan 206.555.2356 | BE Broadway Edison
Admissions Admissions 206.555.1000 | BE Broadway Edison
Anderson Elliot 206.555.1029 | SA South Annex
Anderson Jolene 206.555.9001 | SA South Annex
Bradley Lisa 206.555.2323 | BE Broadway Edison
Brown Martin 206.555.1200 | SA South Annex
Information Technology | 206.555.1200 | SA South Annex

The next problem is more difficult. Title can have multiple values for a single employee.
One temptation is to add columns such as Title1, Title2, and Title3, but this solution generates
more problems than it solves. For the vast majority of employees who have only one title,
Title2 and Title3 would be always empty. Also, what if some enterprising employee were work-
ing in four positions and had four titles. There would be no room for the fourth. For someone
querying the database, this solution opens up even worse problems. If you were searching for
all the employees who held a particular job title, you would have to query three different
attributes.

The only way to solve this problem is to break the entity into two or more separate entities.
Job title will be a separate entity. We will also need a linking entity, since there is a many-to-many
relationship between employees and job titles.

One last issue remains. As you learned in the last chapter on database design, each entity
should have a primary key, an attribute that uniquely identifies each row stored in the entity. In the
Tutor database and most examples, the book has used natural keys, that is, keys that arise from some
combination of the natural attributes of an entity. But in this example, just to show an alternative
approach, we will use surrogate keys. Each row will be assigned an arbitrary number in sequence.
Most relational database management systems have a utility to provide such keys. In SQL Server, it is
“Identity”; in Access, it is called an “autonumber.”

The overall Contact entity will have the key “ContactKey.” The new Title entity will have
“TitleKey” for a primary key and the linking entity will have a composite key consisting of
“ContactKey” and “TitleKey.”

When we are done, the data will look like this:

Following is an ERD of our efforts so far:

Chapter 5 ¢ Normalization and Design Review

ContactKey | LastName | FirstName | DeptName Phone BuildingCode
1 Able Susan 206.555.2356 | BE
2 Admissions Admissions 206.555.1000 | BE
3 Anderson Elliot 206.555.1029 | SA
4 Anderson Jolene 206.555.9001 | SA
5 Bradley Lisa 206.555.2323 | BE
6 Brown Martin 206.555.1200 | SA
7 Information Technology 206.555.1200 | SA
Building BuildingAddress | Office | Dept. | Type Status | Email
Broadway Edison | 1700 Broadway 314 HUM | Instruction | FT sable@university.edu
Broadway Edison | 1700 Broadway 124 ADM
South Annex 1650 Broadway 212 IT Instruction | PT eanderson@univeristy.edu
South Annex 1650 Broadway 113 T Instruction | PT janderson@university.edu
Broadway Edison | 1700 Broadway 114 MAT Staff FT Ibradely@university.edu
South Annex 1650 Broadway 201 T Exempt mbrown@university.edu
South Annex 1650 Broadway 200
TitleKey | TitleName
1 Professor
2 Program Assistant
3 Dean
4 Lab Assistant
ContactKey | TitleKey
1 1
3 1
4 1
5 2
5 4
6 3
Contact
Title
PK | ContactKey PK | TitleKe
LastName
Firstname TitleName
DeptName +
Phone
BuildingCode
BuildingName ContactTitle
BuildingAddress
Ot H—O< picrKz |Tiekey - PO—
Type
Status
Email

85

FIGURE 5-8 Contact Table 1NF

FIGURE 5-9 Contact Table

(cont.)

FIGURE 5-10

FIGURE 5-11
Table

FIGURE 5-12

Title Table

Contact Title

Contact ERD 1NF

86

Chapter 5 ¢ Normalization and Design Review

Professor Collins lays out the Tutor diagram so that both he and Sharon can see
it clearly.

Tutor TutorCourse
PK,FK1 | CourseKey
PK | TutorKey ’
H O< PK,FK2 | TutorKey
TutorLastName
TutorFirstName
TutorPhone +
TutorEmail
TutorHireDate Course
TutorStatus
PK | CourseKey Request
CourseName t----- OS PK | RequestKey
CourseDescription
T FK1 | CourseKey
T RequestDate
RequestStatus
RequestStudentName
Student
uden SR RequestStudentID
PK | StudentKey RequestStudentEmail
StudentCourse RequestNotes
StudentiLastName PK,FK1 | StudentKey
StudentFirstName —HO< PK,FK2 | CourseKey SR
StudentPhone
StudentEmail Session
StudentGender _
StudentAge PK SessionDate
StudentCitizen | o PK SessionTime
StudentWorkForceRetraining C PK,FK1 | TutorKey
FK1 | EthnicityKey PK,FK1 | CourseKey
ES FK2 StudentKey
| StudentLastName
! SessionStatus
9 SessionMaterialCovered
Ethnicity
PK | EthnicityKey
EthnicityDescription

FIGURE 5-13 Tutor ERD

“As you recall,” he begins, “to conform to First Normal Form, you need to elimi-
nate all repeating groups or arrays and all multivalued dependencies.” Together they
go through each table. Professor Collins pauses at the Request table. “All the tables look
good, but I do have a question about the attribute ‘Request Notes.” Will there be
instances with more than one entry for notes? If so, it would be better to make a new
entity called RequestNotes, or something to that end. That way each request can have
several notes if necessary, and you won’t be wasting disk space by reserving note space
for requests that don’t have any notes. The primary key could be the date and time
the note was entered, and it would be tied to the Request table by the RequestKey
repeated as a foreign key.”

Sharon nods. “I hadn’t thought about that. I suppose there could be several notes
as the status of the request changes. I will ask Terry about it to be sure. But the idea of
separating it just to save disk space makes sense too. I'll change it.”

“Ok, let’s look to see how well your diagram conforms to Second Normal Form.”

Second Normal Form removes what are called “functional dependencies.” One way to think of
functional dependencies is as separate groups or themes within an entity. The members of the group
are dependent on each other. If one member of the group repeats, so will the others in the group.
An entity should only be about one thing. All the members should be dependent on the key, not on

each other.

Example 1

In the Album table, there are really at least two large subjects. One is the Album itself. The other is

the Track.

Things You Should Know

AlbumTitle Track Artist ArtistCountry
Abby Road Here comes the sun Beatles UK
Abby Road Octopus's Garden Beatles UK
Abby Road Something Beatles UK
Blond on Blond | Rainy Day Woman Bob Dylan | US
Blond on Blond | Sad Eyed Lady of the lowlands | Bob Dylan | US
Blond on Blond | Stuck in Mobile with the Bob Dylan | US
Memphis blues again

The Artist information depends on the Track. (Think about an album with tracks by multiple
artists.) To conform to the Second Normal Form, the two functional dependencies—big themes—

must be broken into separate entities.

To relate the Album entity to the Track entity, it is necessary to create a primary key for the
Album entity that can be used to create a key—foreign key relationship with the Track entity. It is also

Album Track
PK | AlbumKey HO-----04 PK | TrackKey
AlbumTitle TrackTitle
Artist
ArtistCountry
FK1 | AlbbumKey

a good idea to give the Track entity a primary key. Here is what the tables look like now:

AlbumKey AlbumTitle
ABRD Abby Road
BLBL Blond On Blond
TrackKey | TrackTitle AlbumKey | Artist ArtistCountry
HCTS Here Comes the Sun ABRD Beatles UK
SMTH Something ABRD Beatles UK
OPGD Octopus’s Garden ABRD Beatles UK
RDWM Rainy Day Woman BLBL Bob Dylan | US
SELL Sad Eyed Lady of the Lowlands BLBL Bob Dylan | US
SMMB Stuck in Memphis with the Mobile Blues | BLBL Bob Dylan | US

Chapter 5 ¢ Normalization and Design Review 87

SECOND NORMAL FORM

It removes functional dependencies
by creating new entities.

FUNCTIONAL DEPENDENCIES

Groups of related attributes that
form subthemes within an entity.

FIGURE 5-14 Album Table 1FN

FIGURE 5-15 Album ERD 2NF

FIGURE 5-16 Album table 2NF

FIGURE 5-17 Track table 2NF

88

FIGURE 5-18 Employee Table

FIGURE 5-19 Employee Table
(cont.)

FIGURE 5-20 Department Table

FIGURE 5-21 Title Table

Chapter 5 ¢ Normalization and Design Review

Example 2

In the Contact spreadsheet example, there are two distinct types of contacts: employees and
departments. They have separate attributes within the entity. Employee has LastName and FirstName
attributes, for instance, which are always blank for Department. Separate themes should be given

their own entities.

Following is the sample data reflecting the new entities. Creating the Employee entity required
some additional changes. The ContactTitle entity is changed to EmployeeTitle, and ContactKey is
changed to EmployeeKey. The numbers have been changed to reflect the new relationship. Additional

information not present in the original table has been added to fill in the Department entity.

EmployeeKey | LastName | FirstName | Phone BuildingCode | Building
1 Able Susan 206.555.2356 | BE Broadway Edison
2 Anderson Elliot 206.555.1029 | SA South Annex
3 Anderson Jolene 206.555.9001 | SA South Annex
4 Bradley Lisa 206.555.2323 | BE Broadway Edison
5 Brown Martin 206.555.1200 | SA South Annex
BuildingAddress | Office | DeptKey | Type Status | Email
1700 Broadway 314 1 Instruction | FT sable@university.edu
1650 Broadway 212 2 Instruction | PT eanderson@univeristy.edu
1650 Broadway 113 2 [nstruction | PT janderson@university.edu
1700 Broadway 114 3 Staff FT Ibradely@university.edu
1650 Broadway 201 2 Exempt mbrown@university.edu
DeptKey DeptAbrv DeptName DeptPhone BuildingCode
1 Hum Humanities 206.555.1300 BE
2 T [nformation 206.555.1200 SA
Technology
MAT Math 206.555.1400 | BE
ADM Admissions 206.555.1000 | BE
Building BuildingAddress Office
Broadway Edison | 1700 Broadway 301
South Annex 1650 Broadway 200
Broadway Edison | 1700 Broadway 245
Broadway Edison | 1700 Broadway 124
TitleKey | TitleName
1 Professor
2 Program Assistant
3 Dean
4 Lab Assistant

There is still one major functional dependency in the entities remaining. Both the Employee
and the Department entities contain a group related to building. “Building Name” and “Building
Address” both depend on “Building Code” and repeat whenever the attribute “Building Code” is

EmployeeKey TitleKey
1 1
2 1
3 1
4 2
4 4
5 3

Chapter 5 ¢ Normalization and Design Review

present. Building is another separate theme and should have its own entity.
The NewBuilding entity looks like this:

BuildingKey BuildingCode BuildingName BuildingAddress
1 BE Broadway Edison 1700 Broadway
1 SA South Annex 1650 Broadway

The “BuildingCode,” “Building,” and “BuildingAddress” attributes in Employee and

Department are replaced by the “BuildingKey” attribute. So they now look like these:

EmployeeKey LastName FirstName Phone BuildingCode
1 Able Susan 206.555.2356 1
2 Anderson Elliot 206.555.1029 2
3 Anderson Jolene 206.555.9001 2
4 Bradley Lisa 206.555.2323 1
5 Brown Martin 206.555.1200 2
Office DeptKey Type Status Email
314 1 Instruction FT sable@university.edu
212 2 Instruction PT eanderson@univeristy.edu
113 2 Instruction PT janderson@university.edu
114 3 Staff FT Ibradely@university.edu
201 2 Exempt mbrown@university.edu
DeptKey DeptAbrv DeptName DeptPhone BuildingCode Office
1 Hum Humanities 206.555.1300 1 301
2 IT Information Technology 206.555.1200 2 200
3 MAT Math 206.555.1400 1 245
4 ADM Admissions 206.555.1000 1 124

FIGURE 5-22 Employee Title
Table

FIGURE 5-23 Building Table

FIGURE 5-24 Employee
Table 2NF

FIGURE 5-25 Employee
Table (cont.)

FIGURE 5-26 Department
Table 2NF

89

90 Chapter 5 ¢ Normalization and Design Review

FIGURE 5-27 Employee
ERD 2NF

Caution
An unnormalized or poorly

normalized database can lead to
numerous problems including
difficulties inserting or updating data,
difficulties deleting data, problems with
data integrity, and the inability to
retrieve the data you need.

FIGURE 5-28 Request Entity

The ERD of the data in Second Normal Form looks like this:

Employee Title
PK | EmployeeKey PK | TitleKey

LastName TitleName

Firstname

DeptName

Phone

Office EmployeeTitle

Type

Status PK,FK1 | EmployeetKe

Email O< PK,FK2 | TitleKe
FK1 | DepttKey
FK2 | BuildingKey

| |

| |

| |

| |

| | Building

_____________ |
Slz PK | BuildingKe:
Department BuildingCode

ottkey O T -OH BuildingName

PK_| DepttKe BuildingAddress

DeptAbv
DeptName
Room
Phone

FK1 | BuildingKey

Professor Collins looked through each of the entities for functional dependencies.
He stops again at the Request entity.

Request

PK | RequestKey

FK1| CourseKey
RequestDate
RequestStatus
RequestStudentName
RequestStudentiD
RequestStudentlEmail
RequestNotes

“We already talked about the RequestNotes, but look at the entity again,” he says.
“Can you see two different things going on?”

Sharon looks at it for some time before she finally sees it. “Request is one theme,
and student is another.”

“Yes, there is a functional dependency there. RequestStudentName and
RequestStudentEmail depend on RequestStudentID, rather than on the RequestKey.”

“I see that, but I was thinking that a student shouldn’t have to register as a tutor-
ing student to make a request for additional tutoring. In particular, they shouldn’t have
to enter all the demographic information. In fact, if they do register just to make a
request, it may make it more difficult for Terry to develop her demographic reports.”

“I understand, but if you leave the entity the way it is, it could cause problems.
The student information would be repeated with every request the student makes. That
could lead to update and other anomalies.”

Chapter 5 ¢ Normalization and Design Review 91

Bill thinks about it for a while. “I can think of a couple of solutions. The best solu-
tion would be to have the students register in the Student table. As I understand it, any
student who wants tutoring must register. Being registered, in and of itself, does not
mean they are actually signing up for tutoring sessions. To do the demographics, Terry
would have to compare the student information to the student keys in the Session table
anyway. The other option is to create a Requester table that contains the student infor-
mation for those requesting tutoring. I don’t think this option is as strong because it
creates a lot of potential redundancy.”

“Which one do you think I should go with?”

“I think you should talk it over with Terry. Use the Student entity if possible.”

“Thanks.”

“OK, Let’s see how it looks for Third Normal Form.”

Things You Should Know |?,'
Third Normal Form

For an entity to be in Third Normal Form, it has to first be in Second Normal Form. Third Normal Form
is about removing “transitive dependencies.” A transitive dependency describes an attribute that
depends on another attribute—not the primary key—for its meaning. The idea is that every attribute
should directly describe the entity itself. If you have a Customer entity, every attribute should describe
the customer. There shouldn’t be any attributes that describe another attribute.

While transitive dependencies may seem trivial, they do add to redundancy and therefore open
the possibilities for update and other anomalies.

Example 1

Take another look at the Track table.

TrackKey TrackTitle AlbumKey Artist ArtistCountry
HCTS Here Comes the Sun ABRD Beatles UK
SMTH Something ABRD Beatles UK
OPGD Octopus’s Garden ABRD Beatles UK
RDWM Rainy Day Woman BLBL Bob Dylan us
SELL Sad Eyed Lady of the Lowlands BLBL Bob Dylan us
SMMB Stuck in Memphis with the BLBL Bob Dylan usS
Mobile Blues

There is a transitive dependency in the table. ArtistCountry doesn’t describe the track; it
describes the Artist. The solution, as usual, is to break out a separate table. Artist should be its
own entity.

AlbumKey AlbumTitle

ABRD Abby Road

BLBL Blond On Blond
ArtistKey ArtistName ArtistCountry
BTLS Beatles UK
BDLN Bob Dylan us

THIRD NORMAL FORM

It refers to removing transient
dependencies.

TRANSIENT DEPENDENCIES

Where one attribute depends on
another attribute for its meaning
and not on the key.

FIGURE 5-29 Track Table

FIGURE 5-30 Album Table

FIGURE 5-31 Artist Table

92 Chapter 5 ¢ Normalization and Design Review

FIGURE 5-32 Track-Table 3NF

FIGURE 5-33 Album ERD 3NF

FIGURE 5-34 Employee Table

FIGURE 5-35 Employee Table
(cont.)

TrackKey TrackTitle AlbumKey ArtistKey
HCTS Here Comes the Sun ABRD BTLS
SMTH Something ABRD BTLS
OPGD Octopus’s Garden ABRD BTLS
RDWM Rainy Day Woman BLBL BDLN
SELL Sad Eyed Lady of the Lowlands BLBL BDLN
SMMB Stuck in Memphis with the BLBL BDLN
Mobile Blues
Here is an entity relation diagram for the three tables:
Album Artist
PK | AlbumKey PK | ArtistKey
AlbumTitle ArtistName
ES ArtistCountry

Example 2

A careful review of the entities developed from the address spreadsheet can show two related transi-
tive dependencies. In the Employee entity, the office number depends on the BuildingKey. That is, a
particular office number only has meaning in the context of a particular building. The same issue

o

Track

PK | TrackKey

TrackTitle

FK1 | AlbumKey
FK2 | ArtistKey

exists in the Department entity. The room number for the Department depends on the Building.

One solution is to create a new entity called BuildingRoom that resolves the building and room

relationship. Use of surrogate keys will give the new entity BuildingRoomKey a primary key.
Now the tables look like this:

EmployeeKey LastName FirstName Phone BuildingRoomKey

1 Able Susan 206.555.2356 5

2 Anderson Elliot 206.555.1029 9

3 Anderson Jolene 206.555.9001 6

4 Bradley Lisa 206.555.2323 1

5 Brown Martin 206.555.1200 8
DeptKey Type Status Email
1 Instruction FT sable@university.edu
2 Instruction PT ganderson@univeristy.edu
2 Instruction PT janderson@university.edu
3 Staff FT Ibradely@university.edu
2 Exempt mbrown@university.edu

Chapter 5 ¢ Normalization and Design Review 93

DepiKey DeptAbrv DeptName DeptPhone BuildingRoomKey
1 Hum Humanities 206.555.1300 4
2 T Information Technology 206.555.1200 7
3 MAT Math 206.555.1400 3
4 ADM Admissions 206.555.1000 2
TitleKey TitleName
1 Professor
2 Program Assistant
3 Dean
4 Lab Assistant
EmployeeKey TitleKey
1 1
2 1
3 1
4 2
4 4
8 3
BuildingKey BuildingCode BuildingName BuildingAddress
1 BE Broadway Edison 1700 Broadway
1 SA South Annex 1650 Broadway
BuildingRoomKey | BuildingKey | Room
1 1 114
2 1 124
3 1 245
4 1 301
5 1 314
6 2 113
7 2 200
8 2 201
9 2 212

FIGURE 5-36 Department Table

FIGURE 5-37 Title Table

FIGURE 5-38 Employee Title
Table

FIGURE 5-39 Building Table

FIGURE 5-40 Building Room
Table

94 Chapter 5 ¢ Normalization and Design Review

FIGURE 5-41 Employee ERD
3NF

FIGURE 5-42 Session Entity

Caution
It is easy to add an attribute to an

entity because you feel intuitively
that you would want to see it there when
looking at the data. But adding the
column creates unnecessary redundancy
and opens the possibility of anomalies.
Omne way to think about it is that
normalization is about designing tables
so that they work best on the computer.
They are not designed to be necessarily
readable by human users. Queries and
views are used to bring the data back in a
form that is easy to understand and use.
Queries will be covered in Chapter 7.

The new entity diagram looks like this:

Employee EmployeeTitle
PK | EmployeeKey L PK,FK1 | EmployeetKey
H O< PK,FK2 | TitleKey
LastName
Firsthame
DeptName
Phone
Type PO------ |
Status :
Email | Title
FK1 | DepttKey I
FK2 | BuildingRoomKey : PK | TitleKe
|
% : TitleName
|
|
|
|
Q Building

Q BuildingRoom PK | BuildinaKe
PK | BuildingRoomKey

B A iaiainly BuildingCode

PK | DepttKey >O- - - Ot EK1 | BuildingKey BuildingName
RoomNumber BuildingAddress

DeptAbv

DeptName

Phone
FK1 | BuildingRoomKey

Once again Professor Collins reviewed the entities, this time checking to make
sure they conform to Third Normal Form. “I see only one issue,” he says and points to
the Session entity:

Session

PK,FK1 | TutorKey
PK,FK1 | CourseKey

PK SessionDate

PK SessionStartTime

FK2 StudentKey
StudentLastName

SessionStatus

“StudentLastName modifies the StudentKey and not the SessionKey. I know
it seems natural to want the student last name in the Session, but it is unnecessary
and redundant. The session is related to the Student table by means of the
‘StudentKey,” and you can always retrieve any student information you need by
means of a query.”

Sharon says, “I knew that. I don’t know what possessed me to put it in there.”

Bill Collins smiles. “Like I said, it is a natural reaction. You want the student name
to be a part of the tutoring session. But I notice you didn’t put in the tutor’s name. That
shows you understood the principle, you just slipped up. That’s what reviews are for.”
He turns to another of his notes.

Chapter 5 ¢ Normalization and Design Review

“Looking the diagram over a third time, I noticed another potential problem. Here
you made a linking table between Student and Courses with a composite key consisting
of StudentKey and CourseKey. That makes perfect sense, but it does have a problem.
That means a student can only take a particular course once, ever, or, at least, he or she
can get tutored for that course only once. If a student takes a course a second time, it
would violate the primary key constraint. I don’t think that is a policy of the tutoring
center. I think you can get tutoring for any course you are enrolled in, even if it is your
second or third try.”

THINGS TO THINK ABOUT

You should always have someone else review Who do you think should review the
your entity relation diagrams before you diagram? What should he or she look for? What
use them to start developing the database are the dangers of going ahead without review-
itself. ing the diagram?

Sharon studies the diagram for a minute. “How would I fix that?”
“I think all it would take is to add another column to the composite key, ideally
one that specifies quarter and year. I would suggest something like this.”

StudentCourse

PK,FK1 | StudentKey
PK,FK2 | CourseKey
PK StudentCourseQuarter

Sharon nods in agreement, “Anything else?”

“No, I think with those changes it should be fine. Remember to review the dia-
gram with Terry to make sure it covers everything she needs. Don’t expect her to
understand the diagram. She probably won’t understand normalization and relational
modeling, but she will be the best source to determine if you have captured everything
that needs to be captured. The main thing you need to do is look at all the attributes and
make sure that everything she needs is included.”

“I'will do that, and thank you for your help.”

“You are most welcome.”

THINGS TO THINK ABOUT

Do you think it is easier to modify a database in design mode or after the database has been actually
built? Why do you think that way?

After Sharon leaves Bill Collins’s office, she goes to the cafeteria and gets a cup of
coffee. She opens her laptop and adjusts her entity relation diagram to incorporate all of
Bill’s suggestions. This is the version she will take to Terry.

FIGURE 5-43 StudentCourse
Entity

95

96

Chapter 5 ¢ Normalization and Design Review

Tutor

PK

TutorKey

TutorLastName
TutorFirstName
TutorPhone
TutorEmail
TutorHireDate
TutorStatus

H————O< pK,FK2 | TutorKey H

TutorCourse

PK,FK1 | CourseKey

3

Course

PK | CourseKey

Request
CourseName L4 --—4---

CourseDescription PK | RequestKey

StudentCourse

PK

PK,FK1 | StudentKey
PK,FK2 | CourseKey
StudentCourseQuarter

T FK1 | CourseKey

I ---0< RequestDate
>0 RequestStatus
FK2 | StudentKey

S

RequestNote

Student

PK RequestNoteKey

PK

StudentKey

;

SR RequestNoteText

FK1

StudentiLastName
StudentFirstName
StudentPhone
StudentEmail
StudentGender
StudentAge
StudentCitizen

StudentWorkForceRetraining SessionStatus

EthnicityKey

O Session FK1 | RequestKey

PK SessionDate
PK SessionTime
PK,FK1 | TutorKey
TO----O9 pk,FK1 |CourseKey

FK2 StudentKey

SessionMaterialCovered

3
Q

Ethnicity

PK

EthnicityKey

EthnicityDescription

FIGURE 5-44 Tutor ERD Normalized

FINAL CONTENT REVIEW

Terry agrees to see her the next day. After she has sat down, she presents Terry with a
printout of the diagram. “I have reviewed the design with Professor Collins,” she says,
“what I need to do with you is figure out if have captured all the information you need
to capture.”

“All right, that sounds good. Where do we start?”

“I think the best way might be to look at each major entity and go through the
attributes. Let’s start with the Tutor entity up here. I have the tutors’ first and last
names, their phone numbers and email addresses, and the dates they were hired on.”

Terry asks “What do you mean by “TutorStatus™?”

Chapter 5 ¢ Normalization and Design Review 97

“I was thinking that would record whether a tutor is active or not. You don’t nec-
essarily want to delete the information regarding tutors and what they tutored when
they leave. In fact, I am pretty sure you want to keep that information so you can com-
pare current data to past data. So I thought this field would make it simple to determine
which tutors were currently tutoring versus which ones were no longer tutoring. It is
possible that you could get the same information by querying the Session tables. If a
tutor doesn’t have any current or future dates listed, will he or she be inactive?”

“That wouldn’t always be true. A tutor could be active but not have scheduled
anything for the next two weeks. I think the status field is better. What is the
TutorKey?”

Sharon smiles, “I am not entirely sure. A student has a student ID and that can be
the StudentKey. Most tutors are students but not all of them. Do you create an identify-
ing number?”

“Yes. We give all tutors an employment ID. If they are students, it is the same as
their student ID; if not, we give them one that looks just like a student ID.”

“Good. That makes that easy.”

They review each of the remaining entities. Terry has questions for each, but after
the full review, she is satisfied that it captures all the information that she will need.

Sharon thanks her. “Now I am ready to actually build the database. We will need
to get together again to decide what we want to build it in.”

Terry looks down at her calendar. “How soon do you want to meet?”

“How about Monday? I think I know what we should use, but I would like to do
a little research.”

“OK, how does 9:00 AM work?”

“That should be fine.”

DOCUMENTATION

It is useful to keep multiple versions of the entity diagram, noting changes made to con-
form to normal forms. Again, these can be useful to later developers who need to make
changes to your original design. One change that is often made on high-volume transac-
tion databases is to apply a process called “denormalization.” In denormalization, some
entities that were separated in the normalization process are rejoined. This is done for
processing and query speed. It is not a process that should be done lightly. Every act of
denormalization reopens the possibility of the various anomalies. But sometimes the
sheer size and volume of transactions on a database make it necessary to denormalize if
the users are not to experience delays.

A database should always be fully normalized first and denormalized only as nec-
essary for performance. Both the fully normalized design and the changes made for
denormalization should be fully documented.

Things We Have Done

In this chapter we have

e looked at three types of database anomalies: insert, update,
and delete
e introduced normal forms

Vocabulary

Match the definitions to the vocabulary words:

DENORMALIZATION

Joining tables that were separated
in the normalization process to
improve performance.

reviewed database designs for First Normal Form
reviewed database designs for Second Normal Form
reviewed database designs for Third Normal Form
reviewed database designs for completeness

1. Normal forms — a. Where deleting some data inadvertently also removes other data
2. Update anomalies — b. Removes transient dependencies
3. Deletion anomalies — ¢. Where the same data must be updated in several places creating the possibility of mis-

matched or inaccurate data

98 Chapter 5 ¢ Normalization and Design Review

4. First Normal Form — d.

the entity
. Denormalization —
. Insertion anomalies —
. Second Normal Form —
. Transient dependencies —
. Functional dependencies —
10. Third Normal Form —

© ® N o Ul
7R e

Things to Look Up

1. Look up database anomalies. See if you can find a good
example explaining each kind of anomaly.

2. Look up the definition of functional dependency. Can you
find a good example?

3. Look up the definition of transitive dependency. Can you
find a good example?

Practices

Martin wants to make a database to track his extensive DVD &
Blue Ray collection. He has been tracking them in a spreadsheet
with these columns:

. Title

. Studio

. Media (Blue Ray or DVD)

. Year (year released)

. Genre (action, sci-fi, comedy, animated, western, documen-
tary, etc.)

. Actors (all the listed actors separated by commas)

7. Special Features (all the listed special features separated by

commas)
8. Rating (R, PG-13, PG, G, N for unrated)
9. Price (the price he paid for it)

U W N =

=)}

You may want to create the spreadsheet and enter some
sample data, if it helps clarify the process.

1. What are some of the potential problems with this layout if
carried directly into a database? Specifically address each of
the three anomaly types: insert, update, and delete.

2. Which of the columns in the spreadsheet are multivalued?

Scenarios

WILD WOOD APARTMENTS

It is almost time to actually begin building the Apartment data-
base, but you must make sure that the design is solid and that it
captures all the data required by Wild Wood Apartments. The
first step is a design review; then you must review the diagram
for completeness.

To Do

1. Review the diagram you made from the previous chapter
for all three levels of normalization.

10.

Attributes that are related to each other rather than the key. They form subthemes within

Rules for removing anomalies and redundancies

An attribute that depends on another attribute, not the key, for its meaning

Removes functional dependencies

The inability to insert data because some other unknown data is required

Removes repeating groups and arrays

The process of rejoining tables that were separated during the normalization process to
improve performance

. Look up one of the normal forms we did not cover. See if

you can explain it to someone in the class.

. Look up “denormalization,” and why anyone would want

to do it.

. Create an entity diagram that shows how you would

translate the preceding spreadsheet into a database that
conforms to First Normal Form.

. Describe the process you went through to arrive at the

diagram for Practice 3.

. List any “functional” dependencies, any major themes, you

find.

. Create a second entity diagram that shows how you would

translate the spreadsheet into a database that conforms to
Second Normal Form.

. Describe the process you used for Practice 6. If you did not

make any changes, provide your reasons for why you think
your previous diagram also conforms to Second Normal
Form.

. List any “transitive” dependencies you find. Describe why

you believe they depend on a column that is not the key of
the table.

. Create a third entity diagram that shows how you would

bring the database into conformity with Third Normal
Form.

Describe your process for Practice 9, even if you made no
changes from the previous diagram.

2. Change the diagram to reflect the fully normalized
design.

3. Document in writing why you made the changes you
did, or why you did not need to make changes.

4. Review the normalized diagram for completeness. Do
the entities capture all the data needed to meet the
business rules and needs of Wild Wood Apartments?

5. Documentation: Save the normalized diagram with
notes about changes made during the normalization
process to your database notebook.

VINCE'S VINYL

You have told Vince that you can begin building the database
very soon now, maybe even next week. But before you do that,
you need to make sure the design is solid and complete.

To Do

1. Review the diagram you made from the previous chap-
ter for all the three levels of normalization.

2. Change the diagram to reflect the fully normalized
design.

3. Document in writing why you made the changes you
did, or why you did not need to make changes.

4. Review the normalized diagram for completeness. Do
the entities capture all the data needed to meet the busi-
ness rules and needs of Vince’s Vinyl?

5. Documentation: Save the normalized diagram with
notes about changes made during the normalization pro-
cess to your database notebook.

GRANDFIELD COLLEGE

You have promised to begin building the database within the
next couple of days. But before you do that, you have to review
the design for normalization and completeness.

To Do

1. Review the diagram you made from the previous chap-
ter for all three levels of normalization.

2. Change the diagram to reflect the fully normalized
design.

Suggestions for Scenarios

Normalization is difficult. The trick is to take each normal form
one at a time. Look at each entity one at a time, to see if each
conforms to the First Normal Form. Make sure there are no
repeating groups or mutivalued attributes. If there are, then
break them out into new entities. Then repeat the process for
the Second Normal Form. Look at each entity, and make sure
that each is about only one thing. Again, if you find an entity

Chapter 5 ¢ Normalization and Design Review 99

3. Document in writing why you made the changes you
did, or why you did not need to make changes.

4. Review the normalized diagram for completeness. Do
the entities capture all the data needed to meet the busi-
ness rules and needs of Grandfield College IT
Department?

5. Documentation: Save the normalized diagram with
notes about changes made during the normalization pro-
cess to your database notebook.

WESTLAKE RESEARCH HOSPITAL

The start of the double-blind test is approaching rapidly. There
is a great deal of pressure on you to begin building the actual
database. Before you can do that, though, you must perform a
final review to make sure the database is normalized and
complete.

To Do

1. Review the diagram you made from the previous chap-
ter for all three levels of normalization.

2. Change the diagram to reflect the fully normalized
design.

3. Document in writing why you made the changes you
did, or why you did not need to make changes.

4. Review the normalized diagram for completeness. Do
the entities capture all the data needed to meet the busi-
ness rules and needs of Westlake?

5. Documentation: Save the normalized diagram with
notes about changes made during the normalization pro-
cess to your database notebook.

that is about more than one thing, break it into new entities.
Finally, repeat the process for Third Normal Form, looking for
transitive dependencies, attributes that depend on an attribute
that is not the key, for their value.

As with the design process itself, the normalization process
benefits from discussion and multiple inputs. It is crucial to
have others review the results.

CHAPTER 6

Physical Design

Now that she has the logical design completed, Sharon works on the physical design of the database. The
first thing to decide is what database management system to use. After considering several, Sharon decides
on SQL Server Express. She creates a new database with a data file and a log file. She creates the tables in
the new database, selecting the appropriate data type and setting any constraints for each column. She also
sets up the relationships among the tables. Finally, when she has set up all the database objects, she enters
5 or 10 rows of sample data so she can test the database.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

" Compare database management systems and determine which best suits current needs
" Implement a physical design of the database based on the logical ERDs

® Choose appropriate data types for columns

" Enter sample data into tables

CHOOSING THE MANAGEMENT SYSTEM

Sharon finally feels comfortable with her design. Now it is time to begin actually creating the database. The first
question she must resolve is which database management system to use. One of the first criteria is that it
shouldn’t cost the school anything. That still leaves open several options. Oracle Express or DB2 Express is
tempting because she would love to explore both. But the fact that she doesn’t know either also means a longer
learning curve. Additionally, she knows that the IT staff is unfamiliar with them. The same holds true, though to
a lesser extent, for MySQL and PostGres SQL. Both are free and actually more powerful than any of the express
editions, but she is less familiar with them. The IT staff has some familiarity with MySQL, but still Sharon
doesn’t think she can afford the learning curve at this time. That leaves Access and SQL Server Express.

B
5‘. Things You Should Know

Choosing a DBMS
Choosing the appropriate DBMS requires a great deal of analysis. There are several important factors to consider.

Compatibility with your network and operating systems

Hardware and software requirements for the DBMS

Features of the DBMS in relation to your database requirements

Familiarity and expertise in the DBMS for database developers and IT personnel
Price and licensing requirements

Product reliability and support

100

Chapter 6 © Physical Design

Compatibility and Hardware Requirements

It might seem obvious that if an RDBMS is not compatible with your system, you would exclude it
from the list of possible candidates. For example, if your system is running exclusively Unix or Linux
operating systems, SQL Server would be out of the question because it will run only on Microsoft
Windows operating systems. Equally, if the DBMS requires more hard disk space and RAM than your
system currently supports, you probably will look for a less demanding alternative. However, it is
possible that an RDMS has features that make it compelling enough to add hardware or integrate
another operating system into the network.

Features of the DBMS

What features a DBMS supports is crucial to the decision. For a simple database, such as the Tutor
Management database, almost any DBMS will do. All they need for features is to support a data-
base with enough room for the records and support a relatively small number of multiple simulta-
neous users. Even these requirements may be more than some free RDBMSs support. Both SQL
Server and Oracle Express, for instance, have file-size limits. They may be sufficient for a small or
moderately sized database, but larger databases will rapidly run up against the limits. Additionally,
the free databases often have limits on how they can utilize the hardware. It is not uncommon to
have limits on the amount of RAM that can be accessed or the number of processors. They will
not be adequate for systems that require higher levels of performance.

Open-source databases such as MySQL or PostGres are often good choices, especially for
Web-based applications. As with other RDBMSs, you need to match the features to your needs.

Larger companies often have need for “enterprise”-level features. Often their databases need
24-hour, 7-days-a-week availability. If their database goes down, they lose money. One of the
enterprise features is “failover.” This feature ensures that if a server goes down, it will fail over to a
copy of that server. The customer never knows a server failed. Enterprise features also include tools
for load balancing. If one server gets too much traffic, some of the traffic is shifted to another
server. Other features might include log shipping, mirroring, and so on. Generally, only the more
expensive commercial servers such as SQL Server, Oracle, and DB2 support these enterprise-level
features.

One additional set of features has grown increasingly important. These are the business intel-
ligence features that can be used for data warehousing and advanced data analysis. Again, typically,
these are only available with commercial RDBMSs.

Familiarity and Expertise

Familiarity and expertise are also important factors to consider. It is much easier to develop a data-
base with tools with which you are familiar. It is also easier for IT to support such a database. New
systems, such as an unfamiliar RDBMS, typically require training and learning time. However, if the
features and need are compelling enough, it may be worth the expense and time to train developers
and support staff.

Price and Licensing

It is crucial to understand the pricing and licensing agreements that come with a DBMS. In a school,
for instance, it is common for SQL Server or Oracle to be licensed for use in instructional classrooms.
But using the RDBMS to support the actual school infrastructure, such as the Tutoring program,
requires an entirely different license agreement. You must make sure that the product you wish to
use is licensed for the use you intend for it.

Prices can vary from free to many thousands of dollars. Free isn't always best, but you must
balance the features of the DBMS against the budget and capabilities of the institution.

Product Reliability and Support

The reliability of a DBMS product is crucial if it is to meet your needs. Reliability includes things
like processing data without errors, hours of availability, and maintenance requirements. You
should carefully research the reliability record for any DBMS you are thinking of adopting.
Support can also be important. If you have questions about the product, or problems with it, what
kind of help and response can you expect? Most DBMSs have online support and online community
discussions. Some have live support. When you choose a DBMS, you should factor in the amount and
kind of support you think you will need.

Microsoft Access isn’t free, but the school has a site license for it, for both
student and staff use. Access does offer some significant benefits. For one, it is

101

102 Chapter 6 * Physical Design

PHYSICAL DESIGN

Database design adapted to the
features and limitations of a
particular RDBMS.

FIGURE 6-1 New Database

DATABASE TRANSACTION

Any action that a database takes,
creating objects, adding rows,
changing data in rows, removing
rows, and so on.

familiar. Most staff members had Access on their desktops and had at least opened
it a couple of times. Also, Access contains its own form and report builders, mak-
ing it easier to create a user-friendly database application. But Access has its
drawbacks as well. It has limits to how many simultaneous connections it can sup-
port. These limits can make it a questionable choice if you wish to create an
Internet front end. Also, Sharon had always found Access difficult to secure
properly.

SQL Server, on the other hand, has no limits on the number of simultaneous con-
nections. It could work well as the back end of a Web-based application. Also, Sharon
knows, the school uses SQL Server for a lot of its internal record keeping. Using SQL
Express would make it easier to integrate with these systems at a later date. SQL
Express was also scalable. It was easy to upgrade from Express to a standard edition
of SQL Server. She also knows how to secure SQL Server, and she prefers its SQL
Query window to Access’. The chief drawback was the lack of form builders. To cre-
ate an application, she would have to use an external programming environment
such as ASP.Net.

Thinking about it, she decides she prefers SQL Server Express, but the final deci-
sion is Terry’s. At 9:00 when Sharon meets with her, she presents her arguments. After
some assurances that Sharon can build an application for her and the tutors to use,
Terry gives the go ahead to use SQL Express.

CREATING THE DATABASE

Later, Sharon opens her laptop and starts the SQL Server Management Studio. She con-
nects to the instance of SQL Server Express. Then in the Object Explorer window, she
right clicks on “Databases” and chooses “New Database.”

Qbject Explorer -4 x
Connect~ | &J _zj
B | \sglexpress (SQL Server9.0.3042 - St:vc—laptop\St:vc.
= 3 9
& O3 5| MNew Database...
= [Secu Attach...
@ [Serve Restore Database...
@ 3 Reph ,)
@ C@ Man Restore Files and Filegroups...
Reports »
Refresh

The New Database dialog window opens. This dialog lets Sharon name the
database and its files. An SQL Server database always has at least two files: a data
file that contains all the data including the data on table structures and relationships
and a log file that contains a running record of database transactions. She could add
additional files, and she could change the locations of the files, but for now she
will go with the default settings. She names the database “Tutor” and clicks the
OK button.

It takes just a couple of seconds to create the new database.

Chapter 6 © Physical Design

Filegroup
PRIMARY i3

Mot Applicable 2

Connection

Server
STEVE-LAPTOP\SQLEXPRESS

Connaction:
Stevedaptop'Steve

;’_ﬂ View connection properties

Progress
Ready

By 10 parcant, unmstricted growt

FIGURE 6-2 New Database Dialog

.
Things You Should Know .

Physical Design

The logical design of a database is the same no matter what database management system you
intend to use. The entities, attributes, and relationships are looked at purely in terms of the logical
structure of the data. Physical design involves adapting the logical design to the features and limita-
tions of a particular database product.

One of the first considerations in physical design is the location and structure of the database
files themselves. Different database management systems manage files in different ways. Part of
creating the physical design is understanding how your product stores and manages files. SQL Server
databases have at least two files, a data file with the extension “.mdb” and a log file with the exten-
sion “.Idf.” The first or primary data file contains not only the data in the database but also the
metadata containing information about table structures, relations, and other database objects. You

103

104 Chapter 6 * Physical Design

can arrange for an SQL Server database to save its data in multiple files, but one must always be
designated the primary file. The log files track database transactions. If you have set the restore
method to “Full,” you can use these files to restore all the transactions that have occurred since your

last backup.

DATA TYPES

The column specification that
determines what kind of data can
be stored in that column, character
versus numeric or date, for
example.

By Default, the database files are stored in C:\Program Files\Microsoft SQL Server\MSSQL. 1\
MSSQL\Data, though this may vary on your computer depending on how SQL Server was installed.
Generally though, it is not a good practice to store the database files and the log files on the same
disk. We'll look at this more fully in the chapter on administration and security.
A second aspect of physical design involves data types. There is a general American National
Standards Institute (ANSI) specification for basic data types, but each RDBMS adapts and adds to
these types. These differences in data types are responsible for many of the difficulties encountered
when trying to move data from one RDBMS to another. Date and time data types especially vary
from product to product. SQL Server 2008 supports the following data types:

Numeric Data Types

Data Type Description Range/Examples
Bigint 8 bytes integer —2/\63(-9,223,372,036,854,775,808) to
2°63-1(9,223,372,036,854,775,807)
Int 4 bytes —2/31 (=2,147,483,648) to 2A31-1
(2,147,483,647)
Smallint 2 bytes -2/ 15 (=32,768) to 2A15-1 (32,767)
Tinyint 1 byte 0to 255
Bit 1 bit 0, 1, or null
Decimal User can set precision decimal(10,2)
up to 10738
Money 8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807
Smallmoney 4 bytes -214,748.3648 to 214,748.3647
Numeric User can set precision Same as decimal
up to 10738
Float Approximate numeric —1.79E + 308 to —2.23E-308, 0
type, the number and 2.23E-308 to 1.79E + 308
of bytes depends
on the number
Real Also approximate, -3.40E + 38 to -1.18E — 38, 0 and

4 bytes 1.18E — 38 to 3.40E + 38
I Date Time Types
Data Type Description Examples/Range
Date New in 2008, stores date January 1, 1 A.D. through December
values. 31,9999 A.D
datetime2 New. Stores date and time and Same date range as given earlier. Time

datetimeoffset

smalldatetime

Time

allows user to set precision in
fractions of seconds.

Date and time but with time-
Zone awareness.

Smaller date and time type.

New. You can set the precision
in fractions of a second.

range = 00:00:00 through
23:59:59.9999999

Same

January 1, 1753, through December 31,

9999 00:00:00 through 23:59:59.997

00:00:00.0000000 through
23:59:59.9999999

Chapter 6 © Physical Design

Examples

I String and Character Types
Data Type Description
Char Fixed-length ASCII text.
Text Text stores large blocks of text

data. The text and ntext data
types are deprecated; use
varchar(MAX) or nvarchar(MAX).

"Jefferson”—max 255 characters
2,147,483,647 bytes

Varchar Variable-length ASCII. “Los Angeles,” maximum 255 characters
unless MAX (MAX allows 2731 — 1 bytes)

Nchar Unicode fixed length Uses Unicode UCS_2 character set

Ntext Unicode large block. Deprecated.

nvarchar Unicode variable-length text.

I Some Data Types
Data type Description Examples
Image Variable-length binary data. The 2731-1 bytes

image data type is deprecated

and will go away.

Binary Fixed-length binary. 1 to 8000 bytes

varbinary Variable-length binary. 1 to 8000 bytes unless you specify
MAX, 2 A31-1 bytes

unigueidentifer Generates a unique identifier. 6F9619FF-8B86-D011-B42D-
00CO4FC964FF

XML Stores XML data as XML, can be <employee> <name>Sue Larson

validated against schema

</name></employee>

collections, and queried with

xquery.

Sharon expands the database node in the Object Explorer and finds the new data-
base Tutor. Then she clicks on the + sign to expand Tutor and see its folders. She clicks
on the folder Tables and then right clicks and selects “New Table.”

THINGS TO THINK ABOUT

Fixed-Length versus Variable-Character
Data Types

The char and nchar data types are fixed
length. That means if you set a width of 50
characters, they will always write 50 charac-
ters to the disk even if you use only 20. The
varchar and nvarchar are variable length. That

means if you set the maximum length to 50
but use only 20, the variable-length data type
will write only 20.

When do you think fixed length would be a
better choice? When do you think variable
length would be better? Which uses more pro-
cessing power? Which uses more disk space?

The table designer opens. The table designer has three columns: one for the col-
umn name, one for the data type, and one with check boxes to allow or not allow nulls.
Below the column designer is a window which lists all the properties of the selected
column. For now, Sharon is going to ignore the properties and just focus on the col-

umns and their data types.

Sharon decides to start with the table Tutor. She opens Visio and looks back at her

entity relation diagram.

105

106 Chapter 6 * Physical Design

FIGURE 6-3 Tutor Entity

UNICODE

An expanded character set that
includes non-Latin character sets
such as Russian or Japanese.

FIGURE 6-4 Tutor Table (*) Key

Tutor

PK | TutorKey

TutorLastName
TutorFirstName
TutorPhone
TutorEmail
TutorHireDate
TutorStatus

The first attribute is TutorKey, which she enters under the column name. She
thinks that the data contained in the column will be something like the student ID
number. Even though it is a number, it will not be used as a number. That is, nobody
would ever use it to add, subtract, multiply, or divide. Also, some student IDs have
leading zeros. A numeric type would drop any leading zeros. She looks through the
drop-down list of data types. There are four good candidates: char, nchar, nvarchar,
and varchar. All four store character data. She knows that char and nchar are “fixed-
length” data type. That means if you set the width of a char or nchar to 50, it will
always write a 50-character block to the disk even if the actual content of the column
is only 20 or 30 characters. The difference between char and nchar is the character set.
Char uses the ASCII (American Standard Code for Information Interchange) character
set, and nchar uses the larger and more complete Unicode character set. Nvarchar and
varchar are variable-length data types. That means, the database only writes the actual
length of the data to the disk up to the set limit. So if you assigned the nvarchar data
type to a column and set the upper limit to 50 characters but entered only 30 charac-
ters, the database would only write a 30-character block to the disk.

Sharon decides to use the nchar data type. Student IDs, she knows, are of a fixed
width. And setting the width to a particular value is one way of helping ensure the
validity of the IDs. She also decides to go with the Unicode version. It takes no more
space to store each character since the first 255 characters are identical to the ASCII
codes, and it allows greater flexibility and compatibility.

Finally, she goes the toolbar and clicks the key icon. This designates it as a primary
key and also unchecks the allow nulls box, since a primary key cannot be null.

Now she enters the other columns from the Tutor entity into the table designer.
She decides that only the tutor’s first name and email should be optional and allow
nulls. When she is done, the table definition looks like this:

Column Name Data Type Allow Nulls
*TutorKey nchar(10)

TutorLastName nvarchar(50)

TutorFirstName nvarchar(50) X
TutorPhone nchar(10)

TutorEmail nvarchar(50) X
TutorHireDate Date

TutorStatus nchar(10)

She clicks the disk icon on the toolbar to save the table and names the table
Tutor.

She clicks OK. Next, just to confirm to herself that it is there, she goes to the Object
Explorer and expands the table folder. The Tutor table is there. She knows that if she
expands the table itself, she can view the columns and their data types.

Chapter 6 © Physical Design

[Choose Name m
Enter a name for the table:
Tutod
oK] [Cancel]
Object Explorer v3x

Connect~ (83 § T

= [\sqlexpress (SQL Server 9.0.3042 - Steve-laptop\Steve)
= [Databases
@ 3 System Databases
= [J Tuter
[L3 Database Diagrams
=
[# 3 System Tables
® & dbo.Tutor
(3 Views
@ 3 Synonyms
3 Programmability
(L3 Service Broker
(3 Security
@ [Security
& [Server Objects
@ [Replication
[Management

B
Things You Should Know .

Nulls

Nulls represent an important concept in relational databases. A null is not a value as such. It signifies
that a value is unknown. For a numeric type, a null is not the same as a zero. A zero is a value; null
is a missing or unknown value. For a string or character type, the null is not the same as an empty
string. Again, it is unknown. Nulls have many consequences for a database. When you are summing
a column in a table, nulls are excluded from the sum by default. This doesn’t really affect the end
answer. But consider the effect when you are averaging a column. The mean average consists of the
sum of the values in a column divided by the total number of rows. Here nulls do have an effect. If
you count all the rows, even those with null, it will be as if each null was a zero. The average
returned will be lower than the actual average would have been because of the nulls. The default
action usually is to exclude them from the average. This makes more sense. The average returned
reflects the actual values in the database, but the average is still only approximate because of the
missing values.

When you create a table, you have a choice to allow nulls or not. If you allow nulls, you can
leave that column blank when you are entering data. If you do not allow nulls, you must enter a
value into the column to continue. Generally, you should not allow nulls for the columns that are
crucial to your business rules. Assume, for example, that your business requires a customer name
and a contact phone number for every transaction. Those fields should not allow nulls. But let’s say
your business also prefers to have the complete address of each customer for sending emails and
updates later. The decision you have to make is whether to require the address by not allowing nulls

107

FIGURE 6-5 Save Table Dialog

FIGURE 6-6 Object Explorer
Tables

NULL

A null represents the absence of a
value. A null value is unknown.

108 Chapter 6 ¢ Physical Design

FIGURE 6-7 Course Entity

FIGURE 6-8 Course Table

or to accept that some customers may not give their address and allow nulls for those columns.
Consider that making too many fields required by not allowing nulls can make a database too rigid
to use in everyday situations. If a customer refuses to give his or her address, and those columns are
required, the person entering the record either has to turn the customer down or enter meaningless
data into the columns.

THINGS TO THINK ABOUT

Nulls versus Out-of-Bounds Data might put a value like 999.99 for an unknown
In many older databases that did not have a ~ temperature.

provision for nulls, unknown data was repre- What are some of the drawbacks you can
sented by entering a value that was clearly out ~ See to using out-of-bounds data for a column?
of bounds. A database tracking historical tem- What advantages or disadvantages do you

peratures of a particular location, for instance, ~ Se€ in using nulls for unknown data?

Now she turns to the task of taking each of the other entities in her diagram and
translating them into SQL Server tables. First, she creates the course table.

Course

PK | CourseKey

CourseName
CourseDescription

Column Name Data Type Allow Nulls
*CourseKey nchar(10)
CourseName nvarchar(50)
CourseDescription nvarchar(200) X
l?, Things You Should Know

Creating a Table in SQL

Creating tables in the graphical interface is not the only way to create a table. It is also possible to
create the table using the SQL programming language. SQL will be covered in Chapter 7. To
create the course table in SQL, you would open a New Query window. You would type in the
following code:

CREATE TABLE Course

(
CourseKey NCHAR(10) PRIMARY KEY,
CourseName NVARCHAR(50) NOT NULL,
CourseDescription NVARCHAR(200) NULL

)

Creating tables in code can be more efficient, but it does require that you have a full under-
standing of the structure of the database, its data types, and its relationships.

Next Sharon creates the Ethnicity lookup table.

For the student table, she is careful to make only the StudentKey and the
StudentLastName columns required. She also must make sure that the EthnicityKey data
type matches the data type of the EthnicityKey in the Ethnicity table. They must match
for the foreign key constraint to work. Sharon is not going to add the foreign key con-
straint now; she will do that after the tables have been created.

Ethnicity

PK

EthnicityKey

EthnicityDescription

Column Name

Data Type

Allow Nulls

*EthnicityKey

nchar(10)

EthnicityDescription

nvarchar(50)

Chapter 6 ¢ Physical Design 109

FIGURE 6-9 Ethnicity Entity

FIGURE 6-10 Ethnicity Table

Student

PK | StudentKey

StudentiLastName
StudentFirstName
StudentPhone
StudentEmail
StudentGender

StudentAge

StudentCitizen
StudentWorkForceRetraining
FK1 | EthnicityKey

FIGURE 6-11 Student Entity

Column Name Data Type Allow Nulls
*StudentKey nchar(10)

StudentLastName nvarchar(50)

StudentFirstName nvarchar(50) X
StudentEmail nvarchar(100) X
StudentPhone nvarchar(10) X
StudentGender nchar(1) X

StudentAge int X
StudentCitizen bit X
StudentWorkerRetraining bit X
EthnicityKey nchar(10) i FIGURE 6-12 Student Table

For the TutorCourse table, she needs to create a composite key.

TutorCourse

PK,FK1 | CourseKey
PK,FK2 | TutorKey

FIGURE 6-13 TutorCourse
Entity

It takes her a moment to figure out how to make it work in the designer. She finds
that if she selects both the columns and then clicks the key icon, both are marked as part
of the key.

110 Chapter 6 * Physical Design

FIGURE 6-14 TutorCourse Table

FIGURE 6-15 StudentCourse
Entity

FIGURE 6-16 StudentCourse
Table

FIGURE 6-17 Session Entity

FIGURE 6-18 Session Table

FIGURE 6-19 Request Entity

Column Name Data Type Allow Nulls
*TutorKey nchar(10)
*StudentKey nchar(50)

Now she works through the rest of the tables in her diagram.

StudentCourse

PK,FK1
PK,FK2
PK

StudentKey

CourseKey
StudentCourseQuarter

Column Name

Data Type

Allow Nulls

*StudentKey

nchar(10)

*CourseKey

nchar(10)

*StudentCourseQuarter

nchar(10)

Session

PK
PK

PK,FK1
PK,FK1

SessionDate
SessionTime
TutorKey
CourseKey

FK2

StudentKey
SessionStatus
SessionMaterialCovered

Column Name

Data Type

Allow Nulls

*SessionDateKey

Date

*SessionTimeKey

Time

*TutorKey

nchar(10)

*CourseKey

StudentKey

(
nchar(10)
nchar(10)

SessionStatus

nchar(10)

SessionMaterialCovered

nvarchar(255)

Request

PK

RequestKey

FK1

FK2

CourseKey
RequestDate
RequestStatus
StudentKey

Chapter 6 ¢ Physical Design 111

Column Name Data Type Allow Nulls

*RequestKey nchar(10)

CourseKey nchar(10)

RequestDate Date

RequestStatus nchar(10)

Studentkey nchar(10) FIGURE 6-20 Request Table

For the RequestNotes table, Sharon realizes she needs something other than a
nvarchar data type for the RequestNoteText column.

RequestNote

PK RequestNoteKey

RequestNoteText
FK1 | RequestKey FIGpRE 6-21 RequestNote
Entity

The varchar and nvarchar data types have a maximum length of 255 characters. But
there is another option called “MAX.” Use of the MAX option allows the column to
contain up to two gigabytes worth of data. The only drawback is that a column that
uses the MAX data type can’t be searched directly or indexed.

Column Name Data Type Allow Nulls

*RequestNoteKey DateTime

RequestNoteText nvarchar(Max)

RequestKey nchar(10) .FI.L?):’:E 6-22 RequestNote

Sharon has created all the tables. Now she wants to define the relationships among
the tables. There are several ways to do this, but one of the easiest is to create a database
diagram and do it graphically. She right clicks on the Database Diagram folder under
Tutor and chooses New Database Diagram. She gets the following warning:

-

Microsoft SQL Server Management Studio

'i | This database does not have one or more of the support objects required to use database diagramming,
Do you wish to aeate them?

T

3 yes || o |

FIGURE 6-23 Support Objects
Query Dialog

This puzzles her for a second. She wonders what she did wrong, but then she
reads the dialog box more carefully: “Do you wish to create them?” She clicks “Yes,”
and then right clicks on the Database Diagram folder again. This time she gets a new
diagram and a list of all the tables in her database.

112 Chapter 6 * Physical Design

 Tables |
Ethnicity
Request
RequestNote
Session
Student
StudentCourse
Tutor
TutorCourse

FIGURE 6-24 Add Table Dialog

She adds all the tables and moves them around until they fit on her screen.

A R 2 |
Ble [de Yew PBruject Debug TobleDesgrer DotsbeseDgum Iesk Window Communty bep
Hbewtuey | DD D S

an Gl 0 k| TeViens | 3, % B) s azaEj
wEE] ST APTORSQLem - Ologram. 0 | 500 Quend sl o pinph e B2 |

|- | ¥ B8
1B STEVE-LAPTORIGUERPRESS (SR Semver 101408
£ Detabases
¥ 4 System Dutabases
% [ADLDATA b
@ [Tuter
3 L TutoMamagament

==

FIGURE 6-25 Database Diagram =1

She decides to start with the relationship between Tutor and TutorCourse. She
selects TutorKey, puts the cursor in the gray to the left of the column, holds the mouse
button down, and drags the mouse to the TutorCourse table. Then she releases the
mouse. A Table and Columns relationship dialog box appears.

She confirms that the Primary Key table and Foreign Key table are correct and that
the columns names are correct. She accepts the default name for the relationship and

clicks OK. A second dialog box appears that allows a user to set additional properties
for the foreign key relationship.

A=)

Chapter 6 ¢ Physical Design 113

Tablesand Columns W
Relationship name:
FK_TutorCourse Tutor
Primary key table: Foreign key table:
[Tul:nr v] TutorCourse
TutorKey TutorKey
— E— —

[oK] I Cancel !
4} FIGURE 6-26 Table and

Columns Dialog

[8 7 Foreign Key Relationship

| S——

ey

Selected Relationship:

[re.Tutorcouse Tuio- I

Editing properties for new relationship. The ‘Tables And Columns
Specification' property needs to be filled in before the new relationship will be

accepted.

B (General)
Check Existing Data On Creatio Yes
@ Tables And Columns Specificat
B Database Designer
Enforce For Replication Yes
Enforce Foreign Key Constraint Yes
@ INSERT And UPDATE Specificat
B Identity

(Name)

Description

FK_TutorCourse_Tutor

Cancel

el |

FIGURE 6-27 Foreign Key
Relationship

For now she just clicks OK, and the relationship is created. In the diagram, the
relationship is represented as a line with a key on the end pointing to the table on the
one side of the relationship, the table with the primary key. The connecter to the many
side of the relationship is represented by an infinity sign. Now Sharon adds the
relationship between Course and TutorCourse.

114 Chapter 6 * Physical Design

FIGURE 6-28 Tutor Database
Diagram

REFERENTIAL INTEGRITY

This exists when every foreign key
relates to an existing primary key.
There are no orphan records in
child tables that have no reference
in a parent table.

Again the Tables and Columns dialog appears. She makes sure it is correct and
presses OK, and then OK again for the second dialog. Sharon continues in this way
until she has created all the relationships. The database diagram now looks like this:

Tutor
F TutorkKey
TutorLastMame
TutorFirstName
TutorPhone TutorCourse Course :]
TutorEmail =) @ Tutorkey ¥ CourseKey =
TutorHireDate @ Coursekey o CourseNan‘El .
TutorStatus CourseDescription v
i [——
) é
StudentCourse
SHEERE o @ StudentKey Al
s § CourseKey —
StudentLastMName \u o ChaleniC raOuartar ﬂ
StudentFirsthName ﬂ I »
StudentPhone
StudentEmail
StudentGender 8
StudentAge Session Request
StudentCitizen 9 sessionDateKey 7 Requestkey
StudentWorkforceRetraining @ SessionTimeKey Coursekey
EthnicityKey @ Tutorkey RequestDate
RequestStatus
=3, | Cowsesey Studentkey
8 ks S8 StudentKey
SessionStatus
4 SessionMaterialCovered @
Ethnicity g
§ EthnicityKey RequestNote
Ethnicity Description @ RequestNoteKey
Requestkey
RequestMoteText

Sharon saves the diagram. SQL Server asks if she wants to save the changes to the
underlying tables. She clicks “Yes” and saves the diagram and the relationships.

{":}

W

Things You Need to Know

Referential Integrity

In the properties for a relation, there is the property “Enforce Foreign Key Constraint.” The default
value is “Yes.” Enforcing the foreign key constraint means ensuring that no foreign key value can
be entered that does not have a corresponding value in the primary key table. For instance, you
cannot enter a customer key in a Sales table (where the customer key is a foreign key relating
back to a Customer table) unless that customer already exists in the Customer table. Or, for
another example, you cannot have order details that don’t relate to an existing order. Another
commonly used expression for enforcing the foreign key constraint is “enforcing referential
integrity.”

Enforcing referential integrity protects your database from orphan data. Consider the Order/
Order Details table mentioned earlier. It is almost always necessary to break an order or sale into
two tables. The first table, Order, contains what you might consider the header information: the
date, the customerID, and the ID of the employee processing the order. The second or “detail”
table consists of the line items, one row for each item ordered. The details are tied to the order by
an order key. Enforcing referential integrity ensures that there won't be any details, any line items,
that aren’t associated with a valid order. Choosing not to enforce referential integrity opens the
risk of having details that are not associated with any order. They are fragments of garbage data
that can seriously affect any data analysis. A database is only as good as its data.

Chapter 6 ¢ Physical Design 115

Changes to the data in a database are the result of one of three actions: insert, update, or
delete. Inserts enter new data into the database. Updates change existing data. Deletes remove rows
of data from the database. Enforcing referential integrity does impose some important restrictions on
these actions.

I Referential Integrity
Action Effect of Enforcing Referential Integrity
INSERT You must enter data into the parent (primary key) table before you can enter

data into a child(foreign key) table. For example: You must enter the Customer
information before entering the Sale information.

UPDATE 1. You cannot change the primary key value for any record in the parent
table without also changing the related foreign key. This creates a
dilemma because both must be changed simultaneously. You can either
suspend referential integrity while making the update or use cascading
updates (see the following point).

2. You can only update or change a foreign key in a child table to
one that has a matching value in a parent or primary key table.

DELETE You cannot delete a row in a primary key table unless all related records are
first deleted in the foreign key table. Example: You can’t delete an order
unless all the order details for that order are first deleted.

THINGS TO THINK ABOUT

Using Referential Integrity What would you gain by not setting them? What

Can you think of any reasons why you might not ~ Would you risk?
want to set the referential integrity constraints?

In the properties of a relationship, you have the option of setting what are called referential
integrity actions. One of those actions is cascade update and another is cascade delete. Setting cas-
cade update means that if you change the primary key of a row in the parent table, the database
management system will automatically update all the related foreign keys in the child table. This can
be useful, especially if you have a volatile value for your primary key—something like a telephone
number or an email address. Setting cascade delete means that if you delete a row in a primary key
table, all related rows in a child table will also be deleted. This protects the referential integrity and
prevents orphan rows, but it is very dangerous. Imagine accidentally deleting a Customer entity and
having all his or her transactions vanish as well. Cascade delete is something that should be used
with great caution.

Sharon sets back and sighs. She has done it. She has taken the logical design she
created in Visio and has translated it into the physical tables of SQL Server Express. Her
next step is to add some sample data to the tables so she can test the database and make
sure the database meets all the requirements and fulfills all the business rules.

Once again, she starts with the Tutor table. She right clicks on the table in the
Object Explorer and selects Open Table. This opens the table for reading or entering
data. She decides she needs about five tutor records for now. She enters some typical
tutor data.

When she is done, she closes the Tutor table and right clicks on the Course table in
the Object Explorer. She opens it for data entry. There is some method in which tables
she chooses to do first. She knows that she needs to enter data into the tables on the
primary key or one side of relationships before she can enter data into the foreign key
side. Otherwise, she will get “data integrity” errors saying there must be a related
record in the primary key table.

116 Chapter 6 * Physical Design

TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus
980010000 Roberts Martha 2065551467 mroberts@yahoo.com 1/6/2010 Active
980010001 Brown Susan 2065553528 Sb4@hotmail.com 2/1/2009 Active
980010002 Foster Daniel 2065553490 Foster32@aol.com 2/12/2009 Active
980010003 Anderson Nathan 3065556320 Null 3/2/2009 Inactive
980010004 Lewis Ginger 2065552985 ginger@hotmail.com 3/15/2009 Active

FIGURE 6-29 Tutor Table Data

FIGURE 6-30 Course Table Data

FIGURE 6-31 Ethnicity Table

Data

5

Sample Data

Before you put any database into use, you should test it to make sure that it meets all the require-
ments and business rules. Part of this is entering sample data. The sample data should be as real as
possible. Incorporating existing data is ideal. If you don’t have existing data, you can make up sample

Things You Should Know

data. But there are some things you should consider:

e Make sure your sample data are complete enough to test all the business rules.
e Make sure the data are varied enough to represent a variety of likely situations.

e Make sure the data contain some exceptions and possibly even errors so you can test how the

database handles those.

Sharon adds a few samples course to the Course table.

CourseKey CourseName CourseDescription

[TC110 Beginning Programming Programming using C#

[TC220 Introduction to Database Overview of database design and topics
[TC255 Systems Analysis Systems analysis and design

MAT107 Applied Math Applied math for computers

ENG211 Technical Writing Technical writing for information technology
WEB110 Beginning Web Page Design Basic xhtml

[TC226 Database Administration SQL Server administration

Next she enters the ethnicities into the Ethnicity table.

The TutorCourse table consists of only foreign keys. Sharon reopens the Tutor and
Course tables and makes sure that each of the keys she enters is correct.

EthnicityKey EthnicityDescription

Caucasian White, European origin

Asian Chinese, Japanese, Korean, Southeast Asian
AfrAmer African American or of African origin

Hispanic Mexican, Central or South American, Caribbean
Pacific Pacific islander

Mideast Arabic or Persian

Other Other or not disclosed

Chapter 6 ¢ Physical Design 117

TutorKey CourseKey
980010002 ITC255
980010002 ENG211
980010004 MAT107
980010000 WEB110
980010001 [TC220
980010001 WEB110
980010003 16110 FIGURE o-32 TutorCourse
She enters twelve students.
StudentKey StudentLastName StudentFirstName StudentEmail StudentPhone
990001000 Peterson Laura Null 2065559318
990001002 Carter Shannon Shannon@Carter.0Org 2065554301
990001003 Martinez Sandy sandym@gmail.com 2065551158
990001004 Nguyen Lu Istar@yahoo.com 2065552938
990001005 Zukof Mark Null Null
990001006 Taylor Patty P147@marketplace.com 2065552076
990001007 Thomas Lawrence Null Null
980001008 Bradbury Ron rbradbury@mars.org 2065557296
980001009 Carlos Juan Carlos23@hotmail.com 2065559134
009001010 Min ly lymin@hotmail.com 2065552789 | IGURS €33 Student

StudentGender StudentAge StudentCitizen StudentWorkerRetraining EthnicityKey
F 23 True False Caucasian

F 32 True True AfrAmer

F 18 True False Hispanic

M 19 False False Asian

Null Null Null Null Null

F 42 True True Caucasian

M 24 True False Caucasian

M 5 True True Caucasian

M 25 False False Hispanic

F 20 False False Asian ;Li:‘;“g a?f(‘: Oni? dent

Each student can take multiple courses, so Sharon considers each student and
ties him or her to two or three courses. She also separates the enrollments into two
quarters, because she knows the database will need to store several quarters at a time,
and it will be necessary to make sure you can pull out the data for only the quarter in
question.

118 Chapter 6 * Physical Design

FIGURE 6-35 StudentCourse

Table Data

FIGURE 6-36 Session

Table Data

StudentKey CourseKey StudentCourseQuarter
990001000 [TC220 Fallo9
990001000 [TC110 Fallog
990001000 WEB110 Fallo9
990001002 [TC220 Fallo9
990001002 [TC110 Fallo9
990001004 MAT107 Fallo9
990001004 WEB110 Fallo9
990001007 [TC110 Fallo9
980001009 [TC110 Fallo9
980001009 ITC220 Fallog
980001009 MAT107 Fallo9
990001002 ENG211 Winter10
990001002 ITC255 Winter10
990001003 ENG211 Winter10
990001003 ITC255 Winter10
990001005 MAT107 Winter10
009001010 MAT107 Winter10
009001010 ITC255 Winter10
009001010 ENG211 Winter10
990001000 [TC255 Winter10
990001000 MAT107 Winter10

The Session table is one of the most difficult to create sample data for. Sharon wants
to enter some historical data for sessions that have already been held as well as for some
open sessions. Sessions that haven’t been completed have “Null” mentioned under the
column SessionStatus. Sessions that haven’t been signed up for yet also have “Null” men-
tioned under StudentKey and SessionStatus. The difficulty is making sure that the data
match the data in the other tables. The tutors should only be listed for the courses they
have signed up to tutor, and the students should only receive tutoring for those classes
they are attending that quarter.

SessionDateKey SessionTimeKey TutorKey CourseKey StudentKey SessionStatus SessionMaterialCovered
10/20/2009 14:00 980010001 WEB110 990001000 C CSS

10/20/2009 13:00 980010003 [TC110 990001000 G For next loop
11/20/2009 10:30 980010001 [TC220 990001002 G Relations
11/5/2009 10:00 980010001 [TC220 Null NS Null

11/10/2009 13:00 980010004 MAT107 990001004 C Binary Numbers
11/10/2009 14:00 980010001 WEB110 990001000 G Web Forms
1/15/2010 9:30 980010002 [TC255 990001000 G Use Cases
1/20/2010 11:00 980010002 ENG211 990001003 C Document structure
1/22/20120 14:00 980010004 MAT107 990001005 NS Null

2/5/2010 10:30 980010002 [TC255 990001000 G Feasibility
2/10/2010 13:30 980010004 MAT107 Null Null Null

2/10/2010 14:00 980010004 MAT107 Null Null Null

2/13/2010 10:00 980010002 [TC255 Null Null Null

2/14/2010 11:00 980010002 ENG211 Null Null Null

Chapter 6 ¢ Physical Design 119

Finally, for the request table, she enters only a single request.

RequestKey RequestDate CourseKey RequestiStatus StudentKey
1001 1/5/2010 ITC226 Active 009001010

FIGURE 6-37 Request
Table Data

The request notes include two notes in the RequestNotes table.

RequestNoteKey RequestiD RequestNoteText

1/6/2010 2:00 PM 1001 Only offered once a year and not a lot of requests
for this class

1/10/2010 10:00 AM 1001 No students available, because a capstone class FIGURE 638 RequestNote
would have to get someone off campus Table Data 9

Sharon has completed creating the database, building the tables, and adding some
sample data. Now she is ready to start testing it with some SQL queries.

DOCUMENTATION

In many ways, the database is self-documenting. The structure of each table, the col-
umns, their data types, and all constraints are already stored in system tables and can
be queried. But it is not uncommon, and can be quite useful, to create a separate data
dictionary that lists all the database objects such as tables, along with their column
names and data types. If the database is corrupted or lost somehow, a separate data
dictionary can be used to help rebuild it. It can also serve as an excellent reference for
application developers or future administrators of the database.

Things We Have Done

In this chapter we have set primary keys
created a database diagram
created relationships among the tables

entered sample data into those tables

translated our logical design into a physical design

created a database in SQL Server

created tables

assigned data types to columns

determined which columns should allow nulls and which
should not

Vocabulary

Match the definitions to the vocabulary words:

1. Data types — a. Anextended language set that includes non-Latin characters

2. Database transactions — b. A missing or unknown value for a column in a table

3. Null — ¢ Every action in a database

4. Physical design — d. Where every foreign key refers to an existing primary key in a related table

5. Referential integrity — e. Database design adapted to the features and limits of a particular RDBMS

6. Unicode — f. Column specifications that refer to what kind of data can be stored in a column

Things to Look Up

1. What are some best practices for managing data files and 3. Look up the ANSI data types. How do they differ from that
logs? of SQL Server and Oracle?

2. Look up the data types for Oracle. How do they differ from
SQL Server’s?

120 Chapter 6 * Physical Design

Practices

Perfect Pizza is a pizza delivery shop. They only create piz-
zas for home delivery. They have recently designed a new
database to track their sales. They use the customer’s tele-
phone number for a Key column in the Customer table.
They are interested in households, not individuals. They
need the street address and zip code for the delivery. They
only deliver to three zip codes: 98001, 98002, and 98003.
With the zip code, they can fill in city and state information
later, though they prefer to do it when they enter a new

Customer

PK

CustomerPhoneKey

CustomerAddress1

CustomerCity
CustomerState
CustomerZip

CustomerLastName

CustomerAddress2

customer. In the OrderDetail table, they store the price
charged for two reasons: First, it may be different than
product price due to a discount or special allowance, and
second, it keeps a historic record of the price. That way, if
they change the price in the product table, it doesn’t affect
the prices charged in past sales. Here is the entity relation
diagram for the database. (We will use this database again
in future practices.)

Employee

PK | EmployeeKey

EmployeelLastName
EmployeeFirstName
EmployeeHireDate

2

FIGURE 6-39 Pizza ERD 1

1. What do you think would be the appropriate data
types for CustomerPhoneKey and CustomerZip?
Explain.

2. What do you think would be the appropriate data types
for ProductUnitSize and ProductUnitPrice? Explain.

3. Create the database in SQL Server.

CustomerOrder Product
PK | OrderKey PK | ProductKey
OrderDate ProductName
OrderTime ProductUnitSize
FK1 | CustomerPhoneKey ProductUnitPrice
FK2 | EmployeeKey T
i |
! |
! |
! |
! |
! |
! |
! |
% |
OrderDetail :
|
PK | OrderDetailKey |
|
FK1 | OrderKey PO----- '
FK2 | ProductKey
OrderDetailQuantity
OrderDetailPriceCharged

4. Build the database tables depicted in the entity relation
diagram (Figure 6-39) in SQL Server, choosing appropri-
ate data types. (Use the following sample data as a guide.)

5. Create a database diagram, and use it to create the rela-
tionships among the tables.

6. Add these sample records to the appropriate tables.

Chapter 6 ¢ Physical Design 121

Customers
2065552123 Lamont NULL 161 South Western Ave NULL NULL 98001
2065553252 Johnston Apt. 304 1215 Terrace Avenue Seattle WA 98001
2065552963 Lewis NULL 520 East Lake Way NULL NULL 98002
2065553213 Anderson Apt 10 222 Southern Street NULL NULL 98001
2065552217 Wong NULL 2832 Washington Ave Seattle WA 98002
2065556623 Jimenez Apt 13 B 1200 Norton Way NULL NULL 98003

Employee Table

cmanning Manning Carol 3/12/2010
btaylor Taylor Bob 4/16/2009
skristoph Kristopherson Stephen 6/2/2010

Product Table

soda Soda bottle 2 Liter bottle 3.75
brdstks Breadsticks 8 per pack 2.50
basicS Basic Pizza small 8 inch 5.35
basicM Basic Pizza medium 12 inch 7.35
basicL Basic Pizza large 18 inch 13.50
specialS Specialty small 8 inch 6.35
specialM Specialty medium 12 inch 9.25
speciall Specialty large 18 inch 15.00
top Additional toppings I cup 1.00

CustomerOrder Table

1000 10/8/2010 2:15 PM 2065552963 cmanning
1001 10/8/2010 2:21 PM 2065556623 cmanning
1002 10/8/2010 2:30 PM 2065552963 cmanning
1003 10/8/2010 3:15PM 2065552123 skristoph
1004 10/10/2010 11:15 AM 2065552217 btaylor
1005 10/10/2010 12:02 PM 2065556623 btaylor

Order Detail Table

1000 Soda 2 7.25

2 1000 Brdstks 1 2.50
3 1000 specialM 1 7.35
4 1001 speciall 1 15.00
5 1002 Soda 2 7.25
6 1002 basicM 3 20.00
7 1003 basicM 1 7.35
8 1003 Top 4 4.00
9 1004 basiclL 1 13.50
10 1005 basicM 2 14.70

Scenarios

WILD WOOD APARTMENTS you have done that, you know that you will need to enter data

to test the database, to make sure it does, in fact, store all the

You have completed the designs for the apartment manage- required data.

ment database. You reviewed it and all the business rules with
the owners, and they are eager to proceed. Now you need to 1. Review your diagram for the database, making sure that
take your design and translate it into an actual database. Once the design is complete and normalized.

122 Chapter 6 * Physical Design

2. Create the database in SQL Server.

3. Create the tables in the new database, selecting appropri-
ate data types for the columns, setting a primary key for
each table, and setting allow nulls as appropriate.

4. Create a database diagram, and create the relationships
among tables.

5. Add some sample data to each table.

6. Documentation: Make a data dictionary that lists each
table, all the columns for that table, and the data types
for each column.

VINCE'S VINYL

Vince is eager to get going. Just today, he had a customer come
in and sell him a dozen old albums. One is quite rare and could
be worth a lot of money. Vince doesn’t want to lose track of it.
He is ready to get organized and start entering his transactions
in the database. You review your design with him and promise
that you will begin building the database immediately. But, you
remind him, it is important to test the database before actually
starting to use it for the business.

1. Review your diagram for the database, making sure that
the design is complete and normalized.

2. Create the database in SQL Server.

3. Create the tables in the new database, selecting appropri-
ate data types for the columns, setting a primary key for
each table, and setting allow nulls as appropriate.

4. Create a database diagram, and create the relationships
among tables.

5. Add some sample data to each table.

6. Documentation: Make a data dictionary that lists each
table, all the columns for that table, and the data types
for each column.

GRANDFIELD COLLEGE

The management is afraid of a software audit. The chief sys-
tems manager just came from a meeting where he heard that a
school had just been fined $25,000 for illegally installed soft-
ware. The current tracking system probably couldn’t hold up to
an audit. It is crucial that this new database be up and running
soon. You assure the management that it will be done as soon as
is possible, but you want to make sure that it really does what it
is supposed to do. If you implement before it is ready, it might
make matters worse rather than better.

1. Review your diagram for the database, making sure that
the design is complete and normalized.
2. Create the database in SQL Server.

3. Create the tables in the new database, selecting appropri-
ate data types for the columns, setting a primary key for
each table, and setting allow nulls as appropriate.

4. Create a database diagram, and create the relationships
among tables.

5. Add some sample data to each table.

6. Documentation: Make a data dictionary that lists each
table, all the columns for that table, and the data types
for each column.

WESTLAKE RESEARCH HOSPITAL

The Drug study is falling into place. Several potential partici-
pants have already been interviewed. It is vital that the data-
base be in place soon. You assure the management that you are
ready to begin actually making the database objects but that it is
essential you test and evaluate it before they start to commit
data to it. You promise that you will deliver it as soon as
possible.

1. Review your diagram for the database, making sure that
the design is complete and normalized.

2. Create the database in SQL Server.

3. Create the tables in the new database, selecting appropri-
ate data types for the columns, setting a primary key for
each table, and setting allow nulls as appropriate.

4. Create a database diagram, and create the relationships
among tables.

5. Add some sample data to each table.

6. Documentation: Make a data dictionary that lists each
table, all the columns for that table, and the data types
for each column.

SUGGESTIONS FOR SCENARIOS

Make sure your primary keys and foreign keys have the same
data type and same precision (length). Follow your diagram
and make one table at a time. In the database diagram, always
drag the relationship from the primary key to the foreign key.
Before confirming the relationship, always make sure that the
table and column names are correct in the dialog box.

If you need to adjust a table in the database diagram, you
can right click on it and under View, select Normal. That will
display the column names, data type, and whether it will accept
nulls. You can edit the table in this view.

When entering data, you must enter data in the primary
key tables before you can enter into the child or foreign key
tables. The foreign key must match the primary key exactly.

CHAPTER 7

SQL

Now that Sharon has built the database and entered some data, she sets out to test the design and make sure she
can satisfy the business requirements. To do this, she is going to use SQL and SQL Express’s query analyzer.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:
® Name the main events in the development of SQL
® Run SELECT queries with a variety of criteria
" Use the Aggregate functions COUNT, AVG, SUM, MIN, and MAX
= Use date, time, and other built-in functions
" Join two or more tables in a query
® INSERT, UPDATE, and DELETE records
= Use SQL to test business rules

RUNNING QUERIES

It has been a long day. Sharon had two classes of her own today, and then she tutored three students in begin-
ning database. But she feels some pressure to finish with the Tutoring database. Before she can give it to Terry,
she needs to test it to make sure it can do all the things that are required of it. She
has entered the sample data; now she is going to run some sample queries. soL
She takes out her laptop and sits at the kitchen table. She starts the SQL .

. . . . e programming language used
Server Management Studio and opens up the databases in the Object window. She {, manipulate data and data objects
selects the Tutor database and right clicks. Then she selects New Query window: in a relational database.

=] MAsqlexpress (SQL Server 90,3042 - Steve-laptop\Steve
o 3 Databases
3 System Databases

= r Mew Database...
i NewQuey |

[E3]

Script Databaseas »
Tasks 3
Reports »
3 Secu Rename
3 Serve Delete
3 Repli
Refresh
3 Ma
Properties

FIGURE 7-1 New Query
123

124 Chapter 7 » SQL

To get started, in the Query window she types

SELECT * FROM Tut

SQL Server 2008 provides some intellisense to help her pick a table:

SELECT * FRCM Tut|

1 negquest -

=] Session

M student

E StudentCourse

&y Eve

3 sysdiagrams

Ll tenpdb

[l Tutar

= T

=l nhitar oorss -

FIGURE 7-2 Intellisense o
She clicks Tutor in the list and then clicks the Execute button and gets these
results:

TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHire Date TutorStatus
980010000 Roberts Martha 2065551467 mroberts@yahoo.com 2010-01-06 Active
980010001 Brown Susan 2065553528 Sb4@hotmail.com 2009-02-01 Active
980010002 Foster Daniel 2065553490 Foster32@aol.com 2009-02-12 Active
980010003 Anderson Nathan 3065556320 NULL 2009-03-02 Inactive
980010004 Lewis Ginger 2065552985 ginger@hotmail.com 2009-03-15 Active

FIGURE 7-3 Result Set

Things You Should Know

SQL is the programming language used for manipulating database objects and data in relational
databases. It is both an ANSI (American National Standards Institute) and an ISO (International
Standards Organization) standard.

The first version of SQL was developed at IBM in the 1970s to work with their RBase relational
database. The first ANSI standard for SQL was issued in 1986. The ISO committee ratified the stan-
dard in 1987. This first standard was not widely used. Database technologies had already moved past
it. Most database manufacturers had already added features that were not included in the standard.
A major revision was issued in 1992. This standard was much more robust and is still the de facto
standard of many RDBMSs today. More changes were added to the standard in 1999 to define the
use of triggers and procedures. Revisions in 2003 and 2006 defined how to incorporate XML and
XQuery into SQL.

Most RDBMSs comply with the standard to a fairly high degree. What this means for the user
is that the SQL they write for one product will translate fairly easily to another product. Much of the
SQL you write for SQL Server, for instance, will work without change in Oracle or MySQL. Each
RDBMS, however, is free to add proprietary features onto SQL as well as to implement the standard.
Typically, these features are additional functions or administrative extensions.

The Nature of SQL

SQL is a declarative language. This means it is different from the procedural languages you may have
encountered in other programming languages such as C++ or Java or C# or Visual Basic. In those
languages, you have to specify how something is to be done. You have to carefully list each step in
the proper order to accomplish a task. In SQL, you say what you want done, not how to do it. In the
preceding example, for instance, Sharon writes

SELECT * FROM Tutor

The SELECT tells the DBMS you want to retrieve data. The * is a wildcard that says “select all
columns.” The FROM keyword directs the RDBMS to a table in the current database. The statement

as a whole declares “return all the columns and all the rows from the table Tutor.” Again, it declares
what you want to do, not how to do it. The RDBMS determines how to process the request. Different
RDBMSs will process it differently because they have developed different query optimization engines
in order to produce the results as efficiently and quickly as possible.

THINGS TO THINK ABOUT

What are the advantages of a declarative lan- What advantages might a procedural language
guage as opposed to a procedural language? have over a declarative language?

SQL is not case sensitive, though the column names and values can be if the database options
are set to be case sensitive. It is traditional, however, to type SQL keywords in all uppercase for read-
ability. SQL also ignores most white spaces. That means you can organize an SQL statement on the
page any way that makes it most readable to you. In many DBMSs, SQL statements are terminated by
a semicolon. SQL Server does not require the semicolon, though using one can be a good habit to
develop. In this book, the semicolons are not included.

Usually, SQL is divided into at least two broad areas of functionality: Data Manipulation
Language (DML), which includes all the commands for selecting and manipulating database data,
and Data Definition Language (DDL), which includes all the commands for creating, altering, and
dropping database objects such as tables, procedures, constraints, and indexes. In this book, we are
only going to focus on the DML.

Sharon decides to run another query just to check the data. She types another SQL
statement into the Query window. She selects the statement so that only it will run
when she clicks Execute.

SELECT StudentLastName, StudentFirstName, StudentEmail
FROM Student

She executes the statement and gets these results:

Chapter 7 SQL 125

DECLARATIVE LANGUAGE

A language in which programmers
declare what they want to do, not
how they want to do it.

PROCEDURAL LANGUAGE

A language in which a programmer
defines how to do a given procedure.

DDL

Data Definition Language.

DML

Data Manipulation Language.

FIGURE 7-4 Selected SQL
Statement

StudentLastName StudentFirstName StudentEmail

Min Ly lymin@nhotmail.com
Bradbury Ron rbradbury@mars.org
Carlos Juan Carlos23@hotmail.com
Peterson Laura NULL

Carter Shannon shannon@carter.org
Martinez Sandy sandym@gmail.com
Nguyen Lu Istar@yahoo.com
Zukof Mark NULL

Taylor Patty p147@marketplace.com
Thomas Lawrence NULL

The Basic SELECT Statement

The syntax for the simplest SELECT statement is

SELECT [Columnl],

FROM [Table]

[Column2], etc.

Things You Should Know

=

FIGURE 7-5 Result Table

126 Chapter 7 » SQL

FIGURE 7-6 Result Table

FIGURE 7-7 Distinct Results

You can select any number of columns from the database table. The columns are separated by
commas, but there is no comma after the last column in the list. The columns are returned in the
order they are listed. So in our example:

SELECT StudentLastName, StudentFirstname, Studentemail
FROM Student

Sharon also used a variation of this syntax:

SELECT * FROM Tutor

The asterisk (*) is a wildcard character that tells the RDBMS to return all the columns in the table. The
advantage of this is obvious—you don’t have to key in all the columns. But there are disadvantages. For
one, you have no say in the order in which the columns are returned. They will simply be returned in
the order they have in the table. Also, the wildcard method is less efficient. The database must first query
the system table to identify the columns, and then query the data table to access the data. And, finally,
in SQL code, which is embedded in an application (such as a Web page), there is no guarantee that the
columns returned will always be the same. If someone modified the database, the query may return
unexpected columns and cause errors in the program. In general, it is better to specify the columns you
wish returned, though the wildcard method can be useful during testing and development.

Distinct

Sometimes you only want to return one instance of each value. For instance, suppose you want to
run a query on the session table to see all the tutors that have scheduled sessions. If you run

SELECT tutorkey
FROM Session

You will get these results:

TutorKey
980010003
980010001
980010001
980010004
980010001
980010001
980010002
980010004
980010004
980010002
980010004
980010004
980010002
980010002

Each tutor key repeats for as many sessions as the tutor is scheduled for. If you wanted to see only

one instance of each TutorKey, you can use the DISTINCT keyword:

SELECT DISTINCT tutorkey
FROM Session

This results in the following:

TutorKey
980010001
980010002
980010003
980010004

DISTINCT operates on the whole row, not on individual columns. The whole row must be
identical to be excluded.

Calculations

You can perform calculations in a SELECT clause. For instance, you can calculate how many hours
are there in a typical year with a statement such as:

SELECT 365 * 24

The query will return a column labeled “No column Name” with the value “8760.” To name the
column, you can alias it—see the following SELECT statement. More useful calculations, perhaps,
can be made by using the math operators with values in table columns. Assume, for instance, that
you had a table that stored the item number, the price of an item, and the quantity ordered. You
could calculate the total due with a query like the following:

SELECT ItemNumber, ItemPrice, Quantity, ItemPrice * Quantity
FROM CustomerOrder

Following is a table of the arithmetic operators:

I Arithmetic Operators
Operator Description
* Multiplication
/ Division
+ Addition
- Subtraction
% Modulus (returns the remainder in integer division)

Some of the operators serve more than one purpose. The *, for instance, serves as both a
wildcard and the multiplication symbol. The % serves both as the modulus operator and a wildcard
in a WHERE clause, using the LIKE keyword. SQL determines the appropriate function by context. If
there are numeric values on both sides of the *, or columns containing numeric values, SQL knows
the * is the operator for multiplication. If the % is in the SELECT clause, it knows it is a modulus
operator; if it is in a WHERE clause, with the LIKE keyword, it knows that it is a wildcard. The +
operator behaves similarly. If the values on both sides of the operator are numbers, the + performs
addition. If the values on both sides are of a character type, then it concatenates the character
strings. If the values are mixed, one character, one numeric, SQL throws an error.

The division operator also behaves differently depending on whether the values around it are
of an integer type (no decimal parts) or float (have decimal parts). If the dividend and divisor are both
integers, the division will result in an integer value. This means that any decimal part will be discarded.
If even one of the values is of a float type, then the result will default to a float value, and the result
will contain any decimal amount. The modulus operator % returns the remainder of an integer
division. Here are some examples:

I Integer Division
Equation Result
SELECT 10/3 3 (integer division)
SELECT 10/3.0 3.33333 (float division)
SELECT 10%3 1 (modulus)
Order of Operations

SQL follows the same order of operations as algebra. That is, all multiplications and divisions are
solved first moving left to right, and then all additions and subtractions are also performed left to
right. In the following statement, 3 * 5 is evaluated first for 15; then 4/2 for 2; third, 1 is added to
the 15 for 16; and finally, 2 is subtracted from 16 for a result of 14.

Chapter 7 ¢ SQL

127

128

ALIAS

Chapter 7 ¢ SQL

A substitute name for a column or

table.

FIGURE 7-8 Student Email Result

SELECT 1 + 3 * 5 - 4/2

You can control the order by using parenthesis (). Whatever is in the parenthesis is calculated
first. If parentheses are nested, SQL works from the innermost parenthesis outward. For instance,

SELECT (((1 + 3) * 5) - 4)/2
results not in 14, but in 8.

Aliasing

When you design your database tables, the column names should be descriptive and conform to
naming conventions, but good column names do not necessarily make for good labels in a query or
report. You can change the label for the result instance by “aliasing” the column. The basic way to
do this is by using the As keyword. Thus, in Sharon’s query the column “StudentLastName” is aliased
as “Last Name” in the results.

StudentFirstName AS “First Name”

As mentioned earlier, SQL Server distinguishes between single quotes and double quotes.
Single quotes are reserved for character or date values, and double quotes are reserved for column
names. You can also use square brackets.

StudentFirstName AS [First Name]
Additionally, you can leave out the AS keyword. It is optional.
StudentFirstName [First Name]
If the alias consists of a single word with no spaces, you do not even have to include the brackets or

quotes. All of the following are equivalent:

StudentGender AS “Gender”
StudentGender AS [Gender]
StudentGender “Gender”
StudentGender [Gender]
StudentGender Gender

Although optional, it is recommended to use the AS keyword and quotes or brackets to identify the
alias for readability and clarity.

Sharon thinks the query results would be better if they were sorted by last name.
She adds the keywords oRDER BY. The query now looks like this:

SELECT StudentLastName, StudentFirstname, Studentemail
FROM Student
ORDER BY StudentLastName

She executes the query and gets the following results:

StudentLastName | StudentFirstName | StudentEmail
Bradbury Ron rbradbury@mars.org
Carlos Juan Carlos23@hotmail.com
Carter Shannon shannon@carter.org
Martinez Sandy sandym@gmail.com
Min Ly lymin@hotmail.com
Nguyen Lu Istar@yahoo.com
Peterson Laura NULL

Taylor Patty p147@marketplace.com
Thomas Lawrence NULL

Zukof Mark NULL

Chapter7 ¢ SQL 129

Next, Sharon decides to list the records from the Session table. She wants to sort them
by the Session date, showing the more recent dates first. She writes the following query:

SELECT * FROM Session
ORDER BY SessionDate DESC

The DEsc keyword causes the records to be sorted in descending order—z to a, 10
to 1, and so on. She executes the query and gets this result.

SessionDateKey | SessionTimeKey | TutorKey CourseKey | StudentKey | SessionStatus | SessionMaterialCovered
2010-02-14 11:00:00.0000000 | 980010002 | ENG211 NULL NULL NULL

2010-02-13 10:00:00.0000000 | 980010002 | ITC255 NULL NULL NULL

2010-02-10 14:00:00.0000000 | 980010004 | MAT107 NULL NULL NULL

2010-02-10 13:30:00.0000000 | 980010004 | MAT107 NULL NULL NULL

2010-02-05 10:30:00.0000000 | 980010002 | ITC255 990001000 C Feasibility
2010-01-22 14:00:00.0000000 | 980010004 | MAT107 990001005 NS NULL

2010-01-20 11:00:00.0000000 | 980010004 | ENG211 990001003 C Document Structure
2010-01-15 09:30:00.0000000 | 980010002 | ITC255 990001000 C Use Cases
2009-11-20 10:30:00.0000000 | 980010001 | ITC220 990001002 G Relations
2009-11-10 14:00:00.0000000 | 980010001 | WEB110 990001000 G Web Forms
2009-11-10 13:00:00.0000000 | 980010004 | MAT107 990001004 © Binary Numbers
2009-11-05 10:00:00.0000000 | 980010001 | ITC220 NULL NS NULL

2009-10-20 14:00:00.0000000 | 980010001 | WEB110 990001000 C CSS

2009-10-20 13:00:00.0000000 | 980010003 | ITC110 990001000 C For next loops

FIGURE 7-9 Session Ordered by SessionDate DESC

Looking at this result, Sharon thinks it could be made even better by adding a
second sort on the tutor. She modifies the query to add the second sort.

SELECT FROM Session
ORDER BY SessionDateKey DESC, tutorkey

The result set looks like this:

SessionDateKey | SessionTimeKey | TutorKey | CourseKey | CourseStatus
2010-02-14 11:00:00.0000000 | 980010002 | ENG211 NULL
2010-02-13 10:00:00.0000000 | 980010002 | ITC255 NULL
2010-02-10 13:30:00.0000000 | 980010004 | MAT107 NULL
2010-02-10 14:00:00.0000000 | 980010004 | MAT107 NULL
2010-02-05 10:30:00.0000000 | 980010002 | ITC255 ©
2010-01-22 14:00:00.0000000 | 980010004 | MAT107 NS
2010-01-20 11:00:00.0000000 | 980010004 | ENG211 ©
2010-01-15 09:30:00.0000000 | 980010002 | ITC255 ©
2009-11-20 10:30:00.0000000 | 980010001 | [TC220 G
2009-11-10 14:00:00.0000000 | 980010001 | WEB110 G
2009-11-10 13:00:00.0000000 | 980010004 | MAT107 C
2009-11-05 10:00:00.0000000 | 980010001 | [TC220 NS
2009-10-20 14:00:00.0000000 | 980010001 | WEB110 C
FIGURE 7-10 Session Ordered
2009-10-20 13:00:00.0000000 | 980010003 | ITC110 C by SessionDate and TutorKey

For this result, the primary sort is the Session date. It is in a descending order. The
secondary sort is by tutor key, and it is ordered in an ascending order. The tutor keys

130 Chapter 7 » SQL

“dfoster” and “glewis,” for instance, both have the same Session date, but they are or-
dered alphabetically in ascending order (A to Z) for that date.

TESTING THE DATABASE

Now Sharon is ready to start testing the database to see if it supports the business rules that
she and Terry had identified. She decides to keep it simple at first and concentrate on mak-
ing sure that Terry can get the kinds of demographic information she needs. For each case,
she writes down what test she is conducting, the SQL she uses, and the results in a note-
book. For her first query, she will simply test for gender and return all the male students.

SELECT StudentLastName, StudentGender
FROM Student

WHERE StudentGender =

StudentFirstName,
M

This returns the following results:

FIGURE 7-11 Male Students

=

StudentLastName | StudentFirstName | StudentGender
Bradbury Ron M
Carlos Juan M
Nguyen Lu M
Thomas Lawrence M

The wHERE Clause

The WHERE keyword is used to set the criteria for filtering rows. (You filter columns by listing those

Things You Should Know

you wish to see in the SELECT clause.) The basic syntax of a WHERE clause is

This probably looks confusing. Let's look at some examples. Say you had a database with an Inventory

WHERE [column] [=< > LIKE IN BETWEEN IS] [value]

table that contains data about equipment sold by a Sporting goods store.

InventoryKey | InventoryName | InventoryUnit | InventoryPrice | InventoryQuantity | InventoryDescription
1001 Tennis Balls 1 tube 2.3400 40 One tube contains 4 balls.
1002 Basketball 1 ball 34.5900 20 NULL
1003 Baseball 1 ball 4.5000 100 NULL
1004 Baseball Bat 1 bat 18.7500 30 NULL
1005 Lawn Darts 1 box 25.8800 20 Box contains 2 hoops 6 darts.
1006 T-Ball Kit | box 32.0000 15 Box contains tee, bat, and ball.
1007 T-Ball Tee 1 Tee 12.0000 18 Individual tee.
1008 Bike Helmet 1 Helmet 12.9500 14 NULL

FIGURE 7-12 Inventory Table

You only want to see the record for tennis balls:

SELECT *

FROM Inventory

WHERE InventoryName = ‘Tennis Balls’

This would return only the data for “Tennis Balls” as shown:

Chapter 7 SQL 131

InventoryKey

InventoryName

InventoryUnit

InventoryPrice

InventoryQuantity

InventoryDescription

1001

Tennis Balls

1 tube

2.3400

40

One tube contains 4 balls.

FIGURE 7-13 Results for Tennis Balls

When you are specifying criteria in a WHERE clause, Character, varchar, nchar, nvarchar, Text,

XML, and DateTime values are enclosed in single quotes. The ANSI standard doesn’t distinguish
between single and double quotes, but SQL Server does. Values must be quoted in single quotes. If
you use double quotes, you will receive an error. Here is the error generated by the preceding query

with double quotes around “Tennis Balls.”

Msg 207, Level 16, St

Invalid column name

1

ate 1, Line 2
Tennis Balls’

Number values are not quoted. Here is a query that returns all the items from the inventory
that have a price of $12.95.

SELECT ItemName, ItemPrice

FROM Inventory

WHERE ItemPrice = 12.95

This returns:
InventoryName InventoryPrice
Bike Helmet 12.9500

FIGURE 7-14 Results for 12.95

With numbers and dates, you can also use the comparative values for greater than and less

than.

SELECT ItemName, Price

FROM Inventory

WHERE Price > 25

This returns:
InventoryName | InventoryPrice
Basketball 34.5900
Lawn Darts 25.8800
T-Ball Kit 32.0000

FIGURE 7-15 Results for > 25

The LIKE keyword lets you search for patterns in char, nchar, varchar, and nvarchar columns.
You use the wildcard character %. The % wildcard character searches for any number of characters
to replace. For instance, if you wanted to find every customer whose last name began with “S,” you
could write a query like this:

SELECT ItemName, ItemPrice
FROM Inventory

WHERE ItemName LIKE ‘T%’
InventoryName | InventoryPrice
Tennis Balls 2.3400
T-Ball Kit 32.0000
T-Ball Tee 12.0000

FIGURE 7-16 Results for
LIKE ‘'T%'

LIKE is considered an “expensive” operator. That means it takes a lot of processing and CPU
time. Why do you think that would be the case? When do you think it would be appropriate to use
the LIKE operator? When would it not be appropriate?

132 Chapter 7 » SQL
You can use more than one % in an expression. For instance, if you wanted to return customer
last names that had the character string and in them:

SELECT ItemName, ItemPrice, ItemQuantity
FROM Inventory
WHERE InventoryName LIKE ‘%ball%’

This returns:

ltemName | ltemPrice | ltemQuantity

Tennis Balls | 2.3400 40

Basketball 34.5900 20

Baseball 45000 100

Baseball Bat | 18.7500 30

T-Ball Kit 32.0000 15
Fone 7717 Results or LIKE TBallTee | 120000 | 18

The BETWEEN keyword returns values between two stated ends. BETWEEN is inclusive of the
ends. That means if you query values BETWEEN 3 AND 10, the query would return 3,4, 5, 6, 7, 8,
9, and 10. You can get the same results by using >= and <= operators: WHERE Number >= 3 AND
Number <= 10.(We will discuss AND, OR, and NOT in a later section.) BETWEEN is especially useful
for returning a range of dates.

SELECT tutorkey, courseKey,
FROM Session
WHERE SessionDate BETWEEN ‘11/1/2008’ AND ‘11/15/2008°

SessionDate, StudentKey

This returns the following results from our Session table:

TutorKey | CourseKey | SessionDate StudentKey
nanderson | ITC110 2008-11-12 14:00:00.000 | Ipeterson
nanderson | ITG110 2008-11-12 15:00:00.000 | scarter
nanderson | ITG110 2008-11-13 13:00:00.000 | lIpeterson
FIGURE 7-18 BETWEEN Results sbrown [TC220 2008-11-13 14:00:00.000 | scarter

Next, we will look at the keyword Is. IS is used instead of “=" with the keyword NULL. A
null is an unknown value. Since it is unknown, it can’t be equal to anything. It is often, however,
useful to search for nulls. Say, you wanted to get a list of all the sessions that are not reserved by
students. You can search for Sessions where the student key IS NULL:

SELECT tutorkey, courseKey, SessionDate, StudentKey

FROM Session

WHERE StudentKey IS NULL

This results in:
TutorKey | CourseKey | SessionDate StudentKey
dfoster ENG211 2009-03-02 10:00:00.000 | NULL
dfoster ENG211 2009-03-02 11:00:00.000 | NULL

FIGURE 7-19 NULL Results glewis MAT107 2009-03-02 11:00:00.000 | NULL

And, Or, Not

All of these different kinds of conditions can be combined by using the keywords AND and OR. When
two conditions are combined with the AND keyword, both must be true to return a result set. If you
were to have a condition, for instance, such as WHERE City = ‘Seattle’ AND City = 'Portland’, it would
never return any results because both can’t be true at the same time. OR, on the other hand, returns
results if either of the conditions are true. WHERE City = ‘Seattle’ OR City = ‘Portland’ returns results
for either Seattle or Portland.

Chapter 7 ¢ SQL 133

The NOT keyword allows you to negate a condition. For example, if you wanted to select all the
customers who were not in Seattle, you could write a query like:

SELECT LastName, FirstName, Phone, City
FROM Customer
WHERE NOT City = ‘Seattle’

Equally, if you wanted to find all those sessions that did have a student scheduled, you could
use the NOT with the IS NULL:

SELECT tutorkey, courseKey, SessionDateKey, StudentKey
FROM Session
WHERE StudentKey IS NOT NULL

This returns:

TutorKey CourseKey | SessionDateKey | StudentKey
980010003 | ITC110 2009-10-20 990001000
980010001 | WEB110 2009-10-20 990001000
980010004 | MAT107 2009-11-10 990001004
980010001 | WEB110 2009-11-10 990001000
980010001 | ITC220 2009-11-20 990001002
980010002 | ITC255 2010-01-15 990001000
980010004 | ENG211 2010-01-20 990001003
980010004 | MAT107 2010-01-22 990001005
980010002 | ITC255 2010-02-05 990001000 FIGURE 7-20
Sharon decides to clean up the results a little. To do this, she will use aliases for the
column names and order the results by the last name:
SELECT StudentLastName AS “Last Name”,
StudentFirstName AS “First Name”,
StudentGender AS “Gender”
FROM Student
WHERE StudentGender = ‘M’
ORDER BY StudentLastName
When she executes it, the results now look like this:
Last Name | First Name | Gender
Bradbury Ron M
Carlos Jaun M
Hayden Patrick M
Nguyen Lou M FIGURE 7.21
Thomas Lawrence M Afu i
lases
Returning all the males was a start, but what Terry would really need is aggre-
gated data, data that is summarized and processed in various ways. For her first try, she
decides to get the count of all students over 25. She enters this query into the editor:
SELECT COUNT(*) as “Total Over 25”
FROM Student
WHERE StudentAge > 25
Total over 25
5 FIGURE 7-22

It uses the aggregate function “COUNT.” As its name suggests, COUNT returns the count
of values returned. In this case, it is 5>

NOT NULL Results

Results with

Count over 25

134 Chapter 7 » SQL

SCALAR FUNCTIONS

These operate only on a single row.

AGGREGATE FUNCTIONS

These operate on sets of rows.

I?,’ Things You Should Know

Functions

SQL Server and most DBMSs include a variety of functions. Some functions operate on individual
rows, one at a time. These are called scalar functions. Other functions operate on sets of rows or
whole tables of rows at a time. These are called aggregate functions.

Every function has a similar syntax that consists of the function name and a set of parenthesis.
In the parenthesis are listed any parameters the function requires, separated by commas.

<Function Name>(parameterl, parameter2, ...)

The function ROUND, for instance, which will round a number, takes two parameters: the
number to be rounded, which can be a numeric column or a literal number, and the number of
decimal places to round at.

SELECT ROUND(23.4567893,2) as Rounded

This results in 23.4600000.

Scalar Functions

Scalar functions operate on the individual rows of a table. There are several dozen built-in scalar
functions in SQL Server. In SQL Server Management Studio, you can see lists of both scalar and
aggregate functions if you look at the programmability\functions\system functions for a database.
This chapter uses only a small number of functions, mostly related to dates. Following is a table of
those functions:

I Scalar Functions Used in This Chapter
Function Name Description
GETDATE() Returns current date and time
MONTH Returns the month as in integer (1-12) from a Date value
YEAR Returns the Year as a four-digit integer from a Date value

Aggregate Functions

As mentioned earlier, aggregate functions are functions that operate on several rows at a time. They
are extremely useful for analysing data in tables. Following is a table of the most common aggregate
functions.

I Common Aggregate Functions

Aggregate Function Description

COUNT Counts the number of values: COUNT(*) counts all the rows.
COUNT(columnName) counts all the values in the column but
ignores nulls

SUM Sums or totals numeric values: SUM (InStock)

AVG Returns the mean average of a set of numeric values: AvG(price).
By default nulls are ignored.

MAX Returns the highest value in a set of numeric or datetime values:
MAX(price)

MIN Returns the smallest value in a set of numeric or datetime value:
MIN(price)

DISTINCT With Aggregate Functions

One of Terry's reporting needs is to return unduplicated student counts. It is possible to use the word
DISTINCT with a function to do that. The COUNT function by itself will count all instances of a

value. So, for instance, if we do a count of all StudentKeys from Session with the following SQL, we
will get the total number of students who signed up for sessions, but each student will be counted as
many times as the session they signed up for.

SELECT COUNT (studentKey) AS [Total] FROM Session

For this query, the total is 9.

Running the query with the DISTINCT keyword returns an unduplicated count. It only counts
unigue values. The following query returns 5. There are only 5 individual students who have signed
up for sessions.

SELECT COUNT(DISTINCT studentKey) AS [Unduplicated] FROM Session

Group By

Because aggregate functions operate on several rows at a time, there is a conflict when you use col-
umn names and scalar functions that only operate on one row at a time. To resolve this conflict, SQL
has a GROUP BY clause. Any column or scalar function that is not a part of the aggregate function
must be included in a GROUP BY clause. Suppose, for instance, Sharon wanted to count how many
sessions each tutor had scheduled. She could write a query like the following:

SELECT TutorKey, COUNT(SessionTimeKey) AS [Total Sessions]
FROM Session

Running this query would throw the following error:

Msg 8120, Level 16, State 1, Line 1
Column ‘Session.TutorKey’ is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

The problem is that the query mixes scalar, single-row values, with aggregate, multiple-row values.
TutorKey is returned for each row, while COUNT (SessionTimeKey) returns a value generated by look-
ing at all the row. To solve this, TutorKey needs to be contained in a GROUP BY clause. It means that
the COUNT will be grouped by TutorKey. This actually returns the information Sharon wants:

TutorKey Total Sessions
980010001 4

980010002 4
980010003 1
980010004 8

Having

Another keyword associated with aggregate functions is the HAVING keyword. HAVING is used for
criteria that involve an aggregate function. Let’s say that Sharon only wants to see the tutors who
have less than four sessions scheduled. To do this, she needs a HAVING clause:

SELECT TutorKey, COUNT(SessionTimeKey) AS [Total Sessions]
FROM Session

GROUP BY TutorKey

HAVING COUNT (SessionTimeKey)<4

This returns only

TutorKey Total Sessions
980010003 1

Sharon writes a query to get the average age of students:

SELECT AVG(StudentAge) AS “Average Age”
FROM Student

Chapter7 ¢ SQL 135

FIGURE 7-23
Tutor

FIGURE 7-24

Count Grouped by

HAVING Results

136 Chapter 7 ¢ SQL

FIGURE 7-25 Average Age

FIGURE 7-26 Maximum Age

FIGURE 7-27 Minimum Age

FIGURE 7-28 GROUP BY Ethnicity

Average Age
29

Just for good measure, she decides to get the maximum and minimum ages for the
students:

Select MAX(StudentAge) AS “Oldest”
FROM Student

Oldest
53

Select MIN(StudentAge) AS “Youngest”
FROM Student

Youngest
18

Now she is ready to try something more sophisticated. Sharon knows that Terry
needs a count of how many students are of each ethnicity. Sharon tries this statement:

SELECT EthnicityKey, COUNT(EthnicityKey) AS “Total”
FROM Student

When she runs this query, she gets an error message:

Column ‘Session.TutorKey’ is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

This reminds her that she must add a GRoOUP BY clause whenever she has a column in
the SELECT clause that is not a part of the aggregate function. She rewrites the function
to include the GROUP BY clause and gets these results:

SELECT EthnicityKey, COUNT(EthnicityKey) AS “Total”

FROM Student
GROUP BY EthnicityKey

EthnicityKey | Total
NULL 0
AfrAmer 1
Asian 2
Caucasian 4
Hispanic 2

It is time to look at some of the other business rules. The first rule was just a state-
ment of the nature of tutors.

* A tutor can be a student but is not necessarily one.

The real issue there was not to assume that a tutor had a student key. Sharon had de-
signed the tables so that tutors have their own key. She looked at the second rule:

e Tutors cannot work for more than 60 hours a month.

To really enforce this, Sharon would need to create a trigger or stored procedure. This is a
more complicated matter, and she decides to leave it until later. She makes a note so she
doesn’t forget it. She can, though, make sure that the information needed for this rule can
be returned from the database. First, she will get all the sessions for a particular tutor. She
looks up the table and chooses Ginger Lewis. She writes this SQL statement:

SELECT TutorKey,
CourseKey,

SessionDateKey,
SessionTimeKey,

Chapter 7 SQL 137

StudentKey,

SessionStatus

FROM Session

WHERE Tutorkey = ‘980010004’

Here are her results:

TutorKey | CourseKey | SessionDateKey | SessionTimeKey | StudentKey | SessionStatus

980010004 | MAT107 2009-11-10 13:00:00.0000000 | 990001004 | C

980010004 | ENG211 2010-01-20 11:00:00.0000000 | 990001003 | C

980010004 | MAT107 2010-01-22 14:00:00.0000000 | 990001005 | NS

980010004 | MAT107 2010-02-10 13:30:00.0000000 | NULL NULL _ .
980010004 | MAT107 2010-02-10 14:00:00.0000000 | NULL NULL :Lfsll’o:'i 7-29 Ginger Lewis

Sharon has returned all the sessions for a tutor, but she still needs to figure out
how many hours that student has worked in a month. Sharon knows that there are
some built-in functions that can help her extract different parts from the date and time
columns. She decides to click Help. She selects Search, and in the Search text box types
“Date functions.” The first selection that comes up is “Date and Time Functions TRANSACT SQL
(Transact SQL).” “Transact SQL,” she knows, is Microsoft SQL Server’s specific flavor Microsoft SQL Server’s brand of
of SQL. She clicks on this to open the Help file. From the table of functions, she clicks on SQL.
the Month function and looks at the example:
The following example returns the number of the month from the date 03/12/1998.

SELECT “Month Number” = MONTH(‘03/12/1998")
GO

Here is the result set.

Month Number

She also looks up the YEAR function, then tries the following query:

SELECT TutorKey,

CourseKey,

Month(SessionDateKey) AS “Month”,
Year (SessionDateKey) AS “Year”,
SessionTimeKey,

StudentKey,

SessionStatus

FROM Session

WHERE Tutorkey = ‘980010004’

This returns the following results:

TutorKey CourseKey | Month | Year SessionTimeKey | StudentKey | SessionStatus
980010004 | MAT107 11 2009 13:00:00.0000000 | 990001004 C

980010004 | ENG211 1 2010 11:00:00.0000000 990001003 G
980010004 | MAT107 1 2010 14:00:00.0000000 990001005 NS
980010004 | MAT107 2 2010 13:30:00.0000000 NULL NULL
FIGURE 7-30 Month and Year
980010004 | MAT107 2 2010 14:00:00.0000000 NULL NULL

Results

Now that Sharon has a list of all the sessions for a tutor, she needs to get the count
of how many hours he or she has tutored in a month. She decides to try the couNT
function.

138 Chapter 7 * SQL

FIGURE 7-31 Count by Tutors,
Month, and Year

FIGURE 7-32 Hours Grouped by
Tutor, Month, and Year

SELECT Tutorkey,

MONTH (SessionDateKey) AS [Month],

YEAR(SessionDateKey) AS [Year],

COUNT (SessionTimeKey) AS [Total]

FROM Session

GROUP BY TutorKey, MONTH(SessionDateKey), YEAR(SessionDateKey)
ORDER BY YEAR(SessionDateKey), MONTH(SessionDateKey)

This returns the following results:

TutorKey Month | Year | Total
980010001 | 10 2009 | 1
980010003 | 10 2009 | 1
980010001 | 11 2009 | 3
980010004 | 11 2009 | 1
980010002 | 1 2010 | 1
980010004 | 1 2010 | 2
980010002 | 2 2010 | 3
980010004 | 2 2010 | 2

This shows the count of sessions that each tutor had per month, and Terry could
use it to calculate the number of hours, but Sharon is sure she can improve it. Each ses-
sion is 30 minutes in length. Sharon knows she can multiply the number of sessions by
30 to get the number of minutes. Then she can divide the total minutes to get the num-
ber of hours. She will also alias the calculated column. After some work, she produces
the following query:

SELECT Tutorkey,

MONTH (SessionDateKey) AS [Month],

YEAR(SessionDateKey) AS [Year],

((COUNT (SessionTimeKey)) * 30.0)/60.0 AS [Hours]

FROM Session

GROUP BY TutorKey, MONTH(SessionDateKey), YEAR(SessionDateKey)
ORDER BY YEAR(SessionDateKey), MONTH(SessionDateKey)

TutorKkey | Month | Year | Hours

980010001 | 10 2009 | 0.500000
980010003 | 10 2009 | 0.500000
980010001 | 11 2009 | 1.500000
980010004 | 11 2009 | 0.500000
980010002 | 1 2010 | 0.500000
980010004 | 1 2010 | 1.000000
980010002 | 2 2010 | 1.500000
980010004 | 2 2010 | 1.000000

As is, the query results show the number of hours for each tutor. It would be better if
she could select a particular month and year. Sharon tries putting a WHERE clause after
the GROUP BY, but that generates an error. Finally, she puts the WHERE clause after the
FROM clause and the query runs successfully.

SELECT Tutorkey,

MONTH (SessionDateKey) AS [Month],

YEAR (SessionDateKey) AS [Year],

((COUNT (SessionTimeKey)) * 30.0)/60.0 AS [Hours]

FROM Session

WHERE MONTH(SessionDateKey) = 2 AND YEAR(SessionDateKey) = 2010
GROUP BY TutorKey, MONTH(SessionDateKey), YEAR(SessionDateKey)
ORDER BY YEAR(SessionDateKey), MONTH(SessionDateKey)

TutorKey Month | Year | Hours
980010002 | 2 2010 | 1.500000
980010004 | 2 2010 | 1.000000

Sharon decides to add one more thing to the query. It would be useful if Terry had
a query that could flag anyone in a given time period who was scheduled for more than
60 hours. This will require a HAVING clause.

SELECT Tutorkey,

MONTH (SessionDateKey) AS [Month],

YEAR (SessionDateKey) AS [Year],

((COUNT (SessionTimeKey)) * 30.0)/60.0 As [Hours]

FROM Session

WHERE MONTH(SessionDateKey) = 2 AND YEAR(SessionDateKey) = 2010
GROUP BY TutorKey, MONTH(SessionDateKey), YEAR(SessionDateKey)
HAVING (((COUNT (SessionTimeKey)) * 30.0)/60.0) > 60

ORDER BY YEAR(SessionDateKey), MONTH (SessionDateKey)

In the current database, this will return nothing, because no one has worked for over
60 hours in the monthly period. But it would serve to check to make sure no tutor is
exceeding his or her hours.

JOINS

Sharon knows these queries would be more readable if they contained the names of the
tutors rather than just the tutor key. To do this, she would need to use joins. She starts with
a simple join that combines the Tutor table with the Session table. Here is her SQL
and results:

SELECT TutorLastName,
TutorFirstName,

SessionDateKey,

SessionTimeKey,

StudentKey

SessionStatus

FROM Tutor

INNER JOIN Session

ON Tutor.TutorKey = Session.TutorKey

TutorLastName TutorFlrstname | SessionDateKey | SessionTimeKey | StudentKey
Anderson Nathan 2009-10-20 13:00:00.0000000 | 990001000
Brown Susan 2009-10-20 14:00:00.0000000 | 990001000
Brown Susan 2009-11-05 10:00:00.0000000 | NULL
Lewis Ginger 2009-11-10 13:00:00.0000000 | 990001004
Brown Susan 2009-11-10 14:00:00.0000000 | 990001000
Brown Susan 2009-11-20 10:30:00.0000000 | 990001002
Foster Daniel 2010-01-15 09:30:00.0000000 | 990001000
Lewis Ginger 2010-01-20 11:00:00.0000000 | 990001003
Lewis Ginger 2010-01-22 14:00:00.0000000 | 990001005
Foster Daniel 2010-02-05 10:30:00.0000000 | 990001000
Lewis Ginger 2010-02-10 13:30:00.0000000 | NULL
Lewis Ginger 2010-02-10 14:00:00.0000000 | NULL
Foster Daniel 2010-02-13 10:00:00.0000000 | NULL
Foster Daniel 2010-02-14 11:00:00.0000000 | NULL

Chapter 7 « SQL 139

FIGURE 7-33 Tutor Hours for
February

FIGURE 7-34 Session Tutor
Inner Join

140 Chapter 7 » SQL

QUALIFIED NAME

A name that includes a chain of
ownership separated by dot notation.

LP'Q; Things You Should Know

Joins

The process of normalization breaks tables into smaller and more focused tables. This makes for
more effective database processing, but it separates things that seem to belong together. Joins allow
the user to reunite or “join” elements that have been split into a single result set.

Inner Join

An inner join returns the selected columns for all the rows in chosen tables that have a related row in the
joined table. What this means is that the join returns all the tutors that have sessions in the Session table.
If there are any tutors in the Tutor table who don’t have sessions, they will not be included in the results.
Conversely, if there are any sessions that don’t have an assigned tutor, they will also not be returned.

Take a look at Sharon’s query to get an overview of how an inner join works. All the columns
are listed in the SELECT clause in the order you want to see them returned regardless of what table
they may come from.

SELECT TutorLastName,
TutorFirstName,
SessionDateKey,
SessionTimeKey,
StudentKey
SessionStatus

One of the tables—it doesn’t really matter which one, though usually it's the table containing the
first columns—is used in the FROM clause.

FROM Tutor
Next, the keywords INNER JOIN are used to add the second table.
INNER JOIN Session

JOIN can be used by itself without the modifier INNER, since the default type of JOIN is an
INNER JOIN. But it is better to use the INNER for clarity.
Finally, an ON clause defines how the tables relate.

ON Tutor.TutorKey = Session.TutorKey

It is necessary to show the relation even though you have defined the relational constraints in
the database management system. Notice also, the dot notation. The column TutorKey, because it is
both a primary key and a foreign key, exists in both tables. In order to clarify which one belongs to
which table, we use the following notation to clarify which column we are referring to:

<TABLENAME> .<COLUMNNAME>

This is called a "qualified” name. A fully qualified name includes the following:
<SERVERNAME> . <DATABASENAME> . <SCHEMANAME> . <TABLENAME>. <COLUMNNAME>

The schema name is the name of the owner of the object. In most cases in SQL Server, the schema is
“dbo,” which is short for “Database Owner.” It is possible to assign tables and other database objects to
different schemas as owners of the object. This will be covered in the next chapter on security.

Any column, that is ambiguous, that exits in more than one table, whether it is in the SELECT
clause, the ON clause, or the criteria, must be disambiguated or clarified by including its table name. To
make this a little less tedious, you can alias the table names and use the alias instead of the table names.

SELECT t.TutorKey
TutorLastName,
TutorFirstName,
SessionDateKey,
SessionTimeKey,

StudentKey

SessionStatus

FROM Tutor t

INNER JOIN Session s

ON t.TutorKey = s.TutorKey

Notice that the alias is used in the SELECT clause as well, even though you don't declare the aliases
until the FROM and INNER JOIN clauses.

After adding the ON clause, you can, of course, add a WHERE clause and ORDER BY as
needed.

Equi Joins

An equi join is an older form of join that doesn’t use the INNER JOIN syntax. In some older
versions of database management systems such as ORACLE (versions before 9i), equi joins were the
only way to join tables. In an equi join, you list all the columns in the SELECT just as in the INNER
JOIN, but in the FROM, instead of just listing one table, you list them all, separated by commas.
There is no ON clause, but you still define the relationships with the = sign (thus the name “equi
join”) in the WHERE clause. The following example is equivalent to Sharon’s INNER JOIN except
for the addition of a search criterion in the WHERE clause to show how that would work with the
definition of the relationship.

SELECT t.TutorKey,
TutorLastName,
TutorFirstName,
SessionDateKey,
SessionTimeKey,

StudentKey

FROM Tutor t,

Session s

WHERE t.TutorKey = s.TutorKey
AND TutorLastName = ‘Brown’

The equi join syntax may seem simpler to some people, but the INNER JOIN syntax
should be used where possible. The INNER JOIN is clearer about what is going on in the query,
whereas the equi join syntax mixes the join information with query criteria. Also, the INNER
JOIN syntax protects you from a common error in the equi join syntax. In the equi join syntax,
when you are joining multiple tables, it is easy to forget to specify a relationship. A query with
such a mistake does not throw an error, instead it produces a CROSS JOIN with the result set
before it. A CROSS JOIN (sometimes called a Cartesian JOIN) combines each row in the result set
or first table with each row in the second table. You can end up with thousands of unexpected
rows in your final query result. The INNER JOIN syntax makes this particular error virtually
impossible.

THINGS TO THINK ABOUT

Why do you think cross joins are allowed as a legitimate join? What uses can you see for
such joins?

Joins with Several Tables

Both inner joins and equi joins can be uses to join more than two tables. Following is an example of
both forms which bring together the Student table, the Request table, and the Course table.

SELECT s.StudentKey,
StudentLastName,
StudentFirstName,

c.CourseKey,

CourseName,

RequestDate,

RequestStatus

FROM Student s

INNER JOIN Request r

ON s.StudentKey = r.StudentKey
INNER JOIN Course c

ON c.CourseKey = r.CourseKey
WHERE RequestStatus = ‘Active’

SELECT s.StudentKey,
StudentLastName,
StudentFirstName,

Chapter7 ¢ SQL 141

EQUI JOINS

A join using the = sign to specify
relations, an older alternative to the
INNER JOIN syntax.

CROSS JOIN

A join in which each row in one
table is matched to every row in a
second table.

142 Chapter 7 * SQL

c.CourseKey,

CourseName,

RequestDate,

RequestStatus

FROM, Student s, Course ¢, Request r
WHERE s.StudentKey = r.StudentKey
AND c.CourseKey = r.CourseKey

AND RequestStatus = ‘Open’

In both cases, the result is the same:

StudentKey | StudentLastName

StudentFirstName | CouseKey | CourseName RequesiDate | RequestStatus

009001010 Min

DatabaseAdministration | 2010-01-05 Active

Ly ITC226

FIGURE 7-35 Multitable Join
Results

FIGURE 7-36 Outer Join Results

Notice, that in the INNER JOIN syntax, you just add another INNER JOIN and ON clauses
for each table. In the equi join, you list all the tables in the FROM clause and add an AND clause for
each additional relationship.

Outer Joins

An INNER JOIN returns only related rows from the joined tables. That means if there were a tutor
in the tutoring table who had not entered any tutoring session, that tutor would not be returned by
an INNER JOIN query with the Session table. Only those tutors who had a related row in the
Session table would be returned. An outer join returns all the rows in one table and only the related
rows in the second table. There are two kinds of outer joins, a left outer join and a right outer join.
The only difference between the two is which table in the join you want to return all the records
from. Left is the first table listed and Right is the second table. To find any tutors who were without
sessions, you could write a query such as the following:

SELECT t.TutorKey,
TutorLastName,
SessionDateKey

FROM Tutor t

LEFT OUTER JOIN Session s

ON t.TutorKey = s.TutorKey
WHERE SessionDateKey IS Null

This results is:

TutorLastName
Roberts

SessionDateKey
NULL

TutorKey
980010000

“Roberts” exists in the Tutor table, but has no sessions recorded in the Session table.

Sharon decides to expand her query to include not only the tutor’s name but also
the student’s and course name. Now her query looks like this:

SELECT TutorLastName,
TutorFirstName,

c.CourseKey,

CourseName,

SessionDateKey,
SessionTimeKey,
StudentLastName,
StudentFirstName,
SessionStatus

FROM Tutor t

INNER JOIN Session s

ON t.TutorKey = s.TutorKey
INNER JOIN Course c

ON c.CourseKey = s.CourseKey
INNER JOIN Student st

ON st.StudentKey = s.StudentKey

The results of this query look like this:

Chapter 7 « SQL 143

Tutor Tutor Session Session Student Student Session
LastName | FirstName | CourseKey | CourseName DateKey TimeKey LastName | FirstName | Status
Anderson Nathan [TC110 Beginning Programming 2009-10-20 | 13:00:00.0000000 | Peterson Laura C
Brown Susan WEB110 Beginning Web Page Design | 2009-10-20 | 14:00:00.0000000 | Peterson Laura G
Lewis Ginger MAT107 Applied Math 2009-11-10 | 13:00:00.0000000 | Nguyen Lu C
Brown Susan WEB110 Beginning Web Page Design | 2009-11-10 | 14:00:00.0000000 | Peterson Laura G
Brown Susan [TC220 Introduction to Database 2009-11-20 | 10:30:00.0000000 | Carter Shannon C
Foster Daniel [TC255 Systems Analysis 2010-01-15 | 09:30:00.0000000 | Peterson Laura G
Lewis Ginger ENG211 Technical Writing 2010-01-20 | 11:00:00.0000000 | Martinez Sandy 0
Lewis Ginger MAT107 Applied Math 2010-01-22 | 14:00:00.0000000 | Zukof Mark NS
Foster Daniel [TC255 Systems Analysis 2010-02-05 | 10:30:00.0000000 | Peterson Laura G

FIGURE 7-37 Multiple Join Session, Tutor, and Student

INSERTS, UPDATES, AND DELETES

Sharon looks back at her list of business rules. She looks particularly at the first three

she has listed:

e Students must register for tutoring (a new rule with the database).
¢ Students must enter current courses.
e Students are encouraged but not required to enter demographic data.

Ultimately, the students will enter this data through a form of some kind, but it will still
require inserting statements underneath. Referential integrity requires that data be entered
into the Student table before data can be entered into the StudentCourse table. It also requires
that the course exists in the course table prior to its being entered in the StudentCourse table.

The same holds true of the EthnicityKey. Sharon writes the Student insert statement first.

INSERT INTO Student(
StudentKey,
StudentLastName,
StudentFirstName,
StudentEmail,
StudentPhone,
StudentGender,
StudentAge,
StudentCitizen,
StudentWorkerRetraining,
EthnicityKey)
VALUES (

99001008,

‘Steve’,

‘Norton’,
‘steve_norton@gmail.com’,
2065554002,

M,

‘327,

1,

0,

‘Caucasion’)

Things You Should Know

INSERT Statements

The basic syntax for an INSERT statement is

INSERT INTO <tablename>(<ColumnName>, <columnName>, ...)

VALUES (<valuel>, <value2>, ..

-)

144 Chapter 7 » SQL

You do not have to list all the column names, but you do have to enter all the required
columns. The values match the columns in sequence and in data type. If you list a column that is not
required and you don’t want to put data in it, you can use the NULL keyword.

You must have a separate INSERT statement for each row you wish to insert. In a form, the
same INSERT statement can be used every time by substituting variables for the values in the list,
and there are ways to bulk insert or to insert values from another table with a SELECT statement
instead of a value list, but these are topics for more advanced SQL.

When she runs the query, Sharon receives the following result, which indicates
that the INSERT statement was successful.

(1 row(s) affected)

Next, Sharon decides she should test whether the INSERT statement runs successfully
for a second student who is less willing to enter demographic information.

INSERT INTO Student(
StudentKey,
StudentLastName,
StudentFirstName,
StudentEmail,
StudentPhone,
StudentGender,
StudentAge,
StudentCitizen,
StudentWorkerRetraining,
EthnicityKey)
VALUES (

990010097,

+Jillr,

‘Miller’,
‘jmiller92@gmail.com’,
20655511037,

Er,

NULL,

NULL,

0,

NULL)

This also inserts correctly.

Now it is time to test whether each student can enter what courses they are
enrolled in. First, she tries for “Steve Norton.” She creates a separate INSERT statement
for each course Norton is taking.

INSERT INTO StudentCourse(StudentKey, CourseKey, Quarter)
Values(‘99001008’, ‘ITC220’, ‘Spring09’)
INSERT INTO StudentCourse(StudentKey, CourseKey, Quarter)
Values(‘99001008’, ‘ITC110’, ‘Spring09’)
INSERT INTO StudentCourse(StudentKey, CourseKey, Quarter)
Values(‘99001008’, ‘ENG211’, ‘Spring09’)

She does the same for Jill Miller:

INSERT INTO StudentCourse(StudentKey, CourseKey, Quarter)
Values(‘99001009’, ‘ITC220’, ‘Spring09')
INSERT INTO StudentCourse(StudentKey, CourseKey, Quarter)
Values(‘99001009’, ‘MAT107’', ‘Spring09’)

Sharon looks at the next business rule:
* Students sign up for sessions.

This involves a different action than entering the student information. The tutor will
enter the session data, and the students will update it to add their StudentKey
information to the row. First, Sharon inserts a new Session.

INSERT INTO Session (TutorKey,
CourseKey,

SessionDateKey,
SessionTimeKey,

StudentKey,

SessionStatus)
VALUES(‘980010004,
‘ITC220',
‘2/10/2010",

10:00 AM’,

NULL,

NULL)

Next, she creates the SQL UPDATE statement that would let a student sign up for this
session.

UPDATE Session

SET StudentKey = ‘980001009°
WHERE TutorKey = ‘980010004"
AND CourseKey = ‘ITC220'

©2/10/2010"
10:00"

AND SessionDateKey =
AND SessionTimeKey =

Things You Should Know L’é”
Updates and Deletes

Updates change existing data, and deletes remove it. Both can act on one or many rows at a time.
The basic syntax of an UPDATE statement is

UPDATE <TableName>
SET <ColumnName> = <New Value>
WHERE <ColumnName> = <criteria>

You can update more than one column at a time by listing the columns you wish to update in
the SET clause with their new values. Each value pair is separated from the others by commas.

UPDATE Student

SET StudentPhone = ‘2965557000,
StudentEmail = ‘juancarlos23@gmail.com’
WHERE StudentKey = ‘980001009

The DELETE statement syntax is

DELETE FROM <TableName>
WHERE <columnName> = <criteria>

For instance, if the tutor Susan Brown needed to delete all her sessions for a day, she could use the
following SQL:

DELETE FROM Session

WHERE SessionDateKey = ‘4/10/2009"
AND TutorKey = ‘980010001°

CREATING A TRIGGER

Now Sharon feels ready to try a trigger. She wants to see if she can enforce the rule that
no tutor should work more than 60 hours in a month. Sharon has done one or two trig-
gers before, but she is very uncertain about where to start from. She decides to look up

triggers in SQL Server’s Help files.
=
>
Triggers

Triggers are scripts of SQL code that are triggered by an event. The most common events are on
INSERT, UPDATE, or DELETE. These triggers are specific to a given table. A trigger for INSERT into
the student table, for instance, will fire every time that an INSERT into that table occurs. Triggers
can respond to more than one event at a time. You could, for instance, have a trigger that responds
to both the UPDATE and DELETE events.

Things You Should Know

Chapter 7 ¢ SQL 145

Caution
w If you use an UPDATE or a
DELETE without a WHERE
clause, or if the WHERE clause isn’t
specific enough, you can change or
DELETE all the rows in a table. For
instance, the following UPDATE
statement

UPDATE Session
SET StudentKey =
‘99001008"

would set every session in the entire
table to have the StudentKey
“snorton.” Worse, there is no easy
undo. Once an UPDATE is committed,
the only way to undo it would be to
restore the tables from backup files and
the logs. This is a tricky task and
usually requires the database be offline
while the files are restored. The same
danger holds for the DELETE
command.

DELETE FROM Session

This DELETE statement without a
WHERE clause will delete every row in
the Session table. Sometimes referential
integrity can save you from this
mistake, but in a table like Session that
is on the child side of all of its
relationships, the command will empty
the table.

146 Chapter 7 * SQL

Triggers are used to enforce business rules that can’t be enforced by normal database
constraints. In the Tutor database, there is a rule that no tutor can work more than 60 hours in a
month. This is impossible to enforce just by referential integrity and constraints. But it can be enforced
by a trigger. The rule that a student must be enrolled in a class to sign up for tutoring in that subject
would be another candidate for a trigger.

SQL Server supports three kinds of triggers on tables. FOR and AFTER triggers let the INSERT,
UPDATE, or DELETE occur and then run their SQL. INSTEAD OF triggers intercept the event and
execute their code instead of the INSERT, UPDATE, or DELETE.

The basic syntax for a trigger is

CREATE TRIGGER <trigger name> ON <table_ name>
[FOR, AFTER, INSTEAD OF] [INSERT, UPDATE, DELETE]
AS

{SQL Code}

Sharon decides to use an INSTEAD OF trigger on INSERT. She is not going to let
the tutor enter a session if it brings the total hours to more than 60. Sharon knows it is
important to list out the logical steps before trying to actually write the trigger. It is easy
to get confused if you don’t have a clear recipe to follow. She lists these steps:

1. Get the date from the INSERTED table.

Extract the month.

Create a variable for the total hours.

Assign to total the sum of each session for that month (assuming 30 minutes each).
Check to see if the sum >60.

Check if it is output a message.

Otherwise complete the insert into the Session table.

NSk N

LS; Things You Should Know

INSERTED and DELETED Tables

Whenever you insert a record, SQL Server creates an INSERTED table in the Temp database. The
table only exists for the duration of the transaction, but within a trigger, you can use this table
to access the data that was inserted. Updates and deletes are stored in a DELETED table.

First, Sharon defined the trigger and the internal variables she was going to use.

CREATE TRIGGER tr_SessionHours ON [Session]
INSTEAD OF INSERT

AS

DECLARE @month INT

DECLARE @Year INT

DECLARE @tutorID NCHAR(10)

DECLARE @total FLOAT

DECLARE @Maximum INT

The DECLARE keyword is used to declare internal variables. All variables in SQL Server must start with
the "@" symbol. Next, she uses the SET keyword to assign a value to the @Maximum variable. The
sessions are in minutes, so she multiplies 60 hours by 60 minutes per hour to get 3600.

SET @Maximum = 3600

Next, she uses SELECT statement to assign values from the INSERTED TABLE to the variables
@month and @tutorlD.

SELECT €@month = month(SessionDateKey) FROM Inserted
SELECT @Year = Year(SessionDateKey) FROM Inserted
SELECT @tutorID = TutorKey FROM Inserted

Now that she has these values, Sharon writes the equation to test the number of total hours.
She counts the sessions and multiplies by 30 minutes, then she adds 30 for the session being

inserted. In the WHERE clause, she makes sure that the count is only for the month, year, and tutor in
question.

SELECT @Total = (Count(*) * 30) + 30 FROM Session
WHERE TutorKey = @tutorID

AND Month(SessionDateKey) = @Month

AND Year (SessionDateKey) = @Year

Finally, she tests the @total to see if it is less than @Maximum. If it is not, she performs the in-
sert that the trigger aborted. She uses a SELECT to fill in the values for the INSERT.

IF @total <= @Maximum

BEGIN

INSERT INTO Session(SessionDateKey, SessionTimeKey, TutorKey, CourseKey)
(SELECT SessionDateKey, SessionTimeKey, TutorKey, CourseKey FROM Inserted)
END

ELSE

BEGIN

Print ‘Too many hours for this month’

END

Here is the whole trigger:

CREATE TRIGGER tr_SessionHours ON [Session]
INSTEAD OF INSERT

AS

DECLARE @month INT

DECLARE @Year INT

DECLARE @tutorID NCHAR(10)

DECLARE @total FLOAT

DECLARE @Maximum INT

SET @Maximum = 3600

SELECT €@month = month(SessionDateKey) FROM Inserted
SELECT @Year = Year(SessionDateKey) FROM Inserted
SELECT @tutorID = TutorKey FROM Inserted

SELECT @Total = (Count(*) * 30) + 30 FROM Session
WHERE TutorKey = @tutorID

AND Month(SessionDateKey) = @Month

AND Year(SessionDateKey) = @Year

IF @total <= @Maximum

BEGIN

INSERT INTO Session(SessionDateKey, SessionTimeKey, TutorKey, CourseKey)
(SELECT SessionDateKey, SessionTimeKey, TutorKey, CourseKey FROM Inserted)
END

ELSE

BEGIN

Print ‘Too many hours for this month’

END

To test this, Sharon must insert enough session data to get one of the tutors up to 3,600 min-
utes, then add one more session. She does this and sees the message in the Query window.

DOCUMENTATION

Testing a database is critical to its success. You should thoroughly test every database
before committing real data to it. And, as with everything else, it is essential to docu-
ment your testing. Before you begin, you should develop a testing plan. The plan should
consist of each business rule or requirement you need to test. It should explain how you
intend to test it and what the expected outcome should be.

Next, you should conduct each test and record its results. If the result of the test is
different than the expected result, you should determine where the error lies, either in
the test or in the database. After correcting the error, you should run the test again to
make sure the results conform to expectations. Here is a fragment of the testing plan for
the Tutor Management database:

Chapter 7 ¢ SQL

147

148 Chapter 7 * SQL

I Testing Plan and Tests
Rule to Test Means of Testing Expected Result Result
Return all SELECT StudentLastName, StudentFirstName, Return all male Returns all
students by StudentGender students male students
Gender FROM Student

WHERE StudentGender = ‘M’

Return SELECT Count(StudentID) FROM Session Return Returns
unduph?ated SELECT Count (DISTINCT StudentID) FROM unduphcafted duplicated
count o Session students rom students
students from session Returns

tutoring sessions

Return hours for
student per
month

SELECT Tutorkey,
MONTH (SessionDateKey) AS [Month],
YEAR (SessionDateKey) AS [Year],
((COUNT (SessionTimeKey)) * 30.0)/60.0

AS [Hours]
FROM Session

GROUP BY TutorKey, MONTH(SessionDateKey),

YEAR (SessionDateKey)

ORDER BY YEAR(SessionDateKey),

MONTH (SessionDateKey)

Hours grouped by
student and
month

unduplicated
student Count

Returns hours
grouped by
student and
month

Things We Have Done

In this chapter we have

¢ looked at business requirements using SQL

¢ selected data from the table using various criteria
® joined tables in the database for queries

¢ performed an outer join

e inserted data

e updated data

SQL KEYWORDS

Following is a table of the SQL terms used in this chapter. The
descriptions do not contain all the uses of the term in SQL, only
the ones relevant to the examples are presented.

I SQL Keywords

Key Word Description

AND Boolean argument used in SQL criteria for the result to be counted both conditions must be true.

AS Prefaces an alias for a column.

BETWEEN Used in criteria with AND.

DELETE Removes a row or rows from a database table.

DESC Reverses the order of a Sort on a specific column in an ORDER BY clause.

DISTINCT Returns only unique rows when used with SELECT. When used with an aggregate function, it applies
function only to unique values.

FROM Precedes the table name in a SELECT clause.

GROUP BY Groups rows in a query that contain one or more aggregate functions by columns not contained in
those functions.

HAVING Used for query criteria that contain aggregate functions.

INNER JOIN Joins two tables returning only matching records.

INSERT Used to add rows to a table.

INTO Precedes the table name in an INSERT statement.

IS NULL Used in a query criteria to find NULL values (rather than = NULL).

LIKE Used in query criteria with wildcards % _ to search for patterns in character based columns.

(continued)

Chapter 7 « SQL 149
Key Word Description
NOT Boolean argument used to exclude an option.
ON Used with INNER JOIN, introduces the clause that specifies how two tables are related.
OR Boolean argument used in criteria to specify an alternative value. Only one side of the OR clause must be
true for the expression to be true.
ORDER BY Sorts a result set by a value or a set of values. When there is more than one sort criteria listed, the

OUTER LEFT JOIN

primary sort is on the leftmost value, the secondary sort on the next value, etc.

A join that returns all the rows in the first table listed (left) and only matching records in the second
(right) table. Good for finding unmatched data such as a tutor who has no tutoring sessions or a
customer who has no purchases.

SELECT The first word of all queries that return data from the database.
SET In an UPDATE statement used to set the initial value to be modified, additional values just have the
column name = new value and are separated by commas.
UPDATE First word of a command to modify existing data in a table.
VALUES In an INSERT statement, this word prefaces the list of values to insert into the table.
WHERE In @ SELECT statement, this word introduces the criteria by which to select which rows to return.
Vocabulary

Match the definitions to the vocabulary words:

NES0®ON® Uk wWN =

Aggregate function
Alias

Cross join

DDL

Declarative language
DML

Equi Joins
Procedural language
Qualified name

. Scalar function
. SQL
. Transact SQL

Things to Look Up

1. Look up ANSI and ISO. Explain briefly what each is and 3.

m R PR om0 n T

Data Manipulation Language

A function that operates on a single row at a time

A substitute name for a column or table

Programming language that defines how to accomplish a task

A join that uses the WHERE clause and the equal sign to specify relationships

The language of RDBMS

Data Definition Language

A function that operates on multiple rows at a time

A database name that shows a hierarchy of ownership with dot notation

Microsoft SQL Server’s brand of SQL

A programming language in which a programmer defines what to do, not how to do
A join in which each row of the first table is joined with every row in a second table

What is the most recent ANSI standard, and what does it

does. add to the previous SQL standards?
2. How many ANSI standards have been set for SQL? 4. Look up a good online tutorial for SQL. What is the URL?
Practices

Use the Pizza database created in the last chapter’s practices,
and write SQL to answer these questions:

1.

2.
3.

o

What is the average price of a product?
. What is the highest price of a product?
. What is the total due for order 1003?

List all last names, phone numbers, and zip of the
customers

List only those from Zip code 98002.

List all the customers that have no first address entered in
the database.

List all the products that are priced higher than $10.

List all the products priced between $5 and $7.

List all the customers whose last name starts with L.

o o o N

11.

12.
13.

. Join the product and the OrderDetail table so that the result

contains the product name, product unit size, and product
unit price as well as the charged price. Do it for order 1000.
List all the order and order details for each order made by
the customer with the phone number 2065556623.

Change the price of breadsticks to 3.00.

Process a pizza order for a new customer (this will involve 3
INSERT statements).

150 Chapter 7 » SQL

Scenarios

WILD WOOD APARTMENTS

Now that the basic database is in place, the Wild Wood
Apartments managers are eager to see the database in action
and see if it meets all their needs and requirements. It is time to
look at the business rules and test them with some SQL. Look at
the business rules you developed previously, and design some
SQL queries to test them. Documentation: Set up a test plan. List
the rule, the SQL you wrote, and the results. Also note whether
the database passes or fails the test. Your queries should include
the following;:

Two or three simple SELECTs with various WHERE criteria
Two or three queries using aggregate functions

At least two queries that use joins

Two or three INSERT statements

One or two UPDATEs and/or a DELETE

Gl @

VINCE'S VINYL

It is time to test Vince’s database to see if it truly meets his needs.
It is time to look back at the business rules and test them with
some SQL. Look at the business rules you developed previously,
and design some SQL queries to test them. Documentation: Set
up a test plan. List the rule, the SQL you wrote, and the results.
Also note whether the database passes or fails the test. Your
queries should include the following;:

1. Two or three simple SELECTs with various WHERE criteria
Two or three queries using aggregate functions

At least two queries that use joins

Two or three INSERT statements

One or two UPDATEs and/or a DELETE

I

GRANDFIELD COLLEGE

The college is feeling pressurized to get the new system in place.
There could be an inspection of their IT services any time now,
and they want to be ready. It is time to look at the business rules
and test them with some SQL. Documentation: Set up a test
plan. Look at the business rules you developed previously, and
design some SQL queries to test them. List the rule, the SQL you
wrote, and the results. Also note whether the database passes or
fails the test. Your queries should include the following:

1. Two or three simple SELECTs with various WHERE criteria
2. Two or three queries using aggregate functions

3. Atleast two queries that use joins
4. Two or three INSERT statements
5. One or two UPDATEs and/or a DELETE

WESTLAKE RESEARCH HOSPITAL

The research program is almost ready to begin. Westlake is in
the process of interviewing potential patients and doctors. It is
important that the database be ready soon. It is also important
that it does what it is supposed to do. It is time to look at the
business rules and test them with some SQL. Look at the busi-
ness rules you developed previously, and design some SQL
queries to test them.Documentation: Set up a test plan. List the
rule, the SQL you wrote, and the results. Also note whether the
database passes or fails the test. Your queries should include
the following;:

1. Two or three simple SELECTs with various WHERE
criteria

Two or three queries using aggregate functions

At least two queries that use joins

Two or three INSERT statements

One or two UPDATEs and/or a DELETE

A

SUGGESTION FOR SCENARIOS

Review your business rules. Many are probably simple to test,
requiring only SELECT statements. Others may be harder. Try
the simple ones first.

You may also find that you need to adjust your sample data.
It may be necessary to insert some data that shows a violation of
a rule, or you may need to insert data in order to compare dif-
ferent dates or times.

Most SQL mistakes are syntax errors. Missing commas or
extra commas are common suspects. The error messages in the
query analyzer do not always pinpoint the exact error. If you
double click the error message, it will place your cursor in the
vicinity of the error. Look all around the region. A missing
comma above or a misspelled word may be causing an error
later in the code.

Another common error with joins is the ambiguous
column. This usually involves a key column that occurs in
other tables as a foreign key. Since it occurs in more than one
table, SQL Server cannot determine which table it is from.
These columns should always be qualified with the table
name or table alias.

CHAPTER 8

Is It Secure?

In this chapter, Sharon looks at the security needs of the database. It is important to give everyone the access
that they require to do the things they need to do. But it is also important to protect the database objects and
data from either accidental or intentional damage. Sharon discovers that security is a complex issue and
requires careful planning.

CHAPTER OUTCOMES
By the end of this chapter you will be able to:

" Analyze security needs and restrictions for users of the database
® Analyze threats to database integrity

Understand the concepts of authentication and authorization

= Create logins and users

" Create roles

THE ISSUE

Sharon has set up a meeting with Terry to show her the queries she has written and to discuss the next steps in
the process. Terry is impressed but a little worried. “How will tutors and students access the database?”

“We will create an application, either with Windows or on the Web that they can use to access the data.
They won’t have direct access to the database, of course.”

“Yes, I know that, and I have talked with several people and we have agreed that we would prefer a Web
application. It would be nice if students could register for sessions from anywhere. What I really mean though is
how do you differentiate between a tutor and student? How do you keep a student from acting as a tutor, if you
know what I mean?”

Sharon thinks for a minute. “I do know what you mean. They would have different logins, I think, with
different permissions. And, if it is on the Web, that means anyone can potentially access the site. Security will be
important.”

Sharon pauses, “Security is a weak point in my knowledge. I think I will have to make an appointment
with Professor Collins. I will let you know what results from that.”

“Thanks, I do think the security will be critical.”

WHERE TO START

Professor Collins agrees to meet with her. Sharon explains briefly that what she needs is a way to approach
securing the database and that she doesn’t really understand the process.

He nods, “It’s understandable. Security is always something we get to at the end of our database design
classes or not at all, but it is crucial for a database that is actually going to be put in production and used by
hundreds of users. It’s not easy. Perhaps the best place to begin is to think of security in the context of two terms:

‘Authentication” and ‘Authorization’. Authentication is about verifying the credentials of a potential user. Are they
151

152 Chapter 8 ¢ IsIt Secure?

AUTHORIZATION

This is granting the authenticated
user permissions on database
objects.

AUTHENTICATION

The process of determining the user
is, in fact, who he or she claims to be.

PERMISSION

An action granted to a user.

who they say they are? Are they legitimate users? Usually this is done by matching a
username and a password. But it can be done in other ways too, such as by using a certifi-
cate or biometric authentication tools such as fingerprint readers. Authorization is about
assigning permissions to users. Once users have been authenticated, they can be assigned
permission to access a certain database and certain database objects. If they fail to authen-
ticate, then they should have no permissions on anything, of course.”

Lf’e; Things You Should Know
All database management systems have ways to authenticate users and then authorize them to do
what they need to do within particular databases. How they set it up and the levels of “granularity”—
that is, how finely detailed the permission structure is—vary a great deal. Most database management
systems use a combination of server logins mapped to database users. Most have ways of assigning
roles or group permissions. Because this book is using SQL Server Express, we will look at how it
handles authentication and authorization.

Authentication in SQL Server

Authentication is the process of verifying if a user is who he or she claims to be. With SQL Server, this
authentication can be done in a variety of ways. The default method of authorization is “Windows
authentication.” In this method, SQL Server lets Windows authenticate the user, then that Window's
account is mapped to an SQL Server login.

In SQL Server, a login is a server-level account. By itself, a login only allows a connection to the
server. It doesn’t contain any other permissions. A database administrator can assign additional
permissions, such as the ability to back up a database, but in itself, it doesn’t even have any permis-
sion to access databases on the server.

THINGS TO THINK ABOUT

Why do you think SQL Server uses a two-step mapping of that login to a user account? Do you
process: first, a login to the server, and then a think it makes things more or less secure?

Using Windows authentication works well on network where every user has a Windows or an
active directory account but doesn’t work in a mixed environment or when users, who require
different permissions, are accessing the database from the Internet. For these situations, SQL Server
provides SQL Server logins. These logins require a user to enter a user name and a password.

A third method is to use a certificate. A certificate can be purchased from various companies
and institutions. It functions as an identifier saying this request is coming from a known source. The
database administrator can map the certificate to a login.

For a login to have access to a database, it must be mapped to a specific database user.
Database permissions are then assigned to the user.

Authorization in SQL Server

Authorization is the process of assigning permissions to access database objects to an authenticated
login or user. Permissions differ with different objects. A user of a table, for instance, can be granted
permission to SELECT data from that table, UPDATE, INSERT, or DELETE. He or she could also be
granted the permission to ALTER or DROP the table. A user of a stored procedure must be granted the
EXEC (execute) permission and could also be granted the ALTER or DROP permissions. Authorization is
the set of permissions that a particular user is “authorized” to do in the database.

It is important to note that in SQL Server, users do not have any permission that is not explicitly
granted them. You cannot assume, for instance, that because someone has permission to UPDATE a
table that they also have permission to SELECT data from that table. Each permission is distinct and
must be specifically granted.

Sharon listens carefully and then asks, “How do you set it up so that one user can
do one set of things in the database, and another user can do a different set of things?
For example, a tutor can set up his or her schedule. A student should be able to see the
schedule but not add to it or change it, except to sign up for a session.”

“Different logins can be assigned to different sets of permissions. You could do
this user by user, but I would suggest creating roles, a student role, a tutor role, and so
on, and assigning users to those roles. The role can contain all the permissions. Doing it
user by user is too hard to maintain.”

Things You Should Know I?—,

Roles

Roles are collections of permissions. Rather than assign the same set of permissions multiple times to
multiple users, you can create a role. Then you can make individual users members of that role. As
members, they inherit all the permissions associated with the role. This greatly simplifies managing
permissions.

THINGS TO THINK ABOUT

In what situations does it make more sense to of a situation where it makes more sense to just
use roles to control permissions? Can you think assign permissions to individual users?

A user can belong to more than one role. If there is a conflict in permissions between roles,
SQL Server always applies the more restrictive permission. So, for instance, if you assigned a user to
db_denydatawriter, but also assigned the user to a role that permits updating a table, the user would
unable to update the table. The db_denydatawriter would override the other role.

SQL Server has several built-in database roles that can be used where appropriate.

I Database Roles

Database Role Description

db_accessadmin Can ALTER any user and create schema.

db_backupoperator Grants the user permission to back up and restore the particular
database.

db_datareader Grants the user SELECT permission on all tables and views in the
database.

db_datawriter Grants the user INSERT, UPDATE, and DELETE permissions on all
tables and views.

db_ddladmin Grants the ability to CREATE or ALTER any database object.

db_denydatareader Denies SELECT on all tables and views.

db_denydatawriter Denies INSERT,UPDATE, and DELETE on all tables and views.

db_owner Grants ownership and full permissions on all database objects.

db_securityadmin Grants the ability to ALTER roles and CREATE schema.

public Grants access to database but by default has no permissions on any

objects. Every user is a member of public as well as any other roles.
The public role cannot be removed.

Schema

Schema is a bit of an overused word in the database world. On one hand, schema refers to the meta-
information about database objects. For instance, the schema of a table consists of the column
names, data types, and constraints of the table. Schema also refers to a type of XML file that describes
the structure of another XML file. Another use of the word involves object ownership in a database.
In Oracle, for instance, an objects schema is tied to the user who created it. If a user were logged in
under a Login “HR,” the table would belong to the schema “HR.”

In SQL Server, schemas have been cut free from logins and user names. Everything has a
schema. Every database object must be owned by someone. The default schema in SQL Server is

Chapter 8 ¢ IsItSecure? 153

ROLE

It is a collection of related
permissions.

SCHEMA

Object ownership in a database.

154 Chapter 8 ¢ Is It Secure?

“dbo,” which stands for “database owner.” You can create schema that are independent of a given
user and then create sets of objects that belong to that schema. Users can then be assigned to the
schema and given access to those objects. A user who is a member of a schema can be limited to
accessing only the objects in that schema.

In practice, SQL Server schemas behave a lot like roles. You can use them to accomplish the
same tasks. There is a subtle, but important, difference, however. A role is a collection of permis-
sions; a schema is a collection of objects owned by a schema. A student schema, for instance,
would own any stored procedures or views (see the following section) needed for student access
to the database. A student user would be assigned to the schema and then granted permissions on
the schema objects. To make matters more complex, a role can assign permissions to a schema,
and a schema can own roles. For more information on schemas, you can go to Microsoft Help at
http://msdn.microsoft.com/en-us/library/ms190387.aspx.

Sharon continues, “Do I really want each student to have an individual login?”

“It is possible, especially if you can automate getting the student information. But
it might be better to have the application map all students to a single more generic or
group login. You could create a stored procedure to capture their IDs and use it to limit
their access to only their own data.”

“So where do I start?”

Bill thinks for a moment. “I believe first I would look at all the tables from the point
of view of each user. What permissions do they need to do the things they must do?”

Sharon remembers, “I wrote down some of those things when I was planning the
database.”

“Good. Next, after looking at the permissions that are required, I would try to
analyze the threats. What could go wrong, both by accident and by intention. It is im-
portant to remember that threats are not only things that delete data or damage objects.
Bad data are a threat. If you can’t trust the data in the database, it is essentially useless.
Maintaining data integrity is about making sure you have good data properly orga-
nized and related. Finally, I would design a strategy for providing the access that is
needed while minimizing any threats. I suspect that could mean designing roles and
maybe a set of stored procedures and views, but we can look at that later. Do you feel
you have enough to start?”

Sharon nods hesitantly. “Yes, I think so. Thanks.”

ANALYZING SECURITY NEEDS

First, she thinks about authentication. Terry should have her own login, of course, as
program administrator. Tutors could each have an individual login, or they should be
mapped to a group. A group would be easier to administer. Students should definitely
have a group login.

Back at her apartment, Sharon sits down to begin analyzing the security for the tutor
database. The first thing she does is review her early notes. Back when she was working on
the rules for the database, she had outlined some of the requirements for Terry.

¢ The database administrator should have select access to all the data. That means
he or she can view all the data in the tables.

¢ The database administrator needs to be able to add, edit, and remove records for
tutors and courses.

¢ The database administrator should be able to create queries as needed.

¢ The database administrator should not be able to create or remove tables or other
database objects.

As Sharon looks at this, she realizes she should change the name of the role. It
shouldn’t be “Database Administrator,” but rather “Program Administrator.” The
“Database Administrator” will be someone other than Terry, who will have responsi-
bility to maintain the database and its objects and who can add, alter, or drop objects as
needed. Nobody else would have those permissions.

http://msdn.microsoft.com/en-us/library/ms190387.aspx
http://msdn.microsoft.com/en-us/library/ms190387.aspx

Chapter 8 o IsItSecure? 155

THINGS TO THINK ABOUT

A true database administrator has all rights and rights over a database? What are the drawbacks
permissions on a database. How many people of having just one administrator? What are the
should be given full database administrator drawbacks of having several?

So, given her earlier notes, Sharon creates a table of the permissions required for
the program administrator:

I Program Administrator Permissions
Table name SELECT INSERT UPDATE DELETE Constraints
Student X X X X
Tutor X X X X
Course X X X X
StudentCourse X X X X
Ethnicity X X X X
Session X X X X
Request X X X X
RequestNote X X X X

The program administrator would have total control over the data. Sharon is not
entirely sure of this, but it seems the best solution. Students, for the most part, will enter
their own information. Requests too should come from students. Sessions are set up by
the tutors and then signed up for by students. But Sharon can easily imagine Terry
being requested to enter a tutor’s schedule for them, or a student’s information. She
decides to leave it this way for now but makes a note to revisit it.

Next she looks at the tutors. Previously, she had made these notes:

e A tutor needs to be able to enter and edit his or her own schedules but no
one else’s.

¢ A tutor needs to be able to enter a session report.

¢ A tutor needs to be able to cancel one of his or her own sessions, but no one else’s.

e A tutor should not be able to see student information.

I Tutor Permissions
Table name SELECT INSERT UPDATE DELETE Constraints
Student
Tutor X A public subset of tutor info
Course X
StudentCourse
Ethnicity
Session X X* X* *Only for own sessions
Request X
RequestNote X

These permissions assume that the tutor’s information will be entered by the program
administrator. Tutors can select courses to see what is being offered. They can also look
at what is requested. Their main area of permissions though is the Session. They can
insert into the sessions table and update sessions, but only their own sessions. They

156 Chapter 8 ¢ IsIt Secure?

should not be able to update other tutors’ sessions. Canceling a session means changing
its status, not deleting it from the table.
She reviews her notes for students:

* A student must be able to view all available sessions.
¢ A student must be able to enter his or her own demographic information.
* A student must be able to enter the courses in which he or she is currently

enrolled.
e A student should be able to cancel one of his or her own sessions, but no
one else’s.
I Student Permissions
Table name SELECT INSERT UPDATE DELETE Constraints
Student X X X Only their own records
Tutor X A public subset of tutor info
Course X
StudentCourse X X X X Only their own records
Ethnicity
Session X X* *Only for empty sessions in
courses in which they are
enrolled
Request X X
RequestNote X

Students need to enter, edit, and view their own data in the database, but they
should not be able to view other students’ data. This includes entering and editing what
courses they are taking. Sharon includes the ability to delete a course since students
often drop courses. They need to update sessions in order to sign up for tutoring but
should only be able to do it for courses in which they are enrolled. They also need the
ability to enter and view requests.

There is one final set of users she must consider. These are people who are just
viewing the site. They may be students who have not registered for tutoring yet, or
they may be people interested in becoming tutors, or they may be simply curious
about the school’s tutoring program. The usual name for this role, she realizes, is
“public.”

B Public Permissions

Table name SELECT INSERT UPDATE DELETE Constraints

Student

Tutor X A public subset of tutor
information

Course X

StudentCourse

Ethnicity

Session X

Request X

RequestNote X

The public should have SELECT permissions on basic, nonprivate data, but
nothing else.

THREATS

Professor Collins had said that after analyzing permissions, Sharon should look at
possible threats. He had also said that threats could be either accidental or intentional.
Sharon decides that the best way to consider threats is to once again look at them in
terms of each user.

Things You Should Know IE;

Threat Analysis

Threat analysis involves identifying all the ways a program or system can be harmed and then identi-
fying strategies for mitigating that threat. Usually threat analysis focuses on intentional attacks. With
a database, for instance, an attacker could attempt to insert bad data, change existing data, delete
data, add or drop database objects, or even attempt to drop the database itself. Through the net-
work, an attacker could attempt to compromise the database files themselves. Viruses and malware
are constant threats. A database administrator needs to keep up with all patches and updates as well
as maintain antivirus and antimalware programs.

The database can also be damaged by accidental actions. An UPDATE statement without the
proper criteria, for instance, could change more data than the user intended.

Identifying threats is a complex and ongoing task. The nature and number of threats constantly
changing. Vigilance and a touch of paranoia are necessary attributes of any database or systems
administrator.

Disaster Recovery

Disaster recovery consists in planning for the worst. What happens if a hacker manages to compro-
mise the data? Or what happens if the hard disk holding the database dies? What happens if the
building is destroyed in a fire or an earthquake? When thinking about these and other disasters, you
also have to determine the answers to other questions such as the following: How much data can
the business afford to lose? How long can the business afford for the database to be off-line?

The answers to these questions vary, depending on the business. Some business can afford to
lose a day’s data; others can't afford to lose any data at all. Some can afford to be off-line for a
period of a time; others cannot afford any down time.

A disaster recovery plan is a set of policies and procedures designed to mitigate the damage
of a disaster. Policies are rules about how to do things. Procedures are step-by-step instructions for
implementing a policy or completing a task. Typically, it includes policies of creating and storing
backups, log shipping, and failover. Log shipping involves periodically shipping a copy of the trans-
action log from one server to another. Failover involves transferring the data connection from one
server to a second server in the case of a database or server failure.

For a small company, with a single database and server, the policies and procedures could look
something like the following ones:

Policies
The database server machine will have at least two separate physical drives.
Log files will be stored on a separate drive from the database files.
Backups of the database and the log files will be done twice daily.
Drives will be stored off-site in a secure site.
Each drive will be stored 24 hours or longer before reuse.
Each drive will be labeled with the backup date.

Backup Procedure

We will maintain four portable hard drives.

Each morning retrieve the two drives with the oldest backup date.

Perform a full database backup to one of the drives at 11:00 AM.

Backup the log files to the hard drive.

Record the current date and time of the backup on the hard disk.

Send an employee to deposit the hard drive in a safety deposit box at Westlake Security Co.
At closing, around 5:00 PM, do a full backup to the second hard disk.

NouprwWN=

Chapter 8 o IsItSecure? 157

POLICY

Rules for how to do things.

PROCEDURES

Step-by-step instructions for
accomplishing a task.

DISASTER RECOVERY PLAN

A plan for how to recover data and
its availability after various possible
disasters.

158 Chapter 8 ¢ IsIt Secure?

8. Back up the log files to the hard disk.
9. Record the date and time on the hard disk.
10. Send an employee to deposit the hard drive in a safety deposit box at Westlake Security Co.
(Westlake is open until 7:00 PM.)
11. If Westlake is closed, the employee is to take the disk home and deposit it when he or she
picks up the drives the next workday.

Recovery Procedure

Rebuild the computer as necessary.

Retrieve the hard disk with the most recent backup date.

Restore the database from backup.

Restore remaining transactions from the most recent logs.

Attempt to recover any lost data by reviewing paper receipts and invoices.
When the database is rebuilt, begin the backup procedure.

aUnphwN=

When she looks at the permissions tables, Sharon is surprised to realize that the
most dangerous user, aside from the database administrator who can do anything, is
surely the program administrator. Because the administrator has complete UPDATE and
DELETE permissions, he or she could accidently delete records that should not be deleted
or create updates that change records that should not be changed. The administrator
could also do the most damage intentionally, though Sharon considers it unlikely that a
program administrator would maliciously attack the database.

Once again Sharon makes a table, this time to list the threats.

I Program Administrator Threats

Role Program Administrator

Threat Description

SELECT -

INSERT Data entry mistakes can make the data and the reports based on the data unreliable
and inaccurate

UPDATE Updating more records than intended by overly broad or missing WHERE criteria;
bad data in the update

DELETE Accidental deletion of records

Next, Sharon considers the tutor role. The primary area of concern with tutors is
the Session table. Tutors will have permission to insert and update this table. She could
imagine a tutor trying to get access to private student information. She can also imagine
a tutor trying to falsify the tutoring schedule by adding student IDs to open sessions to
look like they were filled when they weren’t. The policy that says that a tutor’s sessions
can be reduced or eliminated if the tutor’s services are not used provides sufficient
motivation for such activities. It is also possible that a tutor whose hours have been
reduced or eliminated could attempt to attack the database by changing other tutor’s
schedules or entering false schedules.

I Tutor Threats
Role Tutor
Threat Description
SELECT Select private student information
INSERT Accidental or malicious schedule entry
UPDATE Accidental or malicious changes to one’s own or other’s schedule

DELETE -

Students will be able to enter their own information. There is always the chance of
false or malicious entry there. They will also enter what classes they are taking that
quarter. This also could be falsified and hard to verify for every student. There are dan-
gers that a student could view another student’s data. It would not be too difficult for
one student to get another student’s ID number. This also applies to the Session table,
where a student can register for a session by entering his or her ID. A student could
enter some other student’s ID as a joke or a way to get back at a tutor.

I Student Threats
Role Student
Threat Description
SELECT See private information of other students
INSERT False or inaccurate information in Student table
UPDATE False or inaccurate information in the Session table, removing other students from

scheduled sessions
DELETE

The public should only be able to view a few pieces of the database. They
should be able to see what courses are listed and view the Session table. They should
not be able to insert or update anything in those tables. The public will have only
limited Select permissions. It is possible, if the permissions are not set up properly,
that some public member could select more than they are allowed to. They might, for
instance, find a way to view sensitive student data. The more likely threat is that
some members would try to gain additional permissions, perhaps by attempting to
impersonate someone assigned to a different role, as a student or a tutor, or even as
the program or database administrators. As a member of the public role, they present
little threat:

I Public Threats
Role Public
Threat Description
SELECT See private information of students, false login
INSERT -
UPDATE -
DELETE -

As an impersonator, a user would inherit all the potential threats of whatever role
he or she managed to impersonate. Sharon realizes that authentication process will be
crucial to protecting the database.

Sharon sits and thinks for a long while, trying to imagine other threats. The
database could be attracted on the network level, she realizes. Someone could delete
or corrupt the files themselves. She would have to talk to the network people to see
how they would secure the physical files. There were also a whole set of threats that
are not directly related to the users of the database. She makes a list of some of them:

* The software could fail—database could become corrupt and unusable.

® The hardware could fail—the hard disk could crash.

® There could be fire or some kind of disaster on campus that would damage
the server.

* A hacker might gain access and destroy database objects or data integrity.

Chapter 8 ¢ Is It Secure?

159

160 Chapter 8 o IsIt Secure?

STORED PROCEDURES

One or more SQL statements
grouped to be executed together.

Caution
w When you change the server to
mixed mode so that it processes
both Windows and SQL Server
accounts, you expose a built-in system
administrator’s account called “sa.”
Because “sa” is built into the server, it
is a common target for hackers to attack.
In SQL Server 2008, the account is
disabled by default. You should only
enable it if you have to for some
application. If you do enable it, make
sure you give it a strong password.

FINDING SOLUTIONS

Sharon schedules another meeting with Professor Collins. She presents her assessment
of permissions and threats so far. Professor Collins is impressed. “That is a good assess-
ment, overall.”

“The question I have,” says Sharon, “is what do I do next? How do I handle the
permissions and threats?”

“Let’s start with authentication. I admit it is a bit complicated for this database.
You could create a separate login for each tutor and student and then assign them to
their roles. That approach has several problems, though. It is hard to maintain. You
would have to manage hundreds of logins and keep them up to date. Both students and
tutors come and go with some frequency.”

“Even if you assign a student to a role, how do you keep them from seeing other
students’” information?”

“Yes, that is a problem, but it does bring up a possible solution. In your applica-
tion, you have a general student login and a tutor login. When they login, they are
instantly directed to a stored procedure which retrieves their student or tutor ID. Then
you can use this ID as a parameter for other stored procedures which restrict what the
individual user can do.”

“What happens if someone doesn’t have an ID?”

“Then your application would either tell them they have no permissions or direct
them to a form where they could register.”

“It sounds like most of the security lies in the application then. You have to make
sure that things happen in the right order.”

“That’s true to some extent. One overall strategy is to create an access layer in the
database that consists of stored procedures and views. This layer controls all access to
the underlying data.”

“Could you show me how to do the login procedures for a student?”

“Sure. Let’s open up the Query window.”

Professor Collins opens the management studio and starts a New Query window.
“The first thing we are going to do is create the student login. This will be an SQL Server
login. It is important to check that the server is set up to accept mixed logins. You can
right click on the properties of the server and then click on ‘Security” in the dialog’s Object
window. If it says ‘SQL Server and Windows Authentication Mode,” you are set to go. If
not, you will need to change the mode. Click OK, and then restart the server for the
changes to take place. You can do that by right clicking on the server again and choosing
‘Restart” from the menu.”

“So first we make sure we are in master. Logins are stored in the master database.
You can do this with the graphical interface, but I pefer to use just SQL. It is more
efficient.”

USE master
GO

Sharon asks “What is the ‘GO?’ I don’t recognize it.”
“The ‘GO’ is unique to SQL Server. It means, basically, finish this command
completely before moving on to the next. Now we will create the student login.”

CREATE LOGIN StudentLogIn WITH PASSWORD='p@sswOrdl’,
DEFAULT_ DATABASE=TutorManagement
GO

“Now we will switch to the Tutor database and create a student role. A role is basi-
cally a set of permissions on database objects. Right now the role has no permissions.”

USE TutorManagement

Go

CREATE ROLE StudentRole
GO

Chapter 8 ¢ IsItSecure? 161

5 Server Properties - STEVE-LAPTOP\SQLEXPRESS

8 Seript + [Help

|#A Processors s T
ﬁ erver ication

%2 g:;m:dim:ﬂ_ @) Windows Authentication mode
A abase Cettings
Advanced @ SOL Sevver and Windows Authentication mode

#7 Pemissions

Legin auditng

@) None
@) Failed logins only
@) Suceessful loging only

() Both failed and successful logins

Server prowy account

[Enable server proxy account

Conneclion

Server: .
STEVE-LAPTOP'\SQLEXPRESS Options

Connection:

Stevedaptop'Steve [C] Enable C2 audit tracing

View connection properties ' -
"!} View connection properties [] Cross database ownership chaining

Progress
Ready

FIGURE 8-1 SQL Server
Authentication Options

“Now we are going to create the actual procedure. To do that, we give the procedure a
name. I usually prefix them with “usp’ to signify that it is a “user stored procedure” rather
than a system stored procedure which usually begins with ‘sp.” After the name, you list all
the parameters for the procedure. Parameters are values the user must enter when they exe-
cute the procedure. In our case, I think we will just need the StudentKey. After the parameters,
the ‘AS” keyword signals the start of the content of the procedure. The first thing we are
going to do is see if a record exists for the user in the student table. The BEGIN and END key-
words mark the beginning and ending of the true block. If it does, it will return the student’s
last name. If it doesn’t exist, we won’t do anything. The application can test to see whether
the name is returned. If it is not, the user can be directed to a registration form.”

CREATE PROCEDURE usp_StudentLogIn
@studentKey nchar(10)
AS
IF EXISTS

(SELECT *

FROM student

WHERE studentKey=@studentKey)
BEGIN
SELECT studentLastName
FROM Student
WHERE Studentkey=@studentKey
END

. =
Things You Should Know .

Stored Procedures

Most database management systems support stored procedures. SQL Server provides Transact SQL
for procedures, and Oracle provides Procedural SQL or PSQL. MySql 5.0 and better allow the users to
create procedures if they choose the InnetDB file system. Microsoft Access does not support stored

162 Chapter 8 © IsIt Secure?

Caution
w It is a common practice to
develop databases and database-
driven applications with the
administrator’s permissions. It
guarantees that the developer has access
to all the system and application tools
that he or she needs. Many things that
work perfectly in Admin mode may not
work at all in a restricted user’s
environment. The solution is not to give
users administrative rights. That opens
up too many possibilities for attack and
error. The solution is to test the database
and any database objects or applications
in the user’s security context.

FIGURE 8-2 Logging in with
SQL Server Authentication

procedures although it does allow parameterized queries. The syntax for creating and modifying
stored procedures varies with the platform.

Stored procedures consist of one or more SQL commands. They allow all the commands to be
executed as a unit. So if you have to insert into several tables in sequence, for instance, you can
encapsulate all the insert commands into a single stored procedure and guarantee that they are run
in the correct order.

Stored procedures can accept parameters, values that are passed to the procedure by the user.
In the preceding example, for instance, all the values to be inserted into the tables can be passed to
the procedure as parameters. Internal variables can be declared with the DECLARE keyword. In SQL
Server, all parameters and variables start with the @ symbol.

Stored procedures also allow some of the features of procedural programming languages
such as C# or JAVA. You can add branching with IF statements and looping structures using
WHILE. You can also add error checking and transactions. (See the following discussion with
Professor Collins.)

“Now that we have an object, we will assign execute permission on the object to
the Student role.”

GO
GRANT EXEC ON usp_StudentLogIn TO StudentRole
GO

“Now we are going to create a database user based on our login.”

CREATE USER StudentUser FOR LOGIN StudentLogin

“Finally, I am going to use one of the system-stored procedures to add the user to
the Student role.”

EXEC sys.sp_addrolemember StudentRole, StudentUser

“OK, now let’s test our procedure. First, I need to get a valid student key.”

SELECT * FROM Student

“Now let’s test it.”

usp_StudentLogin ‘980001008"

“So we see that it returns the lastname ‘Bradbury.” That is not the end of testing though.
We need to check what happens when you enter a key that isn’t in the database. We also
need to log in as a student and test it in that permissions context.”

“How do you log in as a student?”

“There are several ways. One way is to right click on the Query window. Choose
‘Connection” and then ‘Disconnect.” Then right click again, choose ‘Connection/
Connect’ in the login dialog box. Change the authentication mode to SQL Server and
enter the login name and password.”

< Comnectio Detabase bngine | —
Microsoft®
72 SQLServer2008
Servertype Databasze Engine
Server name: STEVE-LAPTOP'SQLEXPRESS -
Authentication : [SQLSaverﬂﬁhamcmbn -
Login: StudentLogln -
Password: I
[] Remember password
Connect] [Cancel l [Help l [Options =

“Click Connect. Notice that at the tray at the bottom of the Query window, it now
says ‘StudentLogin.” Try the SELECT statement again. Notice the results this time.”

Msg 229, Level 14, State 5, Line 1
The SELECT permission was denied on the object ‘Student’, database
‘TutorManagement’, schema ‘dbo’.

“The StudentUser doesn’t have permission to look at this or any of the other tables
directly. Now let’s try the stored procedure.”

Professor Collins runs the stored procedure. It returns the name “Bradbury.”

Sharon says, “You also mentioned views?”

“Yes, views are, as their name suggests, ways to view data. The big difference
between views and stored procedures is that views don’t accept parameters. Each role
would have distinct views associated with it. Let’s create a view for the students to look
at the tutoring sessions. First, we need to log in again as administrator.”

After logging in, he types the following code.

CREATE VIEW vw_Sessions

AS

SELECT TutorLastName AS [Tutor],
StudentKey AS [Student],
SessionDateKey AS [Date],
SessionTimeKey AS [Time],
CourseKey AS [Course]

FROM Tutor t

INNER JOIN [Session] s

ON t.TutorKey=s.TutorKey

WHERE SessionDateKey >=GetDate()

“You can see,” he says, “that a view is really just a stored query. It doesn’t actu-
ally hold the data, it just filters the data from the tables. It has some other advantages
though. Notice how I aliased the columns? As far as the user is concerned, those
aliases are the column names. A view can be used to hide the true database names
and structures from the user. The user never needs to know or see how the tables are
structured or what the actual names of the columns are. Also, like a procedure, you
can give permissions to SELECT against a view without giving any permissions on the
underlying tables. That GetDate() at the end is a function that returns the current date
according to the computer’s internal clock, so the user should only see current or
future session times.”

He turns back to the screen. “OK, let’s add permission to select from this view to
the StudentRole.”

Grant SELECT on vw_Sessions TO StudentRole

“Now let’s try it. You can treat a view just like a table. You can select everything in
it, or just some columns or rows.”

SELECT * FROM vw_Sessions

This results in:
“Now let’s try to select against the underlying column names. We will try to get a
distinct list of tutors.”

SELECT DISTINCT tutorLastName
FROM vw_Sessions

“Notice, the result is an error”:

Msg 207, Level 16, State 1, Line 1
Invalid column name ‘tutorLastName’.

“So let’s try it again with the column alias”:

SELECT DISTINCT [Tutor]
FROM vw_Sessions

Chapter 8 ¢ Is It Secure?

VIEW

163

A stored query or filter that represents

I 4

ausers

view” of the date.

164 Chapter 8 © IsIt Secure?

FIGURE 8-3 Results of SELECT *
from View

FIGURE 8-4 SELECT DISTINCT
Results

Tutor Student Date Time Course
Anderson 990001000 2009-10-20 13:00:00.0000000 [TC110
Brown 990001000 2009-10-20 14:00:00.0000000 WEB110
Brown NULL 2009-11-05 10:00:00.0000000 [TC220
Lewis 990001004 2009-11-10 13:00:00.0000000 MAT107
Brown 990001000 2009-11-10 14:00:00.0000000 WEB110
Brown 990001002 2009-11-20 10:30:00.0000000 [TC220
Foster 990001000 2010-01-15 09:30:00.0000000 ITC255
Lewis 990001003 2010-01-20 11:00:00.0000000 ENG211
Lewis 990001005 2010-01-22 14:00:00.0000000 MAT107
Foster 990001000 2010-02-05 10:30:00.0000000 [TC255
Lewis NULL 2010-02-10 13:30:00.0000000 MAT107
Lewis NULL 2010-02-10 14:00:00.0000000 MAT107
Foster NULL 2010-02-13 10:00:00.0000000 [TC255
Foster NULL 2010-02-14 11:00:00.0000000 ENG211

“This time the results are what you would expect”:

Tutor
Anderson
Brown
Foster
Lewis

Sharon looks at the screen for a moment and then asks, “What about letting people
insert or update data?”

Professor Collins nods. “That is a bit more complex. Since we are on the Student
role, let’s make a procedure that processes a student signing up for a session. First, we
need the parameters. I am assuming that the student has already been authenticated
and that the courses have been validated. We could add the course validation here, but
it would make the whole thing more complicated.”

“I would like to see it anyway.”

“OK, the first thing we need to do is to make sure we are logged in as administra-
tor again. Then we need to get the parameters. We basically need to know what the
session is and who the student is.”

CREATE PROCEDURE usp_SessionSignUp
@StudentKey NCHAR(10),
@SessionDateKey DATE,
@SessionTimeKey TIME

“Now, since you want to include a check on whether the student can sign up for
the course or not, I am going to introduce an internal variable. Variables are different
from parameters in that they don’t have to be provided by the user. They are declared
and consumed inside the procedure itself. So here I declare the variable to store the
CourseKey and then assign a value to it using a SELECT statement.”

AS

DECLARE @CourseKey NCHAR(10)

SELECT @CourseKey=CourseKey

FROM [Session]

WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey

“Next, we test to see if the student has listed this as one of his or her courses. We
use the EXIST keyword to do this. It returns a Boolean, true or false. Either the student
has the course listed or not”:

IF EXISTS

(SELECT *

FROM StudentCourse

WHERE StudentKey=@StudentKey
AND CourseKey=@CourseKey)

“Now we are going to tell the procedure what to do if the EXISTS query returns
true. We use the keyword BEGIN to mark the beginning of the true block. The first thing
we are going to do in the true block is another Exists test. This one is to make sure the
student isn’t trying to sign up for a session that is already taken.”

BEGIN

IF EXISTS

(SELECT *

FROM [Session]

WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey
AND StudentKey IS NULL)

“So next we need a second true block to tell what we do if the session is, in fact,
available. If it is, we can update the record to add the StudentKey. I will put it in a
TRANSACTION with a TRY CATCH to make sure that any update errors are handled.”

BEGIN
BEGIN TRAN
BEGIN TRY
UPDATE [Session]
SET StudentKey=@StudentKey
WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey
COMMIT TRAN
END TRY
BEGIN CATCH
ROLLBACK TRAN
END CATCH
END
END

“Could you explain the TRANSACTION and the TRY CATCH a little bit more?”

“Sure, technically every action the database executes is a transaction. But you
can use the BEGIN TRAN or BEGIN TRANSACTION to control the processing of a transac-
tion. Once you declare a TRANSACTION, you have two choices about how to complete
it. You can either coMMIT it, which causes the SQL to be fully processed. In our case,
the update will occur. Or you can ROLLBACK, which causes the SQL to undo any
actions within the TRANSACTION. That is where the TRY CATCH comes in. The TRY tests
the code for errors. If any errors occur, the processing immediately jumps from the
line of code where the error occurred to the caTca block. If no errors occur, the
Transaction commits; if it jumps to the CATCH, the transaction is rolled back. So here’s
the whole procedure.”

CREATE PROCEDURE usp SessionSignUp
@StudentKey NCHAR(10),
@SessionDateKey DATE,
@SessionTimeKey TIME
AS
DECLARE @CourseKey NCHAR(10)
SELECT @CourseKey=CourseKey
FROM [Session]
WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey
IF EXISTS

(SELECT *

FROM StudentCourse

Chapter 8 ¢ Is It Secure?

165

166 Chapter 8 * IsIt Secure?

Caution
w Whether you use stored
procedures or assign permissions
directly on the tables, it is essential that
your users have all the rights and
permissions to do their job. If the
permissions are too inflexible, or if
something important is left out, it can
make the database essentially useless.
On the other hand, giving too many
rights and permissions—ones not
necessary for a user’s work—can lead
to accidents and data integrity errors.
It is a delicate balance and requires a
strong sense of the business needs of
each user as each relates to the database.

WHERE StudentKey=@StudentKey
AND CourseKey=@CourseKey)
BEGIN
IF EXISTS
(SELECT *
FROM [Session]
WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey
AND StudentKey IS NULL)
BEGIN
BEGIN TRAN
BEGIN TRY
UPDATE [Session]
SET StudentKey=@StudentKey
WHERE SessionDateKey=@SessionDateKey
AND SessionTimeKey=@SessionTimeKey
COMMIT TRAN
END TRY
BEGIN CATCH
ROLLBACK TRAN
END CATCH
END
END

“The logic of it goes like this: If the student has the Session course listed as one he
or she is registered for, and if the session has no other student signed up for it, update
the session record to add the student key. If either test returns false, nothing happens.
We should grant EXEC permission to the Student role and test the procedure, of course,
to make sure it behaves as it is expected. But, I think you can see the advantage of using
procedures. You control how the update occurs. There is no chance of accidentally or
purposely updating unintended records.”

Sharon looks at the code, thoughtfully. “OK, she says, but how do you know what
views or procedures to make?”

Professor Collins replies, “It is not easy. It takes time and testing. The first thing I
would do is go through each of your roles and make a list of all the ways users need to
access the data. Then I would make a procedure or view to match that need. It is a lot of
work, and it is essential that your set of procedures and views is complete enough for
your users to successfully interact with the database, but it is the most secure way to
channel that access.”

Sharon thinks a bit more. “How do you control which procedures are used when?”

“That’s a good question. You really have to depend on the application to control
that. You can also set up certain policies and procedures.”

“Policies and procedures?”

“Yes. There are a lot of things you can’t enforce directly in the database manage-
ment system. For instance, removing users who should no longer have access to the
database. You need to make a policy that says something like ‘Inactive users should be
removed from the database within x number of hours after becoming inactive.” Policies
are rules about how things should be done. Procedures are step-by-step descriptions of
how a particular task should be performed. For instance, with the policy I just men-
tioned, you might have a procedure that tells, step by step, how to inform the database
administrator that a particular login is no longer valid. The same thing holds true, by
the way, for your disaster recovery plan. It is really a matter of identifying the correct
policies and then the procedures to implement them.”

“Could you explain a little more about what a disaster recovery plan would look
like?”

“Sure. The first thing to do is really determine how much data the business can
afford to lose.”

“Can a business really afford to lose any data?”

“Most of the time, no. But many businesses, particularly small ones, can afford
some data loss. They can often recover some bits of information from paper receipts or
invoices. The tutor database can, I think, tolerate some loss. Regular backups should

probably be sufficient. This is something you will have to talk to the IT people about. I
am sure they have some backup policies already in place.”

“Thank you. Looks like I still have a lot of work to do.”

“Security is work. But if you don’t do the work, I'm afraid, it wouldn’t be long
before your database is compromised. Cleaning up after mistakes or deliberate attacks
is even more work.”

DOCUMENTATION

As with every aspect of the database, it is crucial to document the security set up.
Security, especially for a large organization, can be extremely complex. Attempting to
maintain or troubleshoot it without clear documentation can be difficult or impossible.
Also, without proper documentation, it is difficult to assess threats and also to assess
whether they have been properly addressed.

Authentication types and policies should be spelled out. It might be policy, for
instance, that only users with active directory accounts can have access and perhaps
among them only members of certain groups. Additionally, policies should be in place
that describe how to remove a login or user who is no longer with the company or who
no longer requires access to the database. Each role should be described along with a
list of all the permissions associated with it. Each view and stored procedure should be
described, and all parameters and their types listed. A complete catalogue of these
views and procedures can be given to developers who are designing applications to
work with the database.

Backup and recovery, including disaster recovery policies and procedures, should
be clearly spelled out and reviewed on a regular basis. Good disaster management can
make the difference between a business surviving a crisis or going under.

Things We Have Done

In this chapter we have

looked at authentication and authorization

mapped the permissions needed by each user

created new SQL logins and users

created a role to contain the permissions for the student user

Vocabulary

Match the definitions to the vocabulary words:

Chapter 8 ¢ Is It Secure?

created stored procedures and a view
granted permissions on the procedures and view to the role
done a preliminary threats assessment
looked at basic disaster recovery

1. Authentication — a. Anaction that a user has been granted the right to do in a database

2. Authorization — b. Astored query or filter that reflects a user’s view of the data

3. Disaster recovery plan — ¢. The process of confirming a user is who he or she claims to be

4. Permission — d. Asetof related permissions

5. Policies — e. Arule for how to do some activity

6. Procedures — f. One or more SQL statements grouped to be executed together

7. Roles — g. The processes of assigning permissions to authenticated users

8. Schema — h. Aplan to recover data and maintain availability after any kind of disaster

9. Stored procedures — i. Step-by-step plan for accomplishing a task

10. Views — j. Object ownership in a database

Things to Look Up

1. Find some best practices for creating strong passwords. 4. Look up some best practices for Disaster recovery.

2. Find out how MySQL manages basic authentication and 5. Find a tutorial on stored procedures in SQL Server.
authorization. 6. Find some best practices for securing SQL Server.

3. Find out how Microsoft Access manages basic authentica-
tion and authorization.

167

168 Chapter 8 © IsIt Secure?

TABLE OF ADDITIONAL SQL KEY WORDS

Additional Keywords

Term Description

AS Used with stored procedures and views to mark the beginning of the body of the procedure or view.

BEGIN Marks the beginning of a block. Often used with other keywords such as BEGIN TRAN and BEGIN
TRY.

CATCH With BEGIN and END, it marks a block to catch and handle any errors cast from code in a TRY block.

COMMIT With TRAN, it completes all the SQL statements in the current transaction and where necessary writes
them to the database.

CREATE Used with an object type to create an instance of that object. For example, CREATE PROC, CREATE
TABLE, and CREATE VIEW. (Once an object is created, it can be edited by using the keyword ALTER
instead of CREATE.)

DECLARE Declares a variable. All SQL Server variables begin with @ and must be given a data type. For example,

DEFAULT_DATABASE
END

EXISTS

GRANT

IF

LOGIN
PASSWORD
PROCEDURE (PROC)

ROLE
ROLLBACK
TRANSACTION (TRAN)

DECLARE @ StudentKey NCHAR(10).

Sets the default database for a login.

Ends a block. Often used with other keywords such as END TRAN, END TRY, and END CATCH.
Used with a subquery, it returns a Boolean. True if the query returns any values, false if not.
With ON and an object name, grants a permission to a user or role.

Tests an expression to see if it is true or false (Any expression must return a Boolean.) If it is true, one
branch of code can be executed, if it is false, another branch.

With CREATE, it adds a login to the Server.
Sets the password for an SQL Server login.

An object that stores a set of related SQL code that is meant to be executed as one process. It can be
used to safely handle user input and output. A user can be granted permissions to execute a stored
procedure without being given permissions on the underlying tables.

With CREATE, it adds a role to the database.
Used with TRANSACTION, it undoes any statements contained within that TRANSACTION.

Used with BEGIN, a TRANSACTION keeps all the SQL statements within; the TRANSACTION is
suspense until they are all committed to the database or rolled back.

TRY With BEGIN and CATCH, starts a block of code to be run. If any command generates an error, the
execution will immediately jump to the CATCH block for processing.
USER With CREATE, adds a User to a particular database.
VIEW A VIEW is a stored query or filter. A VIEW doesn’t contain any data, but filters it. The idea is to create
“views" of the data that correspond to how particular sets of users interact with the data in the database.
WITH Sets Properties on an object such as a LOGIN.
Practices

1. Review the pizza database we built in Chapter 6 and queried

in Chapter 7. Identify the users of the database, and deter-
mine what kind of access to the tables each of them needs.
Develop a threat analysis for the pizza company database.
Create roles for the various types of users in the pizza
database.

Create a SQL Server login for a user, and assign the user to a
role.

Create a view for one of the roles and grant permission to
select from the view to one or more users.

Assume you are working for a small bookstore. It has a da-
tabase that keeps track of all the inventory and all the sales
and trades with customers. This bookstore also maintains
an online presence with a Web site, where users can browse
the catalog and purchase books using second-party

software to process the payment. There is only one store
and they are located in the downtown area of a city known
for occasional severe earthquakes. Create a disaster recov-
ery plan for this company.

6-11 Look at this stored procedure and answer the follow-
ing questions:

CREATE PROCEDURE usp_AddRequest
@CourseKey NCHAR(10),
@StudentKey NCHAR(10),
@RequestKey NCHAR(10)

AS

DECLARE @Date DATE

DECLARE @Status NCHAR(10)

SET @Date=GETDATE ()

SET @Status = ‘Active’

BEGIN TRAN

BEGIN TRY
INSERT INTO REQUEST(
RequestKey,
CourseKey,
RequestDate,
RequestStatus,
StudentKey)
Values (
@RequestKey,
@CourseKey,
@pate,
@Status,
@studentKey)

COMMIT TRAN

END TRY

BEGIN CATCH
ROLLBACK TRAN

END CATCH

Scenarios
WILD WOOD APARTMENTS

The apartment managers at Wild Wood like what you have
done so far, but as the database takes shape, they have begun to
worry about security. The tenant information should not be
accessible to just anyone. And they would like to keep the
financial information internal, and not let outsiders or other
companies see the details of their operation.

1. Create tables of the data access needs of your users.

2. Create a security plan that includes authentication and
authorization and general policies and procedures. Consider
the use of roles, stored procedures, views, and other tools.

3. Documentation: Document and define all the aspects of
your plan.

4. Create a preliminary threat analysis.

5. Make a preliminary disaster management plan.

6. Create a view of the data that is tailored to the needs of
one of your uses.

7. For extra-credit, create a stored procedure that executes
one of the basic activities for your database (making a
rent payment, for instance, or a maintenance request).

VINCE'S VINYL

Having shown Vince your work so far, you broach the topic of
security. At first, Vince doesn’t see much need for security mea-
sures, but you point out a few areas where that should be consid-
ered. For one thing, Vince probably doesn’t want to share his list
of interested customers. That is valuable information in itself,
and his customers will have an expectation of privacy.
Additionally, the day-to-day financial information concerning
sales and purchases is probably best not available for general
public perusal. You also point out that it is important that Vince
be able to trust his data. He needs to know that no one has acci-
dentally, or on purpose, messed up his inventory or sales data.

1. Create tables of the data access needs of Vince’s users.

2. Create a security plan that includes authentication and
authorization and general policies and procedures.
Consider the use of roles, stored procedures, views, and
other tools.

Chapter 8 ¢ IsItSecure? 169

7. What are the names of parameters in the procedure?

8. What are the names of the variables?

9. What happens to the transaction if there is no error?
10.What happens to the transaction if there is an error?
11.Why do you need a TRY CATCH with a TRANSACTION?

3. Documentation: Document and define all the aspects of
your plan.

4. Create a preliminary threat analysis.

5. Make a preliminary disaster management plan.

6. Create a view of the data that is tailored to the needs of
one of your uses.

7. For extra-credit, create a stored procedure that executes
one of the basic activities for your database (purchasing
an album, for instance, or recording a customer request).

GRANDFIELD COLLEGE

As with any database, data integrity is important to the software
database at Granfield College. If the data are audited, they have to
show that they know what software they have, how it is licensed,
and on which machines it is installed. Accident and error are the
most likely threats to their data integrity, but it is always possible
that someone might try to purposely disrupt their data.

1. Create tables of the data access needs of your users.

2. Create a security plan that includes authentication and
authorization and general policies and procedures.
Consider the use of roles, stored procedures, views, and
other tools.

3. Documentation: Document and define all the aspects of
your plan.

4. Create a preliminary threat analysis.

5. Make a preliminary disaster management plan.

6. Create a view of the data that is tailored to the needs of
one of your uses.

7. For extra-credit, create a stored procedure that executes
one of the basic activities for your database (installing a
piece of software, for instance, or processing a software
request).

WESTLAKE RESEARCH HOSPITAL

Security has always been a part of the WestLake Hospital’s data-
base. In a double-blind study, it is absolutely essential that no
one tampers with the data. Also, patient confidentiality and the
sensitive nature of the study require that the patients” records

170 Chapter 8 © Is It Secure?

and the records of their sessions with the doctors be kept abso-
lutely private and secure. The researchers are anxious to see
your plan for securing the data.

1. Create tables of the data access needs of your users.

2. Create a security plan that includes authentication and
authorization and general policies and procedures.
Consider the use of roles, stored procedures, views, and
other tools.

3. Documentation: Document and define all the aspects of
your plan.

4. Create a preliminary threat analysis.

5. Make a preliminary disaster management plan.

6. Create a view of the data that is tailored to the needs of
one of your uses.

7. For extra-credit, create a stored procedure that executes
one of the basic activities for your database (making an
appointment, for instance, or letting patients see some of
their doctors’ session notes on them.)

SUGGESTIONS FOR SCENARIOS

Security is difficult, and each of these scenarios has very differ-
ent security needs. First think about the authentication. Who is
going to use the database? Are there many potential users or
just a few? If there are many, you might consider whether they
naturally fall into just a few roles. If there are only very few, you
might just use individual logins.

Next, I would think about the different users or groups of
users. What permissions do they need on the tables to do
their work? Then look at the threats. Where are the potential
areas for attack, but also where are the potential areas for
mistakes and bad data entry? Consider whether creating
stored procedures and views could lessen those areas of
vulnerability.

Finally, identify the ways the data could be harmed or lost.
What policies and procedures would help minimize that poten-
tial loss? These are what make up your disaster plan.

APPENDIX A

Using Microsoft Access with the Book

The planning and design aspects of a database are the same irrespective of the database
management system you are using. Chapters 1 through 5 can be used without modifi-
cation. The physical design, however, does require some variation.

CREATING THE TUTORMANAGEMENT DATABASE IN ACCESS

Start Access. Choose Blank database and name it “TutorManagement” and click
“Create.”

Microsoft Access

External Data Database Tools e

Home Create

-
= |
Available Templates Blank database (|
! |
il & tHome
& Upen \ \ \
T T TR
@] Certificationstest.ac... Sy T e,
L'fl_-] Certificatinnstectac... database database templates)
@] TutorManagement.... .
] winterg acedb P E‘ 8
Sample My templates
templates
Recent
Ottice.com Templat.. |Search Office.con|| =
| [=1
& 5 |
iy = - | i
. . . File Name
Accets Contacts Iesues &
Tasks TutorMangement] B
CAUsers)\Steve\Documents!, -
4

In the new TutorManagement database, click “Create” tab for the Create ribbon,
and then click the “Table” icon. Click the triangle and ruler icon to get the table design
view. In the dialog box that pops up, name the table “Tutor.” Right click on the ID field,
and from the context menu, choose “Delete.” Say “Yes” to the dialog that pops up,
explaining that this requires deleting the primary key. Now add the fields and the data
types. Note the Field Properties below the table. In the “General” tab, you can set
the length and other properties of the field. The “Required” property is used to set the
status of nulls. Required with a value of “no” means allow nulls. Required with a value
of “yes” means the field does not allow nulls.

To make “TutorKey” a key field, select the TutorKey row in the design view and
click the Key icon on the ribbon. In those tables where you need to select multiple fields
for a key, hold the Control key down and select each of the fields to be included in the
key, then click the key icon on the ribbon.

Access data types differ somewhat from the SQL Server data types. In the follow-
ing table, only the data types used in the TutorManagement database are listed.

FIGURE A-1 New Database

171

172 Appendix A e Using Microsoft Access with the Book

T o nagement - Databace (ccess 200 | Bl
|
Home Create External Data Database Tools Design A 0
ﬁj | a8 = Zea Incert Rows E m B a ﬂ
BN B tenoms | E 2 =¥ B5 e l
View | |Primary|Fuilder Test Validation) Property Indexes | Create Data Rename/Delete Relationships Ohjert
= | Key | Rules oL Modify Lookups | sheet Macros - Macro Dependencies I
Views Tools Showi/Hide Field, Record & Table Cvents Relationships
All Tables = « || 2] Tutor ll
Fthnicity 2 A Fleld Name Data Type Description -
B cthinicity : Table B Tutorkey| Text L
R = TutorLastName Text
B course: Table | TutorFirstName Text
5 S | TutorPhone Text
= TutarFmail Text
i Student: Teble TutorHireDate Date/Time
Tutor 2 TutorStatus Text b
= Tutor: Table EIEkI POEEITE:
TutorCourse 2 General (Lookup
B3 TutorCourse : Table = | |[Field Size 10 -
Format]
StudentCourse 2 Input Mask
3 StudentCourse : Table Caption
Cesss Default Value
& Validation Rule Afield name can be up to 64 characters long,
3 Session : Table Valldation Text induding spaces. Press I for help on field
R " = Required o RAMES.
Allow Zero Length Yes
S Request: Table Indexed Yes (No Dublicates)
RequestNote A Unicode Compression | Yes
E . IME Mode Ho Contral
il RequestNote: Toble IME Sentence Mode Naone
Unrelated Objects S (= Smart Tags i

FIGURE A-2 Tutor Table

Design view. Fé - Switch panes. F1 - Help.

Some Access Data Types

Microsoft Access Data Type SQL Server Data Type

Text Varchar()

Yes/No Bit

Numeric Default is INT,

Date/Time To make the table resemble the Date data type, choose the
format “short date”; to make it match the datetime data
type, choose the “General” format; to make it resemble the
time data type, choose the format “Long Time”

Memo Varchar(max)

Create the remaining tables the same way, remembering to remove the ID column

that Access adds.

CREATING THE RELATIONSHIPS

Once the tables have been created, you can add the relationships. From the ribbon tabs
select “Database Tools.” On the Database Tools ribbon, click the “Relationship” icon. In
the Show Dialog box, click on the first table, hold down the Shift key, and then click on
the last table. Click the “add” button. This will load all the tables into the Relationship
window. It should look something like this:

The tables can be moved around however you wish to make viewing them more
convenient. To create a relationship, select the key field in the table on the one side of
the relationship and drag it to the corresponding foreign key in the many side of the
relationship. This will pop up the following dialog box:

Appendix A ¢ Using Microsoft Access with the Book 173

Redalionmship Towk

Flle Home Create External Data Database Tools Design a L ?

‘:’(é ¥ Clear Layout % [Hiae 1able E
Edi

B Direct Relationships

it 33) Relationship Report | ShOW g, e Qlose
Relationships el i Tavie T All Relationships
Taals Relationships
All Tables ¥ || =7 Relationships
Cthnicity % - - |
ER Fihnisily : Table Course Ethnicily Reguest
Coursekey @ Tthnicitykey ¥ Requestiey
Course 2 | CourseName EthnicityDeserip CourseKey
B counse: Table | CourseDeseription RequestDate
Stadent % | RequestStatus
I stucent: Table Ll
Tuten |
0 Tutor: Table |
| Session Student
TutonCose =0 I ¥ RequestNotekey | T sesslonDateKey a |V studentkey |a
TutorCourse : Table RequestNoteTexdt T SessionTimeKey| StudentLastMan
oG = Requestkey ¥ Tulorkey | Stuaben! Firsthiar =
I studentc — T courserey |= studentemail
bl LA Studentiey StudentPhone
Seszion £ SecslonStatus | StudentGender
EH session: Table sessionMatenal ¥ stugentige |V
Request = StudentCourse Tutor TutorCourse
EH request: lable | | ¥ Coursekey | ¥ Tutorkey |- | @ Tutorkey
1 T ShudentKey Tubarl astMame | | T Coursekey
qusme =
| # studentCourseQua TutorFirstiame |
EH mequestmote : 1able | TutorPhone | =|
Unrelated Objects | TulorEmail
| lutorHireDate |
of ue =
1 Quem Tutorstatus |
_— < m] t.lwil FIGURE A-3 Relationship
Ready : Window

Edit Relationships

Table/Query: Related Table/Query:

|Course + | Session

Coursekey Coursekay

Cascade Update Related Fields
Cascade Delete Related Rzcords
Relationship Type: One-Te-Many

FIGURE A-4 Edit Relationships
Dialog

Make sure that the tables and the fields are correct. Check the Enforce Referential
Integrity check box. Then click create.

When you are done, your relationships should look something like this. The tables
have been rearranged to show more clearly.

ADDING DATA

To add data to the tables, close the Relationship window. Double click on a table name
in the All Tables list. This will open the table in the add/edit mode:

Do this for all the remaining tables. It is important that you do them in the proper
order. Parent tables must be completed before child tables.

FIGURE A-5 Relationship
Window with Relationships

FIGURE A-6 Editing Data

174 Appendix A ¢ Using Microsoft Access with the Book

m =
rinal Dala Dalabase Tooly Desgn
[T
% WK Clear Layout e HlaeTane
—1 B3 njrect Relationshns
Edlt Relationship Report | Show Close
Reletinnships (= Relationshig Repo Table S8t All Relationships
lools Helatienships
All Tables = «
=)
E etnnicty: 1ante Course StudertCourse “‘;““‘ s L
Course = ¥ Courseey W Coursekey Hequesthey ¥ requestniotexsy
E course: Table o . @ smaentkey Coursekey FequesthoteTox
: CourseDescription 7 stugentCoursezug Requestiiate Frcquestkey
Student x — Requaststatus
0 student: Table = Studentkey
Tualen 3
B Tulor: Table 2
Tulon Coonrse 3
M mtarcourie : Tanie , Student
SevsionDalekey a o[Studentbey o
StudentCourse = =
& T sessiontimeney Studentl astan
E StudentCourse : Table ¥ Tutorkey StudentFirstNan
i Coursekey = 5t i
Session % udentlmail | =
m - Studentkey StudentFlione
Session : Table SessionStatus StudentGender
Request 2 SessionMalerial ¥ StudentAge | |
BB Request: Table Studdent Citizen |
R 3
B Requestlote : Table s —
= T 1utorkey Ethnicity
Lo £ TutorLastName W Flhnicilykey
1 Quen TulorFirstName EthnicityDeseriptio
TutorPhone
TutorEmail
TulorHireDale
Tutorstatus
K| 3] I
m =
Henre ernal Dala Database Taols Fieldh Tahle
% 'L"'J] %o ’T 4| ascending Wz selection ~ 2 =i Hew z m . calbn v|u. v iz
= @ copy %1 nescending ¥ Advanced - Ml s P - B 7 U | z=iz|n- H-
View | Paste Iter Refresh Find
B - <3 Format Fainter 45 Remove Sort "W Toggle Filter | ay. X Delete = - k-~ A-2- -4 EEE|
Views Uipboard & S0t & Filter Recards | FHina Text Formatting &
All Tables = «
= | y - Cour . CourseDescription - | Click to Add =
B etnnicty: rapie ¥ ENG211 Tecanical Writing Technical Writing forinformatior Tet
e = =/ 11C110 Prog Prog \g using Gt
I course: Table & TG to L and Uesign
Stadent = | ITC226 Admi S0L Server A i
O student: Tabie ® me2ss Systems Design Systems analysis and design
- = F MaTInT? applisd Math Math for IT professinnals
o
¥ WEB110 Beginning Web Page Desiy Basic xhiml
o T . I
Tulon Coonrse 3
M mtarcourie : Tanie
StudentCourse E
B StudentCourse : Table
Session 2
B Session: Table
HRequest &
B Request: Table
R 3
B Requesthote : Table
Objects £
#t Quem
Record: 4 4/80f8 | » M b | % HoFilter |/Search
=

Appendix A ¢ Using Microsoft Access with the Book 175

SQL in Microsoft Access

To run an SQL statement in Microsoft Access, go to the Create Ribbon tab and create a
new query in Design View. Click the x to close the Add Table dialog.

Query Took

feure " Final Dala Dalabase Tools Diesign
SQL ' ﬁ %' +' A @ X. a0 Union .{lfg “halnsertRows & Insert Columns z S}y Parameters
. . . =8 * @ PassThrough 5 Delets Rows | 3 Delete Columns [Prapery Sheet
View Fun || Select | Mate Append Update Crossiab Delete Show Tatals
B | Tobie &%, Data Definition | Taple | 5o Bulldar 58 Return: Al - m
Results Query Iype Query betup ShowH de
All Tables = «
Ethnicity 2 =]
B etnnicty: rapie L
Course E3
B course: Tabie
Student =
0 student: Table
Tutar =
B Tulor: Table
Tulon Coonrse 3
M mtarcourie : Tanie
StudentCourse E
B StudentCourse : Table
Sevsion % B
4 L3
B Session: Table - :|
Request ES . |
EH Request: Table Field: | F‘ =
RequestMote & Table:
B Requesthote : Table Sort:
Unrclated Dbjects Fy 1 f
Show: | I [[

&1 Quemt ! = 1 = | » .)

Criteria:

or

FIGURE A-7 Query Design View

(A]] = Query lools
Flle Home Create External Data Database Tools Deslgn

E ' ﬁ @' *' #Yupaate D Unlon s | SmInsertRows | Insert Columns 2 4
H H

* [Crosstab 0 Mass-Through | f" Delete Rows | #“ Delete Columns

View Mun Sclect | Make Appeond Show «
- Table “ Delete ﬁ Nata Nefinition | 154 Q\ Ruilder ‘ﬁlﬂ Return:

Hesults | Juery lype Juery Setup Show/Hide

Totals gy

All 1ables ® Fw

Cthnicity A = ISELECT TutorLastName, TutorFirstName, TutorEmail

EH Ethnicity: Table FROM Tut0r|
Course

B3 course:Table

EH student:Table
Tutor

B Tutor:Table
TutorCourse

B3 iutorLourse : 1aple
StwdentCourse

E StudentCourse = Tahle
Session

% Sessivn : Table

EH Request: Table

FIGURE A-8 SQL View

176 Appendix A ¢ Using Microsoft Access with the Book

FIGURE A-9 Query Results

Click the RUN icon to run the query.

Create External Data Database Tools

| % == % Y 4] ascenaing K ' =i Mew = ai canon -1l -z =
— J Ea il Deseending Vo= = save k-4 =- B I U e =l [
Vifw Paste ; Filter ?_,- Remame soi LW, n',:qf:f-sh x e E' Find m . A . by & L= = @'
Views | Llipboard fw SOIT & Hiter Records Hind | Iext Formatting [F] I
All 1ables = « | queyz
Lthnicity A |: TutorLastNa - | TutorFirstNe - TutorEmail 5
ER Ethnicty: Table | rts Martha mroberts@yahoo.com
Course & | Brown Susan sba@hormail.com

B3 course:Table | Foster Danicl Foster22@aol.com
Student A | Anderson Nathan

EH student: Table | | Lewis Ginger ginger@hotmail.com
Tutor 3 =3

EH Tutor: Table

TiutarCourse =3
B3 1utorCourse : 1able

StwdentCourse ®

E StudentCourse = Tahle

Session 3

E Sessivn : Table

Request &

EH Request: Table

I:t:]uestﬂnte & |: Becord: M 4 1ofS oMo | % Mo Filter | |Search
Ready |

The following queries need some adjustment to run in Access.
Queries with the LIKE keyword use an “*” for a wildcard rather than the percent
“%” sign. So

SELECT ItemName, ItemPrice
FROM Inventory
WHERE ItemName LIKE ‘T%’

would be

SELECT ItemName, ItemPrice
FROM Inventory
WHERE ItemName LIKE ‘T*’

Queries with dates in the critera delineate dates with the pound “#” sign rather than
single quotes.

SELECT tutorkey, courseKey, SessionDate, StudentKey
FROM Session
WHERE SessionDate BETWEEN ’11/1/2008’ AND ’11/15/2008°

becomes

SELECT tutorkey, courseKey, SessionDate, StudentKey
FROM Session
WHERE SessionDate BETWEEN #11/1/2008# AND #11/15/2008#

Single inner joins work with the INNER JOIN keywords, but multiple INNER JOINS
must be embedded. In Access, it is easier to use the equi join syntax for any query that
requires more than one join. Instead of

SELECT s.StudentKey,
StudentLastName,
StudentFirstName,

c.CourseKey,

CourseName,

RequestDate,

RequestStatus

FROM Student s

INNER JOIN Request r

ON s.StudentKey = r.StudentKey

Appendix A ¢ Using Microsoft Access with the Book 177

INNER JOIN Course c
ON c.CourseKey = r.CourseKey
WHERE RequestStatus = ’Active’

use the following query:

SELECT s.StudentKey,
StudentLastName,
StudentFirstName,

c.CourseKey,

CourseName,

RequestDate,

RequestStatus

FROM, Student s, Course c, Request r
WHERE s.StudentKey = r.StudentKey
AND c.CourseKey = r.CourseKey

AND RequestStatu s= ’Open’

The outer join listed in Chapter 7 also works fine.

SECURITY IN MICROSOFT ACCESS

The security features may be where Access differs most from SQL Server. Neither
Microsoft Access 2007 nor Access 2010 support user-level security. (Earlier versions do,
but Microsoft does not recommend going back to these earlier versions unless you have
a legacy system that requires user-level access.) You cannot create users and groups.
Security access is managed by the Network or SharePoint. It is possible to encrypt the
database and assign password protection to the database itself.

Further, Access does not support true Views or Stored Procedures. It does support
parameterized queries which allow the user to supply criteria for the query when the
query is run. There are also action queries that can be used to create tables or update or
delete records. But unlike true stored procedures, each query can only do one thing,
and there is no error checking. One could replicate much of the functionality of stored
procedures using Visual Basic for Applications, but this would require skills that are
beyond the scope of this book.

Students using Access should be able to do all the practices except 4 and 5. They
should be able to do all the Scenario exercises except creating a stored procedure. The
view can be emulated by creating and saving a simple query.

FIGURE B-1 Connect to Server

178

APPENDIX B

SQL Server Express

This appendix is meant to describe generally how to get and install SQL Express and
how to navigate through some of the features used in the book. It is not meant to repeat
all the step-by-step instructions listed in the book or provide a full description of the
menus and features of SQL Express.

WHERE TO GET SQL SERVER EXPRESS

SQL Server Express can be downloaded for free from Microsoft. Just go to http://lwww.
microsoft.com and enter SQL Express in the search box. Usually, there are a couple of
choices of what to download. Make sure that you download the one that is appropriate
to your operating system (x86 32 bit or 64 bit). Also, if possible, choose one that has the
management studio included. If not, you will have to download the management stu-
dio separately.

SQL Server is a part of the default install with any full version of Visual Studio,
though the management studio is not included. It is possible to build databases, data-
base tables, and add data from within the Visual Studio environment, but for compati-
bility with the book and ease of use, it is recommended that you download and install
the management studio separately. It is not necessary to download and reinstall SQL
Server Express itself.

INSTALLATION

After downloading the file, double click it to run the installation program. Accept the
defaults. Use Windows authentication. If prompted, add the current Windows account
to the administrators group.

THE MANAGEMENT STUDIO

When you open the management studio, you will need to connect to an instance of SQL
Server. The SQL Express service is named [computer name]\sqlexpress. You can enter
the relative path “.\sqlexpress.” Use Windows Authentication and press Connect.

IP §6T Server2008

Server type: [Database Engine

[Wndaws Authentication

Steve-PChSteve

H QOptions => I

http://www.microsoft.com
http://www.microsoft.com

The first look of SQL Server can vary, but the following is a typical view.

Appendix B ¢ SQL Server Express 179

Lile [dit View Tools Window Community Lelp

§ 5 New Query | [0y | il fh i [O |5 I 5 |

4 an]

Dbject Fxplorer = 2 % | Object Explorer Detals| -x
Connect- |40 81 m T @ B Q@ @@ & T FE T Seowh -
2 [\salerpress (SOL Server 10.0.1600 - Steve-PO\Ste| | \sqlexpress (SQL Server 1001600 - Steve POSteve)
@ 3 Databases
@ [l Security Name Policy Health State
@ [Server Objects [Databases
15 (31 Replication [Secunty
® (3 Management (.l Server Ubjects
(il Rephcabon
3 Management

B Asqlexpress (SQL Server 10.0.1600 - Steve-PC\Steva)
5 Items

Ready

FIGURE B-2 Typical View

The first thing to look at is the Object Explorer. The Object Explorer shows all the
objects related to the server. Related objects are grouped in folders. For the purposes of
the book, we will focus on the Database folder and the Security folder. Clicking the “+”
beside the folder will expand a folder and show its contents. Right clicking a folder will
open a context menu with all the options for that object type. Right clicking on the
Database folder will provide several options including “Create Database.” Once the
database is created, you can click the “+” beside the database to expand its contents.
Right clicking on the Tables folder opens a menu that contains “Create Table.”
Expanding the folder of a particular table reveals a Columns folder that can also be
expanded to show the particular table’s columns.

Lile [dit View Tools

i) NewQuery | [y | i i T | [| 5 I

Window Community

Connect- |47 40 m ¥ E B
=] LB Asqlexpress (SQL Server 10.0.1600 - Steve-PC)
= [Databases
@ [d System Databases
m© |] DailyManagement
1= [TutorManagement
® £ Databuse Diagrarms,
= 3 Tahles
@ 3 System Tables
F 3 dbe.Course
LI E@ Columns
‘§ CourseKey (PK, nchar(1!
@ CourseName {nvarchard
3 Courselescription (mn
@[3 Keys
@ (3 Censtraints
m @ Triggers
1+ 3 Indexes
4 @ Statistics
@ = dboFihaicity —
& @ dbo.Request
& [dbe.Hequestiote
3 dbe.Session
@ @ dbe.Student
1 = dbo.StudentCourse
1 3 dbo.Tutor
@ 3 dboTulmCourse

L — — '

Help

=5

|~ Object Explorer Details|

Q@O & T @S sech

= || Asqlexpress (SQL Server 10.0.1600 - Steve PCVSteve)

Name Palicy Health State
(4 Databases
il Secunty
[Server Ubjects
(il Rephcabon
3 Management

B Asqlexpress (SQL Server 10.0.1600 - Steve-PC\Steva)
5 Items

Ready

FIGURE B-3 Expanding Table

and Columns Folders

180 Appendix B ¢ SQL Server Express

The Database Diagram folder contains database diagrams. Right clicking on this
folder the first time will open a dialog.

[T

@ Diatabase diagram support objects cannot be installed because this database does not have a valid

owner. To continue, first use the Fles page of the Database Proper ties dialeg box or the ALTER
ALTHORIZATION statement to set the database owner to a valid login, then add the database diagram
support objects,

B3
FIGURE B-4 Database Diagram E

Support Materials Dialog

Saying OK will enable you to make a new database diagram.

It is important to realize security folders exist in two distinct places. Each database
has its own security folder for database-specific security objects including Users. Each
server also has a Security folder for server-level security, including Logins:

File Edit View Teools Window Community

D Newquey | BB B 0| 5 H

Object Explorer - 3 =

Connect~ | @7 &0 o °F R
= [3 Asqlexpress (SQL Server 10.0.1600 - Steve-PC\Ste
= [Cd Databases
[System Databases
L__] DailyManagemnent
=] L__] TuterManagement
[[J Database Diagrams
[Tables
C3 Views
[3 Synonyms
[3 Programmability
[Service Broker
3 Storage
= 3 Security
[Users
[Roles
3 Schemas
[3 Asymmetric Keys
[Certificates
[Symmetric Keys
= 3 Security
£3 Logins
[Server Roles
[Credentials
L3 Server Objects
.3 Replication
[C3 Management

FIGURE B-5 Security Folders 4] | »

APPENDIX C
Visio

Microsoft’s Visio Professional is a modeling and diagramming program. It is consid-
ered a Microsoft Office program but does not ship with Office. It must be purchased
separately. Visio comes in different editions: Standard, Professional, and Enterprise.
The standard edition does not contain the Database Model Diagram template. To get it,
you need to have at least Microsoft Professional. (The Professional version is available
to students at low or no cost in schools which belong to Microsoft’s Academic Alliance.)

Visio has a rich set of templates for modeling everything from a household garden
space to complex software components. The scope of these templates is much too rich
and varied to be covered here. This appendix will only focus on the Data Modeling
template used in Chapter 4.

OPENING THE DATA MODEL TEMPLATE

When you open Visio, choose “Software and Database” under Template Categories.
Then choose “Database Model Diagram.” You can choose U.S. Units or Metric for a
measurement unit. This only affects the background grid. If you choose U.S. Units, the
grid will be arranged in inches, if metric, in centimeters.

O et | ic =lrel X
File Home Insert Design Data Review View & e:
ol sa : .

Choosa a Template Database Model Diagram (US units) U
=1
- Dorument and de<ign datakaces ucing INFF1X and

(& Open € * & Home relativnal nolalions.

Recently Used Templates

= [+~
=

Database Model UML Model
Diagram (US units) | Diagram (US unit<)

Template Categories

: lj)p!iom. J—‘:_I-_E‘_[ﬁ'

E Exit Business Engineering [t
5| | Ld
Other Ways to Get Started Create
Blank Othee.com Sample New fram

drawing templates diagrams existing

Click the “Create” button to create a diagram.

COMPONENTS OF THE DATABASE MODEL DIAGRAM

Following is a picture of the Database Model Diagram template when it first opens.
Yours may vary depending on previous sessions and what options are selected.

FIGURE C-1 New Database
Model Diagram

181

182 Appendix C ¢ Visio

Home

Cahon
Faste

Clipboard

Insert

= ldpt.

B I U she Aav | A~

Font

Design

AN

Review

ip—

Data

Faragraph
1

iz 4-2';

Natabace
A Q Painter
q Connector

A Text

Tools

Tool |1~

X

&

S Fin-
ﬁ Line -

Shape

=a
Auto Align Position -
S shadow v | g Epa:‘; - H

Ediling

Arrange

Shapes

More Shapes

][1 . [l

o, TE, T4,

Quick Shapes

[Entty

(US units)

Object Relational (US units]

I Entity Relationship (US units)

B view
E Entity

Category to

o ona

IJ‘ Parent to
cateyury

O category
g Dynamic

& connector

44 » M| Fage-l 53

Categories:

w Information

FIGURE C-2 Database Model
Diagram

English (U.S) | "3

You may want to do a few things before proceeding with anything else. First ad-
just the size of the grid. Go to the View tab, then from the ribbon, click the zoom icon.
Set the zoom to 100%. This will make the grid big enough to actually be usable.

Magnification
) 400%
©) 200%

() Page width

() Whole page

() Percentage:
(J [

0K

FIGURE C-3 Zoom Dialog

Only the Entity and Relationship shapes are relevant to the diagrams in this book.

ENTITIES

To add an entity to the diagram, drag the entity shape onto the grid. Following the grid
is the Properties window. When the Entity is selected, you can see and edit the entity’s
properties. An entity is divided into categories. The first category is Definition. It lets

you name the entity.
The second category is “Columns.” Clicking on this lets you define the entity col-

umns and data types. It also lets you define the primary key.

Appendix C ¢ Visio 183

Home Insert Design Nata [~
o) -
& Ruier [Pag Breaks Q Zoom [l Dynamic Grid 8 New Windowr EE % %
B rit to window | [AuteConnect = Amange Al ==
i 5 i Task Switch M Adad-Un
Bl Grd [Guises m:::. - | [Page Width [0 Connection Point: | T3 Cascade Wi:;lms | Macros AdaOns
Show = Zoom Visual Aids = Window Macros
€ |[] Loty liune obobon Uon s B oo bl bona Lot Bv b Lo e Uy o B Dwe b Lol Ly B0 g D D b Lo
More Shapes 3 E ‘?
Quick Shapes B &
= = Student
[Entity (US units) 4
Object Relational (US units] E o L &
I &
Entity Relationship (US units) 2
B‘Im Felationship _-_
g
a View f Parent to E
L caleyury = -
4> ¥lPage-l €3 1K [w J 4

E Entity D tategory

B g Categories:
2 Cat Ll 1 i Definition
Foaid E‘?:::?c‘lcol E’ L?m.m, physcalname: [Student 12 mn;:s‘g
= mm Conceplual name: |Slu|k:nl |
% wcl\eckws HName space: | |
m"h‘l Owmer: | |
Defiing type: ~ |< Mot Iyped > [=]
x

Width: 0.587 in. Height: 0.880 ir. = 0° | English
- SR ile) FIGURE C-4 Entity Definition

RELATIONSHIPS

To create a relationship, drag a relationship shape onto the grid. Take the arrow end
and drag it to the center of the primary key side of the relationship. The outline of the
entity will turn red when the end is connected to the entity. Take the other end of the
relationship shape and drag it to the foreign key entity. It will also turn red when con-
nected. Visio will also add the primary key column to the child entity as a foreign key.
When the Relationship is selected, you can alter its properties. In particular, if you
select the “Miscellaneous” category, you can set the cardinality of the relationship.

N - 0 b BT hicros oft e

Home Insert Design Data Review View Natabase (] e o g
e § -
& Ruter [@ Pag: reaks Q Zoom [Dynamic Grid 8 New Window EE H.-E:E %

B rit to window | [AuteConnect = Amange Al
e Tatk Switch | Matros Add-O
B Grid) [Guides m:::. - | = Page Width [connectian Paint: %_I Cascade Wi:;lms = atros = ne
Show = Zoom Visual Aids = Window Macros
€ |[1] Loty liune obobon Uon s B oo bl bona Lot Bv b Lo e Uy o B Dwe b Lol Ly B0 g D D b Lo
More Shapes L4 __:
Quick Shapes E Student
[Entity s units) _—_ p” |
Object Relational (US units]]
] Entity Relationship (US units) 13 StudentLastName PK | SectionKey =
E StudentFirstName
- . =] CourseKey
Felationship B
a View f Parent to E
L caleyury = -
4 40r M w | d 1 r
B ety O category | Page-1 <3 1l [wm]
§ Foee
L& Categoryto g Dynamic o ———
R child E‘ connector g = Y type
B ¥ Zero or more " Identifying
i © One or more = Mon identitying
) " Zero or one Child has parent
" Exactly one FF ogtional
" Range: Parent-tn-child relationshin is
Ak least:
- Oor 1 t 0or more
AL most: l:l
»* |
= FIGURE C-5 Relationshi
Page1of1 | English(US) | P | @z wxc—— U HE @ H p

Properties

184 Appendix C ¢ Visio

If you need the foreign key to be a part of a composite key in the child, select the
Child entity, and under the Columns properties, check the PK checkbox for that

column.
uﬂ do- 055 BT R oeor Vi) [
File Home Insert Design Data Review View Natabace (] e o
B Zoom [l Dynamic Grid =8 New Window L]
Fi [ruter [rage Breaks Q’ 39 nzz
E ﬂ Fitto Window =[] AutoConnect = Amange Al = %
S::En B Grid) [Guides p.:::: - | = Page Width [0 Connection Point: | T3 Cascade Wis'::lﬁi | Maros Aad Ons
Views Show = Zoom Visual Aids = Window Macros
Shapes < ";;|.|.|.|.|.|z.|.l.|..|<|.|.|<_:>|.|:1|.|.|.I.|.|.|<|.|.r‘.|.|.|.|.|.|.i.|.|<|;.|.|.|.|.|.|.|.|.i.|s.|<|.|.|.|.|.|.|.|.A
More Shapes L4 __: i
Quick Shapes E Student
| Entity (US units) i PR | Sk
Object Relational (US units]] E
Enti : 3 ; 1] StudentLastNarme
E Relationship (US units) =
i G StudentFirstName
m"lm Felationship _—_ o
__: I
a View f Pa‘lenl to E
“L cateyury = -
Emw O Category 4 4> M| Pagel T 14 Cm] 3
¥ o
L& Categoryto g Dynamic Definion
i tl child ‘& connector E’ o Columne PhysiciMame | DataType |Reqd | PK | Mo Acd
= | PrmaryID | b Studentiey char(10) M b Stude 4]
; b StudentinstNa... char(10) O | O 5hude Remove
g ok | |Swdentrestv... | char(10) [1 1 stude
B | Edended | 11 Edt... |
Netes || = Morve Lin | |
b] r l_ Move Down
chow: (Portabledatotype Physicol dota type (Micros..
»* |
. Pagelofl | Width:1472in. Height 1.056ir. Angle:0° | Engish U.S) | 3 Mg w0 U B @ ,
FIGURE C-6 Column Definition e S —— ——

On the Database tab are two very important dialogs for setting diagram options. The
Database Drivers option lets you choose the underlying database type. You can use it,
for instance, to change the type from Microsoft Access to SQL Server.

Lrivers | Default Mapping |

Defeul: driver for Yiso:

(ereric 7l F DR Providar
IEM D32 Univercal Catabase
Microsoft Access

S0 Server
CDEBC Generiz Driver
Cracle Server

FIGURE C-7 Database Drivers Cartesl

Dialog

Appendix C ¢ Visio 185

The Display Options on the Database tab will open the Document dialog box that
lets you change things about the way the model is displayed in Visio. Under the
Relationship tab of this dialog, you can change from the default arrow-headed relation-

ships to the crow’s feet relationships used in the book.

| Databasze Duc:mmt Cption —

Generall Tsble Relationship I
Show ———— — Mame disglay

[# nelatiorships " Show verb phraac

[fl ¥ Furgand Lext

[T Carcinaiby ¥ Invzrse kext

[~ Referential actions " Show physcal nane
{* Dor't dsplay name

Document Options

@l Defaulte - | DK I Cance
FIGURE C-8 Database

FIGURE D-1 One to Many

FIGURE D-2 Linking Table

186

There are many types of relations that occur over and over again in relational design.

ONE TO MANY

This is the normal relationship between any two tables. One department can contain

many employees.

APPENDIX D

Common Relational Patterns

Department

PK | DepartmentKey

LINKING TABLE

Every man-to-many relation must be resolved into two one-to-many relationships by
means of a linking table. One book can have many authors; one author can write many
books. The linking table often has a composite key consisting of the foreign keys from

the two tables it resolves.

Employee

LOOKUP TABLE

Lookup tables help maintain constancy and data integrity. The following diagram
shows a table that lists the states as a lookup for an Address table.

PK | EmployeeKey

FK1 | D

epartmentKey

Book Author
PK | BookKey PK | AuthorKey
F Y A
BookAuthor
PK,FK1 | BookKey
PK,FK2 | AuthorKey

State

PK | StateKey

WEAK ENTITY

< Address
PK | AddressKey
FK1 | StateKey

Appendix D ¢ Common Relational Patterns

FIGURE D-3 Lookup Table

A weak entity is an entity that depends on another entity for its meaning. For instance,
the doctor contacts depend on the Doctor table for their meaning. Weak entities are way

of dealing with a multivalued attribute such as Contacts or Dependents.

Doctor

PK | DoctorKey

DoctorLastName
DoctorFirstName

MASTER DETAIL

« DoctorContact
PK | DoctorContactKey
DoctorContactType
DoctorContactinfo
FK1 | DoctorKey

FIGURE D-4 Weak Entity

Typically, many kinds of business transactions are broken into at least two tables.
One table stores the basic information of the transaction, while the other stores the line-
by-line details. If you look at a receipt, you will see the general information at the top:
the date, the customer number, the employee number, and so on, and then below that
the line-by-line list of what has been purchased. The master table stores the general
information; the detail table stores the specific item information. In the following
example, the Customer table and the Employee table are not pictured, though they are
represented in the Sale table as foreign keys.

Sale

PK | SaleKey

SaleDate
CustomerKey
EmployeeKey

4

Inventory

PK | InventoryKey

Inventoryltem

InventoryDescription

4

SaleDetail

PK | SaleDetailKey
Quantity

FK1 | SaleKey

FK2 | InventoryKey

FIGURE D-5 Master/Detail

187

188 Appendix D ¢ Common Relational Patterns

FIGURE D-6 Generalization/

Specialization

GENERALIZATION/SPECIALIZATION

The generalization/specialization pattern is used as a way to prevent excessive nulls in
a table. Different resources have different attributes to describe them. If all were stored
in the Resource table, when the resource was a book, the Article and Web attributes
would be null. If the resource were an article, most of the Book and Web attributes
would be null. In the generalization/specialization pattern, the General table, in this
case the Resource table, stores all the common data that is shared by each kind of
resource. The data that is specific to each kind is separated out into the appropriate
table. The child tables have a one-to-one relationship with the parent table. (This is very
similar to inheritance in object-oriented programming.)

Resource

PK ResourcelD

Title
Type

Book Article Web

PK,FK1 | ResourcelD PK,FK1 | ResourcelD PK,FK1 | ResourcelD

ISBN Magazine URL

TAKING NORMALIZATION A LITTLE FARTHER

Following the logic of normalization, it is possible to argue that Employees and
Customers are both, first of all, people, and that they all have names and birthdates,
and so on. So rather than create a separate Customer table and an Employee table,
which means repeating those fields, one can create a single Person table. There is still an
Employee table that contains information specific to employees, but it doesn’t contain
the Person information. The Employee table is linked through a linking table to the
Person table. This has the additional advantage of making it easier to secure personal
information from those who don’t need to see it.

Addresses can also be seen as a distinct entity, especially since any person can
have multiple addresses. The same goes with contact information. The result of this is a
more complex set of tables and relations, but it is more thoroughly normalized, with
even less redundancy. The following ERD shows these relations. It also includes the
Master/Detail relation. It is also useful to note the product table is separate from the
inventory table. This prevents a product from disappearing if it is no longer in inven-
tory (the deletion anomaly).

Appendix D ¢ Common Relational Patterns

PersonAddress Address Contact
PK,FK1 | PersonKey p| PK | AddressKey PK |ContactKey
PK,FK2 | AddressKey

A
A4
DerEan PersonContact
PK,FK1 | PersonKey
PK | PersonKe ’
Tersoney PK,FK2 | ContactKey
A A
Employee EmployeePerson
Customer
PK | EmployeeKey |4 PK,FK1 | PersonKey
PK,FK2 | EmployeeKey PK | CustomerKey
A
A A
Product
PK | ProductKey CustomerPerson
PK,FK1 | PersonKey
vy PK,FK2 | CustomerKey
Sale
PK | SaleKey
FK1 | EmployeeKey
FK2 | CustomerKey
A SaleDetail
PK | SaleDetailKey
FK1 | InventoryKey
FK2 | SaleKey
Inventory
PK | InventoryKey |4
FK1 | ProductKey

FIGURE D-7 More Fully
Normalized

189

GLOSSARY

Actor A person or program that makes some use of the data-
base. It is useful to look at the database requirements from each
actor’s point of view.

Aggregate Function An SQL function that operates on several
rows at a time. These are functions like COUNT, AVG, and SUM.

Alias Providing an alternative name for a column or table in
SQL to make the results more readable.

AND SQL Boolean operator that joins conditions in a WHERE
clause. With an AND operator, both conditions must evaluate as
true for the criteria to be true.

As SQL keyword used to alias columns or tables.

As SQL keyword used to mark the start of the body of a View,
Stored Procedure, or a Trigger.

Attribute A quality that describes or defines some aspect of a
database entity. Attributes often correspond to the columns in
the table created in the physical design process.

Authentication Used in Security and Logins. Authentication
determines if users are who they claim to be. This can be done
with user name and password, with certifications, or by other
means.

Authorization Authorization is the granting of permissions on
objects in the database.

BEGIN SQL keyword used to begin a block of code.

BETWEEN SQL operator used in the WHERE clause that returns
all values BETWEEN two values. It is inclusive of the ends.

Business Intelligence Business intelligence involves analyzing
database data for valuable trends, patterns, or other informa-
tion. Many database management systems include suites of
tools to facilitate this kind of analysis. Business intelligence is
often associated with data warehousing.

Business Rule A business-specific rule about how data is cap-
tured, stored, and/or processed. For instance, a valid grade
point must be between 0 and 4.0.

Cardinality Cardinality refers to the number of allowed instances
of a relationship. In the usual cardinality of one to many, for
instance, each record on the one side can have zero to any number
of records on the many side. Cardinality can be more specific
however. Each patron at a library can have only 20 items checked
out at once. This has a cardinality of 0 to 20.

CATCH SQL keyword used in error trapping as part of a TRY
CATCH structure. CATCH catches all errors that occur in the TRY
block and contains any SQL code to deal with those errors.

Client An application that calls on a service offered by a server.
For instance, a Web browser requesting a specific Web page
from an Internet server.

Closed-Ended Question A question with limited possible
responses, such as a multiple choice or a ranking.

COMMIT SQL keyword used with TRANSACTION. COMMIT
executes all SQL statements in the transaction and writes any
changes to the database.

Composite Key A key that consists of more than one attribute.
No entity has more than a single key, but that key can consist of
multiple attributes.

190

Constraints Limits on values or actions. For instance, the
Primary Key constraint limits a column to unique values; a
Foreign Key constraint limits the Foreign Key column to values
that exist in the Primary Key table.

CREATE SQL keyword for creating objects such as TABLE,
VIEW, PROCEDURE, TRIGGER,and so on.

Cross Join An SQL join that joins each row of the first table to
every row of the second table. Sometimes called a “Cartesian
Dump.”

Crow’s Feet Notation A type of notation for entity relationships
in entity relation diagrams that depicts the many side of a rela-
tionship with a three-pronged end called a “crows foot.” This
type of notation provides more information about the cardinality
of a relationship than the arrow notation for relationships.

Data integrity Refers to the accuracy and quality of the data.

Data Mining Data mining is the process of querying vast quan-
tities of disparate types of data looking for statistic trends and
patterns that provide business intelligence.

Data Types Columns in a table are assigned a data type to help
constrain the data they can contain. Data types basically fall
into character type data, numerical data, date and time data,
and large file data such as pictures or whole documents. Some
DBMSs add other data types such as XML, geographical, or
geometrical data.

Data Warehouse A data warehouse is a collection of data from
disparate sources used in data mining.

Database Transactions Every action that occurs in a database
is a transaction. Transactions are processed as a whole and
either committed or rolled back. Transactions can be manually
controlled in SQL with the BEGIN TRAN keywords.

DDL Data Definition Language. Refers to that part of SQL that
is concerned with creating and modifying database objects.

Declarative Language A language like SQL where program-
mers declare what they want to do, not how they want to do it.

DECLARE SQL keyword used to declare a new SQL variable.

DEFAULT_DATABASE SQL keyword used to assign a default
database to an SQL Login.

DELETE SQL keyword used to delete one or more rows
of data.

Deletion Anomalies Where removing data in one table leaves
data “orphaned” in another table. For example, deleting a
customer leaves orders without a customer making the order.
Also where deleting a row unintentionally deletes needed
information—removing the last item in a category, for instance,
removes the category as well.

Delimited files Text files with values separated by a delimiter
such as a comma or tab.

Denormalization The process of combining tables that had
been separated through the process of normalization in order to
improve application performance.

DESC SQL keyword used to sort a column in descending order.

Disaster Recovery Plan A plan preparing for database and
business recovery after any of a variety of disasters.

DISTINCT SQL keyword used to return only unique rows in a
query.

DML Data Manipulation Language: The portion of SQL used
for querying, inserting, updating, and deleting data from
tables.

Domain The business problem area. In an Inventory database,
for example, the domain would include things like products,
suppliers, orders from suppliers, and so on.

Domain entities Those database entities that relate directly to
the business problem under consideration.

END SQL keyword which terminates a block of code.

Entity An object of concern to a database, such as a customer or
sale. Used in the logical design phase of a database.

Entity Relation Diagrams A diagram that shows entities, their
attributes, and the relationships among them.

Equi Joins A join of two or more tables where the relationship
between tables is expressed with the = sign. In some older
DBMSs, this is the only way to perform a join. (The term is also
used sometimes to describe any join that has equality as a
criteria.)

Exception A variation from the rule. For instance, the rule is no
discounts for customers, but an exception is made for one very
long-term customer.

EXISTS SQL keyword used with subqueries to see if a value
exists in the result set.

First Normal Form In 1NF, all multivalued attributes and all
arrays or lists are separated into unique rows.

Fixed-width files Text files, with each column occupying a set
width.

Foreign Key A primary key from one table repeated in a sec-
ond table in order to create a relationship between the tables.
Form A form is used to take data entry, whether on the Web, in
Windows, or on paper.

FROM SQL keyword used with a SELECT statement to specify
which table or tables are being used.

Functional Dependencies When two or more attributes
depend on each other for meaning rather than on the table key.
These can be spotted by blocks of repetition. They represent
separate themes and should be broken into separate tables.
GRANT SQL keyword used in granting permissions on objects.

GROUP BY SQL keyword used for sorting table by given
columns.

HAVING SQL keyword used for criteria which include an
aggregate function. For example: HAVING AVG(Price)<100.

IF SQL keyword used for branching conditions.

INNER JOIN SQL keyword used for joining two tables. Inner
joins return all matching records in both tables.

INSERT SQL keyword beginning a statement to insert a record
into a table.

Insertion Anomalies Anomaly where one cannot insert a
record because another is required, but one cannot insert that
record because it depends on the previous record and so on.
INTO SQL keyword used with the INSERT statement to specify
the table where the insertion will occur.

IS NULL SQL keywords used in a WHERE clause to determine
if a column value is null or not.

Glossary 191

LIKE SQL keyword used in a WHERE clause to search for a pat-
tern in character data. Used with wildcards “%” and “_.” The
wildcard “%” is used for any number of characters; “_" is used
for a single character.

Linking entity An entity used to resolve a many-to-many rela-
tionship into two one-to-many relationships.

Logical design The design of a database without regard to the
physical implementation of the database.

LOGIN SQL keyword used in creating a new login to SQL
Server.

Lookup entity An entity used to store lookup values such as
state names or zip codes.

Management Information System A database system
designed to provide management-level information such as
profit and loss statements, sale summaries, and so on.

Maximum cardinality The highest number of allowed
relationships.

Minimum cardinality The least number of allowed
relationships.

Naming conventions Conventions for naming database objects
in order to maintain consistency and readability.

Natural Key A key that naturally occurs in the attributes of an
entity, such as a student ID or a course name.

Normal Forms Normal forms are sets of principles and prac-
tices meant to remove data anomalies from databases. Each
originated as a white paper on how to remove specific types of
anomalies from data sets.

NOT SQL Boolean operator used in the WHERE clause to exclude
a value from the results.

Null A null is an unknown value. It is not the same as a 0 or
an empty string. As an unknown, it cannot be evaluated
with = <> 1.

ON SQL keyword used with an INNER JOIN, to introduce a
clause that shows how two tables relate.

Open-Ended Question A question without a set number of
responses.

PASSWORD SQL keyword, part of CREATE LOGIN.

Permission The right to do some action in the database such as
SELECT, UPDATE, or DELETE.

Physical design The design of the database within a particular
DBMS. The physical design takes account of file systems and
disk locations as well as DBMS-specific data types.

Policies A list of rules for dealing with events or tasks.

Primary Key A constraint that uniquely identifies each row in
a table. The primary key is repeated in other tables as a foreign
key in order to make relationships between tables.

Problem Domain The part of the database design that deals
with the specific business-related objects and concerns.

Procedural Language A programming language like C#, Java,
or C++ in which the programmer specifies the procedure or
steps to do a task. A procedural language defines how to do
something, whereas a declarative language describes what
to do.

Procedure A collection of parameters, SQL statements, and
variables that are executed together as a single program to
accomplish a task.

192 Glossary

PROCEDURE (PROC) SQL keyword used when creating or mod-
ifying a stored procedure.

Qualified Name In SQL, a column can be qualified to distin-
guish it from other columns with the same name. A qualified
column consists of the table name, a dot, and the column name.
For example, Tablel.Columnl. A fully qualified column con-
sists of ServerName.DatabaseName.SchemaName.TableName.
ColumnName.

Redundancy Redundancy refers to data that is repeated in
multiple places in a database.

Referential Integrity Referential integrity refers to enforcing
the constraints of primary key-foreign key relationships.
Specifically, you cannot insert a value into a child table unless it
exists in the parent table. You update the foreign key column of
a child table if it would change it to a value that is not in the par-
ent table. You cannot delete a record from the parent table if it
has related records in a child table, unless you first delete the
records in the child table.

Relational Database A database that stores data related in
two-dimensional tables, where unique column values from one
table repeated in another table form relationships.

Relational Design The process of identifying the entities,
attributes, and relations among elements of data related to a
specific business problem.

Report Output of summary material from data.

Requirement Something a database or program must do to
fulfill its function.

ROLE In a database, a set of permissions related to a particular
use of a database.

ROLLBACK Used with a TRANSACTION, ROLLBACK undoes
all SQL statements since the BEGIN TRAN statement.

Scalar Function An SQL function that operates on one table
row at a time.

Schema Schema has several related meanings. On the one
hand, it is the structure of a database and its tables; on the other,
it is the structure of ownership of objects. “dbo,” for instance, is
the default schema for database objects. Lastly, it can be an
XML document that describes the structure of another XML
document.

Second Normal Form The removal of functional dependen-
cies. The separation of broad themes into separate themes.

Server A program that offers services to a client application.
For instance, a Web server offers Web pages to a browser; a
database server offers data to a client requesting it.

SOL The language that is most commonly used in relational
database to define database objects (DDL) and to manipulate
data (DML).

Stakeholder Someone who has a “stake” in the success or
contents of the database.

Statement of work A statement of what needs to be done often
including a history of the problem, a statement of scope, objec-
tives of the project, timelines, and deliverables.

Stored procedures See procedures.

Surrogate Key A primary key usually numerical and often
automatically generated. It has no meaning but uniquely identi-
fies each row.

Third Normal Form Removes transient dependencies. These
occur where one column is more closely related to another
column in the table than the primary key. Transient dependen-
cies should be separated into their own table.

Transact SQL Microsoft’s version SQL.

Transaction Database A database used to store data from
immediate transactions such as the point of sale data or real-
time activities of various types. Transaction database needs to
be fast and often must be available 24x7.

Transient Dependencies Transient dependencies occur when
one column depends on another column, not the key, for its
meaning. Transient dependencies are more subtle than
functional dependencies, but they also should be broken into
separate entities.

Trigger A trigger is a collection of SQL commands that are
executed when a database event occurs such as an INSERT,
UPDATE, or DELETE.

TRY SQL keyword used with a TRY CATCH structure to cap-
ture errors. All the codes in a TRY block will be tested. If an
error occurs, the execution will jump to the CATCH block.

Unicode An expanded text standard that includes definitions
for most language and character groups, not just English. The
first 255 characters are equivalent to the ASCII standard.

Update Anomalies An update anomaly occurs when a record
must be updated in more than one table. Errors in entry can
make it so that the records no longer agree in their values. To
avoid this, a database should be normalized so that any update
of a record occurs in only one place.

USER SQL keyword which specifies a USER with permissions
in a particular database.

User Access Refers to what permissions each user should be
granted in a particular database, and which database objects
they will be able to see and use.

VIEW SQL keyword: A VIEW is a stored query which organizes
data for a particular view of the database.

Weak entities A weak entity is an entity that depends on
another entity for its meaning. For instance, a table of employee
dependents which relies on an Employee table for its meaning.

WITH SQL keyword used to assign properties in a statement.

Work Shadowing The act of following someone, as he or she
performs the duties of his or her job, to see what the job entails
and what actions he or she typically performs during the
workday.

XML Unicode-based markup language that conforms to a
small set of rules ensuring consistency. It is used for document
file formats and to transfer data between databases and
applications.

A
Access, 47,49
Actors, 48
Aggregate functions, 134-136
Alias, 128-130
Amazon.com, 27
American National Standards Institute
(ANSI), 104, 124, 131
American Standard Code for Information
Interchange (ASCII), 106

AND, 132-133, 148
Arithmetic operators, 127
AS, 128,161, 168
ASP.Net, 102
Attribute names, 64
Attributes

defined, 11, 56

in ERDS, 61

in logical design, 65

key, 56
Authentication, 152
Authorization, 152

B

Backup procedures, 157-158
BEGIN, 161, 165, 168

BETWEEN, 132, 148

Boyce Codd Normal Form, 82
Business documentation, 22-23
Business intelligence, 27
Business rules, 50, 57

C
C#, 124,162
C++, 124
Calculations, 127-128
Candidate keys, 56
Capital Charities, 8-9
Cardinality, 73
Cascade delete, 115
CATCH, 168
Certificates, 152
Change, 31
Character data types, 105
Chief stakeholder, 22
Clients, 45
Closed-ended questions, 32
Cobol, 4
Codd, F., Edgar, 4
Commercial RDBMS, 6-7
COMMIT, 165, 168
Compatibility, 101
Composite key, 56, 70, 72
Consistency, 64
Constraints, 12
CREATE, 168
Cross join, 141
Cross-relationship error, 68
Crow’s feet notation, 8
in entities, 61-62
in many-to-many relationships, 68
in one-to-many relationships, 67
in one-to-one relationships, 66

D

Data integrity, 2

Data mining, 27

Data requirements, 47
Data sublanguage, 4

INDEX

Data time, 104
Data types, 104-105, 172
Data warehouse, 27
Database
defined, 2
denormalization of, 97
design of, 45, 80
development of, 46
electronic, 2
flat file, 2
hierarchical, 2-3
logical design of, 60
major topics of, identifying, 11
normalization of, 97
permissions used in, 49, 152
physical design of, 60
relational, 4-5
roles within, 153
testing in, importance of, 147
time estimating in, 12
transaction, 27
transactions used in, 102
tutormanagement, 171-172
types of, 27
Database design, 45, 80
Database permissions, 49, 152
Database transactions, 102
DB2,7,101
DB2 Express, 100
DBMS, 100-101
DDL (Data Definition Language), 125
Declarative language, 124, 125
DECLARE, 146, 162, 168
DEFAULT_ DATABASE, 160
DELETE, 145-146, 148
DELETED, 146-147
Deletion anomaly, 81
Delimited files, 2
Denormalization, 97
Diagrams, 77
Disaster recovery plan, 157-158
DISTINCT, 126-127, 134-135, 148
DML (Data Manipulation Language), 125
Documentation, 15-16
business, 22-23
business rules as essential part of, 57
importance of, 15, 35
in diagrams, 77
in ERDS, 97
of security, 167
process of, 15-16
requirements as essential part of, 57
self-documenting and, 119
Domain, 22
Domain entities, 73
Domain Key Normal Form, 82
Double quotes, 128
DreamWeaver, 39

E
eBay, 27
Electronic database, 2
END, 161, 168
Entities
Crow’s feet notation in, 61-62
defined, 10, 56, 82
domain, 73
in FN1, 83
in FN2, 88
in FN3, 91

in Visio, 182-183
linking, 70, 73
logical design in, 65
lookup, 73
relationships between, 66
roles of, 74
subscription, 69
types of, 73-74
weak, 73, 187
Equi joins, 141
Equivalencies, 64
ERDS. See ERDS (Entity Relation Diagrams)
ERDS (Entity Relation Diagrams), 61
attributes in, 61
documentation in, 97
reviewing, importance of, 95
Exception, 22
EXISTS, 165, 168

F
Fifth Normal Form (FN5), 82
FileZilla, 39
First Normal Form (FN1), 81, 83-84
Fixed width data files, 2, 16
Fixed-length data types, 105
Flat file database, 2
FNI1. See First Normal Form (FN1)
FN2. See Second Normal Form (FN2)
FN3. See Third Normal Form (FN3)
Foreign keys, 4, 114
Forms, 23
Fortran, 4
Fourth Normal Form (FN4), 82
FROM, 138, 140-142, 148
Functional dependencies, 87-89
Functions, 134-139

aggregate, 134-135

scalar, 134

syntax for, 134

G

Generalization relationships, 188

Goals, 23

Grandfield College, 18, 40, 59, 79, 99, 122,
150, 169

GRANT, 168

GROUP BY, 135-136, 148

H

Hardware requirements, 101
HAVING, 135-136, 139, 148
Hierarchical database, 2-3

|

IBM, 4, 7,124

IF, 162,168

Information gathering, 22, 28

Initial interviews, 22

INNER JOIN, 141-142,148

Inner joins, 140-141

INSERT, 143-147, 148

INSERTED, 146-147

Insertion anomaly, 81

Integer division, 127

International Standards Organization
(ISO), 124

Interviews, 28-29

INTO, 148

IS NULL, 132-133, 148

193

194 Index

J
JAVA, 124, 162
Joins, 140-142

K

Key attributes, 56, 64

Keys, 1
candidate, 56
foreign, 4, 114
primary, 4, 115
SQL, 148-149

L

Letters, 23

Licensing, 101

LIKE, 127,131-132, 148
Linking entities, 70, 73
Linking tables, 186
Linux, 2, 101

Logical design, 60, 65
LOGIN, 168

Logins, 152

Lookup entities, 73
Lookup tables, 186

M
Mag, 2
Management information system (MIS), 27
Manuals, 23
Many-to-many relationships, 68-71
Crow’s feet notation in, 68
in RDBMS, 69
Master detail relationships, 187
Maximum cardinality, 73
Memos, 23
Microsoft Access
data tables, adding data to, 173-177
data types in, 172
relationships in, creating, 172-173
security in, 177
tutormanagement database in, creating,
171-172
Microsoft Visio, 60, 61
Minimum cardinality, 73
Mission statements, 23
MS Office, 39
MySQL, 7,100, 101, 124

N

Naming conventions, 64
Natural key, 56
Nonidentifying relationships, 70
Normal forms, 81-82
Normalization, 80
of database, 97
relationships and, 188-189
NOT, 132-133, 149
NULL, 132
Nulls, 107-108
Numeric data types, 104
Numeric type nulls, 107

O

ON, 140-142, 149

One-to-many relationships, 67-68, 73, 186
One-to-one relationships, 66-67
Open-ended questions, 28

OR, 132-133

Oracle, 7, 16, 101, 124, 153
Oracle Express, 16, 100, 101
Order of operations, 127-128
Out-of-bounds data, 108

Outer joins, 142

P

PASSWORD, 168

Permission, 152, 153

PhotoShop, 39

Physical design, 103-104
considerations for, 103-104
data types for, specifications for, 104
defined, 60, 102
of database, 60

Policies, 157

PostGres SQL, 7, 100, 101

Pricing, 101

Primary keys, 4, 115

Problem domain, 46

Procedural language, 125

PROCEDURE (PROC), 168

Procedures, 23, 157

Product reliability, 101

Product support, 101

Qualified name, 140
Questionnaires, 22, 32

R
RDBMS. See Relational database management
system (RDBMS)
Recovery procedures, 158
Redundancy, 2, 4
Referential integrity, 114, 115
Relational database management system
(RDBMS), 6-7
cardinality in, 73
commercial, 6-7
many-to-many relationships in, 69
SQLs in, 124, 125
Relational databases, 1-18, 4-5
advantages of, 5
drawbacks of, 4-5
nulls in, 107
redundancy in, 4
spreadsheets in, converting, 82-83
usage of, common, 27
Relational design, 1, 4
Relationships
between entities, 66
cardinality in, 73
generalization/specialization, 188
identifying, 70
in Microsoft Access, creating,
172-173
many-to-many, 68-71
master detail, 187
nonidentifying, 70
normalization, 188-189
one-to-many, 67-68, 186
one-to-one, 66-67
referential integrity and properties
of, 115
Visio, creating in, 183-184
weak entities in, 187
Reports, 23, 47
Requirements, 22, 47
Reviewing, 47, 95
ROLE, 168
Roles, 153
ROLLBACK, 165, 168

S

Sample data, 116

Scalar functions, 134

Schema, 153-154

Second Normal Form (FN2), 81, 87-89

Security, 47, 49
documentation and, importance of, 167
in Microsoft Access, 177
in one-to-one relationships, use of, 67
SELECT, 125-130
aliasing in, 128-130
calculations in, performing, 127-128
database after facilitating, testing of, 130
DISTINCT in, use of, 126-127
syntax for, 125-126
Self-documenting, 119
Servers, 45
Single quotes, 128
Specialization relationships, 188
Spreadsheets, 2, 82-83
SQL (Structured Query Language), 1
authentication in, 152
authorization in, 152
certificates for use of, 152
creating tables in, 108
database permissions for, 152
declarative language of, 124
defined, 123, 124
development of, 124
double quotes in, 128
functionality of, 124
in RDBMSs, 124, 125
INSERTED, use of, 146
keys in, use of, 148-149
logins used in, 152
nature of, 124-125
order of operations in, 127-128
schemas in, 153-154
single quotes in, 128
stored procedures in, 161-162
triggers in, 146
XML in, incorporation of, 124
XQuery in, incorporation of, 124
SQL Express, 178-180
SQPL, 16
SQL Server Management Studio,
102,123, 134
Stakeholder, 22, 28
Statement of work, 7-8
elements of, 8
importance of, 7-8
reviewing, 13
writing, 11-12
Stored procedures, 160-162
String data types, 105
Subscription entities, 69
Surrogate key, 56, 70, 72

T
Tables, 107-108

Testing, 147

Third Normal Form (FN3), 81, 91-92
Threat analysis, 157

Time estimating, 12

Transact SQL, 137

Transaction database, 27

Transient dependencies, 91
Transitive dependencies, 91
Triggers, 50, 73, 145-146

TRY, 168

Tutormanagement database, 171-172

U

Unicode, 106

Unix, 101

UPDATE, 145
Update anomaly, 81
USER, 168

User access, 49

Vv

Variable-character data types, 105
VIEW, 168
View, 163
Vince’s Vinyl, 17, 38, 58, 78, 99, 122, 150, 169
Visio (Microsoft), 181
data model diagram in, components of,
181-182
data model templates in, opening, 181
database options in, 184-185
entities in, 182-183
relationships in, creating, 183-184

Vista Business, 39
Visual Basic, 124, 177
Visual Studio, 178
Visual Studio Pro, 39

Weak entities, 73, 187

Westlake Research Hospital, 18, 40, 59, 79, 99,
122,150, 169

WHERE, 130-133

Wikipedia, 4

Index 195

Wild Wood Apartments, 17, 36, 58, 78, 98, 121,
150, 169

Windows Server 2008, 45

Windows Vista, 39

WITH, 168

Work shadowing, 22, 34-35

X
XML, 27, 124, 153
XQuery, 124

	Cover
	HANDS-ON DATABASE: AN INTRODUCTION TO DATABASE DESIGN AND DEVELOPMENT
	©
	Contents
	Preface
	ACKNOWLEDGMENTS
	ABOUT THE AUTHOR
	Chapter 1 WHO NEEDS A DATABASE
	Overview of Relational Databases and Their Uses
	The Situation
	The Opportunity
	Getting the Scope
	The First Interview
	Identifying the Big Topics
	Writing the Statement of Work
	Reviewing the Statement of Work
	The Statement of Work
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Chapter 2 GATHERING INFORMATION
	Interviews, Observations, and Reviewing Documents
	Looking at the Documents
	Preparing for the Interview
	The Interview
	The Questionnaire
	Tutoring Services Questionnaire

	Tutors at Work
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios
	Suggestions for Scenarios

	Chapter 3 REQUIREMENTS AND BUSINESS RULES
	Getting Started
	Review of the Issues
	Requirements
	Business Rules
	Review of Requirements and Business Rules with Terry
	A Little Bit of Grammar
	Entities and Attributes
	Candidate Keys
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Chapter 4 DATABASE DESIGN
	Entity Relation Diagrams
	Designing the Database
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Chapter 5 NORMALIZATION AND DESIGN REVIEW
	The Design Review
	Final Content Review
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios
	Suggestions for Scenarios

	Chapter 6 PHYSICAL DESIGN
	Choosing the Management System
	Creating the Database
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Chapter 7 SQL
	Running Queries
	Testing the Database
	Joins
	Inserts, Updates, and Deletes
	Creating a Trigger
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Chapter 8 IS IT SECURE?
	The Issue
	Where to Start
	Analyzing Security Needs
	Threats
	Finding Solutions
	Documentation
	Things We Have Done
	Vocabulary
	Things to Look Up
	Practices
	Scenarios

	Appendix A: Using Microsoft Access with the Book
	Appendix B: SQL Server Express
	Appendix C: Visio
	Appendix D: Common Relational Patterns
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

