
b o o k s f o r p r o f e s s i o n a l s b y p r o f e s s i o n a l s®

www.apress.com

SOURCE CODE ONLINE

Program
Arcade Games

With Python and Pygame
—
Fourth Edition
—
Dr. Paul Vincent Craven

This fun and handy book by Dr. Paul Vincent Craven shows you how to learn and use Python
and PyGame to design and build cool arcade games. In Program Arcade Games: With Python
and PyGame, Second Edition, learn how to create fun and simple quiz games; integrate and
start using graphics; animate graphics; integrate and use game controllers; add sound and bit-
mapped graphics; and build grid-based games.

After reading and using this book, you’ll be able to program and build simple arcade game
applications using one of today’s most popular programming languages, Python. You can even
deploy onto Steam and other Linux-based game systems as well as Android, one of today’s
most popular mobile and tablet platforms.

• How to create quiz games

• How to integrate and start using graphics

• How to animate graphics

• How to integrate and use game controllers

• How to add sound and bit-mapped graphics

• How to build grid-based games

Program Arcade Games: With Python and PyGame

Craven 
Program

 Arcade Gam
es

9 781484 217894

54499
ISBN 978-1-4842-1789-4

$ 44.99
Shelve in:
Graphics/Game Programming

User level:
Beginning–Advanced

Related Titles

www.it-ebooks.info

http://www.it-ebooks.info/

Program Arcade
Games

With Python and Pygame

Fourth Edition

Paul Vincent Craven

www.it-ebooks.info

http://www.it-ebooks.info/

Program Arcade Games: With Python and Pygame, Fourth Edition

Copyright © 2016 by Paul Vincent Craven

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1789-4

ISBN-13 (electronic): 978-1-4842-1790-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484217894. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217894
www.apress.com/source-code/
http://www.it-ebooks.info/

This book is dedicated to everyone who loves to learn.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author���xix

Introduction���xxi

■■Chapter 1: Before Getting Started…��� 1

■■Chapter 2: Create a Custom Calculator�� 11

■■Chapter 3: What Is a Computer Language?�� 33

■■Chapter 4: Quiz Games and If Statements�� 41

■■Chapter 5: Guessing Games with Random Numbers and Loops��������������������������� 59

■■Chapter 6: Introduction to Graphics��� 81

■■Chapter 7: Back to Looping�� 107

■■Chapter 8: Introduction to Lists�� 121

■■Chapter 9: Introduction to Animation��� 137

■■Chapter 10: Functions�� 153

■■Chapter 11: Controllers and Graphics�� 179

■■Chapter 12: Bitmapped Graphics and Sound�� 205

■■Chapter 13: Introduction to Classes��� 217

■■Chapter 14: Introduction to Sprites�� 247

■■Chapter 15: Libraries and Modules�� 267

■■Chapter 16: Searching�� 273

■■Chapter 17: Array-Backed Grids��� 287

www.it-ebooks.info

http://www.it-ebooks.info/

vi

■ Contents at a Glance

■■Chapter 18: Sorting�� 301

■■Chapter 19: Exceptions��� 311

■■Chapter 20: Recursion�� 319

■■Chapter 21: Formatting�� 335

■■Chapter 22: Exercises��� 347

Index�� 389

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author���xix

Introduction���xxi

■■Chapter 1: Before Getting Started…��� 1

Installing and Starting Python��� 1

Windows Installation��� 1

Mac Installation��� 3

Unix Installation��� 6

Optional Wing IDE�� 7

Viewing File Extensions��� 9

Learn to Make Games and Get Paid�� 9

Get the Most from This Book��� 10

Send Feedback�� 10

■■Chapter 2: Create a Custom Calculator�� 11

Printing�� 12

Printing Text��� 12

Printing Results of Expressions��� 13

Printing Multiple Items�� 13

Escape Codes�� 14

Comments��� 15

Assignment Operators��� 16

Variables�� 18

Operators��� 19

Operator Spacing��� 20

www.it-ebooks.info

http://www.it-ebooks.info/

viii

■ Contents

Order of Operations��� 20

Trig Functions�� 20

Custom Equation Calculators�� 21

Review��� 25

Multiple Choice Quiz�� 25

Short Answer Worksheet��� 28

Exercise��� 31

■■Chapter 3: What Is a Computer Language?�� 33

Short History of Programming��� 33

Review��� 38

Multiple Choice Quiz�� 38

Short Answer Worksheet��� 40

Exercise��� 40

■■Chapter 4: Quiz Games and If Statements�� 41

Basic Comparisons�� 41

Indentation�� 43

Using And/Or��� 44

Boolean Variables�� 44

Else and Else If�� 46

Text Comparisons�� 47

Multiple Text Possibilities�� 48

Case Insensitive Comparisons��� 48

Example if Statements�� 48

Review��� 51

Multiple Choice Quiz�� 51

Short Answer Worksheet��� 55

Exercise��� 57

www.it-ebooks.info

http://www.it-ebooks.info/

ix

■ Contents

■■Chapter 5: Guessing Games with Random Numbers and Loops��������������������������� 59

for Loops��� 63

Counting by Numbers Other Than One�� 65

Nesting Loops�� 66

Keeping a Running Total�� 66

Example for Loops��� 68

while Loops��� 70

Using Increment Operators�� 70

Looping Until User Wants to Quit��� 71

Common Problems with while Loops�� 72

Example while Loops�� 72

Random Numbers�� 74

The randrange Function�� 74

The random Function�� 74

Review��� 75

Multiple Choice Quiz�� 75

Short Answer Worksheet��� 78

Exercise��� 79

■■Chapter 6: Introduction to Graphics��� 81

Computer Coordinate Systems�� 82

Pygame Library��� 85

Colors�� 85

Open a Window��� 87

Interacting with the User��� 87

The Event Processing Loop��� 88

Processing Each Frame��� 89

Ending the Program��� 90

Clearing the Screen��� 90

www.it-ebooks.info

http://www.it-ebooks.info/

x

■ Contents

Flipping the Screen��� 90

Open a Blank Window��� 90

Drawing Introduction��� 92

Drawing Lines��� 93

Drawing Lines with Loops and Offsets�� 93

Drawing a Rectangle��� 95

Drawing an Ellipse�� 95

Drawing an Arc�� 96

Drawing a Polygon�� 96

Drawing Text�� 97

Full Program Listing�� 99

Review��� 102

Multiple Choice Quiz�� 102

Short Answer Worksheet��� 105

Exercise��� 106

■■Chapter 7: Back to Looping�� 107

Print Statement End Characters�� 107

Advanced Looping Problems��� 108

Review��� 115

Multiple Choice Quiz�� 115

Short Answer Worksheet��� 117

Exercise��� 119

■■Chapter 8: Introduction to Lists�� 121

Working with Lists��� 122

Iterating through a List�� 124

Adding to a List��� 125

Summing or Modifying a List�� 126

Slicing Strings��� 127

www.it-ebooks.info

http://www.it-ebooks.info/

xi

■ Contents

Secret Codes��� 128

Associative Arrays��� 131

Review��� 132

Multiple Choice Quiz�� 132

Short Answer Worksheet��� 135

Exercise��� 136

■■Chapter 9: Introduction to Animation��� 137

Animating Snow�� 141

Code Explanation��� 141

Full Program Listing�� 143

3D Animation��� 145

Review��� 147

Multiple Choice Quiz�� 147

Short Answer Worksheet��� 151

Exercise��� 152

■■Chapter 10: Functions�� 153

Function Parameters��� 154

Returning and Capturing Values�� 156

Returning Values�� 156

Capturing Returned Values�� 156

Improving the volume_cylinder Example�� 156

Documenting Functions�� 158

Variable Scope�� 158

Pass-by-copy�� 159

Functions Calling Functions�� 160

Main Functions and Globals�� 160

Short Examples��� 161

Mudball Game Example��� 165

www.it-ebooks.info

http://www.it-ebooks.info/

xii

■ Contents

Review��� 167

Multiple Choice Quiz�� 167

Short Answer Worksheet��� 171

Correcting Code��� 175

Exercise��� 178

■■Chapter 11: Controllers and Graphics�� 179

Mouse�� 186

Keyboard��� 187

Game Controller�� 192

Review��� 201

Multiple Choice Quiz�� 201

Short Answer Worksheet��� 203

Exercise��� 204

■■Chapter 12: Bitmapped Graphics and Sound�� 205

Storing the Program in a Folder�� 205

Setting a Background Image��� 206

Moving an Image��� 208

Sounds�� 210

Full Listing��� 211

Review��� 213

Multiple Choice Quiz�� 213

Short Answer Worksheet��� 214

Exercise��� 215

■■Chapter 13: Introduction to Classes��� 217

Why Learn About Classes?�� 217

Defining and Creating Simple Classes�� 218

Adding Methods to Classes��� 223

Example: Ball Class��� 225

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

■ Contents

References�� 226

Functions and References��� 229

Review Questions�� 231

Constructors�� 231

Avoid This Mistake��� 232

Review Questions�� 233

Inheritance�� 233

Is-A and Has-A Relationships�� 237

Static Variables vs. Instance Variables�� 237

Instance Variables Hiding Static Variables��� 239

Review��� 240

Multiple Choice Quiz�� 240

Short Answer Worksheet��� 244

Exercise��� 246

■■Chapter 14: Introduction to Sprites�� 247

Basic Sprites and Collisions�� 248

Moving Sprites�� 253

The Game Class��� 254

Other Examples��� 255

Shooting things�� 255

Walls�� 256

Platforms��� 258

Snake/Centipede��� 260

Using Sprite Sheets��� 262

Review��� 262

Multiple Choice Quiz�� 262

Exercise��� 265

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

■ Contents

■■Chapter 15: Libraries and Modules�� 267

Why Create a Library?��� 268

Creating Your Own Module/Library File:�� 268

Namespace��� 269

Third Party Libraries�� 270

Review��� 270

Multiple Choice Quiz�� 270

Short Answer Worksheet��� 271

Exercise��� 272

■■Chapter 16: Searching�� 273

Reading from a File��� 274

Reading into an Array�� 275

Linear Search�� 276

Linear Search Algorithm�� 276

Variations on the Linear Search�� 276

Does at Least One Item Have a Property?��� 277

Do All Items Have a Property?��� 278

Create a List with All Items Matching a Property��� 278

Binary Search�� 279

Review��� 281

Multiple Choice Quiz�� 281

Short Answer Worksheet Linear Search Review��� 283

Binary Search Review��� 284

Challenge Question�� 285

Exercise��� 285

■■Chapter 17: Array-Backed Grids��� 287

Application�� 289

Drawing the Grid�� 290

Populating the Grid�� 293

Final Program�� 296

www.it-ebooks.info

http://www.it-ebooks.info/

xv

■ Contents

Review��� 298

Multiple Choice Quiz�� 298

Short Answer Worksheet��� 299

■■Chapter 18: Sorting�� 301

Swapping Values��� 301

Selection Sort�� 303

Insertion Sort��� 305

Review��� 306

Multiple Choice Quiz�� 306

Short Answer Worksheet��� 308

■■Chapter 19: Exceptions��� 311

Vocabulary��� 311

Exception Handling�� 311

Example: Saving High Score�� 313

Exception Objects�� 314

Exception Generating�� 315

Proper Exception Use�� 315

Review��� 315

Multiple Choice Quiz�� 315

Short Answer Worksheet��� 317

■■Chapter 20: Recursion�� 319

Where Is Recursion Used?�� 319

How Is Recursion Coded?�� 321

Controlling Recursion Depth�� 321

Recursion Factorial Calculation��� 322

Recursive Rectangles�� 324

Fractals��� 327

www.it-ebooks.info

http://www.it-ebooks.info/

xvi

■ Contents

Recursive Binary Search��� 332

Review��� 333

Short Answer Worksheet��� 333

■■Chapter 21: Formatting�� 335

Decimal Numbers�� 335

Strings��� 338

Leading Zeros�� 339

Floating-Point Numbers�� 340

Printing Dollars and Cents��� 342

Use in Pygame��� 345

Review��� 345

Short Answer Worksheet��� 345

■■Chapter 22: Exercises��� 347

Exercise 1: Custom Calculators��� 348

Program A�� 348

Program B�� 349

Program C�� 349

Exercise 2: Create-a-Quiz�� 350

Description�� 350

Example Run�� 351

Exercise 3: Camel�� 352

Description of the Camel Game��� 352

Sample Run of Camel�� 353

Programming Guide��� 354

Hints�� 356

Exercise 4: Create-a-Picture��� 357

Description�� 357

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

■ Contents

Exercise 5: Loopy Lab�� 362

Part 1��� 362

Part 2��� 362

Part 3��� 363

Part 4��� 363

Exercise 6: Adventure!��� 365

Description of the Adventure Game��� 365

Sample Run��� 365

Creating Your Dungeon�� 366

Step-by-step Instructions�� 367

Exercise 7: Animation�� 369

Requirements�� 369

Exercise 8: Functions�� 369

Exercise 9: User Control�� 372

Exercise 10: Bitmapped Graphics and User Control�� 372

Exercise 11: Classes and Graphics�� 373

Instructions�� 373

Exercise 12: Sprite Collecting�� 379

Exercise 13: Sprite Moving�� 381

Exercise 14: Spell Check��� 383

Requirements�� 383

Steps to Complete:�� 383

Example Run�� 385

Exercise 15: Final Exercise�� 386

Video Game Option�� 386

Text Adventure Option�� 387

Index�� 389

www.it-ebooks.info

http://www.it-ebooks.info/

xix

About the Author

Paul Vincent Craven is a Computer Science professor at Simpson College in Indianola, Iowa. He worked in
the IT industry for several years before switching to teaching full-time. He has a Ph.D. from the University of
Idaho, a M.S. from Missouri University of Science and Technology, and B.A. from Simpson College.

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Introduction

It all started in 1983 when my dad, who was also a teacher, bought an Apple //e computer for our use at
home. Since it was to be “dad’s computer” for educational purposes only, my brother and I were not allowed
to purchase any games. So, at the local library I found two programming books by David H. Ahl: BASIC
Computer Games and More BASIC Computer Games. These books had code I could use to type in and run
my own games. This was the beginning of my creative outlet with computers.

As a computer science professor, I have found getting other people to program their own games as a
great way to foster interest in computer science. Unfortunately, back when I started teaching students this
way, the type of book I started with in the 1980s did not seem to be available any longer. I wanted to help
others learn to program the same way I started. To provide a textbook for my students, I began to write my own
programming book.

I started the website ProgramArcadeGames.com in 2009. The book you have in your hand morphed from
the materials on that website and from student input from my beginning computer programming classes.

I would like to acknowledge and thank everyone who took time to give feedback, no matter how large
or small. This book is the product of hundreds of students I have worked with personally, and the feedback
of hundreds of people on-line. I continue to develop the website and use this book to share my love of
programming with others.

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1

Before Getting Started…

This introductory chapter has two parts:

•	 Getting your computer set up to write games.

•	 Job and career prospects in technology.

Installing and Starting Python
To get started, two programs need to be installed: Python and Pygame. Python is the computer language we
will program in, and Pygame is a library of commands that will help make writing games easier.

Windows Installation
If you are working with a computer that already has Python and Pygame set up on it, you can skip this step.
But if you want to set up Python and Pygame on your own Windows computer, don’t worry. It is very easy.

	 1.	 Run the Python installer downloaded from
http://ProgramArcadeGames.com/python-3.4.3.msi

	 2.	 Run the Pygame installer downloaded from
http://ProgramArcadeGames.com/pygame-1.9.2a0.win32-py3.4.msi

www.it-ebooks.info

http://ProgramArcadeGames.com/python-3.4.3.msi
http://ProgramArcadeGames.com/pygame-1.9.2a0.win32-py3.4.msi
http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

2

Once everything has been installed, start Python up by selecting the Integrated Development
Environment (IDLE) as shown in the figure.

Starting Python

The files provided above come from the Python download page at http://www.python.org/download/
and the Pygame file originally comes from https://bitbucket.org/pygame/pygame/downloads.

■■ Note  There are many versions of Python and Pygame. It can be complicated to get the correct versions
and get them to work together. I recommend using the links on ProgramArcadeGames.com rather than
downloading them from the Python and Pygame web sites.

If you must use a different version of Python than what is listed here, find a matching version of Pygame
at this website: www.lfd.uci.edu/~gohlke/pythonlibs/#pygame.

www.it-ebooks.info

http://www.python.org/download/
https://bitbucket.org/pygame/pygame/downloads
http://ProgramArcadeGames.com
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame
http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

3

Mac Installation
The installation for the Mac is a bit involved, but it isn’t too bad. Here are the steps.

	 1.	 Open up a terminal window. Click on “Finder” then “Applications” and then
open “Utilities.”

Starting a terminal window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

4

	 2.	 Double-click on “Terminal.”

Starting a terminal window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

5

	 3.	 We can issue commands to the Mac in the old-school style by typing them rather
than pointing and clicking. We are going to start by typing in a command you
probably don’t have yet. This command is gcc. Type this and hit the Enter key.
Your Mac will recognize that you don’t have this command and offer to install
it for you. Go ahead and do this. (If instead it says error: no input files you
already have gcc, so go on to the next step.)

Starting a terminal window

	 4.	 Install XQuartz from: http://xquartz.macosforge.org.

	 5.	 Line by line, copy and paste the following items into your terminal window:

�ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"
sudo brew doctor
brew update
brew install python3
brew install sdl sdl_image sdl_mixer sdl_ttf portmidi mercurial

www.it-ebooks.info

http://xquartz.macosforge.org/
http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

6

	 6.	 If you want support for MP3s and movies, you can try adding smpeg. I’ve found
support for this to be kind of spotty, so my recommendation is to skip this and
use Ogg Vorbis files instead. But if you’d like to try, use these commands:

�brew install --HEAD https://raw.github.com/Homebrew/homebrew-
headonly/master/smpeg.rb

	 7.	 Now you have all the supporting libraries. Let’s finally install Pygame. Replace
YourName with your account name. If you don’t know what your account name is,
type ls /Users to see all the user accounts on your computer.

cd /Users/YourName/Downloads
hg clone https://bitbucket.org/pygame/pygame
cd pygame
cd src
pip3 install /Users/YourName/Downloads/pygame

At this point, Pygame and Python should be up and running on your system. Python does not come
with a way to edit files, so you will need to download an IDE like Wing IDE (http://wingware.com/
downloads) or PyCharm (https://www.jetbrains.com/pycharm/download/), or some other editor.

Unix Installation
Unix and Unix-like distributions may come with a Pygame package or the ability to easily get one. If you
want to compile from source, this is what I’ve used on Linux Mint (http://www.linuxmint.com/):

Load required packages
sudo apt-get install mercurial libsdl1.2-dev
sudo apt-get install libasound2-doc libglib2.0-doc python3-dev
sudo apt-get install libsdl-ttf2.0-dev libsdl-image1.2-dev
sudo apt-get install libsdl-mixer1.2-dev libportmidi-dev
sudo apt-get install libavformat-dev libswscale-dev
sudo apt-get install libfreetype6-dev
sudo apt-get install libsmpeg-dev
 
Use mercurial to clone current code
hg clone https://bitbucket.org/pygame/pygame
 
Build and install
cd pygame
sudo python3 setup.py

The biggest risk on UNIX platforms is that your default Python version might be in the 2.x series, and
that code won’t work with the code examples here in the book. Make sure you have and are using Python 3.x.

www.it-ebooks.info

http://wingware.com/downloads
http://wingware.com/downloads
https://www.jetbrains.com/pycharm/download/
http://www.linuxmint.com/
http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

7

Optional Wing IDE
Python comes with an editor and an environment to develop code in. Unfortunately it isn’t very good. Here
are two issues you might run into when using Python’s default editor:

Issue 1. When working with multiple files it is difficult to keep track of the all the open files. It is easy to
forget to save a file before running the program. When this happens the program runs with the old code that
was saved rather than the new code. This is very confusing.

Issue 2. If there is an error in a program that does graphics the Python program will crash and hang.
Once the program has crashed it is difficult to shut down. The error message that describes why it crashed is
often buried and difficult to find. See the following figure.

Python Program Hanging in IDLE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

8

The Wing editor solves issue 1 by using an editor with a tab for each file. It will also prompt to save all files
before running a program. A program run under the Wing debugger does not hang as described in issue 2;
instead the editor will immediately take the user to the line of code that caused the error. See the following
figure.

Python Program Hanging in Wing IDE

Therefore, while it is yet a third thing to install, I recommend using the Wing editor. There is a free
version called Wing IDE 101 at wingware.com/downloads/wingide-101/.

There is no need for all the bells and whistles the commercial version comes with, but they are nice. The
program will often help you by auto-filling in variable names as you start to type them. If you’ve got extra
money and want to save time you might want to pick up the commercial version.

In the videos on the web site I use either the default Python editor or the Wing editor. There are many
other editors that can be used as well:

•	 PyCharm (http://www.jetbrains.com/pycharm/)

•	 Sublime (http://www.sublimetext.com/)

•	 PyDev on Eclipse (http://pydev.org/)

•	 Komodo Edit (http://www.activestate.com/komodo-edit)

•	 Notepad++ (http://notepad-plus-plus.org/)

www.it-ebooks.info

http://wingware.com/downloads/wingide-101/
https://www.jetbrains.com/pycharm/download/
http://www.sublimetext.com/
http://pydev.org/
http://www.activestate.com/komodo-edit
http://notepad-plus-plus.org/
http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

9

Among some developers, discussing “which is the best editor?” is similar to getting a group of people
together and discussing “which is the best religion?”. It is best to pick your own favorite and then avoid this
topic with other people.

Viewing File Extensions
It is a great idea to change your windows configuration to show file extensions. A file usually has a name
like Book report.docx where the .docx tells the computer it is a Microsoft Word compatible document.
By default Windows hides the .docx extension if there is a program installed to handle it. If you are
programming, this hiding part of the file name can be annoying.

For Windows 7, to show file extensions, open up your computer’s control panel. Find the selection for
“Folder Options.” Click the “View” tab, and then unselect the option for “Hide extensions for known file types.”

For Windows 8, bring up a file explorer by hitting the Windows-E key. Then click the “view” tab and
make sure “File name extensions” has been checked.

Learn to Make Games and Get Paid
As you start to learn to program, you might soon find that it looks like work. We all know we’d rather skip
work and go farming for gold in World of Warcraft or Eve Online or some other game, right? So why learn to
program? What does a person get out of it?

Bags of money

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Before Getting Started…

10

Learn how to make games and get paid? Ok, I won’t pay you, but if you learn to program, there are
plenty of people that will pay you. Here’s how to profit:

	 1.	 Learn to program games.

	 2.	 Have fun making your own games.

	 3.	 Select a favorite job offer.

	 4.	 Profit.

Look, no ??? in this plan!
Think about it. You can play games, but anyone can do that. Being great at a video game really isn’t

much of an accomplishment in life if you think about it. Or you can learn to create games. People care
about that.

Get the Most from This Book
Great basketball players practice. So do great programmers.

Looking to make your time here worthwhile? Answer the chapter questions! Don’t skip them. They are
necessary to understand the material.

Do the exercises! This is even more important. Learning by only reading the material is about as useful
as trying to become an expert basketball player only by reading a book.

Practice! You might see other people that don’t have to practice. It isn’t fair. Or, you might be smarter
than other people, and they start doing better than you because they work at it and you don’t. That’s not fair
either. That’s life. Get used to it. Practice.

Are you reading this book as part of a class? Great! Did you know you can save time and copy the
answers and exercises from the Internet? You can also buy yourself a gym membership and send someone
else to work out for you. It makes about as much sense.

Seriously, what on earth are you thinking copying from someone else? If you aren’t going to do the
work, stop reading now and start filling out McDonald’s applications.

You can't learn without doing the work. Do the reading. Do the exercises.

Send Feedback
If you notice any errors or omissions in the book, please send me an e-mail. I’d like this to be the best
resource possible.

Dr. Paul Vincent Craven
Department Head, Computer Science Department
Simpson College, Indianola, Iowa, 50125 USA
paul.craven@simpson.edu

www.it-ebooks.info

http://mailto:paul.craven@simpson.edu/?subject=Comments+about+Introduction+to+Computer+Science+book
http://www.it-ebooks.info/

11

Chapter 2

Create a Custom Calculator

One of the simplest things that can be done with Python is to use it as a fancy calculator. Wait, a calculator
isn’t a game. Why are we talking about calculators? Boring....

Hey, to calculate objects dropping, bullets flying, and high scores, we need calculations. Plus, any
true geek will consider a calculator a toy rather than a torture device! Let’s start our game education with
calculators. Don’t worry, we’ll start graphics by Chapter 6.

A simple calculator program can be used to ask the user for information and then calculate boring
things like mortgage payments, or more exciting things like the trajectory of mud balls as they are flung
through the air.

The figure below shows an example program that calculates kinetic energy, something we might need
to do as part of a game physics engine.

Using Python to calculate kinetic energy

The best thing about doing this as a program is the ability to hide the complexities of an equation. All
the user needs to do is supply the information, and he or she can get the result in an easy-to-understand
format. Any similar custom calculator could run on a smart phone, allowing a person to easily perform the
calculation on the go.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

12

Printing
Printing Text
How does a program print something to the screen? The code is simple. Just one line is required:

print("Hello World.")

This program prints out “Hello World” to the screen. Go ahead and enter it into IDLE prompt and see
how it works. Try printing other words and phrases as well. The computer will happily print out just about
anything you like, true or not.

What does the “Hello World” program look like in other computer programming languages? Check
out Wikipedia. They keep a nice set of “Hello World” programs written in many different computer
programming languages: http://en.wikipedia.org/wiki/Hello_world_program_examples.

It is interesting to see how many different computer languages there are. You can get an idea how
complex a language is by how easy the “Hello World” program is.

Remember, the command for printing in Python is easy. Just use print. After the print command are a
set of parentheses (). Inside these parentheses is what should be printed to the screen. Using parentheses to
pass information to a function is standard practice in math and computer languages.

Math students learn to use parentheses evaluating expressions like $sin(\theta)=cos(\frac{\pi}{2}-\
theta)$. sin and cos are functions. Data passed to these functions is inside the parentheses. What is
different in our case is that the information being passed is text.

Notice that there are double quotes around the text to be printed. If a print statement has quotes around
text, the computer will print it out just as it is written. For example, this program will print 2+3:

print("2 + 3")

www.it-ebooks.info

http://en.wikipedia.org/wiki/Hello_world_program_examples
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

13

Printing Results of Expressions
This next program does not have quotes around $2+3$, and the computer will evaluate it as a mathematical
expression. It will print 5 rather than 2+3.

print(2 + 3)

The code below will generate an error because the computer will try to evaluate “Hello World” as a
mathematical expression, and that doesn’t work at all:

print(Hello World)

The code above will print out an error SyntaxError: invalid syntax, which is computer speak for not
knowing what “Hello” and “World” mean.

Also, please keep in mind that this is a single quote: ' and this is a double quote: ". If I ask for a double
quote, it is a common mistake to write "", which is really a double, double quote.

Printing Multiple Items
A print statement can output multiple things at once, each item separated by a comma. For example, this
code will print out Your new score is 1040:

print("Your new score is", 1030 + 10)

The next line of code will print out Your new score is 1030+10. The numbers are not added together
because they are inside the quotes. Anything inside quotes, the computer treats as text. Anything outside the
computer thinks is a mathematical statement or computer code.

print("Your new score is", "1030 + 10")

Does a comma go inside or outside the quotes?

This next code example doesn’t work at all. This is because there is no comma separating the text
between the quotes and the 1030+10. At first, it may appear that there is a comma, but the comma is inside
the quotes. The comma that separates the terms to be printed must be outside the quotes. If the programmer
wants a comma to be printed, then it must be inside the quotes:

print("Your new score is," 1030 + 10)

This next example does work, because there is a comma separating the terms. It prints:

Your new score is, 1040

Note that only one comma prints out. Commas outside the quotes separate terms, commas inside the
quotes are printed. The first comma is printed; the second is used to separate terms.

print("Your new score is,", 1030 + 10)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

14

Escape Codes
If quotes are used to tell the computer the start and end of the string of text you wish to print, how does a
program print out a set of double quotes? For example:

print("I want to print a double quote " for some reason.")

This code doesn’t work. The computer looks at the quote in the middle of the string and thinks that is
the end of the text. Then it has no idea what to do with the commands for some reason, and the quote and
the end of the string confuses the computer even further.

It is necessary to tell the computer that we want to treat that middle double quote as text, not as a quote
ending the string. This is easy: just prepend a backslash in front of quotes to tell the computer it is part of a
string, not a character that terminates a string. For example:

print("I want to print a double quote \" for some reason.")

This combination of the two characters \" is called an escape code. Almost every language has them.
Because the backslash is used as part of an escape code, the backslash itself must be escaped. For example,
this code does not work correctly:

print("The file is stored in C:\new folder")

Why? Because \n is an escape code. To print the backslash it is necessary to escape it like so:

print("The file is stored in C:\\new folder")

There are a few other important escape codes to know. Here is a table of the important escape codes:

Escape code Description

\’ Single Quote

\” Double Quote

\t Tab

\r CR: Carriage Return (move to the left)

\n LF: Linefeed (move down)

What is a carriage return and what is a linefeed? Try this example:

print("This\nis\nmy\nsample.")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

15

The output from this command is:

This
is
my
sample.

The \n is a linefeed. It moves the cursor where the computer will print text down one line. The
computer stores all text in one big long line. It knows to display the text on different lines because of the
placement of \n characters.

To make matters more complex, different operating systems have different standards on what makes a
line ending.

Escape codes Description

\r\n CR+LF: Microsoft Windows

\n LF: UNIX-based systems, and
newer Macs

\r CR: Older Mac-based systems

Usually your text editor will take care of this for you. Microsoft Notepad doesn’t though, and UNIX files
opened in notepad look terrible because the line endings don’t show up at all, or show up as black boxes.
Every programmer should have a good text editor installed on their computer. I recommend Sublime
(www.sublimetext.com/) or Notepad++ (http://notepad-plus-plus.org/).

Comments
Comments are important (even if the computer ignores them)!

Sometimes code needs some extra explanation to the person reading it. To do this, we add comments to
the code. The comments are meant for the human reading the code, and not for the computer.

There are two ways to create a comment. The first is to use the # symbol. The computer will ignore any
text in a Python program that occurs after the #. For example:

This is a comment, it begins with a # sign
and the computer will ignore it.
 
print("This is not a comment, the computer will")
print("run this and print it out.")

If a program has the # sign between quotes it is not treated as a comment. A programmer can disable a
line of code by putting a # sign in front of it. It is also possible to put a comment in at the end of a line.

print("A # sign between quotes is not a comment.")
 
print("This is a comment, even if it is computer code.")
 
print("Hi") # This is an end-of-line comment

www.it-ebooks.info

http://www.sublimetext.com/
http://notepad-plus-plus.org/
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

16

It is possible to comment out multiple lines of code using three single quotes in a row to delimit the
comments.

print("Hi")
'''
This is
a
multi
line
comment. Nothing
Will run in between these quotes.
print("There")
'''
print("Done")

Most professional Python programmers will only use this type of multiline comment for something
called docstrings. Docstrings allow documentation to be written alongside the code and later be
automatically pulled out into printed documentation, web sites, and Integrated Development Environments
(IDEs). For general comments, the # tag works best.

Even if you are going to be the only one reading the code that you write, comments can help save time.
Adding a comment that says “Handle alien bombs” will allow you to quickly remember what that section of
code does without having to read and decipher it.

Assignment Operators
How do we store the score in our game? Or keep track of the health of the enemy? What we need to do this is
the assignment operator.

An operator is a symbol like + or -. An assignment operator is the = symbol. It stores a value into
a variable to be used later on. The code below will assign 10 to the variable x and then print the value
stored in x.

Look at the example below.

Create a variable x
Store the value 10 into it.
x = 10
 
This prints the value stored in x.
print(x)
 
This prints the letter x, but not the value in x
print("x")
 
This prints "x= 10"
print("x=", x)

Variables go outside the quotes, not inside.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

17

■■ Note  The listing above also demonstrates the difference between printing an x inside quotes and an x
outside quotes. If an x is inside quotation marks, then the computer prints x. If an x is outside the quotation
marks then the computer will print the value of x. Getting confused on the "inside or outside of quotes"
question is very common for those learning to program.

An assignment statement (a line of code using the = operator) is different than the algebraic equality
your learned about in math. Do not think of them as the same. On the left side of an assignment operator
must be exactly one variable. Nothing else may be there.

On the right of the equals sign/assignment operator is an expression. An expression is anything that
evaluates to a value. Examine the code below.

x = x + 1

The code above obviously can’t be an algebraic equality. But it is valid to the computer because it is an
assignment statement. Mathematical equations are different than assignment statements even if they have
variables, numbers, and an equals sign.

The code above the statement takes the current value of x, adds one to it, and stores the result back into x.
Expanding our example, the statement below will print the number 6.

x = 5
x = x + 1
print(x)

Statements are run sequentially. The computer does not look ahead. In the code below, the computer
will print out 5 on line 2, and then line 4 will print out a 6. This is because on line 2, the code to add one to x
has not been run yet.

x = 5
print(x) # Prints 5
x = x + 1
print(x) # Prints 6

The next statement is valid and will run, but it is pointless. The computer will add one to x, but the
result is never stored or printed.

x + 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

18

The code below will print 5 rather than 6 because the programmer forgot to store the result of x + 1
back into the variable x.

x = 5
x + 1
print(x)

The statement below is not valid because on the left of the equals sign is more than just a variable:

x + 1 = x

Python has other types of assignment operators. They allow a programmer to modify a variable easily.
For example:

x += 1

The above statement is equivalent to writing the code below:

x = x + 1

There are also assignment operators for addition, subtraction, multiplication, and division.

Variables
Variables start with a lowercase letter.

Variables should start with a lowercase letter. Variables can start with an uppercase letter or an
underscore, but those are special cases and should not be done on a normal basis. After the first lowercase
letter, the variable may include uppercase and lowercase letters, along with numbers and underscores.
Variables may not include spaces.

Variables are case sensitive. This can be confusing if a programmer is not expecting it. In the code
below, the output will be 6 rather than 5 because there are two different variables, x and X.

x = 6
X = 5
print(x)

The official style guide for Python (yes, programmers really wrote a book on style) says that multiword
variable names in Python should be separated by underscores. For example, use hair_style and not
hairStyle. Personally, I don’t care about this rule too much because the next language we introduce, Java,
has the exact opposite style rule. I used to try teaching Java-style rules in chapters like this, but then I started
getting hate mail from Python lovers. These people came by my web site and were shocked, shocked I tell
you, about my poor style.

Joan Rivers has nothing on these people, so I gave up and try to use proper style guides now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

19

Here are some example variable names that are ok and not ok to use:

Legal variable names Illegal variable names Legal, but not proper

first_name first name FirstName

distance 9ds firstName

ds9 %correct X

All uppercase variable names like MAX_SPEED are allowed only in circumstances where the variable’s
value should never change. A variable that isn’t variable is called a constant.

Operators
For more complex mathematical operations, common mathematical operators are available. Along with
some not-so-common ones:

operator operation example equation example code

+ addition 3 + 2 a = 3 + 2

- subtraction 3 - 2$ a = 3 - 2

* multiplication 3 ∙ 2 a = 3 * 2

/ division
10

2
a = 10 / 2

// floor division N/A a = 10 // 3

** power 23 a = 2 ** 3

% modulus N/A a = 8 % 3

Floor division will always round the answer down to the nearest integer. For example, 11//2 will be 5,
not 5.5, and 99//100 will equal 0.

Multiplication by juxtaposition does not work in Python. The following two lines of code will not work:

These do not work
x = 5y
x = 5(3/2)

It is necessary to use the multiplication operator to get these lines of code to work:

These do work
x = 5 * y
x = 5 * (3 / 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

20

Operator Spacing
There can be any number of spaces before and after an operator, and the computer will understand it just
fine. For example, each of these three lines is equivalent:

x=5*(3/2)
x = 5 * (3 / 2)
x =5 *(3/ 2)

The official style guide for Python says that there should be a space before and after each operator.
(You’ve been dying to know, right? Ok, the official style guide for python code is called PEP-8 (http://www.
python.org/dev/peps/pep-0008/). Look it up for more excitement). Of the three lines of code above, the
most stylish one would be line 2.

Order of Operations
Python will evaluate expressions using the same order of operations that are expected in standard
mathematical expressions. For example this equation does not correctly calculate the average:

average = 90 + 86 + 71 + 100 + 98 / 5

The first operation done is 98/5. The computer calculates:

90 86 71 100
98

5
+ + + +

rather than the desired:

90 86 71 100 98

5

+ + + +

By using parentheses this problem can be fixed:

average = (90 + 86 + 71 + 100 + 98) / 5

Trig Functions
Trigonometric functions are used to calculate sine and cosine in equations. By default, Python does not
know how to calculate sine and cosine, but it can once the proper library has been imported. Units are in
radians.

Import the math library
This line is done only once, and at the very top
of the program.
from math import *
 
Calculate x using sine and cosine
x = sin(0) + cos(0)

www.it-ebooks.info

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

21

Custom Equation Calculators
A program can use Python to calculate the mileage of a car that drove 294 miles on 10.5 gallons of gas.

m = 294 / 10.5
print(m)

This program can be improved by using variables. This allows the values to easily be changed in the
code without modifying the equation.

m = 294
g = 10.5
m2 = m / g # This uses variables instead
print(m2)

Good variable names are important.

By itself, this program is actually difficult to understand. The variables m and g don’t mean a lot without
some context. The program can be made easier to understand by using appropriately named variables:

miles_driven = 294
gallons_used = 10.5
mpg = miles_driven / gallons_used
print(mpg)

Now, even a non-programmer can probably look at the program and have a good idea of what it does.
Another example of good versus bad variable naming:

Hard to understand
ir = 0.12
b = 12123.34
i = ir * b
 
Easy to understand
interest_rate = 0.12
account_balance = 12123.34
interest_amount = interest_rate * account_balance

In the IDLE editor it is possible to edit a prior line without retyping it. Do this by moving the cursor to
that line and hitting the enter key. It will be copied to the current line.

Entering Python code at the >>> prompt is slow and can only be done one line at a time. It is also not
possible to save the code so that another person can run it. Thankfully, there is an even better way to enter
Python code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

22

Python code can be entered using a script. A script is a series of lines of Python code that will be
executed all at once. To create a script, open up a new window as shown in the figure below.

Entering a script

You may wish to use a different program to create your script, like the Wing IDE or PyCharm. These
programs are easier and more powerful than the IDLE program that comes with Python.

Enter the Python program for calculating gas mileage, and then save the file. Save the file to a flash
drive, network drive, or some other location of your choice. Python programs should always end with .py.
See the figure below.

Saving a script

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

23

Run the program typed in by clicking on the Run menu and selecting Run Module. Try updating the
program to different values for miles driven and gallons used.

Caution, common mistake!

From this point forward, almost all code entered should be in a script/module. Do not type your
program out on the IDLE >>> prompt. Code typed here is not saved. If this happens, it will be necessary to
start over. This is a very common mistake for new programmers.

This program would be even more useful if it would interact with the user and ask the user for the miles
driven and gallons used. This can be done with the input statement. See the code below:

This code almost works
miles_driven = input("Enter miles driven:")
gallons_used = input("Enter gallons used:")
mpg = miles_driven / gallons_used
print("Miles per gallon:", mpg)

Running this program will ask the user for miles and gallons, but it generates a strange error as shown in
the figure below.

Error running MPG program

The reason for this error can be demonstrated by changing the program a bit:

miles_driven = input("Enter miles driven:")
gallons_used = input("Enter gallons used:")
x = miles_driven + gallons_used
print("Sum of m + g:", x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

24

Running the program above results in the output shown below.

Incorrect Addition

The program doesn’t add the two numbers together: it just puts one right after the other. This is because
the program does not know the user will be entering numbers. The user might enter Bob and Mary, and
adding those two variables together would be BobMary, which would make more sense.

To tell the computer these are numbers, it is necessary to surround the input function with an int()
or a float(). Use the former for integers, and the latter for floating point numbers.

The final working program:

Sample Python/Pygame Programs
Simpson College Computer Science
http://programarcadegames.com/
http://simpson.edu/computer-science/
 
Explanation video: http://youtu.be/JK5ht5_m6Mk
 
Calculate Miles Per Gallon
print("This program calculates mpg.")
 
Get miles driven from the user
miles_driven = input("Enter miles driven:")
Convert text entered to a
floating point number
miles_driven = float(miles_driven)
 
Get gallons used from the user
gallons_used = input("Enter gallons used:")
Convert text entered to a
floating point number
gallons_used = float(gallons_used)
 
Calculate and print the answer
mpg = miles_driven / gallons_used
print("Miles per gallon:", mpg)

www.it-ebooks.info

http://programarcadegames.com/
http://simpson.edu/computer-science/
http://youtu.be/JK5ht5_m6Mk
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

25

And another example, calculating the kinetic energy of an object:

Sample Python/Pygame Programs
Simpson College Computer Science
http://programarcadegames.com/
http://simpson.edu/computer-science/
 
Calculate Kinetic Energy
 
print("This program calculates the kinetic energy of a moving object.")
m_string = input("Enter the object's mass in kilograms: ")
m = float(m_string)
v_string = input("Enter the object's speed in meters per second: ")
v = float(v_string)
 
e = 0.5 * m * v * v
print("The object has " + str(e) + " joules of energy.")

To shorten a program, it is possible to nest the input statement into the float statement. For example,
these lines of code:

milesDriven = input("Enter miles driven:")
milesDriven = float(milesDriven)

perform the same as this line:

milesDriven = float(input("Enter miles driven:"))

In this case, the output of the input function is directly fed into the float function. Either one works,
and it is a matter of programmer’s preference which to choose. It is important, however, to be able to
understand both forms.

Review
Multiple Choice Quiz
	 1.	 What is the correct code to print out the words ’Hello World’ to the screen?

a.	 print (Hello World)

b.	 print 'Hello World'

c.	 print {'Hello World'}

d.	 print Hello World

e.	 print ['Hello World']

f.	 print ("Hello World")

g.	 print {'Hello World'}

www.it-ebooks.info

http://programarcadegames.com/
http://simpson.edu/computer-science/
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

26

	 2.	 What does this code output?

a = 1
b = 3
print(a + b)

a.	 A+B

b.	 a+b

c.	 "a+b"

d.	 4

e.	 1+3

f.	 Nothing, the code is invalid.

	 3.	 What does this code output?

a = 1
b = 3
print("a+b")

a.	 A+B

b.	 a+b

c.	 "a+b"

d.	 The values of a and b added together.

e.	 10

f.	 Nothing, the code is invalid.

	 4.	 What does this code output?

print("The answer to 10+10 is," 10+10)

a.	 The answer to 10+10 is 10+10

b.	 The answer to 10+10 is 20

c.	 The answer to 10+10 is10+10

d.	 The answer to 10+10 is20

e.	 The answer to 10+10 is,10+10

f.	 The answer to 10+10 is,20

g.	 Nothing, the code is invalid.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

27

	 5.	 What does this code output?

print("Hello")

a.	 Hello

b.	 "Hello"

c.	 Nothing, there is an error in the code.

d.	 Nothing, the code is commented out.

	 6.	 What does this code output?

x = 10
print("x")

a.	 "x"

b.	 x

c.	 10

d.	 Nothing

	 7.	 What does this code output?

x = 10
x + 1
print(x)

a.	 10

b.	 11

c.	 "x"

d.	 x

e.	 Nothing

	 8.	 What does this code output?

x = 10 + 6 / 2
x = x + 1
print(x)

a.	 8

b.	 9

c.	 13

d.	 14

e.	 Nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

28

	 9.	 What does this code output?

x = input("Enter a value:")
print(x / 2)

a.	 10

b.	 0

c.	 The value the user entered.

d.	 The value the user entered divided by two.

e.	 An error because the value was not converted to a number.

	 10.	 What does this code output?

print("Have a "great" day!")

a.	 "Have a "great" day!"

b.	 Have a "great" day!

c.	 Have a great day!

d.	 Nothing, the double quotes make for a syntax error.

	 11.	 What does this code output?

print("Save in c:\new folder")

a.	 Save in c:\new folder

b.	 Save in c:

ew folder

c.	 Save in c:ew folder

d.	 Nothing, the escape code makes for a syntax error.

Short Answer Worksheet
	 1.	 Write a line of code that will print your name.

	 2.	 How do you enter a comment in a program?

	 3.	 What do the following lines of code output? ALSO: Why do they give a
different answer?

print(2 / 3)
print(2 // 3)

	 4.	 Write a line of code that creates a variable called pi and sets it to an
appropriate value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

29

	 5.	 Why does this code not work?

A = 22
print(a)

	 6.	 All of the variable names below can be used. But which ONE of these is the better
variable name to use?

a
A
Area
AREA
area
area_of_rectangle
Area_Of_Rectangle

	 7.	 Which of these variables names are not allowed in Python? (More than one
might be wrong. Also, this question is not asking about improper names, just
names that aren’t allowed. Test them if you aren’t sure.)

apple
Apple
APPLE
Apple2
1Apple
account number
account_number
account.number
accountNumber
account#
pi
PI
fred
Fred
GreatBigVariable
greatBigVariable
great_big_variable
great.big.variable
2x
x2x
total%
#left

	 8.	 Why does this code not work?

print(a)
a = 45

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

30

	 9.	 Explain the mistake in this code:

pi = float(3.14)

	 10.	 This program runs, but the code still could be better. Explain what is wrong with
the code.

radius = float(input("Radius:"))
x = 3.14
pi = x
area = pi * radius ** 2
print(area)

	 11.	 Explain the mistake in the following code:

x = 4
y = 5
a = ((x) * (y))
print(a)

	 12.	 Explain the mistake in the following code:

x = 4
y = 5
a = 3(x + y)
print(a)

	 13.	 Explain the mistake in the following code:

radius = input(float("Enter the radius:"))

	 14.	 Do all these print the same value? Which one is better to use and why?

print(2/3+4)
print(2 / 3 + 4)
print(2 / 3+ 4)

	 15.	 What is a constant?

	 16.	 How are variable names for constants different than other variable names?

	 17.	 What is a single quote and what is a double quote? Give and label an example
of both.

	 18.	 Write a Python program that will use escape codes to print a double quote and
a new line using the Window’s standard. (Note: I’m asking for the Window’s
standard here. Look it up out of Chapter 1.)

	 19.	 Can a Python program print text to the screen using single quotes instead of
double quotes?

	 20.	 Why does this code not calculate the average?

print(3 + 4 + 5 / 3)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_1
http://www.it-ebooks.info/

Chapter 2 ■ Create a Custom Calculator

31

	 21.	 What is an operator in Python?

	 22.	 What does the following program print out?

x = 3
x + 1
print(x)

	 23.	 Correct the following code:

user_name = input("Enter your name:)"

	 24.	 Correct the following code:

value = int(input(print("Enter your age")))

Exercise
Check the appendix for the exercise that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

33

Chapter 3

What Is a Computer Language?

What makes a computer language? Why do computers have them? Why are there so many different
computer languages?

It isn’t necessary to understand the answer to these questions to do basic programming, just like
understanding how an engine works isn’t necessary to drive a car. However, to progress to an advanced level
it is. This chapter provides a brief explanation to help you get started.

Short History of Programming
Computers are electronic, and they are digital. To a computer everything is in terms of no voltage potential
along a wire or some voltage available. No voltage means a zero to the computer, and some voltage means a
one. Computers can’t actually count higher than that without combining multiple ones and zeros.

In the early days, switches were used to load ones or zeros into computer memory. The figure below,
courtesy of Wikimedia Commons (http://en.wikipedia.org/wiki/File:Altair_Computer_Front_Panel.jpg),
shows an Altair 8800. The front panel switches were used to load in the program. The lights showed the
output. There was no monitor.

Altair 8800

www.it-ebooks.info

http://en.wikipedia.org/wiki/File:Altair_Computer_Front_Panel.jpg
http://en.wikipedia.org/wiki/File:Altair_Computer_Front_Panel.jpg
http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

34

Each set of on/off switches represented a number. Each number would represent data or an instruction
for the computer to perform. This system of only using ones and zeros to represent numbers is called the
binary number system. This type of computer language is called a 1GL (First Generation Language). Note:
there isn’t a language called 1GL, it is just an abbreviation for First Generation Language. 1GL is the same
thing as the machine’s native language (machine language) where numbers represent the commands and
data for the program.

Binary numbers are usually represented in groups of four. For example:

1010 0010 0011

Both data and computer instructions are stored in binary. Machine languages are the binary numbers
representing instructions that the computer interprets. Not all binary data is machine language, however.
Data such as documents, databases, and financial figures are also stored in binary on the computer. This
data is, of course, is not intended to be run by the computer.

An improvement over entering programs via switches was the use of hexadecimal codes. The decimal
numbers used by most people use the digits 0–9. Hexadecimal uses the numbers 0–9 and A–F to represent
a set of four switches, or the numbers 0–15. See the table below for an idea of how binary, decimal, and
hexadecimal relate.

Binary Decimal Hexadecimal

0 0 0

1 1 1

10 2 2

11 3 3

100 4 4

101 5 5

110 6 6

111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

1 0000 16 10

1 0001 17 11

In order to make entering programs easier, later computers allowed users to enter programs using
assembly language. Each command used a mnemonic, and a program called a compiler would change the
mnemonics into the numbers that represented the commands. Assembly Language is also called a 2GL
language, or Second Generation Language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

35

The figure below shows part of an example assembly language program, also courtesy of the Wikimedia
Commons (http://en.wikipedia.org/wiki/File:Altair_Computer_Front_Panel.jpg).

Example assembly language

www.it-ebooks.info

http://en.wikipedia.org/wiki/File:Motorola_6800_Assembly_Language.png
http://en.wikipedia.org/wiki/File:Motorola_6800_Assembly_Language.png
http://en.wikipedia.org/wiki/File:Altair_Computer_Front_Panel.jpg
http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

36

While this was an improvement, it still wasn’t very easy to program. The next generation of languages
allowed for higher-level abstractions. The first of the third generation languages (COBOL, FORTRAN, and
LISP) were a lot easier to understand and program.

The second and third generation languages used a program called a compiler. A compiler takes the
program typed in by the user (called source code) and turns it into machine code. The programmer then runs
the machine code. The original source code is not run.

If there are several pieces of source code in a program, they can be linked together into one program
with the use of a program called a linker. The linker is run on the machine code generated by the compiler
to generate a final program. This final program is what the user runs, and the original source code is not
needed.

Compilers and linkers

A disadvantage of compiling to machine language is that the program only works for that particular type
of machine. Programs compiled for Windows computers do not work on Apple Macintosh computers or
Linux computers.

Because the whole compile and link steps could be complex for new programmers, some languages
instead ran using interpreters. These programs look at the source code and interpret it to machine language
instructions on the fly. It also allows the same programs to run on Windows, Mac, and Unix computers,
provided there is an interpreter available for each platform.

The drawback of using interpreters is that it is slower to operate through an interpreter than in the
machine’s native language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

37

Interpreter

Python is an example of an interpreted language. It is easier to develop in Python than C, but Python
runs slower and must have a Python interpreter to work.

Languages such as Java use a system where programs are compiled to machine code that runs on a Java
Virtual Machine (JVM), rather than the actual machine. Another popular language that does this is C#, a
Common Language Infrastructure (CLI) language that runs on the Virtual Execution System (VES) virtual
machine. A full discussion of these is beyond the scope of this book, but feel free to read up on them.

There are many different computer languages today. Because computers perform so many types of
tasks, different languages have been developed that specialize in these tasks. Languages such as C are good
for operating systems and small embedded computers. Other languages like PHP specialize in creating web
pages. Python is a general purpose language that specializes in being easy-to-use.

The company Tiobe keeps track of the popularity of various programming language in their index that
is updated each month. It is a good idea to look here, and at job placement boards like DICE (http://www.
dice.com/) to keep up to date with what languages are popular.

Thankfully almost all languages share the same common elements, and once one language has been
learned, the same theories will apply to the other languages.

For an entertaining history of computing, I recommend watching Triumph of the Nerds by Robert X
Cringely, a three-part series on the origins of computing. The movies are entertaining enough that your
entire family might enjoy them. I also recommend the book Accidental Empires if you are more into reading
than video.

What happens after those videos? They don’t even cover the birth of the Internet! To learn more about
that, check out the video series Nerds 2.0.1 also by Robert X Cringely.

www.it-ebooks.info

http://www.dice.com/
http://www.dice.com/
http://www.dice.com/
http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

38

Review
Multiple Choice Quiz
	 1.	 Which of these is the best example of a binary number

a.	 101101

b.	 82

c.	 3FA

d.	 GAF

	 2.	 Which of these is the best example of a decimal number?

a.	 101101

b.	 82

c.	 3FA

d.	 GAF

	 3.	 Which of these is the best example of a hexadecimal number?

a.	 101101

b.	 82

c.	 3FA

d.	 GAF

	 4.	 What is the decimal number equivalent to the binary number “100”?

a.	 1

b.	 2

c.	 3

d.	 4

e.	 8

f.	 None of the above

	 5.	 What is source code?

a.	 Runs source code directly, without compiling

b.	 The machine code the computer runs

c.	 Converts source code to machine code

d.	 The program the developer types into the computer

e.	 Links machine code together into one big program

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

39

	 6.	 What is machine code?

a.	 Runs source code directly, without compiling

b.	 Converts source code to machine code

c.	 The native code the computer runs

d.	 The program the developer types into the computer

e.	 Links machine code together into one big program

	 7.	 What is a compiler?

a.	 The machine code the computer runs

b.	 Converts source code to machine code

c.	 The program the developer types into the computer

d.	 Links machine code together into one big program

e.	 Runs source code directly, without compiling

	 8.	 What is an interpreter?

a.	 Converts source code to machine code

b.	 Runs source code directly, without compiling

c.	 The program the developer types into the computer

d.	 The machine code the computer runs

e.	 Links machine code together into one big program

	 9.	 What is a linker?

a.	 Links machine code together into one big program

b.	 Converts source code to machine code

c.	 The program the developer types into the computer

d.	 The machine code the computer runs

e.	 Runs source code directly, without compiling

	 10.	 What is a first generation language (1GL)?

a.	 Assembly language

b.	 Language like Python or C that has logical structures

c.	 Machine language

d.	 A language built for a specific purpose

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ What Is a Computer Language?

40

	 11.	 What is a second generation language (2GL)?

a.	 Language like Python or C that has logical structures

b.	 Assembly language

c.	 Machine language

d.	 A language built for a specific purpose

	 12.	 What is a third generation language (3GL)?

a.	 A language built for a specific purpose

b.	 Assembly language

c.	 Machine language

d.	 Language like Python or C that has logical structures

Short Answer Worksheet
	 1.	 Give an example of a binary number. (While a number such as 1 can be a binary,

decimal, and hexadecimal number, try coming up with an example that better
illustrates the differences between the different bases of numbers.)

	 2.	 Give an example of a decimal number.

	 3.	 Give an example of a hexadecimal number.

	 4.	 Convert the numbers 1, 10, 100, 1000, and 10000 from binary to decimal.

	 5.	 What is a compiler?

	 6.	 What is source code?

	 7.	 What is machine language? (Don’t just say binary. That’s not correct.)

	 8.	 What is a first generation language? (Don’t just say binary. That’s not correct.)

	 9.	 What is a second generation language?

	 10.	 What is a third generation language? (Explain, don’t just give one example.)

	 11.	 What is an interpreter and how does it differ from a compiler?

	 12.	 Search the Web and find some of the most popular programming languages. List
the web site(s) you got the information from and what the languages are.

	 13.	 Look at the job boards and see what languages people are looking for. List the
languages and the job board you looked at.

	 14.	 What is the difference between the syntax and semantics of a language?

	 15.	 Pick a piece of technology, other than a computer you use regularly. Briefly
describe the hardware and software that run on it.

Exercise
Check the appendix for the exercise that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

41

Chapter 4

Quiz Games and If Statements

How do we tell if a player has beaten the high score? How can we tell if he has run out of lives? How can we
tell if she has the key required to open the locked door?

What we need is the if statement. The if statement is also known as a conditional statement. (You
can use the term conditional statement when you want to impress everyone how smart you are.) The if
statement allows a computer to make a decision. Is it hot outside? Has the spaceship reached the edge of the
screen? Has too much money been withdrawn from the account? A program can test for these conditions
with the if statement.

Basic Comparisons
Here are a few examples of if statements. The first section sets up two variables (a and b) for use in the if
statements. Then two if statements show how to compare the variables to see if one is greater than the
other.

Variables used in the example if statements
a = 4
b = 5
 
Basic comparisons
if a < b:
 print("a is less than b")
 
if a > b:
 print("a is greater than b")
 
print("Done")

Since a is less than b, the first statement will print out if this code is run. If the variables a and b were
both equal to 4, then neither of the two if statements above would print anything out. The number 4 is not
greater than 4, so the if statement would fail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

42

To show the flow of a program a flowchart may be used. Most people can follow a flowchart even
without an introduction to programming. See how well you can understand the following figure.

Flowchart

This book skips an in-depth look at flowcharting because it is boring. But if you want to be a superstar
programmer, please read more about it at: http://en.wikipedia.org/wiki/Flowchart.

The prior example checked for greater than or less than. Numbers that were equal would not pass the
test. To check for a values greater than or equal, the following examples show how to do this:

if a <= b:
 print("a is less than or equal to b")
 
if a >= b:
 print("a is greater than or equal to b")

www.it-ebooks.info

http://en.wikipedia.org/wiki/Flowchart
http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

43

The <= and >= symbols must be used in order, and there may not be a space between them. For
example, =< will not work, nor will < =.

When writing these statements out, some people like to use the £ symbol. For example:

if a £ b:

This £ symbol doesn’t actually work in a program. Plus most people don’t know how to easily type it on
the keyboard. (Just in case you are curious, to type it hold down the ‘alt’ key while typing 243 on the number
pad.) So when writing out code, remember that it is <= and not £.

The next set of code checks to see if two items are equal or not. The operator for equal is == and the
operator for not equal is !=. Here they are in action.

Equal
if a == b:
 print("a is equal to b")
 
Not equal
if a != b:
 print("a and b are not equal")

Learn when to use = and ==.
It is very easy to mix up when to use == and =. Use == if you are asking if they are equal, use = if you are

assigning a value.
The two most common mistakes in mixing the = and == operators are demonstrated below:

This is wrong
a == 1
 
This is also wrong
if a = 1:
 print("A is one")

Stop! Please take a moment to go back and carefully study the last two code examples. Save time later by
making sure you understand when to use = and ==. Don’t guess.

Indentation
Indentation matters. Each line under the if statement that is indented will only be executed if the statement
is true:

if a == 1:
 print("If a is one, this will print.")
 print("So will this.")
 print("And this.")
 
print("This will always print because it is not indented.")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

44

Indentation must be the same. This code doesn’t work.

if a == 1:
 print("Indented two spaces.")
 print("Indented four. This will generate an error.")
 print("The computer will want you to make up your mind.")

Once an if statement has been finished, it is not possible to re-indent to go back to it. The test has to be
performed again.

if a == 1:
 print("If a is one, this will print.")
 print("So will this.")
 
print("This will always print because it is not indented.")
 print("This will generate an error. Why it is indented?")

Using And/Or
An if statement can check multiple conditions by chaining together comparisons with and and or. These
are also considered to be operators just like + or - are.

And
if a < b and a < c:
 print("a is less than b and c")
 
Non-exclusive or
if a < b or a < c:
 print("a is less than either b or c (or both)")

Repeat yourself please.
A common mistake is to omit a variable when checking it against multiple conditions. The code below

does not work because the computer does not know what to check against the variable c. It will not assume
to check it against a.

This is not correct
if a < b or < c:
 print("a is less than b and c")

Boolean Variables
Python supports Boolean variables. What are Boolean variables? Boolean variables can store either a True
or a value of False. Boolean algebra was developed by George Boole back in 1854. If only he knew how
important his work would become as the basis for modern computer logic!

www.it-ebooks.info

http://en.wikipedia.org/wiki/Boolean_logic
http://en.wikipedia.org/wiki/George_Boole
http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

45

An if statement needs an expression to evaluate to True or False. What may seem odd is that it does
not actually need to do any comparisons if a variable already evaluates to True or False.

Boolean data type. This is legal!
a = True
if a:
 print("a is true")

Back when I was in school it was popular to say some false statement. Wait three seconds, then shout
“NOT!” Well, even your computer thinks that is lame. If you are going to do that, you have to start with the
not operator. The following code uses the not to flip the value of a between true and false.

How to use the not function
if not(a):
 print("a is false")

Because not is an operator and not a function, the parentheses aren’t necessary. This is also legal:

How to use the not function
if not a:
 print("a is false")

It is also possible to use Boolean variables with and and or operators.

a = True
b = False
 
if a and b:
 print("a and b are both true")

Who knew True/False could be hard?
It is also possible to assign a variable to the result of a comparison. In the code below, the variables a

and b are compared. If they are equal, c will be True; otherwise c will be False.

a = 3
b = 3
This next line is strange-looking, but legal.
c will be true or false, depending if
a and b are equal.
c = a == b
Prints value of c, in this case True
print(c)

Zero means False. Everything else is True.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

46

It is possible to create an if statement with a condition that does not evaluate to true or false. This is not
usually desired, but it is important to understand how the computer handles these values when searching
for problems. The statement below is legal and will cause the text to be printed out because the values in the
if statement are nonzero:

if 1:
 print("1")
if "A":
 print("A")

The code below will not print out anything because the value in the if statement is zero, which is treated
as False. Any value other than zero is considered true.

if 0:
 print("Zero")

In the code below, the first if statement appears to work. The problem is that it will always trigger as
true even if the variable a is not equal to b. This is because b by itself is considered true.

a = "c"
if a == "B" or "b":
 print("a is equal to b. Maybe.")
 
This is a better way to do the if statement.
if a == "B" or a == "b":
 print("a is equal to b.")

Else and Else If
Below is code that will get the temperature from the user and print if it is hot.

temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
print("Done")

If the programmer wants code to be executed if it is not hot, she can use the else statement. Notice
how the else is lined up with the i in the if statement, and how it is followed by a colon just like the if
statement.

In the case of an if...else statement, one block of code will always be executed. The first block will be
executed if the statement evaluates to True, the second block if it evaluates to False.

temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
else:
 print("It is not hot outside")
print("Done")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

47

It is possible to chain several if statements together using the else...if statement. Python abbreviates
this as elif.

temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
elif temperature < 30:
 print("It is cold outside")
else:
 print("It is not hot outside")
print("Done")

In the code below, the program will output “It is hot outside” even if the user types in 120 degrees. Why?
How can the code be fixed?

temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
elif temperature > 110:
 print("Oh man, you could fry eggs on the pavement!")
elif temperature < 30:
 print("It is cold outside")
else:
 print("It is ok outside")
print("Done")

Text Comparisons
It is possible to use an if statement to check text.

user_name = input("What is your name? ")
if user_name == "Paul":
 print("You have a nice name.")
else:
 print("Your name is ok.")

The prior example will only match if the user enters “Paul”. It will not work if the user enters “paul”
or “PAUL”.

A common mistake is to forget the quotes around the string being compared. In the example below, the
computer will think that Paul is a variable that stores a value. It will flag an error because it has no idea what
is stored in the variable Paul.

user_name = input("What is your name? ")
if user_name == Paul: # This does not work because quotes are missing
 print("You have a nice name.")
else:
 print("Your name is ok.")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

48

Multiple Text Possibilities
When comparing a variable to multiple possible strings of text, it is important to remember that the
comparison must include the variable. For example:

This does not work! It will always be true
if user_name == "Paul" or "Mary":

Instead, the code should read:

This does work
if user_name == "Paul" or user_name == "Mary":

This is because any value other than zero, the computer assumes to mean True. So to the computer
"Mary" is the same thing as True and so it will run the code in the if statement.

Case Insensitive Comparisons
If the program needs to match regardless as to the case of the text entered, the easiest way to do that is to
convert everything to lowercase. This can be done with the lower command.

Learn to be insensitive.
The example below will take whatever the user enters, convert it to lower case, and then do the

comparison. Important: Don’t compare it against a string that has uppercase. If the user input is converted
to lowercase, then compared against uppercase letters, there is no way a match can occur.

user_name = input("What is your name? ")
if user_name.lower() == "paul":
 print("You have a nice name.")
else:
 print("Your name is ok.")

Example if Statements
The next set of example code below runs through all the concepts talked about earlier.

Sample Python/Pygame Programs
Simpson College Computer Science
http://programarcadegames.com/
http://simpson.edu/computer-science/
 
Explanation video: http://youtu.be/pDpNSck2aXQ
 
Variables used in the example if statements
a = 4
b = 5
c = 6
 

www.it-ebooks.info

http://programarcadegames.com/
http://simpson.edu/computer-science/
http://youtu.be/pDpNSck2aXQ
http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

49

Basic comparisons
if a < b:
 print("a is less than b")
 
if a > b:
 print("a is greater than than b")
 
if a <= b:
 print("a is less than or equal to b")
 
if a >= b:
 print("a is greater than or equal to b")
 
NOTE: It is very easy to mix when to use == and =.
Use == if you are asking if they are equal, use =
if you are assigning a value.
if a == b:
 print("a is equal to b")
 
Not equal
if a != b:
 print("a and b are not equal")
 
And
if a < b and a < c:
 print("a is less than b and c")
 
Non-exclusive or
if a < b or a < c:
 print("a is less than either a or b (or both)")
 
Boolean data type. This is legal!
a = True
if a:
 print("a is true")
 
if not a:
 print("a is false")
 
a = True
b = False
 
if a and b:
 print("a and b are both true")
 
a = 3
b = 3
c = a == b
print(c)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

50

These are also legal and will trigger as being true because
the values are not zero:
if 1:
 print("1")
if "A":
 print("A")
 
This will not trigger as true because it is zero.
if 0:
 print("Zero")
 
Comparing variables to multiple values.
The first if statement appears to work, but it will always
trigger as true even if the variable a is not equal to b.
This is because "b" by itself is considered true.
a = "c"
if a == "B" or "b":
 print("a is equal to b. Maybe.")
 
This is the proper way to do the if statement.
if a == "B" or a == "b":
 print("a is equal to b.")
 
Example 1: If statement
temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
print("Done")
 
Example 2: Else statement
temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
else:
 print("It is not hot outside")
print("Done")
 
Example 3: Else if statement
temperature = int(input("What is the temperature in Fahrenheit? "))
if temperature > 90:
 print("It is hot outside")
elif temperature < 30:
 print("It is cold outside")
else:
 print("It is not hot outside")
print("Done")
 
Example 4: Ordering of statements
Something with this is wrong. What?
temperature = int(input("What is the temperature in Fahrenheit? "))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

51

if temperature > 90:
 print("It is hot outside")
elif temperature > 110:
 print("Oh man, you could fry eggs on the pavement!")
elif temperature < 30:
 print("It is cold outside")
else:
 print("It is ok outside")
print("Done")
 
Comparisons using string/text
Note, this example does not work when running under Eclipse
because the input will contain an extra carriage return at the
end. It works fine under IDLE.
userName = input("What is your name? ")
if userName == "Paul":
 print("You have a nice name.")
else:
 print("Your name is ok.")

Review
Multiple Choice Quiz
	 1.	 Which statement will check if a is less than b?

a.	 if a less than b:

b.	 if a < b

c.	 if a > b

d.	 if a < b:

e.	 if (a < b)

f.	 if a >= b

g.	 if a <= b:

	 2.	 Which statement will check if a is equal to b?

a.	 if a equals b:

b.	 if a = b

c.	 if a = b:

d.	 if a == b:

e.	 if a == b

f.	 if a === b

g.	 if a === b:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

52

	 3.	 Which statement will check if a is less than or equal to b?

a.	 if a < or = b:

b.	 if a <= b:

c.	 if a < = b:

d.	 if a >= b:

e.	 if a =< b:

f.	 if a < b or == b:

g.	 if a <== b:

	 4.	 Which statement will check if a is less b and less than c?

a.	 if a < b and < c:

b.	 if a < b & c:

c.	 if a < b and a < c:

d.	 if a < b and c:

	 5.	 What will this code print?

if 3 < 4:
 print("A")
else:
 print("B")
 print("C")

a.	 A

b.	 A
	 B

c.	 B

d.	 B
	 C

e.	 A
	 C

f.	 A
	 B
	 C

g.	 Nothing, the code won’t run.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

53

	 6.	 What will this code print?

if 3 < 4:
 print("A")
else:
 print("B")
print("C")

a.	 A

b.	 A
	 B

c.	 B

d.	 B
	 C

e.	 A
	 C

f.	 A
	 B
	 C

g.	 Nothing, the code won’t run.

	 7.	 What will this code print?

a = True
if a:
 print("A")
else:
 print("B")
print("C")

a.	 A

b.	 A
	 B

c.	 B

d.	 B
	 C

e.	 A
	 C

f.	 A
	 B
	 C

g.	 Nothing, the code won’t run.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

54

	 8.	 What will this code print?

a = True
if not(a):
 print("A")
else:
 print("B")
print("C")

a.	 A

b.	 A
	 B

c.	 B

d.	 B
	 C

e.	 A
	 C

f.	 A
	 B
	 C

g.	 Nothing, the code won't run.

	 9.	 What will this code print?

if 4 < 4:
 print("A")
elif 3 < 4:
 print("B")
else:
 print("C")
print("D")

a.	 A

b.	 A
	 B

c.	 B

d.	 B
	 D

e.	 A
	 D

f.	 A
	 C

g.	 Nothing, the code won’t run.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

55

Short Answer Worksheet
	 1.	 What is missing from this code?

temperature = float(input("Temperature: ")
if temperature > 90:
 print("It is hot outside.")
else:
 print("It is not hot out.")

	 2.	 Write a Python program that will take in a number from the user and print if it is
positive, negative, or zero. Use a proper if/elif/else chain; don’t just use three
if statements.

	 3.	 Write a Python program that will take in a number from a user and print out
Success if it is greater than -10 and less than 10, inclusive.

	 4.	 This runs, but there is something wrong. What is it?

user_input = input("A cherry is a: ")
print("A. Dessert topping")
print("B. Desert topping")
if user_input.upper() == "A":
 print("Correct!")
else:
 print("Incorrect.")

	 5.	 There are two things wrong with this code that tests if x is set to a positive value.
One prevents it from running, and the other is subtle. Make sure the if statement
works no matter what x is set to. Identify both issues.

x == 4
if x >= 0:
 print("x is positive.")
else:
 print("x is not positive.")

	 6.	 What three things are wrong with the following code?

x = input("Enter a number: ")
if x = 3
 print("You entered 3")

	 7.	 There are four things wrong with this code. Identify all four issues.

answer = input("What is the name of Dr. Bunsen Honeydew's assistant? ")
if a = "Beaker":
 print("Correct!")
 else
 print("Incorrect! It is Beaker.")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

56

	 8.	 This program doesn’t work correctly. What is wrong?

x = input("How are you today?")
if x == "Happy" or "Glad":
 print("That is good to hear!")

	 9.	 Look at the code below. Write you best guess here on what it will print. Next,
run the code and see if you are correct. Clearly label your guess and the actual
answer. Also, if this or any other example results in an error, make sure to state
that an error occurred. While you don’t need to write an explanation, make sure
you understand why the computer prints what it does. Don’t get caught flat-
footed when you need to know later.

x = 5
y = x == 6
z = x == 5
print("x=", x)
print("y=", y)
print("z=", z)
if y:
 print("Fizz")
if z:
 print("Buzz")

	 10.	 Look at the code below. Write you best guess on what it will print. Next, run the
code and see if you are correct.

x = 5
y = 10
z = 10
print(x < y)
print(y < z)
print(x == 5)
print(not x == 5)
print(x != 5)
print(not x != 5)
print(x == "5")
print(5 == x + 0.00000000001)
print(x == 5 and y == 10)
print(x == 5 and y == 5)
print(x == 5 or y == 5)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Quiz Games and If Statements

57

	 11.	 Look at the code below. Write you best guess on what it will print. Next, run the
code and see if you are correct.

print("3" == "3")
print(" 3" == "3")
print(3 < 4)
print(3 < 10)
print("3" < "4")
print("3" < "10")
print((2 == 2) == "True")
print((2 == 2) == True)
print(3 < "3")

	 12.	 What things are wrong with this section of code? The programmer wants to set
the money variable according to the initial occupation the user selects.

print("Welcome to Oregon Trail!")
 
print("A. Banker")
print("B. Carpenter")
print("C. Farmer")
 
user_input = input("What is your occupation?")
 
if user_input = A:
 money = 100
else if user_input = B:
 money = 70
else if user_input = C:
 money = 50

Exercise
Find Exercise 3 “Create-a-Quiz” in the appendix.

www.it-ebooks.info

http://www.it-ebooks.info/

59

Chapter 5

Guessing Games with Random
Numbers and Loops

The last step before we start with graphics is learning how to loop a section of code. Most games loop. They
repeat the same code over and over. For example, the number guessing game below loops for each guess
that the user makes:

Hi! I'm thinking of a random number between 1 and 100.
--- Attempt 1
Guess what number I am thinking of: 50
Too high.
--- Attempt 2
Guess what number I am thinking of: 25
Too high.
--- Attempt 3
Guess what number I am thinking of: 17
Too high.
--- Attempt 4
Guess what number I am thinking of: 9
Too low.
--- Attempt 5
Guess what number I am thinking of: 14
Too high.
--- Attempt 6
Guess what number I am thinking of: 12
Too high.
--- Attempt 7
Guess what number I am thinking of: 10
Too low.
Aw, you ran out of tries. The number was 11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

60

Wait, what does this have to do with graphics and video games? A lot. Each frame the game displays is
one time through a loop. You may be familiar with the frames-per-second (FPS) statistic that games show.
The FPS represents the number of times the computer updates the screen each second. The higher the rate,
the smoother the game. (Although an FPS rate past 60 is faster than most screens can update, so there isn’t
much point to push it past that.) The figure below shows the game Eve Online and a graph showing how
many frames per second the computer is able to display.

FPS in video games

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

61

The loop in these games works like the flowchart in the following figure. Despite the complexities of
modern games, the inside of this loop is similar to the calculator program we did in Chapter 2. Get user
input. Perform calculations. Output the result. In a video game, we try to repeat this up to 60 times per
second.

Game loop

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

62

There can even be loops inside of other loops. A real “loop the loop.” Take a look at the “Draw
Everything” box in the next figure. This set of code loops through and draws each object in the game. That
loop is inside of the larger loop that draws each frame of the game, which looks like this figure.

Draw everything loop

There are two major types of loops in Python: for loops and while loops. If you want to repeat a certain
number of times, use a for loop. If you want to repeat until something happens (like the user hits the quit
button), then use a while loop.

For example, a for loop can be used to print all student records since the computer knows how many
students there are. A while loop would need to be used to check for when a user hits the mouse button since
the computer has no idea how long it will have to wait.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

63

for Loops
The for loop example below runs the print statement five times. It could just as easily run 100 or 1,000,000
times just by changing the 5 to the desired number of times to loop. Note the similarities of how the for
loop is written to the if statement. Both end in a colon, and both use indentation to specify which lines are
affected by the statement.

for i in range(5):
 print("I will not chew gum in class.")
 
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.
I will not chew gum in class.

The i on line 1 is a variable that keeps track of how many times the program has looped. It is a new
variable and can be named any legal variable name. Programmers often use i as for the variable name,
because the i is short for increment. This variable helps track when the loop should end.

The range function controls how many times the code in the loop is run. In this case, five times.
The next example code will print “Please,” five times and “Can I go to the mall?” only once. “Can I go to

the mall?” is not indented so it is not part of the for loop and will not print until the for loop completes.

for i in range(5):
 print("Please,")
print("Can I go to the mall?")
 
Please,
Please,
Please,
Please,
Please,
Can I go to the mall?

This next code example takes the prior example and indents line 3. This change will cause the program
to print ”Please,” and ”Can I go to the mall?” five times. Since the statement has been indented “Can I go to
the mall?” is now part of the for loop and will repeat five times just like the word “Please,”.

for i in range(5):
 print("Please,")
 print("Can I go to the mall?")
 
Please,
Can I go to the mall?
Please,
Can I go to the mall?
Please,
Can I go to the mall?
Please,
Can I go to the mall?
Please,
Can I go to the mall?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

64

The code below will print the numbers 0 to 9. Notice that the loop starts at 0 and does not include the
number 10. It is natural to assume that range(10) would include 10, but it stops just short of it.

for i in range(10):
 print(i)
 
0
1
2
3
4
5
6
7
8
9

A program does not need to name the variable i; it could be named something else. For example, a
programmer might use line_number if she was processing a text file.

If a programmer wants to go from 1 to 10 instead of 0 to 9, there are a couple of ways to do it. The first
way is to send the range function two numbers instead of one. The first number is the starting value; the
second is just beyond the ending value.

It does take some practice to get used to the idea that the for loop will include the first number, but
not the second number listed. The example below specifies a range of (1,11), and the numbers 1 to 10 are
printed. The starting number 1 is included, but not the ending number of 11.

for i in range(1, 11):
 print(i)
 
1
2
3
4
5
6
7
8
9
10

Another way to print the numbers 1 to 10 is to still use range(10) and have the variable i go from 0 to 9.
But just before printing out the variable the programmer adds one to it. This also works to print the numbers
1 to 10. Either method works just fine.

Print the numbers 1 to 10.
for i in range(10):
 print(i + 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

65

Counting by Numbers Other Than One
If the program needs to count by 2s or use some other increment, this is easy. Just like before there are two
ways to do it. The easiest is to supply a third number to the range function that tells it to count by 2s. The
second way to do it is to go ahead and count by 1’s but multiply the variable by 2. The code example below
shows both methods.

Two ways to print the even numbers 2 to 10
for i in range(2,12,2):
 print(i)
 
for i in range(5):
 print((i + 1) * 2)
 
2
4
6
8
10
2
4
6
8
10

It is also possible to count backwards down towards zero by giving the range function a negative step. In
the example below, start at 10, go down to but not including 0, and do it by -1 increments. The hardest part
of creating these loops is to accidentally switch the start and end numbers. The program starts at the larger
value, so it goes first. Normal for loops that count up start with the smallest value listed first in the range
function.

for i in range(10, 0, -1):
 print(i)
 
10
9
8
7
6
5
4
3
2
1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

66

If the numbers that a program needs to iterate through don’t form an easy pattern, it is possible to
pull numbers out of a list. (A full discussion of lists is covered in Chapter 8. This is just a preview of what you
can do.)

for i in [2,6,4,2,4,6,7,4]:
 print(i)

This prints:

2
6
4
2
4
6
7
4

Nesting Loops
Try to predict what the code below will print. Then enter the code and see if you are correct.

What does this print? Why?
for i in range(3):
 print("a")
for j in range(3):
 print("b")

This next block of code is almost identical to the one above. The second for loop has been indented one
tab stop so that it is now nested inside of the first for loop. This changes how the code runs significantly. Try
it and see.

What does this print? Why?
for i in range(3):
 print("a")
 for j in range(3):
 print("b")
 
print("Done")

I’m not going to tell you what the code does; go to a computer and see.

Keeping a Running Total
A common operation in working with loops is to keep a running total. This “running total” code pattern is
used a lot in this book. Keep a running total of a score, total a person’s account transactions, use a total to
find an average, etc. You might want to bookmark this code listing because we’ll refer back to it several times.
In the code below, the user enters five numbers and the code totals up their values.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

67

total = 0
for i in range(5):
 new_number = int(input("Enter a number: "))
 total += new_number
print("The total is: ", total)

Note that line 1 creates the variable total and sets it to an initial amount of zero. It is easy to forget the
need to create and initialize the variable to zero. Without it the computer will complain when it hits line 4. It
doesn’t know how to add new_number to total because total hasn’t been given a value yet.

A common mistake is to use i to total instead of new_number. Remember, we are keeping a running
total of the values entered by the user, not a running total of the current loop count.

Speaking of the current loop count, we can use the loop count value to solve some mathematical
operations. For example:

n

n
=
å

1

100

If you aren’t familiar with this type of formula, it is just a fancy way of stating:

s = 1 + 2 + 3 + 4 + 5 ... 98 + 99 + 100

The code below adds all the numbers from 1 to 100. It demonstrates a common pattern where a running
total is kept inside of a loop. This also uses a separate variable sum to track the running total.

What is the value of sum?
sum = 0
for i in range(1, 101):
 sum = sum + i
print(sum)

Here’s a different variation. This takes five numbers from the user and counts the number of times the
user enters a zero:

total = 0
for i in range(5):
 new_number = int(input("Enter a number: "))
 if new_number == 0:
 total += 1
print("You entered a total of", total, "zeros")

A programmer that understands the nested for loops and running totals should be able to predict the
output of the code below.

What is the value of a?
a = 0
for i in range(10):
 a = a + 1
print(a)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

68

What is the value of a?
a = 0
for i in range(10):
 a = a + 1
for j in range(10):
 a = a + 1
print(a)
 
What is the value of a?
a = 0
for i in range(10):
 a = a + 1
 for j in range(10):
 a = a + 1
print(a)

Don’t go over this section too fast. Give it a try and predict the output of the code above. Then copy it
into a Python program and run it to see if you are right. If you aren’t, figure out why.

Example for Loops
This example code covers common for loops and shows how they work.

Sample Python/Pygame Programs
http://programarcadegames.com/
 
Print 'Hi' 10 times
for i in range(10):
 print("Hi")
 
Print 'Hello' 5 times and 'There' once
for i in range(5):
 print("Hello")
print("There")
 
Print 'Hello' 'There' 5 times
for i in range(5):
 print("Hello")
 print("There")
 
Print the numbers 0 to 9
for i in range(10):
 print(i)
 
Two ways to print the numbers 1 to 10
for i in range(1, 11):
 print(i)
 

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

69

for i in range(10):
 print(i + 1)
 
Two ways to print the even numbers 2 to 10
for i in range(2, 12, 2):
 print(i)
 
for i in range(5):
 print((i + 1) * 2)
 
Count down from 10 down to 1 (not zero)
for i in range(10, 0, -1):
 print(i)
 
Print numbers out of a list
for i in [2, 6, 4, 2, 4, 6, 7, 4]:
 print(i)
 
What does this print? Why?
for i in range(3):
 print("a")
 for j in range(3):
 print("b")
 
What is the value of a?
a = 0
for i in range(10):
 a = a + 1
print(a)
 
What is the value of a?
a = 0
for i in range(10):
 a = a + 1
for j in range(10):
 a = a + 1
print(a)
 
What is the value of a?
a = 0
for i in range(10):
 a = a + 1
 for j in range(10):
 a = a + 1
print(a)
 
What is the value of sum?
sum = 0
for i in range(1, 101):
 sum = sum + i

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

70

while Loops
A for loop is used when a program knows it needs to repeat a block of code for a certain number of times. A
while loop is used when a program needs to loop until a particular condition occurs.

Oddly enough, a while loop can be used anywhere a for loop is used. It can be used to loop until an
increment variable reaches a certain value. Why have a for loop if a while loop can do everything? The for
loop is simpler to use and code. A for loop that looks like this:

for i in range(10):
 print(i)

…can be done with a while loop that looks like this:

i = 0
while i < 10:
 print(i)
 i = i + 1

Line 1 of the while loop sets up a “sentinel” variable that will be used to count the number of times
the loop has been executed. This happens automatically in a for loop eliminating one line of code. Line
2 contains the actual while loop. The format of the while loop is very similar to the if statement. If the
condition holds, the code in the loop will repeat. Line 4 adds to the increment value. In a for loop this
happens automatically, eliminating another line of code. As one can see from the code, the for loop is more
compact than a while loop and is easier to read. Otherwise, programs would do everything with a while loop.

A common mistake is to confuse the for loop and the while loop. The code below shows a programmer
that can’t quite make up his/her mind between a for loop or a while loop.

while range(10):
 print(i)

Don’t use range with a while loop!
The range function only works with the for loop. Do not use it with the while loop!

Using Increment Operators
Increment operators are often used with while loops. It is possible to shorthand the code:

i = i + 1

With the following:

i += 1

In the while loop it would look like:

i = 0
while i < 10:
 print(i)
 i += 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

71

This can be done with subtraction and multiplication as well. For example:

i *= 2

Is the same as:

i = i * 2

See if you can figure out what would this print:

i = 1
while i <= 2 ** 32:
 print(i)
 i *= 2

Looping Until User Wants to Quit
A very common operation is to loop until the user performs a request to quit:

quit = "n"
while quit == "n":
 quit = input("Do you want to quit? ")

There may be several ways for a loop to quit. Using a Boolean variable to trigger the event is a way of
handling that. Here’s an example:

done = False
while not done:
 quit = input("Do you want to quit? ")
 if quit == "y":
 done = True
 
 attack = input("Does your elf attack the dragon? ")
 if attack == "y":
 print("Bad choice, you died.")
 done = True

This isn’t perfect though, because if the user says she wants to quit, the code will still ask if she wants to
attack the dragon. How could you fix this?

Here is an example of using a while loop where the code repeats until the value gets close enough to
zero:

value = 0
increment = 0.5
while value < 0.999:
 value += increment
 increment *= 0.5
 print(value)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

72

Common Problems with while Loops
The programmer wants to count down from 10. What is wrong and how can it be fixed?

i = 10
while i == 0:
 print(i)
 i -= 1

What is wrong with this loop that tries to count to 10? What will happen when it is run? How should it
be fixed?

i = 1
while i < 10:
 print(i)

Example while Loops
Here’s a program that covers the different uses of the while loop that we just talked about.

Sample Python/Pygame Programs
http://programarcadegames.com/
 
A while loop can be used anywhere a for loop is used:
i = 0
while i < 10:
 print(i)
 i = i + 1
 
This is the same as:
for i in range(10):
 print(i)
 
It is possible to short hand the code:
i = i + 1
With the following:
i += 1
This can be done with subtraction, and multiplication as well.
i = 0
while i < 10:
 print(i)
 i += 1
 
What would this print?
i = 1
while i <= 2**32:
 print(i)
 i *= 2
 

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

73

A very common operation is to loop until the user performs
a request to quit
quit = "n"
while quit == "n":
 quit = input("Do you want to quit? ")
 
There may be several ways for a loop to quit. Using a boolean
to trigger the event is a way of handling that.
done = False
while not done:
 quit = input("Do you want to quit? ")
 if quit == "y":
 done = True
 
 attack = input("Does your elf attach the dragon? ")
 if attack == "y":
 print("Bad choice, you died.")
 done = True
 
value = 0
increment = 0.5
while value < 0.999:
 value += increment
 increment *= 0.5
 print(value)
 
-- Common problems with while loops --
 
The programmer wants to count down from 10
What is wrong and how to fix it?
i = 10
while i == 0:
 print(i)
 i -= 1
 
What is wrong with this loop that tries
to count to 10? What will happen when it is run?
i = 1
while i < 10:
 print(i)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

74

Random Numbers
Random numbers are heavily used in computer science for programs that involve games or simulations.

The randrange Function
By default, Python does not know how to make random numbers. It is necessary to have Python import a
code library that can create random numbers. So to use random numbers, the first thing that should appear
at the top of the program is an import statement:

import random

Just like with pygame, it is important not to create a file with the same name as what is being imported.
Creating a file called random.py will cause Python to start importing that file instead of the system library
that creates random numbers.

After this, random numbers can be created with the randrange function. For example, this code creates
random numbers from 0 to 49. By default the lower bound is 0.

my_number = random.randrange(50)

The next code example generates random numbers from 100 to 200. Just like the range function the
second parameter specifies an upper bound that is not inclusive. Therefore if you want random numbers up
to and including 200, specify 201.

my_number = random.randrange(100, 201)

What if you don’t want a number, but a random item? That requires a list. We don’t cover lists in detail
until Chapter 8, but to give you preview of what selecting a random item out of a list would look like, see
below:

my_list = ["rock", "paper", "scissors"]
random_index = random.randrange(3)
print(my_list[random_index])

The random Function
All of the prior code generates integer numbers. If a floating-point number is desired, a programmer may use
the random function.

The code below generates a random number from 0 to 1 such as 0.4355991106620656.

my_number = random.random()

With some simple math, this number can be adjusted. For example, the code below generates a random
floating-point number between 10 and 15:

my_number = random.random() * 5 + 10

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

75

Review
Multiple Choice Quiz
	 1.	 What does this code print?

for x in range(4):
 print("Hello")

a.	 The word Hello 3 times

b.	 The word Hello 4 times

c.	 The word Hello 5 times

d.	 It will print nothing

e.	 It will print Hello forever

f.	 Nothing, it won’t run

	 2.	 What does this code print?

for y in range(4):
 print("y")

a.	 The numbers 0 to 3

b.	 The numbers 0 to 4

c.	 The numbers 1 to 3

d.	 The numbers 1 to 4

e.	 It will print “y” four times

f.	 Nothing, it won’t run

	 3.	 What does this code print?

for y in range(4):
 print(y)

a.	 The numbers 0 to 3

b.	 The numbers 0 to 4

c.	 The numbers 1 to 3

d.	 The numbers 1 to 4

e.	 It will print “y” four times

f.	 Nothing, it won’t run

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

76

	 4.	 What does this code print?

for y in range(1, 11):
 print(y)

a.	 The numbers 0 to 11

b.	 The numbers 1 to 11

c.	 The numbers 1 to 10

d.	 The numbers 0 to 10

e.	 Nothing, it won’t run

	 5.	 What does this code print?

for y in range(2, 12, 2):
 print(y + 1)

a.	 The even numbers 2 to 12

b.	 The even numbers 2 to 10

c.	 The odd numbers 3 to 11

d.	 The odd numbers 3 to 13

e.	 Nothing, it won’t run

	 6.	 What does this code print?

a=0
for i in range(10):
 a += 1
print(a)

a.	 9

b.	 10

c.	 11

d.	 Nothing, it won’t run

	 7.	 What does this code print?

a = 0
for i in range(10):
 a += 1
for j in range(10):
 a += 1
print(a)

a.	 10

b.	 20

c.	 18

d.	 100

e.	 Nothing, it won’t run

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

77

	 8.	 What does this code print?

a = 0
for i in range(10):
 for j in range(10):
 a += 1
print(a)

a.	 10

b.	 20

c.	 110

d.	 100

e.	 Nothing, it won’t run

	 9.	 What does this code print?

a = 0
for i in range(10):
 a += 1
 for j in range(10):
 a += 1
print(a)

a.	 10

b.	 20

c.	 110

d.	 100

e.	 Nothing, it won’t run

	 10.	 When should a programmer use a for loop instead of a while loop?

a.	 for loops are used to when there is a set number of loops

b.	 for loops are used to loop until a condition is true

c.	 while loops should always be used

d.	 for loops should always be used

	 11.	 What does this do?

x = random.randrange(50)

a.	 The number 50

b.	 A random integer 0 to 49 (inclusive)

c.	 A random integer 1 to 50 (inclusive)

d.	 A random integer 1 to 49 (inclusive)

e.	 A random integer 0 to 50 (inclusive)

f.	 A random integer 1 to 51 (inclusive)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

78

	 12.	 What does this do?

x = random.randrange(1, 50)
The number 50

a.	 A random integer 0 to 49 (inclusive)

b.	 A random integer 1 to 50 (inclusive)

c.	 A random integer 1 to 49 (inclusive)

d.	 A random integer 0 to 50 (inclusive)

e.	 A random integer 1 to 51 (inclusive)

	 13.	 What does this do?

x = random.random() * 10

a.	 A random floating-point number from 0 to 10

b.	 A random integer from 0 to 10

c.	 A random integer from 0 to 9

d.	 A random integer from 0 to 1

Short Answer Worksheet
Note: Don’t create a loop that only loops once. That doesn’t make sense. Python runs the code once by
default anyway. Avoid loops like this:

for i in range(1):
 # Do something.

	 1.	 Write a Python program that will use a for loop to print your name 10 times, and
then the word “Done” at the end.

	 2.	 Write a Python program that will use a for loop to print “Red” and then “Gold”
20 times. (Red Gold Red Gold Red Gold… all on separate lines. Don’t use \n.)

	 3.	 Write a Python program that will use a for loop to print the even numbers from 2
to 100, inclusive.

	 4.	 Write a Python program that will use a while loop to count from 10 down to, and
including, 0. Then print the words “Blast off!” Remember, use a WHILE loop,
don’t use a FOR loop.

	 5.	 There are three things wrong with this program. List each.

 print("This program takes three numbers and returns the sum.")
 total = 0
  
 for i in range(3):
 x = input("Enter a number: ")
 total = total + i
 print("The total is:", x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Guessing Games with Random Numbers and Loops

79

	 6.	 Write a program that prints a random integer from 1 to 10 (inclusive).

	 7.	 Write a program that prints a random floating-point number somewhere
between 1 and 10 (inclusive). Do not make the mistake of generating a random
number from 0 to 10 instead of 1 to 10.

	 8.	 Write a Python program that will:

•	 Ask the user for seven numbers

•	 Print the total sum of the numbers

•	 Print the count of the positive entries, the number of entries equal to zero, and
the number of negative entries. Use an if, elif, else chain, not just three if
statements.

	 9.	 Coin flip tosser:

•	 Create a program that will print a random 0 or 1.

•	 Instead of 0 or 1, print heads or tails. Do this using if statements. Don’t select
from a list, as shown in the chapter.

•	 Add a loop so that the program does this 50 times.

•	 Create a running total for the number of heads flipped and the number of tails.

	 10.	 Write a program that plays rock, paper, scissors:

•	 Create a program that randomly prints 0, 1, or 2.

•	 Expand the program so it randomly prints rock, paper, or scissors using if
statements. Don’t select from a list, as shown in the chapter.

•	 Add to the program so it first asks the user their choice.

•	 (It will be easier if you have them enter 1, 2, or 3.)

•	 Add a conditional statement to figure out who wins.

Exercise
Check the appendix for the exercise “Camel” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

81

Chapter 6

Introduction to Graphics

Now that you can create loops, it is time to move on to learning how to create graphics. This chapter covers:

•	 How the computer handles x, y coordinates. It isn't like the coordinate system you
learned in math class.

•	 How to specify colors. With millions of colors to choose from, telling the computer
what color to use isn't as easy as just saying “red.”

•	 How to open a blank window for drawing. Every artist needs a canvas.

•	 How to draw lines, rectangles, ellipses, and arcs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

82

Computer Coordinate Systems
The Cartesian coordinate system, shown in the figure below (https://commons.wikimedia.org/wiki/
File:Cartesian_coordinates_2D.svg), is the system most people are used to when plotting graphics. This
is the system taught in school. The computer uses a similar, but somewhat different, coordinate system.
Understanding why it is different requires a quick bit of computer history.

Cartesian coordinate system

During the early '80s, most computer systems were text-based and did not support graphics. The next
figure (https://en.wikipedia.org/wiki/File:Visicalc.png) shows an early spreadsheet program run
on an Apple][computer that was popular in the '80s. When positioning text on the screen, programmers
started at the top, calling it line 1. The screen continued down for 24 lines and across for 40 characters.

www.it-ebooks.info

https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_2D.svg
https://commons.wikimedia.org/wiki/File:Cartesian_coordinates_2D.svg
https://en.wikipedia.org/wiki/File:Visicalc.png
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

83

Early Apple text screen

Even with plain text, it was possible to make rudimentary graphics by just using characters on the
keyboard. See this kitten shown in the next figure and look carefully at how it is drawn. When making this
art, characters were still positioned starting with line 1 at the top.

Text screen

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

84

Later the character set was expanded to include boxes and other primitive drawing shapes. Characters
could be drawn in different colors. As shown in the figure, the graphics got more advanced. Search the Web
for “ASCII art,” and many more examples can be found.

Spaceware text screen

Once computers moved to being able to control individual pixels for graphics, the text-based coordinate
system stuck.

Computer coordinate system

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

85

The x coordinates work the same as the Cartesian coordinates system. But the y coordinates are reversed.
Rather than the zero y coordinate at the bottom of the graph like in Cartesian graphics, the zero y coordinate
is at the top of the screen with the computer. As the y values go up, the computer coordinate position moved
down the screen, just like lines of text rather than standard Cartesian graphics. See the figure above.

Also, note the screen covers the lower-right quadrant, where the Cartesian coordinate system usually
focuses on the upper-right quadrant. It is possible to draw items at negative coordinates, but they will be
drawn offscreen. This can be useful when part of a shape is off screen. The computer figures out what is
offscreen, and the programmer does not need to worry too much about it.

Pygame Library
To make graphics easier to work with, we'll use “Pygame.” Pygame is a library of code that other people have
written and makes it simple to:

•	 Draw graphic shapes

•	 Display bitmapped images

•	 Animate

•	 Interact with the keyboard, mouse, and gamepad

•	 Play sound

•	 Detect when objects collide

The first code a Pygame program needs to do is load and initialize the Pygame library. Every program
that uses Pygame should start with these lines:

Import a library of functions called 'pygame'
import pygame
Initialize the game engine
pygame.init()

If you haven't installed Pygame yet, directions for installing Pygame are available in the “before you begin”
section. If Pygame is not installed on your computer, you will get an error when trying to run import pygame.

Important: The import pygame looks for a library file named pygame. If a programmer creates a new
program named pygame.py, the computer will import that file instead! This will prevent any pygame
programs from working until that pygame.py file is deleted.

Colors
Next, we need to add variables that define our program's colors. Colors are defined in a list of three colors:
red, green, and blue. Have you ever heard of an RGB monitor? This is where the term comes. Red-Green-Blue.
With older monitors, you could sit really close to the monitor and make out the individual RGB colors. At least
before your mom told you not to sit so close to the TV. This is hard to do with today's high resolution monitors.

Each element of the RGB triad is a number ranging from 0 to 255. Zero means there is none of the color,
and 255 tells the monitor to display as much of the color as possible. The colors combine in an additive way,
so if all three colors are specified, the color on the monitor appears white. (This is different than how ink and
paint work.)

Lists in Python are surrounded by either square brackets or parentheses. (Chapter 8 covers lists in detail
and the difference between the two types.) Individual numbers in the list are separated by commas. Below is

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

86

an example that creates variables and sets them equal to lists of three numbers. These lists will be used later
to specify colors.

Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)

Why are these variables in uppercase? Remember back from Chapter 2, a variable that doesn't change is
called a constant. We don't expect the color of black to change; it is a constant. We signify that variables
are constants by naming them with all uppercase letters. If we expect a color to change, like if we have
sky_color that changes as the sun sets, then that variable would be in all lowercase letters.

Using the interactive shell in IDLE, try defining these variables and printing them out. If the five colors
above aren't the colors you are looking for, you can define your own. To pick a color, find an online “color
picker” like the one shown in the figure below. One such color picker is at: http://www.colorpicker.com/

Color picker

Extra: Some color pickers specify colors in hexadecimal. You can enter hexadecimal numbers if you
start them with 0x. For example:

WHITE = (0xFF, 0xFF, 0xFF)

Eventually the program will need to use the value of p when drawing arcs, so this is a good time in our
program to define a variable that contains the value of p. (It is also possible to import this from the math
library as math.pi.)

PI = 3.141592653

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://www.colorpicker.com/
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

87

Open a Window
So far, the programs we have created only printed text out to the screen. Those programs did not open any
windows like most modern programs do. The code to open a window is not complex. Below is the required
code, which creates a window sized to a width of 700 pixels and a height of 500:

size = (700, 500)
screen = pygame.display.set_mode(size)

Why set_mode? Why not open_window? The reason is that this command can actually do a lot more than
open a window. It can also create games that run in a full-screen mode. This removes the start menu, title
bars, and gives the game control of everything on the screen. Because this mode is slightly more complex to
use, and most people prefer windowed games anyway, we'll skip a detailed discussion on full-screen games.
But if you want to find out more about full-screen games, check out the documentation on pygame's display
command.

Also, why size = (700, 500) and not size = 700, 500? The same reason why we put parentheses
around the color definitions. Python can't normally store two numbers (a height and width) into one
variable. The only way it can is if the numbers are stored as a list. Lists need either parentheses or square
brackets. (Technically, parentheses surrounding a set of numbers is more accurately called a tuple or an
immutable list. Lists surrounded by square brackets are just called lists. An experienced Python developer
would cringe at calling a list of numbers surrounded by parentheses a list rather than a tuple. Also you can
actually say size = 700, 500, and it will default to a tuple but I prefer to use parentheses.) Lists are covered
in detail in Chapter 8.

To set the title of the window (which is shown in the title bar), use the following line of code:

pygame.display.set_caption("Professor Craven's Cool Game")

Interacting with the User
With just the code written so far, the program would create a window and immediately hang. The user can't
interact with the window, even to close it. All of this needs to be programmed. Code needs to be added so
that the program waits in a loop until the user clicks “exit.”

This is the most complex parts of the program, and a complete understanding of it isn't needed yet. But
it is necessary to have an idea of what it does, so spend some time studying it and asking questions.

Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
-------- Main Program Loop -----------
while not done:
 # --- Main event loop
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 

www.it-ebooks.info

http://www.pygame.org/docs/ref/display.html
http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

88

 # --- Game logic should go here
 
 # --- Drawing code should go here
 
 # First, clear the screen to white. Don't put other drawing commands
 # above this, or they will be erased with this command.
 screen.fill(WHITE)
 
 # --- Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
 # --- Limit to 60 frames per second
 clock.tick(60)

Eventually we will add code to handle the keyboard and mouse clicks. That code will go below the
comment for main event loop on line 9. Code for determining when bullets are fired and how objects move
will go below the comment for game logic on line 14. We'll talk about that in later chapters. Code to draw will
go in below where the screen is filled with white on line 20.

The Event Processing Loop
Alert! One of the most frustrating problems programmers have is to mess up the event processing loop. This
“event processing” code handles all the keystrokes, mouse button clicks, and several other types of events.
For example, your loop might look like:

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 print("User asked to quit.")
 elif event.type == pygame.KEYDOWN:
 print("User pressed a key.")
 elif event.type == pygame.KEYUP:
 print("User let go of a key.")
 elif event.type == pygame.MOUSEBUTTONDOWN:
 print("User pressed a mouse button")

The events (like pressing keys) all go together in a list. The program uses a for loop to loop through
each event. Using a chain of if statements the code figures out what type of event occurred, and the code to
handle that event goes in the if statement.

All the if statements should go together, in one for loop. A common mistake when doing copy and
pasting of code is to not merge loops from two programs, but to have two event loops.

Here is one event loop
for event in pygame.event.get():
 if event.type == pygame.QUIT:
 print("User asked to quit.")
 elif event.type == pygame.KEYDOWN:
 print("User pressed a key.")
 elif event.type == pygame.KEYUP:
 print("User let go of a key.")
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

89

Here the programmer has copied another event loop
into the program. This is BAD. The events were already
processed.
for event in pygame.event.get():
 if event.type == pygame.QUIT:
 print("User asked to quit.")
 elif event.type == pygame.MOUSEBUTTONDOWN:
 print("User pressed a mouse button")

The for loop on line 2 grabbed all of the user events. The for loop on line 13 won't grab any events
because they were already processed in the prior loop.

Another typical problem is to start drawing and then try to finish the event loop:

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 print("User asked to quit.")
 elif event.type == pygame.KEYDOWN:
 print("User pressed a key.")
 
pygame.draw.rect(screen, GREEN, [50,50,100,100])
 
This is code that processes events. But it is not in the
'for' loop that processes events. It will not act reliably.
if event.type == pygame.KEYUP:
 print("User let go of a key.")
elif event.type == pygame.MOUSEBUTTONDOWN:
 print("User pressed a mouse button")

This will cause the program to ignore some keyboard and mouse commands. Why? The for loop
processes all the events in a list. So if there are two keys that are hit, the for loop will process both. In the
example above, the if statements are not in the for loop. If there are multiple events, the if statements will
only run for the last event, rather than all events.

Processing Each Frame
The basic logic and order for each frame of the game:

•	 While not done:

•	 For each event (keypress, mouse click, etc.):

•	 Use a chain of if statements to run code to handle each event.

•	 Run calculations to determine where objects move, what happens when objects
collide, etc.

•	 Clear the screen.

•	 Draw everything.

It makes the program easier to read and understand if these steps aren't mixed together. Don't do some
calculations, some drawing, some more calculations, some more drawing. Also, see how this is similar to
the calculator done in Chapter 2. Get user input, run calculations, and output the answer. That same pattern
applies here.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

90

The code for drawing the image to the screen happens inside the while loop. With the clock tick set
at 10, the contents of the window will be drawn 10 times per second. If it happens too fast the computer
is sluggish because all of its time is spent updating the screen. If it isn't in the loop at all, the screen won't
redraw properly. If the drawing is outside the loop, the screen may initially show the graphics, but the
graphics won't reappear if the window is minimized, or if another window is placed in front.

Ending the Program
Right now, clicking the “close” button of a window while running this Pygame program in IDLE will still
cause the program to crash. This is a hassle because it requires a lot of clicking to close a crashed program.

The problem is, even though the loop has exited, the program hasn't told the computer to close the
window. By calling the command below, the program will close any open windows and exit as desired.

pygame.quit()

Clearing the Screen
The following code clears whatever might be in the window with a white background. Remember that the
variable WHITE was defined earlier as a list of three RGB values.

Clear the screen and set the screen background
screen.fill(WHITE)

This should be done before any drawing command is issued. Clearing the screen after the program
draws graphics results in the user only seeing a blank screen.

When a window is first created it has a black background. It is still important to clear the screen because
there are several things that could occur to keep this window from starting out cleared. A program should
not assume it has a blank canvas to draw on.

Flipping the Screen
Very important! You must flip the display after you draw. The computer will not display the graphics as you
draw them because it would cause the screen to flicker. This waits to display the screen until the program has
finished drawing. The command below “flips” the graphics to the screen.

Failure to include this command will mean the program just shows a blank screen. Any drawing code
after this flip will not display.

Go ahead and update the screen with what we've drawn.
pygame.display.flip()

Open a Blank Window
Let's bring everything we've talked about into one full program. This code can be used as a base template for
a Pygame program. It opens up a blank window and waits for the user to press the close button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

91

On the web site, if you click the “Examples” button you can select “graphics examples” and then you will
find this file as pygame_base_template.py.

"""
 Pygame base template for opening a window
 
 Sample Python/Pygame Programs
 Simpson College Computer Science
 http://programarcadegames.com/
 http://simpson.edu/computer-science/
 
 Explanation video: http://youtu.be/vRB_983kUMc
"""
 
import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
 
pygame.init()
 
Set the width and height of the screen [width, height]
size = (700, 500)
screen = pygame.display.set_mode(size)
 
pygame.display.set_caption("My Game")
 
Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
-------- Main Program Loop -----------
while not done:
 # --- Main event loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # --- Game logic should go here
 
 # --- Drawing code should go here
 
 # First, clear the screen to white. Don't put other drawing commands
 # above this, or they will be erased with this command.
 screen.fill(WHITE)
 

www.it-ebooks.info

http://pygame_base_template.py
http://programarcadegames.com/
http://simpson.edu/computer-science/
http://youtu.be/vRB_983kUMc
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

92

 # --- Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
 # --- Limit to 60 frames per second
 clock.tick(60)
 
Close the window and quit.
If you forget this line, the program will 'hang'
on exit if running from IDLE.
pygame.quit()

Drawing Introduction

Here is a list of things that you can draw: http://www.pygame.org/docs/ref/draw.html

A program can draw things such as rectangles, polygons, circles, ellipses, arcs, and lines. We will also
cover how to display text with graphics. Bitmapped graphics such as images are covered in Chapter 12. If you
decide to look at that pygame reference, you might see a function definition like this:

pygame.draw.rect(Surface, color, Rect, width=0): return Rect

A frequent cause of confusion is the part of the line that says width=0. What this means is that if you do
not supply a width, it will default to zero. Thus, this function call:

pygame.draw.rect(screen, RED, [55, 50, 20, 25])

www.it-ebooks.info

http://www.pygame.org/docs/ref/draw.html
http://dx.doi.org/10.1007/978-1-4842-1790-0_12
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

93

Is the same as this function call:

pygame.draw.rect(screen, RED, [55, 50, 20, 25], 0)

The : return Rect is telling you that the function returns a rectangle, the same one that was passed in.
You can just ignore this part.

What will not work, is attempting to copy the line and put width = 0 in the parentheses.

This fails and the error the computer gives you is
really hard to understand.
pygame.draw.rect(screen, RED, [55, 50, 20, 25], width=0)

Drawing Lines
The code example below shows how to draw a line on the screen. It will draw on the screen a green line from
(0, 0) to (100, 100) that is 5 pixels wide. Remember that GREEN is a variable that was defined earlier as a list of
three RGB values.

Draw on the screen a green line from (0, 0) to (100, 100)
that is 5 pixels wide.
pygame.draw.line(screen, GREEN, [0, 0], [100, 100], 5)

Use the base template from the prior example and add the code to draw lines. Read the comments to
figure out exactly where to put the code. Try drawing lines with different thicknesses, colors, and locations.
Draw several lines.

Drawing Lines with Loops and Offsets
Programs can repeat things over and over. The next code example draws a line over and over using a loop.
Programs can use this technique to do multiple lines and even draw an entire car.

Putting a line drawing command inside a loop will cause multiple lines being drawn to the screen. But
here's the catch. If each line has the same starting and ending coordinates, then each line will draw on top of
the other line. It will look like only one line was drawn.

To get around this, it is necessary to offset the coordinates each time through the loop. So the first time
through the loop the variable y_offset is zero. The line in the code below is drawn from (0,10) to (100, 110).
The next time through the loop y_offset increased by 10. This causes the next line to be drawn to have new
coordinates of (0, 20) and (100, 120). This continues each time through the loop shifting the coordinates of
each line down by 10 pixels.

Draw on the screen several lines from (0, 10) to (100, 110)
5 pixels wide using a while loop
y_offset = 0
while y_offset < 100:
 pygame.draw.line(screen,RED,[0,10+y_offset],[100,110+y_offset],5)
 y_offset = y_offset + 10

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

94

This same code could be done even more easily with a for loop:

Draw on the screen several lines from (0,10) to (100,110)
5 pixels wide using a for loop
for y_offset in range(0, 100, 10):
 pygame.draw.line(screen,RED,[0,10+y_offset],[100,110+y_offset],5)

Run this code and try using different changes to the offset. Try creating an offset with different values.
Experiment with different values until exactly how this works is obvious.

For example, here is a loop that uses sine and cosine to create a more complex set of offsets and
produces the image shown in the figure below.

for i in range(200):
 
 radians_x = i / 20
 radians_y = i / 6
 
 x = int(75 * math.sin(radians_x)) + 200
 y = int(75 * math.cos(radians_y)) + 200
 
 pygame.draw.line(screen, BLACK, [x,y], [x+5,y], 5)

Complex Offsets

Multiple elements can be drawn in one for loop, such as this code that draws the multiple X's shown in
the next figure.

for x_offset in range(30, 300, 30):
 pygame.draw.line(screen,BLACK,[x_offset,100],[x_offset-10,90],2)
 pygame.draw.line(screen,BLACK,[x_offset,90],[x_offset-10,100],2)

Multiple X’s

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

95

Drawing a Rectangle
When drawing a rectangle, the computer needs coordinates for the upper-left rectangle corner (the origin),
and a height and width.

This figure shows a rectangle (and an ellipse, which will be explained later) with the origin at (20, 20),
a width of 250, and a height of 100. When specifying a rectangle, the computer needs a list of these four
numbers in the order of (x, y, width, height).

Drawing an Ellipse

The next code example draws this rectangle. The first two numbers in the list define the upper left corner
at (20, 20). The next two numbers specify first the width of 250 pixels, and then the height of 100 pixels.

The 2 at the end specifies a line width of 2 pixels. The larger the number, the thicker the line around the
rectangle. If this number is 0, then there will not be a border around the rectangle. Instead it will be filled in
with the color specified.

Draw a rectangle
pygame.draw.rect(screen,BLACK,[20,20,250,100],2)

Drawing an Ellipse
An ellipse is drawn just like a rectangle. The boundaries of a rectangle are specified, and the computer draws
an ellipse inside those boundaries.

The most common mistake in working with an ellipse is to think that the starting point specifies the
center of the ellipse. In reality, nothing is drawn at the starting point. It is the upper left of a rectangle that
contains the ellipse.

Looking back at the figure one can see an ellipse 250 pixels wide and 100 pixels tall. The upper left
corner of the 250x100 rectangle that contains it is at (20, 20). Note that nothing is actually drawn at (20, 20).
With both drawn on top of each other it is easier to see how the ellipse is specified.

Draw an ellipse, using a rectangle as the outside boundaries
pygame.draw.ellipse(screen, BLACK, [20,20,250,100], 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

96

Drawing an Arc
What if a program only needs to draw part of an ellipse? That can be done with the arc command. This
command is similar to the ellipse command, but it includes start and end angles for the arc to be drawn.
The angles are in radians. See the figure below.

Arcs

The code example below draws four arcs showing four difference quadrants of the circle. Each quadrant
is drawn in a different color to make the arcs sections easier to see. The result of this code is shown in the
figure above.

Draw an arc as part of an ellipse. Use radians to determine what
angle to draw.
pygame.draw.arc(screen, GREEN, [100,100,250,200], PI/2, PI, 2)
pygame.draw.arc(screen, BLACK, [100,100,250,200], 0, PI/2, 2)
pygame.draw.arc(screen, RED, [100,100,250,200],3*PI/2, 2*PI, 2)
pygame.draw.arc(screen, BLUE, [100,100,250,200], PI, 3*PI/2, 2)

Drawing a Polygon
The next line of code draws a polygon. The triangle shape is defined with three points at (100, 100) (0, 200)
and (200, 200). It is possible to list as many points as desired. Note how the points are listed. Each point is a
list of two numbers, and the points themselves are nested in another list that holds all the points. This code
draws what can be seen in the following figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

97

Polygon

This draws a triangle using the polygon command
pygame.draw.polygon(screen, BLACK, [[100,100], [0,200], [200,200]], 5)

Drawing Text
Text is slightly more complex. There are three things that need to be done. First, the program creates a
variable that holds information about the font to be used, such as what typeface and how big.

Second, the program creates an image of the text. One way to think of it is that the program carves out a
“stamp” with the required letters that is ready to be dipped in ink and stamped on the paper.

The third thing that is done is the program tells where this image of the text should be stamped (or
“blit'ed”) to the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

98

Here's an example:

Select the font to use, size, bold, italics
font = pygame.font.SysFont('Calibri', 25, True, False)
 
Render the text. "True" means anti-aliased text.
Black is the color. The variable BLACK was defined
above as a list of [0, 0, 0]
Note: This line creates an image of the letters,
but does not put it on the screen yet.
text = font.render("My text", True, BLACK)
 
Put the image of the text on the screen at 250x250
screen.blit(text, [250, 250])

Want to print the score to the screen? That is a bit more complex. This does not work:

text = font.render("Score: ", score, True, BLACK)

Why? A program can't just add extra items to font.render like the print statement. Only one string can
be sent to the command; therefore the actual value of score needs to be appended to the “Score: “ string. But
this doesn't work either:

text = font.render("Score: " + score, True, BLACK)

If score is an integer variable, the computer doesn't know how to add it to a string. You, the programmer,
must convert the score to a string. Then add the strings together like this:

text = font.render("Score: " + str(score), True, BLACK)

Now you know how to print the score. If you want to print a timer, that requires print formatting,
discussed in a chapter later on. Check in the example code for section online for the timer.py example:

ProgramArcadeGames.com/python_examples/f.php?file=timer.py

www.it-ebooks.info

http://programarcadegames/index.php?chapter=example_code
http://ProgramArcadeGames.com/python_examples/f.php?file=timer.py
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

99

Full Program Listing
This is a full listing of the program discussed in this chapter. This program, along with other programs, may
be downloaded from:

ProgramArcadeGames.com/index.php?chapter=example_code

Result of example program

www.it-ebooks.info

http://programarcadegames.com/index.php?chapter=example_code
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

100

"""
 Simple graphics demo
 
 Sample Python/Pygame Programs
http://programarcadegames.com/
 
"""
 
Import a library of functions called 'pygame'
import pygame
 
Initialize the game engine
pygame.init()
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
 
PI = 3.141592653
 
Set the height and width of the screen
size = (400, 500)
screen = pygame.display.set_mode(size)
 
pygame.display.set_caption("Professor Craven's Cool Game")
 
Loop until the user clicks the close button.
done = False
clock = pygame.time.Clock()
 
Loop as long as done == False
while not done:
 
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 
 # All drawing code happens after the for loop and but
 # inside the main while not done loop.
 
 # Clear the screen and set the screen background
 screen.fill(WHITE)
 
 # Draw on the screen a line from (0,0) to (100,100)
 # 5 pixels wide.
 pygame.draw.line(screen, GREEN, [0, 0], [100, 100], 5)
 

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

101

 # Draw on the screen several lines from (0,10) to (100,110)
 # 5 pixels wide using a loop
 for y_offset in range(0, 100, 10):
 pygame.draw.line(screen, RED, [0, 10 + y_offset], [100, 110 + y_offset], 5)
 
 # Draw a rectangle
 pygame.draw.rect(screen, BLACK, [20, 20, 250, 100], 2)
 
 # Draw an ellipse, using a rectangle as the outside boundaries
 pygame.draw.ellipse(screen, BLACK, [20, 20, 250, 100], 2)
 
 # Draw an arc as part of an ellipse.
 # Use radians to determine what angle to draw.
 pygame.draw.arc(screen, BLACK, [20, 220, 250, 200], 0, PI / 2, 2)
 pygame.draw.arc(screen, GREEN, [20, 220, 250, 200], PI / 2, PI, 2)
 pygame.draw.arc(screen, BLUE, [20, 220, 250, 200], PI, 3 * PI / 2, 2)
 pygame.draw.arc(screen, RED, [20, 220, 250, 200], 3 * PI / 2, 2 * PI, 2)
 
 # This draws a triangle using the polygon command
 pygame.draw.polygon(screen, BLACK, [[100, 100], [0, 200], [200, 200]], 5)
 
 # Select the font to use, size, bold, italics
 font = pygame.font.SysFont('Calibri', 25, True, False)
 
 # Render the text. "True" means anti-aliased text.
 # Black is the color. This creates an image of the
 # letters, but does not put it on the screen
 text = font.render("My text", True, BLACK)
 
 # Put the image of the text on the screen at 250x250
 screen.blit(text, [250, 250])
 
 # Go ahead and update the screen with what we've drawn.
 # This MUST happen after all the other drawing commands.
 pygame.display.flip()
 
 # This limits the while loop to a max of 60 times per second.
 # Leave this out and we will use all CPU we can.
 clock.tick(60)
 
Be IDLE friendly
pygame.quit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

102

Review
Multiple Choice Quiz
	 1.	 If a box is drawn starting at (x,y) coordinate (0,0), where will it be on the screen?

a.	 Upper left

b.	 Lower left

c.	 Upper right

d.	 Lower right

e.	 Center

f.	 It won't display

	 2.	 If the screen width and height are both 400 pixels, and a rectangle is drawn
starting at (0,400), where will it display?

a.	 Upper left

b.	 Lower left

c.	 Upper right

d.	 Lower right

e.	 Center

f.	 It won't display

	 3.	 In computer graphics, as x and y coordinates increase in value, a point will move:

a.	 Down and to the right

b.	 Up and to the right

c.	 Down and to the left

d.	 Up and to the left

e.	 Nowhere

	 4.	 What color would be defined by (0, 0, 0)?

a.	 Black

b.	 Red

c.	 Green

d.	 Blue

e.	 White

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

103

	 5.	 What color would be defined by (0, 255, 0)?

a.	 Black

b.	 Red

c.	 Green

d.	 Blue

e.	 White

	 6.	 What color would be defined by (255, 255, 255)?

a.	 Black

b.	 Red

c.	 Green

d.	 Blue

e.	 White

	 7.	 What code will open up a window 400 pixels high and 800 pixels wide?

a.	 size = [800, 400]
	 screen = pygame.display.set_mode(size)

b.	 size = [400, 800]
	 screen = pygame.display.set_mode(size)

c.	 size = 800,400
	 screen = pygame.display.set_mode(size)

d.	 size = 400,800
	 screen = pygame.display.set_mode(size)

e.	 screen = pygame.display.open_window(800, 400)

f.	 screen = pygame.display.open_window(400, 800)

	 8.	 What is the main program loop?

a.	 It processes user input, updates objects, and draws the screen in each frame
of the game.

b.	 It runs once for the entire game.

c.	 It loops once for each life that the player has.

d.	 It loops once for each level of the game.

	 9.	 Where does this code go?

clock = pygame.time.Clock()

a.	 The code is placed after the main program loop.

b.	 The code is placed inside the main program loop.

c.	 This code is placed before the main program loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

104

	 10.	 Where does this code go, and what does it do?

clock.tick(20)

a.	 The code is place after the main program loop and pauses 20 milliseconds.

b.	 The code is place after the main program loop and limits the game to 20
frames per second.

c.	 The code is placed inside the main program loop and limits the game to 20
frames per second.

d.	 This code is placed before the main program loop and limits the game to 20
frames per second.

e.	 The code is placed inside the main program loop and pauses 20
milliseconds.

	 11.	 Changing this code from 20 to 30 will cause what to happen?

clock.tick(20)

a.	 Nothing.

b.	 The game will run faster.

c.	 The game will run slower.

	 12.	 What does this code do?

pygame.display.flip()

a.	 Nothing.

b.	 Clears the screen.

c.	 Displays everything that has been drawn so far.

d.	 Flips the screen from left to right.

e.	 Flips the screen from top to bottom.

	 13.	 What code will draw a line from x, y coordinates (0, 0) to (100, 100)?

a.	 pygame.draw.line(screen, GREEN, [0,0,100,100], 5)

b.	 pygame.draw.line(screen, GREEN, 0, 0, 100, 100, 5)

c.	 pygame.draw.line(screen, GREEN, [0, 0], [100, 100], 5)

d.	 pygame.draw.line(GREEN, screen, 0, 0, 100, 100, 5)

e.	 pygame.draw.line(5, GREEN, [0, 0], [100, 100], screen)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

105

	 14.	 What will this code draw?

offset = 0
while offset < 100:
 pygame.draw.line(screen, RED, [50+offset,20], [50+offset,60], 5)
 offset = offset + 10

a.	 Ten vertical lines, 10 pixels apart, with a starting x coordinate of 50 and an
ending coordinate of 140.

b.	 Ten horizontal lines, 10 pixels part, with a starting y coordinate of 50 and an
ending coordinate of 150.

c.	 Ten vertical lines, 5 pixels apart, with a starting x coordinate of 50 and an
ending coordinate of 100.

d.	 Ten vertical lines, 10 pixels apart, with a starting x coordinate of 10 and an
ending coordinate of 110.

e.	 Ten vertical lines, 5 pixels apart, with a starting x coordinate of 10 and an
ending coordinate of 150.

f.	 Ten lines, all drawn on top of each other.

	 15.	 How wide will this ellipse be?

pygame.draw.ellipse(screen, BLACK, [0, 0, 100, 100], 2)

a.	 100 pixels

b.	 99 pixels

c.	 101 pixels

d.	 50 pixels

e.	 49 pixels

	 16.	 Where will the center of this ellipse be?

pygame.draw.ellipse(screen, BLACK, [1, 1, 3, 3], 1)

a.	 (1, 1)

b.	 (3, 3)

c.	 (2, 2)

Short Answer Worksheet
	 1.	 Explain how the computer coordinate system differs from the standard Cartesian

coordinate system. There are two main differences. List both.

	 2.	 Before a Python Pygame program can use any functions like
pygame.display.set_mode(), what two lines of code must occur first?

	 3.	 Explain how WHITE = (255, 255, 255) represents a color.

	 4.	 When do we use variable names for colors in all uppercase, and when do we
use variable names for colors in all lowercase? (This applies to all variables,
not just colors.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Introduction to Graphics

106

	 5.	 What does the pygame.display.set_mode() function do?

	 6.	 What does this for event in pygame.event.get() loop do?

	 7.	 What is pygame.time.Clock used for?

	 8.	 For this line of code:

pygame.draw.line(screen, GREEN, [0, 0], [100, 100], 5)

•	 What does screen do?

•	 What does [0, 0] do?

•	 What does [100, 100] do?

•	 What does 5 do?

	 9.	 What is the best way to repeat something over and over in a drawing?

	 10.	 When drawing a rectangle, what happens if the specified line width is zero?

	 11.	 Describe the ellipse drawn in the code below.

•	 What is the x, y of the origin coordinate?

•	 What does the origin coordinate specify? The center of the circle?

•	 What are the length and the width of the ellipse?

pygame.draw.ellipse(screen, BLACK, [20, 20, 250, 100], 2)

	 12.	 When drawing an arc, what additional information is needed over drawing
an ellipse?

	 13.	 Describe, in general, what are the three steps needed when printing text to the
screen using graphics?

	 14.	 When drawing text, the first line of the three lines needed to draw text should
actually be outside the main program loop. It should only run once at the start of
the program. Why is this? You may need to ask.

	 15.	 What are the coordinates of the polygon that the code below draws?

pygame.draw.polygon(screen, BLACK, [[50,100],[0,200],[200,200],[100,50]], 5)

	 16.	 What does pygame.display.flip() do?

	 17.	 What does pygame.quit() do?

	 18.	 Look up online how the pygame.draw.circle works. Get it working and paste a
working sample here. I only need the one line of code that draws the circle, but
make sure it is working by trying it out in a full working program.

Exercise
Check the appendix for the exercise “Create a Picture” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

107

Chapter 7

Back to Looping

Games involve a lot of complex loops. This is a challenge chapter to learn how to be an expert with loops. If
you can understand the problems in this chapter, by the end of it you can certify yourself as a loop expert.

If becoming a loop expert isn’t your goal, at least make sure you can write out the answers for the first
eight problems. That will give you enough knowledge to continue this book. (Besides, being a loop expert
never got anyone a date. Except for that guy in the Groundhog Day movie.)

There are video explanations for the answers online, and the answer code animates. Just hit the step
button to see how the code operates.

Print Statement End Characters
By default, the print statement puts a carriage return at the end of what is printed out. As we explained back
in the first chapter, the carriage return is a character that moves the next line of output to be printed to the
next line. Most of the time this is what we want. Sometimes it isn’t. If we want to continue printing on the
same line, we can change the default character printed at the end. This is an example before we change the
ending character:

print("Pink")
print("Octopus")

…which will print out:

Pink
Octopus

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

108

But if we wanted the code output to print on the same line, it can be done by using a new option to set
the end character. For example:

print("Pink", end="")
print("Octopus")

This will print:

PinkOctopus

We can also use a space instead of setting it to an empty string:

print("Pink", end=" ")
print("Octopus")

This will print:

Pink Octopus

Here’s another example, using a variable:

i = 0
print(i, end=" ")
i = 1
print(i, end=" ")

This will print:

0 1

Advanced Looping Problems
	 1.	 Write code that will print 10 asterisks (*) like the following:

* * * * * * * * * *

Have this code print using a for loop, and print each asterisk individually, rather
than just printing 10 asterisks with 1 print statement. This can be done in 2 lines
of code: a for loop and a print statement.

When you have figured it out, or given up, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/problem_1.php

	 2.	 Write code that will print the following:

* * * * * * * * * *
* * * * *
* * * * * * * * * * * * * * * * * * * *

This is just like the prior problem but also printing 5 and 20 stars. Copy and paste
from the prior problem, adjusting the for loop as needed.

When you have figured it out, or given up, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/problem_2.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/problem_1.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/problem_2.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

109

	 3.	 Use two for loops, one of them nested inside the other, to print the following
10x10 rectangle:

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

To start, take a look at Problem 1. The code in Problem 1 generates 1 line of
asterisks. It needs to be repeated 10 times. Work on this problem for at least 10
minutes before looking at the answer.

When you have figured it out, or given up, here it is: ProgramArcadeGames.com/
chapters/06_back_to_looping/10x10box.php

	 4.	 Use two for loops, one of them nested, to print the following 5x10 rectangle:

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

This is a lot like the prior problem. Experiment with the ranges on the loops to
find exactly what the numbers passed to the range function control.

When you have figured it out, or given up, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/problem_4.php

	 5.	 Use two for loops, one of them nested, to print the following 20x5 rectangle:

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

Again, like Problem 3 and Problem 4, but with different range values.

When you have figured it out, or given up, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/problem_5.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/10x10box.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/10x10box.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/problem_4.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/problem_5.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

110

	 6.	 Write code that will print the following:

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

Use two nested loops. Print the first line with a loop, and not with:

print("0 1 2 3 4 5 6 7 8 9")

Tip: First, create a loop that prints the first line. Then enclose it in another loop
that repeats the line 10 times. Use either i or j variables for what the program
prints. This example and the next one help reinforce what those index variables
are doing.

Work on this problem for at least 10 minutes before looking at the answer. The
process of spending 10 minutes working on the answer is far more important
than the answer itself. ProgramArcadeGames.com/chapters/06_back_to_
looping/number_square_answer.php

	 7.	 Adjust the prior program to print:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

Answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/problem_7.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/number_square_answer.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/number_square_answer.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/problem_7.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

111

	 8.	 Write code that will print the following:

0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5
0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9

Tip: This is just Problem 6, but the inside loop no longer loops a fixed number of
times. Don't use range(10), but adjust that range amount.

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/top_right_
triangle.php

Make sure you can write out the code for this and the prior problems. Yes, this
practice is work, but it will pay off later and you’ll save time in the long run.

	 9.	 Write code that will print the following:

0 1 2 3 4 5 6 7 8 9
 0 1 2 3 4 5 6 7 8
 0 1 2 3 4 5 6 7
 0 1 2 3 4 5 6
 0 1 2 3 4 5
 0 1 2 3 4
 0 1 2 3
 0 1 2
 0 1
 0

This one is difficult. Tip: Two loops are needed inside the outer loop that controls
each row. First, a loop prints spaces, then a loop prints the numbers. Loop both
these for each row. To start with, try writing just one inside loop that prints:

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6
0 1 2 3 4 5
0 1 2 3 4
0 1 2 3
0 1 2
0 1
0

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/top_right_triangle.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/top_right_triangle.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

112

Then once that is working, add a loop after the outside loop starts and before the
already existing inside loop. Use this new loop to print enough spaces to right
justify the other loops.

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/bottom_left_
triangle.php

	 10.	 Write code that will print the following (Getting the alignment is hard, at least get
the numbers):

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Tip: Start by adjusting the code in Problem 1 to print:

0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9
 0 2 4 6 8 10 12 14 16 18
0 3 6 9 12 15 18 21 24 27
0 4 8 12 16 20 24 28 32 36
0 5 10 15 20 25 30 35 40 45
0 6 12 18 24 30 36 42 48 54
0 7 14 21 28 35 42 49 56 63
0 8 16 24 32 40 48 56 64 72
0 9 18 27 36 45 54 63 72 81

Then adjust the code to print:

 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 5 10 15 20 25 30 35 40 45
 6 12 18 24 30 36 42 48 54
 7 14 21 28 35 42 49 56 63
 8 16 24 32 40 48 56 64 72
 9 18 27 36 45 54 63 72 81

Finally, use an if to print spaces if the number being printed is less than 10.

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/multiplication_
table.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/bottom_left_triangle.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/bottom_left_triangle.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/multiplication_table.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/multiplication_table.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

113

	 11.	 Write code that will print the following:

 1
 1 2 1
 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
 1 2 3 4 5 6 5 4 3 2 1
 1 2 3 4 5 6 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

Tip: first write code to print:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

Then write code to print:

1
1 2 1
1 2 3 2 1
1 2 3 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 5 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
  

Then finish by adding spaces to print the final answer.

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/top_triangle.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/top_triangle.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

114

	 12.	 Write code that will print the following:

 1
 1 2 1
 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
 1 2 3 4 5 6 5 4 3 2 1
 1 2 3 4 5 6 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7
 1 2 3 4 5 6
 1 2 3 4 5
 1 2 3 4
 1 2 3
 1 2
 1

This can be done by combining Problems 11 and 9.

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/three_quarters.php

	 13.	 Write code that will print the following:

 1
 1 2 1
 1 2 3 2 1
 1 2 3 4 3 2 1
 1 2 3 4 5 4 3 2 1
 1 2 3 4 5 6 5 4 3 2 1
 1 2 3 4 5 6 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
 1 2 3 4 5 6 7 6 5 4 3 2 1
 1 2 3 4 5 6 5 4 3 2 1
 1 2 3 4 5 4 3 2 1
 1 2 3 4 3 2 1
 1 2 3 2 1
 1 2 1
 1

After working at least 10 minutes on the problem, here is the answer:
ProgramArcadeGames.com/chapters/06_back_to_looping/full_diamond.php

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/06_back_to_looping/three_quarters.php
http://ProgramArcadeGames.com/chapters/06_back_to_looping/full_diamond.php
http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

115

Review
Multiple Choice Quiz
	 1.	 What does this code display?

for i in range(3):
 print("*")

a.	 *
	 *
	 *

b.	 ***

c.	 0
	 1
	 2

d.	 012

	 2.	 What does this code display?

for i in range(3):
 print(i, end="")

a.	 *
	 *
	 *

b.	 ***

c.	 0
	 1
	 2

d.	 012

	 3.	 What does this code display?

for i in range(3):
 print("*", end="")
for j in range(3):
 print("*", end="")

a.	 ***

b.	 ***

c.	 ****** (6 asterisks)

d.	 ********* (9 asterisks)

012012

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

116

	 4.	 What does this code display?

for i in range(3):
 for j in range(3):
 print("*", end="")

a.	 ***

b.	 ***

c.	 ****** (6 asterisks)

d.	 ********* (9 asterisks)

012012

	 5.	 What does this code display?

for i in range(3):
 for j in range(3):
 print("*", end="")
 print()

a.	 (9 asterisks in a vertical line.)

b.	 ***

c.	 ********* (9 asterisks)

	 6.	 What does this code display?

for i in range(3):
 for j in range(3):
 print("*", end="")
 print()

a.	 (9 asterisks in a vertical line.)

b.	 ***

c.	 ********* (9 asterisks)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

117

	 7.	 What does this code display?

for i in range(3):
 for j in range(3):
 print("*", end="")
print()

a.	 (9 asterisks in a vertical line.)

b.	 ***

c.	 ********* (9 asterisks)

	 8.	 What does this code display?

for i in range(3):
 for j in range(3):
 print(i, end="")
 print()

a.	 000
	 111
	 222

b.	 012
	 012
	 012

c.	 012
	 345
	 678

Short Answer Worksheet
For each of the first two questions, write out your best guess as to what the code will print. Clearly label this
as your guess. Then run the code and look at the output. Write if your guess was correct. If it was not, briefly
describe what was different and why.

Predicting what the code will do is important in writing programs and figuring out why programs don’t
run the way expected.

	 1.	 What does this program print out? (Remember: TWO answers. Your guess and
the actual result.)

x = 0
while x < 10:
 print(x)
 x = x + 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

118

	 2.	 What does this program print out?

x = 1
while x < 64:
 print(x)
 x = x * 2

	 3.	 Why is the and x >= 0 not needed?

x = 0
while x < 10 and x >= 0:
 print(x)
 x = x + 2

	 4.	 What does this program print out? (0 pts) Explain.

x = 5
while x >= 0:
 print(x)
 if x == "1":
 print("Blast off!")
 x = x - 1

	 5.	 Fix the following code so it doesn’t repeat forever, and keeps asking the user until
he or she enters a number greater than zero:

x = float(input("Enter a number greater than zero: "))
 
while x <= 0:
 print("Too small. Enter a number greater than zero: ")

	 6.	 Fix the following code:

x = 10
 
while x < 0:
 print(x)
 x - 1
 
print("Blast-off")

	 7.	 What is wrong with this code? It runs but it has unnecessary code. Find all the
unneeded code. Also, answer why it is not needed.

i = 0
for i in range(10):
 print(i)
 i += 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Back to Looping

119

	 8.	 Explain why the values printed for x are so different.

Sample 1
x = 0
for i in range(10):
 x += 1
for j in range(10):
 x += 1
print(x)
 
Sample 2
x = 0
for i in range(10):
 x += 1
 for j in range(10):
 x += 1
print(x)

Exercise
Check the appendix for the exercise “Loopy Lab” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

121

Chapter 8

Introduction to Lists

So far this book has shown four types of data:

•	 String (a string is short for “string of characters,” which normal people think of as
text.)

•	 Integer

•	 Floating point

•	 Boolean

Python can display what type of data a value is with the type function.
This type function isn’t useful for other programming in this book, but it is good to demonstrate the

types of data introduced so far. Type the following into the interactive shell. (Don’t create a new window and
type this in as a program; it won’t work.)

type(3)
type(3.145)
type("Hi there")
type(True)
 
>>> type(3)
<class 'int'>
 
>>> type(3.145)
<class 'float'>
 
>>> type("Hi there")
<class 'str'>
 
>>> type(True)
<class 'bool'>

It is also possible to use the type function on a variable to see what kind of data is in it.

x = 3
type(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

122

More than one coin to collect? Use a list!
The two new types of data introduced in this chapter are Lists and Tuples. Lists are similar to another

data structure called an array. A list can be resized, but an array cannot. A course in data structures will teach
you the details, but it that is beyond the scope of this book. Try running the following commands in the
interactive Python shell and see what is displayed:

type((2, 3, 4, 5))
type([2, 3, 4, 5])

Working with Lists
You’ve created grocery lists, to-do lists, bucket lists, but how do you create a list on the computer?

Even computers use lists

Try these examples using IDLE’s command line. To create a list and print it out, try the following:

>>> x = [1,2]
>>> print(x)
[1, 2]

To print an individual element in a list:

>>> print(x[0])
1

This number with the item’s location is called the index. Note that list locations start at zero. So a list
or array with 10 elements does not have an element in spot [10]. Just spots [0] through [9]. It can be very
confusing to create a list of 10 items and then not have an item 10, but most computer languages start
counting at 0 rather than 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

123

Think of a list as an ice cube tray that holds numbers, as shown in the figure below. The values are
stored inside each tray spot, and written on the side of the tray are numbers starting at zero that identify the
location of each spot.

Don’t mix the index and the value!
Remember, there are two sets of numbers to consider when working with a list of numbers: the position

and the value. The position, also known as index, refers to where a value is. The value is the actual number stored
at that location. When working with a list or array, make sure to think if you need the location or the value.

It is easy to get the value given the location, but it is harder to get the location given the value.
Chapter 16 is dedicated to answering how to find the location of a particular value.

Lists are like ice cube trays

A program can assign new values to an individual element in a list. In the case below, the first spot
at location zero (not one) is assigned the number 22.

>>> x[0] = 22
>>> print(x)
[22, 2]

Also, a program can create a tuple. This data type works just like a list but with two differences. First, it
is created with parentheses rather than square brackets. Second, it is not possible to change the tuple once
created. See below:

>>> x = (1, 2)
>>> print(x)
(1, 2)
>>> print(x[0])
1
>>> x[0] = 22
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 x[0] = 22
TypeError: 'tuple' object does not support item assignment
>>>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_16
http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

124

As can be seen from the output of the code above, we can’t assign an item in the tuple a new value. Why
would we want this limitation? First, the computer can run faster if it knows the value won’t change. Second,
some lists we don’t want to change, such as a list of RGB colors for red. The color red doesn’t change;
therefore an immutable tuple is a better choice.

Iterating through a List
If a program needs to iterate through each item in a list, such as to print it out, there are two types of for
loops that can do this.

The first method to iterate through each item in a loop is by using a for-each loop. This type of loop
takes a collection of items and loops the code once per item. It will take a copy of the item and store it in a
variable for processing.

The format of the command: for item_variable in list_name:
Here are some examples:

my_list = [101, 20, 10, 50, 60]
for item in my_list:
 print(item)
 
101
20
10
50
60

Programs can store strings in lists too:

my_list = ["Spoon", "Fork", "Knife"]
for item in my_list:
 print(item)
 
Spoon
Knife
Fork

Lists can even contain other lists. This iterates through each item in the main list but not in sublists.

my_list = [[2,3], [4,3], [6,7]]
for item in my_list:
 print(item)
 
[2,3]
[4,3]
[6,7]

The other way to iterate through a list is to use an index variable and directly access the list rather than
through a copy of each item. To use an index variable, the program counts from 0 up to the length of the list.
If there are 10 elements, the loop must go from 0 to 9 for a total of 10 elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

125

The length of a list may be found by using the len function. Combining that with the range function
allows the program to loop through the entire list.

my_list = [101, 20, 10, 50, 60]
for i in range(len(my_list)):
 print(my_list[i])
 
101
20
10
50
60

This method is more complex, but is also more powerful. Because we are working directly with the list
elements, rather than a copy, the list can be modified. The for-each loop does not allow modification of the
original list.

Adding to a List
New items may be added to a list (but not a tuple) by using the append command. For example:

my_list = [2, 4, 5, 6]
print(my_list)
my_list.append(9)
print(my_list)
 
[2, 4, 5, 6]
[2, 4, 5, 6, 9]

Side note: If performance while appending is a concern, it is very important to understand how a list is
being implemented. For example, if a list is implemented as an array data type, then appending an item to
the list is a lot like adding a new egg to a full egg carton. A new egg carton must be built with 13 spots. Then
12 eggs are moved over. Then the 13th egg is added. Finally the old egg carton is recycled. Because this can
happen behind the scenes in a function, programmers may forget this and let the computer do all the work.
It would be more efficient to simply tell the computer to make an egg carton with enough spots to begin
with. Thankfully, Python does not implement a list as an array data type. But it is important to pay attention
to your next semester data structures class and learn how all of this works.

To create a list from scratch, it is necessary to create a blank list and then use the append function. This
example creates a list based upon user input:

my_list = [] # Empty list
for i in range(5):
 userInput = input("Enter an integer: ")
 userInput = int(userInput)
 my_list.append(userInput)
 print(my_list)
 
Enter an integer: 4
[4]
Enter an integer: 5
[4, 5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

126

Enter an integer: 3
[4, 5, 3]
Enter an integer: 1
[4, 5, 3, 1]
Enter an integer: 8
[4, 5, 3, 1, 8]

If a program needs to create an array of a specific length, all with the same value, a simple trick is to use
the following code:

Create an array with 100 zeros.
my_list = [0] * 100

Summing or Modifying a List
Creating a running total of an array is a common operation. Here’s how it is done:

Copy of the array to sum
my_list = [5,76,8,5,3,3,56,5,23]
 
Initial sum should be zero
list_total = 0
 
Loop from 0 up to the number of elements
in the array:
for i in range(len(my_list)):
 # Add element 0, next 1, then 2, etc.
 list_total += my_list[i]
 
Print the result
print(list_total)

The same thing can be done by using a for loop to iterate the array, rather than count through a range:

Copy of the array to sum
my_list = [5, 76, 8, 5, 3, 3, 56, 5, 23]
 
Initial sum should be zero
list_total = 0
 
Loop through array, copying each item in the array into
the variable named item.
for item in my_list:
 # Add each item
 list_total += item
 
Print the result
print(list_total)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

127

Numbers in an array can also be changed by using a for loop:

Copy of the array to modify
my_list = [5, 76, 8, 5, 3, 3, 56, 5, 23]
 
Loop from 0 up to the number of elements
in the array:
for i in range(len(my_list)):
 # Modify the element by doubling it
 my_list[i] = my_list[i] * 2
 
Print the result
print(my_list)

However version 2 does not work at doubling the values in an array. Why? Because an item is a copy of
an element in the array. The code below doubles the copy, not the original array element.

Copy of the array to modify
my_list = [5, 76, 8, 5, 3, 3, 56, 5, 23]
 
Loop through each element in myArray
for item in my_list:
 # This doubles item, but does not change the array
 # because item is a copy of a single element.
 item = item * 2
 
Print the result
print(my_list)

Slicing Strings
Strings are actually lists of characters. They can be treated like lists with each letter a separate item. Run the
following code with both versions of x:

x = "This is a sample string"
#x = "0123456789"
 
print("x=", x)
 
Accessing a single character
print("x[0]=", x[0])
print("x[1]=", x[1])
 
Accessing from the right side
print("x[-1]=", x[-1])
 
Access 0-5
print("x[:6]=", x[:6])
Access 6
print("x[6:]=", x[6:])
Access 6-8
print("x[6:9]=", x[6:9])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

128

Strings in Python may be used with some of the mathematical operators. Try the following code and see
what Python does:

a = "Hi"
b = "There"
c = "!"
print(a + b)
print(a + b + c)
print(3 * a)
print(a * 3)
print((a * 2) + (b * 2))

It is possible to get a length of a string. It is also possible to do this with any type of array.

a = "Hi There"
print(len(a))
 
b = [3, 4, 5, 6, 76, 4, 3, 3]
print(len(b))

Since a string is an array, a program can iterate through each character element just like an array:

for character in "This is a test.":
 print(character)

Exercise: Starting with the following code:

months = "JanFebMarAprMayJunJulAugSepOctNovDec"
 
n = int(input("Enter a month number: "))

Print the three-month abbreviation for the month number that the user enters. (Calculate the start
position in the string, then use the info we just learned to print out the correct substring.)

Secret Codes
This code prints out every letter of a string individually:

plain_text = "This is a test. ABC abc"
 
for c in plain_text:
 print(c, end=" ")

Computers do not actually store letters of a string in memory; computers store a series of numbers.
Each number represents a letter. The system that computers use to translate numbers to letters is called
Unicode. The full name for the encoding is Universal Character Set Transformation Format 8-bit, usually
abbreviated UTF-8.

The Unicode chart covers the Western alphabet using the numbers 0-127. Each Western letter is
represented by one byte of memory. Other alphabets, like Cyrillic, can take multiple bytes to represent each
letter. A partial copy of the Unicode chart is below:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

129

Value Character Value Character Value Character Value Character

40 (61 = 82 R 103 g

41) 62 > 83 S 104 h

42 * 63 ? 84 T 105 i

43 + 64 @ 85 U 106 j

44 , 65 A 86 V 107 k

45 - 66 B 87 W 108 l

46 . 67 C 88 X 109 m

47 / 68 D 89 Y 110 n

48 0 69 E 90 Z 111 o

49 1 70 F 91 [112 p

50 2 71 G 92 \ 113 q

51 3 72 H 93] 114 r

52 4 73 I 94 ^ 115 s

53 5 74 J 95 _ 116 t

54 6 75 K 96 ` 117 u

55 7 76 L 97 a 118 v

56 8 77 M 98 b 119 w

57 9 78 N 99 c 120 x

58 : 79 O 100 d 121 y

59 ; 80 P 101 e 122 z

60 < 81 Q 102 f

For more information about ASCII (which has the same values as Unicode for the Western alphabet)
see: http://en.wikipedia.org/wiki/ASCII

For a video that explains the beauty of Unicode, see here: http://hackaday.com/2013/09/27/
utf-8-the-most-elegant-hack

This next set of code converts each of the letters in the prior example to its ordinal value using UTF-8:

plain_text = "This is a test. ABC abc"
 
for c in plain_text:
 print(ord(c), end=" ")

This next program takes each UTF-8 value and adds one to it. Then it prints the new UTF-8 value, then
converts the value back to a letter.

plain_text = "This is a test. ABC abc"
 
for c in plain_text:
 x = ord(c)
 x = x + 1
 c2 = chr(x)
 print(c2, end="")

www.it-ebooks.info

http://en.wikipedia.org/wiki/ASCII
http://hackaday.com/2013/09/27/utf-8-the-most-elegant-hack/
http://hackaday.com/2013/09/27/utf-8-the-most-elegant-hack/
http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

130

The next code listing takes each UTF-8 value and adds one to it, then converts the value back to a letter.

Sample Python/Pygame Programs
http://programarcadegames.com/
 
Explanation video: http://youtu.be/sxFIxD8Gd3A
 
plain_text = "This is a test. ABC abc"
 
encrypted_text = ""
for c in plain_text:
 x = ord(c)
 x = x + 1
 c2 = chr(x)
 encrypted_text = encrypted_text + c2
print(encrypted_text)

Finally, the last code takes each UTF-8 value and subtracts one from it, then converts the value back to a
letter. By feeding this program the output of the previous program, it serves as a decoder for text encoded by
the prior example.

www.it-ebooks.info

http://programarcadegames.com/
http://youtu.be/sxFIxD8Gd3A
http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

131

Sample Python/Pygame Programs
http://programarcadegames.com/
 
Explanation video: http://youtu.be/sxFIxD8Gd3A
 
encrypted_text = "Uijt!jt!b!uftu/!BCD!bcd"
 
plain_text = ""
for c in encrypted_text:
 x = ord(c)
 x = x - 1
 c2 = chr(x)
 plain_text = plain_text + c2
print(plain_text)

Associative Arrays
Python is not limited to using numbers as an array index. It is also possible to use an associative array. An
associative array works like this:

Create an empty associative array
(Note the curly braces.)
x = {}
 
Add some stuff to it
x["fred"] = 2
x["scooby"] = 8
x["wilma"] = 1
 
Fetch and print an item
print(x["fred"])

You won’t really need associative arrays for this book, but I think it is important to point out that it
is possible.

www.it-ebooks.info

http://programarcadegames.com/
http://youtu.be/sxFIxD8Gd3A
http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

132

Review
Multiple Choice Quiz
	 1.	 What code will print out the first element?

x = [1, 2, 3, 4, 5]

a.	 print(x[0])

b.	 print(x[1])

c.	 print(x(0))

d.	 print(x(1))

e.	 print(x)

f.	 print([1])

	 2.	 What code will change the first element?

x = [1, 2, 3, 4, 5]

a.	 x[0] = 100

b.	 x = 100

c.	 x[1] = 100

d.	 [1] = 100

e.	 x(1) = 100

	 3.	 What code will print each element of my_list?

my_list = [101, 20, 10, 50, 60]

a.	 for item in my_list:
 print(item)

b.	 for item in my_list:
print(my_list)

c.	 for item in range(my_list):
print(item)

d.	 for my_list in item:
print(item)

	 4.	 What code will add a new element to this list?

my_list = [5, 6, 7]

a.	 my_list[8]

b.	 my_list(8)

c.	 my_list.add(8)

d.	 my_list.append(8)

e.	 my_list.add[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

133

	 5.	 What code will sum all the elements in this list?

my_array = [5, 76, 8, 5, 3, 3, 56, 5, 23]

a.	 array_total = 0
for i in range(len(my_array)):
 array_total += my_array[i]

b.	 array_total = 0
for i in range(my_array):
 array_total += my_array[i]

c.	 array_total = 0
for i in range(len(my_array)):
 array_total += i

d.	 i = 0
for i in range(len(my_array)):
 array_total += my_array

e.	 i = 0
for i in my_array:
 array_total += my_array(i)

	 6.	 What does this code print?

my_array = [2, 4, 6]
for i in range(3):
 print(my_array)

a.	 0
	 1
	 2

b.	 1
	 2
	 3

c.	 [2, 4, 6]
	 [2, 4, 6]
	 [2, 4, 6]

d.	 246

e.	 [2, 4, 6]

f.	 2
	 4
	 6

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

134

	 7.	 What does this code print?

my_array = [2, 4, 6]
for i in range(3):
 print(my_array[0])

0
1
2

2
2
2

[2, 4, 6]
[2, 4, 6]
[2, 4, 6]

246

[2, 4, 6]

2
4
6

	 8.	 What does this code print?

my_array = [2, 4, 6]
for i in range(3):
 print(i)
0
1
2

2
2
2

[2, 4, 6]
[2, 4, 6]
[2, 4, 6]

246

[2, 4, 6]

2
4
6

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

135

Short Answer Worksheet
In the following problems, if an error prevents an example from running, make certain to mention that as
part of the results. Also, be precise. If program prints [1], doesn’t say it prints 1.

	 1.	 List the four types of data we’ve covered, and give an example of each:

	 2.	 What does this code print out? For this and the following problems, make sure
you understand WHY it prints what it does. You don’t have to explain it, but if you
don’t understand why, make sure to ask. Otherwise you are wasting your time
doing these.

my_list = [5, 2, 6, 8, 101]
print(my_list[1])
print(my_list[4])
print(my_list[5])

	 3.	 What does this code print out?

my_list=[5, 2, 6, 8, 101]
for my_item in my_list:
 print(my_item)

	 4.	 What does this code print out?

my_list1 = [5, 2, 6, 8, 101]
my_list2 = (5, 2, 6, 8, 101)
my_list1[3] = 10
print(my_list1)
my_list2[2] = 10
print(my_list2)

	 5.	 What does this code print out?

my_list = [3 * 5]
print(my_list)
my_list = [3] * 5
print(my_list)

	 6.	 What does this code print out?

my_list = [5]
for i in range(5):
 my_list.append(i)
print(my_list)

	 7.	 What does this code print out?

print(len("Hi"))
print(len("Hi there."))
print(len("Hi") + len("there."))
print(len("2"))
print(len(2))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Introduction to Lists

136

	 8.	 What does this code print out?

print("Simpson" + "College")
print("Simpson" + "College"[1])
print(("Simpson" + "College")[1])

	 9.	 What does this code print out?

word = "Simpson"
for letter in word:
 print(letter)

	 10.	 What does this code print out?

word = "Simpson"
for i in range(3):
 word += "College"
print(word)

	 11.	 What does this code print out?

word = "Hi" * 3
print(word)

	 12.	 What does this code print out?

my_text = "The quick brown fox jumped over the lazy dogs."
print("The 3rd spot is: " + my_text[3])
print("The -1 spot is: " + my_text[-1])

	 13.	 What does this code print out?

s = "0123456789"
print(s[1])
print(s[:3])
print(s[3:])

	 14.	 Write a loop that will take in a list of five numbers from the user, adding each to
an array. Then print the array. Try doing this without looking at the book.

	 15.	 Write a program that take an array like the following, and print the average.
Use the len function, don’t just use 15, because that won’t work if the list size
changes. (There is a sum function I haven’t told you about. Don’t use that. Sum
the numbers individually as shown in the chapter.)

my_list = [3,12,3,5,3,4,6,8,5,3,5,6,3,2,4]

Exercise
Check the appendix for the exercise “Adventure” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

137

Chapter 9

Introduction to Animation

To begin our first animation, let’s start with the base pygame program from Chapter 6 that opens up
a blank screen. Source for pygame_base_template.py can be found here: ProgramArcadeGames.com/
python_examples/f.php?file=pygame_base_template.py

We will put together a program to bounce a white rectangle around a screen with a black background.
Feel free to pick your own colors; just make sure the background color is different than the rectangle color!

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://ProgramArcadeGames.com/%0apython_examples/f.php?file=pygame_base_template.py
http://ProgramArcadeGames.com/%0apython_examples/f.php?file=pygame_base_template.py
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

138

First step: start with the base template and flip the background color from white to black. This code
should be around line 46.

screen.fill(BLACK)

Next up, draw the rectangle we plan to animate. A simple rectangle will suffice. This code should be
placed after clearing the screen, and before flipping it.

pygame.draw.rect(screen, WHITE, [50, 50, 50, 50])

Each time through the loop the rectangle will be drawn at an (x,y) location of exactly (50,50). This is
controlled by the first two 50s in the list. Until those numbers change, the square will not move.

The rectangle will be 50 pixels wide and 50 pixels tall. The dimensions are controlled by the last two
numbers in the list. We could also call this rectangle a square, since it has the same width and height. I’ll
stick with calling it a rectangle because all squares are also rectangles, and depending on the monitor and
resolution used, pixels aren’t always square. Look up Pixel Aspect Ratio if you are really interested in this
subject.

How do we keep changing the location rather than have it stuck at (50, 50)? Use a variable, of course!
The code below is a first step towards that:

rect_x = 50
pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])

To move the rectangle to the right, x can be increased by one each frame. This code is close, but it does
not quite do it:

rect_x = 50
pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])
rect_x += 1

The problem with the above code is that rect_x is reset back to 50 each time through the loop. To
fix this problem, move the initialization of rect_x up outside of the loop. This next section of code will
successfully slide the rectangle to the right.

Starting x position of the rectangle
Note how this is outside the main while loop.
rect_x = 50
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 
 # Set the screen background
 screen.fill(BLACK)
 
 pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])
 rect_x += 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

139

To move the box faster, rather than increasing rect_x by 1, increase it by 5:

rect_x += 5

We can expand this code and increase both x and y, causing the square to move both down and right:

Starting position of the rectangle
rect_x = 50
rect_y = 50
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the rectangle
 pygame.draw.rect(screen, WHITE, [rect_x, rect_y, 50, 50])
 
 # Move the rectangle starting point
 rect_x += 5
 rect_y += 5

The direction and speed of the box’s movement can be stored in a vector. This makes it easy for the
direction and speed of a moving object to be changed. The next bit of code shows using variables to store the
x and y change of (5, 5).

Starting position of the rectangle
rect_x = 50
rect_y = 50
 
Speed and direction of rectangle
rect_change_x = 5
rect_change_y = 5
 
-------- Main Program Loop -----------
while done == False:
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the rectangle
 pygame.draw.rect(screen, WHITE, [rect_x, rect_y, 50, 50])
 
 # Move the rectangle starting point
 rect_x += rect_change_x
 rect_y += rect_change_y

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

140

Once the box hits the edge of the screen it will keep going. Nothing makes the rectangle bounce off the
edge of the screen. To reverse the direction so the rectangle travels towards the right, rect_change_y needs
to change from 5 to -5 once the rectangle gets to the bottom side of the screen. The rectangle is at the bottom
when rect_y is greater than the height of the screen. The code below can do the check and reverse the
direction:

Bounce the rectangle if needed
if rect_y > 450:
 rect_change_y = rect_change_y * -1

Rectangle location based on y coordinate

Why check rect_y against 450? If the screen is 500 pixels high, then checking against 500 would be a
logical first guess. But remember the rectangle is drawn starting from the top left corner of the rectangle. If
the rectangle was drawn starting at 500, it would draw from 500 to 550, totally off screen before it bounced.

Taking into account that the rectangle is 50 pixels high the correct bounce location is: $500-50=450$.
The code below will bounce the rectangle off all four sides of a 700x400 window:

Bounce the rectangle if needed
if rect_y > 450 or rect_y < 0:
 rect_change_y = rect_change_y * -1
if rect_x > 650 or rect_x < 0:
 rect_change_x = rect_change_x * -1

Interested in a more complex shape than a rectangle? Several drawing commands can be used based off
the rect_x and rect_y. The code below draws a red rectangle inside the white rectangle. The red rectangle is
offset 10 pixels in the x,y directions from the upper left corner of the white rectangle. It also is 20 pixels smaller
in both dimensions, resulting in 10 pixels of white surrounding the red rectangle. See the figure above.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

141

White rectangle with a red square in the middle

Draw a red rectangle inside the white one
pygame.draw.rect(screen, WHITE, [rect_x, rect_y, 50, 50])
pygame.draw.rect(screen, RED, [rect_x + 10, rect_y + 10 ,30, 30])

Animating Snow
Animating only one item isn’t enough? Need to animate more? How about being able to animate hundreds
of objects at once? Let’s expand on the code above and learn how to animate many objects.

Code Explanation
To start this program, begin with the base pygame template that opens up a blank screen. Again, source for
pygame_base_template.py can be found here:

ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

142

It is possible to create x, y locations for things such as stars, snow, or rain by using random numbers.
The simplest way to attempt this is using a for loop to draw circles in random x, y positions. Try the
following code inside of the main while loop.

for i in range(50):
 x = random.randrange(0, 400)
 y = random.randrange(0, 400)
 pygame.draw.circle(screen, WHITE, [x, y], 2)

Try it; this program has an odd problem! Twenty times per second, each time through the loop, it draws
the snow in new random locations. Try adjusting the snowflake count and see how it changes the image.

Obviously, we need to randomly position the snowflakes and keep them in the same spot. We don’t
want to generate new positions 20 times per second. We need to keep a list of where they are. The program
can use a python list to do this. This should be done before the main loop, otherwise the program will add 50
new snowflakes to the list every 1/20th of a second.

for i in range(50):
 x = random.randrange(0, 400)
 y = random.randrange(0, 400)
 snow_list.append([x, y])

Once the snowflake locations have been added, they can be accessed like a normal list. The following
code would print both the x and y coordinates of the first location, stored in position zero:

print(snow_list[0])

What if we wanted just the x or y coordinate? We have lists inside lists. The main list has all the
coordinates. Inside of that list, each coordinate is a list of an x (position 0), and a y coordinate (position 1).
For example, here are three coordinates:

[[34, 10],
 [10, 50],
 [20, 18]]

To print the y coordinate at position 0, first select coordinate 0, and then the y value at position 1. The
code will look like:

print(snow_list[0][1])

To print the x value of the 21st coordinate (position 20), first select coordinate 20, and then the x value at
position 0:

print(snow_list[20][0])

Inside of the main while loop, a program may use a for loop to draw each of the items in the snow list.
Remember, len(snow_list) will return the number of elements in the snowflake list.

Process each snow flake in the list
for i in range(len(snow_list)):
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, snow_list[i], 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

143

Remember, there are two types of for loops. The other type of loop can be used, and it would look like:

Process A COPY of each snow flake's location in the list
for xy_coord in snow_list:
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, xy_coord, 2)

However, because we plan on modifying the snowflake’s location we can’t use this type of for loop
because we’d be modifying the location of a copy of the snowflake’s location rather than the actual
snowflake’s location.

If the program is to have all the objects in the array move down, like snow, then expanding the for loop
created above will cause the y coordinate to increase:

Process each snow flake in the list
for i in range(len(snow_list)):
 
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, snow_list[i], 2)
 
 # Move the snow flake down one pixel
 snow_list[i][1] += 1

This moves the snow downwards, but once off the screen nothing new appears. By adding the code
below, the snow will reset to the top of the screen in a random location:

 # If the snow flake has moved off the bottom of the screen
 if snow_list[i][1] > 400:
 # Reset it just above the top
 y = random.randrange(-50, -10)
 snow_list[i][1] = y
 # Give it a new x position
 x = random.randrange(0, 400)
 snow_list[i][0] = x

It is also possible to add things to the list and have different sizes, shapes, colors, speeds, and directions
for each item on the screen. This gets complex however because of the multiple types of data that need to be
kept in the list. We will keep it simple for now, but once we learn about “classes” in Chapter 12, it will be easy
to manage many different attributes for multiple objects.

Full Program Listing

"""
 Animating multiple objects using a list.
 Sample Python/Pygame Programs
http://programarcadegames.com/
 
 Explanation video: http://youtu.be/Gkhz3FuhGoI
"""
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_12
http://programarcadegames.com/
http://youtu.be/Gkhz3FuhGoI
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

144

Import a library of functions called 'pygame'
import pygame
import random
 
Initialize the game engine
pygame.init()
 
BLACK = [0, 0, 0]
WHITE = [255, 255, 255]
 
Set the height and width of the screen
SIZE = [400, 400]
 
screen = pygame.display.set_mode(SIZE)
pygame.display.set_caption("Snow Animation")
 
Create an empty array
snow_list = []
 
Loop 50 times and add a snow flake in a random x,y position
for i in range(50):
 x = random.randrange(0, 400)
 y = random.randrange(0, 400)
 snow_list.append([x, y])
 
clock = pygame.time.Clock()
 
Loop until the user clicks the close button.
done = False
while not done:
 
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Process each snow flake in the list
 for i in range(len(snow_list)):
 
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, snow_list[i], 2)
 
 # Move the snow flake down one pixel
 snow_list[i][1] += 1
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

145

 # If the snow flake has moved off the bottom of the screen
 if snow_list[i][1] > 400:
 # Reset it just above the top
 y = random.randrange(-50, -10)
 snow_list[i][1] = y
 # Give it a new x position
 x = random.randrange(0, 400)
 snow_list[i][0] = x
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 clock.tick(20)
 
pygame.quit()

This example shows each snowflake moving the same direction. What if each item needs to be
animated separately, with its own direction? If you need this for your game, see Chapter 13 on how to use
classes. The “Classes and Graphics” Exercise in the appendix steps you through how to have hundreds of
different items animated, each with their own direction.

3D Animation
Extending from a 2D environment into a 3D environment complete with game physics isn’t as hard as it
would seem. While it is beyond the scope of this book, it is worthwhile to see how it is done.

There is a freely available 3D program called Blender that has a “game engine” that allows programmers
to create 3D games. The 3D objects in the game can have Python code attached to them that controls their
actions in the game.

Blender-based Game

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_13
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

146

Look at the figure above. This shows a green tray with several objects in it. The blue object is controlled
by a Python script that moves it around the tray bumping into the other objects. The script, shown below,
has many of the same features that the 2D programs have. There is a main loop, there is a list for x,y
locations, and there are variables controlling the vector.

The main program loop is controlled by Blender. The python code shown in the listing is called by
Blender for each “frame” the game renders. This is why the Python code does not show a main program
loop. It does exist, however.

The blue object has a location held in x, y, z format. It can be accessed and changed by using the blue_
object.position variable. Array position 0 holds x, position 1 holds y, and position 2 holds the z location.

Rather than the change_x and change_y variables used in the 2D examples in this changer, this Blender
example uses the associative array locations:

blue_object["x_change"]
blue_object["y_change"]

The if statements check to see if the blue object has reached the borders of the screen and the direction
needs to reverse. Unlike pixels used in the 2D games, locations of objects may be a floating point number
type. To position an item between 5 and 6, setting its location to 5.5 is permissible.

Import Blender Game Engine
import bge
 
Get a reference to the blue object
cont = bge.logic.getCurrentController()
blue_object = cont.owner
 
Print the x,y coordinates where the blue object is
print(blue_object.position[0], blue_object.position[1])
 
Change x,y coordinates according to x_change and
y_change. x_change and y_change are game properties
associated with the blue object.
blue_object.position[0] += blue_object["x_change"]
blue_object.position[1] += blue_object["y_change"]
 
Check to see of the object has gone to the edge.
If so reverse direction. Do so with all 4 edges.
if blue_object.position[0] > 6 and blue_object["x_change"] > 0:
 blue_object["x_change"] *= -1
 
if blue_object.position[0] < -6 and blue_object["x_change"] < 0:
 blue_object["x_change"] *= -1
 
if blue_object.position[1] > 6 and blue_object["y_change"] > 0:
 blue_object["y_change"] *= -1
 
if blue_object.position[1] < -6 and blue_object["y_change"] < 0:
 blue_object["y_change"] *= -1

Blender may be downloaded from: http://www.blender.org/
A full blender example file is available at: ProgramArcadeGames.com/chapters/

08_intro_to_animation/simple_block_move.blend.

www.it-ebooks.info

http://www.blender.org/
http://ProgramArcadeGames.com/chapters/%0a08_intro_to_animation/simple_block_move.blend
http://ProgramArcadeGames.com/chapters/%0a08_intro_to_animation/simple_block_move.blend
http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

147

Review
Multiple Choice Quiz
	 1.	 In the bouncing rectangle program, if rect_change_x is positive and rect_

change_y is negative, which way will the rectangle travel?

a.	 Up

b.	 Up and right

c.	 Right

d.	 Down and right

e.	 Down

f.	 Down and left

g.	 Left

h.	 Up and left

	 2.	 In the bouncing rectangle program, if rect_change_x is zero and rect_change_y
is positive, which way will the rectangle travel?

a.	 Up

b.	 Up and right

c.	 Right

d.	 Down and right

e.	 Down

f.	 Down and left

g.	 Left

h.	 Up and left

	 3.	 This code is supposed to draw a white rectangle. But when the program is run, no
rectangle shows up. Why?

import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
 
pygame.init()
 
Set the height and width of the screen
size = [700, 500]
screen = pygame.display.set_mode(size)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

148

Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the rectangle
 pygame.draw.rect(screen, WHITE, [50, 50, 50, 50])
 
 # Limit to 20 frames per second
 clock.tick(20)
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit()

a.	 The rectangle dimensions are offscreen.

b.	 There is no flip command.

c.	 The rectangle is the same color as the background.

d.	 The rectangle is drawn outside the main program loop.

e.	 The rectangle is too small to see.

f.	 The rectangle should be drawn earlier in the code.

	 4.	 This code is supposed to draw a white rectangle. But when the program is run, no
rectangle shows up. Curiously, when the user hits the close button, the rectangle
briefly appears before the program closes. Why?

import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
 
pygame.init()
 
Set the height and width of the screen
size = [700, 500]
screen = pygame.display.set_mode(size)
 
Loop until the user clicks the close button.
done = False
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

149

Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the rectangle
 pygame.draw.rect(screen, WHITE, [50, 50, 50, 50])
 
 # Limit to 20 frames per second
 clock.tick(20)
 
Go ahead and update the screen with what we've drawn.
pygame.display.flip()
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit()

a.	 The rectangle dimensions are offscreen.

b.	 The flip is unindented and doesn’t show until after the program ends.

c.	 The rectangle is the same color as the background.

d.	 The rectangle is drawn outside the main program loop.

e.	 The rectangle is too small to see.

f.	 The flip should be done before the rectangle is drawn.

	 5.	 This version of “The Bouncing Rectangle” doesn’t work. The rectangle won’t
move. Why?

import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
 
pygame.init()
 
Set the height and width of the screen
size = [700, 500]
screen = pygame.display.set_mode(size)
 
#Loop until the user clicks the close button.
done = False
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

150

Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
Speed and direction of rectangle
rect_change_x = 5
rect_change_y = 5
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done=True
 
 # Starting position of the rectangle
 rect_x = 50
 rect_y = 50
 
 # Move the rectangle starting point
 rect_x += rect_change_x
 rect_y += rect_change_y
 
 # Bounce the ball if needed
 if rect_y > 450 or rect_y < 0:
 rect_change_y = rect_change_y * -1
 if rect_x > 650 or rect_x < 0:
 rect_change_x = rect_change_x * -1
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the rectangle
 pygame.draw.rect(screen, WHITE, [rect_x, rect_y, 50, 50])
 
 # Limit to 20 frames per second
 clock.tick(20)
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit ()

a.	 pygame.draw.rect doesn’t change where the rectangle is drawn based on
the variables.

b.	 rect_x and rect_y are reset to 50 each time through the loop.

c.	 The 50,50 in the draw command also needs to be changed to
rect_x,rect_y

d.	 The lines to adjust rect_x and rect_y need to be outside the while loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

151

	 6.	 What is the correct code to make the rectangle bounce of the left and right sides
of the screen?

a.	 if rect_x > 450 or rect_x < 0:
 rect_x = rect_x * -1

b.	 if rect_x > 450 or rect_x < 0:
 rect_change_x = rect_change_x * -1

c.	 if rect_y > 450 or rect_y < 0:
 rect_y = rect_y * -1

d.	 if rect_y > 450 or rect_y < 0:
 rect_change_y = rect_change_y * -1

	 7.	 Why does this code not work for drawing stars?

for i in range(50):
 x = random.randrange(0,400)
 y = random.randrange(0,400)
 pygame.draw.circle(screen, WHITE, [x, y], 2)

a.	 The stars are drawn offscreen.

b.	 The variable i should be used when drawing stars.

c.	 The stars get brand-new locations each time a frame is drawn.

d.	 The stars are drawn too small to be seen.

e.	 The x and y coordinates are reversed.

Short Answer Worksheet
	 1.	 Why does using this code in the main loop not work to move the rectangle?

 rect_x = 50
 pygame.draw.rect(screen, WHITE, [rect_x, 50, 50, 50])
 rect_x += 1

	 2.	 The example code to bounce a rectangle used a total of four variables. What did
each variable represent?

	 3.	 If the screen is 400 pixels tall, and the shape is 20 pixels high, at what point should
the code check to see if the shape is in contact with the bottom of the screen.

	 4.	 Explain what is wrong with the following code (explain it, don’t just correct the code):

if rect_y > 450 or rect_y < 0:
 rect_y = rect_y * -1

	 5.	 A student is animating a stick figure. He creates separate variables for tracking
the position of the head, torso, legs, and arms. When the figure moves to the right
he adds one to each of the variables. Explain an easier way to do this that only
requires one pair of x, y variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Introduction to Animation

152

	 6.	 When drawing a starry background, explain why it doesn’t work to put code like
this in the main program loop:

for i in range(50):
 x = random.randrange(0, 400)
 y = random.randrange(0, 400)
 pygame.draw.circle(screen, WHITE, [x, y], 2)

	 7.	 Explain how to animate dozens of items at the same time.

	 8.	 If you have a list of coordinates like the following, what code would be required
to print out the array location that holds the number 33?

stars = [[3, 4],
 [33, 94],
 [0, 0]]

	 9.	 This code example causes snow to fall:

Process each snow flake in the list
for i in range(len(snow_list)):
 
 # Get the x and y from the lies
 x = snow_list[i][0]
 y = snow_list[i][1]
  
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, [x, y], 2)
  
 # Move the snow flake down one pixel
 snow_list[i][1] += 1

So does the example below. Explain why this example works as well.

Process each snow flake in the list
for i in range(len(snow_list)):
 
 # Draw the snow flake
 pygame.draw.circle(screen, WHITE, snow_list[i], 2)
  
 # Move the snow flake down one pixel
 snow_list[i][1] += 1

	 10.	 Take a look at the radar_sweep.py program. You can find this example under the
“graphics examples” subsection on the examples page. The radar_sweep.py is near
the end of that list. Explain how this program animates the sweep to go in a circle.

Exercise
Check the appendix for the exercise “Animation” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

153

Chapter 10

Functions

Functions are used for two reasons. First, they make code easier to read and understand. Second, they allow
code to be used more than once.

Imagine a set of code that draws a tree as shown below. To do this, the programmer executes the
following commands:

pygame.draw.rect(screen, BROWN, [60, 400, 30, 45])
pygame.draw.polygon(screen, GREEN, [[150, 400], [75, 250], [0, 400]])
pygame.draw.polygon(screen, GREEN, [[140, 350], [75, 230], [10, 350]])

Simple Tree

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

154

Those three lines of code don't really pop out as obviously drawing a tree! If we have multiple trees or
complex objects, it starts getting hard to understand what is being drawn.

By defining a function we can make the program easier to read. To define a function, start by using the
def command. After the def command goes the function name. In this case we are calling it draw_tree.
We use the same rules for function names that we use for variable names.

Following the function name will be a set of parentheses and a colon. All the commands for the function
will be indented inside. See the example below:

def draw_tree():
 pygame.draw.rect(screen, BROWN, [60, 400, 30, 45])
 pygame.draw.polygon(screen, GREEN, [[150, 400], [75, 250], [0, 400]])
 pygame.draw.polygon(screen, GREEN, [[140, 350], [75, 230], [10, 350]])

By itself, this code will not cause a tree to draw. It will tell the computer how to do draw_tree. You have
to call the function to actually run the code in the function and get the tree to draw:

draw_tree()

With a whole library of functions defining different things to be drawn, a final program might look like:

draw_tree()
draw_house()
draw_car()
draw_killer_bunny()

Remember that draw_tree has three lines of code. Each one of these other commands, like draw_house,
has multiple lines of code. By using functions, we can repeat the commands without repeating all the code
contained within, making for a much smaller program.

Function names are very important. If the function names are descriptive, even a nonprogrammer
should be able to read a set of code and get an idea what is happening. Function names follow the same
rules as variable names and should start with a lowercase letter.

Function Parameters
Functions can take parameters. Chances are, you’ve already used parameters in math class. In the equation
for the volume of a sphere below, the function v takes one parameter: r which represents the radius. This
function can be used to determine the volume of any sphere, no matter what the radius is. These parameters
are used to increase the flexibility of a function by altering the result based on parameters passed to it.

v r pr() = 4

3
3

For example, our function called draw_tree() draws the tree in one specific place. But the function
could be changed to take a parameter that specifies where to draw the tree. For example draw_tree(screen,
0, 230) would draw the tree at an (x, y) location of (0, 230).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

155

Adjusting the function for the tree might look like:

def draw_tree(screen, x, y):
 pygame.draw.rect(screen, BROWN, [60+x, 170+y, 30, 45])
 pygame.draw.polygon(screen, GREEN, [[150+x,170+y],[75+x,20+y], [x,170+y]])
 pygame.draw.polygon(screen, GREEN, [[140+x,120+y], [75+x,y], [10+x,120+y]])

This would allow us to draw multiple trees wherever we like:

draw_tree(screen, 0, 230)
draw_tree(screen, 200, 230)
draw_tree(screen, 400, 230)

Here is a different function that can be run without using graphics. This function will calculate and print
out the volume of a sphere:

def volume_sphere(radius):
 pi = 3.141592653589
 volume = (4 / 3) * pi * radius ** 3
 print("The volume is", volume)

Parameters are assigned values when a function is called, not when it is defined.
The name of the function is volume_sphere. The data going into the functions will be stored in a new

variable called radius. The resulting volume is printed to the screen. The radius variable does not get a
value here. Frequently new programmers get confused because parameter variables aren't given a value
when the function is defined, so it doesn't look legal. Parameters are given a value when the function is
called.

To call this function, use:

volume_sphere(22)

The radius variable in the function is created and initialized with a value of 22. The function's code is
run once the execution reaches the call to the function.

What if we need to pass in more than one value? Multiple parameters can be passed to a function, each
parameter separated by a comma:

def volume_cylinder(radius, height):
 pi = 3.141592653589
 volume = pi * radius ** 2 * height
 print("The volume is", volume)

That function may be called by:

volume_cylinder(12, 3)

Parameters are done in order, so radius will get the 12, and height will get the 3 value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

156

Returning and Capturing Values
Unfortunately, these example functions are limited. Why? If a person wanted to use the volume_cylinder
function to calculate the volume in a six-pack, it wouldn't work. It only prints out the volume of one cylinder.
It is not possible to use the function's result for one cylinder's volume in an equation and multiply it by six to
get a six-pack volume.

Returning Values
This can be solved by using a return statement. For example:

Add two numbers and return the results
def sum_two_numbers(a, b):
 result = a + b
 return result

Return is not a function and does not use parentheses. Don’t do return(result).
This only gets us halfway there. Because if we call the function now, not much happens. The numbers

get added. They get returned to us. But we do nothing with the result.

This doesn't do much, because we don't capture the result
sum_two_numbers(22, 15)

Capturing Returned Values
We need to capture the result. We do that by setting a variable equal to the value the function returned:

Store the function's result into a variable
my_result = sum_two_numbers(22, 15)
print(my_result)

Now the result isn't lost. It is stored in my_result, which we can print or use some other way.

Improving the volume_cylinder Example

def volume_cylinder(radius, height):
 pi = 3.141592653589
 volume = pi * radius ** 2 * height
 return volume

Because of the return, this function could be used later on as part of an equation to calculate the
volume of a six-pack like this:

six_pack_volume = volume_cylinder(2.5, 5) * 6

The value returned from volume_cylinder goes into the equation and is multiplied by six.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

157

There is a big difference between a function that prints a value and a function that returns a value. Look
at the code below and try it out.

Function that prints the result
def sum_print(a, b):
 result = a + b
 print(result)
 
Function that returns the results
def sum_return(a, b):
 result = a + b
 return result
 
This prints the sum of 4+4
sum_print(4, 4)
 
This does not
sum_return(4, 4)
 
This will not set x1 to the sum
It actually gets a value of 'None'
x1 = sum_print(4, 4)
 
This will
x2 = sum_return(4, 4)

When first working with functions it is not unusual to get stuck looking at code like this:

def calculate_average(a, b):
 """ Calculate an average of two numbers """
 result = (a * b) / 2
 return result
 
Pretend you have some code here
x = 45
y = 56
 
Wait, how do I print the result of this?
calculate_average(x, y)

How do we print the result of calculate_average? The program can't print the result because that
variable only exists inside the function. Instead, use a variable to capture the result:

def calculate_average(a, b):
 """ Calculate an average of two numbers """
 result = (a * b) / 2
 return result
 
Pretend you have some code here
x = 45
y = 56
 
average = calculate_average(x, y)
print(average)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

158

Documenting Functions
Functions in Python typically have a comment as the first statement of the function. This comment is
delimited using three double quotes and is called a docstring. A function may look like:

def volume_cylinder(radius, height):
 """Returns volume of a cylinder given radius, height."""
 pi = 3.141592653589
 volume = pi * radius ** 2 * height
 return volume

The great thing about using docstrings in functions is that the comment can be pulled out and put into
a web site documenting your code using a tool like http://sphinx-doc.org/. Most languages have similar
tools that can help make documenting your code a breeze. This can save a lot of time as you start working on
larger programs.

Variable Scope
The use of functions introduces the concept of scope. Scope is where in the code a variable is alive and can
be accessed. For example, look at the code below:

Define a simple function that sets
x equal to 22
def f():
 x = 22
 
Call the function
f()
This fails, x only exists in f()
print(x)

The last line will generate an error because x only exists inside of the f() function. The variable is
created when f() is called and the memory it uses is freed as soon as f() finishes.

Here's where it gets complicated.
A more confusing rule is accessing variables created outside of the f() function. In the following code, x

is created before the f() function, and thus can be read from inside the f() function.

Create the x variable and set to 44
x = 44
 
Define a simple function that prints x
def f():
 print(x)
 
Call the function
f()

www.it-ebooks.info

http://sphinx-doc.org/
http://www.it-ebooks.info/

Chapter 10 ■ Functions

159

Variables created ahead of a function may be read inside of the function only if the function does not change
the value. This code, very similar to the code above, will fail. The computer will claim it doesn't know what x is.

Create the x variable and set to 44
x = 44
 
Define a simple function that prints x
def f():
 x += 1
 print(x)
 
Call the function
f()

Other languages have more complex rules around the creation of variables and scope than Python does.
Because Python is straightforward, it is a good introductory language.

Pass-by-copy
Functions pass their values by creating a copy of the original. For example:

Define a simple function that prints x
def f(x):
 x += 1
 print(x)
 
Set y
y = 10
Call the function
f(y)
Print y to see if it changed
print(y)

The value of y does not change, even though the f() function increases the value passed to it. Each of
the variables listed as a parameter in a function is a brand new variable. The value of that variable is copied
from where it is called.

This is reasonably straightforward in the prior example. Where it gets confusing is if both the code that
calls the function and the function itself have variables named the same. The code below is identical to the
prior listing, but rather than use y it uses x.

Define a simple function that prints x
def f(x):
 x += 1
 print(x)
 
Set x
x = 10
Call the function
f(x)
Print x to see if it changed
print(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

160

The output is the same as the program that uses y. Even though both the function and the surrounding
code use x for a variable name, there are actually two different variables. There is the variable x that exists
inside of the function and a different variable x that exists outside the function.

Functions Calling Functions
It is entirely possible for a function to call another function. For example, say the functions like the following
were defined:

def arm_out(which_arm, palm_up_or_down):
 # code would go here
 
def hand_grab(hand, arm):
 # code goes here

Then another function could be created that calls the other functions:

def macarena():
 arm_out("right", "down")
 arm_out("left", "down")
 arm_out("right", "up")
 arm_out("left", "up")
 hand_grab("right", "left arm")
 hand_grab("left", "right arm")
 # etc

Main Functions and Globals
Global variables are pure evil.

As programs get large it is important to keep the code organized and put into functions. Python allows
us to write code at “indent level 0.” This describes most of the code we've written so far. Our code is lined up
on the left and not contained in functions.

This philosophy is like heaping your clothes on the middle of your floor or keeping all your tools in a
pile on the workbench. It only works well when you don't have much stuff. Even when you don't have much
stuff it is still messy.

All your code and all your variables should be placed in functions. This will keep your code organized.
It will also help when you need to track down a bug in the program. Variables created at “indent level 0” are
called global variables. Global variables are a very bad thing. Why? Because any piece of code anywhere
can change their value. If you have a 50,000-line program, each line of code can change that global variable.
If instead you keep the variable in a function, then only that code in the function can change the variable.
Thus, if you have an unexpected value in a variable, you only need to look through the maybe 50 lines of
code in your function. Otherwise you have to check every line of code in your entire program!

A better way to write a program in Python would be to follow this pattern:

def main():
 print("Hello world.")
 
main()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

161

In this case all the code that I normally would have run at indent level 0 is placed in the main function.
The last line of the file calls main.

But wait! There's another problem we need to fix. In Chapter 15, we will talk about how to break our
program into multiple files. We can use the import command to bring in functions from other modules
we created. If we used the import command on this module, it would automatically start running the main
function. We don't want that. We want the program that imports it to control when the function is called.

To fix this problem we can have our program check a global variable defined automatically by Python.
(I know, I just said global variables were bad, right?) That variable is called __name__, with two underscores
before and after it. We can check it to see if this code is being imported or run. If the code is being run,
Python will automatically set the value of that variable to __main__. By using an if statement we will only
call the main function if the code is being run. Otherwise the code will just define the main function. The code
that imported it can call the function when desired.

This is how all your Python code should be run:

def main():
 print("Hello world.")
 
if __name__ == "__main__":
 main()

One of the reasons I love Python as a first language is that you aren't required to use this complexity
until you need it. Other languages, like Java, require it no matter how small your program.

To make things easier in this book we do not show our examples using this pattern. But after this book
your programs will likely be complex enough that it will make life easier if you don't “throw all your clothes
in a pile,” so to speak.

If you are super enthused about programming, try writing your programs starting this way now. While
it may be a bit more challenging to begin with, it will make writing programs easier later on. It is also a good
way to learn about how to properly manage your data and its scope.

Here is an example that shows how to do the base pygame template using this pattern:
programarcadegames.com/python_examples/f.php?file=pygame_base_template_proper.py

Using this template is not required. I'm OK for a short time if you pile your clothes in the middle of the
floor. I'm just happy you are wearing clothes. (For the neat freaks, we can clean this program up even more
when we get to the chapter on Python classes.)

Short Examples
For each of the examples below, think about what would print. Check to see if you are right. If you didn't
guess correctly, spend to the time to understand why.

Example 1
def a():
 print("A")
 
def b():
 print("B")
 
def c():
 print("C")
 
a()
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_15
http://programarcadegames.com/python_examples/f.php?file=pygame_base_template_proper.py
http://www.it-ebooks.info/

Chapter 10 ■ Functions

162

Example 2
def a():
 b()
 print("A")
 
def b():
 c()
 print("B")
 
def c():
 print("C")
 
a()
 
Example 3
def a():
 print("A")
 b()
 
def b():
 print("B")
 c()
 
def c():
 print("C")
 
a()
 
Example 4
def a():
 print("A start")
 b()
 print("A end")
 
def b():
 print("B start")
 c()
 print("B end")
 
def c():
 print("C start and end")
a()
 
Example 5
def a(x):
 print("A start, x =",x)
 b(x + 1)
 print("A end, x =",x)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

163

def b(x):
 print("B start, x =",x)
 c(x + 1)
 print("B end, x =",x)
 
def c(x):
 print("C start and end, x =",x)
 
a(5)
 
Example 6
def a(x):
 x = x + 1
 
x = 3
a(x)
 
print(x)
 
Example 7
def a(x):
 x = x + 1
 return x
 
x = 3
a(x)
 
print(x)
 
Example 8
def a(x):
 x = x + 1
 return x
 
x = 3
x = a(x)
 
print(x)
 
Example 9
def a(x, y):
 x = x + 1
 y = y + 1
 print(x, y)
 
x = 10
y = 20
a(y, x)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

164

Example 10
def a(x, y):
 x = x + 1
 y = y + 1
 return x
 return y
 
x = 10
y = 20
z = a(x, y)
 
print(z)
 
Example 11
def a(x, y):
 x = x + 1
 y = y + 1
 return x, y
 
x = 10
y = 20
z = a(x, y)
 
print(z)
 
Example 12
def a(x, y):
 x = x + 1
 y = y + 1
 return x, y
 
x = 10
y = 20
x2, y2 = a(x, y) # Most computer languages don't support this
 
print(x2)
print(y2)
 
Example 13
def a(my_data):
 print("function a, my_data = ", my_data)
 my_data = 20
 print("function a, my_data = ", my_data)
 
my_data = 10
 
print("global scope, my_data =", my_data)
a(my_data)
print("global scope, my_data =", my_data)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

165

Example 14
def a(my_list):
 print("function a, list = ", my_list)
 my_list = [10, 20, 30]
 print("function a, list = ", my_list)
 
my_list = [5, 2, 4]
 
print("global scope, list =", my_list)
a(my_list)
print("global scope, list =", my_list)
 
Example 15
New concept!
Covered in more detail in Chapter 13
def a(my_list):
 print("function a, list = ", my_list)
 my_list[0] = 1000
 print("function a, list = ", my_list)
 
my_list = [5, 2, 4]
 
print("global scope, list =", my_list)
a(my_list)
print("global scope, list =", my_list)

Mudball Game Example
"""
This is a sample text-only game that demonstrates the use of functions.
The game is called "Mudball" and the players take turns lobbing mudballs
at each other until someone gets hit.
"""
 
import math
import random
 
def print_instructions():
 """ This function prints the instructions. """
 
 # You can use the triple-quote string in a print statement to
 # print multiple lines.
 print("""
Welcome to Mudball! The idea is to hit the other player with a mudball.
Enter your angle (in degrees) and the amount of PSI to charge your gun
with.
 """)
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_13
http://www.it-ebooks.info/

Chapter 10 ■ Functions

166

def calculate_distance(psi, angle_in_degrees):
 """ Calculate the distance the mudball flies. """
 angle_in_radians = math.radians(angle_in_degrees)
 distance = .5 * psi ** 2 * math.sin(angle_in_radians) * math.cos(angle_in_radians)
 return distance
 
def get_user_input(name):
 """ Get the user input for psi and angle. Return as a list of two
 numbers. """
 # Later on in the 'exceptions' chapter, we will learn how to modify
 # this code to not crash the game if the user types in something that
 # isn't a valid number.
 psi = float(input(name + " charge the gun with how many psi? "))
 angle = float(input(name + " move the gun at what angle? "))
 return psi, angle
 
def get_player_names():
 """ Get a list of names from the players. """
 print("Enter player names. Enter as many players as you like.")
 done = False
 players = []
 while not done:
 player = input("Enter player (hit enter to quit): ")
 if len(player) > 0:
 players.append(player)
 else:
 done = True
 
 print()
 return players
 
def process_player_turn(player_name, distance_apart):
 """ The code runs the turn for each player.
 If it returns False, keep going with the game.
 If it returns True, someone has won, so stop. """
 psi, angle = get_user_input(player_name)
 
 distance_mudball = calculate_distance(psi, angle)
 difference = distance_mudball - distance_apart
 
 # By looking ahead to the chapter on print formatting, these
 # lines could be made to print the numbers is a nice formatted
 # manner.
 if difference > 1:
 print("You went", difference, "yards too far!")
 elif difference < -1:
 print("You were", difference * -1, "yards too short!")
 else:
 print("Hit!", player_name, "wins!")
 return True
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

167

 print()
 return False
 
def main():
 """ Main program. """
 
 # Get the game started.
 print_instructions()
 player_names = get_player_names()
 distance_apart = random.randrange(50, 150)
 
 # Keep looking until someone wins
 done = False
 while not done:
 # Loop for each player
 for player_name in player_names:
 # Process their turn
 done = process_player_turn(player_name, distance_apart)
 # If someone won, 'break' out of this loop and end the game.
 if done:
 break
 
if __name__ == "__main__":
 main()

Review
Multiple Choice Quiz
	 1.	 What does this code print?

def f():
 print("f")
 
def g():
 print("g")
 
print("a")

a.	 f

b.	 a

c.	 g

d.	 f
	 g
	 a

e.	 a
	 f
	 g

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

168

	 2.	 What does this code print?

def f():
 print("f")
 
def g():
 print("g")
 
g()
print("a")
f()

a.	 f

b.	 a

c.	 g

d.	 g
	 a
	 f

e.	 f
	 g
	 a

f.	 a
	 f
	 g

	 3.	 What does this code print?

def f(a):
 print(a)
 
a = 5
f(a + 1)

a.	 0

b.	 5

c.	 Nothing

d.	 6

e.	 a+1

f.	 a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

169

	 4.	 What does this code print?

def f(a, b):
 print(a)
 print(b)
 
a = 1
b = 2
f(b, a)

a.	 1
	 2

b.	 2
	 1

c.	 a
	 b

d.	 b
	 a

	 5.	 What does this code print?

def f(a):
 return a + 1
 
b = f(5)
print(b)

a.	 5

b.	 6

c.	 a+1

d.	 b

e.	 a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

170

	 6.	 What is wrong with this code?

def sum_list(list):
 sum = 0
 for item in list:
 sum + = item
 return sum
 
list=[45, 2, 10, -5, 100]
print(sum_list(list))

a.	 The return statement should print the sum instead.

b.	 The return statement should be unindented one tab stop.

c.	 The return statement should be unindented two tab stops.

d.	 The variable i should be used instead of item.

e.	 The sum_list function may not be placed inside the print statement.

	 7.	 What will this print?

a = 3
 
def f():
 print(a)
 
f()

a.	 f

b.	 3

c.	 Nothing

d.	 An error, a is undefined.

	 8.	 What will this print?

a = 3
 
def f():
 a = a + 1
 print(a)
 
f()

a.	 f

b.	 4

c.	 Nothing

d.	 An error, a is undefined.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

171

	 9.	 What will this print?

def f(a):
 return a + 1
 
print(f(f(5)))

a.	 5

b.	 6

c.	 7

d.	 An error.

	 10.	 What will this print?

def foo():
 x = 3
 print("foo has been called")
 
x = 10
print("x=", x)
foo()
print("x=", x)

a.	 x= 10
foo has been called
x= 10

b.	 x= 3
foo has been called
x= 10

c.	 x= 10
foo has been called
x= 3

d.	 An error.

Short Answer Worksheet
For the code below, write a prediction on what it will output. Then run the code and state if your prediction
was accurate or not. If your prediction is incorrect, make sure you understand why.

	 1.	 Block 1 (Remember, guess AND actual.)

for i in range(5):
 print(i + 1)

	 2.	 Block 2

for i in range(5):
 print(i)
 i = i + 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

172

	 3.	 Block 3

x = 0
for i in range(5):
 x += 1
print(x)

	 4.	 Block 4

x = 0
for i in range(5):
 for j in range(5):
 x += 1
print(x)

	 5.	 Block 5

for i in range(5):
 for j in range(5):
 print(i, j)

	 6.	 Block 6

for i in range(5):
 for j in range(5):
 print("*", end="")
 print()

	 7.	 Block 7

for i in range(5):
 for j in range(5):
 print("*", end="")
 print()

	 8.	 Block 8

for i in range(5):
 for j in range(5):
 print("*", end="")
print()

	 9.	 Block 9

This is supposed to sum a list of numbers
What is the mistake here?
my_list = [5, 8, 10, 4, 5]
i = 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

173

for i in my_list:
 i = i + my_list[i]
print(i)

	 10.	 Block 10

for i in range(5):
 x = 0
 for j in range(5):
 x += 1
print(x)

	 11.	 Block 11

import random
play_again = "y"
while play_again == "y":
 for i in range(5):
 print(random.randrange(2), end="")
 print()
 play_again = input("Play again? ")
print("Bye!")

	 12.	 Block 12

def f1(x):
 print(x)
y = 3
f1(y)

	 13.	 Block 13

def f2(x):
 x = x + 1
 print(x)
y = 3
f2(y)
print(y)

	 14.	 Block 14

def f3(x):
 x = x + 1
 print(x)
x = 3
f3(x)
print(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

174

	 15.	 Block 15

def f4(x):
 z = x + 1
 print(z)
x = 3
f4(x)
print(z)

	 16.	 Block 16

def foo(x):
 x = x + 1
 print("x=", x)
 
x = 10
print("x=", x)
foo(x)
print("x=", x)

	 17.	 Block 17

def f():
 print("f start")
 g()
 h()
 print("f end")
 
def g():
 print("g start")
 h()
 print("g end")
 
def h():
 print("h")
 
f()

	 18.	 Block 18

def foo():
 x = 3
 print("foo has been called")
 
x = 10
print("x=", x)
foo()
print("x=", x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

175

	 19.	 Block 19 (This demonstrates a new concept that won't be fully explained until
Chapter 13.)

def a(x):
 print("a", x)
 x = x + 1
 print("a", x)
 
x = 1
print("main", x)
a(x)
print("main", x)
 
def b(y):
 print("b", y[1])
 y[1] = y[1] + 1
 print("b", y[1])
 
y=[123, 5]
print("main", y[1])
b(y)
print("main", y[1])
 
def c(y):
 print("c", y[1])
 y = [101, 102]
 print("c", y[1])
 
y = [123, 5]
print("main", y[1])
c(y)
print("main", y[1])

Correcting Code
This next section involves finding the mistakes in the code. If you can't find the mistake, check out the video
on-line for the answer and an explanation on what is wrong.

	 1.	 Correct the following code: (Don't let it print out the word “None.”)

def sum(a, b, c):
 print(a + b + c)
 
print(sum(10, 11, 12))

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_13
http://www.it-ebooks.info/

Chapter 10 ■ Functions

176

	 2.	 Correct the following code: (x should increase by one, but it doesn't.)

def increase(x):
 return x + 1
 
x = 10
print("X is", x, " I will now increase x.")
increase(x)
print("X is now", x)

	 3.	 Correct the following code:

def print_hello:
 print("Hello")
 
print_hello()

	 4.	 Correct the following code:

def count_to_ten():
 for i in range[10]:
 print(i)
 
count_to_ten()

	 5.	 Correct the following code:

def sum_list(list):
 for i in list:
 sum = i
 return sum
 
list = [45, 2, 10, -5, 100]
print(sum_list(list))

	 6.	 Correct the following code: (This almost reverses the string. What is wrong?)

def reverse(text):
 result = ""
 text_length = len(text)
 for i in range(text_length):
 result = result + text[i * -1]
 return result
 
text = "Programming is the coolest thing ever."
print(reverse(text))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

177

	 7.	 Correct the following code:

def get_user_choice():
 while True:
 command = input("Command: ")
 if command = f or command = m or command = s or command = d or command = q:
 return command
 
 print("Hey, that's not a command. Here are your options:")
 print("f - Full speed ahead")
 print("m - Moderate speed")
 print("s - Status")
 print("d - Drink")
 print("q - Quit")
 
user_command = get_user_choice()
print("You entered:", user_command)

For this section, write code that satisfies the following items:

	 1.	 Write a function that prints out “Hello World.”

	 2.	 Write code that will call the function in the prior problem.

	 3.	 Write a function that prints out “Hello Bob” and will take a parameter to let the
caller specify the name. Do not put an input statement inside the function! Use a
parameter.

	 4.	 Write code that will call the function in the prior problem.

	 5.	 Write a function that will take two numbers as parameters (not as input from the
user) and print their product (i.e., multiply them).

	 6.	 Write code that will call the prior function.

	 7.	 Write a function that takes in two parameters. The first parameter will be a string
named phrase. The second parameter will be a number named count. Print
phrase to the screen count times. (e.g., the function takes in "Hello" and 5 then
prints "Hello" five times.)

	 8.	 Write code to call the previous function.

	 9.	 Write code for a function that takes in a number and returns the square of that
number. (I'm not asking for the square root but the number squared.) Note, this
function should RETURN the answer, not print it out.

	 10.	 Write code to call the function above and print the output.

	 11.	 Write a function that takes three numbers as parameters and returns the

centrifugal force. The formula for centrifugal force is: F m
v

r
=

2

 F is force, m is

mass, r is radius, and v is angular velocity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Functions

178

	 12.	 Write code to call the function above and display the result.

	 13.	 Write a function that takes a list of numbers as a parameter and prints out each
number individually using a for loop.

Exercise
Check the appendix for the exercise “Functions” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

179

Chapter 11

Controllers and Graphics

How do we get objects to move using the keyboard, mouse, or a game controller?

So far, we’ve shown how to animate items on the screen, but not how to interact with them. How do we
use a mouse, keyboard, or game controller to control the action onscreen? Thankfully this is pretty easy.

To begin with, it is necessary to have an object that can be moved around the screen. The best way to do
this is to have a function that takes in an x and y coordinate, then draws an object at that location. So back to
Chapter 10! Let’s take a look at how to write a function to draw an object.

All the pygame draw functions require a screen parameter to let Pygame know which window to draw
on. We will need to pass this in to any function we create to draw an object on the screen.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_10
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

180

The function also needs to know where to draw the object on the screen. The function needs an x and
y. We pass the location to the function as a parameter. Here is example code that defines a function that will
draw a snowman when called:

def draw_snowman(screen, x, y):
 # Draw a circle for the head
 pygame.draw.ellipse(screen, WHITE, [35+x, 0+y, 25, 25])
 # Draw the middle snowman circle
 pygame.draw.ellipse(screen, WHITE, [23+x, 20+y, 50, 50])
 # Draw the bottom snowman circle
 pygame.draw.ellipse(screen, WHITE, [0+x, 65+y, 100, 100])

Then, in the main program loop, multiple snowmen can be drawn, as seen in the figure below.

Snowmen drawn by a function

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

181

Snowman in upper left
draw_snowman(screen, 10, 10)
 
Snowman in upper right
draw_snowman(screen, 300, 10)
 
Snowman in lower left
draw_snowman(screen, 10, 300)

A full working example is available online at:

ProgramArcadeGames.com/python_examples/f.php?file=functions_and_graphics.py

Chances are, from a prior lab you already have a code that draws something cool. But how do you get
that into a function? Let’s take an example of code that draws a stick figure:

Head
pygame.draw.ellipse(screen, BLACK, [96,83,10,10], 0)
 
Legs
pygame.draw.line(screen, BLACK, [100,100], [105,110], 2)
pygame.draw.line(screen, BLACK, [100,100], [95,110], 2)
 
Body
pygame.draw.line(screen, RED, [100,100], [100,90], 2)
 
Arms
pygame.draw.line(screen, RED, [100,90], [104,100], 2)
pygame.draw.line(screen, RED, [100,90], [96,100], 2)

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=functions_and_graphics.py
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

182

Stick Figure

This code can easily be put in a function by adding a function def and indenting the code under it. We’ll
need to bring in all the data that the function needs to draw the stick figure. We need the screen variable to
tell the function what window to draw on, and an x and y coordinate for where to draw the stick figure.

But we can’t define the function in the middle of our program loop! The code should be removed from
the main part of the program. Function declarations should go at the start of the program. We need to move
that code to the top. See the figure to help visualize.

def draw_stick_figure(screen,x,y):
 # Head
 pygame.draw.ellipse(screen, BLACK, [96,83,10,10], 0)
 
 # Legs
 pygame.draw.line(screen, BLACK, [100,100], [105,110], 2)
 pygame.draw.line(screen, BLACK, [100,100], [95,110], 2)
 
 # Body
 pygame.draw.line(screen, RED, [100,100], [100,90], 2)
 
 # Arms
 pygame.draw.line(screen, RED, [100,90], [104,100], 2)
 pygame.draw.line(screen, RED, [100,90], [96,100], 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

183

Making a Function and Putting it in the Right Place

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

184

Right now, this code takes in an x and y coordinate. Unfortunately it doesn’t actually do anything with
them. You can specify any coordinate you want; the stick figure always draws in in the same exact spot. Not
very useful. The next code example literally adds in the x and y coordinate to the code we had before.

def draw_stick_figure(screen, x, y):
 # Head
 pygame.draw.ellipse(screen, BLACK,[96+x,83+y,10,10],0)
 
 # Legs
 pygame.draw.line(screen, BLACK, [100+x,100+y], [105+x,110+y], 2)
 pygame.draw.line(screen, BLACK, [100+x,100+y], [95+x,110+y], 2)
 
 # Body
 pygame.draw.line(screen, RED, [100+x,100+y], [100+x,90+y], 2)
 
 # Arms
 pygame.draw.line(screen, RED, [100+x,90+y], [104+x,100+y], 2)
 pygame.draw.line(screen, RED, [100+x,90+y], [96+x,100+y], 2)

But the problem is that the figure is already drawn a certain distance from the origin. It assumes an
origin of (0, 0) and draws the stick figure down and over about 100 pixels. See the next figure and how the
stick figure is not drawn at the (0, 0) coordinate passed in.

Stick Figure

By adding x and y in the function, we shift the origin of the stick figure by that amount. For example, if
we call:

draw_stick_figure(screen, 50, 50)

The code does not put a stick figure at (50, 50). It shifts the origin down and over 50 pixels. Since our
stick figure was already being drawn at about (100, 100), with the origin shift, the figure is about (150, 150).
How do we fix this so that the figure is actually drawn where the function call requests?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

185

Finding the Smallest X and Y Values

Find the smallest x value and the smallest y value as shown in the figure above. Then subtract that value
from each x and y in the function. Don’t mess with the height and width values. Here’s an example where we
subtracted the smallest x and y values:

def draw_stick_figure(screen, x, y):
 # Head
 pygame.draw.ellipse(screen, BLACK,[96-95+x,83-83+y,10,10],0)
 
 # Legs
 pygame.draw.line(screen, BLACK, [100-95+x,100-83+y], [105-95+x,110-83+y], 2)
 pygame.draw.line(screen, BLACK, [100-95+x,100-83+y], [95-95+x,110-83+y], 2)
 
 # Body
 pygame.draw.line(screen, RED, [100-95+x,100-83+y], [100-95+x,90-83+y], 2)
 
 # Arms
 pygame.draw.line(screen, RED, [100-95+x,90-83+y], [104-95+x,100-83+y], 2)
 pygame.draw.line(screen, RED, [100-95+x,90-83+y], [96-95+x,100-83+y], 2)

Or, to make a program simpler, do the subtraction yourself:

def draw_stick_figure(screen, x, y):
 # Head
 pygame.draw.ellipse(screen, BLACK, [1+x,y,10,10], 0)
 
 # Legs
 pygame.draw.line(screen, BLACK ,[5+x,17+y], [10+x,27+y], 2)
 pygame.draw.line(screen, BLACK, [5+x,17+y], [x,27+y], 2)
 
 # Body
 pygame.draw.line(screen, RED, [5+x,17+y], [5+x,7+y], 2)
 
 # Arms
 pygame.draw.line(screen, RED, [5+x,7+y], [9+x,17+y], 2)
 pygame.draw.line(screen, RED, [5+x,7+y], [1+x,17+y], 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

186

Mouse
Great, now we know how to write a function to draw an object at specific coordinates. How do we get those
coordinates? The easiest to work with is the mouse. It takes one line of code to get the coordinates:

pos = pygame.mouse.get_pos()

The trick is that coordinates are returned as a list, or more specifically a non-modifiable tuple. Both
the x and y values are stored in the same variable. So if we do a print(pos) we get what is shown in the
following figure.

X

(634, 130)

Y

Pos
0 1

Pos

Coordinates

The variable pos is a tuple of two numbers. The x coordinate is in position 0 of array and the y coordinate
is in the position 1. These can easily be fetched out and passed to the function that draws the item:

Game logic
pos = pygame.mouse.get_pos()
x = pos[0]
y = pos[1]
 
Drawing section
draw_stick_figure(screen, x, y)

Getting the mouse should go in the game logic part of the main program loop. The function call should
go in the drawing part of the main program loop.

The only problem with this is that the mouse pointer draws right on top of the stick figure, making it
hard to see, as shown in the next figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

187

Stick Figure with Mouse Cursor on Top

The mouse can be hidden by using the following code right before the main program loop:

Hide the mouse cursor
pygame.mouse.set_visible(False)

A full working example can be found here:

ProgramArcadeGames.com/python_examples/f.php?file=move_mouse.py

Keyboard
Controlling with the keyboard is a bit more complex. We can’t just grab the x and y from the mouse. The
keyboard doesn’t give us an x and y. We need to:

•	 Create an initial x and y for our start position.

•	 Set a velocity in pixels per frame when an arrow key is pressed down. (keydown)

•	 Reset the velocity to zero when an arrow key is released. (keyup)

•	 Adjust the x and y each frame depending on the velocity.

It seems complex, but this is just like the bouncing rectangle we did before, with the exception that the
speed is controlled by the keyboard.

To start with, set the location and speed before the main loop starts:

Speed in pixels per frame
x_speed = 0
y_speed = 0
 
Current position
x_coord = 10
y_coord = 10

Inside the main while loop of the program, we need to add some items to our event processing loop.
In addition to looking for a pygame.QUIT event, the program needs to look for keyboard events. An event is
generated each time the user presses a key.

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=move_mouse.py
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

188

A pygame.KEYDOWN event is generated when a key is pressed down. A pygame.KEYUP event is generated
when the user lets up on a key. When the user presses a key, the speed vector is set to 3 or -3 pixels per
frame. When the user lets up on a key the speed vector is reset back to zero. Finally, the coordinates of the
object are adjusted by the vector, and then the object is drawn. See the code example below:

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # User pressed down on a key
 elif event.type == pygame.KEYDOWN:
 # Figure out if it was an arrow key. If so
 # adjust speed.
 if event.key == pygame.K_LEFT:
 x_speed = -3
 elif event.key == pygame.K_RIGHT:
 x_speed = 3
 elif event.key == pygame.K_UP:
 y_speed = -3
 elif event.key == pygame.K_DOWN:
 y_speed = 3

 # User let up on a key
 elif event.type == pygame.KEYUP:
 # If it is an arrow key, reset vector back to zero
 if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT:
 x_speed = 0
 elif event.key == pygame.K_UP or event.key == pygame.K_DOWN:
 y_speed = 0
 
Move the object according to the speed vector.
x_coord += x_speed
y_coord += y_speed
 
Draw the stick figure
draw_stick_figure(screen, x_coord, y_coord)

For a full example see:

ProgramArcadeGames.com/python_examples/f.php?file=move_keyboard.py

Note that this example does not prevent the character from moving off the edge of the screen. To do this,
in the game logic section, a set of if statements would be needed to check the x_coord and y_coord values.
If they are outside the boundaries of the screen, then reset the coordinates to the edge. The exact code for
this is left as an exercise for the reader.

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=move_keyboard.py
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

189

The table below shows a full list of key-codes that can be used in Pygame:

Pygame Code ASCII Common Name

K_BACKSPACE \b backspace

K_RETURN \r return

K_TAB \t tab

K_ESCAPE ^[escape

K_SPACE space

K_COMMA , comma sign

K_MINUS - minus

K_PERIOD . period slash

K_SLASH / forward

K_0 0 0

K_1 1 1

K_2 2 2

K_3 3 3

K_4 4 4

K_5 5 5

K_6 6 6

K_7 7 7

K_8 8 8

K_9 9 9

K_SEMICOLON ; semicolon sign

K_EQUALS = equals sign

K_LEFTBRACKET [left

K_RIGHTBRACKET] right

K_BACKSLASH \ backslash bracket

K_BACKQUOTE ` grave

K_a a a

K_b b b

K_c c c

K_d d d

K_e e e

K_f f f

K_g g g

K_h h h

K_i i i

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

190

Pygame Code ASCII Common Name

K_j j j

K_k k k

K_l l l

K_m m m

K_n n n

K_o o o

K_p p p

K_q q q

K_r r r

K_s s s

K_t t t

K_u u u

K_v v v

K_w w w

K_x x x

K_y y y

K_z z z

K_DELETE delete

K_KP0 keypad 0

K_KP1 keypad 1

K_KP2 keypad 2

K_KP3 keypad 3

K_KP4 keypad 4

K_KP5 keypad 5

K_KP6 keypad 6

K_KP7 keypad 7

K_KP8 keypad 8

K_KP9 keypad 9 period

K_KP_PERIOD . keypad divide

K_KP_DIVIDE / keypad multiply

K_KP_MULTIPLY * keypad minus

K_KP_MINUS - keypad plus

K_KP_PLUS + keypad enter

K_KP_ENTER \r keypad equals

K_KP_EQUALS = keypad

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

191

Pygame Code ASCII Common Name

K_UP up arrow

K_DOWN down arrow

K_RIGHT right arrow

K_LEFT left arrow

K_INSERT insert

K_HOME home

K_END end

K_PAGEUP page up

K_PAGEDOWN page down

K_F1 F1

K_F2 F2

K_F3 F3

K_F4 F4

K_F5 F5

K_F6 F6

K_F7 F7

K_F8 F8

K_F9 F9

K_F10 F10

K_F11 F11

K_F12 F12

K_NUMLOCK numlock

K_CAPSLOCK capslock

K_RSHIFT right shift

K_LSHIFT left shift

K_RCTRL right ctrl

K_LCTRL left ctrl

K_RALT right alt

K_LALT left alt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

192

Game Controller
Game controllers require a different set of code, but the idea is still simple.

To begin, check to see if the computer has a joystick, and initialize it before use. This should only be
done once. Do it ahead of the main program loop:

Current position
x_coord = 10
y_coord = 10
 
Count the joysticks the computer has
joystick_count = pygame.joystick.get_count()
if joystick_count == 0:
 # No joysticks!
 print("Error, I didn't find any joysticks.")
else:
 # Use joystick #0 and initialize it
 my_joystick = pygame.joystick.Joystick(0)
 my_joystick.init()

A joystick will return two floating-point values. If the joystick is perfectly centered it will return (0, 0). If
the joystick is fully up and to the left it will return (-1, -1). If the joystick is down and to the right it will return
(1, 1). If the joystick is somewhere in between, values are scaled accordingly. See the controller images
starting at the following figures to get an idea how it works.

Center (0,0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

193

Up Left (-1,-1)

Up (0,-1)

Up Right (1,-1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

194

Right (1,0)

Down Right (1,1)

Down (0,1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

195

Down Left (-1,1)

Left (-1,0)

Inside the main program loop, the values of the joystick returns may be multiplied according to how far
an object should move. In the case of the code below, moving the joystick fully in a direction will move it
10 pixels per frame because the joystick values are multiplied by 10.

This goes in the main program loop!
 
As long as there is a joystick
if joystick_count != 0:
 
 # This gets the position of the axis on the game controller
 # It returns a number between -1.0 and +1.0
 horiz_axis_pos = my_joystick.get_axis(0)
 vert_axis_pos = my_joystick.get_axis(1)
 
 # Move x according to the axis. We multiply by 10 to speed up the movement.
 # Convert to an integer because we can't draw at pixel 3.5, just 3 or 4.
 x_coord = x_coord + int(horiz_axis_pos * 10)
 y_coord = y_coord + int(vert_axis_pos * 10)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

196

Clear the screen
screen.fill(WHITE)
 
Draw the item at the proper coordinates
draw_stick_figure(screen, x_coord, y_coord)

For a full example, see

ProgramArcadeGames.com/python_examples/f.php?file=move_game_controller.py.

Controllers have a lot of joysticks, buttons, and even hat switches. Below is an example program and
screenshot that prints everything to the screen showing what each game controller is doing. Take heed that
game controllers must be plugged in before this program starts, or the program can’t detect them.

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=move_game_controller.py
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

197

Joystick Calls Program

"""
Sample Python/Pygame Programs
http://programarcadegames.com/
 
Show everything we can pull off the joystick

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

198

"""
import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
 
 
class TextPrint(object):
 """
 This is a simple class that will help us print to the screen
 It has nothing to do with the joysticks, just outputting the
 information.
 """
 def __init__(self):
 """ Constructor """
 self.reset()
 self.x_pos = 10
 self.y_pos = 10
 self.font = pygame.font.Font(None, 20)
 
 def print(self, my_screen, text_string):
 """ Draw text onto the screen. """
 text_bitmap = self.font.render(text_string, True, BLACK)
 my_screen.blit(text_bitmap, [self.x_pos, self.y_pos])
 self.y_pos += self.line_height
 
 def reset(self):
 """ Reset text to the top of the screen. """
 self.x_pos = 10
 self.y_pos = 10
 self.line_height = 15
 
 def indent(self):
 """ Indent the next line of text """
 self.x_pos += 10
 
 def unindent(self):
 """ Unindent the next line of text """
 self.x_pos -= 10
 
pygame.init()
 
Set the width and height of the screen [width,height]
size = [500, 700]
screen = pygame.display.set_mode(size)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

199

pygame.display.set_caption("My Game")
 
Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
Initialize the joysticks
pygame.joystick.init()
 
Get ready to print
textPrint = TextPrint()
 
-------- Main Program Loop -----------
while not done:
 # EVENT PROCESSING STEP
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Possible joystick actions: JOYAXISMOTION JOYBALLMOTION JOYBUTTONDOWN
 # JOYBUTTONUP JOYHATMOTION
 if event.type == pygame.JOYBUTTONDOWN:
 print("Joystick button pressed.")
 if event.type == pygame.JOYBUTTONUP:
 print("Joystick button released.")
 
 # DRAWING STEP
 # First, clear the screen to white. Don't put other drawing commands
 # above this, or they will be erased with this command.
 screen.fill(WHITE)
 textPrint.reset()
 
 # Get count of joysticks
 joystick_count = pygame.joystick.get_count()
 
 textPrint.print(screen, "Number of joysticks: {}".format(joystick_count))
 textPrint.indent()
 
 # For each joystick:
 for i in range(joystick_count):
 joystick = pygame.joystick.Joystick(i)
 joystick.init()
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

200

 textPrint.print(screen, "Joystick {}".format(i))
 textPrint.indent()
 
 # Get the name from the OS for the controller/joystick
 name = joystick.get_name()
 textPrint.print(screen, "Joystick name: {}".format(name))
 
 # Usually axis run in pairs, up/down for one, and left/right for
 # the other.
 axes = joystick.get_numaxes()
 textPrint.print(screen, "Number of axes: {}".format(axes))
 textPrint.indent()
 
 for i in range(axes):
 axis = joystick.get_axis(i)
 textPrint.print(screen, "Axis {} value: {:>6.3f}".format(i, axis))
 textPrint.unindent()
 
 buttons = joystick.get_numbuttons()
 textPrint.print(screen, "Number of buttons: {}".format(buttons))
 textPrint.indent()
 
 for i in range(buttons):
 button = joystick.get_button(i)
 textPrint.print(screen, "Button {:>2} value: {}".format(i, button))
 textPrint.unindent()
 
 # Hat switch. All or nothing for direction, not like joysticks.
 # Value comes back in an array.
 hats = joystick.get_numhats()
 textPrint.print(screen, "Number of hats: {}".format(hats))
 textPrint.indent()
 
 for i in range(hats):
 hat = joystick.get_hat(i)
 textPrint.print(screen, "Hat {} value: {}".format(i, str(hat)))
 textPrint.unindent()
 
 textPrint.unindent()
 
 # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
 # Limit to 60 frames per second
 clock.tick(60)
 
pygame.quit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

201

Review
Multiple Choice Quiz
	 1.	 What code will draw a circle at the specified x and y locations?

a.	 def draw_circle(screen, x, y):
 pygame.draw.ellipse(screen, WHITE, [x, y, 25, 25])

b.	 def draw_circle(screen,x,y):
 pygame.draw.ellipse(screen, WHITE, [x, y, 25 + x, 25 + y])

c.	 def draw_circle(screen, x, y):
 pygame.draw.ellipse(screen, WHITE, [0, 0, 25 + x, 25 + y])

	 2.	 The following code draws an “X.” What would the code look like if it was moved
from the main program loop to a function, with the ability to specify how the
coordinates of X appear?

pygame.draw.line(screen, RED, [80, 80], [100, 100], 2)
pygame.draw.line(screen, RED, [80, 100], [100, 80], 2)

a.	 def draw_x(screen, x, y):
 pygame.draw.line(screen, RED, [80, 80], [100, 100], 2)
 pygame.draw.line(screen, RED, [80, 100], [100, 80], 2)

b.	 def draw_x(screen, x, y):
 pygame.draw.line(screen, RED, [80+x, 80+y], [100, 100], 2)
 pygame.draw.line(screen, RED, [80+x, 100+y], [100, 80], 2)

c.	 def draw_x(screen, x, y):
 pygame.draw.line(screen, RED, [x, y], [20+x, 20+y], 2)
 pygame.draw.line(screen, RED, [x, 20+y], [20+x, y], 2)

d.	 def draw_x(screen, x, y):
 pygame.draw.line(screen, RED, [x, y], [20, 20], 2)
 pygame.draw.line(screen, RED, [x, 20+y], [20, 0], 2)

e.	 def draw_x(screen, x, y):
 pygame.draw.line(screen, RED, [80+x, 80+y], [100+x, 100+y], 2)
 pygame.draw.line(screen, RED, [80+x, 100+y], [100+x, 80+y], 2)

	 3.	 code will get the x and y position of the mouse?

a.	 pos = pygame.mouse.get_pos()
x = pos[0]
y = pos[1]

b.	 pos = pygame.mouse.get_pos()
x = pos[x]
y = pos[y]

c.	 pos = pygame.mouse.get_pos()
x = pos(x)
y = pos(y)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

202

d.	 x = pygame.mouse.get_pos(x)
y = pygame.mouse.get_pos(y)

e.	 x = pygame.mouse.get_pos(0)
y = pygame.mouse.get_pos(1)

	 4.	 In the keyboard example, if x_speed and y_speed were both set to 3, then:

a.	 The object would be set to location (3, 3).

b.	 The object would move down and to the right at 3 pixels per frame.

c.	 The object would move down and to the right at 3 pixels per second.

d.	 The object would move up and to the right at 3 pixels per second.

e.	 The object would move up and to the left 3 pixels per frame.

	 5.	 The call axes = joystick.get_numaxes() will return how many axes for a game
controller?

a.	 2

b.	 4

c.	 One for each analog joystick on the game controller.

d.	 Two for each analog joystick on the game controller.

e.	 One for each button on the game controller.

	 6.	 Depending on the button state, what value will the variable button be assigned
using this code?

button = joystick.get_button(0)

a.	 0 or 1

b.	 On or Off

c.	 Up or Down

d.	 True or False

	 7.	 What is the difference between a hat on a game controller and a joystick?

a.	 Nothing, they are just different names for the same thing.

b.	 A hat can be moved in small amounts; an analog joystick is all or nothing.

c.	 An analog joystick can be moved in small amounts; a hat is all or nothing.

	 8.	 What axis values will be returned when the joystick is moved up and to the left?

a.	 (-1, -1)

b.	 (1, 1)

c.	 (0, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

203

	 9.	 What axis values will be returned when the joystick is centered?

a.	 (-1, -1)

b.	 (1, 1)

c.	 (0, 0)

	 10.	 What code would move an object based on the position of the joystick on the
game controller?

a.	 horiz_axis_pos = my_joystick.get_axis(0)
vert_axis_pos = my_joystick.get_axis(1)

b.	 x_coord = int(x_coord + horiz_axis_pos * 10)
y_coord = int(y_coord + vert_axis_pos * 10)

c.	 x_coord = my_joystick.get_axis(0)
y_coord = my_joystick.get_axis(1)

d.	 x_coord = my_joystick.get_axis(0)*10
y_coord = my_joystick.get_axis(1)*10

Short Answer Worksheet
	 1.	 What’s wrong with this code that uses a function to draw a stick figure? Assume

the colors are already defined and the rest of the program is OK. What is wrong
with the code in the function?

def draw_stick_figure(screen, x, y):
 # Head
 pygame.draw.ellipse(screen, BLACK, [96,83,10,10], 0)
 
 # Legs
 pygame.draw.line(screen, BLACK, [100,100], [105,110], 2)
 pygame.draw.line(screen, BLACK, [100,100], [95,110], 2)
 
 # Body
 pygame.draw.line(screen, RED, [100,100], [100,90], 2)
 
 # Arms
 pygame.draw.line(screen, RED, [100,90], [104,100], 2)
 pygame.draw.line(screen, RED, [100,90], [96,100], 2)

	 2.	 Show how to only grab the x coordinate of where the mouse is.

	 3.	 Why is it important to keep the event processing loop together and only have one
of them? It is more than organization; there will be subtle hard-to-detect errors.
What are they and why will they happen without the event processing loop
together? (Review “The Event Processing Loop” in Chapter 5 if needed.)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_5
http://www.it-ebooks.info/

Chapter 11 ■ Controllers and Graphics

204

	 4.	 When we created a bouncing rectangle, we multiplied the speed times -1 when
the rectangle hit the edge of the screen. Explain why that technique won’t work
for moving an object with the keyboard.

	 5.	 Why does movement with the keyboard or game controller need to have a
starting x, y location, but the mouse doesn’t?

	 6.	 What values will a game controller return if it is held all the way down and to
the right?

Exercise
Check the appendix for the exercise “Functions and User Control” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

205

Chapter 12

Bitmapped Graphics and Sound

To move beyond the simplistic shapes offered by drawing circles and rectangles, our programs need the
ability to work with bitmapped graphics. Bitmapped graphics can be photos or images created and saved
from a drawing program.

But graphics aren’t enough. Games need sound too! This chapter shows how to put graphics and sound
in your game.

Storing the Program in a Folder
The programs we’ve made so far only involve one file. Now that we are including images and sounds, there
are more files that are part of our program. It is easy to get these files mixed up with other programs we are
making. The way to keep everything neat and separated out is to put each of these programs into its own
folder. Before beginning any project like this, click the “new folder” button, and use that new folder as a spot
to put all the new files as shown in the following figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

206

Setting a Background Image
Need to set a background image for your game? Find an image like what is seen in the figure below. If you are
looking online in a web browser, you can usually right-click on an image and save it onto the computer. Save
the image to the folder that we just created for our game.

Make sure you don’t use copyrighted images! Using a reverse-image search will make it easy to double
check that you did not copy it.

Creating a new folder

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

207

Any bitmap images used in a game should already be sized for how it should appear on the screen.
Don’t take a 5000x5000 pixel image from a high-resolution camera and then try to load it into a window only
800x600. Use a graphics program (even MS Paint will work) and resize/crop the image before using it in your
Python program.

Loading an image is a simple process and involves only one line of code. There is a lot going on in that
one line of code, so the explanation of the line will be broken into three parts. The first version of the our
load command will load a file called saturn_family1.jpg. This file must be located in the same directory
that the Python program is in, or the computer will not find it:

pygame.image.load("saturn_family1.jpg")

That code may load the image, but we have no way to reference that image and display it! We need a
variable set equal to what the load() command returns. In the next version of our load command, we create
a new variable named background_image. See below for version two:

background_image = pygame.image.load("saturn_family1.jpg")

Background Image

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

208

Finally, the image needs to be converted to a format that pygame can more easily work with. To do that,
we append .convert() to the command to call the convert function. The function .convert() is a method
in the Image class. We’ll talk more about classes, objects, and methods in Chapter 13.

All images should be loaded using code similar to the line below. Just change the variable name and file
name as needed.

background_image = pygame.image.load("saturn_family1.jpg").convert()

Loading the image should be done before the main program loop. While it would be possible to load it
in the main program loop, this would cause the program to fetch the image from the disk 20 or so times per
second. This is completely unnecessary. It is only necessary to do it once at program startup.

To display the image use the blit command. This blits the image bits to the screen. We’ve already used
this command once before when displaying text onto a game window back in Chapter 6.

The blit command is a method in the screen variable, so we need to start our command by screen.
blit. Next, we need to pass the image to blit and where to blit it. This command should be done inside the
loop so the image gets drawn each frame. See below:

screen.blit(background_image, [0, 0])

This code blits the image held in background_image to the screen starting at (0, 0).

Moving an Image
Now we want to load an image and move it around the screen. We will start off with a simple orange space
ship. You can get this and many other great assets from http://kenney.nl/. See the figure below. The image
for the ship can be downloaded from the book’s web site, or you can find a .gif or .png that you like with a
white or black background. Don’t use a .jpg.

Player image

To load the image we need the same type of command that we used with the background image. In this
case, I’m assuming the file is saved as player.png.

player_image = pygame.image.load("player.png").convert()

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_13
http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://kenney.nl/
http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

209

Inside the main program loop, the mouse coordinates are retrieved, and passed to another blit
function as the coordinates to draw the image:

Get the current mouse position. This returns the position
as a list of two numbers.
player_position = pygame.mouse.get_pos()
x = player_position[0]
y = player_position[1]
 
Copy image to screen:
screen.blit(player_image, [x, y])

This demonstrates a problem. The image is a spaceship with a solid black background. So when the
image is drawn the program shows the figure below.

The image’s solid black bakground is obvious

We only want the spaceship, not a rectangular background! But all images we can load are rectangles,
so how do we show only the part of the image we want? The way to get around this is to tell the program
to make one color transparent and not display. This can be done immediately after loading. The following
makes the color black (assuming BLACK is already defined as a variable) transparent:

player_image.set_colorkey(BLACK)

This will work for most files ending in .gif and .png. This does not work well for most .jpg files. The jpeg
image format is great for holding photographs, but it does subtly change the image as part of the algorithm
that makes the image smaller. Images in .gif and .png are also compressed, but the algorithms used in
those formats do not change the image. The format .bmp isn’t compressed at all, and it results in huge files.
Because the .jpg format changes the format, this means that not all of the background color will be the
exactly the same. In the next figure the spaceship has been saved as a jpeg with a white background. The
white around the ship is not exactly (255, 255, 255), but just really close.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

210

JPEG compression artifacts

If you are picking out an image that will be transparent, choose a .gif or .png. These are the best formats
for graphic art type of images. Photos should be .jpg. Keep in mind it is not possible to change a .jpg to
another format just by renaming the file extension to .png. It is still a .jpg even if you call it something
different. It requires conversion in a graphics program to change it to a different format. But once in a .jpg
format, it has been altered and converting it to a .png won’t fix those alterations.

Here are three great places to find free images to use in your program:

http://kenney.nl; http://opengameart.org; and http://hasgraphics.com/

Sounds
In this section we’ll play a laser sound when the mouse button is clicked. This sound originally came from
Kenney.nl. You can download and save the sound here: ProgramArcadeGames.com/python_examples/en/
laser5.ogg

Like images, sounds must be loaded before they are used. This should be done once sometime before
the main program loop. The following command loads a sound file and creates a variable named click_
sound to reference it:

click_sound = pygame.mixer.Sound("laser5.ogg")

We can play the sound by using the following command:

click_sound.play()

www.it-ebooks.info

http://kenney.nl/
http://opengameart.org/
http://hasgraphics.com/
http://ProgramArcadeGames.com/python_examples/en/laser5.ogg
http://ProgramArcadeGames.com/python_examples/en/laser5.ogg
http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

211

But where do we put this command? If we put it in the main program loop it will play it 20 times or so
per second. Really annoying. We need a trigger. Some action occurs, then we play the sound. For example,
this sound can be played when the user hits the mouse button with the following code:

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 elif event.type == pygame.MOUSEBUTTONDOWN:
 click_sound.play()

Uncompressed sound files usually end in .wav. These files are larger than other formats because no
algorithm has been run on them to make them smaller. There is also the ever popular .mp3 format, although
that format has patents that can make it undesirable for certain applications. Another format that is free to
use is the OGG Vorbis format that ends in .ogg.

Pygame does not play all .wav files that can be found on the Internet. If you have a file that isn’t working,
you can try using the program http://sourceforge.net/projects/audacity to convert it to an ogg-vorbis
type of sound file that ends in .ogg. This file format is small and reliable for use with pygame.

If you want background music to play in your program, then check out the online example section for:

ProgramArcadeGames.com/en/python_examples/f.php?file=background_music.py

Please note that you can’t redistribute copyrighted music with your program. Even if you make a video
of your program with copyrighted music in the background, YouTube and similar video sights will flag you
for copyright violation.

Great places to find free sounds to use in your program:

OpenGameArt.org and www.freesound.org

Full Listing
"""
 Sample Python/Pygame Programs
http://programarcadegames.com/

 Explanation video: http://youtu.be/4YqIKncMJNs
 Explanation video: http://youtu.be/ONAK8VZIcI4
 Explanation video: http://youtu.be/_6c4o41BIms
"""
 
import pygame
 
Define some colors
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
 
Call this function so the Pygame library can initialize itself
pygame.init()
 
Create an 800x600 sized screen
screen = pygame.display.set_mode([800, 600])
 

www.it-ebooks.info

http://sourceforge.net/projects/audacity
http://c/Users/paul.craven/Desktop/WebServer/programarcadegames/python_examples/f.php?file=background_music.py
http://opengameart.org/
http://www.freesound.org/
http://programarcadegames.com/
http://youtu.be/4YqIKncMJNs
http://youtu.be/ONAK8VZIcI4
http://youtu.be/_6c4o41BIms
http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

212

This sets the name of the window
pygame.display.set_caption('CMSC 150 is cool')

clock = pygame.time.Clock()
 
Before the loop, load the sounds:
click_sound = pygame.mixer.Sound("laser5.ogg")
 
Set positions of graphics
background_position = [0, 0]
 
Load and set up graphics.
background_image = pygame.image.load("saturn_family1.jpg").convert()
player_image = pygame.image.load("playerShip1_orange.png").convert()
player_image.set_colorkey(BLACK)
 
done = False
 
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 elif event.type == pygame.MOUSEBUTTONDOWN:
 click_sound.play()
 
 # Copy image to screen:
 screen.blit(background_image, background_position)
 
 # Get the current mouse position. This returns the position
 # as a list of two numbers.
 player_position = pygame.mouse.get_pos()
 x = player_position[0]
 y = player_position[1]
 
 # Copy image to screen:
 screen.blit(player_image, [x, y])
 
 pygame.display.flip()
 
 clock.tick(60)
 
pygame.quit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

213

Review
Multiple Choice Quiz
	 1.	 Should the following line go inside, or outside of the main program loop?

background_image = pygame.image.load("saturn_family1.jpg").convert()

a.	 Outside the loop, because it isn’t a good idea to load the image from the disk
20 times per second.

b.	 Inside the loop, because the background image needs to be redrawn
every frame.

	 2.	 In the following code, what does the [0, 0] do?

screen.blit(background_image, [0, 0])

a.	 Default dimensions of the bitmap.

b.	 Specifies the x and y of the top left coordinate of where to start drawing the
bitmap on the screen.

c.	 Draw the bitmap in the center of the screen.

	 3.	 Should the following line go inside or outside of the main program loop?

screen.blit(background_image, [0, 0])

a.	 Outside the loop, because it isn’t a good idea to load the image from the disk
20 times per second.

b.	 Inside the loop, because the background image needs to be redrawn
every frame.

	 4.	 Given this line of code, what code will get the x value of the current mouse
position?

player_position = pygame.mouse.get_pos()

a.	 x = player_position[x]

b.	 x = player_position[0]

c.	 x = player_position.x

d.	 x[0] = player_position

	 5.	 What types of image file formats are loss-less (i.e., they do not change the
image)? Choose the best answer.

a.	 png, jpg, gif

b.	 png, gif

c.	 png

d.	 jpg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

214

e.	 gif

f.	 jpg, gif

	 6.	 What does this code do?

player_image.set_colorkey(WHITE)

a.	 Makes the bitmap background white.

b.	 Sets all the white pixels to be transparent instead.

c.	 Sets the next color to be drawn to white.

d.	 Clears the screen to a white color.

e.	 Draws the player image in white.

	 7.	 What is wrong with section of code?

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done=True
 if event.type == pygame.MOUSEBUTTONDOWN:
 click_sound = pygame.mixer.Sound("click.wav")
 click_sound.play()

a.	 Pygame doesn't support .wav files.

b.	 The colorkey hasn't been set for click_sound yet.

c.	 Sounds should be loaded at the start of the program, not in the
main program loop.

d.	 Sounds should not be played in a main program loop.

Short Answer Worksheet
	 1.	 This is about the time that many people learning to program run into problems

with Windows hiding file extensions. Briefly explain how to make Windows show
file extensions. If you don’t remember, go back to Chapter 1 to see the details.

	 2.	 For the following file extensions:

•	 .jpg

•	 .wav

•	 .gif

•	 .png

•	 .ogg

•	 .bmp

•	 .mp3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_1
http://www.it-ebooks.info/

Chapter 12 ■ Bitmapped Graphics and Sound

215

…match the extension to the category it best fits:

•	 Photos

•	 Graphic art

•	 Uncompressed images

•	 Songs and sound effects

•	 Uncompressed sounds

	 3.	 Should an image be loaded inside the main program loop or before it? Should
the program blit the image in the main program loop or before it?

	 4.	 How can a person change an image from one format to another? For example,
how do you change a .jpg to a .gif? Why does changing the file extension not
really work? (Ask if you can’t figure it out.)

	 5.	 Explain why an image that was originally saved as a .jpg doesn’t work with setting
a background color even after it is converted to a .png.

	 6.	 Briefly explain how to play background music in a game and how to
automatically start playing a new song when the current song ends.

Exercise
Check the appendix for the exercise “Bitmapped Graphics and User Control” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

217

Chapter 13

Introduction to Classes

Classes and objects are very powerful programming tools. They make programming easier. In fact, you are
already familiar with the concept of classes and objects. A class is a classification of an object. Like person or
image. An object is a particular instance of a class. Like Mary is an instance of Person.

Objects have attributes, such as a person’s name, height, and age. Objects also have methods. Methods
define what an object can do: like run, jump, or sit.

Why Learn About Classes?
Each character in an adventure game needs data: a name, location, strength; are they raising their arm; what
direction they are headed; etc. Plus those characters do things. They run, jump, hit, and talk.

Without classes, our Python code to store this data might look like:

name = "Link"
sex = "Male"
max_hit_points = 50
current_hit_points = 50

In order to do anything with this character, we’ll need to pass that data to a function:

def display_character(name, sex, max_hit_points, current_hit_points):
 print(name, sex, max_hit_points, current_hit_points)

Now imagine creating a program that has a set of variables like that for each character, monster, and
item in our game. Then we need to create functions that work with those items. We’ve now waded into a
quagmire of data. All of a sudden this doesn’t sound like fun at all.

But wait, it gets worse! As our game expands, we may need to add new fields to describe our character.
In this case we’ve added max_speed:

name = "Link"
sex = "Male"
max_hit_points = 50
current_hit_points = 50
max_speed = 10
 
def display_character(name, sex, max_hit_points, current_hit_points, max_speed):
 print(name, sex, max_hit_points, current_hit_points)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

218

In example above, there is only one function. But in a large video game, we might have hundreds of
functions that deal with the main character. Adding a new field to help describe what a character has and
can do would require us to go through each one of those functions and add it to the parameter list. That
would be a lot of work. And perhaps we need to add max_speed to different types of characters such as
monsters. There needs to be a better way. Somehow our program needs to package up those data fields so
they can be managed easily.

Defining and Creating Simple Classes
A better way to manage multiple data attributes is to define a structure that has all of the information. Then
we can give that grouping of information a name, like Character or Address. This can be easily done in
Python and any other modern language by using a class.

For example, we can define a class representing a character in a game:

class Character():
 """ This is a class that represents the main character in a game. """
 def __init__(self):
 """ This is a method that sets up the variables in the object. """
 self.name = "Link"
 self.sex = "Male"
 self.max_hit_points = 50
 self.current_hit_points = 50
 self.max_speed = 10
 self.armor_amount = 8

Here’s another example; we define a class to hold all the fields for an address:

class Address():
 """ Hold all the fields for a mailing address. """
 def __init__(self):
 """ Set up the address fields. """
 self.name = ""
 self.line1 = ""
 self.line2 = ""
 self.city = ""
 self.state = ""
 self.zip = ""

In the code above, Address is the class name. The variables in the class, such as name and city, are
called attributes or fields. (Note the similarities and differences between declaring a class and declaring a
function.)

Unlike functions and variables, class names should begin with an uppercase letter. While it is possible
to begin a class with a lowercase letter, it is not considered good practice.

The def __init__(self): in a special function called a constructor that is run automatically when the
class is created. We’ll discuss the constructor more in a bit.

The self. is kind of like the pronoun my. When inside the class Address we are talking about my name,
my city, etc. We don’t want to use self. outside of the class definition for Address, to refer to an Address
field. Why? Because just like the pronoun “my,” it means someone totally different when said by a different
person!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

219

To better visualize classes and how they relate, programmers often make diagrams. A diagram for
the Address class would look like the next figure. See how the class name is on top with the name of each
attribute listed below. To the right of each attribute is the data type, such as string or integer.

Class Diagram

The class code defines a class but it does not actually create an instance of one. The code told the
computer what fields an address has and what the initial default values will be. We don’t actually have an
address yet though. We can define a class without creating one just like we can define a function without
calling it. To create a class and set the fields, look at the example below:

Create an address
home_address = Address()
 
Set the fields in the address
home_address.name = "John Smith"
home_address.line1 = "701 N. C Street"
home_address.line2 = "Carver Science Building"
home_address.city = "Indianola"
home_address.state = "IA"
home_address.zip = "50125"

An instance of the address class is created in line 2 with Address(). Note how the class Address name is
used, followed by parentheses. The variable name can be anything that follows normal naming rules.

To set the fields in the class, a program must use the dot operator. This operator is the period that is
between the home_address and the field name. See how the last 6 lines use the dot operator to set each field
value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

220

A very common mistake when working with classes is to forget to specify which instance of the class you
want to work with. If only one address is created, it is natural to assume the computer will know to use that
address you are talking about. This is not the case, however. See the example below:

class Address():
 def __init__(self):
 self.name = ""
 self.line1 = ""
 self.line2 = ""
 self.city = ""
 self.state = ""
 self.zip = ""
 
Create an address
my_address = Address()
 
Alert! This does not set the address's name!
name = "Dr. Craven"
 
This doesn't set the name for the address either
Address.name = "Dr. Craven"
 
This does work:
my_address.name = "Dr. Craven"

A second address can be created and fields from both instances may be used. See the example below
(line numbers added for readability):

001 class Address():
002 def __init__(self):
003 self.name = ""
004 self.line1 = ""
005 self.line2 = ""
006 self.city = ""
007 self.state = ""
008 self.zip = ""
009
010 # Create an address
011 home_address = Address()
012
013 # Set the fields in the address
014 home_address.name = "John Smith"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

221

015 home_address.line1 = "701 N. C Street"
016 home_address.line2 = "Carver Science Building"
017 home_address.city = "Indianola"
018 home_address.state = "IA"
019 home_address.zip = "50125"
020
021 # Create another address
022 vacation_home_address = Address()
023
024 # Set the fields in the address
025 vacation_home_address.name = "John Smith"
026 vacation_home_address.line1 = "1122 Main Street"
027 vacation_home_address.line2 = ""
028 vacation_home_address.city = "Panama City Beach"
029 vacation_home_address.state = "FL"
030 vacation_home_address.zip = "32407"
031
032 print("The client's main home is in " + home_address.city)
033 print("His vacation home is in " + vacation_home_address.city)

Line 11 creates the first instance of Address; line 22 creates the second instance. The variable
home_address points to the first instance and vacation_home_address points to the second.

Lines 25–30 set the fields in this new class instance. Line 32 prints the city for the home address,
because home_address appears before the dot operator. Line 33 prints the vacation address because
vacation_home_address appears before the dot operator.

In the example Address is called the class because it defines a new classification for a data object. The
variables home_address and vacation_home_address refer to objects because they refer to actual instances of
the class Address. A simple definition of an object is that it is an instance of a class. Like Bob and Nancy are
instances of a Human class.

By using www.pythontutor.com we can visualize the execution of the code (see below). There are three
variables in play. One points to the class definition of Address. The other two variables point to the different
address objects and their data.

www.it-ebooks.info

http://www.pythontutor.com/visualize.html#code=class+Address()%3A%0D%0A++++def+__init__(self)%3A%0D%0A++++++++self.name+%3D+%22%22%0D%0A++++++++self.line1+%3D+%22%22%0D%0A++++++++self.line2+%3D+%22%22%0D%0A++++++++self.city+%3D+%22%22%0D%0A++++++++self.state+%3D+%22%22%0D%0A++++++++self.zip+%3D+%25
http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

222

Two Addresses

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

223

Putting lots of data fields into a class makes it easy to pass data in and out of a function. In the code
below, the function takes in an address as a parameter and prints it out on the screen. It is not necessary to
pass parameters for each field of the address.

Print an address to the screen
def print_address(address):
 print(address.name)
 # If there is a line1 in the address, print it
 if len(address.line1) > 0:
 print(address.line1)
 # If there is a line2 in the address, print it
 if len(address.line2) > 0:
 print(address.line2)
 print(address.city + ", " + address.state + " " + address.zip)
 
print_address(home_address)
print()
print_address(vacation_home_address)

Adding Methods to Classes
In addition to attributes, classes may have methods. A method is a function that exists inside of a class.
Expanding the earlier example of a Dog class from the review problem 1 above, the code below adds a
method for a dog barking.

class Dog():
 def __init__(self):
 self.age = 0
 self.name = ""
 self.weight = 0
 
 def bark(self):
 print("Woof")

The method definition is contained in lines 7–8 above. Method definitions in a class look almost exactly
like function definitions. The big difference is the addition of a parameter self on line 7. The first parameter
of any method in a class must be self. This parameter is required even if the function does not use it.

Here are the important items to keep in mind when creating methods for classes:

•	 Attributes should be listed first, methods after.

•	 The first parameter of any method must be self.

•	 Method definitions are indented exactly one tab stop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

224

Methods may be called in a manner similar to referencing attributes from an object. See the example
code below.

001 my_dog = Dog()
002
003 my_dog.name = "Spot"
004 my_dog.weight = 20
005 my_dog.age = 3
006
007 my_dog.bark()

Line 1 creates the dog. Lines 3–5 set the attributes of the object. Line 7 calls the bark function. Note that
even through the bark function has one parameter, self, the call does not pass in anything. This is because
the first parameter is assumed to be a reference to the dog object itself. Behind the scenes, Python makes a
call that looks like:

Example, not actually legal
Dog.bark(my_dog)

If the bark function needs to make reference to any of the attributes, then it does so using the self
reference variable. For example, we can change the Dog class so that when the dog barks, it also prints
out the dog’s name. In the code below, the name attribute is accessed using a dot operator and the self
reference.

 def bark(self):
 print("Woof says", self.name)

Attributes are adjectives, and methods are verbs. The drawing for the class would look like the next figure.

Dog Class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

225

Example: Ball Class
This example code could be used in Python/pygame to draw a ball. Having all the parameters contained in a
class makes data management easier. The diagram for the Ball class is shown in the next figure.

Ball Class

class Ball():
 def __init__(self):
 # --- Class Attributes ---
 # Ball position
 self.x = 0
 self.y = 0
 
 # Ball's vector
 self.change_x = 0
 self.change_y = 0
 
 # Ball size
 self.size = 10
 
 # Ball color
 self.color = [255,255,255]
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

226

 # --- Class Methods ---
 def move(self):
 self.x += self.change_x
 self.y += self.change_y
 
 def draw(self, screen):
 pygame.draw.circle(screen, self.color, [self.x, self.y], self.size)

Below is the code that would go ahead of the main program loop to create a ball and set its attributes:

theBall = Ball()
theBall.x = 100
theBall.y = 100
theBall.change_x = 2
theBall.change_y = 1
theBall.color = [255,0,0]

This code would go inside the main loop to move and draw the ball:

theBall.move()
theBall.draw(screen)

References
Here’s where we separate the true programmers from the want-to-be’s. Understanding class references. Take
a look at the following code:

class Person():
 def __init__(self):
 self.name = ""
 self.money = 0
 
bob = Person()
bob.name = "Bob"
bob.money = 100
 
nancy = Person()
nancy.name = "Nancy"
 
print(bob.name, "has", bob.money, "dollars.")
print(nancy.name, "has", nancy.money, "dollars.")

The code above creates two instances of the Person() class, and using www.pythontutor.com we can
visualize the two classes in the next figure.

www.it-ebooks.info

http://www.pythontutor.com/visualize.html#code=class+Person%3A%0D%0A++++def+__init__(self)%3A%0D%0A++++++++self.name+%3D+%22%22%0D%0A++++++++self.money+%3D+0%0D%0A+%0D%0Abob+%3D+Person()%0D%0Abob.name+%3D+%22Bob%22%0D%0Abob.money+%3D+100%0D%0A+%0D%0Anancy+%3D+Person()%0D%0Anancy.name+%3D+%22Nancy
http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

227

Two Persons

The code above has nothing new. But the code below does:

class Person():
 def __init__(self):
 self.name = ""
 self.money = 0
 
bob = Person()
bob.name = "Bob"
bob.money = 100
 
nancy = bob
nancy.name = "Nancy"
 
print(bob.name, "has", bob.money, "dollars.")
print(nancy.name, "has", nancy.money, "dollars.")

See the difference on line 10 with nancy = bob?
A common misconception when working with objects is to assume that the variable bob is the Person

object. This is not the case. The variable bob is a reference to the Person object. That is, it stores the memory
address of where the object is and not the object itself.

If bob actually was the object, then line 9 could create a copy of the object and there would be two
objects in existence. The output of the program would show both Bob and Nancy having 100 dollars. But
when run, the program outputs the following instead:

Nancy has 100 dollars.
Nancy has 100 dollars.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

228

What bob stores is a reference to the object. Besides reference, one may call this address, pointer, or
handle. A reference is an address in computer memory for where the object is stored. This address is a
hexadecimal number that, if printed out, might look something like 0x1e504. When line 9 is run, the address
is copied rather than the entire object the address points to. See the following figure.

Class References

We can also run this in www.pythontutor.com to see how both of the variables are pointing to the
same object.

One Person, Two Pointers

www.it-ebooks.info

http://www.pythontutor.com/visualize.html#code=class+Person%3A%0A++++name+%3D+%22%22%0A++++money+%3D+0%0A%0Abob+%3D+Person()%0Abob.name+%3D+%22Bob%22%0Abob.money+%3D+100%0A%0Anancy+%3D+bob%0Anancy.name+%3D+%22Nancy%22%0A%0Aprint(bob.name,+%22has%22,+bob.money,+%22dollars.%22)%0Aprint(nancy.name,+
http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

229

Functions and References
Look at the code example below. Line 1 creates a function that takes in a number as a parameter. The
variable money is a variable that contains a copy of the data that was passed in. Adding 100 to that number
does not change the number that was stored in bob.money on line 11. Thus, the print statement on line 14
prints out 100 and not 200.

def give_money1(money):
 money += 100
 
class Person():
 def __init__(self):
 self.name = ""
 self.money = 0
 
bob = Person()
bob.name = "Bob"
bob.money = 100
 
give_money1(bob.money)
print(bob.money)

Running on http://www.pythontutor.com/visualize.html#mode=display, we see that there are two
instances of the money variable. One is a copy and local to the give_money1 function.

Function References

www.it-ebooks.info

http://www.pythontutor.com/visualize.html#mode=display
http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

230

Look at the additional code below. This code does cause bob.money to increase and the print statement
to print 200.

def give_money2(person):
 person.money += 100
 
give_money2(bob)
print(bob.money)

Why is this? Because person contains a copy of the memory address of the object, not the actual object
itself. One can think of it as a bank account number. The function has a copy of the bank account number,
not a copy of the whole bank account. So using the copy of the bank account number to deposit 100 dollars
causes Bob’s bank account balance to go up.

Function References

Arrays work the same way. A function that takes in an array (list) as a parameter and modifies values in
that array will be modifying the same array that the calling code created. The address of the array is copied,
not the entire array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

231

Review Questions
	 1.	 Create a class called Cat. Give it attributes for name, color, and weight. Give it a

method called meow.

	 2.	 Create an instance of the cat class, set the attributes, and call the meow method.

	 3.	 Create a class called Monster. Give it an attribute for name and an integer
attribute for health. Create a method called decrease_health that takes in a
parameter amount and decreases the health by that much. Inside that method,
print that the animal died if its health goes below zero.

Constructors
There’s a terrible problem with our class for Dog listed below. When we create a dog, by default the dog has
no name. Dogs should have names! We should not allow dogs to be born and then never be given a name.
Yet the code below allows this to happen, and that dog will never have a name.

class Dog()
 def __init__(self):
 self.name = ""
 
my_dog = Dog()

Python doesn’t want this to happen. That’s why Python classes have a special function that is called
any time an instance of that class is created. By adding a function called a constructor, a programmer can
add code that is automatically run each time an instance of the class is created. See the example constructor
code below:

class Dog():
 def __init__(self):
 """ Constructor. Called when creating an object of this type. """
 self.name = ""
 print("A new dog is born!")
 
This creates the dog
my_dog = Dog()

The constructor starts on line 2. It must be named __init__. There are two underscores before the init
and two underscores after. A common mistake is to only use one.

The constructor must take in self as the first parameter just like other methods in a class. When the
program is run, it will print:

A new dog is born!

When a Dog object is created on line 8, the __init__ function is automatically called and the message is
printed to the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

232

Avoid This Mistake
Put everything for a method into just one definition. Don’t define it twice. For example:

Wrong:
class Dog():
 def __init__(self):
 self.age = 0
 self.name = ""
 self.weight = 0
 
 def __init__(self):
 print("New dog!")

The computer will just ignore the first __init__ and go with the last definition. Instead do this:

Correct:
class Dog():
 def __init__(self):
 self.age = 0
 self.name = ""
 self.weight = 0
 print("New dog!")

A constructor can be used for initializing and setting data for the object. The example Dog class above
still allows the name attribute to be left blank after the creation of the dog object. How do we keep this from
happening? Many objects need to have values right when they are created. The constructor function can be
used to make this happen. See the code below:

001 class Dog():
002
003 def __init__(self, new_name):
004 """ Constructor. """
005 self.name = new_name
006
007 # This creates the dog
008 my_dog = Dog("Spot")
009
010 # Print the name to verify it was set
011 print(my_dog.name)
012
013 # This line will give an error because
014 # a name is not passed in.
015 herDog = Dog()

On line 3 the constructor function now has an additional parameter named new_name. The value of
this parameter is used to set the name attribute in the Dog class on line 8. It is no longer possible to create a
Dog class without a name. The code on line 15 tries this. It will cause a Python error and it will not run. A
common mistake is to name the parameter of the __init__ function the same as the attribute and assume
that the values will automatically synchronize. This does not happen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

233

Review Questions
	 1.	 Should class names begin with an upper or lowercase letter?

	 2.	 Should method names begin with an upper or lowercase letter?

	 3.	 Should attribute names begin with an upper or lowercase letter?

	 4.	 Which should be listed first in a class, attributes or methods?

	 5.	 What are other names for a reference?

	 6.	 What is another name for an instance variable?

	 7.	 What is the name for an instance of a class?

	 8.	 Create a class called Star that will print out “A star is born!” every time it is
created.

	 9.	 Create a class called Monster with attributes for health and a name. Add a
constructor to the class that sets the health and name of the object with data
passed in as parameters.

Inheritance
Another powerful feature of using classes and objects is the ability to make use of inheritance. It is possible
to create a class and inherit all of the attributes and methods of a parent class.

For example, a program may create a class called Boat that has all the attributes needed to represent a
boat in a game:

class Boat():
 def __init__(self):
 self.tonnage = 0
 self.name = ""
 self.isDocked = True
 
 def dock(self):
 if self.isDocked:
 print("You are already docked.")
 else:
 self.isDocked = True
 print("Docking")
 
 def undock(self):
 if not self.isDocked:
 print("You aren't docked.")
 else:
 self.isDocked = False
 print("Undocking")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

234

To test out our code:

b = Boat()
 
b.dock()
b.undock()
b.undock()
b.dock()
b.dock()

The outputs:

You are already docked.
Undocking
You aren't docked.
Docking
You are already docked.

Our program also needs a submarine. Our submarine can do everything a boat can, plus we need a
command for submerge. Without inheritance we have two options.

•	 One, add the submerge() command to our boat. This isn’t a great idea because we
don’t want to give the impression that our boats normally submerge.

•	 Two, we could create a copy of the Boat class and call it Submarine. In this class we’d
add the submerge() command. This is easy at first, but things become harder if we
change the Boat class. A programmer would need to remember that we’d need to
change not only the Boat class but also make the same changes to the Submarine
class. Keeping this code synchronized is time consuming and error prone.

Luckily, there is a better way. Our program can create child classes that will inherit all the attributes and
methods of the parent class. The child classes may then add fields and methods that correspond to their
needs. For example:

class Submarine(Boat):
 def submerge(self):
 print("Submerge!")

Line 1 is the important part. Just by putting Boat in between the parentheses during the class
declaration, we have automatically picked up every attribute and method that is in the Boat class. If we
update Boat, then the child class Submarine will automatically get these updates. Inheritance is that easy!

The next code example is diagrammed out in the figure below.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

235

Class Diagram

001 class Person():
002 def __init__(self):
003 self.name = ""
004
005 class Employee(Person):
006 def __init__(self):
007 # Call the parent/super class constructor first
008 super().__init__()
009
010 # Now set up our variables
011 self.job_title = ""
012
013 class Customer(Person):
014 def __init__(self):
015 super().__init__()
016 self.email = ""
017
018 john_smith = Person()
019 john_smith.name = "John Smith"
020
021 jane_employee = Employee()
022 jane_employee.name = "Jane Employee"
023 jane_employee.job_title = "Web Developer"
024
025 bob_customer = Customer()
026 bob_customer.name = "Bob Customer"
027 bob_customer.email = "send_me@spam.com"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

236

By placing Person between the parentheses on lines 5 and 13, the programmer has told the computer
that Person is a parent class to both Employee and Customer. This allows the program to set the name
attribute on lines 19 and 22.

Methods are also inherited. Any method the parent has, the child class will have, too. But what if we
have a method in both the child and parent class?

We have two options. We can run them both with super() keyword. Using super() followed by a dot
operator, and then finally a method name allows you to call the parent’s version of the method.

The code above shows the first option using super where we run not only the child constructor but also
the parent constructor.

If you are writing a method for a child and want to call a parent method, normally it will be the first
statement in the child method. Notice how it is in the example above.

All constructors should call the parent constructor because then you’d have a child without a parent
and that is just sad. In fact, some languages force this rule, but Python doesn’t.

The second option? Methods may be overridden by a child class to provide different functionality. The
example below shows both options. The Employee.report overrides the Person.report because it never
calls and runs the parent report method. The Customer report does call the parent and the report method in
Customer adds to the Person functionality.

class Person():
 def __init__(self):
 self.name = ""
 
 def report(self):
 # Basic report
 print("Report for", self.name)
 
class Employee(Person):
 def __init__(self):
 # Call the parent/super class constructor first
 super().__init__()
 
 # Now set up our variables
 self.job_title = ""
 
 def report(self):
 # Here we override report and just do this:
 print("Employee report for", self.name)
 
class Customer(Person):
 def __init__(self):
 super().__init__()
 self.email = ""
 
 def report(self):
 # Run the parent report:
 super().report()
 # Now add our own stuff to the end so we do both
 print("Customer e-mail:", self.email)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

237

john_smith = Person()
john_smith.name = "John Smith"
 
jane_employee = Employee()
jane_employee.name = "Jane Employee"
jane_employee.job_title = "Web Developer"
 
bob_customer = Customer()
bob_customer.name = "Bob Customer"
bob_customer.email = "send_me@spam.com"
 
john_smith.report()
jane_employee.report()
bob_customer.report()

Is-A and Has-A Relationships
Classes have two main types of relationships. They are “is a” and “has a” relationships.

A parent class should always be a more general, abstract version of the child class. This type of child to
parent relationship is called an is a relationship. For example, a parent class Animal could have a child class
Dog. The Dog class could have a child class Poodle. Another example, a dolphin is a mammal. It does not
work the other way: a mammal is not necessarily a dolphin. So the class Dolphin should never be a parent to
a class Mammal. Likewise a class Table should not be a parent to a class Chair because a chair is not a table.

The other type of relationship is the has a relationship. These relationships are implemented in code by
class attributes. A dog has a name, and so the Dog class has an attribute for name. Likewise a person could
have a dog, and that would be implemented by having the Person class have an attribute for Dog. The Person
class would not derive from Dog because that would be some kind of insult.

Looking at the prior code example we can see:

•	 Employee is a person.

•	 Customer is a person.

•	 Person has a name.

•	 Employee has a job title.

•	 Customer has an e-mail.

Static Variables vs. Instance Variables
The difference between static and instance variables is confusing. Thankfully it isn’t necessary to completely
understand the difference right now. But if you stick with programming, it will be. Therefore we will briefly
introduce it here.

There are also some oddities with Python that kept me confused the first several years I’ve made this
book available. So you might see older videos and examples where I get it wrong.

An instance variable is the type of class variable we’ve used so far. Each instance of the class gets its own
value. For example, in a room full of people each person will have their own age. Some of the ages may be
the same, but we still need to track each age individually.

With instance variables, we can’t just say “age” with a room full of people. We need to specify whose
age we are talking about. Also, if there are no people in the room, then referring to an age when there are no
people to have an age makes no sense.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

238

With static variables the value is the same for every single instance of the class. Even if there are no
instances, there still is a value for a static variable. For example, we might have a count static variable for the
number of Human classes in existence. No humans? The value is zero, but it still exists.

In the example below, ClassA creates an instance variable. ClassB creates a static variable.

001 # Example of an instance variable
002 class ClassA():
003 def __init__(self):
004 self.y = 3
005
006 # Example of a static variable
007 class ClassB():
008 x = 7
009
010 # Create class instances
011 a = ClassA()
012 b = ClassB()
013
014 # Two ways to print the static variable.
015 # The second way is the proper way to do it.
016 print(b.x)
017 print(ClassB.x)
018
019 # One way to print an instance variable.
020 # The second generates an error, because we don't know what instance
021 # to reference.
022 print(a.y)
023 print(ClassA.y)

In the example above, lines 16 and 17 print out the static variable. Line 17 is the proper way to do so.
Unlike before, we can refer to the class name when using static variables, rather than a variable that points to
a particular instance. Because we are working with the class name, by looking at line 17 we instantly can tell
we are working with a static variable. Line 16 could be either an instance or static variable. That confusion
makes line 17 the better choice.

Line 22 prints out the instance variable, just like we’ve done in prior examples. Line 23 will generate
an error because each instance of y is different (it is an instance variable after all), and we aren’t telling the
computer what instance of ClassA we are talking about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

239

Instance Variables Hiding Static Variables
This is one feature of Python I dislike. It is possible to have a static variable and an instance variable with the
same name. Look at the example below:

Class with a static variable
class ClassB():
 x = 7
 
Create a class instance
b = ClassB()
 
This prints 7
print(b.x)
 
This also prints 7
print(ClassB.x)
 
Set x to a new value using the class name
ClassB.x = 8
 
This also prints 8
print(b.x)
 
This prints 8
print(ClassB.x)
 
Set x to a new value using the instance.
Wait! Actually, it doesn't set x to a new value!
It creates a brand new variable, x. This x
is an instance variable. The static variable is
also called x. But they are two different
variables. This is super-confusing and is bad
practice.
b.x = 9
 
This prints 9
print(b.x)
 
This prints 8. NOT 9!!!
print(ClassB.x)

Allowing instance variables to hide static variables caused confusion for me for many years!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

240

Review
Multiple Choice Quiz
	 1.	 Select the best class definition for an alien:

a.	 class Alien():
 def __init__(self):
 self.name = ""
 self.height = 7.2
 self.weight = 156

b.	 class alien():
 def __init__(self):
 self.name = ""
 self.height = 7.2
 self.weight = 156

c.	 class alien.name = ""
class alien.height = 7.2
class alien.weight = 156

d.	 class alien(
 def __init__(self):
 self.name = ""
 self.height = 7.2
 self.weight = 156
)

	 2.	 What does this code do?

d1 = Dog()
d2 = Dog()

a.	 Creates two objects, of type Dog.

b.	 Creates two classes, of type Dog.

c.	 Creates one object, of type Dog.

	 3.	 What does this code do?

d1 = Dog()
d2 = d1

a.	 Creates two objects, of type Dog.

b.	 Creates two classes, of type Dog.

c.	 Creates one object, of type Dog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

241

	 4.	 What is wrong with the following code:

class Book():
 def open(self):
 print("You opened the book")
 
 def __init__(self):
 self.pages = 347

a.	 There should be a self. in front of pages.

b.	 Book should not be capitalized.

c.	 The __init__ with attributes should be listed first.

d.	 open should be capitalized.

	 5.	 What is wrong with the following code:

class Ball():
 def __init__(self):
 self.x = 0
 self.y = 0
 self.change_x = 0
 self.change_y = 0
 
 x += change_x
 y += change_y

a.	 The ball should not be at location 0, 0

b.	 The variables should be set equal to "".

c.	 The code to add to x and y must be in a method.

d.	 The code to set the variables to zero should be inside a method.

e.	 All classes must have at least one method

f.	 self should be in between the parentheses.

	 6.	 What is wrong with the following code:

class Ball():
 def __init__(self):
 self.x = 0
 self.y = 0
 
Ball.x = 50
Ball.y = 100

a.	 Lines 3 and 4 should not have self. in front.

b.	 Ball. does not refer to an instance of the class.

c.	 Lines 3 and 5 should be used to set x and y to 50 and 100.

d.	 Ball. on lines 6 and 7 should be lowercase.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

242

	 7.	 What is wrong with the following code:

class Ball():
 def __init__(self):
 self.x = 0
 self.y = 0
 
 b = Ball()
 b.x = 50
 b.y = 100

a.	 Lines 6–8 should be in a method.

b.	 Lines 6–8 should not be indented.

c.	 Lines 7 and 8 should have self. instead of b.

d.	 Line 6 should have self in between the parentheses.

	 8.	 What will this print?

class Ball():
 def __init__(self):
 self.x = 0
 self.y = 0
 
b1 = Ball()
b2 = b1
 
b1.x = 40
b2.x = 50
b1.x += 5
b2.x += 5
print(b1.x, b2.x)

a.	 40 40

b.	 60 60

c.	 45 55

d.	 55 55

e.	 40 50

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

243

	 9.	 What will this print?

class Account():
 def __init__(self):
 self.money = 0
 
 def deposit(self, amount):
 self.money += amount
 
account = Account()
money = 100
account.deposit(50)
print(money, account.money)

a.	 150 150

b.	 100 50

c.	 100 100

d.	 50 100

e.	 50 50

f.	 100 150

	 10.	 What is wrong with the following:

class Dog():
 def __init__(self, new_name):
 """ Constructor.
 Called when creating an object of this type """
 
 name = new_name
 print("A new dog is born!")
 
This creates the dog
my_dog = Dog("Rover")

a.	 On line 6, there should be a self. in front of new_name

b.	 On line 6, there should be a self. in front of name

c.	 Line 10 has 1 parameter, yet in line 2 we can see __init__ takes two
parameters.

d.	 Lines 9 and 10 should be indented.

e.	 Lines 6 to 7 should not be indented.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

244

Short Answer Worksheet

Section 1:
	 1.	 What is the difference between a class and an object?

	 2.	 What is the difference between a function and a method?

	 3.	 Write code to create an instance of this class and set its attributes:

class Dog():
 def __init__(self):
 self.age = 0
 self.name = ""
 self.weight = 0

	 4.	 Write code to create two different instances of this class and set attributes for
both objects:

class Person():
 def __init__(self):
 self.name = ""
 self.cell_phone = ""
 self.email = ""

	 5.	 For the code below, write a class that has the appropriate class name and
attributes that will allow the code to work.

my_bird = Bird()
my_bird.color = "green"
my_bird.name = "Sunny"
my_bird.breed = "Sun Conure"

	 6.	 Define a class that would represent a character in a simple 2D game. Include
attributes for the position, name, and strength.

	 7.	 The following code runs, but it is not correct. What did the programmer do
wrong?

class Person():
 def __init__(self):
 self.name = ""
 self.money = 0
 
nancy = Person()
name = "Nancy"
money = 100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

245

	 8.	 Take a look at the code. It does not run. What is the error that prevents it from
running?

class Person():
 def __init__(self):
 self.name = ""
 self.money = 0
 
bob = Person()
print(bob.name, "has", money, "dollars.")

	 9.	 Even with that error fixed, the program will not print out:

Bob has 0 dollars.

Instead it just prints out:

has 0 dollars.

Why is this the case?

	 10.	 Take pairs of the following items, and list some of the “has-a” relationships, and
the “is-a” relationships between them.

•	 Checking account

•	 Person

•	 Mortgage account

•	 Customer

•	 Withdraw

•	 Bank Account

•	 SSN

•	 Transaction

•	 Address

•	 Deposit

	 11.	 In Python, how is an “is-a” relationship implemented? Give an example.

	 12.	 In Python, how is a “has-a” relationship implemented? Give an example.

	 13.	 How does this change if an object is allowed more than one item of a given type?
(Ask if you aren’t sure.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Introduction to Classes

246

Section 2:
To answer the next four questions, create one program. In that program will be the answers for all four
questions. Make sure the program runs, and then copy/paste from the program to answer each of the
questions below.

You should have a program that starts with three class definitions, one each for the first three questions.
Then you should have code that will create instances of each class, and that will be the answer to the last
problem.

	 1.	 Write code that defines a class named Animal:

•	 Add an attribute for the animal name.

•	 Add an eat() method for Animal that prints “Munch munch.”

•	 A make_noise() method for Animal that prints “Grrr says [animal name].”

•	 Add a constructor for the Animal class that prints “An animal has been born.”

	 2.	 A class named Cat:

•	 Make Animal the parent.

•	 A make_noise() method for Cat that prints “Meow says [animal name].”

•	 A constructor for Cat that prints “A cat has been born.”

•	 Modify the constructor so it calls the parent constructor as well.

	 3.	 A class named Dog:

•	 Make Animal the parent.

•	 A make_noise() method for Dog that prints “Bark says [animal name].”

•	 A constructor for Dog that prints “A dog has been born.”

•	 Modify the constructor so it calls the parent constructor as well.

	 4.	 A main program with:

•	 Code that creates a cat, two dogs, and an animal.

•	 Sets the name for each animal.

•	 Code that calls eat() and make_noise() for each animal. (Don’t forget this!)

Exercise
Check the appendix for the exercise “Classes and Graphics” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

247

Chapter 14

Introduction to Sprites

Our games need support for handling objects that collide. Balls bouncing off paddles, laser beams hitting
aliens, or our favorite character collecting a coin. All these examples require collision detection.

The pygame library has support for sprites. A sprite is a two-dimensional image that is part of the larger
graphical scene. Typically a sprite will be some kind of object in the scene that will be interacted with like a
car, frog, or little plumber guy.

Originally, video game consoles had built-in hardware support for sprites. Now this specialized
hardware support is no longer needed, but we still use the term sprite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

248

Basic Sprites and Collisions
Let’s step through an example program that uses sprites. This example shows how to create a screen of
black blocks and collect them using a red block controlled by the mouse as shown in the figure below. The
program keeps score on how many blocks have been collected. The code for this example may be found at:

ProgramArcadeGames.com/python_examples/f.php?file=sprite_collect_blocks.py

Example Sprite Game

The first few lines of our program start off like other games we’ve done (line numbers added for clarity):

001 import pygame
002 import random
003
004 # Define some colors

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=sprite_collect_blocks.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

249

005 BLACK = (0, 0, 0)
006 WHITE = (255, 255, 255)
007 RED = (255, 0, 0)

The pygame library is imported for sprite support on line 1. The random library is imported for the
random placement of blocks on line 2. The definition of colors is standard in lines 5–7; there is nothing new
in this example yet.

009 class Block(pygame.sprite.Sprite):
010 """
011 This class represents the ball.
012 It derives from the "Sprite" class in pygame.
013 """

Line 9 starts the definition of the Block class. Note that on line 9 this class is a child class of the Sprite
class. The pygame.sprite. specifies the library and package, which will be discussed later in Chapter 15. All
the default functionality of the Sprite class will now be a part of the Block class.

015 def __init__(self, color, width, height):
016 """ Constructor. Pass in the color of the block,
017 and its x and y position. """
018
019 # Call the parent class (Sprite) constructor
020 super().__init__()

The constructor for the Block class on line 15 takes in a parameter for self just like any other
constructor. It also takes in parameters that define the object’s color, height, and width.

It is important to call the parent class constructor in Sprite to allow sprites to initialize. This is done on
line 20.

022 # Create an image of the block, and fill it with a color.
023 # This could also be an image loaded from the disk.
024 self.image = pygame.Surface([width, height])
025 self.image.fill(color)

Lines 24 and 25 create the image that will eventually appear on the screen. Line 24 creates a blank
image. Line 25 fills it with black. If the program needs something other than a black square, these are the
lines of code to modify.

For example, look at the code below:

def __init__(self, color, width, height):
 """
 Ellipse Constructor. Pass in the color of the ellipse,
 and its size
 """
 # Call the parent class (Sprite) constructor
 super().__init__()
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_15
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

250

 # Set the background color and set it to be transparent
 self.image = pygame.Surface([width, height])
 self.image.fill(WHITE)
 self.image.set_colorkey(WHITE)
 
 # Draw the ellipse
 pygame.draw.ellipse(self.image, color, [0, 0, width, height])

If the code above was substituted, then everything would be in the form of ellipses. Line 29 draws the
ellipse and line 26 makes white a transparent color so the background shows up. This is the same concept
used in Chapter 12 for making the white background of an image transparent.

def __init__(self):
 """ Graphic Sprite Constructor. """
 
 # Call the parent class (Sprite) constructor
 super().__init__()
 
 # Load the image
 self.image = pygame.image.load("player.png").convert()
 
 # Set our transparent color
 self.image.set_colorkey(WHITE)

If instead a bitmapped graphic is desired, substituting the lines of code above will load a graphic
(line 22) and set white to the transparent background color (line 25). In this case, the dimensions of the
sprite will automatically be set to the graphic dimensions, and it would no longer be necessary to pass them
in. See how line 15 no longer has those parameters.

There is one more important line that we need in our constructor, no matter what kind of sprite we have:

027 # Fetch the rectangle object that has the dimensions of the image
028 # image.
029 # Update the position of this object by setting the values
030 # of rect.x and rect.y
031 self.rect = self.image.get_rect()

The attribute rect is a variable that is an instance of the Rect class that pygame provides. The rectangle
represents the dimensions of the sprite. This rectangle class has attributes for x and y that may be set. Pygame
will draw the sprite where the x and y attributes are. So to move this sprite, a programmer needs to set
mySpriteRef.rect.x and mySpriteRef.rect.y where mySpriteRef is the variable that points to the sprite.

We are done with the Block class. Time to move on to the initialization code.

033 # Initialize pygame
034 pygame.init()
035
036 # Set the height and width of the screen
037 screen_width = 700
038 screen_height = 400
039 screen = pygame.display.set_mode([screen_width, screen_height])

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_12
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

251

The code above initializes pygame and creates a window for the game. There is nothing new here from
other pygame programs.

041 # This is a list of 'sprites.' Each block in the program is
042 # added to this list. The list is managed by a class called 'Group.'
043 block_list = pygame.sprite.Group()
044
045 # This is a list of every sprite.
046 # All blocks and the player block as well.
047 all_sprites_list = pygame.sprite.Group()

A major advantage of working with sprites is the ability to work with them in groups. We can draw and
move all the sprites with one command if they are in a group. We can also check for sprite collisions against
an entire group.

The above code creates two lists. The variable all_sprites_list will contain every sprite in the game.
This list will be used to draw all the sprites. The variable block_list holds each object that the player can
collide with. In this example it will include every object in the game but the player. We don’t want the player
in this list because when we check for the player colliding with objects in the block_list, pygame will go
ahead and always return the player as colliding if it is part of that list.

049 for i in range(50):
050 # This represents a block
051 block = Block(BLACK, 20, 15)
052
053 # Set a random location for the block
054 block.rect.x = random.randrange(screen_width)
055 block.rect.y = random.randrange(screen_height)
056
057 # Add the block to the list of objects
058 block_list.add(block)
059 all_sprites_list.add(block)

The loop starting on line 49 adds 50 black sprite blocks to the screen. Line 51 creates a new block, sets
the color, the width, and the height. Lines 54 and 55 set the coordinates for where this object will appear.
Line 58 adds the block to the list of blocks the player can collide with. Line 59 adds it to the list of all blocks.
This should be very similar to the code you wrote back in Exercise 13.

061 # Create a RED player block
062 player = Block(RED, 20, 15)
063 all_sprites_list.add(player)

Lines 61–63 set up the player for our game. Line 62 creates a red block that will eventually
function as the player. This block is added to the all_sprites_list in line 63 so it can be drawn, but not the
block_list.

065 # Loop until the user clicks the close button.
066 done = False
067
068 # Used to manage how fast the screen updates
069 clock = pygame.time.Clock()
070

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

252

071 score = 0
072
073 # -------- Main Program Loop -----------
074 while not done:
075 for event in pygame.event.get():
076 if event.type == pygame.QUIT:
077 done = True
078
079 # Clear the screen
080 screen.fill(WHITE)

The code above is a standard program loop first introduced back in Chapter 6. Line 71 initializes our
score variable to 0.

082 # Get the current mouse position. This returns the position
083 # as a list of two numbers.
084 pos = pygame.mouse.get_pos()
085
086 # Fetch the x and y out of the list,
087 # just like we'd fetch letters out of a string.
088 # Set the player object to the mouse location
089 player.rect.x = pos[0]
090 player.rect.y = pos[1]

Line 84 fetches the mouse position similar to other pygame programs discussed before. The important
new part is contained in lines 89–90 where the rectangle containing the sprite is moved to a new location.
Remember this rect was created back on line 31 and this code won’t work without that line.

092 # See if the player block has collided with anything.
093 blocks_hit_list = pygame.sprite.spritecollide(player, block_list, True)

This line of code takes the sprite referenced by player and checks it against all sprites in block_list.
The code returns a list of sprites that overlap. If there are no overlapping sprites, it returns an empty list.
The Boolean True will remove the colliding sprites from the list. If it is set to False the sprites will not be
removed.

095 # Check the list of collisions.
096 for block in blocks_hit_list:
097 score += 1
098 print(score)

This loops for each sprite in the collision list created back in line 93. If there are sprites in that list,
increase the score for each collision. Then print the score to the screen. Note that the print on line 98 will
not print the score to the main window with the sprites, but the console window instead. Figuring out how to
make the score display on the main window is part of Exercise “Sprite Collecting.”

100 # Draw all the spites
101 all_sprites_list.draw(screen)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

253

The Group class that all_sprites_list is a member of has a method called draw. This method loops
through each sprite in the list and calls that sprite’s draw method. This means that with only one line of code,
a program can cause every sprite in the all_sprites_list to draw.

103 # Go ahead and update the screen with what we've drawn.
104 pygame.display.flip()
105
106 # Limit to 60 frames per second
107 clock.tick(60)
108
109 pygame.quit()

Lines 103–109 flip the screen and call the quit method when the main loop is done.

Moving Sprites
In the example so far, only the player sprite moves. How could a program cause all the sprites to move? This
can be done easily; just two steps are required.

The first step is to add a new method to the Block class. This new method is called update. The update
function will be called automatically when update is called for the entire list.

Put this in the sprite:

def update(self):
 """ Called each frame. """
 
 # Move block down one pixel
 self.rect.y += 1

Put this in the main program loop:

Call the update() method for all blocks in the block_list
block_list.update()

The code isn’t perfect because the blocks fall off the screen and do not reappear. This code will improve
the update function so that the blocks will reappear up top.

def update(self):
 # Move the block down one pixel
 self.rect.y += 1
 if self.rect.y > screen_height:
 self.rect.y = random.randrange(-100, -10)
 self.rect.x = random.randrange(0, screen_width)

If the program should reset blocks that are collected to the top of the screen, the sprite can be changed
with the following code:

def reset_pos(self):
 """ Reset position to the top of the screen, at a random x location.
 Called by update() or the main program loop if there is a collision.
 """

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

254

 self.rect.y = random.randrange(-300, -20)
 self.rect.x = random.randrange(0, screen_width)
 
def update(self):
 """ Called each frame. """
 
 # Move block down one pixel
 self.rect.y += 1
 
 # If block is too far down, reset to top of screen.
 if self.rect.y > 410:
 self.reset_pos()

Rather than destroying the blocks when the collision occurs, the program may instead call the reset_
pos function, and the block will move to the top of the screen ready to be collected.

See if the player block has collided with anything.
blocks_hit_list = pygame.sprite.spritecollide(player, block_list, False)
 
Check the list of collisions.
for block in blocks_hit_list:
 score += 1
 print(score)
 
 # Reset block to the top of the screen to fall again.
 block.reset_pos()

The full code for this example is here:

ProgramArcadeGames.com/python_examples/f.php?file=moving_sprites.py

If you’d rather see code for sprites that bounce, look here:

ProgramArcadeGames.com/python_examples/f.php?file=moving_sprites_bounce.py

If you want them to move in circles:

ProgramArcadeGames.com/python_examples/f.php?file=sprite_circle_movement.py

The Game Class
Back in Chapter 10 we introduced functions. At the end of the chapter we talked about an option to use a
main function. As programs get large this technique helps us avoid problems that can come from having a
lot of code to sort through. Our programs aren’t quite that large yet. However I know some people like to
organize things properly from the start.

For those people in that camp, here’s another optional technique to organize your code. (If you aren’t in
that camp, you can skip this section and circle back later when your programs get too large.) Watch the video
to get an idea of how the program works.

ProgramArcadeGames.com/python_examples/f.php?file=game_class_example.py

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=moving_sprites.py
http://ProgramArcadeGames.com/python_examples/f.php?file=moving_sprites_bounce.py
http://ProgramArcadeGames.com/python_examples/f.php?file=sprite_circle_movement.py
http://dx.doi.org/10.1007/978-1-4842-1790-0_10
http://ProgramArcadeGames.com/python_examples/f.php?file=game_class_example.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

255

Other Examples
Here are several other examples of what you can do with sprites. A few of these also include a linked video
that explains how the code works.

Shooting things

Shooting things

Interested in a shoot-em-up game? Something like the classic Space Invaders? This example shows how
to create sprites to represent bullets:

ProgramArcadeGames.com/python_examples/f.php?file=bullets.py

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=bullets.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

256

Walls
Are you looking for more of an adventure games? You don’t want your player to wander all over the place?
This shows how to add walls that prevent player movement:

ProgramArcadeGames.com/python_examples/f.php?file=move_with_walls_example.py

Move with walls we can run into

Wait? One room isn’t enough of an adventure? You want your player to move from screen to screen? We
can do that! Look through this example where the player may run through a multi-room maze:

ProgramArcadeGames.com/python_examples/f.php?file=maze_runner.py

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=move_with_walls_example.py
http://ProgramArcadeGames.com/python_examples/f.php?file=maze_runner.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

257

Multi-room maze

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

258

Platforms
Interested in creating a platformer, like Donkey Kong? We need to use the same idea as our example with
walls, but add some gravity:

ProgramArcadeGames.com/python_examples/f.php?file=platform_jumper.py

Jump around platforms

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=platform_jumper.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

259

Good platformers can move side to side. This is a side scrolling platformer:

ProgramArcadeGames.com/python_examples/f.php?file=platform_scroller.py

Side scrolling platformer

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=platform_scroller.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

260

Even cooler platform games have platforms that move! See how that is done with this example:

ProgramArcadeGames.com/python_examples/f.php?file=platform_moving.py

Moving platforms

Snake/Centipede
I occasionally come across readers that want to make a snake or centipede type of game. You have a multi-
segment snake that you can control. This requires each segment to be held in a list. While it requires learning
two new commands, the concept behind how to do this game isn’t difficult.

Control a snake or centipede going around the screen:

ProgramArcadeGames.com/python_examples/f.php?file=snake.py

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=platform_moving.py
http://ProgramArcadeGames.com/python_examples/f.php?file=snake.py
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

261

Snake

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

262

Using Sprite Sheets
This is an extensive example that uses sprite sheets to provide the graphics behind a platformer game.
It supports multiple levels and moving platforms as well. The game is broken into multiple files.
ProgramArcadeGames.com/python_examples/en/sprite_sheets

Sprite sheet platformer

Review
Multiple Choice Quiz
	 1.	 What is a Sprite?

a.	 A graphic image that he computer can easily track, draw on the screen, and
detect collisions with.

b.	 A very bright color that seems to glow.

c.	 A function that draws images to the screen.

d.	 A sprite is to Tinkerbell as a human is to Bob.

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/en/sprite_sheets
http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

263

	 2.	 Which option best describes how a programmer use sprites in his or her
program?

a.	 Derive a new class from pygame.sprite.Sprite, and then create instances
of those sprites and add them to sprite groups.

b.	 Create instances of pygame.sprite.Sprite and add them to sprite groups.

c.	 Use functions to draw images directly to the screen

d.	 Use bitmaps and blit images to the screen.

	 3.	 What is the standard way to draw sprites in a program?

a.	 Add a sprite to a group. Then call .draw(screen) on the group.

b.	 Call the sprite’s .draw(screen) method.

c.	 Call the sprite’s .update(screen) method.

d.	 Call the sprite’s .blit(screen) method.

	 4.	 How does a program move a sprite pointed to by mysprite?

a.	 Set new mysprite.rect.x and mysprite.rect.y values.

b.	 Set new mysprite.x and mysprite.y values.

c.	 Call mysprite.draw(x,y) with the desired x and y values.

d.	 Call mysprite.move(x,y) with the desired x and y values.

	 5.	 How does a sprite move itself?

a.	 Create an update() method. Change self.rect.x and self.rect.y values.

b.	 Create an update() method. Change rect.x and rect.y values.

c.	 Create a move() method. Change self.x and self.y values.

	 6.	 If a programmer creates his/her own constructor for a sprite, what must be the
first line of that constructor?

a.	 super().__init__()

b.	 self.image = pygame.Surface([width, height])

c.	 self.image.set_colorkey(white)

	 7.	 If a programmer wants to create a transparent background for a sprite, what type
of image should be avoided?

a.	 jpg

b.	 png

c.	 gif

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

264

	 8.	 What does the True do in this line of code?

sprites_hit_list = pygame.sprite.spritecollide(sprite, sprite_list, True)

a.	 Removes sprite if any sprite in sprite_list is overlapping.

b.	 Creates an explosion effect when the sprites collide.

c.	 Creates a sound effect when the sprites collide.

d.	 Removes any sprite in sprite_list that is overlapping sprite.

	 9.	 What is special about a sprite’s update() function?

a.	 It is called automatically each time through the game loop.

b.	 It is called automatically when the code calls update() on any list that
sprite is in.

c.	 There is no special significance to that function.

	 10.	 What is the proper command to add a sprite to an instance of pygame.sprite.
Group() pointed to by a sprite_list?

a.	 sprite_list.append(my_sprite)

b.	 sprite_list.add(my_sprite)

c.	 sprite_list.insert(my_sprite)

	 11.	 If the screen is 600 wide and 400 tall, where will this sprite be moved?

mysprite.rect.x = 600
mysprite.rect.y = 400

a.	

b.	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Introduction to Sprites

265

c.	

d.	

Exercise
Check the appendix for the exercise “Sprite Collecting” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

267

Chapter 15

Libraries and Modules

A library is a collection of code for functions and classes. Often, these libraries are written by someone else
and brought into the project so that the programmer does not have to reinvent the wheel. In Python the term
used to describe a library of code is module.

By using import pygame and import random, the programs created so far have already used modules.
A library can be made up of multiple modules that can be imported. Often a library only has one module,
so these words can sometimes be used interchangeably.

Modules are often organized into groups of similar functionality. In this class, programs have already
used functions from the math module, the random module, and the pygame library. Modules can be organized
so that individual modules contain other modules. For example, the pygame module contains submodules
for pygame.draw, pygame.image, and pygame.mouse.

Modules are not loaded unless the program asks them to. This saves time and computer memory.
This chapter shows how to create a module and how to import and use that module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Libraries and Modules

268

Why Create a Library?
There are three major reasons for a programmer to create his or her own libraries:

	 1.	 It breaks the code into smaller, easier to use parts.

	 2.	 It allows multiple people to work on a program at the same time.

	 3.	 The code written can be easily shared with other programmers.

Some of the programs already created in this book have started to get rather long. By separating a large
program into several smaller programs, it is easier to manage the code. For example, in the prior chapter’s
sprite example, a programmer could move the sprite class into a separate file. In a complex program, each
sprite might be contained in its own file.

If multiple programmers work on the same project, it is nearly impossible to do so if all the code is in
one file. However, by breaking the program into multiple pieces, it becomes easier. One programmer could
work on developing an Orc sprite class. Another programmer could work on the Goblin sprite class. Since
the sprites are in separate files, the programmers do not run into conflict.

Modern programmers rarely build programs from scratch. Often programs are built from parts of other
programs that share the same functionality. If one programmer creates code that can handle a mortgage
application form, then that code will ideally go into a library. Then any other program that needs to manage
a mortgage application form at that bank can call on that library.

Creating Your Own Module/Library File:
In this example we will break apart a short program into multiple files. Here we have a function in a file
named test.py and a call to that function:

Foo function
def foo():
 print("foo!")
 
Foo call
foo()

Yes, this program is not too long to be in one file. But if both the function and the main program code
were long, it would be different. If we had several functions, each 100 lines long, it would be time consuming
to manage that large of a file. But for this example we will keep the code short for clarity.

We can move the foo function out of this file. Then this file would be left with only the main program
code. (In this example there is no reason to separate them, aside from learning how to do so.)

To do this, create a new file and copy the foo function into it. Save the new file with the name
my_functions.py. The file must be saved to the same directory as test.py.

Foo function
def foo():
 print("foo!")
 
Foo call that doesn't work
foo()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Libraries and Modules

269

Unfortunately it isn’t as simple as this. The file test.py does not know to go and look at the
my_functions.py file and import it. We have to add the command to import it:

Import the my_functions.py file
import my_functions
 
Foo call that still doesn't work
foo()

That still doesn’t work. What are we missing? Just like when we import pygame, we have to put the
package name in front of the function. Like this:

Import the my_functions.py file
import my_functions
 
Foo call that does work
my_functions.foo()

This works because my_functions. is prepended to the function call.

Namespace
A program might have two library files that need to be used. What if the libraries had functions that were
named the same? What if there were two functions named print_report—one that printed grades and one
that printed an account statement? For instance:

def print_report():
 print("Student Grade Report:")
 
def print_report():
 print("Financial Report:")

How do you get a program to specify which function to call? Well, that is pretty easy. You specify the
namespace. The namespace is the work that appears before the function name in the code below:

import student_functions
import financial_functions
 
student_functions.print_report()
financial_functions.print_report()

So now we can see why this might be needed. But what if you don’t have name collisions? Typing in a
namespace each and every time can be tiresome. You can get around this by importing the library into the
local namespace. The local namespace is a list of functions, variables, and classes that you don't have to
prepend with a namespace. Going back to the foo example, let's remove the original import and replace it
with a new type of import:

import foo
from my_functions import *
 
foo()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Libraries and Modules

270

This works even without my_functions. prepended to the function call. The asterisk is a wildcard that
will import all functions from my_functions. A programmer could import individual ones if desired by
specifying the function name.

Third Party Libraries
When working with Python, it is possible to use many libraries that are built into Python. Take a look at all
the libraries that are available here:

http://docs.python.org/3/py-modindex.html

It is possible to download and install other libraries. There are libraries that work with the Web, complex
numbers, databases, and more.

•	 Pygame: The library used to create games.

http://www.pygame.org/docs/

•	 wxPython: Create GUI programs, with windows, menus, and more.

http://www.wxpython.org/

•	 pydot: Generate complex directed and nondirected graphs.

http://code.google.com/p/pydot/

•	 NumPy: Sophisticated library for working with matrices.

http://numpy.scipy.org/

A wonderful list of Python libraries and links to installers for them is available here: http://www.lfd.
uci.edu/~gohlke/pythonlibs/

Going through lists of libraries that are available can help you brainstorm what types of programs you
can create. Most programming involves assembling large parts, rather than writing everything from scratch.

Review
Multiple Choice Quiz
	 1.	 What is a library?

a.	 A collection of functions and/or classes that can be imported into a project.

b.	 A store where you can buy code from other developers.

c.	 Any code that has not been written by a developer.

d.	 A .pyc file.

	 2.	 Why would a person create a library?

a.	 It provides an easy way for developers to share code between projects and
other developers.

b.	 It makes the code run faster.

c.	 It makes the code smaller.

d.	 Libraries are something to be avoided by developers.

www.it-ebooks.info

http://docs.python.org/3/py-modindex.html
http://www.pygame.org/docs/
http://www.wxpython.org/
http://code.google.com/p/pydot/
http://numpy.scipy.org/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.it-ebooks.info/

Chapter 15 ■ Libraries and Modules

271

	 3.	 Why does the following code not work?

The first file:

def foo():
 print("foo!")

And the second file:

import my_functions
 
foo()

a.	 The program should read my_functions.foo()

b.	 The program should read import my_functions.py

c.	 The program should read import foo

d.	 The program should read from foo import my_functions

	 4.	 What is the proper code to import the math library into the local namespace?

a.	 from math import *

b.	 import math

c.	 import local

d.	 from math import local

e.	 import math into local

	 5.	 What does the asterisk represent in the following line of code:

from my_functions import *

a.	 Wildcard. Import every function in the my_functions module.

b.	 It represents the local namespace.

c.	 My God, it’s full of stars!

Short Answer Worksheet
	 1.	 What is a Python library?

	 2.	 What are some of the reasons why a programmer would want to create his/her
own library file?

	 3.	 There are two ways to import library files in Python. Give an example of each.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Libraries and Modules

272

	 4.	 How do calls to functions and classes differ depending on how the library is
imported?

	 5.	 Can library files import other library files?

	 6.	 What is a namespace?

Exercise
Check the appendix for the exercise “Moving Sprites” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

273

Chapter 16

Searching

Searching is an important and very common operation that computers do all the time. Searches are used
every time someone does a ctrl-f for “find,” when a user uses “type-to” to quickly select an item, or when a
web server pulls information about a customer to present a customized web page with the customer’s order.

There are a lot of ways to search for data. Google has based an entire multibillion dollar company on
this fact. This chapter introduces the two simplest methods for searching: the linear search and the binary
search.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

274

Reading from a File
Before discussing how to search we need to learn how to read data from a file. Reading in a data set from a
file is way more fun than typing it in by hand each time.

Let’s say we need to create a program that will allow us to quickly find the name of a super villain. To start
with, our program needs a database of super villains. To download this data set, download and save this file:

http://ProgramArcadeGames.com/chapters/16_searching/super_villains.txt

These are random names generated by the nine.frenchboys.net web site. Save this file and remember
which directory you saved it to.

In the same directory as super_villains.txt, create, save, and run the following python program:

file = open("super_villains.txt")
 
for line in file:
 print(line)

There is only one new command in this code open. Because it is a built-in function like print, there is
no need for an import. Full details on this function can be found in https://docs.python.org/3/library/
functions.html#open, but at this point the documentation for that command is so technical it might not
even be worth looking at.

The above program has two problems with it, but it provides a simple example of reading in a file. Line 1
opens a file and gets it ready to be read. The name of the file is in between the quotes. The new variable
file is an object that represents the file being read. Line 3 shows how a normal for loop may be used to
read through a file line by line. Think of file as a list of lines, and the new variable line will be set to each of
those lines as the program runs through the loop.

Try running the program. One of the problems with it is that the text is printed double-spaced. The
reason for this is that each line pulled out of the file and stored in the variable line includes the carriage
return as part of the string. Remember the carriage return and line feed introduced back in Chapter 1? The
print statement adds yet another carriage return and the result is double-spaced output.

The second problem is that the file is opened, but not closed. This problem isn’t as obvious as the
double-spacing issue, but it is important. The Windows operating system can only open so many files at
once. A file can normally only be opened by one program at a time. Leaving a file open will limit what other
programs can do with the file and take up system resources. It is necessary to close the file to let Windows
know the program is no longer working with that file. In this case it is not too important because once any
program is done running, the Windows will automatically close any files left open. But since it is a bad habit
to program like that, let’s update the code:

file = open("super_villains.txt")
 
for line in file:
 line = line.strip()
 print(line)
 
file.close()

www.it-ebooks.info

http://ProgramArcadeGames.com/chapters/16_searching/super_villains.txt
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
http://dx.doi.org/10.1007/978-1-4842-1790-0_1
http://www.it-ebooks.info/

Chapter 16 ■ Searching

275

The listing above works better. It has two new additions. On line 4 is a call to the strip method built into
every String class. This function returns a new string without the trailing spaces and carriage returns of the
original string. The method does not alter the original string but instead creates a new one. This line of code
would not work:

line.strip()

If the programmer wants the original variable to reference the new string, she must assign it to the new
returned string as shown on line 4.

The second addition is on line 7. This closes the file so that the operating system doesn’t have to go
around later and clean up open files after the program ends.

Reading into an Array
It is useful to read in the contents of a file to an array so that the program can do processing on it later. This
can easily be done in python with the following code:

Read in a file from disk and put it in an array.
file = open("super_villains.txt")
 
name_list = []
for line in file:
 line = line.strip()
 name_list.append(line)
 
file.close()

This combines the new pattern of how to read a file, along with the previously learned pattern of how to
create an empty array and append to it as new data comes in, which was shown back in Chapter 8. To verify
the file was read into the array correctly, a programmer could print the length of the array:

print("There were",len(name_list),"names in the file.")

Or the programmer could bring the entire contents of the array:

for name in name_list:
 print(name)

Go ahead and make sure you can read in the file before continuing on to the different searches.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 16 ■ Searching

276

Linear Search
If a program has a set of data in an array, how can it go about finding where a specific element is? This can
be done one of two ways. The first method is to use a linear search. This starts at the first element and keeps
comparing elements until it finds the desired element (or runs out of elements.)

Linear Search Algorithm

--- Linear search
key = "Morgiana the Shrew"
 
i = 0
while i < len(name_list) and name_list[i] != key:
 i += 1
 
if i < len(name_list):
 print("The name is at position", i)
else:
 print("The name was not in the list.")

The linear search is rather simple. Line 2 sets up an increment variable that will keep track of exactly
where in the list the program needs to check next. The first element that needs to be checked is zero, so i is
set to zero.

The next line is a bit more complex. The computer needs to keep looping until one of two things
happens. It finds the element, or it runs out of elements. The first comparison sees if the current element we
are checking is less than the length of the list. If so, we can keep looping. The second comparison sees if the
current element in the name list is equal to the name we are searching for.

This check to see if the program has run out of elements must occur first. Otherwise the program will
check against a non-existent element, which will cause an error.

Line 4 simply moves to the next element if the conditions to keep searching are met in line 3.
At the end of the loop, the program checks to see if the end of the list was reached on line 6. Remember,

a list of n elements is numbered 0 to n-1. Therefore if i is equal to the length of the list, the end has been
reached. If it is less, we found the element.

Variations on the Linear Search
Variations on the linear search can be used to create several common algorithms. For example, say we had
a list of aliens. We might want to check this group of aliens to see if one of the aliens is green. Or are all the
aliens green? Which aliens are green?

To begin with, we’d need to define our alien:

class Alien:
 """ Class that defines an alien"""
 def __init__(self, color, weight):
 """ Constructor. Set name and color"""
 self.color = color
 self.weight = weight

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

277

Then we’d need to create a function to check and see if it has the property that we are looking for. In this
case, is it green? We’ll assume the color is a text string, and we’ll convert it to uppercase to eliminate case
sensitivity.

def has_property(my_alien):
 """ Check to see if an item has a property.
 In this case, is the alien green? """
 if my_alien.color.upper() == "GREEN":
 return True
 else:
 return False

Does at Least One Item Have a Property?
Is at least one alien green? We can check. The basic algorithm behind this check:

def check_if_one_item_has_property_v1(my_list):
 """ Return true if at least one item has a
 property. """
 i = 0
 while i < len(my_list) and not has_property(my_list[i]):
 i += 1
 
 if i < len(my_list):
 # Found an item with the property
 return True
 else:
 # There is no item with the property
 return False

This could also be done with a for loop. In this case, the loop will exit early by using a return once the
item has been found. The code is shorter, but not every programmer would prefer it. Some programmers
feel that loops should not be prematurely ended with a return or break statement. It all goes to personal
preference—or the personal preference of the person that is footing the bill.

def check_if_one_item_has_property_v2(my_list):
 """ Return true if at least one item has a
 property. Works the same as v1, but less code. """
 for item in my_list:
 if has_property(item):
 return True
 return False

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

278

Do All Items Have a Property?
Are all aliens green? This code is very similar to the prior example. Spot the difference and see if you can
figure out the reason behind the change.

def check_if_all_items_have_property(my_list):
 """ Return true if at ALL items have a property. """
 for item in my_list:
 if not has_property(item):
 return False
 return True

Create a List with All Items Matching a Property
What if you wanted a list of aliens that are green? This is a combination of our prior code and the code to
append items to a list that we learned about back in Chapter 7.

def get_matching_items(list):
 """ Build a brand new list that holds all the items
 that match our property. """
 matching_list = []
 for item in list:
 if has_property(item):
 matching_list.append(item)
 return matching_list

How would you run all these in a test? The code above can be combined with this code to run:

alien_list = []
alien_list.append(Alien("Green", 42))
alien_list.append(Alien("Red", 40))
alien_list.append(Alien("Blue", 41))
alien_list.append(Alien("Purple", 40))
 
result = check_if_one_item_has_property_v1(alien_list)
print("Result of test check_if_one_item_has_property_v1:", result)
 
result = check_if_one_item_has_property_v2(alien_list)
print("Result of test check_if_one_item_has_property_v2:", result)
 
result = check_if_all_items_have_property(alien_list)
print("Result of test check_if_all_items_have_property:", result)
 
result = get_matching_items(alien_list)
print("Number of items returned from test get_matching_items:", len(result))

For a full working example see:

programarcadegames.com/python_examples/show_file.php?file=property_check_examples.py

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_7
http://programarcadegames.com/python_examples/show_file.php?file=property_check_examples.py
http://www.it-ebooks.info/

Chapter 16 ■ Searching

279

These common algorithms can be used as part of a solution to a larger problem, such as finding all the
addresses in a list of customers that aren’t valid.

Binary Search
A faster way to search a list is possible with the binary search. The process of a binary search can be
described by using the classic number guessing game “guess a number between 1 and 100” as an example.
To make it easier to understand the process, let’s modify the game to be “guess a number between 1 and
128.” The number range is inclusive, meaning both 1 and 128 are possibilities.

If a person were to use the linear search as a method to guess the secret number, the game would be
rather long and boring.

Guess a number 1 to 128: 1
Too low.
Guess a number 1 to 128: 2
Too low.
Guess a number 1 to 128: 3
Too low.
....
Guess a number 1 to 128: 93
Too low.
Guess a number 1 to 128: 94
Correct!

Most people will use a binary search to find the number. Here is an example of playing the game using a
binary search:

Guess a number 1 to 128: 64
Too low.
Guess a number 1 to 128: 96
Too high.
Guess a number 1 to 128: 80
Too low.
Guess a number 1 to 128: 88
Too low.
Guess a number 1 to 128: 92
Too low.
Guess a number 1 to 128: 94
Correct!

Each time through the rounds of the number guessing game, the guesser is able to eliminate one-half of
the problem space by getting a high or low as a result of the guess.

In a binary search, it is necessary to track an upper and a lower bound of the list that the answer can be
in. The computer or number guessing human picks the midpoint of those elements. Revisiting the example:

A lower bound of 1, upper bound of 128, midpoint of

1 128

2
64 5

+
= . .

Guess a number 1 to 128: 64
Too low.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

280

A lower bound of 65, upper bound of 128, midpoint of
65 128

2
96 5

+
= . .

Guess a number 1 to 128: 96
Too high.

A lower bound of 65, upper bound of 95, midpoint of
65 95

2
80

+
= .

Guess a number 1 to 128: 80
Too low.

A lower bound of 81, upper bound of 95, midpoint of
81 95

2
88

+
= .

Guess a number 1 to 128: 88
Too low.

A lower bound of 89, upper bound of 95, midpoint of
89 95

2
92

+
= .

Guess a number 1 to 128: 92
Too low.

A lower bound of 93, upper bound of 95, midpoint of
93 95

2
94

+
= .

Guess a number 1 to 128: 94
Correct!

A binary search requires significantly fewer guesses. Worst case, it can guess a number between 1 and
128 in 7 guesses. One more guess raises the limit to 256. Nine guesses can get a number between 1 and 512.
With just 32 guesses, a person can get a number between 1 and 4.2 billion.

To figure out how large the list can be given a certain number of guesses, the formula works out like n=xg
where n is the size of the list and g is the number of guesses. For example:

27=128 (7 guesses can handle 128 different numbers)
28=256
29=512
232=4,294,967,296

If you have the problem size, we can figure out the number of guesses using the log function.
Specifically, log base 2. If you don’t specify a base, most people will assume you mean the natural log with a
base of e » 2.71828, which is not what we want. For example, using log base 2 to find how many guesses:

log
2
 128 = 7

log
2
 65,536 = 16

Enough math! Where is the code? The code to do a binary search is more complex than a linear search:

--- Binary search
key = "Morgiana the Shrew";
lower_bound = 0
upper_bound = len(name_list)-1
found = False
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

281

Loop until we find the item, or our upper/lower bounds meet
while lower_bound <= upper_bound and not found:
 
 # Find the middle position
 middle_pos = (lower_bound + upper_bound) // 2
 
 # Figure out if we:
 # move up the lower bound, or
 # move down the upper bound, or
 # we found what we are looking for
 if name_list[middle_pos] < key:
 lower_bound = middle_pos + 1
 elif name_list[middle_pos] > key:
 upper_bound = middle_pos - 1
 else:
 found = True
 
if found:
 print("The name is at position", middle_pos)
else:
 print("The name was not in the list.")

Since lists start at element zero, line 3 sets the lower bound to zero. Line 4 sets the upper bound to the
length of the list minus one. So for a list of 100 elements the lower bound will be 0 and the upper bound 99.

The Boolean variable on line 5 will be used to let the while loop know that the element has been found.
Line 6 checks to see if the element has been found or if we’ve run out of elements. If we’ve run out of

elements, the lower bound will end up equalling the upper bound.
Line 7 finds the middle position. It is possible to get a middle position of something like 64.5. It isn’t

possible to look up position 64.5. (Although J. K. Rowling was rather clever in enough coming up with
Platform 9 3

4
, that doesn’t work here.) The best way of handling this is to use the // operator first

introduced way back in Chapter 6. This is similar to the / operator, but will only return integer results. For
example, 11 // 2 would give 5 as an answer, rather than 5.5.

Starting at line 8, the program checks to see if the guess is high, low, or correct. If the guess is low, the
lower bound is moved up to just past the guess. If the guess is too high, the upper bound is moved just below
the guess. If the answer has been found, found is set to True ending the search.

With the a list of 100 elements, a person can reasonably guess that on average with the linear search, a
program will have to check 50 of them before finding the element. With the binary search, on average you’ll
still need to do about 7 guesses. In an advanced algorithms course you can find the exact formula. For this
course, just assume average and worst cases are the same.

Review
Multiple Choice Quiz
	 1.	 Before reading from a file, a program must:

a.	 Open it with the open command.

b.	 Initialize it with the init command.

c.	 Reset the file with a reset command.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://www.it-ebooks.info/

Chapter 16 ■ Searching

282

	 2.	 In order to read in each line of the file a program should:

a.	 Use a for loop

b.	 Use the read_all_lines command.

c.	 Access each line in an array.

	 3.	 What will happen if a program fails to close a file after reading it?

a.	 The file will be marked as busy and will be inaccessible until
the program ends.

b.	 The file will not be able to be used until the computer restarts.

c.	 The programmer will get a call from his mother reminding him that he
forgot to close his that file, again.

d.	 Nothing, it doesn’t really matter if you don’t close the file.

	 4.	 What processing usually needs to be done on a line after it has been read in?

a.	 The carriage return and/or line feed need to be stripped of the end
of the line.

b.	 The line needs to be converted to uppercase.

c.	 The line needs to be converted from a string of integers to a string of letters.

d.	 The dilithium crystals must be recalibrated before use.

	 5.	 What is wrong with this linear search?

i = 0
while my_list[i] != key and i < len(my_list):
i += 1

a.	 The loop needs to check to see if we ran out of list items before checking to
see if the item is equal to the key.

b.	 The first check should be == not !=.

c.	 The second check should be <= not <.

d.	 The second check should be > not <.

	 6.	 After this code runs, what is the proper way to tell if the item was found or not?

i = 0
while i < len(my_list) and my_list[i] != key:
i += 1

a.	 if i == len(my_list):

b.	 if my_list[i] != key:

c.	 if my_list[i] == key:

d.	 if i > len(my_list):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

283

	 7.	 A binary search starts looking:

a.	 In the middle of the list.

b.	 At the beginning of the list.

c.	 At the end of the list.

d.	 At a random spot in the list.

	 8.	 Using a binary search, a list of 128 elements takes at most how many times
through the search loop?

a.	 7

b.	 64

c.	 128

d.	 1

	 9.	 In a binary search, how do you know if an element is not in the list and the search
should stop?

a.	 The lower bound is equal or greater than the upper bound.

b.	 After every item has been checked.

c.	 When the key is not equal to the middle element.

d.	 When i is greater than or equal to the list length.

	 10.	 If the key is less than the middle element, the search should:

a.	 Move the upper bound down to the middle element.

b.	 Move the lower bound up to the middle element.

Short Answer Worksheet Linear Search Review
Answer the following, assuming a program uses the linear search:

	 1.	 If a list has n elements, in the best case how many elements would the computer
need to check before it found the desired element?

	 2.	 If a list has n elements, in the worst case how many elements would the
computer need to check before it found the desired element? (Remember, give
your answer in terms of n.)

	 3.	 If a list has n elements, how many elements need to be checked to determine that
the desired element does not exist in the list?

	 4.	 If a list has n elements, what would the average number of elements be that the
computer would need to check before it found the desired element?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

284

	 5.	 Take the example linear search code and put it in a function called linear_
search. Take in the list along with the desired element as parameters. Return
the position of the element, or -1 if it was not found. Once you’ve written the
function, try it out with the following code to see if it works:

--- Put your definition for linear_search right below:
 
--- Now if the function works, all these tests should pass:
 
my_list = [4, 3, 2, 1, 5, 7, 6]
 
r = linear_search(my_list, 3)
if r == 1:
 print("Test A passed")
else:
 print("Test A failed")
 
r = linear_search(my_list, 2)
if r == 2:
 print("Test B passed")
else:
 print("Test B failed")
 
r = linear_search(my_list, 10)
if r == -1:
 print("Test C passed")
else:
 print("Test C failed")

Binary Search Review
Answer the following, assuming a program uses the binary search and that the search list is in order:

	 1.	 If a list has n elements, in the best case how many elements would the computer
need to check before it found the desired element?

	 2.	 If a list has n elements, in the worst case how many elements would the
computer need to check before it found the desired element?

	 3.	 If a list has n elements, how many elements need to be checked to determine that
the desired element does not exist in the list?

	 4.	 If a list has n elements, what would the average number of elements be that the
computer would need to check before it found the desired element?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Searching

285

	 5.	 Take the example binary search code and put it in a function named binary_
search. Take in the list along with the desired element as parameters. Return
the position of the element, or -1 if it was not found. Once you’ve written the
function, try it out with the following code to see if it works:

--- Put your definition for binary_search right below:
 
--- Now if the function works, all these tests should pass:
 
my_list = [0, 3, 5, 12, 18, 50, 70, 78]
 
r = binary_search(my_list, 3)
if r == 1:
 print("Test A passed")
else:
 print("Test A failed")
 
r = binary_search(my_list, 2)
if r == 2:
 print("Test B passed")
else:
 print("Test B failed")
 
r = binary_search(my_list, 10)
if r == -1:
 print("Test C passed")
else:
 print("Test C failed")

Challenge Question
	 1.	 Does the following function correctly detect whether a list contains at least one

positive element? Write code to try it out. Explain why it does work or why it does
not work. Come up with working code.

def detect_positive(list):
 for element in list:
 if element > 0:
 return True
 else:
 return False

Exercise
Check the appendix for the exercise “Spell Check” that goes along with this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

287

Chapter 17

Array-Backed Grids

Games like minesweeper, tic-tac-toe, and many types of adventure games keep data for the game in a grid of
numbers. For example, a tic-tac-toe board:

O O

X

X

…can use a grid of numbers to represent the empty spots, the O’s, and the X’s like this:

0 2 2

0 1 0

1 0 0

This grid of numbers can also be called a two-dimensional array or a matrix. (Finally, we get to learn
about The Matrix.) The values of the numbers in the grid represent what should be displayed at each board
location. In the prior example, 0 represents a spot where no one has played, a 1 represents an X, and a 2
represents an O.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

288

Minesweeper game, showing the backing grid of numbers

The figure above is an example from the classic minesweeper game. This example has been modified to
show both the classic display on the left, and the grid of numbers used to display the board on the right.

The number 10 represents a mine, the number 0 represents a space that has not been clicked, and
the number 9 represents a cleared space. The numbers 1 to 8 represent how many mines are within the
surrounding 8 squares, and is only filled in when the user clicks on the square.

Minesweeper can actually have two grids: one for the regular display, and a completely separate grid of
numbers that will track if the user has placed flags on the board marking where she thinks the mines are.

Classic adventure game maps are created using a tiled map editor. These are huge grids where each
location is simply a number representing the type of terrain that goes there. The terrain could be things such
as dirt, a road, a path, green grass, brown grass, and so forth. Programs like Tiled Qt shown in the next figure
allow a developer to easily make these maps and write the grid to disk.

www.it-ebooks.info

http://www.mapeditor.org/
http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

289

Using Qt Tiles to create an adventure map

Adventure games also use multiple grids of numbers, just like minesweeper has a grid for the mines and
a separate grid for the flags. One grid, or layer, in the adventure game represents terrain you can walk on;
another for things you can’t walk on like walls and trees; a layer for things that can instantly kill you, like lava
or bottomless pits; one for objects that can be picked up and moved around; and yet another layer for initial
placement of monsters.

Maps like these can be loaded in a Python program, but unfortunately a full description of how to
manage is beyond the scope of this book. Projects like https://github.com/bitcraft/PyTMX provide some
of the code needed to load these maps.

Application
Enough talk, let’s write some code. This example will create a grid that will trigger if we display a white
or green block. We can change the grid value and make it green by clicking on it. This is a first step to a
grid-based game like minesweeper, battleship, connect four, etc.

Go to the example code page and download the base template file: ProgramArcadeGames.com/
python_examples/f.php?file=pygame_base_template.py.

Starting with the blank template file, attempt to re-create this program following the instructions here.
The final program is at the end of this chapter, but don’t skip ahead and copy it! If you do that you’ll have
learned nothing. Anyone can copy and paste the code, but if you can re-create this program, you have skills
that people are willing to pay for. If you can only copy and paste, you’ve wasted your time here.

www.it-ebooks.info

https://github.com/bitcraft/PyTMX
http://programarcadegames/index.php?chapter=example_code
http://ProgramArcadeGames.com/%0apython_examples/f.php?file=pygame_base_template.py
http://ProgramArcadeGames.com/%0apython_examples/f.php?file=pygame_base_template.py
http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

290

Drawing the Grid
	 1.	 Adjust the program’s window size to 255 ×255 pixels.

	 2.	 Create variables named width, height, and margin. Set the width and height
to 20. This will represent how large each grid location is. Set the margin to 5.
This represents the margin between each grid location and the edges of the
screen. Create these variables before the main program loop.

	 3.	 Draw a white box in the upper left corner. Draw the box drawn using the height
and width variables created earlier. (Feel free to adjust the colors.) When you get
done your program’s window should look like the next figure.

Step 3

	 4.	 Use a for loop to draw 10 boxes in a row. Use column for the variable name in
the for loop. The output will look like one long box until we add in the margin
between boxes. See the next figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

291

Step 4

	 5.	 Adjust the drawing of the rectangle to add in the margin variable. Now there
should be gaps between the rectangles. See the next figure.

Step 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

292

	 6.	 Add the margin before drawing the rectangles, in addition to between each
rectangle. This should keep the box from appearing right next to the window
edge. See the next figure.

Step 6

	 7.	 Add another for loop that also will loop for each row. Call the variable in this for
loop row. Now we should have a full grid of boxes. See the next figure.

Step 7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

293

Populating the Grid
Now we need to create a two-dimensional array. Creating a two-dimensional array in Python is,
unfortunately, not as easy as it is in some other computer languages. There are some libraries that can be
downloaded for Python that make it easy, but for this example they will not be used.

	 1.	 To create a two-dimensional array and set an example, use the code below:

--- Create grid of numbers
Create an empty list
grid = []
Loop for each row
for row in range(10):
 # For each row, create a list that will
 # represent an entire row
 grid.append([])
 # Loop for each column
 for column in range(10):
 # Add a the number zero to the current row
 grid[row].append(0)

		 A much shorter example is below, but this example uses some odd parts of
Python that I don’t bother to explain in this book:

grid = [[0 for x in range(10)] for y in range(10)]

		 Use one of these two examples and place the code to create our array ahead of
your main program loop.

	 2.	 Set an example location in the array to 1.

		 Two-dimensional arrays are usually represented addressed by first their row
and then the column. This is called a row-major storage. Most languages use
row-major storage, with the exception of Fortran and MATLAB. Fortran and
MATLAB use column-major storage.

Set row 1, column 5 to one
grid[1][5] = 1

		 Place this code somewhere ahead of your main program loop.

	 3.	 Select the color of the rectangle based on the value of a variable named color.
Do this by first finding the line of code where the rectangle is drawn. Ahead of it,
create a variable named color and set it equal to white. Then replace the white
color in the rectangle declaration with the color variable.

	 4.	 Select the color based on the value in the grid. After setting color to white, place
an if statement that looks at the value in grid[row][column] and changes the
color to green if the grid value is equal to 1. There should now be one green
square. See the following figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

294

Step 11

	 5.	 Print “click” to the screen if the user clicks the mouse button. See
bitmapped_graphics.py for example code of how to detect a mouse click.

	 6.	 Print the mouse coordinates when the user clicks the mouse. See move_mouse.py
for an example on getting the position of the mouse. See the next figure.

Step 13

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

295

	 7.	 Convert the mouse coordinates into grid coordinates. Print those instead.
Remember to use the width and height of each grid location combined with
the margin. It will be necessary to convert the final value to an integer. This can
be done by using int or by using the integer division operator // instead of the
normal division operator /. See the next figure.

Step 14

	 8.	 Set the grid location at the row/column clicked to 1. See the next figure.

Step 15

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

296

Final Program

"""
 Example program to show using an array to back a grid on-screen.
 
 Sample Python/Pygame Programs
http://programarcadegames.com/
 
 Explanation video: http://youtu.be/mdTeqiWyFnc
"""
import pygame
 
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
 
This sets the WIDTH and HEIGHT of each grid location
WIDTH = 20
HEIGHT = 20
 
This sets the margin between each cell
MARGIN = 5
 
Create a 2 dimensional array. A two dimensional
array is simply a list of lists.
grid = []
for row in range(10):
 # Add an empty array that will hold each cell
 # in this row
 grid.append([])
 for column in range(10):
 grid[row].append(0) # Append a cell
 
Set row 1, cell 5 to one. (Remember rows and
column numbers start at zero.)
grid[1][5] = 1
 
Initialize pygame
pygame.init()
 
Set the HEIGHT and WIDTH of the screen
WINDOW_SIZE = [255, 255]
screen = pygame.display.set_mode(WINDOW_SIZE)
 
Set title of screen
pygame.display.set_caption("Array Backed Grid")
 
Loop until the user clicks the close button.
done = False
 

www.it-ebooks.info

http://programarcadegames.com/
http://youtu.be/mdTeqiWyFnc
http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

297

Used to manage how fast the screen updates
clock = pygame.time.Clock()
 
-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get(): # User did something
 if event.type == pygame.QUIT: # If user clicked close
 done = True # Flag that we are done so we exit this loop
 elif event.type == pygame.MOUSEBUTTONDOWN:
 # User clicks the mouse. Get the position
 pos = pygame.mouse.get_pos()
 # Change the x/y screen coordinates to grid coordinates
 column = pos[0] // (WIDTH + MARGIN)
 row = pos[1] // (HEIGHT + MARGIN)
 # Set that location to zero
 grid[row][column] = 1
 print("Click ", pos, "Grid coordinates: ", row, column)
 
 # Set the screen background
 screen.fill(BLACK)
 
 # Draw the grid
 for row in range(10):
 for column in range(10):
 color = WHITE
 if grid[row][column] == 1:
 color = GREEN
 pygame.draw.rect(screen,
 color,
 [(MARGIN + WIDTH) * column + MARGIN,
 (MARGIN + HEIGHT) * row + MARGIN,
 WIDTH,
 HEIGHT])
 
 # Limit to 60 frames per second
 clock.tick(60)
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit()

and start work on your own video game!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

298

Review
Multiple Choice Quiz
	 1.	 In computer science, a grid of numbers is called a:

a.	 Two-dimensional array

b.	 Bingo board

c.	 One-dimensional array

d.	 Two-dimensional board

	 2.	 To print the value of the top left corner of a 10x10 two-dimensional array, the
current code would be:

a.	 print(my_array[0][0])

b.	 print(my_array[1][1])

c.	 print(my_array[0,0])

d.	 print(my_array[1,1])

	 3.	 To store a 10 into an x, y position on the grid of (0, 5), what is the correct code?

a.	 my_array[5][0] = 10

b.	 my_array[0][5] = 10

c.	 [0][5] = 10

d.	 my_array = 10

e.	 my_array[10] = (0,5)

f.	 print(my_arrayp[1,1])

	 4.	 To process an entire two-dimensional array, a program needs:

a.	 Two nested for loops: one for each row, one for each element in the row.

b.	 Two sequential for loops: one for each row, one for each element in the row.

c.	 One for loop to process every element.

d.	 A function for each element in the grid.

e.	 Two nested classes: one for each row, one for each element.

	 5.	 In the chapter example, how does the program find which grid location was
clicked on with the mouse?

a.	 Divide coordinates by the size of each grid location (including the margin).

b.	 Subtract the margin, divide by grid size.

c.	 Subtract the grid size.

d.	 Divide the grid size by the x and y coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

299

Short Answer Worksheet
	 1.	 Start with the final program. Modify it so that rather than just changing the block

the user clicks on, it also changes the blocks of the squares next to the user’s
click. If the user clicks on an edge, make sure the program doesn’t crash and still
handles the click appropriately.

	 2.	 Write a celebrity-finding function.

		 Start with a function check_celebrity that takes an n by n matrix named grid as
a parameter.

		 The grid location grid[i][j] = 1 if person i knows person j

		 and grid[i][j] = 0 otherwise.

		 (Assume that grid[i][i] = 1 for every i, since every person knows him/herself.)

		 A celebrity is a person who is known by everyone and does not know anyone
besides him/herself.

		 Write a function that given the matrix grid, prints all the celebrities.
		 For example, in the following grid person 2 is a celebrity:

 0 1 2 3

0 | 1 1 1 0
1 | 0 1 1 0
2 | 0 0 1 0
3 | 1 0 1 1

		 In the next example, no one is a celebrity:

 0 1 2 3 4

0 | 1 1 1 0 1
1 | 0 1 1 0 1
2 | 0 0 1 0 0
3 | 1 0 1 1 1
4 | 1 0 0 1 1

Remember: A matrix can be represented as a list of lists, where each sublist is a
row of the matrix. For example, the first matrix can be represented as:

grid = [[1, 1, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [1, 0, 1, 1]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Array-Backed Grids

300

		 Or you can use multiple lines to define the grid:

grid = [[1, 1, 1, 0],
 [0, 1, 1, 0],
 [0, 0, 1, 0],
 [1, 0, 1, 1]]

		 You can test your function with code like the following test cases:

print("Test 1, Should show #2 is a celebrity.")
grid = [[1, 1, 1, 0],
 [0, 1, 1, 0],
 [0, 0, 1, 0],
 [1, 0, 1, 1]]
 
check_celebrity(grid)
 
print("Test 2, Should show no one is a celebrity.")
grid = [[1, 1, 1, 0, 1],
 [0, 1, 1, 0, 1],
 [0, 0, 1, 0, 0],
 [1, 0, 0, 1, 1],
 [1, 0, 0, 1, 1]]
 
check_celebrity(grid)
 
print("Test 3, Should show #2 is a celebrity.")
grid = [[1, 1, 1, 0, 1],
 [0, 1, 1, 0, 1],
 [0, 0, 1, 0, 0],
 [0, 0, 1, 0, 1],
 [1, 0, 1, 1, 1]]
 
check_celebrity(grid)
 
print("Test 4, Should show no one is a celebrity.")
grid = [[1, 1, 1, 0, 1],
 [0, 1, 1, 0, 1],
 [1, 0, 1, 0, 0],
 [0, 0, 1, 0, 1],
 [1, 0, 1, 1, 1]]
 
check_celebrity(grid)
 
 

www.it-ebooks.info

http://www.it-ebooks.info/

301

Chapter 18

Sorting

Binary searches only work on lists that are in order. So how do programs get a list in order? How does a
program sort a list of items when the user clicks a column heading or otherwise needs something sorted?

There are several algorithms that do this. The two easiest algorithms for sorting are the selection sort and
the insertion sort. Other sorting algorithms exist as well, such as the shell, merge, heap, and quick sorts.

The best way to get an idea on how these sorts work is to watch them. To see common sorting
algorithms in action visit this excellent web site:

http://www.sorting-algorithms.com

Each sort has advantages and disadvantages. Some sort a list quickly if the list is almost in order to
begin with. Some sort a list quickly if the list is in a completely random order. Other lists sort fast but take
more memory. Understanding how sorts work is important in selecting the proper sort for your program.

Swapping Values
Before learning to sort, we need to learn how to swap values between two variables. This is a common
operation in many sorting algorithms. Suppose a program has a list that looks like the following:

my_list = [15,57,14,33,72,79,26,56,42,40]

The developer wants to swap positions 0 and 2, which contain the numbers 15 and 14 respectively. See
the following figure.

Swapping values in an array

www.it-ebooks.info

http://www.sorting-algorithms.com/
http://www.it-ebooks.info/

Chapter 18 ■ Sorting

302

A first attempt at writing this code might look something like this:

my_list[0] = my_list[2]
my_list[2] = my_list[0]

Incorrect attempt to swap array values

Look at the figure above to get an idea on what would happen. This clearly does not work. The first
assignment list[0] = list[2] causes the value 15 that exists in position 0 to be overwritten with the 14
in position 2 and irretrievably lost. The next line with list[2] = list[0] just copies the 14 back to cell 2,
which already has a 14.

To fix this problem, swapping values in an array should be done in three steps. It is necessary to create
a temporary variable to hold a value during the swap operation. See the next figure. The code to do the swap
looks like the following:

temp = my_list[0]
my_list[0] = my_list[2]
my_list[2] = temp

The first line copies the value of position 0 into the temp variable. This allows the code to write over
position 0 with the value in position 2 without data being lost. The final line takes the old value of position 0,
currently held in the temp variable, and places it in position 2.

Correct method to swap array values

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Sorting

303

Selection Sort
The selection begins by looking at element 0. Then code next scans the rest of the list from element 1 to n-1
to find the smallest number. The smallest number is swapped into element 0. The code then moves on to
element 1, then 2, and so forth. Graphically, the sort looks like the following figure.

Selection Sort

The code for a selection sort involves two nested loops. The outside loop tracks the current position that
the code wants to swap the smallest value into. The inside loop starts at the current location and scans to the
right in search of the smallest value. When it finds the smallest value, the swap takes place.

def selection_sort(my_list):

 """ Sort a list using the selection sort """
 
 # Loop through the entire array
 for cur_pos in range(len(my_list)):
 # Find the position that has the smallest number
 # Start with the current position
 min_pos = cur_pos
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Sorting

304

 # Scan left to right (end of the list)
 for scan_pos in range(cur_pos + 1, len(my_list)):
 
 # Is this position smallest?
 if my_list[scan_pos] < my_list[min_pos]:
 
 # It is, mark this position as the smallest
 min_pos = scan_pos
 
 # Swap the two values
 temp = my_list[min_pos]
 my_list[min_pos] = my_list[cur_pos]
 my_list[cur_pos] = temp

The outside loop will always run n times. The inside loop will run n

2
 times. This will be the case

regardless if the list is in order or not. The loops’ efficiency may be improved by checking if min_pos and
cur_pos are equal before the code does the swap at the end of the sort. If those variables are equal, there is
no need to do those three lines.

In order to test the selection sort code above, the following code may be used. The first function will
print out the list. The next code will create a list of random numbers, print it, sort it, and then print it again.
On line 3 the print statement right-aligns the numbers to make the column of numbers easier to read.
Formatting print statements will be covered in Chapter 21.

Before this code, paste the selection sort and import random
 
def print_list(my_list):
 for item in my_list:
 print("{:3}".format(item), end="")
 print()
 
Create a list of random numbers
my_list = []
for i in range(10):
 my_list.append(random.randrange(100))
 
Try out the sort
print_list(my_list)
selection_sort(my_list)
print_list(my_list)

See an animation of the selection sort at:

http://www.sorting-algorithms.com/selection-sort

For a truly unique visualization of the selection sort, search YouTube for “selection sort dance” or use
this link:

http://youtu.be/Ns4TPTC8whw

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_21
http://www.sorting-algorithms.com/selection-sort
http://youtu.be/Ns4TPTC8whw
http://www.it-ebooks.info/

Chapter 18 ■ Sorting

305

Insertion Sort
The insertion sort is similar to the selection sort in how the outer loop works. The insertion sort starts at the
left side of the array and works to the right side. The difference is that the insertion sort does not select the
smallest element and put it into place; the insertion sort selects the next element to the right of what was
already sorted. Then it slides up each larger element until it gets to the correct location to insert. Graphically,
it looks like the next figure.

Insertion Sort

The insertion sort breaks the list into two sections: the sorted half and the unsorted half. In each round
of the outside loop, the algorithm will grab the next unsorted element and insert it into the list.

In the code below, the key_pos marks the boundary between the sorted and unsorted portions of the
list. The algorithm scans to the left of key_pos using the variable scan_pos. Note that in the insertion short,
scan_pos goes down to the left, rather than up to the right. Each cell location that is larger than key_value
gets moved up (to the right) one location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Sorting

306

When the loop finds a location smaller than key_value, it stops and puts key_value to the left of it.

The outside loop with an insertion sort will run n times. The inside loop will run an average of
n

2
 times

if the loop is randomly shuffled. If the loop is close to a sorted loop already, then the inside loop does not run
very much, and the sort time is closer to n.

def insertion_sort(my_list):

 """ Sort a list using the insertion sort """
 
 # Start at the second element (pos 1).
 # Use this element to insert into the
 # list.
 for key_pos in range(1, len(my_list)):
 
 # Get the value of the element to insert
 key_value = my_list[key_pos]
 
 # Scan from right to the left (start of list)
 scan_pos = key_pos - 1
 
 # Loop each element, moving them up until
 # we reach the position the
 while (scan_pos >= 0) and (my_list[scan_pos] > key_value):
 my_list[scan_pos + 1] = my_list[scan_pos]
 scan_pos = scan_pos - 1
 
 # Everything's been moved out of the way, insert
 # the key into the correct location
 my_list[scan_pos + 1] = key_value

See an animation of the insertion sort at:

http://www.sorting-algorithms.com/insertion-sort

For another dance interpretation, search YouTube for “insertion sort dance” or use this link:

http://youtu.be/ROalU379l3U

Review
Multiple Choice Quiz
	 1.	 How many lines of code are normally used to swap two values?

a.	 3

b.	 2

c.	 4

d.	 5

www.it-ebooks.info

http://www.sorting-algorithms.com/insertion-sort
http://youtu.be/ROalU379l3U
http://www.it-ebooks.info/

Chapter 18 ■ Sorting

307

	 2.	 What is key in writing code to properly swap two values?

a.	 Using the swap operator.

b.	 Make sure you use the == operator rather than the = operator.

c.	 Using a variable to temporarily hold one of the values while swapping.

	 3.	 In the selection sort, what does the outside loop do?

a.	 Selects the next element that we will be placing the smallest remaining
value into.

b.	 Finds the smallest value in the list.

c.	 Counts the number of items in the list.

	 4.	 In the selection sort, what does the inside loop do?

a.	 Selects the next element that we will be placing the smallest
remaining value into.

b.	 Finds the smallest value in the list.

c.	 Counts the number of items in the list.

	 5.	 In the insertion sort, what does the outside loop do?

a.	 Slides an element into a sorted position.

b.	 Selects the next element to be slid into a sorted position.

c.	 Finds the smallest value in the list.

	 6.	 In the insertion sort, what does the inside loop do?

a.	 Slides an element into a sorted position.

b.	 Selects the next element to be slid into a sorted position.

c.	 Finds the smallest value in the list.

	 7.	 If the selection sort and insertion sort run in n2 time, what is n?

a.	 The number of lines of code.

b.	 The number of elements to sort.

c.	 The time it takes to sort in milliseconds.

d.	 The number of lines of code.

e.	 The size of each element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Sorting

308

	 8.	 If the selection sort and insertion sort run in n2 time, what does that mean if I
have a problem size of 100 (n = 100) and increase it by 10 times to n = 1000?

a.	 The 1,000 elements will take about 1,000 times longer to sort than a list of
100 elements.

b.	 The 1,000 elements will take about 100 times longer to sort than a list of
100 elements.

c.	 The 1,000 elements will take about 10 times longer to sort than a list of
100 elements.

d.	 The 1,000 elements will take about 4 times longer to sort than a list of
100 elements.

e.	 The 1,000 elements will take about 2 times longer to sort than a list of
100 elements.

	 9.	 What type of list does the insertion sort work particularly well on?

a.	 A list that already close to being in order.

b.	 A list that is in reverse order.

c.	 A randomly sorted list.

Short Answer Worksheet
	 1.	 Write code to swap the values 25 and 40.

my_list = [55, 41, 52, 68, 45, 27, 40, 25, 37, 26]

	 2.	 Write code to swap the values 2 and 27.

my_list = [27, 32, 18, 2, 11, 57, 14, 38, 19, 91]

	 3.	 Why does the following code not work?

my_list = [70, 32, 98, 88, 92, 36, 81, 83, 87, 66]
temp = list[0]
my_list[1] = list[0]
my_list[0] = temp

	 4.	 Show how the following numbers can be sorted using the selection sort. Show
the numbers after each iteration of the outer loop, similar to what is shown
earlier in the chapter where we showed how the numbers move around. I am not
looking for a copy of the code to do the sort.

97 74 8 98 47 62 12 11 0 60

	 5.	 Show how the following numbers can be sorted using the selection sort:

74 92 18 47 40 58 0 36 29 25

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Sorting

309

	 6.	 Show how the following numbers can be sorted using the insertion sort. Note:
The 0 will not be immediately sorted into place. If you think it should, go back
and review how the insertion sort works again.

74 92 18 47 40 58 0 36 29 25

	 7.	 Show how the following numbers can be sorted using the insertion sort:

37 11 14 50 24 7 17 88 99 9

	 8.	 Explain what min_pos does in the selection sort.

	 9.	 Explain what cur_pos does in the selection sort.

	 10.	 Explain what scan_pos does in the selection sort.

	 11.	 Explain what key_pos and key_value are in the insertion sort.

	 12.	 Explain scan_pos in the insertion sort.

	 13.	 Look at the example sort program in the examples section here:

http://ProgramArcadeGames.com/python_examples/f.php?file=sorting_examples.py

		 Modify the sorts to print the number of times the inside loop is run and the
number of times the outside loop is run. Modify the program to work with a list of
100. Paste the code you used here. Run the program and list the numbers you got
here. (Don't forget this part!)

www.it-ebooks.info

http://programarcadegames.com/python_examples/f.php?file=sorting_examples.py
http://www.it-ebooks.info/

311

Chapter 19

Exceptions

When something goes wrong with your program, do you want to keep the user from seeing a red Python
error message? Do you want to keep your program from hanging? If so, then you need exceptions.

Exceptions are used to handle abnormal conditions that can occur during the execution of code.
Exceptions are often used with file and network operations. This allows code to gracefully handle running
out of disk space, network errors, or permission errors.

Vocabulary
There are several terms and phrases used while working with exceptions. Here are the most common:

•	 Exception: This term could mean one of two things. First, the condition that results in
abnormal program flow. Or it could be used to refer to an object that represents the
data condition. Each exception has an object that holds information about it.

•	 Exception handling: The process of handling an exception to normal program flow.

•	 Catch block or exception block: Code that handles an abnormal condition is said to
catch the exception.

•	 Throw or raise: When an abnormal condition to the program flow has been detected,
an instance of an exception object is created. It is then thrown or raised to code that
will catch it.

•	 Unhandled exception or Uncaught exception: An exception that is thrown but never
caught. This usually results in an error and the program ending or crashing.

•	 Try block: A set of code that might have an exception thrown in it.

Most programming languages use the terms throw and catch. Unfortunately Python doesn’t. Python
uses raise and exception. We introduce the throw/catch vocabulary here because they are the most
prevalent terms in the industry.

Exception Handling
The code for handling exceptions is simple. See the example below:

Divide by zero
try:
 x = 5 / 0
except:
 print("Error dividing by zero")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

312

On line 2 is the try statement. Every indented line below it is part of the try block. There may be no
unindented code below the try block that doesn’t start with an except statement. The try statement defines
a section of code that the code will attempt to execute.

If there is any exception that occurs during the processing of the code the execution will immediately
jump to the catch block. That block of code is indented under the except statement on line 4. This code is
responsible for handling the error.

A program may use exceptions to catch errors that occur during a conversion from text to a number.
For example:

Invalid number conversion
try:
 x = int("fred")
except:
 print("Error converting fred to a number")

An exception will be thrown on line 3 because "fred" cannot be converted to an integer. The code on
line 5 will print out an error message.

Below is an expanded version on this example. It error checks a user’s input to make sure an integer is
entered. If the user doesn’t enter an integer, the program will keep asking for one. The code uses exception
handling to capture a possible conversion error that can occur on line 5. If the user enters something other
than an integer, an exception is thrown when the conversion to a number occurs on line 5. The code on line 6
that sets number_entered to True will not be run if there is an exception on line 5.

number_entered = False
while not number_entered:
 number_string = input("Enter an integer: ")
 try:
 n = int(number_string)
 number_entered = True
 except:
 print("Error, invalid integer")

Files are particularly prone to errors during operations with them. A disk could fill up, a user could
delete a file while it is being written, it could be moved, or a USB drive could be pulled out mid-operation.
These types of errors may also be easily captured by using exception handling.

Error opening file
try:
 my_file = open("myfile.txt")
except:
 print("Error opening file")

Multiple types of errors may be captured and processed differently. It can be useful to provide a more
exact error message to the user than a simple “an error has occurred.”

In the code below, different types of errors can occur inside the try block. By placing IOError after
except, only errors regarding Input and Output (IO) will be handled by that code. Likewise the next except
block only handles errors around converting values because of the ValueError, and the next block covers
division by zero errors. The last exception handling occurs on the last two lines. Since that except block does
not include a particular type of error, it will handle any error not covered by the prior except blocks above.
The catch-all except must always be last.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

313

Multiple errors
try:
 my_file = open("myfile.txt")
 my_line = my_file.readline()
 my_int = int(s.strip())
 my_calculated_value = 101 / my_int
except IOError:
 print("I/O error")
except ValueError:
 print("Could not convert data to an integer.")
except ZeroDivisionError:
 print("Division by zero error")
except:
 print("Unexpected error")

A list of built-in exceptions is available from this web address: http://docs.python.org/library/
exceptions.html

Example: Saving High Score
This shows how to save a high score between games. The score is stored in a file called high_score.txt.

"""
Show how to use exceptions to save a high score for a game.
 
Sample Python/Pygame Programs
http://programarcadegames.com/
"""
 
 
def get_high_score():
 # Default high score
 high_score = 0
 
 # Try to read the high score from a file
 try:
 high_score_file = open("high_score.txt", "r")
 high_score = int(high_score_file.read())
 high_score_file.close()
 print("The high score is", high_score)
 except IOError:
 # Error reading file, no high score
 print("There is no high score yet.")
 except ValueError:
 # There's a file there, but we don't understand the number.
 print("I'm confused. Starting with no high score.")
 
 return high_score
  

www.it-ebooks.info

http://docs.python.org/library/exceptions.html
http://docs.python.org/library/exceptions.html
http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

314

def save_high_score(new_high_score):
 try:
 # Write the file to disk
 high_score_file = open("high_score.txt", "w")
 high_score_file.write(str(new_high_score))
 high_score_file.close()
 except IOError:
 # Hm, can't write it.
 print("Unable to save the high score.")
 
def main():
 """ Main program is here. """
 # Get the high score
 high_score = get_high_score()
 
 # Get the score from the current game
 current_score = 0
 try:
 # Ask the user for his/her score
 current_score = int(input("What is your score? "))
 except ValueError:
 # Error, can't turn what they typed into a number
 print("I don't understand what you typed.")
 
 # See if we have a new high score
 if current_score > high_score:
 # We do! Save to disk
 print("Yea! New high score!")
 save_high_score(current_score)
 else:
 print("Better luck next time.")
 
Call the main function, start up the game
if __name__ == "__main__":
 main()

Exception Objects
More information about an error can be pulled from the exception object. This object can be retrieved while
catching an error using the as keyword. For example:

try:
 x = 5 / 0
except ZeroDivisionError as e:
 print(e)

The e variable points to more information about the exception that can be printed out. More can be
done with exceptions objects, but unfortunately that is beyond the scope of this chapter. Check the Python
documentation online for more information about the exception object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

315

Exception Generating
Exceptions may be generated with the raise command. For example:

Generating exceptions
def get_input():
 user_input = input("Enter something: ")
 if len(user_input) == 0:
 raise IOError("User entered nothing")
 
getInput()

Try taking the code above, and add exception handling for the IOError raised.
It is also possible to create custom exceptions, but that is also beyond the scope of this book. Curious

readers may learn more by going to:

http://docs.python.org/tutorial/errors.html#raising-exceptions

Proper Exception Use
Exceptions should not be used when if statements can just as easily handle the condition. Normal code
should not raise exceptions when running the happy path scenario. Well-constructed try/catch code is easy
to follow, but code involving many exceptions and jumps in code to different handlers can be a nightmare
to debug. (Once I was assigned the task of debugging code that read an XML document. It generated dozens
of exceptions for each line of the file it read. It was incredibly slow and error prone. That code should have
never generated a single exception in the normal course of reading a file).

Review
Multiple Choice Quiz
	 1.	 What is an exception?

a.	 Something that results in abnormal program flow.

b.	 An if statement that is False.

c.	 Code that handles an unexpected condition in the program.

d.	 Paramore thinks you are the only one.

	 2.	 What is a catch or exception block?

a.	 Something computers play in the back yard.

b.	 Code that may cause an error that needs to be handled.

c.	 Code that handles an unexpected condition in the program.

d.	 A block with 22 lines in it.

www.it-ebooks.info

http://docs.python.org/tutorial/errors.html#raising-exceptions
http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

316

	 3.	 What is a try block?

a.	 Something that results in abnormal program flow.

b.	 An if statement that is False.

c.	 Code that handles an unexpected condition in the program.

d.	 There is no try block, only do or not do blocks.

e.	 Code that may cause an error that needs to be handled.

	 4.	 What will print for x?

try:
 x = 5/0
 y = 10
except:
 print("Error")
print(x)

a.	 5/0

b.	 Infinity

c.	 5

d.	 0 because the error has been caught.

e.	 x will not print, there is an error.

	 5.	 What does the keyword raise do?

a.	 Checks for errors.

b.	 Brings code back to life after it has been executed.

c.	 Generates a new exception that will be handled by a try block.

d.	 Generates a new exception that will be handled by an except block.

	 6.	 What will print for y?

try:
 x = 5/0
 y = 10
except:
 print("Error")
print(y)

a.	 10

b.	 Infinity

c.	 5

d.	 10 because the error has been caught.

e.	 y will not print, there is an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

317

	 7.	 What is e?

try:
 x = 5 / 0
except ZeroDivisionError as e:
 print(e)

a.	 5

b.	 0

c.	 An object that stores data about the error.

d.	 A class that stores data about the error.

e.	 A library for exception handling.

Short Answer Worksheet
	 1.	 Define the following terms in your own words. Don’t just copy/paste from the

book:

•	 Exception

•	 Exception Handling

•	 Try block

•	 Catch block

•	 Unhandled exception

•	 Throw

	 2.	 Show how to modify the following code so that an error is printed if the number
conversion is not successful. Modify this code; don’t just copy the example from
the text. No need to ask again if the conversion is unsuccessful.

user_input_string = input("Enter a number:")
user_value = int(user_input_string)

	 3.	 What will the following code output? Predict, and then run the code to see if you are
correct. Write your prediction here and if you are right. If you aren’t, make sure you
understand why. (Make sure to write both the prediction, and the actual results.
If the program raises an error, list that fact for this and the next problem as well.)

x = 5
y = 0
print("A")
try:
 print("B")
 a = x / y
 print("C")
except:
 print("D")
print("E")
print(a)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Exceptions

318

	 4.	 What will the following code output? Predict, and then run the code to see if you
are correct. Write your prediction here and if you are right. If you aren’t, make
sure you understand why.

x = 5
y = 10
print("A")
try:
 print("B")
 a = x / y
 print("C")
except:
 print("D")
print("E")
print(a)

www.it-ebooks.info

http://www.it-ebooks.info/

319

Chapter 20

Recursion

A child couldn’t sleep, so her mother told her a story about a little frog,
 who couldn’t sleep, so the frog’s mother told her a story about a little bear,
 who couldn’t sleep, so the bear’s mother told her a story about a little weasel…
 who fell asleep.
 …and the little bear fell asleep;
 …and the little frog fell asleep;
…and the child fell asleep.

(Source: http://everything2.com/title/recursion)

Recursion is an object or process that is defined in terms of itself. Mathematical patterns such as factorials
and the Fibonacci series are recursive. Documents that can contain other documents, which themselves can
contain other documents, are recursive. Fractal images and even certain biological processes are recursive
in how they work.

Where Is Recursion Used?
Documents, such as web pages, are naturally recursive. For example, the next figure shows a web document.

Web page

www.it-ebooks.info

http://everything2.com/title/recursion
http://www.it-ebooks.info/

Chapter 20 ■ Recursion

320

That web document can be contained in a box, which can help layout the page as shown in the following figure.

Web page with tables

This works recursively. Each box can contain a web page, which can have a box, which could contain
another web page as shown in the figure.

Web page with recursion

Recursive functions are often used with advanced searching and sorting algorithms. We’ll show some of
that here, and if you decide to learn about data structures, you will see a lot more of it.

Even if a person does not become a programmer, understanding the concept of recursive systems
is important. If there is a business need for recursive table structures, documents, or something else, it is
important to know how to specify this to the programmer up front.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

321

For example, a person might specify that a web program for recipes needs the ability to support
ingredients and directions. A person familiar with recursion might state that each ingredient could itself be
recipes with other ingredients (that could be recipes.) The second system is considerably more powerful.

How Is Recursion Coded?
In prior chapters, we have used functions that call other functions. For example:

def f():
 g()
 print("f")
 
def g():
 print("g")
 
f()

It is also possible for a function to call itself. A function that calls itself is using a concept called
recursion. For example:

def f():
 print("Hello")
 f()
 
f()

The example above will print Hello and then call the f() function again. Which will cause another
Hello to be printed out and another call to the f() function. This will continue until the computer runs out
of something called stack space. When this happens, Python will output a long error that ends with:

RuntimeError: maximum recursion depth exceeded

The computer is telling you, the programmer, that you have gone too far down the rabbit hole.

Controlling Recursion Depth
To successfully use recursion, there needs to be a way to prevent the function from endlessly calling itself
over and over again. The example below counts how many times it has been called and uses an if statement
to exit once the function has called itself 10 times.

def f(level):
 # Pring the level we are at
 print("Recursion call, level",level)
 # If we haven't reached level ten…
 if level < 10:
 # Call this function again
 # and add one to the level
 f(level+1)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

322

Start the recursive calls at level 1
f(1)
 
Recursion call, level 1
Recursion call, level 2
Recursion call, level 3
Recursion call, level 4
Recursion call, level 5
Recursion call, level 6
Recursion call, level 7
Recursion call, level 8
Recursion call, level 9
Recursion call, level 10

Recursion Factorial Calculation
Any code that can be done recursively can be done without using recursion. Some programmers feel that the
recursive code is easier to understand.

Calculating the factorial of a number is a classic example of using recursion. Factorials are useful in
probability and statistics. For example:

10 10 9 8 7 6 5 4 3 2 1! = × × × × × × × × ×

Recursively, this can be described as:

n
if n

n n if n
!

,

!
=

=
× -() >

ì
í
î

1 0

1 0.

Below are two example functions that calculate n!. The first one is non-recursive; the second one is recursive.

This program calculates a factorial
WITHOUT using recursion
def factorial_nonrecursive(n):
 answer = 1
 for i in range(2, n + 1):
 answer = answer * i
 return answer
 
This program calculates a factorial
WITH recursion
def factorial_recursive(n):
 if n <= 1:
 return 1
 else:
 return n * factorial_recursive(n - 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

323

The functions do nothing by themselves. Below is an example where we put it all together. This example
also adds some print statements inside the function so we can see what is happening.

This program calculates a factorial
WITHOUT using recursion
 
def factorial_nonrecursive(n):
 answer = 1
 for i in range(2, n + 1):
 print(i, "*", answer, "=", i * answer)
 answer = answer * i
 return answer
 
print("I can calculate a factorial!")
user_input = input("Enter a number:")
n = int(user_input)
answer = factorial_nonrecursive(n)
print(answer)
 
This program calculates a factorial
WITH recursion
 
def factorial_recursive(n):
 if n == 1:
 return n
 else:
 x = factorial_recursive(n - 1)
 print(n, "*", x, "=", n * x)
 return n * x
 
print("I can calculate a factorial!")
user_input = input("Enter a number:")
n = int(user_input)
answer = factorial_recursive(n)
print(answer)
 
I can calculate a factorial!
Enter a number:7
2 * 1 = 2
3 * 2 = 6
4 * 6 = 24
5 * 24 = 120
6 * 120 = 720
7 * 720 = 5040
5040
I can calculate a factorial!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

324

Enter a number:7
2 * 1 = 2
3 * 2 = 6
4 * 6 = 24
5 * 24 = 120
6 * 120 = 720
7 * 720 = 5040
5040

Recursive Rectangles
Recursion is great to work with structured documents that are themselves recursive. For example, a web
document can have a table divided into rows and columns to help with layout. One row might be the header,
another row the main body, and finally the footer. Inside a table cell might be another table. And inside of
that can exist yet another table.

Another example is e-mail. It is possible to attach another person’s e-mail to your own e-mail. But that
e-mail could have another e-mail attached to it and so on.

Can we visually see recursion in action in one of our pygame programs? Yes! Figure shows an example
program that draws a rectangle and recursively keeps drawing rectangles inside of it. Each rectangle is
20% smaller than the parent rectangle. Look at the code. Pay close attention to the recursive call in the
recursive_draw function.

Recursive Rectangles

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

325

"""
 Recursively draw rectangles.
 
 Sample Python/Pygame Programs
 http://programarcadegames.com/
"""
import pygame
 
Colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
 
 
def recursive_draw(x, y, width, height):
 """ Recursive rectangle function. """
 pygame.draw.rect(screen, BLACK,
 [x, y, width, height],
 1)
 
 # Is the rectangle wide enough to draw again?
 if(width > 14):
 # Scale down
 x += width * .1
 y += height * .1
 width *= .8
 height *= .8
 # Recursively draw again
 recursive_draw(x, y, width, height)
 
pygame.init()
 
Set the height and width of the screen
size = [700, 500]
screen = pygame.display.set_mode(size)
 
pygame.display.set_caption("My Game")
 
Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 20 ■ Recursion

326

-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Set the screen background
 screen.fill(WHITE)
 
 # ALL CODE TO DRAW SHOULD GO BELOW THIS COMMENT
 recursive_draw(0, 0, 700, 500)
 # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
 # Limit to 60 frames per second
 clock.tick(60)
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

327

Fractals
Fractals are defined recursively. Here is a very simple fractal, showing how it changes depending on how
deep the recursion goes.

Recursive Fractal Level 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

328

Recursive Fractal Level 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

329

Recursive Fractal Level 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

330

Recursive Fractal Level 3

"""
 Sample fractal using recursion.
 
 Sample Python/Pygame Programs
 http://programarcadegames.com/
"""
 
import pygame
 
Define some colors
black = (0, 0, 0)
white = (255, 255, 255)

www.it-ebooks.info

http://programarcadegames.com/
http://www.it-ebooks.info/

Chapter 20 ■ Recursion

331

green = (0, 255, 0)
red = (255, 0, 0)
 
def recursive_draw(x, y, width, height, count):
 # Draw the rectangle
 # pygame.draw.rect(screen,black,[x,y,width,height],1)
 pygame.draw.line(screen,
 black,
 [x + width*.25, height // 2 + y],
 [x + width*.75, height // 2 + y],
 3)
 pygame.draw.line(screen,
 black,
 [x + width * .25, (height * .5) // 2 + y],
 [x + width * .25, (height * 1.5) // 2 + y],
 3)
 pygame.draw.line(screen,
 black,
 [x + width * .75, (height * .5) // 2 + y],
 [x + width * .75, (height * 1.5) // 2 + y],
 3)
 
 if count > 0:
 count -= 1
 # Top left
 recursive_draw(x, y, width // 2, height // 2, count)
 # Top right
 recursive_draw(x + width // 2, y, width // 2, height // 2, count)
 # Bottom left
 recursive_draw(x, y + width // 2, width // 2, height // 2, count)
 # Bottom right
 recursive_draw(x + width // 2, y + width // 2, width // 2, height // 2, count)
 
pygame.init()
 
Set the height and width of the screen
size = [700, 700]
screen = pygame.display.set_mode(size)
 
pygame.display.set_caption("My Game")
 
Loop until the user clicks the close button.
done = False
 
Used to manage how fast the screen updates
clock = pygame.time.Clock()
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ Recursion

332

-------- Main Program Loop -----------
while not done:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 
 # Set the screen background
 screen.fill(white)
 
 # ALL CODE TO DRAW SHOULD GO BELOW THIS COMMENT
 fractal_level = 3
 recursive_draw(0, 0, 700, 700, fractal_level)
 # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT
 
 # Go ahead and update the screen with what we've drawn.
 pygame.display.flip()
 
 # Limit to 20 frames per second
 clock.tick(20)
 
Be IDLE friendly. If you forget this line, the program will 'hang'
on exit.
pygame.quit()

Recursive Binary Search
Recursion can be also be used to perform a binary search. Here is a non-recursive binary search from Chapter 16:

def binary_search_nonrecursive(search_list, key):
 lower_bound = 0
 upper_bound = len(search_list) - 1
 found = False
 while lower_bound < upper_bound and found == False:
 middle_pos = (lower_bound + upper_bound) // 2
 if search_list[middle_pos] < key:
 lower_bound = middle_pos + 1
 elif list[middle_pos] > key:
 upper_bound = middle_pos
 else:
 found = True
 
 if found:
 print("The name is at position",middle_pos)
 else:
 print("The name was not in the list.")
 
binary_search_nonrecursive(name_list,"Morgiana the Shrew")

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_16
http://www.it-ebooks.info/

Chapter 20 ■ Recursion

333

This same binary search written in a recursive manner:

def binary_search_recursive(search_list, key, lower_bound, upper_bound):
 middle_pos = (lower_bound + upper_bound) // 2
 if search_list[middle_pos] < key:
 binary_search_recursive(search_list,
 key,
 middle_pos + 1,
 upper_bound)
 elif search_list[middle_pos] > key:
 binary_search_recursive(search_list,
 key,
 lower_bound,
 middle_pos)
 else:
 print("Found at position", middle_pos)
 
lower_bound = 0
upper_bound = len(name_list) - 1
binary_search_recursive(name_list,
 "Morgiana the Shrew",
 lower_bound,
 upper_bound)

Review
Short Answer Worksheet
	 1.	 “To understand recursion, one must first understand recursion.” Explain the joke.

	 2.	 Two mirrors face each other. Explain how their reflections demonstrate the
property of recursion.

	 3.	 Explain how Multi-Level Marketing uses recursion.

	 4.	 Explain how the sweep function in the classic minesweeper game could be done
with recursion.

	 5.	 Explain how finding your way out of a maze could be done with recursion.

	 6.	 Use the Chrome browser and create your own screenshot at:

http://juliamap.googlelabs.com

Use your mouse and mouse wheel to zoom into an interesting part of the fractal.

	 7.	 Write a recursive function f(n) that takes in a value n and returns the value for f,
given the definition below.

f
f

if n

if nn
n

=
+

=
>

ì
í
ï

îï -

6

1

2
4

1

11

,

.

www.it-ebooks.info

http://juliamap.googlelabs.com/
http://www.it-ebooks.info/

Chapter 20 ■ Recursion

334

Then write a for loop that prints out the answers for values of n from 1 to 10. It
should look like:

n= 1 , a= 6
n= 2 , a= 7.0
n= 3 , a= 7.5
n= 4 , a= 7.75
n= 5 , a= 7.875
n= 6 , a= 7.9375
n= 7 , a= 7.96875
n= 8 , a= 7.984375
n= 9 , a= 7.9921875
n= 10 , a= 7.99609375

The function should not have a print statement inside it, nor a loop. The for
loop that is written should be outside the function and call the function to get the
results and print them.

Write recursive code that will print out the first 10 terms of the sequence below.

f

f n f n

if n

if n

if n
n =

-() + -()

=
=
>

ì

í
ï

î
ï

1

1

1 2

1

2

2

www.it-ebooks.info

http://www.it-ebooks.info/

335

Chapter 21

Formatting

Here is a quick table for reference when doing text formatting. For a detailed explanation of how text
formatting works, keep reading.

Number Format Output Description

3.1415926 {:.2f} 3.14 2 decimal places

3.1415926 {:+.2f} +3.14 2 decimal places with sign

-1 {:+.2f} -1.00 2 decimal places with sign

3.1415926 {:.0f} 3 No decimal places (will round)

5 {:0>2d} 05 Pad with zeros on the left

1000000 {:,} 1,000,000 Number format with comma separator

0.25 {:.2%} 25.00% Format percentage

1000000000 {:.2e} 1.00e+09 Exponent notation

11 {:>10d} 11 Right aligned

11 {:<10d} 11 Left aligned

11 {:^10d} 11 Center aligned

Decimal Numbers
Try running the following program, which prints out several random numbers.

import random
 
for i in range(10):
 x = random.randrange(20)
 print(x)

The output is left justified and numbers look terrible:

16
13
2
0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

336

10
3
18
1
14
5

We can use string formatting to make the list of numbers look better by right justifying them. The first
step is to use the format command on the string. See below:

import random
 
for i in range(10):
 x = random.randrange(20)
 print("{}".format(x))

This gets our program closer to right justify the number, but we aren’t quite there yet. See how the string
ends with .format(x). All strings are actually instances of a class named String. That class has methods that
can be called. One of them is format.

The format function will not print out the curly braces {} but instead replaces them with the value in x.
The output (below) looks just like what we had before.

7
15
4
12
3
8
7
15
12
8

To right justify, we add more information about how to format the number between the curly braces {}:

import random
 
for i in range(10):
 x = random.randrange(20)
 print("{:2}".format(x))

The output:

 7
15
 4
12
 3
 8
 7
15
12
 8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

337

This is better; we have right-justified numbers! But how does it work? The :2 that we added isn’t
exactly intuitive.

Here’s the breakdown: The { } tells the computer we are going to format a number. After the : inside
the curly braces will be formatting information. In this case we give it a 2 to specify a field width of two
characters. The field width value tells the computer to try to fit the number into a field two characters wide.
By default, it will try to right justify numbers and left justify text.

Even better, the program no longer needs to call str() to convert the number to a string. Leave the
string conversions out.

What if you had large numbers? Let’s make bigger random numbers:

import random
 
for i in range(10):
 x = random.randrange(100000)
 print("{:6}".format(x))

This gives output that is right justified but still doesn’t look good:

 18394
 72242
 97508
 21583
 11508
 76064
 88756
 77413
 7930
 81095

Where are the commas? This list would look better with separators between each three digits. Take a
look at the next example to see how they are added in:

import random
 
for i in range(10):
 x = random.randrange(100000)
 print("{:6,}".format(x))

The output:

65,732
30,248
13,802
17,177
 3,584
 7,598
21,672
82,900
72,838
48,557

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

338

We added a comma after the field width specifier, and now our numbers have commas. That comma
must go after the field width specifier, not before. Commas are included in calculating the field width. For
example, 1,024 has a field width of 5, not 4.

We can print multiple values and combine the values with text. Run the code below.

x = 5
y = 66
z = 777
print("A - '{}' B - '{}' C - '{}'".format(x, y, z))

The program will substitute numbers in for the curly braces, and still print out all of the other text
in the string:

A - '5' B - '66' C - '777'

If there are three sets of curly braces, the computer will expect three values to be listed in the format
command. The first value given will replace the first curly brace.

Sometimes we may want to print the same value twice. Or show them in a different order than how they
were fed into the format function.

x = 5
y = 66
z = 777
print("C - '{2}' A - '{0}' B - '{1}' C again - '{2}'".format(x, y, z))

See that by placing a number in the curly braces, we can specify which parameter passed into the
format function we want printed out. Parameters are numbered starting at 0, so x is considered parameter 0.

We can still specify formatting information after a colon. For example:

x = 5
y = 66
z = 777
print("C - '{2:4}' A - '{0:4}' B - '{1:4}' C again - '{2:4}'".format(x, y, z))

We can see that the code above will show the values right justified with a field width of 4:

C - ' 777' A - ' 5' B - ' 66' C again - ' 777'

Strings
Let’s look at how to format strings.

The following list looks terrible.

my_fruit = ["Apples","Oranges","Grapes","Pears"]
my_calories = [4, 300, 70, 30]
 
for i in range(4):
 print(my_fruit[i], "are", my_calories[i], "calories.")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

339

The output:

Apples are 4 calories.
Oranges are 300 calories.
Grapes are 70 calories.
Pears are 30 calories.

Now try it using the format command. Note how we can put additional text and more than one value
into the same line.

my_fruit = ["Apples", "Oranges", "Grapes", "Pears"]
my_calories = [4, 300, 70, 30]
 
for i in range(4):
 print("{:7} are {:3} calories.".format(my_fruit[i],my_calories[i]))

The output:

Apples are 4 calories.
Oranges are 300 calories.
Grapes are 70 calories.
Pears are 30 calories.

That’s pretty cool, and it looks the way we want it. But what if we didn’t want the numbers right justified
and the text left justified? We can use < and > characters like the following example:

my_fruit = ["Apples", "Oranges", "Grapes", "Pears"]
my_calories = [4, 300, 70, 30]
 
for i in range(4):
 print("{:>7} are {:<3} calories.".format(my_fruit[i],my_calories[i]))

The output:

 Apples are 4 calories.
Oranges are 300 calories.
 Grapes are 70 calories.
 Pears are 30 calories.

Leading Zeros
This produces output that isn’t right:

for hours in range(1,13):
 for minutes in range(0,60):
 print("Time {}:{}".format(hours, minutes))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

340

The not-very-good output:

Time 8:56
Time 8:57
Time 8:58
Time 8:59
Time 9:0
Time 9:1
Time 9:2

We need to use leading zeros for displaying numbers in clocks. Rather than specify a 2 for the field
width, instead use 02. This will pad the field with zeros rather than spaces.

for hours in range(1,13):
 for minutes in range(0,60):
 print("Time {:02}:{:02}".format(hours, minutes))

The output:

Time 08:56
Time 08:57
Time 08:58
Time 08:59
Time 09:00
Time 09:01
Time 09:02

Floating-Point Numbers
We can also control floating-point output. Examine the following code and its output:

x = 0.1
y = 123.456789
print("{:.1} {:.1}".format(x,y))
print("{:.2} {:.2}".format(x,y))
print("{:.3} {:.3}".format(x,y))
print("{:.4} {:.4}".format(x,y))
print("{:.5} {:.5}".format(x,y))
print("{:.6} {:.6}".format(x,y))
print()
print("{:.1f} {:.1f}".format(x,y))
print("{:.2f} {:.2f}".format(x,y))
print("{:.3f} {:.3f}".format(x,y))
print("{:.4f} {:.4f}".format(x,y))
print("{:.5f} {:.5f}".format(x,y))
print("{:.6f} {:.6f}".format(x,y))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

341

And here’s the output for that code:

0.1 1e+02
0.1 1.2e+02
0.1 1.23e+02
0.1 123.5
0.1 123.46
0.1 123.457
 
0.1 123.5
0.10 123.46
0.100 123.457
0.1000 123.4568
0.10000 123.45679
0.100000 123.456789

A format of .2 means to display the number with two digits of precision. Unfortunately this means if we
display the number 123, which has three significant numbers rather than rounding it we get the number in
scientific notation: 1.2e+02.

A format of .2f (note the f) means to display the number with two digits after the decimal point. So the
number 1 would display as 1.00 and the number 1.5555 would display as 1.56.

A program can also specify a field width character:

x = 0.1
y = 123.456789
print("'{:10.1}' '{:10.1}'".format(x,y))
print("'{:10.2}' '{:10.2}'".format(x,y))
print("'{:10.3}' '{:10.3}'".format(x,y))
print("'{:10.4}' '{:10.4}'".format(x,y))
print("'{:10.5}' '{:10.5}'".format(x,y))
print("'{:10.6}' '{:10.6}'".format(x,y))
print()
print("'{:10.1f}' '{:10.1f}'".format(x,y))
print("'{:10.2f}' '{:10.2f}'".format(x,y))
print("'{:10.3f}' '{:10.3f}'".format(x,y))
print("'{:10.4f}' '{:10.4f}'".format(x,y))
print("'{:10.5f}' '{:10.5f}'".format(x,y))
print("'{:10.6f}' '{:10.6f}'".format(x,y))

The format 10.2f does not mean 10 digits before the decimal and 2 after. It means a total field width of 10.
So there will be 7 digits before the decimal, the decimal which counts as 1 more, and 2 digits after.

' 0.1' ' 1e+02'
' 0.1' ' 1.2e+02'
' 0.1' ' 1.23e+02'
' 0.1' ' 123.5'
' 0.1' ' 123.46'
' 0.1' ' 123.457'
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

342

' 0.1' ' 123.5'
' 0.10' ' 123.46'
' 0.100' ' 123.457'
' 0.1000' ' 123.4568'
' 0.10000' ' 123.45679'
' 0.100000' '123.456789'

Printing Dollars and Cents
If you want to print a floating-point number for cost, you use an f. See below:

cost1 = 3.07
tax1 = cost1 * 0.06
total1 = cost1 + tax1
 
print("Cost: ${0:5.2f}".format(cost1))
print("Tax: {0:5.2f}".format(tax1))
print("------------")
print("Total: ${0:5.2f}".format(total1))

Remember! It would be easy to think that %5.2f would mean 5 digits, a decimal, followed by 2 digits. But
it does not. It means a total field width of 8, including the decimal and the 2 digits after. Here's the output:

Cost: $ 3.07
Tax: 0.18

Total: $ 3.25

Danger! The above code has a mistake that is very common when working with financial transactions.
Can you spot it? Try spotting it with the expanded code example below:

cost1 = 3.07
tax1 = cost1 * 0.06
total1 = cost1 + tax1
 
print("Cost: ${0:5.2f}".format(cost1))
print("Tax: {0:5.2f}".format(tax1))
print("------------")
print("Total: ${0:5.2f}".format(total1))
 
cost2 = 5.07
tax2 = cost2 * 0.06
total2 = cost2 + tax2
 
print()
print("Cost: ${0:5.2f}".format(cost2))
print("Tax: {0:5.2f}".format(tax2))
print("------------")
print("Total: ${0:5.2f}".format(total2))
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

343

print()
grand_total = total1 + total2
print("Grand total: ${0:5.2f}".format(grand_total))

Here’s the output:

Cost: $ 3.07
Tax: 0.18

Total: $ 3.25
 
Cost: $ 5.07
Tax: 0.30

Total: $ 5.37
 
Grand total: $ 8.63

Spot the mistake? You have to watch out for rounding errors! Look at that example; it seems like the total
should be $ 8.62 but it isn’t.

Print formatting doesn’t change the number, only what is output! If we changed the print formatting to
include three digits after the decimal the reason for the error becomes more apparent:

Cost: $3.070
Tax: 0.184

Total: $3.254
 
Cost: $5.070
Tax: 0.304

Total: $5.374
 
Grand total: $8.628

Again, formatting for the display does not change the number. Use the round command to change the
value and truly round. See below:

cost1 = 3.07
tax1 = round(cost1 * 0.06, 2)
total1 = cost1 + tax1
 
print("Cost: ${0:5.2f}".format(cost1))
print("Tax: {0:5.2f}".format(tax1))
print("------------")
print("Total: ${0:5.2f}".format(total1))
 
cost2 = 5.07
tax2 = round(cost2 * 0.06,2)
total2 = cost2 + tax2
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

344

print()
print("Cost: ${0:5.2f}".format(cost2))
print("Tax: {0:5.2f}".format(tax2))
print("------------")
print("Total: ${0:5.2f}".format(total2))
 
print()
grand_total = total1 + total2
print("Grand total: ${0:5.2f}".format(grand_total))

Output:

Cost: $ 3.07
Tax: 0.18

Total: $ 3.25
 
Cost: $ 5.07
Tax: 0.30

Total: $ 5.37
 
Grand total: $ 8.62

The round command controls how many digits after the decimal we round to. It returns the rounded
value but does not change the original value. See below:

x = 1234.5678
print(round(x, 2))
print(round(x, 1))
print(round(x, 0))
print(round(x, -1))
print(round(x, -2))

See below to figure out how feeding the round() function values like -2 for the digits after the decimal
affects the output:

1234.57
1234.6
1235.0
1230.0
1200.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

345

Use in Pygame
We don’t just have to format strings for print statements. The example timer.py uses string formatting and
blits the resulting text to the screen to make an on-screen timer:

Use python string formatting to format in leading zeros
output_string = "Time: {0:02}:{1:02}".format(minutes,seconds)
 
Blit to the screen
text = font.render(output_string, True, BLACK)
screen.blit(text, [250, 250])

Review
Short Answer Worksheet
	 1.	 Take the following program:

score = 41237
highscore = 1023407
 
print("Score: " + str(score))
print("High score: " + str(highscore))

Which right now outputs:

Score: 41237
High score: 1023407

Use print formatting so that the output instead looks like:

Score: 41,237
High score: 1,023,407

Make sure the print formatting works for any integer from zero to nine million.

	 2.	 Create a program that loops from 1 to 20 and lists the decimal equivalent of their
inverse. Use print formatting to exactly match the following output:

1/1 = 1.0
1/2 = 0.5
1/3 = 0.333
1/4 = 0.25
1/5 = 0.2
1/6 = 0.167
1/7 = 0.143
1/8 = 0.125
1/9 = 0.111
1/10 = 0.1
1/11 = 0.0909

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ Formatting

346

1/12 = 0.0833
1/13 = 0.0769
1/14 = 0.0714
1/15 = 0.0667
1/16 = 0.0625
1/17 = 0.0588
1/18 = 0.0556
1/19 = 0.0526
1/20 = 0.05

	 3.	 Write a recursive function that will calculate the Fibonacci series, and use output
formatting. Your result should look like:

 1 - 0
 2 - 1
 3 - 1
 4 - 2
 5 - 3
 6 - 5
 7 - 8
 8 - 13
 9 - 21
10 - 34
11 - 55
12 - 89
13 - 144
14 - 233
15 - 377
16 - 610
17 - 987
18 - 1,597
19 - 2,584
20 - 4,181
21 - 6,765
22 - 10,946
23 - 17,711
24 - 28,657
25 - 46,368
26 - 75,025
27 - 121,393
28 - 196,418
29 - 317,811
30 - 514,229
31 - 832,040
32 - 1,346,269
33 - 2,178,309
34 - 3,524,578
35 - 5,702,887

	 4.	 Why does the problem above run so slow? How could it be made to run faster?

www.it-ebooks.info

http://www.it-ebooks.info/

347

Chapter 22

Exercises

Exercise 1: Custom Calculators

Exercise 2: Create-a-Quiz

Exercise 3: Camel

Exercise 4: Create-a-Picture

Exercise 5: Loopy Lab

Exercise 6: Adventure!

Exercise 7: Animation

Exercise 8: Functions

Exercise 9: Functions and User Control

Exercise 10: Bit-Mapped Graphics, Sound Effects, and Music

Exercise 11: Classes and Graphics

Exercise 12: Sprite Collecting

Exercise 13: Moving Sprites

Exercise 14: Spell Check

Exercise 15: Final Exercise

www.it-ebooks.info

http://programarcadegames/index.php?chapter=lab_calculator
http://programarcadegames/index.php?chapter=lab_create_a_quiz
http://programarcadegames/index.php?chapter=lab_camel
http://programarcadegames/index.php?chapter=lab_create_a_picture
http://programarcadegames/index.php?chapter=lab_loopy_lab
http://programarcadegames/index.php?chapter=lab_adventure
http://programarcadegames/index.php?chapter=lab_animation
http://programarcadegames/index.php?chapter=lab_functions
http://programarcadegames/index.php?chapter=lab_user_control
http://programarcadegames/index.php?chapter=lab_bitmapped_graphics
http://programarcadegames/index.php?chapter=lab_classes_and_graphics
http://programarcadegames/index.php?chapter=lab_sprite_collecting
http://programarcadegames/index.php?chapter=lab_sprite_moving
http://programarcadegames/index.php?chapter=lab_spell_check
http://programarcadegames/index.php?chapter=lab_final
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

348

Exercise 1: Custom Calculators

In this exercise we’ll create three custom calculator programs. To help create these exercises check the code
in Chapter 2. In particular, the example program at the end of that chapter provides a good template for the
code needed in this exercise.

Make sure you can write out simple programs like what is assigned in this exercise. Be able to do it from
memory as well as on paper. These programs follow a very common pattern in computing:

	 1.	 Take in data

	 2.	 Perform calculations

	 3.	 Output data

Programs take in data from sources such as databases, 3D models, game controllers, keyboards, and the
Internet. They perform calculations and output the result. Sometimes we even do this in a loop thousands of
times a second.

It is a good idea to do the calculations separate from the output of the data. While it is possible to do the
calculation inside the print statement, it is better to do the calculation, store it in a variable, and then output
it later. This way calculations and output aren’t mixed together.

When writing programs it is a good idea to use blank lines to separate logical groupings of code.
For example, place a blank line between the input statements, the calculation, and the output statement.
Also, add comments to your program labeling these sections.

For this exercise you will create three short programs:

Program A
Create a program that asks the user for a temperature in Fahrenheit, and then prints the temperature in
Celsius. Search the Internet for the correct calculation. Look at Chapter 2 for the miles-per-gallon example to
get an idea of what should be done.

Sample run:

Enter temperature in Fahrenheit: 32
The temperature in Celsius: 0.0

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

349

Sample run:

Enter temperature in Fahrenheit: 72
The temperature in Celsius: 22.2222222222

The numbers from this program won’t be formatted nicely. That is OK. But if it bothers you, look ahead
to Chapter 21 and see how to make your output look great!

Program B
Create a new program that will ask the user for the information needed to find the area of a trapezoid, and
then print the area. The formula for the area of a trapezoid is:

A x x h= +()1

2 1 2

Sample run:

Area of a trapezoid
Enter the height of the trapezoid: 5
Enter the length of the bottom base: 10
Enter the length of the top base: 7
The area is: 42.5

Program C
Create your own original problem and have the user plug in the variables. If you are not in the mood for
anything original, choose an equation from this list:

Area of a circle A r= p 2

Area of an ellipse A r r= p 1 2

Area of an equilateral triangle A
h

=
2 3

3

Volume of a cone V
r h

=
p 2

3

Volume of a sphere V
r

=
4

3

3p

Area of an arbitrary triangle A ab C=
1

2
sin

When done, check to make certain your variable names begin with a lowercase letter and that you are
using blank lines between logical groupings of the code. (Between input, calculations, and output in this case.)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_21
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

350

Exercise 2: Create-a-Quiz

Now is your chance to write your own quiz. Use these quizzes to filter job applicants, weed out potential
mates, or just plain have a chance to sit on the other side of the desk and make, rather than take, the quiz.

This exercise applies the material used in Chapter 4 on using if statements. It also requires a bit of
Chapter 2 because the program must calculate a percentage.

Description
This is the list of features your quiz needs to have:

	 1.	 Create your own quiz with five or more questions. You can ask questions
that require:

•	 a number as an answer (e.g., What is 1+1?)

•	 text (e.g. What is Harry Potter’s last name?)

•	 a selection (Which of these choices are correct? A, B, or C?)

	 2.	 If you have the user enter non-numeric answers, think and cover the different
ways a user could enter a correct answer. For example, if the answer is “a,” would
“A” also be acceptable? See Chapter 4 for a reminder on how to do this.

	 3.	 Let the user know if they get the question correct. Print a message depending on
the user’s answer.

	 4.	 You need to keep track of how many questions they get correct.

	 5.	 At the end of the program print the percentage of questions the user gets right.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_4
http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://dx.doi.org/10.1007/978-1-4842-1790-0_4
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

351

Keep the following in mind when creating the program:

	 1.	 Variable names should start with a lowercase letter. Uppercase letters work, but it
is not considered proper. (Right, you didn’t realize that programming was going
to be like English Tea Time, did you?)

	 2.	 To create a running total of the number correct, create a variable to store this
score. Set it to zero. With an if statement, add one to the variable each time the
user gets a correct answer. (How do you know if they got it correct? Remember
that if you are printing out “correct” then you have already done that part. Just
add a line there to add one to the number correct.) If you don’t remember how to
add one to a variable, go back and review Chapter 2.

	 3.	 Treat true/false questions like multiple choice questions; just compare to “True”
or “False.” Don’t try to do if a: we’ll implement if statements like that later on
in the class, but this isn’t the place.

	 4.	 Calculate the percentage by using a formula at the end of the game. Don’t just
add 20% for each question the user gets correct. If you add 20% each time,
then you have to change the program 5 places if you add a 6th question. With a
formula, you only need 1 change.

	 5.	 To print a blank line so that all the questions don’t run into each other, use the
following code:

print()

	 6.	 Remember the program can print multiple items on one line. This can be useful
when printing the user’s score at the end.

print("The value in x is", x)

	 7.	 Separate out your code by using blank lines to group sections together. For example,
put a blank line between the code for each question.

	 8.	 Sometimes it makes sense to reuse variables. Rather than having a different
variable to hold the user’s answer for each question, you could reuse the same one.

	 9.	 Use descriptive variable names. x is a terrible variable name. Instead use
something like number_correct.

Example Run
Here’s an example from my program:

Quiz time!
 
How many books are there in the Harry Potter series? 7
Correct!
 
What is 3*(2-1)? 3
Correct!
 
What is 3*2-1? 5
Correct!
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_2
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

352

Who sings Black Horse and the Cherry Tree?
1. Kelly Clarkson
2. K.T. Tunstall
3. Hillary Duff
4. Bon Jovi
? 2
Correct!
 
Who is on the front of a one dollar bill
1. George Washington
2. Abraham Lincoln
3. John Adams
4. Thomas Jefferson
? 2
No.
 
Congratulations, you got 4 answers right.
That is a score of 80.0 percent.

Exercise 3: Camel
Description of the Camel Game

The idea for Camel originally came from the Heath Users Group and was published in More BASIC
Computer Games in 1979.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

353

The idea is to ride your camel across the desert while being chased. You need to manage your thirst,
how tired the camel is, and how far ahead of the natives you are.

This is one of the first games I programmed on the Apple //e. The game is flexible. I’ve known people to
create Star Wars themed versions of this game where you need to ride a wampa across Hoth. It is easy to add
sandstorms and other random events to the game to make it more interesting.

Sample Run of Camel
Here is a sample run of the game:

Welcome to Camel!
You have stolen a camel to make your way across the great Mobi desert.
The natives want their camel back and are chasing you down! Survive your
desert trek and outrun the natives.
 
A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? C
 
You traveled 12 miles.
 
A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? C
 
You traveled 17 miles.
 
A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? e
 
Miles traveled: 29
Drinks in canteen: 3
The natives are 31 miles behind you.
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

354

A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? b
 
You traveled 6 miles.
 
...and so on until...
 
A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? C
 
You traveled 12 miles.
The natives are getting close!
 
A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop and rest.
E. Status check.
Q. Quit.
Your choice? C
 
You traveled 11 miles.
The natives are getting close!
You made it across the desert! You won!

Programming Guide
Here are the steps to complete this exercise. Feel free to modify and add to the exercise. Try the game with
friends and family.

	 1.	 Create a new program and print the instructions to the screen. Do this with
multiple print statements. Don’t use one print statement and multiple \n
characters to jam everything on one line.

Welcome to Camel!
You have stolen a camel to make your way across the great Mobi desert.
The natives want their camel back and are chasing you down! Survive your
desert trek and out run the natives.

	 2.	 Create a Boolean variable called done and set to False.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

355

	 3.	 Create a while loop that will keep looping while done is False.

	 4.	 Inside the loop, print out the following:

A. Drink from your canteen.
B. Ahead moderate speed.
C. Ahead full speed.
D. Stop for the night.
E. Status check.
Q. Quit.

	 5.	 Ask the user for their choice. Make sure to add a space before the quote so the
user input doesn’t run into your text.

	 6.	 If the user’s choice is Q, then set done to True. By doing something like
user_choice.upper() instead of just user_choice in your if statement you can
make it case insensitive.

	 7.	 Test and make sure that you can quit out of the game.

	 8.	 Before your main program loop, create variables for miles traveled, thirst, and
camel tiredness. Set these to zero.

	 9.	 Create a variable for the distance the natives have traveled and set it to -20.
(Twenty miles back.)

	 10.	 Create and set an initial number of drinks in the canteen.

	 11.	 Add an elif in your main program loop and see if the user is asking for status.
If so, print out something like this:

Miles traveled: 0
Drinks in canteen: 3
The natives are 10 miles behind you.

	 12.	 Add an elif in your main program loop and handle if the user wants to stop for
the night. If the user does, reset the camel’s tiredness to zero. Print that the camel
is happy, and move the natives up a random amount from 7 to 14 or so.

	 13.	 Add an elif in your main program loop and handle if the user wants to go ahead
full speed. If the user does, go forward a random amount between 10 and 20
inclusive. Print how many miles the user traveled. Add 1 to thirst. Add a random
1 to 3 to camel tiredness. Move the natives up 7 to 14 miles.

	 14.	 Add an elif in your main program loop and handle if the user wants to go ahead
moderate speed. If the user does, go forward a random amount between 5 and 12
inclusive. Print how many miles the user traveled. Add 1 to thirst. Add 1 to camel
tiredness. Move the natives up 7 to 14 miles.

	 15.	 Add an elif in your main program loop and handle if the user wants to go
ahead drink from the canteen. If the user does, make sure there are drinks in
the canteen. If there are, subtract one drink and set the player’s thirst to zero.
Otherwise print an error.

	 16.	 In the loop, print “You are thirsty.” if the user’s thirst is above 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

356

	 17.	 Print “You died of thirst!” if the user’s thirst is above 6. Set done to true. Make sure
you create your code so that the program doesn’t print both “You are thirsty” and
“You died of thirst!” Use elif as appropriate.

	 18.	 Print “Your camel is getting tired.” if the camel’s tiredness is above 5.

	 19.	 Print “Your camel is dead.” if the camel’s tiredness is above 8. Like the prior steps,
print one or the other. It is a good idea to include a check with the done variable
so that you don’t print that your camel is getting tired after you died of thirst.

	 20.	 If the natives have caught up, print that they caught the player and end the game.

	 21.	 Else if the natives are less than 15 miles behind, print “The natives are getting
close!”

	 22.	 If the user has traveled 200 miles across the desert, print that they won and end
the game. Make sure they aren’t dead before declaring them a winner.

	 23.	 Add a one-in-twenty chance of finding an oasis. Print that the user found it, refill
the canteen, reset player thirst, and rest the camel.

	 24.	 Play the game and tune the numbers so it is challenging but not impossible. Fix
any bugs you find.

Hints
•	 Remember that it is good idea to put blank lines between logical groupings of code in

your program. For example, but a blank line after the instructions and between each
user command.

•	 It is considered better style to use while not done: instead of while done == False:

•	 To prevent bad message combinations, such as printing “You died of thirst.” and
“You found an oasis!” on the same turn, use the and operator. Such as, if not done
and thirst > 4:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

357

Exercise 4: Create-a-Picture
Description

Your assignment: Draw a pretty picture. The goal of this exercise is to get practice using functions, using
for loops, and introduce computer graphics.

To practice all your new skills:

•	 Have an image with multiple colors.

•	 Make a coherent picture. Don’t just make abstract art with random shapes. That’s
not challenging.

•	 Try out several types of graphical functions (e.g., circles, rectangles, lines, etc.).

•	 Use a while or for loop to create a repeating pattern. Do not just redraw the same
thing in the same location 10 times. Actually use that index variable as an offset to
displace what you are drawing. Remember that you can contain multiple drawing
commands in a loop, so you can draw multiple train cars for example.

For a template program to modify, look at the following example programs:

ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py
ProgramArcadeGames.com/python_examples/f.php?file=simple_graphics_demo.py

See Chapter 6 for an explanation of the template. For official documentation on the draw module:

http://www.pygame.org/docs/ref/draw.html

To select new colors, either use

http://www.colorpicker.com/

or open up the Windows Paint program and click on “Edit Colors.” Copy the values for Red, Green, and Blue.
Do not worry about colors for hue, Saturation, or Brilliance.

www.it-ebooks.info

http://ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py
http://ProgramArcadeGames.com/python_examples/f.php?file=simple_graphics_demo.py
http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://www.pygame.org/docs/ref/draw.html
http://www.colorpicker.com/
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

358

Please use comments and blank lines to make it easy to follow your program. If you have 5 lines that
draw a robot, group them together with blank lines above and below. Then add a comment at the top telling
the reader what you are drawing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

359

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

360

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

361

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

362

Exercise 5: Loopy Lab
Part 1
Write a Python program that will print the following:

10
11 12
13 14 15
16 17 18 19
20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36 37
38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54

Tips for Part 1
•	 Generate the output for part one using two for loops, one nested.

•	 Create a separate variable to store numbers that will be printed. Don’t use the
variables that you created in your for loops. This will be a third variable that starts at
10 and goes up one each time.

Part 2
Create a big box out of n rows of little o’s for any desired size n. Use an input statement to allow the user to
enter the value for n and then print the properly sized box.

E.g. n = 3
oooooo
o o
oooooo
 
E.g. n = 8
oooooooooooooooo
o o
o o
o o
o o
o o
o o
oooooooooooooooo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

363

Part 3
Print the following for any positive integer n. Use an input statement to allow the user to enter the value for
n and then print the properly sized box.

E.g. n = 3
 
1 3 5 5 3 1
3 5 5 3
5 5
5 5
3 5 5 3
1 3 5 5 3 1
 
E.g. n = 5
1 3 5 7 9 9 7 5 3 1
3 5 7 9 9 7 5 3
5 7 9 9 7 5
7 9 9 7
9 9
9 9
7 9 9 7
5 7 9 9 7 5
3 5 7 9 9 7 5 3
1 3 5 7 9 9 7 5 3 1

Don’t worry about handling the spacing for multi-digit numbers. Chapter 21 covers this if you want to
look ahead, but it isn’t needed.

This part of the exercise is difficult. Skip to part 4 if you aren’t interested in the challenge.

Part 4
Start with the pygame template code:

ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py

Use nested for loops to draw small green rectangles. Make the image look like the following figure.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_21
http://ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

364

Pygame Grid

Do not create the grid by drawing lines; use a grid created by rectangles.
If this is too boring, create a similar grid of something else. It is OK to change the color, size, and type of

shape drawn. Just get used to using nested for loops to generate a grid.
Sometimes people feel the need to add a zero to the offset in this program. Remind yourself, adding

zero to a number is kind of silly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

365

Exercise 6: Adventure!
Description of the Adventure Game

One of the first games I ever played was a text adventure called Colossal Cave Adventure. You can play
the game online to get an idea what text adventure games are like. Arguably the most famous of this genre of
game is the Zork series.

The first “large” program I created myself was a text adventure. It is easy to start an adventure like this.
It is also a great way to practice using lists. Our game for this exercise will involve a list of rooms that can be
navigated by going north, east, south, or west. Each room will be a list with the room description, and then
what rooms are in each of the directions. See the section below for a sample run:

Sample Run

You are in a dusty castle room.
Passages lead to the north and south.
What direction? n
 
You are in the armory.
There is a room off to the south.
What direction? s
 
You are in a dusty castle room.
Passages lead to the north and south.
What direction? s
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

366

You are in a torch-lit hallway.
There are rooms to the east and west.
What direction? e
 
You are in a bedroom. A window overlooks the castle courtyard.
A hallway is to the west.
What direction? w
 
You are in a torch-lit hallway.
There are rooms to the east and west.
What direction? w
 
You are in the kitchen. It looks like a roast is being made for supper.
A hallway is to the east.
What direction? w
 
Can't go that way.
You are in the kitchen. It looks like a roast is being made for supper.
A hallway is to the east.
What direction?

Creating Your Dungeon
Before you start, sketch out the dungeon that you want to create. It might look something like this:

Next, number all of the rooms starting at zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

367

Use this sketch to figure out how all the rooms connect. For example, room 0 connects to room 3 to the
north, room 1 to the east, and no room to the south and west.

Step-by-step Instructions
	 1.	 Create an empty array called room_list.

	 2.	 Create a variable called room. Set it equal to an array with five elements. For the
first element, create a string with a description of your first room. The last four
elements will be the number of the next room if the user goes north, east, south,
or west. Look at your sketch to see what numbers to use. Use None if no room
hooks up in that direction. (Do not put None in quotes. It is a special value that
represents no value.)

	 3.	 Append this room to the room list.

	 4.	 Repeat the prior two steps for each room you want to create. Just reuse the
room variable.

	 5.	 Create a variable called current_room. Set it to zero.

	 6.	 Print the room_list variable. Run the program. You should see a really long list
of every room in your adventure. (If you are using an IDE like Wing, don’t leave it
scrolled way off to the right.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

368

	 7.	 Adjust your print statement to only print the first room (element zero) in the list.
Run the program and confirm you get output similar to:

['You are in a room. There is a passage to the north.', 1, None, None, None]

	 8.	 Using current_room and room_list, print the current room the user is in. Since
your first room is zero, the output should be the same as before.

	 9.	 Change the print statement so that you only print the description of the room,
and not the rooms that hook up to it. Remember if you are printing a list in a
list the index goes after the first index. Don’t do this: [current_room[0]], do
[current_room][0]

You are in a room. There is a passage to the north.

	 10.	 Create a variable called done and set it to False. Then put the printing of the room
description in a while loop that repeats until done is set to True.

	 11.	 Before printing the description, add a code to print a blank line. This will make it
visually separate each turn when playing the game.

	 12.	 After printing the room description, add a line of code that asks the user what
direction they wish to go.

	 13.	 Add an if statement to see if the user wants to go north.

	 14.	 If the user wants to go north, create a variable called next_room and get it equal
to room_list[current_room][1], which should be the number for what room is
to the north.

	 15.	 Add another if statement to see if the next room is equal to None. If it is, print
“You can’t go that way.” Otherwise set current_room equal to next_room.

	 16.	 Test your program. Can you go north to a new room?

	 17.	 Add elif statements to handle east, south, and west. Add an else statement to
let the user know the program doesn’t understand what she typed.

	 18.	 Add several rooms, at least five. It may be necessary to draw out the rooms and
room numbers to keep everything straight. Test out the game. You can use \n or
triple quotes if you have a multiline room description.

	 19.	 Optional: Add a quit command. Make sure that the program works for upper and
lower case directions. Have the program work if the user types in “north” or “n.”

Spend a little time to make this game interesting. Don’t simply create an “East room” and a “West
room.” That’s boring.

Also spend a little time to double-check spelling and grammar. Without a word processor checking your
writing, it is important to be careful.

Use \n to add carriage returns in your descriptions so they don’t print all on one line. Don’t put spaces
around the \n, or the spaces will print.

What I like about this program is how easy it is to expand into a full game. Using all eight cardinal
directions (including “NorthWest”), along with “up” and “down” is rather easy. Managing an inventory of
objects that can exist in rooms, be picked up, and dropped is also a matter of keeping lists.

Expanding this program into a full game is one of the two options for the final exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

369

Exercise 7: Animation
Requirements
Modify the prior Create-a-Picture exercise, or start a new one.

Animate the image. Try one or more of the following:

•	 Move an item across the screen.

•	 Move an item back and forth.

•	 Move up/down/diagonally.

•	 Move in circles.

•	 Have a person wave their arms.

•	 Create a stoplight that changes colors.

Remember, the more flair the better! Have fun with this exercise, and take time to see what you can do.

Exercise 8: Functions
Write this as all one program. The entire thing should be able to run straight through.

There are several parts to this program. Here is a description of each part:

	 1.	 Write a function called min3 that will take three numbers as parameters and
return the smallest value. If more than one number tied for smallest, still return
that smallest number. Use a proper if/elif/else chain. Once you’ve finished
writing your function, copy/paste the following code and make sure that it runs
against the function you created:

print(min3(4, 7, 5))
print(min3(4, 5, 5))
print(min3(4, 4, 4))
print(min3(-2, -6, -100))
print(min3("Z", "B", "A"))

You should get this result:

4
4
4
-100
A

The function should return the value, not print the value. Also, while there is a
min function built into Python, don’t use it. Please use if statements and practice
creating it yourself. Leave the testing statements in the program so the instructor
can check the program. If you also get None to print out, then chances are you are
using print instead of return in your function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

370

	 2.	 Write a function called box that will output boxes given a height and width. Once
you’ve finished writing your function, copy and paste the following code after it
and make sure it works with the function you wrote:

box(7,5) # Print a box 7 high, 5 across
print() # Blank line
box(3,2) # Print a box 3 high, 2 across
print() # Blank line
box(3,10) # Print a box 3 high, 10 across

You should get the following results from the sample code:

**
**
**

Go back and look at Chapter 7 if you’ve forgotten how to do this.

	 3.	 Write a function called find that will take a list of numbers, my_list, along with
one other number, key. Have it search the list for the value contained in key.
Each time your function finds the key value, print the array position of the key.
You will need to juggle three variables: one for the list, one for the key, and one
for the position of where you are in the list.

This code will look similar to the Chapter 8 code for iterating though a list using
the range and len functions. Start with that code and modify the print to show
each element and its position. Then instead of just printing each number, add an
if statement to only print the ones we care about.

Copy/paste this code to test it:

my_list = [36, 31, 79, 96, 36, 91, 77, 33, 19, 3, 34, 12, 70, 12, 54, 98, 86, 11, 17, 17]
 
find(my_list, 12)
find(my_list, 91)
find(my_list, 80)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_7
http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

371

. . . check for this output:

Found 12 at position 11
Found 12 at position 13
Found 91 at position 5

Use a for loop with an index variable and a range. Inside the loop use an if
statement. The function can be written in about four lines of code.

	 4.	 Write one program that has the following:

•	 Functions:

•	 Write a function named create_list that takes in a list size and returns
a list of random numbers from 1–6 (i.e., calling create_list(5) should
return 5 random numbers from 1–6. (Remember, Chapter 8 has code
showing how to do something similar, creating a list out of five numbers
the user enters. Here, you need to create random numbers rather than
asking the user.)

To test, use this code against the function you wrote:

my_list = create_list(5)
print(my_list)

And you should get output of five random elements that looks
something like:

[2,5,1,6,3]

•	 Write a function called count_list that takes in a list and a number.
Have the function return the number of times the specified number
appears in the list.

To test, use this code against the function you wrote:

count = count_list([1,2,3,3,3,4,2,1],3)
print(count)

And you should get output something like:

3

•	 Write a function called average_list that returns the average of the list
passed into it.

To test, use this code against the function you wrote:

avg = average_list([1,2,3])
print(avg)

And you should get output something like:

2

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_8
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

372

•	 Now that the functions have been created, use them all in a main program
that will:

•	 Create a list of 10,000 random numbers from 1 to 6. This should take
one line of code. Use the function you created earlier in the exercise.)

•	 Print the count of 1 through 6. (That is, print the number of times 1
appears in the 10,000. And then do the same for 2–6.)

•	 Print the average of all 10,000 random numbers.

Exercise 9: User Control
This exercise gives you a chance to practice drawing an object with a function and allowing the user to
control it.

Create one program that has the following:

	 1.	 Create at least two different functions that draw an object to the screen. For
example, draw_bird and draw_tree. Do not draw a stick figure; we did that one
already. Create your own unique item. If you created your own object in the
create-a-picture exercise feel free to adapt it to this exercise.

	 2.	 In Chapter 11, we talked about moving graphics with the keyboard, a game
controller, and the mouse. Pick two of those and use them to control two
different items on the screen.

	 3.	 In the case of the game controller and the keyboard, make sure to add checks so
that your object does not move offscreen and get lost.

Exercise 10: Bitmapped Graphics and User Control
Create a graphics-based program. You can start a new program or continue with a prior exercise.

This is the checklist for completing this exercise:

•	 Make sure this program is created in its own directory. Use an empty directory you
already have, or create a new one.

•	 Incorporate at least one function that draws an item on the screen. The function
should take position data that specifies where to draw the item. (Note: You will
also need to pass a reference to the “screen.” Another note: this is difficult to do
with images loaded from a file. I recommend doing this only with regular drawing
commands.)

•	 Add the ability to control an item via mouse, keyboard, or game controller.

•	 Include some kind of bit-mapped graphics. Do not include bit-mapped graphics as part
of your “draw with a function.” That won’t work well until we’ve learned a bit more.

•	 Include sound. You could make a sound when the user clicks the mouse, hits a key,
moves to a certain location, etc. If the sound is problematic, try using the program
Audacity to load the sound, and then export it as an .ogg file.

•	 If you send this program to someone, make sure you send all the files. It is easy to
forget to add the images and sound files.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_11
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

373

Example Code:

ProgramArcadeGames.com/index.php?chapter=example_code

Sounds and bitmaps you can use:

opengameart.org

It is OK to use code from prior exercises, such as Exercise 5.

Exercise 11: Classes and Graphics
Graphics provide an excellent opportunity to use classes. Each graphic object can be represented by an
object. Each type of graphic object can be represented by a class. An object’s location, speed, and color can
be stored in attributes.

Instructions
	 1.	 Start a new program with:

ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py

	 2.	 Right after the default colors are defined in the example program, create a class
called Rectangle.

•	 Add x and y attributes, which will be used for storing the object’s position.

•	 Create a draw method. Have the method create a green 10×10 rectangle at the
location stored in x and y. Don’t forget to use self. before the variables. The
method will need to take in a reference to screen so that the pygame.draw.rect
function can draw the rectangle to the correct screen.

	 3.	 Before the program loop, create a variable called my_object and set it equal to a
new instance of Rectangle.

	 4.	 Inside the main program loop, call my_object’s draw() method.

	 5.	 Checkpoint: Make sure your program works, and the output looks like this figure.

www.it-ebooks.info

http://ProgramArcadeGames.com/index.php?chapter=example_code
http://opengameart.org/
http://ProgramArcadeGames.com/python_examples/f.php?file=pygame_base_template.py
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

374

Rectangle in top left corner

	 6.	 Right after the program creates the instance of Rectangle, set the x and y values
to something new, like 100, 200. Run the program again to make sure it works
and the rectangle moves to the new coordinates.

	 7.	 Add attributes to the class for height and width. Draw the rectangle using these
new attributes. Run the program and make sure it works.

	 8.	 Get the object to move:

•	 Add attributes for change_x and change_y.

•	 Create a new method called move(), that adjusts x and y based on change_x
and change_y. (Note that the move method will not need screen as a parameter
because it doesn’t draw anything to the screen.)

•	 Set my_object’s change_x and change_y to values, like 2 and 2.

•	 Call the move() method in the main program loop.

•	 Test to make sure the object moves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

375

	 9.	 Randomize the object

•	 Import the random library

•	 Set the x location to a random number between 0 and 700. You can do this in the
loop where you create the object, or it can be done in the __init__ method.

•	 Set the y location to a random number between 0 and 500.

•	 Set the height and width to a random number between 20 and 70.

•	 Set the change_x and change_y to random numbers between -3 and 3.

•	 Test and make sure it looks like this figure.

Rectangle in random spot

	 10.	 Create and display a list of objects

•	 Before the code that creates the my_object, create an empty list, called my_list

•	 Create a for loop that loops 10 times.

•	 Put the code that creates my_object into the for loop

•	 Append my_object to my_list.

•	 Inside the main program loop, loop through each item of my_list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

376

•	 Call the draw and move methods for each item of the list.

•	 Make sure that the code calls the draw method of the element pulled out
by the for loop, don’t just use my_object.draw(). This is one of the most
common mistakes.

•	 Test and see if your program looks like the next figure.

Ten rectangles

	 11.	 Use inheritance

•	 After the Rectangle class, create a new class called Ellipse.

•	 Set Rectangle to be the parent class of Ellipse.

•	 You do NOT need to create a new ___init__; we will just inherit the parent
class’s method.

•	 Create a new draw method that draws an ellipse instead of a rectangle.

•	 Create a new for loop that adds 10 instances of Ellipse to my_list in addition
to the 10 rectangles. (Just use two separate for loops.)

•	 Make sure you don’t create a new list; just add them to the same my_list.

•	 Since both rectangles and ellipses were added to the same list, you only need
one loop to go through the list and draw both. Don’t make the mistake of having
two loops, one for rectangles and one for ellipses. It doesn’t work that way.

•	 Test and see if your program looks like this next figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

377

Rectangles and ellipses

	 12.	 Make it more colorful

•	 Adjust the program, so that color is an attribute of Rectangle.

•	 Draw the rectangles and ellipses using the new color.

•	 In the for loops, set the shapes to random colors. Remember, colors are
specified by three numbers in a list, so you need a list of three random numbers
(r, g, b).

•	 Test and see if your program looks like the next figure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

378

Colorful shapes

	 13.	 Try it with more than 10 items of each type. This next figure shows 1,000 shapes.

	 14.	 You are done! Turn in your program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

379

Shapes gone crazy

Exercise 12: Sprite Collecting
This exercise practices using pygame sprites as described in Chapter 14.

	 1.	 Make sure this program is created in its own directory.

	 2.	 Start with the following program:

ProgramArcadeGames.com/python_examples/f.php?file=sprite_collect_blocks.py

	 3.	 Update the comments at the beginning to reflect that it is now your program,
not mine.

	 4.	 Modify it so the player moves with the keyboard rather than the mouse. Take a
look at the move_sprite_keyboard_smooth.py program also available on the
example page:

ProgramArcadeGames.com/python_examples/f.php?file=move_sprite_keyboard_smooth.py

•	 Out of this file, you will need to grab the Player class and move it to your own
program. Do not get rid of the Block class. You will have both the Block and
Player class in your program.

•	 Right now, your player is an instance of Block. You will need to change it so that
you create an instance of Player. Note that the constructor for Player takes
different parameters than Block.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_14
http://ProgramArcadeGames.com/python_examples/f.php?file=sprite_collect_blocks.py
http://ProgramArcadeGames.com/python_examples/f.php?file=move_sprite_keyboard_smooth.py
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

380

•	 Update your event loop so that it responds to keyboard input like this new
example does.

•	 Remove the code that moves the player with the mouse.

•	 Make the player blue.

•	 Make sure there is exactly one call to all_sprites_list.update() in your main
program loop. This will call the update() method in every sprite.

•	 Test and make sure it works now.

	 5.	 Create both good sprites and bad sprites

•	 Good Sprites

•	 Where you create 50 blocks now, instead of adding them to a list called
block_list, add them to a list called good_block_list.

•	 Make the blocks green.

•	 Where you check for block collisions in the main loop, update the check so
it uses good_block_list.

•	 Bad Sprites

•	 Duplicate this code and add 50 more blocks to a new list called
bad_block_list.

•	 Make sure your program only creates one all_sprites_list.

•	 Don’t re-create the list right before you add bad blocks or the player.

•	 Make the blocks red.

•	 Duplicate that code and check against bad_block_list. Decrease the score
instead of increasing it.

•	 Test and make sure it is working.

•	 Use graphics to signify good/bad sprites as shown in the sprite_collect_
graphic.py example file. Failure to use graphics is only a two-point penalty.

	 6.	 Rather than simply use print to display the score on the console, display the
score on the graphics window. Go back to the end of Chapter 6 and look up the
section on drawing text.

	 7.	 Add sound effects for when the user hits good blocks, or bad blocks. Here are a
couple from OpenGameArt.org:

ProgramArcadeGames.com/labs/sprite_collecting/good_block.wav
ProgramArcadeGames.com/labs/sprite_collecting/bad_block.wav

	 8.	 Looking back at how we made a sound to begin with, we triggered the sound
with a mouse click event. We won’t be doing that here. Find the code that you
already have that detects when a collision occurs. Play the sound when you have
a collision. Also, remember that when you load a sound, it needs to be done
before the main loop, but after the pygame.init() command.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_6
http://opengameart.org/
http://ProgramArcadeGames.com/labs/sprite_collecting/good_block.wav
http://ProgramArcadeGames.com/labs/sprite_collecting/bad_block.wav
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

381

	 9.	 Add a check and make sure the player doesn’t slide off the end of the screen.
This check should go in the update method of the Player class. There should be
four if statement checks, one for each border. If the player’s x and y get outside
the bounds of the screen, reset the player back inside the screen. Do not modify
change_x or change_y. That doesn’t work for player-controlled objects. Don’t
forget to check the right and bottom borders; they are easy to get wrong.

	 10.	 Download a wav or ogg file and have it play a sound if the user tries to slide off
the screen. Here’s one sound you can use:

ProgramArcadeGames.com/labs/sprite_collecting/bump.wav

	 11.	 Check to make sure the bump sound doesn’t continually play when the user is at
the edge of the screen. If it does, the program is checking the edge incorrectly.

	 12.	 If you send your program to anyone, remember they will need all the files, not
just the Python program.

Exercise 13: Sprite Moving

This exercise practices uses pygame sprites as described in Chapter 14 and separates the classes into
different files as described in Chapter 15.

	 1.	 Make sure this program is created in its own directory.

	 2.	 Start with a copy of the program you wrote for Exercise 12: Sprite Collecting.
Copy those files into the directory for this exercise.

	 3.	 Move the Block class into a new file. Many people get confused between the
name of the library file, the name of the class, and the variable that points to
the instance of the object. Library files should be all lowercase. I’d recommend
calling your new file that you put the Block class into block_library.py.

www.it-ebooks.info

http://ProgramArcadeGames.com/labs/sprite_collecting/bump.wav
http://dx.doi.org/10.1007/978-1-4842-1790-0_14
http://dx.doi.org/10.1007/978-1-4842-1790-0_15
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

382

	 4.	 Make sure your program runs like before. Adjust import statements as needed.
Remember that you prepend the library name to the class, not the variable that
points to the instance of the class. For example: my_dog = dog_library.Dog()
and NOT dog_library.my_dog = Dog() because Dog is what is in the library, not
my_dog.

	 5.	 Define a GoodBlock class in a new file, and inherit from your Block class. I’d
recommend using the file name goodblock_library.py to keep with the pattern
we set up before. Remember, define the class. Don’t create an instance of it. Your
for loop that creates the instances does not move.

	 6.	 Add a new update method. (You probably don’t need a new __init__ method.)
Make the good block randomly move up, down, left or right each update.
(Change self.rect.x and self.rect.y randomly each time the update function
is called. Not to a completely new number, but add a random number from -3
to 3 or so. Remember that random.randrange(-3,3) does not generate a random
number from -3 to 3.)

	 7.	 Change your for loop so that it creates instances of the GoodBlock class and not
your old regular Block class.

	 8.	 Call update on the list of all the sprites you have. Do this in the main program
loop so the blocks keep moving, not just once at the start of the program.

	 9.	 Test and make sure it works.

	 10.	 It is ok if the sprites move off the screen, but a common mistake results in the
sprites all moving up and to the left off the screen. If that happens, go back four
steps and check your random range.

	 11.	 Double-check, and make sure GoodBlock inherits from the Block class. If done
correctly, GoodBlock won’t need an __init__ method because it will get this
method from Block.

	 12.	 Create a BadBlock class in a new file and inherit from the Block class.

	 13.	 Make an update function and have the bad block sprites move down the screen,
similar to what was done in Chapter 14. Extra kudos if you make a bouncing
rectangle.

	 14.	 Test, and make sure it works.

	 15.	 Double-check to make sure each class is in its own file.

	 16.	 If you have extra time, you can look at the sprite examples section on the web site
and see how to get sprites to bounce or move in circles.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1790-0_14
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

383

Exercise 14: Spell Check
This exercise shows how to create a spell checker. To prepare for the exercise, go to:

ProgramArcadeGames.com/index.php?chapter=examples list

. . . and download the files listed below. The files are also in the “Searching and Sorting Examples” section.

•	 AliceInWonderLand.txt - Text of “Alice In Wonderland”

•	 AliceInWonderLand200.txt - First chapter of “Alice In Wonderland”

•	 dictionary.txt - A list of words

Requirements
Write a single program in Python that checks the spelling of the first chapter of “Alice In Wonderland.” First
use a linear search, then use a binary search. Print the line number along with the word that does not exist in
the dictionary.

Follow the steps below carefully. If you don’t know how to accomplish one step, ask before moving on to
the next step.

Steps to Complete:
	 1.	 If you work off the BitBucket template, skip ahead to step 6.

	 2.	 Find or create a directory for your project.

	 3.	 Download the dictionary to the directory.

	 4.	 Download first 200 lines of Alice In Wonderland to your directory.

	 5.	 Start a Python file for your project.

	 6.	 It is necessary to split apart the words in the story so that they may be checked
individually. It is also necessary to remove extra punctuation and white space.
Unfortunately, there is not any good way of doing this with what the book has
covered so far. The code to do this is short, but a full explanation is beyond the
scope of this class. Include the following function in your program. Remember,
function definitions should go at the top of your program just after the imports.
We’ll call this function in a later step.

import re
 

This function takes in a line of text and returns
a list of words in the line.
def split_line(line):
 return re.findall('[A-Za-z]+(?:\'[A-Za-z]+)?',line)

www.it-ebooks.info

http://ProgramArcadeGames.com/index.php?chapter=examples%20list
http://programarcadegames/python_examples/en/AliceInWonderLand.txt
http://programarcadegames/python_examples/en/AliceInWonderLand200.txt
http://programarcadegames/python_examples/en/dictionary.txt
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

384

This code uses a regular expression to split the text apart. Regular expressions
are very powerful and relatively easy to learn. To learn more about regular
expressions, see:

http://en.wikipedia.org/wiki/Regular_expression

	 7.	 Read the file dictionary.txt into an array. Go back to the chapter on Searching,
or see the searching_example.py for example code on how to do this. This
does not have anything to do with the import command, libraries, or modules.
Don’t call the dictionary word_list or something generic because that will be
confusing. Call it dictionary_list or something similar.

	 8.	 Close the file.

	 9.	 Print --- Linear Search ---

	 10.	 Open the file AliceInWonderLand200.txt

	 11.	 We are not going to read the story into a list. Do not create a new list here like you
did with the dictionary.

	 12.	 Start a for loop to iterate through each line.

	 13.	 Call the split_line function to split apart the line of text in the story that was
just read in. Store the list that the function returns in a new variable named
words. Remember, just calling the function won’t do anything useful. You need
to assign a variable equal (words) to the result. If you’ve forgotten now to capture
the return value from a function, flip back to the functions chapter to find it.

	 14.	 Start a nested for loop to iterate through each word in the words list. This should
be inside the for loop that runs through each line in the file. (One loop for each
line, another loop for each word in the line.)

	 15.	 Using a linear search, check the current word against the words in the dictionary.
Check the chapter on searching or the searching_example.py for example code
on how to do this. The linear search is just three lines long. When comparing to
the word to the other words in the dictionary, convert the word to uppercase. In
your while loop just use word.upper() instead of word for the key. This linear
search will exist inside the for loop created in the prior step. We are looping
through each word in the dictionary, looking for the current word in the line that
we just read in.

	 16.	 If the word was not found, print the word. Don’t print anything if you do find the
word; that would just be annoying.

	 17.	 Close the file.

	 18.	 Make sure the program runs successfully before moving onto the next step.

	 19.	 Create a new variable that will track the line number that you are on. Print this
line number along with the misspelled from the prior step.

	 20.	 Make sure the program runs successfully before moving onto the next step.

	 21.	 Print --- Binary Search ---

www.it-ebooks.info

http://en.wikipedia.org/wiki/Regular_expression
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

385

	 22.	 The linear search takes quite a while to run. To temporarily disable it, it may be
commented out by using three quotes before and after that block of code. Ask if
you are unsure how to do this.

	 23.	 Repeat the same pattern of code as before, but this time use a binary search.
Much of the code from the linear search may be copied, and it is only necessary
to replace the lines of code that represent the linear search with the binary
search.

	 24.	 Note the speed difference between the two searches.

	 25.	 Make sure the linear search is re-enabled, if it was disabled while working on the
binary search.

	 26.	 Upload the final program or check in the final program.

Example Run

--- Linear Search ---
Line 3 possible misspelled word: Lewis
Line 3 possible misspelled word: Carroll
Line 46 possible misspelled word: labelled
Line 46 possible misspelled word: MARMALADE
Line 58 possible misspelled word: centre
Line 59 possible misspelled word: learnt
Line 69 possible misspelled word: Antipathies
Line 73 possible misspelled word: curtsey
Line 73 possible misspelled word: CURTSEYING
Line 79 possible misspelled word: Dinah'll
Line 80 possible misspelled word: Dinah
Line 81 possible misspelled word: Dinah
Line 89 possible misspelled word: Dinah
Line 89 possible misspelled word: Dinah
Line 149 possible misspelled word: flavour
Line 150 possible misspelled word: toffee
Line 186 possible misspelled word: croquet
--- Binary Search ---
Line 3 possible misspelled word: Lewis
Line 3 possible misspelled word: Carroll
Line 46 possible misspelled word: labelled
Line 46 possible misspelled word: MARMALADE
Line 58 possible misspelled word: centre
Line 59 possible misspelled word: learnt
Line 69 possible misspelled word: Antipathies
Line 73 possible misspelled word: curtsey
Line 73 possible misspelled word: CURTSEYING
Line 79 possible misspelled word: Dinah'll
Line 80 possible misspelled word: Dinah
Line 81 possible misspelled word: Dinah
Line 89 possible misspelled word: Dinah
Line 89 possible misspelled word: Dinah

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

386

Line 149 possible misspelled word: flavour
Line 150 possible misspelled word: toffee
Line 186 possible misspelled word: croquet

Exercise 15: Final Exercise
There are two options for the final exercise: A “video game option” and a “text adventure option.”

Video Game Option
This is it! This is your chance to use your creativity and really show off what you can create in your own game.

This final exercise is divided into three parts. Each part raises the bar on what your game needs to be
able to do.

Requirements for Part 1:
•	 Open up a screen.

•	 Set up the items to be drawn on the screen.

•	 Provide some sort of rudimentary player movement via mouse, keyboard,
or game controller.

Tips:
•	 If your program will involve things running into each other, start by using sprites. Do

not start by using drawing commands and expect to add in sprites later. It won’t work
and you’ll need to start over from scratch. This will be sad.

•	 If you are coding a program like minesweeper or connect four, do not use sprites.
Since collision detection is not needed, there is no need to mess with sprites.

•	 Under “longer game examples” I have two programs that show how to create pong or
breakout style games. Don’t just turn these in as Part 1 though; you’ll need to add a
lot before it really qualifies.

•	 OpenGameArt.org has a lot of images and sounds you can use royalty-free.

•	 Kenney.nl has many images and sounds as well.

Requirements for Part 2:
For Final Exercise Part 2, your game should be mostly functional. A person should be able to sit down and
play the game for a few minutes and have it feel like a real game. Here are some things you might want to add:

•	 Be able to collide with objects.

•	 Players can lose the game if something bad happens.

•	 Onscreen score.

•	 Some initial sound effects.

•	 Movement of other characters in the screen.

•	 The ability to click on mines or empty spots.

www.it-ebooks.info

http://opengameart.org/
http://kenney.nl/
http://www.it-ebooks.info/

Chapter 22 ■ Exercises

387

Requirements for Part 3:
For the final part, add in the last polish for your game. Here are some things you might want to add:

•	 Multiple levels

•	 Sounds

•	 Multiple “lives”

•	 Title and instruction screens

•	 Background music

•	 Heat-seeking missiles

•	 Hidden doors

•	 A “sweep” action in a minesweeper game or the ability to place “flags”

Text Adventure Option
Not interested in a video game? Continue your work from the “Adventure!” game.

Requirements for Part 1:
	 1.	 Rather than have each room be a list of [description, north, east, south, west],

create a Room class. The class should have a constructor that takes in (description,
north, east, south, west) and sets fields for the description and all of the
directions. Get the program working with the new class.

	 2.	 Expand the game so that a person can travel up and down. Also expand it so the
person can travel northwest, southwest, northeast, and southeast.

	 3.	 Create another class for Object. Give the object fields for name, description,
and current room. For example, you might have a name of “key,” a description of
“This is a rusty key that looks like it would fit in an old lock. It has not been used
in a long time.” The current room number would be 3 if the key was in room 3. If
the player is carrying the key then the current room for the object will be -1.

	 4.	 Create a list for objects, and add several objects to the list. The code for this will
be very similar to the list of rooms that you created and added to the list of rooms.

	 5.	 After printing the description of the room, have the program search the entire list
of objects, and print if the room of the object matches the room the player is in.
For example, if current_room == current_object.room then print: “There is a
key here.”

	 6.	 Test your game and make sure it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Exercises

388

Requirements for Part 2:
	 1.	 Add the ability to pick up an object. If the user types get key then:

1.	 Split the user input so you split out and just have a variable equal to “key.”

2.	 Search the list until you find an object that matches what the user is trying to
pick up.

3.	 If the object isn’t found, or if the object isn’t in the current room, print
an error.

4.	 If the object is found and it is in the current room, then set the object’s room
number to -1.

	 2.	 Add the ability to drop an object.

	 3.	 Add a command for “inventory” that will print every object who’s room number
is equal to -1.

	 4.	 Add the ability to use the objects. For example “use key” or “swing sword” or
“feed bear.”

Requirements for Part 3:
Expand the game some more. Try some of these ideas:

	 1.	 Create a file format that allows you to load the rooms and objects from a file
rather than write code for it.

	 2.	 Have monsters with hit points.

	 3.	 Split the code up into multiple files for better organization.

	 4.	 Remove globals using a main function as shown at the end of the chapter
about functions.

	 5.	 Have objects with limited use. Like a bow that only has so many arrows.

	 6.	 Have creatures with limited health, and weapons that cause random damage and
have a random chance to hit.

www.it-ebooks.info

http://www.it-ebooks.info/

389

�       � A
Adventure game

description, 365
dungeon creation, 366–367
instructions, 367–368
maps, 288–289

Animation, 369
background color, 137–138
code, 140
direction and speed, 139
initialization, 138
Pixel Aspect Ratio, 138
rectangle, 138, 140
square, 141

Apple Macintosh computers, 36
Apple text screen, 83
Arc, 96
Array-Backed Grids

adventure games, 289
application, 289
color, 293
color variable, 293
for loop, 290, 292
Fortran and MATLAB, 293
grid on-screen, 296–297
margin variable, 291
minesweeper, 288
move_mouse.py, 294
program’s window size, 290
two-dimensional array, 293
width, height and margin, 290

Arrays, 131

�       � B
Binary number system, 34
Binary Search

Boolean variable, 281
guesser, 279

Bitmapped graphics, 372
background image, 206–208
JPEG compression artifacts, 210
new folder, 205–206
player image, 208
program, 211–212
sounds, 210–211
spaceship, solid black background, 209

Blank Window, 90, 92
Blender, 145

�       � C
Camel game

description, 352
program, 354–356

Cartesian coordinate system
ASCII art, 84
graphics, 82
lower-right quadrant, 85
rudimentary graphics, 83
spaceware text screen, 84
text-based, 82
text screen, 83

Catch block, 311
Classes

address, 218–219, 221, 223
adventure game, data, 217
Ball class, 225–226
character, 218
constructors, 231–232
Dog class, 223–224
and graphics

inheritance, 376
move(), 374
my_list, 375
my_object, 373

inheritance
boat, 233–234
child classes, 234

Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

390

constructors, 236
Person (), 236
relationships, 237

references
functions, 229–230
Person() class, 226–227
variables, 228

static vs. instance variables, 237–238
Colors, 85–86
Compilers, 36
Computer language

Altair 8800, 33
assembly language, 35
binary number system, 34
CLI, 37
compiler, 34, 36
data and computer instructions, 34
definition, computers, 33
disadvantage, 36
hexadecimal codes, 34
history of, 37
interpreters, 36–37
JVM, 37
linkers, 36
Python, 37
source code in program, 36
Tiobe keeps track, 37
VES, 37

Counting by numbers other than one, 65
Custom calculator

program, 348–349
kinetic energy, 11

�       � D
3D Animation, 145–146
Decimal numbers

field width, characters, 337
format command, 336, 338
random numbers, 335–336
str(), 337
string formatting, 336

�       � E
Ellipse, 95
Event processing loop, 88–89
Exception object, 314
Exceptions

generating, 315
handling, 311–312
if statements, 315
object, 314
score saving, 313
terms and phrases, 311
uncaught exception, 311

�       � F
File extensions, 9
Floating-point number, 74
For loops

Boolean variable, 71
code, 68–69
legal variable name, 63
print statement, 63
range function, 63
starting and ending number, 64

Formatting
Dollars and Cents, printing, 342–344
floating point numbers, 340–342
leading zeros, 340
Pygame, 345
strings, 338

Fractals, recursive
coding, 330–332
level 0, 327
level 1, 328
level 2, 329
level 3, 330

Frame of the game, 89–90
Frames-per-second (FPS), 60
Functions

box, 370
calling functions, 160
create_list, 371
definition, 154
docstrings, 158
draw_tree(), 154
examples, 161–165
global variables, 160–161
min3, 369
mudball game, 165–167
parameters, 154–155
pass-by-copy, 159
pygame, 179
return statement, 156
snowman, 180
stick figure, 181, 183–185
variable scope, 158
volume_cylinder, 156–157

�       � G
Game controller. See Joystick
1GL language, 34
2GL language, 34
Graphics

bitmapped graphics, 92
blank window, 81
command, 90
drawing command, 90
drawing lines, 93
full-screen games, 87

Classes (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

391

loops and offsets, 93–94
program listing, 99–101
rectangle drawing, 95
set_mode, 87
text, 97–98

Guessing game
calculator program, 61
FPS rate, 60
FSP video games, 60
game loop, 61
graphics, 59
loop the loop, 62
Python, 62
while loop, 62

�       � H
Hexadecimal codes, 34

�       � I
Increment operators, 70–71
Insertion sort, 305–306
Integrated Development

Environment (IDLE), 2
Interpreter, 37

�       � J
Joystick

calls program, 196–200
center (0,0), 193
down (0,1), 195
down left (-1,1), 195
down right (1,1), 195
floating-point values, 192
left (-1,0), 195
right (1,0), 195
up (0,-1), 194
up left (-1,-1), 194
up right (1,-1), 194

�       � K
Keyboard, 187–191

�       � L
Libraries and modules, 267

multiple files, 268
multiple programmers, 268
namespace, 269
package name, 269
third party libraries, 270

Linear search
algorithm, 276
property, 278
variations, 276–277

Linkers, 36
Linux computers, 36
Lists

addition, 125
array, 122
data type, 123
grocery lists, 122
ice cube trays, 123
IDLE’s command line, 122
index, 122
iteration, 124
location, 123
modification, 126
Python, 121
type function, 121
value, 123

Local namespace, 269
Looping

alignment, 112
code, 111
end character, 108
index variables, 110
nested, 109–110
print statement, 107–108
rectangle, 109
spaces addition, 113
video explanations, 107

�       � M
Mac installation, 3–6
Make games and get paid, 9–10
McDonald’s applications, 10
Mouse, 186–187

�       � N
Nesting loops, 66
Number guessing game, 279

�       � O
Optional wing IDE, 7–9

�       � P
Picture creation

functions and loops, 357
Windows Paint program, 357

Polygon drawing, 96
Printing

assignment operator, 16–18
comments, 15–16
custom equation calculators, 21–25
escape codes, 14–15
mathematical expression, 13
multiple items, 13
operators, 19–20

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

392

order of operations, 20
text, 12
trig functions, 20
variables, 18–19

Pygame, 1
Pygame module, 267
Pygame library, 247, 249

graphics, 85
pygame.py file, 85

Python, 1, 87

�       � Q
Quiz

description, 350–351
program, 351

Quiz games
mixing the = and == operators, 43
Boolean variables, 44, 46
case insensitive comparisons, 48
Else and Else If, 46–47
equal/not, 43
flowchart, 42
greater than/less than numbers, 42–43
if statements, 41, 47–48, 50–51
indentation, 43
multiple text possibilities, 48
using And/Or, 44

�       � R
Random numbers

import statement, 74
range function, 74

random.py, 74
Rectangle, 95
Recursion

factorial calculation, 322–324
fractal (see Fractals, recursive)
functions, 320–321
if statement, 321
rectangles, 324–326
recursive binary search, 332–333
recursive_draw function, 324
stack space, 321
web page, 319–320

Recursive binary search, 332–333
“Running total” code pattern, 66–67

�       � S
Screen flipping, 90
Searching

binary search, 273
empty array, 275
linear search, 273

Secret code
Unicode chart, 128
UTF-8 value, 129–130

Selection sort, 303–304
Send feedback, 10
Side scrolling platformer, 259
Snow animation

code explanation, 141–143
Program Listing, 143, 145

Sorting
insertion, 305–306
selection, 303–304
swapping values, 301–302

Source code, 36
Spell checker, 383–385
Sprites

and collisions, 248
bitmapped graphic, 250
Block class, 249
Game Class, 254
moving, 253
platformer, 258
program loop, 252–253
Pygame library, 247
random library, 249
red block, 251
sheets, 262
shooting things, 255
snake/centipede type, 260
walls, 256

Sprite sheet platformer, 262
Starting Python, 2
Strings, 127–128

�       � T
Terminal window, 3
Text adventure option, 387–388
Tic-tac-toe board, 287
Two-dimensional array, 287
Try block, 311

�       � U
Unix installation, 6

�       � V
Video game option, 386–387

�       � W, X, Y, Z
While loops

increment variable, 70
program, 72–73
programmer, 72

Windows installation, 1–2

Printing (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Before Getting Started…
	 Installing and Starting Python
	 Windows Installation
	 Mac Installation
	 Unix Installation
	 Optional Wing IDE

	 Viewing File Extensions
	 Learn to Make Games and Get Paid
	 Get the Most from This Book
	 Send Feedback

	Chapter 2: Create a Custom Calculator
	 Printing
	 Printing Text
	 Printing Results of Expressions
	 Printing Multiple Items

	 Escape Codes
	 Comments
	 Assignment Operators
	 Variables
	 Operators
	 Operator Spacing

	 Order of Operations
	 Trig Functions
	 Custom Equation Calculators
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 3: What Is a Computer Language?
	 Short History of Programming
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 4: Quiz Games and If Statements
	 Basic Comparisons
	 Indentation
	 Using And/Or
	 Boolean Variables
	 Else and Else If
	 Text Comparisons
	 Multiple Text Possibilities
	 Case Insensitive Comparisons

	 Example if Statements
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 5: Guessing Games with Random Numbers and Loops
	 for Loops
	 Counting by Numbers Other Than One
	 Nesting Loops
	 Keeping a Running Total

	 Example for Loops
	 while Loops
	 Using Increment Operators
	 Looping Until User Wants to Quit
	 Common Problems with while Loops

	 Example while Loops
	 Random Numbers
	 The randrange Function
	 The random Function

	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 6: Introduction to Graphics
	 Computer Coordinate Systems
	 Pygame Library
	 Colors
	 Open a Window
	 Interacting with the User
	 The Event Processing Loop
	 Processing Each Frame

	 Ending the Program
	 Clearing the Screen
	 Flipping the Screen
	 Open a Blank Window
	 Drawing Introduction
	 Drawing Lines
	 Drawing Lines with Loops and Offsets
	 Drawing a Rectangle
	 Drawing an Ellipse
	 Drawing an Arc
	 Drawing a Polygon
	 Drawing Text
	 Full Program Listing
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 7: Back to Looping
	 Print Statement End Characters
	 Advanced Looping Problems
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 8: Introduction to Lists
	 Working with Lists
	 Iterating through a List
	 Adding to a List
	 Summing or Modifying a List
	 Slicing Strings
	 Secret Codes
	 Associative Arrays
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 9: Introduction to Animation
	 Animating Snow
	 Code Explanation
	 Full Program Listing

	 3D Animation
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 10: Functions
	 Function Parameters
	 Returning and Capturing Values
	 Returning Values
	 Capturing Returned Values
	 Improving the volume_cylinder Example

	 Documenting Functions
	 Variable Scope
	 Pass-by-copy
	 Functions Calling Functions
	 Main Functions and Globals
	 Short Examples
	 Mudball Game Example
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Correcting Code
	 Exercise

	Chapter 11: Controllers and Graphics
	 Mouse
	 Keyboard
	 Game Controller
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 12: Bitmapped Graphics and Sound
	 Storing the Program in a Folder
	 Setting a Background Image
	 Moving an Image
	 Sounds
	 Full Listing
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 13: Introduction to Classes
	 Why Learn About Classes?
	 Defining and Creating Simple Classes
	 Adding Methods to Classes
	 Example: Ball Class

	 References
	 Functions and References
	 Review Questions

	 Constructors
	 Avoid This Mistake
	 Review Questions

	 Inheritance
	 Is-A and Has-A Relationships

	 Static Variables vs. Instance Variables
	 Instance Variables Hiding Static Variables

	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	Section 1:
	Section 2:

	 Exercise

	Chapter 14: Introduction to Sprites
	 Basic Sprites and Collisions
	 Moving Sprites
	 The Game Class
	 Other Examples
	 Shooting things
	 Walls
	 Platforms
	 Snake/Centipede
	 Using Sprite Sheets

	 Review
	 Multiple Choice Quiz
	 Exercise

	Chapter 15: Libraries and Modules
	 Why Create a Library?
	 Creating Your Own Module/Library File:
	 Namespace
	 Third Party Libraries
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet
	 Exercise

	Chapter 16: Searching
	 Reading from a File
	 Reading into an Array
	 Linear Search
	 Linear Search Algorithm

	 Variations on the Linear Search
	 Does at Least One Item Have a Property?
	 Do All Items Have a Property?
	 Create a List with All Items Matching a Property

	 Binary Search
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet Linear Search Review
	 Binary Search Review
	 Challenge Question
	 Exercise

	Chapter 17: Array-Backed Grids
	 Application
	 Drawing the Grid
	 Populating the Grid
	 Final Program

	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet

	Chapter 18: Sorting
	 Swapping Values
	 Selection Sort
	 Insertion Sort
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet

	Chapter 19: Exceptions
	 Vocabulary
	 Exception Handling
	 Example: Saving High Score
	 Exception Objects
	 Exception Generating
	 Proper Exception Use
	 Review
	 Multiple Choice Quiz
	 Short Answer Worksheet

	Chapter 20: Recursion
	 Where Is Recursion Used?
	 How Is Recursion Coded?
	 Controlling Recursion Depth
	 Recursion Factorial Calculation
	 Recursive Rectangles
	 Fractals
	 Recursive Binary Search
	 Review
	 Short Answer Worksheet

	Chapter 21: Formatting
	 Decimal Numbers
	 Strings
	 Leading Zeros
	 Floating-Point Numbers
	 Printing Dollars and Cents
	 Use in Pygame
	 Review
	 Short Answer Worksheet

	Chapter 22: Exercises
	 Exercise 1: Custom Calculators
	 Program A
	 Program B
	 Program C

	 Exercise 2: Create-a-Quiz
	 Description
	 Example Run

	 Exercise 3: Camel
	 Description of the Camel Game
	 Sample Run of Camel
	 Programming Guide
	 Hints

	 Exercise 4: Create-a-Picture
	 Description

	 Exercise 5: Loopy Lab
	 Part 1
	Tips for Part 1

	 Part 2
	 Part 3
	 Part 4

	 Exercise 6: Adventure!
	 Description of the Adventure Game
	 Sample Run
	 Creating Your Dungeon
	 Step-by-step Instructions

	 Exercise 7: Animation
	 Requirements

	 Exercise 8: Functions
	 Exercise 9: User Control
	 Exercise 10: Bitmapped Graphics and User Control
	 Exercise 11: Classes and Graphics
	 Instructions

	 Exercise 12: Sprite Collecting
	 Exercise 13: Sprite Moving
	 Exercise 14: Spell Check
	 Requirements
	 Steps to Complete:
	 Example Run

	 Exercise 15: Final Exercise
	 Video Game Option
	Requirements for Part 1:
	Tips:
	Requirements for Part 2:
	Requirements for Part 3:

	 Text Adventure Option
	Requirements for Part 1:
	Requirements for Part 2:
	Requirements for Part 3:

	Index

