Cross Over to
HTML5 Game
Development

Use Your Programming Experience to
Create Mobile Games

Zarrar Chishti

ApPress’

Cross Over to HTMLS
Game Development

Use Your Programming
Experience to Create
Mobile Games

Zarrar Chishti

Apress’

Cross Over to HTML5 Game Development: Use Your Programming
Experience to Create Mobile Games

Zarrar Chishti
Glasgow, United Kingdom

ISBN-13 (pbk): 978-1-4842-3290-3 ISBN-13 (electronic): 978-1-4842-3291-0
https://doi.org/10.1007/978-1-4842-3291-0

Library of Congress Control Number: 2017961309
Copyright © 2017 by Zarrar Chishti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3290-3. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3291-0

Table of Contents

About the AUthOrccccviismmmmmmsssssnmmmssssnmmsssssss s assn s snnns vii
About the Technical REVIEWETccuusseesssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss ix
Acknowledgments.......cccceersssssssssnnnnmmmsssssssssssssnsssesssssssssnsnnssssssssssnnnnnns Xi
g T Xiii
Chapter 1: Introduction...........cccevinnseeemmmmnnmnmmsssssssnse s —————- 1
Introducing Our Game: Space ZOmMDbIEs..........ccceevrernreresssesnsesesessessssennes 1
Setting up Your Work Environment...........cccooevvrvrvnnnsensensesses s sessessessenens 4
Part 1: Setting up OUr FOIAEI'Sccvveiererereree s e e ses e s e sas e saesessesassesassesaesenes 4

Part 2: SEtting Up OUF FIlES......coveererere sttt se e sesss e ssesessesassesassesaeenes 6
Hosting and Media Files..........c.ccverercrnrsessrcesces s 10
Part 1: Your Computer vs. HoSting SErversccvrevnennicnncess s sesesseens 10

Part 2: Download the Media for Your Project..........ccevrvnennicnnccnsssesese e 1
Chapter 2: In the Beginning, There Was HTML.........cccccccnnisnnnnnnnnnnnnnas 15
HEoO WOKId ... 15
Background IMageccoeerverreriernrsr s 18
Adding the Rest of the IMagescccceeeeererececc s 20
Chapter 3: Time to Apply a Little CSS........ccccunmmmmmsssnmmmnssssssnmsssssnnns 23
Start with @ QUICK TESTceeverercrcer s 24
Our Background IMage.........ccccererermrernnesessssese s sse e ssssessessssesnes 28
Our Other IMAJEScoeeeeeeceee e sn e r s 32

iii

TABLE OF CONTENTS

Chapter 4: Apply Intelligence with JavaScriptcccccnnnnnnnnnnnsssnnnns 37
Why Do We Need 10 RESIZE?........ccccvvrvrcercerircer e 37
How Do We Universally RESIZE?cccevrmrrersserenessenessesessssessesessessssennes 38
Let’s ReSize QU IMAQEScccevuerrereererrerrerrserassssssssasssssassssssssasssssssssssssssnses 46

Chapter 5: Take a Shot: Part 1...........cccccvvemmmmnnnenmnnnnsssssnmnssssnesssnnn 51
Changing Our Cursor and Registering @ ClicKcccoceevereerreesersencnncnnnn 51
Making Our Gun Act More RealistiC.........ccccoevrvrrrrnnrnressr e 55
Animating the Gun with Sprite Sheetsc.cccocerrirerriernsrsecrsererenns 60

PAIE 1 1uuueveeesssseesssssesssssssssssssssssssssssssssssssssssessnns 60
PAIE 2....oevevvessseesssssessnns 63
PAIE 3oeveeeesseeeesssssessesssanes 64
PAIE 4oeveveeseseessssessessssssssssssssssssssssssssssss s ssnns 68
Reloading QUK GUNccocercerrcer e 71
FIriNg OUP GUN ...t ss s sns s sn s sn s 78
0Ne Last TRING. .. cooveererercrere s ss e s e e sassassassnssassnesne s 81

Chapter 6: Where Are the Zombies?ccousmmssmmmssnmsssssssassssssssassssans 85
Creating a Zombie: Part 1. 85
Creating @ Zombie: Part 2..........cocceeevveresmriesnsesesessessssesessssessesessessssennes 86
Moving the Zombie CIOSEr.........cccuceeeireericre e 95
Creating All the ZOMDIESccceeeereeeeere e 99
Generating a Zombie Life CYCle.......ccvvrererrrrrerrrrrses e ses e e 102

Chapter 7: Take a Shot: Part 2.........cccccmmmmmnnnnmmmmsssssnnnnnnsmsssssssssnnns 107
Hitting @ Zombie.........cocecrcrrrrr s 107
Making the Hits Count...........ccocrrcrcrcrcrcrcer e 113

iv

TABLE OF CONTENTS

Zombie DOWN! ... ne e 119
Part 1: Create Six Bubble Zombie Elements...........c.cocovvvnnnnnnnnssneseseseseseens 120
Part 2: Activate the Counter Bubble ZOmbie...........cocovrrnenernenereriresesseseseseseseseens 129
Part 3: Animate the Bubble ZOMDIEScccovrrererererninirsrsresese s 136

Reloading the GUN ... e 146

Clean up the Depths and Click ZONEs..........cccvveenrererensesnssesesessessesensens 157
Part 1: ENSUMNG GUN FIr@......coviuieicriicisscrisiss s sss s se s sesassssesesens 157
Part 2: Zombie Depth LEVEIS........ccceveverenererr s sae s e e s 163

Intro Splash and “Game OVer” SCreensccoceeerererseesessessessessessenens 171
Part 1: IMageSs FOIUEN ..o 171
Part 2: Stopping and Startingc.covvrrrrssssssssse s 172

Chapter 8: Add Some Bling to Qur Game.......c..cccmmrmsssnnnsssssssnsnssssnnns 191

What’s the SCOre? ... 192

Sprinkle of Special Effectscoccrierririenni e 203
Part 1: Get Started ... 204
Part 2: Displaying the Effects.........cccorevniiinsncs e 204

Turn up the Sound EffeCtS......c.ccocvvrvrirircr s 219
Part 1: Getting Started ... 220
Part 2: Adding Sound EffeCtSccceevreecerrccri e 220

Embedding the GAME.ccocvververrerier e 225
Part 1: Getting Started ... ———— 225
Part 2: Modify the default.html Fileccocveeerereerrere e 226

Game 0Over. Restart?..........connnnnns s 244

INA@X..iiieisienrimsssssnsns s ———————— 247

About the Author

Zarrar Chishti is a software and games
development consultant with over 500 games
developed for companies around the world. He
is sought after to advise on the development

of viral games for major marketing campaigns.
His consultancy and development firm include
prestigious companies such as Turner Media,
British Airways and Channel 4 among the
many clients that keep coming back when a

new product or service is being launched.

After graduating from Glasgow University
in 1996 with a prestigious joint honors degree in Software Engineering,
Zarrar contracted as a software developer in both London and L.A. for 5
years. In 2001 he opened his own software firm in Glasgow and within 2
years was employing 10 staff. This was to grow to 30 in 2005 when he began
to offer games development to his clients.

One of the most notable game projects Zarrar has produced includes
an interactive comic for the popular Ben 10 TV series. The project was a
notable success that took his firm 10 months to deliver. It was rolled out
in over 25 countries in localized language editions. Other projects include
building a series of games for the ever popular Big Brother TV franchise
and an employee training game for Legal and General.

vii

About the Technical Reviewer

g "‘ Massimo Nardone has more than 22 years

L of experiences in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.

He has programmed and taught how to
program with Android, Perl, PHP, Java, VB,
Python, C/C++ and MySQL for more than 20
years.

He holds a master’s degree in computing
science from the University of Salerno, Italy.

He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager, PCI/SCADA
auditor and senior lead IT security/cloud/SCADA architect for many years.

His technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,
Scratch, and more.

He currently works as chief information security office (CISO) for
Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto
University). He holds four international patents (PKI, SIP, SAML, and Proxy
areas).

Massimo has reviewed more than 40 IT books for various publishing
companies. He is the coauthor of Pro Android Games (Apress, 2015).

ix

Acknowledgments

To Pops - you were an amazing dad who has left a massive hole in our lives.

To my closest friend, who has been (and continues to be) there for me
at the times when it matters the most: my brother Ibrar. Thank you to my
parents, who gave me the most amazing education and start to life. My one
constant and partner in crime, my wife Sadia. My son, whom I am so proud
of (incidentally, he was my initial editor for the book) and my “janno-jaan”
daughters: Sara, Aisha, and Rushda. Iwould be in a tremendous amount
of trouble if I did not also acknowledge Bella, our Bengal cat.

I'would like to say a heartfelt thank you to my agent, Carole. You agreed
to represent me, despite my thick Scottish accent! Your guidance and
patience at the start will always be remembered and appreciated. Also,
thank you to the awesome and gorgeous team at Apress: Aaron and Jessica.
I had a great time working with you both and you made this “noob” feel
like part of the team.

I want to thank two people who have inspired me to write books. My
Latin teacher Mr. Temperely and my favorite author of all time, David Blixt.
I'would also like send my love and appreciation to all my staff, both past
and present: Alasdair, George, Paul (the Great), Les, and Claire. Also, my
thanks to those clients that gave me my initial start despite having little or
no experience.

Finally, I would like to thank the nurses and doctors at Monklands
Haematology department who looked after my wife, Sadia. I will always
remember your commitment, passion, and support that you gave to her.
Thank you for sending her home to us.

Preface

Welcome to the wonderful world of HTML5 game development. Are you
looking for a new challenge or looking to expand your current skill set?
Then get ready to start your journey. This book has been written with a
simple goal in mind: to provide the means for anyone to develop their first
HTML5 game.

This is a great time to break into the most lucrative game development
platform in the world. The global demand for the HTML5 game
development platform has expanded so quickly that it is currently crying
out for seasoned developers from more traditional environments to
cross over. Never before has there been such a widely accepted platform
by literally every manufacturer and operating system. This, in turn,
has convinced marketing departments to move away from traditional
platforms, such as dedicated mobile apps, for the more widely accepted
HTMLS5 format.

In short, there has never been a better time for a seasoned IT
programmer to cross over and capitalize in this lucrative market with their
much sought-after talents and experience.

I have spent the last five years training developers from a wide range
of programming disciplines to cross-train in HTML5 game development.
Whatever your vocation, whether it be an application databases systems
developer or a professional web developer, with this book you will learn to
evolve your current coding skills to enable you to become eligible for the
biggest gaming platform in the world.

From the first chapter, you immediately see encouraging results as
you power through a challenging and fun project that has been uniquely
designed and developed for this book.

xiii

PREFACE

Why This Book

This book was written with a simple goal in mind: to help seasoned
programmers from other disciplines to cross over to HTML5 game
development.

No apps need to be purchased. No special hardware or software is
required. As long as you have a simple computer with Internet access, you
can start today.

How quickly you build this game is entirely up to you. For each major
step we come across, you can decide to either study the technical aspects
or skip ahead to the next step. Either way, by the end of this book, you will
have a playable game to show off to friends and family.

This book is perfect for anyone that just wants to roll up their sleeves
and start developing a game for themselves. I believe that by the end of
this book, you will be in a far better position to make a decision on whether
you want to invest your time and money in becoming a qualified games
developer.

What You Will Need

Any computer will do.
e You do not need a super-fast computer
e You do not need an expensive IDE installed

¢ You do not need the latest graphics card

You can build this game using the computer/laptop that you already
have—as long as it switches on and you can run the already installed
Notepad program (if you are using Windows) or TextEdit (if you are on an
Apple Mac).

Xiv

PREFACE

What about your phone or tablet? Technically, it is possible; however, it
is not ideal because the operating environment is not suited to coding (i.e.,
typing). If you do wish to use these devices, then you may wish to invest in
a Bluetooth keyboard and an external memory card.

How to Use This Book

During this project, I have spent a great deal of my time minimizing the
amount of code that you need to write. However, I had to balance this
with making code that was still readable, which means that in occasional
instances of this book, you will find some lengthy portions of code to write.
I do apologize for this; however, keep in mind that you will be able to reuse
the code in your next project.

The following icons appear in the book.

In this section, you will see the actual code that will need to be written. It is
important to ensure that you copy the code exactly as it is written.

On most occasions, you will only need to write the lines that are
written in bold. Also, the lines of code that existed before but have just

been modified are in red.

PREFACE

2 Further
' Information

In this section, you will see interesting facts and explanations of the code
that has just been written. If you wish to build on your coding knowledge
as you proceed, then you will find a great source of information here.
However, feel free to ignore this section if you just want to get on with
building your game.

@ Nof
- Working?
Did something go wrong? Did the code you just wrote not work? Not to

worry. You will find common (and some not so common) mistakes here

with solutions on how to fix them.

CHAPTER 1

Introduction

“If you have a garden and a library,
you have everything you need.”

Marcus Tullius Cicero
(106 BC - 43 BC)

var replaceWordl = str.replace("garden", "computer");

var replacelWord2 = str.replace("a library", "time");

I have been developing software since 1996 and I have developed games
for small and large companies for over a decade now. Like any form of
development in the real world, you need to know why you are building

the game before you think of coding strategies and build processes. In the
gaming world, this comes in the form of the game’s story. This includes the
background, reasons to play, and the goals of the game.

Introducing Our Game: Space Zombies

So here is our story, which we will develop into a game.
Hi. My name is Ace Star. The year is 2107. For the last three
(.) months, I have been stationed as a security guard on the only moon
ﬁ of planet ZC636, which is in the Andromeda Galaxy. In addition to
- me and a group of dignitaries from Earth, there is a group of about
500 top scientists stationed here to work on secret experiments.

© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_1

CHAPTER 1 INTRODUCTION

I need your help.

Last night, there was an explosion in one of the labs. A gas was released
that turned all the scientists in the lab into zombies.

I have positioned myself outside the only doors of the colony’s main
building. The other survivors are safely inside. I am the last line of defense
before help arrives from Earth.

I discovered that our weapons are useless against the zombies. While
running out of the labs, however, I found a new, experimental weapon.

It seems to do the trick.

I can hear them coming. Are you ready?

Let’s have a look at a few of the graphics that we will use for the
development.

This is the background image for our game.

It will fill the screen by stretching out both
horizontally and vertically.

Our zombies will spawn from where the ground
meets the sky. Once spawned, they will come
toward us, growing bigger.

Say hello to Professor Z, our average zombie. In
terms of speed, he is not very fast and he does
not suddenly sprint to the front. He simply heads
toward you at his own leisurely speed! In terms of
our weapon shots, he will not be too hard or too
easy to “neutralize”” It takes two zaps to get him.

Say ciao to Belladonna, our fastest zombie.
Keep an eye on her because she will appear one
minute and then suddenly sprint to the front.
She will not be too hard to neutralize, however.

One zap will get her.

CHAPTER 1 INTRODUCTION

Finally, this is Brad, our heavyweight zombie.
Unfortunately, due to all of those hours lifting
weights, he is slower than the average zombie.
He takes his time to gain speed once he spawns.
He will be harder to neutralize, however. It takes
three zaps to get him.

This is the experimental weapon that our hero
found in one of the labs. When fired, it zaps
out a special liquid, which when successfully
administered, encases the zombie in an air
bubble.

It will need to be reloaded often.

This is our Reload button. From a game-design
point of view, it adds another dimension to the
gameplay.

This is our game’s logo. We will not see it until
the last chapter of the book, when we embed our
game.

This is the box that we will embed into our
game. Initially, you see the game span the
entire screen. Near the end, however, we look at
embedding the code into this box.

This is the background image that we use in the
final chapter. The background is the main image
used when we build a dedicated web page to

embed our game into.

CHAPTER 1 INTRODUCTION

The following is a screenshot of the finished game.

Setting up Your Work Environment

This section discusses how to set up your work environment.

Part 1: Setting up Our Folders

You need to create a work folder where all of your work files can be stored.
This makes it easier to distinguish your work files from all the others on
your computer. So first, create a root (or master) folder called My Work _
Files in the C drive.

CHAPTER 1 INTRODUCTION

Once you have your root folder, the next step is to create the subfolders
that you will need for the game. Create four folders inside My Work Files.
Name the folders as follows:

o (SS

o Images

o Raw Images
e Js

Your folder should look like the following screenshot.

e —
"“U My_Wark_Files -

Share View 0
My _Work_Files

» This PC » Local Disk (C:) » My_Work Files E

View Arrange Snace Edit Tags

css |
L css Images

is Raw Images is Raw Images

\ Further

A
i

Information

The CSS folder will hold special code files that help structure the design of
the game. All the files in this folder will end in .css.

The js folder will hold all of our JavaScript files, which will form the
engine for our game. They will contain commands and instructions that will
control what happens in our game. All the files in this folder will end in . js.

CHAPTER 1 INTRODUCTION

The Images folder, as the name suggests, will contain all the image or
media files that we will need for the game.

The Raw Images folder will not technically be used for raw images. In
our case, we will use this folder as special temporary housing for all of our
media. We will move them into the Images folder when we need them.

Part 2: Setting up Our Files

For the purposes of this book, I will use Notepad (if you are using an Apple
computer, then I would use TextEdit). I find Notepad simpler and easier
to use; however, almost any IDE (Integrated Development Environment)
can be used for this project. So go ahead and use the IDE that you are most
comfortable with.

If you do want to use an IDE, here is a list of a few that are free to use:

o Eclipse. This is an open source editor that is typically
used for C and C++ (as well as other high-level
languages) projects.

¢ NetBeans. Like Eclipse, this is an open source
editor; however, it comes bundled with a plethora of
development frameworks.

e Aptana. A very popular IDE among web developers, it can
be plugged into Eclipse. Typically used for HTML projects.

e CodeRun. This is a slightly unusual choice in that
it runs on a browser (i.e., it is a web-based IDE).
Personally, I find it excellent for last-minute fixes when
at a remote location.

e Visual Studio Community. This is free for individual
programmers and comes packed with all the amazing
features that you will find in Visual Studio Professional

series.

CHAPTER 1 INTRODUCTION

Although using an IDE has its benefits, I think that it is worth keeping
in mind this excellent quote about using IDEs for multiple languages:

“Although many IDEs can handle more than one language, few do it
well. Plus, it’s likely overkill if you are just getting started.”

Now that the folders are set up, let’s create the files that you will use to
develop the game.

First, you need to create a default.html file. If you are using an IDE,
click File » Create New and select HTML. If you are using Notepad, open a
new file and save it as default.html.

Your folder should now look like this:

My
I -
» ThisPC » Local Disk (C:) » My _Werk_Files My, Work_Files
I i~ e
View Arrangs E a Look Action
Ty
" ?
v g B css defaull Images
Raw Images default.hteml (] Raw Images

Now, we need to create files within some of the folders we created.
Double-click the js folder. Repeat the preceding steps (i.e., create a New
File and then Save As). The following are the file names to enter:

e > SZ main.js

e > SZ_movement.js

e > SZ setupContent.js
e > SZSS.js

e > SZ touch.js

e > SZ zombie_movement.js

CHAPTER 1 INTRODUCTION

Your js folder should now look like this:

T

PC » Local Disk (C:) » My Work Files » ju .‘

| B
i B 2 o~

dada |

SImoverent 5I_seteplontent

<) <) ? ~ %

u_pm P

" " ” .
| SZsetpComent S2.5S SLtewth SZpombiemive
ment

Finally, we need to create a file within the CSS folder. Repeat the steps
from earlier (i.e., create a New File and then Save As). The file name to
enter is

> SZ_master.css.

Your CSS folder should now look like this:

" -

» ThisPC » Local Disk (C) » My_Work Files » €SS E o ol B
ew

6e
Vi Amrange Share Edit Tags

a |

SZ_master

Css

SZ_master.css

CHAPTER 1 INTRODUCTION

We need our files to work across the worldwide network successfully, so we
should try to keep to the standardized naming conventions.

It is best to avoid character spaces in file names. Technically, this is
acceptable in local environments (Apple and Windows OS), however,
character spaces are not recognized by other systems. Ideally, use an
underscore or a hyphen character to separate words within file names.

Do not use any special characters, such as !, ?, %, #, or /. It is best to
limit file names to underscores, numbers, and letters.

For this project, you will notice that I try to consistently start all of my
file names with SZ_. This is because they are the initials for the name of the
game—Space Zombies. It is important to be consistent and descriptive in
naming and organizing files so that it is obvious where to find specific data
and what the files contain.

By naming your files in a meaningful manner, you increase your
chances of finding those files in the future and knowing what information
they contain. When you come to develop new games, you will easily be
able to locate Space Zombie files by searching for all files starting with SZ_.

Finally, it is good practice to keep file names as short as possible. Apart
from adding to the size of the file, it also makes them easier to remember
six months down the line.

CHAPTER 1 INTRODUCTION

Hosting and Media Files

As long as the files remain on your hard drive (the files and folders created
earlier), you will be able to test the game comfortably on your computer.
This is certainly okay for budding developers starting out.

Nonetheless, at some point when you have developed several games,
you may wish to showcase them for all to see and play.

To do this, you need to upload your files to a server computer. A server
is essentially a computer that is connected to the Internet.

Part 1: Your Computer vs. Hosting Servers

You need to open an account with a server computer. If you do a Google
search for “server hosting free trial,” you have several options available.
If you are still unsure, please do not hesitate to message me on Twitter
@zarrarchishti.

Further .
' Informalion

The following is a short list of available hosting options.
Dedicated Server

This is the most expensive option. Essentially, you own the computer that
is connected to the Internet. This is only an option if you are either a huge
company or a reseller.

10

CHAPTER 1 INTRODUCTION
Shared Server

This is generally the most economical option for hosting. It is very much
for people like you, who are renting a piece of the server. The main
advantage is the ridiculously low cost, of course. However, as your game
development expertise increases, you may find this option to be limiting
and unfit for your specific needs.

Cloud Hosting

Whereas the prior two options rely on one physical computer, cloud
hosting allows an unlimited number of computers to act as one system.

Part 2: Download the Media for Your Project

The media files (image and sound files) used in the project are available
for you to download.
Open your Internet browser and go to the following URL:

http://zarrarchishtiauthor.com/downloads/

Click the Download button. This will initiate a download. The browser
will let you know when it has completed. Navigate to your download folder
and locate the downloaded file.

It should be a file called raw_media_1.rar. Now you need to extract the
files from this zipped file in a new folder called Raw Media. Double-click
this folder and you will see the following four folders:

o > Images
e > IS
e > sounds

e > html_web

11

CHAPTER 1

INTRODUCTION

First, copy all four folders to your Raw Images folder, which is in the
My Work Files folder.
At this stage, we are only interested in the files inside the JS folder. As

we progress through the game, we will go back to the other folders and

copy the files as needed. Double-click the]S folder (in the Raw Images

folder). Using the same technique as before to copy files, go ahead and

copy all the files, and then paste them into your own js folder (in the My

Work

Files folder).

Your js folder (in the My Work Files folder) should now look like this:

iy
m”

PC » Local Disk (C:) » My Work Files » js

Jd 44
DD

2 maverment

Slpmyteund ST seupContent

<) <)

H&«hm

o

| ﬂ Rl I

| View Arrange ™~
fwery-uils fownryjs s

SItouch

SZ_sombie move
maeil

That’s it for now! We have successfully set up our game development

environment. We are now ready to start coding our game!

12

CHAPTER 1 INTRODUCTION

Further
o Informalion

The files we copied over from the JS folder are special JavaScript programs
that we can use for our game. Imagine a library of code maintained by
companies like Google that contain functions that make our lives easier.

The files—for instance, jQuery—are fast, small, and feature-rich
JavaScript libraries. Together they make things like HTML document
traversal and manipulation, event handling, animation, and AJAX much
simpler with an easy-to-use API that works across a multitude of browsers.

When using a library such as this, we do not need to ever worry about
how they work. All we need to know is what they do so that we can decide
whether we want to use them in our games.

Another advantage of using libraries such as jQuery is that it runs
exactly the same in all major browsers, including Internet Explorer 6! So no
need to worry about cross-browser issues.

Usually, we link to these files directly from the source servers. The
advantage of doing it this way is that we always get the latest copy of the
code when running our game. However, since we want to be able to play
the game offline, let’s choose to download them into our local folders.

13

CHAPTER 1

INTRODUCTION

1)

2)

3)

Not
% Wm‘kmg?

=/
In’ v Windows, did the option to Extract Here
appear? If not, you need to download WinRAR from
the following:

http://www.win-rar.com/download.html

Are you using a laptop? To right-click, you need to

first click -. .. and then click the mousepad.

el

When downloading the media files, did you receive
a message from your browser warning you that

the download is not commonly used and may be
dangerous? If yes, this is because I chose to WINRAR
rather than to WINZIP the file. The files are not
dangerous. You may click Keep; however, feel free to
run a virus check on the folder before opening.

14

http://www.win-rar.com/download.html

CHAPTER 2

In the Beginning,
There Was HTML

“Nine people can’t make a baby in a month.”

Fred Brooks

HTML is a mark-up language that is used to develop web sites. So why do
we need this for our game? It is best to imagine HTML as the skeleton or
bone structure of our game.

As a side note, once you have completed this chapter, you will have
not only started your journey into game development, but also web
development!

Hello World

During my 20 years of programming, I have learned many programming
languages. The first project that I always work on is learning how to output
the words “Hello World.” to the screen. I bet that you follow this tradition
too, so let’s develop a “Hello World” page in HTML.

Open the default.html file in Notepad or TextEdit in the My _Work Files
folder using the same program or IDE that you used in the “Part 2: Setting up
Our Files” section in Chapter 1.

15
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_2

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

When the file opens, it should be completely blank. Type the following
lines:

<html>
<head>
</head>
<body>
<div id="SZ maincontent">
Hello World.
</div>
</body>
</html>

Navigate to the menu, click File and then click on Save. You can now
close this file. Navigate back to the menu, click File, and then click Exit/
Close.

Are you ready to test your very first program?

Go back to the My Work Files folder and double-click the default.
html file. This should open in your default Internet browser; for example,
Microsoft Edge, Google Chrome, or Safari.

The page that opens up on the browser should be a completely blank
page with the words “Hello World.” displayed in the top-left corner.
Excellent. Our program works and we have written our first piece of code!

Obviously, this is nowhere near a game yet. All the same, persevere
with the work between now and that point. Rest assured, by the end of
this book, we will have developed the entire game. It will most certainly be
worth it. And you will be learning a lot of different techniques to get you
started on your journey to developing a suite of games!

16

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

Further

||‘

Information

HTML stands for Hypertext Markup Language. Hypertext is the method by

which you navigate around the Internet. Hyper just means it is not linear,
or you can go to any place on the Web by clicking links. Markup is what

HTML tags do to the text inside them. They mark it as a certain type of text
(bolded text, for example).

Here are the descriptions of each of the tags that you just coded:

<html> </html> This is required at the start and at the
end of every new web page. Everything inside these two
tags constitutes the contents of your page.

<head> </head> The contents of the head tag
include the title for the page, scripts, styles, and meta

information.

<body> </body> All the visual contents of our web
page, such as text, hyperlinks, and images, are
contained within this tag.

<div> </div> This defines a particular section of our
page. It is best to think of the div tags as containers. It is
not unusual to have div tags within bigger div tags.

You will notice that the closing tags are basically the same as the

opening tags, with a forward slash preceding it; for example, </div>

signals that you are closing that particular tag.

Please remember that every tag must be closed.

17

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

Background Image

The game’s background image does not change, move, or interact with the
gameplay. It provides a backdrop for all the various elements that will be
controlled by the actual game.

First, go to the images folder in the Raw Images folder of the My Work
Files folder. Locate the file called SZ_background image.jpg. You need
to copy this file over to your Images folder, which should then look like this:

i
: .rl'f" -

[images
» ThisPC » Local Disk (C:) » My_Work Files » Images = m o
el =

View Arrange Share Edit Tags

$Z_background_i
mage.jpg

5Z_background_i
magejpg

Let’s reopen the default.html file. Remove the “Hello World” line by
selecting the line and clicking Delete/Backspace. Now type the following
new line (all the new text is in bold):

<html>

<head>

</head>

<body>
<div id="SZ maincontent">

</div>

</body>

</html>

18

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file.

By using the tag, we have defined a background image for our
page. Itis important to note that the image is not technically inserted into
our HTML page; rather, the background image has been linked to our
HTML page. The tag has created a holding space for the background
image.

The “Hello World” text should have disappeared, and the background
image is now in its place. It does not look like it’s covering the screen.

Do not worry about that. We will align and resize our images in the next
chapter.

\\,

Further
' Information

In this section, you came across the tag, which is used when you
want to place an image in your web page.
Inside the tag, you will notice

id="sz0_o"

As it suggests, this is the ID for the image tag. This ID is used when we
start coding in JavaScript in Chapter 4.
Also, you will have noticed the src tag:

src="images/SZ_background_image.jpg"

src, which stands for “source,” allows you to specify the location of the
image. Earlier in this section, we placed SZ_background image. jpg in the
images folder. So as you can see, the src is the exact location and the name
of the image file.

19

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

Now, let’s think back to the previous section, when I said that you
always need to include closing tags. I ended the section by stating that all
tags must be closed. However, the code that we just wrote did not include
. So, did I forget?

What I did there was close our tag within the opening tag. Note that at
the end of our img tag, there is a forward slash before the >. This is another
way to close tags if you do not need add elements outwith what is written
in the opening tag itself.

Let’s analyze our line of code:

We have managed to put all the information concerning our image
inside the opening tag. There was no additional information required;
therefore, we can close our tag by writing />.

In case you are wondering, the following is just as valid:

Adding the Rest of the Images

The following images also need to be added to our HTML page:
e SZ gun.png
e SZ reload.png
e SZ score.png

There will be many more images by the time we finish the game;
however, this is all that we need at this stage.

20

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

As before, go into the images folder in the Raw Images folder of the
My Work Files folder. Locate the three new .png files and copy them over
to your Images folder, which should then look like this:

T~
f |
iy -
Images
ThisPC » Local Disk (C:) » My_Work Files » Images = m o o
i View Arrange Share Edit Tags
L =
? -~ - ’ “
-
SZ_background_i SZ_gun.png SZ_reload.png S$Z_background_i SZ_gun.png 52 _reload.png
mage.jpg mage.jpg
5Z_score.png

Now, reopen the default.html file and type the following new lines
(all the new text is in bold):

<html>

<head>

</head>

<body>
<div id="SZ maincontent">

</div>

</body>

</html>

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file.

21

CHAPTER 2 IN THE BEGINNING, THERE WAS HTML

You should now see the three new images. You may have to scroll
down the web page. Again, do not worry about how the images appear on
the page. Just ensure you can see the background image from before and
the three new images that we just added.

At this stage quite a few people ask me if HTML5 game development
is just the same as being a web developer. Yes in the same way an Xbox
console developer is just a C#/C++ Forms developer. However HTML5
games do not look and feel like a normal website, do they? As you develop
this game you will find out that a HTML5 games developer has to learn
everything about being a web developer and then more. You will need to
work out where the supposed boundaries lie for a web developer and then
learn how far you can push them for your game’s engine.

In this chapter we have managed to code our four initial graphical
elements on to our screen. They may not look like much to look at as they
do not seem to be in the right place nor the right size. However not to
worry, as in the next chapter we will apply CSS to the four images which
will align them exactly where we want them to be.

22

CHAPTER 3

Time to Apply a Little
CSS

#tower-of-pisa
{
font-style: italic;
}

CSS, which stands for Cascading Style Sheets, is a language that is used to
help style and design web sites. It can be used to describe how the page
should look in terms of color, layout, and fonts.

So why do we need this for our game? Previously, we imagined HTML
as the skeleton or bone structure of our game. CSS code will be the look
and appearance of our game. If you are familiar with building web sites,
however, you may be wondering how big a role CSS actually plays in
HTMLS5 game development.

With the arrival of CSS3, animations in CSS allow the browser to
determine which elements should get GPU layers, which results in
hardware acceleration. Do not start moving all your animations over
to CSS en masse, however. It is generally not a good idea to give every
element its own layer. If you do, then your GPU will run out memory—
quickly. I am sure you will agree that there is no worse feeling as a
developer than when you receive the dreaded “Out of Memory” error.

23
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_3

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Start with a Quick Test

Before we align and resize our images, let’s start our CSS file with a simple
test. The test is to see if we can make the entire background of our page the
color red. By doing this, we will make sure that the default.html page is
communicating successfully with our CSS page.

Let’s open the SZ_master.css file. When the file opens, it should be
completely blank. Type the following lines:

html {
height: 100%;
}
body {
padding: 0 0 0 0;
margin: 0;
user-select: none;
background-colour: red;

}

You can now save and close this file.

As you can see from this code, the syntax of a CSS file consists of three
parts.

e selector

This is usually the HTML <tag> that you want to define.
In the preceding code, we defined the <html> and
<body> tags as selectors.

e property

As the name suggests, here we define what property
of the tag we wish to apply a style to. In our <html>
example, we defined the height property to style.

24

CHAPTER 3 TIME TO APPLY A LITTLE CSS

e value

The actual style that you wish to define for the property.
In our case, we decided that the height of our <html>
tag is 100% of the screen size.

Interestingly, you can specify the same parameters for multiple tags by
simply grouping them.

Before testing, we need to link this file into our default.html file.
Reopen the default.html file and type the following new (in bold) line:

<html>
<head>
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ_maincontent">

</div>
</body>
</html>

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file

You should see the same screen as last time (i.e., the four images) but
with a red background instead of white. This is good because it means that
you successfully linked the CSS file to the main HTML page.

25

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Further
Informaltion

We have covered quite a lot of CSS techniques in the SZ_master.css file.
Let’s go through them.

o html {height: 100%; }

This sets the height of our HTML page to 100%. It
means that our content should be able to cover the
visible screen from the top to the bottom.

It is worth noting that we can use the properties min-height and max-
height to override the height property.

e padding: 0 0 0 0;

This clears an area around the content of the page.
Think of making a four-sided margin where you specify
how thick you want it to be. In our case, we want the
content to cover the entire page, so we set the padding
for all four sides to 0. The four 0’s correspond to top,
right, bottom, left.

e position: fixed;

As the name suggests, this positions the image to a fixed
location based on the browser window. So top: 0;
means 0 pixels (pixels is a measurement) from the top of
the browser (i.e., you want it fixed to the top). Similarly,
bottom: 0; means that you want the image placed at
the bottom of the browser window. Finally, left: 0;
and right: 0; refer to the image placed to the left or
the right of the browser window.

26

CHAPTER 3 TIME TO APPLY A LITTLE CSS
e margin:o;

The margin sets the size of the white space around the
element. In our case, we do not want any white space
around the edges of the screen.

e user-select: none; We can control how our player
interacts with the text elements on the screen by using
the user-select property. In this case, it is set to none,
which means that we do not want the user to select or
click any text elements. The reason for this is that it may
distract from playing the actual game (for example, text
that allows the user to select the high score).

o background-colour: red; Asthe name suggests, this
sets the background color of the screen. If you wish,
try to replace the word red with yellow or any color of
your choice. Save the file and refresh the browser.

We also added another line of code to our HTML file:
<link href="css/SZ_master.css" rel="stylesheet" />

The link tag is the standard way to include a CSS file on the page. The
href specifies the location of the CSS file that we wish to include. The rel
tag specifies the relationship between the HTML file and the CSS file. In
this case, the CSS file acts as a style sheet for the HTML file.

27

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Our Background Image

Let’s start fixing the images. We will start with the background image. Ideally,
we want this image to fill our page (much like the red background color did).

Open the SZ_master.css file and type the following new lines(all new
text is in bold):

html {
height: 100%;
}
body {
padding: 0 0 0 0;
margin: 0;
user-select: none;
}
img
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;
}
#520_o {
position: fixed;
top: 0;
left: o;
min-width: 100%;
min-height: 100%;

28

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file.

Note that we have removed the background-colour: red; from body
tag. Ensure that you remove that line from your code. Your file should look
exactly like what is shown.

You may be wondering why we have coded the user-select property
in four different ways. The first method is the standard property in CSS
(i.e., user-select). We then go on to define the vendor-prefixed properties
offered by the various rendering engines. This allows properties to be
set specific to each individual browser engine to safely account for
inconsistencies between implementations.

The following are the vendor-prefixed properties that we used:

o webkit for Chrome and Safari
o moz for Firefox

o ms for Internet Explorer

Historically, we used these prefixes to implement new CSS features
prior to final clarification by the W3. Therefore, over time, the prefixes will
be removed for the final version of the property.

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file.

Your screen should look the following screenshot.

29

CHAPTER 3 TIME TO APPLY A LITTLE CSS

You should first notice the background image now covers the entire

screen. Also, the other three images are completely gone from the screen.
Not to worry. They are still there— behind the background image.

| Further _
'Informalion

The first style added to our CSS was for the tag. This means that the
styles defined apply to every image that we add to our page. I am sure you
will agree that this is a big time-saving technique, because the alternative is
to repeat the styles laboriously for every image that we add.

Anyhow, not every image requires the same styles. You can see the
second style is specifically written for one of the image tags, which is
identified as #5Z0 0.

The styles that we put in the tag are the more generic styles
that should apply to all images. We can then add an individual style to a
specific image and add more styles. We can even override styles that were
written in the tag.

30

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Before we leave this, why did we call the tag #5Z0_07? If you go back to
Section 2.3, notice the following:

This image is identified as SZ0_0. In CSS, you can identify the image by
placing the hash sign (#) before the ID.
Let’s take a look at the new CSS techniques that we used.

e max-width: 100%; height: auto;

We want the images to stretch to the full width of their
container. Also, we want the code to automatically
determine what the height should be when the new
width is applied. This ensures that we keep the aspect

ratio of the image when resizing.
e user-drag: none;

We do not want the user to be able to drag the images

on the screen.
e -moz, -webkitand -ms

These are CSS extensions, which are properties that
web browsers support but are not (yet) part of the
official CSS specification.

o top: 0; left: 0;

Sets the top and left edge of the image. In this case, we
want the image to always position itself in the top-left
corner of its container.

e min-width: 100%; min-height: 100%;

As it suggests, we want the image’s minimum width
and height to be the full size of its container.

31

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Our Other Images

We can start fixing the other three images. First, here’s a reminder about
the images and where they should go:

e SZ gun

The gun image should reside in the bottom-right
corner of the screen.

e SZ reload

The Reload button should appear in the top-left corner
of the screen.

e SZ score

The score image should appear in the top-right corner
of the screen.

Now open the SZ_master.css file and type the following new lines
(all new text is in bold):

html {
height: 100%;
}
body {
padding: 0 0 0 0;
margin: 0;
user-select: none;

img {
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;

32

}
#5720 0

}
#520_1

#520_2

#520_3

CHAPTER 3

-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;

{

position: fixed;
top: 0;

left: 0;
min-width: 100%;
min-height: 100%;

{

position: fixed;
bottom: 0;
right: o0;

{

position: fixed;
top: 0;

left: o;

{

position: fixed;
top: 0;

right: o;

TIME TO APPLY A LITTLE CSS

Save the file and then close it.

33

CHAPTER 3 TIME TO APPLY A LITTLE CSS

In this code, we have defined three properties for each of the three
images. However, notice that the properties and their subsequent values
are exactly the same. Earlier, I touched on the fact that we can specify the
same parameters for multiple tags by simply grouping them. So if you wish,
you can try that with the preceding code by replacing the bold code with
the following:

#SZ0_1, #520_2, #SZ0_3 {
position: fixed;
top: 0;
right: o0;

Go back to the My Work Files folder and double-click the default.
html file.
Your screen should look like the following screenshot.

Although you can now see all four images in their aligned positions,
they aren’t quite the right size; however, do not worry about that. In the
next chapter, we will use JavaScript to resize the images.

34

CHAPTER 3 TIME TO APPLY A LITTLE CSS

Further
‘Information

The position property specifies the type of positioning method used

for an element (static, relative, fixed, or absolute). Elements are then

positioned using the top, right, bottom, and left properties. However, these

properties will not work unless the position property is set first. They also

work differently, depending on the position value.

Let’s take a brief look at the four position values.

static elements are not affected by the top, right,
bottom, left properties.

relative means setting the top, right, bottom, and left
properties of a relatively positioned element causes it to
be adjusted away from its normal position.

fixed means positioned relative to the viewport, which
means it always stays in the same place even if the page
is scrolled. The top, right, bottom, and left properties
are used to position the element.

absolute means positioned relative to the nearest
ancestor (instead of positioned relative to the viewport,
like fixed).

In our case, we used fixed along with bottom: 0; right: 0;.Inthe

previous section, we set the image’s top-left corner; whereas here we can

set the image from the bottom-right corner of its container.

Since we need our gun to always be positioned in the bottom-right

corner of the screen, it makes more sense in this case to use the bottom-

right property rather than the top-left property.

35

CHAPTER 4

Apply Intelligence
with JavaScript

“Always code as if the guy who ends up maintaining your code
will be a violent psychopath who knows where you live.”

Rick Osborne

Asyou have learned, HTML is the bone structure and CSS is the look and
appearance of our game. So what does JavaScript bring to the table? JavaScript
is a programming language used for creating interactivity in web sites. So we
could say that we use JavaScript as the master controller of our game.

So why do we need it for our game? The obvious answer is that the
game needs to be able to create the zombies, fire the gun, and respond
to user commands. This is true, but there is a huge amount of other work
that the game needs JavaScript to perform. For example, in the previous
chapter, we discovered a need to resize our images based on the browser
size. Let’s do that now using JavaScript.

Why Do We Need to Resize?

Our game will be playable on many types of devices; computer PCs,
laptops, mobile devices, tablets and even consoles linked to massive TVs.
Within each of these devices, there are many different screen sizes. Mobile
phones and laptops come in a wide range of screen sizes.

37
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_4

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

Let’s go one step further. What if someone resizes their Internet
browser window? Now we are talking an infinite number of combinations.

Creating graphics for everything conceivable would be extremely
time-consuming. Actually, it would be impossible because it seems there
is always a new model of phone (therefore, a new screen size) or a new
computer monitor coming out. So we need to find a universal way to resize
the images for any screen size.

How Do We Universally Resize?

If you have a 30cm ruler handy, take a look at it. Imagine we design
our game for the 15cm mark. We can use JavaScript to tell us what the
actual size is on the ruler. So let’s say that it comes back as 10cm. We can
then work out a ratio (i.e., 10 divided by 15) that can be used against all
measurements; 10 divided by 15 is 0.67. This means when we apply this to
our images, they will be made smaller, which is what we want. Similarly,
if the size came back bigger, let’s say 20cm, the ratio would reflect this and
make all images bigger than we had designed them.

Let’s write a function to work out this ratio. Open SZ_main. js. This file
should be completely blank. Type the following lines:

//global vars
//need to store the ratio
var ratio;
//need easy access to the width
var newWidth;
//function that gets called when game starts
$(window).load(function () {
//need to grab an instance of our screen
var div = $(window);
//we can now work out the ratio
ratio = (div.width() / 1024);

38

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

//while we are here we can grab the width for future use
newWidth = div.width();

};

You can now save and close this file.

Definitions for the various JavaScript terms can be found in the Further

Information section below. One other thing to note is that I have tried to

enter as many comments for explanations as we have lines of code (as you

are accustomed to in your own programming language).

Before we can test, we need to link this file to our default.html file. So,
let’s reopen default.html and type the following three new lines (all the

new text is in bold):

<html>
<head>

<script src="js/jquery.js"></script>

¢script src="js/jquery-ui.js"»</scripts

¢<script src="js/SZ_main.js"»</scripts

<link href="css/SZ_master.css" rel="stylesheet" />

</head>
<body>

<div id="SZ_maincontent">

<img id="SZ0 0"
<img id="SZo_1"
<img id="SZo 2"
<img id="Szo 3"
</div>

</body>

</html>

src="images/SZ_background_image.jpg" />
src="images/SZ_gun.png" />
src="images/SZ_reload.png" />
src="images/SZ_score.png" />

Save the file and then close it.

39

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

These three new lines involve the <script> tag. In our case, we
chose to link this tag to an external script file through the src attribute.
Alternatively, we could have used the same tag to define a client-side script
containing scripting statements.

Now double-click the default.html file.

Nothing has changed, has it? This is due to the JavaScript code working
on background tasks. Also, we have not yet told it to do anything to our
images. All we did was store a value in the code (i.e., the ratio).

All the same, it would be nice to see if our first bit of code is working.
Let’s add a line of code that will show a message box on our screen. In this
box, we will put the value that our code has just worked out for the ratio.
This is not terribly exciting but at least we get some form of feedback from
our code. Now that is exciting.

Now open the SZ_main. js file and type the following new lines (those
that are in bold):

//global vars
//need to store the ratio
var ratio;
//need easy access to the width
var newWidth;
//function that gets called when game starts
$(window).load(function () {
//need to grab an instance of our screen
var div = $(window);
//we can now work out the ratio
ratio = (div.width() / 1024);
//while we are here we can grab the width for future use
newWidth = div.width();
//Me are adding in a temporary bit of code here
window.alert("Hi this is your code and I have just worked out
that the ratio will be "+ratio);

};
40

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

We can now save and close this file.

We just used the window.alert () method, which typically displays an
alert box with a specified message and an OK button. Normally, alert boxes
are used to make sure that important information is displayed to our users.
In our case, we used the alert box to inform us of the value of a variable,
which at this point in our coding, we do not have access to.

I should note that alert boxes take the focus away from the current
window by forcing the browser to read the message. I would not
recommend overusing this method, as it removes the user’s focus from
playing the game until the box is closed.

Go backto our My Work Files folder and double-click the default.
html file. You should see our web site with a message box:

-

This page says:

Hi, this is your code and | have just worked out that the ratio will be
0.7027818448023426

S

L

What we have here is our code talking to us. It is telling us the value it
worked out for the ratio.

41

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

Before we go on, we need to remove the two lines that we just added.
Open the SZ_main. js file. After you remove the two lines, the code should
look like this again:

//global vars
//need to store the ratio
var ratio;
//need easy access to the width
var newWidth;
//function that gets called when game starts
$(window).load(function () {
//need to grab an instance of our screen
var div = $(window);
//we can now work out the ratio
ratio = (div.width() / 1024);
//while we are here we can grab the width for future use
newWidth = div.width();

1

You will create many wonderful functions in this book, and no doubt
in the games that you go on to develop. However, I hope you treasure this
moment as I did back in 1994 when I was learning to code Pascal.

42

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

Nof
m Wnrkmg?

Did the window box not appear? Not to worry. One of these tips should
help:

e Go back and recheck that every line of code is the same
o Did you miss any semicolons (;) at the end of your lines?

e Did you make sure that you added the three lines of
code in the HTML file?

o Areall nine files in the js folder as they should be?

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

Next, we will put this ratio to work.

43

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

 Further _
'Anformation

What is a function?

We will write a lot of functions in JavaScript. A function is simply a set of
instructions that are executed when the function itself is called to run. So
when our function is called, it determines the ratio and stores the width of
the screen.

Why are lines starting with // written like conversational English?

When you start the line with double forward slashes (//), you are telling
the computer to ignore this line. Why would you do that? Well, it is there
for us and it is called a comment line. Its purpose is to leave messages for
ourselves (or other programmers). By leaving messages, we break up the
code and make the whole program easier to read. You can write anything
you like. I like to use it to explain why the code after the comment was
originally written.

You do not have to comment every line; however, [was always taught
to comment as many lines as I code. This may appear overkill to some
programmers; however, I have found that when I return to my code after a
few years, the comments I wrote help me understand the reasoning behind
the code.

44

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT
Why did we add the other two files to our HTML file?

When it came to adding the SZ_main. js file, we also added jQuery and
jQuery-Ul files. These are essentially filled with advanced functions (like
the one you wrote). As long as we use their functions, all we have to do is
add them to our HTML.
These functions are fast, reliable, and rich with features. Some of the
biggest companies in the world use them, as do small game developers like us.
Let’s now look at some of the JavaScript code we wrote.

e var ratio;

We are declaring a variable here called ratio. A
variable is a container that can store data. We can put
data into ratio and read from it.

e $(window).load(function () {

This function is called once the entire page has loaded.
This makes it extremely useful, because the instructions
inside this function require the elements (for instance,
the images) to be present and loaded on the screen.

e var div= $(window);

As we discovered before, the var creates a container
to store data. However, in this case, we are using it to
pass an instance of the entire window. This variable
called div now contains all the important information
concerning our window. For example, we go on to use
the following statement.

e newWidth= div.width();

This means we can store the window’s width in our
variable called newlWidth.

45

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

Let’s Resize Our Images

As areminder, these are the images with their ideal sizes:
e SZ gunWidth 133px and Height 150px
o SZ reloadWidth 200px and Height 90px
e SZ scoreWidth 235px and Height 100px

Open the SZ_setupContent. js file in the js folder. When the file
opens, it should be completely blank. Type the following lines:

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$('#SZ0 1').css('width', 150 * ratio);
$("'#SZ0 1').css("height', 150 * ratio);

//Reload Button
$('#S20 2').css('width', 200 * ratio);
$('#SZ0 2").css('height', 90 * ratio);

//Score
$('#520 3').css('width', 235 * ratio);
$('#S20 3').css("height', 100 * ratio);

Save and close this file.

46

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

At some point, you may wish to revisit this function and recode the
flow. I recommend that you place the values of the image IDs into an array;
for example,

var image ids= ["#SZo 1","#SZ0 2","#SZ0 3"];

You would then also need to place the values for each image into
another array; for example,

var image sizes = [[150, 150], [200, 90], [235, 100]];

You could then code a for loop to execute the same code three times,
substituting the ID with the next value in the ID array, and substituting the
width and height values with the values in the size array.

Open the SZ_main. js file and type the following new lines (the new
text is in bold):

//global vars
//need to store the ratio
var ratio;
//need easy access to the width
var newWidth;
//function that gets called when game starts
$(window).load(function () {
//need to grab an instance of our screen
var div = $(window);
//we can now work out the ratio
ratio = (div.width() / 1024);
//while we are here we can grab the width for future use
newhidth = div.width();

//1et’s apply the ratio to our elements
main_call_setupContent();

1

47

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

Before we can test, we need to link this file to our default.html file.
Reopen the default.html file and type the following line (the new text is in
bold):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></scripts
<link href="css/SZ master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ_maincontent">

</div>
</body>
</html>

Go back to the My Work Files folder and double-click the default.
html file. You should now see the three elements resized, as shown in the
following screenshot:

48

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

P2 4 ' " B N)
R E!J(DA]) - SCORE

Congratulations! We have now finished the first part of the game! We
will now develop the game further in the coming chapters. However, the
main building blocks are done. From this point forward, we will be adding
more HTML, more CSS, and yes, even more JavaScript until our game is
finally playable.

 Further
| Information

Where did the ideal sizes come from (for example, the gun: Width
175px and Height 200px)?

The step that is taken before any development can start is the layout design
of each screen. This is where you physically place the elements, like the
gun, on a screen.

49

CHAPTER 4 APPLY INTELLIGENCE WITH JAVASCRIPT

You first need to choose a normal size. In our case, we chose the screen
width 1025px and height 800px. Of course, the chances that a user will
have this exact screen size are very slim. This is why we worked out the
ratio earlier.

You can use any software design program, such as Macromedia
Photoshop or Fireworks, to create layout files. Once we create our new
canvas size of 1024 x 800, we can then resize and reposition our elements
exactly where we would like them on the canvas. So, for example, we
placed our gun in the bottom-right corner, with a 175px width and a 200px
height.

We can now apply our ratio to the width and height to get an accurate
size for the screen being used.

We created a function in JavaScript as follows:

o function main call setupContent() {

It is important to note that the instructions within this
function are not executed until we call this function,
which we do in SZ_main. js by callingmain_call
setupContent();.

e main_call setupContent();
Only now are the instructions executed by the program.
Finally, let’s take a look at the following line of code:
o $('#SZ0 1').css('width', 150 * ratio);

We can manipulate an element’s CSS directly from the
JavaScript. This is an extremely powerful and useful
tool in game development. For instance, if we want an
element to become bigger after shooting it, we can do
this directly from the JavaScript code that was used to
identify the button click.

50

CHAPTER 5

Take a Shot: Part 1

“Code never lies, comments sometimes do.”

Ron Jeffries

In this chapter, we’ll work on what we want our gun to do. When the user
presses anywhere on the screen, apart from the Reload button, it should be
treated as a shot. How a shot happens and the consequences of a shot are
dealt with in Chapter 7. For now, let’s look at reacting to a user click.
There will be a few awesome techniques employed, including sprite
sheets for animation and mathematics for fluid movement. As you
build other games in the future, you may find yourself coming back and
reusing these functions and techniques. This is exactly what happens in
commercial game development.
Incidentally, some of the code in this chapter is from a project I did
recently for a children’s game that is hosted in the Kelvingrove Art Gallery
and Museum in Glasgow.

Changing Our Cursor and
Registering a Click

\ In shooting games like the one we are developing, the mouse
cursor typically becomes a crosshair.
Normal Crosshair
Cursor Cursor
51
© Zarrar Chishti 2017

Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_5

CHAPTER 5 TAKE A SHOT: PART 1

Changing the cursor can be done simply using CSS. Open the SZ_
master.css file in our CSS folder. Type the following new line (in bold):

html {
height: 100%;

}

body {
padding: 0 0 0 O;
margin: 0;
user-select: none;
cursor: crosshair;

img {
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;

}
#520 0 {
position: fixed;
top: 0;
left: o;
min-width: 100%;
min-height: 100%;
}

52

CHAPTER 5 TAKE A SHOT: PART 1

#520 1 {
position: fixed;
bottom: 0;
right: o;

#5720 2 {
position: fixed;
top: 0;
left: 0;

#570 3 {
position: fixed;
top: 0;
right: 0;

Save the file and then close it. Go back to our My Work_Files folder
and double-click the default.html file.
Notice that the mouse cursor has changed from an arrow to crosshairs.

E

Further
'Information

So what is the line that we just wrote?

cursor: crosshair; specifies the type of cursor to be displayed when
pointing with a mouse.

You may be curious as to what other types of cursors are available to
you. The following is a list of cursor types. If you wish, replace the word
crosshair in the CSS file with any of these words.

53

CHAPTER 5 TAKE A SHOT: PART 1

e e-resize

° move

e nw-resize
e s-resize

o text

e no-drop

e grab
e n-resize
e pointer

e se-resize

e W-resize

e not-allowed
e help

e ne-resize

e progress

e sw-resize

e wait

54

CHAPTER 5 TAKE A SHOT: PART 1

Making Our Gun Act More Realistic

The more engaging the gameplay is for users, the more they will
enjoy playing it over and over again. One of the ways to increase user
engagement is with the small details that we can add to our game. For
instance, wouldn't it be nice if the gun reacted when the user moved the
cursor across the screen?

To do this, we will use JavaScript. Open the SZ_movement. js file in the
js folder. When the file opens, it should be completely blank. Type the

following lines:

function rotateGun(e) {
//using the e value we can deduce the X co-ordinates
var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage
of the width of the screen

//We will work this out by dividing the current X position
by the overall screen width which if you remember we put in
newhWidth

var currentXPositionPercentage = xPos/newWidth;

//We now want to apply this to the maximum amount of rotation
which is 50 however the starting rotation is -15 not 0
var amountToRotate = -15 + (currentXPositionPercentage * 50);

//Let’s rotate the gun!
$("#SZ0 1").css('transform', 'rotate('+amountToRotate+'deg)');

}

55

CHAPTER 5 TAKE A SHOT: PART 1

We can now save and close this file.

A detailed explanation of this code is in the following “Further
Information” section.

Before we can test, we need to link this file to our default.html file.
Reopen the default.html file and type the following new line along with
the extra bit of text in one of our existing lines (all new text is in bold):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="7js/SZ_movement.js"></script>
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ maincontent">
<img id="SZ0 0" onmousemove="rotateGun(event)" src="images/
SZ_background image.jpg" />

</div>
</body>
</html>

Save the file and then close it. Now double-click the default.html file.

Try moving the mouse along the screen. The gun should rotate as if
looking to aim at the target we are looking to shoot at. I am sure you will
agree that this is far more engaging than a static gun.

56

CHAPTER 5 TAKE A SHOT: PART 1

I want to discuss an interesting point about something in the preceding
code. onmousemove, as the name suggests, triggers a JavaScript function
when the user moves the mouse over the image. It does not trigger on
touchscreen devices such as mobile phones. You may wish to revisit this
portion of code in the future and modify it so that it triggers when the user
touches any part of the image.

Next, we will look at making the gun fire!

» Working?

Did the code not work? One of the new lines is different from the usual way
we add code. Let’s go through this together:

Open the default.html file.

Locate the line that starts with

<img id="SZ0 0" onmousemove="rotateGun(event)"
src="images/SZ_background_image.jpg" />

Have you added the extra bit of text exactly as it’s shown?
Add the following text:

onmousemove="rotateGun(event)"
between
id="SZ0 0" and src="

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

57

CHAPTER 5 TAKE A SHOT: PART 1

Further
'Anformation

We wrote the following line in JavaScript:
var xPos = e.clientX;

the e was passed to our function as follows:
function rotateGun(e) {

The e contains all the information from an event that has occurred. In
this instance, it is a mouse movement on our image, which we declared as
follows:

<img id="SZ0_0" onmousemove="rotateGun(event)"

src="images/SZ_background_image.jpg" />

When the user moves the mouse over this image, our rotateGun
function is called and the data from the movement is passed in.

In the first line, you see that we extract the “clientX” from e. This is the
horizontal coordinate (more commonly referred to as the x axis) of the
mouse event that has just occurred.

So what is this X-axis? Try to imagine the left-to-right user action of
your screen as the X axis. The following image illustrates the relationship
we want with the X-axis and the gun’s rotation.

58

CHAPTER 5 TAKE A SHOT: PART 1

X-Hxis - User moves their mouse left to right
: 1

+

The maximum rotation between the far left and the far right gun is 50
degrees. So by finding out exactly where we are on the screen, we can use
a mathematical equation to determine what the exact rotation of the gun
should be.

One further point: the code we use to actually rotate the gun is done by
using both JavaScript and CSS. The JavaScript does most of the work here
by namely doing the following:

o Alerts a function every time the user moves the mouse
e Determines how much of the mouse has moved
o Applies the value above to our mathematical equation

From here, we hand this value over to CSS, which then actually rotates
the gun.

Feel free to play with the numbers and test the different rotations that
occur; for example, change the following line

var amountToRotate = -15 + (currentXPositionPercentage * 50);

Change the 50 to 100. You will notice a far bigger change in how the gun
moves. Keep changing the number until you reach a level of rotation that
you are happy with. If you want to go back, simple type the preceding code.

59

CHAPTER 5 TAKE A SHOT: PART 1

Finally, we come across another example of manipulating CSS in
JavaScript in the following line:

$("#SZ0_1").css('transform', 'rotate('+amountToRotate+'deg)');

As the word indicates, the transform property applies a transformation
to any element. Other transformations include scale, move, and skew.

Animating the Gun with Sprite Sheets

When the user clicks the screen, we want to make our gun fire. To do
this, we will work with something called sprite sheets. Before we can start
adding our sprite sheets, we need to write some code. This is because a
sprite sheet is not something your browser (e.g., Chrome) can process by
itself like it does with the images we have used so far.

We need to write some code that instructs the browser on how to
handle our sprite sheet images. To do this, we will use JavaScript. As a word
of caution, the code is slightly lengthier than what you have written so far.
I encourage you to persevere since this particular function can be reused
in every project that you do, without changing anything in the code. Please
ensure that you copy all the code exactly as shown.

Part 1

Open the SZ_SS. js file in your js folder. When the file opens, it should be
completely blank. Type the following lines:

//We need a one stop function that will allow us to process
sprite sheets

function setup SpriteSheet(div_name, image name, no_of frames,
widthx, heightx) {

60

CHAPTER 5 TAKE A SHOT: PART 1

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() / $(div_name).
width() ;

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames
var newDivisible = Math.round((widthx * ratio2) / no of
frames);

//the new width will be the number of frames multiplied by our
new divisible

var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newhWidthx));

//apply our new height to our CSS
$(div_name).css("height', newHeightx);
//
//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')');

//finally we need to apply a background size remembering we

need to multiply width by the number of frames
$(div_name).css('background-size', newWidthx * no_of frames
+ 'px ' + newHeightx + 'px');

61

CHAPTER 5 TAKE A SHOT: PART 1

Initially, I was tempted to just add a standard sprite sheet library;
however, by coding it ourselves, we have more flexibility in future games.
As you build more games, you discover that not all sprite sheets—or all
parameters for using them—are the same. Therefore, you will need to
revisit the preceding function and tweak it to make sure that it fits your
current project. If we had only used a standard function, it would have
severely limited the types of sprite sheets that you could use.

As with all the other standard functions, as long as we link this file to
any HTML file in the future, our little function can be used.

./ \\

Further
' Information

What are sprite sheets?

A sprite sheet is a special image that contains several images in a tiled grid
arrangement.

So why use sprite sheets?

Sprite sheets allow games to run faster, and more importantly, to take up
less memory. By compiling several graphics into a single file, you enable
your game to use the graphics while only needing to load a single file.

How are sprite sheets designed?

There are three parts to our sprite sheet. First, the normal static state is
when the gun reloads and when the gun fires. The following illustrates this:

Reload Images

—_—r—-

b { ‘QA""f{'{ii&hwu-«441)-yyi*a’?,’,.’,’

Static

R

:Gun Firing Images
|

62

CHAPTER 5 TAKE A SHOT: PART 1
Why did we need to write our own special function to use sprite sheets?

There are many ways to deal with sprite sheets. Each programmer designs
their code to manipulate the sprite sheet that suits them. I have used a
very simple method here, which deals with sprites that have been laid out
linearly.

Also, our game does not require sophisticated use of any sprite sheets.
As you are writing all the code, I wanted to make sure that you only had to
write the minimum amount necessary. However, you can use this code as
a basis for your next game and build on it as you see necessary.

Part 2

Now that we have set up our function to handle any sprite sheets, we can
test it with our gun. First, we need to replace the static image for our gun
with the sprite sheet version.

Go to the images folder in the Raw Images folder of the My Work Files
folder. Copy the file named SZ_gun_SS. png to the Images folder, which
should now look like the following screenshot.

K

[e

This PC

» Local Disk (C:) »

SZ_background i
mage.jpg
I - 1

5Z_reload.png

My_Work_Files »

| Y

5Z_gunpng

SCORE

5Z_score.png

Images

SZ_gun_S5.png

SZ_background_i
mage.jpg

S2_reload.png

SZ_gun_SS.png

52_score.png

SZ_gun.png

63

CHAPTER 5 TAKE A SHOT: PART 1

Part 3

Next, we need to inform the code that the gun is a sprite sheet and pass all
the information about it (e.g., the image name that you copied).

We will use JavaScript to do this. Reopen the SZ_SS. js file in the js
folder. Type the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process
sprite sheets

function setup_SpriteSheet(div_name, image name, no_of frames,
widthx, heightx) {

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() / $(div_name).
width() ;

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames
var newDivisible = Math.round((widthx * ratio2) / no of
frames);

//the new width will be the number of frames multiplied by our
new divisible
var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newhWidthx));

//apply our new height to our CSS

64

CHAPTER 5 TAKE A SHOT: PART 1

$(div_name).css("height', newHeightx);
//
//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')');

//finally we need to apply a background size remembering we

need to multiply width by the no of frames
$(div_name).css('background-size', newhWidthx * no of frames
+ "px ' + newHeightx + 'px');

}

//setup the Gun
function setup_gun_SS(){
//first let’s setup our gun SS
setup_SpriteSheet("#520_1","Images/SZ_gun_SS.png",28,150,150);
//need to access a special function in our js/ss.js file
$("#520_1").animateSprite({
fps: 10,
animations: {
static: [o],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
fire: [24,25,26,27,28],
}s
duration: 50,
loop: false,
complete: function () {
// use complete only when you set animations with
'loop: false'
//alert("animation End");

O H

65

CHAPTER 5 TAKE A SHOT: PART 1

Save and close the file.

It can get quite tedious to write in all the different frames needed for
a particular animation. Imagine if you had over 500 frames! In the future,
when revisiting the animateSprite function, change it to take a range of
values. You could also try to code the function to take a set of ranges; for
example, frames (1 to 7,9 to 11, and 29 to 31).

Before we can test, we need to make the following two changes to our
HTML file:

o Reference new JavaScript files in the head
e Enclose the images inside their own divs

Reopen the default.html file and type the following new lines. Please
be careful to replace the existing lines of code so that the entire file looks
like the following code (all new text is in bold):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
¢script src="js/ss.js"»</scripts
¢<script src="js/SZ_SS.js"></scripty
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ maincontent">
<img id="SZ0 0" src="images/SZ_background_image.
jpg" onmousemove="rotateGun(event)" />
<div id="SZ0_1" »</div»
<div id="SZo_2" »

66

CHAPTER 5 TAKE A SHOT: PART 1

</div>
<div id="SZo0_3" >

</div>
</div>
</body>
</html>

V= =

Further
' Information

In this section, we set up our first sprite sheet with the following code:
setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);
Let’s take each parameter in the brackets separately.
e #SZ0 1istheimage ID

o Images/SZ_gun_SS.png is the location of the sprite
sheet

o 28 is the total number of images contained within our
sprite sheet

e 150,150 is the size of each individual image within the
sprite sheet

You may have noticed that we applied a special function to our image.
Let’s take a closer look at each line of this function.

67

CHAPTER 5 TAKE A SHOT: PART 1
o fps:

The ideal frames per second that we would like to apply
to the sprite sheet animations

e animations: {

We can subdivide the images within a sprite sheet into
individual animations

o duration:

The length of time that we want to run each animation
for (in milliseconds)

o loop:

Once the animation finishes, do we want the animation
to repeat or stop?

o complete: function () {

If the loop option is set to false (i.e., no repeat), then
we can give a set of instructions to execute once the
animation has completed.

Part 4

Finally, we need to ensure that we are calling the setup_gun_SS function.
We can do this in the SZ_setupContent file, which initializes all of our
images.

Open the SZ_setupContent. js file and type the following new lines
(all new text is in bold).

68

CHAPTER 5 TAKE A SHOT: PART 1

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$('#5S20 1').css('width', 150 * ratio);
$('#SZ0 1').css("height', 150 * ratio);

//Reload Button
$('#SZ0 2').css('width', 200 * ratio);
$('#5S20 2").css("height', 90 * ratio);

//Score
$('#SZ0 3').css('width', 235 * ratio);
$('#SZ0 3').css('height', 100 * ratio);

//Any sprite sheets?
//0ur Gun
setup_gun_SS();

We are now ready to test! Do not expect much, however, because we
are initially telling the code to just show the first image. So let’s test this
and make sure that our code is working as expected.

69

CHAPTER 5 TAKE A SHOT: PART 1

Save all the files and then close them. Go back to the My Work Files
folder and double-click the default.html file. The gun should look exactly
the same as before. In fact, the whole screen should look the same. This is
good because we have replaced our static image of the gun with a sprite
sheet and told it to show the first image.

Next, we look at using the code we have written to animate the gun
reloading.

[

N

=
-

- Mot
5 Working?

Why does my screen look the same as before?

Well, this is great news. After all that work, I suppose it is natural to expect
something to be different. Maybe some of those animations like gun-firing
perhaps.

The fact that everything looks normal despite us removing the gun’s
image and replacing it with our massive sprite sheet image is exactly what

we wanted from our code.
The gun is not on the screen anymore.

Since this is a large portion of code, here are suggestions for some typical
coding errors that may have happened:

e Go back through each line of code and ensure that it
matches with what it is written here in the book.

e Check that you placed the } symbol where indicated.
o Make sure that the SZ_gun_SS.png is in the images folder.

e Make sure that you have included the two new
JavaScript files in the head of the HTML file (i.e., ss.js
and SZ_SS.js).

70

CHAPTER 5 TAKE A SHOT: PART 1
The gun does not look right.

Either the gun looks a lot bigger than it should or it looks like a part of the
image has been cut off. This means that there is a problem with the way the
sprite sheet for the gun has been set up; in particular, the setup_gun_SS()
function in the SZ_SS. js file. Please recheck your code and ensure that all
the lines of code are exactly as shown.

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

Reloading Our Gun

We need to concentrate on two aspects of reloading the gun: cause and
effect. The cause comes from the user clicking the reload image on the
screen. The effect is the gun animating the appropriate images from the
sprite sheet.

Open the SZ_touch. js file in the js folder. When the file opens, it
should be completely blank. Type the following lines:

//this function is called to reload our gun
function reloadGun(e) {
//play the reload animation of our SS
$("#5Z0 1").animateSprite("play"”, "reload");

Save this file and close it.

When revisiting this project, it would be a good idea to provide options
for the reload sequence. I suggest a longer sequence if the gun is empty
and a shorter sequence if the gun is not. You would need to define two
reload functions and then check the gun’s status before calling the reload
function. This way, you are rewarding the user for reloading before the gun

is empty!

71

CHAPTER 5 TAKE A SHOT: PART 1

de

Before we can test, we need to link this file and the function to the
fault.html file. Reopen the default.html file and type the following

new line and an addition to an existing line (all in bold):

<h
<

<
<

<
</

tml>
head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ_touch.js"»</scripts
<link href="css/SZ_master.css" rel="stylesheet" />
/head>
body>
<div id="SZ_maincontent">

<img i1d="SZ0 0" src="images/SZ_background image.jpg"
onmousemove="rotateGun(event)" />

<div 1d="SZo 1" ></div>

<div id="Szo 2" >

<img src="images/SZ_reload.png" onmousedown="reloadGun

(event)" />

</div>

<div id="SzZo 3" >

</div>
</div>
/body>
html>

72

CHAPTER 5 TAKE A SHOT: PART 1

Save the file and then close it. Go back to the My Work Files folder and
double-click the default.html file

When the screen comes up, try to click the Reload button. You should
see that the gun animates. This time, click the button a few times before
the first animation has finished. It’s not smooth, is it? We need to fix this
so that the gun does not accept a reload request until the previous one has
finished.

Reopen the SZ_touch. js file in the js folder. Type the following new
lines (in bold):

//this function is called to reload our gun

function reloadGun(e) {
//play the reload animation of our SS
$("#SZ0_1").animateSprite("play"”, "reload");

}

//We need a flag to keep track to avoid repetition of animations

before the first has finished

var canlclick= o0;

//this function is called to reload our gun
function reloadGun(e) {
//Let’s check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0 _1").animateSprite("play", "reload");

Save this file and close it. Go back to the My Work Files folder and
double-click the default.html file. Again, click the Reload button a few
times before the first animation has finished. The problem has been solved.

73

CHAPTER 5 TAKE A SHOT: PART 1

However, we now have another issue: the game only accepts the reload
request once. We cannot make the gun reload after the first try. This is
because we have not reset our flag anywhere in our code. So let’s do that
now. Reopen the SZ_SS. js file and type the following new lines (in bold):

//We need a one stop function that will allow us to process
sprite sheets

function setup_SpriteSheet(div_name, image name, no_of_ frames,
widthx, heightx) {

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() / $(div_name).width();

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames
var newDivisible = Math.round((widthx * ratio2) / no of frames);

//the new width will be the number of frames multiplied by our
new divisible
var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newhWidthx));

//apply our new height to our CSS
$(div_name).css('height', newHeightx);

//

//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')');

74

CHAPTER 5 TAKE A SHOT: PART 1

//finally we need to apply a background size remembering we

need to multiply width by the no of frames
$(div_name).css('background-size', newhWidthx * no of frames
+ "px ' + newHeightx + 'px');

}

//setup the Gun
function setup gun SS(){
//first let’s setup our gun SS
setup SpriteSheet("#SZ0 1","Images/SZ_gun_
SS.png",28,150,150);
//need to access a special function in our js/ss.js file
$("#SZ0 1").animateSprite({
fps: 10,
animations: {
static: [o0],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
fire: [24,25,26,27,28],
})
duration: 50,
loop: false,
complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
//we need to reset our universal flag
canIclick=0;

};

75

CHAPTER 5 TAKE A SHOT: PART 1

Save this file and close it.

When revisiting this project, it would be a good idea to store all of our
global vars in a separate file. I am sure that you practice this in your own
programming environment; it ensures that your project is manageable in
future. If you do create a global var file, make sure to link it in your HTML
file using the <script> tag.

Go back to the My Work Files folder and double-click the default.
html file.

Again, click the Reload button after the first animation has finished.
The problem should now be solved.

Next, we will complete this chapter by making our gun fire.

Further
Information

Why did the gun stop reloading after the first try?

Before we tell our code to run the reload command, we ask it if our flag
(i.e. canIclick) is set to 0. We initialize canIclick to 0 when the program
starts. Once it passes this test, the first thing the code does is set canIclick
to 1.

The next time you press the Reload button, it comes back negative—to
when asked if canIclick is 0. So ideally, we want to reset canIclick back
to 0 once the animation for reloading the gun completes. We do this in a
special subfunction of the animate command. This function specifically
asks if there are any special instructions to be executed once the animation
finishes.

76

CHAPTER 5 TAKE A SHOT: PART 1

Recall when we discussed the onmousemove event, in which we used
the following:

<img src="images/SZ_reload.
png" onmousedown="reloadGun(event)" /5 -

As its name suggests, this calls the reloadGun function every time the
image is clicked. The following is a shortened list of the event functions
that we can use.

e onmouseenter

This event occurs when the mouse is moved onto an
element.

e onmouseleave

This event occurs when the mouse is moved out of an
element.

e Ohmouseover

This event occurs when the mouse is moved onto an

element or onto one of its children.
e onmouseout

This event occurs when a user moves the mouse

pointer out of an element or out of one of its children.
e onmouseup

This event occurs when a user releases a mouse button
over an element.

77

CHAPTER 5 TAKE A SHOT: PART 1

Firing Our Gun

As you may expect, the method of making our gun fire is very similar to
how we made the gun reload. First, we need to register the user requesting
the gun to fire. Then, we need to make the gun animate.

Reopen the SZ_touch. js file in the js folder. Type the following new
lines (in bold):

//We need a flag to keep track to avoid repetition of animations
before the first has finished
var canlIclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let’s check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0 1").animateSprite("play"”, "reload");

}

//this function is called to fire our gun
function fireGun(e) {
//Let’s check if we can allow this to occur
if(canIclick== 0){
//1ooks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play"”, "fire");

Save the file and close it.

78

CHAPTER 5 TAKE A SHOT: PART 1

In the future, you may have more variables to check before allowing
the user to fire the gun (e.g., if the screen was paused, or at the end of a
level). It would be a good idea at this point to create a function that checks
for all parameter values and then outputs a resulting decision. This output
would then be checked globally by other functions (such as if it is possible
to pause) and the fireGun() function when deciding whether to proceed.

Before we can test, we need to add the function into the default.html
file. Reopen the default.html file. Type the following new line (in bold)
and an addition to an existing line (modified text is in red):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ touch.js"></script>
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ maincontent">
<img id="SZ0_0" src="images/SZ_background_image.jpg"
onmousemove="rotateGun(event)"onmousedown="fireGun(event)" />
<div id="SZ0o 1" ></div>
<div id="SzZo 2" >
<img src="images/SZ_reload.png"
onmousedown="reloadGun(event)" />
</div>
<div id="SzZo 3" >

79

CHAPTER 5 TAKE A SHOT: PART 1

</div>
</div>
</body>
</html>

Save the file and then close it. Go back to the My Work_ Files folder and
double-click the default.html file. Now click anywhere on the screen. The
gun should animate the firing sequence.

By now, the gun should be doing the following:

e Moving in response to the mouse on the screen
o Reloading when the user clicks the Reload button

» Firing when the user clicks anywhere on our play area
of the screen

/'.’) .\\-.

Further
'Information

In this section, we invoked a specific set of sprite animation using the
following line:

$("#SZ0_1").animateSprite("play”, "fire");

How does the system know what to do with "fire"? If you go back to
the code, notice we wrote the following:

animations: {
static: [o],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
80

CHAPTER 5 TAKE A SHOT: PART 1

fire: [24,25,26,27,28],

}s

One of the animations we defined was called "fire" and it was images
24 to 28 of the individual sprite images.

Note that we inserted two mouse events into an image tag with the
following code:

<img id="SZ0_0" src="images/SZ_background_image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

This is entirely possible because (a) you can have multiple mouse
events defined for an element, and (b) the two mouse events do not
conflict with each other.

One Last Thing...

You may have noticed that when you click the Reload button, the cursor
remains as a crosshair. It would be nice if it changes back to a more
appropriate cursor, which is more intuitive and makes for a better
gameplay experience.

We can do this by changing the CSS. You will now need to reopen the
SZ_master.css file and type the following new line (in bold):

html {
height: 100%;

}
body {

padding: 0 0 0 0;

margin: 0;
user-select: none;

81

CHAPTER 5 TAKE A SHOT: PART 1

cursor: crosshair;
}
img {
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;
}
#5720 0 {
position: fixed;
top: 0;
left: 0;
min-width: 100%;
min-height: 100%;

#520 1 {
position: fixed;
bottom: 0;
right: o;

#5720 2 {
position: fixed;
top: 0;
left: 0;
cursor: pointer;

82

CHAPTER 5 TAKE A SHOT: PART 1

#5720 3 {
position: fixed;
top: 0;
right: o;

Save the file and then close it. Go back to the My Work_ Files folder and
double-click the default.html file.

Now when you move the cursor over the Reload button, it should
change instantly into a normal “hand” image. Similarly, when you move
the mouse away from the Reload button, it should change back to the
cursor image.

The next chapter introduces the zombies to our game, which finally
gives our players some interactivity.

Not
% Wnrkmg?

The cursor does not change to a pointer when it’s over the Reload
button?

This error may be from the HTML file. First, check that you have inserted
the this line

cursor: pointer;

in the #5Z0_2 section.

If you have done this already, then we need to take a look at the
default.html file. Ensure that you have replaced all the image tags into
the div tags as indicated.

83

CHAPTER 5 TAKE A SHOT: PART 1
For example, what used to be

Should now be

<div id="SZ0 1" ></div>
<div id="Szo 2" >
<img src="images/SZ_reload.png"
onmousedown="reloadGun(event)" />
</div>
<div id="SZ0 3" >

</div>

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

84

CHAPTER 6

Where Are
the Zombies?

“Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.”

Bill Gates

Let’s recap what our zombies need to do in our game. We need six zombies
that will walk toward the screen. Each zombie has a sprite sheet with

its walking animation. When a zombie reaches the end of its animation
toward the screen, it needs to reset to its original position.

Creating a Zombie: Part 1

First, we need to add the following four sprite sheets to your image folder:
o zombiesSS_1.png: the scientist zombie walking
o zombiesSS_2.png: the female zombie walking
e zombiesSS_3.png: the male zombie walking

e SZ bubble.png: the three zombies stuck in a bubble

85
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_6

CHAPTER6 WHERE ARE THE ZOMBIES?

Go to the images folder in the Raw Images folder of theMy Work Files
folder. Locate the files named zombiesSS_1.png, zombiesSS 2.png,
zombiesSS_3.png, and SZ_bubble.png, and copy these to the Images
folder, which should now look like this:

—
Sy
F;; - B Images
» ThisPC » LocalDisk (C:) » My Work Files » Images o R {
Arrange Share Edit Tags Quick Look
- s = SZ_background i ST bubble.png SZ_gun SS.png
L1 1] - mageog
SZ_backgro 5Z_bubble 5Z_gun 5Z_gun_55 SZ_reload
und_image § s “
m 52 _gunpng SZ_reload.pag S2_score.png
......... —
57 _score zombiesSS_ zombiesSS_ zombiesSS_
1 2 3
i 1.png . _2.ong _3.0ng

Creating a Zombie: Part 2

By the end of this section, you will see a zombie at the edge of our planet. To
do this, we need to code a zombie from scratch. Again, I apologize in advance,
as there will be a fair bit of coding. However, the excitement of seeing your
very own zombie appearing on the screen is worth all the hard work.

Open the SZ_zombie movement. js file, which should be completely
blank. Type the following lines:

//1let’s create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style','position: fixed; top:0; left:0;")

86

CHAPTER6 WHERE ARE THE ZOMBIES?

//we want to position our zombie exactly at the tip of the planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#S20 0').width())-(ratio*50)) + (ratio*50);

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top _position+'px';

//give it an id
div.id = 'zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

You can now save and close this file.

We have introduced a few new elements in the code, which are
explored in the “Further Information” section.

Before we do further coding, we need to link this new file to our
default.html file. Reopen the default.html file and type the following
new line, along with the extra bit of text in one of our existing lines (all the
new text is in bold):

87

CHAPTER6 WHERE ARE THE ZOMBIES?

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ_touch.js"></script>
¢<script src="js/SZ_zombie_movement.js"></script>
<link href="css/SZ master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ maincontent">
<img id="SZ0 0" src="images/SZ_background image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />
<div id="SZ0 1" ></div>
<div id="Szo 2" >
<img src="images/SZ_reload.png"
onmousedown="reloadGun(event)" />
</div>
<div id="SZo 3" >

</div>
</div>
</body>
</html>

88

CHAPTER6 WHERE ARE THE ZOMBIES?

Save the file and then close it. Now we can go ahead and further
develop our zombie sprite sheets. Reopen the SZ_SS file in your js folder.
Type the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process
sprite sheets

function setup SpriteSheet(div_name, image name, no of frames,
widthx, heightx) {

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() / $(div_name).
width() ;

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames
var newDivisible = Math.round((widthx * ratio2) / no of
frames);

//the new width will be the number of frames multiplied by our
new divisible
var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newWidthx));

//apply our new height to our CSS
$(div_name).css('height', newHeightx);
//

89

CHAPTER6 WHERE ARE THE ZOMBIES?

//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')');

//finally we need to apply a background size remembering we

need to multiply width by the no of frames
$(div_name).css('background-size', newWidthx * no_of frames
+ 'px " + newHeightx + 'px');

}

//setup the Gun
function setup_gun SS(){
//first let’s setup our gun SS
setup_SpriteSheet("#SzZo 1","Images/SZ_gun SS.png",28,150,150);
//need to access a special function in our js/ss.js file
$("#SZ0 1").animateSprite({
fps: 10,
animations: {
static: [o0],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
fire: [24,25,26,27,28],
})
duration: 50,
loop: false,
complete: function () {
// use complete only when you set animations with
‘loop: false'
//alert("animation End");
//we need to reset our universal flag
canIclick=0;

};

90

CHAPTER6 WHERE ARE THE ZOMBIES?

//setup a newly created zombie
function setup_zombie_SS(whichOne){

//1let’s identify what type of zombie we should create
var type_zombie = [1,2,3,1,2,3];

//let’s setup a speed for each type of zombie
var speed_zombie = [100,50,150];

//fixst let’s setup our zombie SS

setup_SpriteSheet("#zombie" +whichOne, "Images/
zombiesSS_"+type_zombie[whichOne-1]+".png",9,20,20);
//need to access a special function in our js/ss.js file
$("#zombie" +whichOne).animateSprite({
fps: 10,
animations: {
static: [0,1,2,3,4,5,6,7],
}s
duration: speed_zombie[type_zombie[whichOne-1]-1],
loop: true,
complete: function () {
// use complete only when you set animations with
'loop: false'
//alert("animation End");

H

Save the file and then close it.

You will have noticed that we keep repeating the code to set up a sprite
sheet in various JavaScript files. I have done it like this to keep the code
flowing linearly; however, you may decide to create one file for all sprite

sheet operations.

91

CHAPTER6 WHERE ARE THE ZOMBIES?

We now need to call this function in our setup file to create a zombie.
Reopen the SZ_setupContent file in your js folder and type the following
new lines (all new text is in bold):

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$('#SZ0 1').css('width', 150 * ratio);
$('#SZ0 1').css('height', 150 * ratio);

//Reload Button
$('#5S20 2').css('width', 200 * ratio);
$('#S20 2').css("height', 90 * ratio);

//Score
$('#SZ0 3').css('width', 235 * ratio);
$('#SZ0 3').css("height', 100 * ratio);

//Any sprite sheets?
//0ur Gun
setup_gun SS();

//Cxeate a zombie
SZ_createZombie(1);

We are now ready to test! Save all the files and then close them. Go
back to your My Work Files folder and double-click the default.html file
What you should see is a scientist zombie at the edge of the planet surface.

If you click your browser’s Refresh button (alternatively, you could press
F5), the zombie should appear in a different location (yet still at the edge of
the planet surface). Continue to refresh a few times and test this behavior.

92

CHAPTER6 WHERE ARE THE ZOMBIES?

We have now managed to spawn a zombie in our game! Our next step

will be to make our zombie come toward us.

Did it not work? Here are a few areas to check:

o Check that you have linked the SZ_zombie_movement.
js file correctly in your default.html.

e We are using arrays for the first time (see the “Further
Information” section about what arrays are). Ensure
that you are using the square brackets located next to
the P key on your keyboard.

o Finally, ensure that the following line is as coded exactly
as shown: setup_SpriteSheet("#zombie"+whichOne,
"Images/zombiesSS "+type zombie[whichOne-1]+"
png",9,20,20);

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

\ Further
Information

Three exciting features in this section. Let’s explore them a little more.

93

CHAPTER6 WHERE ARE THE ZOMBIES?

Creating a div dynamically. What does dynamically
mean? It means that the div for the zombie was
generated when the game was running; that is, we did not
code a div for the zombie in the default.html file where
we have all of our other divs. The main reason for doing
it this way is to generate multiple zombies by calling one
function rather than writing out each div manually.

Arrays. If you were reading a conventional coding book in
any computer language, you would have been introduced
to arrays on day 1. However, I think it is better to learn

it now because you just had a practical use for one, and
therefore you are able to understand the explanation
better. Let’s take a quick look at one of our arrays.

var type zombie = [1,2,3,1,2,3];
o var declares the array as a new element.
e type zombie is the name of the array.

e [] anythingin these brackets are the contents of
the array, separated by commas

We have an array of six integers starting with the
number 1 and ending with the number 3.

We used a couple of math functions in our coding. Let’s have a look at

some of them.

Math.random() is a special JavaScript function to generate
arandom number. This random number was used (with

some manipulation) to randomly place our zombie.

Math.floor () is a function that essentially rounds
down a number; for example, 45.89 would return
45. Incidentally, the opposite of this function (i.e.,
rounding up) is Math.ceil(), so 45.89 would return 46.

94

CHAPTER6 WHERE ARE THE ZOMBIES?

Moving the Zombie Closer

To bring our zombie toward us, we will use JavaScript. The code will do
two animations simultaneously. First, it will pull the zombie down the
screen. Second, the zombie will be scaled to look larger. By doing these two
animations together, we give the illusion of the zombie walking toward us.

Open the SZ_zombie_movement. js file and type the following new lines
(all new text is in bold):

//let’s create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")
//we want to position our zombie exactly at the tip of the planet

var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#SZ0 0').
width())-(ratio*50)) + (ratio*50);

//let's position our zombie
div.style.left = left _position+'px'; div.style.top =
top position+'px';

//give it an id
div.id = 'zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

95

CHAPTER6 WHERE ARE THE ZOMBIES?

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

}

//1let’s animate our zombie towards us
function SZ_animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS_ease = ['easeInSine','easeOutQuart’,'easeInOutQuad’,
'easeInSine’, 'easeOutQuart’,'easeInOutQuad'];

//finally we are ready to animate
$zombiex.animate({
//fixst bring our zombie slowly down the screen
left: amty+ "px",
}>{ easing:ZS_ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//vork out the amount to scale
var xx = (fx.pos)*16;
//apply the scale
$(this).css('transform','scale(+xx+')"');

96

CHAPTER6 WHERE ARE THE ZOMBIES?

}
}» complete: function () {

}
s

Save this file and then close it. Go back to the My Work Files folder
and double-click the default.html file.

When the screen comes up, you should see the zombie coming toward
you! Depending on your screen resolution, the zombie may overstep the
edge or stop a little before it should. Do not worry about that; we will
handle it in Chapter 8.

Next, let’s look into creating all the zombies that we need for the game.

=
o Fuarther

Information

——

The following array has text values, but what are they?

var ZS ease = ['easeInSine', 'easeOutQuart', 'easeInOutQuad', 'eas
eInSine', 'easeOutQuart', 'easeInOutQuad'];

These values are what we use for our easing function. An easing
function specifies a zombie’s rate of change over time. The simplest and
most widely used easing value is a linear one. This is where the zombie
moves at a constant speed for the duration of its walk. That would be a
little boring and unrealistic, however.

97

CHAPTER6 WHERE ARE THE ZOMBIES?

We have a wide range of easing functions to choose from. The
following are the ones that we will use:

o For our scientist zombie, easeInSine. It starts quite
slowly and then accelerates for the rest of the journey.
Here is a graph depicting the function:

¢ For our female zombie, easeOutQuart. There is no
delay at the start; she begins abruptly and eases off
near the end. Here is a graph depicting the function:

e For our male zombie, easeInOutQuad. There is a delay
both at the start and at the finish. The midway section
is fairly average as well. Here is a graph depicting the
function:

98

CHAPTER6 WHERE ARE THE ZOMBIES?

Creating All the Zombies

We will create six zombies for our game. We could create as many (or
as few) as we want; however, we need to consider memory issues when
creating a game. If we create too many zombies, the game may run out
of computer memory. On the other hand, if we create too few, then the
game may not be challenging enough. Essentially, it’s all about finding the
perfect parameters for the game and the player.

Open the SZ_setupContent. js file in the js folder. First, locate the
following two lines and remove them:

//Create a zombie
SZ createZombie(1);

Type the following new lines (all new text is in bold):

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$('#SZ0 1').css('width', 150 * ratio);
$('#SZ0 1').css("height', 150 * ratio);

//Reload Button

$('#5S20 2").css('width', 200 * ratio);
$('#S20 2").css("height', 90 * ratio);
//Score

$('#SZ0 3').css('width', 235 * ratio);
$('#SZ0 3').css("height', 100 * ratio);
//Any sprite sheets?

//0ur Gun
setup _gun SS();

99

CHAPTER6 WHERE ARE THE ZOMBIES?

//Create all our 6 zombies

for (i = 15 i < 7; i++) {
//this will get called 6 times
SZ_createZombie(i);

}

Save this file and then close it.

For the purposes of this book, we have determined to keep the
maximum number of zombies to six. To keep this function future-proof,
however, I recommend revisiting it to accept the maximum number of
zombies as a parameter. You would replace the 7 in the for loop with this
parameter name.

Go back to the My Work Files folder and double-click the default.
html file.

When the screen comes up, you should see all six zombies make their
way toward the screen. You will see not only the scientist zombie but also
the female and the male zombies too. I should note that their speed is
relative to what we discussed in Chapter 1.

I am noting the following concerns:

e The zombies overlap each other.
o The gunis hidden behind the zombies.

¢ The mouse cursor does not turn into crosshairs when

over a zombie.

100

CHAPTER6 WHERE ARE THE ZOMBIES?

Iillustrated the first two points in the following screenshot:

Do not worry about these issues too much at this stage. All of these
concerns are addressed in Chapter 8. Next, we will look at recycling the life
of our zombie so that once it finishes, the element is ready for our program
to use again.

In this section, we came across a for loop to create our six zombies:
for (i =1; i< 7; i++) {

By using this loop, we eliminated the need to write the same code to
create a zombie six times. If that had been the case, then imagine if we
were to create 100 zombies!

As shown in the example, loops are essential if you want to run the
same code over and over again with a different value.

101

CHAPTER6 WHERE ARE THE ZOMBIES?

Here are four different kinds of loops that we can use in our game:
o forloops through a block of code a number of times
o for/inloops through the properties of an object

o whileloops through a block of code while a specified
condition is true

e do/while also loops through a block of code while a
specified condition is true

Generating a Zombie Life Cycle

As you can see, the zombies remain on the screen once they reach the
screen. Eventually, we will want to end the game if any zombie reaches the
screen. For now, we are happy to just send them back to the start.

Open the SZ_zombie movement. js file and type the following new lines
(all new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the
planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

102

CHAPTER6 WHERE ARE THE ZOMBIES?

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top_position+'px’;

//give it an id

div.id = 'zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//1let’s animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//xeset the zombies scale value
$zombiex.css('transform','scale('+0+')");

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine', 'easeOutQuart’,'easeInOutQuad’,
'easeInSine’', 'easeOutQuart', 'easeInOutQuad'];

103

CHAPTER6 WHERE ARE THE ZOMBIES?

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+1+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this animation
if (xx>15){
//stop all animation
$(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne);
} else {
//apply the scale
$(this).css("transform', 'scale('+xx+')");
}
}
}, complete: function () {
}
1;
}

//a function to completely reset our zombie
function SZ_resetZombie(whichOne){

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

104

CHAPTER6 WHERE ARE THE ZOMBIES?

//we want to position our zombie exactly at the tip of the
planet
var top_position= $('#SZ0_0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left_position = Math.floox(Math.random() *
($('#5Z0_o0').width())-(ratio*50)) + (ratio*50);

//let's re-position our zombie

$zombiex.css({top: top_position+'px', left: left_
position+'px'});

//finally let’s make the zombie come towards the screen again
SZ_animateZombie(whichOne);

Save this file and then close it.
Again, the function to reset the zombie needs to be future-proofed. I

suggest placing all the possible parameters for a zombie’s starting position

in a separate file. In this function, we instruct the code to access the new

file for instructions with possible parameters for different variances (e.g., if

the user is in a higher level, the values could be different).

Go back to the My Work Files folder and double-click the default.

html file.

When the screen comes up, you should see the zombies come to the

screen as before but then disappear. When they reappear, they should

appear in a different position when coming toward the screen.

In the next chapter, we look at taking a shot at our zombies.

Noft
@ Wnrkmg?

105

CHAPTER6 WHERE ARE THE ZOMBIES?

Did it not work? This could be due to a few lines that we added around
some existing code. Let’s have a look
The original line of code was

$zombiex. animate({
Make sure that the new line of code looks like this:
$zombiex.delay(timex[whichOne-1]/2).animate({
The original line of code was

//apply the scale
$(this).css('transform',
"scale('+xx+')");

Make sure that the new line of code looks like this:

//do a check to see if we should end this animation
if(xx>15){

//stop all animation

$(this).stop();

//call a function to reset this zombie

SZ_resetZombie(whichOne);

} else {

//apply the scale
$(this).css('transform',
"scale('+xx+')");

}

}

If your code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

106

CHAPTER 7

Take a Shot: Part 2

“If you do it right, it will last forever”

Massimo Vignelli

The good news is that we are near the end. The slightly bad news is that
there will be a fair bit of coding in this chapter. So what will we see at the
end of this chapter?

e The gun will be able to fire on zombies.

o The zombies will register the hits. If the maximum number
of hits is reached, a zombie will turn into a bubble.

e The bubble zombie will fly away into the distance.

o We need to keep track of the number of times the gun
has been fired, and require the user to reload when the
maximum has been reached.

o Finally, if a zombie reaches the screen, we need to
declare the game over.

Hitting a Zombie

You may have noticed that when you try to click a zombie, the gun does
not fire. This is because we have not bound a mouse-click event to the
zombie elements. We can place this mouse-click code in the function
where we create each zombie.

107
© Zarrar Chishti 2017

Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_7

CHAPTER 7 TAKE A SHOT: PART 2

Open the SZ_zombie_movement. js file and type the following new lines
(all new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style','position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//1let's position our zombie
div.style.left = left _position+'px'; div.style.top = top_
position+'px';

//give it an id
div.id = 'zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//bind the users mouse click to this zombie
$("#zombie" +whichOne) .bind('mousedown touchstart’', function (e) {

108

CHAPTER 7 TAKE A SHOT: PART 2

//fixrst we want to fire the gun
fireGun(event);

H

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+"')");

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine’,'easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+1+ "px",
},{ easing:ZS _ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie

109

CHAPTER 7 TAKE A SHOT: PART 2

if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
$(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne);
} else {
//apply the scale
$(this).css("transform',
"scale('+xx+')");

}
}, complete: function () {
}
1
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne){

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0').width())-(ratio*50)) + (ratio*50);

110

CHAPTER 7 TAKE A SHOT: PART 2

//let's re-position our zombie
$zombiex.css({top: top position+'px', left: left
position+'px'});

//finally let's make the zombie come towards the screen
again
SZ_animateZombie(whichOne);

Navigate to the menu, click File, and then click Save. You can now close
this file.

We are now ready to test! Go back to the My Work Files folder and
double-click the default.html file. You should see the gun firing when you
click over any of the zombies coming toward the screen.

This was made possible by adding 'mousedown touchstart' events to
each zombie’s div. When revisiting this project, you may wish to consider
installing a “headshot” type of feature. For this to work, you need to do the
following:

1. Place a div within the zombie’s div that defines its
head.

2. Place the same "'mousedown touchstart' events to
this new div, which should override the outer div’s
functionality.

3. [Ifthis new div is hit, then give the user more points.

4. You may want to consider awarding the maximum hits
if the div is hit; for example, if it usually takes three
hits to kill a zombie (this functionality is added in the
next section), only one of the headshots is sufficient.

111

CHAPTER 7 TAKE A SHOT: PART 2

Further
Information

In earlier chapters, we bound mouse events by adding them to the image
tag; for example

<img id="SZ0 0" onmousemove="rotateGun(event)"
src="images/SZ_background_image.jpg" />

In this section, however, we needed to add a mouse event to our
zombies, which are not created in our HTML page.

So just as we created the zombies dynamically, we have to bind the
events to them at runtime as well. This was done by using JavaScript code,
as follows:

$("#zombie"+whichOne) .bind('mousedown touchstart', function (e) {

In this line, we have not only bound the mousedown event to each zombie,
but also defined the instructions that execute when that event occurs.

= =
y 3 " n,

wwllrking?

Did the code not work? Check to see if you have typed whichOne (make
sure that the O is a capital letter) in the new code that you have written.

When writing any code from this book, it is extremely important to
be aware that JavaScript makes a sharp distinction between capital and
lowercase letters.

112

CHAPTER 7 TAKE A SHOT: PART 2

JavaScript does not consider a variable named whichone to be the
same as a variable named whichOne.

If the code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

Making the Hits Count

Let’s recap the number of hits each zombie will be able to take before
deing."

e Professor Z: two hits

e Belladonna: one hit

e Brad: three hits

To keep track of the number of hits each zombie has taken, we need to
use an array. Also, we need to remember to reset each zombie’s hit count
when it resets.

Open the SZ_zombie movement. js file and type the following new lines
(all new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis

113

CHAPTER 7 TAKE A SHOT: PART 2

var left position = Math.floor(Math.random() * ($('#SZo 0').
width())-(ratio*50)) + (ratio*50);

//let's position our zombie
div.style.left = left position+'px'; div.style.top = top_
position+'px’;

//give it an id
div.id = 'zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
zombieHit(whichOne-1);

};

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

114

CHAPTER 7 TAKE A SHOT: PART 2

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’,'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+1+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, x){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne);
} else {

//apply the scale
$(this).css('transform',
"scale('+xx+')");

115

CHAPTER 7 TAKE A SHOT: PART 2

}
}
}, complete: function () {
}
1);
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne){

//xeset this zombies hit counter
zombieHits_counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//vwe need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Szo 0').width())-(ratio*50)) + (ratio*50);

//let's re-position our zombie
$zombiex.css({top: top position+'px’,
left: left position+'px'});

//finally let's make the zombie come towards the screen
again
SZ_animateZombie(whichOne);

Save and close this file.

116

CHAPTER 7 TAKE A SHOT: PART 2

If you are developing levels for this game in the future, you want to add
a check before resetting the zombie. For example, if the result of killing
a zombie is a new level, then rather than just resetting that particular
zombie, you want to reset all the zombies. I would even go as far as making
this operation its own function, which performed all of these checks.

Open the SZ_touch. js file in the js folder. Type the following new
lines (all new text is in bold):

//We need a flag to keep track to avoid repetition of
animations before the first has finished
var canlIclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play"”, "reload");

}

//this function is called to fire our gun
function fireGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play", "fire");

}

//array to keep track of the zombie hits
var zombieHits_counter = [o0,0,0,0,0,0];

117

CHAPTER 7 TAKE A SHOT: PART 2

//array for each zombies limit
var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne){

//increment the counter
zombieHits_counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits_countexr[whichOne] »= zombieHits_
limits[whichOne]){

//xeset this zombie
SZ_resetZombie(whichOne+1);

}

Save and close this file. We are now ready to test! Go back to the
My Work Files folder and double-click the default.html file.

Now, the zombies should reset before they reach the screen when we
have fired on them the correct number of times. So if we fire once on the
female zombie, she should reset immediately. Similarly, if we fire three
times on the male zombie, he should reset. Finally, if we fire twice on the
scientist zombie, then he should reset.

Next, I introduce our bubble zombies.

Further
' Information

We used a couple of techniques to keep track and compare values in our
code. Let’s take a closer look at some of them.

118

CHAPTER 7 TAKE A SHOT: PART 2
var ZS ease = zombieHits counter[whichOne]++;

The ++ is an assignment operator that adds one to the current value of
the variable.

Next, let’s look at how we checked to see if the maximum number of
hits had been reached.

if(zombieHits counter[whichOne] >= zombieHits limits[whichOne]){

An if statement is what we call a conditional statement. Conditional
statements are used when you want to perform different actions on
different decisions. So in this case, ifthe zombie has had the maximum
number of hits, then we want to reset it; otherwise, do nothing.

And, you see >= in the statement, which means if the first value is
greater than or equal to the second value. Here are some other conditional
statements we could use for other instances:

e <=(less than or equal to)
e ==(equalto)

¢ < (lessthan)

e > (greater than)

e I=(notequal to)

Zombie Down!

When a zombie has been hit the maximum number of times, it is reset. We
also need the zombie to appear in a bubble, however, to give the illusion
that the zombie has been subdued and dealt with in the game.

To do this, the following needs to completed.

1. Create six bubble zombie elements that are ready to
be deployed when needed.

119

CHAPTER 7 TAKE A SHOT: PART 2

2. Before resetting a zombie, activate its counter
bubble zombie.

3. Make sure that the bubble zombie has the same
scale and location values to make it seem as if the
walking zombie has been transformed into the
bubble.

4. Finally, we want the bubble zombie to float away
into space.

Part 1: Create Six Bubble Zombie Elements

To create the six bubble zombies, we need to open the SZ_zombie
movement. js file and type the following new lines (all new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;')

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#SZ0 0').
width())-(ratio*50)) + (ratio*50);

120

CHAPTER 7 TAKE A SHOT: PART 2

//let's position our zombie
div.style.left = left position+'px'; div.style.top = top_
position+'px';

//and the same for our bubble zombie
div2.style.left = left_position+'px'; div2.style.top = top_
position+'px';

//give it an id
div.id = 'zombie'+whichOne;

//also for our bubble zombie
div2.id = 'bubble_zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
zombieHit(whichOne-1);

};

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

121

CHAPTER 7 TAKE A SHOT: PART 2

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+1+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();

122

CHAPTER 7 TAKE A SHOT: PART 2

//call a function to reset this zombie

SZ_resetZombie(whichOne);

} else {

//apply the scale
$(this).css("transform',
"scale('+xx+')");

}
}, complete: function () {
}
1;
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0').width())-(ratio*50)) + (ratio*50);

//let's re-position our zombie
$zombiex.css({top: top position+'px', left: left
position+'px'});

123

CHAPTER 7 TAKE A SHOT: PART 2

//finally let's make the zombie come towards the screen
again
SZ_animateZombie(whichOne);

Save and close this file.

appendChild() is an interesting method used in this code. This
method appends a node as the last child of another node. So in our case,
we are adding our zombie’s div to the end of our HTML body.

If in the future, you need to add an element, but not as the last child.
You may wish to use insertBefore() rather than appendChild(). The
insertBefore() method inserts a node as a child, right before an existing
child, which you specify.

Before we can test to see our newly created bubble zombie divs, we
need to add their sprite sheet functionality.

To do this, we now need to open the SZ_SS. js file in our js folder. Type
the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process
sprite sheets

function setup SpriteSheet(div_name, image name, no_of frames,
widthx, heightx) {

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() / $(div_name).
width() ;

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames
var newDivisible = Math.round((widthx * ratio2) / no_of
frames);

124

CHAPTER 7 TAKE A SHOT: PART 2

//the new width will be the number of frames multiplied by our

new divisible
var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newWidthx));

//apply our new height to our CSS
$(div_name).css("height', newHeightx);
//
//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')");

//finally we need to apply a background size remembering we
need to multiply width by the no of frames
$(div_name).css('background-size', newhWidthx * no of frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun
function setup_gun SS(){
//first let's apply our gun to our SS function
setup_SpriteSheet("#5Z0 1","Images/SZ gun SS.png",28,150,150);
//need to access a special function in our js/ss.js file
$("#SZ0 _1").animateSprite({
fps: 10,
animations: {
static: [0],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
fire: [24,25,26,27,28],

125

CHAPTER 7 TAKE A SHOT: PART 2

b

duration: 50,

loop: false,

complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
//we need to reset our universal flag

canIclick=0;
}
s
}

//setup a newly created zombie
function setup _zombie SS(whichOne){

//1let's identify what type of zombie we should create
var type zombie = [1,2,3,1,2,3];

//let's setup a speed for each type of zombie
var speed zombie = [100,50,150];

//first let's setup our zombie SS

setup_SpriteSheet("#zombie"+whichOne,"Images/zombiesSS "+type
zombie[whichOne-1]+".png",9,20,20);
//need to access a special function in our js/ss.js file
$("#zombie"+whichOne).animateSprite({
fps: 10,
animations: {
static: [0,1,2,3,4,5,6,7],

}J

duration: speed zombie[type zombie[whichOne-1]-1],

loop: true,

126

CHAPTER 7 TAKE A SHOT: PART 2

complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
}
1;

//now let’s setup our bubble zombie SS
setup_SpriteSheet("#bubble_zombie"+whichOne,"Images/SZ_bubble.
png",3,20,20);

//need to access a special function in our js/ss.js file

$("#bubble_zombie"+whichOne).animateSprite({
fps: 10,
animations: {
z1: [type_zombie[whichOne-1]-1],
}s
duration: 1,
loop: false,
complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");

H

Save and close this file.

Although we have touched on this before, using the alert() command
is extremely useful when trying to pinpoint where a problem may lie
in your code. In the preceding code, you see a commented alert()
statement. At some point, I may have had some issues with this function’s
completion function triggering. By placing this alert() statement, I was
able to test whether the function’s completion timing was accurate.

127

CHAPTER 7 TAKE A SHOT: PART 2

As always, remember to remove (or comment out) all alert()
statements.

Now we are ready to test! Go back to the My Work Files folder and
double-click the default.html file.

Before the zombies come darting toward the screen, you should
initially see six bubble zombies randomly placed along the planet’s edge.

RELOAD

@ Noft
~Working?

Did the code not work? Check to see if you have typed div2 in the new
code you have written in SZ_zombie_movement. js.

Also in the new code for SZ_SS. js, make sure that you have typed
bubble zombie and not just zombie (as per the preceding code).

If the code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

128

CHAPTER 7 TAKE A SHOT: PART 2

Part 2: Activate the Counter Bubble Zombie

In this section, we concentrate on replacing the walking zombie with our
new bubble zombie when the maximum number of hits has been reached.
Also, we have to make sure that the corresponding bubble zombie is not
shown until the maximum number of hits is reached.

First, open the SZ_touch. js file in the js folder. Modify the following
line in bold:

//We need a flag to keep track to avoid repetition of
animations before the first has finished
var canlclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0 _1").animateSprite("play", "reload");

}

//this function is called to fire our gun
function fireGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play”, "fire");

129

CHAPTER 7 TAKE A SHOT: PART 2

//array to keep track of the zombie hits
var zombieHits counter = [0,0,0,0,0,0];
//array for each zombies limit

var zombieHits limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne){

//increment the counter
zombieHits counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits counter[whichOne] >= zombieHits limits[whichOne]){
//reset this zombie
SZ_resetZombie(whichOne+1,1);

}

Save and close this file. Open the SZ_zombie movement. js file.
Carefully modify some old lines and type the following new lines (all
modified and new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;")

130

CHAPTER 7 TAKE A SHOT: PART 2

//we want to position our zombie exactly at the tip of the planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#SZo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1eft_position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top = top_
position+'px’;

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top = top_
position+'px’;

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble_zombie"+whichOne).css('transform', 'scale('+0+')"');

131

CHAPTER 7 TAKE A SHOT: PART 2

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart’, function (e) {

//first we want to fire the gun

fireGun(event);

//acknowledge the hit

zombieHit(whichOne-1);
D;

}

//we need to keep track of the current scale values
var scalex_zombie = [o0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx_zombie = [o0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({

132

CHAPTER 7 TAKE A SHOT: PART 2

//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS ease[whichOne-1],
duration: timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne,0);
} else {
//apply the scale
$(this).css('transform',
"scale('+xx+')");
//xecoxd this new scale value
scalex_zombie[whichOne-1]=xx;

}
}, complete: function () {
}
1;
}

//a function to completely reset our zombie
function SZ_resetZombie(whichOne, zombieBubble_generate){

133

CHAPTER 7 TAKE A SHOT: PART 2

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble_generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble_zombiex = $("#bubble_zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble_zombiex.css({top: top_position+'px',left:
$zombiex.css("left")});
//apply the scale
$bubble_zombiex.css('transform',
'scale('+scalex_zombie[whichOne-1]+')");

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#S20 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1eft_position;

//let's re-position our zombie
$zombiex.css({top: top position+'px', left:
left position+'px'});

134

CHAPTER 7 TAKE A SHOT: PART 2

//finally let's make the zombie come towards the screen again
SZ_animateZombie(whichOne);

You can now save and close this file. There is more code to write,
however, let’s quickly test what we have so far. Go back to the My _Work
Files folder and double-click the default.html file. You should observe
the following changes in our game:

e When the game starts, the bubble zombies in the
distance have disappeared.

¢ When you reach the maximum number of hits on a
zombie, it is replaced with a bubble zombie.

e The bubble zombie should correspond with the zombie
you have just hit.

o The bubble zombie should be roughly the same size
and position of the zombie it is replacing.

o Please note that you may notice that the zombies may
stop coming all together. This has been done on purpose
for some code that we will write later. For now, just refresh
your browser (press F5) and the game should restart.

Next, we make the bubble zombies animate into space.

wwllrking?

Did the code not work? First, check to see that you have modified the SZ_

resetZombie function to include an extra parameter (this code is in red):

function SZ resetZombie(whichOne, zombieBubble_generate){

135

CHAPTER 7 TAKE A SHOT: PART 2

Also, the two times that we call this function need to be modified.
Please make sure that your calls look like the following code:
In SZ touch.js

SZ_resetZombie(whichOne+1,1);
And in SZ_zombie movement.js
SZ_resetZombie(whichOne,0);

Finally, ensure that the following lines are placed exactly as shown (i.e.,
outside the function call):

//we need to keep track of the current scale values
var scalex zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [o0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ animateZombie(whichOne){

If the code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

Part 3: Animate the Bubble Zombies

In this final section, we animate each bubble zombie, which in turn
triggers its corresponding zombie to start its animation toward the screen
again. Then we provide a reset function for the bubble zombie so that it
can be safely used again.

First, open the SZ_movement. js file and type the following new lines
(all new text is in bold):

136

CHAPTER 7 TAKE A SHOT: PART 2

function rotateGun(e) {

//using the e value we can deduce the X co-ordinates
var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage
of the width of the screen

//We will work this out by dividing the current X position
by the overall screen width which if you remember we put in
newhidth

var currentXPositionPercentage = xPos/newWidth;

//We now want to apply this to the maximum amount of rotation
which is 50 however the starting rotation is -15 not 0
var amountToRotate = -15 + (currentXPositionPercentage * 50);

//let's rotate the gun!
$("#SZ0 1").css("transform', 'rotate('+amountToRotate+'deg)');

}

//movement for our bubble zombie
function bubbleZombie_flyAway(whichOne){

//assign a user friendly name for our div
var $zombiex = $("#bubble_zombie"+whichOne);

//first it should animate upwards with a bounce
$zombiex.animate({
//bring our zombie up the screen
top: "-="+100*ratio+ "px",
}>{ easing:"easeOutElastic", duration: 400,

complete: function () {

//now the final animation where the bubble
zombie disappears into space

137

CHAPTER 7 TAKE A SHOT: PART 2

$(this).delay(150).animate({
//slowly turn the alpha down
opacity: "-="+1,

}>{ easing:"easeOutQuint”, duration: 1000,

step: function(now, fx){
//at each step we can adjust the scale
to make it look smaller
if (fx.prop == "opacity" 88 fx.pos»=0.1) {
//vork out the amount to scale
var xx = 0.5/(fx.pos);
//apply the scale
$(this).css('transform','scale(+xx+')"');
}
}» complete: function () {
}//end of second complete function
});//end of second animation
}//end of first complete function
}); //end of first animation

Save and close this file.

In the code above we have written
$(this).delay(150).animate({

This normally would have been written as
$(this).animate({

As the name suggests, however, we have applied a delay before calling
this function. The jQuery function sets a timer to delay the execution of
items in its queue. It accepts an integer as a parameter, indicating the
number of milliseconds to delay execution. So in our case, we asked for the
code to wait 150 milliseconds before executing our animate function.

138

CHAPTER 7 TAKE A SHOT: PART 2

I would like to add that this delay() method is best for only certain
game engines where you are delaying between queued jQuery effects. It
doesn't offer a way to cancel the delay; therefore, in certain cases, delay()
is not a replacement for JavaScript's native setTimeout function, which
may be more appropriate.

Next, we need to call our new function. Open the SZ_zombie
movement. js file in the js folder. Carefully modify some old lines and type
the following new lines (all modified and new text is in bold):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style','position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;')

//we want to position our zombie exactly at the tip of the planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left_position;

//1let's position our zombie
div.style.left = left position+'px'; div.style.top = top_
position+'px';

139

CHAPTER 7 TAKE A SHOT: PART 2

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top = top_
position+'px';

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css("transform’,'scale('+0+')");

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//make sure the zombie is currently walking
if ($("#zombie"+whichOne).css('opacity') != 0) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
zombieHit(whichOne-1);

};

140

CHAPTER 7 TAKE A SHOT: PART 2

//we need to keep track of the current scale values
var scalex zombie = [o0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+"')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS _ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
141

CHAPTER 7 TAKE A SHOT: PART 2

if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne,0);
} else {
//apply the scale
$(this).css("transform',
"scale('+xx+')");
//record this new scale value
scalex_zombie[whichOne-1]=xx;

}
}, complete: function () {
}
1);
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

142

CHAPTER 7 TAKE A SHOT: PART 2

//we want to position our zombie exactly at the tip of the
planet

var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble_zombiex.css({top: top_position+'px',left:
$zombiex.css("left"), opacity:1});
//apply the scale
$bubble zombiex.css('transform','scale('+scalex_
zombie[whichOne-1]+")");
//call our bubble zombie animation function
bubbleZombie_flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left position;

//let's re-position our zombie
$zombiex.css({top: top_position+'px', left: left_
position+'px', opacity:0});

//finally let's make the zombie come towards the screen
again
//SZ_animateZombie(whichOne);

143

CHAPTER 7 TAKE A SHOT: PART 2

You can now save and close this file. We are now ready to test our code.
Go back to the My Work Files folder and double-click the default.html
file. You should now see the bubble zombies animate upward and then
away into the distance.

Again, please note that you may notice that the zombies may stop
coming all together. This was done on purpose for some code that we will
write later. For now, just refresh your browser (press F5) and the game
should restart.

Next, we will only allow a certain number of shots from our gun before
it needs to be reloaded.

| i -

2 E-‘f"r‘::t " llf o
m., ~ Working?

Did the code not work? First, check to see that you have modified the SZ_
resetZombie function to include an extra parameter (the code in red):

$bubble zombiex.css({top: top position+'px',left: $zombiex.
css("left"), opacity:1});

and
$zombiex.css({top: top position+'px', left: left position+'px',
opacity:0});

Also, the tail end of the code in the SZ_movement.js file has a few
repetitive characters. Please make sure that they are all written as shown here:

}
}» complete: function () {

}//end of second complete function
});//end of second animation

144

CHAPTER 7 TAKE A SHOT: PART 2

}//end of first complete function
}); //end of first animation

If the code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

Further
' Information

What caused the bubble zombie to bounce upward?

You learned about easing functions in Chapter 6. As a reminder, an easing
function specifies a zombie’s rate of change over time. So in our case,

we want to make the bubble zombie go upward and bounce, so we used
easeOutElastic:.

easeQutElastic

What is opacity?

The opacity property sets or returns the transparency level of an element.
This is where 1 is not transparent at all, 0.5 is 50% see-through, and 0 is
completely transparent.

What is happening after the bubble zombie flies off?

It is important to note that the first thing that we do is perform the
following check:

if (fx.prop == "opacity" &% fx.pos»>=0.1) {

145

CHAPTER 7 TAKE A SHOT: PART 2

The 8& means logical AND (i.e., if the fx property is opacity AND the
fx position is greater than or equal to 0.1).

The reason we needed to place this check for the position is because
the first value is almost always 0. If we allowed this, then we would be
dividing by zero, which, of course, is undefined. This would lead to
problems and indeterminable behavior.

Finally, we take this value and place it as a scale value for the bubble
zombie. Over time, this makes the bubble zombie appear smaller, thus
giving it the impression of disappearing into the distance.

Reloading the Gun

You may have noticed that our Reload button is pretty redundant so far.
Of course, it does cause our gun to animate despite playing no part in our
game. So far, the ultimate aim is to give the user a fixed amount of shots
before the gun stops shooting. At this time, the Reload button prompts the
user to press it to continue with their game.

The first thing we will do is make the Reload button invisible at the
start of the game. Open the SZ_master.css file in our CSS folder. Type the
following new line (all new text is in bold):

html {
height: 100%;

}
body {
padding: 0 0 0 0;
margin: 0;
user-select: none;
cursor: crosshair;
}
img {

max-width: 100%;
146

}
#520 0

#520 1

#5720 2

CHAPTER 7

height: auto;

user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;

{

position: fixed;
top: 0;

left: 0;
min-width: 100%;
min-height: 100%;

{

position: fixed;
bottom: 0;
right: 0;

{

position: fixed;
top: 0;

left: o;

cursor: pointer;

opacity:0;

}
#520 3

{

position: fixed;
top: 0;

right: 0;

TAKE A SHOT: PART 2

147

CHAPTER 7 TAKE A SHOT: PART 2

Save and close this file.

In Chapter 3, I suggested that you group these three divs (i.e., #5Z0 1,
#S20 2, #S70 3) together since they shared the same properties. However,
how would we be able to add a new property just for #520 2? We would do
this with the following code:

#SZ0_1, #SZo 2, #520 3 {
position: fixed;
top: 0;
right: o;

}

#520_2 {

opacity:0;

}

Anything written with the extra #570 2 code appends whatever is
already coded for it.

Go back to the My Work Files folder and double-click the default.
html file. The Reload button should have disappeared. If you try to click it,
however, it still shoots. So we need to place a check to make sure that we
only perform the gun animation when the Reload button is visible. Also,
it'’s a good time to place a maximum number of shots on the gun.

Open the SZ_zombie movement. js file and type the following modified
line (all modified text is in red):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

148

CHAPTER 7 TAKE A SHOT: PART 2

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#5Z0 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1left position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top = top_
position+'px';

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top =
top_position+'px’;

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

//ftinally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

149

CHAPTER 7 TAKE A SHOT: PART 2

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css('transform’,'scale('+0+')");

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//make sure the zombie is currently walking
if ($("#zombie"+whichOne).css('opacity') != 0 &&
$("#S20_2").css('opacity') = 1) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
zombieHit(whichOne-1);

};

//we need to keep track of the current scale values
var scalex zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [o0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+"')");

150

CHAPTER 7 TAKE A SHOT: PART 2

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’,'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, x){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne,0);
} else {
//apply the scale
$(this).css('transform',
"scale('+xx+')");
151

CHAPTER 7 TAKE A SHOT: PART 2

//record this new scale value
scalex_zombie[whichOne-1]=xx;

}
}, complete: function () {
}
1)
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble zombiex.css({top: top position+'px',left:
$zombiex.css("left"), opacity:1});
//apply the scale
$bubble zombiex.css('transform',
"scale('+scalex_zombie[whichOne-1]+")");

152

CHAPTER 7 TAKE A SHOT: PART 2

//call our bubble zombie animation function
bubbleZombie flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Szo 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1left position;

//let's re-position our zombie

$zombiex.css({top: top position+'px’,

left: left position+'px', opacity:0});

//finally let's make the zombie come towards the screen
again

//SZ_animateZombie(whichOne);

You can now save and close this file.

Here we are basing our decision on the opacity of various elements. We
will continue to do so in the next section of code as well. It would be a good
idea to place these checks in a separate function, and then simply call that
function in the code that requires it.

Next, we need to ensure that we show and hide our Reload button at
the appropriate times. Open the SZ_touch. js file and type the following
new and modified lines (all new text is in bold):

//We need a flag to keep track to avoid repetition of
animations before the first has finished
var canlclick= 0;

//this function is called to reload our gun
function reloadGun(e) {

153

CHAPTER 7 TAKE A SHOT: PART 2

//Let's check if we can allow this to occur
if(canIclick== 0 && $("#520_2").css('opacity') == 1){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0 _1").animateSprite("play", "reload");
//xeset the current shots
current_shots=0;
//hide the reload button
$("#SZ0_2").css({opacity:0});

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots
var current_shots=0;

//this function is called to fire our gun
function fireGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0 && $("#520_2").css('opacity') != 1){
//1looks like we can so we better set our flag
canlclick=1;
$("#SZ0 1").animateSprite("play", "fire");
//increment our shots
current_shots++;
//check to see if we have reached the maximum
if(current_shotsy=max_shots){
//show the reload button
$("#S20_2").css({opacity:1});
Y/ 1if

154

CHAPTER 7 TAKE A SHOT: PART 2

//array to keep track of the zombie hits
var zombieHits counter = [0,0,0,0,0,0];
//array for each zombies limit

var zombieHits limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne){

//increment the counter
zombieHits counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits_counter[whichOne] >= zombieHits_
limits[whichOne]){
//reset this zombie
SZ_resetZombie(whichOne+1,1);

}

You can now save and close this file.

Go back to the My Work Files folder and double-click the default.
html file. You should see that the gun needs to be reloaded after firing
five times. By pressing the Reload button, two things happen: the Reload
button disappears and you are able to fire the gun again.

Next, we solve a few problematic areas that have arisen in our game.

Further
' Information

155

CHAPTER 7 TAKE A SHOT: PART 2
How does the code know when to fire and reload the gun?

This is a good question and I would like to point out that the code you
have just entered is probably one of the more complex and interesting we
have written to date. There are two steps to determining the answer to this
question: (1) check and set the opacity of the Reload button, and (2) check
the number of shots fired against the maximum allowed. So let’s take a
closer look at what we wrote.

You will have noticed we deal a lot with opacity; for instance, the first
portion of code we wrote was

opacity:0;

As you discovered earlier in the previous section, opacity is essentially
the object’s level of transparency. In this case, the objectis SZ0 2, which is
the Reload button image.

At the start, we set the opacity of the Reload button to 0. From this
point onward, all we have to do is check the opacity of this button before
proceeding. This is done by using the following check:

$("#SZ0 2").css('opacity') !=1

I= means “not equal to”

By using this check, we can tell the code to fire the gun or show the
Reload button.

Once the Reload button is pressed, we can hide it, thus allowing the
gun to be fired again.

One final thought. When do we stop allowing the gun to be fired? The
following code sets the maximum number of shots that can be fired before
reloading:

var max_shots=5;

We also need to keep track of the current number of shots fired. We do
this using the following variable:

var current_shots=0;

156

CHAPTER 7 TAKE A SHOT: PART 2

Now every time a shot is fired, we can compare the two variables, as
follows:

if(current shots»>=max_shots){

If this is true, we stop any further shots and force the user to reload
their gun.

Clean up the Depths and Click Zones

You may have noticed that there are some areas of the planet’s surface that
do not result in a gun fire when clicked. The reason for this is because you
are clicking a zombie or a bubble zombie that is invisible (i.e., not in use).
But, our current code does not allow the gun to be fired.

Part 1: Ensuring Gun Fire

Open the SZ_zombie_movement. js file and type the following new lines (all
new text is in bold) and some modified lines (all in red):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style','position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the planet
var top position= $('#SZ0 0').height() * 0.435;

157

CHAPTER 7 TAKE A SHOT: PART 2

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left_position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top _position+'px';

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top =
top _position+'px';

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css('transform’,
"scale('+0+")");

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

158

CHAPTER 7 TAKE A SHOT: PART 2

//make sure the reload button is showing
if($("#SZ0 2").css('opacity') = 1) {
//first we want to fire the gun

fireGun(event);

//acknowledge the hit
if($("#zombie"+whichOne).css('opacity') != 0){

zombieHit(whichOne-1);

}
};

//bind the users mouse click to the bubble zombie
$("#bubble_zombie"+whichOne).bind('mousedown touchstart’,
function (e) {
//make sure the reload button is showing
if($("#520_2").css('opacity’) != 1) {
//fixst we want to fire the gun
fireGun(event);

}
H

}

//we need to keep track of the current scale values
var scalex zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div

159

CHAPTER 7 TAKE A SHOT: PART 2
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine’,'easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS _ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie

160

CHAPTER 7 TAKE A SHOT: PART 2

SZ_resetZombie(whichOne,0);
} else {

//apply the scale
$(this).css("transform',
"scale('+xx+')");

//record this new scale value
scalex_zombie[whichOne-1]=xx;

}
}, complete: function () {
}
};
}

//a function to completely reset our zombie
function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?

if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored value

161

CHAPTER 7 TAKE A SHOT: PART 2

$bubble zombiex.css({top: top position+'px',left:
$zombiex.css("left"), opacity:1});
//apply the scale

$bubble_zombiex.css('transform',
"scale('+scalex_zombie[whichOne-1]+")");
//call our bubble zombie animation function
bubbleZombie_ flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx zombie[whichOne-1]=1left position;

//let's re-position our zombie
$zombiex.css({top: top position+'px', left:
left _position+'px', opacity:0});

//finally let's make the zombie come towards the screen
again
//SZ_animateZombie(whichOne);

You can now save and close this file.
I'want to explain the preceding red code. Originally, the line of code was

if($("#zombie"+whichOne).css('opacity') != 0 && $("#Szo 2").
css('opacity') != 1) {

However, we removed the first part of the if statement and placed it
further down. This is because we need to ensure that the Reload button is
visible, regardless of the zombie’s div.

162

CHAPTER 7 TAKE A SHOT: PART 2

Go back to the My Work Files folder and double-click the default.html
file. You should see that the gun can fire anywhere on the planet surface.
Next, we look at the zombie depth levels.

Part 2: Zombie Depth Levels

Another issue that you may have noticed is that sometimes one zombie
appears to walk over another, such as in the following screenshot of the
current game:

What is happening here is that the female zombie is of a lower depth;

however, because she is faster in this case, she appears on top of the slower
zombie. To counter this, we need to continually check and adjust the
depths while the game is being played. Also, we always want our gun to be
above the zombies.

Open the SZ_zombie _movement. js file and type the following new lines
(all new text is in bold) and some modified lines (all in red):

163

CHAPTER 7 TAKE A SHOT: PART 2

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style','position: fixed; top:0; left:0;")

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;")

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1left position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top _position+'px’;

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top =
top _position+'px’;

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

164

CHAPTER 7 TAKE A SHOT: PART 2

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css('transform', 'scale('+0+')");

//set the zindex for the zombie

$("#zombie" +whichOne).css("z-index", whichOne+100);
//set the zindex for the bubble zombie
$("#bubble_zombie"+whichOne).css("z-index", whichOne);
//ensure the zindex for the gun is the highest
$("#S20_1").css("z-index", 200);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
if($("#zombie"+whichOne).css('opacity') != 0){
zombieHit(whichOne-1);

};

165

CHAPTER 7 TAKE A SHOT: PART 2

//bind the users mouse click to the bubble zombie
$("#bubble zombie"+whichOne).bind('mousedown touchstart’,
function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun
fireGun(event);

}
};

}

//we need to keep track of the current scale values
var scalex zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [o0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

166

CHAPTER 7 TAKE A SHOT: PART 2

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine', 'easeOutQuart', 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
// $(this).stop();
//call a function to reset this zombie
SZ_resetZombie(whichOne,0);
} else {
//apply the scale
$(this).css("transform',
"scale('+xx+')");
//record this new scale value
scalex_zombie[whichOne-1]=xx;
//check the depth levels
var i = 0;
while (i < 6) {

167

CHAPTER 7 TAKE A SHOT: PART 2

//check to see if the scale is

bigger
if(scalex_zombie[whichOne-1]
sscalex_zombie[i] && ($(this).
zIndex() < $("#zombie"+(i+1)).
zIndex()) &&
scalex_zombie[i]!=0){
var i_index =
$("#zombie"+(i+1)).zIndex();
//change the i one first
$("#zombie"+(i+1)).css("z-index",
$(this).css("z-index"));
//now change this one
$(this).css("z-index", i_index);
} //end of if
it+;

}//end of while loop

}
}, complete: function () {
}
1)
}

//need to keep track of the current zindex for zombies
var zindex_current=0;

//a function to completely reset our zombie

function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

168

CHAPTER 7 TAKE A SHOT: PART 2

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble _zombiex.css({top: top position+'px',left:
$zombiex.css("left"), opacity:1});
//apply the scale
$bubble _zombiex.css('transform',
"scale('+scalex_zombie[whichOne-1]+")");
//call our bubble zombie animation function
bubbleZombie_ flyAway(whichOne);
}
//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0").width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left position;

//let's re-position our zombie
$zombiex.css({top: top position+'px', left: left
position+'px', opacity:0});

//set the zindex for the zombie
zindex_current++;

169

CHAPTER 7 TAKE A SHOT: PART 2
$("#zombie" +whichOne).css("z-index", zindex_current);

//finally let's make the zombie come towards the screen
again
//SZ_animateZombie(whichOne);

You can now save and close this file.

Go back to the My Work Files folder and double-click the default.
html file. You should see that the zombies do not overlap each other as
they did before. Also, the gun should always appear above the zombies.

Next, we look at creating a Game Over screen.

r ™,

Further
Information

What exactly is a z-index?

The z-index is the order of each element. Imagine that all of our elements,
such as the gun image or the score image, are lined up like a pack of cards.
If you slightly spread the cards, you see the top card fully while the ones
underneath are only slightly visible. This is because when cards overlap,
the visibility of one particular card depends on its location from the top.

In the same way, when our elements overlap each other, their visibility
depends on their stack order or z-index. So an element with a bigger
z-index will be more visible when overlapped with an element of a lower
z-index.

170

CHAPTER 7 TAKE A SHOT: PART 2

This really becomes useful when our zombies, which are continuously
randomly placed, start to overlap each other. JavaScript allows us to
manipulate the z-indices, and therefore we can program the elements
to reorder to ensure that elements that are further away from us are kept
behind those elements that are closer.

What is happening in the following line of code that we just wrote?
while (i < 6) {

This is an example of the while loop. Almost all programming
languages have a while loop, which essentially allows code to be executed
repeatedly, depending on the conditions placed.

So in our case, the code inside the while loop executes continuously
until the 1 variable is no longer less than six.

Intro Splash and “Game Over” Screens

So far, our game starts immediately and does not really end. It would be

nice to have both an intro screen and a Game Over screen.

Part 1: Images Folder

Go to the images folder in the Raw Images folder of theMy Work Files
folder. Locate the files named splash_intro.png and splash_gameover.
png, and copy them to the Images folder, which should now look like the
following screenshot:

171

CHAPTER 7 TAKE A SHOT: PART 2

[
1y - I Images
ThisPC » Local Disk (C5) » My_Work Files » Images E =m il B\
View Amange Share Edit Tags
e —
L ——
» v W A
splash_gam | splash_intr 5Z_backgro :
o Hnd_imﬂg& mnh::w spissh o prg & ?c:::‘ﬂ SI Dot png
? 9 g -
il . ‘ 52_gun $5.0mg S2.gunpey 52 rwiosd prg SLwompeg rombieSS ipeg
5Z_bubble S5Z_gun 5Z_gun_55 5Z_reload SZ_score|
zombiesS5. zombies35. zombeesSs. 0000000 || .
1
rortveniS Jorg rembendl dpng

Part 2: Stopping and Starting

To stop and start the game for the intro splash screen and the Game Over
screen, we need to add a lot of new code and perform changes to existing
code. Please pay close attention to the new lines (in bold) and the modified
lines (in red).

Nearly all of our existing files will need to be modified. So let’s start by
opening the default.html file and type the following new lines (all new
text is in bold):

<html>

<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ_touch.js"></script>
<script src="js/SZ_zombie_movement.js"></script>

172

CHAPTER 7 TAKE A SHOT: PART 2

<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ maincontent">
<img id="SZ0 0" src="images/SZ_background_image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />
<div id="SZo 1" ></div>
<div id="Szo 2" >
<img src="images/SZ_reload.png"
onmousedown="reloadGun(event)" />
</div>
<div id="SzZo 3" >

</div>
<div id="SZ0_4" onmousedown="start_game();"/>
</div>
</body>
</html>

Save the file and then close it.
Open the SZ_master.css file and type the following new lines (all new
text is in bold):

html {
height: 100%;

}

body {
padding: 0 0 0 0;
margin: 0;
user-select: none;
cursor: crosshair;

173

CHAPTER 7 TAKE A SHOT: PART 2

img {
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;

}

#S70 0 {
position: fixed;
top: 0;
left: o;
min-width: 100%;
min-height: 100%;

#S70 1 {
position: fixed;
bottom: 0;
right: 0;

opacity:0;

}

#520 2 {
position: fixed;
top: 0;
left: o;
cursor: pointer;
opacity:0;

174

CHAPTER 7 TAKE A SHOT: PART 2

#5720 3 {
position: fixed;
top: 0;
right: o;
opacity:0;

#520_4 {
position: fixed;
cursor: pointer;
background-size:cover;
opacity:0;

Save the file and then close it.
Open the SZ_setupContent. js file and type the following new lines
(all new text is in bold):

//we will need a new ratio var
var ratio_use = ratio;
//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$('#SZ0 1').css('width', 150 * ratio);
$('#5S20 1').css("height', 150 * ratio);

//Reload Button
$('#SZ0 2').css('width', 200 * ratio);
$('#S20 2").css("height', 90 * ratio);

175

CHAPTER 7 TAKE A SHOT: PART 2

}

//Score
$('#SZ0 3').css('width', 235 * ratio);
$('#SZ0 3').css('height', 100 * ratio);

//Intro and Game over
if ($(window) .height()<$(window) .width()){

//work out a ratio based on height

ratio_use = $(window).height()/800;

}//end if

//apply this new ratio to our intro/game over
$('#S20_4').css('width', 868 * ratio_use);
$('#520_4').css("height', 701 * ratio_use);
$('#S20_4').css('left', ($(window).width()/2)-
((868 * ratio_use)/2));

//make sure it is half way

$('#S20_ 4').css('top', ($(window).height()/2)-
((701 * ratio_use)/2));

//Any sprite sheets?
//0ur Gun
setup _gun SS();

//Create all our 6 zombies

for (i =1; i< 7; i++) {
//this will get called 6 times
SZ_createZombie(i);

}

//call the intro
start_end_game(0);

var gameEnded=0;
//Intro or Game Over of game

function start_end_game(whichOne) {

176

CHAPTER 7 TAKE A SHOT: PART 2

//hide the elements

for (i = 1; i < 4; i++) {
//this will get called 3 times
$('#S20_'+i).css({opacity:0});
}//fox

//hide the zombies

for (i = 15 i < 7; i++) {

//ve need to stop this zombies animations
$('#zombie_'+i).stop();
$('#zombie_'+i).css({opacity:0});
$('#bubble_zombie_'+i).css({opacity:0});
}//for

if (whichOne==0){
//START OF GAME

//change the background image
$('#SZ0_4').css('background-image', 'url(images/
splash_intro.png)');

} else {

//GAME OVER

//show the score
$('#S20_3"').css({opacity:1});

//change the background image
$('#SZ0_4').css('background-image"',
'url(images/splash_gameover.png)');

}

//make sure it is half way
$('#520_4').css("top', ($(window).height()/2)-
((701 * ratio_use)/2));

//finally show the intro or game over image
$('#520_4').css({opacity:1});

//stop the user from firing

177

CHAPTER 7 TAKE A SHOT: PART 2

gameEnded= 1;
}//end of function
//start the game
function start_game() {
//reset the zindex
zindex_current=0;

//reload the gun
current_shots=0;
//allow user to fire
gameEnded= 0;
//hide the intro or game over image
$('#S20_4').css({opacity:0});
//make sure it is out of the way
$('#S20_4').css('top', ($(window).height()));

//shouw the elements

for (i = 15 i < 4; i++) {
//this will get called 3 times
$('#S20_'+i).css({opacity:1});
}//fox

//hide the reload button!

$('#S20_2"').css({opacity:0});
//show the zombies

for (i = 0; i < 7; i++) {
//reset the Zombie
SZ_resetZombie(i,0);

}//fox

//ensure the score board is half opacity

$('#520_3").css({opacity:0.5});

}//end of function

178

CHAPTER 7 TAKE A SHOT: PART 2

Save the file and then close it.

In the start_end_game function, there is a plethora of checks and
actions made at one time. As you further this game, this function will
become unmanageable, so I suggest that you try to section off the checks to
another file so that this function is checking the status of various elements.

One possibility is to set flags for certain conditions. These flags can be
set on certain events. This means that when we come to this function, all
that we are doing is checking the flag’s status.

In the same way, some of the actions should be in a function of their
own,; for instance, hiding the various elements based on the preceding
checks.

Open the SZ_touch. js file and type the following new lines (all new
text is in bold) and some modified lines (all in red):

//We need a flag to keep track to avoid repetition of
animations before the first has finished
var canlIclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0 && $("#SZ0 2").css('opacity') == 1){
//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0 _1").animateSprite("play", "reload");
//reset the current shots
current_shots=0;
//hide the reload button
$("#SZ0 2").css({opacity:0});

179

CHAPTER 7 TAKE A SHOT: PART 2

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots
var current_shots=0;

//this function is called to fire our gun
function fireGun(e) {

//Let's check if we can allow this to occur
if(canIclick== 0 && gameEnded==0 && $("#SZ0 2").
css('opacity') = 1){

//1looks like we can so we better set our flag

canIclick=1;

$("#SZ0 _1").animateSprite("play", "fire");
//increment our shots

current_shots++;
//check to see if we have reached the maximum
if(current_shots>=max_shots){

//show the reload button

$("#SZ0 2").css({opacity:1});
}/if

}

//array to keep track of the zombie hits
var zombieHits counter = [0,0,0,0,0,0];
//array for each zombies limit

var zombieHits limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne){

//increment the counter

180

CHAPTER 7 TAKE A SHOT: PART 2
zombieHits counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits counter[whichOne] >= zombieHits limits[whichOne]){

//reset this zombie
SZ_resetZombie(whichOne+1,1);

}

Save the file and then close it.

It is essential to the readability of your code to give meaningful names
to variables and functions. This is seen in the preceding code. As your game
becomes bigger and more complex, you will cut down on the time needed
to understand your previously written code if you can read it like a novel.

Open the SZ_zombie_movement. js file and type the following new lines
(all new text is in bold) and some modified lines (all in red):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;
opacity:0');

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;');

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;
181

CHAPTER 7 TAKE A SHOT: PART 2

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left_position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top _position+'px';

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top =
top _position+'px';

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
// SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css('transform’,'scale('+0+")");

//set the zindex for the zombie
$("#zombie"+whichOne).css("z-index", whichOne+100);

182

CHAPTER 7 TAKE A SHOT: PART 2

//set the zindex for the bubble zombie

$("#bubble zombie"+whichOne).css("z-index", whichOne);
//ensure the zindex for the gun is the highest

$("#S20 1").css("z-index", 200);
//also ensure the zindex for the intro/game over is the highest
$("#520_4").css("z-index", 201);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
if($("#zombie"+whichOne).css('opacity') != 0){
zombieHit(whichOne-1);

}
};

//bind the users mouse click to the bubble zombie
$("#bubble zombie"+whichOne).bind('mousedown touchstart’,
function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') = 1) {
//first we want to fire the gun
fireGun(event);

};

183

CHAPTER 7 TAKE A SHOT: PART 2

//we need to keep track of the current scale values
var scalex zombie = [o0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -($zombiex.
height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine','easeOutQuart’, 'easeInOutQuad’,
'easeInSine', "easeOutQuart', 'easeInOutQuad'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){

184

CHAPTER 7 TAKE A SHOT: PART 2

//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
if(gameEnded==1){
Xx=999;
}
//do a check to see if we should end this
animation
if(xx>15){
//stop all animation
$(this).stop();
//call a function to reset this zombie
/157 resetZombie(whichOne,0);
//game Over
$(this).css({opacity:0});
$(this).stop(true, true);
$(this).finish();
if(gameEnded==0 && xx!=999){
start_end_game(1);
}
} else {
//apply the scale
$(this).css("transform',
"scale('+xx+')");
//record this new scale value
scalex_zombie[whichOne-1]=xx;

//check the depth levels
var i = 0;
while (i < 6) {

185

CHAPTER 7 TAKE A SHOT: PART 2

//check to see if the scale is
bigger
if(scalex_zombie[whichOne-1]>
scalex zombie[i] && ($(this).
zIndex() < $("#zombie"+(i+1)).
zIndex()) && scalex zombie[i]!=0){
var i_index =
$("#tzombie"+(i+1)).zIndex();
//change the i one first
$("#zombie"+(i+1)).css("z-index",
$(this).css("z-index"));
//now change this one
$(this).css("z-index", i_index);
} //end of if
i++;
}//end of while loop

}
}, complete: function () {
}
1);
}

//need to keep track of the current zindex for zombies
var zindex_current=0;

//a function to completely reset our zombie

function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

186

CHAPTER 7 TAKE A SHOT: PART 2

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble _zombiex.css({top: top position+'px',left:
$zombiex.css("left"), opacity:1});

//apply the scale

$bubble zombiex.css('transform','scale('+scalex
zombie[whichOne-1]+")");

//call our bubble zombie animation function
bubbleZombie flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Sz0 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1left position;

//let's re-position our zombie
$zombiex.css({top: top position+'px', left:
left position+'px', opacity:0});

//set the zindex for the zombie
zindex_current++;

187

CHAPTER 7 TAKE A SHOT: PART 2
$("#zombie"+whichOne).css("z-index", zindex current);

//finally let's make the zombie come towards the screen

again
if(zombieBubble_generate==0){
SZ_animateZombie(whichOne);
}
}

Save the file and then close it.

Go back to the My Work Files folder and double-click the default.
html file. You should see the intro splash screen straightaway. You should
also note that the score and gun images are not there, as we wanted.
When we start the game, it should look like as it did before the most recent
changes. When a zombie arrives at the end of its path, you should now see
the Game Over screen.

Congratulations! You have developed a working game.

Next, let’s refine our game to be more presentable for our users.

188

CHAPTER 7 TAKE A SHOT: PART 2

m Noft
~Working?

Did the code not work? We changed a lot of files here, so the advice I give
is to meticulously go through every line of code in each of the files and
compare it to your own. Even the old grayed out code. Have patience and
work through your code.

Here are some problems that I identified:

Make sure that you have the closing tag (shown in red) in the following
line:

<div id="SZ0_4" onmousedown="start_game();"/>
Make sure that you place this line above the main function:

var ratio_use = ratio;
//main function

Make sure that you are using ratio_use and not ratio in the following
lines:

$('#520_4').css('width', 868 * ratio_use);
$('#S20_4').css('height', 701 * ratio_use);

Make sure that you have commented out (//)the following lines:

// SZ_animateZombie(whichOne);
//5Z_resetZombie(whichOne,0);

If the code is still not working, then please do not hesitate to message
me on Twitter @zarrarchishti.

189

CHAPTER 7 TAKE A SHOT: PART 2

\ Further

2 im formation

How does the game know when to show the Intro Splash screen and
when to show the Game Over screen?

When called, the following function stops the game and shows either the
introduction or the Game Over screen:

function start_end_game(whichOne) {

One of the tasks of this function is to show either the intro image or the
Game Over image, depending on the whichOne passed parameter in. The
following lines will show either of those images:

$('#S20_4').css('background-image', 'url(images/
splash_intro.png)');
$('#520_4').css('background-image', 'url(images/
splash_gameover.png)');

190

CHAPTER 8

Add Some Bling
to Our Game

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci

I am sure you have noticed that there is no actual score in our Score box.
What we need in there is some text that increments every time we send a
zombie off into space. To do this, we need to do the following:

1. Add atext field in our HTML.

2. Format this text field so that it changes size and
location, depending on the screen size.

3. Startat zero and increment every time a bubble
zombie appears.

4. Resetback to zero every time a new game is played.

191
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_8

CHAPTER 8 ADD SOME BLING TO OUR GAME

What'’s the Score?

Open the default.html file and type the following new lines (all new text
is in bold) and some modified lines (all in red):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>
<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ touch.js"></script>
<script src="js/SZ_zombie movement.js"></script>
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ_maincontent">
<img id="SZ0 0" src="images/SZ_background image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />
<div 1d="SZo 1" ></div>
<div id="SzZo 2" >
<img src="images/SZ reload.png"
onmousedown="reloadGun(event)" />
</div>
<div id="S20_3" style="background-image: url
(images/SZ_score.png);">
<div id="textx"»0</div>
</div>

192

CHAPTER 8 ADD SOME BLING TO OUR GAME

<div i1d="SZ0 4" onmousedown="start game();"/>
</div>

</body>

</html>

Save this file and then close it.

We have come across background-image a few times in this project.
Asyou can guess, the background-image property sets one or more
background images for an element. It is important to remember that a
background-image is placed at the top-left corner of an element by default
and repeated both vertically and horizontally. So these properties need
to be addressed if you want the property to act differently. I always advise
setting a background-color property as well. This is in case the image is
unavailable or takes too long to load.

Open the SZ_master. css file and type the following new lines (all new
text is in bold) and some modified lines (all in red):

html {
height: 100%;

}
body {

padding: 0 0 0 O;

margin: 0;
user-select: none;
cursor: crosshair;

img {
max-width: 100%;
height: auto;
user-drag: none;
user-select: none;

193

CHAPTER 8 ADD SOME BLING TO OUR GAME

-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;
}

#5720 0 {
position: fixed;
top: 0;
left: 0;
min-width: 100%;
min-height: 100%;

#520 1 {
position: fixed;
bottom: 0;
right: 0;
opacity:0;

#S70 2 {
position: fixed;
top: 0;
left: 0;
cursor: pointer;
opacity:0;

#5720 3 {
position: fixed;
top: 0;
right: o;
opacity:0;
background-size:cover;

194

CHAPTER 8 ADD SOME BLING TO OUR GAME

#5720 4 {
position: fixed;
cursor: pointer;
background-size:cover;
opacity:0;

}

#textx {
position: relative;
float: left;
top: 40%;
text-align:center;
font-size: 4umax;
font-weight: bolder;
colour: white;
font-family: "Arial Black";

Save this file and then close it.
Nearly done! Now open the SZ_setupContent. js file and type the
following new lines (all new text is in bold) and some modified lines:

//we will need a new ratio var
var ratio use = ratio;

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Gun
$("'#S20 1').css('width', 150 * ratio);
$('#SZ0 1').css("height', 150 * ratio);

195

CHAPTER 8 ADD SOME BLING TO OUR GAME

//Reload Button
$('#SZ0 2').css('width', 200 * ratio);
$('#SZ0 2').css('height', 90 * ratio);

//Score
$('#S20 3').css('width', 235 * ratio);
$('#SZ0 3').css("height', 100 * ratio);

//Intro and Game over
if($(window).height()<$(window).width()){
//work out a ratio based on height
ratio use = $(window).height()/800;
}//end if
//apply this new ratio to our intro/game over
$('#SZ0 4').css('width', 868 * ratio use);
$('#SZ0 4').css('height', 701 * ratio use);
$("#S20 4').css('left', ($(window).width()/2)
-((868 * ratio use)/2));
//make sure it is half way
$('#SZ0 4').css('top', ($(window).height()/2)
-((701 * ratio use)/2));

$('#textx').css('width', '100%');
$('#textx').css("height', '50%');

//Any sprite sheets?
//0ur Gun
setup _gun SS();

//Create all our 6 zombies

for (i =1; i< 7; i++) {
//this will get called 6 times
SZ_createZombie(i);

}

196

CHAPTER 8 ADD SOME BLING TO OUR GAME

//call the intro
start_end game(0);

}

var gameEnded=0;
//Intro or Game Over of game
function start_end game(whichOne) {
//hide the elements
for (i = 1; i< 4; i++) {
//this will get called 3 times
$('#SZ0 '+i).css({opacity:0});
}//for

//hide the zombies

for (i =1; i< 7; i++) {

//we need to stop this zombies animations
$('#zombie '+i).stop();
$('#zombie '+i).css({opacity:0});
$('#bubble zombie '+i).css({opacity:0});

//set the zindex for the zombie
$("#zombie"+i).css("z-index", i+100);
}//for

if(whichOne==0){

//START OF GAME
//change the background image

$('#SZ0 _4").css('background-image’,

‘url(images/splash_intro.png)');

} else {

//GAME OVER

//show the score

$('#S20 3').css({opacity:1});
//change the background image

197

CHAPTER 8 ADD SOME BLING TO OUR GAME

$('#SZ0 4').css('background-image',
'url(images/splash_gameover.png)');

}

//make sure it is half way
$('#S20 4').css("top', ($(window).height()/2)
-((701 * ratio_use)/2));
//finally show the intro or game over image
$('#SZ0 4').css({opacity:1});

//stop the user from firing
gameEnded= 1;

}//end of function

//need to store the current score

var current_score=0;

//we can call this function to update the score
function updateScore(){
$("#textx").text(current_score);

}

//start the game
function start game() {

//reset the score
current_score=0;
updateScore();

//reset the zindex
zindex_current=0;

//reload the gun
current_shots=0;

//allow user to fire
gameEnded= 0;

198

CHAPTER 8 ADD SOME BLING TO OUR GAME

//hide the intro or game over image
$("'#5SZ0 4').css({opacity:0});
//make sure it is out of the way
$('#S20 4').css("top', ($(window).height()));

//show the elements

for (i = 1; i< 4; i++) {
//this will get called 3 times
$('#S20_'+i).css({opacity:1});
}/ /for

//hide the reload button!

$('#SZ0 2').css({opacity:0});

//show the zombies
for (i =0; i< 7; i++) {
//reset the Zombie
SZ_resetZombie(i,0);
}/ /for
//ensure the score board is half opacity
$('#S20 3').css({opacity:0.5});

}//end of function

Save this file and then close it.

As you further develop this game or start a new one, I would suggest

you store the z-index values (or even starting values) in another file. This

will help in the future when you come to make amendments and need to

keep track of what the various elements’ z-index values are.

Finally, open the SZ_movement. js file and type the following new lines

(all new text is in bold) and some modified lines (all in red):

199

CHAPTER 8 ADD SOME BLING TO OUR GAME

function rotateGun(e) {

//using the e value we can deduce the X co-ordinates
var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage
of the width of the screen

//We will work this out by dividing the current X position by the
overall screen width which if you remember we put in newWidth
var currentXPositionPercentage = xPos/newhWidth;

//We now want to apply this to the maximum amount of rotation
which is 50 however the starting rotation is -15 not 0
var amountToRotate = -15 + (currentXPositionPercentage * 50);

//Let's rotate the gun!
$("#S20 1").css("transform', 'rotate('+amountToRotate+'deg)');

//movement for our bubble zombie
function bubbleZombie flyAway(whichOne){

//update the score
current_score++;
updateScore();

//assign a user friendly name for our div
var $zombiex = $("#bubble zombie"+whichOne);

//first it should animate upwards with a bounce
$zombiex.animate({
//bring our zombie up the screen

top:
},{ easing:"easeOutElastic", duration: 400,

-="+50*ratio+ "px",

200

CHAPTER 8 ADD SOME BLING TO OUR GAME

complete: function () {
//now the final animation where the bubble
zombie disappears into space
$(this).delay(150).animate({
//slowly turn the alpha down
opacity: "-="+1,
},{ easing:"easeOutQuint", duration: 1000,

step: function(now, fx){
//at each step we can adjust the scale
to make it look smaller
if (fx.prop == "opacity" & fx.pos»=0.1) {
//work out the amount to scale
var xx = 0.5/(fx.pos);
//apply the scale
$(this).css("transform', 'scale('+xx+"')");
}
}, complete: function () {
//finally let's make the zombie come towards
the screen again
SZ_animateZombie(whichOne);
}//end of second complete function
});//end of second animation
}//end of first complete function
}); //end of first animation

Save this file and then close it.

We are now ready to test! Go back to the My Work Files folder and
double-click the default.html file. You should now see the score text
appear. Every time we send a zombie off into space, you should get a point.

201

CHAPTER 8 ADD SOME BLING TO OUR GAME

v Working?

Did this not work? If not, it is most likely the code written in default.html.
Originally, the code was this:

<div id="SzZo 3" >

</div>

Now, we are changing it to this:

<div id="SZ0 3" style="background-image: url(images/
SZ_score.png);">
<div id="textx">0</div>
</div>

Please make sure that you have coded the lines exactly as shown.
If the code is still not working, then please do not hesitate to message
me on Twitter (@zarrarchishti).

202

CHAPTER 8 ADD SOME BLING TO OUR GAME

Further
' Information

How does updateScore(){ actually update the text on the screen?
As you may have noticed, we initially created a variable called
var current_score=0;

This is then updated using the following line whenever a bubble
zombie animation is called:

current_score++;

We know from before that the ++ increments the variable by 1. This
alone does not update the text on the screen. Look at the code in our
function.

updateScore(){ :
$("#textx").text(current_score);

This replaces the text in our text div with the value in the current score
variable. At this point, the screen text value changes.

Sprinkle of Special Effects

You may have noticed there is no visual feedback given to the user when
they fire on a zombie. Only when the maximum number of hits has been
reached do you see feedback in the form of a bubble zombie. So in this
chapter, we add a special effect to the zombie when it has been hit.

203

CHAPTER 8 ADD SOME BLING TO OUR GAME

Part 1: Get Started

Go to the images folder in the Raw Images folder of the My Work Files
folder. Locate the file named SZ_effect_ss.png and copy into the Images
folder, which should now look like this:

—
Ay
1L [| Images
This PC » Local Disk (C:) » My_Work Files » Images ﬂ = o m| g
View Arrange Share Edit Tags
[p— [ZLE P
g8 !!l ?
" L - se9 = o —-—
splash_gam splash_intr 5Z_backgre SZ_bubble splssh gamecver. splashnteopng 52 background. S2_bubble.ong
eover o und_image Ll mageieg
SZ_effect_s 5Z_gun 5Z_gun 85 SZ_reload SZeffectsspng 52 gun SSpng 52 gunpng
s
T T ——— R T —
5Z score zombiesSS_ zombiesSS_ zombiesSS_
$2_score. o buesSs 1 20mbi55, 2 Fomoess. &

Part 2: Displaying the Effects

To add our special effect to the screen, we need to pinpoint exactly where
the user has hit a zombie. Once we have done this, we can then use our
sprite sheet library to display our effects.

Open the SZ_zombie_movement. js file and type the following new lines
(all new text are in bold) and some modified lines (all in red):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');
//and another for the special effect SS
var div3 = document.createElement('div');

204

CHAPTER 8 ADD SOME BLING TO OUR GAME

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:0;
opacity:0');

//and the same for our bubble zombie
div2.setAttribute('style', 'position: fixed; top:0; left:0;');

//and the same for our special effect SS
div3.setAttribute('style', 'position: fixed; top:0; left:0;');

//we want to position our zombie exactly at the tip of the planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#Szo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=1left position;

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top_position+'px’;

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top
top_position+'px’;

//and the same for our special effect SS
div3.style.left = left_position+'px'; div3.style.top
top_position+'px’;

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;
//also for our special effect SS
div3.id = 'zombie_effect'+whichOne;

205

CHAPTER 8 ADD SOME BLING TO OUR GAME

//finally let's add our zombie to the screen
document.body.appendChild(div);

//finally add in our bubble zombie to the screen too
document.body.appendChild(div2);

//finally add in our special effect SS to the screen too
document.body.appendChild(div3);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
// SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css('transform’,'scale('+0+')");

//ensure no hits are registered on the special effects
$("#zombie_effect"+whichOne).css('pointer-events', 'none’');

//set the zindex for the zombie
$("#tzombie"+whichOne).css("z-index", whichOne+100);
//set the zindex for the bubble zombie

$("#bubble zombie"+whichOne).css("z-index", whichOne);
//set the zindex for the special effect SS
$("#zombie_effect"+whichOne).css("z-index", whichOne+150);
//ensure the zindex for the gun is the highest

$("#S20 1").css("z-index", 200);

//also ensure the zindex for the intro/game over is the highest
$("#SZ0 4").css("z-index", 201);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun

206

CHAPTER 8 ADD SOME BLING TO OUR GAME

fireGun(event);
//acknowledge the hit
if($("#zombie"+whichOne).css('opacity') != 0){
var offset = $(this).offset();
zombieHit(whichOne-1, e.pageX, e.pageY);

}
};

//bind the users mouse click to the bubble zombie
$("#bubble zombie"+whichOne).bind('mousedown touchstart’,
function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun
fireGun(event);

};

//we need to keep track of the current scale values
var scalex zombie = [o0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

207

CHAPTER 8 ADD SOME BLING TO OUR GAME

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);
// -($zombiex.height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine’,'easeOutQuart’, 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad’];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({
//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS _ease[whichOne-1], duration:
timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
if(gameEnded==1){
XX=999;
}
//do a check to see if we should end this animation
if(xx>15){
//stop all animation
$(this).stop();

208

CHAPTER 8 ADD SOME BLING TO OUR GAME

//call a function to reset this zombie
//SZ_resetZombie(whichOne,0);
//game Over
$(this).css({opacity:0});
$(this).stop(true, true);
$(this).finish();
if(gameEnded==0 8& xx!=999){
start_end game(1);
}
} else {
//apply the scale
$(this).css('transform',
"scale('+xx+')");
//record this new scale value
scalex_zombie[whichOne-1]=xx;

//check the depth levels
var i = 0;
while (i < 6) {
//check to see if the scale is
bigger
if(scalex_zombie[whichOne-1]
>scalex_zombie[i] &&
($(this).zIndex() <
$("#zombie"+(i+1)).zIndex())
88 scalex zombie[i]!=0){
var i_index =
$("#zombie"+(i+1)).zIndex();
//change the i one first
$("#zombie"+(i+1)).css("z-index",
$(this).css("z-index"));
//now change this one

209

CHAPTER 8 ADD SOME BLING TO OUR GAME

$(this).css("z-index",

i index);
} //end of if
i++;
}//end of while loop
}
}
}, complete: function () {
}

};
}

//need to keep track of the current zindex for zombies
var zindex current=0;

//a function to completely reset our zombie
function SZ resetZombie(whichOne, zombieBubble generate){

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top_position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?

if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);

210

CHAPTER 8 ADD SOME BLING TO OUR GAME

//1let's re-position our bubble zombie to our stored value
$bubble zombiex.css({top: top position+'px',left:
$zombiex.css("left"), opacity:1});

//apply the scale

$bubble zombiex.css('transform','scale('+scalex
zombie[whichOne-1]+")");

//call our bubble zombie animation function
bubbleZombie flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Szo 0').width())-(ratio*50)) + (ratio*50);

//record this left position
leftx _zombie[whichOne-1]=1eft position;

//let's re-position our zombie
$zombiex.css({top: top position+'px', left:
left position+'px', opacity:0});

//set the zindex for the zombie
zindex_current++;
$("#zombie"+whichOne).css("z-index", zindex current);

//finally let's make the zombie come towards the screen again
if(zombieBubble generate==0){
SZ_animateZombie(whichOne);

}

Save the file and then close it.

211

CHAPTER 8 ADD SOME BLING TO OUR GAME

We referenced e. pageX and e.pageY properties in the preceding code.
They return the position of the mouse pointer relative to the left edge of the
document. These properties take into account any horizontal or vertical
scrolling of the page. In case you are referencing some older code in the
future, this property was originally defined as a long integer; however, the
CSSOM View Module redefined it as a double float.

Open the SZ_touch. js file and type the following new lines (all new
text is in bold) and some modified lines (all in red):

//We need a flag to keep track to avoid repetition of
animations before the first has finished
var canlclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0 && $("#SZ0 2").css('opacity') == 1){
//looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play", "reload");
//reset the current shots
current_shots=0;
//hide the reload button
$("#SZ0 2").css({opacity:0});

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots
var current shots=0;

//this function is called to fire our gun
function fireGun(e) {

212

CHAPTER 8 ADD SOME BLING TO OUR GAME

//Let's check if we can allow this to occur
if(canIclick== 0 88 gameEnded==0 && $("#SZ0 2").css
('opacity') != 1){

//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play”, "fire");

//increment our shots
current_shots++;
//check to see if we have reached the maximum
if(current_shots>=max_shots){
//show the reload button
$("#SZ0 2").css({opacity:1});
Y /if

}

//array to keep track of the zombie hits
var zombieHits counter = [0,0,0,0,0,0];
//array for each zombies limit

var zombieHits limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne, xx, yy){

//increment the counter
zombieHits counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits counter[whichOne] >= zombieHits
limits[whichOne]){

//reset this zombie
SZ resetZombie(whichOne+1,1);

}
213

CHAPTER 8 ADD SOME BLING TO OUR GAME

//1let’s add in our special effect
var whichOne2=whichOne+1;
var $effect_zombiex = $("#zombie_effect"+whichOne2);

//let's re-position our bubble zombie to our stored value
$effect_zombiex.css({top: yy+'px',left: xx+'px’,
opacity:1});

$effect_zombiex.animateSprite("play"”, "z1");

//apply the scale

$effect_zombiex.css('transform',
'scale('+scalex_zombie[whichOne]+')');

Save the file and then close it.

In the preceding code, we dynamically position our special effect
to appear exactly on the zombie’s div. In some cases, depending on the
size of your special effect sprite, you may need to take other factors into
consideration. For example, some effects may need to be positioned on an
element other than a zombie. You may want a special effect to show that
when the user shoots the ground, chunks of the ground are blown up. This
is not very hard; we would replace the ground’s div with the zombie div.

Where it becomes a slight challenge is when we offset the shooting
area so it could include the zombie’s foot and the ground area—giving an
overall realistic scene where the ground effect and the zombie-hit effect
are triggered. As I suggested, we would need to accommodate for both
events.

Open the SZ_SS. js file and type the following new lines (all new text is
in bold):

214

CHAPTER 8 ADD SOME BLING TO OUR GAME

//We need a one stop function that will allow us to process
sprite sheets

function setup_SpriteSheet(div_name, image name, no_of_ frames,
widthx, heightx) {

//need the ratio of the container's width/height
var imageOrgRatio = $(div_name).height() /
$(div_name).width() ;

//need to ensure no trailing decimals
var ratio2 = Math.round(ratio * 10) / 10;

//check that the width is completely divisible by the no of
frames

var newDivisible = Math.round((widthx * ratio2) /

no_of frames);

//the new width will be the number of frames multiplied by our
new divisible
var newWidthx = newDivisible * no_of frames;

//also the new height will be our ratio times the height of
the div containing our image
var newHeightx = heightx * ratio2;

//apply our new width to our CSS
$(div_name).css('width', (newhWidthx));

//apply our new height to our CSS
$(div_name).css('height', newHeightx);

//

//take the image name and apply as a background image to our div
$(div_name).css('background-image', 'url(' + image name + ')');

//finally we need to apply a background size remembering we
need to multiply width by the no of frames

215

CHAPTER 8 ADD SOME BLING TO OUR GAME

$(div_name).css('background-size', newWidthx * no_of frames
+ 'px " + newHeightx + 'px');

}

//setup the Gun
function setup _gun SS(){
//first let's apply our gun to our SS function
setup_SpriteSheet("#SZ0 1","Images/SZ_gun_SS.png",28,150,150);
//need to access a special function in our js/ss.js file
$("#SZ0 _1").animateSprite({

fps: 10,

animations: {
static: [0],
reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20,21,22,23],
fire: [24,25,26,27,28],

})

duration: 50,

loop: false,

complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
//we need to reset our universal flag

canIclick=0;

}
1
}

//setup a newly created zombie
function setup zombie SS(whichOne){

//let's identify what type of zombie we should create
var type zombie = [1,2,3,1,2,3];

216

CHAPTER 8 ADD SOME BLING TO OUR GAME

//1let's setup a speed for each type of zombie
var speed zombie = [100,50,150];

//first let's setup our zombie SS

setup SpriteSheet("#zombie"+whichOne,"Images/zombiesSS "
+type zombie[whichOne-1]+".png",9,20,20);
//need to access a special function in our js/ss.js file
$("#zombie"+whichOne).animateSprite({
fps: 10,
animations: {
static: [o0,1,2,3,4,5,6,7],
}J
duration: speed zombie[type zombie[whichOne-1]-1],
loop: true,
complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
}
1

//now let's setup our bubble zombie SS

setup_SpriteSheet("#bubble zombie"+whichOne,
"Images/SZ_bubble.png",3,20,20);
//need to access a special function in our js/ss.js file

$("#bubble zombie"+whichOne).animateSprite({

fps: 10,

animations: {

z1: [type zombie[whichOne-1]-1],

}J

duration: 1,

loop: false,

217

CHAPTER 8 ADD SOME BLING TO OUR GAME

complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");

}

1;
//not to forget our special effects SS

setup_SpriteSheet("#zombie_effect"+whichOne,"Images/SZ_effect_
ss.png",4,13,15);
//need to access a special function in our js/ss.js file
$("#zombie_effect"+whichOne).animateSprite({
fps: 10,
animations: {
z1: [o0,1,2,3],
}s
duration: 20,
loop: false,
complete: function () {
// use complete only when you set animations with
"loop: false'
//alert("animation End");
$("#zombie_effect"+whichOne).css({opacity:0});

H

Save the file and then close it.

We are now ready to test! Go back to the My Work Files folder and
double-click the default.html file. Now when you fire on the zombies,
you should see our special effect appear exactly where you click. I am sure
you will agree that this adds a nice depth to the game playing experience

for our players!

218

CHAPTER 8 ADD SOME BLING TO OUR GAME

| Further
Anformation

How did we position the special effects exactly where we click?

To position the special effects, we first need to ensure that we pass through
the x and y coordinates when there is a mouse click on a zombie. We do
thisin SZ_zombie movement.js.

var offset = $(this).offset();
zombieHit(whichOne-1, e.pageX, e.pageY);

The offset () method returns the coordinates for us. We can then
pass them through to our zombieHit function. This means that we have to
modify the zombieHit function in SZ_touch. js.

function zombieHit(whichOne, xx, yy){
We have added two variables that can be passed in for us to use now.
$effect_zombiex.css({top: yy+'px',left: xx+'px', opacity:1});

So when we come to position our special effect, we can use our two
new variables for the x and y positions.

Turn up the Sound Effects

We noticed that by adding special effects, we could enhance the user’s
playing experience. Similarly, we can go one step further and provide
audio feedback for the various actions that the player performs.

219

CHAPTER 8 ADD SOME BLING TO OUR GAME

Part 1: Getting Started

Go to the images folder in the Raw Images folder of the My Work Files
folder. Locate the folder named sounds and copy this into the My _Work_

Files folder.

Your My Work Files folder should now look like this:

.r'll\!,:hf B My_Work_Files
This PC » Local Disk (C:) » My_Work Files E = m =
View Arrange Share Edit Tags
v u’: P N HIML
55 Images i Ccss default.him! Images
U} A~ 4
Raw Images sounds default is Raw Images sounds

Part 2: Adding Sound Effects

We are going to add two sound effects to our game. The first will be when
the player fires their gun. The second will be when the player reloads.
Getting the game to play the sounds is not that hard, but controlling when
the sounds play is where it can get tricky.

Open the default.html file and type the following new lines (all new
text is in bold):

<html>
<head>
<script src="js/jquery.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="sounds/jquery.playSound.js"»</scripts
<script src="js/SZ_main.js"></script>
<script src="js/SZ_setupContent.js"></script>

220

CHAPTER 8 ADD SOME BLING TO OUR GAME

<script src="js/SZ_movement.js"></script>
<script src="js/ss.js"></script>
<script src="js/SZ_SS.js"></script>
<script src="js/SZ_touch.js"></script>
<script src="js/SZ_zombie movement.js"></script>
<link href="css/SZ_master.css" rel="stylesheet" />
</head>
<body>
<div id="SZ_maincontent">
<img id="SZ0 0" src="images/SZ_background image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />
<div 1d="SZ0 1" ></div>
<div id="SzZo 2" >
<img src="images/SZ_reload.png"
onmousedown="reloadGun(event)" />
</div>
<div 1d="SZ0 3" style="background-image:
url(images/SZ_score.png);">
<div id="textx">999</div>
</div>
<div id="SZ0 4" onmousedown="start game();"/>
</div>
</body>
</html>

Save the file and then close it.

You can certainly source your own sound library or even write your
own! The type of library you choose, however, depends on your game’s
requirements. For instance, in our game we require short sound blasts but
not long music files.

At the very basic level, you can use the <audio> tag and then call the
play() method.

221

CHAPTER 8 ADD SOME BLING TO OUR GAME

Open the SZ_touch. js file and type the following new lines (all new
text is in bold):

//We need a flag to keep track to avoid repetition of animations
before the first has finished
var canlclick= 0;

//this function is called to reload our gun
function reloadGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0 && $("#SZ0 2").css('opacity') == 1){
//1ooks like we can so we better set our flag
canlclick=1;
$("#SZ0 _1").animateSprite("play", "reload");
//reset the current shots
current_shots=0;
//hide the reload button
$("#SZ0 2").css({opacity:0});
//play the reload sound
$.playSound('sounds/reload’);

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots
var current shots=0;

//this function is called to fire our gun
function fireGun(e) {
//Let's check if we can allow this to occur
if(canIclick== 0 && gameEnded==0 && $("#SZ0 2").css
('opacity') != 1){

222

CHAPTER 8 ADD SOME BLING TO OUR GAME

//1looks like we can so we better set our flag
canIclick=1;
$("#SZ0_1").animateSprite("play”, "fire");

//increment our shots
current_shots++;

//play the fire sound
$.playSound(' sounds/fire');

//check to see if we have reached the maximum
if(current_shots>=max_shots){
//show the reload button
$("#SZ0 2").css({opacity:1});
}7if

}

//array to keep track of the zombie hits
var zombieHits counter = [0,0,0,0,0,0];
//array for each zombies limit

var zombieHits limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act
accordingly
function zombieHit(whichOne, xx, yy){

//increment the counter
zombieHits counter[whichOne]++;

//check to see if this zombie has reached its limit
if(zombieHits counter[whichOne] >= zombieHits limits[whichOne]){

//reset this zombie
SZ_resetZombie(whichOne+1,1);

}

223

CHAPTER 8 ADD SOME BLING TO OUR GAME

//let's add in our special effect

var whichOne2=whichOne+1;

var $effect zombiex = $("#zombie effect"+whichOne2);
//let's re-position our bubble zombie to our stored value
$effect zombiex.css({top: yy+'px',left: xx+'px',
opacity:1});

$effect zombiex.animateSprite("play”, "z1");
//apply the scale

$effect zombiex.css('transform',
"scale('+scalex_zombie[whichOne]+')");

Save the file and then close it.

We are now ready to test! Go back to the My Work Files folder and
double-click the default.html file. Now when you fire your gun, you
should hear a sound. Also, when you press the Reload button, you should
hear the reload sound. Again, I am sure you will agree that this adds a

much needed dimension to our game.

@I Not
« s WOrking?
Did the sound not work? First, make sure that you have written the
following line as it is shown in your default.html.

¢<script src="sounds/jquery.playSound.js"»></scripts

Also, make sure that you have the sounds folder copied, as shown in
Part 1.

224

CHAPTER 8 ADD SOME BLING TO OUR GAME

If it is still not working, make sure that the following lines are copied as
shown here; pay attention to the lowercase letters.

$.playSound(' sounds/reload');
$.playSound('sounds/fire');

If is still not working, then please do not hesitate to message me on
Twitter (@zarrarchishti).

Embedding the Game

You have noticed that the game spans your entire browser window.
Although a few games do play in this manner, most games are embedded
in a smaller window. We are going to place all of our code to fit inside a
window by using a few tweaks to our files.

Part 1: Getting Started

Go to the images folder in the Raw Images folder of the My Work Files
folder. Locate the folder named html_web and copy this to the My Work
Files folder, which should now look like this:

?‘i,” -y | My_Work_Files
This PC » Local Disk (C:) » My _Work_Files m_ oo B
View Arrange Share Edit Tags

—

) [n G W

= = “%. m) Css deraI:I:;\lmi himi_web Images

(5 htmi_web Images 13
- }
J’ \

Raw Images sounds default » P ks saae

225

CHAPTER 8 ADD SOME BLING TO OUR GAME

Part 2: Modify the default.html File

To embed the game, we first need to modify the default.html file.
Opening the default.html file and type the following new lines (all new
text is in bold):

<html>
<head>
<script
<script
<script
<script
<script
<script
<script
<script
<script
<script

src="js/jquery.js"></script>
src="js/jquery-ui.js"></script>
src="sounds/jquery.playSound.js"></script>
src="js/SZ_main.js"></script>
src="js/SZ_setupContent.js"></script>
src="js/SZ_movement.js"></script>
src="js/ss.js"></script>
src="js/SZ_SS.js"></script>
src="js/SZ_touch.js"></script>
src="js/SZ_zombie_movement.js"></script>

<link href="css/SZ_master.css" rel="stylesheet" />

</head>
<body>

<div id="logo"y</div>
<div id="box1"»</div»

<div id=

"SZ_maincontent”>

<img id="SZ0 0" src="images/SZ_background image.jpg"
onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />
<div 1d="SZ0 1" ></div>

<div id="SZo 2" >

<img

src="images/SZ_reload.png" onmousedown="reloadGun

(event)" />

</div>

<div id="SZ0 3" style="background-image:

url(images/SZ_score.png);">

226

CHAPTER 8 ADD SOME BLING TO OUR GAME

<div id="textx">999</div>
</div>
<div id="SZ0 4" onmousedown="start_game();"/>
</div>
</body>
</html>

Save the file and then close it.
Now open the SZ_master.css file and type the following new lines
(all new text is in bold) and some modified lines (all in red):

html {
height: 100%;
background: url(../html_web/webBG.jpg);
background-size:cover;

}

body {
padding: 0 0 0 0;
margin: 0;
user-select: none;
cursor: crosshair;

}
img {

max-width: 100%;

height: 100%;
user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-drag: none;
-webkit-user-select: none;
-ms-user-select: none;

227

CHAPTER 8 ADD SOME BLING TO OUR GAME

}
#logo {
position: absolute;
z-index:9999;
background: url(../html_web/logo.png);
background-size:cover;
pointer-events:none;

#box1 {
position: absolute;
z-index:9998;
background: url(../html_web/box.png);
background-size:cover;
pointer-events:none;
}
#SZ_maincontent {
position: relative;
overflow: hidden;
}
#520 0 {
position: absolute;
top: 0;
left: o;
min-width: 100%;
min-height: 100%;
}
#520 1 {
position: absolute;
bottom: 0;
right: 0;
opacity:0;

228

}

#5720 2

#5720 3

#S20_4

#textx

CHAPTER 8

{

position: absolute;
top: 0;

left: o;

cursor: pointer;
opacity:0;

{

position: absolute;
top: 0;

right: 0;

opacity:0;
background-size:cover;

{

position: absolute;
cursor: pointer;
background-size:cover;
opacity:0;

{

position: relative;

float: left;

top: 40%;
text-align:center;
font-size: 4vmax;
font-weight: bolder;
colour: white;

font-family: "Arial Black";

ADD SOME BLING TO OUR GAME

229

CHAPTER 8 ADD SOME BLING TO OUR GAME

Save this file and then close it.

You are nearly done. Open the SZ_setupContent. js file and type
the following new lines (all new text is in bold) and some modified lines
(all in red):

//we will need a new ratio var
var ratio use = ratio;

//main function
function main_call setupContent() {
//need to resize all elements
//first we set their normal sizes in CSS

//Main Div
$('#SZ_maincontent').css('width', 600 * ratio);
$('#SZ_maincontent').css('height', 400 * ratio);
//make sure it is half way
$('#SZ_maincontent').css('left’,
($(window) .width()/2)-((600 * ratio)/2));
$('#SZ_maincontent').css("top’,
($(window) .height()/2)-((400 * ratio)/2));

//boxa
$('#tbox1').css('width', 631 * ratio);
$('#box1').css('height', 457 * ratio);
//make sure it is half way
$('#box1').css('left', ($(window).width()/2)-
((637 * ratio)/2));
$('#box1').css("top', ($(window).height()/2)-
((a57 * ratio)/2));

//logo
$('#logo’).css('width', 400 * ratio);
$('#logo').css('height', 146 * ratio);

230

CHAPTER 8 ADD SOME BLING TO OUR GAME

//make sure it is half way
$('#logo').css('left’, 0);
$('#logo').css("top', 0);

//Gun
$('#SZ0 1').css('width', 150 * ratio);
$('#SZ0 1').css("height', 150 * ratio);

//Reload Button
$('#SZ0 2').css('width', 200 * ratio);
$('#SZ0 2"').css('height', 90 * ratio);

//Score
$('#S20 3').css('width', 235 * ratio);
$('#SZ0 3').css("height', 100 * ratio);

//Intro and Game over
if($(window).height()<$(window).width()){
//work out a ratio based on height
ratio use = $(window).height()/800;
}//end if
//apply this new ratio to our intro/game over
$('#S20_4').css('width', 458 * ratio);
$('#S20_4').css('height', 370 * ratio);
$('#S20_4').css('left', 71 * ratio);
/7 $('#S20_4').css('left', ($(window).width()/2)-
((600 * ratio_use)/2));
//make sure it is half way
1/$('#520_4').css("top', ($(window).height()/2)-
((400 * ratio_use)/2));

$("#textx").css('width', '100%");
$('#textx').css('height', '50%");

//Any sprite sheets?

231

CHAPTER 8 ADD SOME BLING TO OUR GAME

//0ur Gun
setup_gun SS();

//Create all our 6 zombies

for (i =1; i<7; i++) {
//this will get called 6 times
SZ createZombie(i);

}

//call the intro
start_end_game(0);

}

var gameEnded=0;
//Intro or Game Over of game
function start end game(whichOne) {
//hide the elements
for (i =1; i< 4; i++) {
//this will get called 3 times
$('#SZ0_'+i).css({opacity:0});
}//for

//hide the zombies
for (i =1; i< 7; i++) {
//we need to stop this zombies animations
$("#zombie '+i).stop();
$('#zombie '+i).css({opacity:0});
$('#bubble zombie '+i).css({opacity:0});
//set the zindex for the zombie
$("#zombie"+i).css("z-index", i+100);
}//for

if(whichOne==0){
//START OF GAME

232

CHAPTER 8 ADD SOME BLING TO OUR GAME

//change the background image
$('#SZ0 _4").css('background-image’,
‘url(images/splash_intro.png)');

} else {

//GAME OVER

//show the score
$('#SZ0 3').css({opacity:1});

//change the background image
$('#S20 _4").css('background-image’,
"url(images/splash _gameover.png)');

}

//make sure it is half way
$('#S20_4').css("top', 0);
//finally show the intro or game over image
$("'#SZ0 4').css({opacity:1});

//stop the user from firing
gameEnded= 1;

}//end of function

//need to store the current score
var current score=0;

//we can call this function to update the score
function updateScore(){
$("#textx").text(current_score);

//start the game
function start game() {

//reset the score
current_score=0;
updateScore();

233

CHAPTER 8 ADD SOME BLING TO OUR GAME

//reset the zindex
zindex_current=0;

//reload the gun
current_shots=0;

//allow user to fire
gameEnded= 0;

//hide the intro or game over image
$('#SZ0 4").css({opacity:0});
//make sure it is out of the way
$('#S20 4').css("top', ($(window).height()));

//show the elements

for (i = 1; i< 4; i++) {
//this will get called 3 times
$('#S20 '+i).css({opacity:1});
}/ /for

//hide the reload button!

$('#S20 2").css({opacity:0});

//show the zombies
for (i =0; i< 7; i++) {
//reset the Zombie
SZ resetZombie(i,0);
}//for
//ensure the score board is half opacity
$('#5S20 3").css({opacity:0.5});

}//end of function

Save this file and then close it.

234

CHAPTER 8 ADD SOME BLING TO OUR GAME

Finally, open the SZ_zombie _movement. js file and type the following
new lines (all new text is in bold) and some modified lines (all in red):

//let's create a zombie
function SZ createZombie(whichOne){

//create a new div to hold the zombie SS
var div = document.createElement('div');
//and another for the bubble zombie SS
var div2 = document.createElement('div');
//and another for the special effect SS
var div3 = document.createElement('div');

//we need to hard code the CSS styles we want
div.setAttribute('style', 'position: fixed; top:0; left:o0;
opacity:0; position: absolute; display: inherit;');

//and the same for our bubble zombie
div2.setAttribute('style’, 'position: fixed; top:0; left:o0;
position: absolute;');

//and the same for our special effect SS
div3.setAttribute('style', 'position: fixed; top:0; left:o0;
position: absolute;');

//we want to position our zombie exactly at the tip of the

planet
var top_position= $('#SZ0 0').height() * 0.435;

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() * ($('#SZo 0').
width())-(ratio*50)) + (ratio*50);

//record this left position
leftx_zombie[whichOne-1]=left position;

235

CHAPTER 8 ADD SOME BLING TO OUR GAME

//let's position our zombie
div.style.left = left position+'px'; div.style.top =
top_position+'px’;

//and the same for our bubble zombie
div2.style.left = left position+'px'; div2.style.top
top _position+'px’;

//and the same for our special effect SS
div3.style.left = left position+'px'; div3.style.top
top _position+'px’;

//give it an id
div.id = 'zombie'+whichOne;
//also for our bubble zombie
div2.id = 'bubble zombie'+whichOne;
//also for our special effect SS
div3.id = 'zombie_ effect'+whichOne;

//finally let's add our zombie to the screen
//document.body.appendChild(div);
$('#SZ_maincontent').append(div);
//finally add in our bubble zombie to the screen too
//document.body.appendChild(div2);
$('#SZ_maincontent').append(div2);
//finally add in our special effect SS to the screen too
document.body.appendChild(div3);

//put this new zombie through our SS function
setup_zombie SS(whichOne);

//put this new zombie through our animate function
// SZ_animateZombie(whichOne);

//hide the bubble zombies at the start
$("#bubble zombie"+whichOne).css("transform','scale('+0+')");

236

CHAPTER 8 ADD SOME BLING TO OUR GAME

//ensure no hits are registered on the special effects
$("#zombie effect"+whichOne).css('pointer-events', 'none');

//set the zindex for the zombie
$("#zombie"+whichOne).css("z-index", whichOne+100);
//set the zindex for the bubble zombie

$("#bubble zombie"+whichOne).css("z-index", whichOne);
//set the zindex for the special effect SS

$("#zombie effect"+whichOne).css("z-index", whichOne+150);
//ensure the zindex for the gun is the highest

$("#SZ0 1").css("z-index", 200);
//also ensure the zindex for the intro/game over is the highest
$("#SZ0 4").css("z-index", 201);

//bind the users mouse click to this zombie
$("#zombie"+whichOne).bind('mousedown touchstart’, function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {
//first we want to fire the gun
fireGun(event);
//acknowledge the hit
if($("#zombie"+whichOne).css('opacity') != 0){
var offset = $(this).offset();
zombieHit(whichOne-1, e.pageX, e.pageY);

}
};

//bind the users mouse click to the bubble zombie
$("#bubble zombie"+whichOne).bind('mousedown touchstart',
function (e) {
//make sure the reload button is showing
if($("#SZ0 2").css('opacity') != 1) {

237

CHAPTER 8 ADD SOME BLING TO OUR GAME

//first we want to fire the gun
fireGun(event);

}
};
}

//we need to keep track of the current scale values
var scalex zombie = [o0,0,0,0,0,0];

//we also need to keep track of the left position
var leftx zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us
function SZ animateZombie(whichOne){

//assign the speed for each of our zombies
var timex = [13000,8000,16000,14000,10000,18000];

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//reset the zombies scale value
$zombiex.css('transform', 'scale('+0+"')");

//reset the zombies opacity
$zombiex.css({opacity:1});

//work out the amount the zombie has to come towards us
var amty = ($(window).height()*0.7);// -
($zombiex.height()*2));//topx);

//each type of zombie will have their own walking style
var ZS ease = ['easeInSine', 'easeOutQuart', 'easeInOutQuad’,
'easeInSine', 'easeOutQuart', 'easeInOutQuad'];

//finally we are ready to animate
$zombiex.delay(timex[whichOne-1]/3).animate({

238

CHAPTER 8 ADD SOME BLING TO OUR GAME

//first bring our zombie slowly down the screen
left: "+="+0.001+ "px",
},{ easing:ZS ease[whichOne-1],
duration: timex[whichOne-1],

step: function(now, fx){
//at each step we can manipulate the scale of
our zombie
if (fx.prop == "left") {
//work out the amount to scale
var xx = (fx.pos)*16;
if(gameEnded==1){
XX=999;
}
//do a check to see if we should end this animation
if(xx>15){

//stop all animation

$(this).stop();

//call a function to reset this zombie

//SZ_resetZombie(whichOne,0);

//game Over
$(this).css({opacity:0});
$(this).stop(true, true);
$(this).finish();

if(gameEnded==0 &3 xx!=999){
start_end game(1);

}

} else {
//apply the scale
$(this).css("transform',
"scale('+xx+')");

//record this new scale value
scalex_zombie[whichOne-1]=xx;

239

CHAPTER 8 ADD SOME BLING TO OUR GAME

//check the depth levels
var i = 0;
while (i < 6) {
//check to see if the scale is
bigger
if(scalex_zombie[whichOne-1]>
scalex_zombie[i] &&
($(this).zIndex() <
$("#zombie"+(i+1)).zIndex())
88 scalex zombie[i]!=0){
var i index =
$("#zombie"+(i+1)).zIndex();
//change the i one first
$("#tzombie"+(i+1)).css
("z-index", $(this).css
("z-index"));
//now change this one
$(this).css("z-index", i index);
} //end of if
i++;
}//end of while loop

}
}, complete: function () {

}
};
}

//need to keep track of the current zindex for zombies
var zindex current=0;

//a function to completely reset our zombie
function SZ resetZombie(whichOne, zombieBubble generate){

240

CHAPTER 8 ADD SOME BLING TO OUR GAME

//reset this zombies hit counter
zombieHits counter[whichOne-1]=0;

//assign a user friendly name for our div
var $zombiex = $("#zombie"+whichOne);

//we need to stop this zombies animations
$zombiex.stop();

//we want to position our zombie exactly at the tip of the
planet
var top_position= $('#SZ0 0').height() * 0.435;

//should we generate a bubble zombie?
if(zombieBubble generate==1){
//assign a user friendly name for our bubble zombie div
var $bubble zombiex = $("#bubble zombie"+whichOne);
//let's re-position our bubble zombie to our stored
value
$bubble zombiex.css({top: top position+'px’,
left: $zombiex.css("left"), opacity:1});

//apply the scale

$bubble zombiex.css('transform',
"scale('+scalex_zombie[whichOne-1]+")");
//call our bubble zombie animation function
bubbleZombie flyAway(whichOne);

}

//Xpos can be anywhere on our x axis
var left position = Math.floor(Math.random() *
($('#Szo 0').width())-(ratio*50)) + (ratio*s50);

//record this left position
leftx_zombie[whichOne-1]=left position;

241

CHAPTER 8 ADD SOME BLING TO OUR GAME

//let's re-position our zombie
$zombiex.css({top: top position+'px', left:
left position+'px', opacity:0});

//set the zindex for the zombie
zindex_current++;
$("#zombie"+whichOne).css("z-index", zindex current);

//finally let's make the zombie come towards the screen again
if(zombieBubble generate==0){
SZ_animateZombie(whichOne);

}

Save this file and then close it.
We are now ready to test! Go back to the My Work Files folder and
double-click the default.html file. You should see the following screen:

242

CHAPTER 8 ADD SOME BLING TO OUR GAME

You will agree that, with just a few tweaks of code, we have created a
huge improvement in the overall design of our game.

w & INof
_ []
v~ Working?
Did it not work? A lot of the code written here are changes to code that was
already written. It is important to go through the bolded code line by line
and ensure that it looks exactly as shown.

Pay careful attention to the changes in SZ_master.css, especially

where we have added the same line to several places.
Finally, take care with changes like this:

/1 $('#520_4"').css('left’', ($(window).width()/2)-
((600 * ratio_use)/2));

Please make sure that you have coded the lines exactly as shown.
If it is still not working, then please do not hesitate to message me on
Twitter (@zarrarchishti).

243

CHAPTER 8 ADD SOME BLING TO OUR GAME

Further
' Information

How did the game get smaller?

The game itself is exactly the same; all we did was reduce the amount of
space the game takes on the screen:

$('#SZ_maincontent').css('width', 600 * ratio);
$('#SZ_maincontent’).css('height', 400 * ratio);

How did we put the extra graphics on the screen?
Let’s take each one separately. The box that surrounds our game is
created in the following line:

<div id="box1"»</div»

The logo at the top left was created using
<div id="logo"»</div»

Finally, we put the background image using

background: url(../html_web/webBG.jpg); background-size:cover;

Game Over. Restart?

This concludes our development. I hope that you enjoyed coding this game
as much as I have. I also hope that you have developed a passion for game
development and that you go on to create some truly awesome games.

Please contact me if you have any problems or wish to discuss your
ideas for other games.

244

CHAPTER 8 ADD SOME BLING TO OUR GAME

Wondering where to go from here? I have put together a few ideas on
ways to further develop the game, which you should be able to do on your
OWn Now.

o Ifyou are a database developer, you may want to record
the scores to a local or server database. To go one step
further, you may want to create a screen to capture the
user’s information, such as their email address.

e Have a small spider-like animation created into
sprite sheets. Include this in the gameplay at random
intervals. When the user shoots it, give them double
points.

e We have explored some options within each chapter
(e.g., installing a “head shot” feature). It might be
worth going back to revisit these suggestions and try to
rewrite the code yourself.

o Place a Pause button. As the name suggests, when
clicked, all gameplay should pause. I usually display a
fullscreen image, which resumes the game play when
clicked.

o Create levels! You will need some way to stop the
gameplay and reset all the gameplay parameters. Also,
you will want to give some thought as to why each level
is different. I would introduce Professor Z in level 1,
and then Belladonna in level 2, and, finally, Brad in
level 3. In the final stage, I would have all three zombies

come out in a random order.

245

CHAPTER 8 ADD SOME BLING TO OUR GAME

o Finally, get creative! Use this engine for something
completely different. For instance, I used the same
engine to create a circus-themed game. In this game,
the gun was replaced with a rifle and the zombies were
replaced with three different types of targets to shoot
(e.g., a duck). The targets would move from left to right
and move in three different depths. Although I had to
change the graphics and tweak the code slightly, the
engine for the game remained the same.

Let me know what other games you managed to create using this
engine. Join me on Twitter (@zarrarchishti) and let’s discuss!

246

Index

A D
Absolute, 35 delay() method, 139
alert(), 41, 127, 128 Depth levels, 163-171
animateSprite function, 66 Depths and click zones, 157-171
Animation, 13, 23, 51, 66, 68, 70, 73, div, 17, 45,94, 111

76, 80, 81, 85, 95, 136, 148, do/while loop, 102

203, 245 duration function, 68
appendChild(), 124
Aptana, 6

E

Arrays, 47, 93, 94,97, 113
easeInOutQuad, 98
easelnSine, 98

B easeOutQuart, 98
Background-colour, 27 Easing function, 97, 98, 145
Background image, 2, 3, 18-20, 22, Eclipse, 6
28-31, 193 Embedding, 3, 225-244
e.pageX and e.pageY
C properties, 212
Cascading Style Sheets (CSS), 23-35
Cloud hosting, 11 F
Coding errors, 70 File, 6-14, 226-244
Conditional statements, 119 Fireworks, 50
Counter, 129-136 Fixed, 26, 35
Crosshair cursor, 51, 53, 81, 100 for/in loops, 102
CSSOM View Module, 212 Frames per second (fps), 68
247
© Zarrar Chishti 2017

Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0

https://doi.org/10.1007/978-1-4842-3291-0

INDEX

G

Gameplay, 3, 18, 55, 81, 245

Gun fire, 57, 60, 62, 70, 76, 78, 111,
157-163

Gun reloading, 62, 70, 74, 78

H

Hardware acceleration, 23

Hits count, 113-119

Hitting zombie, 107-113

Hosting server, 10-11

Hypertext Markup Language
(HTML), 15-22

Image resizing, 46-50
, 19, 30
insertBefore(), 124

J, K

JavaScript code, 40, 45, 50, 112

L

Life cycle generation, 102-106
load(function (), 45

Loop option, 68

Low memory usage, 62

248

Macromedia Photoshop, 50

main_call_setupContent()
function, 50

Margin, 26, 27

Math.floor(), 94

Math functions, 94

Math.random(), 94

Max-width, 31

Min-width, 31

Mousedown touchstart events, 111

N

NetBeans, 6
newWidth, 45

O

offset() method, 219
onmouseenter, 77
onmouseleave, 77
onmouseout, 77
onmouseover, 77
onmouseup, 77
Opacity, 145, 156

PQ
Padding, 26
Pascal coding, 42

play() method, 221
Position, 26, 35
Property, 24

R

Ratio, 45

Relative, 35

Reload button, 3, 32, 51, 73,
76, 80, 81, 83, 146, 148,
153, 155, 156,
162, 224

rotateGun function, 58

S

Selector, 24
setup_SpriteSheet, 93
Sound effects, 219-225
Sprite animation, 80
Sprite sheet functionality,
60-71, 85, 91,
124, 245
Static elements, 35

INDEX

—~

Testing, 25
Tiled grid arrangement, 62
Transform property, 60

U

updateScore(), 203
User-drag, 31
User-select, 27, 29

\'

Visual Studio Community, 6

W XY
while loop, 102, 171
WinRAR, 14
WINZIP, 14

Y4

z-index, 170, 199

249

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	 Introducing Our Game: Space Zombies
	 Setting up Your Work Environment
	 Part 1: Setting up Our Folders
	 Part 2: Setting up Our Files

	 Hosting and Media Files
	 Part 1: Your Computer vs. Hosting Servers
	 Part 2: Download the Media for Your Project

	Chapter 2: In the Beginning, There Was HTML
	 Hello World
	 Background Image
	 Adding the Rest of the Images

	Chapter 3: Time to Apply a Little CSS
	 Start with a Quick Test
	 Our Background Image
	 Our Other Images

	Chapter 4: Apply Intelligence with JavaScript
	 Why Do We Need to Resize?
	 How Do We Universally Resize?
	 Let’s Resize Our Images

	Chapter 5: Take a Shot: Part 1
	 Changing Our Cursor and Registering a Click
	 Making Our Gun Act More Realistic
	 Animating the Gun with Sprite Sheets
	 Part 1
	 Part 2
	 Part 3
	 Part 4

	 Reloading Our Gun
	 Firing Our Gun
	 One Last Thing…

	Chapter 6: Where Are the Zombies?
	 Creating a Zombie: Part 1
	 Creating a Zombie: Part 2
	 Moving the Zombie Closer
	 Creating All the Zombies
	 Generating a Zombie Life Cycle

	Chapter 7: Take a Shot: Part 2
	 Hitting a Zombie
	 Making the Hits Count
	 Zombie Down!
	 Part 1: Create Six Bubble Zombie Elements
	 Part 2: Activate the Counter Bubble Zombie
	 Part 3: Animate the Bubble Zombies

	 Reloading the Gun
	 Clean up the Depths and Click Zones
	 Part 1: Ensuring Gun Fire
	 Part 2: Zombie Depth Levels

	 Intro Splash and “Game Over” Screens
	 Part 1: Images Folder
	 Part 2: Stopping and Starting

	Chapter 8: Add Some Bling to Our Game
	 What’s the Score?
	 Sprinkle of Special Effects
	 Part 1: Get Started
	 Part 2: Displaying the Effects

	 Turn up the Sound Effects
	 Part 1: Getting Started
	 Part 2: Adding Sound Effects

	 Embedding the Game
	 Part 1: Getting Started
	 Part 2: Modify the default.html File

	 Game Over. Restart?

	Index

