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Chapter 1
Introduction

1.1 Objectives

The ever-increasing volume of multimedia data being generated in the world has led
to much research interest in multimedia database retrieval since the early years of the
twentieth century. Computer vision and machine learning technologies have been
developed, forming a solid research foundation for the creation of stage-of-the-art
applications, such as MPEG-7, interactive multimedia retrieval, multimodal fusion,
annotation, and database re-ranking. The time has come to explore the consequences
of these multimedia applications. Multimedia Database Retrieval: Technology and
Application is an application-oriented book, borne out of established researchers in
this emerging field. It covers the latest developments and important applications in
multimedia database technology, and offers a glimpse of future technologies. With
a strong focus on industrial applications along with an overview of research topics,
Multimedia Database Retrieval: Technology and Application is an indispensable
guide for all engineers and researchers involved in the development and use of state-
of-the-art systems in the multimedia industry. It serves as an invaluable reference for
multimedia database technologies involving large scale image and video databases;
interactive search and recognition technologies on mobile and on distributed and
cloud databases; news video, sports video, and film; forensic image databases; and
gesture databases of advanced motion training in virtual reality systems.

© Springer International Publishing Switzerland 2014 1
P. Muneesawang et al., Multimedia Database Retrieval: Technology and Applications,
Multimedia Systems and Applications, DOI 10.1007/978-3-319-11782-9__1



2 1 Introduction

1.2 Multimedia Database Retrieval

1.2.1 Background

Living in the information era, we are surrounded by an enormous amount of digital
content. According to Bohn and Short [1], the estimated size of newly created
digital data in 2011 was about 1,800 exabytes (1 exabyte = 1 billion gigabytes),
roughly 700 times more than the production in 2002 (2-3 exabytes). This number
is equivalent to a ten-fold average annual growth rate. In terms of image and video
content, according to the latest released statistics, YouTube hosts more than 120
million copyright claimed videos and serves four billion video requests per day [2].
Facebook, on the other hand, hosts about 50 billion photos (2010), 15 billion
of which are tagged [3]. Another statistic shows that Facebook had 845 million
monthly active users and 483 million daily active users on average in December
2011 [4]. Undoubtedly, digital content, including images and videos, are deeply
rooted in our daily life, served on a wide range of devices, from desktops and
laptops to mobile phones and tablets. Large-scale content-based multimedia data
organization and analysis not only helps to retrieve users’ desired information,
but also serves as the basis for multimedia applications such as classification and
retrieval of images/videos, forensic images, film, motion data, as well as the recent
boom of cross-platform mobile visual search and recommendations.

1.2.2 Challenges

As a result of the recent explosion in the quantity of digital media, there is an urgent
need for new and better techniques for accessing data. Indexing and retrieval are
at the heart of multimedia system design—large amounts of multimedia data may
not be useful if there are no effective tools for easy and fast access to the collected
information. Once collected, the data must be organized efficiently, so that a query
search via a search engine will yield a limited, yet useful, number of results. The
retrieval process is designed to obtain limited information which satisfies a user at
a particular time and within a particular domain application; however, this does not
often work as efficiently as intended. A significant challenge, therefore, is to develop
techniques that can “interpret” the multimedia content in large data collections to
obtain all the information items relevant to the user query, while retrieving as few
non-relevant ones as possible.

The analysis and retrieval of multimedia content in large-scale image and video
databases faces more challenges than in small scale content-based multimedia
analysis. Some of the unique challenges of large-scale multimedia analysis include:

e Automatic classification and retrieval, with minimum human labeling and inter-
vention. According to a recent study, among web-based image and video
consortia, only 5-10 % of the data are labeled [5]. The majority of multimedia
data cannot be retrieved using current text-based search engines.
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*  Multimedia retrieval, including efficient database index, compact storage, and
quick and accurate retrieval performance. Since large-scale databases consist
of millions of images, the computational efficiency of both off-line and on-line
retrieval processes is crucial.

» Integration with cross platform-based applications. With the emerging
technologies of mobile devices and cloud computing, a lot of desktop-based
multimedia applications need to be migrated to cloud and must find suitable
positions in the mobile domain.

Multimedia database retrieval has attracted researchers from the fields of com-
puter vision, machine learning, database technology, and multimedia for almost two
decades. It still remains a popular research direction, especially when considering
how to cope with the vast size and increasing growth of multimedia data. In the
beginning of this millennium, Rui, Huang, and Chang stated that there are two
major difficulties with large-scale image datasets [6]. One is the vast amount of
labor required in manual image annotation. The other is how to understand different
human perceptions towards the same image content. Moreover, the question of how
to efficiently index large-scale image archives for fast retrieval was also raised as a
fundamental consideration in designing large-scale image retrieval systems [6,7].

1.2.3 The Development of Multimedia Database
Retrieval Technology

This book presents the development of multimedia database retrieval technology
from two perspectives. The first perspective presents up-to-date methods and
appealing topics in multimedia retrieval. It shows the state-of-the art technology
used for small, medium, and large-scale databases. The second perspective provides
an application-oriented view of multimedia technology. This will inspire the reader
towards innovation in developing new applications, and towards the practice of
multimedia technology.

1.3 Technology Perspective

1.3.1 Human Centered Search and Retrieval

Visual seeking is the process of communication between a user and a computer
system, and requires a decision-making method for both sides. This visual seeking
involves interpretations of visual content by both the user and the computer. For
successful retrieval, it is necessary that the user and the computer system use the
same interpretation criteria.
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However, human beings are complex creatures, and their motivations and
behaviors are difficult to measure and characterize. As a result, the interpretation
criteria utilized by human users are not fixed. Human beings are capable of inter-
preting and understanding visual contents—to simultaneously synthesize context,
form and content—which is beyond the capability of any current computer method.
Human interpretation depends on individual subjectivity and the information needed
at a particular time and for a particular event. In addition, users learn from the
available information (search results) to recognize their needs and refine their visual
information requests (refine the queries) [8]. In other words, the interpretation of
visual content by a human user is non-stationary, or fuzzy, and is very difficult to
describe with fixed rules. A human user is an adaptive-learning component in the
decision-making system.

In order to build a computer system to simulate and understand the deci-
sion making processes of human beings, the above-mentioned characteristics of
adaptability should be taken into account. Learning to adapt and to optimize
decision-making is primary to the goal of creating a better computer-based retrieval
system.

1.3.1.1 User-Controlled Relevance Feedback

Chapter 1 of this book, therefore, explores the development of an adaptive machine
that can learn from its environment, from both user advice as well as self-adaptation.
Specifically, the adaptive machine requires two important properties to achieve
this purpose: nonlinear decision-making ability, and the ability to learn from
different sources of information (i.e., multi-modeling recognition). By embedding
these two properties into the computer, the system can potentially learn what
humans regard as significant. Through a human—computer interactive process, the
system will develop the ability to mimic non-stationary human decision-making in
visual-seeking environments. The relevant topics include: Content-based similarity
measurement, using linear functions and nonlinear functions, Relevance feedback
(RF), Linear/non-linear kernel-based adaptive retrieval, Single-class Radial basis
function (RBF) network, RBF networks with adaptive learning, gradient-descent
learning, fuzzy-RBF with soft decision, and a Bayesian framework for fusion
of short-term relevance feedback (content information) and long-term relevance
feedback (context information).

1.3.1.2 Machine-Controlled Relevance Feedback

Chapter 2 introduces the automation process to optimize the learning system by
incorporating self-organizing adaptation into relevance feedback. This process is
referred to as pseudo relevance feedback (RF). Optimization is the process of
reducing the user’s direct input, as well as adjusting the learning system architecture
for flexibility in practical use in multimedia retrieval. While user interaction
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results in a valuable information exchange between the user and the computer,
programming the computer system to be self-learning is highly desirable.

Consequently, the interactive retrieval system of Fig.1.la is generalized to
include a self-learning component, as shown in Fig.1.1b. The interaction and
relevance feedback modules are implemented in the form of specialized neural
networks. In these fully automatic models, the learning capability associated with
the networks and their ability to perform general function approximations offers
improved flexibility in modeling the user’s preferences according to the submitted
query.

Pseudo RF offers multimedia retrieval in fully automatic and semi-automatic
modes, which allow: (1) avoidance of errors caused by excessive human involve-
ment, (2) utilization of unlabeled data to enlarge training sets, and (3) minimization
of iterations in RF. These properties are highly desirable for multimedia retrieval in
a cloud-data center.

The relevant topics include: Pseudo-RF method, implemented by the
self-organizing tree map, Compressed domain features, Energy histograms of
discrete cosine transformation (DCT), Multi-resolution histograms of wavelet
transformation, Re-ranking of images based on knowledge of region-of-interest,
and Re-ranking of videos using the adaptive cosine network.

1.3.2 Internet Scale Multimedia Analysis and Retrieval

In order to cope with large scale multimedia classification and retrieval, this book
presents the adoption of the bag-of-words (BoW) model for the analysis of images
and videos. A BoW model can effectively combine the locally extracted feature
vectors of either an image or a video frame. It focuses on the characteristics of
the local feature ensemble, and treats individual local descriptors uniformly. The
merits of the BoW model include the homogenous process in which it compactly
represents images or video frames for classification, as well as its usability for large-
scale image retrieval due to its success in text retrieval. The relevant topics this book
will be presented as follows.

1.3.2.1 BoW in Unsupervised Classification and Video Analysis

The first topic describes the BoW model for unsupervised classification in video
analysis. A distinguishing yet compact representation of the video clip is constructed
using the BoW model. Candidate videos are indexed and represented as a histogram-
based interpretation using the learned BoW model. The advantage of using the Bow
model is that labeled data is not required. Therefore, video analysis can be realized
for large-scale applications.

Chapter 8 of this book presents a systematic and generic approach by using
the BoW based video representation. The system aims at event detection in
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Fig. 1.1 (a) User-controlled relevance feedback system. (b) Pseudo-relevance feedback system

an input video via an orderly sequential process. Initially, domain knowledge
independent local descriptors are extracted homogeneously from the input
video sequence. The video’s genre is identified by applying k-nearest neighbor
(k-NN) classifiers onto the obtained video representation, with various dissimilarity
measures assessed and evaluated analytically. Subsequently, an unsupervised
probabilistic latent semantic analysis (PLSA) based algorithm is employed on
the same histogram-based video representation to characterize each frame of video
sequence into one of the representative view groups. Finally, a hidden conditional
random field (HCRF) structured prediction model is utilized for detecting events of
interest. In a trial evaluation, sports videos were used.
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1.3.2.2 BoW in Retrieval and Mobile Image Search

Chapter 4 of this book explores the merits of using BoW in mobile visual search
by effectively incorporating user interaction. Efficient and scalable indexing and
non-linear fast retrieval algorithms are adopted in handling large-scale images.
Human interaction is included in the loop. Therefore, specific user perception and
distinguishing requests are used to lead the system into achieving a customized
search result.

Based on the above idea, an interactive mobile visual search application aimed
at social activity suggestion is developed using a coined term “visual intent”,
which can be naturally expressed through a visual query incorporating human
specification. To accomplish the discovery of visual intent on the phone, Tap Tell
was developed, as an exemplary real application. This prototype takes advantage of
user interaction and rich context to enable interactive visual search and contextual
recommendation. Through the Tap Tell system, a mobile user can take a photo and
indicate an object-of interest within the photo via a circle gesture. Then, the system
performs search-based recognition by retrieving similar images based on both the
object-of-interest and surrounding image context. Finally, the contextually relevant
entities (i.e. local businesses) are recommended to complete social tasks.

1.3.3 Mobile Visual Search

The widespread availability of networks has enabled portable multimedia devices,
particularly mobile phones, to capture, share, and access vast amount of multimedia
content. This has led to the emergence of technologies providing improved mul-
timedia data management in mobile environments. Among others, mobile visual
search technology has been at the center of mobile applications. Mobile phones are
equipped with camera and imaging functionality, which enable a visual query that
can be naturally expressed in a visual form instead of by text or voice. The user
can capture the objects/scenes that he or she is interested in, and obtain relevant
information about the captured objects/scenes [9].

In an advanced system for mobile visual search, instead of sending the whole
query image over the network, a compact signature is used, achieving a low-bit-
rate for the search. Figure 1.2 shows the vocabulary coding process of obtaining a
compact signature for mobile visual search. The utilization of a compact signature
overcomes the significant limitation of the battery power of mobile terminals, and
achieves better uplink bandwidth at the servers and latency network access. To date,
BoW models with scalable vocabulary tree (SVT) form the basis for research into
the development of compact signatures [10]. However, the BoW model is limited by
its homogenous process in treating all paths/regions without distinction. Features
are extracted homogeneously, and local features are treated without emphasis.
Therefore, a query image with unprioritized information can mislead a computer
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Fig. 1.2 Mobile visual search via vocabulary coding through a wireless upstream query transmis-
sion pipeline. The scale invariance feature transform (SIFT) is applied to the captured landmark
for feature extraction and the resulting features are encoded to obtain a compact signature for the
recognition of the landmark image at the server end

visual recognition algorithm. Recognition requires discriminative BoW, to give a
more distinctive representation for local descriptors through discriminative learning
of image patches or saliency mapping.

Chapter 4 presents a soft-BoW method for mobile visual search based on
the discriminative learning of image patches. Specifically, a multi-touch screen
and the user’s interaction on a mobile device are utilized by a user to select
regions-of-interest (ROIs) as prioritized information, and the surrounding context
is used as secondary information. Along with the BoW model, a context-embedded
vocabulary tree (CVT) for soft weighting is adopted by using both the ROI and its
surrounding image context to allow the mining of mobile visual intents. A system
is built upon an initial visual query input to obtain the recognition results. Once
the context metadata is associated with the intent, the system takes advantage of
more reliable contextual text and Global Positioning System (GPS) features in
searching and re-ranking. Ultimately, interesting and relevant social activities are
recommended to the users. The discriminative BoW presented in this work not
only enables mobile access to large multimedia repositories, but also provides more
effective user interaction.

Chapter 5 focuses on mobile visual search systems, which can identify land-
marks in a user’s surroundings from the images captured by the camera on the
user’s devices, and retrieve interesting information related to those landmarks. In
particular, saliency information is used with a re-ranking approach and incorporated
at various stages of recognition: saliency-aware local descriptor, saliency-aware
SVT, saliency-aware BoW, and discriminative learning via re-ranking. An important
novelty of this work is that, instead of relying on a plain structure of a compact
database of image signatures, the saliency information and re-ranking method are
used for increasing discriminating power and improving recognition accuracy.

1.3.4 Multimedia Retrieval in a Cloud Datacenter

In today’s multimedia network systems, multimedia files are distributed over the
nodes in an overlay network as a cloud datacenter. Apparently, the searching of
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Fig. 1.3 A structured P2P network system utilizing a DHT to link nodes so that a query can be
effectively and efficiently resolved. The nodes are clustered by the application of a self-organizing
method in a cluster-identification search system

multimedia objects requires a large number of query transactions to be sent from
nodes to nodes in the network. In comparison to a centralized datacenter, a retrieval
task requires an initial search of the relevant nodes owning multimedia objects
potentially relevant to the query, before it can perform similarity matching. In this
regard, the automatic clustering of multimedia objects on the network is desirable
for organizing the owner nodes in order to process the initial node search quickly.

Chapter 8 looks into an automatic clustering method for the organization of
nodes in a distributed hash table (DHT) for effective node searching and retrieval
of multimedia objects. A cluster-identification search system (CCS) is developed
to organize nodes as a structured peer-to-peer network. A structured Peer-to-Peer
(P2P) network, as shown in Fig. 1.3, uses a DHT to link nodes so that a query
can be effectively and efficiently resolved. The automatic clustering allows the
partition of nodes on the network in the DHT and Chord layers, according to the
cluster identification. This indexing stage facilitates online search by pinpointing
the relevant nodes without traversing all the participating nodes.

While the automatic indexing of nodes is one important requirement for retrieval
systems in the cloud datacenter, increasing retrieval accuracy is another requirement.
In this regard, the pseudo-relevance feedback presented in Chap. 8 can be applied
to achieve sufficient improvement in retrieval accuracy without user supervision.
In this scenario, the relevant node performs pseudo-RF and forwards the modified
query to its neighbors. This offers continuously improving retrieval without trans-
ferring training samples over the network during adaptive searching.
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1.3.5 Technologies of 2-D Video and 3-D Motion
Database Retrieval

Figure 1.4 summarizes the technologies of 2-D video database retrieval. This
composts of various modules described in the following sections.

1.3.5.1 Video Indexing Beyond the Shot Level

Effective video retrieval requires a representation which is specifically applicable to
the time-varying nature of video, rather than simply applying still-image techniques.
The book presents a video representation based on Template-Frequency Mode
(TFM) that is specific to video database applications. TFM is applied for video
characterization at various levels, specifically, shot, group of shots, or story.
Compared with traditional techniques, which use either a representative key-frame
or a group of frames, TFM provides a new approach to video descriptors: it can
organize and differentiate the importance of the visual contents in various frames,
and it describes the contents of the entire video within a shot, group of shots, and
a story. This provides multi-level access to video collections. Unlike previous
querying methods that were limited to video shots or key-frames, TFM offers, to
users who wish to retrieve a video group or story, the potential of sending queries
using video clips that contain more accurate narratives.

Chapter 3 presents the development of TFM, while Chap. 7 presents its applica-
tion in video retrieval systems that facilitate multi-level access to video databases.
Chapter 10 then provides a more comprehensive evaluation of TFM and compares
it to other video indexing methods.
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1.3.5.2 Adaptive Video Retrieval with Human in the Loop

While many RF models have been successfully developed for still-image appli-
cations, they have not yet been widely implemented for video databases. This
is because effective content-analysis through RF learning must also capture the
temporal information in a video, and not just spatial information, as required for
a single image. The fundamental requirement is a representation that allows RF
processes to capture sequential information on a video file.

In this book, the efficiency of TFM-based video indexing in capturing user
perception is demonstrated for video retrieval in the RF process as well as semi-
automatic process. The technology developments along this line are presented in
Chaps. 3, 7, 8, and 10.

1.3.5.3 Video Retrieval with Pseudo-Relevance Feedback

There is a difficulty faced in the practical application of RF learning in the domain
of video databases. Compared to images, the interactive retrieval of video samples
can be a time-consuming task, since video files are usually large. The user has to
play a sufficient amount of videos to train the retrieval process to make a better
judgment of relevance. Furthermore, on a network-based database, this RF learning
process requires high-bandwidth transmissions during the user interaction.

The video retrieval strategy presented in this book combines the video indexing
structure based on TFM with pseudo RF to overcome the above challenges. The
integration of TFM with an (unsupervised) adaptive cosine network is presented
to adaptively capture different degrees of visual importance in a video sequence.
This network structure implements an pseudo RF process through its signal
propagation with no user input to achieve higher accuracy in retrieval. Hence, this
technique can avoid the time-consuming task of user-interaction, and allows suitable
implementation of video retrieval on the network-based database. This pseudo-RF
is presented in Chaps. 3 and 8.

1.3.5.4 Multi-Modal Fusion

Tasks involving the analysis of video content, such as detection of complex events,
are intrinsically multimodal problems, since audio, textual, and visual information
all provide important clues to identify content. The fusion of these modalities offer a
more completed description of video and hence facilitate effective video retrieval.
Chapter 7 explores the multiple modalities in video with the MPEG-7 standard
descriptors. Video segmentation is performed by characterizing events with motion
activity descriptors. Then, the events are classified by multimodal analysis using
motion, audio, and Mel Frequency Cepstrum Coefficients (MFCC) features.
Chapter 10 presents an audio-visual fusion that combines TFM-visual features
with Laplacian-Mixture Model (LMM)-audio features. The multimodal signals
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of video are used to extract high-level descriptors via a support-vector machine
decision fusion. This increases the system’s capability to retrieve videos via
concept-based queries. For example, the concepts “dancing” and “gun shooting”
are utilized for retrieving relevant video clips.

1.3.5.5 Event Detection and Video Classification

Video classification explores audio, textual, and visual information to classify
videos into categories according to semantics such as events. Examples of such
events are the “Touchdowns” and “Field goals” in American football. The video
classification method based on high-level concepts is presented in Chap.7. The
method classifies recurring events of the games without using any domain knowl-
edge, utilizing MPEG-7 standard descriptors. The specific events are “Run play”,
“Field goal” and ‘“Pass play”. In addition, Chap. 9 presents the method for video
genre classification. This method employs domain-knowledge independent descrip-
tors, and an unsupervised clustering technique to identify video genres. Moreover,
a systematic scheme is employed for detection of events of interest, by taking the
video sequence as a query. After the video genre is identified, the query video is
evaluated by a semantic view assignment as the second stage, using the unsupervised
probabilistic latent semantic analysis (PLSA) model. Both genre identification and
video classification tasks utilize the initially processed video representation as input,
and unsupervised algorithm classifiers. Finally in the third task, the event of interest
is detected by feeding the view labels into a hidden conditional random field
(HCRF)-structured prediction model.

1.3.5.6 Video Object Segmentation

Video segmentation is done to allow the selection of some portions of video that
contain meaningful video structure based on the user’s goal. If the goal is to obtain
video portions based on a single camera shot, a video parsing method is employed.
However, if the goal is to segment the video according to the object of interest, a
method for detection and tracking of video objects is needed. Chapter 7 discusses
video object segmentation for both scenarios.

Video parsing will look into an algorithm to detect shot transitions from the
compressed video, using the energy histogram of the discrete cosine transformation
(DCT) coefficients. The transition regions are amplified by using a two-sliding
window strategy for attenuation of the low-pass filtered frame distance. This
achieves high detection rates at low computational complexity on the compressed
video database.

The method for object-based video segmentation produces a video structure,
which is more descriptive than the full portion of video sequence. The video
objects are automatically detected and tracked from the input video according to the
user preference. The segmentation method incorporates shape prior to implement
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Fig. 1.5 3D motion database retrieval in a virtual reality dance training system

graph cut for video object segmentation. It is particularly effective when applied
to video objects appearing at weak edges, with poor lamination distribution, and
having backgrounds of similar color and movement. In addition, human faces are
also interesting video objects. Detection algorithms have to cope with inconsistent
performance due to sensitivity to lamination variations such as local shadowing,
noise, and occlusion. The face detection method overcomes these problems by the
incorporation of the local histogram and optimal adaptive correlation methods.

1.3.5.7 3D Motion Database Retrieval

3D motion data is acquired by the sensors in a process which is different from the
acquisition of image and video data. The 3D motion data of human movement is
represented by a time series of the body’s joint positions. It can be captured by
Microsoft Kinect in terms of the skeleton tracking of joint positions, as well as
by the full motion capture system using optical-reflective markers. The usefulness
of 3D motion database applications can be seen in the recent trend towards more
immersive and interactive computing. This application requires tools to analyze,
understand, and interpret human motion, in particular human gestural input. Human
gestures include movement of the hands, arms, head, face or body with the intention
of conveying meaningful information or interacting with the environment.

Figure 1.5 show the application of 3D motion database retrieval in a dance
training system. In a virtual reality dance training system, dance gesture recognition
is the key issue in the comparison of captured dance motion taken in real time
from the trainee against the trainer data. The recognition result will enable the
execution of subsequent tasks, such as automatic dance performance assessment,
and synthesizing virtual dance characters and dance partners in the VR settings.

In Chap. 11, a dance training system is presented for automatic dance gesture
recognition. The system adopts the spherical self-organizing map (SSOM) for the
unsupervised parsing of dance movement into a structured posture space, which
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allows the description of the uniqueness of gestures for recognition, in terms of
trajectories on the map. The hidden Markov model is then utilized for trajectory
analysis. Within the system, the dance sequence of the student can be segmented
online and cross-referenced against a library of gestural components performed by
the teacher. This facilitates the assessment of the student dance, as well as provides
visual feedback for effective training.

1.4 Application Perspective

This book is an application-oriented reference for multimedia database technolo-
gies. It reports the progress in the area that has led to a range of innovative
applications and served in a number of different user scenarios, such as:

e Search and retrieval of multimedia objects, where a user from the local or remote
terminals submits a query (in the form of audio, photos, texture, video files) to a
search engine containing a large collection of multimedia repositories.

* Mobile social network, where users exchanges multimedia information among
friends or people located in a certain area, possibly enriched with recommen-
dation data related to points of interest. The users use the multi-touch screen
to focus on the visual intent, and the visual recognition system recommends
interesting restaurants, which may be incorporated with contextual information,
such as geo-location, for location-based recommendations.

* Landmark recognition, whereby a user captures the landmarks/scenes that he
or she is interested in, and obtains relevant information about the captured
landmarks/scenes.

*  Movie/sports-video-on demand, where a single long duration video is retrieved
from a pool of servers, each of which retrieves disjoint portions of a movie
in a particular sequence to form one complete continuous stream for the
user. The book presents the indexing, retrieval, and classification methods for
movie databases, which can be potentially adopted for the movie-on-demand
application.

» Interactive television news service, where a user employs a news headline, which
represents the subset of story, to retrieve full new stories, and find further relevant
stories in newscasts.

* Digital forensic investigation support, where an investigator utilizes digital image
(i.e., cartridge-based case image) taken at the crime scenes to query a forensic
reference database to search for digital evidence, which can allow conclusions to
be drawn for further physical investigation.

» Virtual reality motion/dance training, where a student dance is automatically
captured and used as a query to retrieve similar teacher motion data in a database
for the student’s assessment; or where a user submits a short query motion clip,
and the task is to retrieve all clips in the database containing parts or aspects
similar to the query for data-driven computer animations.
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1.5 Organization of the Book

This book focuses primarily on the aspects of technologies and applications for
the retrieval of image and video. Our prime goal is to describe how meaningful
information can be extracted from multimedia signals, and how multimedia data
can be efficiently described, compared and classified, as well as the relevant
applications. Figure 1.6 provides an overview of the book’s chapters.



Chapter 2
Kernel-Based Adaptive Image Retrieval
Methods

Abstract This chapter presents machine learning methods for adaptive image
retrieval. In a retrieval session, a nonlinear kernel is applied to measure image
relevancy. Various new learning procedures are covered and applied specifically
for adaptive image retrieval applications. These include the adaptive radial basis
function (RBF) network, short term learning with the gradient-decent method,
and the fuzzy RBF network. These methods constitute the likelihood estimation
corresponding to visual content in a short-term relevance feedback (STRF). The
STRF component can be further incorporated in a fusion module with contextual
information in long-term relevance feedback (LTRF) using the Bayesian framework.
This substantially increases retrieval accuracy.

2.1 Introduction

Adaptation of the traditional similarity function plays a vital role in enhancing the
capability of image retrieval and broadening the domain of applications for machine
learning. In particular, it is often necessary to adapt the traditional Euclidean inner-
product to the more flexible and nonlinear inner products characterized by relevance
feedback parameters. The new inner products lead to a new similarity metric. As a
result, the image retrieval has to be necessarily conducted in a new space that is
adaptively re-defined in accordance with different user preferences. This implies a
greater flexibility for image retrieval. The topics addressed in this chapter are as
follows:

Section 2.2 will look into the linear kernel that is implemented through the query
adaptation method, metric adaptation method, and a combination of these methods.
In a linear-based adaptive retrieval system, the similarity score of a pair of vectors
may be represented by their inner product or Mahalanobis inner product.

Depending on the data cluster structure, either linear or nonlinear inner products
may be used to characterize the similarity metric between two vectors. The linear
metric would be adequate if the data distribution is relatively simple. To handle more
complex data distributions, it is often necessary to adopt nonlinear inner products
prescribed by nonlinear kernel functions, e.g., the Gaussian radial basis function
(RBF). Section 2.3 introduce a single-class RBF method for adaptive retrieval.

© Springer International Publishing Switzerland 2014 17
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To cope with the small size of training sample sets and convergence speed, new
learning methods are required for the construction of the RBF network, instead of
the direct application of traditional learning procedures. Section 2.4 introduces an
adaptive RBF network to exploit the local context defied by query sessions, and aids
in improving retrieval accuracy. This section follows by the optimization of network
parameters by the gradient-descent-based learning procedure, then introducing
fuzzy RBF network which offers a soft-decision choice to the users.

Section 2.5 establishes the fusion of content and context information, by the
application of Bayesian theory. The content component is gathered from a short-
term relevance feedback (STRF), which is the estimation of the likelihood of a
specific query model. The context information is obtained by a long-term relevance
feedback (LTRF), representing a user history or the a priori information.

2.2 Kernel Methods in Adaptive Image Retrieval

2.2.1 Adaptive Retrieval Framework

The most important part in the adaptive process is the analysis of the role of the
user in perceiving image similarity according to preferred image selections. This is
implemented by a mapping function, f; : RP — R, which is given by:

v = f4(X) 2.1)

where X = [x1,...,xp|" is called a feature vector in a P-dimensional Euclidean space
RP, corresponding to an image in the database. The main procedure is to obtain
the mapping function f, (for the query class ¢g) from a small set of training images,
T ={(x1,41),(x2,12),...,(Xn,In) }, where the class label /; can be in binary or
non-binary form. In the binary form, the training samples contains a set of positive
samples, 2"t and a set of negative samples, 2"~ :

T =02 (2.2)
%+:{X,i|li:1}, iZl,...,Np (23)
2~ ={x"j|l;=0}, j=1,...,N, (2.4)

where N, and N, are the numbers of positive and negative samples, respectively.
The adaptive process for constructing the mapping function for retrieval is
summarized in Table 2.1.
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Table 2.1 Summary of the adaptive retrieval algorithm

Input: Query vector = x,

Set of vectors to be searched in the database =x,,n=1,---,T
Output: The final retrieval set, containing k-relevant samples = Sy (x,)
Computation: 1

2
Xq7xn = |:2|qu xm| :| n=12..T,

Sk (x4) = {X|d (xg, x) < d(xq,xk)}

where Sy (x,) is the set of nearest neighbors, and x; is the k-th nearest neighbor
of x,.
Repeat: Obtain training sample: {x; } | Sk(xq)
User selects class label: [;
Calculate model parameters of the mapping function f,
Calculate f,(x,), forn=1,2,...,T, and obtain

{X‘fq > fq(xk)}

Until: User is satisfied with the retrieval result.

2.2.2 Query Adaptation Method

Among the early attempts to conduct adaptive retrieval, Rui et al. [11, 12] imple-
mented the query modification strategy, and the mapping function takes the form of
the following linear function:

folx) = —H4 2.5)
< K (x,x@) (2.6)
where K is the linear kernel function:
K(x,x(;) = <x,x(2> =X-X; 2.7)
and X - X4 denotes the Euclidean inner product, x; = [x41,. .. ,)qu]t is the modified

query vector, and ||-|| is the Euclidean norm. The linear kernel function represents
the similarity metric for a pair of vectors, x and x;. The two vectors, X and x;



20 2 Kernel-Based Adaptive Image Retrieval Methods

are called orthogonal if <x,xq> = 0 in which case we write x L x;, i.e. they are
geometrically perpendicular. Given two vectors, the smaller the magnitude of their
inner-product, the less similar they are.

The modified query vector x; discussed in Eq. (2.7), is obtained by the training

samples as:
Np Nu I
A= O =/ | —eg| &&=/ 2.8
Xy = %+ ( 3 N 23)
where x, = [qu,...,xqp]t denotes the original query vector, and (o, B, €) are

suitable parameters [13]. The new query is obtained by adjusting the positive and
negative terms of the original query. When adding the positive terms to the query,
the modified query is close to the mean of the positive samples (i.e., X; = X'), and the
inner product <x' ,x,;) = 1. On the other hand, subtracting the negative terms from
the query will make the modified query more dissimilar to the negative samples.
The query modification method has been widely used for information retrieval
[13,107] and image retrieval systems [14, 103]. However, one disadvantage of this
model is the requirement of an indexing structure to follow term-weighting model,
as in text retrieval for greater effectiveness. The models assume that the query index
terms are sparse and are usually of a binary vector representation. However, as
compared to text indexing, image feature vectors are mostly real vectors. Thus, a
large number of terms can be applied for characterization of images in order to
overcome this problem [103]. This also increases computational complexity.

2.2.3 Metric Adaptation Method

The Euclidean inner-product may be extended as the Mahalanobis inner product
K (x,%y) = (X,Xg) \, = X Mx, (2.9

with a weight matrix M. The Euclidean inner product is a special case of the
Mahalanobis inner product with M = L. In this case, we assume that all the
features are equally weighted in their importance, and there exists no inter-
feature dependence. However, when the features are mutually independent, but not
isotropic, the Mahalanobis matrix takes the following form

M = Diag{w;}, i=1,---,P (2.10)

where the weights {w;,i =1,---, P} reflect the importance of the respective features.
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The Mahalonobis inner product leads to the following Mahalonobis distance
between x and x,;,, which is associated as the mapping function as in [17,19-24,103],

fy(x) = Hx—quME\/(x—xq)’M(x—xq) (2.11)
1
P 2
= [ X wilxi—xq)? (2.12)
i=1
1
P 2
= Y h(d) (2.13)
i=1
where X, = [x,1,...,%p| is the feature vector of the query image, and h(d;)
denotes a transfer function of distance d; = |x; —x,;|. The weight parameters {w;,i =
1,---,P} are called relevance weights, and Y;w; = 1. The weight parameters can be

calculated by the standard deviation criterion [17,20,21] or a probabilistic feature
relevance method [16].

Different types of distance function have also been exploited. These include the
selection of Minkowski distance metrics according to a minimum distance within
the positive class [23], the selection of metrics based on reinforcement learning [22]
and on the interdependencies between feature elements [25].

2.2.4 Query and Metric Adaptive Method

In order to reduce time for convergence, the adaptive systems have been designed
to combine the query reformulation model with the adaptive similarity function
[26-30]. Apart from Eq. (2.8), the query modification model can be obtained by a
linear discrimination analysis [30], and a probabilistic distribution analysis methods
applied to the training samples [28].

The optimum solutions for query model and similarity function can be obtained
by the optimal learning relevance feedback (OPT-RF) method [26]. The optimum
solution for a query model, obtained by Lagrange multiplier, is given by the
weighted average of the training samples:

X
X = (2.14)
25:1 Vi

where x; = [qu,...,xqp]t denotes the new query, v = [vi,va,...,vn], v; is the
degree of relevance for the i-th training sample given by the user, X is the training
sample matrix, obtained by stacking the N training vectors into a matrix, i.e.,
X =[xy ...xy]". The optimum solution for the weight matrix M is obtained by:
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(det(C))xC~! if det(C) #0

M= 2.15
L_L CL } Otherwise ( )
PP

where C denotes the weight covariance matrix, given by:

zy:l Vi (xir _xér) (xis _xéS)

N
Zizl Vi

Cpy = . rs=1,...,P (2.16)

Based on Eq.(2.15), the weight matrix is switched between a full matrix and a
diagonal matrix. This overcomes possible singularities when the number of training
samples, N, is smaller than the dimensionality of the feature space, P.

Table 2.2 gives a summary of the OPT-RF method, where the relevance feedback
process is conducted after the initial search.

Table 2.2 Summary of the optimal learning relevance feedback algorithm

Input: Query vector = X,
Set of vectors to be searched in the database =x,,n=1,...,T
The training samples = {x;}

Output: | The final retrieval set, containing k-relevant samples = Sy (xq)

Repeat: | User provides relevance scores of training samples, vi,vy, ..., vy
; p Lol VX
Calculate new query: X5 = o
Calculate weight parameter:
Lo .
(det(C))xC— if det(C) #0
N\ pige{ L L L -

Diag { T Ch o Crp Otherwise

1
Calculate f; (x,) = ((xn 7Xg)tM (Xn fxz;)> * forn=1,2,...,T, and obtain

Sk(xg) = {xIfa3(x) < fa(x)}

where S (xé) is the set of nearest neighbors and x; is the k-th nearest neighbor
of x;.
q

{Xi}fil Sk (xg)

Until: User is satisfied with the retrieval result.
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2.2.5 Nonlinear Model-Based Adaptive Method

The methods outlined above are referred to as linear-based learning and this restricts
the mapping function to quadratic form, which cannot cope with a complex decision
boundary. For example, the one-dimensional distance mapping function %(d;) in
Eq. (2.13) may take the following form:

h(d;) = wid? (2.17)
where d; = |x; — xqi|. This function has a small degree of nonlinear behaviour, i.e.,

dfq(x)
dad;

= 2w,-d,- (2 1 8)

where w; is fixed to a numerical constant for the respective feature dimension.

To simulate human perception, a radial basis function (RBF) network [31, 45]
is employed in this chapter. The input—output mapping function, f(x), is employed
on the basis of a method called regularization [32]. In the context of a mapping
problem, the idea of regularization is based on the a priori assumption about the
form of the solution (i.e., the input-output mapping function f(x)). In its most
common solution, the input—output mapping function is smooth, in the sense that
similar inputs correspond to similar outputs. In particular, the solution function
that satisfies this regularization problem is given by the expansion of the radial basis
function [33]. In this case, a new inner product is expressed as a nonlinear kernel
function K (x,z) :

(x,z) =K (x,2) (2.19)

The Gaussian-shaped redial basis function is utilized:

2
K (x,2) = exp (—”X_z”> (2.20)
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where z denotes the center of the function and ¢ denotes its width. The activity of
function K (x,z) is to perform a Gaussian transformation of the distance ||x —z|,
which describes the degree of similarity between the input x and center of the
function. Under Gaussian distribution, this function reflects the likelihood that a
vector X may be mistaken to be another vector z.

To estimate the input-output mapping function f(x), the Gaussian RBF is
expanded through both its center and width, yielding different RBFs which are then
formed as an RBF network. Its expansion is implemented via a learning process,
where the expanded RBFs can modify weighting, to capture user perception.
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2.3 Single-Class Radial Basis Function Based
Relevance Feedback

Whist in the later sections in this chapter, the P-dimensional RBF function is
explored, in this section, a one-dimensional Gaussian-shaped RBF applied for the
distance function h(d;) in Eq. (2.13), i.e.,

P
fo (%) = 3 Glxi,z) 2.21)

P . 2
= Yexp <—(x’§’)> (2.22)

where z = [z1,22,.. .Zp]t is the center of the RBF, 0 = [01,002,.. .,Gp]t is the
tuning parameter in the form of RBF width. Each RBF unit implements a Gaussian
transformation which constructs a local approximation to a nonlinear input—output
mapping. The magnitude of f;, (x) represents the similarity between the input vector
x and the center z, where the highest similarity is attained when x = z.

Each RBF function is characterized by two adjustable parameters, the tuning
parameters and the adjustable center:

{onz} (2.23)
This results in a set of P basis functions,
{Gi(o1,2)}, (2.24)

The parameters are estimated and updated via learning algorithms. For a given
query class, some pictorial features exhibit greater importance or relevance than
others in the proximity evaluation [16, 30]. Thus, the expanded set of tuning
parameters, ¢ = [01,072,...,0p| controlled the weighting process according to
the relevance of individual features. If the i-th feature is highly relevant, the value
of o; should be small to allow greater sensitivity to any change of the distance
d; = |x; — zj|- In contrast, a large value of 0; is assigned to the non-relevant features.
Thus, the magnitude of the corresponding function G; is approximately equal to
unity regardless of the distance d;.

2.3.1 Center Selection

The selection of query location is done by a modified version of the learning
quantization (LVQ) method [31]. In the LVQ process, the initial vectors (in a
codebook), referred to as Voronoi vectors, are modified in such a way that all
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points partitioned in the same Voronoi cells have the minimum (overall) encoding
distortion. The movement of the Voronoi vectors is based on the class labels
provided in a training set, so as to improve the accuracy of classification. Let
{z g };:1 denote the set of Voronoi vectors. Also, let {xi}gvzl denote the set of training

samples. First, for the input vector x;[¢] at iteration index 7, the class index c(x;) of
the best-matching Voronoi vector z, is identified by:

c:argmin{Hxi—sz } (2.25)
J

The Voronoi vector z. is modified by the reinforced learning rule if the class indexes
of z. and x; are in agreement,

zct+ 1) =z [t] + alf]( x;[t] — z. [t]) (2.26)
Otherwise, the modification is obtained by the anti-reinforced learning rule:
z.[t+ 1) =z [t] — alt]( x;[tf] — z.[t]) (2.27)

where o[t] is the leaning constant, which decreases monotonically with the number
of iterations. All other Voronoi vectors remain unchanged, except the best-matching
Voronoi vector.

In the adaptive image retrieval process, we have the training samples with two-
class labels, {x;, i }~_,,1; € {0,1}, associated with the query vector, x,. This training
set represents the set of points closest to the query, according to the distance
calculation in the previous search operation. Consequently, each data point can be
regarded as the vector that is closest to the Voronoi vector. Therefore, following the
LVQ algorithm, it is observed that all points in this training set are used to modify
only the best-matching Voronoi vector, that is, z, = Xy

Center shifting model 1: The first model approximates the Voronoi vector (after the
convergence) by the position that is close to the data points that are in the positive
class (I; = 1), and away from those points that are in the negative class (/; = 0):

R L (i/ —zg’d) —ay (i” - zgld> (2.28)
Nl’ /
D ¢
g — ZiiXi (2.29)
Np
Np oIt
o
g = Z=1X (2.30)
Ny
where z2/ is the previous RBF center, x,i = 1,.. .N, are the positive samples,

x!,i=1,...N, are the negative samples, ag and o,y are suitable positive constants.
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Center shifting model 2: We may reduce the procedural parameters and provide a
direct movement of the RBF center towards the positive class. Equation (2.28) is
reduced to:

7 =% o (X'~ 7 (2.31)

Since the positive class indicates the user’s preferred images, the presentation
of X’ for the new RBF center will give a reasonable representation of the desired
images. In particular, the mean value, ¥ = Nip X 25'21 xg, is a statistical measure
providing a good representation of the i-th feature component since this is the value

. e . 1 Np ’ -
which minimizes the average distance N, X Y.l (g =x).

2.3.2 Width Selection

The RBFs are adjusted in accordance with different user preferences and different
types of images. Through the proximity evaluation, differential biases are assigned
to each feature, while features with higher relevance degrees are emphasized, and
those with lower degrees are de-emphasized. To estimate the relevance of individual
features, the training vectors associated with the set of positive images are used to
form an N, x P feature matrix R,

t
R= [x’l...i,’”...i;vp] (2.32)
=[x, m=1,...,N,, i=1,....P (2.33)

where x/, is the i-th component of the m-th feature vector X),,, P is the total number
of features, and N, is the number of positive samples. As the previous discussion,
the tuning parameter ¢; should reflect the relevance of individual features. It was
demonstrated, in [16,34], that given a particular numerical value z; for a component
of the query vector, the length of the interval which complexly encloses z; and a
pre-determined number L of the set of values x/,; in the positive set which falls
into its vicinity, is a good indication of the relevancy of the feature. In other
words, the relevancy of the i-th feature is related to the density of x/,; around z;,
which is inversely proportional to the length of the interval. A large density usually
indicates high relevancy for a particular feature, while a low density implies that
the corresponding feature is not critical to the similarity characterization. Setting
L = Np, the set of turning parameters is thus estimated as follows:

RBF width model 1:

c =[o1,...,0i,...0p| (2.34)

o; = n-max (|x},; — zi|) (2.35)
m

The factor 1 guarantees a reasonably large output G(x;,z;) for the RBF unit, which
indicates the degree of similarity, e.g., n = 3.
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RBF width model 2: The feature relevancy is also related to sample variance in the
positive set {x/,; N and thus, the RBF width can also be obtained by

ifm=1>

o; = exp((B)Std;) (2.36)

=

1 Np 2
Std; = (N,,—l Y (i — %) ) (2.37)

m=1
where Std; is the standard deviation of the members in set {x,; Z": , which is
inversely proportional to their density (Gaussian distribution), and 3 is a positive
constant. The parameter 8 can be chosen to maximize or minimize the influence
of Std; on the RBF width. For example, when f3 is large, a change in Std; will
be exponentially reflected in the RBF width o;.

Both models provide a small value of o; if the i-th feature is highly relevant. This
allows higher sensitivity to any change in the distance d; = |x; — z;| . In contrast, a
high value of o; is assigned to the non-relevant feature, so that the corresponding
vector component can be disregarded when determining the similarity. Table 2.3
summarizes the RBF-based relevance feedback algorithm using RBF center model
1 and RBF width model 1.

2.3.3 Experimental Result

This section reports the experimental results [35, 329] of the nonlinear RBF
approach in comparison with linear-based adaptive retrieval methods. Table 2.4
describes the database and feature extraction methods used in the experiment.
The Laplacian mixture model (LMM) demonstrated in [35] is applied to the texture
images for feature characterization. Table 2.5 summarizes the learning procedure
of all methods of comparison, which comprise of the RBF method, the query
adaption method (QAM), and the metric adaption method (MAM). Table 2.6
summarizes the retrieval results in terms of average precision. The initial precision
of 76.7 %, averaged over all queries, was obtained. The precision was significantly
improved by updating weighting functions. During relevance feedback, most of
the performance enhancement was achieved after the first iterations. A slight
improvement was achieved after the second iteration. A significant improvement
in the retrieval efficiency was observed by employing a nonlinear RBF method.
The final results, after learning, show that RBF-1 gave the best performance with
88.12 % correct retrievals, followed by RBF-2 (87.37 %), and MAM (80.74 %) at a
distant third. The QAM is also given for benchmarking purposes.

Figure 2.1 illustrates retrieval examples with and without learning similarity.
It shows some of the difficult patterns analyzed, which clearly illustrates the
superiority of the RBF method.
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Table 2.3 Summary of the single-RBF based relevance feedback algorithm

Input: Query vector = X,
The training samples= {x;}"
Output: The final retrieval set, containing k-relevant samples = Si.(x,)
Initialization: | RBF center z. =X,
Repeat: User labels training samples, i.e., [;,i=1,...,N,l; € {0,1}
Calculate RBF center: 2! = 227 + ag (X' —22/9) — oy (X" —22'%)
Calculate RBF widths:
oi=nmax|x,,—z|,i=1,.. P
m

Caleulate f, (%) = 35 | G(xi,2), forn=1,2,..., T, and obtain

Sk (Xq) = {X‘fq (x) > Jq (Xk)}

where S (x,) is the set of nearest neighbors and x is the k-th nearest neighbor
of x,.
q

(i}l Si(xg)
Until: User is satisfied with the retrieval result.

Table 2.4 Database and feature extraction methods

Item Description

Brodatz texture | The database contains 1,856 texture images divided into 116 classes. Every
database class has 16 images

Laplacian The images are decomposed to three levels using Daubechies wavelet filters
mixture model | (db4). The wavelet coefficients in each of high-frequency subbands are
(LMM) [35] modeled as a mixture of two Laplacians. The parameters of the model are

used as the features. The feature set composes of (1) the mean and standard
deviation of the wavelet coefficients in the approximation subbands and
(2) the variances of the two Laplacians in each of the nine high-frequency
subbands. This results in 20-dimensional feature vector

In the second experiment, the adaptive retrieval methods are applied in photo-
graph collection. Table 2.7 gives details of the database and the multiple types of
visual descriptors, including color, texture, and shape. Table 2.8 gives details of the
methods being compared. The average precision rates and CPU times required are
summarized in Table 2.9. Evidently, the nonlinear RBF method exhibits significant
retrieval effectiveness, while offering more flexibility than MAM and OPT-RF.
With the large, heterogeneous image collection, an initial result obtained by the
non-adaptive method had less than 50 % precision. With the application of the
RBF learning method, the performance could be improved to greater than 90 %
precision. Due to limitations in the degree of adaptability, MAM provides the
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Table 2.5 Comparison of adaptive retrieval methods

Method Learning algorithm

RBF-1 RBF center model 1 (g = 1.2, ay = 0.08)
RBF width model 1 (n = 12)

RBF-2 RBF center model 2 (o = 1.2)

BRF width model 1 (n = 12)
QAM [12, 14, 18, 36, | Query modification in Eq. (2.8), Cosine similarity metric in Eq. (2.6)
51,103] (a=1,8=4,y=0.3)
MAM [17,20,21] City-block distance is used for similarity metric. The feature weighting
is obtained by the standard deviation criterion

Table 2.6 Average Method | Iter. 0 | Iter. 1 |Iter.2 | Iter. 3
precision (%) MAM | 7670 |80.43 | 80.71 | 80.74
RBF-1 | 7670 | 85.02 8690 |88.12
RBF2 7670 8532 |86.80 |87.37
QAM | 67.10 |75.12 |76.42 | 76.95

lowest performance gains and converges at about 62 % precision. It is observed
that the learning capability of RBF is more robust than that of OPT-RF, not only
in retrieval capability, but also learning speed. As presented in Table 2.9, results
after one round of the RBF method are similar to results after three rounds of the
OPT-RF method. This quick learning is highly desirable, since the user workload
can be minimized. This robustness follows from imposing nonlinear discriminant
capability in combination with positive and negative learning strategies.

Typical retrieval sessions are shown in Fig. 2.2, for the Yacht query. Figure 2.2a
show the 16 best-matches images before applying any feedback, with query image
display in the top-left corner. It was observed that some retrieved images were
similar to the query image in terms of color composition. In this set, three retrieved
images were marked as relevant subjects to the ground truth classes. Figure 2.2b
shows the improvement in retrieval after three rounds of using the RBF learning
method. This is superior to the results obtained by MAM (cf. Fig. 2.2c) and OPT-
RF (cf. Fig.2.2d). This query may be regarded as a “hard” query, which requires
a high degree of nonlinear discrimination analysis. There are some quires that
are relatively easier to retrieve, which are shown in Fig.2.3. Those queries have
prominent features, such as a shape in the Rose query, and a combination of texture
and color in the Polo query. In each case, it is observed that the MAM and OPT-
RF methods show better performance than in the previous results. In these cases,
however, the retrieval results obtained by RBF approached 100 % precision.
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Fig. 2.1 Top 16 retrievals obtained by retrieving textures D625, D669, and D1700 from the
Brodatz database, using RBF-1. Images on the left, (a), (c), and (e) show results before learning,
and images on the right, (b), (d), and (f), show results after learning

2.4 Multi-Class Radial Basis Function Method

In image retrieval, particularly in general image collections, the relevancy of images
to a specific query is most appropriately characterized by a multi-class modeling
approach. For example, when a user has a query for a plane, she or he may
wish to have any image containing planes. The semantics of a plane is usually
described by a variety of models, which are correlated, but each of which has its
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Table 2.7 Database and feature extraction methods

Item Description

Corel database The database contains 40,000 real-life images divided into 400 classes.

[73] Every class has 100 images

Color histogram The first descriptor is a 48-bin color histogram in HSV color space.

[38] and color The second descriptor is a nine-dimensional vector, conducted from the

moments mean, standard deviation, and skew of the three RGB-color channels

Gabor wavelet The 48-dimensional descriptor contains the mean and standard devia-

descriptor [91] tions of the Gabor wavelet coefficients from the filtering in four scales
and six orientations

Fourier The nine-dimensional descriptor contains the Fast Fourier transform

descriptor [37] coefficients (at low frequency) of the edge information of an input image

Table 2.8 Comparison of adaptive retrieval methods

Method Learning algorithm
RBF RBF center model 2, RBF width model 2
OPT-RF [26] Optimum query adaptation model Eq.(2.14), optimum weighting metric

Eq. (2.15), Mahalanobis distance Eq. (2.11) as similarity function

MAM [17,20,21] |Mahalanobis distance Eq.(2.11) as similarity function, weight parameters
Eq. (2.10) are obtained by the standard deviation criterion

Table 2.9 Average precision rate (%) obtained by retrieving 35 queries selected
from different categories, using the Corel database (columns 2-5)

Method Iter. 0 |Iter. 1 |Iter.2 |Iter.3 | CPU time (Sec./Iter.)
RBF 44.82 |79.82 | 88.75 |91.76 |2.34
MAM 4482 |60.18 161.61 |61.96 |1.26
OPT-RF 4482 |72.14 1 79.64 |80.84 |1.27
Non-adaptive method | 44.82 - - - 0.90

Average CPU time obtained by retrieving a single query, not including the time to
display the retrieved images, measured from a 1.8 GHz Pentium IV processor and
a MATLAB implementation

own local characteristics. The difficulty in characterizing image relevancy, then,
is identifying the local context associated with each of the sub-classes within
the class plane. Human beings utilize multiple types of modeling information to
acquire and develop their understanding about image similarity. To obtain more
accurate, robust, and natural characterizations, a computer must generate a fuller
definition of what humans regard as significant features. Through user feedback,
computers do acquire knowledge of novel features which are significant but have not
been explicitly specified in the training data. This implicit information constitutes
subclasses within the query, permitting better generalization. In this case, a mixture
of Gaussian models is used, via the RBF network, to represent multiple types of
model information for the recognition and presentation of images by machines.
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Fig. 2.2 Top 16 retrieved images obtained by the Yacht query, using the Corel Database, (a) before
RF learning, (b) after RF learning with the RBF method, (c) MAM, and (d) OPT-RF

Previously, Sect. 2.3 introduced a nonlinear input—output mapping function based
on a single-RBF model. As discussed by most other works [15-17], this has been
concerned with global modeling, in which a query image is described by one
model, which is then associated with only a particular location in the input space.
Furthermore, the similarity function is based on a single metric. This combination
gives rise to a single model function f(x), which cannot fully exploit the local data
information. This section introduces a mixture of Gaussian models for adaptive
retrieval that enables the learning system to take advantage of the information from
multiple sub-classes. The learning system utilizes a highly local characterization of
image relevancy in the form of a superposition of different local models, as ¥ ; f; (x),
to obtain the input—output mapping function.

The learning methods for constructing the RBF network include the adaptive
RBF method [61], gradient-descent method [40], and fuzzy RBF method [39].
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Fig. 2.3 Retrieval results of POLO and ROSE queries, obtained by (a

method, (¢, d) RBF, (e, f) MAM, and (g, h) OPT-RF
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2.4.1 Local Model Network

The basic assumption underlying the use of learning systems is that the behavior of
the system can be described in terms of the training set {xl,y,} . It is therefore
assumed that the system to be described by a model whose observable output y;, at
the time of step i, in response to an input vector X;, is defined by:

yl':f(Xi)+Si, i=1,2,...,N (2.38)

where €; is a sample drawn from a white noise process of zero mean and variance
0?. The modeling problem is to estimate the underlying function of the model,
f(x;), from observation data, having already used the existing a priori information
to structure and parameterize the model. Let f(x,z) be the estimate of f(x) for
some values of the P-dimensional parameter vector z. The model f(x,z) can be
estimated in a number of ways. A Local Model Network (LMN), is adopted to
achieve this purpose [41]. Figure 2.4 shows the network architecture. This type of
network approximates the model function f (x,z) according to:

Nm
X) = Y Aifi(x,2) (2.39)

i=1

& ||X ZtH
= z&iKi(x,z Z?L exp o 2 (2.40)

i=1

where x = [x1,..., xp|' and z = [z1,..., zp)' are the input vector and the RBF
center, respectively. In addition, A;,i = 1,...,N,, are the weight, and K(x,z) is a
nonlinearity of hidden nodes.

fx)

S X

Fig. 2.4 RBF network architecture
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The advantage of this network’s use in the current application is that it finds the
input-to-output map using local approximators; consequently, the underlying basis
function responds only to a small region of the input space where the function is

. 2
centered, e.g., a Gaussian response, K; = exp (—%) , where:

d(x,z;,0;) = \/(x—z)tci_2 (x—1z;) (2.41)

This allows local evaluation for image similarity matching.

The parameters to learn for the LMN are the set of linear weight A;, the center z;,
and the width o; for each local approximator K;,i = 1,...,N,,. The linear weights are
usually estimated by the least-squared (LS) method [43]. When using the Gaussian
function as the nonlinearity of hidden nodes, it has been observed that the same
width of o; is sufficient for the RBF network to obtain universal approximation
[42]. However, more recent theoretical investigations and practical results indicate
that the choice of center z; is most significant in the performance of the RBF network
[44]. As we shall see, this suggestion plays a central role in overcoming the variation
in the performance of the network in the adaptive retrieval application.

2.4.2 Learning Methods for the RBF Network

Various learning strategies have been proposed to structure and parameterize the
RBF network [41,43-45]. This section will consider two of these beside the new
learning strategy for adaptive image retrieval. For a given training set {x;, yi}gvzl, the
initial approaches [41], constructed the RBF network by associating all available
training samples to the hidden units, using one-to-one correspondence. A radial-
basis function centered at z; is defined as:

x—=z*Y .
K(x,z)=exp| ——2) i=1,... N 242
( l) p( 261-2 l m ( )
where
{2} = {x;},, Na=N (2.43)

This solution may be expensive, in terms of computational complexity, when N is
large. Thus, we may arbitrarily choose some data points as centers [43]. This gives
an approximation to the original RBF network, while providing a more suitable
basis for practical applications. In this case, the approximated solution is expanded
on a finite basis:

N
Fx) =D LK (x, z;) (2.44)

i=1
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where
{2z} C{xi}), Nu <N (2.45)

The linear weights A;, i = 1,..., N,, are determined by minimizing the following
cost function, &(f):

£(/)=

N
= Jj=

Non 2
Qy Mme»>+ﬂWﬂf (2.46)
1 1

where 7 is the regularization parameter, and D is a differential operator. Based on
the pseudoinverse method [43], the minimization of Eq. (2.46) with respect to the
weight vector A = [A1,..., Ay, ], yields:

A =Gry (2.47)
= (G'G)y (2.48)

where
y =Dy, (2.49)

The matrix G € .#xp,,is defined as:

G = {K;} (2:50)

=zl :
K;j = exp e | i=1,...,N; j=1,....Ny, (2.51)
o<
J
where x; is the i-th training sample.

Table 2.10 summarizes the RBF network learning with randomly selected
centers, applied to image retrieval. The main problem with this method is that it
cannot guarantee desired performance, because it may not satisfy the requirement
that the centers should suitably sample the input domain. To overcome this problem,
the orthogonal least squares (OLS) learning algorithm [44] is designed to select a
suitable set of centers so that adequate RBF networks can be obtained. The OLS
algorithm chooses centers one by one from the training data; that is, at each iteration
the vector that results in the largest reduction in network errors is used to create
the center. When the sum-squared error of the network computed is higher than a
specified level, the next center is added to the network. The iteration process stops
when the error falls beneath an error goal, or when the maximum number of centers
is reached. This provides a simple and efficient means for fitting RBF networks.
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Table 2.10 Summary of the RBF network learning with randomly selected centers,
applied to image retrieval
Input: The training samples = {x,-}f\]:1 for a given query X,
Output: The final retrieval set, containing k-relevant samples = Sk
Initialization: | Number of RBF centers = N,

Setting RBF width to a positive constant, 6; < 1, i=1,...,N,,
Repeat: User provides class label [;,i = 1,--- N, [; € {0,1}

Select RBF center {zi}ﬁ\/:"ﬂ C {xi}f’:l

Calculate weights A = [A1,..., Ay, ]

A=(G6'G)y
where
G = {Ki}
Py U el i DT AR
ij 26? 5 IRRRERA N seeesdVm

YZ[)’Ia~--7J’i7~~-7)7N]t>yieli

Forn=1,2,...,T, calculate f(x,) = 2&1 AiK (Xp,2;)
Obtain k-nearest neighbor:

Sk(xg) = {xI/ (x) > F(x0)}

where Sy is the set of top k ranked samples.

{Xi}gvzl  Sk(xq)

Until: User is satisfied with the retrieval result.

2.4.3 Adaptive Radial-Basis Function Network

Problems in adaptive image retrieval are considered as a special case for function
approximation. The characteristics of learning are quite different. First, the training
data size for image retrieval is very small compared to the general approximation
strategy. Second, the training samples available for image retrieval are highly
correlated, i.e., each sample is selected from a specific area of the input space and
is near to the next, in the Euclidean sense. When the training samples are highly
correlated, the choice of centers is the most important factor. The BRF network
will be ill-conditioned, owing to the near-linear dependency caused by some centers
being too close together [44].

In order to circumvent the environmental restrictions in image retrieval, an
adaptive learning strategy for the RBF network is introduced and referred to as
adaptive RBF network (ARBFN). This is a special network for learning in image
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retrieval where there is a small set of samples with a high level of correlation
between the samples. This new strategy is based on the following points:

* The learning method formulates and solves the local approximator K(x,z) from
available positive samples.

* In order to obtain a dynamic weighting scheme, the Euclidean norm in ||x — z||
is replaced with the weighted Euclidean, ||x —z|| ,,.

* In order to take advantage of negative samples to improve the decision boundary,
a method of shifting centers is obtained, instead of employing linear weights.

The learning strategy for the ARBFN consists of two parts. First, the local
approximators K(x,z) are constructed using positive samples. Second, in order to
improve the decision boundary, negative samples are used for shifting the centers,
based on anti-reinforced learning [331].

2.4.3.1 Construction of Local Approximators

Given the set of positive samples, 2" = {x]},”|, each positive sample is assigned
to the local approximator K(x,z;), so that the shape of each relevant cluster can be
described by:

_ 7.2
K(x,z;) = exp (”le> , (2.52)

207
z;=x,, Vi€ {l,...,Ny}, Nyu=N, (2.53)
o;=6-min(||zi—z;]|), V;€{1,2,....N,}, i#] (2.54)

where 6 = 0.5 is an overlapping factor.
Here, only the positive samples are assigned as the centers of the RBF functions.
Hence, the estimated model function f(x) is given by:

N
Fx) =Y AiK(x,2) (2.55)

i=1

Ai=1,Vie{l,....Ny} (2.56)

The linear weights are set to constant, indicating that all the centers (or the
positive samples) are taken into consideration. However, the degree of importance of
K(x,2;) is indicated by the natural responses of the Gaussian-shaped RBF functions
and their superposition. For instance, if centers z, and z;, are highly correlated (i.e.,
4 ~ 17p,), the magnitude of f (x) will be biased for any input vector x located near
7,017, ie., f (X) ~ 2K(X,2,) ~ 2K(X,2}).
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2.4.3.2 Integrating Elliptic Basis Function

The basic RBF version of the ARBFN discussed in Eq.(2.52) is based on the
assumption that the feature space is uniformly weighted in all directions. However,
image feature variables tend to exhibit different degrees of importance which
heavily depend on the nature of the query and the relevant images defined [16].
This leads to the adoption of an elliptic basis function (EBF):

X — 2| pg = (x—2) M (x —2;) (2.57)
where
M = Diagloty,...,0,...,ap] (2.58)
So, the parameter o,j = 1,...,P represents the relevance weights which are
NP

derived from the variance of the positive samples in {x! x; € R” as follows:

i=1

I, ¢ =0
L ’ p
%)= { CL’ Otherwise (2.59)

J

where
1
1 N,, . o 2
;= Np_lg(x,»j—x,») (2.60)
P
, 1,
X = N—inj (2.61)
Pi=1

The matrix M is a symmetrical Mpyp, whose diagonal elements o; assign a
specific weight to each input coordinate, determining the degree of the relevance of
the features. The weight ¢ is inversely proportional to ¢ j» the standard deviation of

; . N, .
the j-th feature component of the positive samples, {x; iti .. If a particular feature
is relevant, then all positive samples should have a very similar value to this feature,
i.e., the sample variance in the positive set is small [17].

2.4.3.3 Shifting RBF Centers

The possibility of moving the expansion centers is useful for improving the
representativeness of the centers. Recall that, in a given training set, both positive
and negative samples are presented, which are ranked results from the previous
search operation. For all negative samples in this set, the similarity scores from the
previous search indicate that their clusters are close to the positive samples retrieved.
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Here, the use of negative samples becomes essential, as the RBF centers should be
moved slightly away from these clusters. Shifting the centers reduces the similarity
scores for those negative samples, and thus more favorable similarity scores can be
obtained for any positive samples that are in the same neighborhood area, in the next
round of retrieval.

Recall that the set of negative samples is denoted by 2"~ = {x/ }?’:”1, and N, is
the number of these samples. At the n-th iteration, let the input vector x” (randomly
selected from the negative set) be the closest point to z;+, such that:

i€ {l,.... Ny} (2.62)

i* = argmin(||x" -z ),
1

Then, the center z;+ is modified by the anti-reinforce learning rule:
2z (n+1) =1z (n) —n(n)x" —z» (n)] (2.63)

where 7 is a learning constant which decreases monotonically with the number of
iteration, and 0 < 1 < 1. The algorithm is repeated by selecting a new sample from
the set of input samples, {x }ﬁ\i‘l, and stops after a maximum number of iterations
is reached.

Table 2.11 summarizes the learning procedure of the ABRF network for image
retrieval. This includes learning steps explained in Sects. 2.4.3.1-2.4.3.3.

2.4.4 Gradient-Descent Procedure

Apart from the ARBFN model, the procedural parameters for RBF can be obtained
by a gradient-descent procedure [39,40]. This procedure is employed to optimize all
three parameters, z;, 0;, and A; for each RBF unit. Here, all training samples (both
positive and negative) are assigned to the RBF centers, and the linear weights are
used to control the output of each RBF unit. Thus, the mapping function becomes:

2 < ClIx= MM
f(x)= Z (x,2;) Z)L exp 5 (2.64)
i=1

o}

where {zi}fil = 27U Z . During relevance feedback learning, the network
attempts to minimize the following error function:

l\)M—‘

$(/) =

l\) \

N N 2
2( ZMH@@O (2.65)
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where e is the error signal for the training sample x;, and y; represents the desired
output of the j-th training sample. The network parameters can be obtained by the
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Table 2.11 Summary of the learning algorithm of the ARBF network for adaptive

retrieval

Input:
Output:
Initialization:

Repeat:

Until:

The training samples = {xi}i-vzl for a given query x,
The final retrieval set, containing k-relevant samples = Si(X,)
Setting smoothing parameter 6 = 0.5
Maximum number of iterations = N,y
Setting anti-reinforce learning parameter 7
User provides labels for training vectors, /;,i = 1,---N, [; € {0,1}
Construct 2"+ and 2"~
Assigning RBF center z; < x}, Vie {1,...,N,}
Obtain weight matrix M
For n =1 : Nyjay, adjust RBF centers
1. Randomly select the input vector x” from 2"~
2. Select winning node z;+, such that:

it = argmin(”x” fz,'HM), i€{l,...,Nn}
i
3. Update
2 (n+1) 2z (n) = n(n)[x" 2z (n)]

End for-loop
Fori=1,2,...,Np, calculate RBF width

O = 5minHz,~—zj||, Vj € {172,...,Np}, l#]

2
For j=1,2,...,T, calculate f(xj) :Zﬁﬁ"l exp (—M)

207

Obtain k-nearest neighbor:
Sk(xg) = {x|/(x) = F(x0)}
where Si(x,) is the set of top & ranked samples.
{xi}il) = Sk(xg)

User is satisfied with the retrieval result.
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gradient-descent method to minimize the cost function, i.e.,
N .
{zi, 0i,A;};, =argmin(&) (2.66)

The learning procedure starts with the initialization of the linear weights:

A= 1, if z; is conducted from positive sample 2.67)
—0.5, if z; is conducted from negative sample '
and the RBF widths:
o;=06min (||z; —z;|| ), j€{1.2,....N} i#] (2.68)

Based on the gradient-descent method, the parameters for the i-th RBF unit are
updated in the iterative process, as follows:

1. Fort =1,2,...,Npax:

2. Update
: o 96 (1)
Ai(t+1) < Ai (1) by wn (2.69)
where 265 = — X1 /(0K (x;,7)
3. Update
. 98 (1)
zi(t+1) < z(t) - 2 5 00(0) (2.70)
where ag( —Ai(t) T e (f)K(vali)w
4. Update
9¢ (1)

o7 (t141) 07 (1) =13

o) 2.71)

where 2500 = (1) 31y e (1) K(x, ) S L 00)
5. Return

where Ny, is the maximum iteration count, and 7, 1,, and 15 are the step sizes.

The adjustment of the RBF models proceeds along many relevance feedback ses-
sions. The training samples are gathered from the first to the last retrieval sessions,
and only selective samples are used to retrain the network. In each feedback session,
newly retrieved samples which have not been found in the previous retrieval are
inserted into the existing RBF network. In the next iteration, the updating procedure
is performed on the newly inserted RBF units, thus improving training speed.
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2.4.5 Fuzzy RBF Network with Soft Constraint

The error function & ( f ) defined in Eq.(2.65) is based on the binary labeling or
hard-decision. The desired network output y; is equal to 1 for positive samples,
and zero for negative samples. For a soft-decision, a third option, “fuzzy” is used
to characterize a vague description of the retrieved (image) samples [39]. Thus,
in a retrieval session, users have three choices for relevance feedback: relevant,
irrelevant, and fuzzy. The error function is then calculated by:

N 2
E(f) = % Y (yj— ZMK(x,,zJ) (2.72)

j=1 i=1

—

, X; is relevant
yi=140, X; is irrelevant 2.73)
P(Z"|xj), x;jisfuzzy

where P (2 " |x;) is the probability that a fuzzy sample x; belongs to the relevant
class 2°T. This represents the degree of relevancy for the corresponding fuzzy
sample. The learning problem is the problem in estimating the desired output
yj = P(ZT|x;) of the fuzzy sample x; by the a posteriori probability estimator.
Let x; be defined by feature vector that is concatenated from M sub-vector, i.e.,
X;=[Vj1,...,Vji,...,Vjm], where vj; is a d;-dimensional feature sub-vector such as a
color histogram, a set of wavelet moments or others. To deal with the uncertainly, the
probability estimator takes into account the multiple features, by using the following
estimation principle:

l M
P(Z7"|x)) = m ;P(%ﬂvﬁ) (2.74)

where P (2 t|v;;) is the a posteriori probability for the i-th feature vector v ; of the

fuzzy sample x;. the Bayesian theory is applied to P (2 " |vj;),
P(vil Z1)P(2)

(Vi ZF)P(ZH) +P(viul Z7) P(277)

P(2 " |vji) = 7 (2.75)

where P(Z 1)and P(2 ™) are, respectively, the prior probabilities of the pos-
itive and negative classes, which can be estimated from the feedback samples;
P(v;j;|Z ") and P(v;;|2 ) are the class conditional probability density functions
of vj; for the positive and negative classes, respectively. Assuming the Gaussian
distribution, the probability density function for the positive class is given by:

1 1 i ,
P(vVil#7) = ———exp [—E(vﬁ—ui)’zi vii— )] (2.76)
(2m)7 (i
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where / is the d;-component mean vector and ¥ is the d;-by-d; covariance matrix
for the i-th feature vector, and |¥ ;| and ¥ ~!are its determinant and inverse,
respectively. These variables can be estimated using the positive training vectors
in the positive class 2",

1 %
w=—Y3v; (2.77)
VP
/ 1 i / / t
Zi = (N,—1) zi(vji_“") (Vji_ﬂi) (2.78)
j=

where V'j; is the i-th sub-vector of j-th positive sample, and N, is the number
of positive samples. For simplicity we abbreviate Eq.(2.76) as P(v;;|Z ") ~
N(W';, 3%). Similarly, the probability density function for the negative class is
given by: P(v;i|2~) ~ N(u";, 37) where u”; is the mean vector and ¥, is the
covariance matrix for the i-th feature vector, which can be estimated using the
negative training vectors in the negative class 2 ~.

After the desired output y; of the fuzzy sample is estimated, the gradient-descent
procedure of Egs. (2.69)—(2.71) are applied to construct the learning parameters of
the RBF network.

2.4.6 Experimental Result

The Corel database was used in the experiments reported in Sect. 2.3.3. All 40,000
images in the database were used, each of which was characterized by a multi-
feature representation (explained in Table 2.7). This section begins by implementing
the RBF network using the ARBFN leaning method and comparing its performance
with two other learning strategies. This is followed by examining the ARBFN and
the single-class learning methods discussed in Sects. 2.2-2.3.

The first objective is to verify that the ARBEN is able to meet the demands of
adaptive retrieval applications; in particular, where there is a small set of training
samples with a high level of correlation between the samples. A learning session
with this condition may be observed in Fig.2.3d, where the top sixteen retrieved
images are returned to the user who provides relevance feedback. It is seen that
at later iterations the learning system can improve the result sets, which means
that the more times the interactive retrieval is implemented, the higher the level
of correlation retrieved images.

The ARBFN method was compared with two learning strategies that have been
successfully used in other situations to construct the RBF network. Table 2.12
summarizes the methods being compared. The first learning method, the orthogonal
least square (OLS) learning procedure described in [44], was used to identify
a RBF network model. In the second learning method [43], each vector in a
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Table 2.12 Comparison of RBF learning methods

Method Learning algorithm
ARBFN Table 2.11, RBF centers: using positive samples in 2™+ = {Xf}fvz”l ; RBF width:
Eq.(2.54)

EDLS [43] | The weight and bias of the second layers were calculated by the least squares
criterion; RBF centers: using all samples in {x;}ivz”l U{x/} : RBF width: ¢ =
0.8 for all RBF units

OLS [44] RBF centers: selecting from {x;}iv:”l U {x! }f\i‘] using the orthogonal least
square method. The RBF center selection starts zero centers, and new centers
were iteratively picked in the subsequent selection procedure. Each time, the
network’s mean square error was checked and compared to the pre-defined
tolerance set at 0.0001; RBF width: o = 0.8 for all RBF units

Table 2.13 Average precision rate (%) as a
function of iteration, Pr(Iter.), obtained by
retrieving 35 queries, using Corel dataset
Method |Iter. O |Iter. 1 |Iter.2 |Iter.3
ARBFN | 44.82 | 80.72 | 90.36 | 92.50
EDLS 44.82 | 50.18 | 43.39 | 43.04
OLS 44.82 | 66.07 | 73.21 76.61

retrieved set was associated with the RBF centers [Eq. (2.43)], using a one-to-one
correspondence. This is named as EDLS (exact design network using the least
squares criterion). For both methods, the final RBF network model can be written as:

2 2 Ix — i
f(xj)=Lo+ Y, Aiexp 5
i=1 20;

(2.79)
where N,,, = 16 for the EDLS method, and N,, < 16 for the OLS learning method,
since the size of retrieved samples is set to 16 at each feedback iteration.

The query image set used here is identical to the experiments reported in
Sect.2.3.3. Precision (Pr) was recorded after each query iteration. Table 2.13
summarizes the average precision results, Pr(Iter.), as a function of iteration, taken
over the 35 test queries. It can be seen from the results that the ARBFN significantly
improved the retrieval accuracy (up to 92 % precision). The first iteration showed
an improvement of 35.9 %. The ARBFN outperformed the OLS (76.61 %) and the
EDLS. This result confirms that the ARBFN learning strategy offers a better solution
for the construction of an RBF network for adaptive image retrieval, compared to
the two standard learning strategies.

Both the OLS and the EDLS strategies usually perform well under the opposite
condition, where the training samples are sufficiently large [46], and where the
data samples may not correlate closely to each other. In this experiment, it
was observed that the EDLS achieved improvement after the first iteration (i.e.,
Pr(Iter. = 1) = 50.2 %), because the retrieved data at Irer. = 0 usually has a low
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degree of correlation. Its performance, however, was reduced after two iterations as
the retrieved samples became correlated more strongly. This suggests that the EDLS
may not be suitable for constructing the RBF network under this learning condition.
Using the same RBF widths, the OLS learning strategy was more stable and much
better than the EDLS.

It was observed that the RBF centers critically influenced the performance
of the RBF classifier, and that the RBF classifier constructed by matching all
retrieved samples exactly to the RBF centers degraded the retrieval performance.
The OLS algorithm was fairly successful at resolving this problem, by choosing the
subset of the retrieved samples for the RBF centers. However, the OLS provided
a less adequate RBF network, compared to the ARBFN. In ARBFN learning,
each available positive sample was considered as important. Also, the centers were
shifted by negative samples with the weighted norm parameters being updated
during adaptive cycles. The ARBFN also managed well with the small set of
samples encountered. The ARBFN is thus the most adequate model for the current
application.

The retrieval performance of the ARBFN was next compared to the single-
class model discussed in Sects.2.2-2.3, using a new query set, which contained
59 images randomly selected from different categories. The methods compared
include ARBFN, single-RBF, OPT-RF, and MAM. Two criteria were employed for
performance measures: precision Pr measured from the top N, images, where N,
was set to 10, 16, 25, and 50; and second, a precision versus recall graph. However,
the relevance feedback was done only on the top 16 retrieved images.

Table 2.14 summarizes the precision results averaged over all queries, measured
from the top 10, 16, 25, and 50 retrieved images. It can be seen that the learning
methods provided a significant improvement in each of the first three iterations. The
ARBFN achieved the best precision results in all conditions, compared to the other
methods discussed. At N. = 10, ARBFN reached a near-perfect precision of 100 %
after three iterations. This means that all the top ten retrieved images were relevant.
The results also show that, at N, = 16, more than 14 relevant images were presented
in the top 16 ranking set. The most important precision results are perhaps those
after the first iteration, since users would likely provide only one round of relevance
feedback. It was observed that the ARBFN provided a better improvement than the
other methods for this requirement.

Figure 2.5a—c illustrates the average precision versus recall figures after one, two,
and three iterations, respectively. The behavior of the system without learning and
the strong improvements with adaptive learning can easily be seen. In all cases, the
precision at 100 % recall drops close to 0. This fact indicates that it was not possible
to retrieve all the relevant images in the database, which had been pre-classified by
the Corel Professionals. It is observed from Fig. 2.5a that the ARBFN was superior
to the single-RBF at the higher recall levels, while both provided similar precision
at the lower recall levels. Also, the ARBFN achieved better improvements than
the single-RBF by up to 8.6 %, 7.3 % and 6.5 %, at one, two and three iterations,
respectively.
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Table 2.14 Average

a k Average precision (%), Pr(N,)
precisions, Pr, compared at

four settings of top matches Ne | Method t=0 jt=1 t=2 t=3
(N,), obtained by retrieving 10 | ARBFN 5593 | +32.03 | +42.03 | +43.56
59 queries, using the Corel Single-RBF | 55.93 | +27.97 | +39.15 | +42.03
Database MAM 55.93 | +17.12 | +19.32 | +19.66
OPT-RF 55.93 | +24.07 | +30.51 | +32.37
16 | ARBFN 47.67 | +30.83 | +39.30 | +41.21
Single-RBF | 47.67 | 42648 | +34.64 | +38.45
MAM 47.67 | +13.88 | +16.00 | +16.21
OPT-RF 47.67 | +20.97 | +23.83 | 4+25.00
25 | ARBFN 39.93 | +26.44 | 4+30.44 | +31.19
Single-RBF | 39.93 | +21.36 | +26.58 | +28.14
MAM 3993 | +11.46 | +12.47 | +12.07
OPT-RF 39.93 | +17.02 | +19.73 | +20.00
50 | ARBFN 30.03 | +19.08 | 4+20.58 | +20.75
Single-RBF | 30.03 | +15.29 | +17.76 | +18.44
MAM 30.03 | +8.24 | 4831 | +8.17
OPT-RF 30.03 | +11.86 | +12.17 | +12.51

Interactive results are quoted relative to the Pr observed with
the initial retrieval

2.5 Bayesian Method for Fusion of Content and Context
in Adaptive Retrieval

Adaptive retrieval method can be implemented to integrate visual content and
contextual information through relevance feedback [47,48]. Contextual information
refers to the statistical correlation across multiple images. In this section, a Bayesian
framework is developed for fusion of content and context components. Specifically,
the visual content analysis is associated with the likelihood evaluation, whereas the
contextual information is represented by the a priori probability, learned through a
maximum entropy algorithm.

2.5.1 Fusion of Content and Context

Let C represent the set of class labels and C = {1,2,...,C}, where C is the number of
classes. The class label of a particular image in a database is denoted ¢, where ¢ € C.
Based on the maximum a posteriori probability (MAP) criterion which minimizes
the classification error, the true class label is estimated with:

¢ = argmaxP (c|x,I) (2.80)
ceC
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Fig. 2.5 Average precision versus recall figures, obtained by retrieving 59 queries, using the Corel
database. Figures on the right are the zoom versions of the figures on the left. Note that, in each
case, results obtained by the non-adaptive retrieval method are fixed, and used as a benchmark for
other adaptive retrieval methods. (a) Results after first RE. (b) Results after second RF. (¢) Results
after third RF

where ¢ is the estimate of c, I is the background information, which exists with a
well-formulated problem. In the context of the subsequent description, it represents
a set of indexes of query images. Therefore, I can be defined as I = {[;|i =
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1,2,...,|I|}, where |I| is the number of query images, I; € C, i = 1,2,...,|I|. Using
Bayes’ theorem, the a posteriori probability can be written as

P(clx,0) o< p(x|e,1) P(cl|I), (2.81)

with the equality replaced by the proportionality due to the unimportance of
the probability density function (PDF) of an observation, i.e. p(x|I), when the
theorem is employed to solve a classification problem. Based on the meaning of the
background information I, we can assume the conditional independence between the
observation x and I given the class label of the observation, i.e. x L I|c. Therefore,
the a posteriori probability in Eq. (2.81) can be calculated through

P(elx.) = p(xlc) P(cll) (2.82)

The first term on the right-hand side of Eq.(2.82) is the PDF of the feature
vector of the class ¢, which is considered as the content model characterizing the
visual properties of that class. The second term is essentially a distribution of one
class or candidate image, say c, conditional on a set of other classes or query
images, collectively represented by I. This is exactly the contextual information
that characterizes the statistical relation between different classes or images. It will
be shown that such contextual information can be learned from past user feedback
for image retrieval. According to Eq. (2.82), the content and contextual information
are integrated through the decision-level fusion in a multiplicative fashion.

The Bayesian framework is applied to tackle the semantic gap of image retrieval
by integrating short-term relevance feedback (STRF) and long-term relevance
feedback (LTRF). STRF refers to the user interaction during a retrieval session
consisting of a number of feedback iterations, such as query shifting and feature re-
weighting. On the other hand, LTRF is the estimation of a user history model from
past retrieval results approved by previous users. LTRF plays a key role in refining
the degree of relevance of the candidate images in a database to a query. The STRF
and LTRF play the roles of refining the likelihood and the a priori information,
respectively, and the images are ranked according to the a posteriori probability.
By exploiting past retrieval results, it can be considered as a retrieval system with
memory, which incrementally learns the high level knowledge provided by users.

The underlying rationale of applying the Bayesian framework to image retrieval
can be illustrated using Fig.2.6, of which the gist is to boost the retrieval per-
formance using some information extracted from the retrieval history. The two
types of similarity measure are complementary to each other. Specifically, the
similarity measure by the content-based component illustrated by the low-level
feature space in Fig.2.6a suffers from the semantic gap which can be alleviated
using the contextual information. The links between relevant images in Fig.2.6b
are estimated by utilizing the co-occurrence of relevant images in the past retrieval
results. At the same time, the contextual information can only be acquired by
learning from the knowledge accumulated through the content-based component.
The retrieval system, illustrated in Fig. 2.7, seamlessly integrates the content-based
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Fig. 2.6 The similarity measure in the content and context domains. (a) Semantic gap exists in the
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Fig. 2.7 Block diagram of
the integration of STRF and
LTRF in an adaptive retrieval
system. The solid and dashed
directed lines indicate the
information flow and the
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and the context-based methods into a mathematically justifiable framework. In the
beginning, there is no available retrieval history from which to learn the context
model but the system can still work using the content-based component and incre-
mentally accumulate the retrieval results. When past retrieval results are available,
the context component of the system performs LTRF by extracting information
from the data gradually, which can be considered as a knowledge accumulation
process. When a user presents a query, the content component of the system learns
the user’s information needs from the query through similarity measures and STRFE.
If the context component has been trained by the time a user queries the database,
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the system is capable of integrating the useful information predicted using the
context component and that learned using the content component. The a posteriori
probability evaluated by the system is used to rank the images in the database.

2.5.2 Content-Based Likelihood Evaluation
in Short-Term Learning

The visual content model of a certain semantic class, e.g. c, is the parametric form
of the distribution of the visual features of that class. The parameters of the model
are adapted to a given set of training data of class ¢ through a supervised learning
procedure. A visual content model plays the role of evaluating the likelihood of a
visual feature with respect to a certain class. The support vector machine (SVM)
is selected as the key component of the content model to evaluate the likelihood.
L1 norm is also employed in addition to SVM for calculating the likelihood using
the content model. At the same time, it should be noted that the formulation of the
Bayesian framework requires that the output of the visual content model comply
with the definition of a PDF. To this end, the exponential function is employed, i.e.
h(s)=exp(s), s € R, to convert the discriminant function of SVM into a PDF. The
selection of the above exponential function is based on the following consideration.
First, it is monotonically increasing, resulting in the preservation of the physical
interpretation of the algebraic distance between a sample and the decision boundary.
Second, it is positive. Since the total integral of a function must be equal to
unity, appropriate normalization is necessary. Finally, representing the discriminant
function of SVM corresponding to the c-th class as f.(x) and substituting it for the
variable s in the exponential function followed by normalization, we obtain

p(xle) = %exp (fe (%)) (2.83)

where A = [exp(f. (x))dx.

2.5.2.1 Using the Nearest Neighbor (NN) Method

The nearest neighbor (NN) method returns the top K images on the list, which
is ranked based on the similarity measure between the feature of the query and
that of each of the candidate images, where K < C. The L1-norm is used as the
distance function for the NN method. In adaptive retrieval, the query is refined using
the method of query point movement [i.e., Eq. (2.8)]. To calculate the likelihood,
the exponential function in Eq.(2.83) converts the L1-Norm into a similarity
function, i.e.

p(ele) = L exp e (x0)) = 5 exp (~ xg —x.]) (.89
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where A = [exp(— |xq —X,| ), is the normalization constant, x, denotes the feature
vector of a query, and X, denotes a candidate image. When the likelihood is
calculated using the L1 norm, the corresponding negative distance function should
be substituted into the exponential function because the similarity is a decreasing
function of the distance between features.

2.5.2.2 Using the Support Vector Machine Active Learning
(SVMAL) Method

SVM is a powerful tool for pattern recognition because it maximizes the minimum
distance between the decision hyperplane and the training samples so as to minimize
the generalization error. Given training samples {(x;,y;)}Y.,, where x; € R”, y; €
{—1,1} is the ground-truth label of x;, the optimal hyperplane can be represented
as f(x) = X, a;yiK (xi,x) + b where K (x;,X) is the kernel function, ¢; is the
Lagrangian multiplier, and b is the bias. Due to the sparse sample problem of
the relevance feedback leaning, the active learning method was introduced into
the learning process, whereby the most informative images are shown to request
user-provided labeling, resulting in the support vector machine active learning
(SVMAL)-CBIR [49]. Since the output of an SVM with respect to a sample is
the oriented distance from the sample to the hyperplane, the value could be either
positive or negative. Therefore, the exponential function is employed again to
convert the value of the discriminant function. When selecting radial basis functions
as the kernel, we obtain

1 1 N
P (X4lc) = 4 &P (fe(xq)) = 4 &P (Z oyiK (xi,Xg) +b> (2.85)

i=1

where A = [exp(IN | ;K (X;,X,) +b) is the normalization constant.

2.5.3 Context Model in Long-Term Learning

This part aims at calculating the P(c|I) in Eq.(2.82), which is the contextual
information about ¢ inferred based on the I. Without I, the probability mass of ¢
is uniformly distributed over the class ensemble C without I. Due to the statistical
dependence across different classes, however, the distribution of ¢ conditional on I
will deviate from the uniform distribution once I is available. As a result, the classes
that are more strongly correlated with I have higher probabilities than the others
do. Since the problem is essentially the estimation of a conditional probability mass
function (PMF), a typical train of thought leads to the conventional approach that
calculates the conditional probability through P (c|I) = P(c,I)/P (I), for which we
need a set of training samples belonging to the Cartesian product of |I| +1 C’s.
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Regardless of the approach to estimating P(c,I) and P (I), there are two problems
with above estimation of P (c|I). First, the background information I may include
different numbers of indexes, which requires separate estimations of the model for
different sizes of I. Second, when collecting training data, we cannot guarantee
enough or even available samples for a certain configuration of ¢ and I, where the
configuration refers to a particular instantiation of the number of random variables
of cUI and their values.

To deal with the estimation of the context model efficiently, the P(c|l) is
approximated using a distribution of a set of binary random variables estimated
based on the maximum entropy (ME) principle. In this approach, an image is
represented using a C-dimensional vector of binary random variables, denoted
Y = (Y1,Y»,...,Yc)", where the value of each variable Y, is defined by

2.86
0 otherwise ( )

v — { 1 if the c-th image is relevant to a query
=

Instead of being from the Cartesian product of |I| + 1 C’s, the data utilized by the
context modeling procedure belong to the set of vertices of a C-dimensional hyper-
cube. Given a set of N training samples, denoted Y1,Y>,..., Yy, we can estimate the

P(Y) and then calculate the conditional probability P (YC Y7, Y5, .., Y[‘ 1|> , which is

represented as P (Y,|¥;) in what follows. To approximate the P (c|I) in Eq. (2.82),
the following formula is utilized

P(Ye[Yr)

Pl =S bwin

(2.87)

As the size of the concept ensemble, i.e. C, grows, the computational intensity
of the calculation of P (Y,|Y;) increases exponentially. Therefore, it would be more
efficient if we can directly estimate P (Y.|Y7) based on a set of training samples.
To this end, the ME approach demonstrated in [50] is employed, which estimates
a conditional distribution by maximizing its Rényi entropy. Essentially, the ME
principle states that the optimal model should only respect a certain set of statistics
induced from a given training set and otherwise be as uniform as possible. The
ME approach searches for the conditional distribution P (Y,|¥), with the maximum
entropy, among all the distributions which are consistent with a set of statistics
extracted from the training samples. Therefore, it can be considered as constrained
optimization, which is formulated as

- N P(Yy=y) P(Y. = y.|Y; = 1), 2.88
P(Y¢-I|IY112>D€([0,1] yz,', (s =30) P(Fe = ltr = 1) ( :
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subject to:

S PYr=y1)P(Ye =ye|Yr = 1) fi
P(fi)

P(f.|fy) ke {0}UI, (2.89)

where ¢ € C and ¢ ¢ I because P(Y. = 1|¥; = 1) = 1 for ¢ € I. In addition, P (")
represents the empirical probabilities directly estimated from the training samples,
fe =Y. and fi =Y, when k # 0 and f; = 1 otherwise. Using a matrix-based
representation, solving the above optimization leads to the result that

P=MxN'xf (2.90)
where
P=[P(Yal%),P(Yol¥),...,P (Y, ¥1)]' (2.91)
P(falfo)  P(falfn) P( falfiy
P(falfo)  P(falfy) - P(folfy
= ) ) . . (2.92)
P (fucmfo) P (fucmfn) -+ P (fa\C/I\flm)
1 1 1
PUalfe) 1 P (fulfyy)
N=| . . (2.93)
P(figho) B(finfin) 1
F=[for st 294)

and |C/I| = {ay,a,...,q)c/n}-

2.5.4 Experimental Result

In the experiment, four methods summarized in Table 2.15 were compared. A total
of 200 classes of images was selected from the COREL image collection, with 50
images in each class. The resulting 10,000 images and the vendor-defined categories
were used as the database and the ground truth for evaluating the performance. From
the database, 10 queries are selected from each of the 200 classes, resulting in 2,000
queries being selected, each of which is composed of two different images. Under
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Table 2.15 Comparison of learning methods

Method Learning criterion STRF | LTRF

NN-CBIR | Adaptive image retrieval method, using nearest neighbor (NN)| v’ X
criterion, where L1-norm is employed as the distance function and
Eq. (2.8) is employed for a query modification

SVMAL- Adaptive image retrieval method using support vector machine | v’ X
CBIR active learning (SVMAL)

NN-CLBIR | Collaborative Bayesian Image Retrieval (CLBIR), using Eq. (2.84) | v/ v
for estimation of p (x,|c) and Eq. (2.87) for estimation of P (c|I)

SVMAL- Collaborative Bayesian Image Retrieval (CLBIR), using Eq. (2.85) | v/ v
CLBIR for estimation of p (x,|c) and Eq. (2.87) for estimation of P (c|I)

the query-by-example retrieval paradigm, the average of the features of the two
images is used as the feature of an exemplar image.

To facilitate the subsequent elaboration, the query subsets which consist of
the first five queries, the sixth through the eighth, and the ninth and the tenth
in each class, are denoted Ty, Tp 1, and Tpo, where |T4| = 1,000, |75 | = 400,
and |Tp2| = 600. Such a query set selection guarantees that the system trained
using the LTRF will be tested based on previously unseen samples. Ty was used
when there is no accumulated high-level knowledge, i.e. before LTRF happens.
In such a case, only STRF is involved, and the “nearest neighbor collaborative
Bayesian image retrieval” (NN-CLBIR) and the “support vector machine active
learning collaborative Bayesian image retrieval” (SVMAL-CLBIR) are essentially
the same as the NN-CBIR and SVMAL-CBIR because the a priori distribution
of the candidate images is uniform. After the initial LTRF, the CLBIR systems
are expected to present better performance in general thanks to the accumulated
knowledge, while the STREF still improves the results with respect to each specific
query. Tg 1 U Tp 2, comprising 1,000 images, was used to verify the improvement
after the initial LTRF. During the operation of the CLBIR systems, the new retrieval
results after the initial LTRF are gradually accumulated, and a second LTRF can
be carried out upon a certain point. The retrieval results corresponding to T 1 were
used to perform an incremental update of the system, i.e. the second LTREF, after
which the performance was evaluated using 73 >.

To capture various visual properties of the images, three types of low-level
descriptors are selected, including global color histogram in Hue-Saturation-Value
(HSV) space, color layout in YCbCr space [92], as well as Gabor wavelet [91].

Shown in Fig.2.8a is the comparison between NN-CBIR and NN-CLBIR in
terms of the average precision Pr as a function of the number of iterations of
STREF. The precision is given by Pr = N¢/Ng, where N¢ and Ny are the numbers
of relevant images and retrieved images, respectively. The precision is measured
in the top Ng = 48 in this case. Using the query set T3 1, the improvement due to
LTRF based on past retrieval results with respect to the query set T4 is obvious, and
the effect of STRF can also be observed. After the second LTREF, the performance
of NN-CLBIR using query set Tp is further enhanced due to more accumulated
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Fig. 2.8 (a) Comparison between the performance of NN-CBIR and NN-CLBIR in terms of the
average precision versus the number of relevance feedback iterations; (b) comparison between
the performance of NN-CBIR and NN-CLBIR in terms of the precision versus recall after the
first retrieval iteration; (c) comparison between the performance of SVMAL-CBIR and SVMAL-
CLBIR in terms of the average precision versus the number of relevance feedback iterations;
(d) comparison between the performance of SVMAL-CBIR and SVMAL-CBIR in terms of the
precision versus recall after the first retrieval iteration

knowledge through the LTRF. Based on the same query set, the performance of
NN-CBIR remains unchanged. To test the performance in terms of ranking ability,
the precision-versus-recall curve (PRC) is employed. The recall is defined as R =
N¢/Ng, where Ng is the number of images in the same classes as that of the query.
The precision is averaged over all queries at each different recall value. The PRC
after the initial retrieval is shown in Fig. 2.8b. Higher precision values at a certain
recall indicates more relevant images being ranked ahead of irrelevant ones, i.e. to
reach the recall value, a smaller set of retrieved images has to be processed. Based
on this fact, the advantage of the integration of user history as high-level knowledge
with the content analysis can be demonstrated based on the comparison in Fig. 2.8b.
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Fig. 2.9 Retrieval results for the subjective evaluation of the performance improvement resulting
from extended user history; (a) based on the user history model trained using 2,000 past retrieval
results; (b) based on the user history model trained using 3,200 past retrieval results
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The comparison shown in Fig.2.8c, d is for the same purpose of performance
evaluation as that described above, and the difference lies with the approach to
the content analysis for the likelihood computation, which is based on the output
of the SVM employed for the active learning-based STRF. In this case, Ng = 20
was adopted for the evaluation of precision as a function of the number of STRF
iterations, and N¢ = 50 for the evaluation of PRC. Since the initial retrieval is just
random ranking, the precision was evaluated starting from the first STRF iteration.
Still, we can observe the improvement resulting from the integration through the
Bayesian framework.

An interface with the NN-CLBIR enabled has been implemented to demonstrate
the effectiveness of the system in terms of performance improvement by the
accumulation of user history. Illustrated in Fig.2.9a, b are the top 20 images
retrieved using NN-CLBIR. Shown in the figure on the left is the result obtained
using a system whose a priori knowledge was extracted from 1,000 user data, while
on the right, the result is based on the a priori knowledge learned from 1,400 user
data. The query is selected from the semantic class of the theme soldier, and the last
four images do not belong to this class in Fig. 2.9a. Nonetheless, all of the top 20
images are relevant to the query.

2.6 Summary

The kernel approach makes use of a nonlinear kernel-induced inner product, instead
of the traditional Euclidean inner product, to measure the similarity metrics of two
vectors. In a relevance feedback session, the nonlinear kernel approach implements
the nonlinear mapping function to analyze the role of the users in perceiving image
similarity. This results in a high performance machine that can cope with the
small size of the training sample set and the convergence speed. The new learning
algorithms for the nonlinear kernel-based RF can be categorized into two groups.
The first group includes the single-class RBF, the adaptive RBF, the gradient-
descent-based learning, where hard constraints are used to force a clear separation
on the RF samples. Then, in the second group, soft constraints are used to allow
more support vectors to be included in the so-called fuzzy RBF formulations. Much
of the chapter is meant to build the theoretical footing for the machine learning
models in the subsequent chapters.

In addition, the nonlinear-kernel approach in a STRF is extended to a Bayesian
fusion model. The STRF represents a content component that can be incorporated
with a context component in a LTRF, through a Bayesian framework. This can
be considered as a retrieval system with a memory, which can incrementally
accumulate high-level semantic knowledge, assisting in bridging the semantic gap
in future retrieval performed by prospective users.



Chapter 3
Self-adaptation in Image and Video Retrieval

Abstract This chapter explores the automatic methods for implementing
pseudo-relevance feedback for retrieval of images and videos. The automation
is based on dynamic self-organization, the self-organizing tree map that is capable
of identification of relevance in place of human users. The automation process leads
to the avoidance of errors in excessive human involvement, and enlarging the size of
training set, as compared to traditional relevance feedback. The automatic retrieval
system applies for image retrieval in compressed domains (i.e., JPEG and wavelet
based coders). In addition, the system incorporates knowledge-based learning to
acquire a suitable weighting scheme for unsupervised relevance identification. In the
video domain, the pseudo-relevance feedback is implemented by an adaptive cosine
network than enhances retrieval accuracy through the network’s forward—backward
signal propagation, without user input.

3.1 Introduction

In order to handle the large volumes of multimedia information that are becom-
ing readily accessible in the consumer and the industrial world, some level of
automation is desirable. Automation requires intelligence systems, to formulate
its own models of the data in question with little or no user intervention. The
system is able to make decisions about what information is actually important
and what is not. In effect, like a human user, the system must be able to discover
characteristic properties of data in some appropriate manner, without a teacher. This
process is known as unsupervised learning, and in this chapter we explore its use in
performing relevance identification in place of human users in relevance feedback
based multimedia retrieval.

This chapter introduces self-adaptation methods for the automation of adaptive
retrieval systems in image and video database applications. This aims to achieve the
following advantages in overcoming the difficulties faced in traditional relevance
feedback,

* Avoiding errors caused by excessive human involvement in relevance feedback
loops, thus, offering a more-user friendly environment.

© Springer International Publishing Switzerland 2014 59
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e Utilizing unlabeled data to enlarge training sets, in the same spirit as active lean-
ing, for relevance feedback to increase learning capability and fast convergence.

* Minimizing relevance feedback iterations so that there is no requirement of
transmitting fraining images and video files over the distributed multimedia
database (i.e., internet, cloud, and peer-to-peer databases), reducing the required
transmission bandwidth.

The topics addressed in this chapter are as follows:

Section 3.2 presents a framework of pseudo relevance feedback and a relatively
new approach to the problem of unsupervised learning, the self-organizing tree map
(SOTM). These are the essential tools for the implementation of the automation. The
SOTM is a new member within the family of generative, self-organizing maps. Its
architecture is based on dynamic self-organization and is suitable for data clustering
in the current application.

In most of the centralized and distributed database systems, multimedia files
are stored in the compressed formats (e.g., JPEG and JPEG2000). Thus, real-
time indexing and retrieval of these files requires algorithms that can process
the compressed data without full decompression of files. It is necessary to adopt
compressed domain indexing to accomplish the low computational complexity at
run time. Section 3.3 applies the pseudo relevance feedback method to the energy
histogram features in the compressed domain of the JPEG coder, as well as other
types of compressed domain features extracted from the wavelet-based coders.

Section 3.4 explores the automatic retrieval framework by incorporating the use
of knowledge to produce some levels of the equivalent classification performance
used in human vision. The region of interest characterizes perceptually important
features, and offers a weighting scheme for the unsupervised data classification.

Finally, the automation for video retrieval will be presented in Sect.3.5 The
spatial-temporal information of videos needs be properly captured in the indexing
stage. Then, an adaptive cosine network is applied to implement pseudo-relevance
feedback, as the network’s forward—backward signal propagation, to increase
retrieval accuracy.

3.2 Pseudo Relevance Feedback Methods

3.2.1 Re-ranking Domain

Pseudo-relevance feedback is referred to as blind relevance feedback. The phi-
losophy behind this method is that the retrieval system is able to make use of
unlabeled data to improve the retrieval performance from the initial search results.
The essential task is to obtain a set of pseudo labels (i.e., the label of samples that
have been evaluated by a machine, not human users) for training relevance feedback
algorithms. Obtaining meaningful and effective sets of pseudo labels is challenging
and has been researched extensively.
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Traditionally, the evaluation of pseudo labels is carried out on the feature space
in a (single) domain similar to the feature space used for image ranking. Given
the feature space Iy, an initial ranking set is obtained for retrieval. Then, the
system assumes that a small number of top-ranked objects in the initial set are
the pseudo positive samples, and the latest-ranked objects are given the pseudo
negative samples [52,53]. This rule for labeling data uses the query sample (labeled
data) to explore unlabeled data in order to increase the size of training set. This can
be viewed as the transductive learning problem, which has been studied to handle
small numbers of labeled data [54-57]. The pseudo-labels are inferred using the
nearest-neighbor rule applied to the unlabeled samples in the dataset. This method
enlarges training sample sets, and has been used to improve effectiveness of the
support vector machine (SVM)-based adaptive retrieval [52,58,59,307].

There is a difficulty in making assumptions about the class assigned to unlabeled
data. The nearest-neighbor rule applied on the feature space |, which is the same
as the feature space for obtaining initial ranking, can lead to imprecision in class
information. The top-ranked samples are not always the relevant, correct answers
that meet the user’s information needs, due to the limited accuracy of current
multimedia retrieval systems [60]. Alternatively, instead of using ranking scores
on a single domain for the assignment of pseudo labeling, the self-organization
methods [61] can be adopted for this task on a different feature space F,. The
systems label the unlabeled points according to the clusters to which they naturally
belong. An advantage of the self-organizing method is that it may be able to make
better predictions, with fewer labeled points than standard pseudo-RF, because it
uses the natural breaks found in the unlabeled points.

Figure 3.1 illustrates the process for assignment of pseudo labeling using
two feature sets in IF; and F, which is used for the adaptation of image/video
retrieval system. The feature set in [F; is a standard feature used for ranking
image/video database, whereas the feature set in F, has high quality features
to be used for relevant judgment (the assignment of pseudo labels) by the self-
organization methods. Both sets can be characterized by visual descriptor, text,
and other modalities of multimedia files in the database. For instance, previous
works [56, 62—-65] have used pseudo-positive samples in the visual domain for query
expansion in the text domain. This is possible due to the availability of metadata
associated with images, especially for web image retrieval applications [66, 67].

In order to perform the assignment of pseudo labeling on the feature set [,
the self-organization method SOTM is adopted. The motivation is that this method
is suitable for clustering sparsely distributed data in the current application. The
feature space I, is usually of high dimension and only a small number of training
samples is considered for the assignment of pseudo labels. The efficiency and
flexibility of the SOTM in adapting to, and its implicit awareness of topology of
input space, make it an appropriate candidate for implementing this idea.

The SOTM [68] attempts to partition a feature space description of input data,
by locating clusters of high density within this feature space. Competitive learning
is used to locate clusters such that the final representation maintains the general
topology of the feature space, yet doing so in a flexible and efficient manner by
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Fig. 3.1 Automation in an adaptive image/video retrieval system. The pseudo labeling is obtained
by feature space F», which is used to guide the adaptation of the retrieval system applied to the
feature space Iy

dynamically generating a model of this topology as it parses the input space. This
results in a representation that tends not to suffer from nodes being trapped in
regions of low density [69, 70].

3.2.2 Self-organizing Tree Map

In order to construct a suitable map, the SOTM offers two levels of adaptation:
weight and structure. Weight adaptation is the process of adjusting the weight vector
of the winning nodes. Structure adaptation is the process of adjusting the structure
of the network by changing the number of nodes and the structural relationships
between them. Given a training data set .7 = {V,-}?Ll, v; € [, the adaptation map
using the SOTM algorithm is summarized as follows:

Step 1. Initialization

Ne . .
* Choose the root node {w j }j:1 with a randomly selected training vector from

7, where N, is the total number of nodes currently allocated.
* Initialize learning parameters: H(0)and c(0).

Step 2. Similarity matching

* Randomly select a new feature vector v, and compute the Euclidean distance,
d to all currently existing nodes w;, j=1,2,---, N.:

d(v,w)) = |[|v—w,| (3.1

Step 3. Updating

* Select the winning node, j*, with minimum distance,

dj» = mind(v,w;) (3.2)
J
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» If dj» < H(r), assign v to the j*-th cluster, and update the weight vector
according to the reinforced learning rule:

Wi (t+1)=wp (1) + o (t) [v—wj] (3.3)

where H (t) is a hierarchy control function, and ¢(¢) is the learning rate.
* Alternatively, if d;+ > H(t), spawn a new node from w at the position v.

Step 4. Update network parameters

* Decay o(t)with time
» Decay H(t)monotonically, controlling the leafs of the tree

Step 5. Continue from step 2 until either

e There is no significant change in the SOTM
¢ All nodes are allocated AND there is no significant change in the SOTM
¢ A maximum number of epochs is reached

Scanning the input data in a random manner is essential for convergence in the
algorithm [70, 71]. Consider that the data is scanned in such a way that the i-th
component of feature vector v is monotonically increasing, then the i-th component
of the weight vector w; will also monotonically increase (according to step 3). Thus
all of the nodes will have a monotonically increasing component in the i-th position
of the weight vector.

3.2.2.1 Hierarchical Control Function and Learning Parameters

In Step 3, if there is no significant similarity (i.e., dj+ > H(t)), then the network
figures that it needs to allocate a new node to the network topology. This node
then becomes a child of the node it was found to be closest to. The hierarchical
control function decays, allowing for nodes to be allocated as leaf nodes of their
closest nodes from previous states of the network. Thus the SOTM forms a flexible
tree structure that spreads and twists across the feature space. The decay can be
implemented by linear and exponential functions:

HO = 10) - | (1= ) 0)/8] 1 (34)

t

H()=H(0)e ™ (3.5)

where the time constant Ty is bound to the project size of the input data 7 ; H(0) is
the initial value; ¢ is the number of iterations; and & is the number of iterations over
which the linear version of H (1) would decay to the same level as the exponential
version of H (t).
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If H (¢) is allowed to decay indefinitely, and there is no limitation on the number
of nodes that may be allocated to the network, then it follows that the network
will continue to grow indefinitely. Intuitively, this growth should be limited by the
smallest resolution of the feature points (i.e., the Euclidean sum of the smallest
resolutions of all feature sets included in the feature space). At this limit, the purpose
of clustering to provide a compact representation of the dominant patterns or
redundancies in the data also becomes meaningless, since the network will continue
to grow until the number of classes equals the number of feature data points (or
greater).

The adaptation parameter o(¢) controls the learning rate, which decreases with
time as the weight vectors approach the cluster centers. It is given by either a linear
function:

a(t)y=(1-——) (3.6)
or an exponential function:
ot)y=e ™ (3.7

where 7; and 7, are constants which determine the decreasing rate. During the
locating phase, global topological adjustment of the weight vectors w; takes place.
o(t) stays relatively large during this phase. Initially, c(f) can be set as 0.8 and
it decreases with time. After the locating phase, a small o(¢) for the convergence
phase is needed for the fine turning of the map.

3.2.2.2 Visual Experiments on Synthetic 2D Data

As a means of understanding the important properties of the SOTM, the ability of
SOTM to cluster synthetic data is demonstrated. A comparison is made between the
self-organizing feature map (SOFM) [72] and the SOTM, highlighting the results
for clustering the same synthetic dataset at various node capacities. In the SOFM,
maps of sizes 2 x 2,3 x 3,4 x4, and 5 x 5 are considered. As a direct comparison,
the SOTM is run a single time without any stop criteria, pausing at the equivalent
number of nodes (4, 9, 16, and 25) for comparison with SOFM.

There are two primary factors evident in this simulation (Fig.3.2). Firstly, the
SOFM is more constrained by the natural rigidity of its imposed grid topology. Since
this is not a natural fit to the underlying topology, some distortion ensues: In the 2 x 2
case, the SOTM is shown with five nodes (however this is at the point of insertion of
the fifth node, thus the positions of the other 4 may be compared), and has already
distinguished between the most separated regions in the underlying density. In the
SOFM 3 x 3 case, some distortion becomes evident, as partitioning has favored the
subdivision of dense clusters, over locating other quite clearly distinct regions. As
a result of this and the imposed topology, some nodes have become trapped in low
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or zero density regions, which is undesired. The SOTM by contrast has located all
clusters efficiently at this point.

In the SOFM 4 x 4 case, sufficient nodes have resulted in the mapping across
the entire dataspace, however the distortion and zero density nodes still remain.
The SOTM, in allocating nodes to outlying regions of low density, does exhibit
some limitations in the 16 node case, although with minimal impact on the integrity
of the main clusters. The SOTM becomes more sensitive to outliers, once all the
natural clusters have been located (see node 10). Generally these nodes will track
back to flesh out and subdivide larger, more dense clusters, however as competition
increases over already limited space, this becomes more difficult: one might imagine
a situation in which data has more noisy clusters.

3.2.3 Pseudo Labeling

Figure 3.3 summarizes the application of SOTM for pseudo labeling in an adaptive
retrieval system. The retrieval process occurs in the following steps. First, the
system obtains the retrieved samples, X;,Xo, . .., Xy that are most similar to the query
x, based on feature space IFj. Second, these samples are associated with the
corresponding feature vectors, vi,Vs,...,Vy, V; € Fp. These are input to the SOTM
for unsupervised learning. Third, after convergence, the output of SOTM is used for
labeling each vy, Vs, ..., Vy, resulting in the label set {yi}ﬁvz 1- Finally, the labels are
associated with the retrieved samples, X1,X3,...,Xy, and used for the adaptation of
the relevance feedback module (i.e., the RBF-based relevance feedback).

Let w;, j=1,2, ---, L denote the weight vectors of the SOTM algorithm after
the convergence, where L is the total number of nodes. Also, let v, € IF> be the
feature vector associated with a given query image in the current retrieval session.
Thus, the distance between the query to all nodes can be obtained by:

d(vg,wj)=|lvg—w;|, j=12,- L (3.8)

It follows that the K-nearest neighbors of the query is obtained by:

Sk (vg) = {wld (vg, wj) < d(vg,Wi)} (3.9)
where S (v,) is the set of nearest neighbors, and wy is the k-th nearest neighbor
of v4. All nodes in this set are relevant to the query vector. The assignment of
labeling to the retrieved sample, v;,i € {I,N} is firstly conducted by calculating

the Euclidean distance between the sample and all nodes w;, j=1,2, ---, L.

d(vi,w;j) = ||vi—wj]

v J=12,-- L (3.10)
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Fig. 3.2 (continued)
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Then, the winning node is obtained:

j* = argmind(v;, w;) 3.11)
J

The input vector v; is assigned with the label, y; according to the following
assignment,

1 weS(vy)
;= J d 3.12
Ji { 0  Otherwise ( )

The application of Egs. (3.10)—(3.12) to all samples v{,vy,...,Vy, results in the
set of labels {y;}"_,, y; € {0,1}. This constitutes the label set for the corresponding
samples X,Xz,...,Xy, which forms the training set {x;, y,}f’z | for the relevance

feedback modules for the next retrieval step.

3.2.4 Experimental Result

The experiment was conducted to compare the performance of SOTM with SOM
for obtaining pseudo-RF in the adaptive retrieval process. This was carried out
using a subset of the Corel image database [73] consisting of nearly 12,000 images,
covering a wide range of real-life photos, from 120 different categories, each
containing 100 images. Three set of query images were constructed for testing and
evaluation: Set A, Set B, and Set C. In each set, one random sample was selected
from each class; thus, one set of tests quires included an example for every class
(120 in total). For feature space I, color histograms, color moments, wavelet
moments, and Fourier descriptors were used, while Hu’s event moment [74] and
Gabor descriptors accompanied with color histograms and color moments were used
for feature space .

The system architecture of pseudo-RF discussed in Fig. 3.3 was implemented.
In the SOM and SOTM algorithms, the maximum number of allowed clusters was
set to eight. A 4 x 2 grid topology was used in the SOM structure to locate the
eight possible cluster centers (fixed topology). Table 3.1 shows the retrieval result
obtained by the pseudo-RF as compared to the initial retrieval result (at first search

<
<

Fig. 3.2 (continued) Comparison of SOFM vs. SOTM. SOFM (left) was run to completion with
4 different grid lattices (fop to bottom: 2 x 2,3 x 3,4 x4, 5 x 5); SOTM (right) is the result of a
single run, shown at equivalent stages of node generation (top to bottom: 4 nodes + trigger site for
next node, 9 nodes, 16 nodes, and 25 nodes). SOTM shows efficient allocation of nodes to regions
in which data exists. The broken circles indicate the hierarchical control function (threshold about
each node beyond which data spawns new nodes). The circles in the final plot indicate cluster
densities
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Table 3.1 Retrieval results, obtained by the automatic retrieval system
using pseudo-RF and self-organization methods

Classifier Query Set A | Query Set B | Query Set C
Initial retrieval 37.8 39.2 39.8
SOM 51.2 49.1 52.3
SOTM 52.1 50.6 54.4
SOM with GA weighting | 61.2 59.9 63.6
SOTM with GA weighting | 66.8 65.7 63.3

operation), for all three sets of queries. It can be observed that the application of
pseudo-RF employing the two self-organizing methods improves retrieval accuracy
significantly. This result also shows that the map obtained by SOTM is more suitable
for pseudo-labeling, as compared to that of SOM.

In addition, the feature maps obtained by SOTM and SOM can be further
improved by incorporating feature weighting algorithm [75]. In this case, the
Genetic Algorithm (GA) was applied to the feature set in [F, to automatically assign
different weights to the color, shape, and texture features, during the construction of
the maps. The experimental results are illustrated in the last two rows of Table 3.1.
The self-organizing methods offer even higher accuracy with the application of the
GA feature weighting algorithm.

3.3 Re-ranking in Compressed Domains

Compressed domain descriptors are widely used in image retrieval [76-79]. The
main reason for this is that feature extraction algorithms can be applied to image
and video databases without full decompression. This provides fast and efficient
tools that are appropriate for real-time applications. In this section, the compressed
domain features are considered as feature space IF; for database retrieval. The
characteristics of discrete cosine transform (DCT) in the Joint Photographic Experts
Group (JPEG) standard and discrete wavelet transform (DWT) in image compres-
sions are investigated for adaptive retrieval in compressed domains.

3.3.1 Descriptor in Discrete Cosine Transformation

Largely due to its energy packing property, DCT has been widely used in JPEG and
many other popular image and video compression standards. When a typical 8 x 8
block of data undergoes DCT transformation, most of the significant coefficients are
concentrated in the upper-left (low frequency) region of the transform block, thus
allowing the storage and transmission of a small number of coefficients.
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Figure 3.4 shows the block diagram of JPEG compression and decompression.
The feature extraction is performed before the inverse transformation in the
decompression process. The energy histogram of the DCT coefficients demonstrated
in [76] is utilized as the image feature. An energy histogram of DCT coefficients is
obtained by counting the number of times a particular coefficient value appears in an
8 x 8 block. Formally, the value of the histogram in the m-th bin can be written as:

him) = 3 1(Q(F [u,v]) = m) (3.13)

where Q (F [u,v]) denotes the value of the dequantized coefficient at the location
(u,v), and m is the index of the current histogram bin. The function 7 is equal to 1 if
the argument is true, and O otherwise.

For a chrominance DCT block, the DC coefficient is proportional to the average
of the chrominance values in the block. As a result, the histogram of DC coefficients
can be used as an approximation of the color histogram of the original image. On
the other hand, the histogram of the AC coefficients can be used to characterize
the frequency composition of the image. This carries texture and edge information,
which are contributory to the similarity measure. It has been proven that this feature
extraction method is translation and rotational invariance.

In Fig.3.4, the 9 DCT coefficients in the upper left corner of the block are
partitioned into three sets, according to the frequency range. These are:

F1D = {DC} (3.14)
F1A = {ACyo, AC11,ACo1 } (3.15)
F2A = {ACy, ACy1, ACy, AC12, ACy1 } (3.16)

For effectiveness, the energy histogram features can be obtained from the coeffi-
cients in two of these collections:

F =F1DUF1A = {DC, ACy, ACy;, ACo1} (3.17)

In addition, separate energy histograms can be constructed for the DC and AC
coefficients for each of the color channels, as in the YCbCr color space.

3.3.2 Descriptor in Wavelet Based Coders

Recent multimedia compression standards employ state-of-the art compression
technologies by discrete wavelet transform (DWT), including MPEG-4 Visual
Texture Coding (VTC) [80], JPEG2000 [81], and set partitioning in hierarchical
trees (SPIHT) [82]. This trend has caused much of the latest work on indexing and
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retrieval to focus on algorithms that are compatible with the new standards [83—85].
Figure 3.5 shows the JPEG2000 standard, which replaces DCT with DWT for image
compression. Based on this coding scheme, the feature extraction can be done before
the inverse DWT. Image descriptors can be extracted from the header of bitstream
packets [86], or based on the analysis of texture and color features within the region
of interests at different wavelet resolutions [79].

In the wavelet-baseline coders, the difference among the wavelet coders is
only in the process of encoding wavelet coefficients. In JPEG2000, the subband
samples are partitioned into small blocks of samples, called codeblocks. Each
codeblock is encoded independently. In SPIHT, the wavelet coefficients are coded
based on the self-similarity across scales of the wavelet transform using the tree-
based organization of the coefficients. Therefore, it is appropriate to extract the
descriptors directly from the DWT coefficients, in order to make the feature
extraction algorithms compatible with all of the coders.
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3.3.2.1 Feature Extraction in Wavelet Compressed Domains

The histogram of wavelet coefficients from the high frequency subbands can be
modeled by the generalized Gaussian density (GGD) function [85,87,353],

x|\ B
piof)=—L _o[5) (3.18)
201 (§)

where x is the value of wavelet coefficients, o models the width of the probability
density function, f3 is the shape parameter, and I is the Gamma function, i.e., I'(z) =
I e~'t“"dt, 7 > 0. For each subband, the parameters o and 8 can be estimated
and utilized for image features [85]. Based on this observation, the image feature
for the JPEG2000 coded image can be characterized by the variance of the DWT

coefficients from the code blocks [77].
Based on Eq. (3.18), a wavelet moment method [88] can be conducted to obtain
a feature related to the energy distribution of each wavelet subband. Let W}, (i, ) be
the low band image at the n-th level. Also, let W}, (i, ), W}/, (i, j), and W}, (i, j)
be the three high band images at the n-th level in the horizontal, vertical, and
diagonal, respectively. For 3-level decomposition, the wavelet moment features
are computed by the first and second central moments on the absolute value of
coefficients of each subband, resulting in the ten-dimensional feature vector: f =

3 3 3 3 1 1 1 7
[nuLL OHHOLHOHH " OunOLHOun ] where

1

= 5= X Wa.j)l (3.19)
(i) €W,
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1
ofnz\/ S (W) — )’ (320)

Nyn /.
(i, j)eW

Also, n and m denote decomposition level and subband orientation, respectively,
Ny is the number of coefficients in the mn-th subband, and W} (i, j) is the wavelet
coefficient at location (i, j) in the subband image W},.

3.3.2.2 Feature Extraction from Wavelet Transform/Vector Quantization
Coder

The hybrid wavelet transform/vector quantization (WT/VQ) coders have been
proven to achieve high compression while maintaining good visual quality [89, 353].
Figure 3.6 shows the coder and decoder of this coding scheme. Here, a two-
level wavelet decomposition scheme, with a 15-coefficient biorthogonal filter, is
adopted for the analysis of images. The decomposition scheme produces three
subbands at resolution level 1, and four subbands at resolution level 2. To capture the
orientational characteristics provided by the wavelet-based subband decomposition,
a codebook is designed for each subband. This results in a multi resolution codebook
(Fig. 3.6d) that consists of sub-codebooks for each resolution level and preferential
direction. Each of these sub-codebooks is generated using the Linde-Buzo—Gray
(LBG) algorithm, as well as the bit allocation method (Fig.3.6c), to minimize
overall distortion. The codebook design divides a subband belonging to different
images into m X m square blocks and the resulting vectors are used as the training
vectors. Separate codebooks are trained for each resolution orientation subband.

For the encoding of an input image at a total bit rate of 1 b/pixel, the bit
assignment is organized as follows: resolution 1 (diagonal orientation) is discarded;
Resolution 1 (horizontal and vertical orientations) and resolution 2 (diagonal
orientation) are coded using 256-vector codebooks resulting in a 0.5-b/pixel rate,
whereas resolution 2 (horizontal and vertical orientations) is coded at a 2 b/pixel rate
using 256-vector codebooks; and, finally, the lowest resolution is coded by scalar
quantization at 8-b/pixel.

Figure 3.6b shows the decoding process. The feature extraction is obtained before
vector dequantization. The coding labels are used to constitute a feature vector
via the computation of the labels histograms. Each subband is characterized by
one histogram and represents the original image at a different resolution; thus, the
resulting histograms are called multiresolution histogram indexing (HMI) [90]. This
method makes use of the fact that the usage of codewords in the sub-codebook
reflects the content of the encoded input subband. For the two-level decomposition,
five subbands containing wavelet detail coefficients are utilized for the construction
of HMI features:
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Foarr = [HY (1) 12 (0,12 (1) 1 (1), 15 (1) (321)

where H (1) is the histogram generated from the coding label of the j-th subband,
I =1,2,...,L, and the sub-codebook size L = 256. In Fig.3.6a, let the function
Q(V;) : R™™ — 1,...,L be the function that quantized the value of the i-th input
vector of size m-by-m to its bin. The histogram model of each subband consists then
of the L values of the L bins of the histogram H (1) = [H (1),...,H(l),...,H (L)]".
The value of the /-th bin is calculated by:

H(z)zga(g(w)—z), le{1,...,L} (3.22)
i=1

where 6 is the Kronecker delta function, and Ny is the total number of vectors in
the subband.

3.3.3 Experimental Result

The pseudo RF for adaptive image retrieval outlined in Fig. 3.3 was applied for the
retrieval of compressed images. Feature space IF'; is characterized by the compressed
domain features (extracted from the DCT or WT compressed images). For relevance
classification in feature space [, a Gabor wavelet transform technique [91,92] was
employed. The experiments were designed to compare the performances of four
methods: non-adaptive CBIR, user-controlled RF retrieval, pseudo RF retrieval, and
semiautomatic retrieval. The experimental results were obtained from two image
databases: DB1, the Brodatz database, which contains 1,856 texture images; and
DB2, distributed by Media Graphic Inc. [93], consisting of nearly 4,700 JPEG color
images covering a wide range of real-life photos, with a completely open domain.
These are typical, medium-size databases that are potentially remotely accessible
through Internet environments, without advanced indexing of the stored images
[76].

For the DB test set, the visual descriptor used both WM [cf. Egs. (3.19) and
(3.20)] and MHI feature [cf. Eq.(3.21)] representations, for the characterization
of the wavelet-compressed images. The WM descriptor was obtained before the
invert-DWT process of the wavelet-baseline coder, whereas the MHI descriptor was
obtained before VQ-decoding of the WT/VQ decoder. For the DB2 test set, the
visual descriptors used are the energy histograms which were extracted directly from
the compressed JPEG images after the entropy decoding process.
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Table 3.2 Average retrieval Method Initial | Iter. 1| Iter. 2 | Iter. 3| Iter. 4
rate (AVR) of 116 query

images on DB1, obtained by Retrieval based on WM descriptor

pseudo-RF learning ARBFN | 5878 69.02]72.85 76.24|77.21
Single-RBF | 58.78 | 66.32 | 68.80 | 70.04 | 71.87
QAM 53.88 | 57.1159.00 | 60.45 60.78

Retrieval based on NHI descriptor

ARBFN 63.42 | 71.66 | 75.22 | 75.86 | 76.51
Sigle-RBF | 63.42|70.31|72.74 | 73.11 | 73.06
QAM 60.35 | 67.89 | 71.07 | 72.63 | 72.79
The initial AVR results were obtained by

Euclidean metric for ARBFN and single-RBF, and
by Cosine measure for QAM

3.3.3.1 Pseudo-RF Result

Table 3.2 provides numerical results illustrating the performance of the pseudo-RF
method on DB1 database. In all cases, relevance judgment was based on the ground
truth. Three adaptive retrieval methods: adaptive radial basis function network
(ARBFN), the single-radial basis function (RBF) method, and the query adaptation
method (QAM) were tested (these methods are discussed in Chap. 2). For each
learning method, the top 20 ranked images were utilized as training data. These
samples were input to the SOTM algorithm for pseudo labeling. The output of the
unsupervised network was in turn used as the supervisor for RF learning to update
learning parameters and to obtain a new set of retrievals.

The use of pseudo-RF learning for automatic retrieval resulted in a significant
improvement in retrieval performance over that of the non-adaptive technique. For
the automatic ARBFN, 18.4 % improvement in average precision was achieved
through four iterations of pseudo-RF, whereas the automatic single-RBF provided
a 13 % improvement. These retrievals used the WM descriptor. The results for each
learning method, with the MHI descriptor, show the same trend.

Figure 3.7 provides an example of a retrieval session performed by the automatic
ARBFN learning method, using the WM descriptor. Figure 3.7a shows retrieval
results without learning, and Fig. 3.7b shows the results after automatic learning.
The improvement provided by the automatic retrieval method is apparent.

3.3.3.2 Retrieval Results of Semiautomatic Retrieval

In order to verify the performance of the unsupervised learning of the pseudo-
RF retrieval system, its performance was compared with that of the traditional RF
method. The retrieval system was allowed to interact with the user to perform the
retrieval task, and the results obtained are provided in Table 3.3. It was observed that
user interaction gave better performance: 3.34—6.79 % improvement was seen after
one iteration, and 3.66—4.74 % after four iterations. However, it should be taken into
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account that the users had to provide feedback on each of the images returned by a
query in order to obtain these results.

As found in the studies from Chap. 2, retrieval performance can be progres-
sively improved by repeated relevance feedback from the user. The semiautomatic
approach reported here greatly reduced the number of iterations required for user
interaction. This significantly improved the overall efficiency of the system. In
the semiautomatic learning method, the retrieval system first performed automatic
retrieval for each query to adaptively improve its performance. After four iterations,
the retrieval system was then assisted by the users. Table 3.4 provides a summary
of the retrieval results, based on one round of user-controlled RF. It was observed
that the semiautomatic RF method was superior to the automatic method and the
user interaction method. The best performance was given by the semiautomatic
ARBFN at 83.41 % using WM descriptor, and 81.14 % using MHI descriptor.
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Table 3.3 A comparison of average precision rate (AVR) (%) between pseudo-RF
method and user-controlled RF method, using DB1, and MHI descriptor, where A
denotes AVR differences between the two methods

Number of user

Method Initial | Iter. 1 |Iter. 4 | RF (iteration)
ARBFN a: Pseudo-RF 6342 | 71.66 |76.51 |—
b: User-controlled RF 63.42 |77.64 80.17 |4
A=a-b - +5.98 | +3.66
Single-RBF a: Pseudo-RF 6342 70.31 |73.06 |-
b: User-controlled RF 63.42 |73.65 7743 |4
A=a-b - +3.34 | +4.37
QAM a: Pseudo-RF 60.35 |67.89 |72.79 |-
b: User-controlled RF 60.35 |74.68 |77.53 |4
A=a—b - +6.79 | +4.74

Table 3.4 A comparison of average precision rate (AVR) (%) between
semiautomatic and user-controlled RF methods, after one round of user
interaction, using DB1

Method Initial | User-controlled RF | Semiautomatic RF
Retrieval based on WM descriptor

ARBFN 58.78 |77.53 83.41

Sigle-RBF 58.78 | 75.59 78.34

QAM 53.88 | 61.75 63.25

Retrieval based on MHI descriptor

ARBFN 63.42 |77.64 81.14

Sigle-RBF 63.42 | 73.65 77.03

QAM 60.35 | 74.68 76.39

Figure 3.8a—c shows the results for each method when convergence is reached.
The improvement resulting from the adoption of the semiautomatic approach is
indicated by a correspondingly small amount of user feedback for convergence. In
particular, the semiautomatic methods can reach or surpass the best performance of
user controlled RF within only one to two interactions of user feedback.

3.3.3.3 Result of Retrieval in DCT Compressed Domains

The ARBFN method utilizing pseudo-RF learning was applied for retrieval of
images in DB2, JPEG photograph database [93]. The energy histograms of the
lower frequency DCT coefficients [76] were used to characterize each image in the
database. This constituted the feature space IFy for retrieval. The four coefficients
bounded within the upper left corner of the DCT block are used to obtain the
energy histograms. Separate energy histograms are constructed for the DC and AC
coefficients of each of the color channels, and 30 bins are used for each histogram.
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Fig. 3.8 A comparison of
retrieval performance at
convergence, between the
semiautomatic and
user-controlled RF methods,
where the learning methods
used are: (a) ARBFN;

(b) single-RBF; and (c)
QAM. The semiautomatic
method can attain
convergence within one to
two iterations of user
feedback. These results are
based on the MHI feature
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Table 3.5 Retrieval results for DB2, averaged over 30 query images

Avg. number of user RF

Method Avg. relative precision (%) | for convergence (Iter.)
Non-adaptive method |49.82 —

Pseudo-RF 79.17 -

User-controlled RF 95.66 2.63

Semi-automatic RF 98.08 1.33

Column 2: average relative precision (%); column 3: number of user feedbacks
(iterations) required for convergence. The results were performed by ARBFN in
both automatic and semi-automatic modes

For relevance classification on the feature space IFp, the GWT [91, 92] was again
adopted to characterize the retrieved images. The GWT was applied to the dominant
colors in each channel and the transform coefficients were used to construct feature
vectors. This method gives better characterization of texture information from
different color spaces.

Table 3.5 provides average relative precision (ARP) figures for thirty query
images. The ARP was defined as Pr/max (Pr), where Pr is the number of relevant
images over 12 retrieved images, and the maximum was taken across all methods
discussed. This provides an easy way to compare the relative performance among
different retrieval methods. In general, conclusions similar to those for the texture
database (DB1) can be drawn from these results, with regard to the retrieval per-
formance. The semiautomatic method consistently displayed superior performance
over the other methods discussed, showing improvement from 49.8 to 98.1 %, and
with the number of user feedbacks reduced by half to reach convergence.

The retrieval session for this database is shown in Fig. 3.9a, b. Figure 3.9a shows
the 12 best-matched images without learning, with the query image displayed in
the top-left corner. It is observed that some retrieved images are similar to the
query image in terms of texture features. Seven similar images are relevant. Based
on this initial information, the self-organizing system dynamically readjusts the
weight parameters of the ARBFN model to capture the notion of image similarity.
Figure 3.9b displays the retrieval results, which are considerably improved after
using the automatic interactive approach. Figure 3.9c shows the retrieval results
of the semiautomatic ARBFN in comparison to the user-controlled interactions
illustrated in Fig. 3.9d.

3.4 Region-Based Re-ranking Method

The pseudo-RF learning represents the blind relevance feedback, where the machine
performs pseudo labeling. This process requires modeling image contents with
sufficiently accurate features for the characterization of perceptual importance.
This issue is especially pressing with automatic RF since, without providing
some form of knowledge to the relevance classification process from the external
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Fig. 3.9 Retrieval results for DB2, obtained by (a) a non-adaptive method; (b) automatic ARBFN;
(c) semiautomatic ARBFN, converted by one round of user interaction; (d) user-controlled
ARBEN, converted by two rounds of user interaction

world, the SOTM classifier cannot operate as efficiently as a user-supervised
process. For example, global features of shape, color, or texture might consume an
undue proportion of weights toward the judgment of image relevancy by machine
vision [75]. Furthermore, these global features do not always address perceptually
important regions or any salient objects depicted in an image. This is because there
are more regions in an image than those which are of perceptual importance. So,
higher classification accuracy may be possible with the acquisition of more precise
perception information. However, the form of knowledge needed in automatic
relevance feedback has to be identified before the retrieval process begins, instead
of during the process as the user-controlled RF does.

In this section, an automatic adaptive image retrieval scheme is implemented
with embedded knowledge of perceptual importance, the form of which is identified
in advance. With a specific domain to photograph collection, the restricted goal
of identifying the region of interest (ROI) is pursued. The ROI assumes that the
significant objects within an image are often located at the center, as a photographer
usually tries to locate significant objects at the focus of the camera’s view. The Edge
Flow model [94] is adopted to identify the ROI within a photograph. This ROI does
not necessarily require the exact identification of a possible object in the image, but
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only the region selected which adequately reflects those properties of the object such
as color or shape, which are usually used as features for matching in retrieval.

3.4.1 Segmentation of the Region of Interest

Image segmentation is considered as a crucial step in performing high-level
computer vision tasks such as object recognition and scene interpretation [95]. Since
natural scenes within an image could be too complex to be characterized by a single
image attribute, it is more appropriate to consider a segmentation method that is
able to address the representation and integration of different attributes such as
color, texture, and shape. The Edge Flow model demonstrated in [94] is adopted,
which has proven to be effective in image boundary detection and in application to
video coding [96]. The Edge Flow model implements a predictive coding scheme to
identify the direction of change in color, texture, and filtered phase discontinuities.

3.4.2 Edge Flow Method

Let E(s, 0) be the edge energy at pixel s along the orientation 6. An edge flow vector
at pixel location s is a vector sum of edge energies given by:

F= D E(s,0)exp(j0) (3.23)
O(5)<0<O(s)+m

which is taken along a continuous range of flow directions that maximizes the sum
of probabilities:

O(s) = argmax{ Y, P(s, 6’)} (3.24)

6 6<6'<6+m

where P(s,0) represents the probability of finding the image boundary if the
corresponding Edge Flow flows in the direction 6. The model in Eq.(3.23)
facilitates the integration of multiple attributes in each Edge Flow which is obtained
from different types of image attributes. Consider,

E(5,0) =Y Eq(s,0)w(a) (3.25)

acA
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and
Y wia) =1 (3.26)
acA
P(s,0) = Y Pu(s,0)w(a) (3.27)
acA

where E, (s,0) and P, (s,0) represent the energy and probability of the edge flow
computed from image attribute a € {intensity/color, texture, phase}. w(a) is the
weighting coefficient associated with image attribute a.

For a given color image, the intensity of the edge flow can be computed in
each of three color bands (R,G,B) and the texture edge flow can be calculated
from the intensity / = (R + G + B)/3 . Then the overall edge flow can be
obtained by combining them as in Egs.(3.25) and (3.27) with A ={red, green,
blue, texture}. Each location s in the image is associated with the three parameters:
{|E(5,0), P(s,0), P(s,0+m)]|0 <0 < m}. Given these parameters, Eq.(3.24)
is utilized to firstly obtain the parameter O (s). Then, the edge flow vector F is
identified by Eq. (3.23). The resulting F is a complex number with its magnitude
representing the resulting edge energy and angle representing the flow direction.

The basic idea of the Edge Flow method is to identify the direction of change
in the attribute discontinuities at each image location. The Edge Flow vectors
propagate from pixel to pixel along the directions being predicted. Once the
propagation process reaches its stable state, the image boundaries can be detected
by identifying the locations which have non-zero edge flows pointing to each other.
Finally, boundary connections and region merging operations are applied to create
closed loop regions and to merge these into a small number of regions according to
their color and texture characteristics.

3.4.3 Knowledge-Based Automatic Region of Interest

The definition of ROI is highly dependent on user needs and perception. However,
specific to the current application for photographic collections, a photographer
usually creates a photograph with a single focus point at the center of the picture.
Based on this assumption, we can effectively attain ROI by associating it with
the objects located at the center of photographs. Let . = {%;, i=1,...,N|%;N
Rj =, i # j} be a set of regions generated by the Edge Flow model from one
image, where %; is the i-th region and N is the number of regions. Let W, ., be a
predefined rectangular window of size m x n pixels, whose center is located at the
center of the input image. Also, let % be a set of label for regions that are located
either partly or completely inside the W,,x, window, e.g., # = {i|Ri "Wy« # 2}
ROl is defined as a collection of regions which are members of #:

S = % (3.28)
1S/
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In practice, the background region or other non-relevant regions may be partially
included in .. These non-relevant regions have a large area outside the W,x,
window. In these cases, a region %;, i € #/, is removed from .&” if its area outside
the window is greater than its area inside the window. Thus, a complete region of
interest is defined as:

ROI = " (" %;. (3.29)

where 5. is the complement of %+, and %+ is the region that has the sum of pixels
located outside the W,,«,, window greater than the sum of pixels located inside the
window.

Figure 3.10 shows some image examples after applying the ROI characterization
process to four images from the Corel digital collection.

3.4.4 Pseudo-Relevance Feedback with Region of Interest

Figure 3.11 shows a diagram of the automatic adaptive retrieval system with
embedding knowledge of ROI. Automatic retrieval is performed in two stages.
First, the SOTM is applied for relevance classification to label the retrieved samples
as positive or negative. Then, the labeled samples form the input to a non-linear
similarity ranking function based on a single-class RBF network. Here, the query
and the retrieved samples are each represented by a point in the feature space FF; and
consist of color, shape, and texture features. As discussed previously, in order for the
unsupervised learning process brought into automatic RF to be effective, a different
and more powerful feature space other than Iy should be introduced in relevance
classification. Thus, the feature space I, is used. Apparently features extracted from
the ROISs satisfy this requirement as they provide the embedded knowledge of ROI to
assist in relevance classification. Color and shape are again chosen as the features,
but they are calculated only from the ROIs in the retrieved images after applying
ROI identification.

3.4.5 Experimental Result

Results provided in this section were obtained using the Corel Digital Library, which
contains more than 11,500 photos. Each image is indexed by 48-bin HSV color
histograms and color moments, using the Gabor wavelet method and the Fourier
descriptor [97]. This produces a 115-dimensional feature vector in the feature space
Iy which is used for retrieval. For the identification of image relevancy by SOTM,
the retrieved images are passed through the Edge Flow algorithm to identify ROIs,
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Fig. 3.10 Characterization of region of interest (ROI) using the Edge Flow model inside the W,
window. Left column: Edge Flow boundary detection; middle column: ROl identification; and right
column: ROI image as the output results
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Fig. 3.11 Diagram of an automatic adaptive image retrieval system which utilizes feature sets
extracted from the region-of-interest for pseudo labeling by the SOTM. The system can run in
automatic as well as semiautomatic modes

followed by extracting the feature vectors in the feature space Fj, using color
histograms and Fourier descriptors.

The performance comparisons were conducted using four methods: non-adaptive
method, user-controlled RF, automatic RF, and semi-automatic RF, using 20
queries from different categories. The non-adaptive method employed normalized
Euclidean distance as the matching criterion. This method provided a set of retrieved
images to the user-controlled RF algorithm that further enhanced the system
performance by the non-linear RBF model. In comparison, in automatic RF case,
the relevance identification was executed by the SOTM with two iterations of
pseudo-RF. In addition, after the automatic process, the system performance was
refined by a user to obtain semi-automatic RF results.

Table 3.6 presents results obtained by the four methods, measured by the
average precisions of the top 16 best matches. Evidently, the automatic RF provides
considerable improvement over the non-adaptive method (i.e., by more than 25 %
in precision), without user interaction. The automatic result is close to 4 % lower
than that of user-controlled RF method. By combining automatic learning with user
interaction, it is observed that the semi-automatic RF clearly outperforms other
methods discussed.

The user interaction process was also allowed to continue until convergence.
It is observed that the user-controlled RF and the semi-automatic RF reached
convergence at similar points within 93 %. However, in order to reach this optimum
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Table 3.6 Average precision rate (%) and number of user feedback cycles, obtained by
retrieving 20 queries from the Corel database, measured from the top 16 best matches

Method Average precision (%) | Number of user RF (Iter.)
Non-adaptive method 52.81 =
Pseudo-RF 78.13 -
User-controlled RF 82.19 1
Semi-automatic RF 87.50 1

point, the user-controlled RF method used on average 2.4 cycles of user interactions,
while the semi-automatic RF method used 1.6 cycles. This shows that the semi-
automatic method is the most effective learning strategy in terms of both retrieval
accuracy and minimization of user interaction. This also demonstrates that the
application of pseudo-RF in combination with perceptually significant features
extracted from the ROISs clearly enhanced the overall system performance.

3.5 Video Re-ranking

Incorporating the pseudo-RF method for improving retrieval accuracy is important.
While RF for video retrieval has been implemented [98,99], where the audio-visual
information is utilized for characterizing spatio-temporal information within the
video sequence, the application of RF to video files is, however, a time consuming
process, since users have to play each retrieved video file, which is usually large, in
order to provide relevance feedback. In practice, this is a more difficult interaction
with sample video files for retrieval on Internet databases. In this section, the
RF is considered an important method and is implemented in automatic fashion.
The retrieval system utilizes the femplate frequency model (TFM) to characterize
both spatial and temporal information. This representation allows RF to effectively
analyze the dynamic content of the video. The TFM is conducted with the same
principle as the bag-of-word model. It is suitably integrated with a cosine network
[100] for implementing pseudo RF, to further allow improvement of retrieval
accuracy, while minimizing user interactions.

3.5.1 Template Frequency Model Implementing
Bag-of-Words Model

The template frequency model [101] views a video datum as a set of visual
templates, in the same spirit as bag-of-words modeling. Let ¥ be a video interval
that contains a finite set of frames fi,f>,...,fu. Also, let x,, € R” denote
a feature vector (i.e., color histogram feature) extracted from the m-th frame.
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Thus, the video interval ¥ can be described by a set of descriptors Zy =
{xX1,/1) s (X fin) s+ -+, (Xn, fr) }- The indexing of each video frame is obtained
by a vector quantization process. Specifically, let ¢ = {(g.,,)|g, € RF, I, €
{1,2,...,R}, r=1,2,...,R} be a set of templates (or codewords) g,, where I,
is the label of the r-th template. This set is previously generated and optimized by
a competitive learning algorithm [331] (illustrated in Table 3.7). The vector x,, is
mapped by R — % on the Voronoi space, i.e., quantizing the input vector by:

O(x,,) = {3 [y, 0y (3.30)

where Q is the vector quantization function, li‘*’” is the label of the closest
template, i.e.,

r* = argmin(||x,, — g:||) (3.31)
,

and I3 and X" |, are the labels for the first and the last neighbors of the wining
template g,+, respectively.

Equation (3.30) obtains a multiple label indexing that is designed to describe
correlation information between the winning template and its neighbors. Figure 3.12
shows the example of this indexing process. Here we are interested not only in the
best-match template, but also the second (and up to 1-th) best match. Once a cell is
selected, the 1 — 1 neighbors which have not yet been visited in the scan are then
also included in the output label set. This allows for interpretation of the correlation
information between the selected cell and its neighbors. Since a video sequence
usually has a very strong frame-to-frame correlation [102] due to the nature of time-
sequence data, embedding correlation information through Eq. (3.30) offers a better
description for video contents, and thus a means for more accurate discriminant
analysis. For example, two consecutive frames which are visually similar may not
be mapped into the same cell; rather, they may be mapped onto two cells in a
neighborhood area, so that mapping through multiple labels using Eq. (3.30) maps
two frames from the same class in the visual space into the same neighborhood area
in feature space.

The visual content of the video frame f, is therefore characterized by the

membership of the label set, {lf,i",lf:”l,...ij’_‘(n_l)}. The result of mapping all
frames,{lf{”,lf;’fl,...,lf;’j(n_l)}, Vm € {1,...,M} from the mapping of the entire
video interval V; are concatenated into a vector v; = {wjl,...,wjr, . ,ij}. The

weight parameters are calculated by the TFxIDF weight scheme [323]:

Fy N
ir = ——— X log — 3.32
Wir max, Fj, 8 ognr 332

where the weight parameter Fj, stands for a raw frequency of template g, in the
video interval 7}, i.e.,
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Fig. 3.12 Representation of [¥m |
encoding x,, with the set of 5 Re .e\fa nt
labels {/{™,5",..., 5"} region

Xm
ly

Xm
zl

L%

Fir=2% 21" =1) (3.33)

The function / is equal to 1 if the argument is true, and O otherwise. In addition,
the maximum in Eq. (3.32) is computed over all templates mentioned in the content
of the video ¥}; N denotes the total number of videos in the system; and #, denotes
the number of videos in which the index template g, appears.

The weight w;, balances two effects for clustering purposes: intra-clustering
characterization and inter-clustering characterization. First, the intra-clustering
similarity provides one measure of how well that template describes the video
contents in the desired class, and it is quantified by measuring the raw frequency of a
template g, inside a video #;. Second, the inter-clustering dissimilarity is quantified
by measuring the inverse of the frequency of a template g, among the videos in the
collection, thereby specifying that the templates which appear in many videos are
not very useful for the discriminant analysis.

3.5.2 Adaptive Cosine Network
3.5.2.1 Network Architecture

The TFM video indexing characterizes the j-th video by using numerical weight
parameters, wj., ¥ = 1,...,R, each of which characterizes a degree of importance
of the templates presented in the video. In this section, an adaptive cosine network
demonstrated in [100, 101] is adopted to re-organize the weight parameters on a
per query basis. Using these weight parameters, video clusters, which maximize the
similarity within a cluster while also maximizing the separation from other clusters,
can be formed based on content identifiers, to initialize the ranking for answering
a query. This ranking is now adopted to re-organize the degree of importance of
the templates through the following process. First, the process identifies effective
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Table 3.7 Summary of competitive learning algorithm for template generation for video
database indexing

Input: Set of feature vectors extracted from video frames in a given database:
H= [hl ,hz, e ,hH]r = [hji], where l‘lj = [h_jl,hj27 e ,hjpy (S ]RP is the color
histogram vector of the j-th video frame, and H is the number of training
samples.

Output: The set of weight vectors = {g,|r=1,...,R}, g € RPF . R< H
Initialization: | Maximum number of iterations = ¢
Learning parameter = 1
Weight vectors, g1,82,...,8r
Computation:
(h ji T u;)

hj,'<—
O

(normalized all patterns)

where 1; and o; are the mean value and the standard deviation of the i-th
column vector in H, respectively.

Repeat Randomly select a pattern h, at iteration 7

r<— argmin|lh—g.| (classify h)
g «— g +n(h—g,) (weightupdate)

n<+—Mno (1 - i) (parameter update)

Until: t=ty
Ren’trn: g17g27"'-,gR

templates that are the common templates among videos in a retrieved set. Then,
those templates considered to be the most significant for reweighting the existing
templates of the initially submitted query are weighted, to improve the ranking
performance. In other words, we allow the templates that are not presented by
the initially submitted query (i.e., wg, =0, r € [1,...,R]), but are common among
the top-ranked videos (i.e., the potentially relevant videos), to expand. This results
in reorganization of the degree of importance of the query’s templates for better
measurement of video similarity.

The re-ranking process is performed by an adaptive cosine network [100, 101],
with the network architecture presented in Fig.3.13. The network is composed of
three layers: one for the query templates, one for the video templates, and the third
for the videos themselves. Each node has a connection weight communicated to its
neighbors via the connection links. The query template nodes initiate the inference
process by sending signals to the video template nodes. The video template nodes
then themselves generate signals to the video nodes. Upon receiving this stimulus,
the video nodes, in turn, generate new signals directed back to the video template
nodes. This process might repeat itself several times, through the second and the
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Fig. 3.13 An architecture of War Wijr

the adaptive cosine network l l

implementing the pseudo-RF

method for video retrieval Query Video Video
Templates Templates

third layers, which allows the network to find templates that appear to be relevant
on the basis of the initial ranking, and use those templates to refine the ranking
process.

Figure 3.14 graphically describes the spreading activation process. Figure 3.14a
shows two query templates sending signals to the video template nodes {a,b}. The
video nodes: {c,d,e} are activated (the application of thresholding is omitted to
simplify illustration). Figure 3.14b shows the signals propagating backward to the
video template layers. At this time, f,g and & are the newly activated nodes. After
re-calculating the node activations, the video template nodes send signals forward to
the video nodes as shown in Fig. 3.14c. This results in a new ranking, which includes
a new video node, i. We see that the network then utilizes video template node f,
present in the initial ranking, to find a higher number of relevant video nodes.

3.5.2.2 Network Adaptation and Learning

Let v, = {wg| r € [1,...,R]} denote the set of the query’s weight components,
obtained by converting the video query ¥ into a set of templates, and weighting

vectors. Let mesg,()_, () denote the message sent along the connection {r<q>, r(‘)}
from the r-th query node to the r-th video template node. Also, let mesg, L)

denote the message sent along the connection {r(t), j™} from the r-th video
template node to the j-th video node, j € [I,N]. Note that mesg,q) ¢ is a

one-to-one correspondence, while mesg,«)_, i) is a one-to-many correspondence.
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Fig. 3.14 Signal
propagation: (a) signals from
the two query nodes are sent
to the video template nodes,
and three video nodes
{c,d,e} are activated; (b) the
signal propagates back from
the third layer to the second
layer, resulting in more
activated video temple nodes;
(c) the signal propagates
forward to the third layer.
This results in the activation
of new video nodes (i.e.,
nodes {c,d,e,i}) by
expanding the original query
nodes and the activated video
nodes in (b)
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First, each query template node is assigned a fixed activation level equal to a;"" =
1,7 € [1,R]. Then, its signal to the video template node is attenuated by normalized

query template weights Wy, as follows:
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mesg,(q)_, ) = a&q) X Wgr (3.34)

Y ifg e
B = { VI ! (3.35)

0 otherwise

When a signal reaches the video template nodes, only the video template nodes
connected to the query template nodes will be activated. These nodes might send
new signals out, directed towards the video nodes, which are again attenuated by
normalized video template weights w ;. derived from the weights w ., as follows:

mesgr(,)ﬁj@) = MESE ,(q) _, 1) X Wjr (3.36)

er o=
i ifg €Y,
er = \ 25:] W?fr ' ‘

0 otherwise

(3.37)

Once the signals reach a video node, the activation level of this video node
(associated with the video #;) is given by the sum of the signals (the standard cosine
measure),

R
aﬁ-v) = Zmesgr(,) ) (3.38)

r=1

Il
M=

War s (3.39)
1

\
Il

R
o 2]‘:1 WarWjr
R 2 R 2
\/Zrzl qu \/Zr:] er

This finishes the first round of signal propagation. The network output (i.e.,
a§v>, j=1,...,N) is a desired ranking of the videos for retrieval. The process,
however, does not stop here. The network continues the ever-spreading activation
process after the first round of propagation. This time, however, a minimum
activation threshold is defined such that the video nodes below this threshold send
no signals out. Thus, the activation level at the r-th video template node is obtained

by summing up the inputs from the activating video nodes as follows:

(3.40)

a) =Y d"w (3.41)
JjE€Pos
Q)
J
such that aﬁ-v) > &£, where & is a threshold value. The activation process is allowed
to continue flowing forwards and backwards between the video template nodes and

where a; ’ denotes the activation levels of the j-th video node and Pos is the set of j’s
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the video nodes, inducing an order for the videos, based on the corresponding node
activations at each stage.

A new activation level computed in Eq.(3.41) can be viewed as a modified
weight of the query template, where only videos with significant activation levels
are considered to be good candidates for modifying the query template activations.
This considers only positive feedback. However, anti-reinforcement learning can
be adopted to improve the speed of convergence [103,323], whereby both original
query components and a strategy of negative feedback can help to improve
effectiveness. Thus, as an alternative to Eq. (3.41), the following formula is derived
for the activation of the r-th video template node:

I,
A= (3.42)

(£, 2)*

b=wgto Y dwytB Y dw, (3.43)
JjE€Pos JjENeg
where a?/) is the activation level of the j-th video, Pos is the set of j’s such that

a§v> > &, and Neg is the set of j’s such that a§v> < —&, where £ is a threshold value.

In addition, o and 3 are the suitable positive and negative constant values.

Table 3.8 provides a summary of the pseudo-RF learning algorithm implemented
by the adaptive cosine network. The input query weights wy,,r = 1,...,R are
utilized to activate video template nodes. These are then modified by the activation
levels of the video nodes in the positive and negative feedback sets. The final
network output is the video ranking result for video retrieval.

3.5.3 Experimental Result

This section describes an application of TFM video indexing and adaptive cosine
network for video retrieval. The performance of the TFM method is compared with
the key-fame-based video indexing (KFVI) algorithm [104], which has become a
popular benchmark for shot-based video retrieval. Table 3.9 provides a summary of
the video data, obtained from the Informedia Digital Video Library Project [105].
This is a collection of CNN broadcast news, which includes full news stories, news
headlines, and commercial clips. This video has 844 video shots (see Fig.3.15),
segmented by the color histogram based shot boundary detection algorithm [106].
A 48-bin histogram computed on HSV color space is used for both shot seg-
mentation and for the indexing algorithms. The KFVI uses a histogram vector
generated from a middle frame of the video shot as a representative video shot.
The resulting feature database was scaled according to Gaussian normalization. In
the TFM method, a total of R = 5,000 templates were generated. Each video shot
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Table 3.8 Summary of competitive learning algorithm for template generation for video database

indexing

Input: Query vector = v, = {wg,| r € [1,...,R]}
Maximum number of iterations, I,y

Output: The final retrieval set, containing k-relevant samples = Sy (v,)

Initialization: | Threshold value &
Learning parameters, o and 3
Activation level of the query node,

2 L, ifwg #0
" 0, Otherwise

Q)

Computation: | Calculate a;* = mesg,( y = ag") X Wyr, forr=1,2,...,R,

q) _yp(r

Calculate mesg,)_, ;) = ay) x W, for j=1,2,...,N,

Repeat 1. Calculate activation level of the video nodes, for j =1,2,... N,
V-3 S ot
j = 2 mesg ., = Y a xwj,
r=1

r=1

a
2. Obtain a positive set, Pos, and a negative set, Neg,

Pos = {jaﬁ-v) > é}, Neg = {ja&‘)) < 75}
3. Calculate the activation level of the video template node,

I,
et

(=5, )}
h | = R (L) 5. i (V) 5.
where [ quJrOCZJer a; W/r+BZj€Nega/ Wir
Until: Tteration = I
Return: Top-k retrieval set, Sg (V) = {v\aw > a,(f)}
where Sy (v,) is the set of top-k vectors most similar to the query vector and a,(cv)
is the activation level of the k-th nearest neighbor of v,.

was described by its associated weight vector. This was generated by the template
models, using neighborhood 1 =5 [cf. Eq. (3.30)].

A total of 25 queries were made and the judgments on the relevance of each video
to each query shot were evaluated. In general, the relevance judgment of videos is
difficult because two video clips may be related in terms of the story context, and
not just visual similarity. This fact was taken into account in this experiment, so a
criterion employed here is a very subjective judgment of relevance: only retrieved
video shots from the same stories were judged to be relevant. For example, four
video shots shown in Fig. 3.16a were judged to be relevant because they were parts
of the same stories. Similarly, the four video shots shown in Fig. 3.16b are relevant
to each other.
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Fig. 3.15 Some representative key-frames extracted from a subset of 844 video shots in the test
video database obtained from CNN broadcast news

Figure 3.17 shows precision results as a function of top matches, averaged over
all 25 queries. It can be observed that TFM performed substantially better than KFVI
for every setting of the number of top matches (the average precision was higher
by more than 18 %). It is also observed that TEM is very effective in capturing
spatio-temporal information from video, as seen in Fig. 3.18 which depicts retrieval
results from the top sixteen best matches. It was observed that TFM allows similarity
matching based on video contents, whereas the KFVI emphasis is on the content of
the key-frame. There was a dominant brown color on the key-frame, degrading the
performance of KFVI on this query.

Next the adaptive cosine network is applied to improve retrieval accuracy.
The structure of the information in the video database can be represented by a
network with 5,844 nodes and 14,800 connections. The results of three tests are
shown: letting the activation spread for one, three, and twenty iterations. The
parameters were set at £ = 0.1, and o = 0.95 and 8 = —0.05. Figure 3.19 shows
the improvement of the average precision in retrieving 25 queries.

The following observations were made from the results. Firstly, the adaptive
cosine network was very effective in improving retrieval performance—the average
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Fig. 3.16 Two samples of subjective judgment for video relevance; (a) four relevant video shorts
from the same news stories are judged to be relevant; (b) four relevant video shots from the same
commercial movie are judged to be relevant. Note: Each video shot is shown by the corresponding

key frames

Table 3.9 Description of video sequences in the database: CNN broadcast news and other video
types, distributed by the Informedia Digital Library project [105]

Type of video

Number of
sequences

Number of cuts

Number of
frames

Length (min:s)

Commercial

20

844

98,733

54:52

Movie clip

2

Headline and story news

46

Average Precision Rate (%)
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Fig. 3.17 Average precision rate (%) at different numbers of returns, obtained by retrieval of 25
queries of video shots. The TFM performance is higher than KFVI by 18 % in average precision
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Fig. 3.18 A comparison of the retrieval performance, showing 16 top matches of video shorts;
(a) obtained by KFVI and (b) obtained by TFM. The query is shown in the top-left corner, and
the retrieval videos are ranked according to the descending order of the similarity scores, from left
to right and top to bottom. From the result, TFM allows similarity matching based on the video
contents, whereas KFVI emphasizes the content of the key-frames, resulting in the similar color of
the key frames

precision increased by more than 11 %, and is particularly significant in the top 10
to 16 retrievals. Secondly, the network is stabilized very quickly. Thirdly, allowing
many iterations degraded the performance slightly. Finally and most significantly,
the results were achieved by simply allowing activation flow, with no user input.
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Fig. 3.19 Average Precision Rate, APR (%) obtained by the adaptive cosine network through
pseudo-RF, using 25 video shots for queries. For the pseudo-RF result, the signal propagation was
allowed to flow forward and backward for up to 20 iterations, and only the result after 1, 3, and 20
iterations are shown, for comparison with the non-adaptive method that used the cosine metric as
the similarity matching function

It was observed that the values for &, o and f affected the results and
confirmed the reports of other studies [103,107,323] with regard to the value for c.
However, the identification of the proper values for these parameters was completed
conveniently as they were usually found in certain ranges. It was also observed
that without applying the threshold level &, only modest improvement is initially
obtained, and all the nodes became increasingly activated. This led to a longer
processing time and to a random ordering of the videos.

3.6 Summary

Automation is critical for enhancing learning efficiency and/or improving retrieval
performance. The automation is done through a pseudo-relevance feedback that
iteratively re-ranks database entities, in both fully-automatic and semi-automatic
modes. This chapter presents various techniques for pseudo-relevance feedback,
including dynamic self-organization methods and the adaptive cosine network. Both
compressed and uncompressed image databases, as well as video applications are
covered.



Chapter 4
Interactive Mobile Visual Search
and Recommendation at Internet Scale

Abstract Mobile-based visual search and recognition has been an emerging topic
for both research and engineering communities. Among various methods, visual
search has its merit in providing an alternative solution, where text/voice searches
are not applicable. Combining the Bag-of-word (BoW) model with advanced
retrieval algorithms, a mobile-based visual search and social activity recommenda-
tion system is presented at internet scale. The merit of the BoW model in large-scale
image retrieval is integrated with the flexible user interface provided by the mobile
platform. Instead of text or voice input, the system takes visual images captured
from the built-in camera and attempts to understand users’ intents through inter-
actions. Subsequently, such intents are recognized through a retrieval mechanism
using the BoW model. Finally, visual results are mapped onto contextually relevant
information and entities (i.e. local business) for social task suggestions. Hence, the
system offers users the ability to search information and make decisions on-the-go.

4.1 Introduction

Mobile devices are becoming ubiquitous. People use them as personal concierge to
search information and make decisions. Therefore, understanding user intent and
subsequently provide meaningful and personalized suggestions is important. While
existing efforts have predominantly focused on understanding the intent expressed
by a textual or a voice query, this chapter presents a new and alternative perspective
which understands user intent visually, i.e., via visual signal captured by the built-
in camera. This kind of intent is named as “visual intent” as it can be naturally
expressed through a visual form.

The bag-of-words (BoW) model and its application in content-based retrieval
has shown promising results in desktop-based visual searches at large-scale. In
this chapter, a mobile visual search algorithm is presented, by combining the
BoW model’s merit with user interaction through a mobile platform. An innovative
context-aware search-tree is described based on the BoW paradigm, which includes
both user specified region of interest (ROI) and surrounding pictorial context. There
is a mutual benefit by combining the visual search using the BoW model with mobile
devices.

© Springer International Publishing Switzerland 2014 101
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From a retrieval point of view, although the BoW model has shown promising
results in desktop-based visual searches for large-scale consortia, it also suffers a
semantic gap. The BoW model is limited by its homogenous process in treating
all regions without distinction. Features are extracted homogeneously, and local
features are treated without emphasis. Therefore, information provided by a query
image without priority can mislead the computer vision algorithm for recognition.
Hence, to have a better retrieval result, there is a need to orderly utilize local
visual information. Multi-touch screen and its user interaction on mobile-devices
offer such a platform for users to select their ROIs as prioritized information, with
surrounding context as secondary information.

From a mobile application perspective, visual search via image query provides
a powerful complementary carrier besides conventional textual and vocal queries.
Compared to conventional text or voice queries for information retrieval on-the-go,
there are many cases where visual queries can be more naturally and conveniently
expressed via mobile device camera sensors (such as an unknown object or text,
an artwork, a shape or texture, and so on) [135]. In addition, mobile visual
search has a promising future due to the vital roles mobile devices play in our
life, from their original function of telephony, to prevalent information-sharing
terminals, to hubs that accommodate tens of thousands of applications. While on
the go, people are using their phones as a personal concierge discovering what
is around and deciding what to do. Therefore, the mobile phone is becoming a
recommendation terminal customized for individuals—capable of recommending
contextually relevant entities (local businesses such as a nearby restaurant or hotel)
and simplifying the accomplishment of recommended tasks. As a result, it is
important to understand user intent through its multi-modal nature and the rich
context available on the phone.

Motivated by the above observations, this chapter presents an interactive search-
based visual recognition and contextual recommendation using the BoW model,
targeting internet scale large image collection. Smart-phone hardware such as
camera and touch screen, are taken advantage of in order to facilitate expressions of
user’s ROI from the pictures taken. Then, the visual query along with such a ROI
specification go through an innovative contextual visual retrieval model to achieve
a meaningful connection to database images and their associated rich text informa-
tion. Once the visual recognition is accomplished, associated textual information of
retrieved images are further analyzed to provide meaningful recommendations.

An actual system codename TapTell is implemented based on the algorithms
and methodologies described in Sect.4.2. A natural user interaction is adopted
to achieve the Tap action, in which three gestures are investigated (i.e., circle,
line, and tap). It is concluded that the circle (also called “O” gesture) is the most
natural interaction for users, which integrates user preference to select the targeted
object. The BoW model and a novel context-embedded vocabulary tree approach
is adopted. The algorithm incorporates both ROI visual query and the context from
surrounding pixels of the “O” region to search similar images from a large-scale
image dataset. Through this user interaction (i.e., “O” gesture) and the BoW model
with our innovative algorithm, standard visual recognition can be improved. The 7ell
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action is accomplished by recommending relevant entities based on recognition
results and associated metadata.
The novelty of the chapter lies in the following aspects:

* BoW model and context-aware visual search algorithm is designed with a novel
context-embedded vocabulary tree (CVT). The algorithm is able to achieve better
visual recognition performance by embedding the context information around the
“O” region into a standard visual vocabulary tree.

* Based on the context-aware visual recognition, a real system TapTell is imple-
mented to understand users’ visual intents. The goal is to provide a contextual
entity suggestion for activity completion that provides meaningful and contextu-
ally relevant recommendations. Advanced touch screen technology provided at
the mobile platform is utilized to introduce human experts in loop for a better
visual search. Three different kinds of gestures for specifying object (and text)
of interest are investigated by a user study. It is concluded that “O” provides
the most natural and effective way to interactively formulate user’s visual intent
and thus reduce ambiguity. After obtaining the recognition results, a location-
aware recommendation is provided to suggest relevant entities for social task
completion.

In the following, an interactive mobile visual search using the BoW model and
the CVT algorithm is first presented. A viable application, TapTell, is introduced in
detail to show how to accomplish meaningful contextually relevant recommenda-
tions through mobile recognition. Experimental results are provided to demonstrate
the effectiveness of the CVT method.

4.2 BoW-Based Mobile Visual Search Using Various
Context Information

This section presents the mobile visual search with context-aware image retrieval
using the BoW model. Section 4.2.1 briefly reviewed the BoW model and its
potential in large-scale content-based image classification, retrieval and visual
search. Section 4.2.2 introduces the literature and industrial developments of mobile
visual search. Section 4.2.3 describes the framework of context-aware mobile visual
search. Section 4.2.4 presents the algorithm of the visual recognition by search
using the BoW model with image context. Section 4.2.5 discusses a filtering process
adopting sensory GPS context.
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Fig. 4.1 Illustration of bag-of-words framework in computer vision

4.2.1 The Bag-of-Word (BoW) Model

Figure 4.1 shows a framework of the BoW model and its usage in computer vision.
In general, there are two parts: learning and recognition. In learning, visual features
are extracted from database images or video frames to generate a dictionary of
codewords, which is also called a codebook in the literature. Individual images are
used to project their features to the codebook to obtain a BoW representation for
themselves. They are then categorized by classifiers to get ready for recognition. In
recognition, a query or testing image also goes through the BoW model by mapping
to the dictionary of codewords. Then, the BoW representation is categorized based
on which class the query image belongs to.

To tackle the multimedia processing challenges associated with recent boom
of large-scale data, the BoW model is among the most popular choices in the
research community. Because of their homogenous procedures in describing images
or video frames using representative local features, BoW-based methods enable
researchers to conduct large-scale image analysis effectively. Large-scale image
classification and retrieval have been carefully studied in recent years to catch up
with the ever growing image and video datasets. Image classification and retrieval
are highly interrelated research problems. Both of them are based on analyzing
distinguished features of the query image, and are in attempts to bring out similar
images from the database. Classification focuses on the intra-class commonalities so
that the query image can find its suitable class and belonging. Retrieval, on the other
hand, focuses on finding the most closely related individual images in the database
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and returning them as search results. In summary, classification solutions focus
on feature ensembles, for instance, the histogram representation of each image.
Retrieval solutions focus on both feature ensemble and individual local descriptor
matches.

Csurka et al. proposed a BoW model-based algorithm for visual image classifi-
cation from seven different classes, including faces, buildings, trees, cars, phones,
bikes and books [115]. SIFT feature is used as the local descriptor, and Naive Bayes,
with non-linear supervised support vector machines (SVM), are used as classifiers.
Deng et al. proposed a database called “ImageNet”, which associates images with
large-scale ontology supported by the WordNet structure [116, 117]. Currently,
about nine million images are indexed and this number is still growing. Among
benchmark measurements and comparisons, a spatial pyramid-based histogram
of SIFT local codewords with SVMs classifiers provides the best performance.
Zhou et al. proposed a method by incorporating vector coding to achieve scalable
image classification [142]. They adopted vector quantization coding on local SIFT
descriptors to map the features to form a high-dimensional sparse vector. Spatial
information of local regions in each image is taken into account and called
spatial pooling. Finally, linear SVMs are used to classify the image representations
obtained from the spatial pooling.

Although non-linear SVMs classifiers perform well, they suffer from data
scalability due to computational complexity. Perronnin et al. proposed several
methods to improve non-linear SVMs, including square-rooting BoW vectors,
kernel-PCA based embedding for additive kernels, and non-additive kernels for
embedding [128,129]. In particular, an algorithm using Fisher Kernels was proposed
to build gradient vectors from features, so that linear SVMs could replace those non-
linear ones as less computational classifiers [127]. Hence, the scalability issue was
alleviated.

Sivic and Zisserman proposed a video scene retrieval system called Video
Google [264]. The goal is to retrieve similar objects and scenes and localize their
occurrences in a video. MSER feature detection and SIFT feature description are
used to extract local descriptors. Visual vocabulary is built by K-means clustering.
A term frequency—inverse document frequency (tf—idf) text retrieval algorithm is
used to match each visualword.

Nistér and Stewénius proposed an efficient and scalable visual vocabulary tree,
so that building a large-scale retrieval system using the BoW model is possible
[126]. The method adopted hierarchical K-means clustering to boost the codebook
generation and retrieval process. The idea is that a query visualword does not
necessarily need to go through the full comparison with the codebook. Rather,
a subset of the codebook (a branch of the hierarchical K-means clustering) is
sufficient. This method allows the codebook to scale up from a few thousands,
to hundreds of thousands, to millions in size without much computational penalty.
Although there is no automatic mechanism to determine the proper codebook size,
in general, a larger vocabulary pool size described by the codebook leads to a better
description of the query image with less quantization error [258].
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Philbin et al. proposed a soft weighting scheme for object retrieval in large
scale image databases [130]. This soft-assignment maps high-dimensional SIFT
descriptors to a weighted combination of visualwords, rather than to a single
visualword as hard assignment. The soft-weighting assignment is designed as an
exponential function of the distance to the cluster center. This method allows the
inclusion of features which are lost in the quantization stage. Jégou et al. also
suggested to improve the BoW model by aggregating local descriptors into a
compact short binary coded image representation called Hamming embedding (HM)
[124,125]. At the retrieval stage, a tf—idf based index is built with an integration of
weak geometric consistency verification mechanism to penalize those descriptors
which are not consistent in angle and scale.

4.2.2 Mobile Visual Search
4.2.2.1 Mobile Visual Search in Industry

Due to its potential for practicality, mobile visual search is one of the research areas
drawing extensive attention from both industry and academia. Table 4.1 summarizes
representative mobile visual search applications from industry. Different from the
above mentioned applications, the system described in this chapter is innovative
in terms of an interactive gesture-based (using advanced multi-touch function)
visual search system to help users to specify their visual intent, with a consequent
recommendation based on the visual search results and contextual information. In
this perspective, our system leverages visual search results to formulate a second
query to accomplish task completion on mobile devices, which is significantly
different from existing applications.

Table 4.1 Summary of mobile visual search applications in industry

Application | Features Techniques | Company

Goggles Product, barcode, cover, landmark, VS?, OCRP Google
name card, artwork

Bing Vision | Cover, art, text, barcode VS, OCR Microsoft

Flow Cover (CD/DVD/book/video-games), | VS Amazon A9 Laboratory
barcode

Kooaba Logos, cover, landmarks VS Smart Visuals

Lookthatup | Paintings, posters, labels A LTU Technologies

WordLens | Real-time English/Spanish translation | OCR, AR® | QuestVisual

#Visual search
b Optical character recognition
¢ Augmented reality
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4.2.2.2 Mobile Visual Search in Academia

In academia, the workshop on mobile visual search has been gathering researchers
and engineers to exchange various ideas in this field [109]. Quite a few research
efforts have been put into developing compact and efficient descriptors, which can
be achieved on the mobile end. Chandrasekhar et al. developed a low bit-rate com-
pressed histogram of gradients (CHoG) feature which has a great compressibility
[111]. Tsai et al. investigated in an efficient lossy compression to code location
information for mobile-based image retrieval. The performance is also comparable
with its counterpart in lossless compression [138].

On the other hand, contextual features such as location information have been
adopted and integrated successfully into mobile-based visual searches. Schroth et al.
utilized GPS information and segmented searching area from a large environment
of city to several overlapping subregions to accelerate the search process with a
better visual result [134]. Duan and Gao proposed a side discriminative vocabulary
coding scheme, extending the location information from conventional GPS to indoor
access points as well as surrounding signs such as the shelf tag of a bookstore, scene
context, etc. [119].

Additionally, other researchers targeted practical applications and provided
promising solutions. Takacs et al. proposed a loxel-based visual feature to describe
region-related outdoor object features [136]. Chen and Tsai proposed methods on
using image processing techniques to find book spines in order to index book
inventories based on bookshelf images [112, 137]. Girod et al. investigated mobile
visual search from a holistic point of view with practical analysis under mobile
device constraints of memory, computation, devices, power and bandwidth [120].
An extensive analysis using various feature extraction, indexing and matching tech-
niques is conducted using real mobile-based Stanford Product Search system. They
demonstrated a low-latency interactive visual search with satisfactory performance.

4.2.3 A Framework of Context-Aware Mobile Visual Search

Aforementioned visual search methods and applications on mobile devices have
demonstrated their merits. Alternatively, it is believed that combining visual recog-
nition techniques with personal and local information will provide contextually
relevant recommendations. Hence, this work describes a mobile visual search model
to suggest potential social activities on-the-go.

Three types of user interactions (i.e., tapping, straight line, and circle gestures)
have been investigated to facilitate the expression of the user intent. Then, the
visual query goes through an innovative contextual visual retrieval model using
the state-of-the-art BoW paradigm, to achieve a meaningful connection to database
images and their associated metadata information. Once the user intent expression
is predicted by such visual recognition, associated textual information of retrieved
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Fig. 4.2 Framework of mobile visual search and activity completion model using image contex-
tual model, including (1) “O”-based user interaction, (2) image context model for visual search,
and (3) contextual entity recommendation for social activities

images are further analyzed to provide meaningful textual-based social activity and
task recommendation.

Figure 4.2 shows the framework of our visual recognition and activity recom-
mendation model. In general, it can be divided into the client-end and cloud-end.
On the client-end, a user’s visual search intent is specified by the “O” gesture on a
captured image. On the cloud-end, with user selected object and the image context
around this object, a recognition-by-search mechanism is applied to identify user’s
visual intent. A novel context-embedded vocabulary tree is designed to incorporate
the “O” context (the surrounding pixels of the “O” region) in a standard visual search
process. Finally, the specified visual search results are mapped to associate metadata
by leveraging sensory context (e.g., GPS-location), which are used to recommend
related entities to the user.

The “O” gesture utilizes multi-touch screen of the smart-phone. Users do not
need any training and can naturally engage with the mobile interface immediately.
After the trace (the blue thin line in Fig. 4.2) has been drawn on the image, sampling
points along the trace-line are collected as {D|(x;,y;) € D}]j\’zl, which contains
N pixel-wise positions (x;,y;). Principal component analysis (PCA) is applied to
find two principal components (which form the elliptical ring depicted by thick
orange line in Fig.4.2). The purpose of this part is to formulate a boundary of the
selected region from an arbitrary “O” gesture trace. Mean p and covariances X
are calculated, based on D and non-correlated assumption along the two principal
components:
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Fig. 4.3 Illustration of user indicated “O” query, and the computation of principal components of
the query. (i, uty) is the center of “O” query, (x,,y,) is a pixel on the “O” boundary, and (x,,y,)
is a query pixel

Figure 4.3 shows the computation of principal components from the “O” query.
Once the principal components are identified, image contextual model for mobile
visual search is used to identify the object of interest indicated by the user.

The following two sections will introduce the algorithms used in the context-
aware visual search. Section 4.2.4 presents the context within the query image itself
using the BoW model. Section 4.2.5 discusses the context of searched images, by
considering their tagged GPS information and relationship to the user’s current
location.

4.2.4 Context-Aware Visual Search Using the BoW Model

The visual intent recognition method is based on a retrieval scheme using the
BoW model with the vocabulary tree proposed by Nister et al. [126]. This method
provides a fast and scalable search mechanism and is suitable for large-scale and
expansible databases because of its hierarchical tree-structured indexing. Such a
method is adopted in the mobile domain, because the “O” gesture fits naturally to
provide a focused object selection for better recognition. Different from using the
entire image as visual query in [126], we have user-indicated ROI from the “O”
gesture (called “O-query”). We design a novel context-aware visual search method
in which a CVT is built to take the surrounding pixels around the O-query into
consideration. The CVT algorithm focuses on first building a visualwords codebook
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Fig. 4.4 Image search scheme with visual vocabulary tree. Note that the white circle in the image
corresponds to a local descriptor (not an O-query)

for the BoW model to map each local feature, and subsequently, constructing a Bow
representation. By establishing a hierarchical K-means clustering for the codebook,
this algorithm manages to shorten the codebook generation process. Therefore,
it is scalable and efficient for processing large-scale data. Specifically, the CVT
algorithm is able to reduce the following ambiguities:

¢ Sometimes, issuing O-query only in image-based search engines may lead to
too many similar results. The surrounding pixels provide a useful context to
differentiate those results.

¢ Sometimes, the O-query may not have (near) duplicates or exist in the image
database. Issuing only O-query may not lead to any search results. The surround-
ing pixels then can help in providing a context to search for the images with
similar backgrounds.

e Hierarchically built K-means clustering for codebook generation makes the
retrieval process efficient, wherein each queried local feature only goes through
one particular branch at the highest level and its sub-branches instead of going
through the entire codebook.

The CVT-based visual search method encodes different weights of term fre-
quencies inside and outside the O-query. For off-line image indexing, SIFT local
descriptors are extracted as a first step. Since our target database is large-scale, an
efficient hierarchical K-means is used to cluster local descriptors and build the CVT.
Then, the large-scale images are indexed using the built CVT and the inverted file
mechanism, which is to be introduced in the following.
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In on-line image searches, given a query image, we can interpret the descriptor
vectors of the image in a similar way to the indexing procedure, and accumulate
scores for the images in the database with a so-called rerm frequency—inverse
document frequency (tf—idf) scheme [126]. This tf—idf method is an effective entropy
weighting for indexing a scalable database. Figure 4.4 shows the computation of
image similarity based on the tf—idf scheme. In the vocabulary tree, each leaf node
corresponds to a visualword i, associated with an inverted file (with the list of images
containing this visualword 7). Note that we only need to consider images d in the
database with the same visualwords as the query image g. This significantly reduces
the amount of images to be compared with respect to g. The similarity between an
image d and the query ¢ is given by

s(g.d)=1lq—d |3

=< SolalP+ Y ldlF+ Y |qz‘—di|2) 4.2)

ild;=0 ilgi=0 il;#0.d;0

where q and d denote the tf—idf feature vectors of the query ¢ and image d in
the database, which are consisted of individual elements ¢; and d; (i denotes the
i-th visualword in the vocabulary tree), respectively. g; and d; are the tf—idf value
for the i-th visualword in the query and the image, respectively. Mathematical
interpretations are given by

qi = tf,-idf;, (4.3)
di = tf;, -idf;. (4.4)

In the above equation, the inverted document frequency idf; is formulated as
In(N/N;), where N is the total number of images in the database, and N; is number
of images with the visualword i (i.e., the images whose descriptors are classified
into the leaf node 7).

The term frequency representations ¢ f;, and ¢ f;, are computed as the accumulated
counts of the visualword i in the query ¢ and the database image d, respectively.
One simple means for the ferm frequency computation is to use the O-query as
the initial query without considering the pixels surrounding the “O”. This process
is equivalent to using “binary” weights of the term frequency tf;, : the weight is 1
inside “O”, and O outside “O”. A more descriptive and accurate computation is to
incorporate the context information (i.e., the surrounding pixels around the O-query)
in the vocabulary tree. We design a new representation of the term frequency t fl‘; for
the O-query. A “soft” weighting scheme is adopted to modulate the term frequency
by incorporating the image context outside the O-query, which was neglected in
the simple binary scheme. When quantizing descriptors in the CVT, the ¢ fl‘; of the
O-query for a particular query visualword i, is formulated as:
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where R(x,,y,) and R(x,,y,) denote the Gaussian distances of the pixel (xo,o)
and (x4,y,) with respect to the center of O-query (L, uy). Figure 4.3 shows the
definition of these pixels in the query image ¢. The Gaussian distance R(x,y) for an
arbitrary pixel (x,y) is given by

x— 1) )2
SK(x,y):Aﬁxp{f%[( OtoL'iz) +(yﬁ(':2y) ]} (4.6)

The “soft” weighting scheme shown in Eq. (4.5), is a piece-wise, bivariate-based
multivariate distribution outside the O-query, and a constant 1 inside the O-query.
The position (x,,y,) is the boundary of the O-query contour where the weight 1
ends. In the case that a visualword i, is outside the O-query, the modulating term

is min {1,%}, such that the soft weighting is guaranteed to be less than 1.

The term % is the ratio of which the query point (x,,y,) should be weighted
with respect to its closest boundary position (x,,y,). Mean values j, and p, are
calculated from “O” gesture sample data, while o and [ are tunable parameters
to control the standard deviation for the bivariate normal distribution. Figure 4.3
also illustrates this “soft” weighting schemes in the CVT when a projection view
along one principal axis is sliced and presented. Parameter A is the amplitude
value controlling the highest possible weighting scale. Parameters o and 3 reflect
the importance of the horizontal and vertical axis (or directions) when employing
the PCA technique. Empirically, we set o with higher value than f to indicate that
the horizontal axis is usually more important than the vertical one. This is because
most pictures are taken by the phone camera horizontally. As illustrated in Fig. 4.4

In the next section, a location-context-based filter process is executed, for
re-ranking visual search results based on user’s current location (derived from the
GPS-enabled images taken by the phone camera).
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Fig. 4.6 Quadkeys quantization and hashing from GPS, and images ground distance estimation
using Microsoft Bing Map service

4.2.5 GPS Context-Based Filtering

Context information collected by mobile sensors plays an important role to help to
identify users’ visual intents. As Fig. 4.5 illustrates, similar with the inverted file
index method, each piece of image context information is indexed with the image
itself during the off-line database construction.

In our system, GPS information from sensors is utilized and associated with
each image taken by the phone camera. A filter-based process is used to remove
the non-correlated images after the initial visual search. This is because GPS as
an important context filter can be used to efficiently explore users’ true intents by
precisely knowing their locations. This process is formulated as:

SL(Qad) = S(de) : ¢(qs d)

1, if dist,
where ¢(q, d) = , if dis quadkey(qu) €Q 4.7

0, if distyuaakey(q,d) ¢ Q

The visual similarity term s(g,d) is modulated by a location-based filter ¢ (q, d).
This filter is based on the GPS effective region Q, which describes the geographical
distance between the query and the database images. We defined d istquadkey(q, d) as
the quadkey distance between the query q and the database image d.
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The quadkey method is adopted from the Bing Maps Tile System.! It converts
the GPS coordinates to a hashing-based representation for fast search and retrieval.
We present an example in Fig. 4.6 to walk through the steps of conversion from
the WGS-84 GPS to a quadruple tiles code. We encode the GPS to a 23 digits
number with the ground resolution of possible 0.02m accuracy. The formulation
of this distance is computed by the Quadkeys representation. GPS context from
mobile sensor is collected first. The standard WGS-84 is encoded to the quadkey
representation. In the illustration, pictures of the same landmark (the Brussels town
hall) with both the front and the back facades are taken. These two photos have
different WGS-84 information, which have 10 out of 15 quadkey digits identical
after Bing Maps projection. In other words, the hamming distance between these
two codes is 5, which is calculated using tables to approximate a ground distance of
about 305 m.

This section uses a context-aware mobile visual search based on the BoW model
and the hierarchical visual vocabulary tree. Contextual GPS information is also used
in filtering the visual search result. In the next section, an implementation named
TapTell is presented based on the CVT algorithm introduced. TapTell is able to
achieve social activity recommendations through mobile visual searches.

4.3 Mobile Visual Search System for Social Activities Using
Query Image Contextual Model

TapTell is a system that utilizes visual query input through an advanced multi-
touch mobile platform and rich context to enable interactive visual search and
contextual recommendation. Different from other mobile visual searches, TapTell
explores users individual intent and their motivation in providing a visual query
with specified ROIL. By understanding such intent, associated social activities can be
recommended to users. Existing work has predominantly focused on understanding
the intent expressed by text (or the text recognized from a piece of voice). For
example, previous research attempts to estimate user’s search intent by detecting
meaningful entities from a textual query [131, 140]. However, typing takes time
and can be cumbersome on the phone, and thus in some cases, not convenient in
expressing user intent. An alternative is to leverage speech recognition techniques
to support voice as an input. For example, popular mobile search engines enable
a voice-to-search mode.?-> Siri is one of the most popular applications that further
structure a piece of speech to a set of entities.* However, text as an expression of

Thttp://msdn.microsoft.com/en-us/library/bb259689.aspx.
Zhttp://www.discoverbing.com/mobile.
3http://www.google.com/mobile.

“http://siri.com/.
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building facade dishes

Fig. 4.7 Snapshots of TapTell with three different scenarios. A user can take a photo, specify the
object or text of his/her interest via different gestures (e.g., tap, circle, or line), and then get the
search and recommendation results through TapTell

user intent has two major limitations. First, it relies on a good recognition engine
and works well only in a relatively quiet environment. Second, there are many cases
where user intent can be naturally and conveniently expressed through the visual
form rather than text or speech (such as an unknown object or text, an artwork, a
shape or texture, and so on) [135]. As an alternative, we believe that image is a
powerful complementary carrier to express user intents on the phone.

Since intent is generally defined as “a concept considered as the product of
attention directed to an object or knowledge” [108], mobile visual intent is defined
as follows:

Definition 4.1 (Mobile Visual Intent). Mobile visual intent is defined as the intent
that can be naturally expressed through any visual information captured by a mobile
device and any user interaction with it. This intent represents user’s curiosity of
certain object and willingness to discover either what it is or what associated tasks
could be practiced in a visual form.

The following shows scenarios of mobile visual intent and how expressed intent
may be predicted and connected to social tasks for recommendation. The goal is not
only to list related visual results, but also to provide rich context to present useful
multimedia information for social task recommendation.

* You pass by an unknown landmark that draws your attention. You can take
a picture of it. By using visual intent analysis, the related information of this
landmark is presented to you.

* You see an interesting restaurant across the street. Before you step into the
restaurant, you take a picture of it and indicate your interest using your gesture.
By applying visual intent analysis, the information about this restaurant or its
neighborhood points-of-interest matching your preference are recommended.

* You are checking a menu inside a restaurant, but you do not speak the language or
know the cuisine. You can take a photo of the menu using your phone and indicate
your intended dish or text in the photo. Your visual intent on either the photo



116 4 Interactive Mobile Visual Search and Recommendation at Internet Scale

or the description of the dish will be analyzed. For example, optical character
recognition (OCR) can help you automatically recognize the indicated text, while
a visual search can help you identify the dish (which may not be recognized
without indication) and recommend nearby restaurants serving a similar dish.

Figure 4.7 shows three corresponding scenarios. The visual intent model consists
of two parts: visual recognition by search and social task recommendation. The first
problem is to recognize what is captured (e.g., a food image), while the second is
to recommend related entities (such as nearby restaurants serving the same food)
based on the search-based recognition results. This activity recommendation is
a difficult task in general, since visual recognition in the first step still remains
challenging. However, the advanced functionalities, such as natural multi-touch
interaction and a set of available rich context on the mobile device, bring us
opportunities to accomplish this task. For example, although one image usually
contains multiple objects, a user can indicate an object or some text of interest
through a natural gesture, so that visual recognition can be reduced to search a
similar single object. Moreover, the contextual information, such as geo-location,
can be used for location-based recommendations.

Since the visual intent is an original term, this chapter retrospects the evolution
of intent in general and walk the readers through the formation of the infent from
text, voice, and visual inputs, with both desktop-based and mobile domain-based
searches and recognition.

For desktop user intent mining, an early study on web search taxonomy is
introduced by Broder [110]. In this work, the most searched items belong to an
“informational” category, in which it sought for related information to answer
certain questions in a user’s mind. A later work from Rose and Levinson further
categorized the informational class to five sub-categories, where the locate of a
product or service occupies a large percentage [133]. On the other hand, compared
to general web searches, intents derived from mobile information have strong on-
the-go characteristics. Church and Smyth conducted a diary study of user behavior
of mobile-based text search and summarized a quite different categorization from its
general web search counterpart [113]. Besides the informational category at 58.3 %,
a new geographical category which is highly location dependent takes a share of
31.1% of total search traffic. From a topic perspective, local services and travel &
commuting are the most popular ones out of 17 total topics, with 24.2 % and 20.2 %
entries respectively. It can be concluded that the on-the-go characteristics play an
important role for intent discovery and understanding on mobile devices [143].

4.3.1 System Architecture

Figure 4.8 shows the architecture of TapTell. It extends Fig. 4.2 by including user
intent. This illustration can assist readers from an implementation perspective to
understand the importance in linking individual intents to final recommendations.
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Fig. 4.8 The framework of TapTell, based on previously introduced visual recognition algorithm
in Fig. 4.2, incorporates with the visual intents notation

Intent expression recognizes the object specified by the user—mobile interaction.
Intent prediction formulates intent expression and incorporates image context.
Finally, a task recommendation is achieved by taking both the predicted intent, as
well as, the sensory context.

In the following, Sect.4.3.2 presents a conducted survey and explains why the
“O” gesture is chosen as the best solution among several gesture candidates. With
the “O” gesture and selected ROI, visual recognition by search is achieved using the
algorithm introduced in the previous section. Consequently, Sect. 4.3.3 describes the
recommendation, using text metadata associated with visual recognition to achieve
a better re-ranking.

4.3.2 User Interaction for Specifying Visual Intent

It has been studied and suggested that visual interface will improve mobile search
experiences [114]. In this section, a user study is conducted to identify the most
natural and efficient gesture for specifying the visual intent on mobile devices. By
taking advantages of multi-touch interaction on smart-phones, three gestures for
specifying visual intents on captured photos are defined as follows:

e Tap. A user can “tap” on the pre-determined image segments, in which a
captured image is automatically segmented on-the-fly. Then, the tapped segments
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tap line O: circle

Fig. 4.9 Different gestures for specifying user intent in TapTell: (a) “tap”—selection of image
segments, (b) “line”—rectangular box, and (c¢) “O”—circle or lasso

indicated by user’s gesture will be connected as the region-of-interest (ROI). The
ROI will be further used as the visual query, as shown in Fig. 4.9a.

e Line. A user can draw straight “lines” to form a rectangular bounding box. The
region in the box will be used as the visual query, as shown in Fig. 4.9b.

* O (circle). A user can naturally outline an object of irregular shape. The “O”
gesture can be also called the circle or lasso. Note that an “O” is not limited to a
circle, but any arbitrary shape, as shown in Fig. 4.9c.

A user study is performed following the principles of focus group in the field
of human—computer interaction [118]. In this study, ten participants were invited.
After being introduced to the basic functions of TapTell and getting familiar with the
system, they were asked to perform several tasks using different gestures in 30 min.
From this study, it is found that seven out of ten subjects thought that “O” is more
natural than the other two gestures, and eight subjects were satisfied with the “O”
interaction. Their comments on “tapping” and “line” are: (1) tapping is sometimes
too sensitive and image segmentation is not always satisfying, and (2) the “line” is
not convenient for selecting an arbitrary object.

Equipped with the “O” gesture and the user interaction platform, mobile search
and recognition can be achieved effectively using the context-embedded visual
approach. The next step of TapTell is to recommend social activities based on
associated metadata and text-based search.
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4.3.3 Social Activity Recommendations

Recently, Jain and Sinha proposed to re-examine the fundamental issue between
content and context and why researchers should utilize both of them to bridge
the semantic gap [123]. From the perspective of visual content analysis, Hua and
Tian surveyed the importance of visual features to help text-based searches [122].
Although the aforementioned two studies focused on context and visual contents,
respectively, they both advocate on a multi-modality structure to achieve various
tasks. On the other hand, Guy et al. suggest that while machine learning and
human computer interactions play key roles in recommendations, personalization
and context-awareness are also crucial in establishing an efficient recommendation
system [121]. Authors agree with their arguments that it is necessary to connect
data and users. It is also believe that smart-phones provide perfect platforms for
such data-users connection, from human computer interaction, to visual search, and
finally, to the recommendation.

In the TapTell system, after the visual intent expression and identification, rich
metadata is utilized as a better feature to search. Powerful context is used to re-
rank metadata-based search result for the final task completion. To be specific,
the metadata associated with the top image search result is adopted as a textual
query. Then, social activity recommendations are obtained based on the text retrieval
results. The Okapi BM25 ranking function is used to compute a ranking score based
on text similarity [132]. Keywords Q; = {q:,,41,, - - -, 41, } are extracted by projecting
the text query to a quantized text dictionary. Subsequently, relevance score of query
0, and database image descriptions D; are computed. Detailed score computation
techniques can be referred to in [132]. In the last step, search results are ranked

! Dishes

e here : "\r.?\
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O-guery Top-1 visual search Nearby restaurants
result, “Bleecker Street serving “Plzza" via text
Pizza at 69 7™ Ave S. keyword search
New York™

Fig. 4.10 Result of recommendation list, which is visualized in a map to help users to picture the
distances between the query and the results
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based on the GPS distance of the user’s current location. Figure 4.10 demonstrates
a sample result of the recommendation list and location-based re-ranking.

4.4 Experimental Result

Experiments on evaluating the context-embedded visual recognition, social activity
recommendations through the TapTell system, performance and complex analysis,
and OCR performance, as well as subject evaluation, are presented in the following.

4.4.1 Data, Settings, and Evaluation Metrics

The client-end application is developed on a Windows Phone 7 HD7 model with
1 GHz processor, 512 MB ROM, GPS sensor and 5 megapixel color camera. In
the cloud, a total of one million visualwords is built from 100 million sampled
local descriptors (SIFT in this experiment). A hierarchal tree structure consisting
of six levels of branches is used, where each superior branch has ten sub-branches
or nodes. In constructing the vocabulary tree, each visualword takes up to 168 bytes
storage, where 128 bytes are for the clustering vector (same size as SIFT), and
4 bytes for ten subordinate children nodes connection. In total, 170 megabytes of
storage is used for the vocabulary tree in cache.

The dataset consists of two parts. One is from Flickr, which includes a total of
two million images, with 41,614 landmarks equipped with reliable GPS contextual
information. With a further manual labeling effort, 5,981 images were identified as
the groundtruth such that the landmark object facade or the outside appearance can
be traced from the image. The second part of the database is a crawled commercial
local services data, mainly focusing on the restaurant domain. In this part, a total of
332,922 images associated with 16,819 restaurant entities from 12 US cities were
crawled with associated metadata.

Mean average precision (MAP) for the evaluation is used , where MAP is the
mean value of average precisions (APs). The average precision (AP) formula is
presented as

1 min(n,S) P,
AP@n= ——— — X1 4.8
" min(n, P) kg‘l Kk “48)

The number of top ranks is represented as n. The size of the dataset is denoted
as S, and P is the total number of positive samples. At index k, P, is the number
of positive results in the top n returns, and I is described as the result of the k;,
position.
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Another performance metric is Normalized Discounted Cumulative Gain
(NDCG). Given a query g, the NDCG at the depth d in the ranked list is defined by:

271

=1 Tog (1) -

NDCG@d =7,

where 7/ is the rating of the j-th pair, Z; is a normalization constant and is chosen
so that the NDCG@d of a perfect ranking is 1.

4.4.2 Objective Evaluations
4.4.2.1 Evaluation of Location-Based Recognition

In Fig.4.11, the CVT-based CBIR method with and without location-based GPS
filter is evaluated in both MAP and NDCG measurements for different database
sizes. In this case, original image query is used without any visual intent regulation.
The performance suffers a degradation with the increment of database size. For the
location-based recognition method, images with related geographical regions have
been firstly isolated from irrelevant images, and then, recognition by search algo-
rithm is implemented solely on the filtered dataset. Performance is maintained and
demonstrates that the system is applicable for dealing with large-scale databases.
For the location-based filter ¢(q), the GPS effective region Q utilizes the Quadkey
level 5, which is equivalent to the resolution of 4,891 m in ground. Since landmarks
groundtruth includes various object types: from statuaries and buildings, to city
skylines and famous mountains, the aforementioned contextual filter will guarantee
the inclusion of enough potential image candidates. In summary, such an analysis
and investigation demonstrate the usage of location-based filter as an important tool
in mobile visual search and recognition.
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Fig. 4.11 Top N returns for both MAP and NDCG evaluations with GPS context, on the whole
image itself as query
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4.4.2.2 Evaluation of Context-Embedded Visual Recognition

Image contextual information and its effectiveness in recognition by search tech-
nique are investigated, using the soft weighting scheme. For the bivariate-based
function R(x,y), The amplitude A is fixed to 1 and tuned two parameters o and
B to modulate the standard deviation. Two sets of experimentation were conducted
with and without GPS context shown in Figs. 4.12 and 4.13, respectively. In general,
using the soft weighting scheme improves search performance compared to the
binary weighting method. Specifically, in Fig.4.12, o = 50 and 8 = 10 provide
the best performance for both MAP and NDCG measurements. The results of this
parameter choice using MAP and NDCG measures outperform the binary weight
method by 12 % and 15 %, respectively.

Similarly, after incorporating the GPS context, the soft weighting method again
outperformed the binary one, but in a much higher precision range. This does not
surprise us since geolocation is an important feature for differentiating objects
and their recognition, and eventually associated visual intent. Different from its
counterpart in the non-GPS scenario, Figure 4.13 demonstrates that parameter oo =5
and B = 1 outperforms other parameter choices, as well as the baseline binary
weighting scheme. The margin difference from the soft weighting and the binary
case has dropped to 2% and less than 1% for MAP and NDCG, respectively. This
result demonstrates the importance of the GPS context.

It can be observed that parameter ¢ is higher than parameter 3 for the best
performance in both Figs.4.12 and 4.13. The reason is due to the fact that most
images are taken horizontally. Therefore, information is appreciated more and
weighted higher by « horizontally than its counterpart 3 vertically. Similar patterns
can also be observed in the following evaluations.

The significance of this image contextual information with soft weighting
scheme allows robust user behavior and is seamlessly glued with the “O” gesture,
which is spontaneous and natural. The shortcoming of the “O” is that it inevitably
suffers from lack of accuracy due to device limitations in outlining the boundary,
compared to other gestures, such as segmentation or line-based rectangular shape.
However, soft weighting alleviates this deficiency of correctness in object selection
and provides a robust method to accommodate behavioral errors when drawing the
outlines of the ROI.

4.4.2.3 Evaluation and Comparison with Contextual Image Retrieval
Model (CIRM)

State-of-the-art contextual image retrieval model (CIRM) [139] was implemented.
Its performance is compared to our context-embedded visual recognition. The
CIRM has demonstrated a promising result in desktop-based CBIR by applying
a rectangular bounding box in highlighting the emphasized region, which can be
achieved using mouse control at a desktop platform. The weighting scheme in CIRM
model is to use two logistic functions joined at the directional (either X or Y) center
of the bounding box. Then, the term frequency ¢ f, is formulated as:
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Fig. 4.14 Comparison of image contextual-based recognition by various parameter o and 3, with
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where x;, x;, x, represent x pixel values of the left boundary, detected feature point,
and the right boundary along the x-axis direction, respectively. Similarly, y;, v;, v
are the y pixel values of the top boundary, detected feature point, and the bottom
boundary along the y-axis, respectively. The geometric relations x; < x; < x, and
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Fig. 4.15 Comparison of image contextual-based recognition by various parameter o and 3, with
the conventional CBIR (original), as well as the CIRM algorithm with parameter dX and dY, with
GPS information

¥r < yi < yp hold for this bounding box, such that the 7 f, should be approaching the
value 0, the further x; from the bounding box; while ideally close to value 1 when
the feature point is inside the bounding box. 8y and Jy are two tunable parameters
for finding the best performance of the bounding box. Detailed explanation of the
algorithm can be found in [139].

Figure 4.14 shows MAP and NDCG measurements, by comparing the Gaussian-
based contextual method with the CIRM model, as well as the CBIR method using
the original image. It appears that the proposed method with parameters o = 40 and
B = 10 outperformed both CIRM in its best result with parameter dX = 0.0001 and
dy = 0.0001, and the CBIR result of the original image without using contextual
model.

Figure 4.15 depicts a similar comparison using the GPS context re-ranking.
Again, the proposed method outperformed the CIRM method and the CBIR
algorithms. However, the best performance of the CIRM model at dX = 0.0001 and
dY =0.0001 is close to the performance of the proposed contextual model at & =5
and B = 1. This result can be explained, such that, by adopting the GPS filtering,
the margin of various methods is reduced.

4.4.2.4 Evaluation of Mobile Recommendations

For the recommendations, our method is to use the visual photo taken by users
as the starting point, and to provide recommendation lists based on text searches
associated with the recognized object. First, the object is identified and matched
to the database. Then, the matched metadata is used as a text query to do a text-
based search. The final result is then re-ranked by the relevant GPS distance from
the query’s image location to the ranked list image locations.

The evaluation was conducted exclusively on a vertical domain of food cuisines.
A total of 306 photos were randomly picked and manually labeled and categorized
them into 30 featured themes of food dishes, such as beef, soup, burger, etc. A 300
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Table 4.2 MAP evaluation of the visual-based and
description-based performance
MAP @0 @1 @2 @3 @4
Visual-based 96.08 | 53.06 | 37.61 |29.60 | 24.59
Description-based | n/a 75.65 |72.66 |70.78 | 6593

word text dictionary was built by extracting the most frequently used words in the
image description.

In order to produce a real restaurant scenario, Dishes in a menu style with both
texts and images were printed out. We took pictures of the dishes as the visual query
and attempted to find the duplicated/near-duplicated images from the dataset. It is
assumed that the best match of the visual recognition result would be user intent.
Such intent was carried by the associated metadata, which were quantized using the
prepared 300-word dictionary. The quantized words were searched with a ranked
list based on the text similarity. The final step was to re-rank the result list using
GPS distance.

Table 4.2 presents the MAP result with the initial visual query and newly
formatted text description query after visual recognition. The table demonstrates
that the performance of the text description-based search is much better than the
visual-based search. This result is reasonable in the sense that text is a better
description than visual content once the ROI is identified and linked with precise
textual metadata. However, the merit of the visual input is its role in filling the
niche when an individual does not have the language tools to express him/herself
articulately. It is demonstrated that during the initial visual search (@0), the visual-
search result is at a high precision rate of 96.08 %. Such accuracy provides a solid
foundation to utilize associated metadata as a description-based query during the
second stage search. In summary, once the visual query is mined accurately, the role
of the search query is then shifted from visual content to text metadata for a better
result.

4.4.2.5 Time Complexity Analysis

TapTell’s efficiency performance of the individual component is evaluated.
A detailed analysis is illustrated in Fig. 4.16. The total time spent on the server end
takes about 1.65s, including initialization, text-based search, visual-based search,
and OCR-based recognition (the system also supports OCR if the ROI corresponds
to a text region). Among the visual search, local descriptor SIFT extraction takes the
most time, almost 1s. The communication time between the server and the client
takes about 1.2 s, which is the wireless transmission in our experimental set-up.
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Fig. 4.16 The time analysis of the TapTell system as well as the visual search, based on the
restaurants dataset. (a) Total time spent of the TapTell system. (b) Visual search time spent

4.4.2.6 Improved OCR from “O” and Visual Examples

Besides the visual content, Optical Character Recognition (OCR) is another impor-
tant means to help mobile users to understand their visual intents correctly. It plays a
vital role in translating from the visual feature to the text feature. However, most of
the OCR techniques are sensitive to the orientation of visual input. If characters are
skewed in a certain degree, current OCR techniques cannot successfully recognize
the correct characters. However, such a difficulty can be alleviated by using a
transform invariant low-rank textures (TILT) algorithm to align the severely tilted
characters properly [141].

It is found that one of the byproducts from the “O” gesture is that it can achieve
better OCR performance, if the estimation results of two principal components are
utilized by the PCA in Sect.4.3.2. Once the original text region is selected by the
“O” gesture, those characters are first aligned by performing rotation alignment
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Fig. 4.17 Standard OCR failed to recognize multiple lines of skewed characters, but is successful
after using the “O + TILT alignment” procedure. (a) original image with O. (b) OCR fails without
0. (¢) OCR with “O + alignment”

based on the PCA result, and then, further aligned by the TILT algorithm before
the OCR process. Figure 4.17 illustrates a successful OCR detection.

Two visual examples are demonstrated in Fig.4.18 with the visual queries
associated location metadata of (a) Bleecker Street Pizza, located at 69 7th Ave S.
New York. (b) Beef Marrow and Marmalade, located at 97 Sullivan St. New York.

4.4.3 Subjective Evaluation

It is conducted a subjective evaluation on user experience with the TapTell system.
A total of 13 people participated the survey, nine male and four female. Eight out of
the total participants had heard of the term content-based image retrieval, and six of
them had heard of a natural user interface. During the survey, they were asked about
the usefulness of and satisfaction with the system based on their experience using
the prototype. The survey scale is ranked from 1 to 5 for usefulness and satisfaction,
where 1 is the least and 5 is the most. Table 4.3 summarizes the survey result.

* Question 1 and 2 are about the usefulness of the “O” gesture compared to
segmentation and line-based gestures, and the satisfaction of the “O” interface.

* Question 3 and 4 are about visual search satisfaction on duplication/near-
duplication results, as well as semantic similar results. The rate is higher for
the former, which is a fair reflection of the algorithm we took. This is because
we use salient-based SIFT points, which are more suitable for duplication/near-
duplication detection than object recognition.
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D :i'shes

Fig. 4.18 Visual examples based on the recommendation system. The left snapshot shows the
visual query. The middle snapshot is the result using metadata-based text search. The right snapshot
is the re-ranking based on user’s current position and location-based distance. (a) Bleecker Street
Pizza. (b) Beef Marrow and Marmalade

* Question 5 and 6 are the usefulness study on the Optical Character Recognition
(OCR) technique and adopted transformation invariant low-rank textures (TILT)
for improving the OCR. More people are in favor of the TILT algorithm enhanced
OCR method than the OCR itself [141]. (Technical details are presented in
Sect.4.4.2.6.)

* Question 7 is about the performance of text-based searches. Most people are
satisfied with this feature.
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Tab}e ‘."3 A summary of the Q# | Validresult | Criteria |1 |2 |3 |4 |5 |Avg.

subjective survey
1 10 Useful 01 2|16 42
2 10 Satisfied |0 |1 |1 |3 |5 |42
3 10 Satisfied |0 |1 |1 |4 |4 |4.1
4 10 Satisfied |0 |2 (2 |2 |4 |3.8
5 9 Useful 0|1 |1 |3 |4 411
6 10 Useful 01 3|24 39
7 10 Useful 0|1 |1 |4 |4 41
8 10 Useful 01 1[4 4 41
9 10 Useful 01|23 |4 40

A scale of 1-5 is used, with 5 indicating the most use-
ful/satisfied level, 1 indicates the least useful/satisfied level,
and 3 is the neutral

¢ Question 8 and 9 are about the overall usefulness in terms of a recommendation
system and TapTell as an application for mobile devices. Most people gave
positive response to the usefulness of this system for both recommendations, as
well as the application in general.

* The last question asks a price (in USD) they would be willing to pay at the mobile
market to obtain this application. Eight out of ten people prefer a price less than
$4.99, where two are not willing to pay anything. The remaining two participants
are willing to pay a price above $10.

On average, questionnaire participants were satisfied with the TapTell system.
Most responses were either 4 or 5s on the 5-point scale. They also provided
insightful comments such as

Quote 1 “Maybe can cooperate with the fashion industry.”
Quote 2 “This is quick and natural. Better than pre-segmented based method. The segment
results are always confusing.”

4.5 Summary

A contextual-based mobile visual search utilizing the BoW model is used in this
Chapter. A viable application, TapTell, is implemented to achieve mobile recogni-
tion and recommendations. Meaningful social tasks and activities are suggested to
users with the assistance of multimedia tools and rich contextual information in the
surroundings. Different gestures have been investigated from tapping the segments,
to drawing the lines of rectangle, to making an “O”-circle via the multi-touch screen.
It is demonstrated that the “O” behavior is the most natural and agreeable user—
mobile interaction. Along with the BoW model, a context-embedded vocabulary
tree for soft weighting is adopted by using both “O” object and its surrounding
image context to achieve mobile visual intents mining. Various weighting schemes
were evaluated with and without GPS conditions, and verified that image context
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outside the “O” region plays a constructive role in improving the recognition.
State-of-the-art algorithms were used as comparison benchmark, and it has been
demonstrated that the proposed method outperformed both the conventional CBIR
using original image query and the CIRM algorithm. Moreover, a recommendation
system is built upon an initial visual query input, where neither the text nor the
voice has the strength in describing the visual intent. Once the context metadata is
associated with the intent, more reliable contextual text and GPS features are taken
advantage of in searching and re-ranking. Ultimately, interesting and related social
activities are recommended to the users.



Chapter 5
Mobile Landmark Recognition

Abstract In recent years, landmark image recognition has been a developing
application for computers. In order to improve the recognition rate for mobile
landmark recognition systems, this chapter presents a re-ranking method. The
query feature vector is modified, identifying important features and non-important
features. These are performed on the ranked feature vectors according to feature
selection criteria using an unsupervised wrapper approach. Positive and negative
weighting schemes are applied for the modification of the query to recognize the
target landmark image. The experimental results show that the re-ranking method
can improve the recognition rate, as compared to previously proposed methods that
utilize saliency weighting and scalable vocabulary tree encoding.

5.1 Introduction

The comparison of photos captured on mobile devices to a landmark photo database
at the remote server is the main issue in mobile landmark search applications. The
mobile user captures a landmark image and then uploads the image data (or a
compact descriptor [144]) to the server. In an instant, related information of the
captured image is returned to the user, i.e., name, geographic location, photograph
viewpoints, tourism recommendations, or other value added information. This
image matching tool has emerged in applications of mobile phones for not only
landmark recognition, but also mobile shopping, mobile location recognition, online
photographing recommendation, and content-based advertising. This chapter will
focus on mobile landmark recognition, addressing this issue using the re-ranking
method and saliency information, on top of the benchmark of the state-of-the art
method in landmark recognition and retrieval.

In the mobile visual search scenario, instead of sending an entire photo, sending
a compact descriptor computed on the mobile device allows for low bit rate
search. Some compact descriptors are a low dimensional representation of the scale-
invariant feature transform (SIFT) descriptor, such as [145-148]. These research
efforts in compact visual descriptors provide the following benefits. Firstly, the
compact descriptor reduces resource consumption (i.e., less battery and memory
use), since sending large amounts of data via wireless consumes relatively large
mobile resources as compared to sending a compact signature. Secondly, the internet
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search system requires significant bandwidth, since at the server end, receiving
multiple query photos is much more challenging than receiving texts, within the
standard uplink bandwidth in a search engine.

A scalable near duplicate visual search system is typically developed based
on a Scalable Vocabulary Tree (SVT) [149]. For the large size database, SVT
reduces the computational cost as well as increases the performance in mobile
landmark recognition. Visual vocabulary models quantize the descriptors with K-
means clustering [150], vocabulary tree [149], and approximate K-means [151].
The BoW model with inverted indexing structure is usually developed for image
descriptors based on SVT [149, 152-154]. However, a more compact descriptor
can be obtained by the Bag-of-features histogram, which encodes the position
differences of non-zero bins [155]. The inverted index structure of VST can also
be further compressed with arithmetic coding to reduce the memory and storage
cost to maintain a scalable visual search system.

While the aforementioned methods have been the main methods used for the
construction of SVT and the associated compact descriptor, this chapter presents
a method for improving the performance of SVT-based landmark recognition.
As in the previous works in [156-160], the goal is to study the discriminative
information of various image patches to evaluate the patch’s importance. This
information constitutes a weighting scheme for construction of SVT and BoW
histogram features. In the conventional SVT and BoW, the local descriptors are
assigned equal importance and hence feature selection for visual word generation
is underutilized. However, the local descriptors for foreground landmarks should be
given more importance, while the local descriptors in the background are outlines
for recognition. The background information, such as sky and grass, are usually
common to many different landmark categories. As such, their importance should
be reduced when generating the BoW histogram [160].

In this chapter, the saliency map demonstrated in [161, 346] is adopted for
construction of the saliency weighting scheme. Figure 5.1 shows the recognition
process incorporating saliency maps and re-ranking. The saliency weighting is
applied at various stages of the recognition process. Section 5.2 presents the
generation of the saliency map. This map is applied in the construction of local
descriptors in Sect.5.3, and the construction of the SVT codebook, BoW and
similarity function in Sect. 5.4. In Sect. 5.5, a new re-ranking procedure is applied
to select the important BoW features for improving the recognition accuracy. Sec-
tion 5.6 provides experimental results on landmark recognition from two landmark
databases.

5.2 Saliency Map Generation

The goal toward the generation of a saliency map is to ultimately highlight a handful
of ‘significant’ locations when the image is ‘informative’ according to the human
perception. The graph-based visual saliency (GBVS) method demonstrated in [161]
is applied to accomplish this. There are three stages for modeling visual saliency:
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Saliency
Maps
Local Fegture > SVT > BoW > Similafly
Extraction Function
Landmark Image Database — Query . Recognition

Re-Ranking }—

Query landmark image ——p Processing information

Fig. 5.1 Landmark recognition process, incorporating saliency weighting scheme and re-ranking

sl, s2, and s3. The s1 is the extraction stage, where feature vectors are extracted over
the image plane. This results in a feature map M : [n]2 — R, where n is the image
space. The s2 is the activation stage, which forms an activation map A : [n]2 — R,
such that locations (i, j) € [n]* where the image is salient will correspond to high
values of activation A. The last stage s3 will normalize the activation map.

The GBVS method is applied to the last two stages, for a given feature map M.
Specifically, the dissimilarity of M (i, j) and M(p,q) is computed by:

5.1)

a0 = |roe 1)

M (p,q)
Firstly, the fully-connected directional graph G4 is obtained by connecting every

node of the lattice M, labelled with two indices (i, j) € [n]?, with all other n— 1
nodes. The directed edge node (i, j) to node (p,q) will be assigned a weight:

502 (5.2)

: 2 . 2
W((ivj)v(pvq)) :d((l’f)‘ |(qu))-exp <— (lip) +(]*¢]) >

where o is a free parameter. Secondly, the graph G4 is converted to a Markov chain,
and the equilibrium distribution of this chain results in an activation measure, i.e.,
the activation map A. Thirdly, the map is normalized to generate the final saliency
map S of the image.

In the current work, at the final stage, the Sigmoid function is applied to conduct
a mapping function from the activation map to saliency map [346],

l—exp(—b-A(i,)))

S(i,j) =a+(1—a) 1+exp(—b-A(i,j))

(5.3)
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where S(i, j) is the saliency map at location (i, ), a = 0.1 and b = 2 are used to
adjust the relative compactness of the saliency values. Equation (5.3) results in the
concentration of the activation into a few key locations.

5.3 Saliency-Aware Local Descriptor

The SIFT descriptor aims at detecting and describing local visual features in two
steps. In the first step, the key points are localized, while in the second step,
local descriptors are built for each key point. A given image is decomposed into
a set of key points X = {xy,...,X,} with their corresponding SIFT descriptors
& ={s1,...,8,}. In the process of obtaining the descriptors, the gradient vector
for each pixel in the key point’s neighborhood is computed and the histogram
of gradient directions is built. Thus, the descriptor can be represented as a set
of gradient histograms, and can be denoted by s(m,n,o0), where m,n and o are
respectively the indexes of the spatial bins and orientation channels.

A 16 x 16 neighborhood is partitioned into 16 sub-regions of 4 x 4 pixels each.
For each pixel within a sub-region, the pixel’s gradient vector is added to a histogram
of gradient direction by quantizing each orientation to one of eight directions. Each
entry of a bin is further weighted by 1 — d, where d is the geometric distance from
the sample to the bin center. This reduces boundary effects as samples move between
positions and orientations.

In order to incorporate the saliency information into the descriptor, when
calculating the histogram, each entry of a bin is weighted by the saliency weights:

2d3(i,j)<1 MO (lv.]) (1 —d (laj))s(laj)
i j)<1S (i)

s(m,n,0) = (5.4)

where M, (i, j) represents the gradient magnitude at the location (i, j) in the o-th
orientation plane, dg (i, j) is the distance between the sample at (i, j) and the center
of the bin B(m,n), | <m,n<4,and 1 <o <8.

Let R denote a region of size 16 x 16 pixels, chosen for obtaining the descriptor s.
The saliency value associated with the descriptor is obtained by weighting the
saliency map S (i, j) discussed in Eq. (5.3) by a Gaussian of scale ¢ as follows:

. 2 . 2
w=3 S(i,j)exp <(’_R’C) (=R, ) (5.5)

2
(i f)eC 20

where (R,Ry) is the center of the region R.
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5.4 Saliency-Aware Scalable Vocabulary Tree

SVT is well exploited by the studies in [149, 152,154, 155]. SVT uses unsupervised
hierarchical clustering to quantize a local descriptor into discrete codewords. For a
landmark image 1, with J local descriptors .7, = {s{,...,s%}, each descriptor s is
traversed through the SVT hierarchy to find the nearest codeword, which quantizes
7, into a Bag-of-Word histogram h, = [h?,... hl,]’, where M is the number of
codewords.

In the construction of SVT, the quantization process is applied to the local SIFT
descriptors, where every sample receives equal importance for the calculation of
cluster centers [149]. The unsupervised clustering can be improved when the sample
has different weights, by considering the saliency values associated with each SIFT
descriptor during the computation of cluster centers [346].

5.4.1 Weighted Hierarchical Clustering

The saliency-aware SVT can be generated by the construction of weighted hierar-
chical K-means. Let the training dataset be denoted by . = {sy,...,sy}, which is
associated with the weights w = {wy,...,wy}. Each w; is obtained by Eq. (5.5). The
objective of the hierarchical K-means is to obtain the vocabulary tree .7 consisting
of C = B codewords, v;, € 7, where [ € {0,1,...,L} indicates its level, and
he{l,2,...,B !} is its index at a particular level, B is the branch factor, and L
is the depth.

In the initial stage, the locations of the centroids, {V[,h}le,h e{1,2,...,B11
are obtained by a hierarchical clustering [149] without saliency weights. Then the
following iterative algorithm is obtained to modify the centroids.

e Step I. the current level [ = L.
» Step II. The algorithm involves an iterative updating scheme, with each iteration
comprising of two substeps as follows:

— Winner Identification: For every pattern s;,s; € ., its distances from each of
the BL~! centroids are computed. The cluster with the closest centroid will be
identified as the winning. Let Cj, be the winning cluster. That is, s; € Cy, if

h= argminhzleLflw,' ||s,- —Vih H (5.6)

In this case, s; will be added to the winning cluster C,, as its newest
member.
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— Centroid update: When a new vector s; is added to a cluster, Cj,, the old
centroid of that cluster (denoted by v; ,(old)) will be updated as follows:

Ysiec, Wisi

V[7h <Old) — V],h = m
s;eCp "1

(5.7)

where Nj, is the total number of vectors in the cluster Cj,.
These two substeps are repeated until there is no decrease of the following
weighted cost function,

Essp(S, )= 3, > WiHSi_Vl,th (5.8)

Vi hEV Si€Cy

where Eggp is the sum-of-squared-distance criterion, and ¥ = { Vi_1,(h—1)B+k },
ke{l,2,...,B}

e Step III. The current level is assigned with a new value, [/ <— [ — 1, and Step II is
repeated until [ = 0.

5.4.2 Saliency-Aware Bag-of-Word Representation

For a query landmark image, I, its local descriptors can be described by .7, =
{si’, e ,sg}. These descriptors can be used for image matching, involving pairwise
comparison between the descriptors [144],

: ]H) (5.9)

where I, is an input image in the database being compared, and has the descriptors
= {s},...,s}}. For the database of size N, an optimized ranking using .7 is the
one that minimizes the following ranking loss:

X 4
Si”sj

,s.t. i =argmin||s
l

J
Dy (Iy,1q) = 2 (

Jj=1

N
2 x) Dy (L, 1) (5.10)
R(x) = exp (—rank (x)) (5.11)

where R(x) is the ranking position weight of I, with respect to I,. Apparently,
minimizing the loss .Z with respect to D, in Eq. (5.10), does not scale well due to
the linear complexity to the image volume N. In comparison, the transformation of
- to the BoW representation h, = [h?,... k)", can address the scalability [149].
The matching of I, and I, can be obtained by comparing the BoW component #; for
the given query I,;:
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a (L 1) Z || | (5.12)

= [sl0(s) =¥ 619

hl = ‘s?\Q(s?) =v;

where Q (s;) = v; denotes the quantization of descriptor s; into the codeword v;, and
hi denotes the number of local descriptors of image I; that fall into v;. Therefore,
the ranking loss .Z can be approximated by:

(5.14)

N
2~ 3 (k% ] 515

x=1

The BoW component in Eq.(5.13) [or Eq.(5.14)] estimates the distribution
of codewords in an image by assuming each descriptor to be equally important.
However, the foreground object in an image is usually more important than the
cluttered background, and thus they should be assigned different weights. Therefore,
saliency weighting is used in the calculation of the BoW components, as follows:

hi = [s;|Q(s;) = vil (5.16)
1 U .
= i 2 willi =argminy ([v=sl]))ve 7 (5.17)
24 wj =
where w = {wy,...,wj,...,wy, } is the saliency weight of a landmark image, I(-) is

the indicator function, and Ny is the number of local descriptors in the image.

The component /; corresponds to the Term Frequency (TF) of v; [162]. Thus, the
Inverted Term Frequency (ITF) can also be obtained to make a complete weighting
scheme [149]. As a result, the similarity between the query image I, and the image
I, in the database can be obtained by:

hyf  hf
g £ [ £]

Dy (I, 1) =1— |

‘ (5.18)

where h, = [h{,....h},)" and h, = [I],...  h},|" are the weighted BoW vectors of the
query image I, and the image I, respectively. f is the ITF vector [149], calculated as:

t
f= [log(}\]y),...,log (]flv),...,log(NN ﬂ (5.19)
Vi A\ ym
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where N denotes the total number of images in the database, N,, denotes the number

of images containing v;, and log (%) is the inverted term frequency of v; in the

entire dataset.

5.5 Re-ranking Approach to Landmark Recognition

This section presents a re-ranking method for improving the performance of the
recognition system employing SVT and BoW. The re-ranking method selects a
suitable weighting scheme by applying an unsupervised wrapper feature selection
to a training set associated with a particular query. The method is described in the
following sections.

5.5.1 Building a Training Set via Ranking

Given a known database containing N landmark photos [I}, I, .. .,Iy], the first step
in the learning process is to obtain a subset of photos [A,Az,...,Ag| to build a
training set for a given query /;,. Here R < N, and all landmark images in the
database are available with the class labels (or the information on the landmarks).
Based on the distance function Dy (Iy,1,), this step outputs the following ranking
list:

Query (I;) = [A1,Az,...,AR] (5.20)

where A; is the i-th returning entry of the query. [A1,A,...,Ag| are R top ranked
images based on the original BoW histogram given the query.

We aim to maximally improve the ranking order by modifying the BoW of the
query instead of using that of the original query.

5.5.2 Unsupervised Wrapper Feature Selection Method

As a specific subset of features is specially effective for the accurate prediction of
certain query classes, the original BoW features can be modified by this subset. The
unsupervised wrapper method [163] is utilized for feature selection. This process is
shown in Fig.5.2. The ranked BoW vectors can be first divided into subgroups by
the unsupervised clustering. The single linkage (SL) [164] is selected to accomplish
this purpose. Once each of the subgroups are artificially assigned a class label, then
the wrapper method is applied.
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unsupervised supervised
Rankinglistof __,|  Cluster Iabels= Selection Final feature
BoW histograms Discovery (SL) subset
Y 1
| IR SN, J
Feature subset

Fig. 5.2 The procedure for the unsupervised wrapper approach, where a ranking list of BoW
vectors is fed into a clustering algorithm whose results are used to perform feature selection.
The unsupervised cluster discovery procedure is performed by the single-linkage (SL) method,
generating “class labels” for each cluster. These cluster labels are used by the feature selection
method

Let h(r) denote the BoW vector corresponding to the r-the training image in
Eq. (5.20), with &; denoting the j-th element of any vector h. For the ranking result
in Eq. (5.20), there are a total of R training samples, each of which is denoted by an
M-dimensional vectors:

h(r)= ) ob=1,...,R (5.21)

e

H=[h(1),h(2), h(R)] (5.22)

- : : | : (5.23)
ot (1) B (2) .. g (R)

Let the dimension-reduced representation of h(s) be denoted as an m-
dimensional vector:

yr) =1 (), (), ..., ym (M), r=1,...,R (5.24)

where m < M. The feature selection algorithm chooses m most useful features from
the original M features. Each of the new representations y; (r),i = 1,...,m will be
simply one of the original features.
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In order to obtain y; (r), the class labels of the training data are used to define
the scores of individual features. Such scores can effectively reflect the feature’s
capability in discriminating positive and negative classes. A feature’s score can be
effectively represented by its SNR (Signal-to-Noise Ratio) score, which is defined
as the ratio of the signal (inter-class distinction) and noise (intra-class) perturbation
respectively. We adopt {u™, 14~} and {o+,07} to denote respectively the class-
conditional means and standard deviation of the (positive/negative) classes. These
parameters are computed from the row vectors of H in Eq.(5.23). The Fisher
Discriminant Ratio (FDR) [165] is utilized for the calculation of the SNR score:

_\2
(H}L*ﬂj)

(1) +(7)

where /.17, My, 67, and O represent the class-conditional means and standard
deviations of the j-th feature, respectively.

In this case, the magnitude of scores for all features, i.e., {|FDR ()] }1]”: | can
be used to measure the relevancy of their corresponding features. More exactly, the

FDR(j) = (5.25)

features {h j}]jl./lzl can be ranked accordingly to their scores {|FDR (j)] }]}/[:1, and a
fraction of the lowest-ranked features will be eliminated. The selected feature set is
denoted as:

This feature set is further divided into two subsets:

V1sY2s - VT, VT 41, YT 4201 Ym (5.27)

Y/ Y//

where Tj is the threshold value, and the subset Y’ contains the features having SNR
scores greater than those of the subset Y.

The feature selection process can be summarized by its flowchart shown in
Fig. 5.3. In the final step, the selected features in Y’ and Y” are used as a weighting
factor for the original BoW features of the query, h, = [h‘l’, .. ,hm ! According to
the indexes of features in Y/, and Y”, the j-th element of the query is modified by:

h;1~+81yj, y; € Y’
h? = hlll —&yj,yj € Y” (5.28)

h‘ll otherwise
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where €1, and &; are the positive constants. Note that, all other features of the query
h;’, j€{1,...,M} remain unchanged if these features are not members of the feature
subsets Y and Y”.

The query modification obtained by Eq.(5.28) is analogous to the pseudo-
relevance feedback method discussed in Chap. 3. The relevant features are added to
the original query, while the features with a lower degree of relevancy are subtracted
from the query. In this way, the structure of the modified query will be more similar
to the relevant samples, so that the cosine similarity function will be high and the
distance in Eq. (5.18) will be low. This results in a reduction of the loss,

7 <& (5.29)
N

£ =Y R(x)Dy(I,1,) (5.30)
x=1
N

L= Y R(x)Dy (I, I'y) (5.31)
x=1

where I’ denotes the query image which has the BoW features modified according
to Eq. (5.28).

Training vectors

|

Compute

{FDR())}

A 4

Sort {|[FDR())[}

A 4

Remove low-
rank features

A 4
Original Feature
query weighting
Modified query

Fig. 5.3 Flowchart for feature selection and query modification
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5.5.3 Recognition Function

In a landmark recognition system (e.g., [346]), the image database contains images
I1,b,...,Iy, each of which belong to one of the c-classes, {Cy,Ca,...,C.}. Thus,
these available class labels can be assigned to a new landmark image queried by
a user. For this recognition task, the system obtains the matching image using
Dy (Ix,1;), Vx=1,2,...,N and the best matching image is selected. Its class label
is then assigned to the given query I,.

In the current work, the class assignment to the query is performed differently,
by using the ranking list. The top-R retrieved images are firstly obtained, i.e.,
Query (I'g) = {A1,As,...,Ag|Dq (Ai,I'y) < D4(Ag,I'y)}. The class labels of these
images are also retrieved. Since the modified query A’; is expected to be more
effective than the original query, the retrieved image set will contain more relevant
images, i.e., higher probability of relevant images in the top-R retrieved images. The
probability can be measured by:

‘Cc|R
R

P(Cc[{A1,Az,...,AR}) = (5.32)

where |C,| g is the number of occurrences of the c-th class label, C, of the retrieved
images in the top-R best matches. With this definition, the class label assigned to
the query is obtained by the class labels that occur the most frequently in the top
matches, i.e.,

¢t = argcmaxP(CC| {A1,Az,...,AR}) (5.33)

The query image will be assigned to the class ¢* of the landmark images in the
dataset.

5.6 [Experimental Result

In the experiment, two datasets of landmark images were constructed. The first
database is the Singapore landmark dataset containing 50 categories with 4,060
images in total. The second database is the World landmark dataset containing
72 categories with 8,847 images in total. Each category is associated with the
landmark, and includes multiple images of each landmark. These images were
originally collected from the internet. Sample images from the Singapore and World
landmark databases are shown in Fig. 5.4. Images were divided into two subsets:
training and testing for demonstrating the recognition performance of the system.
Figure 5.5 shows samples of training and testing images from the Art Science
Museum category in the Singapore landmark database. These images were taken
at different viewpoints, and their apparentness are varied according to the camera
viewpoints.
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Table 5.1 Average recognition accuracy (%). Performance comparison
for the Singapore Landmark Dataset

Method I Method I1
No. | Train:test | SA + SVT + Re-ranking | SA + SVT | Difference
1 90:10 81.87 78.93 2.94
2 80:20 72.67 70.68 1.99
3 70:30 65.43 63.94 1.49
4 60:40 59.67 59.11 0.56
5 50:50 56.8 55 1.8

Table 5.2 Average recognition accuracy (%). Performance comparison
for the World Landmark Dataset

Method I Method 11
No.| Train:test | SA + SVT + Re-ranking | SA + SVT | Difference
1 90:10 71.25 76.01 1.24
2 80:20 67.89 66.36 1.53
3 70:30 60.58 59.41 1.17
4 60:40 56.82 55.67 115
5 50:50 52.24 50.83 1.41

The experimental results were analyzed in two parts. The first part presented the
performance of the re-ranking method with the procedural parameter adjustment. In
the second part, the recognition accuracy of the re-ranking method was measured
at different ratios of training images and testing images, and compared to the
previously proposed method discussed [346].

The procedural parameters for the re-ranking approach are: R [the number of top
retrievals for training in Eq. (5.20)], and the weight parameters €1, £; in Eq. (5.28).
The system was tested at (€1,€2) = {(0.2,0.8),(0.5,0.5),(0.8,0.2)}. For each
setting, the value of R was varied from R = 3,...,20. It was observed that the
recognition accuracy for the Singapore landmark database at 90:10 ratio of training
and testing was at 81.6 % at R =4 and (g1,&2) = (0.5,0.5). Next, R was fixed at
4 and the values of weights (£1,€2) were varied from 0.1 to 0.9. The best result
was obtained at 81.9% at €1 > 0.6 and &, < 0.3. According to Eq. (5.28), this
result indicates that the new query should be modified by adding the most important
features and subtracting the less important features. The parameter €; should be
greater than €.

In the second part of the experiment, both of the datasets were used. The dataset
in each category was divided into two groups; training group and testing group, in
the ratios of 90:10, 80:20, 70:30, 60:40 and 50:50. This experiment compared the
two methods, which were the re-ranking method implementing SA, SVT, and re-
ranking, and the SA and SVT methods demonstrated in [346]. The experimental
result is shown in Tables 5.1 and 5.2.
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Fig. 5.4 Sample images. (a) Singapore landmarks. (b) World landmarks

Table 5.1 shows the comparison of the percentage accuracy of recognition for
the Singapore landmark database, obtained by the SA + SVT + Re-ranking method
and SA + SVT method. The highest recognition rate was 81.87 % at the training and
testing ratio of 90:10. It is observed that the SA + SVT + Re-ranking method has a
greater percentage accuracy than the SA + SVT method, regardless of the ratios of
training and testing discussed. At 90:10 ratio, the best performance of both methods
can be attained.
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Fig. 5.5 Samples images used for (a) training and (b) testing in the Art Science Museum category

Table 5.2 shows the comparison of the percentage accuracy for the World
landmark database. The highest score was 77.25 % at the 90:10 ratio, obtained
by the SA + SVT + Re-ranking method. The results observed for the Singapore
landmark database can also be observed for the World landmark database with
regard to the performance of the methods being compared. The system which
implemented the re-ranking method outperformed the baseline recognition system
which implemented the SA and SVT methods.

5.7 Summary

The chapter extends the conventional Bag-of-Words (BoW) method for image
content indexing to a discriminating BoW method for landmark recognition. Both
scalable vocabulary tree (SVT) and BoW representation can be applied with
the nonlinear discrimination power, by taking into account saliency weighting
in image recognition. The discriminating BoW model is obtained by the feature
selection and re-ranking processes, based on an unsupervised wrapper approach.
This feature selection method has a great effect on learning efficiency and/or
prediction performance.



Chapter 6
Image Retrieval from a Forensic Cartridge
Case Database

Abstract This chapter presents a content-based image retrieval method for firearm
identification. The reference and the corresponding cartridge base case images
are aligned according to the phase-correlation criterion on the transform domain.
The informative segments of the breech face marks are identified by a cross-
covariance coefficient in a window located locally in the image space. Mea-
surements of edge density for these segments are made to compute effective
correlation areas for image matching. This image matching system can attain
significant improvement in image-correlation results, compared with traditional
image-matching methods for firearm identification. The system will enable forensic
science to compile a large-scale image database to perform a correlation of cartridge
case bases, in order to identify firearms that involve pairwise alignments and
comparisons.

6.1 Introduction

The comparison of ballistic images taken from ballistic evidence found at a crime
scene against reference images is the main issue in forensic science for firearm
identification. The development of accurate analytical tools and systems is highly
desirable. This chapter presents a method to address this issue based on two
techniques: automatic registration of images containing breech face marks, and
content-based matching of cartridge base case images.

Recently, there has been much research interest in techniques dealing with image
processing and the statistical methods used to ascertain ballistic specimens [166].
By employing such techniques, a ballistic information system (BIS) can provide
the automated association of ballistic samples—correlation lists against a given
query specimen. In view of the difficulty in obtaining a complete match, this system
can only provide a statistically viable match or an investigative lead that allows
a forensic examiner to microscopically examine the evidence, to then arrive at an
identification that can be used to apprehend and convict a criminal.

An effective correlator is therefore the most important module in the BIS. It
interprets the contents of ballistic images in a collection, and ranks these images
according to the degree of relevance to the user query. This chapter presents a
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method for improving the accuracy of the correlator, which is based on the selection
of effective correlation areas (ECAs), preventing bad areas from being used for
correlation purposes. Bad areas are areas of the ballistic image that do not contain
useful, reproduced toolmarks. Generally, these areas are consciously ignored by a
firearm examiner during his visual checking. But including data located in bad areas
in the correlation results in a lower correlation score, and can seriously compromise
the performance of an automated system.

Given that the cross-correlation function is important for the ballistic image
comparison as demonstrated by Chu et al. [167], Vorburger et al. [168, 169] and
Weller et al. [170], in the current work, a method is presented for improving the
discriminating power of the correlator using automatic image registration and the
characterization of the ECA. The proposal for the adoption of automatic registration
takes into account the translation of images in all three axes, as well as a scaling
change for the proper alignment of the compared images. Unlike the works of
Vorburger et al. [168, 169], in which the image correlation is obtained right after
registration, the current work extracts the ECA before obtaining the similarity score.
This increases the score value of the potential match, as well as the discriminating
capability of the system, increasing the accuracy of firearm identification.

6.1.1 Firearm Ildentification Procedure

Traditionally, investigators identify the ballistic specimen from a crime scene with
a reference specimen, by mapping the marks with visual images from two cameras.
Images of the cartridge case of the firearm are captured using a personal computer
and frame-grabber in conjunction with 40x microscopes fitted with two color
charge-coupled device (CCD) cameras (Fig.6.1). A ring light source is adopted,
which can provide uniform lighting conditions. In order to match both specimens,
a number of features within the identifying marks are chosen for their apparent
uniqueness. A decision is made as to whether the same firearm made the marks
under examination at the crime scene and in reference specimens. The critical step
here is the selection of the mark or set of marks for examination and comparison.
Figure 6.2 shows some examples of matching marks obtained by the system.

In comparison, Fig. 6.3 shows the automatic system for matching cartridge base
case images. Images of the reference specimens are stored in the database, and each
of them is compared to the image of the ballistic specimen from the crime scene.
The identification process consists of the following three steps: L2-norm energy
normalization, image registration, and ECAs-based image matching.

The quality of the captured image of a cartridge specimen can be affected by
noise and lighting conditions. Poor lighting conditions and wrong setting of the lens
aperture during image acquisition can result in a low-contrast image. Thus contrast-
enhancement transformation is used when the image is obtained by the system.
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Fig. 6.1 Cartridge base cases and 40x microscopes fitted with two color charge-coupled device
(CCD) cameras

Fig. 6.2 Example of images captured by the imaging system, organized as image pairs showing
similar marks from the same firearm

The contrast-enhancement transformation is applied to the image by the L2-norm
energy normalization. This utilizes a relative gray scale to enhance the two images
being compared according to their energy. The enhancement method is different
from the traditional enhancement methods, which usually transform image intensity
into some standard scales. Let {f[i,k]} and {g[i,k]} be, respectively, the reference
image and the corresponding cartridge case images being compared, where i,k
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Fig. 6.3 Flow diagram describing automatic matching of cartridge base case images

represent the pixel indices. The two images are enhanced by the contrast scale
relative to each other. This scale follows the energy of the signal (i.e. /2-norm),
which is shown as follows:

ZIfli M) = munﬁﬁfkﬁ[i’k]),V(i,k) ©.1)
round (a x g[i,k])

g [i,K] |

T gli,k]] = YV (i, k) (6.2)

where 7 is the transformation function, a is the average of the /2-norm of {f[i, ]}
and {g[i,k]}. Based on Egs.(6.1) and (6.2), the energies of the two images are
adjusted to the same base line, using the averaging of the /2-norm.

In the second step, image registration is used in the geometric transformation
of the image {g[i,k]}. The image is adjusted according to translation, rotation, and
scaling. The registration uses the image { f [i,k]} as the reference image and adjusts
the image {g[i,k|}. We denote {£[i,k]} as the geometric transformation of {g[i,k]}.
As a result, as shown in Fig. 6.3, the image {g[i,k]} is adjusted according to the
reference image { f [i,k|}, with the same translation, rotation, and scaling.

In the third step, the two images are matched by a correlator. The correlator
utilizes the cross-correlation coefficient of the two images, which is defined as [171]:

S (FA ) (64 - )

C(f s
(£,8) OFX 0 xMxN

(6.3)

The C value in Eq. (6.3) is the normalized cross-correlation coefficient of the two
images: {f [i,k]} and {g[i,k]} of size M x N. In addition, both ¢ and G values are
the standard deviations of the two images. Moreover, both ut , and 11, values are the
mean of the two images. It follows from Eq. (6.3) that |C| <1 .If |C| =1 then both
{fi,k]} and {g[i,k|} images agree with each other; however, if |C| = 0 then both
{f[i,k]} and {gi,k|} images disagree with each other.
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The similarity function in Eq. (6.3) has been demonstrated by the related works
[168—170]. In comparison, the method introduced in the current work extracts ECAs
before computing the similarity. This increases the discriminating power of the
correlator in identifying the firearm. The method for extraction of ECAs is explained
in Sect. 6.3.

6.2 Image Registration Using Phase-Correlation Method

Image registration is the process of determining the correspondence between two or
more images in a point-by-point manner. These images may be taken of a scene at
different times, by different sensors, or from different viewpoints. The parameters
that make up the registration transformation consist of translation in x and y, rotation
angle around z, and scaling. These can be computed directly, or determined by
finding an optimum of some functions defined on the parameter space. In the
domain of image analysis for ballistic identification, Chu et al. [167] calculated
these parameters by optimizing a specified similarity metric using the Newton—
Raphson method. Chu et al.’s work [167] is an attempt to register pairs of topography
measurements of standard cartridge cases. The image registration is applied to align
the master standard cartridge case and its replicas before the similarity between
them is calculated.

In the current work, the phase correlation technique demonstrated by Reddy and
Chatterji [172] is adopted to obtain parameters for image registration. Unlike the
registration method in Chu et al. [167] that uses image pixel values directly, the
current work proposes the adoption of the algorithm that uses the frequency domain.
The Fourier domain approach is used to match images that are translated, rotated,
and scaled with respect to one another. The algorithm searches for the optimal match
according to information in the frequency domain. The mathematical algorithms for
translation, rotation, and scaling are described in the following sections.

6.2.1 Parameter Estimation for Translation

Let {f[i,k]} denote the reference image, 0 <i <M —1,and 0 <k <N —1, for an
image with M row pixels and N column pixels. Let {g[i,k]} be the reference image
with shifted position by a pixels in row direction and b pixels in column direction,
that is:

g[iak} :f[ifakab] (6.4)
According to Gonzalez and Woods [173], we can find the Fourier transform of image

{g[i,k]} using:

G L}‘/[Z i e 1271' M“rn%) (6 5)
MN i .
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Substituting g [i,k] = f[i —a,k— b] in (6.5) yields:

1 M- IN- o ik
Glmn) =+ ; ; fli—ak—ble2x(mitny) (6.6)

M—1—aN—1-b
MIN Y Y flu]e ) (6.7)

u=—a y=-b
_ e—j27t(mﬁ+n%)F [m’n} (6.8)

The relation between the first line and the second line is obtained by substituting
index i and k with i = u+a and k = v+ b, and F [m,n] is the Fourier transform of
image {f[i,k]}. Taking the complex conjugate F* [m,n] to multiply the relation in
Eq. (6.8) produces:

Gm,n|F*[m,n] = e~ i2m(miy tny) p [m,n] F* [m,n] (6.9)
= ¢ 2r(miy %) |F [, ]| 2 (6.10)
= ¢ 2R R) |G [m,n)| |F [m,n]| 6.11)

The relation from the second line to the third line is obtained by substitution of
|F[m,n]| with |F[m,n]| = |G[m,n]|. Equation (6.11) can be written in the form of a
Cross-power spectrum as:

b

Glm,n) F*[m,n] —j2n(m&+nk)
Gl TF sl ~* (6.12)

According to Gonzalez and Woods [173], we can obtain the inverse Fourier
transform of the cross-power spectrum using:

M—-1N—-1 . —
z zefzn- ﬁ th):{MN,'l—a7k—b (613)
== 0, i#a k#b

= MN-8[i—a,k—b] (6.14)

where 0 [i —a, k — b] is equal to zero at index i # a and k # b, whereas 6 [i — a,k — D]
is equal to one at index i = a and k = b. At this position, we can find the parameters
for image translation between the two images in the row direction by a pixels and
in the column direction by b pixels.

6.2.2 Parameter Estimation for Rotation

Let {g[i,k|} be the reference image {f[i,k]} that rotates by 6 and translates by a
pixels in the row direction and b pixels in the column direction. The relation of the
gray scale corresponding image can be written as:
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{gli,k]} = flicos 6+ ksinBp — a, —isinOg + kcos O¢ — D] (6.15)

where index 0 <i <M —1and 0 < k <N — 1 for an image of size M row-pixels and
N column-pixels. Following the property of Fourier transformation [173], we can
obtain the Fourier transformation of {g[i,k]} that is related to the Fourier transform

of {f[i,k]} by:

. a M N
Gm,n]= e 2r(mizng) o F [mcos 0o+ % sin O, —mﬁ sin Oy +ncos Oy

(6.16)
with the corresponding magnitude of G [m,n] which is equal to:
M N
F | mcos 6o+ " sin 0, — 2 sin B¢ + ncos 6o (6.17)
N M
When M = N, we have the following relationship:
|G [m,n]| = |F[mcos B¢+ nsin By, —msin O + ncos O)| (6.18)
Let |G[m,n|| = Mg|m,n] and |F [m,n]| = Mp[m,n], and then the relationship
shown in Eq. (6.18) can be rewritten as:
Mg [m,n] = Mg [mcos 0y + nsin 6y, —msin 6 + ncos 0] (6.19)

From the relationship in Eq. (6.19), the translation parameters disappear, leaving
only rotation parameters. The estimation of the parameters for rotation starts with
changing the magnitude of the Fourier transform from rectangular coordinates [m, n]
to polar coordinates [r, 8] by substituting index m = rcos 6 and index n = rsin 6 into
Eq. (6.5). The Fourier transform in polar coordinates can be obtained by:

M—1N—
ML z Z lk e —j2r rcosOM+r%m9 ) (6.20)

Similarly, the Fourier transform in polar coordinates of f[icosfy+ksinfg —
a, —isin g+ kcos 6y — b| can be obtained by:

sz u, V e j277:((mc0390+n sinbg) 47+ ( m%sineoJrn COSQ())%) 6.21)

Next, substituting m = rcos@ and n = rsin0 into Eq. (6.21) produces the Fourier
transform in polar coordinates:

22 f[M;V] efj2ﬂ(rcos(6790)%+rsin(6790)%) —F [V, 0 — 90] 6.22)
~"MN
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From the relations in Egs. (6.17)—(6.22), we can write the relationship between the
magnitudes of the Fourier transform of the two images in polar coordinates as:

MG [r, 9] = MF [r, 06— 90] (623)

From the relationship between the magnitudes in Eq. (6.23), it can be viewed as a
function having an independent variable in rectangular coordinates with » = i and
6 = k, the same as for Eq. (6.4). Thus, we can obtain the cross-power spectrum as
in Eq. (6.12) and the inverse Fourier transform of the cross-power spectrum as in
Eq. (6.14). This yields the result in the form of a delta function, that is,

N?8[r,0 — 0] (6.24)

It can be observed that the maximum peak value of this function is attained at 6 =
69, which is the parameter for the rotation of the images.

6.2.3 Parameter Estimation for Scaling

If {g[i,k]} is scale replica of {f[i,k]} with scale factor o, we can write the relation
{gli,k]} = {f[oi,0k]}. According to the Fourier scale property, the discrete-time
Fourier transform of {g[i,k]} and {f[i,k]} are related by:

(6.25)

o= (2]

By converting the axes to logarithmic scale, scaling can be reduced to a translation
movement,

G [logm,logn] = Fllogm —log o,logn — log o] (6.26)
That is,
Glm' 0| =Fm'—d n—d] (6.27)
where m' = logm, n’ =logn, and o’ =logar.
According to Egs. (6.23) and (6.25), if {g[i,k|} is translated, rotated, and scaled

to replicate {f[i,k]} , their Fourier magnitude spectra in polar representation are
related by:

Mg [1,6) = My {é 60— 90} (6.28)



6.2 Image Registration Using Phase-Correlation Method 155

In log-polar coordinates [174], the logarithm of the radius axis is taken by: (¥, 8)=
(logr, 6). Thus the relationship in Eq.(6.28) can be viewed in the logarithmic
scale as:

Mg [r’,e} = Mp [FI—OC/,G—G()] (6.29)

From the relationship of their magnitude spectra, Eq. (6.29) can be viewed as the
function with independent variables in Cartesian space with ' =i and 0 =k,
same as for Eq. (6.4). Thus, the phase correlation technique can be applied using
Eq. (6.12) followed by the inverse Fourier transform Eq. (6.14). This results in the
delta function,

N5 [ —o,0 -6y (6.30)

where ' = logr, and o = loga. It is observed that the maximum value of this
function is attained when 0 = 0g and ¥ = o'

6.2.4 Registration Accuracy

In order to measure the efficiency of the algorithm for automatic alignment of the
cartridge base case images using the phase-correlation technique, the following
mean square error was employed:

M SN (gli K] —8[ik])
M3 (gliK)?

Pm= x 100 % (6.31)

where gli,k] and g[i,k] are respectively the grayscales of the target image and
the reference image after they were geometrically transformed with registration
parameters (i.e. translation, rotation, and scaling). In addition, the error of the
estimated parameters between the reference image and the target image was
measured by p ,,

o Tl -ali)y’
PR )

% 100% (6.32)

where ¢[j] are the parameters used for geometric transformation between the
reference image and the target image; §[j] are the parameters used for geometric
transformation estimated using the phase-correlation technique; and K is the total
number of parameters used for the experiment.

In the experiment, the test was conducted for three cases of translation, rotation,
and scaling. The first case estimated the parameters for translation. In Fig. 6.4, a
reference image of size 480 x 640 was translated from O to 40 pixels, increasing
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Fig. 6.4 Image samples generated by translation of the reference image of size 480 x 640 from 0
to 40 pixels increasing along the vertical and horizontal axis with the step size of 5 pixels
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Fig. 6.5 Image samples generated by rotation of the reference image of size 480 x 640 from 0 to
175° with a step size of 5°

along the vertical and horizontal axis with a step size of 5 pixels, producing a total
of 80 samples. In the second case, we estimated that the rotation parameters of the
image changed from O to 175° with a step size of 5°, producing a total of 36 samples,
as shown in Fig. 6.5. Finally, the third case estimated that the parameters for scaling
ranged from 0.1 to 2.0.

The experimental results from the first case for 80 translated images showed that
the error rate from the registration of images caused by translation was 0 % for all
samples (i.e. p,, = 0%). This is shown by the graph in Fig. 6.6. In addition, when
compared with the graph of the translation parameters between the real value and the
estimated value in the horizontal plane (z,) and in the vertical plane (t,), the graphs
are straight lines passing through the origin with a slope of one. This shows that the
error of the estimated translation parameters was zero, p, = 0% for all samples in
both horizontal and vertical directions.

When testing the algorithm with the pair of images obtained by rotation of the
image with size 480 x 640 pixels for all 36 pairs from 0 to 175°, it was found
that the error of image registration caused by rotation was less than 4.73 % for all
samples (i.e. p,, < 4.73%). This is shown by the graph in Flg 6.7a. Moreover, a
comparison between the real 6 parameter and the estimated 6o parameter for the
rotation in Fig. 6.7b shows that the graph is a straight line. Table 6.1 summarizes the
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Tabl.e 6.1 Comparison. of 60 | 0o o, |60 8o P
rotation parameters for image

registration for real values of 0 0 0.00 | 90 | 905 |2.49
rotation parameter (o) 5 5.0 /0.02 | 95 | 955 |2.62
versus the estimated values 10 | 10.1 1 0.06 | 100 | 100.6 |2.75
(8o) obtained by phase 15 151 0.2 [ 105 1056 |2.90
correlation 20 [20.1 1020 | 110 | 110.6 |2.99

25 |25.1 |0.30 | 115 |115.6 |3.07
30 130.2 |0.41 120 |120.7 |3.18
35 1352 |0.54 125 |125.7 |3.30
40 |40.2 1 0.67 | 130 |130.7 | 3.44
45 453 080 | 135 | 135.8 | 3.66
50 /50.3 |0.97 | 140 | 140.8 |3.77
55 |553 | 1.14 | 145 | 145.8 | 3.90
60 160.3 |1.33 | 150 | 150.8 |4.04
65 654 |1.54 155 | 1559 |4.17
70 |70.4 | 1.74 | 160 |160.9 |4.30
75 |75.4 196 | 165 |165.9 |4.43
80 80.4 |2.15 170 |170.9 |4.57
85 |85.5 233 175 |176.0 |4.73

The table also shows the mean square
error of image registration (p,,)

comparison of rotation parameters between the real value and the estimatedvalue
for all samples, which shows that the error rate for parameter estimation was
p,=0.37%.

Table 6.2 shows the experimental result for registration with scaling parameters.
The proposed algorithm estimates all 20 scale factors at the error of p,, = 0.01 %.
This causes the mean square error for image registration to be p,, < 5.3% for all
samples.

According to the above results for all three cases, it can be observed that the
estimated parameters for translation for the registration of the 480 x 640 image were
the perfect result. However, the estimation of the rotation and scaling parameters
produced error rates of less than 4.73 % and 5.3 %, respectively. The factor that
influenced the rotation error arose because the dimension of the two images was
not rectangular, as assumed by the estimation process described by Egs. (6.24)
and (6.30).
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Fig. 6.6 Registration error by translation: (fop panel) mean square error of image registration
from translation of 80 couple images from 0 to 40 pixels; (bottom panel) comparing the real and

estimated values of translation parameters
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Fig. 6.7 Registration error by rotation: (/eff) mean square error of image registration from rotation
of 36 couple images from O to 175°, (right) comparing between the real and estimated values of

rotation parameters

6.3 ECA-Based Image-Matching Method

One of the critical parts of a matching operation is the creation of ECAs from
the acquired images. This is particularly true for practice cartridge-case images,
which contain a lot of random masks that are not relevant to the matching operation.
These random masks are consciously ignored by a human examiner during his/her
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Table 6.2 Comparison of o P o
scaling parameters for image 0100 10.100 5';
registration between real : : :

values of scale parameter (¢t) 0200 |0.199 |25
and the estimated values (&) 0.300 | 0.301 1.8
obtained by phase correlation 0400 10399 |12

0.500 |0.500 |0.9
0.600 | 0.603 1.1
0.700 0.700 |0.5
0.800 0.798 |0.5
0.900 0902 |0.6
1.0000 | 1.0000 |0.0
1.100 | 1.088 |2.6
1.200 |1.184 |3.1
1.300 | 1.288 |1.6
1400 |1.388 |14
1.500 |1.483 |22
1.600 | 1.583 1.8
1.700 |1.691 |09
1.800 |1.788 |1.0
1.900 |1.874 |22
2.000 | 1.983 1.1
The table also shows the

mean square errors of
image registration (p,,)

visual checking. Specifically, a selected matching area is determined based on its
capability of characterizing the impression marks on the reference image, which
is highly correlated with the corresponding area on the target image at a suitable
alignment position. In addition, the selected area is conveyed as a mark instead of a
background or other normal area, because the mark is usually described by a certain
magnitude of gray-level discontinuity as constituting a significant edge feature.

The adoption of the current ECA method is motivated by the observation of
this human approach to visual checking with regard to the notion of the selected
matching area. To incorporate this criterion into the image matching process, it is
natural to adopt the ECA-extraction method where each selected-matching area is
designated by its corresponding high value of the similarity score using a cross-
covariance coefficient (CCC). This process ignores non-relevant areas where the
CCC value is below a predefined threshold value. Edge-density measurement is also
used to ensure that the selected area contains the features. In view of this, both the
CCC value and the edge density are utilized to select an ECA located locally on the
pair consisting of the reference image and the target image.

Let f[i, k] be the reference image, and g [i, k] be the target image after registration
to the reference image. In a matching process, the cross-correlation function (CCF)
is usually applied to measure the similarity between the reference image f[i, k]
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and the target image g [i, k] [cf. Eq. (6.3)]. In the current work, however, ECAs are
extracted from the two images before the CCF values are calculated. Both images
are spatially normalized so that the pixel values outside the ECAs are taken to be
zero. This normalization process results in the output images, f[i,k] and &’ [i,k],
which are then used to obtain the CCF value for similarity measurement. This is
explained in Sects. 6.3.1 and 6.3.2.

6.3.1 Local Normalization with Cross-Covariance Function

The CCC is referred to as a bias-independent measure for two-dimensional discrete
data [175]. For extraction of ECAs, the CCC is first used for characterization of
the similarity of the individual parts of the image in order to eliminate the local
irrelevant region, thus defining the locally-normalized image data. Specifically, each
coefficient CCC, for s = 1,...,S is associated with a subset Z; C 2, where 2
denotes the set of points in a Ny x N, image lattice:

Z ={(i,k): 1 <i<Ny,1<k<N,} (6.33)

and where the regions %, forms a partition of 2~

%Sl 0%32 =0,51 # 85 (6.34)
N
Uz =2 (6.35)

Here, image lattice 2 is partitioned into non-overlapping square blocks of size
nxn.

The selection strategy is to first classify each region % for s € {1,...,S} as
relevant or non-relevant, and then derive the normalized image data. The preliminary
classification was performed by adopting the following local CCC; measure [176]
for each region:

32 (g1 K] — g2 [K])*

X (6.36)
1 (a1 k)

CCC\ (fs‘ag,\s) =1-

where {f;[i,k|} denotes the grayscale value of the reference image within the region
Ky, that is, {f;[i,k]} = {f[i,k] : (i,k) € Z}, and {§,[i,k]} denotes the grayscale
value of the target image within the region %, that is, {g[i,k]} = {g[i,k] : (i,k) €
%s}. The {q, [k]} sequence in Eq.(6.36) is a feature sequence whose elements in
descending order are obtained from the auto-covariance matrix of the reference
image { f; [i,k]}; that is, Cys[i, k] defined as [171]:
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S S (Bl —uy) (Al—iy—H—py)

Crrlik] = : : 6.37
s K G%xnxn 6.37)

where (1, and o7 are the mean and the variance of the reference image { f; [i,k]},
respectlvely Furthermore, the {q, [k]} sequence in Eq. (6.36) is a feature sequence
whose elements in descending order are obtained from the cross-covariance matrix
between two images: {f; [i,k]} and {g,[i,k]}; that is, Cys [i, k] defined as [171]:

s (Rl ng) (B — iy =k )
Crelik] = (6.38)
Of X O XnXn

where 1, and o, are the mean and the standard deviation of the reference image
{8s[i,k]}, respectively. It may be observed that if the cross-covariance coefficient
CCC; approaches unity, both images absolutely agree with each other.

The current region, %; is then classified as either relevant or non-relevant
according to the value of CCC; (f;, &) relative to a threshold value of &y . This
results in:

where .7 is the set of selected indices and s € {1,...,S}. By Eq.(6.39), we can
define all the relevant image regions as:

Z = % (6.40)

s€S

and the resulting output image lattice containing those relevant points can be
obtained from:

2 ={(i,k): (i,k) e Z'} (6.41)

Finally, the normalized versions of the reference image and the target image are
obtained by:

(F 1K)y = {fli.k]: k) e 27 (6.42)
(8'[i,k)} = {8,k : i,k e 27"} (6.43)

In the normalized images, pixels located outside the relevant region, that is, at
position (i,k) ¢ 2", are set to zero.
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6.3.2 [Edge-Density Measurement

In the previous section, the ECAs are characterized by the degree of similarity (the
CCCy value) between the reference and the target images within a predefined region,
Zs. The resulting ECAs may not be representative of the impression marks, since
images containing no marks can contribute to the high value of CCC; if the two
images are highly correlated. In other words, in the first stage, we only locate
the highly-correlated area on the two images. Here, the second stage requires the
specification of a measurement which describes the notion of a significant mark
area. Edge-density measurement as demonstrated in Chu et al. [177] was applied
to accomplish this task. The adoption of the current measurement technique was
motivated by the previous research results showing that a striation mark produced
on the bullet surface image constitutes a significant edge feature. This criterion is
incorporated into the ECA-detection process by using edge density measurement
and applying it to the predefined region, Z;.

The edge detection is used to localize the edge in the region %; of the
reference image {f;[i,k|}. The Canny edge detector [178] is used to perform edge
detection. Instead of using a global threshold value specified by the user, the Canny
edge detector adopts the so-called hysteresis thresholding operation, in which a
significant edge is defined as a sequence of pixels with the edge magnitude of at least
one of its members exceeding an upper threshold value, and with the magnitudes
of the other pixels exceeding a lower threshold value. The pixel points judged to
be edges are evaluated as “1”, while other pixel points judged to be non-edge are
evaluated as “0”. The edge density (ED) [177] is utilized to describe the ratio of the
number of edge pixel points to the total pixel points of the n x n reference image

{fs [k},

ED, — number of pixels at the edges

" (6.44)
The ED; value quantifies that the region %, contains all detected features on refer-
ence image { f; [i,k]}. This includes useful features associated with the impressions.
The EDj; value is used together with the CCC; value to classify the current region
Py as either a relevant or non-relevant area according to a threshold value of & ;1.
Thus, the Eq. (6.39) can be rewritten as:

I ={s5:(CCCs > Ecoy) N (EDs > Eppg)} (6.45)

where “A” is the logical AND operation. The remaining process of the extraction
of the ECA then follows Eqgs. (6.40)—(6.43). With this definition, any region %
is regarded as an ECA if the associated sub-images of the reference and the target
images are highly correlated and the sub-image of the reference contains a sufficient
edge feature relative to a predefined threshold value.
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Table 6.3 Averaged cross-correlation scores for the ten pairs of cartridge cases fired from
ten shotguns

CCEF after registration

Cartridge cases being correlated CCF of the original | Without ECA | With ECA
Code 101 vs. Code 102 0.7972 0.7784 0.9276
Code 201 vs. Code 202 0.4029 0.1632 0.8158
Code 301 vs. Code 302 0.4307 0.2920 0.8540
Code 401 vs. Code 402 0.1567 0.0036 0.8776
Code 501 vs. Code 502 0.3584 0.3025 0.8611
Code 601 vs. Code 602 0.4158 0.5749 0.8724
Code 701 vs. Code 702 0.5140 0.4985 0.8116
Code 801 vs. Code 802 0.0996 0.0139 0.7434
Code 901 vs. Code 902 0.2913 0.0348 0.8123
Code 1001 vs. Code 1002 0.3026 0.3559 0.8874
Average 0.3769 0.3017 0.8463

6.4 Experimental Result

In the experiment, the system performance was measured when the system was
utilizing the registration algorithm, cross-covariance function, and edge mask for
characterization of the ECA. All test fires were taken from twenty test fires (2
cartridges x 10 firearms) that were imaged by 40x microscopy at a resolution of
480640 pixels. Each unit had its image measured in the region of the firing-pin
impression and breech-face impression. The ten firearms used in this study are the
same type of shotgun, the same brand of ‘Remington’, and the same model of 8§12
with four different serial numbers: C109219, C88922, C123355 and C86487. The
images were indexed according to their classes: images named Code 101 and Code
102 are from class 1, whereas Code 201 and 202 are from class 2, and so on. A
program has been developed, which automates the methods discussed previously,
and produces cross-correlation scores for each pair of cartridge cases. Table 6.3
shows a list of averaged CCF values for all ten pairs of cartridge cases fired from
ten different shotguns. The matching methods that were compared are Method 1:
CCEF of original images, as presented in Geradts et al. [179]; Method 2: CCF of the
original images after registration, as presented in Vorburger et al. [168]; and Method
3: CCF of the pairs with ECA extraction presented in the current work. Note that
the normalization process discussed in Egs. (6.1) and (6.2) was applied for all three
methods. The CCF value-matching pair is close to one for a perfect match.

For all ten lists, the average CCF obtained by the ECA method had a value of
0.85, where a value of 1.0 would be a perfect score. This matching rate is about 47 %
higher than that obtained with a widely-used system in which the images are directly
correlated without the selection of effective correlation areas and registration [179],
and about 55 % higher than that of Method 2. This quantity can be used to indicate
the reliability of identifying cartridge cases fired from the same firearm using a
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correlator. It can be observed from Table 6.3 that CCF values obtained by the pairs
of the originals after registration were the lowest. This result indicates that the
image registration did not help to achieve a better matching result, but only achieved
greater alignment between the image pairs.

The discriminating power of the ECA image-matching method was then exam-
ined. Ten images of cartridge cases were selected as queries, each from different
classes. Ranking lists were then developed for each query according to CCF scores
from correlations with the other nineteen cartridge cases in the data set. For each of
these ten ranking lists, the other cartridge case fired from the same identical firearm
should have the highest correlation scores and should occupy the top position in the
list. The recall rate was used for measuring the retrieval accuracy of the system. In
an ideal situation of two cartridge cases being fired through the same firearm, if one
of them is retrieved in the top best matches, the recall value should be unity.

Figure 6.8 shows the experimental result—the recall rates averaged by all ten
queries obtained by the ECA matching-method are compared with those of the
other two methods. It can be observed that the ECA method provides high retrieval
performance with significant improvement in the recall rate at all settings of the top
n best matches. The average recall rate was 22.6 % and 17.9 % higher than those
obtained with Methods 1 and 2, respectively. This improvement was calculated
using Y1, w % 100 %, where R(n) g, and R(n), are the averaged recall
rates obtained by the ECA method and Method 1, respectively. The magnitude
was observed to be 0.1 < (R(n)g-4 —R(n);) <0.6,¥n=1,...,19. It can also be
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Fig. 6.8 Recall range, R(n), as a function of the number of top matches, averaged over all ten
queries
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Query Image Target image
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ECA of query mage ECA of target mage

[

Fig. 6.9 Examples of screen shots captured from the proposed system, obtaining the correlation
between the query image and the target image. The parameters estimated by the registration
algorithm are: 6y = 180°,« = 1,1, = 0,, = 0. The ECAs of both images are clearly extracted.
This results in a CCF score of 0.85

observed that the system correctly retrieved eight out of ten classes from the top
five best matches (e.g. R(5) = 0.8) by using the ECA method. In comparison,
Method 1 required the top sixteen best matches (e.g., n = 16) to attain this level
of performance. This high performance of the ECA method is very important for a
retrieval system with a high volume of databases.

Figure 6.9 shows examples of screen shots captured from the system to obtain the
correlation between the query image and the target image. Both were in the same
class. The target image was aligned with the query using the image registration
algorithm. The estimated parameters were: rotation (69) = 180°, scaling (o) = 1,
and translation (f,,7,) = (0,0). The ECAs of both images were extracted, which
covered the area where edge density and the cross-covariance function were greater
than the predefined threshold values. It can be observed from the result that ECAs
are clearly extracted from both images. This results in a CCF score of 0.85, which
is much higher than that of Method 1, at 0.36.
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Fig. 6.10 Average Recall rate, R (n), as a function of the number of top matches, averaged over
all ten queries, comparing the ECA method with and without the application of an edge mask

It was observed from the experimental results that the performance of the ECA
image-matching method is dependent on two factors: (1) the two parameters of
Ecov and & pp. which describe the degree of similarity of sub-images and the
edge density, respectively, and (2) the edge mask. Parameters & and & pp; are
experimentally chosen, and the values of &, = 0.7 and &5 = 7% provide
the best results. These were used throughout for all the experiments reported in
Table 6.3 and Fig. 6.8. For the second factor, Figure 6.10 shows the comparison of
an averaged recall rate between the ECA methods with and without the application
of the edge mask. It can be seen from the figure that the averaged recall rate drops
by 7.9 % when the ECA method is used with no application of the edge mask.

6.5 Summary

An image matching process which emphasizes on saliency information could have
significant potential for digital forensic applications. The chapter demonstrates that
saliency information in the form of the effective correlation areas on the image-
data pair can improve accuracy for cartridge case image matching. In view of
the fact that segmenting an effective correlation area will inevitably throw away
some information in the image, it is imperative to determine the best matching
positions. This work shows that these positions can be determined by cross-
covariance coefficients and edge density. It is also shown that as far as localization
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accuracy is concerned, alignment of images is required for further processing of
pairwise comparisons. The experimental results confirm that the current system may
be successfully applied for the matching of cartridge cases to obtain accurate firearm
identification.



Chapter 7
Indexing, Object Segmentation, and Event
Detection in News and Sports Videos

Abstract A video parsing algorithm in the compressed domain is first introduced
in this chapter. The algorithm is based on the conventional solution, where
energy histograms of DC coefficients are used to calculate the distance between
consecutive I/P frames, and the DC coefficients of the P-frames are obtained by
frame conversion. The detection results are enhanced by using the ratio between two
sliding windows to amplify the transitional regions. Secondly, in order to index news
video at various levels, a template-frequency model is utilized to characterize the
spatio-temporal information of news stories. The system employing this indexing
structure is highly applicable for news-on-demand applications. Thirdly, a method
for video object segmentation using Graph Cut and histogram of oriented gradients
is presented. This method enhances the segmentation of objects that do not segment
well, due to either poor luminance distribution, weak edges, or backgrounds
with similar color and movement. Fourthly, the chapter presents an automatic
and robust method to detect human faces from video sequences that combines
feature extraction and face detection based on local normalization, Gabor wavelet
transform, and AdaBoost algorithm. Finally, an application system is presented
for the classification of American Football videos according to events of interest.
The system consists of two stages. The first stage is responsible for play event
localization and the latter stage is responsible for feature mapping and classification.
The first stage employs MPEG-7 motion activity descriptors to detect the starting
point of a play event, whereas the second stage uses MPEG-7 motion and audio
descriptors along with Mel Frequency Cepstrum Coefficient features to classify the
events using Fisher’s LDA.

7.1 Introduction

News and sports video database applications require video-on-demand technology
to allow users to select and watch video content on demand. Towards the goal
of a database system which can implement on-demand technology, the system
requires tools for automatically tagging video content to support end-user interac-
tions such as search, filtering, mining, content-based routing, personalization, and
summarization. Such tools will enable the system to decompose video images into
semantic primitives that the user can employ to define “interesting” or “significant”
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events, which are then utilized to build up a semantic description of video data that
will facilitate both tracking and searching for more instances of any given event.
For example, in the domain of news videos, an anchor shot can be detected as a
significant event by using a face detection technique. Given this anchor shot, we then
can use existing knowledge representation techniques to build up a news headline
for querying news story units. Similarly, semantic descriptions of sport videos can
be described by play events, such as pass and run in American football, which are
considered as the highlights for a game.

In order to realize the goal of building automatic tagging video data, this chapter
presents the methods for video parsing, indexing and content characterization of
news units (short, group, and story), video object segmentation, face detection in
news video, and event detection in sports video. These methods can be applied for
content characterization, which is the prerequisite for the construction of semantic
description.

Section 7.2 presents a video parsing method to segment video sequences into
video shots, which then allows subsequent operations such as feature extraction
and shot characterization. The section will look into an algorithm to detect shot
transitions (sharp and dissolved transitions) from the compressed domain, using
the energy histograms of DC coefficients. The segmentation result is enhanced by
using the ratio between two sliding windows to attenuate the low-pass filtered frame
distance and to amplify the transitional regions. This provides the advantage of
achieving high detection rates with low computational complexity. In the subsequent
content analysis, the resulting shots can be combined to the higher levels, such as
group of shorts, and video story.

Since news events happen daily, a person cannot afford to view all news on all
channels in discriminately. To alleviate the problem, we need to develop a news
video database that digitally stores full news story units, and provides interactive
retrieval interface by letting new headlines function as quires. In this way, it is
necessary to organize video content in terms of small, single-story units, instead
of shots which do not usually convey any coherent semantics to users. The users are
seeking the video contents in terms of events or stories but not in terms of changes in
visual appearance as in shots. Section 7.3 will look into the content characterization
of videos at the group and story unit levels, and demonstrate the retrieval of full
news stories by using news headlines functioning as quires.

Section 7.4 presents video segmentation methods based on the object of interest.
This method generates a segment form an input video sequence, which is more
descriptive than the full portion of the video, since the objects are automatically
detected and tracked from the input video according to the user preference.
The method incorporates shape prior to implement Graph Cut for video object
segmentation. This shape prior enhances the segmenting of objects with weak edges,
poor luminance distribution, and backgrounds with similar color and movement.

Section 7.5 presents a method to detect human faces from video sequences,
which incorporates the local histogram with optimal adaptive correlation. This alle-
viates a common problem in conventional face detection methods, i.e., inconsistent
performance due to the sensitivity to lamination variations such as local shadowing,
noise, and occlusion.
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Section 7.6 presents a method for detecting events, and its application for the
classification of American Football videos. The starting point of play events is
detected by the MPEG-7 motion activity descriptors and the mean of the motion
vector magnitudes. Then, the descriptors from multi modalities, including MPEG-7
motion, audio descriptors, and Mel Frequency Cepstrum Coefficients descriptors,
are utilized to classify video shots into events, such as pass plays, run plays, field
goal/extra point plays and kickoff/punt plays.

7.2 Video Parsing in Compressed Domain

Video parsing is the segmentation of video sequences into video shots, which then
allows subsequent operations such as feature extraction, shot characterization, and
key frame selection. Therefore, it is crucial that video parsing can correctly detect
the shot transitions present, or else the quality of shot representation can be affected.

Since the original video data are large in size, they are compressed to preserve
storage space. The computational cost of decompression is extremely high for
most compression algorithms, and hence efficiency can be improved by performing
operations on video data in the compressed domain. MPEG is one of the widely
adopted compression standards [183], and many content-based video operations
in the compressed domain have been developed [180]. In particular, research has
shown that the DC coefficients can be used to detect shot transitions in MPDG
[184]. Previous work using Motion-JPEG indicated that AC coefficients could be
used to detect scene changes [185]. This section presents a new method called Twin-
Window Amplification Method (TWAM) [181, 182] for detecting scene changes.
This algorithm greatly enhanced the performance of the conventional method used
in [184], and is comparable to the more complex methods in [186].

7.2.1 Conventional Method

Scene change detection is the process of dividing a video stream into shots based
on the content of the video, where a shot is a sequence of continuous frames
representing a continuous action in time and in space. In general, there are two
types of transitions: sharp transitions and gradual transitions. A sharp transition is
an abrupt transition between two shots that exists only between two frames, whereas
a gradual transition requires several frames to complete the changeover. The most
frequently encountered type of gradual transition is the dissolve transition, and it
involves the fading-out of the leading shot and the fading-in of the trailing shot.
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Traditionally, energy histograms of DC coefficients are chosen to represent the
content of each frame. Since adjacent frames tend to be similar in content, only
Intra (I)- and Predictive (P)-frames are examined. The first step is to obtain the
DC coefficients in the compressed frames. As DC coefficients in the P-frames are
not readily available, frame conversion [187] or approximation methods [188] need
to be performed in order to extract the DC coefficients. In this work, the frame
conversion method [187] is selected as it introduces less error terms.

An energy histogram of a DCT coefficient is obtained by counting the number
of times an energy level appears in the DCT coefficient blocks of a DCT encoded
frame. For each of the luminance and chrominance components, one histogram is
created independently. The City block distance function is used to calculate frame
distance for component 7, and it is defined as:

M
Di(n) = & ; a1 (1) = B (1) (7.1)

where h,_1(¢) and hy,(z) are the energy histograms of frames n— 1 and n respectively.
M is the number of histogram bins. The histograms are usually zero padded and
aligned such that bins in the same position represent the same energy range. 7; is the
number of DC coefficients of component i in the frame, and it is used to normalize
the component frame distance D;. Thus, the value D; has an upper bound of 2,
which occurs when the energy ranges of 4,1 (¢) and h,(¢) do not overlap at all prior
to zero padding. The component frame distances are then combined to form the
overall frame distance D(n) by averaging the three components:

D(n) = Di(n) (7.2)

1
3 ic{Y,Cb,Cr}

The presence of a sharp transition is indicated by a sharp impulse in the frame
distance function, and it can be detected with ease by thresholding. Alternatively,
D(n) is differentiated before thresholding is applied, and this reduces the difficulty
in threshold selection. In the case of a gradual transition, its presence is indicated
by a small peak with a width larger than 1. A sliding window is usually used to
accumulate frame distances caused by gradual transitions. However, since these
transitions can vary greatly in length, it is difficult to set the size of the window.
Even with an optimal window size, it is still possible miss a gradual transition due
to a small value of the accumulated frame distance.

7.2.2 Twin Window Amplification Method

The twin window amplification method (TWAM) was initially designed to enhance
gradual transitions. Before explaining this technique, we first need to discuss the
noise signals present in the frame distance function. During the MPEG compression
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of a video stream, quantization error and truncation error are introduced. These
errors are lossy and thus cannot be removed from the decompressed data. In order
to reduce the noise signals, we decided to apply a FIR low-pass filter (LPF) to
the frame distance function. Low-pass filtering is implemented by using a sliding
window of length L, and the average of the frame distance values in the sliding
window is used to replace the current frame distance. The low-pass filtering function
is as follows:

1L—l

F(D(n),L) =7 3, D(n—j) (7.3)

Jj=0

Although the quantized value should be rounded to the nearest integer during
quantization, it is common practice to round it down to increase the compression
ratio. MPEG has two default quantization matrices for intra-frames and non-intra
frames, and it also supports user defined quantization matrices. Depending on the
quantization matrix used and the bin size of the energy histogram, the de-quantized
DC coefficients of a data block can be shifted to a different energy range, leading to
noise in the frame distance function. By using a sliding window, this noise signal is
reduced and becomes less significant.

Floating point calculation is performed during MPEG compression and the pro-
cess of obtaining DC coefficients from P-frames. This truncation error accumulates
until the next I-frame is encountered, and thus it resembles a triangular signal. This
noise signal tends to peak when the current frame is an I-frame, and it is the least
significant when the previous frame is an I-frame. For a pure triangular signal with a
period of T, it can be reduced to a DC signal by using a sliding window of length T'.
Since there is usually one I-frame in a group of pictures (GOP), we set the length of
the filter L to be equal to the total number of I- and P-frames in a GOP. By using a
LPF, the noise signal caused by truncation error is attenuated.

MPEG achieves a high compression ratio by taking advantage of temporal redun-
dancy. In a GOP, I- and P-frames are used as references in motion compensation.
Therefore, it is reasonable to assume that the contents of I- and P-frames in the same
GOP are similar, except when there is a scene change present. For a MPEG video
with a frame rate of 29.97 fps and GOPs of length 15, the duration of a GOP is
only 0.5 s. In this case, the contents of adjacent GOPs are highly correlated, and the
average frame distances of the two GOP are similar in magnitude. That is, the ratio
between the two average frame distances has a value close to 1. Since the presence
of a transition is indicated by an increase in frame distance, this ratio would have a
value larger than 1 when there is a transition in the current GOP. As transitions could
involve more than one GOP, it is more appropriate to consider the ratio between two
sliding windows instead of two actual GOPs. This leads to the TWAM:

DTWAM(”) = A(D(n),L1 ) *F(D(n),Lz) (74)

Li—1 2L —1 1 L=l
= (2 D(n—j)/ > D(n—j)) #7- 2, Dln—j) (75
j=0 2 j=0

J=L
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where L; is the number of I- and P-frames in a GOP, L, is the size of the sliding
window used in LPF, and A is the ratio between the average frame distances of
two sliding windows. Drwapy(n) reduces the noise in the frame distance D(n) by
low-pass filtering, and scales the filtered signal by the ratio between the two sliding
windows. By setting L, to the number of I- and P-frames in a GOP as discussed
previously, Drwap (n) can be simplified and written in a recursive format:

Drwam(n) = A(D(n),L)« F(D(n),L) (7.6)
_ r’(nL)
- Lxq(n,L) 7.7
where
p(n,L) = p(n—1,L)+D(n)—D(n—L) (7.8)
q(n,L) = q(n—1,L)+D(n—L)—D(n—2L) (7.9)

This can be implemented with a circular buffer of length 2L, which involves only
two additions, two subtractions, two multiplications and one division once the
current frame distance D(n) is obtained. Conventional methods such as thresholding
can be applied to locate the scene changes in Dywap (n).

7.2.3 Demonstration

Two MPEG-1 video files obtained from [189] are selected to demonstrate the effect
of TWAM. Although the files are MPEG-1 encoded, the algorithm can be adjusted to
accommodate MPEG-2, Motion-JPEG, and H.263 video data. Figures 7.1a and 7.2a
show the unprocessed frame distance plots, and Figs. 7.1b and 7.2b show the TWAM
version of video files V| and V; respectively. V| has 14 sharp and dissolve transitions,
and the transitional regions are marked by the plot with an offset of 1.8 in the
vertical direction. Figure 7.1b shows a peak near frame 0, which is caused by the
initialization of the circular buffer and is ignored during thresholding. Transitions 1,
6, 8, 13, and 14 are dissolve transitions, and it can be seen in Fig. 7.1b that TWAM
leads to an increase in frame distance for all of them. In particular, the peak of
transition 6 is increased from 0.23 to 0.42. This transition involves two shots that
are similar in content, and the transition could not be detected by the conventional
method. The magnitudes of five sharp transitions are reduced after TWAM, but
they remain as local maxima and can still be detected. Although some of the
non-transitional regions are amplified by TWAM, it is possible to detect all 14
transitions with no false alarms using a threshold value between 0.3 and 0.42.
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V> has ten sharp and dissolve transitions, with transitions 3, 4, 6, 7, 8, 10 being
dissolve transitions. Similarly, V; has the same problem with the circular buffer and
the peak near frame 0 is ignored. Again, all six dissolve transitions are amplified by
TWAM as shown in Fig. 7.2b. The most important enhancement is during transition
3, where the frame distance is increased from 0.22 to 0.84, thus making detection
possible. In the case of sharp transitions, all four of them are amplified by TWAM.
By using TWAM with a threshold value between 0.3 and 0.7, it is possible to detect
all ten transitions with one false detection near frame 1600. This false alarm is
caused by a large object moving across the frame, which is similar to a gradual
transition called wipe. As TWAM cannot distinguish wipes from motions of large
objects, the frame distance is amplified in both cases. This is a problem for video
shots that involve large objects moving across the frame frequently and usually
results in false alarms.

7.3 News Video Retrieval

In the video parsing, the videos are segmented into camera shots. Consequently, a
high-level technique is required to group individual shots into a more descriptive
segment of the video sequence and to characterize video content and further
extracting intelligent annotation from the segment. While the techniques for news
video story parsing [190] and segmenting story units [191] have been developed
successfully, this section presents the method for content characterization and
indexing videos into group and story units. The template-frequency modeling
(TFM) method discussed in Chap. 3 is applied for video indexing and retrieval for
a news video database. In a news-on-demand application, a “news story” has been
chosen as the appropriate unit of segmentation. Entire segmented news stories are
the video document units indexed and returned by the retrieval system in response
to a query. These news stories are the units of video presented in the result list and
played back when selected by the user.

7.3.1 Characterization of News Video Units

A video database is a collection of raw video streams. A video stream F is a finite set
of frames f1, f>,..., f, that are ordered with respect to the index time n. If f;, f, € F
and s < e, then a video interval I[f;, f,] over F is the set of frames { f; € F|s <k <e}.
fsand f, of I[f5, fe] are the starting frame and the ending frame, and they are denoted
by start(I) and end(I), respectively. A video interval I[f;, f,] is simply denoted by
I, and I(F') denotes the set of all intervals over F.
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A news video F can be organized into three levels: shot, group, and story
levels. So, Isnot(F), IGroup(F) and Ig;or(F) denote a set of all intervals over F for
shot, group and story levels, respectively. A video group, then, is the stream of
continuous shots having some contextual meaning. A video interval at the group
level is defined by:

IGroup = {Ii,Shot|i = 1727 R 7Sl}aIi,Shot € IShot(F) (7.10)
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Similarly, the story interval is defined by:

Isiory = {Tishot|i = 1,2,..., 82}, I shot € Isnor(F) (7.11)

As story is the highest or most complex level, it usually contains a larger number of
shots (i.e., ST < §2).
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Let x; € RP represent a visual descriptor of frame f;. A video interval I[f;, f,]
at any level is characterized by a set of video descriptors represented by Dy =
{(Xs, f5)s (Xst1, fs+1), - - -5 (Xe, fe) }- denotes a set of primary descriptors of 1. It will
be used for obtaining a secondary descriptor used for the video indexing.

Intuitively, a video descriptor database VD for a video F is defined as a set of
video descriptors for F and has the following form:

VD = {(Dy,,I,),(Dy,,h2),...,(Dy,,17)} (7.12)

Based on Eq. (7.12), video descriptor databases at the shot, group, and story levels
are defined as follows:

VDshor = {(Dr,, ) |I; € Ispot (F)} (7.13)
VDGr()up = {(Dli»li)‘li S IGr()up(F)} (714)
VDStary = {(DI;»Ii)‘Ii S IStory(F)} (715)

In the above definitions, Dy is regarded as the set of primary descriptors, and it is
only used to characterize video at the frame level. In order to obtain video indexing,
it will be reorganized into a higher level as a set of secondary descriptors.

7.3.2 Indexing and Retrieval of News Video

For a video descriptor database VD = {(Dy,,1,), ..., (Di;,1}),...,(Dy;, 1)}, where
Dy ={(X, f5) (Xs+1, fs+1), - -+ (Xe, fe) }, the indexing process produces a secondary
video descriptor for each interval /;, specified as Dy, = v; = [wj1,...,Wjr, ..., wjr]".
The weights w;, are positive and non-binary. They are obtained by the template
frequency model (TFM) discussed in Sect. 3.5, Chap. 3.

Since the template-frequency model considers all the visual contents occurring
in a video sequence (with the weight w ;,), this indexing technique can be applied to
characterize video sequences at different levels, from shot, group of shots, to story
levels. This allows for the system to facilitate the user’s access to various levels
as depicted in Fig.7.3: (a) shot-to-shot, (b) shot-to-group, (c) group-to-group, (d)
group-to-story, and (e) shot-to-story.

This architecture is able to accommodate retrieval from the lower to higher levels,
e.g., retrieval of a video group or story by using a query from the shot or group
levels. A user is generally seeking information across the different levels defined in
the segmented videos. To satisfy this demand, it is expected that at a higher level,
the video story should contain most of the visual contents occurring at the lower
one. For instance, to retrieve a full news story, a small shot that contains the anchor
of the news story can be utilized as a query.
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Let IGoup be the video interval at the group level, which contains a total of S1
video shots, IGroup = {11 Shot» - - - Li Shot» - - - , Is1 shor } Then, the video descriptor for
IGroup 1s given by:

- . t
chmup = VGroup = [Wl,Group7 -y WrGroup - - - 7WR,GFOM17} (7.16)
where
S1
Wr.Group = Zwir,Shot (7.17)

i=1

WirShor 18 the r-th weight component of the i-th video shot I; gp,,;. Equations (7.16)
and (7.17) are also applied to obtain a set of descriptors for a video interval at the
story level, Dlsmy. A summary of the video description databases for each level is as
follows:

VDgpor = {(Dr, g0 1) [Ii € Isnor(F)} (7.18)
VDGroup = {(Dli.GmmﬂIi)Vi € IGrD”P(F)} (719)
VDStory = {(EIi,s[myJi)Vi € ISmry(F)} (720)

In the querying process, a query can be chosen from VDgy,; or VDgroup,
according to the links in Fig. 7.3. In these conditions, a query interval should have
two properties: first, it should be short enough to not contain many lengthy scenes.
Second, it should be long enough such that the context does not break down. This
means that an interval from a story database may not be a suitable interval query.

A
(300
N

l@

Y

Fig. 7.3 Multiple-level
access to video database,
(a) shot-to-shot,

(b) shot-to-group, (c) group
to-group, (d) group-to-story,
(e) shot-to-story



180 7 Indexing, Object Segmentation, and Event Detection in News and Sports Videos
7.3.3 Demonstration

The CNN news video database discussed in Table 3.9 was used for the evaluation
of video characterization and retrieval methods discussed in Sect. 3.5.3. The experi-
ment was to demonstrate that the TFM can be adapted for retrieval beyond the shot
level. There were 844 video shorts in this database. According to the time line in
the original un-segmented video, shots are jointed into the meaningful groups and
stories. Although there is an automatic technique available for detecting the news
story [190, 191], this has been done manually to ensure the quality of the segmented
videos used for this experiment. Three feature databases were created to describe
the videos in the three levels. The lengths of the video clips were between 0.5 and
43.5 s for the group level, and 5.7-180.3 s for the story level.

In order to retrieve the video groups, six sets of video intervals were
obtained for querying, {(Zi.shor,11,Group)q1> - - -» (L6 Shot>I6,Group g6 }» €ach  of
which was obtained from different stories. In the same set, the shot interval
Iisnor was one part of the group interval I;Gup. This allows a com-
parison of the performance between query-by-video-shot and query-by-
video-group. It is noted that the lengths of the queries are as follows:
{(18,1.95),,(2.15,3.35) 5, (2.45,12.35) 13, (15.35,39.35) ;4. (2.85,4.55) 5, (1.3s,
3.58) 46}

Figure 7.4a, b shows the precision versus recall figures for all six sets of the
test queries, resulting from the retrieval of the video groups. Figure 7.4c shows
a comparison between two querying methods: shot-to-group (STG) and group-
to-group (GTG). Evidently, the TFM exhibits a good accuracy for video group
retrieval. We have an average precision of 90 % at 50 % recall, and more than 60 % at
100 % recall. It can be observed that querying by GTG provides higher precision at
lower recall levels, while the STG is superior at higher recall levels. This is because
video intervals at the group level usually contain more information and are longer
than at shot levels. On the other hand, a video shot usually contains less information,
but can pinpoint the relevance for ranking a video at higher recall levels.

Figure 7.5 shows a group retrieval session, where a query clip contained two
shots in a total length of 1.8s. For convenience, each of the retrieved clips is
represented by a set of frames. It can be seen that the top five retrieved video clips
are all relevant and are actually from the same story. A precise ranking of the relative
similarity (to the query) among these retrievals may also be observed.

A possible application for retrieval of the video story is to utilize a news headline
to retrieve the full news story. This enables one user to go directly to the full
story from the headline of interest. Five news stories that are introduced with at
least two headlines (summarized in Table 7.1) are examined. Then five shots and
five video groups from the news headline are utilized for querying. Figure 7.6
shows the system performance in retrieving the news stories by employing the shots
and groups from news headlines as queries. It is observed that all relevant video
segments related to the same story were retrieved with close to 50 % precision
(at 100 % recall). This means that, on average, all relevant video intervals can be
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Fig. 7.4 Precision and recall
rates of retrieval of the video
groups, using six query sets,
employing the two querying
methods: (a) Shot-to-Group
(STG) and (b) Group-to-
Group (GTG). The average
precision of (a) and (b) are
shown in (c)
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Table 7.1 Story retrieval results, obtained by two querying methods: shot-to-story (STS) and
group-to-story (GTS)
Retrieval result (recall, precision)
Query | Story Shot-to-story Group-to-story
Query 1| S7, S22, S31 (0.33, 1), (0.67, 0.50), (1, 0.50) | (0.33, 1), (0.67, 0.50), (1, 0.50)

Query 2| S5, S8, S14, $28, $29| (0.20, 1), (0.40, 0.67), (0.60, | (0.20, 1), (0.40, 0.50), (0.60,
0.50), (0.80, 0.11), (1, 0.10) | 0.50), (0.80, 0.50), (1, 0.23)

Query 3| S1, $26, S46 (0.33, 1), (0.67, 1), (1,0.75) | (0.33, 1), (0.67, 1), (1, 1)

Query 4] $36, $37, 850, 855 | (0.25, 1), (0.50, 1), (0.75, 1), | (0.25, 1), (0.5, 1), (0.75, 0.38),
(1,0.50) (1,0.31)

Query 5 S7, $36, $39 (0.33, 1), (0.67, 0.40), (1, 0.50) | (0.33, 1), (0.67, 0.52), (1, 0.43)

retrieved within the first ten retrievals. In Figure 7.7, a comparison of STS and GTS
performances shows that STS performed slightly better than GTS at lower recall
levels, while GTS was much better at higher recall levels. This is opposite to the
results from retrieving video groups. In this case, a great deal of information from
the video group is favorable for retrieving the video story.

7.4 Segmentation of Video Objects

7.4.1 Graph Cut Video Segmentation

The automatic extraction of an object of interest in a video has immediate important
applications in video editing and indexing. The development of ways to segment a
video object accurately, efficiently and with minimal user interaction is an ongoing
research problem. One of the most prominent examples of the use of a video object
copy and paste is the blue screen background used by many television studios to
allow for simple color keying. This takes advantage of the fact that colors such as
blue and green are rare in an indoor setting like a news anchorman. This process is
simple and can be done in real-time; however it is limited by the use of a background
color. It requires the setup of a screen in a studio setting, and does not generalize
well to outdoors or other types of complex backgrounds.

Figure 7.8 shows a user program interface for segmentation of objects in news
videos. A user can get a rough estimate of a video object by just marking one frame.
The system allows the user to mark objects of interest in blue, and the background
in red. Then, the system automatically segments all following frames and shows
the result of an anchor object segmented. Similarly, Fig.7.9 shows the result of
object segmentation, where the user marks the sailboat in Frame 2. The system
automatically tracks and cut the same object past Frame 30, even if the object moves
and changes its shape. In general, tracking and segmentation continues until a scene
changes or when there is severe occlusion.
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c Rank 1, < ].S,se(. >

,7[7[7'7,7,7,7,7
e Rank 3, < 1.9sec >

lililifilililili
f Rank 4, < 2.7sec >
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Fig. 7.5 Top five retrievals (b)—(f) answering to a query clip that contains two video shots (a),
using the group-to-group querying method. Note that the first ranked video is the query itself. All
of the retrieved clips are originally from the same story

This section introduces a novel way to implement Graph Cut for video object
segmentation with shape information. Graph Cut is a very efficient algorithm for
image segmentation, whereas Histogram of Oriented Gradients (HOG) is useful
in detecting humans. The HOG feature is combined to incorporate a shape prior
into the Graph Cut algorithm as a new way to enhance video object segmentation
accuracy.

Graph Cut methods were applied for image and video segmentation. For image
segmentation [192], a 2-D graph is constructed from the image color information,
with each pixel representing a node in the graph. The nodes are connected by arcs or
edges that represent the energy cost for cutting that edge. This is the pairwise energy,
commonly assigned a cost relative to the intensity difference between adjacent pairs
of pixels. For video object segmentation, the structure of Graph Cut is conducted as
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Fig. 7.6 Precision and recall rates of retrieval of the video stories, employing the two querying
methods: Shot-to-Story (STS) and Group-to-Story (GTS)

a 3-D graph [193-195], and has been implemented with different topologies, such
as a hierarchical graph topology [196] and a pyramidal hierarchical graph [197].
In addition, Graph Cut has also been conducted with different video descriptors,
including MPEG4 descriptors [198], motion vectors [199], and variable nonlinear
shape priors [200].

In order to improve performance, there are different techniques to improve Graph
Cut for video; one is to reduce the number of nodes and pixels directly, via clustering
of pixels or regions. Another technique is to firstly use a scalable or hierarchical
method for computing a simplified solution, and then iterate over to obtain more
accurate results. Tradeoffs in processing time and memory become the key issue for
long videos with a high resolution or objects with complicated object borders.

This section addresses the problem of segmentation of objects with weak edges.
Since the Graph Cut algorithm depends on the pair wise luminance of pixels, it is
dependent only on intensity distribution, and it does not take into account any shape
information of the object that should be segmented. To address this problem, an
accurate method, HOG, is introduced as a way to incorporate shape information.

The HOG was demonstrated for detecting humans in images [201]. HOG is
locally normalized histograms of image gradient orientations in a dense grid. It uses
the idea that the appearance and shape of local objects can often be characterized
rather well by the distribution of local intensity gradients or edge directions.
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Rank 22: Story 29, clip length: 20.5 seconds

Fig. 7.7 Story retrieval using group-to-story querying method; (a) query clip containing two video
shots (3.7 s). There are a total of five relevant stories in the database, showing President G.W. Bush
visiting a national park: (b) the first segment (35.7 s) is ranked at no. 1; (c) the second segment
(36.3 s) is ranked at no. 4; (d) the third segment (34.9 s) is ranked at no. 6; (e) the fourth segment
(30.4 s) is ranked no. 8; (f) the fifth segment (20.5 s) is ranked at no. 22
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Fig. 7.9 Object segmentation, obtained by user marked objects in Frame 2, and the system
automatically tracks and segments the objects until Frame 30

Thus, in order to further enhance the current Graph Cut method, in the current
work, the method is combined with HOG. A combination of pre-processing of pixel
regions and hierarchical graph topology is introduced to produce efficient video
object segmentation.
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7.4.2 Object Segmentation

Graph Cut solves for the cut that minimizes the energy of an object/background
pixel assignment A:

E(A)=2 2 RP(AP) + Z Bpg) (7.21)
peP (p.g)eN
ApHA,

where P represents all image pixels, N all unordered neighborhood pixel pairs, A
is a binary vector whose components A, specify assignments to pixel p in P, and
A specifies the relative importance of the first and the second terms. R), is the prior
probability, represented by how likely the pixel is to be of object or background
label A in the set of pixels P. B, ,) is the pairwise edge energy represented by the
probability that there exists an edge between the pair of pixels (p,q) in the set of
neighborhood pixels N.

To calculate R, the pixel values are compared with the color histogram to
calculate how similar the pixel is to the user seeded region. To calculate B, ),
the pairwise pixel luminance difference I, — I, is mapped to an exponential function
representing how likely is there to be an edge between the pair, shown in Eq. (7.22).

(Ip — Iq)z
202

} : (7.22)

B, ) o< exp [— .
(P.g) P4l

In the calculation of pairwise luminance difference, a pixel can be connected
to 4 or 8 of its immediate neighbors. The number of connections is set to reduce
processing complexity, and it is possible to connect a pixel not only to its adjacent
pixels, but also nearby pixels or pixels which are frames away.

Graph Cut can easily be extended for videos using a 3-D graph structure. The
temporal information added allows it to track a segmented object effectively. Most
implementations of Graph Cut require the user to seed the image by indicating the
desired region versus the background (in our implementation, blue and red strokes,
respectively). The unique strength of Graph Cut is that when given the connected
graph topology, it can propagate the information across the sequence of images.

One of the main problems in using the Graph Cut algorithm in 3-D for video
segmentation is in the growing complexity of the number of nodes and edges. Given
a graph G(N,,N,), where N, is the number of nodes and N, is the number of edges,
which are both proportional to the number of pixels, the relationships of N, = 4N,
and N, = 6N, hold for a 4-connected and 8-connected neighbor graph, respectively
(Fig. 7.10). In 3-D, connecting immediately to the neighboring temporal frames will
increase to N, =2 6N, and N, =2 26N,, for 4 or 8-connected neighbors. With a 720 x
480 x 100 pixel video, there will be 34 x 10° nodes and 207 x 10° edges. Given that
the Graph Cut algorithm’s polynomial run time depends on N, and N,, using Graph
Cut in 3-D is still quite infeasible at the pixel level. Unfortunately, the technique
does not scale well with resolution, especially for videos.
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Fig. 7.10 3-D lattice
topology

7.4.3 Histogram of Oriented Gradients

In the calculation of pairwise luminance difference, a pixel can be connected to 4 or
8 of its immediate neighbors. The number of connections is set to reduce processing
complexity, and it is possible to connect a pixel not only to its adjacent pixels, but
also to nearby pixels or pixels which are frames away.

To calculate the HOG feature on a detection window, two basic steps are taken:
(1) divide the window into small spatial regions, (2) calculate the histogram of
gradient directions over the pixels in that cell. For the task of human detection,
HOG is tiled over the detection window in variable scales and the combined feature
vector is used for human detection using a trained classifier.

HOG can not only be used for detecting humans, but any type of objects, as it is a
robust scale-invariant feature. In the current work, each detection window is divided
into cells of size 8 x 8 pixels, with each cell containing a 9-bin HOG and each group
of 2 x 2 cells is integrated into a block. Each block is thus a 36-D feature vector.

Equations (7.23) and (7.24) explained below are used to incorporate shape
prior information from the calculated HOG features. R,(O) now contains an extra
weighted term InP(O,) representing how likely there is an object O, there. is
calculated using a specific trained HOG model.

K, peo
R,(0) = 0 pEB (7.23)
upP(0p) p¢ OUB
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Fig. 7.11 A training sample and its gradient for the construction of the HOG model for the
characterization of shape information of a human’s head and shoulder

0, peO
R,(B) = K pERB (7.24)
P(0,) p¢ OUB

where O and B denote the subsets of pixels a priori known to be a part of “object”
and “background”, correspondingly. The subsets O C P and B C P are such that
ONB = 0. In addition,

K=1+max Y B (7.25)
a{p.ateN

In the experiment, a HOG model is trained by a collection of human head and
shoulders as shown in Fig. 7.11. With the prior of a shape of a head, when the same
algorithm is run on Akiyo shown in Fig. 7.12, it improves the segmentation results
because of the preference for the overall shape of a human. In Fig. 7.12b, the Akiyo
sequence shows positive response to the HOG filter near the center of the frame,
increasing the likelihood that there is an object of interest there.

The additional results from video object segmentations are shown in Figs.7.13,
7.14, 7.15 and 7.16. The user marked the objects at Frame no. 1, and the system
performed segmentation through the following frames. The results at Frame no. 10
are shown in the figures. It was observed that the system’s performance was satisfy
and after final user marking, perfect segmented results could be attained. In the bus
sequence (Fig. 7.13), the algorithm was robust enough to track the bus object thru
the lamppost at the left side of the video. As the bus passed thru the lamppost, it was
occluded and split into two separate objects. The algorithm still can segment the bus,
but the frontal white edge of the bus is lost. A simple marking of the bus in Fig. 7.13a
allows the bus to be segmented correctly. Other segmented objects in the images are
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b

Fig. 7.12 Segmentation of Akiyo sequence, obtained with and without the application of the HOG
model. (a) Segmentation without HOG. (b) HOG model. (¢) Segmentation with HOG

b

Fig. 7.13 Segmentation of Bus sequence, (a) Frame no. 1 with the user mark, (b) the segmentation
result at Frame no. 10

from the similarity prior probability calculation, as they match the marked bus more
than the marked background, which is mostly green. Using a weighted value of A
in Eq. (7.21) can resolve the problem.

The foreman sequence (Fig.7.14) was segmented effectively for the face.
However, the hat and the background are very similar with the contour of the hat,
and the hat was not detected by using the user marking. As shown in Fig. 7.14b, the
segmentation of the hat can be fixed and enhanced with a shape prior information,
in addition to the pairwise luminance difference By, ;).
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Fig. 7.14 Segmentation of Foreman sequence, (a) Frame no. 1 with the user mark, (b) the
segmentation result at Frame no. 10

a

.fn
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Fig. 7.15 Segmentation of MPEG sequence, (a) Frame no. 1 with the user mark, (b) the
segmentation result at Frame no. 10

7.5 Segmentation of Face Object Under Illumination
Variations

The video segmentation for face objects is more complex than other pattern
detection problems. This is not only because the faces are non-rigid and have
a high degree of variability in location, color and pose [202, 203], but also due
to the illumination variations. The illumination component of the video frame
varies a great deal, often more than the reflection component. Occlusion and
lighting distortion can change the overall appearance of face objects. A non-uniform
illumination will change the values of gray level distribution of a human face,
and the edge of face will be blurred. Such change will cause the large intra-class
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Fig. 7.16 Segmentation of Tennis sequence, (a) Frame no. 1 with the user mark, (b) the
segmentation result at Frame no. 10

variations of the face distribution to be highly nonlinear and complex. The detection
rate usually drops quickly under this condition.

In this section, a robust and effective method is presented for detecting faces
in video sequences. The key step and the main contribution of this work is the
incorporation of a normalization technique based on normalized local histograms
with an optimal adaptive correlation (OAC) technique. This alleviates the common
problem of illumination.

Face detection techniques have been studied extensively, which include fea-
ture based methods using geometric information, such as skin color, geometric
shapes, motion information, and machine-learning based approaches, such as neural
networks, Gaussian mixtures, Support Vector Machines and statistical modeling
[204-206]. In automatic face detection algorithms, at the initial step, a pyramid
of downscaled copies of the given input image is produced. Then, a sliding window
scans each of the downscaled images and finally a classifier is applied on all possible
window locations to decide whether the region contains a face object or not.

Practically, the number of windows or equivalently the number of times the clas-
sification will be processed is typically tens of thousands depending on the image
size and demagnification factor. AdaBoost algorithm [207] employs this method in
a fast way and has been widely investigated in video face detection systems. The
key point is that fast, but less discriminating classifiers can reliably reject most of
the windows containing non-face objects while passing the windows containing the
maybe-face objects to a second level classifier, which is slower than the previous
one but has higher discriminating power. This procedure iteratively continues and
can provide high detection performance with much less computational expense.

Since illumination is one of the most important factors that determine success
or failure in face detection, many approaches have been proposed to handle
the illumination problem. Most algorithms for face detection presume that the
illumination variation is uniform or lighting must be controlled. Georghiades
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et al. [208] demonstrated that face images with the same pose, under different
illumination conditions form a convex cone. Ramamoorthi [209] and Basri and
Jacobs [210] independently used the spherical harmonic representation to explain
the low dimensionality of face images under different illumination conditions.
However, most previous face recognition and detection systems imposed strict
restrictions on the input data and worked with the assumption that the location of
the face within a frame is known. Although their works obtained good detection
results, these systems face two main limitations: the requirement for calibrated
multicameras and the restriction of usage for certain specific applications.

7.5.1 Automatic Face Detection using Optimal Adaptive
Correlation Method with Local Normalization

The key step of the current work is the incorporation of local normalization
with OAC technique to conventional classifiers for automatic face detection on
video sequences. Each frame of the input video sequence is first extracted and
regularized by local normalization. Face candidate regions are then roughly located
by OAC. The Gabor wavelets filters are applied for local feature extraction after
preprocessing. In the final step, the face region is detected through a cascade
classifier consisting of detectors with AdaBoost algorithm.

7.5.1.1 Local Normalization

Due to the fact that variant light conditions definitely cause low detection rates
and can be eliminated by illumination normalization, normalization techniques
should be well considered in an automatic face detection system so that the system
resistance can be evaluated for the most common classes of natural illumination
variations. Most methods exploited were typically characterized by relatively low
spatial frequencies. We use local normalization in this important step in order to
keep all the useful information in illumination invariant form to facilitate accurate
and robust feature extraction and detection. The local normalization composes of
the illumination compensation and the candidate selection processes.

7.5.1.2 Tllumination Compensation

The illumination normalization process consists of several stages, including gamma
intensity correction (GIC), difference of Gaussian (DoG), local histogram matching
(LHM) and local normal distribution (LND). GIC corrects the overall brightness
variation of the input image g(x,y), where (x,y) is the pixel location. This procedure
compensates the pixel values of an image, under unknown lighting conditions, by
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exponentiation to best match a canonically illuminated image go(x.y), under normal
lighting conditions. The GIC corrected image g’(x,y) is computed by transforming
the input image pixel by pixel over its position (x,y) with an optimal Gamma
coefficient y*,

g'(x,y) = G(g(x,).7") (7.26)
=e-g(x,y) 1" (1.27)

where e is a gray stretch parameter, and y* is computed as:

Y =argminy [G(g(x,),7) — go(x,y)]* (7.28)
X,y

Y" is approximated by the golden section search with parabolic interpolation
[357]. GIC can enhance the local dynamic range of the face in dark or shadowed
regions, compress values of pixels in bright regions, and compensate for the global
brightness changes of an image.

Intensity gradients such as shading effects are removed through a DoG filter, a
popular method to obtain the resulting bandpass behavior for images. The selected
values of smaller or inner Gaussians are typically quite narrow so the detailed spatial
information in high frequency is kept, while the outer ones might have more contents
for the low frequency range.

The main motivation of the application of LHM after GIC and DoG is to take
into account histogram distribution over local windows and integrate it to global
histogram distribution. To get the LHM transfer function, the histogram distribution
of the input image and its local window are calculated first. The levels of the input
image from previous processing are equalized by

ko
sk:T(rk):z%’,k:O,l,...,L—l (7.29)
=0

where sy is the transformation of the pixel value r; in the original image, n is the total
number of pixels, n; is the number of pixels with gray level r;, and L is the number of
discrete gray levels. The histogram distribution function G(z) from the local window
is obtained by:

ko
PR (7.30)
i=0 1

Z
G(zj) = Y, palzj) =
j=0

where p,(z) represents the specified desirable probability density function for the
output image in a local window, and follows the transform G(z) = T(r). The
inverse transformation function, z = G~ (s) is then applied to the levels obtained in
Eq. (7.29). The new, processed version of the original image consists of gray levels
characterized by the specified density p,(z) which is normalized using Eq. (7.31),
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'(s) (7.31)
T ()] (7.32)

G~
G~

Finally, LND is applied on the result image by assuming the gray values are
drawn form a normal distribution. The output image k(x,y) is normalized using
Eq. (7.33),

G '(s) — i

hxy) = =— (7.33)

where y; and o; are the mean and standard deviation of G~![T(r)] over the whole
image.

This illumination compensation procedure can account for the effects of illumi-
nation variations, local shadowing and highlights for faces in the original image,
therefore, the procedure preserves the essential elements of visual appearances for
detection.

7.5.1.3 Candidate Selection

After illumination compensation, a modified OAC method [211] is applied to
the normalized image %(x,y) to locate face candidates. Compared with common
automatic face detection algorithms, this method does not need to use a pyramid
of downscaled copies of the input image and thus speeds up the processing. The
normalized image has similar power spectra and can be efficiently implemented in
the spatial domain in a running window that approximately meets the requirements
of the OAC process. This algorithm is adaptive to the input normalized image, and
is designed to complete the segmentation in a single iteration in Hilbert space H,
through the kennel function H transform. The transform of the normalized image
is a correlation image with normalized values ranging from zero to one. The OAC
detector examines this image and segments it according to the range of correlation
values. The image is then split into two segments after the correlation examination
that corresponds to face candidates and background regions, which can be used
conveniently by the later fine classifier with Gabor and AdaBoost algorithm.

Assume we have a normalized image A(x,y) with multiple faces part 4 ¢(x,y) and
complex background part A, (x,y), i.e

h(x,y) = hs(x,y) +hy(x,y) (7.34)

The face part hy and background part h;, can be modulated as uncorrelated
independent signals, so we have

1
Zé"@hf (x,y) + hp(x,) (7.35)
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where the face part Ay is now composed by the averaged face template h ¢, the
eigenface though gain mapping matrix &, and [ is the number of faces. The OAC
transform for the entire image is

HX,Y) = HI (X.) [ |Hy(X.Y)]? (736)

where Hy and H), are the nonlinear mapping response in Hilbert space H of i and
hy, respectively, T denotes the complex conjugate operation, and X,Y are the two-
dimensional transform domain indices. The labeled graph (LG) generated by this
transform is the adaptive ratio of target (face) signal peak height to the standard
deviation of the clutter (non-face) background of the image. From the fact that the
background power spectrum |H,(X,Y)|* is unknown, we instead estimate it from
the spectrum of the entire image H(X,Y). So we can calculate the adaptive priori
for a given image. The OAC detector is defined as

DX,Y)=M" @ |H(X,Y)] (7.37)

where M is a 5 X 5 matrix.

We then use kernel canonical correlation analysis (KCCA) [212] to get the
nonlinear correlation between D(X,Y) and H(X,Y). A pair of directions wp and
wy are obtained, such that the correlation between the two projections a)g and a);
is maximized.

For a given normalized image, we can estimate the face candidates in the
segmented image by arguing the OAC value of D(X,Y) and H(X,Y),

C* = argmax (Z’) (7.38)
i

where a; and b; are respectively the projections of the variables @(D) and H on
the projection vector g, ;) and @y, and {a)fp(D), oy }_, is the ¢ pair directions of
OAC.

a; = ()" @(D) (7.39)
b= (w)"H (7.40)

where @ (D) is the diagonal of D(X,Y) in the Hilbert space H. The segmentation
image mask m(x,y) for the original image g(x,y) is then generated from the
correlation image A(x,y) as

0 Thh(x y) < C
= ’ 41
m(x,y) { I Thyy > C (7.41)



7.5 Segmentation of Face Object Under Illumination Variations 197

where Thy,y) is the threshold parameter for pixels corresponding to the face
candidates.

7.5.1.4 Recognition Stage

The face detection stage consists of two main components: Gabor wavelets feature
extractions and AdaBoost detection algorithms. Gabor wavelets demonstrate two
desirable characteristics, spatial locality and orientation selectivity, which has
shown its effectiveness in automatic face detection and recognition. Boost algorithm
is adopted to reduce the redundancies of the high dimensional feature space and
computational cost.

The AdaBoost algorithm [358] was demonstrated to have a very low false
positive rate for face detection and can detect faces in real time. It can be trained
for different levels of computational complexity, speed and detection rates which
are suitable for specific applications. The performances of Real AdaBoost, Gentle
AdaBoost and Modest AdaBoost for face detection are compared in the current work
based on video sequences. Real AdaBoost is the generalization of a basic AdaBoost
algorithm and is treated as a fundamental boosting algorithm. Gentle AdaBoost is a
more robust and stable version of Real AdaBoost. It is shown that Gentle AdaBoost
performs slightly better than Real AdaBoost on regular data, and considerably better
on noisy data. It is also much more resistant to outliers. Modest AdaBoost is a
regularized tradeoff of AdaBoost, mostly aimed at better generalization capability
and resistance for certain specific sets of training data.

7.5.2 Experimental Result

The performance of the methods for human face detection and segmentation were
evaluated on two video datasets with different illumination conditions. The first
test video dataset was recorded under conditions of good brightness. The dataset
includes eight subjects (2 Italian, 2 Chinese, 2 Pakistani, 1 Persian, and 1 Canadian)
and comprises 520 video clips in total. The second dataset (647 clips in total)
consists of commercial films and includes videos available on the Web under
complex illumination conditions. Videos in the second dataset also contain single or
multiple faces occurring at different sizes, in different poses, and at various positions
with respect to each other.

The videos with good lighting conditions were collected for the purpose of
human emotion recognition. Each human subject showed the six fundamental
human emotional states: happiness, sadness, anger, disgust, fear and surprise.
The variations among the emotional states make the face detection task more
challenging, since the training images were essentially photographed in the neutral
state.
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For the training of the face detector, face images and non-face images are
collected from the extended Yale Database and CMU Database, which are the
publicly available face detection databases with large illumination variations. The
detector is trained to detect a face centered in a standard window with a size of
54 x 48, and all training images are so resized to 54 x 48 pixels.

For the local normalization method, the nonlinear histogram equalization was
applied by taking into account histogram distribution over the local window and
combining it with the global histogram distribution. Examples of the filtered results
of the original images are shown in Fig. 7.17. By the local normalization, it can be
observed from Fig. 7.17 that the histograms of all input images are widely spread to
cover the entire gray scale. The distribution of pixels is not too far from uniform. As
a result, dark images, the histogram components of which are concentrated at the
low end of the gray scales, bright images, the histogram components of which are
biased toward the high end, and low contrast images, the histogram components of
which are narrow and centered toward the middle of the gray scale, are significantly
enhanced to give an appearance of high contrast. By applying local normalization,
an image with varying lighting conditions shows a great deal of gray level detail and
has a high dynamic range. So the system resistance to natural illumination variation
is improved.

Gabor wavelet filters with four scales and eight orientations were applied for
feature extraction. For the purpose of training the detector, a total of 15,599
subjects (8,754 positives and 6,845 negatives) were used. The detector was trained
through cascade AdaBoost classifiers. Real AdaBoost, Gentle AdaBoost and
Modest AdaBoost were compared for error checking with 200 boosting iterations.
Gentle AdaBoost returned a better face detection rate, and was selected as the
detection algorithm.

For testing, the face detection methods were applied to the two databases,
containing various practical aspects in face detection, such as changes in illumi-
nation, poses, size and various faces. Figure 7.18 shows the overall performance
of the methods using ROC curves. The detection results were obtained by setting
the window size of the local normalization to 5 x 5. The detection method
labeled as GW utilized Gabor wavelets features only, and the method labeled as
GW + LN used combined features of GW and local normalization. These methods
were applied to video data at different illumination conditions. The experimental
results demonstrated that the face detection accuracy is considerably improved
by about 10-15 % by incorporating local normalization in the critical regions of
detection rate vs. false positives. At the same time, false detection rates dropped by
approximately 15 %.

Figures 7.19 and 7.20 show the face detection results from video sequences under
good illumination conditions and bad illumination conditions. It can be observed
that all faces were detected under varying illumination conditions. The size of the
bounding box was determined using the scale of the detected face on the image.

Finally, the face detector was applied on the video sequences containing rotating
poses, varying sizes, and multiple faces. The detection rates are given in Table 7.2.
Columns 2, 3, 4, and 5 indicate video sequences with good illumination conditions,
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Fig. 7.17 Example images and the application of nonlinear histogram equalization: (first column)
the original images; (second column) histograms of the original images; (third column) filtered
images; (forth column) histograms of the filtered images

Table 7.2 Face detection results for the two testing databases

Good Bad

illumination | illumination | Changing head

case (348 case (427 poise/sizes (249 | Multiple faces
Methods samples) samples) samples) (143 samples)
GW 87.50 75.25 72.49 70.14
GW + LN |93.74 85.69 89.06 81.38

bad conditions, changing head poses/sizes and multiple faces, respectively. It can be
observed that the application of local normalization to the face detection algorithm
provides significant improvement in detection rates for all cases discussed.
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Fig. 7.18 Face detection results, explained by the ROC curves, obtained by the GW method, and
GW with LN method under good and bad illumination

Fig. 7.19 Face detection result obtained by the application of the trained face detector to the video
frames under good illumination

Fig. 7.20 Face detection result obtained by the application of the trained face detector to the video
frames under bad illumination

7.6 Play Event NFL Video Classification Using
MPEG-7 and MFCC Features

Most professional sports leagues and teams in North America have a digital
channel boasting On-Demand programming and statistics. This requires
time consuming post-production work to prepare the highlights of a game.
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The Highlights-On-Demand for a game needs a system that can analyze the contents
of the broadcast and derive the semantics from the input videos. These semantics
can be made available to the users for querying in order to create a true On-Demand
experience. This section addresses this issue by presenting an application system to
classify American Football (NFL) video shots, using MPEG-7 motion descriptors,
and enhancing the indexing capabilities of the system with MPEG-7 audio and Mel
Frequency Cepstrum Coefficients (MFCC) features.

Recently, some research has been conducted on automating the process of
indexing and annotating sports video streams. Nearly all the major sports have been
used to test the indexing and retrieval systems. One of the major projects working
on the generation of semantic sports video annotations is the ASSAVID project. As
detailed in [213], this project focuses on developing a system that can categorize
different types of sports and provides users with an interface to query events in a
particular sport.

In [214], audio, textual and visual information are used to classify NFL video
into events like touchdowns and field goals. In [215], different types of formations
within NFL games were classified using the natural language commentary from
the game, the geometrical information about the play and the domain knowledge.
In [216], closed caption text and audio visual information were utilized to classify
plays into three categories namely: scrimmage, FG/XP and K/P.

The aforementioned works rely on domain knowledge to classify different high
level concepts within American football. On the other hand, the video classification
system in the current work classifies recurring events of the game without using any
domain knowledge. These recurring events are the most basic components of the
game. By classifying these basic components first we can look for higher concepts
contained within each of the basic events and thus generate a hierarchical graph
of concepts which varies from low level to high level. The standard descriptors of
MEPG-7 are utilized as the basic feature set. In [217], the author shares proposed
applications for generating summary highlights in the sports domain using MPEG-7
motion descriptors, but MPEG-7 audio and motion descriptors have not been used
to index recurring events in the American football domain.

7.6.1 Localization of Play Events

Sports have a very well defined structure. They have a set of rules that must be
followed in order for the game to be played properly. Many sports such as golf,
baseball, bowling and American football have a requirement that the team or players
must be in a distinctive position before each play begins. In golf, the player positions
himself by the ball in order to hit it in a certain direction. Likewise in American
football, the two teams first line up face to face before the ball is snapped to begin
the play. The common theme among all these sports is that before the play starts,
the level of motion activity in the video is lower compared to when the play has
started. This distinction in the motion activity is utilized in the proposed algorithm
to segment play events from non-play events. Figure 7.21 shows the magnitude of
motion vectors in different types of NFL plays.
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Fig. 7.21 Comparison of motion vector magnitudes for different types of play

7.6.1.1 Play Event Detection Algorithm

The primary objective of the algorithm is to detect the key frame that can be used
as the starting point of the play event in the shot. The end point of the play event
does not have to be extracted, as in most American football video shots containing
play events, the shot usually terminates at the end of the play. In order to extract the
intensity of the motion descriptor, MPEG-1 video motion vectors are used. Only the
motion vectors from the P frames are analyzed in order to speed up the processing
time. In MPEG-7, the motion activity descriptor represents the standard deviation
of the motion vector magnitudes within a frame. This is given by the following
equation.

N B 2
Oy = \/ 21 (MAGK Hony) (7.42)

where MAG,,, is the magnitude of the motion vector with coordinates (x,y), and

is calculated by MAG,,, = \/x*+y%. Wy, is the mean of the motion vector and is
defined as:

_ S MAG

my 7.43
i N (7.43)

where N is the number of macro-blocks that have a motion vector coded in
the MPEG-1 stream. The number N varies from frame to frame, as not all the



7.6 Play Event NFL Video Classification Using MPEG-7 and MFCC Features 203

macro-blocks are coded with a motion vector. The two features y,,, and o, are
used collaboratively in the algorithm to detect the starting point of the play event.
In practice, in order to detect the starting point, a set of video shots can be selected
from each category, and used to estimate the thresholds for the mean and standard
deviation of the motion vectors.

Figure 7.22 shows the flow chart of the algorithm to estimate the frame which
represents the starting point of the play event. The following steps detail the
algorithm:

Step I: Find a P frame with a mean value of 4 or higher.

Step 2: Determine the gradient of the mean values within a window (three or four
adjacent frames).

Step 3: If the gradients are all positive, mark the frame as a possible starting point,
else go back to Step 1.

Step 4: If the intensity of the motion descriptor has a value of 2 or higher, return
the frame number as the starting point.

Step 5: Otherwise, determine the gradient of the standard deviation values within a
window (three or four adjacent frames).

Step 6: If the gradients are all positive, return the frame number as the starting
point, else go back to Step 1.

7.6.1.2 Evaluation of Play Event Detection Algorithm

The play event detection algorithm was tested on the American football video shot
database which consists of 200 video shots taken from 4 different games and 4
different networks. In order to measure the performance of the algorithm, we have
to establish some ground truths about the starting point of the play event within each
video shot. This was accomplished by having an observer manually index the frame
number which best represented the start point of the play event.

Comparison of results was done by getting the delta between the ground truth
frame number and the frame number estimated by the algorithm. The results still
needed to be evaluated in terms of what this delta meant in actual time domain. That
is, we need to determine if the algorithm is estimating a starting point too early or if
it is estimating the starting point after a certain amount of delay.

Since MPEG-1 video has a frame rate of 30 frames/s, building a histogram with
a bin size of 30 frames would give a general idea of how far apart the estimated
frame numbers are from the ground truth in actual time domain. Figure 7.23 shows
a histogram of the number of shots within each time unit. Negative time units
represent early detection and positive time units represent a delayed detection.

From Fig.7.23, we can see that the algorithm detects the starting points of the
play with 83 % accuracy. That is, 166 of the 200 video shots in the database had the
starting points detected within 31 s of the original starting point. The accuracy of
the algorithm can be increased to 86.5 % by increasing the window size from three
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Fig. 7.22 Flow chart of the play event detection algorithm

to four frames. But this change in window size has its side effects. By increasing the
window size, we are looking for motion activity being sustained for a longer period
of time, which means we will get more shots with delayed detection.
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Fig. 7.23 A histogram of the number of shots within each time unit. Negative time units represent
early detection and positive time units represent a delayed detection

7.6.2 Classification of American Football Events

In the domain of American football, visual or motion features play a significantly
dominant role in discriminating between different types of plays as evident from
Fig.7.21. Therefore first we evaluate the efficacy of using motion descriptors for
an American football video indexing system and then we evaluate the changes in
system performance by adding audio descriptors and MFCC features.

7.6.2.1 Motion Feature Mapping

The motivation behind using the motion descriptors was due to the fact that in

American football, the global motion between different types of plays provides a

variety of clues. In order to understand fully the difference in motion between the

plays, first we require a detailed explanation of the general motion involved in the
plays:

1. Pass Plays: During a pass play, first the motion is lateral in order to track the
movements of a quarterback who is going to throw the ball. Then it is followed
by rapid zoom out and followed by a lateral movement to follow the throw.
At the end of the play the motion is tracking the player to whom the ball was
thrown. Therefore, the movements for a pass play involve first low intensity
lateral movement followed by high intensity zoom out and lateral movement and
then in the end low intensity lateral movement.
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2. Run Plays: During a run play, first the motion is lateral as the runner gets the
ball. Then the camera zooms in, to track the movements of the ball carrier. This
zoom in provides the perception of high intensity motion. At the end, the camera
laterally tracks the movements of the ball carrier. Therefore, the movements of
a run play involve firstly low intensity lateral movement, followed by short high
intensity lateral movement and in the cud low intensity lateral movement.

3. Kickoff/Punt (K/P): This is the first category of kicking play. The kicker starts
by kicking the ball high into the air. This motion causes the camera to rapidly
zoom out to capture the kicked ball. After the kick, the camera zooms into
the player who has the ball, and tracks the movements of the ball carrier.
Therefore this play has movements that involve firstly the high intensity motion
of zooming out and zooming in with horizontal direction movement, followed by
low intensity lateral motions.

4. Field goal/Extra point (FG/XP): This is the second category of kicking play.
The ball is long snapped (short underhand throw) to a holder who sets the ball
up to be kicked by a kicker. The majority of the movement is low intensity with
most of it coming after the kick, when the camera is tracking the kicked ball as it
sails towards the goal post. Therefore the majority of motion in this category is
vertical and low intensity.

The global motion of camera, the intensity of motion and the direction of
motion provide valuable discriminating information regarding the different types
of plays. In the current work, the motion based feature set is developed by
utilizing the intensity of the motion descriptor and dominant direction descriptor in
MPEG-7. The motivation behind using a combination of the two descriptors comes
from analyzing the different plays as defined above.

The magnitude of motion vectors was calculated by extracting the encoded
motion vector given by coordinates (x,y) from the macro blocks within P frames
of the MPEG-1 video stream. The magnitude and the direction of the motion vector
are given by the following equations:

MAG,,, = V/x*+y? (7.44)

Oy = arctan(%) (7.45)

According to the MPEG-7 description [218], the standard deviation of the
magnitude of the motion vectors can be used to derive the intensity of the motion
descriptor. The descriptor takes on the value of 1-5, with a low value meaning
a low intensity of motion. Experiments done by using five levels showed that
most of the motion descriptors were quantized into two or three levels. Thus to
provide better motion activity resolution, the descriptor was quantized into 12 levels.
Similarly, according to the MEPG-7 description, the dominant direction descriptor
is calculated by quantizing the angles of the motion vectors into 8 levels. In this
work, the same eight quantization levels were used to define the dominant direction
descriptor.



7.6 Play Event NFL Video Classification Using MPEG-7 and MFCC Features 207

Fig. 7.24 Motion feature Image Map of Magnitude and Direction
map
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A 2D feature map is created by combining the two motion activity descriptors.
The motivation behind this is to create a feature set that can model both the intensity
of motion and the direction of motion, thus discriminating between high intensity
motion in the upward direction versus high intensity motion in the lateral direction.
As can be seen from Fig. 7.24, the feature map provides a unique representation of
only 12 x 8 dimensions for both the intensity and direction of motion. In the feature
map, blue color corresponds to low values and red color corresponds to high values.

7.6.2.2 Audio Features Mapping

The motivation behind using audio descriptors is due to the fact that most sports
have a certain vocabulary associated with each event. Almost all the announcers
will utilize some of the vocabulary to describe similar events. Therefore we wanted
a compact representation of audio characteristics to describe the general tone and
pitch of the announcer. The objective is to analyze the similarity in the spoken
sounds between similar events.

Three MPEG-7 basic spectral audio features were used to achieve our objective,
namely: Audio Spectrum Envelope (ASE), Audio Spectrum Centroid (ASC) and
Audio Spectrum Flatness (ASF).

The ASE descriptor represents the power spectrum of an audio signal and can
be calculated by taking the Fast Fourier transform (FFT) of the audio signal which
is windowed using a Hamming window with an overlap of 50 % between adjacent
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windows. The size of the Hamming window is taken to be 10 ms. This descriptor is
calculated using the following equation [220]:

S(L,k) = YN s(n+ IM)w(n) exp (— j(i’f)%) (7.46)

where s(n) is the original audio signal, S(I,k) is the short time Fourier transform
coefficient, N is the size of the transformed signal, k is the frequency bin index, / is
the time audio frame index, w(n) is the analysis window function of length /w and
M is the hop size. The short time Fourier transform S(/, k) needs to be normalized
by a factor of N in order to preserve Parseval’s Theorem and since ASE represents
only the power spectrum, therefore we can estimate the ASE descriptor as follows:

ASE(1,k) = ﬁw(l,kﬂz (7.47)

where o is the window normalization factor. The number of frequency bins can
be varied based on the octave resolution required. One bin is reserved for power
between 0 and 62.5 Hz, while another one is reserved for power between 8 kHz and
Nyquist rate. With 1/8 of octave resolution the frequencies in the middle are divided
into eight bins, thus providing a spectrum envelope consisting of ten bins.

The ASC descriptor represents the center of gravity of the power spectrum. This
is calculated by adding the energy in each frequency bin in the FFT spectrum and
dividing it by the total energy in the frame, as shown below:

K—1 2
> k-|ASE(L,k)|
ASC(1) = k;ﬁ 1 (7.48)
>, |ASE(L,k)®
k=0

where k is the frequency bin’s index. The descriptor shows which frequencies are
dominant in the spectrum.

The ASF descriptor represents the overall tonal component in the power spectrum
of the audio signal. It is calculated by calculating the geometric mean of the audio
frame and dividing it by the arithmetic mean of the audio frame, as shown by the
equation:

=—

K—1
( n |ASE<z,k>|2)
ASF (1) = ~=—
LY |ASE(L,K))?
k=0

(7.49)

where k is the frequency bin’s index and N is the size of the short time Fourier
transform window.
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All the above descriptors were quantized into 10 levels, thus providing a feature
set of 30 dimensions.

7.6.2.3 MFCC Feature Mapping

Due to the fact that most of the video shots contained a lot of crowd noise, and our
wish to extract the perceived rhythm and sound of the spoken content, we needed
a feature that could model the human hearing and also works well under noisy
conditions. MFCC has been used extensively in speech recognition systems, as it
tries to emphasize the frequencies that are more perceptible to the human ear.

First the audio file is pre-processed in order to remove the silent segments. Then
13 MFCC coefficients are extracted for each segment. Each of the segments have
50 % overlap, and thus there is lot of redundancy between adjacent MFCC values.
In order to reduce the dimension of the matrix, the MFCC values are passed to a
feature reduction stage. The MFCC features are reduced to a 12 x 64 matrix.

7.6.3 Experimental Results

Fisher’s Linear Discriminant Analysis (LDA) is employed as a classification scheme
to evaluate the efficacy of the feature set. In a specific sense, LDA also commonly
refers to techniques in which a transformation is done in order to maximize between-
class separability and minimize within-class variability. LDA works on the feature
set with no prior assumptions about the nature of the data set. It tries to compute a
weight vector w, which when multiplied by the input feature vector x would generate
discriminant functions g;(x). For C class problems, we define C discriminant
functions g (x), g2(x),...,gc(x). The feature vector x is assigned to a class whose
discriminant function is the largest value of x.

All the results were based on Fisher’s LDA classification technique. In order to
minimize the bias of the sample set, leave-one-out classification was implemented.
With this method, one sample from the database sample set is removed and used
as the test set. The classifier is trained with the rest of the samples. This process is
repeated with each sample in the database. This process ensures that classification
scheme does not contain bias due to the sample set size [219].

Feature selection was also performed using Wilk’s Lambda criterion in order to
optimize the feature space. The dimension of the feature space was large and some
of the features did not enhance discrimination between classes. Therefore, in the
feature selection phase, the features that provided redundancy and deteriorated the
performance of the overall classification accuracy were taken out of the equation.

The test database consists of 200 video shots with durations varying from 5s to
about 25s. In the database, there are 88 pass plays, 67 run plays and 45 kicking
plays. A total of eight different teams were used to create the database from four
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Table 7.3 Play event classification results, obtained by multiple feature types

Play MPEG-7 audio MPEG-7 motion MPEG-7 motion MPEG-7 motion +
category + MFCC + audio + MFCC audio + MFCC
Pass 70.0 % 85.2 % 85.2 % 94.3 %

Run 59.7 % 91.0% 92.5 % 89.6 %

FG/XP 75.0 % 87.5 % 87.5 % 93.8 %

K/P 69.0 % 82.8 % 82.8 % 93.1%

Overall 67.0 % 87.0 % 87.5% 92.5%

Table 7.4 Play event classification results, obtained by three sets of
features, based on motion combined with other modalities

Method Pass Run EG/XP | K/P
MPEG-7 motion 795% 192.5% |87.5% |65.5%
MPEG-7 motion + audio 852% |91.0% |87.5% |82.8%

MPEG7 motion + audio + MFCC |943% |89.6% |93.8% |93.1%

different networks. This variety in the database ensured that the sample space of the
current work was diverse and included all the major broadcasters.

Table 7.3, shows the indexing results of using MPEG-7 motion and audio
descriptors along with MFCC features. From table, we can see the classification
accuracy increased with the combining of multi-modal features. In the case of
combining the MPEG-7 audio with MFCC features, we see an overall increase of
10 %, while combining the audio features with motion descriptor features shows
an increase of 5 %. Combining all three features produces an overall classification
result of 92.5 %.

Combining multi-modal features in a reasonable fashion can enhance the
classification. But always there are trade-offs that need to be considered. Some
features may reduce the accuracy of classification of a particular category but may
enhance the overall performance of the system. Table 7.4 shows the variations in
classification that results from adding audio features to the motion features.

7.7 Summary

The chapter covers a broad spectrum of video segmentation, indexing, retrieval,
and classification techniques applicable to news and sports videos. Based on the
energy histogram of DCT coefficients, a shot detection algorithm for MPEG video
data in the compressed domain can be developed. The detection results can be
enhanced by using the ratio between two sliding windows to attenuate the low-pass
filtered frame distances. The advantage is in achieving high detection rates with low
computational complexity. In a subsequent process, news videos can be segmented
into shot, group-of-shots, and story levels, where the template frequency model can
be applied to capture the spatio-temporal information. This facilitates video retrieval
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via a multiple-level database access technique, which is highly desirable for news-
on-demand applications.

To enhance the robustness of video object segmentation, histograms of oriented
gradients may be incorporated into the conventional Graph Cut algorithm. This leads
to a new way of enhancing video segmentation accuracy, thereby incorporating
a shape prior into the algorithm for segmentation of pre-trained objects such as
humans.

In addition, the chapter presents an effective and robust method for detecting
faces in video sequences based on a coarse-to-fine strategy. A local normalization
technique is incorporated into a conventional face detector to alleviate the illu-
mination variation problem. It is demonstrated that the method can improve the
face detection rate and reduce the processing time. Compared with face detection
without local normalization, the current method has the following advantages: it
alleviates illumination variation problems, decreases computing time, locates faces
automatically on single frames to eliminate the manual initiation step, and is able to
detect a variety of faces reliably.

Finally, the indexing of NFL video using MPEG-7 descriptors is presented. The
current work develops a system with two main components. The first component
finds the starting points on play events within a video shot. The second component
is responsible for indexing and classifying events in American football. Both the
components of the system utilize MPEG-7 motion descriptors, while MPEG-7 audio
and MFCC features are added to enhance the indexing capabilities of the system.



Chapter 8
Adaptive Retrieval in a P2P Cloud Datacenter

Abstract This chapter presents indexing and retrieval methods for image and
video on cloud datacenters. The application is based on a peer-to-peer (P2P)
network in both structured and unstructured network organizations. Firstly, a cluster-
identification search system is developed on the Chord layers to organize nodes as
a structured peer-to-peer network. The system derives automatic clustering for the
organization of nodes in a distributed hash table for effective node searching and
retrieval of multimedia objects. Secondly, pseudo-relevance feedback using the self-
organizing tree map is implemented for image database retrieval on a P2P network.
The query processing is carried out on an unstructured P2P network, through the
discovery of a community of neighbors and by performing automatic retrieval within
the nodes of the community. Thirdly, based on the unstructured P2P network, the
adaptive cosine network is also implemented for video database retrieval.

8.1 Introduction

In a cloud datacenter, multimedia objects are distributed over the nodes in an
overlay network. The searching of these objects requires a large number of query
transactions. Retrieval of a particular multimedia object involves finding the relevant
nodes owning objects potentially relevant to the query, concatenating relevant
objects, and obtaining a shortlist of relevant objects in an accurate manner. In
this regard, automation is highly appropriate for clustering multimedia objects and
indexing nodes in a distributed hash table (DHT) for computing in a cloud network.
In addition, for achieving accurate re-ranking of multimedia objects, automatic
clustering offers pseudo labeling used by the relevance feedback process. This
further minimizes bandwidth since the transferring of training files can be avoided.

This chapter starts with a presentation of a peer-to-peer (P2P) architecture
of a distributed database system in Sect. 8.2, and a presentation of the cluster-
identification search system (CSS) in Sect. 8.3. The (CSS) organizes the nodes in
the network as a structured P2P network. It involves the process of partitioning
multimedia objects into disjoint groups, using a self-organizing tree map (SOTM).
Here, the performance of cluster discovery depends on two key factors: the number
of clusters and the topology of node-vectors. The automatic clustering allows the
partition of nodes on the network in the DHT and Chord layers, according to the
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cluster identification. This indexing stage facilitates online search by pinpointing
the relevant nodes without traversing all the participating nodes. Subsequently,
improvement of retrieval can be accomplished using relevance feedback within the
relevant nodes.

As an alternative to the structured P2P network, Sect. 8.4 presents an unstructured
P2P network. This is realized by the discovery of a community of neighbors
and performing automatic retrieval within nodes of the community. The search
is done by an incremental process of P2P retrieval whereby the relevant node
performs pseudo-RF and forwards the modified query to its neighbors. The system
continuously increases retrieval accuracy without transferring training samples over
the network during adaptive searching.

Section 8.5 presents pseudo-RF for video retrieval, by firstly discovering the
neighborhood community, followed by re-ranking videos via a three-layer cosine
network. The retrieval process is adaptive via intra- and inter-peer signal propaga-
tion, which can achieve high retrieval accuracy while minimizing network resources.

8.2 Distributed Database System

8.2.1 Cloud Datacenter

A cloud datacenter enhances capabilities in distributed storage and retrieval [227—
230]. In order to establish high-performance datacenters for searching large volumes
of multimedia data, an appropriate topology must be chosen. The datacenter
architecture can be categorized into two types: centralized and distributed.

A centralized system, as offered by most commercial cloud services, maintains
central nodes to handle the query requests. Upon retrieving the relevant multimedia
objects according to the feature similarity measures, the universal content locator
(URL) will be returned to the requesting host. The actual content will be transferred
directly from the content server to the requesting host. The centralized systems keep
the entire feature descriptor database in centralized servers. The real multimedia
content may or may not be located on the same server. The centralized system
retrieves relevant content based on the feature-descriptor database. The drawback
of a centralized system is its limited scalability for handling growing volumes of
retrieval requests and larger multimedia databases.

In order to provide better scalability and adaptability, decentralized systems are
designed according to the Peer-to-Peer (P2P) paradigm. Each node in the P2P based
datacenter acts both as a client for requesting multimedia objects and a server for
re-distributing the multimedia objects. Since a peer can join and leave the network
at any time, a challenge of using of such a distributed retrieval system is to address
the non-guaranteed level of service of the P2P network. To localize the search, the
query packet is always associated with certain Time-to-Live (TTL) levels. Database
storage on distributed servers has been utilized in the industry to provide high
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availability (continuous service if one or more servers are unintentionally out of
service) and efficiency (access from the geographically closest server). P2P network
is a special case of such a network, where each node in the network behaves as a
database server.

8.2.2 Application of a Multimedia Retrieval System
in a P2P Datacenter

Figure 8.1 shows the application of a multimedia retrieval system in a P2P
datacenter using centralized and decentralized architectures. In this system, content
providers can be cloud providers or cloud customers. The providers transfer files
including images, videos, and plain text into datacenters from any device, such as
smart phone, tablet computer, or other lightweight device. The search starts with the
cloud customer issuing a query request. The datacenter receives the query and takes
charge of search processing and the query results are sent back to the customer. In
the cloud datacenter, when a peer has a file to share, it makes it available to the rest
of the peers. This file may be copied to some interested peers, and become available
to the group. Since lists of peers may grow and shrink, the challenge is to locate files
and keep track of the locations of the files.

In a centralized P2P network, as shown in Fig. 8.1a, the search directory (listing
of the peers and what they offer) is centralized, but the storing and serving of files
are done using the P2P paradigm. For this reason, a centralized P2P network, such
as Napster [221] is referred to as a hybrid P2P network. In this type of network, a
peer first registers itself with a server, and sends a list of all the files to the server.
A cloud customer looking for a file goes to the server and issues a query. The server
searches its directory and responds with the IP addresses of the peers that are sharing
the file. The cloud customer then contacts one of the peers and downloads the file
directly. The search index is constantly updated as nodes join or leave the peer. This
offers greater simplicity in the maintenance of the search directory. However, using
centralized networks has some drawbacks, such as the accessing of the search index
generating a huge traffic load which slows down the system.

Figure 8.1b, ¢ shows a decentralized P2P network that does not depend on a
centralized directory system. In this model, peers arrange themselves into an overlay
network as either an unstructured (Fig.8.1b) or a structured (Fig.8.1c) logical
network. An unstructured P2P network has nodes that are linked randomly, whereas
a structured P2P network has nodes that are linked according to a predefined set
of rules for efficient query routing. The unstructured P2P network, such as Gnutella
[222], works by broadcasting the query with non-zero Time-To-Live (TTL) to all the
neighboring hosts. It may find a node with the desired file after a few levels of search
in the network. However, the system causes a lot of network flooding during a query
[223]. In Sects. 8.4 and 8.5, the retrieval system adopts an unstructured P2P network
using a strategy of searching within the neighborhood community. This community
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is a list of peers that have similar image/video categories. The construction of a
table of neighbors in the community allows minimum network traffic when conduct
a repeat search.
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A structured P2P network, as shown in Fig. 8.1c, uses a DHT to link nodes so
that a query can be effectively and efficiently resolved. This will be discussed in the
following section.

8.3 Adaptive Image Retrieval in a Self-organizing
Chord P2P Network

8.3.1 System Architecture

In a distributed system, images are located at participating nodes across the network.
It is impractical for an image query to traverse all the participating nodes due to
the high communication cost. Thus, one way to make a distributed search system
efficient is by performing a pre-computation, a search index before queries are made.
While answering quires, these indices can be used to precisely locate the nodes
serving the matching images without having to communicate with all the nodes.

Instead of storing the entire index in one server, a distributed indexing system
distributes the index to multiple nodes in the network. Thus, the challenge is finding
the right scheme to partition the index across the nodes in the network. A solution is
to partition indexes by cluster identifications (IDs) of an image and store all index
entries of a given cluster ID on a specific node. In this scheme, a user searches for
images using the cluster ID of a query image, while the system utilizes the cluster
ID as a key. To process a query, the system needs to fetch the image list for the key
from the network. Once the list has arrived, the images that appear in the list are the
matching images for the query.

This section presents the Cluster-identification Search System (CSS), that gen-
erates index entries with cluster ID as a key. Figure 8.2 shows the overview of
the CSS, which proceeds in two stages, indexing and query processing. Due to
its simplicity and elegant approach to routing queries, the Chord protocol [226]
is selected to implement the system. The processing is conducted between the
application layer and the DHT layer. In the indexing stage in Fig. 8.2a, each node has
a local image database to be shared with other nodes. The image feature extractor
accesses each image in the local database and then performs mapping via SOTM
(discussed in Chap. 3). This results in a cluster ID of the best matched SOTM cluster.
The mapping provides an index entry < clusID, URL>> for the input image, where
clusID is the cluster ID, and the URL contains IP addresses, port numbers, and
image names of the owner node. It also applies to all images in the local database,
resulting in index entries corresponding to various cluster IDs. All index entries
for a given cluster ID will be stored on a particular node. The node is chosen
by hashing the cluster ID, using a hashing function and Chord. Specifically, the
command put (key, data) is the application programing interface (API) that
lets the application layer put a data item (i.e., index entry) in the nodes in the P2P
network. DHash layer works by associating the keys with data items in the nodes.
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A put call first uses Chord to map a node using the lookup service, and does a put
in its local index storage using the cluster ID as the key.

In Fig. 8.2b, users search for image files using cluster IDs extracted from a query
image, where one query image may be characterized by more than one cluster ID.
A set of cluster IDs are obtained by self-organized mapping of the query feature
vector. A get call uses Chord to map the Cluster ID to a node, and does a get in
its local database using the cluster ID as the key. The image list (i.e., index entries)
for each cluster ID is then fetched from the network and the system aggregates the
results. The query node sorts the results list using a similarity measurement between
the query vector and the feature vectors list, and returns the top matching images to
the user. Furthermore, the adaptive retrieval method is used for relevance feedback
of the initial retrieval set and improves the ranking result.

8.3.2 Indexing of Nodes and Data Items on the Distributed
Hash Table

A DHT distributes data among a set of nodes to allow each peer to become
responsible for a range of data items. Each peer has partial knowledge about the
network, and this knowledge will allow the network to route the queries about the
data items to the responsible nodes using efficient and scalable procedures. The
DHT utilizes a circular ring for indexing of nodes and data items. Each data item or
a peer is mapped to a point in a large address space of size 2", where m = 160, i.e.,
m-bit integer. A node on the network is indexed by a node identification (ID),

node ID = hash(peer IP address) (8.1

by using a mathematical hash function. A data object to be shared is also hashed to
an m-bit integer,

key = hash(Object ID) (8.2)

This object is related to the pair (key, data), where data is the data itself or a reference
to the data object.

In the CSS, as illustrated in Fig. 8.2, when a node wants to share an image, the
feature vector of the image is first extracted. Then, the SOTM is applied to map
the feature vector to the cluster ID. The mapping is denoted by: RY — Z, from the
real-d dimensional vector to an integer. Then the cluster ID is hashed and an index
message is sent to the node responsible for the ID through the DHT layer.

Let € = {wilw; € R?, i =1,2,...,C} be the set of SOTM weight vectors w;
previously generated. For an input feature vector f, € R, its corresponding cluster
ID is constructed by:
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Fig. 8.2 Overview of CSS, which proceeds in two stages, (a) indexing and (b) query processing.
Each peer has CSS, DHash, and Chord layers. Peers communicate with each other using
asynchronous remote procedure calls

clusID = Q(f,) = argmin([f, - wi) (8.3)

where Q(f,) is the mapping function. To construct the key for this data object, the
consistent hash function SHA1 is employed,

key = SHA1(clusID) (8.4)

This distributes indexes as symmetrically as possible on the Chord ID space in
order to keep the load balanced. In this way, if f,; and f,, are the feature vectors of
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two similar images, i.e., f,; = f,,, Eq. (8.3) will quantize them into the same cluster:
O(f,1) = O(f,2). They will have the same hash value.

After the key of an image is obtained, the system can construct an index entry in
the form of < key, f,, URL >, where f, is the feature vector; URL is the IP address,
the port address, and the image name. The Chord network will forward this index
message to the node responsible for the key. The node will insert this index entry
into its local storage, where the indexes with the same key are gathered into the
same list to facilitate the localization of local indexes.

Figure 8.3 shows an example of indexing on a Chord ID space of size 27, i.e.,
m = 5. It is assumed that seven nodes have already joined the group. The node
N5 is assigned the ID as 5 = hash(18.175.6.2), and has an image file named
“Landmark” that needs to be shared with its peers. The node uses the cluster ID
of the image and makes a hash of the cluster ID, to get the key = 14. Since the
closest node to key 14 is node N17, N5 creates an index message <hash(clusID).f,,
http://18.175.6.2:5200/Landmark.jpg> and sends this message to be stored in node
N17. In other words, the image file is stored in N5, and the key of the file is k14 (a
point in the DHT ring), but the reference to file is stored in node N17. In the query
processing state, other nodes can first find N17, extract the references, and then use
the references to access the image file.
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Fig. 8.3 Indexing of nodes and data items on a Chord ID space of size 2°
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8.3.3 Query Processing on the P2P Network
8.3.3.1 Query Indexing

In the query processing stage (cf. Fig. 8.2b), the query feature vector is mapped
into the SOTM, similarly as in the indexing stage. However, the multiple-cluster
mapping method is employed here to improve retrieval accuracy. Figure 8.4
illustrates a simplified example of dividing data samples (represented in dots) into
six clusters, where the cluster centers are denoted by crossed-circles. If the query
image (represented as a triangle) is located close to the boundary between multiple
clusters, retrieval precision drops if the search is done for only the closest cluster. As
shown in Fig. 8.4, relevant images may reside under multiple clusters (such as the
samples covered by the circle surrounding the query). Therefore, if the query image
is located at equal or nearly equal distance to multiple cluster centers, multiple
clusters should be chosen to avoid a significant degradation in the retrieval precision.

When a node issues a query, it converts the query image to a set of cluster IDs,
and then sends the query message to the nodes responsible for the cluster IDs. In
order to obtain the cluster IDs for the query, a multiple-cluster mapping denoted
by: R? — ZF is employed. This is done by vector quantization of the query feature
vector, f;:

O (fy) = {clusIDy,clusIDs, ..., clusIDy} (8.5)
where clusID; is the closest (winning) cluster to the query, i.e.,

clusID| = argmin (||f,1 *WiH) (8.6)
1

and clusID, and clusIDy are respectively the cluster ID of the second and the k-th
neighbor of the winning cluster.

Afterwards, the node sends the query messages in the form of < key;,
IP address >, where i = 1,2,...,k, and key, is obtained by:

key; = SHA(clusID;),i=1,2,...,k (8.7)

Using the query routing scheme in the Chord, each query message is only forwarded
to the node responsible for the keys. The number of query messages depends on the
parameter k. Increasing k also expands the number of clusters that are close to the
query, and thus, increase the probabilities of finding the relevant images.

Figure 8.5 shows the precision results as a function of k, the number of clusters
selected for an indexing query in Eq. (8.5). The database was the Corel database
[224], containing 40,000 images. Each image was characterized by color histogram,
color moment, Gabor wavelet for texture, and Fourier descriptor, as discussed in
Chap. 2 (Table 2.7). The application of SOTM resulted in 233 clusters (the number
of clusters was automatically generated) [359]. The figure shows the average



222 8 Adaptive Retrieval in a P2P Cloud Datacenter

Fig. 8.4 Example illustrating cluster selection for a query

precision of searching 20 query images selected from Boeing airplanes and Bonsai
classes. The result shows that the precision increased with the number of clusters,
k. However, after k = 8, there was no improvement at all. It is also observed that,
beyond k > 8, all the additional similarity matching efforts (i.e., up to approximately
90 % of all images) are wasted. Figure 8.6 shows the number of total images (i.e.,
search space) belonging to these clusters. It is observed that the number of images
continuously increased as k increased.

8.3.3.2 Routing of Query

In order to facilitate routing queries, the Chord offers an identifier space of size
2. This space is used to distribute data items and nodes in a circle in a clockwise
direction, as illustrated in Fig. 8.3 for m = 5. The identifier of a data item is referred
to as k (for key) and the identifier of a peer is referred to as N (for node). The closest
peer with N > k is called the successor of k, and hosts the index entry < k, f,,, URL >
in which k is the key (hash of clusID of an image), and URL is the data containing
information about the peer server that has the image.

To find an image that has the same cluster as a query (a relevant image), a peer
needs to know the node that is responsible for that image: the peer that stores the
index entry (a reference to that image). As discussed previously, a peer that is the
successor of a key in the ring is the responsible peer for the key. Let us define
the function successor(k) as the node identifier of the first actual node following
k around the circle clockwise. Finding the responsible node is actually finding the
successor of a key. For example, in Fig. 8.3, successor(k14) = N17.
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In order to find the successor of a given key, each node has a routing table called a
finger table. The finger table has multiple columns; two of them represent the target
key and the successor of the target key. The target key at row i is N + 2/, where N
is the current node. Figure 8.7 shows an example of nodes with the finger tables on
the identifier space of size 25. The table size is a maximum of m rows, and the first
row (i = 1) gives the node successor. In addition, the table also has a predecessor
node ID that is used to identify the node previous to the current node.

To find the successor of a key, the system performs the lookup operation, as
outlined in Fig. 8.8. If the node is responsible for the key, it returns its own ID;
otherwise, it needs to help other nodes find the predecessor of a key. The node
firstly searches its finger table to find another node that is closer to the predecessor
node than itself. It then passes the duty of finding the predecessor node to the other
node. The task is forwarded from node to node until the predecessor node of the
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Fig. 8.7 A set of nodes and keys arranged on the 32 node identifier space, and examples of the
finger tables. “Pre” is an abbreviation for “predecessor”

key is found. Let N and x be the objects in the object-oriented programing, which
respectively represent the current node and the next node. The node x is closer
to the predecessor node of the key than node N. The lookup operation contains
three functions as shown in Fig.8.8. At the current node, N, the “find closest
predecessor” function finds the closest predecessor of the key by searching N’s
finger table. Searching uses the for-loop lookup table starting from the m-th row
down to 1. Once the closest predecessor is found, the next node, x is set to the
closest predecessor (i.e., x = finger[i]). The “find predecessor” function checks if
the key is in between this node and its successor (i.e., key € (x,x.finger[1])). If this
is true, x is the predecessor of the key. Otherwise, the procedure jumps back to the
first function to search for the closest predecessor again in the finger table of x (the
current node). Finally, the “find successor” function will take the predecessor ID
from the previous function and obtain the ID of the successor node of the key (i.e.,
x.finger[1]).

An example of the lookup procedure is as follows. Assume that the current
node is N10 in Fig. 8.7, and needs to find the responsible node for k = 22. Node
N10 searches its finger table, and the “find closest predecessor” function returns
N12. However, N12 is not the predecessor of k22 since k22 ¢ (N12,N20]. The
system then sets N12 as the current node to find the closest predecessor of k22.
This time the “find closest predecessor” function returns N20. Node N20 is in fact
the predecessor of k22 since k22 € (N20,N25]. The “find predecessor” function
passes this information to the “find successor” function. The system then returns the
finger[1] of N20, which is N25, the successor of k22.
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Fig. 8.8 The Lookup operation, which takes the key as an input and outputs the node ID
responsible for the key

8.3.3.3 Single- and Multi-Click Relevance Feedback

For each key;,i € {1,2,...,k} of the query, the Chord layer returns the responsible
node IDs, and thus, the query messages are only forwarded to these nodes by the
DHT layer. Each of the responsible nodes checks the local index storage to find a
list of index entries corresponding to the given key, and replies to the query node.
After the query node receives all the results corresponding to key;, i =1,2,... kit
merges the results and performs a similarity measurement. The system computes the
ranking of data items by calculating similarity scores between f; and f,, where v =
1,2,...,V,and V is the total number of data items. The top-7 indexes are chosen,
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and the corresponding image files are transferred from the data owner to the query
node.

The relevance feedback is employed for re-ranking of the retrieved images, by
using the single-radial basis function (RBF) method (discussed in Chap.2). The
similarity between the RBF center ¢ = [cy,...,cj, .. .cP]’ and the input feature vector

£, = [fo1,---, foir-- - fop]'» is computed by:

Zexp< 20_2fw) ) (8.8)

where 0;,i = 1,...,P are the RBF widths. The RBF center is updated prior to the
computation of S (c,f,) by:

c(t+1)=F"+on(c@t)—F) (8.9)

where F™ and F~ are respectively the means of the positive and negative samples,
and oy is the positive constant. ¢(z) is the RBF center at the 7-th feedback iteration,
and it is initialized by the query position, i.e.,

c(t=0)=f, (8.10)

The relevance feedback method discussed above is referred to as multi-click RF,
where all the top-T retrieved images that appear on the screen have to be examined
by a user. The feedback is done by the user clicking the relevant images, followed
by a feedback button. Therefore, multi-click RF requires n+ 1 clicks, where n is the
number of relevant images appearing on the screen.

Single click RF, on the other hand, requests the user to select only one
relevant image, and this selection will be taken as a feedback sample. The system
immediately performs similarity matching using Eq. (8.8) after the single click. At
the later RF iteration, images selected on an earlier iteration will be automatically
selected as the relevant images. In this way, the single click RF considers only one
positive sample at each iteration, while the multi-click RF requires users to examine
all positive and negative images in the retrieved image set. The single-click RF can
reduce the number of clicks and the user workload, as compared to multi-click RF.

Since the negative samples are not considered in the single-click RF, the process
of updating the RBF center with Eq. (8.9) is reduced to:

c(t+1)=F" +aye(r) 8.11)

Figure 8.9 illustrates the retrieval results for the Corel database as used for the
experimental data in Fig.8.5. Fifty images of flags, balloons, bonsai, fireworks,
and ships (ten images of each category) are taken as the query images, to perform
single-click and multi-click RF for ten iterations. Figure 8.9a compares the retrieval
precision versus iteration. The plot shows increased retrieval precision is attained
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with higher RF iteration. As we may have anticipated, the multi-click RF performs
better than single-click RF, but with a higher number of clicks (i.e., a high level of
user involvement). In order to compare the performance between the two methods
at the same level of number of clicks, a plot of the precision versus clicks is done, as
illustrated in Fig. 8.9b. Since some queries may have different numbers of feedback,
it is observed that the precision is more versatile against clicks than feedback
iterations. In general, the retrieval precision versus clicks plots for both methods
indicate the relationship resembles an increasing function. It is observed that single-
click RF outperforms multi-click RF, for the same level of user interactions.

8.4 Social Network Image Retrieval Using
Pseudo-Relevance Feedback

As an alternative to the structured P2P architecture, this section presents a method
for social network image retrieval on an unstructured P2P network. The search
system works by broadcasting the request message with non-zero time-to-live (TTL)
to all the neighboring hosts. This is to form a social network group and perform
a search within this group. Each peer in the P2P network maintains two tables
of neighbors. The first type of neighbors are called the generic neighbors which
typically represent the neighbors with the least physical hop counts. The other type
of neighbors are called the community neighbors and they have a common interest
which is shared among the community. Two stages of operations are required: social
network discovery and query within the social network.

Automation in adaptive image retrieval is employed to improve retrieval accu-
racy, and to reduce the task of transferring actual image files over a network as
required in user-controlled RF. The SOTM is employed for implementing pseudo-
RF, and new techniques are utilized to improve its performance in automatic
retrieval. This helps reduce the bandwidth requirement and subjective errors caused
by user feedback in the scenario of distributed content-based retrieval.

8.4.1 Social Network Discovery

Figure 8.10a illustrates the process of community neighborhood discovery for the
construction of a social network. A peer node originates the query request for its
generic neighbors in the P2P network. Whenever a peer node receives a query
request, it will (1) decrement the TTL, and forward the request to the generic
neighbors when TTL > 1, and (2) perform a content search within the peer’s feature
descriptor database. The retrieval results of each peer are transmitted to the original
query peer directly in order to improve the efficiency.
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Like most P2P applications, this system applies an application layer protocol,
such that the system can be realized on today’s internet without modifying the
underlying network infrastructure. The query packet format that traverses the P2P
network is shown in Fig. 8.10c. Once the destination peer receives the query and
performs a feature match, it will issue a query reply to the query requester directly.
The query results are in the form of filenames and distances. The actual file transfer
is not part of the protocol, and protocols like HTTP, RTP, with or without encryption,
may be applied depending on the application. Transferring the actual image content
is coupled with the feature descriptor transmission, to eliminate the need to re-
compute the feature descriptors upon receiving a new image. The query search and
query response packet format which travels through the P2P network are shown in
Figs. 8.10b and d, respectively.
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The query peer maintains a table of community neighbors based on past retrieval
results to identify the peers which collect a similar image database.

8.4.2 Query Within the Social Network

Once the social network is identified, subsequent queries will be made to limited
peers within the social network, as illustrated in Fig.8.10b. To improve the
communication efficiency, instead of forwarding the request hop-by-hop in the
social network discovery stage, direct communication between the peers is utilized.
The same packet format is used for query and query response within the social
network.

Each peer in the social network collects more than one category of images, with
at least one common category as the requesting peer to satisfy the criteria to be
listed in the social network. Therefore, the same image appearing in multiple peers
is likely to belong to a common category in the social network. Let Ret(Q, P,) denote
the retrieval result using query image Q from peer B,, where P, is the n-th member of
social network. Also, let N (NRet (Q, P,))denote the number of occurrences of each
retrieved image /. We can calculate an occurrence distance Dy for each retrieved
image, with the normalized value of N (NRet (Q,P,)). This can be used to adjust
the ranking of images, in addition to the distance D that is usually calculated by
feature vectors. The integration of Dy and Dr is done by a weight assignment, with
the weighting factor w2, = [wr wo]. In this way, the similarity ranking for image
I denoted by Rank(I), is obtained as:

Rank(I) =W, - [Dr Do) (8.12)

This integration of the two distances is referred to as the occurrence weighting
scheme [361].

8.4.3 Pseudo Relevance Feedback in the Distributed
Database System

While pseudo RF reduces the need for user interaction in relevance feedback,
integrating pseudo RF into the distributed retrieval system gives rise to new
challenges for repeated requests to multiple peers, which consumes bandwidth and
computational resources. To address this issue, an incremental searching mechanism
is introduced to reduce the level of transactions between the peers.
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Fig. 8.10 (a) Neighborhood discovery, (b) search within community neighborhood, (c) packet
format for query, (d) packet format for query reply

8.4.3.1 Incremental Search System

Figure 8.11a illustrates the implementation of pseudo-RF with an incremental
search technique. Peer A originates a query request to its nearest neighbor Peer
B. Peer B performs the query, and returns the top matched feature descriptors to
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Peer A. Consequently, Peer A evaluates the retrieval results using pseudo-RF, and
generates a new feature vector (i.e., RBF center). A new query request using the new
feature vector will be sent to Peer B, as well as incrementing the audience to Peer
C. The query request and automated retrieval evaluation process is repeated until a
pre-defined number of peers is reached.

The pseudo-RF is implemented by the SOTM algorithm discussed in Chap. 3.
SOTM is applied for the pseudo labelling of retrieved samples, and the single-RBF
method is applied for relevance feedback. In the SOTM algorithm, steps 1-5 are
the same as the ones discussed in Sect. 3.2.2. However, the updating of the winning
node w« in step 3 [cf. Eq. (3.3)] is modified to:

Wi (1 1) =wje (1) + o (1) B(v(1)) [v — W] (8.13)

where f(v,t) is the ranking function which is inversely proportional to the ranking
of the feature vector v at iteration ¢. This ranking is obtained by the similarity scores
between the query feature vector and the feature vector v. A large value of B(v(t))
indicates a high relevance of the feature vector compared with the respective query
feature [361]. As a result, the prototype vectors w; are adjusted so that they learn
more from statistically similar inputs and less from statistically irrelevant ones.

The RBF method [i.e. Egs. (8.8)—(8.9)] is utilized for nonlinear similarity mea-
surement by the adjustment of RBF centers and widths. Since pseudo-RF may cause
some errors in the pseudo labeling of retrieved samples, the error will propagate
into subsequent modification of the RBF center. To minimize the error preparation,
a bias weighting 7 is introduced to the original query vector corresponding to the
initial RBF center ¢(0) in Eq.(8.10). The new RBF center updating function is
obtained by:

c(r+1)=(1-y)F +yc(0)+oay(c(t)—F) (8.14)

This formula weights the importance of the original query and the mean of the
positive samples, and will replace Eq. (8.9) for calculation of the RBF center in the
RF learning.

8.4.3.2 Offline Feature Calculation

Online feature calculation requires high computational resources and results in delay
in content retrieval. Redundant online feature computation can be eliminated by the
following specifications:

» Each image stored in the social network is attached with its feature descriptor.

* When a peer creates a new image, the feature descriptors will be computed and
attached with the image file before announcing the availability of the new image.

* Any image transmission over the social network will be coupled with the
transmission of the image’s feature descriptor.
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8.4.3.3 Advanced Feature Calculation

For extensibility, apart from offline feature calculation, an ideal retrieval system
should also allow new features to be computed on the fly. These new features, which
typically address the specific feature for a query image, are best implemented with
the pseudo RF such for more accuracy in the classification of image relevancy.
The advanced feature descriptors for the distributed retrieval systems can be
generated by the following two approaches: query node pseudo-RF and agent-based
pseudo-RF.

Query Node Pseudo RF

As illustrated in Fig. 8.11a, the query node, Peer A, makes the initial request to the
destination node, Peer B. The destination nodes will transfer the retrieved images
to the query node. The query node will calculate the advanced feature descriptor on
the fly and perform pseudo RF. A new query message will be generated and sent
from the query node to the destination nodes repeatedly, until a pre-defined number
of iterations is met. This new query message contains updated RBF parameters
(i.e., RBF centers and widths) which are used to perform content search within the
destination nodes.

The query node pseudo-RF approach requires bandwidth for multiple retrieved
data transmission to the query node, and the computation for the query node to
calculate advanced features.

Agent-Based Pseudo RF

A software agent technique [225] can be applied to offload the bandwidth and
computation cost from the query node. As shown in Fig.8.11b, the query node,
Peer A, initiates a software agent to carry the query vector using a standard feature
descriptor, and the algorithm for computing advanced features, to the destination
node, Peer B. Peer B performs the retrieval with pseudo RF using the advanced
features computed on-the-fly. The software agent carries the new query vector,
advanced feature extraction algorithm, and the retrieved data from Peer B, to
the subsequent neighbor node, Peer C. Upon reaching a pre-defined number of
neighbors, the software agent will carry the retrieved data back to the query node.

Offloading computational cost from the query node to destination nodes raises
security concerns, as the flexibility of remote procedure execution opens the door-
way for various malicious attacks. Therefore, authenticating as well as validating
the integrity of the software agent is required.
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8.4.4 Experimental Result

The simulation was performed using the Corel photo image database, which consists
of 40,000 images. For off-line feature calculation, the set of stand features were
used, which include color histogram, color moment, wavelet moment, and Fourier
descriptor (explained in Table 2.7). For specific feature calculation, the Gabor
wavelet texture feature was obtained and used in the pseudo labeling process. The
statistical results were computed from averaging the 100 queries in the categories
of bird, canyon, dog, old-style airplane, airplane model, fighter jet, tennis, Boeing
airplane, bonsai, and balloon.

In the experiment, a P2P network was constructed using an evenly distributed
tree structure and each peer was connected to five other peers. The number of image
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Table 8.1 Average precision rate (%) obtained by the pseudo-RF method on

the P2P network, where the bias weight y is applied for obtaining the RBF
center [cf. Eq.(8.14)], and the parameter 3 is applied for the SOTM [cf.

Eq.(8.13)]
With
Bias weight B Iter. O |Iter. 1 |Iter.2 |Iter.3 |Iter.4 |Iter.5
y=0 v 4475 |57.15 |68.30 |77.45 |79.50 | 82.05
y=02 v 4475 |58.15 |71.35 |77.90 |80.85 | 83.25
y=02 X 4475 |57.10 |68.60 |76.15 |79.20 |82.30

categories which each peer falls under followed a normal distribution, with mean
W.. = 10 and standard deviation 0, = 2. The number of images per category was
also normally distributed, with mean ft;,,,,, = 50, and standard deviation Gpage = 5.

Firstly, the retrieval system was conducted by a simple search strategy, where
image ranking was done by an occurrence weighting scheme [cf. Eq.(8.12)].
Figure 8.12 shows the statistical analysis of the size of social network with respect
to retrieval precision. It was observed that the retrieval precision steadily increased
against the size of the community neighborhood. Such characteristics serve as the
foundation of the current P2P retrieval system.

Next, the retrieval system utilized a pseudo-RF approach, where SOTM was
employed for pseudo labeling and the single RBF method was employed for
similarity measurement. Since the pseudo labeling can cause an error in the
classification of image relevancy, the bias weight parameter y was used for updating
the RBF center [cf. Eq. (8.14)]. Table 8.1 shows the average precision as a function
of feedback iterations, when the system utilized ¥ = 0 and 0.2. Regardless of the
setting of the bias weight, the retrieval performance significantly improved from
44.75 to 83.25 % at the fifth iteration. At each iteration, the system with y = 0.2
provided better retrieval accuracy than that of the system with y = 0. This system
adaptively improved retrieval accuracy without user interaction. Figure 8.13 shows
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the comparison of retrieval performance between the user-controlled RF and the
pseudo-RF methods. It was observed that the pseudo-RF method performed very
close to that of the user-controlled RF method.

The application of the ranking bias 8 in updating the SOTM prototypes also
influenced the system performance. Since the output at each feedback stage was
ranked according to the RBF function, it was observed that by adding the ranking
bias 3 to the construction of the prototypes as in Eq. (8.13), the retrieval precision
was improved. The result is also shown in Table 8.1.

The inter-dependence between each individual image database can be used to
improve the retrieval precision for a centralized retrieval system, using the same
algorithm applied for a distributed retrieval system. While the centralized retrieval
system typically includes a higher order database, greater diversity is expected. In
this simulation, the number of images per category was also normally distributed,
with t,, =20, Gcar =5, Wipage = 50, and Gimage = 5. Comparisons between the
retrieval methods in the centralized system, the centralized system accounting for
inter-dependencies between individual databases, and the P2P system, are illustrated
in Fig. 8.14. Here the relevance feedback was done manually. Accounting for the
overlap between relevant databases used in the distributed P2P system, as described
in Sect. 8.4.2, it was observed that there was improvement in the retrieval precision
for the centralized retrieval system that used the occurrence weighting scheme.

Figure 8.15 compares the experimental results between the semi-automatic RF
and the user-controlled RF, applied to the P2P retrieval system. The x-axis indicates
n, the number of manual RF performed. For the semi-automatic RF, the plot
is coupled with 5 —n pseudo RF. The user-controlled RF was conducted solely
from the manual RF, whereas the semi-automatic started with the pseudo RF and
was followed by the manual RF. It can be observed that, while n is small, the
semi-automatic RF is a better method providing a significant improvement over
the user-controlled RF, where both methods use the same amount of manual RF.
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An improvement of 38.5 % can be attained at n = 0, and 20.5 % at n = 1. The two
plots converge to the same precision rate at n = 5.

Screen shots of a query for an airplane, from the centralized database, with the
first and fifth iteration of manual RF, and with pseudo-RF on the distributed P2P
retrieval system, are shown in Fig. 8.16a—d, respectively.
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8.5 Video Re-ranking on the Social P2P Network

The video re-ranking method, presented in Chap. 3, is suitable for the implemen-
tation of a video search engine on a P2P network since there is no requirement
to conduct relevance feedback from users. In this application, a video database in
a peer is indexed by the template-frequency model (TFM) and organized by the
3-layer cosine network. The video retrieval is performed by pseudo-RF through
forward—backward signal propagation between peers. This process does not require
bandwidth to actually transfer video files over the network during the RF learning
process. The video re-ranking system is explained in the following sections.
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Fig. 8.16 (a—c) Retrieval results obtained by user-controlled RF on the centralized database; (a)
at Iteration = 0, the retrieval precision was 0.55; (b) at Iteration = 1, the retrieval precision was
0.70; (c) at Iteration = 5, the retrieval precision was 0.80, and (d) in the retrieval result obtained
with a P2P retrieval system with pseudo-RF, the retrieval precision was 0.95
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8.5.1 System Architecture

The system adopts the two stage search approach discussed in Fig.8.10a, b as a
means for discovering and interacting with other peers. Each node is assumed to
have a local database containing video clips, each of which is indexed with a vector.
Figure 8.17 shows the connection of peers after the social network has been formed.
The search is started by the user node to discover its neighbors. The user node sends
a packet containing query vector v, to the other nodes in the list though Java socket
programing. The retrieval process is conducted according to the sequence diagram
illustrated in Fig. 8.18.

In the diagram, once received, the query vector is used to search through similar
video files in the peer nodes locally. Retrieval results are used to modify the query
vector automatically, and the modified query, V;J-,i =1,2,...,n is routed back to
the user node, where n is the total number of nodes. Consequently, the user node
gathers all modified query vectors and uses them to adjust the components of the
previous query vector. All steps are repeated with the new query vector, V;. After
several rounds of forward and backward signal propagation between the nodes, the
improved retrieval results from each peer nodes are delivered to the user node.

Figure 8.19 shows a snapshot of the retrieval process. The query video clips and
the list of peers are displayed on left panel. The retrieved video clips shown on
the right panel are represented by the key frames. The retrieval results after each
iteration of query modification are also available for the users.

8.5.2 Video Indexing on the P2P Network

A video file can be segmented into video clips, each of which may contain more than
one shot. The TFM technique discussed in Chap. 3 is employed for indexing of the
video clips. The descriptor of a video clip is denoted by VD = {x,...,X;,..., Xy},
where x; € R” is the visual descriptor of the corresponding i-th frame, and N
is the total number of frames. The TFM utilizes vector quantization to assign
each video frame to the best matched visual template. A set of visual templates,
C = {g ilj=12,....J }, is generated by competitive learning (as explained in
Table 3.7), where g; € R? is the j-th visual template and J is the total number of
templates. The mapping of the i-th frame is given by the labeling of its feature
vector, i.e.,

xi = Ui Gy, Gy (8.15)
= argmjin(”x,-—ng) (8.16)

where l;‘i‘l,l;fﬁz, and l;ﬁn are the labels of the 71 best matching templates.

By mapping all x;,i = 1,...,N, in the input video clip, the resulting labels,
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Fig. 8.17 The re-ranking procedure for modification of a query for video retrieval on a peer-to-
peer network; (a) the user node sends query packets to its peers in the neighborhood community;
(b) the query is modified by the peer nodes and sent back to the user node; (c) the user node gathers
the modified queries and computes the second modified query and sends it to the peer nodes; (d)
the final retrieval results (video files) are sent to the user node

N
{lﬁ’l’“"lﬁv"}izl’ lj € {1,2,...,J}, can be obtained. In this way, the label /;

represents the occurrence of template g; in the input video. Thus, the term-vector
model [360] can be applied to the resulting set of labels. The number of times g;
present in the video can be viewed as the term frequency (TF). We can formally
formulate the corresponding term-weighting vector as: v = [wl,...,wj,...,w]]’
where w; represents the multiplication of the term frequency (TF) and the inverse
term frequency (ITF) of the j-th template g; for the input video.

8.5.3 Re-ranking Approach to P2P Video Retrieval

Each node in the P2P network shown in Fig.8.17 stores a collection of video
clips, each of which is indexed by a weight vector. All the members of the
neighborhood community are assuming the use of a single set of visual templates
C ={gjlj=1,2,...,J}. The peers may have a different number of video files.
Figure 8.20 illustrates the zoom version of Peer n. Video indexing within this
peer can be viewed as a network of three layers: (first) the query vector, (second)
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Fig. 8.18 Sequence diagram of video retrieval using pseudo-RF on a P2P network

the visual template, and (third) the video nodes. The network’s signal propagation
process implements a query expansion method that modifies the query components
according to the initial search result. The modified query is expected to be
effective, as compared to the original query. This process contains intra-peer signal
propagation, which results in a new query which is then sent back to the query peer
in the subsequent inter-peer signal propagation.

8.5.3.1 Intra-Peer Signal Propagation

The adaptation process is implemented by forward-backward signal propagation
between the three layers. The network contains the query node (v,) at the first layer,
video template nodes (g;, j=1,...,J) at the second layer, and video nodes (v;,i =
1,...,1) at the third layer. The connection between the second and the third layers
are the weight components w;j, i € {1,...,I}, je{l,...,J}.

As shown in Fig. 8.20, at the first round of forward signal propagation, some
video nodes at the third layer are activated. The activation level of the i-th video

)

node, a; ’ is calculated by taking the sum of the signals mesgy. sy, That is:
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Fig. 8.19 Snapshot of retrieval process using video re-ranking on the P2P network. The left frame
shows the query interface and the list of peers. The right frame shows the retrieval result which is
the videos clips after five iterations

J
al(v) = 2 mesgy. v, (8.17)
j=1

J
AT
_ X1 WajWij (8.18)

J 2 J 2
\/ Y1 W) \/ 1wy

where mesgy. v, is the message sent from the j-th video template node, g; to the
i-th video node, v;.
After finishing the forward signal propagation, the activation level of all video

nodes, al(v), i=1,...,I are the desired ranking of the videos for retrieval. However,
the signal propagation process does not stop here. The activated video nodes will
send the signal backward to the templates nodes at the second layer. This time,
however, a minimum activation threshold is defined such that the video nodes below
this threshold send no signal out. The activation level of the j-th template node
during the backward propagation is obtained by:

Y (8.19)

iePos
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is the activation level of the i-th video node and Pos is the set of i’s such

(8.20)

Wij =

)

where a;”

that alm > T'r, where Tr is a threshold value.

8.5.3.2 Inter-Peer Signal Propagation

As shown by the example in Fig. 8.20, the forward—backward signal propagation
process will introduce new template nodes which are relevant to the query. We draw
on the observation that, with more templates in the query, it is more likely that a
video relevant to this query is indexed under at least one of the query templates. This

process automatically expands a short query with additional relevant templates. The

()

activation level a;> in Eq. (8.19) can be viewed as the degree of relevance of the
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t
corresponding template g;. From this, a new query v, = [W;J s Wy e .w’q,J} is

obtained, where w’q ; are calculated from the activated templates as the following:

j (8.21)

Zielz}s Wi j if a(g) >0
W=
0 otherwise

/

where M is the number of video nodes in the Pos set. The new query template, w,, ;

is obtained by the mean value of the j-th template of the activated video nodes.

In Fig. 8.17, the peers on the network will create the new set of query vectors,
v;’l-,i =1,...,n. These new queries are sent back to the user node, and the second
modified query is computed from this set of query vectors. At the user node, the
modified query is obtained by concatenating the modified queries from all peers to
the original query:

n
Vou =Vq B > Vi (8.22)
i=1

where V;,u is the new query obtained at the user node and f3 is the positive constant.

The query V/q’u is sent to all nodes to perform the subsequent search operation.

8.5.4 Experimental Result

In the experiment, the retrieval system was firstly implemented on a local server,
where all indexed video files were located in a single server. Five videos were
segmented into video clips, and the video indexing process was obtained by the TFM
method. In the off-line process, the color histogram on RGB color space was used
for content characterization of video frames. The resulting histogram vectors were
vector quantized using the procedural parameter 1 = 5. Each video was indexed by
the TF x IDF weight vector. In the on-line process, video retrieval was obtained by
the adaptive retrieval process, where the initial query was modified through signal
propagation by the 3-layer cosine network. At the first iteration of forward signal
propagation, Eq. (8.18) was used to obtain the activation level of video nodes. Then,
for the backward signal propagation, the video nodes whose activation levels were
greater than the threshold 7r = 0.9, were set as relevant, and used to obtain relevant
templates with Eq. (8.21). In the successive iteration, the new query was obtained
by Eq. (8.22) and used for retrieval.

Next, the video database was divided and distributed to nodes in the P2P network.
The retrieval process was obtained by the peer-to-peer system (as explained in
Fig. 8.17), through inter- and intra-peer signal propagations. Table 8.2 shows the
retrieval results obtained after five iterations by the retrieval results from the
single server and the peer-to-peer system. Here, the comparison was conducted
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Tablt;S.Z bAYengE re;:lall Average recall rate (%)
z}ail:fe(() :2 :r(;nt]ilrlllge me}t]l:og on 1 Iter. |2Iter. |3 Iter. |4 Iter. |5 Iter.
the centralized and the P2P Centralized database | 53.31 |61.04 |61.44 |61.44 61.44

database systems P2P database 53.31 162.02 | 6299 |63.87 |64.35

between the non-adaptive retrieval method (1st iteration) and the adaptive retrieval
method (2nd-5th iteration), and not between the centralized and distributed database
systems. It can be observed that the re-ranking process by the adaptive network
significantly improved retrieval performance. The recall rate at the first iteration
was 53.31 % and increased to 62.02 % after one iteration of query modification.
The system converged quickly after two to three iterations. It can be observed
that the retrieval result for the peer-to-peer system was slightly better than that
of the centralized database system. This is because the query modification process
explained in Eq. (8.22) allowed each peer node to modify the query (i.e., V/q’i, j
1,...,n) before computing the final modification of the query at the user node. By
computing Y VZN- in Eq. (8.22), the relevant templates were weighted more than
those of the centralized system, in the order of n times.

Figure 8.21 shows the average precision rate for the top 10, 20, and 30 retrievals,
obtained by the re-ranking of videos on the P2P network. The precision achieved for
the top ten retrievals was measured to be 80.63 % (more than eight relevant videos
were presented out of the top ten retrieved videos). The precision increased with
the number of iterations of the query modification, and converged to about 84 %
precision.
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Fig. 8.21 Average precision measured for the top 10, 20, and 30 retrievals, obtained by re-ranking
videos in the P2P database
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Fig. 8.22 Snapshots of video retrieval in the P2P network after (a) one iteration, and (b) three
iterations of re-ranking
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Figure 8.22a, b illustrates retrieval results after three iterations of query modifi-
cation, showing snapshots from the P2P retrieval system. The recall rate at the first
iteration was 46.6 %, whereas at the third iteration, the recall rate was improved to
80.9 %.

8.6 Summary

The chapter presents methods for organizing images and videos in a cloud dat-
acenter. A distributed database can be managed by structured and unstructured
P2P networks. In both scenarios, self-organization plays an important role for
automatic clustering of multimedia objects, and thus, the clustering of nodes for
effective indexing and retrieval. The self-organizing tree map is employed for
the cluster-identification search system, which offers online search by pinpointing
the relevant nodes without traversing all the participating nodes. Furthermore,
the self-organizing tree map and the adaptive cosine network are effective tools
for implementing pseudo-relevance feedback, minimizing bandwidth and user
workload in image and video retrieval processes.



Chapter 9
Scalable Video Genre Classification
and Event Detection

Abstract This chapter focuses on a systematic and generic approach which is
experimented on scalable video genre classification and event detection. The system
aims at the event detection scenario of an input video with an orderly sequential
process. Initially, domain-knowledge independent local descriptors are extracted
homogeneously from the input video sequence. Then the video representation is
created by adopting a Bag-of-word (BoW) model. The video’s genre is firstly
identified by applying the k-nearest neighbor (k-NN) classifiers on the initially
obtained video representation. Various dissimilarity measures are assessed and
evaluated analytically. Then, at the high-level event detection, a hidden conditional
random field (HCRF) structured prediction model is utilized for interesting event
detection. The input of this event detection relies on middle-level view agents
in characterizing each frame of video sequence into one of four view groups,
namely closed-up-view, mid-view, long-view and outer-field-view. Unsupervised
probabilistic latent semantic analysis (PLSA) based approach is employed at the
histogram-based video representation to achieve these middle-level view groups.
The framework demonstrates the efficiency and generality in processing voluminous
video collection and achieves various tasks in video analysis. The affectiveness of
the framework is justified by extensive experimentation. Results are compared with
benchmarks and state of the art algorithms. Limited human expertise and effort is
involved in both domain-knowledge independent video representation and annota-
tion free unsupervised view labeling. As a result, such a systematic and scalable
approach can be widely applied in processing massive videos generically.

9.1 Introduction

The bag-of-words (BoW) model and its application in image classification have
been used in various aspects of video analysis. Because of its robustness in
matching semantic objects using local descriptors, the BoW concept has been
used in video object reoccurrence detection [231, 232], semantic shot detection
[233,234] and grouping [235], and object-based video retrieval [236, 237]. Some
other representative works in video analysis adopted BoW models with feature
tracking along the temporal course, including matching semantically similar videos
built by local features using spatiotemporal volumes [238]; content-based video
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copy detection using high-level descriptions derived from the BoW representation
[239]; and, person spotting and retrieval based on their faces features in videos
[240]. In the field of video event analysis, Zhou et al. applied the BoW model
to Gaussian mixture models to represent news videos and utilized kernel-based
supervised learning in classifying news event [241]. The BoW model was also used
in video clip representation in Xu and Chang’s work of video event recognition,
where a multilevel temporal pyramid was adopted to integrate information from
different sub-clips for pyramid match using temporal alignment [242].

Aforementioned video analysis methods using BoW models have their individual
merits. However, there is a lack of systematic investigation, which is important
in connecting individual aspects of the video analysis, from raw input video clip
genre categorization, to middle level semantic view or shot understanding, to
eventually high-level semantic event analysis. Furthermore, large-scale video data
often contains many hours with a lot of insignificant information. The nature
of large-scale video data is that it requires an automatic and orderly analysis to
obtain efficient information extraction. In this chapter, we propose a BoW model
to represent video frames and clips. We also propose an unsupervised learning
approach to utilize the BoW-based video representation. We manage to tackle a
series of video analysis challenges for unlabeled large-scale video consortia. As a
result, a systematic analysis of video data is achieved.

In order to evaluate the effectiveness of the BoW model in the systematic video
analysis, we need a valid and meaningful test ground. We believe that large-scale
sports videos are ideal. First, sports video is truly a large-scale consortia. It also
contributes significantly to the total collection of digital content. Second, sources
of sports video collection are also various: from daily-basis public recreations to
professional sports games broadcasting; from amateur digital camcorder to pro-
fessional TV broadcasting, and plenteous but low-quality online streamed videos.
Third, sports video analysis is closely connected with real applications, due to its
huge popularity and vast commercial value.

Although analysis of sports video has drawn much attention in the research
community, most of the literature focus on particular sports and tasks, utilizing
domain knowledge and production rules [243-247]. Supervised learning is an
important characteristic adopted by these works to fill the semantic gap. These
stand-alone methods have little inter-connection and also suffer from a lack of
generality and scalability to the large-scale data for two reasons. First, with
various video content of different themes and cinematographic techniques, domain
knowledge associated methods have difficulties in extensibility. Second, labeled
data is required for supervised learning, while the majority of multimedia data
available is currently unlabeled. In order to tackle these two issues, our proposed
algorithm focuses on using a local domain knowledge-independent SIFT feature to
represent video clips using the BoW model and utilizes an unsupervised learning
paradigm to deal with unlabeled large volume data.

In this chapter, a generic and systematic framework is proposed with experi-
mentations on a large-scale sports video dataset. Three tasks are introduced such
that the output from the previous tasks are utilized as the input to the next task.
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Event detection is the third and final quest with two preceding tasks, video genre
categorization and semantic view type classification. By accomplishing these three
tasks, event detection can be achieved with minimum domain knowledge and
partially labeled data. Although we perform our methods on sports video, the
generic nature makes the proposed framework valid in evaluating other video
consortia.

The novelty of this framework lies in the following three aspects:

1. Domain knowledge-free local descriptors are extracted using a homogeneous
process. The BoW model is used to build a histogram-based distribution to
represent video clips. The BoW based video representation using local features
is the natural selection for generically processing videos due to its domain
knowledge-free properties.

2. An unsupervised classifier with homogeneous process is proposed. This choice
of method is because that unlabeled data takes the major portion of all digital
content. Thus, an automatic and systematic process can be deployed towards a
large-scale dataset. Since sports videos have well defined semantic view types
from their production characteristics, local features combined with the BoW
model is a perfect candidate in view classification. Such a combination has also
been proven successful in computer vision and object recognition. Therefore, a
probabilistic latent semantic analysis (PLSA)-based method for semantic view
classification is preferred due to its unsupervised nature and applicability to the
BoW model.

3. A structured prediction model is adopted for taking labeled middle-level agents
as input to achieve high-level semantics. This choice is because that sports videos
have distinguishable temporal patterns often consisting of sequences of middle-
level agents. In our work, since semantic view types have been classified in
part (2), an appropriate method is to take the view results as input and achieve
semantic event detection. Therefore, hidden conditional random field (HCRF) is
introduced as a rational choice. The significance of the HCREF is its generalized
modeling, which resides in both the relaxation of the Markov property and
incorporation with hidden states of the conditional random field (CRF) modeling.

In the following, an overview of the proposed system is first presented with
a flowchart, followed by video representation using the BoW model and low-
level genre categorization. Then, the proposed techniques are introduced, including
unsupervised learning for middle-level view classification and HCRF for high-
level event detection. Experimental results are then provided to demonstrate the
effectiveness of the proposed method.

9.1.1 Overview

This section provides an overview from a holistic perspective as illustrated in
Fig.9.1. The input video is analyzed systematically using a generic and sequential
framework. This video is interpreted in a way such that the result from a preceding
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Fig. 9.1 A flowchart of the proposed generic framework with one module of generic video
representation and three task modules in sequence

process is the input to the next process in a consistent and coherent fashion. There
are four modules in total: module O is the infrastructure for low-level feature
extraction and video representation using the BoW model. Module 1-3 are tasks
introduced in this chapter. The highlights of this framework include the following.

1. A generic foundation using domain knowledge-free local feature was developed
to represent input large-scale videos. This method fits the general framework
in video analysis and provides an alternative solution to alleviate generality,
scalability, and extensibility issues.

2. A thorough and systematic structure starting from genre identification is pre-
sented, which was ignored in some related work that assumed the genre type as
prior knowledge.

3. A general platform is introduced to associate our method with the abundant and
valuable existing literature, as well as various and innovative features input.

At module 0, the low-level local feature utilization incorporated with codebook
generation and the BoW model provides an expandable groundwork for the seman-
tic tasks of genre categorization, view classification, and high-level event detection.
Most of the literature discusses domain knowledge and production rules at the
feature extraction level. In our structure, a homogenous process is first introduced
for extracting domain knowledge-independent local descriptors. The BoW model
is used to represent an input video by mapping its local descriptors to a codebook,
which is generated from an innovative bottom-up parallel structure. The histogram-
based video representation is treated as the sole input (no other feature models) to
both the genre categorization and the view classification modules. Such a concise
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representation built from the BoW model benefits users in homogenously extracting
visual features and representing videos in a compact and collective form.

In the 1st module, videos are categorized by genre. Video genre nomenclature is
used to describe the video type, which is defined as the highest level of granularity
in video content representation. Since the video genre categorization task directly
relies on low-level features, the proposed feature extraction of the target video
sequence is used in categorization. In large-scale videos, a successful identification
of the genre serves as the first step before attempting higher level tasks. For instance,
in sports event detection, an unknown “shooting” event is the target quest, which
could be from a ball game or a shooting sport. By indiscriminately treating the entire
dataset, this event will be searched through all types of sports. However, since sports
like figure-skating and swimming have no “shooting” at all, the effort to search this
event within those non-relevant sports becomes infeasible. Instead of treating all
data indifferently, a more efficient method is to identify the genre of the query video
first; and then, deploy middle/high-level tasks. As the survey shows in sports video
analysis, most of the related works on view classification and event detection assume
the genre by default. This framework, however, provides a system that automatically
identifies the genre from various types of sports data before further analysis.

In the middle-level and the 2nd module, semantic view types are classified
using an unsupervised PLSA learning method to provide labels for video frames.
View describes an individual video frame by abstracting its overall content. It
is treated as a bridge between low-level visual features and high-level semantic
understanding. In addition, unsupervised learning saves a massive amount of human
effort in processing large-scale data. Moreover, the supervised methods can also be
implemented upon our proposed platform. Therefore, a SVM model is executed as
the baseline for comparison.

Finally in the 3rd module, a structured prediction HCRF model using labeled
inputs is a natural fit for the system to detect semantic events. This choice can be
justified in that a video event occupies various length along the temporal dimension.
Thus, the state event model-based HCREF is suitable to deploy. Less comprehensive
baseline methods, such as the hidden Markov model and the conditional random
field, can also be applied on this platform.

Besides the three-level modules in the white background bounding boxes, this
framework, illustrated in Fig.9.1, also highlights the relationship between our
system and existing literature, which are shown in the dark-gray background
bounding box. Associated Table references are also indicated in each module.
Multimodal features excluding local visual features are also introduced at various
stages by the literature. The Dotted arrows are used to represent these associations.
The solid arrows denote the proposed and implemented techniques in our work.
The dashed arrow represents a knowledge transfer characteristic of the generated
codebooks. In summary, codebooks generated from certain sports with abundant
resources, can be transferred and utilized in classifying other sports materials with
scarce resources.
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9.2 Video Representation and Genre Categorization

This section covers the first part of our proposed framework, generic feature
extraction with the BoW model, and systematic genre categorization. Figure 9.2
illustrates details of each process.

9.2.1 Related Work

Video genre and its categorization was one of the earliest video analysis which
drew researchers’ interests. The main task of this genre categorization starts from
a diverse group of videos, such as sports, music, news, movies etc., and gradually
moves to a more discriminating categorization such as identifying the sports genres.
Various works have been highlighted as follows. However, a major and common
disadvantage of these works is their heavy dependency on domain knowledge.

Fischer et al. [248] first proposed a classification method based on five different
video genres. Brezeale and Cook [249] provided an extensive survey in this field.
Incorporating the survey and most recent works, a concise summary is provided
in Table 9.1. Color features with C4.5 decision trees were used in [250]. Camera
motion features with statistical classifiers were chosen to classify six sports genre
in [251]. A principal component analysis (PCA) modified audio-visual feature was
used to train a Gaussian mixture model (GMM) classifier in [245]. Semantic shots
(views) were used to help in genre categorization in [252]. Motion and color, as well
as audio features, were applied in [253]. Color features with a hierarchical support
vector machine (SVM) were used in [254]. High-level MPEG-7 features were
extracted and applied in multi-modality classifiers in [255]. The best classification
result at the moment has an accuracy of 95 % using a dataset of eight different genres
[256]. These methods used various domain knowledge with supervised classifiers to
achieve the automatic genre categorizations.

As defined in [257], domain knowledge-based features can be divided into
two categories, cinematic-based features and object-based features. The cinematic
feature involves middle to high level semantics from common video composition
or production rules such as shots/views or events, while object-based features are
described by their special properties, such as color, shape, and texture, as well as
spatial-temporal-based object motions. As Table 9.1 shows, all reviewed works
are domain knowledge-dependent, either object-based or cinematic-based. A lack
of diversity, that is, the number of different genres in the database, restricts these
methods from generality.
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Fig. 9.2 Feature extraction and genre categorization framework using data parallelism and
bottom-up structure for codebook generation

9.2.2 Bottom-Up Codebook Generation

Local invariant features are chosen for homogenous feature extraction due to their
domain knowledge-free properties. The scale, rotation, and illumination invariant
properties make these descriptors good candidates in preserving the similarities
for semantic objects and events matching and detection. Global features, on the
other hand, rely on domain knowledge and have difficulties in robust concept
and event detection, especially in the presence of noise and occlusion [258].
Scale-invariant feature transform (SIFT), developed by Lowe [259], is selected
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as feature descriptors in this work. The SIFT method extracts key-points of an
image and describes these points using local neighborhood regional information.
Since no prior and domain knowledge is required, SIFT is an ideal option in the
large-scale automatic and homogenous process. By processing image sequences
sampled from video clips, each frame is represented by a magnitude of hundreds of
SIFT descriptors. After homogenous local descriptor extraction, the BoW model is
applied, whose effectiveness relies on a robust codebook design. In order to achieve
this resiliency, we propose a two-level bottom-up K-means clustering for codebook
generation. The advantages of the bottom-up structure are efficiency, scalability, and
robustness.

The BoW model is adopted by first synthesizing a representing codebook using
codewords which are exemplars of combining sampled SIFT local descriptors.
Consequently, a video clip is characterized by mapping its SIFT feature points to
a generated codebook; and then, a histogram distribution is obtained. Compared to
the original footage, this compact representation preserves enough information for
differentiation, only using a small size in storage. In addition, random noise can be
suppressed by using this proposed frequency-based histogram representation.

With the large-scale dataset, efficiency and robustness of the codebook formation
have been important concerns for the BoW model. Heuristically, the larger the
codebook size, the better the classification results (with certain saturation limita-
tions) [260,261]. Different codebook sizes have been explored, ranging from several
hundred [262,263] to thousands [264] to hundreds of thousands [260]. Since they
all use different datasets, no conclusions have been drawn to make a standard rule.
In this chapter, choices of codebook sizes are based on the empirical studies.

K-means clustering is utilized to generate a codebook by finding and appointing
cluster centers as codeword values. In a large-scale domain, satisfactory perfor-
mance has been reported using a top-down structure for categorization [265]. In
that work, a two-layer top-down structure is used for sports genre categorization.
At the first-layer, a general codebook (size 800) is generated using single K-means,
in which a query video is only categorized to one of the predefined bigger groups
consisting of several genres. Such a group is determined by those sports sharing
similar semantics. At the second-layer after the membership of the bigger group
is identified, an individual codebook (size 200) for this bigger group is used to
decide the video genre. For instance, judo and boxing are combined into a bigger
group named martial arts, where martial arts is used as the first-layer candidate.
Subsequently, Judo and Boxing are differentiated in the second-layer categorization.
Although good classification accuracy has been reported, efficiency and robustness
are problems for such a method in terms of creating a general codebook using
single K-means clustering. This is because most computation of K-means lies
in calculating the distances between individual points to their cluster centers in
each iteration. A single K-means clustering using large-scale data is heavy in
computation and sometimes inaccurate due to K-means own limitations. Since more
than 3 million high-dimensional SIFT points are used for building the codebook in
our application, one single K-means clustering becomes inefficient.
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Therefore, a two-level bottom-up structure is proposed in this work for efficient
codebook generation. At the bottom layer, individual genre codebooks are generated
in Ist-level K-means clustering. At the upper layer, the 1st-level codebooks are used
as the input for the 2nd-level K-means to build the generic codebook. By using
this bottom-up structure, we reduce the heavy computation in measuring individual
point-to-cluster-center distance in the K-means algorithm. Moreover, since the 1st-
level K-means are independent from each other, distributed computing methods can
be applied to further reduce the computation time. The numerical analysis is referred
to in Sect. 9.4.1.

Another advantage of bottom-up K-means clustering resides in the system update
and scalability. In the case of new genre videos added to the dataset, a codebook
update module is applied to find the new genre’s individual codebook. The result,
together with existing codebooks, is used to generate the new generic codebook by
only re-running the 2nd-level K-means. In the case that new videos are imported
for an existing genre, the corresponding 1st level K-means is applied to achieve the
updated individual codebook; and then, 2nd-level K-means is re-run to update the
generic codebook.

9.2.3 Low-Level Genre Categorization

In our proposed method, at the genre categorization stage, a query video is expressed
as a histogram Q that also uses the generic codebook and the BoW model. Then,
a k-Nearest Neighbor (k-NN) classifier is applied with a defined dissimilarity
measurement between the query Q and a trained individual genre P. Consequently,
the query video is identified as the genre whose distribution is closest to that of the
query within measure. Technical details are presented in Sect. 9.4.1.

By identifying the genre of this query video, subsequent processes are confined to
a focused group, and the scale of computation is decreased. Therefore, advanced and
sophisticated techniques can be used in middle/high-level video analysis. In the next
step, training data is characterized by frequency-based histogram representation.
The individual genre is modularized as a distribution denoted by P using training
data of its own kind.

9.3 High-Level Event Detection Using Middle-Level
View as Agent

Content-based video event detection is among the most popular quest for high-
level semantic analysis. Different from video abstraction and summarization, which
targets any interesting events happening in a video rush, event detection is only
constrained to a predefined request type (such as the third goal or the second
penalty kick in a particular soccer match). In sports videos, a consumer’s interest in
events resides in the actual video contents, more than just the information delivered.
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For instance, a user wants to watch particular goals in basketball games, or replays
in soccer matches. S/he is not only interested in the information like who/how/what,
but more importantly, the visual contents rendered from the sports clips. On the other
hand, sports videos also have very strongly correlated temporal structures. In a way,
the structure can be interpreted as a sequence of video frames which have patterns
and internal connections. This pattern is ubiquitous due to the nature of sports, a
competition where players learn from the standard in order to excel. Therefore,
an intuitive approach is to find such patterns using certain representation; and in
turn, to learn the temporal structure. Luckily, the PLSA algorithm provides such a
labeled frame sequence. What we need is a clever technique to analyze portions of
the video and determine what structured prediction model to use. In the following,
we will first review the literature. Then, we will introduce a coarse-to-fine scheme
and hidden conditional random field (HCRF) for event detection.

9.3.1 Related Work

As one of the most popular semantic tasks in video analysis, event detection has
been a popular topic from the beginning of multimedia research. Despite different
definitions of event detection by different researchers, commonly acknowledged
properties of an “event” can be summarized as follows. An event occupies a
period of time and is described using salient aspects of the video sequence input,
which consists of smaller semantic units or building blocks [266]. Lavee et al.
also summarized and classified event detection algorithms into three categories:
(a) pattern-recognition models, (b) semantic event models, and (c) state event
models. Pattern-recognition models focus on direct classification from low-level
features, but lacks semantic linkage. Semantic models target high-level semantic
rules and constraints with domain-knowledge. These models require a lot of human
involvement in creating rules and regulations using prior information. State models
utilize abstracted middle-level agents, as well as the intrinsic structure of the event
itself.

By comparing these three categories of event modeling with examples in the
literature, we think that the pattern-recognition model is heavily dependent on
classifiers, which at the moment, are not intelligent enough to understand all seman-
tics from low-level features. On the other hand, the semantic model considerably
relies on human expertise; and thus, underestimates the accuracy and efficiency
provided by classification tools. From our experience, the state model incorporates
the strength of pattern recognition at low-level with classifiers at high-level so that it
utilizes both feature extraction power and classification intelligence. Moreover, the
state model also accommodates an automatic process and unsupervised learning,
which reduces human input into the system. Therefore, state event models are
suitable for analyzing large-scale datasets, from both generic and systematic point
of views. A coarse-to-fine strategy fits well into such state event models, by first
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roughly localizing the event with context information and then precisely detecting
the event using an advanced structure model.

Although we prefer the state event model for its natural fitness to the proposed
systematic approach in this work, two other models are still valued for their
efficiencies in analyzing sports videos and utilizations in applications. In the
following, state-of-the-art algorithms are summarized and compared.

Support vector machine (SVM) is a popular pattern-recognition model algorithm
[266]. Some groups use rich audiovisual features, such as face detection, scoreboard
information, and, geometry of the field, to find certain semantic events. Saldier
and O’Connor [267] used SVM to classify “scoring” events for four different field
sports. Xu et al. [268] analyzed tennis videos by using hierarchical-SVM applied
on fused audio-visual modalities. Similarly, Ye et al. [269] utilized middle-level
view labels as well as shot length and camera motion descriptors. An SVM-based
incremental learning scheme using updated data is proposed in detecting soccer
events, along with a predefined temporal structure. A similar method combining
SVM and predefined temporal structure was proposed by Li et al. [270], targeting
basketball events using optical flow patterns.

Some semantic event models using rules and logic and semantic relationships are
presented. Babaguchi et al. [271] used closed caption text streams with audiovisual
features and the intermodal correlation between them to search a “touch down”
event from 4h of American football videos. Zhang et al. [272] also focused on
superimposed caption frames and used decision trees to decide the event, such
as “scoring” or “last pitch” for baseball games. Ekin et al. [257] incorporated
production rules and soccer sport rules to detect certain events such as “goal”,
“referee”, and “penalty-box”.

In terms of state event models, one of the earliest works targeting structures of
videos was from Nepal et al. [246], who empirically studied the temporal model in
basketball videos based on manual observation, using heuristic methods and low-
level audio-visual features. Duan et al. [273] also generated a temporal structure
using multimodality with heuristic experience on tennis events. Another approach
of learning temporal structure is from the data mining perspective, where Tien et al.
[274] focused on a tennis match event detection by creating a max-subpattern tree
and learning the frequent patterns from it.

Another important branch of state event models are structured prediction models
such as hidden Markov models (HMMs) and their variations, Bayesian networks,
as well as discriminative conditional random fields (CRFs). Zhang et al. [275]
proposed an HMM-based statistical method for classifying middle-level agents
generated from web-casting texts. Tong et al. [276] used Bayesian networks to
classify “shoot” and “card” events in soccer videos, by applying decision tree-
based intermediate-layer concept units. Mei and Hua [277] proposed an innovative
mosaic-based middle-agent for key-event mining using HMMs. Wang et al. [278]
proposed a CRF model on detecting semantic soccer events, and the performance
turned out to be better than both SVM and HMMs. A similar algorithm was also
proposed by Xu et al. [279] using CRFs for basketball and soccer event detection
where a webcast text feature was obtained to achieve middle-level concepts.
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An interesting event tactic analysis is proposed by Zhu et al. [247], which is beyond
the conventional event and adopts the cooperative nature and tactic patterns of team
sports. Extensive experiments have been conducted on soccer.

Table 9.2 provides a comparison of the aforementioned literature from a feature
utilization point of view. Most of the methods utilize multimodality schemes of
features input. By comparing the number of events processed, it appears that the
state event model has better scalability in examining various event scenarios. It is
also interesting to point out that local visual features have not been utilized in any
of the methods. In addition, many of the methods, especially state event models,
require middle-level semantic agents to bridge the gap between the low-level
features and the high-level events. Such middle-level agents have to be labeled data.
However, for the generic method presented in this work, we tackle event detection
problem using the input obtained by unsupervised learning and unlabeled data.

9.3.2 Middle-Level Unsupervised View Classification

Once a video genre is identified, the next step is to achieve view classification of
each of the video frames in the query sequence. We present a literature review first,
followed by the proposed unsupervised method.

9.3.2.1 Related Work

We summarize related works so that readers can compare popular supervised means
with proposed unsupervised PLSA. Additionally, there are only two works using
unsupervised techniques based on our study. We present them for completeness of
the review [280,281].

Although there may be different nomenclatures, the fundamental purpose of the
middle-level views (shots) is to involve certain production rules to aid in high-
level tasks. This frame-based label concept was first introduced by Xu et al., who
defined three groups of views: global, zoom-in, and close-up [243]. Ekin and Tekalp
[244] used a slightly different notation which includes long-shot, middle-shot, and
close-up/out-of-field. Duan et al. [282] used a finer view/shot group classification,
supported by innovative semantic features. These pioneering methods, along with
other works such as [283-285] focus on using decision tree classifiers to link
the low-level features to view/shot types. Xu et al. [243] and Ekin et al. [244]
applied color-based grass detector and field/object size to determine view types.
Incorporating previously mentioned features, Tong et al. [283] added head-area
detection, as well as a grey-level co-occurrence matrix(GLCM) to improve the
decision tree on classification. Wang et al. [284] used field region extraction, object
segmentation and edge detection for view type decision making. Duan et al. [282]
first extended the research from single genre (soccer) to multiple genres (four sports)
using individual genre-based decision trees. Different from previous visual feature
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Table 9.2 Comparison of event detection models emphasizing feature utilization from both low-
level features and middle-level semantic agents

Event )
detection Low-leve] | Visual features Middle-level
algorithm | Year Nature of Number of multimodal |Global- |Local- semantic
category |Reference |data events features based based agents
Patten- 2003 Tennis 5 AVM Yes No Yes
recognition |[268]
model
2005 Four field | 2 AVS Yes No No
[267] sports
2005 Soccer 1 n/a n/a n/a Yes
[269]
2009 Basketball | 5 VM Yes No No
[270]
Semantic {2002 Football 3 VST Yes No No
event [271]
model
2002 Baseball | 2 VT Yes No No
[272]
2003 Soccer 3 VS Yes No Yes
[257]
2001 Basketball | 1 AVMT Yes No No
[246]
2003 Tennis 16 AVMT Yes No Yes
[273] soccer
State event|2004 Soccer 2 VM Yes No Yes
model [276]
2006 Soccer 5 AVM Yes No Yes
[278]
2007 Basketball | 5 VT Yes No Yes
[275]
2008 Tennis 4 AVS Yes No No
[274]
2008 Soccer 3 VM Yes No Yes
[277]
2008 Soccer 17 VTS Yes No Yes
[279] basketball
2009 Soccer 6 VMTS Yes No Yes
[247]

In the “Low-level Multimodal Features” column, various features are utilized, including audio (A),
visual (V), text (T), motion feature (M), and video shot detection (S), as well as an “n/a” label in
the case when no low-level feature mentioned in the related works
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extraction methods, Kolekar and Palaniappan [285] took a top-down approach. They
first used audio features to find exciting video clip. The motion features of the whole
image volume along with the background color information are then utilized for
view-type classification. Benmokhtar et al. [286] took an approach on feature level
fusion using dynamic PCA with information coding neural-network (NN). At the
classification level, another NN is used to fuse multi-modality inputs. However,
these supervised methods are limited by the labeled data; and thus, constrained from
being expanded to larger scales.

Some other researchers pursued unsupervised methods for view classification.
Wang et al. [280] proposed an information-theoretic co-clustering method, in
which mutual information was maximized by treating shot classes and features as
two random variables. As a consequence, color histogram and perceived motion
energy features are used with a test set of four sports video genres. Zhong et al.’s
method was inspired from spectral theory conventionally used to solve segmentation
problem in graph theory [281]. They proposed a spectral-division algorithm to find
the proper video shot clustering, which were tested in three sports videos using
the HSV space color feature. Although good performances have been obtained in
these methods, the extensibility and flexibility towards diverse genres and large-
scale datasets are very limited. This limitation is again due to the domain knowledge
dependency of the extracted features.

Table 9.3 compares the aforementioned methodologies from angles of feature
utilization and classification techniques. Color and texture are two major global
features used by most works. Duan et al.’s work is the only one that proposed
middle level features developed from low-level global features. The rest of the work
either adopted additional popular global feature schemes, such as audio feature or
Gabor feature, as well as some production rule-based features, or did not utilize any.
While various global features are used, none of the local features have been applied.
Moreover, most of the supervised methods (except Duan et al.’s work) focus on a
single (soccer) sport, while unsupervised techniques use various types of sports.

9.3.2.2 Unsupervised View Classification

This section introduces the middle-level view classification, where the previously
built BoW model is also used as feature representation. Since this work targets large-
scale videos, an unsupervised solution is more viable and applicable. Therefore,
we chose to use unsupervised probabilistic latent semantic analysis (PLSA)-based
models. PLSA has demonstrated promising results in analyzing co-occurrence data
of words and documents in text retrieval [287]. From a matrix factorization point of
view, PLSA belongs to a subgroup called non-negative matrix factorization, where
the factorized matrices are non-negative [288]. Because the codebook paradigm
with codewords is adopted in mapping visual features to a probability-based
histogram which has to be non-negative, PLSA becomes a more suitable selection
compared to other factorization techniques, such as singular value decomposition or
principle component analysis.
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Table 9.3 Comparison of view classification techniques in literature, emphasizing on features
utilization and classification methods

Global features Local-
Year Nature |Color |Texture |Others feature
Reference |of data |based |based |(yes/innov) based | View classification method
2001 [243]|Soccer | Yes No No No Thresholding (S5)
2002 [244] | Soccer | Yes No Yes No Morphological operations (S)
2003 [282] | Four Yes Yes Innov No Decision tree ()
sports
2004 [283] | Soccer | Yes Yes Yes No Decision tree ()
2007 [280] | Four Yes Yes Yes No Spectral clustering (UnS)
sports
2008 [286] | Soccer | Yes Yes Yes No Neural-network (S)
2008 [281] | Three | Yes No No No Spectral-division  algorithm
sports (UnS)
2009 [285] | Soccer | Yes No Yes No Decision tree (S)

In the “Global Features” column with “Others (yes/innov)” category: “yes” means other than
color and texture global features are used while not innovative, while “Innov” means newly
designed features are used. For the “View Classification Method” column, S indicates an
supervised method, while UnS indicates the unsupervised method

PLSA relies on the likelihood function of multinomial sampling and aims to
reach an explicit maximization of the predictive power of the model. Incorporating
the PLSA plate notation in Fig.9.3 with the view classification application, the
observed state w is defined as codewords with a predefined codebook of size M.
An individual video frame is denoted by d with a total number of training frames N.
Latent state z is the view type and parameter K is the total number of view classes,
and in this work, K equals four. The likelihood function is given in Eq. (9.1). The
probabilistic distribution is defined as p(w;|d;), where w; is an individual codeword,
and d; is a training frame. Such distribution can be represented by a sum-of-product
of two distributions, p(w;|zx) and p(zk|d;). The former is interpreted as an impact
on codewords by a view type, while the latter is the probability of a particular view
type given a training frame. The number of codeword w; appearing in a frame d;
is denoted as n(w;,d;). The argument of maximum posterior (MAP) estimate z* is
optimized by using an expectation maximization (EM) as shown in Eq. (9.2).
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Fig. 9.3 Illustration of the PLSA model in plate notation and its connection with view type
classification

Since SVMs have demonstrated great performance in the field of classification,
it is adopted in our view classification task for comparison purposes. In general,
supervised models tend to yield better results but require predefined knowledge.
A typical radial basis function (RBF) is used as the non-linear kernel in SVM [289]
and shown in Eq. (9.3). In this equation, x; and x; represent the codewords, and Y is
the kernel parameter of the RBF.

K(xi,xj) =exp (=7 [lxi —x;||*), v>0. (9.3)

Four view types are defined, namely close-up-view, mid-view, long-view and
outer-field-view. This definition is also popular among other work in this field [243,
244,273]. For the PLSA-based model, the number of view types is required, while
labeling effort is not needed for individual frames. On the contrary, SVM-based
models demand both semantic predefined view types as well as all frames labeled
with groundtruth, which could be unaffordable when the video is large in size.

As a result of the view classification task, the query video sequence is labeled
with view types. In the next section, models which take labeled video sequence as
input for detecting interesting events are introduced.
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9.3.3 High-Level Event Detection
9.3.3.1 Hidden Conditional Random Field (HCRF) Model

Before learning the temporal patterns, a starting and entry point of an event needs
to be seized. A two-stage coarse-to-fine event detection strategy is suitable for this
scenario. The first stage is a rough event recognition and localization utilizing rich
and accurate text-based information either from web-casting text or optical character
recognition (OCR) techniques of the scoreboard update. In the second stage, precise
video contents associated with the semantic event have been detected in terms of
event boundary detection and accuracy analysis. The coarse-to-fine techniques have
been proven effective and accurate [290]. Web-casting text for coarse-stage event
detection and video alignment was studied and analyzed such as replaying scenes
and various goal and shot scenes detection in soccer video [291,292].

Since the proposed framework targets the generic learning model that can be
extended to large-scale datasets, we rely on visual content, that is, the local features
extracted and middle-level views classified from such features. To demonstrate the
effectiveness of the proposed model, we focus on a particular basketball score
event detection. We adopted the previously developed scoreboard update detection
method for a coarse-stage process in order to obtain the time-stamp [290]. The
fine-stage process focuses on robust and accurate visual content detection from
the score event. The video sequence is analyzed by distinguishing the actual score
event from false alarm events, such as timeouts or intermission, which are also
concurrent with scoreboard information. We propose a HCRF-based structured
prediction model utilizing previously classified views, thereby completing the
generic approach. For example, the HCRF model can be used to detect the score
event in basketball for exciting events and highlights. Such an HCRF technique
belongs to the state event model defined in related works. Therefore, HCRF takes
the labeled sequences as input in a natural and seamless fashion. On the other hand,
HCREF is a comprehensive model which can be degraded to hidden Markov models
(HMM) or conditional random fields (CRF) with certain constraints. The merits of
HCRF compared with the other two models are its resilience and robustness with a
combination of both the hidden states and the Markov property relaxation. Technical
details are examined in the following.

There are several advantages of using HCRF in large-scale datasets, rather than
HMM, or CRF models. First, HCRF relaxes the Markov property, which assumes
that the future state only depends on the current state. In our generic framework,
video frames are uniformly decimated and sampled, regardless of the temporal
pace of the video itself. In some cases, several consecutive frames have the same
labeling, while in other cases, different labels are assigned. Markov property-based
models such as HMM are appropriate for the former scenarios, but not suitable
for the latter ones, since the future state in HMM only cares about the current
state label, but not previous states. On the other hand, HCREF is flexible and takes
surrounding states from both before and after the current state. Thus, HCRF is more
robust for dealing with large-scale homogeneous processes and uniform sampling
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with no prior knowledge. For instance, if a key frame immediately preceding the
current state is missed due to uniform sampling, such information loss could be
compensated by including and summing up distant informational frames (both
previous and future) from uniform sampling without misclassifying the event.

Second, HCRF has merit in its hidden states structure, which helps to relax
the requirement of explicit observed states. This relaxation property is also an
advantage in dealing with large-scale uniformly sampled video frames. It is because
of this configuration, CRF model outputs individual result labels (such as event
or not event) per state and requires separate CRFs to present each possible event
[279]. In HCREF, only one final result is presented in terms of multi-class events
occurring probabilities. From the point of view of robustness, a CRF model can be
easily ruined by semantically unrelated frames due to automatic uniform sampling.
A multi-class HCREF, on the other hand, can correct the error introduced by such
unrelated frames using probability-based outputs [293].

Moreover, HCREF is also appealing for allowing the use of not explicitly labeled
training data with partial structure [293]. From the literature, HCRF has been
successfully used in gesture recognition [293,294] and phone classification [295].

Figure 9.4a illustrates an HCRF structure in which label y € Y of event type
is predicted from an input X. This input consists of a sequence of vectors X =
X1,X2,...,Xpm,...,X)y, With each x,, representing a local state observation along
the HCREF structure. In order to predict y from a given input X, a conditional
probabilistic model defined in [293] and in Eq. (9.4) is adopted. In the equation,
model parameter 0 is used to describe the local potential function y, which is
expanded in Eq. (9.6). A sequence of latent variables h = hy,hy, ... hy,, ... ;hy are
also introduced in Eq. (9.4), which are not observable from the structure of Fig. 9.4a.
Each A, member of h corresponds to a state of s,,. The denominator Z(X; 0) is the
normalization factor, which is expanded in Eq. (9.5).

3y, eV X:0)

POIX,6) = 3. P0:hIX,6) = =25, 94)
Z(X;0) = Zew(y/7h,x;9) (9.5)
¥'h
w(».h,X:6) Zzekfk yhe X)X D O fE (vt B, X) (9.6)
t k

In the event detection application, each x,, from X is a vector descriptor called
local observation. In the notation, the x,, value at a time ¢ is defined as x,,(t) =
[Pws, ()5 Puwsy ()5 Prwsz ()5 Puwsy (), Pwe(2)], with each entry of x,,(¢) calculated from
an average result of a sliding window centering at time ¢, as Fig. 9.5 shows. The
first four entries of x,,(¢) are the probabilities of four possible view types, where
Pwsj—1234 (t) associates with close-up-view, mid-view, long-view, and outer-field-
view by j = 1,2,3,4 respectively. The fifth p,,.(¢) value is an associated directional
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Fig. 9.4 Structured prediction models: (a) hidden conditional random field (HCRF); (b) condi-
tional random field (CRF); (¢) hidden Markov model (HMM)

Window N

1
I 1

t-N/2 t t+N/2 T

Fig. 9.5 HCREF input shown in Eq.(9.7), by sliding window average result on view types of
decoded image sequence

motion descriptor, introduced by Tan et al. [296]. The formula to calculate the
average values at time-stamp t are given in Eq. (9.7), where individual frame-based
probabilities are py;_, ,,, and pe.

t+N/2

1
pws_/<t) = N 2 ps_/<7:) with ]: 1,2,3,4
T=t—N/2
1 t+N/2
puclt) = 5 2, pe(7) 9.7)
T=t—N/2

A label and training sequence pair is defined as (y;,X;) with the index number
i=1,2,...,n. For each pair, y; € Y and X; = X; 1,X;2,X;m,--.,X;m are the event
label and observed states as Fig.9.4a depicts. For instance, X;, is interpreted
as the m' sampled time state of the i/ training sequence, where Xim(t) =
[pi,wxl (1), DPiwsy (), Piwss (t), Piwsy (1), Piwe (t)]-

During HCRF training, parameters le and sz need to be learned. As Eq. (9.6)
shows, le and sz are coefficients for the state feature function fkl, which contains
a single hidden state, and the transition feature function sz, which involves two
adjacent hidden states, respectively. In order to find the optimal parameters, a log-
likelihood objective function is used, as shown in Eq. (9.8), with a shrinkage prior
(the second term in the equation) in order to avoid the excessive parameter growth.
A limited-memory version of the Broyden—Fletcher—Goldfarb—Shanno (L-BFGS)
quasi-Newton gradient ascent method [297] is applied to find the optimal 6* =
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argmax£(0). The L-BFGS algorithm is chosen due to this method’s efficiency and
performance from both theory [298] and application [279].

During the optimization process, the conditional probability in Eq.(9.8) is
substituted by the explicit form in Eq. (9.4) to get Eq. (9.9). Then, partial derivatives
of a training sample £;(6) with respect to 6,3 and 0,3 are derived in Eqgs. (9.10)
and (9.11), respectively.

Gl (9.8)
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9.3.3.2 Comparison with Conditional Random Field (CRF) and Hidden
Markov Model (HMM)

For comparison purposes, we also utilized conventional CRF models as depicted
in Fig. 9.4b. By following definitions in [299], the conditional probability function
is shown in Eq. (9.12), with the normalization factor in Eq. (9.13). The potential
function is defined in Eq. (9.14), where v;(¥;_1,Y;,X) is a transition feature function
between state positions 7 and ¢ — 1 within the observation sequence; while s¢(¥;,X)
is a state feature function at state position 7. Parameters A; and iy are estimated for
transition and state feature functions, respectively.

P(Y|x) = ﬁ -exp (%F(Y,xﬁ) 9.12)

=Y exp <2F(Y’,x,t)> (9.13)
Y’ =1

F(Y,x,t) =Y Aw;(Y-1,Y,%) + Y s (Y, X) (9.14)
J k
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The HMM algorithm is also provided in Eq. (9.15) and depicted in Fig. 9.4c.

P(Y|X) = P(X,Y)/P(X)
= [[Px|Y,) - P(Y, Y1) 9.15)

The aforementioned three structured prediction models use different decision-
making schemes for the final event detection. For the HMM, the query sequence
is tested. The highest likelihood of the HMM provides the final decision in event
detection. On the other hand, in the CRF model, since each state variable Y ()
requires a label, as Fig. 9.4b shows, a majority-rule voting scheme in which the most
event labels along the Y sequence decide the event result. For the HCRF model
depicted in Fig.9.4a, a multi-class training process recognizing all classes at the
same time is adopted. Therefore, a detected event with the highest probability is
considered the final result for the query sequence.

9.4 Experimental Result

In the following section, experimental results are presented to justify the properties
of the proposed generic framework, specifically using a relatively large-scale video
collection that includes 23 genres with a total of 145 h gathered by the authors and
his co-workers, named the 23-sports dataset. To our best knowledge, this dataset is
the most diverse in video genres, collected from both the internet and television. All
the video clips have the same length of 167 s with a total of 500 uniformly sampled
frames at a sampling rate of three frames per second. This dataset is composed with
3,122 clips. In training, 1,198 clips are used, in which a subset of 46 clips (2 clips
per sport) are used in codebook generation with a total of 3,112,341 SIFT points. In
testing, the other 1,924 clips are selected.

Various codebook sizes were studied at first. Then, the proposed system was
evaluated in three experiments, with a particular event detection as its ultimate
measurement: (1) genre categorization using the proposed bottom-up codebook
generation is analyzed; (2) view classification results are assessed and compared
using both supervised and unsupervised classifiers; (3) finally, the coarse-to-fine
event detection is examined by investigating the basketball score event. The validity
on the score event detection can be extended to other event scenarios with labeled
video sequences. The detailed argument can be found in Sect. 9.4.3.

To investigate the codebook size effectiveness, a subset of the 23-sports dataset
of 14 sports was used. The clip numbers of these sports range from 70 to
106, averaging 87, while each individual clip is a uniform 167s in length. Two
experiments were conducted on the codebook size selection for genre categorization
and view classification, respectively. For genre categorization, the average accuracy
performance of all sports as a function of different codebook sizes is shown in
Fig.9.6a. The plot reaches a plateau after codebook size 800, and starts to drop
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Fig. 9.6 Empirical studies on codebook size selection. (a) Average sports accuracy performance
for genre categorization. (b) Individual sport accuracy performance for view classification

at codebook size 1,500. For view classification, the accuracies of individual sport
as a function of different codebook sizes are shown in Fig. 9.6b. Although various
accuracy levels are observed for each sport, the individual performance follows a
similar plateau trend. Based on these empirical studies, it is concluded that the
performances are proportional to codebook sizes, with stable results at codeword
ranges of 800-1,500 and 800-1,000 for genre categorization and view classification,
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respectively. This study is also consistent with existing research [258, 260, 261].
In the following experimentation for genre categorization with a total of 23 sports
types, it is predicted that the codebook size should be bigger than in the tested 14
sports case. Therefore, a codebook size of 1,600 is chosen, and a codebook size of
800 is also applied as a comparative analysis. For view classifications involving 14
sports, a codebook size of 800 is selected.

9.4.1 Genre Categorization Using K-Nearest Neighbor
Classifier

In genre categorization, a K-nearest neighbor (k-NN) classifier is applied. Three
different dissimilarity measurements are compared, including Euclidian distance
(ED), earth mover’s distance (EMD), and Kullback—Leibler divergence (KL-div).
ED is used for measuring the spatial distance in Euclidian space in between two his-
tograms. EMD is a distance function for achieving the minimal cost in transforming
one histogram into the other [300]. The KL-div is a non-symmetric measurement
between two probability distributions Q and P defined as Dk (Q||P) = Y,q; -
In(g;/p;) [301]. In this work, ¢; and p; are individual codewords for the query video
0 and the trained genre model P, respectively.

Before accuracy performance analysis on genre categorization, codebook gener-
ation schemes are examined by comparing both the proposed two-level bottom-up
(BU) structure and the baseline single K-means (SK) clustering method [301]. As
pointed out by Jain et al. [302], K-means clustering is considered a partitional
algorithm using the squared error to reach the optimum solution. The sum of
squared errors (SSE) is a widely used criterion function for clustering analysis,
which quantitatively measures the total difference between all individual points
to their clustering centers [301]. An SSE deviation percentage &y, is defined in
Eq. (9.16). Let gy and Egk represent the SSEs of the bottom-up clustering and the
single K-means clustering at the end of each algorithm, respectively. The numerator
is the absolute value of the difference between gy and &gk, and the denominator
is Egx. As Table 9.4 shows, the SSE deviation percentages at codebook sizes of
800 and 1,600 are 1.4% and 3.7 %, respectively. Thus, we can conclude that in
using the bottom-up structure instead of the single K-means clustering for codebook
generation, the deviation of SSE is trivial.

Sev = lpu =S5 | 1000, (9.16)
Esk

Codebook computation effort of the bottom-up structure is also compared with
single K-means clustering in Table 9.4. Both bottom-up and single K-means
clustering are employed on a single Quad CPU at 2.40 GHz with 4.0G RAM
machine, in which the bottom-up is only simulated as parallel computing in a serial
sequence. To generate a codebook with size 800, the single K-means clustering uses
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Table 9.4 SSE deviation percentage &4, and computation time in codebook
generation using bottom-up (BU) and single K-means (SK) structures
Codebook size | cby; =800 | cbg, =800 | cby, = 1,600 | cbg, = 1,600
Computation 4h 350h 9h 648 h

Odev 1.4 % 3.7 %

350 h, while the bottom-up clustering only takes 4 h. When the codebook size is
doubled to 1,600, the computation for single K-means and bottom-up clustering
are 648 and 9h, respectively. With a truly distributed processing environment
using multiple computers, bottom-up processing time will be further reduced. This
comparison of computational complexity demonstrates that our generic framework
using robust bottom-up clustering for codebook generation can replace the single
K-means in dealing with large-scale and diverse datasets.

For the accuracy performance using k-NN and various dissimilarities, Table 9.5
shows the average genre categorization results for 23 different sports. The proposed
bottom-up codebook generation manifests a better and more robust performance
than single K-means codebook generation in both EMD and KL-div measurements.
By comparing the row-wise’s dissimilarities, the bottom-up structure is more
consistent with codebook sizes of 800 and 1,600. On the contrary, the single
K-means codebook generation is unstable for both histogram and mLDA-based
distributions. For instance, the performance at a codebook size of 800 using EMD
has about a 7% increment from ED dissimilarity (75.33 % vs. 68.31 %), while the
counterpart at a codebook size of 1,600 using EMD has dropped 1.1% from ED
dissimilarity (64.28 % vs. 65.39 %). One reason is that the single K-means clustering
on over three million input SIFT points hardly reaches the optimal value. As a
summary, KL-div performs the best among three dissimilarity measures. Using
the bottom-up structure, results of the codebook size 1,600 outperform the cases
with size 800 in all measurements with consistency. Oppositely, single K-means
clustering results are not consistent.

Another merit of the bottom-up structure is its preservation of individual
genre characteristics from the 1st-level K-means. On the contrary, single K-means
codebook generation covers all the data; thus, a weakly distinguishable genre is
easily overruled by a strong one. This reasoning explains why with the increase of
codebook size from 800 to 1,600, the bottom-up process has about a 4 % improve-
ment for KL-div, while the single K-means process has only a 2% increment for
KL-div.

The individual sport genre classification result is illustrated in Fig.9.7. On
average, a codebook size of 1,600 gives an average of 3.6% higher than the
codebook size of 800, which corresponds with the empirical studies from other
research groups [258,261].

To evaluate the generic and extensive properties of our proposed method,
experimental results on the 23-sports dataset are compared with results in Li et al.’s
work [265], where a top-down process was adopted using single K-means as its
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Table 9.'5 .Average Measurement | ED EMD | KL-div
categorization results (%) of — 6

23-sports data with codebook cbpy = 800 1.54 |75.80 | 78.59
size 800 and 1,600 CbSK =800 68.31 | 75.33 |73.49

cbgy = 1,600 | 65.68 |78.94 |82.16
cbgk = 1,600 | 65.39 |64.28 | 75.75
BU: codebook generated using bottom-up

structure. SK: codebook generated using
single K-means structure
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Fig. 9.7 Genre categorization for the 23-sports dataset with codebook sizes of 800 and 1,600

top layer general codebook. The best performance in two-layer and single-layer
structures are 83.83 % and 81.2 %, respectively [265]. In their work, speeded up
robust features (SURF)-based method is adopted. Similar to SIFT, SURF is also
a scale and rotation-invariant interesting point feature extraction algorithm, which
focuses on the computational efficiency [303]. Although SURF and SIFT adopt
different key points detection techniques, these two descriptors are comparable in
characterizing local features of sampled frames from a video sequence. Therefore,
such a comparison is valid in genre categorization performances, regardless of the
feature extraction difference. Considering the increment of data in scale about 27 %
(145h vs. 114.2h), and in variety about 64% (23 genres vs. 14 genres), using
the bottom-up structure with a codebook size of 1,600 and KL-div measurement,
our experimentation provides comparable results of 82.16 %, with a degradation of
1.67 %.

Although the performance is maintained on average, we also observed that
the individual performance has been fluctuating. This fluctuation is mainly due to
the nature of the adopted k-NN classifier, where distance-based measurement can be
overruled by a strong representation in a large and sparse dataset. We acknowledge
that k-NN may not be the most robust algorithm towards the very large-scale dataset.
However, the k-NN is an efficient method in batch processing. It can be used as
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Table 9.6 Genre categorization accuracy between various video clips with
uniform sampling-based and key-frame/shot-based methods

Three minutes clip Ten seconds clip

Uniform sampling | Key-frame/shot | Uniform sampling | Key-frame/shot
83.83 % 79.41 % 71.90 % 63.10 %

Accuracy (%)
N @ A @ @ N ® © 3
8 8 8 8 83 8 8 8 8

=)

o

soccer  basketball volleyball  tennis  table tennis  snooker Fi motorcycle  swimming  diving boxing judo figure sakting speed skating

[ msvM(14 sports)  PLSA(14 sports) mSVM (small scale)  PLSA (small scale) mSVM(small scale w/ soccer codebook) = PLSA(small scale w/ socoer codebook) |

Fig. 9.8 View type classification using supervised SVM and unsupervised PLSA. First two
columns are with codebook size 800 for 14 sports

a coarse and preliminary execution to quickly prune off the large portion of the
irrelevant data.

From a different perspective, generic properties of the proposed method are
assessed using various video clip lengths and frame sampling methods. As detailed
in Table 9.6, better performance is acquired using longer lengths of video clips,
while a generic and automatic uniform sampling method outperforms the key-
frame sampling. It is because the proposed method is based on local key-point
descriptors. Therefore, a longer video clip with denser sampling frames provides
more key-points and consequently builds a better distribution than a shorter clip
with less sampled key-frames/shots. Such experimentation demonstrates the merit
of our proposed generic method towards a truly large-scale dataset.

9.4.2 Middle-Level View Classification Using Supervised
SVM and Unsupervised PLSA

Experiments in this section focus on middle-level view classification by utilizing
extracted low-level histogram-based representations. A subset of 14 sports of all
23 sports was used as test data. Figure 9.8 compares both supervised SVM and
unsupervised PLSA results as the 1st and 2nd columns, respectively. On average,
supervised SVM has a classification accuracy of 82.86 %, and unsupervised PLSA
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has an average of 68.13%, in which the SVM technique outperforms the PLSA
algorithm by 14.73 %.

It needs to be pointed out that this evaluation is based on predetermined semantic
view types, which are in favor of the SVM algorithm. It is because such a semantic
definition has become considerably involved in SVM training, while barely being
used in PLSA training. In the SVM method, labeled training data associated with
each predefined view type are indispensable for building the classifier. On the other
hand, the PLSA model training merely requires a specified number of view types,
which is similar to the number of clusters needed for training a K-means clustering.
Thus, it is anticipated that the supervised SVM method will have better performance
than the unsupervised PLSA algorithm.

However, the PLSA model is advanced in its unsupervised characteristics such
that the labeled data is not necessary in training. This feature makes the PLSA
more suitable than the SVM and significant in supporting the generic framework
dealing with large-scale datasets, where automatic processes and minimum human
and expertise interventions are essential. For evaluating our proposed framework,
a trade-off in the classification accuracy can be afforded, if the ultimate event
detection results are comparable using either the PLSA or the SVM view results.

In order to analyze the generic and scalable properties, a subset with small-scale
five-sports dataset is applied, including {soccer, basketball, volleyball, table tennis,
tennis}. The SVM and PLSA view classification performance of this small-scale
dataset is presented in the 3rd/4th columns of Fig. 9.8, respectively. The baseline on
the small-scale data, the 14-sports, has a 0.27 % performance drop in SVM and an
improvement of 1.76 % in PLSA. With similar results, compared with the five-sport
small-scale data, the 14-sport view dataset has a lot more data in both variety and
volume.

Based on the preceding analytical results, the extrapolated performance from
this current relatively large-scale dataset to a truly large-scale dataset should be
maintained, especially for the PLSA method. The reasoning is twofold: first, large-
scale data is normally sparse; PLSA, as a generative model, has a characteristics in
probabilistically mapping data from a high-dimensional space to a low-dimensional
space. Hence, more information brought by the new data can help in finding
significant representatives in the lower dimensional space. Second, since the number
of view classes are fixed at four types, more variety and volume will not affect the
performance much.

Additionally, a knowledge transfer property is investigated by using the same
five-sport dataset. It can be seen that an individual sport from insufficient resources
{basketball, volleyball, table tennis, tennis} can be assisted by borrowing the
codebook from an abundant sport resource {soccer}. As Fig.9.8 depicts, these
limited-source four sports in the 5th/6th columns, the codebook transfer mechanism
has improved about 2.07 % and 5.05 % for the SVM and PLSA on average, respec-
tively. The margin of improvement using the PLSA is bigger than its counterpart
in SVM. This result can be explained by the nature of two different techniques.
PLSA is a probabilistic-based dimensional reduction technique. Therefore, more
data will provide a more thorough characterization of the low-dimensional model.
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On the contrary, SVM is a technique mapping from a low dimensional space
to a higher dimensional space. More information brought by the codebook may
be overwhelmed by the SVM process and may not necessarily provide a better
classification in the higher-dimensional space. Therefore, such a knowledge transfer
property could help the unsupervised PLSA in further improving its performance for
sports with scarce resources.

9.4.3 Event Detection Using Coarse-to-Fine Scheme

In previous experiments, the proposed framework provides an application to identify
video genres by directly utilizing domain knowledge-free SIFT descriptors and a
BoW model. After the genre is determined, individual frames of the query video
sequence are labeled by the middle-level semantic views via either supervised
or unsupervised classifiers. In this experiment, the task on basketball score event
detection is investigated by employing this labeled video sequence. A two-staged
coarse-to-fine scheme is adopted that first detects scoreboard information change,
introduced by Miao et al. [290]. By adopting this technique, an entry point of an
interesting event is located. However, this coarse detection only provides a static
frame-based rough estimation as an entry point. Since scoreboard information not
only appears in score events, but also in time-out events or intermission events,
individual frame-based detection without temporal structured information cannot
provide robust and satisfactory results. Therefore, a fine-tuning process in finalizing
detection is adopted to ensure that the query video truly conveys the score event
as its semantic theme. The proposed HCRF model is deployed as the fine-tuning
process after the first-stage coarse detection. Experimental results using this HCRF
model are compared with CRF and HMM baselines.

Two video groups consisting of four matches are utilized, which are defined as
(a) Dataset A: using two NBA games for training and using another two Olympic
Games for testing; (b) Database B: using one NBA game for training and using
another NBA game for testing. Frame-based views from the PLSA model and the
SVM model are applied to Dataset A and B. Therefore, four combinations of view
labels and datasets are defined as PLSA +A, PLSA + B, SVM + A, and SVM + B.
Each video clip used in both training and testing is automatically decimated and
consists of 500 uniformly sampled frames. We use a window size N = 20, which is
introduced in Fig. 9.9 and Eq. (9.7) from Sect. 9.3.3, with a window N sliding every
ten frames. The final number of the states sequence for HCRF is thus calculated as
49 =500/(20—10) — 1.
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Fig. 9.9 HCREF input shown Window N
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Table 9.7 Precision and recall results of basketball score events detection at the first
(coarse) stage

Correctly detected score | Detected score | Correct total score | Precision | Recall
True positive Correct result | Obtained result % %

231 251 268 92.03 86.19

The number of approximated events detected after the first stage is given in
Table 9.7. The precision and recall of the coarse-stage basketball score detection are
92.03% and 86.19 % respectively. In the second stage, the proposed HCRF-based
model and state-of-the-art HMM and CRF models are evaluated and compared.
The advantage of HCRF over HMM is its relaxation on the Markov property
that the current state S; can be inferred from both current observations, as well
as surrounding observations, as illustrated in Fig.9.10. In the experiment, the
circumferential range number is selected at @ = 0, 1,2. As shown in Table 9.8, the
HCRF has better performance than the CRF for the same @ values, while both
models outperform the HMM baseline. When using different @ values for both
CRF and HCRF, o = 1 provides better results than @ = 0, in which neighboring
information assists in better decision-making. However, when @ = 2 is used for
HCRE, the performance has been dropped for all cases compared with @ = 1. This
performance degradation can be viewed as an overfitting issue, in which adding
more surrounding information limits the structured prediction ability. A similar
overfitting problem is also observed in gesture recognition research using HCRF
[293]. In summary, the proposed HCRF-based model with parameter @ = 1
outperforms both CRF and HMM models. The best results are obtained at 93.08 %
and 92.31 % by taking SVM- and PLSA-based input labels, respectively.

On the other hand, by comparing the proposed PLSA with SVM benchmark,
performance discrepancy of the event detection has been shortened, despite the
input view classification (as shown in Fig. 9.8) has PLSA (70.14 %) outperformed
by SVM (82.00%) with 11.86%. For Dataset A, the average difference shows
that SVM outperforms PLSA by 3.65 %, while in Dataset B, such a difference is
only 0.47%. This tolerable difference demonstrates the robustness and resilience
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Table 9.8 Performance comparison on score event detection in basketball

Accuracy

Dataset A (NBA/Olympics) Dataset B (NBA/NBA)

SVM + A (%) |PLSA+ A (%) |SVM+B (%) | PLSA +B (%)
HMM w0 =0 |78.28 75.29 87.50 85.94
CRFw=0 78.16 74.57 87.43 86.52
CRFo=1 79.52 76.82 88.52 87.89
HCRF w =0 |80.93 75.53 90.00 90.77
HCRFw=1 |83.26 80.24 93.08 92.31
HCRFw =2 |82.09 77.88 91.46 91.77

Dataset A: NBA matches as training, Olympic matches as testing. Dataset B: NBA
matches for both training and testing

of structured prediction models in accommodating poorly labeled video sequences
from PLSA, yet achieving comparable performance with those labeled sequences
from SVM. Therefore, the event detection presented in this work achieves similar
results by both unsupervised and supervised learning. However, due to PLSA’s
reduced human involvement, the unsupervised classifier is preferred in large-scale
video analysis.

Experimental result discrepancies using Dataset A and Dataset B are also
compared. Although both datasets belong to basketball, Dataset B (with NBA
matches for both training and testing) outperformed Dataset A (with NBA matches
for training and Olympics matches for testing) by 10.9% on average. It suggests
that albeit Datasets A and B are of the same genre and event detection task, a
significant difference exists. Such a difference can be explained by assuming that
NBA and international basketball (FIBA) are two different styles of the same
genre. In terms of computer vision and structured prediction, NBA and FIBA have
related but different temporal patterns even in the same semantic event. Thus,
by training/testing in the same style, it is expected to have a better detection rate
than training/testing using different styles. This is also an example of the semantic
gap—that semantic event recognition with discrepant conditions is still not perfect.

Although there is only one event detection example discussed, it is believed that
the method can be extended and generalized to a bigger pool of event scenarios. The
reason is fourfold: First, the experiment data of the basketball score event are multi-
source and non-simplex. Videos are collected from both internet and TV recordings,
and there are different production rules of NBA and Olympics basketball. Second,
the video representation module using local features and the BoW model is domain
knowledge-free and with no production rules involved. Such a generic approach has
been proven to be effective in genre categorization of 23 sports, view classification
of 14 sports, and the basketball score event. Third, the event detection algorithm
utilizing HCRFs, as well as baseline HMMs and CRFs are structured prediction
models and belong to the category of state event model. By comparing the number
of events analyzed using different event models from Table 9.2, the state event
model, a recently popular approach in literature, is capable in handling more events
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than the other two model types (i.e. pattern-recognition model and semantic event
model). In addition, among the state event models, most methods utilize middle-
level semantic agents. In our work, the adopted four-category view type definition is
one of the most popular classification schemes in literature. Last and most important,
the input of our event detection model is a sequence of labeled views which is the
result of a domain knowledge-free method (either PLSA or SVM), using generic
video representation. With better accuracy achieved by the proposed HCRF-based
model than baselines HMM- and CRF-based models, the performance should be
maintained with other labeled sequences which could form various event scenarios.
Moreover, utilizing sequences labeled by the middle-level agents as input, is also
popular among peers’ work with state event models [275,276,278,279].

9.5 Summary

This chapter focuses on scalable video genre classification and event detection
with the help of middle-level view agent. We introduce the BoW model, with
its incorporation of unsupervised learning algorithms, in analyzing large-scale
video dataset generically and systematically. Three video tasks are investigated
in a coherent and sequential order. After processing all data indifferently at the
feature extraction stage using domain knowledge-free local SIFT descriptors, video
sequences are represented by utilizing compact and concise BoW model. Then, a
systematic scheme is employed for interesting event detection, by taking the video
sequence as query. In this framework, after its genres identified using a k-NN
classifier, the query video is evaluated by a semantic view assignment as the second
stage using the PLSA model. Both genre identification and view classification
tasks utilize the initially processed video representation as input, and unsupervised
algorithms as classifiers. Finally in the third task, the interesting event is detected
by feeding the view labels into an HCRF-structured prediction model.

Overall, this framework demonstrates the efficiency and generality in processing
voluminous data from a large-scale video collection and achieves various tasks
in video analysis. The effectiveness of the framework is justified by extensive
experimentation and results are compared with benchmarks and state-of-the-art
algorithms. As a conclusion, with little human expertise and effort involvement
in both domain knowledge-independent video representation and annotation-free
unsupervised view labeling, the proposed generic and systematic method using the
BoW model is promising in processing videos, and has the potential for even larger
and more diverse datasets.



Chapter 10
Audio-Visual Fusion for Film Database
Retrieval and Classification

Abstract This chapter presents the techniques for the characterization and fusion
of audio and visual content in videos, and demonstrates their applications in movie
database retrieval. In the audio domain, a study is conducted on the peaky nature
of the distribution of wavelet coefficients of an audio signal, which cannot be
effectively modeled by a single distribution. Thus, a new modeling method based
on a Laplacian mixture model is studied for analyzing audio content and extracting
audio features. The dimension of the indexed features is low, which is important
for the retrieval efficiency of the system in terms of response time. Together with
the audio feature, the visual feature is extracted by template frequency modeling.
Both features are referred to as perceptual features. Then, a learning algorithm
for audiovisual fusion is presented. Specifically, the two features are fused at
the late fusion stage and input into a support vector machine to learn semantic
concepts from a given video database. Based on the experimental results, the current
system implementing the support vector machine-based fusion technique achieves
high classification accuracy when applied to a large volume database containing
Hollywood movies.

10.1 Introduction

Content-based video retrieval methods are highly applicable to movie on demand
and movie production applications. These methods can be implemented by a
recommender system for content-based filtering to assist users in finding rele-
vant entities according to their individual preferences. A central design issue of
recommender services is in addressing how to suggest relevant, yet unknown
entities. The system based on video indexing using text descriptors usually provides
great generic and broad categories. In comparison, a perception-based descriptor
implemented by a content-based recommender system provides a more focused
scope of relevant entities. Such descriptors aggregate several different types of
modality to compute relevancy. The variety of the integrated modality allows us to
consider different relevant criteria, helping users to explore new entities. To that
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end, this chapter presents the application of perception-based features extracted
from different modalities and fused through a machine learning process in order
to retrieve and classify relevant movie clips.

Video content analysis tasks, such as the detection of complex events, are
intrinsically multimodal problems, since both the audio and visual channels provide
important clues. Recognition of video entities such as events in the visual domain
alone is challenging enough since a video contains large variations in lighting,
viewpoint, camera motion, etc. However, video also contains audio information
which provide an extra useful clue for content analysis. The video content captured
is multimodal, and the task of video content analysis requires a fusion model to
capture both consistent and inconsistent audio-visual patterns for video indexing
and retrieval.

In Sect. 10.2, we begin with the method for audio content analysis and indexing.
The modeling scheme based on the Laplacian mixture model (LMM) is presented
and demonstrated for indexing and retrieval of videos using audio content. The
LMM is utilized to capture the peaky distribution of wavelet coefficients. The
LMM’s parameters provide a low-dimension feature vector for video indexing, as
well as an efficient audio feature that is helpful for finding clues to the video events.

Section 10.3 presents the application of the template-frequency modeling (TFM)
method for visual content characterization of movie clips, and experimentally
explores its efficiency and robustness. The TFM performance is also compared to
the single/multi frame-based video indexing, which performs frame clustering for
video indexing. A movie search engine is developed which addresses the difficulty
in video retrieval with automatic and semi-automatic relevance feedback.

While the previous sections explain the extraction methods for perception-
based features, Sect.10.4 presents a learning algorithm for audio-visual fusion
and demonstrates its application for video classification in a movie database. The
perception-based features are extracted from different modalities and fused through
a machine learning process. In order to capture the spatial-temporal information,
TFM is applied to extract visual features, and LMM is utilized to extract audio
features. These features are fused at a late fusion stage and input to a support
vector machine (SVM) to construct a decision function for the classification of
videos according to a given concept. The experimental results show that the system
implementing this fusion method successfully attained high classification accuracy
when applied to a large database containing various types of Hollywood movies.

10.2 Audio Content Characterization

The users of the video data are often interested in certain action sequences that
are easier to identify in the audio domain. Audio is effective in linking visually
different but semantically related video clips. In this section, a statistical approach
is adopted to analyze the audio data and extracts audio features for video indexing.
Wavelet transformation is applied to the audio signal and the LMM is utilized for
characterization of audio content.
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Wavelet transform is a powerful tool for analyzing signal content. It is applied for
audio signals in the current work. Wavelet coefficients are sparsely distributed due to
their energy packing property. Therefore, the distribution of the wavelet coefficients
is non-Gaussian and peaky. This type of peaky distribution can be modeled using a
mixture of Gaussians. In theory, any arbitrary-shaped distribution can be modeled
using mixture of Gaussians, if there are an infinite number of components in the
mixture. Modeling the wavelet coefficients is a typical example in which a large
number of components in the Gaussian mixture may be required to catch the
peaky distribution. This is however practically infeasible. Studies on the nature of
wavelet coefficient distributions in high-frequency subbands have shown that the
distributions have a Laplacian-like density [325]. Taking into account the peaky
nature, a LMM may provide a better alternative for modeling the distributions of
wavelet coefficients.

10.2.1 Finite Mixture Model

The wavelet transforms are sparse due to them compression property. There are a
few wavelet coefficients that have large values and carry most of the information,
while most of the other coefficients have small values. This energy-packing property
of the wavelet coefficients results in a peaky distribution [328]. This type of peaky
distribution is heavy-tailed and difficult to model with a single distribution. Mixture
modeling techniques provide an excellent and flexible alternative for this kind of
complex distribution. Finite mixture models are widely used in statistical modeling
of data. It is a very powerful tool for probabilistic modeling of the data produced
by a set of alternative sources. Finite mixtures represent a formal approach to
unsupervised classification in statistical pattern recognition. The usefulness of this
modeling approach is not limited to clustering. They are also able to represent
probability density functions (pdf) of arbitrary complexity [327].

Let x = [xy,...,x4]" be a particular observation of a random variable. We assume
that the data has been generated by a finite mixture of components. The pdf of this
random variable is then defined as [326]:

M
p(x|0) =Y tupm(x|6m) 10.1)

m=1

where o, ..., 0y are the mixing probabilities, 0, is the parameter set representing
the m-th component, @ = {6,...,0y,0,...,ay}, and M is the number of
components. Therefore the complete set of model parameters © is to be calculated
to specify the mixture. In addition, since o, ..., 0y are probabilities,

M
O >0, 04 =1 (10.2)

m=1
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The mixtures can be built with different types of components. However, it is
usually assumed that the components of the mixture have the same functional
form, such as Gaussian or Laplacian. In the following, the LMM is utilized
and the parameters defining the mixture model is estimated by the expectation—
maximization (EM) algorithm.

10.2.2 Laplacian Mixture Model and Parameter Estimation

The univariate Laplacian distribution is defined as:

1 _
p(x) = 25 <P ( Ix b“|> (10.3)

where x is an instance of the random variable, u is the location parameter, and b
represents the width of the distribution. A Laplacian distribution with ¢ = 0 and
b =1 is shown in Fig. 10.1. Previous studies have shown that the density of the
wavelet coefficients is symmetrically centered at zero [325]. This is due to the fact
that most of the wavelet coefficients in a frequency sub-band have small magnitudes
close to zero. Therefore, we assume that the underlying distribution is a mixture of
M Laplacian components centered at zero. Then the probability function of the i-th
data point, p(x(i) |6,,) is simply a conditional probability of generating given that the
m-th model is chosen:

. 1 |X<i)|
(i) -
p(x\|0n) = 25 %P ( ™ (10.4)

The EM algorithm is applied for the estimation of the parameters. We assume the
existence of a hidden variable z = [z, ...,zy]" whose values are not known. This
M-dimensional hidden variable z( is associated with each data point x() and
indicates which component of the mixture has generated x(). For example, if a
data value has been generated by the m-th component of the mixture, then the m-th
component of this vector zﬁ,’l) =1 and all other component values will be 0. Here,
i represents the index of the data point and i = 1,...,N because the total number
of observations are taken to be N. In the presence of both x and z, the complete
likelihood can be written as follows:

N M
«(0,%,2 :Z Z 2 n (p(x716,) + In ) (10.5)

The EM algorithm proceeds by alternatively applying the following two steps:
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Fig. 10.1 Laplacian distribution with gt =0 and b =1

¢ M-Step: There is only one parameter in Eq.(10.4) i.e., b,,. Now we have the
model parameter set given by 6, = [04,, b;] for each mixture component. Using

M
the maximum likelihood principle, and enforcing the condition Y, «, =1, we

m=1
get the following update equations for b, and o,;

y 0\ |4
bmw(, (10.6)

3 ()
()

where (-) is the expectation operator.
« E-Step: To maximize the incomplete log-likelihood p(xV),....xM|@),
we take the expectation w.r.t. the posterior distribution of Z namely

AN
p(ZxV ... xN) @), where Z = {z(’) } - Therefore, each of the expectations
i=

Oy, = (10.7)

<z£,?> that appear in the above update equations is computed as follows:

(10.8)
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The parameter [oy,,, by are initialized and the value of the hidden variable <z§f;)>

is calculated. The value of b,, and ¢, are then updated by using the new value of
<z,(qi)> using Eq. (10.6) and Eq. (10.7). This is done iteratively until the algorithm
converges.

10.2.3 Comparison of Gaussian Mixture Model and Laplacian
Mixture Model

In order to make a comparison between GMM and LMM, a study was performed
on the Brodatz image database. The images from the Brodatz image database
were decomposed to three levels using the Daubechies db4 wavelet kernel. The
wavelet coefficients in all the high-frequency subbands (9 for 3-level decomposi-
tion) were modeled with two components, GMM and LMM. The model accuracy
was measured using the Kullback-Leibler Divergence (KL). KL is a quantity
which measures the difference between two probability distributions. KL can be
considered as a kind of distance between the two probability densities. But it is not
a real distance measure because it is not symmetric. The likelihood of the model
can be measured in terms of the KL between the observed density and the density as
calculated by the model. The KL between two probability distributions of a discrete
variable is defined as,

KL(p,q) =Y, p(x)log 28 (10.9)

where p(x) is the estimated probability distribution from GMM or LMM, and ¢(x)
is the normalized histogram of the wavelet coefficients. There are a total of 16,704
high-frequency subbands for 3-level decomposition of 1,856 images (1,856 x 9).
The wavelet coefficients of high-frequency subbands at the first, second, and third
levels of decomposition are quantized into 256, 128 and 64 levels respectively, to
properly represent the resolutions of different decomposition levels. A normalized
histogram is constructed that represents the true distribution g(x) of the coefficients.
The distributions using LMM and GMM models are then calculated. The KL
distance is calculated between normalized histograms and the distributions obtained
from the GMM and LMM models. It is observed that, out of 16,704 total cases,
LMM gives a lower value of KL in 16,494 cases. In the remaining 210 cases, KL
was lower in case of GMM. These results indicate that in 98.74 % of the test cases,
the LMM model with two components is closer to the true distribution in terms of
KL statistics. This evaluation indicates that LMM is a more appropriate model for
the wavelet coefficient distribution and can model it with only two components. The
fitting of the GMM and LMM models for a typical high-frequency wavelet subband
of an image from the Brodatz image database is illustrated in Figs. 10.2 and 10.3.
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10.2.4 Feature Extraction from Audio Signal

In order to obtain feature extraction, an audio signal is separated from the input
video clip. The audio signal is then re-sampled to a uniform sampling rate. It is
decomposed using a one-dimensional DWT. This decomposes audio signals into
two subbands at each wavelet scale; a low-frequency subband and a high-frequency
subband. The audio signal is different from a gray or color image signal. In images,
the values of adjacent pixels usually do not change sharply. On the other hand,
the digital audio signal is a form of oscillating waveform, which includes a variety
of frequency components varying with time. The low-frequency subband of the
image is a low-resolution approximation of the original image. However, most audio
signals consist of a wide variety of frequencies. The wavelet coefficients of the
audio signal have many large values in detail levels, and the low-frequency subband
coefficients do not always provide a good approximation of the original signal.
The wavelet decomposition scheme matches the models of sound octave-divisions
for perceptual scales. Wavelet transform also provides a multiscale representation
of sound information, so that we can build an indexing structure based on this
scale property. Moreover, audio signals are nonstationary signals whose frequency
contents evolve with time. Wavelet transform provides both frequency and time
information simultaneously. These properties of wavelet transform for sound signal
decomposition form the foundation of audio indexing.

The distribution of the wavelet coefficients in high-frequency subbands are
modeled by a mixture of two Laplacians centered at 0. The parameters of this
mixture model are used as features for indexing. The model can be represented as:

P(W(i)) = 061191(W(i)|b1)+a2P2(W(i)|b2) (10.10)
o +on=1 (10.11)

where ¢ and oy are the mixing probabilities of the two components p; and p»,
respectively. w(?) are the wavelet coefficients while b; and b are the parameters of
the Laplacian distributions p; and p», respectively.

Table 10.1 summarises the feature extraction algorithm that employs the EM
algorithm to obtain the model parameters. In practice, the wavelet decomposition of
the audio signals is taken up to L levels. The feature vector used for indexing the
video clips consists of the following components:

£, = [{mo, 00}, {0n1,b14,b24}|,1=1,2,....L—1 (10.12)
where f, denotes the feature vector describing the audio content. This composes of

the mean and standard deviation of the wavelet coefficients in the low-frequency
subband; model parameters calculated for each of the high-frequency subbands.
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10.2.5 Performance of Video Retrieval Using Audio Indexing

The experimental results obtained in this section were conducted on a database
consisting of 24 full-length and mostly recent mainstream Hollywood movies
chosen to represent the more popular films, music videos, and commercials. This
included the Titanic, the Patriot, the Postman, Pakistani music videos and films. All
video files were segmented into 6,000 clips, each of which contained one to three
shots, and was approximately 6 s long.

The feature extraction algorithm explained in Table 10.1 was applied to obtain
the audio feature. A wavelet transform with nine-level decompositions was applied
to the audio signal from each video clip. The coefficients in each high frequency
subband were then characterized by the LMM. The resulting model parameters
and the mean and standard deviation of wavelet coefficients in the low-frequency
subband were used to obtain feature vectors according to Eq. (10.12). In addition,
as feature components represent different physical quantities and have different
dynamic ranges, the Gaussian normalization technique [329] was employed to
convert the vector component to [—1, 1].

A total of 25 queries were generated from different high-level query concepts
that included “Fighting”, “Ship Crashing”, “Music Video”, and “Dance Party”.
These concepts were chosen based on the fact that audio information was the
dominant feature in these concepts. Five queries were performed for each concept,
and the retrieval precision was measured from 16 best matches. Table 10.2 shows
the retrieval results obtained by using the audio description for video retrieval, at
7-level and 9-level wavelet decompositions. The results are obtained by averaging
the precisions within the individual query concepts, as well as within the overall
queries. These results clearly indicate the power of audio descriptors in finding the
video clips containing the specified concepts. The retrieval results varied depending
on the characteristic of the query, and the performance was the highest in cases
with dialogues. An average-retrieval precision of 84.2 % was achieved based on
9-level decomposition. This precision value was 6.4 % better than that based on 7-
level decomposition. Further increasing the level of decomposition may improve the
performance, but at the expense of more computational overhead.

The similarity concept is hard to define because of the subjectivity of the matter.
But we can define a notion of similarity based on the concept of the clip. In the case
of music videos, the clips are considered similar if they belong to the same song.
Similarly, in the case of audio clips which contain a dialogue, the clips belonging to
the same movie are taken as similar because they involve similar characters. The
lowest performance is obtained in the case of “Ship Crashing” due to its audio
similarity with the “Sound Effects” class. Both classes are overlapping in meaning
in that they contain similar audio content. Performance is enhanced with the increase
in the number of decomposition levels.
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Table 10.1 Feature extraction for audio signal

Input
Output

Computation

Audio signal, s(t)
Feature vector, f = |{mo,00},{0n,b15,02;}|,0 = 1,2,...,L — 1, where mg
and o0y are the mean and standard deviation of the wavelet coefficients in
the low-frequency subband, {cy ;,b1,b2;} are the model parameters obtained
from wavelet coefficients from the /-th high-frequency subband, and L is the
decomposition level.
1. Apply DWT to s(f)and obtain wavelet coefficients of the low-frequency
subband{w(’)}Low and the high-frequency subband {W(')}Hl‘th, [=1,2,...,L—1
2. Compute {myg, 6o} from {w()} 4,
3. Compute {OC]J,b]_’hsz},l =1,2,....L—1
begin initialize / < 0 )
@l — 1+ 1, {Wm} — {W(I)}H,‘th
begin initialize [b,b>] and [0, 03], j+ 0
doj«— j+1
E-step: compute the expected value of the hidden variable for each
wavelet coefficient

(EM algorithm)

()= on ()p(w b1 ()
Y (Wb () + ea () p(wba()))

() = o (j)p(w?b2(1)
21 a(j)p(wO b1 () + e () p(w b2 ()

M-Step: update the parameters [by, ;] and a priori probabilities

[061,062],
N .
> (')
a(j+1)== N
N .
> (&)
(j+l)=—F—:

bi(j+1)="

i)
N/, wl)

bz(j+1)="zl<Z (M ’

é ()

where N is the number of wavelet coefficients.
until convergence is reached
return [o,b;,b)
end
until / =L
return {al?l,blvl,bz‘l},l =1,2,...,L—1
end
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Table 10.2 Video retrieval results, obtained by LMM-based audio indexing, using 25 queries

Average precision (%)

Music Ship Dance Sound
LMM features video |Fighting | crashing |party | Dialogues |effects | Average
Seven-level wavelet | 80.0 71.5 67.2 60.0 92.2 89.6 77.74
decomposition
Nine-level wavelet | 83.8 83.8 65 78.8 100 93.8 84.2

decomposition

10.3 Visual Content Characterization

This section demonstrates the application of the template-frequency model (TFM)
for video indexing. The TFM was discussed in Chap. 3, but its performance has not
been compared to other methods. In the following, a summary of TFM for video
indexing is given, and a demonstration is performed by applying it to the movie
database.

10.3.1 Visual Indexing Algorithm

The TFM for video indexing is summarized in the following steps:

e Step 1: Template generation. A competitive learning algorithm [330, 331] is
applied to generate prototype vectors, C = {¢y,...,¢j,...,¢7.},¢; € R, where C;
is obtained by modification of input color histograms, and 7 is the total number
of prototypes (templates).

e Step 2: Multiple label vector quantization. For a given video clip, a primary
descriptor is obtained: D = {hy,...,h;,... hr,}, where h; is the 48-bin color
histogram vector of the i-th frame, and 7 is the total number of frames. Each
vector h; is quantized by the prototype vectors in C using multiple labels:

o) = (1™ ™ ™ e (1,0, T (10.13)

where [ Eh" ) is the label of the best-match template, and / ,Ehi ) is the label of the k-th
best match template.
o Step 3: TF x IDF weighting. The resulting Q(h;),i = 1,...,T; give a set of
labels corresponding to the entire video frames, which are concatenated into
a single weight vector, f, = [fi,...,fj,..., fr.]'. The weight parameter f; is
obtained by:
f}’(Cj) Nv

I (e} i)

(10.14)
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where fr(c;) stands for a raw frequency of template ¢; (the number of times the
template is mentioned in the input video sequence). The maximum is computed
over all templates mentioned in the content of the input video; N, denotes the
total number of videos in the system and n(c;) denotes the number of videos in
which the index template ¢; appears.

10.3.2 Performance Comparison for Retrievals from Movie
Database

An Interactive-based Analysis and Retrieval of Multimedia (1IARM) system is
a web-based search engine [324], and has been implemented using TFM video
indexing structure and an interactive content-based retrieval strategy. This section
demonstrates its application for retrieval of “video clips” from a video database of
20 h, which includes 14 Hollywood movies segmented into a total of 2,401 video
clips, each of which is approximately 30 s long. Table 10.3 gives the details of the
database. The iARM system is implemented to manage a centralized database using
the Java 2 Enterprise Editions (J2EE), shown in Fig. 10.4. In this system, the video
database is located on a single server, and the system provides user interactions
through Java Server Page (JSP) interface. The requests and feedback on the client
sides are implemented through JSP, which are then processed within the Java Bean
on the server side.

The TFM method was applied for indexing all video clips in the database. In a
separate off-line process, each video clip was indexed by a set of visual templates.
The size of this set was 7. = 2,000. During the online process, the video search was
initiated by the query submitted by the user and followed by relevance feedback.
Using the same strategy as the relevance feedback technique described in [323],
a new query was obtained by enhancing the relevant models and suppressing the
irrelevant models from the original query [cf. Eq. (2.7)].

Table 10.3 Video database, containing 20 h of Hollywood movies

ID | Movie name ID | Movie name

1 15 Minutes 8 | Lion King

2 |40 Days & 40 Nights | 9 | US Marshals

3 A beautiful Mind 10 | Me, Myself & Irene

4 Dr.T 11 | The Adventures of Pluto Nash
5 | Final Fantasy 12 | Romeo Must Die

6 | Gladiator 13 | Scooby-Doo

7 | Just visiting 14 | The Two Towers
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Table 10.4 Average precision (%), obtained by retrieving 40
queries, measured from the top 16 retrievals, using KFVI
and TFM methods with user-controlled relevance feedback,
automatic relevance feedback, and semi-automatic retrieval

methods
Methods Average precision (%)
KFVI | SKF 39.22
MKF 62.34
TFM | Initial result without RF | 73.59
User controlled-RF 90.47
Automatic-RF 80.12

Semi-automatic retrieval | 92.03

The system was tested using 40 sample video clips chosen randomly from
fourteen movies. Table 10.4 shows the retrieval results averaged over the 40 queries.
From the table, it is observed that the iARM system had a very high precision of
73.6 % at the initial stage (i.e., more than 11 relevant video clips were retrieved out
of the top 16 best matches). It also saw a significant improvement of 90.51 % in
precision after a single feedback cycle. This implies that the TFM method is highly
effective in capturing spatio-temporal information from video. This also indicates
that TFM is efficient and highly adaptable, as only single user feedback was required
for significant improvement.

Table 10.4 also shows the comparison between TFM and other video indexing
methods that use video clustering strategies for the video content characterization.
The compared methods are denoted as KFVI (key-frame based video indexing).
Here, the KFVI employed video clustering approaches discussed in [320-322] for
selection of the representative frames from video clips. In this way, for each video
clip, frames are clustered based on frame descriptors, and frames that are close to the
cluster centriods are selected as key frames. The k-mean algorithm and clustering
validity method demonstrated in [321] were employed for the selection of key
frames.

KFVI process began by extracting 48-bin color histogram vectors from each
video frame in a given video clip. Then, it applied the clustering algorithm to
the resulting histogram vectors to obtain k-means with different values of k&, for
k=1,2,...,10. The k-means was run multiple times for each k, and the best of
these was selected based on the sum of squared errors. Finally, the Davies—Bonldin
index [319] was calculated for each k, k € {1,2,...,10}, and the k that gave the
smallest Davies—Bonldin index was chosen. In doing so, the optimum number of
clusters will vary according to the cluster validity analysis of the resulting clusters.
The closest frames to the clusters (one frame from each cluster) were selected as



292 10  Audio-Visual Fusion for Film Database Retrieval and Classification

key frames, and this method is denoted as a MKF (multiple-key frame) method.
For comparison, a single frame which is the closest frame to a cluster centriod
was selected as a key frame, and this method is denoted as a SKF (single key
frame) method. Video content similarity matching used by the SKF was obtained
by comparing the descriptor vectors of the selected key frames of the query and the
target videos. However, for the MKF method, similarity measures are obtained by
matching multiple key frames of the query against multiple key frames in the target
video clips. To be precise, let S be a similarity score. The similarity was obtained by:

S=si (10.15)

s; = min {d[i,j]} (10.16)
j=1,..M
where d[i, j] is the distance between the i-th key-frame of the query and the j-th
key-frame of the target video; N and M are the total number of key-frames of the
query and target videos, respectively.

From the results, it is observed that although the SKF method can be used for
retrieval of video shots, SKF is less effective in characterizing video content of
video clips. The SKF result achieved 39.22 % precision. By considering multiple
key frames as in the MKF method, the performance of the key-frame based video
indexing method can be improved to 62.34 %. However, this result is approximately
10 % less precise than that of TFM.

In order to achieve high retrieval performance, the iARM system was imple-
mented using the automatic and semi-automatic retrieval algorithms. The pseudo-
relevance feedback using the adaptive cosine network architecture (discussed in
Chap. 3) was employed. In this case, depending on the internet traffic conditions,
users can submit automatic and semi-automatic queries, and the automatic query
can avoid the transmission of training sample video files over the internet. Using
the same set of queries as in the previous results, this system first performed an
automatic retrieval for each query to adaptively improve its performance. After three
iterations of signal propagation in the adaptive cosine network, the system was then
assisted by users. Table 10.4 provides the summary of the retrieval results, obtained
by automatic and semiautomatic methods. It is observed that the semiautomatic
method was superior to the automatic method and the user interaction method.
The best performance was achieved at 92.03 % precision. In addition, the moderate
performance of the automatic method can be beneficial to the user when internet
resources are limited.

The strength of the iARM system was evaluated against a variety of templates
used by TFM for indexing video clips. Specifically, three sets of templates at
T. =500, 1,000 and 1,500, were generated using a competitive learning algorithm,
where 7. denotes the number of templates. These are approximately 3 %, 6 %,
and 9 % of the training sample set, respectively. For each set of templates, video
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Table 10.5 Average
precision (%), obtained by
retrieving 40 queries, using

Average precision (%)
Number of templates | Initial result | After 1 RF

four sets of templates for T. =2,000 73.59 90.47
video indexing T. = 1,500 72.81 89.69
T. = 1,000 72.50 88.13
T. =500 68.75 81.25

1AR

Key frame: 1 SMinute3 2-
14.mpejpe .
Clip:15Minute32-14.mpg

Please query by a clip
number, e.g., 1,2,..,2401 . = . =
or click "Browse" O Ll 0 0

| GetQuery |

[(Browse ] [Seerch ]
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Fig. 10.4 iARM’s user interface for retrieval of movie clips using the TFM method

files were indexed, and the resulting feature databases were used by the retrieval
system. Table 10.5 shows the retrieval results obtained by retrieving 40 queries.
It is observed that the iARM system was fairly robust compared to the deviation
in the number of templates 7,.. The results in the second column show the small
variation in retrieval performance (i.e., 1.1 % reductions of precision) as the number
of templates was reduced from 2,000 to 1,000. In this case, video matching used
the non-adaptive matrix. However, the performance gap is increased to 2.3 % after
relevance feedback as we had anticipated, since human interpretation has been
addressed to some extent by the interactive algorithm. The results show that a set of
templates with 7, > 1,000 is sufficient to model the video content in this database.
This value of T, is approximately 0.1 % of the entire video data in this collection.
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10.4 Audio-Visual Fusion

When retrieving clips from a database, the user is searching not only for clips
that are similar to the query in terms of the visual aspect, but also in terms of
the audiovisual aspect to convey a semantic concept-based query interface. The
term ‘semantic concept’ describes the characteristic of the desired clip derived
from its distinct characteristics and expressed through audiovisual signals. The
semantic may be interpreted as logical story units, events, and activities, such
as airplane flying, car crashing, rioting, and so on. Retrieval using concepts has
been performed in many domain applications. For example, Sudhir et al. [318] and
Miyamori et al. [317] addressed the semantics of tennis games with concepts such
as baseline-rallies, passing-shots, net games, and server-and-volley. These were
derived by rule-based mechanisms as well as low-level features such as player
position, dominant colors, and mass center [316]. In more recent works, Lay et al.
[314,315] presented elemental concept indexing (ECI) by defining concepts using a
compound of annotated words that can be decomposed into more elementary units,
and applying grammar rules to support query operations.

This section presents the indexing and retrieval methods that derive semantics
based on perceptual features and a machine learning based fusion model. The
semantic concepts are associated with perceptual features instead of annotating
terms to specify a finer perception. This interface can be applied for the film
editing/making process where the perception characteristics in the scene are very
difficult to express in words. In the composition of the scene, the notion of
Mise-en-scene, where the design of the props and the setting revolve around the
scene, is implemented to enhance its potency [313]. Mise-en-scéne means “‘put
in the scene” for almost everything including the composition itself: framing,
movement of the camera and characters, lighting, set design and general visual
environment, even sound as it helps elaborate the composition [312]. Such scene
units are difficult to characterize with textual descriptions, while they are more
easily subjected to feature extraction at the signal level. The audiovisual fusion
model employing perceptual features provides a highly efficient interface to retrieve
movie clips for concepts such as Love Scene, Music Video, Fighting, Ship Crashing,
and Dance Party. Here these concepts are described with textual descriptions for
communication with readers. However, our definitions of the semantic concepts are
based on perceptual features in the video and not text descriptors.

The SVM model is adopted for fusion of audiovisual features for characterization
of semantic concepts according to perceptual features. Although the SVM is a
well-established machine learning technique [310], its application for the fusion
of multimodality features has only been recently studied. A SVM-based decision
fusion technique has been employed for cartridge identification [311], as well as for
personal identity verification [306]. However, the SVMs have not previously been
applied in decision fusion for the detection of semantic concepts in video.
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10.4.1 Decision Fusion Model

Meyer et al. [309] have suggested that there are two techniques for audio-visual
fusion in developing audio-visual information recognition systems: feature fusion
and decision fusion. These approaches are very often referred to as early fusion and
late fusion. The first approach is a simple audio-visual feature concatenation giving
rise to a single data representation before the pattern matching stage. The second
approach applies separate pattern matching algorithms to audio and video data and
then merges the estimated likelihoods of the single-modality matching decisions.
In the current application, a late fusion scheme is chosen for the following two
reasons. First, visual features in the current work have a physical structure different
from audio features in terms of dimensions as well as in weighting schemes. Second,
based on previous studies [308] with respect to human perception, audio and visual
processing are likely to be carried out independently in different modalities and
combined at a very late stage. Audio contains information that is often not available
in the visual signal [333]; thus, it may not be appropriate to concatenate audio and
visual features into a single representation.

Figure 10.5 shows the architecture of the system which includes the fusion
module and SVM. The extracted data (audio and visual) are processed by different
similarity functions, d,; and d,,. The function d, is applied to audio features, whereas
the function d, is applied to visual features. Each function, given the extracted
data, will deliver similarity scores between an input sample and a model vector.
These scores range between zero (accept) and one (reject). In other words, when
combining two modules, the fusion algorithm processes a two-dimensional vector
for which each component is a score in [0, 1] delivered by the corresponding
modality expert. The SVM will combine the opinions of the different experts and
give a binary decision.

Let f, and f, denote the feature vectors extracted from the audio and video
signals, where the subscript a and v are for audio and visual, respectively. Given
the video database, we can obtain a set of samples:

xi = [dai(fai,fa)  dvi(fif))], i=1,2,... Ny (10.17)
where
daj=1—|f0; — 4| (10.18)
fvi'f,v
dyi= o (10.19)
T

d; is the function measuring the similarity between the i-th sample f; and f' that is
the feature vector of the representative sample from the positive class. d,; and d,;
are computed from the audio and visual domain, respectively. From a given video
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Fig. 10.5 Architecture of SVM-based late fusion method. In the fusion module, the vector x
is formed by the fusion of similarity matching scores in audio and visual domains, which are
respectively denoted by d, and d,. In the SVM, the input x and the support vector x; are nonlinearly
mapped (by ¢) into a feature space H, where dot products are computed. By the use of the kernel &,
there two layers are in practice computed in one single step. The results are linearly combined by
weights v;, found by solving a quadratic program. The linear combination is fed into the function
o (x) = sgn(x+b), where b is a bias

database, a subset of samples of x;, i = 1,2,...,Nr is used for training SVM to
learn a specific semantic concept defined by the positive class. This is described in
the following sections.

10.4.2 Support Vector Machine Learning

A mapping function f : y — {1} is estimated by the input—output training data
[306,307],

(X1,91)5 -+, (xi,31) € x x {£1} (10.20)

The domain )y is some nonempty set that the patterns x; are taken from, and
the y; are the corresponding labels. It is assumed that the data were generated
independently from some unknown probability distribution P(x,y). The goal here
is to learn a function that will correctly classify a new example (x,y), i.e., f(x) =y
for examples (x,y) that were also generated from P(x,y). In other words, we choose
y such that (x,y) is in some sense similar to the training examples. To this end, we
need a similarity measure in ¥, i.e.,
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kixxy—R (10.21)
(x,x) = k(x,x') (10.22)
which is a function that returns a real number characterizing the similarity between

xand ¥’. A type of similarity measure that is of particular interest is the dot product
which is performed in the feature space, H

k(x,x') := (x-x') = (¢(x) - 9 (x')) (10.23)

where the mapping function ¢(x) is applied to transfer pattern x and x into the
feature space H, i.e.,

¢:x —H, (10.24)
X=X (10.25)

In order to design the learning algorithm, we must come up with a class of
function hyperplanes,

(w-x)+b=0 weR' beR, (10.26)
corresponding to decision functions,
f(x)=sgn((w-x)+D) (10.27)

We can show that among all hyperplanes separating the data, there exists a unique
one yielding the maximum margin of separation between the classes,

fnabﬁmin{ﬂx—xiﬂ; xcRY, (W-x)+b=0,i=1,...,m} (10.28)

)

where m is the number of data samples. This is the optimum hyperplane that has
the lowest capacity. This can be constructed by solving a constrained quadratic
optimization problem. The solution vector w has an expansion w = Y ; v;X; in terms
of a subset of the training patterns, namely those whose v; is non-zero, called
Support Vectors. These carry all the relevant information about the classification
problem; all remaining examples of the training set are irrelevant. Therefore, we
may rewrite Eq. (10.27) as:

f(x) =sgn (Y vi(x-x;) +b) (10.29)

This shows the crucial property of the algorithm that the decision function
depends only on dot products between patterns. We think of the dot product space
as the feature space H. To express the formulas in terms of the input patterns lying
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in ¥, we need to employ Eq. (10.23), which expresses the dot product of features in
terms of the kernel k evaluated on input patterns,

k(x,x') = (x-X) (10.30)

We thus obtain decision functions of more general form,

f(x) = sgn (i Vi-(0(x)- ¢ (xi)) +b> (10.31)
i=1

= sgn (i Vi - k(x,x;) —|—b> (10.32)
i=1

By this definition, it is more efficient to use the kernel to obtain the dot product
in H since ¢ (x) - ¢ (x;) will be very expensive to compute if H is high-dimensional.
To this end, the Gaussian radial basis function (GRBF),

k(x,x') :exp(—}/Hx—x’Hz) (10.33)

is utilized as a similarity measure.

As discussed in Fig. 10.5, the input x and the support vector x; are nonlinearly
mapped (by ¢) into a feature space H, where dot products are computed. Practically,
those two layers are computed in one single step by the use of the kernel k. The
results are linearly combined by weights v;, found by solving a quadratic problem.
The linear combination is fed into the function o (-).

Figure 10.6 shows an example of a two-dimensional plot of data samples
obtained from the database in the experiment. It shows a two-dimensional feature
space where each sample is labeled as positive or negative according to one query
concept. It can be observed that although the data is only two dimensional, the
problem is not a linear separable case. The application of a non-linear GRBF kernel
function is therefore more appropriate for performing nonlinear mapping for the
SVM classifier, as compared to other linear functions.

10.4.3 Implementation of Support Vector Machine

To construct the optimum hyperplane [cf. Eq. (10.28)], we can solve the following
optimal problem:

minimize 1 || (10.34)
w,b

subjecttoy;- ((w-x;)+b) > 1, i=1,....m (10.35)
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Fig. 10.6 A two-dimensional plot of data samples obtained from the database to be classified by
SVM for a given query. According to the ground truth, the positive samples are marked as ‘plus’
and negative samples are marked as ‘circle’

The way to solve this problem is through the Lagrangian dual. In practice, however,
a separate hyperplane may not exist e.g., if a high noise level causes a large overlap
of the classes. Thus, we employ a soft margin classifier, called C-support vector
classifier (SVC) [305] for implementation in the current work. The software library
for this implementation may be found in [332]. The C-SVC uses the constant
C > 0 as the upper bound which is the only difference from the separable case
[cf. Eq. (10.34)]. The technique here is to minimize the objective function,

1 m
t(w.8) = SIWIP+C X & (10.36)
i=1
subjecttoy;- ((w-x;)+b) > 1-&, & >0, i=1,....m (10.37)

where &; are slack variables. Incorporating kernels, and rewriting it in terms of
Lagrange multipliers, this leads to the problem of maximizing:

m 1 m
maxiﬂr@r&ze z o — 3 Z 050yiy jk(xi, X ) (10.38)
o€ i=1 ij=1

m
subjectto 0 < ;< C, i=1,...,m, and Y oy; =0 (10.39)

i=1
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where the trade-off parameter C > 0, and ¢, i = 1,2,...,m are the Lagrange
multipliers. The resulting decision function can be shown to take the form:

L

f(x) =sgn ( > oy - k(x,x;) +b> (10.40)
=1

where the weight parameters v; in Fig. 10.5 are replaced by oy;.

10.4.4 Results of Movie Clip Classification

The experimental results were conducted on a database consisting of 6,000 movie
clips previously used in Sect. 10.2.5. All videos were indexed by visual and audio
features. The visual feature was obtained by TFM with T, = 2,000. Each video
clip was described by its associated weight vector [cf. Eq.(10.14)]. The audio
feature was obtained by LMM. A wavelet transform with 9-level decompositions
was applied to the audio signal from each video clip. The coefficients in each
high frequency subband were then characterized by the LMM. The resulting model
parameters and the mean and standard deviation of the wavelet coefficients in the
low-frequency subband were used to obtain feature vectors according to Eq. (10.12).

The SVM-based fusion model was applied for the classification of videos in the
video database. Five semantic concepts were utilized to obtain the results. These
concepts included Fighting, Ship Crashing, Love Scene, Music Video, and Dance
Party. For each of the five concepts, the ground truth classes were obtained by
manually classifying all video clips in the database. Table 10.6 shows detailed
information of the data set used in the experiment. The ground truth class was
used for measuring classification performance. For each concept, the system was
trained using a training set of 100-250 samples randomly selected from the database
according to the type of concepts. The size of the training set was approximately less
than 2 % of all video clips used for testing.

In order to measure the performance of the system, three following criteria
were utilized: classification accuracy, false positive rate, and false negative rate.
Classification accuracy was used to measure the percentage of correct/incorrect
classifications [305]. The false positive rate was the proportion of negative instances
that were erroneously reported as being positive, and the false negative rate was the
proportion of positive instances that were erroneously reported as negative [304].

Table 10.7 shows the experimental results obtained by the SVM-based fusion
method. It can be observed that the method achieved very high accuracy, an average
of more than 91 %. It should be noted that this is not a rare result. The number of
negative samples was much more than the positive samples within a given class; the
models can correctly classify most of the negative samples, and thus the average
was high. An interesting observation was the false negative rate, since it indicated
the percentage of positive samples that were correctly detected. The system had
the highest false negative rate at 26.87 % for classification of the ‘Ship Crashing’
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Table 10.6 Ground truth and training/testing data used for video classification via
the SVM-based fusion model

Number Number Number Number

of instances | of movies of training samples | of testing
Type of concept | in database | with concept | (positive, negative) | samples
Love scene 66 3 (22,78) 6,000
Music video 41 4 (13, 87) 6,000
Fighting 413 3 (137, 163) 6,000
Ship crashing 201 1 (67, 134) 6,000
Dance party 48 1 (16, 84) 6,000

Table 10.7 Recognition rate obtained by the SVM based fusion model

Type of concept | Accuracy (%) | False positive rate (%) | False negative rate (%)

Love scene 90.97 8.91 19.70
Music video 91.03 9.03 0

Fighting 84.68 25.65 14.55
Ship crashing 91.81 7.54 26.87
Dance party 99.68 0.30 2.08
Average 91.63 10.29 12.64

concept. This showed, however, that 73.13 % of all relevant videos were correctly
classified. Moreover, the system attained the lowest false negative rate of 0 % and
2 % for the detection of ‘Music Video’ and ‘Dance Party, respectively. For such
concepts, we observed that the audio features extracted from video clips contributed
highly to the effectiveness of the classifier. In addition, the consistency of the visual
scenes in the video clips representing ‘Dance Party’, as well as the music in the
audio enabled the classifier to achieve close to 100 % classification accuracy.

The ground truth in Table 10.6 may be used to study the generalization capabili-
ties of the SVM-based fusion model, through examining the properties of the video
test set. The table shows the number of instances of each concept in the database,
and the number of different movies where each concept exists. This data shows
that three of the concepts existed in more than one movie (i.e., Love Scene, Music
Video, Fighting). From the results discussed above, given these concepts, the system
can classify relevant video clips correctly, although they are from different movies.
Thus, we can see that this learning system can attain generalization capabilities to
some degree. Furthermore, this work aims at characterizing semantic concepts in
terms of perceptual features providing the experimental database. These concepts
may not be as good generalizations as the ones described by textual descriptors.

It is well known that the number of positive and negative examples should not
differ much for training SVM in order to avoid classification errors. As noted
from the results, positive samples were more important than negative samples for
conducting effective training. Here, the performance of the classifier was studied



302 10  Audio-Visual Fusion for Film Database Retrieval and Classification

at different settings of training data. The ground truth for the Love Scene concept
(explained in Table 10.6) was utilized to test the SVM classifier in different
training conditions. First, the number of positive samples in the training set was
fixed to 22 samples (these were selected from the total of 66 samples). Then the
negative samples were added to the training set one at a time and used for training.
Figure 10.7 shows the recognition accuracy of the system. As we may anticipate,
without negative samples included in the training set, the classifier has the highest
false positive error rate. Adding more negative samples to the training set also
increased the accuracy of the classifier, but with the cost of higher false negative
eITOorS.

Figure 10.7 also shows that the training size was increased to more than 2 %
of the total number of samples stored in the database. When the system was
allowed to learn more negative samples it produced a high false negative error rate.
In order to achieve a good compromise between performance and error rates, the
system required approximately 0.1 % of the total negative samples for training. In
comparison, we observed from a new experiment that the system required a large
number of positive samples, i.e., more than 22 % of the total positive samples, for
training in order to obtain a good tradeoff between accuracy and error rate.
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Fig. 10.7 Classification results obtained by the SVM-based decision fusion model for the “Love
Scene” concept, at a different setting from the training set
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10.5 Summary

The chapter focuses on the content characterization of audio and visual data, and
the learning models of support vector machines for the audio-visual fusion. First,
we introduce the Laplacian mixture model for audio analysis. The shape of the
wavelet coefficient distribution is modeled by a low-dimensional vector of the
model parameters. The index vector addresses the global characteristics of the audio
content. Since videos contain mixed types of audio content, music speech, sound
effects, and noise, the global characterization is effective for these types of mixed
audio sources.

Video data involves both audio and visual signals to convey semantic meanings.
The application of the audiovisual fusion technique provides the most accurate
means of content analysis compared to methods analyzing either the visual or audio
signal alone. Template frequency modeling for visual content analysis, together with
the statistical technique based on the Laplacian mixture model for audio analysis
capture effectively the spatio-temporal information. We demonstrate the application
for characterizing semantic concepts in movie clips from a large video library. The
audiovisual fusion model through a support vector machine training process can
adaptively construct a decision function for classification of videos according to a
given concept.



Chapter 11

Motion Database Retrieval with Application
to Gesture Recognition in a Virtual Reality
Dance Training System

Abstract This chapter presents gesture recognition methods and their application
to a dance training system in an instructional, virtual reality (VR) setting. The pro-
posed system is based on the unsupervised parsing of dance movement into a
structured posture space using the spherical self-organizing map (SSOM). A unique
feature descriptor is obtained from the gesture trajectories through posture space on
the SSOM. For recognition, various methods are explored for trajectory analysis,
which include sparse coding, posture occurrence, posture transition, and the hidden
Markov model. Within the system, the dance sequence of a student can be
segmented online and cross-referenced against a library of gestural components
performed by the teacher. This facilitates the assessment of the student dance, as
well as provides visual feedback for effective training.

11.1 Introduction

Recent trends toward more immersive and interactive computing come with increas-
ing demand for more accurate tools to understand and interpret human gestural input
or gesture recognition. Gestures are expressive, meaningful body motions involving
physical movements of the fingers, hands, arms, head, face, or body with the intent
of (1) conveying meaningful information or (2) interacting with the environment.
In a virtual reality dance training system, the issue in recognition is the comparison
of motion data captured in real-time of the trainee against the reference (trainer)
data. Applied to dance training, human action recognition algorithms have been
used in automated assessment of dance performance [334], visual comparison of
virtual characters [335], and synthesis of dance partners [336] for various important
applications. This chapter presents a method to address these issues based on two
techniques: the self-organizing spherical map (SSOM) and transition analysis of the
trajectory on the map.

Human gestures are temporal data; context relates to the states that have led to
(or follow) the state in the present time step. Thus, the collection of states and their
layout can be indicative of some meaning for gesture recognition [339,340]. Recent
studies have attempted to analyze the temporal data to see how it maps onto self-
organizing maps (SOMs) [338, 341, 352]. The idea behind applying SOMs to the
problem of gesture recognition is to deal with the challenge of how to effectively
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parse a sequence of movements into a set of postures, then representing or modeling
sequences of postures as a gesture. The topological map afforded by the SOM can
help in this regard, as the map can be used as a basis for indexing, classification, and
extraction of inherent relationships in the underlying data.

Postures are represented by a particular state of sensor values at an instant in
time. For instance, Microsoft Kinect uses skeletal tracking of joint positions. Full
motion capture technology used in film making and animation can also be used to
describe postures, which are then mapped onto the SOM. A gesture can then be
represented as a path or trajectory on the map, as traced by projecting a temporal
series of postures. Each path can be used to model a type of gesture, or transitions
between possible postures for a given gesture can be extracted. Unknown gestures
can be recognized through a matching process (template paths) as the path of an
unknown gesture is traced on the map.

Previous methods for trajectory analysis of the self-organizing maps have
attempted to use the sparse code [343, 351, 352], and the posture occurrence as
an analog to the bag-of word model [346, 347, 350]. These methods have some
limitations in their capability for temporal information analysis, since they use only
the existing of the nodes and the frequency of occurrence of the nodes (key postures)
on maps. It is evident that the transitions from posture to posture (or from one form
in space to next) preserve more temporal information about the dance sequence than
the postures (forms in space) do themselves [340]. In order to perform trajectory
analysis on the SSOM, in this Chapter, two methods for transition analysis of the
SSOM trajectory are presented. The first method uses transition metric and the
second method adopts the hidden Markov model (HMM) for modeling gesture on
the multiple-codebook SSOM. Based on the experimental study, the newly proposed
method appears to be very effective for recognizing human actions and outperforms
the previous methods.

Section 11.2 will look into an architecture for a dance training system in the cave
automatic virtual environment (CAVE). Section 11.3 presents the SSOM method for
the construction of posture space to explore gesture trajectory. Section 11.4 presents
the application of SSOM for the characterization of dance gesture. Section 11.5
presents trajectory analysis methods for gesture indexing and the construction
of template matching. Section 11.6 extends these template matching methods to
online recognition and gesture segmentation. Section 11.7 presents the HMMs for
transition analysis of the trajectory on the multiple-codebook SSOM.

11.2 Dance Training System

The architecture of the VR dance training system is shown in Fig. 11.1, which
includes four components: the motion capture, gesture recognition module, assess-
ment and visual feedback module, and the CAVE. The CAVE has four stereoscopic
projectors and four corresponding screens. Driven by a graphics cluster of five
nodes, one node serves as the cluster master, while the other four drive the
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corresponding screens. The user wears active stereo glasses containing targets of
several light refraction markers in a fixed geometry. The location and orientation
of the user’s eyes are traced by a six degree of freedom (6DOF) tracking system.
A tracking server calculates each target’s position and orientation based on images
captured by tracking cameras distributed on top of the screens. The tracking data is
used to determine the content to be displayed on the screens. The 3D Unity game
engine and visual C# are used to implement the feedback engine, and interface with
the Kinect sensor. Middle VR is used to control the graphic in the CAVE.

The goal of the system is to recognize sequences of movements, by identifying
where certain target postures occur along the time-line of the performance. The
recognition module extracts occurrences (phases) from the beginner’s performance
(a phrase is transition between identifiable postures), and then assesses them against
the teachers’ (ground truth) movement. Finally, the system visualizes both the
teacher and student’s dance sequences (or isolated movements) in a VR setting.
Students participating in this process would receive feedback on the accuracy of
their performance and on specific areas for which their accuracy is poor and thus in
need of attention. This process is illustrated by a VR dance training system, with its
various feedback protocols, as shown in Fig. 11.2.

Figure 11.3 shows the gesture recognition module that is implemented by
the SSOM-based isolated gesture recognizer. The SSOM is incorporated with
a template matching method (explained in Sect. 11.5) or a HMM (explained in
Sect. 11.7) for gesture recognition. The sequence of frames is recorded by a standard
Microsoft Kinect. Each frame contains data explaining the location of joints in 3D
axes [349]. In the preprocessing block, a feature extraction module transforms the
3D positions of all joints in the captured frame to a feature vector characterizing the

" fa Features: locations/frame

= Assessment &

—— Projector ngiof Feedback
Kinect - x

Recognized Gesture

Geslure
recognition

&

Projector

Gesture database

Fig. 11.1 System architecture
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Fig. 11.2 Tllustration of VR
dance training with feedback
protocols, including (a)
side-by-side feedback, (b)
overlay feedback, and (c)
score-curve feedback

frame content. The SSOM parser is performed on each frame of the gesture, thus
creating the coding symbols showing a trajectory on the SSOM. The postures are
characterized by a template calculated by the bag-of-word (BoW) model [350], the
sparse code [351,352], or a newly proposed method based on the posture transition
matrix. For gesture recognition, the template obtained from the input gesture is
compared with a set of reference templates using a matching algorithm that provides
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a distance score. The distance scores for all the reference templates are set to a
decision rule, which provides a classification of the input gesture, and possibly an
ordered (by distance) set of the best n candidates.

11.3 Spherical Self-organizing Map (SSOM)

Prior to recognition, the system discussed in Fig. 11.3 creates the gesture reference
templates using a training algorithm. This is to first automatically parse samples
from across the spectrum of expected dance movements, into a discrete set of
postures. This is achieved using SSOM, an unsupervised clustering algorithm that
reduces a large number of input data vectors to a small set of prototypical units. The
SSOM enables learned postures to be allocated to, and distributed across, nodes on
a predefined lattice [344, 348]. This results from the wrap-around, neighbourhood
learning that occurs when the lattice forms a closed loop sphere. A useful feature
of a SSOM-based approach is that the discrete space is constructed in such a way
as to retain associations that exist in the original input space, i.e. postures (learned)
are positioned in the map nearby to other postures that are very similar in nature.
As a consequence of this topology-preserving mapping, a sequence of postures
(comprised in the movement or gesture) should trace a rather smooth trajectory on
the map. It is from this trajectory (sequence of key postures) that the descriptors are
acquired for representing each gesture.

The map’s spherical lattice is constructed by progressively sub-dividing a regular
icosahedron down to a desired level (/). This results in a series of nodes uniformly
arranged on a tessellated unit sphere (with uniform triangular elements). A sphere
tessellated one level (I = 1) would result in 12 nodes, while (I =2) and (I =3) would
each result in lattices of 42 and 162 nodes respectively. Each node on the sphere is
then represented by a weight vector: w; ; ; € RP, which models a key posture from
the input space, where w; ;  is the weight vector of (i, j, k)" " node. The total number
of nodes represents the number of postures that can be learned by the map. In this
representation, nodes are each equidistant from their immediate neighbours, with
which they form a hexagonal neighbourhood.

Figure 11.4 shows a cluster unit of the SSOM. Each training pattern in the input
space is connected to every cluster unit by a weight vector w; ; ;. Every cluster unit
at (i, j,k) has a variable neighborhood (NE; ;) with a decreasing radius. All the
nodes that fall within the area defined by NE; ; ; constitute the region-of-influence
of (i,j,k).

Let .7 = {x;})V| be the training set, where x € R”. Each vector x is referred to as
a posture vector in a dance gesture. The learning process of the SSOM starts by ini-
tializing the weight vectors w; ;; with small random values distributed throughout
the input space. Various steps are employed by the SSOM to topologically reorder
the cluster weights on the spherical lattice, as follows [344,348]:
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Firstly, the input posture vector x is randomly selected from .7, and introduced

to the SSOM. For each voxel, the best matching unit (BMU), Wi j k)" is selected, i.e.,
(i,),k)" = argmin{E; j « } (11.1)

where E ;  is the difference between the current input vector and the weight vectors

for all cluster units,

(0 — Wi jx)” (11.2)

Mo

Eijir=@(uijx)

n=1

X, is the n-th component of the input vector, and wy; ; is the weight from the
n-th input, n = 1,2,...,D, to the (i, j,k)-thnode, i = 1,2,...,1, j=1,2,...,J, and
k=1,2,...,K. The ¢(u; j ) is a count-dependent non-decreasing function, used to
prevent cluster under-utilization.

Secondly, information from x is imparted to the weights of the winning cluster
unit (i, j,k)* and all the units residing within the specified neighbourhood NE( j 1y
using,

(new) _ _ (old) W lold)
W inr =Yt ofx, ww’k)*] (11.3)
where

U is a predefined learning rate, and NE,;;4 is the initial neighborhood size in terms
of the number of units.

This process of information sharing [i.e., Eq.(11.3)] allows the map nodes to
tune themselves to characteristic postures in the input space, while forcing nearby
nodes to tune to related or adjacent postures.

Thirdly, the same learning steps are repeated. At this point, as new input postures
are presented from the training set, new BMUs compete for their representation,
resulting in a locally organized distribution of key postures over nodes on the map.
Finally, learning is terminated after a maximum number of cycles has been reached.

11.4 Characterization of Dance Gesture Using Spherical
Self-organizing Map

The SSOM was applied to characterize dance gesture in a dance training system
shown in Fig. 11.1 [340]. The Microsoft Kinect system provides 20 3D skeleton
points to represent each player (student) in the camera’s field of view. These points
represent 20 joint positions of the body. In each frame, the normalized locations of
all 20 joint positions were utilized to construct a feature vector, X = [£] ... %;...%60]’,
where £; is the i-th location of the joint in one of the x/y/z planes. By considering
all 20 joints in the three dimensions, the dimension of x was 60. Here the location
X; was obtained by the normalization of its original value. This process took the hip
location as the reference point and calculated all other joints relative to the hip.
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Table 11.1 Isolated gesture

Ballet gesture
dataset

Label | Description # instances ( # frames )

Gy 1st position — 2nd position 8 (56-96)

Gy 2nd position — 3rd position | 10 (57-77)

G3 3rd position — 4th position 8 (59-75)

Gy 4th position — 5th position | 10 (48-81)

Gs 5th position — 6th position | 10 (43-80)

Gg 6th position — 1st position | 10 (41-88)
Note: First position (posture 1): both arms lifted in front; second
position (posture 2): both arms open; third position (posture 3):
left arm in front and right arm lifted up; fourth position (posture
4): left arm open to the side and right arm lifted up; fifth position

(posture 5): both arms lifted up; sixth position (posture 6): both
arms put down

Table 11.1 summaries the dataset used for training the SSOM. The dataset
included a set of six isolated gestures (i.e. each gesture G|—Gg was recorded
individually, independent of any sequence of other movement/gestures). These
gestures were the six basic positions of ballet dance [354]. Gesture G| was the dance
gesture moving from the first position to the 2nd position, where the 1st position was
the posture with both arms lifted in front, and the 2nd position was the posture with
both arms open. All gestures G1—Gg are defined in Table 11.1.

In the experiments, observations are made as to how the variability in repeated
gestures maps into posture space. Figure 11.5 shows a series of mappings of gesture
instances (columns) per gesture type (rows). A visualization of the SSOM and
associated gesture trajectories shows that even differences in frame length and
duration of the gesture (variations of up to 40 % difference in frame length) do
not appear to impact the consistency with which the gesture maps onto posture
space. All gestures appear to trace quite characteristic and repeatable paths on the
unit sphere. The start (solid blue marker) and end points (solid red marker) of the
trajectories are also shown. Although gesture G5 and Gg are quite similar in terms of
the postures traced, there is quite a clear difference in the direction of the trajectory.

It is clear from these mappings that the paths traced for different gestures
are quite unique from one another, which is expected to translate into better
discrimination between trajectories (and therefore, gestures). The consistency of
the mapping indicates some stability in the representation of gestures, and suggests
sufficient overlap should exist when generating histogram templates.

11.5 Trajectory Analysis

A posture can be represented in time series as x(¢),(1...7...T) which is a unit of a
gesture element, where T is the time length of the gesture. In this way, the gesture G;
can be represented by G; = (x;(1),...,%;(¢),...,x;(T)). As shown in Fig. 11.5, each
input vector x is quantized by the set of SSOM weight vectors. For convenience, we
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Fig. 11.5 Gesture projections: instances of gestures (rows top-bottom) respectively. Smooth, local
sets of postures show stable, highly repeatable trajectories. Note: Gs & Gg include similar postures,
with opposing trajectory paths
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denote the set of weight vectors as w,, (1...c...C), where C is the total number of
SSOM nodes. The input vectors Xx(¢),(1...#...T) can then be transformed from
a series of postures to a series of map units based on their best matching units
(BMUg), i.e.,

S=0(G)= (u1,...,us,...,ur),t € [1,T] (11.5)

ul:argmin(||x(t)—wc\|) (11.6)

where Q(G) is the quantization operation and i, is the index of the BMU of the
input x().

For each posture sample from an input gesture, the transformation involves
finding the BMU and using this node to index the input sample. After transforming
a temporal sequence of postures onto the map, an output sequence of indices results.
The transformation can be described as a sequence of node indices, S, or a trajectory
of individual node positions, Tr, on the spherical surface (defined in a 3D co-
ordinate system).

Given the sequence or trajectory traced on the SSOM, we consider a number of
alternative descriptors for a gesture instance and class: posture sparse codes, posture
occurrence, posture transitions, and posture transition sparse codes.

11.5.1 Sparse Code of Spherical Self-organizing Map

The sparse code (SC) method has been utilized for structuring the coding labels of
the hierarchical SOM [343, 351, 352]. This method is adopted in the current work,
and compared to the newly proposed methods. During mapping of posture vectors,
the weight vectors w,, (1...c...C) are labeled as the activated nodes if they are the
winning nodes according to Eq. (11.6). Each node has a state S, describing whether
it is a winner for a gesture element or not, and the whole state of the nodes are used
as the output, SC = (S1,...,Sc,...S¢c). The S, is defined as follows:

Sc: 1, lfC: ut|t.€[],T] (117)
0, otherwise

S, is regarded as a sparse code which represents an activated pattern of winner
nodes for a gesture element. The sparse code only represents the existence of a
set of postures, and not their frequency of occurrence. For instance, if a particular
gesture involves a set of five postures, some of which are held for a length of time,
then the sparse code will only indicate that they occurred, and won’t consider the
duration. This offers a time invariant measure of posture existence, and is useful
when detecting gestures that may be performed at different speeds.
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In Fig. 11.3, the system utilizes a reference template for recognition. Based on
the SC method, a sparse code template (SCT) over the set of gesture instances for
the i-th class can be computed as the reference template, i.e.,

Ni
2 Sci,n

SCT, = (11.8)

n=1
Ni
Z SCi,n
1

n=

where N; is the number of gesture instances in the i-th gesture class, and SC; ,, is the
sparse code vector of the n-th gesture instance belonging to the i-th class.

11.5.2 Posture Occurrence

Posture occurrence (PO) is analogous to the popular bag-of-words (BOW) approach
adopted for the task of pattern recognition [346, 347, 350]. In regard to the Bow
approach used in information retrieval, each posture on the SSOM can be considered
a unique word, while each gesture is a collection of individual words—structured
according to a particular grammar (e.g. set, sequence, etc.). By aggregating the
occurrence of postures in a gesture against the indexed set of nodes on the map,
a histogram can be formed (over a single gesture, or set of similar gestures), thus
forming a template that is used in recognition. In this method, a histogram is formed
for each gesture instance n, PO, = [H(1),...,H(c),...,H(C)]’. The value of the
c-th component is calculated by:

H(c)=)» o(u(t)—c),ce{l,...,C} (11.9)

N

t=1

where § is the Kronecker delta function, and 7 is the total number of indices in the
sequence of node indices S discussed in Eq. (11.5).

A reference template for the i-th gesture class can be formed by summing over
the set of PO; , in this class:

Ni
2 POi,n
1

POT,; = (11.10)

n—
Ni
Zl POi,n

n=

where N; is the number of gesture instances in the i-th gesture class and PO, ,, is the
posture occurrence vector of the n-th gesture instance belonging to the i-th class.
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11.5.3 Posture Transition and Posture Transition Sparse Code

The PO and PSC methods do not consider the temporal arrangement of postures
in the map. They only consider the occurrence and the frequency of the individual
nodes for indexing. We observe that these methods involve making significant effort
to maintain the marginal histogram of the SSOM indices (first order statistics). This
fact suggests that the indexing schemes based only on first order statistics may
not sufficient. Thus, a higher order statistic is employed for analysing the SSOM
trajectory.

The first order statistic employed by PO and PSC captures only the properties
of individual nodes, ignoring the inter-dependencies between nodes in the dataset.
On the other hand, second order statistics consider the position of nodes relative to
one another in the SSOM trajectory. Since the gesture contains postures which have
somewhat strong correlation with their neighbour, the adoption of the second order
statistics, such as covariance and co-occurrence matrix, are more appropriate for
capturing the dependency between the pairs of postures from the SSOM trajectory.
Based on this discussion, a feature extraction based on posture transition (PT) is
obtained as follows.

Given that u; is the index of a map unit, the function in Eq. (11.6) creates S =
(u1,. .. uy,...,ur)—the set of indices of map units treated as a set of symbols. The
u; value of consequent points of a gesture remains the same, since consequent points
are generally close in the input data space. Therefore, consequent equal values of u,
are replaced with single values which result in the following definition [338]:

Tr=N(S)={u), ..., ... ;up}: M <T,u,#u;_,,Vie[2,M], (11.11)

where N(.) is a function that removes consecutive equal u, value and Tr is the
mapped gesture, representing the trajectory on the SSOM. With the arrangement
in Eq.(11.11), the dependencies among neighboring nodes can be conveniently
investigated.

The Markov random process is employed to model the trajectory. To capture
the dependencies between SSOM nodes in the trajectory, the horizontal Markov
empirical transition matrix [345] of the dataset in Tr is calculated. The matrix’s
element is given by:

M- )
‘21 S(u'i=m,u'iy1 =n)
=
Py = nluj =m) = ——— (11.12)
Y O0(ui=m)

where u; and u] 41 are a pair of neighboring node indices, M is the size of Tr, and
m,n € {l,...,C}.
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Table 11.2 Definition of the

30 gestures »
g P - Gip |Gz |Gy |Gis | Gyg

P, |Gy |— |G |Goas [Gas | Gag
Gy (G311 Gy |— | Gu |Gss |Gz
Py |Gy |Ga |Gz |— [ Guas |Gy
Gs (Gs1 | Gsy |Gs3 |Gsa |— [ Gsg

FPs | Ge1 |Ge2 | Ges | Gea | Ges | —

Note: P, is the i-th posture. G;; is the gesture
created by changing from the i-th posture to
the j-th posture. Gj; is the reversal of gesture

0 otherwise

5(x):{lifx:tme (11.13)

Based on Eq. (11.12), the dimension of the transition matrix is C x C since the
SSOM has C nodes. The PT feature vector is formed by arranging the elements of
this matrix, p,,h = 1,...,C?, into a 1-D template.

In addition, we can also obtain the posture transition sparse codes (PTSC) that
are analogous to the sparse codes of postures, only differing in that they represent
the existence of transitions rather than the frequency of transitions.

11.5.4 Performance Comparison

The experiments were conducted on an isolated gesture database to assess the per-
formance of the SSOM posture space representations, gesture template definitions
and matching criteria. Based on the six postures discussed previously in Table 11.1,
a new set of gestures is defined, containing a total of 30 gestures and 600 instances.
Table 11.2 shows a matrix describing the definitions of all gestures. In the table,
given the six postures Pi—Fs, a gesture G;; is formed as an isolated gesture moving
from the i-th position to j-th position (i.e., moving from posture F; to posture P;).
This definition forms the gesture set, Set I, in the upper triangle of the matrix,
containing G2, ...,G16;G23,. .., Gag; G4, . . ., G5, Which has a total of 15 gestures.
By contrast, the gesture Gj; is the reversal of the gesture G;;. The reversal gestures
forms the gesture Set II, which contains gestures in the lower triangle of the matrix.
The total number of gestures from Set I and Set II is 30 gestures.

The non-reversal gestures in Set I were firstly used. Two datasets were con-
structed: Teacher dataset and Student dataset. The database includes 15 isolated
gestures (i.e., each gesture was recorded independently of any sequence of other
movement/gestures). The structure of this dataset is summarized in Table 11.3. From
the full set of Teacher gestures and Student gestures, 50 % were randomly selected
and used to form gesture templates, while all 100 % were classified against these
templates.
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Table 11.3 Gesture database

# Instances per gesture class Total

Dataset Teacher Student instances
Gesture Set I: Gy2, G13, G4, Gis, Gig, G23, Gog, Gps, | 10 10 300

Ga6, G4, G35, G36, Gas, Gass Gse

Gesture Set II: G1,G31, G32, Ga1, Ga2, Gu3, Gs1, Gsp, | 10 10 300

Gs3, Gsa, Ge1, Ge2, Ge3, Gea» Gos

Table 11.4 Gesture

- Average recognition accuracy
recognition results averaged

over the 15 gestures defined Testing data L1 L2 HI
in the upper triangle in Teacher PO 96.7 | 98.0 |96.7
Table 11.2 PSC |79.3 | 84.0 |79.3

PT 98.7 | 97.3 | 98.7
PTSC |87.3 | 92.7 873
Student PO 94.0 | 100 94.0
PSC 773 | 853 773
PT 94.7 | 993 | 94.7
PTSC |86.0 | 92.0 | 86.0

This system employed the SSOM configuration C2a, and was trained according
to the joint position feature. In the C2a configuration, the map has the following
setting: The icosahedron level is 2, the number of map nodes is 162, the number of
neighborhoods is 4, and the number of epochs is 100.

Table 11.4 shows the performance of the proposed system for recognition of
ballet dance performed by two persons, Teacher and Student. Here, the template
matching was performed by three similarity metrics: L1 norm, L2 norm, and
histogram intersection (HI). The system can attain more than 98 % recognition
rate averaged over 15 classes for recognition of the Teacher dataset by using the
PT template and HI for similarity matching. The PO template also gave similar
recognition performance to the PT template. Moreover, the system can recognize
dance from the Student dataset with 100 % accuracy by using the PO template and
L2 norm for similarity matching.

Next, the two sets of gestures, Set I and Set II described in Table 11.3 were
used for the experiment. This database contains 30 gestures, where each gesture
G;j has its corresponding reversal Gj;. Gesture Gy is described by the movement
from the 1st position to the 2nd position, whereas G, represents the movement
from the 2nd position to the 1st position. In this case, the POs of Gy, and G, may
be similar, and thus, they may be incapable for discriminating the two gestures for
recognition. The PTs, on the other hand, may preserve the direction of the movement
within the gestures, and they can be employed for discrimination of the reversals.
This is confirmed by the results shown in Table 11.5. It can be observed from the
result that the gesture template obtained by PT outperforms other indexing methods
discussed. The recognition rate averaged over 30 gesture classes of the Teacher



11.6  Online Gesture Recognition and Segmentation 319

Table 11.5 Gesture Average recognition accuracy
recognition results averaged

over the 30 gestures defined Testing data L1 L2 |HI
in Table 11.2 Teacher PO 777 743 |71.7

PSC |58.0 |61.3 |57.7
PT 96.0 |79.3 |96.0
PTSC |83.0 |84.3 |83.3
Student PO 66.7 |66.3 |66.7
PSC 547 |56.0 |54.7
PT 88.3 |73.3 |88.3
PTSC |79.7 |83.0 |76.7

These include the reversals of the gestures

dataset can reach 96 %. However, the system has a poorer performance at about 88 %
for recognition of the Student dataset. This may be because the dance sequences
performed by the student may be inconsistent, as compared to the teacher.

11.6 Online Gesture Recognition and Segmentation

In order to perform matching between an incoming gesture and known templates,
the incoming set of postures is projected onto the SSOM to extract the unknown
posture sequence S = (uy,...,u,...,ur),t € [1,T]. This projection is conducted
online as the student is performing a set of moves. The task of recognition is non-
trivial, due to the differing lengths of gestures (across classes), and the differing
speeds with which they may be enacted (by the student/teacher). In order to address
this, an online probabilistic framework demonstrated in [352] is adopted. The
standard Bayesian framework is utilised for progressively estimating an updated
posterior probability P(k|S) for each of the k = 1,...,K gesture classes. The
likelihood is computed at each unit of time by considering the single posture
triggered on the map, and whether or not it occurred in each gesture template. In
[352], the likelihood P(S|k) was computed as the ratio of the existence of the current
posture in gesture class k, to the total number of different postures in class k. In the
current work, the likelihood is reframed as a histogram intersection [Eq. (11.17)],
between a progressively growing sequence S (inclusive of postures from time fg
to 7), which may be described as a histogram of either: PS, PO, PT or PTSC (defined
in Sect. 11.5), versus the corresponding templates for each gesture class.

Let h; be the input histogram for the current sample at time ¢, and hy, to be the
reference template for the class k. We thus define (for time ¢), the posterior P, (k|hy),
likelihood P, (hy|k), and prior probabilities P, (k) according to the following:

Fi(h|k)P (k) B (hs[k)Fi (k)
F(h,)  ZPA(hk)P (k)

P (klh,) = (11.14)
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P(hy[k) = HI(hg, hy) (11.15)
1/K ift =1

B(k) =3 _A@hmingh o (11.16)
Sk P 1(KIh,)HI(h, by) Oherwise

HI(hg,hy) = 1= min[h, by ] (11.17)

According to the equations above, the input sequence is allowed to accumulate
postures over time ¢, where for each instant, the accumulated gesture is projected
onto the SSOM to generate a posture sequence, which can be converted into one
of the four template representations from Sect. 11.5. Likelihoods are estimated
as histogram intersections, Eq. (11.17), between each reference template and that
computed from the input posture sequence. A perfect intersection with a template
will yield a likelihood of 1 for a given class. It is important to note that all templates
are normalized, (even if calculated from a gesture sequence containing only a single
posture).

As the sequence begins to resemble a gesture from the known set, it’s posterior
will grow, and eventually surpass a detection threshold. Upon triggering this
threshold, the class k with the maximum posterior is considered detected, and the
system resets the priors for all classes, and recalculates the posterior. At this point,
in order to free up postures from the accumulated sequence, 7y is set to the current
time, thus the newly considered sequence grows again from this instant (flushing all
past postures). This process continues, triggering new instances of detected gestures,
until the end of the input sequence is reached.

In order to assess the online capability of the system to recognize and isolate ges-
tures from a continuous dance sequence, two dataset were constructed (Table 11.6).
In this dataset, all component gestures have a representation in the trained posture
space. The continuous dance sequences compose of gesture G1—Gg as discussed
previously in Table 11.1. The online recognition is applied for both the Teacher and
Student, using the PO and PT descriptors respectively. The Posterior probability is
captured as a trace (for each gesture class) over the duration of the dance sequence.
Results for the Teacher sequence are shown in Fig. 11.6, while results for the Student
sequence are shown in Fig. 11.7.

The results for the Teacher show that, for both descriptors, the posterior appears
to be quite robust in estimating and switching between gestures. The maximum
posterior is selected as the prediction of the gesture class at each time sample in
the sequence (shown in Fig. 11.6, bottom left and right). The prediction has been
able to extract and segment in an online manner, the duration of each gesture in
the sequence: Gg, G1, G2, G3, G4, Gs with some minor noise at the beginning and
end of each dance. According to this result, the system can accurately recognise the
dance gestures from the continuous sequence with 100 % accuracy. It is apparent
that there should be a class to capture derelict cases of postures other than the learned
set, otherwise the posterior will attempt to lock onto the best representation for the
input (e.g. Gs at the beginning of the sequence).
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Table 11.6 Continuous gesture dataset

Ballet dance # instances ( # frames )
Postures (gesture sequence) Teacher | Student

Rest — 1st position — 2nd position — 3rd position — 4th position | 1 (281) |1 (273)
— 5th position — Rest, (Gg, G1, G2, G3, G4, Gs)

The results for the Student’s performance are also quite satisfactory, as the person
performing the movements is different from the Teacher, and more so, their ability
to repeat the correct movement is somewhat limited. Nevertheless, with some minor
noise, the selection of gesture class appears to follow the actual sequence (i.e.,
recognition accuracy of 100 %). When confusion does occur, nearby postures are
selected for a relatively brief period before switching back to the correct gesture.

11.7 Trajectory Analysis on the Multicodebook SSOM
Using Hidden Markov Model

The application of HMM for pattern recognition is well established [337]. The rel-
evant work in [338] has demonstrated the application of HMM for hand gesture
recognition, by learning the coding symbols of the self-organizing feature map
(SOM). In the current work, the HMM is adopted and the proposed system has
different aspects from the previous works. The self-organizing method is imple-
mented with the SSOM in the current work instead of SOM, and the multicodebook
is designed for the SSOM in order to minimize the vector quantization errors. It is
argued that a random error in the detection of the joint’s positions in the postures of
gesture has an effect on the performance of the recognition stage. This error is due
to the variance in input posture sequence, e.g., sensor noise, inexact repetitions, etc.
Figure 11.8 illustrates the application of HMMs and multicodebook SSOM to
build the isolated gesture recognizer. There is a set of K gestures to be recognized
and each gesture is modeled by a distinct HMM. The vector quantization is
implemented by the multicodebooks, whereas the system in Fig. 11.3 uses a single
codebook. This design is motivated by the study in [353], which suggest that it is not
possible to create a universal codebook (efficient for each data class to be encoded).
In addition, although a low distortion can be achieved by a large sized codebook,
this leads to problems in implementing HMMs with a large number of parameters.
According to Eq. (11.5), let the SSOM indices obtained by the quantization of
x and x + Ax be respectively described by Q(x) = u and Q(x + Ax) = v/, where
Ax is the random error. In the case where Ax is small, the posture coordinates with
relatively small variance are mapped to the same node of the SSOM so that u = i’
This error will not affect the recognition since it is compensated during the SSOM
clustering process. On the other hand, when Ax >>>: u # i/, the introduced error Ax
will affect the trajectory T'r. The result of this error can be observed from Fig. 11.5.
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Fig. 11.6 Online recognition of Teacher dance gestures; left top: posterior traces based on posture
occurrence; bottom left: class prediction trace for posture occurrence; right top: posterior traces
based on posture transitions; bottom right: class prediction trace for posture transitions

Although the errors introduced by feature extraction algorithms or deviations in
user performance do not influence the entire trajectory, the errors do influence the
evaluation of a particular node or transition.

11.7.1 The Self-organizing Map Distortion Measurement

The structure of SSOM has various configurations, including c0, cl1, c2a, c2b, c3a,
and c3b; each has a different number of map nodes, from 12 to 642, respectively.
These configurations constitute a map for vector quantization with a distortion,
resulting from topologies and number of nodes [342]. In the current work, the SSOM
is expanded to have multiple codebooks that are designed according to gesture class
characteristics, instead of only one codebook.
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Fig. 11.7 Online recognition of Student dance D1 gestures; left top: posterior traces based on
posture occurrence; bottom left: class prediction trace for posture occurrence; right top: posterior
traces based on posture transitions; bottom right: class prediction trace for posture transitions
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Fig. 11.8 Diagram for isolated gesture recognition using HMMs for trajectory analysis of multi-
codebook SSOM
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The quality of the self-organizing map can be measured by the distortion
measure, E;,

N C
Eg=Y Y hyjl|xi—w;|’ (11.18)
i=1j=1

where Ay, ; is the value of the neighborhood function between the map unit j and
b;, the BMU of the input sample vector Xx;: b; = argminj{Hxi fijz}, N is the
number of input samples, and C is the number of units on the map. It is shown
in [362] that the distortion can be decomposed into the following components that
evaluate the quantization quality and topological presentation separation. That is
E,= qu + Enwp + Eny:

C C C
Eq= Y N;jH;Var{x|j}+ Y N;H;||n; —w;||+ Y, N;H;Var,{w|j}  (11.19)
j=1 J=1 =1

qu Enp Epy

where Var{x|j} is the local variance of the data Var{x|j} = Xxcv, |[x—n;|| /N;,
W, is the weighted mean and Var,{w/|j} is the weighted variance of the prototype
vectors: W; = ¥, hjxwi/H; and Var,{w|j} =¥, hijwk — v_ijz. In addition, N; is
the number of data samples in Voronoi set V;, n; = er\{f x/Nj is their centroid, and
H; is the number of prototype vectors.

Equation (11.19) examines the contribution of each variable and each map unit to
the distortion measure. The first term, £, measures the quantization quality as the
variance of the data vectors within each Voronoi set. The second terms, E,;, is the
neighborhood bias. The last term, E,,, is the neighborhood variance which measures
the topological quality in terms of the closeness of prototype vectors close to each
other on the map grid.

In the calculation of the variance Var{x|;}, the data vectors are compared to the
centroid of the Voronio set, n;. We observe that if all data vectors x,x € V; are drawn
from the same class in the input space, their variance is small, and thus, reducing the
overall distortion E,;. In order to reduce the sample variance, in the current work, all
input data vectors used for construction of the Voronoi cells in a sub-codebook are
collected from the same class. This results in Voronoi cells that include data samples
with small variance.

The measurement of the distortion of the SOM was considered in the following
example. Input vectors were drawn from four Gaussian distributions. A single-
codebook SOM of size 2 x 2 was trained by all input vectors. Figure 11.9a shows
the plot of all data samples and the resulting prototype vectors in the 2-D feature
space. It is observed that each prototype vector converged to the centroid of the
corresponding class. Figure 11.9b shows the Voronoi cells and the classification of
the input vectors, obtained by the single codebook. In is observed that the sample
variance in the Voronoi cells is high. In general, based on the learning procedure of
the SOM, if the number of prototypes increases, more Voronoi cells are generated
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and lower quantization errors can be achieved. However, the size of the map also
increases. In contrast, Fig. 11.10a shows the plot of the prototype vectors generated
from four sub-codebooks (each sub-codebook has the size of 2 x 2) overlaying in
the same input space. Each sub-codebook is trained separately by the input samples
belonging to the same class, and the Voronoi cells with the associated members are
shown in Fig. 11.10b—e. In this case, four of the 2 x 2 SOM produce 16 Voronoi
cells if each SOM is trained separately. The variances computed on each Voronoi
cell, Var{x|;j} in each sub-codebook, are less than that of the single codebook. As a
result, the summation of the quantization errors [according to Eq. (11.18)] from the
quantization by the sub-codebooks in Fig. 11.10b—e, is less than that of the vector
quantization by the single-codebook in Fig. 11.9b, 2.4 dB.

11.7.2 The Hidden Markov Models of Gesture

As in Eq.(11.5), the transformation of the gesture G; with the use of C-node
SSOM can be expressed as S = Q(G) = {ui,...,us,...,ur}. This is considered
as a transformation of the continuous trail to a sequence of C discrete symbols,
which defines the finite states needed to build first order Markov chain models. The
transformation N(S) as discussed in Eq. (11.11) replaces consecutive equal values
for symbols u with a single value, and outputs the trajectory T'r for the gesture G
on the SSOM. This results in zeroing the self transition probability values in the
Markov transition probability matrix, and thus a loss of information regarding the
duration of a particular state. However, this information is not critical to gesture
recognition.

A Markov model, for each of the K classes in the gesture data set, is created from
the training data, i.e.,

{Tr, Tr5,.... Tk} = M (11.20)

where Trf-‘ is the trajectory of the i-th gesture instance in the k-th gesture class, and
N is the number of instances. All Trf-‘,i = 1...N; are obtained from the k-th sub-
codebook SSOM. The sequence of the i/, values in the trajectory Trf-‘ of the training
set {Trf‘}f\i 1» will be used for the calculation of the transition probability of the
model A; describing class k. This results in a set of K Markov models,

A={A, o M Ak T T, T — A (11.21)

The transformation of a gesture instance to the SSOM and the Markov model is
intuitively depicted in Fig. 11.11.

In order to conduct isolated gesture recognition, the following steps are per-
formed:
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Fig. 11.9 Data clustering obtained by a single-codebook SOM of size 2 x 2, (a) the resulting
prototypes and the input data, (b) the result obtained by the classification of input data
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1. For each gesture class k, an HMM 4 is built, i.e., the system estimates the model
parameters (A, B, ) that optimize the likelihood of the training set observation
vectors for the k-th gesture.

2. For each unknown gesture G; to be recognized, the system carries out processing
to measure the trajectories, Trf = {u},...,ul,,...,ujy, },k=1,....K, where Tr¥is

a Weight Vectors

W(i,2)

b Weight Vectors Cc Weight Vectors

W(i,2)
o
W(i,2)

-20 -10 0 10 20 30 40 80 20 10 0 10 20 30 40 50 60
W(i,1) W(i,1)

e Weight Vectors

W(i,2)
>
W(i,2)

60 -40 -20 0 20 40 22 20 -18 -16 -14 -12 -10 -8
W(i,1) W(i,1)

Fig. 11.10 Data clustering obtained by multicodebooks, each of size 2 x 2, trained separately by
the data samples belonging to the same class; (a) the resulting prototypes of each sub-codebook
overlaying in the input data; (b—e) the results of classification of input data in each class
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Gesture Instance SSOM Markov Model

i

Fig. 11.11 Correspondence of postures of a gesture instance to their respective BMUs on the
SSOM. These BMUs constitute the states of the Markov models

the trajectory on the k-th sub-codebook SSOM. This is followed by a calculation
of model likelihoods for all possible models, P(T7%|;),1 < k < K, and followed
by selecting the gesture whose model likelihood is the highest, i.e.,

k* = argmax[P(Tr¥|A)] (11.22)
1<k<K

where P(T7¥|A) is the probability that the trajectory is generated by HMM A
This probability is calculated by using the forward algorithm [355].

11.7.3 Obtaining Learning Parameters

The learning phase of HMM determines the method used to adjust the model
parameters (A, B, 7) to maximize the probability of the observation sequence for the
given model. We can choose A = (A, B, 7) such that P(Tr|A) is locally maximized
using an iterative procedure, the Baum—Welch algorithm. We can summarize the
parameters used to characterize an HMM as such: (1) Ng, the number of states in
the model. The states are interconnected in such a way that any state can be reached
from any other state. We denote the individual states as S = {S1,52,...,Sn, }, and the
state at time 7 as g;; (2) No, the number of observation symbols per state. We denote
the individual symbols as V = {vi,v2,...,vn, }; (3) The state transition probability
distribution is denoted by A = {a;;}, and the observation symbolizing probability
distribution in state j is denoted by B = {b;(k)}. (4) The initial state distribution is
denoted by = {m;}. Define:

& (i,j) = P(q = Sisqir1 =S;|Tr,A) (11.23)
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& (i, j) represents the Bayesian probability of being the state S; at time ¢ and state S
at time ¢ + 1, given the model and the observation sequence. Equation (11.23) can
also be written in the form of the forward and backward variables, as:

o o(i)aijb (1) B ()
ét(la])_ P(Tr|;~) =

(11.24)

where o4 and f; are the forward and backward variables, respectively. These
variables can be solved inductively. The numerator term in Eq.(11.24) is just
P(q: = Si,qi+1 = Sj|Tr,A) and the division by P(Tr|A) gives the desired probability
measure. If ¥ (7) is defined as the Bayesian probability of being in state S; at time 7,
given the observation sequence and the model, % (i) can be related to &(i, j) by
summing over j, giving:

=3 &) (11.25)

Using the above formulas, we can devise a method for re-estinlation of the
parameters of an HMM. A set of re-estimations from A = (A,B, ) to A = (A, B, 7t)
are:

T—1 ..
aijj = ﬂ (11.26)
Zt 1 %()
- Zte{t\u’,:vk}%(i)
by = = T 11.27
(D) (2n
T =y(i) (11.28)

Based on Egs. (11.25)—(11.28), if we iteratively use A in place of A and repeat
the calculation of these equations, we then can improve the probability of Tr being
observed from the model until some limiting point is reached.

11.7.4 Experimental Result

The HDMOS5 database is one of the very useful sources for testing motion analysis,
synthesis and classification algorithms [356]. The proposed algorithm was applied
to the HDMOS database, which contains several hours of motion capture data,
including various walking and kicking motions, cartwheels, jumping jacks, grabbing
and depositing motions, squatting motions, and so on. Table 11.7 shows the
description of the HDMO5 database. This mocap data was recorded by the optical
marker-based Vicon system, shown in Fig.11.12. A number of well-specified
motion sequences were executed several times and performed by five actors.
The recorded data was manually cut out to obtain suitable motion clips, which
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were arranged into 40 classes. Each such motion class contains various different
realizations of the same type of motion, covering a broad spectrum of semantically
meaningful variations.

The skeleton-based mocap file format ASF/AMC was used, which was trans-
formed from the C3D data, the 3D trajectory of the optical markers. The ASF/AMC
data comprises an explicit skeleton structure, providing information about bones,
joints, and the assembly of these basic elements into a skeleton. As a pre-processing
step, the joint locations were normalized by using the hip as the original location
and calculating the location between the joints and the hip. The 3D locations of all
joints were then used as input feature vectors.

The gesture recognition system outlined in Fig. 11.3 has been implemented and
compared in terms of performance to the newly proposed system shown in Fig. 11.8.

Fig. 11.12 Optical motion capture using retro-reflective markers attached to the actor’s body
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Table 11.7 A list of 40
motion classes

Motion class # |bd |bk |dg 'mm | tr
cartwheelLHandStart1Reps 21 | 4 |3 0 |3 11
cartwheelLHandStart2Reps 4,0 |0 |0 |0 4
cartwheelRHandStart1Reps 370 0 |2 |0 1
clapIReps 17 | 3 /3 |3 |5 3
clap5Reps 17 3 |3 3 5 3
clapAboveHead 1 Reps 17 3 |3 3 5 3
clapAboveHead5Reps 14 3 |3 3 3 2
depositFloorR 32 16 6 |6 8 6
depositHighR 2804 6 |5 |6 7
depositLowR 29 4 |7 6 |6 6
depositMiddleR 29 4 7 |5 |6 7
elbowToKneelRepsLelbowStart 27 .6 |6 |6 |2 7
elbowToKnee1RepsRelbowStart 2716 |6 (6 |2 7
elbowToKnee3RepsLelbowStart 1313 |3 |3 1 3
elbowToKnee3RepsRelbowStart 1313 |3 |3 1 3
grabFloorR 16 | 3 |3 |3 |4 3
grabHighR 29 | 4 |6 6 |6 7
grabLowR 29 | 4 |7 6 |6 6
grabMiddleR 28 | 4 |7 6 |5 6
hitRHandHead 13 /3 |3 |3 |1 3
hopBothLegs1hops 36 (12 |19 |9 |3 3
hopBothLegs2hops 12 4 |3 3 1 1
hopBothLegs3hops 12 1 4 |3 3 1 1
hopLLeg1hops 41 /11 |9 |9 |3 9
hopLLeg2hops 14 4 |3 3 1 3
hopLLeg3hops 14 | 4 |3 |3 1 3
hopRLeglhops 42 |12 |19 9 |3 9
hopRLeg2hops 14 | 4 |3 |3 1 3
hopRLeg3hops 14 4 |3 3 1 3
jogLeftCircle4StepsRstart 17 |2 |5 |3 |3 4
jogLeftCircle6StepsRstart 15 1 |5 2 3 4
jogOnPlaceStartAir2StepsLStart 14 3 |3 2 3 3
jogOnPlaceStartAir2StepsRStart 4 3 /3 2 |3 3
jogOnPlaceStartAir4StepsLStart 14 3 |3 2 3 3
jogOnPlaceStartFloor2StepsRStart | 14 | 3 |3 |2 |3 3
jogOnPlaceStartFloor4StepsRStart | 14 | 3 |3 2 3 3
jogRightCircle4StepsLstart 212 0 |0 |O 0
jogRightCircle4StepsRstart 17 | 2 |5 3 3 4
jogRightCircle6StepsLstart 2.2 0 |0 |0 0
jogRightCircle6StepsRstart 12 1 2 |5 2 3 0

The first and second column contains the name of the motion class
and the total number of realizations, respectively. The third to seventh
columns indicate the number of realizations for each actor separately.
Here, the field actor refers to one of the five actors encoded by the initial
bd (Bastian Demuth), bk (Bjorn Kruger), dg (Daniel Goldbach), mm
(Meinard Muller), or tr (TidoRoder)
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Table 11.8 Averaged recognition rate (%) over 40 classes, obtained
by the template matching methods (PO, PSC, PT, and PTSC),

compared to the HMM
Method | Similarity function | Average recognition accuracy (%)
PO L1 41.8
L2 41.0
HI 41.8
PSC L1 19.3
L2 235
HI 19.0
PT L1 424
L2 40.8
HI 424
PTSC |L1 25.7
L2 28.4
HI 26.3
HMM 773

The SSOM was trained by the C1 configuration, using the following procedural
parameters: icosahedron level = 1, map nodes = 42, neighborhood = 3, and epochs
= 200. In order to assess the performance of the gesture template definition (i.e.,
PO, PSC, PT, and PTSC discussed in Sect. 11.5) and matching criteria, the system
was trained using 50 % of all samples. From the full set of gesture instances,
50 % of each class were randomly selected and used to form gesture templates,
while all 100 % were compared with these templates. The results are displayed in
Table 11.8.

From the result, we observe that recognition performance was quite low for all
scenarios. This is partly due to the complexity of the gesture movements. The sparse
codes of postures appear to give lowest performance, since they considered only the
existence of the postures for constructing gesture templates (each of which was a
binary sparse code vector of 42 dimensions resulting from a 42-node SSOM). The
PT gave a better performance than the PO method. The approach based on PT takes
into account temporal information about the gesture (which is lacking in the PO
vector), so it would seem reasonable that its accuracy in classification should be
better.

The proposed system outlined in Fig. 11.8 was implemented. The SSOM was
constructed in the same way as the previous experiment, using the C1 configuration.
However, the SSOM for each gesture class was trained separately, resulting in
multiple codebooks. For each class, the number of codewords in the sub-codebook
was 42. For HMMs, the number of states Ng was set to 42, and the number of
symbols Np was 50. We let the number of states correspond roughly to the number
of postures within the gesture. We restrict each gesture model to having the same
number of states; this implies that the models will work best when they represent
gestures with the same number of postures.



11.8  Summary 333

The system recognized the actions performed by five dancers using HMMs which
were trained by 50 % of the data samples. Table 11.8 shows the recognition rate
obtained by HMMs compared to others. The average for the 40 gesture classes was
77.3 %, which is significantly improved from the template matching methods (which
performed at 42.4 %).

It was observed that the HMM parameters critically depended on the selection
of training patterns. The performance was unstable when the number of training
patterns was small. In comparison, the larger number of training patterns increased
the recognition rate to: 80.5 %, 85.7 % and 89.4 % when 60 %, 70 %, and 75 % of
samples were used for training, respectively. It was also observed that increasing
the number of trainings [N; in Egs. (11.8) and (11.10)] for the template matching
methods (i.e., PO, PSC, PT, and PTSC), has little effect on their recognition
performance.

11.8 Summary

The first part of the chapter presents a new framework and implementation for
the real-time capture, assessment and visualization of ballet dance movements
performed by a student in an instructional, virtual reality (VR) setting. Using
joint positional features, a spherical self-organizing map is trained to quantize
over the space of postures exhibited in typical ballet formations. Projections of
posture sequences onto this space are used to form gesture trajectories, used to
form templates in a library of predetermined dance movements to be used as an
instructional set. Two different histogram models are considered in describing a
gesture trajectory specific to a given gesture class (posture occurrence and posture
transitions). The histogram approach to both of the descriptors offers flexibility
and generalization across instances of movement recorded from a candidate user:
recognition for which, due to the natural variation of the human when repeating
movements and the sensor noise introduced by the Kinect, can be a challenging
task. The recognition evaluation was extended to the online case, where a dance
consisting of continuous gestures is segmented online using a Bayesian formulation
of the recognizer. This formulation shows much promise, effectively delineating a
student’s dance movement into constituent gestural units.

In the second part of the chapter, the Hidden Markov Model (HMM) method
is adopted to analyze the sequential data of gesture trajectory on a spherical self-
organizing map This method addresses the temporal information of human motion
and aids in improving recognition accuracy. The experimental result of isolated
gesture recognition using the standard motion capture database shows that the
current method provides significant improvement in recognition accuracy. This
recognizer will be highly important in assessing dance gestures in a completed
virtual reality dance training system.
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