

Antonio Gulli

Sujit Pal

BIRMINGHAM - MUMBAI

Deep Learning with Keras

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1240417

ISBN 978-1-78712-842-2

Credits

Authors

Antonio Gulli

Sujit Pal

Copy Editor

Vikrant Phadkay

Reviewers

Mike Dahlin

Nick McClure

Corrado Zocollo

Project Coordinator

Nidhi Joshi

Commissioning Editor

Amey Varangaonkar

Proofreader

Safis Editing

Acquisition Editor

Divya Poojari

Indexer

Francy Puthiry

Content Development Editor

Cheryl Dsa

Graphics

Tania Dutta

Technical Editor

Dinesh Pawar

Production Coordinator

Arvindkumar Gupta

About the Authors
Antonio Gulli is a software executive and business leader with a passion for establishing
and managing global technological talent, innovation, and execution. He is an expert in
search engines, online services, machine learning, information retrieval, analytics, and
cloud computing. So far, he has been lucky enough to gain professional experience in four
different countries in Europe and managed people in six different countries in Europe and
America. Antonio served as CEO, GM, CTO, VP, director, and site lead in multiple fields
spanning from publishing (Elsevier) to consumer internet (Ask.com and Tiscali) and high-
tech R&D (Microsoft and Google).

I would like to thank my coauthor, Sujit Pal, for being a such talented colleague, always
willing to help with a humble spirit. I constantly appreciate his dedication to teamwork,
which made this book a real thing.
I would like to thank Francois Chollet (and the many Keras contributors) for taking the
time and effort to build an awesome deep learning toolkit that is easy to use without
sacrificing too much power.
I would also like to thank our editors from Packt, Divya Poojari, Cheryl Dsa, and Dinesh
Pawar, and our reviewers from Packt and Google, for their support and valuable
suggestions. This book would not have been possible without you.
I would like to thank my manager, Brad, and my colleagues Mike and Corrado at Google
for encouraging me to write this book, and for their constant help in reviewing the content.
I would like to thank Same Fusy, Herbaciarnia i Kawiarnia in Warsaw. I got the initial
inspiration to write this book in front of a cup of tea chosen among hundreds of different
offers. This place is magic and I strongly recommend visiting it if you are in search of a
place to stimulate creativeness ().
Then I would like to thank HRBP at Google for supporting my wish to donate all of this
book's royalties in favor of a minority/diversity scholarship.
I would like to thank my friends Eric, Laura, Francesco, Ettore, and Antonella for
supporting me when I was in need. Long-term friendship is a real thing, and you are true
friends to me.
I would like to thank my son Lorenzo for encouraging me to join Google, my son Leonardo
for his constant passion to discover new things, and my daughter Aurora for making me
smile every day of my life. Finally thanks to my father Elio and my mother Maria for their
love.

Sujit Pal is a technology research director at Elsevier Labs, working on building intelligent
systems around research content and metadata. His primary interests are information
retrieval, ontologies, natural language processing, machine learning, and distributed
processing. He is currently working on image classification and similarity using deep
learning models. Prior to this, he worked in the consumer healthcare industry, where he
helped build ontology-backed semantic search, contextual advertising, and EMR data
processing platforms. He writes about technology on his blog at Salmon Run.

I would like to thank my coauthor, Antonio Gulli, for asking me to join him in writing this
book. This was an incredible opportunity and a great learning experience for me. Besides,
had he not done so, I quite literally wouldn't have been here today.
I would like to thank Ron Daniel, the director of Elsevier Labs, and Bradley P Allen, chief
architect at Elsevier, for introducing me to deep learning and making me a believer in its
capabilities.
I would also like to thank Francois Chollet (and the many Keras contributors) for taking
the time and effort to build an awesome deep learning toolkit that is easy to use without
sacrificing too much power.
Thanks to our editors from Packt, Divya Poojari, Cheryl Dsa, and Dinesh Pawar, and our
reviewers from Packt and Google, for their support and valuable suggestions. This book
would not have been possible without you.
I would like to thank my colleagues and managers over the years, especially the ones who
took their chances with me and helped me make discontinuous changes in my career.
Finally, I would like to thank my family for putting up with me these past few months as I
juggled work, this book, and family, in that order. I hope you will agree that it was all
worth it.

About the Reviewer
Nick McClure is currently a senior data scientist at PayScale Inc. in Seattle, Washington,
USA. Prior to that, he worked at Zillow and Caesars Entertainment. He got his degrees in
applied mathematics from the University of Montana and the College of Saint Benedict and
Saint John's University. Nick has also authored TensorFlow Machine Learning Cookbook by
Packt Publishing.

He has a passion for learning and advocating for analytics, machine learning, and artificial
intelligence. Nick occasionally puts his thoughts and musing on his blog, , or
through his Twitter account at .

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Neural Networks Foundations 9

Perceptron 11
The first example of Keras code 11

Multilayer perceptron — the first example of a network 12
Problems in training the perceptron and a solution 13
Activation function — sigmoid 14
Activation function — ReLU 15
Activation functions 15

A real example — recognizing handwritten digits 16
One-hot encoding — OHE 17
Defining a simple neural net in Keras 17
Running a simple Keras net and establishing a baseline 21
Improving the simple net in Keras with hidden layers 22
Further improving the simple net in Keras with dropout 25
Testing different optimizers in Keras 28
Increasing the number of epochs 34
Controlling the optimizer learning rate 34
Increasing the number of internal hidden neurons 35
Increasing the size of batch computation 37
Summarizing the experiments run for recognizing handwritten charts 37
Adopting regularization for avoiding overfitting 38
Hyperparameters tuning 40
Predicting output 40

A practical overview of backpropagation 40
Towards a deep learning approach 42
Summary 43

Chapter 2: Keras Installation and API 44

Installing Keras 45
Step 1 — install some useful dependencies 45
Step 2 — install Theano 46
Step 3 — install TensorFlow 46
Step 4 — install Keras 47
Step 5 — testing Theano, TensorFlow, and Keras 47

[ii]

Configuring Keras 48
Installing Keras on Docker 49
Installing Keras on Google Cloud ML 52
Installing Keras on Amazon AWS 55
Installing Keras on Microsoft Azure 57
Keras API 59

Getting started with Keras architecture 59
What is a tensor? 59
Composing models in Keras 60

Sequential composition 60
Functional composition 60

An overview of predefined neural network layers 60
Regular dense 61
Recurrent neural networks — simple, LSTM, and GRU 61
Convolutional and pooling layers 62
Regularization 62
Batch normalization 63

An overview of predefined activation functions 63
An overview of losses functions 64
An overview of metrics 65
An overview of optimizers 65
Some useful operations 65
Saving and loading the weights and the architecture of a model 65

Callbacks for customizing the training process 66
Checkpointing 67
Using TensorBoard and Keras 68
Using Quiver and Keras 69

Summary 70

Chapter 3: Deep Learning with ConvNets 71

Deep convolutional neural network — DCNN 72
Local receptive fields 72
Shared weights and bias 73
Pooling layers 74

Max-pooling 74
Average pooling 75
ConvNets summary 75

An example of DCNN — LeNet 76
LeNet code in Keras 76
Understanding the power of deep learning 83

Recognizing CIFAR-10 images with deep learning 84
Improving the CIFAR-10 performance with deeper a network 89

[iii]

Improving the CIFAR-10 performance with data augmentation 91
Predicting with CIFAR-10 95

Very deep convolutional networks for large-scale image recognition 96
Recognizing cats with a VGG-16 net 97
Utilizing Keras built-in VGG-16 net module 98
Recycling pre-built deep learning models for extracting features 100
Very deep inception-v3 net used for transfer learning 101

Summary 104

Chapter 4: Generative Adversarial Networks and WaveNet 105

What is a GAN? 106
Some GAN applications 108

Deep convolutional generative adversarial networks 112
Keras adversarial GANs for forging MNIST 115
Keras adversarial GANs for forging CIFAR 122
WaveNet — a generative model for learning how to produce audio 130
Summary 139

Chapter 5: Word Embeddings 140

Distributed representations 141
word2vec 142

The skip-gram word2vec model 143
The CBOW word2vec model 147
Extracting word2vec embeddings from the model 149
Using third-party implementations of word2vec 152

Exploring GloVe 156
Using pre-trained embeddings 158

Learn embeddings from scratch 159
Fine-tuning learned embeddings from word2vec 164
Fine-tune learned embeddings from GloVe 168
Look up embeddings 169

Summary 173

Chapter 6: Recurrent Neural Network — RNN 175

SimpleRNN cells 176
SimpleRNN with Keras — generating text 178

RNN topologies 183
Vanishing and exploding gradients 184
Long short term memory — LSTM 187

LSTM with Keras — sentiment analysis 189
Gated recurrent unit — GRU 196

[iv]

GRU with Keras — POS tagging 198
Bidirectional RNNs 205
Stateful RNNs 206

Stateful LSTM with Keras — predicting electricity consumption 206
Other RNN variants 213
Summary 214

Chapter 7: Additional Deep Learning Models 215

Keras functional API 217
Regression networks 219

Keras regression example — predicting benzene levels in the air 220
Unsupervised learning — autoencoders 224

Keras autoencoder example — sentence vectors 226
Composing deep networks 235

Keras example — memory network for question answering 236
Customizing Keras 243

Keras example — using the lambda layer 244
Keras example — building a custom normalization layer 245

Generative models 248
Keras example — deep dreaming 248
Keras example — style transfer 257

Summary 263

Chapter 8: AI Game Playing 264

Reinforcement learning 265
Maximizing future rewards 266
Q-learning 267
The deep Q-network as a Q-function 268
Balancing exploration with exploitation 270
Experience replay, or the value of experience 271

Example - Keras deep Q-network for catch 271
The road ahead 284
Summary 286

Chapter 9: Conclusion 287

Keras 2.0 — what is new 289
Installing Keras 2.0 289
API changes 290

Index 292

Preface
Hands-on deep learning with Keras is a concise yet thorough introduction to modern neural
networks, artificial intelligence, and deep learning technologies designed especially for
software engineers and data scientists.

Mission
The book presents more than 20 working deep neural networks coded in Python using
Keras, a modular neural network library that runs on top of either Google's TensorFlow or
Lisa Lab's Theano backends.

The reader is introduced step by step to supervised learning algorithms such as simple
linear regression, classical multilayer perceptron, and more sophisticated deep
convolutional networks and generative adversarial networks. In addition, the book covers
unsupervised learning algorithms such as autoencoders and generative networks.
Recurrent networks and long short-term memory (LSTM) networks are also explained in
detail. The book goes on to cover the Keras functional API and how to customize Keras in
case the reader's use case is not covered by Keras's extensive functionality. It also looks at
larger, more complex systems composed of the building blocks covered previously. The
book concludes with an introduction to deep reinforcement learning and how it can be used
to build game playing AIs.

Practical applications include code for the classification of news articles into predefined
categories, syntactic analysis of texts, sentiment analysis, synthetic generation of texts, and
parts of speech annotation. Image processing is also explored, with recognition of
handwritten digit images, classification of images into different categories, and advanced
object recognition with related image annotations. An example of identification of salient
points for face detection will be also provided. Sound analysis comprises recognition of
discrete speeches from multiple speakers. Reinforcement learning is used to build a deep Q-
learning network capable of playing games autonomously.

Experiments are the essence of the book. Each net is augmented by multiple variants that
progressively improve the learning performance by changing the input parameters, the
shape of the network, loss functions, and algorithms used for optimizations. Several
comparisons between training on CPUs and GPUs are also provided.

Preface

[2]

How deep learning is different from machine
learning and artificial intelligence
Artificial intelligence (AI) is a very large research field, where machines show cognitive
capabilities such as learning behaviours, proactive interaction with the environment,
inference and deduction, computer vision, speech recognition, problem solving, knowledge
representation, perception, and many others (for more information, refer to this article:
Artificial Intelligence: A Modern Approach, by S. Russell and P. Norvig, Prentice Hall, 2003).
More colloquially, AI denotes any activity where machines mimic intelligent behaviors
typically shown by humans. Artificial intelligence takes inspiration from elements of
computer science, mathematics, and statistics.

Machine learning (ML) is a subbranch of AI that focuses on teaching computers how to
learn without the need to be programmed for specific tasks (for more information refer to
Pattern Recognition and Machine Learning, by C. M. Bishop, Springer, 2006). In fact, the key
idea behind ML is that it is possible to create algorithms that learn from and make
predictions on data. There are three different broad categories of ML. In supervised
learning, the machine is presented with input data and desired output, and the goal is to
learn from those training examples in such a way that meaningful predictions can be made
for fresh unseen data. In unsupervised learning, the machine is presented with input data
only and the machine has to find some meaningful structure by itself with no external
supervision. In reinforcement learning, the machine acts as an agent interacting with the
environment and learning what are the behaviours that generate rewards.

Deep learning (DL) is a particular subset of ML methodologies using artificial neural
networks (ANN) slightly inspired by the structure of neurons located in the human brain
(for more information, refer to the article Learning Deep Architectures for AI, by Y.
Bengio, Found. Trends, vol. 2, 2009). Informally, the word deep refers to the presence of
many layers in the artificial neural network, but this meaning has changed over time. While
4 years ago, 10 layers were already sufficient to consider a network as deep, today it is more
common to consider a network as deep when it has hundreds of layers.

Preface

[3]

DL is a real tsunami (for more information, refer to Computational Linguistics and Deep
Learning by C. D. Manning, "Computational Linguistics", vol. 41, 2015) for machine learning
in that a relatively small number of clever methodologies have been very successfully
applied to so many different domains (image, text, video, speech, and vision), significantly
improving previous state-of-the-art results achieved over dozens of years. The success of
DL is also due to the availability of more training data (such as ImageNet for images) and
the relatively low-cost availability of GPUs for very efficient numerical computation.
Google, Microsoft, Amazon, Apple, Facebook, and many others use those deep learning
techniques every day for analyzing massive amounts of data. However, this kind of
expertise is not limited any more to the domain of pure academic research and to large
industrial companies. It has become an integral part of modern software production and
therefore something that the reader should definitively master. The book does not require
any particular mathematical background. However, it assumes that the reader is already a
Python programmer.

What this book covers
, Neural Networks Foundations, teaches the basics of neural networks.

, Keras Installation and API, shows how to install Keras on AWS, Microsoft Azure,
Google Cloud, and your own machine. In addition to that, we provide an overview of the
Keras APIs.

, Deep Learning with ConvNets, introduces the concept of convolutional networks.
It is a fundamental innovation in deep learning that has been used with success in multiple
domains, from text to video to speech, going well beyond the initial image processing
domain where it was originally conceived.

Preface

[4]

, Generative Adversarial Networks and WaveNet, introduces generative adversarial
networks used to reproduce synthetic data that looks like data generated by humans. And
we will present WaveNet, a deep neural network used for reproducing human voice and
musical instruments with high quality.

, Word Embeddings, discusses word embeddings, a set of deep learning
methodologies for detecting relationships between words and grouping together similar
words.

, Recurrent Neural Networks – RNN, covers recurrent neural networks, a class of
network optimized for handling sequence data such as text.

, Additional Deep Learning Models, gives a brief look into the Keras functional API,
regression networks, autoencoders, and so on.

, AI Game Playing, teaches you deep reinforcement learning and how it can be
used to build deep learning networks with Keras that learn how to play arcade games based
on reward feedback.

, Conclusion, is a crisp refresher of the topics covered in this book and walks the
users through what is new in Keras 2.0.

What you need for this book
To be able to smoothly follow through the chapters, you will need the following pieces of
software:

TensorFlow 1.0.0 or higher
Keras 2.0.2 or higher
Matplotlib 1.5.3 or higher
Scikit-learn 0.18.1 or higher
NumPy 1.12.1 or higher

The hardware specifications are as follows:

Either 32-bit or 64-bit architecture
2+ GHz CPU
4 GB RAM
At least 10 GB of hard disk space available

Preface

[5]

Who this book is for
If you are a data scientist with experience in machine learning or an AI programmer with
some exposure to neural networks, you will find this book a useful entry point to deep
learning with Keras. Knowledge of Python is required for this book.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In
addition, we load the true labels into and respectively and perform a one-
hot encoding on them."

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Dense
Activation

Any command-line input or output is written as follows:

pip install quiver_engine

Preface

[6]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Our simple net started with
an accuracy of 92.22%, which means that about eight handwritten characters out of 100 are
not correctly recognized."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

Preface

[7]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our rich

catalog of books and videos available at . Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

Preface

[8]

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Neural Networks Foundations

Artificial neural networks (briefly, nets) represent a class of machine learning models,
loosely inspired by studies about the central nervous systems of mammals. Each net is
made up of several interconnected neurons, organized in layers, which exchange messages
(they fire, in jargon) when certain conditions happen. Initial studies were started in the late
1950s with the introduction of the perceptron (for more information, refer to the article: The
Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, by F.
Rosenblatt, Psychological Review, vol. 65, pp. 386 - 408, 1958), a two-layer network used for
simple operations, and further expanded in the late 1960s with the introduction of
the backpropagation algorithm, used for efficient multilayer networks training (according to
the articles: Backpropagation through Time: What It Does and How to Do It, by P. J. Werbos,
Proceedings of the IEEE, vol. 78, pp. 1550 - 1560, 1990, and A Fast Learning Algorithm for Deep
Belief Nets, by G. E. Hinton, S. Osindero, and Y. W. Teh, Neural Computing, vol. 18, pp. 1527
- 1554, 2006). Some studies argue that these techniques have roots dating further back than
normally cited (for more information, refer to the article: Deep Learning in Neural Networks:
An Overview, by J. Schmidhuber, vol. 61, pp. 85 - 117, 2015). Neural networks were a topic of
intensive academic studies until the 1980s, when other simpler approaches became more
relevant. However, there has been a resurrection of interest starting from the mid-2000s,
thanks to both a breakthrough fast-learning algorithm proposed by G. Hinton (for more
information, refer to the articles: The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting, Neural Networks, by S. Leven, vol. 9, 1996
and Learning Representations by Backpropagating Errors, by D. E. Rumelhart, G. E. Hinton, and
R. J. Williams, vol. 323, 1986) and the introduction of GPUs, roughly in 2011, for massive
numeric computation.

These improvements opened the route for modern deep learning, a class of neural networks
characterized by a significant number of layers of neurons, which are able to learn rather
sophisticated models based on progressive levels of abstraction. People called it deep with
3-5 layers a few years ago, and now it has gone up to 100-200.

Neural Networks Foundations

[10]

This learning via progressive abstraction resembles vision models that have evolved over
millions of years in the human brain. The human visual system is indeed organized into
different layers. Our eyes are connected to an area of the brain called the visual cortex V1,
which is located in the lower posterior part of our brain. This area is common to many
mammals and has the role of discriminating basic properties and small changes in visual
orientation, spatial frequencies, and colors. It has been estimated that V1 consists of about
140 million neurons, with 10 billion connections between them. V1 is then connected with
other areas V2, V3, V4, V5, and V6, doing progressively more complex image processing
and recognition of more sophisticated concepts, such as shapes, faces, animals, and many
more. This organization in layers is the result of a huge number of attempts tuned over
several 100 million years. It has been estimated that there are ~16 billion human cortical
neurons, and about 10%-25% of the human cortex is devoted to vision (for more
information, refer to the article: The Human Brain in Numbers: A Linearly Scaled-up Primate
Brain, by S. Herculano-Houzel, vol. 3, 2009). Deep learning has taken some inspiration from
this layer-based organization of the human visual system: early artificial neuron layers learn
basic properties of images, while deeper layers learn more sophisticated concepts.

This book covers several major aspects of neural networks by providing working nets
coded in Keras, a minimalist and efficient Python library for deep learning computations
running on the top of either Google's TensorFlow (for more information, refer to

) or University of Montreal's Theano (for more information, refer to
) backend. So, let's start.

In this chapter, we will cover the following topics:

Perceptron
Multilayer perceptron
Activation functions
Gradient descent
Stochastic gradient descent
Backpropagation

Neural Networks Foundations

[11]

Perceptron
The perceptron is a simple algorithm which, given an input vector x of m values (x1, x2, ...,
xn) often called input features or simply features, outputs either 1 (yes) or 0 (no).
Mathematically, we define a function:

Here, w is a vector of weights, wx is the dot product , and b is a bias. If you
remember elementary geometry, wx + b defines a boundary hyperplane that changes
position according to the values assigned to w and b. If x lies above the straight line, then
the answer is positive, otherwise it is negative. Very simple algorithm! The perception
cannot express a maybe answer. It can answer yes (1) or no (0) if we understand how to
define w and b, that is the training process that will be discussed in the following
paragraphs.

The first example of Keras code
The initial building block of Keras is a model, and the simplest model is called sequential.
A sequential Keras model is a linear pipeline (a stack) of neural networks layers. This code
fragment defines a single layer with artificial neurons, and it expects input variables
(also known as features):

Each neuron can be initialized with specific weights. Keras provides a few choices, the most
common of which are listed as follows:

: Weights are initialized to uniformly random small values in
(-0.05, 0.05). In other words, any value within the given interval is equally likely
to be drawn.

: Weights are initialized according to a Gaussian, with a zero
mean and small standard deviation of 0.05. For those of you who are not familiar
with a Gaussian, think about a symmetric bell curve shape.

: All weights are initialized to zero.

Neural Networks Foundations

[12]

A full list is available at .

Multilayer perceptron — the first example of
a network
In this chapter, we define the first example of a network with multiple linear layers.
Historically, perceptron was the name given to a model having one single linear layer, and
as a consequence, if it has multiple layers, you would call it multilayer perceptron (MLP).
The following image represents a generic neural network with one input layer, one
intermediate layer and one output layer.

In the preceding diagram, each node in the first layer receives an input and fires according
to the predefined local decision boundaries. Then the output of the first layer is passed to
the second layer, the results of which are passed to the final output layer consisting of one
single neuron. It is interesting to note that this layered organization vaguely resembles the
patterns of human vision we discussed earlier.

The net is dense, meaning that each neuron in a layer is connected to all
neurons located in the previous layer and to all the neurons in the
following layer.

Neural Networks Foundations

[13]

Problems in training the perceptron and a
solution
Let's consider a single neuron; what are the best choices for the weight w and the bias b?
Ideally, we would like to provide a set of training examples and let the computer adjust the
weight and the bias in such a way that the errors produced in the output are minimized. In
order to make this a bit more concrete, let's suppose we have a set of images of cats and
another separate set of images not containing cats. For the sake of simplicity, assume that
each neuron looks at a single input pixel value. While the computer processes these images,
we would like our neuron to adjust its weights and bias so that we have fewer and fewer
images wrongly recognized as non-cats. This approach seems very intuitive, but it requires
that a small change in weights (and/or bias) causes only a small change in outputs.

If we have a big output jump, we cannot progressively learn (rather than trying things in all
possible directions—a process known as exhaustive search—without knowing if we are
improving). After all, kids learn little by little. Unfortunately, the perceptron does not show
this little-by-little behavior. A perceptron is either 0 or 1 and that is a big jump and it will
not help it to learn, as shown in the following graph:

Neural Networks Foundations

[14]

We need something different, smoother. We need a function that progressively changes
from 0 to 1 with no discontinuity. Mathematically, this means that we need a continuous
function that allows us to compute the derivative.

Activation function — sigmoid
The sigmoid function is defined as follows:

As represented in the following graph, it has small output changes in (0, 1) when the input
varies in . Mathematically, the function is continuous. A typical sigmoid function is
represented in the following graph:

A neuron can use the sigmoid for computing the nonlinear function . Note

that, if is very large and positive, then , so , while

if is very large and negative so . In other words, a neuron with sigmoid
activation has a behavior similar to the perceptron, but the changes are gradual and output
values, such as 0.5539 or 0.123191, are perfectly legitimate. In this sense, a sigmoid neuron
can answer maybe.

Neural Networks Foundations

[15]

Activation function — ReLU
The sigmoid is not the only kind of smooth activation function used for neural networks.
Recently, a very simple function called rectified linear unit (ReLU) became very popular
because it generates very good experimental results. A ReLU is simply defined as

, and the nonlinear function is represented in the following graph. As you
can see in the following graph, the function is zero for negative values, and it grows linearly
for positive values:

Activation functions
Sigmoid and ReLU are generally called activation functions in neural network jargon. In the
Testing different optimizers in Keras section, we will see that those gradual changes, typical of
sigmoid and ReLU functions, are the basic building blocks to developing a learning
algorithm which adapts little by little, by progressively reducing the mistakes made by our
nets. An example of using the activation function σ with the (x1, x2, ..., xm) input vector, (w1,
w2, ..., wm) weight vector, b bias, and Σ summation is given in the following diagram:

Neural Networks Foundations

[16]

Keras supports a number of activation functions, and a full list is available at
.

A real example — recognizing handwritten
digits
In this section, we will build a network that can recognize handwritten numbers. For
achieving this goal, we use MNIST (for more information, refer to

), a database of handwritten digits made up of a training set of 60,000
examples and a test set of 10,000 examples. The training examples are annotated by humans
with the correct answer. For instance, if the handwritten digit is the number three, then
three is simply the label associated with that example.

In machine learning, when a dataset with correct answers is available, we say that we can
perform a form of supervised learning. In this case, we can use training examples for tuning
up our net. Testing examples also have the correct answer associated with each digit. In this
case, however, the idea is to pretend that the label is unknown, let the network do the
prediction, and then later on, reconsider the label to evaluate how well our neural network
has learned to recognize digits. So, not unsurprisingly, testing examples are just used to test
our net.

Each MNIST image is in gray scale, and it consists of 28 x 28 pixels. A subset of these
numbers is represented in the following diagram:

Neural Networks Foundations

[17]

One-hot encoding — OHE
In many applications, it is convenient to transform categorical (non-numerical) features into
numerical variables. For instance, the categorical feature digit with the value d in [0-9] can
be encoded into a binary vector with 10 positions, which always has 0 value, except the d-th
position where a 1 is present. This type of representation is called one-hot encoding (OHE)
and is very common in data mining when the learning algorithm is specialized for dealing
with numerical functions.

Defining a simple neural net in Keras
Here, we use Keras to define a network that recognizes MNIST handwritten digits. We start
with a very simple neural network and then progressively improve it.

Keras provides suitable libraries to load the dataset and split it into training sets ,
used for fine-tuning our net, and tests set , used for assessing the performance. Data
is converted into for supporting GPU computation and normalized to [0, 1]. In
addition, we load the true labels into and respectively and perform a one-
hot encoding on them. Let's see the code:

Neural Networks Foundations

[18]

The input layer has a neuron associated with each pixel in the image for a total of 28 x 28 =
784 neurons, one for each pixel in the MNIST images.

Typically, the values associated with each pixel are normalized in the range [0, 1] (which
means that the intensity of each pixel is divided by 255, the maximum intensity value). The
output is 10 classes, one for each digit.

The final layer is a single neuron with activation function softmax, which is a generalization
of the sigmoid function. Softmax squashes a k-dimensional vector of arbitrary real values
into a k-dimensional vector of real values in the range (0, 1). In our case, it aggregates 10
answers provided by the previous layer with 10 neurons:

Once we define the model, we have to compile it so that it can be executed by the Keras
backend (either Theano or TensorFlow). There are a few choices to be made during
compilation:

We need to select the optimizer that is the specific algorithm used to update
weights while we train our model
We need to select the objective function that is used by the optimizer to navigate
the space of weights (frequently, objective functions are called loss function, and
the process of optimization is defined as a process of loss minimization)
We need to evaluate the trained model

Neural Networks Foundations

[19]

Some common choices for the objective function (a complete list of Keras objective functions
is at) are as follows:

MSE: This is the mean squared error between the predictions and the true values.
Mathematically, if is a vector of n predictions, and Y is the vector of n observed
values, then they satisfy the following equation:

These objective functions average all the mistakes made for each
prediction, and if the prediction is far from the true value, then this
distance is made more evident by the squaring operation.

Binary cross-entropy: This is the binary logarithmic loss. Suppose that our model
predicts p while the target is t, then the binary cross-entropy is defined as follows:

This objective function is suitable for binary labels prediction.

Categorical cross-entropy: This is the multiclass logarithmic loss. If the target is
ti,j and the prediction is pi,j, then the categorical cross-entropy is this:

This objective function is suitable for multiclass labels predictions. It is
also the default choice in association with softmax activation.

Neural Networks Foundations

[20]

Some common choices for metrics (a complete list of Keras metrics is at
) are as follows:

Accuracy: This is the proportion of correct predictions with respect to the targets
Precision: This denotes how many selected items are relevant for a multilabel
classification
Recall: This denotes how many selected items are relevant for a multilabel
classification

Metrics are similar to objective functions, with the only difference that they are not used for
training a model but only for evaluating a model. Compiling a model in Keras is easy:

Once the model is compiled, it can be then trained with the function, which specifies
a few parameters:

: This is the number of times the model is exposed to the training set. At
each iteration, the optimizer tries to adjust the weights so that the objective
function is minimized.

: This is the number of training instances observed before the
optimizer performs a weight update.

Training a model in Keras is very simple. Suppose we want to iterate for steps:

We reserved part of the training set for validation. The key idea is that we
reserve a part of the training data for measuring the performance on the
validation while training. This is a good practice to follow for any machine
learning task, which we will adopt in all our examples.

Once the model is trained, we can evaluate it on the test set that contains new unseen
examples. In this way, we can get the minimal value reached by the objective function and
best value reached by the evaluation metric.

Neural Networks Foundations

[21]

Note that the training set and the test set are, of course, rigorously separated. There is no
point in evaluating a model on an example that has already been used for training. Learning
is essentially a process intended to generalize unseen observations and not to memorize
what is already known:

So, congratulations, you have just defined your first neural network in Keras. A few lines of
code, and your computer is able to recognize handwritten numbers. Let's run the code and
see what the performance is.

Running a simple Keras net and establishing a
baseline
So let's see what will happen when we run the code in the following screenshot:

First, the net architecture is dumped, and we can see the different types of layers used, their
output shape, how many parameters they need to optimize, and how they are connected.
Then, the network is trained on 48,000 samples, and 12,000 are reserved for validation. Once
the neural model is built, it is then tested on 10,000 samples. As you can see, Keras is
internally using TensorFlow as a backend system for computation. For now, we don't go
into the internals on how the training happens, but we can notice that the program runs for
200 iterations, and each time, the accuracy improves.

Neural Networks Foundations

[22]

When the training ends, we test our model on the test set and achieve about 92.36%
accuracy on training, 92.27% on validation, and 92.22% on the test.

This means that a bit less than one handwritten character out of ten is not correctly
recognized. We can certainly do better than that. In the following screenshot, we can see the
test accuracy:

Improving the simple net in Keras with hidden
layers
We have a baseline accuracy of 92.36% on training, 92.27% on validation, and 92.22% on the
test. This is a good starting point, but we can certainly improve it. Let's see how.

A first improvement is to add additional layers to our network. So, after the input layer, we
have a first dense layer with the neurons and an activation function . This
additional layer is considered hidden because it is not directly connected to either the input
or the output. After the first hidden layer, we have a second hidden layer, again with
the neurons, followed by an output layer with 10 neurons, each of which will fire
when the relative digit is recognized. The following code defines this new network:

Neural Networks Foundations

[23]

Let's run the code and see which result we get with this multilayer network. Not bad. By
adding two hidden layers, we reached 94.50% on the training set, 94.63% on validation, and
94.41% on the test. This means that we gained an additional 2.2% accuracy on the test with
respect to the previous network. However, we dramatically reduced the number of
iterations from 200 to 20. That's good, but we want more.

Neural Networks Foundations

[24]

If you want, you can play by yourself and see what happens if you add only one hidden
layer instead of two, or if you add more than two layers. I leave this experiment as an
exercise. The following screenshot shows the output of the preceding example:

Neural Networks Foundations

[25]

Further improving the simple net in Keras with
dropout
Now our baseline is 94.50% on the training set, 94.63% on validation, and 94.41% on the test.
A second improvement is very simple. We decide to randomly drop with the dropout
probability some of the values propagated inside our internal dense network of hidden
layers. In machine learning, this is a well-known form of regularization. Surprisingly
enough, this idea of randomly dropping a few values can improve our performance:

Neural Networks Foundations

[26]

Let's run the code for 20 iterations as previously done, and we will see that this net achieves
an accuracy of 91.54% on the training, 94.48% on validation, and 94.25% on the test:

Neural Networks Foundations

[27]

Neural Networks Foundations

[28]

Note that training accuracy should still be above the test accuracy, otherwise we are not
training long enough. So let's try to increase significantly the number of epochs up to 250,
and we get 98.1% accuracy on training, 97.73% on validation, and 97.7% on the test:

It is useful to observe how accuracy increases on training and test sets when the number of
epochs increases. As you can see in the following graph, these two curves touch at about
250 epochs, and therefore, there is no need to train further after that point:

Note that it has been frequently observed that networks with random dropout in internal
hidden layers can generalize better on unseen examples contained in test sets. Intuitively,
one can think of this as each neuron becoming more capable because it knows it cannot
depend on its neighbors. During testing, there is no dropout, so we are now using all our
highly tuned neurons. In short, it is generally a good approach to test how a net performs
when some dropout function is adopted.

Testing different optimizers in Keras
We have defined and used a network; it is useful to start giving an intuition about how
networks are trained. Let's focus on one popular training technique known as gradient
descent (GD). Imagine a generic cost function C(w) in one single variable w like in the
following graph:

Neural Networks Foundations

[29]

The gradient descent can be seen as a hiker who aims at climbing down a mountain into a
valley. The mountain represents the function C, while the valley represents the minimum
Cmin. The hiker has a starting point w0. The hiker moves little by little. At each step r, the
gradient is the direction of maximum increase. Mathematically, this direction is the value of

the partial derivative evaluated at point wr reached at step r. Therefore by taking the

opposite direction, , the hiker can move towards the valley. At each step, the hiker
can decide what the leg length is before the next step. This is the learning rate in
gradient descent jargon. Note that if is too small, then the hiker will move slowly.
However, if is too high, then the hiker will possibly miss the valley.

Now you should remember that a sigmoid is a continuous function, and it is possible to
compute the derivative. It can be proven that the sigmoid is shown as follows:

Neural Networks Foundations

[30]

It has the following derivative:

ReLU is not differentiable in 0. We can, however, extend the first derivative in 0 to a
function over the whole domain by choosing it to be either 0 or 1. The point-wise derivative
of ReLU is as follows:

Once we have the derivative, it is possible to optimize the nets with a gradient descent
technique. Keras uses its backend (either TensorFlow or Theano) for computing the
derivative on our behalf so we don't need to worry about implementing or computing it.
We just choose the activation function, and Keras computes its derivative on our behalf.

A neural network is essentially a composition of multiple functions with thousands, and
sometimes millions, of parameters. Each network layer computes a function whose error
should be minimized in order to improve the accuracy observed during the learning phase.
When we discuss backpropagation, we will discover that the minimization game is a bit
more complex than our toy example. However, it is still based on the same intuition of
descending a valley.

Keras implements a fast variant of gradient descent known as stochastic gradient descent
(SGD) and two more advanced optimization techniques known as RMSprop and Adam.
RMSprop and Adam include the concept of momentum (a velocity component) in addition
to the acceleration component that SGD has. This allows faster convergence at the cost of
more computation. A full list of Keras-supported optimizers is at

. SGD was our default choice so far. So now let's try the other two. It is very simple,
we just need to change few lines:

Neural Networks Foundations

[31]

That's it. Let's test it as shown in the following screenshot:

Neural Networks Foundations

[32]

As you can see in the preceding screenshot, RMSprop is faster than SDG since we are able
to achieve an accuracy of 97.97% on training, 97.59% on validation, and 97.84% on the test
improving SDG with only 20 iterations. For the sake of completeness, let's see how the
accuracy and loss change with the number of epochs, as shown in the following graphs:

OK, let's try the other optimizer, . It is pretty simple, as follows:

As we have seen, Adam is slightly better. With Adam, we achieve 98.28% accuracy on
training, 98.03% on validation, and 97.93% on the test with 20 iterations, as shown in the
following graphs:

Neural Networks Foundations

[33]

This is our fifth variant, and remember that our initial baseline was at 92.36%.

So far, we made progressive improvements; however, the gains are now more and more
difficult. Note that we are optimizing with a dropout of 30%. For the sake of completeness,
it could be useful to report the accuracy on the test only for other dropout values with

 chosen as optimizer, as shown in the following graph:

Neural Networks Foundations

[34]

Increasing the number of epochs
Let's make another attempt and increase the number of epochs used for training from 20 to
200. Unfortunately, this choice increases our computation time by 10, but it gives us no gain.
The experiment is unsuccessful, but we have learned that if we spend more time learning,
we will not necessarily improve. Learning is more about adopting smart techniques and not
necessarily about the time spent in computations. Let's keep track of our sixth variant in the
following graph:

Controlling the optimizer learning rate
There is another attempt we can make, which is changing the learning parameter for our
optimizer. As you can see in the following graph, the optimal value is somewhere close to
0.001, which is the default learning rate for the optimer. Good! Adam works well out of the
box:

Neural Networks Foundations

[35]

Increasing the number of internal hidden neurons
We can make yet another attempt, that is, changing the number of internal hidden neurons.
We report the results of the experiments with an increasing number of hidden neurons. We
can see in the following graph that by increasing the complexity of the model, the run time
increases significantly because there are more and more parameters to optimize. However,
the gains that we are getting by increasing the size of the network decrease more and more
as the network grows:

Neural Networks Foundations

[36]

In the following graph, we show the time needed for each iteration as the number of hidden
neurons grow:

The following graph shows the accuracy as the number of hidden neurons grow:

Neural Networks Foundations

[37]

Increasing the size of batch computation
Gradient descent tries to minimize the cost function on all the examples provided in the
training sets and, at the same time, for all the features provided in the input. Stochastic
gradient descent is a much less expensive variant, which considers only
examples. So, let's see what the behavior is by changing this parameter. As you can see, the
optimal accuracy value is reached for :

Summarizing the experiments run for recognizing
handwritten charts
So, let's summarize: with five different variants, we were able to improve our performance
from 92.36% to 97.93%. First, we defined a simple layer network in Keras. Then, we
improved the performance by adding some hidden layers. After that, we improved the
performance on the test set by adding a few random dropouts to our network and by
experimenting with different types of optimizers. Current results are summarized in the
following table:

Model/Accuracy Training Validation Test

Simple 92.36% 92.37% 92.22%

Two hidden (128) 94.50% 94.63% 94.41%

Dropout (30%) 98.10% 97.73% 97.7% (200 epochs)

RMSprop 97.97% 97.59% 97.84% (20 epochs)

Adam 98.28% 98.03% 97.93% (20 epochs)

Neural Networks Foundations

[38]

However, the next two experiments did not provide significant improvements. Increasing
the number of internal neurons creates more complex models and requires more expensive
computations, but it provides only marginal gains. We get the same experience if we
increase the number of training epochs. A final experiment consisted in changing the

 for our optimizer.

Adopting regularization for avoiding overfitting
Intuitively, a good machine learning model should achieve low error on training data.
Mathematically, this is equivalent to minimizing the loss function on the training data given
the machine learning model built. This is expressed by the following formula.:

However, this might not be enough. A model can become excessively complex in order to
capture all the relations inherently expressed by the training data. This increase of
complexity might have two negative consequences. First, a complex model might require a
significant amount of time to be executed. Second, a complex model can achieve very good
performance on training data—because all the inherent relations in trained data are
memorized, but not so good performance on validation data—as the model is not able to
generalize on fresh unseen data. Again, learning is more about generalization than
memorization. The following graph represents a typical loss function decreasing on both
validation and training sets. However, a certain point the loss on validation starts to
increase because of overfitting:

Neural Networks Foundations

[39]

As a rule of thumb, if during the training we see that the loss increases on validation, after
an initial decrease, then we have a problem of model complexity that overfits training.
Indeed, overfitting is the word used in machine learning for concisely describing this
phenomenon.

In order to solve the overfitting problem, we need a way to capture the complexity of a
model, that is, how complex a model can be. What could be the solution? Well, a model is
nothing more than a vector of weights. Therefore the complexity of a model can be
conveniently represented as the number of nonzero weights. In other words, if we have two
models, M1 and M2, achieving pretty much the same performance in terms of loss function,
then we should choose the simplest model that has the minimum number of nonzero
weights. We can use a hyperparameter >=0 for controlling what the importance of having
a simple model is, as in this formula:

There are three different types of regularizations used in machine learning:

L1 regularization (also known as lasso): The complexity of the model is
expressed as the sum of the absolute values of the weights
L2 regularization (also known as ridge): The complexity of the model is
expressed as the sum of the squares of the weights
Elastic net regularization: The complexity of the model is captured by a
combination of the two preceding techniques

Note that the same idea of regularization can be applied independently to the weights, to
the model, and to the activation.

Therefore, playing with regularization can be a good way to increase the performance of a
network, in particular when there is an evident situation of overfitting. This set of
experiments is left as an exercise for the interested reader.

Note that Keras supports both l1, l2, and elastic net regularizations. Adding regularization
is easy; for instance, here we have a regularizer for kernel (the weight W):

A full description of the available parameters is available at:
.

Neural Networks Foundations

[40]

Hyperparameters tuning
The preceding experiments gave a sense of what the opportunities for fine-tuning a net are.
However, what is working for this example is not necessarily working for other examples.
For a given net, there are indeed multiple parameters that can be optimized (such as
the number of , , number of , and many more
according to the complexity of the net itself).

Hyperparameter tuning is the process of finding the optimal combination of those
parameters that minimize cost functions. The key idea is that if we have n parameters, then
we can imagine that they define a space with n dimensions, and the goal is to find the point
in this space which corresponds to an optimal value for the cost function. One way to
achieve this goal is to create a grid in this space and systematically check for each grid
vertex what the value assumed by the cost function is. In other words, the parameters are
divided into buckets, and different combinations of values are checked via a brute force
approach.

Predicting output
When a net is trained, it can be course be used for predictions. In Keras, this is very simple.
We can use the following method:

For a given input, several types of output can be computed, including a method:

: This is used to compute the loss values
: This is used to compute category outputs

: This is used to compute class probabilities

A practical overview of backpropagation
Multilayer perceptrons learn from training data through a process called backpropagation.
The process can be described as a way of progressively correcting mistakes as soon as they
are detected. Let's see how this works.

Remember that each neural network layer has an associated set of weights that determines
the output values for a given set of inputs. In addition to that, remember that a neural
network can have multiple hidden layers.

Neural Networks Foundations

[41]

In the beginning, all the weights have some random assignment. Then the net is activated
for each input in the training set: values are propagated forward from the input stage
through the hidden stages to the output stage where a prediction is made (note that we
have kept the following diagram simple by only representing a few values with green
dotted lines, but in reality, all the values are propagated forward through the network):

Since we know the true observed value in the training set, it is possible to calculate the error
made in prediction. The key intuition for backtracking is to propagate the error back and
use an appropriate optimizer algorithm, such as a gradient descent, to adjust the neural
network weights with the goal of reducing the error (again for the sake of simplicity, only a
few error values are represented):

Neural Networks Foundations

[42]

The process of forward propagation from input to output and backward propagation of
errors is repeated several times until the error gets below a predefined threshold. The whole
process is represented in the following diagram:

The features represent the input and the labels are here used to drive the learning process.
The model is updated in such a way that the loss function is progressively minimized. In a
neural network, what really matters is not the output of a single neuron but the collective
weights adjusted in each layer. Therefore, the network progressively adjusts its internal
weights in such a way that the prediction increases the number of labels correctly
forecasted. Of course, using the right set features and having a quality labeled data is
fundamental to minimizing the bias during the learning process.

Towards a deep learning approach
While playing with handwritten digit recognition, we came to the conclusion that the closer
we get to the accuracy of 99%, the more difficult it is to improve. If we want to have more
improvements, we definitely need a new idea. What are we missing? Think about it.

The fundamental intuition is that, so far, we lost all the information related to the local
spatiality of the images. In particular, this piece of code transforms the bitmap, representing
each written digit into a flat vector where the spatial locality is gone:

Neural Networks Foundations

[43]

However, this is not how our brain works. Remember that our vision is based on multiple
cortex levels, each one recognizing more and more structured information, still preserving
the locality. First we see single pixels, then from that, we recognize simple geometric forms
and then more and more sophisticated elements such as objects, faces, human bodies,
animals and so on.

In , Deep Learning with ConvNets, we will see that a particular type of deep
learning network known as convolutional neural network (CNN) has been developed by
taking into account both the idea of preserving the spatial locality in images (and, more
generally, in any type of information) and the idea of learning via progressive levels of
abstraction: with one layer, you can only learn simple patterns; with more than one layer,
you can learn multiple patterns. Before discussing CNN, we need to discuss some aspects of
Keras architecture and have a practical introduction to a few additional machine learning
concepts. This will be the topic of the next chapters.

Summary
In this chapter, you learned the basics of neural networks, more specifically, what a
perceptron is, what a multilayer perceptron is, how to define neural networks in Keras, how
to progressively improve metrics once a good baseline is established, and how to fine-tune
the hyperparameter's space. In addition to that, you now also have an intuitive idea of what
some useful activation functions (sigmoid and ReLU) are, and how to train a network with
backpropagation algorithms based on either gradient descent, on stochastic gradient
descent, or on more sophisticated approaches, such as Adam and RMSprop.

In the next chapter, we will see how to install Keras on AWS, Microsoft Azure, Google
Cloud, and on your own machine. In addition to that, we will provide an overview of Keras
APIs.

22
Keras Installation and API

In the previous chapter, we discussed the basic principles of neural networks and provided
a few examples of nets that are able to recognize MNIST handwritten numbers.

This chapter explains how to install Keras, Theano, and TensorFlow. Step by step, we will
look at how to get the environment working and move from intuition to working nets in
very little time. Then we will discuss how to install on a dockerized infrastructure based on
containers, and in the cloud with Google GCP, Amazon AWS, and Microsoft Azure. In
addition to that, we will present an overview of Keras APIs, and some commonly useful
operations such as loading and saving neural networks' architectures and weights, early
stopping, history saving, checkpointing, and interactions with TensorBoard and Quiver. Let
us start.

By the end of this chapter, we will have covered the following topics:

Installing and configuring Keras
Keras architecture

Keras Installation and API

[45]

Installing Keras
In the sections to follow, we will show how to install Keras on multiple platforms.

Step 1 — install some useful dependencies
First, we install the package, which provides support for large, multidimensional
arrays and matrices as well as high-level mathematical functions. Then we install , a
library used for scientific computation. After that, it might be appropriate to install

, a package considered the Python Swiss army knife for machine learning. In
this case, we will use it for data exploration. Optionally, it could be useful to install ,
a library useful for image processing, and , a library useful for data serialization used
by Keras for model saving. A single command line is enough for installing what is needed.
Alternatively, one can install Anaconda Python, which will automatically install ,

, , , , and a lot of other libraries that are needed for
scientific computing (for more information, refer to: Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, by S. Ioffe and C.
Szegedy, , 2015). You can find the packages available in
Anaconda Python at . The following
screenshot shows how to install the packages for our work:

Keras Installation and API

[46]

Step 2 — install Theano
We can use to install Theano, as shown in the following screenshot:

Step 3 — install TensorFlow
Now we can install TensorFlow using the instructions found on the TensorFlow website
at

. Again, we simply use for installing the correct package, as shown in the
following screenshot. For instance, if we need to use GPUs, it is important to pick the
appropriate package:

Keras Installation and API

[47]

Step 4 — install Keras
Now we can simply install Keras and start testing the installed environment. Pretty simple;
let's use again, as shown in this screenshot:

Step 5 — testing Theano, TensorFlow, and Keras
Now let's test the environment. First let's look at how to define the sigmoid function in
Theano. As you see, it is very simple; we just write the mathematical formula and compute
the function element-wise on a matrix. Just run the Python Shell and write the code as
shown in the following screenshot to get the result:

Keras Installation and API

[48]

So, Theano works. Let's test TensorFlow by simply importing the MNIST dataset as shown
in the following screenshot. We have already seen, in , Neural Networks
Foundations, a few working examples of the Keras network:

Configuring Keras
Keras has a very minimalist configuration file. Let's load it with a session. The
parameters are very simple:

Parameters Values

Can be either for the TensorFlow image ordering or for Theano
image ordering

The value used during computation

Can be either or

Can be either or

Keras Installation and API

[49]

The of value gives you a somewhat non-intuitive dimension
ordering for images (depth, width, and height), instead of (width, height, and depth), for

. The following are the default parameters in my machine:

If you install a GPU-enabled TensorFlow version, then Keras will
automatically use your configured GPU when TensorFlow is selected as
the backend.

Installing Keras on Docker
One of the easiest ways to get started with TensorFlow and Keras is running in a Docker
container. A convenient solution is to use a predefined Docker image for deep learning
created by the community that contains all the popular DL frameworks (TensorFlow,
Theano, Torch, Caffe, and so on). Refer to the GitHub repository at

 for the code files. Assuming that you already have Docker up
and running (for more information, refer to
), installing it is pretty simple and is shown as follows:

Keras Installation and API

[50]

The following screenshot, says something like, after getting the image from Git, we build
the Docker image:

In this screenshot, we see how to run it:

Keras Installation and API

[51]

From within the container, it is possible to activate support for Jupyter Notebooks (for more
information, refer to):

Access it directly from the host machine on port:

Keras Installation and API

[52]

It is also possible to access TensorBoard (for more information, refer to
) with the help of the command in the

screenshot that follows, which is discussed in the next section:

After running the preceding command, you will be redirected to the following page:

Installing Keras on Google Cloud ML
Installing Keras on Google Cloud is very simple. First, we can install Google Cloud (for the
downloadable file, refer to), a command-line interface
for Google Cloud Platform; then we can use CloudML, a managed service that enables us to
easily build machine, learning models with TensorFlow. Before using Keras, let's use
Google Cloud with TensorFlow to train an MNIST example available on GitHub. The code
is local and training happens in the cloud:

Keras Installation and API

[53]

In the following screenshot, you can see how to run a training session:

We can use TensorBoard to show how cross-entropy decreases across iterations:

Keras Installation and API

[54]

In the next screenshot, we see the graph of cross-entropy:

Now, if we want to use Keras on the top of TensorFlow, we simply download the Keras
source from PyPI (for the downloadable file, refer to

 or later versions) and then directly use Keras as a CloudML package solution, as
in the following example:

Keras Installation and API

[55]

Here, is an example script:

Installing Keras on Amazon AWS
Installing TensorFlow and Keras on Amazon is very simple. Indeed, it is possible to use a
prebuilt AMI named that is open and free (for more information, refer to

), shown as follows:

Keras Installation and API

[56]

This AMI runs TensorFlow in less than five minutes and supports TensorFlow, Keras,
OpenAI Gym, and all dependencies. As of January 2017, it supports the following:

TensorFlow 0.12
Keras 1.1.0
TensorLayer 1.2.7
CUDA 8.0
CuDNN 5.1
Python 2.7
Ubuntu 16.04

In addition, works on P2 computing instances (for more information, refer to
), as shown in the following screenshot:

Some features of P2 instances are as follows:

Intel Xeon E5-2686v4 (Broadwell) processors
NVIDIA K80 GPUs, each with 2,496 parallel cores and 12 GB of GPU memory
Supports peer-to-peer GPU communication
Provides enhanced networking (for more information, refer to

) with 20 Gbps of aggregate network bandwidth

Keras Installation and API

[57]

The also works on G2 computing instances (for more information, refer to
). Some features of G2 instances are as

follows:

Intel Xeon E5-2670 (Sandy Bridge) processors
NVIDIA GPUs, each with 1,536 CUDA cores and 4 GB of video memory

Installing Keras on Microsoft Azure
One way to install Keras on Azure is to install the support for Docker and then get a
containerized version of TensorFlow plus Keras. Online, it is also possible to find a detailed
set of instructions on how to install Keras and TensorFlow with Docker, but this is
essentially what we have seen already in a previous section (for more information, refer to

).

If you use Theano as the only backend, then Keras can run with just a click by loading a pre-
built package available on Cortana Intelligence Gallery (for more information, refer to

).
The following sample shows how to import Theano and Keras into Azure ML directly as a
ZIP file and use them in the Execute Python Script module. This example is due to Hai Ning
(for more information, refer to), and it essentially runs the Keras
code within the method:

Keras Installation and API

[58]

In this screenshot, you see an example use of Microsoft Azure ML to run Theano and Keras:

Keras Installation and API

[59]

Keras API
Keras has a modular, minimalist, and easy extendable architecture. Francois Chollet, the
author of Keras, says:

The library was developed with a focus on enabling fast experimentation. Being able to go
from idea to result with the least possible delay is key to doing good research.

Keras defines high-level neural networks running on top of either TensorFlow (for more
information, refer to) or Theano (for more
information, refer to). In details:

Modularity: A model is either a sequence or a graph of standalone modules that
can be combined together like LEGO blocks for building neural networks.
Namely, the library predefines a very large number of modules implementing
different types of neural layers, cost functions, optimizers, initialization schemes,
activation functions, and regularization schemes.
Minimalism: The library is implemented in Python and each module is kept
short and self-describing.
Easy extensibility: The library can be extended with new functionalities, as we
will describe in , Additional Deep Learning Models.

Getting started with Keras architecture
In this section, we review the most important Keras components used for defining neural
networks. First, we define what a tensor is, then we discuss different ways of composing
predefined modules, and we conclude with an overview of the ones most commonly used.

What is a tensor?
Keras uses either Theano or TensorFlow to perform very efficient computations on tensors.
But what is a tensor anyway? A tensor is nothing but a multidimensional array or matrix.
Both the backends are capable of efficient symbolic computations on tensors, which are the
fundamental building blocks for creating neural networks.

Keras Installation and API

[60]

Composing models in Keras
There are two ways of composing models in Keras. They are as follows:

Sequential composition
Functional composition

Let us take a look at each one in detail.

The first one is the sequential composition, where different predefined models are stacked
together in a linear pipeline of layers similar to a stack or a queue. In , Neural
Networks Foundations, we saw a few examples of sequential pipelines. For instance:

The second way of composing modules is via the functional API, where it is possible to
define complex models, such as directed acyclic graphs, models with shared layers, or
multi-output models. We will see such examples in , Additional Deep Learning
Models.

An overview of predefined neural network layers
Keras has a number of prebuilt layers. Let us review the most commonly used ones and
highlight in which chapter these layers are mostly used.

Keras Installation and API

[61]

Regular dense
A dense model is a fully connected neural network layer. We have already seen examples of
usage in , Neural Networks Foundations. Here is the prototype with a definition of
the parameters:

Recurrent neural networks — simple, LSTM, and GRU
Recurrent neural networks are a class of neural networks that exploit the sequential nature
of their input. Such inputs could be a text, a speech, time series, and anything else where the
occurrence of an element in the sequence is dependent on the elements that appeared before
it. We will discuss simple, LSTM, and GRU recurrent neural networks in ,
Recurrent Neural Network — RNN. Here you can see some prototypes with a definition of the
parameters:

Keras Installation and API

[62]

Convolutional and pooling layers
ConvNets are a class of neural networks using convolutional and pooling operations for
progressively learning rather sophisticated models based on progressive levels of
abstraction. This learning via progressive abstraction resembles vision models that have
evolved over millions of years inside the human brain. People called it deep with 3-5 layers a
few years ago, and now it has gone up to 100-200. We will discuss convolutional neural
networks in , Deep Learning with ConvNets. Here are some prototypes with a
definition of the parameters:

Regularization
Regularization is a way to prevent overfitting. We have already seen examples of usage in

, Neural Networks Foundations. Multiple layers have parameters for regularization.
 The following is the list of regularization parameters commonly used for dense, and
convolutional modules:

: Regularizer function applied to the weight matrix
: Regularizer function applied to the bias vector

: Regularizer function applied to the output of the layer
(its activation)

Keras Installation and API

[63]

In addition is possible to use Dropout for regularization and that is frequently a very
effective choice

Where:

: It is a float between 0 and 1 which represents the fraction of the input units
to drop

: It is a 1D integer tensor which represents the shape of the binary
dropout mask that will be multiplied with the input

: It is a integer which is used use as random seed

Batch normalization
Batch normalization (for more information, refer to

) is a way to accelerate learning and generally achieve
better accuracy. We will look at examples of usage in , Generative Adversarial
Networks and WaveNet, when we discuss GANs. Here is the prototype with a definition of
the parameters:

An overview of predefined activation functions
Activation includes commonly used functions such as sigmoid, linear, hyperbolic tangent,
and ReLU. We have seen a few examples of activation functions in , Neural
Networks Foundations, and more examples will be presented in the next chapters. The
following diagrams are examples of sigmoid, linear, hyperbolic tangent, and ReLU
activation functions:

Keras Installation and API

[64]

Sigmoid Linear

Hyperbolic tangent ReLU

An overview of losses functions
Losses functions (or objective functions, or optimization score function; for more
information, refer to) can be classified into four categories:

Accuracy which is used for classification problems. There are multiple choices:
 (mean accuracy rate across all predictions for binary

classification problems), (mean accuracy rate across all
predictions for multiclass classification problems),

 (useful for sparse targets), and
 (success when the target class is within the

 predictions provided).

Keras Installation and API

[65]

Error loss, which measures the difference between the values predicted and the
values actually observed. There are multiple choices: (mean square error
between predicted and target values), (root square error between predicted
and target values), (mean absolute error between predicted and target
values), (mean percentage error between predicted and target values), and

 (mean squared logarithmic error between predicted and target values).
Hinge loss, which is generally used for training classifiers. There are two
versions: hinge defined as and squared hinge defined as the

y gg

the squared value of the hinge loss.
Class loss is used to calculate the cross-entropy for classification problems. There
are multiple versions, including binary cross-entropy (for more information, refer
to), and categorical cross-
entropy.

We have seen a few examples of objective functions in , Neural Networks
Foundations, and more examples will be presented in the next chapters.

An overview of metrics
A metric function (for more information, refer to) is similar to
an objective function. The only difference is that the results from evaluating a metric are not
used when training the model. We have seen a few examples of metrics in ,
Neural Networks Foundations, and more examples will be presented in the next chapters.

An overview of optimizers
Optimizers include SGD, RMSprop, and Adam. We have seen a few examples of optimizers
in , Neural Networks Foundations, and more examples (Adagrad and Adadelta; for
more information, refer to) will be presented in the next
chapters.

Some useful operations
Here we report some utility operations that can be carried out with Keras APIs. The goal is
to facilitate the creation of networks, the training process, and the saving of intermediate
results.

Keras Installation and API

[66]

Saving and loading the weights and the
architecture of a model
Model architectures can be easily saved and loaded as follows:

Model parameters (weights) can be easily saved and loaded as follows:

Callbacks for customizing the training
process
The training process can be stopped when a metric has stopped improving by using an
appropriate :

Loss history can be saved by defining a like the following:

Keras Installation and API

[67]

Checkpointing
Checkpointing is a process that saves a snapshot of the application's state at regular
intervals, so the application can be restarted from the last saved state in case of failure. This
is useful during training of deep learning models, which can often be a time-consuming
task. The state of a deep learning model at any point in time is the weights of the model at
that time. Keras saves these weights in HDF5 format (for more information, refer to

) and provides checkpointing using its callback API.

Some scenarios where checkpointing can be useful include the following:

If you want the ability to restart from your last checkpoint after your AWS Spot
instance (for more information, refer to

) or Google preemptible
virtual machine (for more information, refer to

) is unexpectedly terminated
If you want to stop training, perhaps to test your model on test data, then
continue training from the last checkpoint
If you want to retain the best version (by some metric such as validation loss) as it
trains over multiple epochs

The first and second scenarios can be handled by saving a checkpoint after each epoch,
which is handled by the default usage of the callback. The following
code illustrates how to add checkpointing during training of your deep learning model in
Keras:

Keras Installation and API

[68]

The third scenario involves monitoring a metric, such as validation accuracy or loss, and
only saving a checkpoint if the current metric is better than the previously saved
checkpoint. Keras provides an additional parameter, , which needs to be
set to when instantiating the checkpoint object in order to support this functionality.

Using TensorBoard and Keras
Keras provides a callback for saving your training and test metrics, as well as activation
histograms for the different layers in your model:

Saved data can then be visualized with TensorBoad launched at the command line:

Keras Installation and API

[69]

Using Quiver and Keras
In , Deep Learning with ConvNets, we will discuss ConvNets, which are an
advanced deep learning technique for dealing with images. Here we give a preview of
Quiver (for more information, refer to), a tool
useful for visualizing ConvNets features in an interactive way. The installation is pretty
simple, and after that Quiver can be used with one single line:

pip install quiver_engine

from quiver_engine import server server.launch(model)

This will launch the visualization at . Quiver allows you to visually
inspect a neural network, as in the following example:

Keras Installation and API

[70]

Summary
In this chapter, we discussed how to install Theano, TensorFlow, and Keras on the
following:

Your local machine
A dockerized infrastructure based on containers
In the cloud with Google GCP, Amazon AWS, and Microsoft Azure

In addition to that, we looked at a few modules defining Keras APIs and some commonly
useful operations such as loading and saving neural networks' architectures and weights,
early stopping, history saving, checkpointing, interactions with TensorBoard, and
interactions with Quiver.

In the next chapter, we will introduce the concept of convolutional networks a fundamental
innovation in deep learning which has been used with success in multiple domains from
text, to video, to speech going well beyond the initial image processing domain where they
were originally conceived.

33
Deep Learning with ConvNets

In previous chapters, we discussed dense nets, in which each layer is fully connected to the
adjacent layers. We applied those dense networks to classify the MNIST handwritten
characters dataset. In that context, each pixel in the input image is assigned to a neuron for a
total of 784 (28 x 28 pixels) input neurons. However, this strategy does not leverage the
spatial structure and relations of each image. In particular, this piece of code transforms the
bitmap representing each written digit into a flat vector, where the spatial locality is gone:

Convolutional neural networks (also called ConvNet) leverage spatial information and are
therefore very well suited for classifying images. These nets use an ad hoc architecture
inspired by biological data taken from physiological experiments done on the visual cortex.
As discussed, our vision is based on multiple cortex levels, each one recognizing more and
more structured information. First, we see single pixels; then from them, we recognize
simple geometric forms. And then... more and more sophisticated elements such as objects,
faces, human bodies, animals, and so on.

Convolutional neural networks are indeed fascinating. Over a short period of time, they
become a disruptive technology, breaking all the state-of-the-art results in multiple domains,
from text, to video, to speech going well beyond the initial image processing domain where
they were originally conceived.

Deep Learning with ConvNets

[72]

In this chapter, we will cover the following topics:

Deep convolutional neural networks
Image classification

Deep convolutional neural network — DCNN
A deep convolutional neural network (DCNN) consists of many neural network layers.
Two different types of layers, convolutional and pooling, are typically alternated. The depth
of each filter increases from left to right in the network. The last stage is typically made of
one or more fully connected layers:

There are three key intuitions beyond ConvNets:

Local receptive fields
Shared weights
Pooling

Let's review them.

Local receptive fields
If we want to preserve spatial information, then it is convenient to represent each image
with a matrix of pixels. Then, a simple way to encode the local structure is to connect a
submatrix of adjacent input neurons into one single hidden neuron belonging to the next
layer. That single hidden neuron represents one local receptive field. Note that this
operation is named convolution and it gives the name to this type of network.

Deep Learning with ConvNets

[73]

Of course, we can encode more information by having overlapping submatrices. For
instance, let's suppose that the size of each single submatrix is 5 x 5 and that those
submatrices are used with MNIST images of 28 x 28 pixels. Then we will be able to generate
23 x 23 local receptive field neurons in the next hidden layer. In fact it is possible to slide the
submatrices by only 23 positions before touching the borders of the images. In Keras, the
size of each single submatrix is called stride length, and this is a hyperparameter that can
be fine-tuned during the construction of our nets.

Let's define the feature map from one layer to another layer. Of course, we can have
multiple feature maps that learn independently from each hidden layer. For instance, we
can start with 28 x 28 input neurons for processing MINST images and then recall k feature
maps of size 23 x 23 neurons each (again with a stride of 5 x 5) in the next hidden layer.

Shared weights and bias
Let's suppose that we want to move away from the pixel representation in a row by gaining
the ability to detect the same feature independently from the location where it is placed in
the input image. A simple intuition is to use the same set of weights and bias for all the
neurons in the hidden layers. In this way, each layer will learn a set of position-independent
latent features derived from the image.

Assuming that the input image has shape (256, 256) on three channels with tf (TensorFlow)
ordering, this is represented as (256, 256, 3). Note that with th (Theano) mode, the channel's
dimension (the depth) is at index 1; in tf (TensoFlow) mode, it is at index 3.

In Keras, if we want to add a convolutional layer with dimensionality of the output 32 and
extension of each filter 3 x 3, we will write:

Alternatively, we will write:

This means that we are applying a 3 x 3 convolution on a 256 x 256 image with three input
channels (or input filters), resulting in 32 output channels (or output filters).

Deep Learning with ConvNets

[74]

An example of convolution is provided in the following diagram:

Pooling layers
Let's suppose that we want to summarize the output of a feature map. Again, we can use
the spatial contiguity of the output produced from a single feature map and aggregate the
values of a submatrix into a single output value that synthetically describes the meaning
associated with that physical region.

Max-pooling
One easy and common choice is max-pooling, which simply outputs the maximum activation
as observed in the region. In Keras, if we want to define a max-pooling layer of size 2 x 2,
we will write:

Deep Learning with ConvNets

[75]

An example of max-pooling is shown in the following diagram:

Average pooling
Another choice is average pooling, which simply aggregates a region into the average
values of the activations observed in that region.

Note that Keras implements a large number of pooling layers and a complete list is
available at: . In short, all pooling operations are
nothing more than a summary operation on a given region.

ConvNets summary
So far, we have described the basic concepts of ConvNets. CNNs apply convolution and
pooling operations in one dimension for audio and text data along the time dimension, in
two dimensions for images along the (height x width) dimensions, and in three dimensions
for videos along the (height x width x time) dimensions. For images, sliding the filter over
input volume produces a map that gives the responses of the filter for each spatial position.
In other words, a ConvNet has multiple filters stacked together which learn to recognize
specific visual features independently of the location in the image. Those visual features are
simple in the initial layers of the network, and then more and more sophisticated deeper in
the network.

Deep Learning with ConvNets

[76]

An example of DCNN — LeNet
Yann le Cun proposed (for more information refer to: Convolutional Networks for Images,
Speech, and Time-Series, by Y. LeCun and Y. Bengio, brain theory neural networks, vol. 3361,
1995) a family of ConvNets named LeNet trained for recognizing MNIST handwritten
characters with robustness to simple geometric transformations and to distortion. The key
intuition here is to have low-layers alternating convolution operations with max-pooling
operations. The convolution operations are based on carefully chosen local receptive fields
with shared weights for multiple feature maps. Then, higher levels are fully connected
layers based on a traditional MLP with hidden layers and softmax as the output layer.

LeNet code in Keras
To define LeNet code, we use a convolutional 2D module, which is:

Here, is the number of convolution kernels to use (for example, the dimensionality
of the output), is an integer or tuple/list of two integers, specifying the width
and height of the 2D convolution window (can be a single integer to specify the same value
for all spatial dimensions), and means that padding is used. There are
two options: means that the convolution is only computed where the
input and the filter fully overlap, and therefore the output is smaller than the input, while

 means that we have an output that is the same size as the input, for which
the area around the input is padded with zeros.

In addition, we use a module:

Here, is a tuple of two integers representing the factors by which the
image is vertically and horizontally downscaled. So (2, 2) will halve the image in each
dimension, and is the stride used for processing.

Deep Learning with ConvNets

[77]

Now, let us review the code. First we import a number of modules:

Then we define the LeNet network:

We have a first convolutional stage with ReLU activations followed by a max-pooling. Our
net will learn 20 convolutional filters, each one of which has a size of 5 x 5. The output
dimension is the same one of the input shape, so it will be 28 x 28. Note that since the

 is the first stage of our pipeline, we are also required to define its
. The max-pooling operation implements a sliding window that slides over

the layer and takes the maximum of each region with a step of two pixels vertically and
horizontally:

Deep Learning with ConvNets

[78]

Then a second convolutional stage with ReLU activations follows, again by a max-pooling.
In this case, we increase the number of convolutional filters learned to 50 from the previous
20. Increasing the number of filters in deeper layers is a common technique used in deep
learning:

Then we have a pretty standard flattening and a dense network of 500 neurons, followed by
a softmax classifier with 10 classes:

Congratulations, You have just defined the first deep learning network! Let's see how it
looks visually:

Deep Learning with ConvNets

[79]

Now we need some additional code for training the network, but this is very similar to
what we have already described in , Neural Network Foundations. This time, we
also show the code for printing the loss:

Deep Learning with ConvNets

[80]

Now let's run the code. As you can see, the time had a significant increase and each iteration
in our deep net now takes ~134 seconds against ~1-2 seconds for the net defined in

, Neural Network Foundations. However, the accuracy has reached a new peak at 99.06%:

Deep Learning with ConvNets

[81]

Let's plot the model accuracy and the model loss, and we understand that we can train in
only 4 - 5 iterations to achieve a similar accuracy of 99.2%:

In the following screenshot, we show the final accuracy achieved by our model:

Deep Learning with ConvNets

[82]

Let's see some of the MNIST images just to understand how good the number 99.2% is! For
instance, there are many ways in which humans write a 9, one of them appearing in the
following diagram. The same holds for 3, 7, 4, and 5. The number 1 in this diagram is so
difficult to recognize that probably even a human will have issues with it:

We can summarize all the progress made so far with our different models in the following
graph. Our simple net started with an accuracy of 92.22%, which means that about 8
handwritten characters out of 100 are not correctly recognized. Then, we gained 7% with
the deep learning architecture by reaching an accuracy of 99.20%, which means that about
1 handwritten character out of 100 is incorrectly recognized:

Deep Learning with ConvNets

[83]

Understanding the power of deep learning
Another test that we can run to better understand the power of deep learning and ConvNet
is to reduce the size of the training set and observe the consequent decay in performance.
One way to do this is to split the training set of 50,000 examples into two different sets:

The proper training set used for training our model will progressively reduce its
size of (5,900, 3,000, 1,800, 600, and 300) examples
The validation set used to estimate how well our model has been trained will
consist of the remaining examples

Our test set is always fixed and it consists of 10,000 examples.

With this setup, we compare the just-defined deep learning ConvNet against the first
example of neural network defined in , Neural Network Foundations. As we can see
in the following graph, our deep network always outperforms the simple network and the
gap is more and more evident when the number of examples provided for training is
progressively reduced. With 5,900 training examples the deep learning net had an accuracy
of 96.68% against an accuracy of 85.56% of the simple net. More important, with only 300
training examples our deep learning net still has an accuracy of 72.44% while the simple net
shows a significant decay at 48.26%. All the experiments are run for only four training
iterations. This confirms the breakthrough progress achieved with deep learning. At first
glance this could be surprising from a mathematical point of view because the deep
network has many more unknowns (the weights), so one would think we need many more
data points.

Deep Learning with ConvNets

[84]

However, preserving the spatial information, adding convolution, pooling, and feature
maps is innovation with ConvNets, and this was optimized on millions of years (since this
organization has been inspired by the visual cortex):

A list of state-of-the-art results for MNIST is available at:
. As of January, 2017, the

best result has an error rate of 0.21%.

Recognizing CIFAR-10 images with deep
learning
The CIFAR-10 dataset contains 60,000 color images of 32 x 32 pixels in 3 channels divided
into 10 classes. Each class contains 6,000 images. The training set contains 50,000 images,
while the test sets provides 10,000 images. This image taken from the CIFAR repository (

) describes a few random examples from the
10 classes:

Deep Learning with ConvNets

[85]

The goal is to recognize previously unseen images and assign them to one of the 10 classes.
Let us define a suitable deep net.

First of all we import a number of useful modules, define a few constants, and load the
dataset:

Deep Learning with ConvNets

[86]

Now let's do a one-hot encoding and normalize the images:

Our net will learn 32 convolutional filters, each of which with a 3 x 3 size. The output
dimension is the same one of the input shape, so it will be 32 x 32 and activation is ReLU,
which is a simple way of introducing non-linearity. After that we have a max-pooling
operation with pool size 2 x 2 and a dropout at 25%:

Deep Learning with ConvNets

[87]

The next stage in the deep pipeline is a dense network with 512 units and ReLU activation
followed by a dropout at 50% and by a softmax layer with 10 classes as output, one for each
category:

After defining the network, we can train the model. In this case, we split the data and
compute a validation set in addition to the training and testing sets. The training is used to
build our models, the validation is used to select the best performing approach, while the
test set is to check the performance of our best models on fresh unseen data:

In this case we save the architecture of our deep network:

Deep Learning with ConvNets

[88]

Let us run the code. Our network reaches a test accuracy of 66.4% with 20 iterations. We
also print the accuracy and loss plot, and dump the network with :

Deep Learning with ConvNets

[89]

In the following graph, we report the accuracy and the lost achieved by our net on both
train and test datasets:

Improving the CIFAR-10 performance with deeper
a network
One way to improve the performance is to define a deeper network with multiple
convolutional operations. In this example, we have a sequence of modules:

conv+conv+maxpool+dropout+conv+conv+maxpool

Followed by a standard dense+dropout+dense. All the activation functions are ReLU.

Let us see the code for the new network:

Deep Learning with ConvNets

[90]

Congratulations! You have defined a deeper network. Let us run the code! First we dump
the network, then we run for 40 iterations reaching an accuracy of 76.9%:

Deep Learning with ConvNets

[91]

In the following screenshot, we will see the accuracy reached after 40 iterations:

So we have an improvement of 10.5% with respect to the previous simpler deeper network.
For the sake of completeness, let us also report the accuracy and loss during training, shown
as follows:

Improving the CIFAR-10 performance with data
augmentation
Another way to improve the performance is to generate more images for our training. The
key intuition is that we can take the standard CIFAR training set and augment this set with
multiple types of transformations including rotation, rescaling, horizontal/vertical flip,
zooming, channel shift, and many more. Let us see the code:

Deep Learning with ConvNets

[92]

The is a value in degrees (-) for randomly rotating
pictures. and are ranges for randomly translating pictures
vertically or horizontally. is for randomly zooming
pictures. is for randomly flipping half of the images
horizontally. is the strategy used for filling in new pixels that can appear after a
rotation or a shift:

Deep Learning with ConvNets

[93]

After augmentation, we will have generated many more training images starting from the
standard CIFAR-10 set:

Now we can apply this intuition directly for training. Using the same ConvNet defined
previously we simply generate more augmented images and then we train. For efficiency,
the generator runs in parallel to the model. This allows an image augmentation on the CPU
and in parallel to training on the GPU. Here is the code:

Deep Learning with ConvNets

[94]

Each iteration is now more expensive because we have more training data. So let us run for
50 iterations only and see that we reach an accuracy of 78.3%:

The results obtained during our experiments are summarized in the following graph:

A list of state-of-the-art results for CIFAR-10 is available at:
. As of January, 2017,

the best result has an accuracy of 96.53%.

Deep Learning with ConvNets

[95]

Predicting with CIFAR-10
Now let us suppose that we want to use the deep learning model we just trained for
CIFAR-10 for a bulk evaluation of images. Since we saved the model and the weights, we
do not need to train every time:

Now let us get the prediction for a and for a .

We get categories (cat) and (dog) as output, as expected:

Deep Learning with ConvNets

[96]

Very deep convolutional networks for large-
scale image recognition
In 2014, an interesting contribution for image recognition was presented (for more
information refer to: Very Deep Convolutional Networks for Large-Scale Image Recognition, by K.
Simonyan and A. Zisserman, 2014). The paper shows that, a significant improvement on the
prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. One model in
the paper denoted as D or VGG-16 has 16 deep layers. An implementation in Java Caffe (

) has been used for training the model on the ImageNet
ILSVRC-2012 () dataset, which includes
images of 1,000 classes and is split into three sets: training (1.3 million images), validation
(50,000 images), and testing (100,000 images). Each image is (224 x 224) on three channels.
The model achieves 7.5% top 5 error on ILSVRC-2012-val and 7.4% top 5 error on
ILSVRC-2012-test.

According to the ImageNet site:

The goal of this competition is to estimate the content of photographs for the purpose of
retrieval and automatic annotation using a subset of the large hand-labeled ImageNet
dataset (10 million labeled images depicting 10,000 + object categories) as training. Test
images will be presented with no initial annotation—no segmentation or labels—and
algorithms will have to produce labelings specifying what objects are present in the images.

The weights learned by the model implemented in Caffe have been directly converted in
Keras (for more information refer to:

) and can be used for preloading into the Keras model, which is
implemented next as described in the paper:

Deep Learning with ConvNets

[97]

Recognizing cats with a VGG-16 net
Now let us test the image of a :

Deep Learning with ConvNets

[98]

When the code is executed, the class is returned, which corresponds (for more
information refer to:) to
Egyptian cat:

Utilizing Keras built-in VGG-16 net module
Keras applications are pre-built and pre-trained deep learning models. Weights are
downloaded automatically when instantiating a model and stored at .
Using built-in code is very easy:

Deep Learning with ConvNets

[99]

Now, let us consider a train:

It's like the ones my grandfather drove. If we run the code, we get result , which is the
image net code for steaming train. Equally important is the fact that all the other classes have
very weak support, as shown in the following graph:

To conclude this section, note that VGG-16 is only one of the modules that are pre-built in
Keras. A full list of pre-trained Keras models is available at:

.

Deep Learning with ConvNets

[100]

Recycling pre-built deep learning models for
extracting features
One very simple idea is to use VGG-16 and, more generally, DCNN, for feature extraction.
This code implements the idea by extracting features from a specific layer:

Now you might wonder why we want to extract the features from an intermediate layer in
a DCNN. The key intuition is that, as the network learns to classify images into categories,
each layer learns to identify the features that are necessary to do the final classification.
Lower layers identify lower order features such as color and edges, and higher layers
compose these lower order feature into higher order features such as shapes or objects.
Hence the intermediate layer has the capability to extract important features from an image,
and these features are more likely to help in different kinds of classification. This has
multiple advantages. First, we can rely on publicly available large-scale training and
transfer this learning to novel domains. Second, we can save time for expensive large
training. Third, we can provide reasonable solutions even when we don't have a large
number of training examples for our domain. We also get a good starting network shape for
the task at hand, instead of guessing it.

Deep Learning with ConvNets

[101]

Very deep inception-v3 net used for transfer
learning
Transfer learning is a very powerful deep learning technique which has more applications
in different domains. The intuition is very simple and can be explained with an analogy.
Suppose you want to learn a new language, say Spanish; then it could be useful to start
from what you already know in a different language, say English.

Following this line of thinking, computer vision researchers now commonly use pre-trained
CNNs to generate representations for novel tasks, where the dataset may not be large
enough to train an entire CNN from scratch. Another common tactic is to take the pre-
trained ImageNet network and then to fine-tune the entire network to the novel task.

Inception-v3 net is a very deep ConvNet developed by Google. Keras implements the full
network described in the following diagram and it comes pre-trained on ImageNet. The
default input size for this model is 299 x 299 on three channels:

This skeleton example is inspired by a scheme available at:
. We suppose to have a training dataset D in a domain, different from ImageNet. D has

1,024 features in input and 200 categories in output. Let us see a code fragment:

Deep Learning with ConvNets

[102]

We use a trained inception-v3; we do not include the top model because we want to fine-
tune on D. The top level is a dense layer with 1,024 inputs and where the last output level is
a softmax dense layer with 200 classes of output. is
used to convert the input to the correct shape for the dense layer to handle. In fact,

 tensor has the shape (samples, channels, rows, cols) for
 or (samples, rows, cols, channels) for but dense

needs them as (samples, channels) and averages across (rows,
cols). So if you look at the last four layers (where), you see these
shapes:

When you do you are removing the last three layers and exposing
the layer, so the layer converts the (None, 8, 8, 2048)
to (None, 2048), where each element in the (None, 2048) tensor is the average value for each
corresponding (8, 8) subtensor in the (None, 8, 8, 2048) tensor:

add a global spatial average pooling layer

let's add a fully-connected layer as first
layer

and a logistic layer with 200
classes as last layer

model to train

All the convolutional levels are pre-trained, so we freeze them during the training of the full
model:

that is, freeze all convolutional InceptionV3 layers
for in False

Deep Learning with ConvNets

[103]

The model is then compiled and trained for a few epochs so that the top layers are trained:

compile the model (should be done *after* setting layers to non-
trainable)

train the model on the new data for a few epochs

Then we freeze the top layers in inception and fine-tune some inception layer. In this
example, we decide to freeze the first 172 layers (an hyperparameter to tune):

we chose to train the top 2 inception blocks, that is, we will freeze

the first 172 layers and unfreeze the rest:
for in

False
for in

True

The model is then recompiled for fine-tune optimization. We need to recompile the model
for these modifications to take effect:

we use SGD with a low learning rate
from
import

we train our model again (this time fine-tuning the top 2 inception
blocks)
alongside the top Dense layers

Now we have a new deep network that reuses the standard Inception-v3 network, but it is
trained on a new domain D via transfer learning. Of course, there are many parameters to
fine-tune for achieving good accuracy. However, we are now reusing a very large pre-
trained network as a starting point via transfer learning. In doing so, we can save the need
to train on our machines by reusing what is already available in Keras.

Deep Learning with ConvNets

[104]

Summary
In this chapter, we learned how to use Deep Learning ConvNets for recognizing MNIST
handwritten characters with high accuracy. Then we used the CIFAR 10 dataset to build a
deep learning classifier in 10 categories, and the ImageNet datasets to build an accurate
classifier in 1,000 categories. In addition, we investigated how to use large deep learning
networks such as VGG16 and very deep networks such as InceptionV3. The chapter
concluded with a discussion on transfer learning in order to adapt pre-built models trained
on large datasets so that they can work well on a new domain.

In the next chapter, we will introduce generative adversarial networks used to reproduce
synthetic data that looks like data generated by humans; and we will present WaveNet, a
deep neural network used for reproducing human voice and musical instruments with high
quality.

44
Generative Adversarial

Networks and WaveNet
In this chapter, we will discuss generative adversarial networks (GANs) and WaveNets.
GANs have been defined as the most interesting idea in the last 10 years in
ML (

) by Yann LeCun, one of the fathers of deep learning. GANs are
able to learn how to reproduce synthetic data that looks real. For instance, computers can
learn how to paint and create realistic images. The idea was originally proposed by Ian
Goodfellow (for more information refer to: NIPS 2016 Tutorial: Generative Adversarial
Networks, by I. Goodfellow, 2016); he was worked with the University of Montreal, Google
Brain, and recently OpenAI (). WaveNet is a deep generative network
proposed by Google DeepMind to teach computers how to reproduce human voices and
musical instruments, both with impressive quality.

In this chapter, we will cover cover the following topics:

What is GAN?
Deep convolutional GAN
Applications of GAN

Generative Adversarial Networks and WaveNet

[106]

What is a GAN?
The key intuition of GAN can be easily considered as analogous to art forgery, which is the
process of creating works of art () that are falsely
credited to other, usually more famous, artists. GANs train two neural nets
simultaneously, as shown in the next diagram. The generator G(Z) makes the forgery, and
the discriminator D(Y) can judge how realistic the reproductions based on its observations
of authentic pieces of arts and copies are. D(Y) takes an input, Y, (for instance, an image)
and expresses a vote to judge how real the input is--in general, a value close to zero denotes
real and a value close to one denotes forgery. G(Z) takes an input from a random noise, Z,
and trains itself to fool D into thinking that whatever G(Z) produces is real. So, the goal of
training the discriminator D(Y) is to maximize D(Y) for every image from the true data
distribution, and to minimize D(Y) for every image not from the true data distribution.
So, G and D play an opposite game; hence the name adversarial training. Note that we train G
and D in an alternating manner, where each of their objectives is expressed as a loss
function optimized via a gradient descent. The generative model learns how to forge more
successfully, and the discriminative model learns how to recognize forgery more
successfully. The discriminator network (usually a standard convolutional neural network)
tries to classify whether an input image is real or generated. The important new idea is to
backpropagate through both the discriminator and the generator to adjust the generator's
parameters in such a way that the generator can learn how to fool the the discriminator for
an increasing number of situations. At the end, the generator will learn how to produce
forged images that are indistinguishable from real ones:

Generative Adversarial Networks and WaveNet

[107]

Of course, GANs require finding the equilibrium in a game with two players. For effective
learning it is required that if a player successfully moves downhill in a round of updates,
the same update must move the other player downhill too. Think about it! If the forger
learns how to fool the judge on every occasion, then the forger himself has nothing more to
learn. Sometimes the two players eventually reach an equilibrium, but this is not always
guaranteed and the two players can continue playing for a long time. An example of
learning from both sides has been provided in the following graph:

Generative Adversarial Networks and WaveNet

[108]

Some GAN applications
We have seen that the generator learns how to forge data. This means that it learns how to
create new synthetic data, which is created by the network, that looks real and like it was
created by humans. Before going into details of some GAN code, I'd like to share the results
of a recent paper: StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative
Adversarial Networks, by Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei
Huang, Xiaogang Wang, and Dimitris Metaxas (the code is available online at:

).
Here, a GAN has been used to synthesize forged images starting from a text description.
The results are impressive. The first column is the real image in the test set, and the rest of
the columns contain images generated from the same text description by Stage-I and Stage-
II of StackGAN. More examples are available on YouTube (

):

Generative Adversarial Networks and WaveNet

[109]

Now let us see how a GAN can learn to forge the MNIST dataset. In this case, there is a
combination of GAN and ConvNets (for more information refer to: Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial Networks, by A.
Radford, L. Metz, and S. Chintala, arXiv: 1511.06434, 2015) used for the generator and the
discriminator networks. At the beginning, the generator creates nothing understandable,
but after a few iterations, synthetic forged numbers are progressively clearer and clearer. In
the following image, the panels are ordered by increasing training epochs, and you can see
the quality improving among panels:

The following image represents the forged handwritten numbers as the number of
iterations increases:

Generative Adversarial Networks and WaveNet

[110]

The following image represents the forged handwritten numbers at the hand of
computation. The results are virtually indistinguishable from the original:

One of the coolest uses of GAN is arithmetic on faces in the generator's vector Z. In other
words, if we stay in the space of synthetic forged images, it is possible to see things like this:

[smiling woman] - [neutral woman] + [neutral man] = [smiling man]

Or like this:

[man with glasses] - [man without glasses] + [woman without glasses] = [woman with glasses]

The next image is taken from the article, Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, by A. Radford, L. Metz, and S. Chintala, arXiv:
1511.06434, November, 2015:

Generative Adversarial Networks and WaveNet

[111]

Generative Adversarial Networks and WaveNet

[112]

Deep convolutional generative adversarial
networks
The deep convolutional generative adversarial networks (DCGAN) are introduced in the
paper: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks, by A. Radford, L. Metz, and S. Chintala, arXiv: 1511.06434, 2015. The generator
uses a 100-dimensional, uniform distribution space, Z, which is then projected into a
smaller space by a series of vis-a-vis convolution operations. An example is shown in the
following figure:

A DCGAN generator can be described by the following Keras code; it is also described by
one implementation, available at: :

Generative Adversarial Networks and WaveNet

[113]

Note that the code runs with Keras 1.x syntax. However, it is possible to run it with Keras
2.0 thanks to the Keras legacy interfaces. In this case a few warnings are reported as shown
in the following figure:

Now let’s see the code. The first dense layer takes a vector of 100 dimensions as input and it
produces 1,024 dimensions with the activation function as the output. We assume that
the input is sampled from a uniform distribution in [-1, 1]. The next dense layer produces
data of 128 x 7 x 7 in the output using batch normalization (for more information refer to
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, by
S. Ioffe and C. Szegedy, arXiv: 1502.03167, 2014), a technique that can help stabilize learning
by normalizing the input to each unit to zero mean and unit variance. Batch normalization
has been empirically proven to accelerate the training in many situations, reduce the
problems of poor initialization, and more generally produce more accurate results. There is
also a module that produces data of 127 x 7 x 7 (127 channels, 7 width, and 7
height), to , and a module that produces a repetition of
each one into a 2 x 2 square. After that, we have a convolutional layer producing 64 filters
on 5 x 5 convolutional kernels with the activation , followed by a new
and a final convolution with one filter, and on 5 x 5 convolutional kernels with the
activation . Notice that this ConvNet has no pooling operations. The discriminator can
be described with the following code:

Generative Adversarial Networks and WaveNet

[114]

The code takes a standard MNIST image with the shape and applies a
convolution with 64 filters of size 5 x 5 with as the activation function. This is followed
by a max-pooling operation of size 2 x 2 and by a further convolution max-pooling
operation. The last two stages are dense, with the final one being the prediction for forgery,
which consists of only one neuron with a activation function. For a chosen number
of epochs, the generator and discriminator are in turn trained by using

 as loss function. At each epoch, the generator makes a number of
predictions (for example, it creates forged MNIST images) and the discriminator tries to
learn after mixing the prediction with real MNIST images. After 32 epochs, the generator
learns to forge this set of handwritten numbers. No one has programmed the machine to
write but it has learned how to write numbers that are indistinguishable from the ones
written by humans. Note that training GANs could be very difficult because it is necessary
to find the equilibrium between two players. If you are interested in this topic, I'd advise
you to have a look at a series of tricks collected by practitioners (

):

Generative Adversarial Networks and WaveNet

[115]

Keras adversarial GANs for forging MNIST
Keras adversarial () is an open source
Python package for building GANs developed by Ben Striner (

 and
). Since Keras just recently moved to 2.0, I suggest downloading latest Keras adversarial
package:

git clone --depth=50 --branch=master
https://github.com/bstriner/keras-adversarial.git

And install :

python setup.py install

Note that compatibility with Keras 2.0 is tracked in this
issue .

 If the generator G and the discriminator D are based on the same model, M, then they can
be combined into an adversarial model; it uses the same input, M, but separates targets and
metrics for G and D. The library has the following API call:

If the generator G and the discriminator D are based on the two different models, then it is
possible to use this API call:

Let's see an example of a computation with MNIST:

Generative Adversarial Networks and WaveNet

[116]

Let us see the open source code (
). Note that the code uses the syntax

of Keras 1.x, but it also runs on the top of Keras 2.x thanks to a convenient set of utility
functions contained in . The code for is reported in ,
Conclusion, and is available at

.

First, the open source example imports a number of modules. We have seen all of them
previously, with the exception of LeakyReLU, a special version of ReLU that allows a small
gradient when the unit is not active. Experimentally, it has been shown that LeakyReLU can
improve the performance of GANs (for more information refer to: Empirical Evaluation of
Rectified Activations in Convolutional Network, by B. Xu, N. Wang, T. Chen, and M. Li,
arXiv:1505.00853, 2014) in a number of situations:

Then, specific modules for GANs are imported:

Adversarial models train for multiplayer games. Given a base model with n targets and k
players, create a model with n*k targets, where each player optimizes loss on that player's
targets. In addition, generates a GAN with the given . Note that
in the library, the labels for generator and discriminator are opposite; intuitively, this is a
standard practice for GANs:

Generative Adversarial Networks and WaveNet

[117]

The example defines the generator in a similar way to what we have seen previously.
However, in this case, we use the functional syntax—each module in our pipeline is simply
passed as input to the following module. So, the first module is dense, initialized by using

. This initialization uses Gaussian noise scaled by the sum of the inputs
plus outputs from the node. The same kind of initialization is used for all of the other
modules. The parameter in function produces feature-wise
normalization based on per-batch statistics. Experimentally, this produces better results:

The discriminator is very similar to the one defined previously in this chapter. The only
major difference is the adoption of :

Generative Adversarial Networks and WaveNet

[118]

Then, two simple functions for loading and normalizing MNIST data are defined:

As a next step, the GAN is defined as a combination of generator and discriminator in a
joint GAN model. Note that the weights are initialized with ,
which samples from a normal Gaussian distribution:

Generative Adversarial Networks and WaveNet

[119]

After this, the example creates our GAN and it compiles the model trained using the
 optimizer, with used as a loss function:

The generator for creating new images that look like real ones is defined. Each epoch will
generate a new forged image during training that looks like the original:

Note that is utility function for supporting different image ordering
defined in , as follows:

Generative Adversarial Networks and WaveNet

[120]

Now let's run the code and see the loss for the generator and discriminator. In the following
screenshot, we see a dump of the networks for the discriminator and the generator:

Generative Adversarial Networks and WaveNet

[121]

The following screenshot, shows the number of sample used for training and for validation:

After 5-6 iterations, we already have acceptable artificial images generated and the
computer has learned how to reproduce handwritten characters, as shown in the following
image:

Generative Adversarial Networks and WaveNet

[122]

Keras adversarial GANs for forging CIFAR
Now we can use a GAN approach to learn how to forge CIFAR-10 and create synthetic
images that look real. Let's see the open source code (

). Again, note that it
uses the syntax of Keras 1.x, but it also runs on the top of Keras 2.x thanks to a convenient
set of utility functions contained in (

). First, the open source example
imports a number of packages:

Next, it defines a generator that uses a combination of convolutions with and
regularization, batch normalization, and upsampling. Note that says to normalize
the dimension of the tensor first and says to adopt a feature-wise normalization.
This particular net is the result of many fine-tuning experiments, but it is still essentially a
sequence of convolution 2D and upsampling operations, which uses a module at the
beginning and a at the end. In addition, each convolution uses a
activation function and :

Generative Adversarial Networks and WaveNet

[123]

Then, a discriminator is defined. Again, we have a sequence of convolution 2D operations,
and in this case we adopt , which drops entire 2D feature maps instead
of individual elements. We also use and for similar
reasons:

Generative Adversarial Networks and WaveNet

[124]

It is now possible to generate proper GANs. The following function takes multiple inputs,
including a generator, a discriminator, the number of latent dimensions, and the GAN
targets:

Then two GANs are created, one with dropout and the other without dropout for the
discriminator:

Generative Adversarial Networks and WaveNet

[125]

The two GANs are now combined into an adversarial model with separate weights, and the
model is then compiled:

Next, there is a simple callback to sample images and a print on the file where the method
 is defined:

Now, the CIFAR-10 data is loaded and the model is fit. If the backend is TensorFlow, then
the loss information is saved into a TensorBoard to check how the loss decreases over time.
The history is also conveniently saved into a CVS format, and the models' weights are also
stored in an format:

Generative Adversarial Networks and WaveNet

[126]

Finally, the whole GANs can be run. The generator samples from a space with 100 latent
dimensions, and we've used as optimizer for both GANs:

In order to have a complete view on the open source code, we need to include a few simple
utility functions for storing the grid of images:

Generative Adversarial Networks and WaveNet

[127]

In addition, we need some utility methods for dealing with different image ordering (for
example, Theano or TensorFlow):

Generative Adversarial Networks and WaveNet

[128]

The following screenshot, shows a dump of the defined networks:

Generative Adversarial Networks and WaveNet

[129]

If we run the open source code, the very first iteration will generate unrealistic images.
However, after 99 iterations, the network will learn to forge images that look like real
CIFAR-10 images, as shown here:

In the following images, we see the real CIFAR-10 image on the right and the forged one on
the left:

Forged images Real CIFAR-10 images

Generative Adversarial Networks and WaveNet

[130]

WaveNet — a generative model for learning
how to produce audio
WaveNet is a deep generative model for producing raw audio waveforms. This
breakthrough technology was introduced (

) by Google DeepMind () for teaching
users how to speak to computers. The results are truly impressive, and you can find online
examples of synthetic voices where the computer learns how to talk with the voices of
celebrities such as Matt Damon. So, you might wonder why learning to synthesize audio is
so difficult. Well, each digital sound we hear is based on 16,000 samples per second
(sometimes, 48,000 or more), and building a predictive model where we learn to reproduce
a sample based on all the previous ones is a very difficult challenge. Nevertheless, there are
experiments showing that WaveNet has improved current state-of-the-art text-to-speech
(TTS) systems, reducing the difference with human voices by 50% for both US English and
Mandarin Chinese. What is even cooler is that DeepMind proved that WaveNet can also be
used to teach computers how to generate the sound of musical instruments such as piano
music. Now it's time for some definitions. TTS systems are typically divided into two
different classes:

Concatenative TTS: This is where single speech voice fragments are first
memorized and then recombined when the voice has to be reproduced. However,
this approach does not scale because it is only possible to reproduce the
memorized voice fragments, and it is not possible to reproduce new speakers or
different types of audio without memorizing the fragments from the beginning.
Parametric TTS: This is where a model is created for storing all the characteristic
features of the audio to be synthesized. Before WaveNet, the audio generated
with parametric TTS was less natural than concatenative TTS. WaveNet
improved the state-of-the-art by modeling directly the production of audio
sounds, instead of using intermediate signal processing algorithms that have
been used in the past.

Generative Adversarial Networks and WaveNet

[131]

In principle, WaveNet can be seen as a stack of 1D convolutional layers (we have seen 2D
convolution for images in , Deep Learning with ConvNets), with a constant stride of
one and with no pooling layers. Note that the input and the output have by construction the
same dimension, so ConvNet is well-suited to model sequential data such as audio.
However, it has been shown that in order to reach a large size for the receptive field
(remember that the receptive field of a neuron in a layer is the cross section of the previous
layer from which neurons provide inputs) in the output neuron it is necessary to either use
a massive number of large filters or prohibitively increase the the depth of the network. For
this reason, pure ConvNets are not so effective in learning how to synthesize audio. The key
intuition beyond WaveNet is the dilated causal convolutions (for more information refer to
the article: Multi-Scale Context Aggregation by Dilated Convolutions, by Fisher Yu, Vladlen
Koltun, 2016, available at:

) or sometime atrous convolution (atrous is the bastardization of the French expression à
trous, meaning with holes, so an atrous convolution is a convolution with holes), which
simply means that some input values are skipped when the filter of a convolutional layer is
applied. As an example, in one dimension, a filter, w, of size 3 with dilatation 1 would
compute the following sum:

Thanks to this simple idea of introducing holes, it is possible to stack multiple dilated
convolutional layers with exponentially increasing filters, and learn long range input
dependencies without having an excessively deep network. A WaveNet is therefore a
ConvNet where the convolutional layers have various dilation factors, allowing the
receptive field to grow exponentially with depth and therefore efficiently cover thousands
of audio time-steps. When we train, the input are sounds recorded from human speakers.
The waveforms are quantized to a fixed integer range. A WaveNet defines an initial
convolutional layer accessing only the current and previous input. Then, there is a stack of
dilated ConvNet layers, still accessing only current and previous inputs. At the end, there is
a series of dense layers that combine previous results, followed by a softmax activation
function for categorical outputs. At each step, a value is predicted from the network and fed
back into the input. At the same time, a new prediction for the next step is computed. The
loss function is the cross-entropy between the output for the current step and the input at
the next step .One Keras implementation developed by Bas Veeling is available at:

 and can be easily installed via :

pip install virtualenv
mkdir ~/virtualenvs && cd ~/virtualenvs
virtualenv wavenet
source wavenet/bin/activate
cd ~

Generative Adversarial Networks and WaveNet

[132]

git clone https://github.com/basveeling/wavenet.git
cd wavenet
pip install -r requirements.txt

Note that this code is compatible with Keras 1.x and please check the issue at
, to understand what is the progress for porting it

on the top of Keras 2.x. Training is very simple but requires a significant amount of
computational power (so make sure that you have good GPU support):

$ python wavenet.py with 'data_dir=your_data_dir_name'

Sampling the network after training is equally very easy:

python wavenet.py predict with 'models/[run_folder]/config.json
predict_seconds=1'

You can find a large number of hyperparameters online, which can be used for fine-tuning
our training process. The network is really deep, as explained by this dump of internal
layers. Note that the input waveform are divided into (and

), which is the tensor propagating into WaveNet. WaveNet is
organized in repeated blocks called residuals, each consisting of a multiplied merge of two
dilated convolutional modules (one with and the other with activation),
followed by a sum merged convolutional. Note that each dilated convolution has holes of
growing exponential size () from 1 to 512, as defined in this piece of text:

Generative Adversarial Networks and WaveNet

[133]

After the residual dilated block, there is a sequence of merged convolutional modules,
followed by two convolutional modules, followed by a activation function in

 categories. The full network structure is here:

Layer (type) Output Shape Param # Connected to
===
=========================
input_part (InputLayer) (None, 1152, 256) 0

initial_causal_conv (CausalAtrou (None, 1152, 256) 131328 input_part[0][0]

dilated_conv_1_tanh_s0 (CausalAt (None, 1152, 256) 131072
initial_causal_conv[0][0]

dilated_conv_1_sigm_s0 (CausalAt (None, 1152, 256) 131072
initial_causal_conv[0][0]

gated_activation_0_s0 (Merge) (None, 1152, 256) 0
dilated_conv_1_tanh_s0[0][0]
dilated_conv_1_sigm_s0[0][0]
__

convolution1d_1 (Convolution1D) (None, 1152, 256) 65536
gated_activation_0_s0[0][0]

merge_1 (Merge) (None, 1152, 256) 0 initial_causal_conv[0][0]
convolution1d_1[0][0]

dilated_conv_2_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_1[0][0]

dilated_conv_2_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_1[0][0]

gated_activation_1_s0 (Merge) (None, 1152, 256) 0
dilated_conv_2_tanh_s0[0][0]
dilated_conv_2_sigm_s0[0][0]

convolution1d_3 (Convolution1D) (None, 1152, 256) 65536
gated_activation_1_s0[0][0]

Generative Adversarial Networks and WaveNet

[134]

merge_2 (Merge) (None, 1152, 256) 0 merge_1[0][0]
convolution1d_3[0][0]

dilated_conv_4_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_2[0][0]

dilated_conv_4_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_2[0][0]

gated_activation_2_s0 (Merge) (None, 1152, 256) 0
dilated_conv_4_tanh_s0[0][0]
dilated_conv_4_sigm_s0[0][0]

convolution1d_5 (Convolution1D) (None, 1152, 256) 65536
gated_activation_2_s0[0][0]

merge_3 (Merge) (None, 1152, 256) 0 merge_2[0][0]
convolution1d_5[0][0]

dilated_conv_8_tanh_s0 (CausalAt (None, 1152, 256) 131072 merge_3[0][0]

dilated_conv_8_sigm_s0 (CausalAt (None, 1152, 256) 131072 merge_3[0][0]

gated_activation_3_s0 (Merge) (None, 1152, 256) 0
dilated_conv_8_tanh_s0[0][0]
dilated_conv_8_sigm_s0[0][0]

convolution1d_7 (Convolution1D) (None, 1152, 256) 65536
gated_activation_3_s0[0][0]

merge_4 (Merge) (None, 1152, 256) 0 merge_3[0][0]
convolution1d_7[0][0]

dilated_conv_16_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_4[0][0]

dilated_conv_16_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_4[0][0]

Generative Adversarial Networks and WaveNet

[135]

gated_activation_4_s0 (Merge) (None, 1152, 256) 0
dilated_conv_16_tanh_s0[0][0]
dilated_conv_16_sigm_s0[0][0]

convolution1d_9 (Convolution1D) (None, 1152, 256) 65536
gated_activation_4_s0[0][0]

merge_5 (Merge) (None, 1152, 256) 0 merge_4[0][0]
convolution1d_9[0][0]

dilated_conv_32_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_5[0][0]

dilated_conv_32_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_5[0][0]

gated_activation_5_s0 (Merge) (None, 1152, 256) 0
dilated_conv_32_tanh_s0[0][0]
dilated_conv_32_sigm_s0[0][0]

convolution1d_11 (Convolution1D) (None, 1152, 256) 65536
gated_activation_5_s0[0][0]

merge_6 (Merge) (None, 1152, 256) 0 merge_5[0][0]
convolution1d_11[0][0]

dilated_conv_64_tanh_s0 (CausalA (None, 1152, 256) 131072 merge_6[0][0]

dilated_conv_64_sigm_s0 (CausalA (None, 1152, 256) 131072 merge_6[0][0]

gated_activation_6_s0 (Merge) (None, 1152, 256) 0
dilated_conv_64_tanh_s0[0][0]
dilated_conv_64_sigm_s0[0][0]

convolution1d_13 (Convolution1D) (None, 1152, 256) 65536
gated_activation_6_s0[0][0]

Generative Adversarial Networks and WaveNet

[136]

merge_7 (Merge) (None, 1152, 256) 0 merge_6[0][0]
convolution1d_13[0][0]

dilated_conv_128_tanh_s0 (Causal (None, 1152, 256) 131072 merge_7[0][0]

dilated_conv_128_sigm_s0 (Causal (None, 1152, 256) 131072 merge_7[0][0]

gated_activation_7_s0 (Merge) (None, 1152, 256) 0
dilated_conv_128_tanh_s0[0][0]
dilated_conv_128_sigm_s0[0][0]

convolution1d_15 (Convolution1D) (None, 1152, 256) 65536
gated_activation_7_s0[0][0]

merge_8 (Merge) (None, 1152, 256) 0 merge_7[0][0]
convolution1d_15[0][0]

dilated_conv_256_tanh_s0 (Causal (None, 1152, 256) 131072 merge_8[0][0]

dilated_conv_256_sigm_s0 (Causal (None, 1152, 256) 131072 merge_8[0][0]

gated_activation_8_s0 (Merge) (None, 1152, 256) 0
dilated_conv_256_tanh_s0[0][0]
dilated_conv_256_sigm_s0[0][0]

convolution1d_17 (Convolution1D) (None, 1152, 256) 65536
gated_activation_8_s0[0][0]

merge_9 (Merge) (None, 1152, 256) 0 merge_8[0][0]
convolution1d_17[0][0]

dilated_conv_512_tanh_s0 (Causal (None, 1152, 256) 131072 merge_9[0][0]

dilated_conv_512_sigm_s0 (Causal (None, 1152, 256) 131072 merge_9[0][0]

Generative Adversarial Networks and WaveNet

[137]

gated_activation_9_s0 (Merge) (None, 1152, 256) 0
dilated_conv_512_tanh_s0[0][0]
dilated_conv_512_sigm_s0[0][0]

convolution1d_2 (Convolution1D) (None, 1152, 256) 65536
gated_activation_0_s0[0][0]

convolution1d_4 (Convolution1D) (None, 1152, 256) 65536
gated_activation_1_s0[0][0]

convolution1d_6 (Convolution1D) (None, 1152, 256) 65536
gated_activation_2_s0[0][0]

convolution1d_8 (Convolution1D) (None, 1152, 256) 65536
gated_activation_3_s0[0][0]

convolution1d_10 (Convolution1D) (None, 1152, 256) 65536
gated_activation_4_s0[0][0]

convolution1d_12 (Convolution1D) (None, 1152, 256) 65536
gated_activation_5_s0[0][0]

convolution1d_14 (Convolution1D) (None, 1152, 256) 65536
gated_activation_6_s0[0][0]

convolution1d_16 (Convolution1D) (None, 1152, 256) 65536
gated_activation_7_s0[0][0]

convolution1d_18 (Convolution1D) (None, 1152, 256) 65536
gated_activation_8_s0[0][0]

convolution1d_20 (Convolution1D) (None, 1152, 256) 65536
gated_activation_9_s0[0][0]

merge_11 (Merge) (None, 1152, 256) 0 convolution1d_2[0][0]
convolution1d_4[0][0]
convolution1d_6[0][0]

Generative Adversarial Networks and WaveNet

[138]

convolution1d_8[0][0]
convolution1d_10[0][0]
convolution1d_12[0][0]
convolution1d_14[0][0]
convolution1d_16[0][0]
convolution1d_18[0][0]
convolution1d_20[0][0]

activation_1 (Activation) (None, 1152, 256) 0 merge_11[0][0]

convolution1d_21 (Convolution1D) (None, 1152, 256) 65792 activation_1[0][0]

activation_2 (Activation) (None, 1152, 256) 0 convolution1d_21[0][0]

convolution1d_22 (Convolution1D) (None, 1152, 256) 65792 activation_2[0][0]

output_softmax (Activation) (None, 1152, 256) 0 convolution1d_22[0][0]
===
=========================
Total params: 4,129,536
Trainable params: 4,129,536
Non-trainable params: 0

DeepMind tried to train with data sets including multiple speakers, and this
significantly improved the capacity to learn a shared representation of languages and tones
and thus receive results close to natural speech. You'll find an amazing collection of
examples of synthesized voice online (

), and it is interesting to note that the quality of audio improves when
WaveNet is conditioned on additional text that is transformed into a sequence of linguistic
and phonetic features in addition to audio waveforms. My favorite examples are the ones
where the same sentence is pronounced by the net with different tones of voice. Of course,
it is also fascinating to hear WaveNet create piano music by itself. Check it out online!

Generative Adversarial Networks and WaveNet

[139]

Summary
In this chapter, we discussed GANs. A GAN typically consists of two networks; one is
trained to forge synthetic data that looks authentic, and the second is trained to discriminate
authentic data against forged data. The two networks continuously compete, and in doing
so, they keep improving each other. We reviewed an open source code, learning to forge
MNIST and CIFAR-10 images that look authentic. In addition, we discussed WaveNet, a
deep generative network proposed by Google DeepMind for teaching computers how to
reproduce human voices and musical instruments with impressive quality. WaveNet
directly generates raw audio with a parametric text-to-speech approach based on dilated
convolutional networks. Dilated convolutional networks are a special kind of ConvNets
where convolution filters have holes, allowing the receptive field to grow exponentially in
depth and therefore efficiently cover thousands of audio time-steps. DeepMind showed
how it is possible to use WaveNet to synthesize human voice and musical instruments, and
improved previous state-of-the-art. In the next chapter, we will discuss word
embeddings—a set of deep learning methodologies for detecting relations among words
and grouping together similar words.

55
Word Embeddings

Wikipedia defines word embedding as the collective name for a set of language modeling
and feature learning techniques in natural language processing (NLP) where words or
phrases from the vocabulary are mapped to vectors of real numbers.

Word embeddings are a way to transform words in text to numerical vectors so that they
can be analyzed by standard machine learning algorithms that require vectors as numerical
input.

You have already learned about one type of word embedding called one-hot encoding, in
, Neural Networks Foundations. One-hot encoding is the most basic embedding

approach. To recap, one-hot encoding represents a word in the text by a vector of the size of
the vocabulary, where only the entry corresponding to the word is a one and all the other
entries are zero.

A major problem with one-hot encoding is that there is no way to represent the similarity
between words. In any given corpus, you would expect words such as (cat, dog), (knife,
spoon), and so on to have some similarity. Similarity between vectors is computed using the
dot product, which is the sum of element-wise multiplication between vector elements. In
the case of one-hot encoded vectors, the dot product between any two words in a corpus is
always zero.

To overcome the limitations of one-hot encoding, the NLP community has borrowed
techniques from information retrieval (IR) to vectorize text using the document as the
context. Notable techniques are TF-IDF (

), latent semantic analysis (LSA) (
), and topic modeling (). However,

these representations capture a slightly different document-centric idea of semantic
similarity.

Word Embeddings

[141]

Development of word embedding techniques began in earnest in 2000. Word embedding
differs from previous IR-based techniques in that they use words as their context, which
leads to a more natural form of semantic similarity from a human understanding
perspective. Today, word embedding is the technique of choice for vectorizing text for all
kinds of NLP tasks, such as text classification, document clustering, part of speech tagging,
named entity recognition, sentiment analysis, and so on.

In this chapter, we will learn about two specific forms of word embedding, GloVe and
word2vec, collectively known as distributed representations of words. These embeddings
have proven more effective and have been widely adopted in the deep learning and NLP
communities.

We will also learn different ways in which you can generate your own embeddings in your
Keras code, as well as how to use and fine-tune pre-trained word2vec and GloVe models.

In this chapter, we will cover the following topics:

Building various distributional representations of words in context
Building models for leveraging embeddings to perform NLP tasks such as
sentence parsing and sentiment analysis

Distributed representations
Distributed representations attempt to capture the meaning of a word by considering its
relations with other words in its context. The idea is captured in this quote from J. R. Firth
(for more information refer to the article: Document Embedding with Paragraph Vectors,
by Andrew M. Dai, Christopher Olah, and Quoc V. Le, arXiv:1507.07998, 2015), a linguist
who first proposed this idea:

You shall know a word by the company it keeps.

Consider the following pair of sentences:

Paris is the capital of France.
Berlin is the capital of Germany.

Word Embeddings

[142]

Even assuming you have no knowledge of world geography (or English for that matter),
you would still conclude without too much effort that the word pairs (Paris, Berlin) and
(France, Germany) were related in some way, and that corresponding words in each pair
were related in the same way to each other, that is:

Paris : France :: Berlin : Germany

Thus, the aim of distributed representations is to find a general transformation function φ to
convert each word to its associated vector such that relations of the following form hold
true:

In other words, distributed representation aims to convert words to vectors where the
similarity between the vectors correlate with the semantic similarity between the words.

The most well-known word embeddings are word2vec and GloVe, which we cover in more
detail in subsequent sections.

word2vec
The word2vec group of models was created in 2013 by a team of researchers at Google led
by Tomas Mikolov. The models are unsupervised, taking as input a large corpus of text and
producing a vector space of words. The dimensionality of the word2vec embedding space is
usually lower than the dimensionality of the one-hot embedding space, which is the size of
the vocabulary. The embedding space is also more dense compared to the sparse
embedding of the one-hot embedding space.

The two architectures for word2vec are as follows:

Continuous Bag Of Words (CBOW)
Skip-gram

In the CBOW architecture, the model predicts the current word given a window of
surrounding words. In addition, the order of the context words does not influence the
prediction (that is, the bag of words assumption). In the case of skip-gram architecture, the
model predicts the surrounding words given the center word. According to the authors,
CBOW is faster but skip-gram does a better job at predicting infrequent words.

Word Embeddings

[143]

An interesting thing to note is that even though word2vec creates embeddings that are used
in deep learning NLP models, both flavors of word2vec that we will discuss, which also
happens to be the most successful and acknowledged recent models, are shallow neural
networks.

The skip-gram word2vec model
The skip-gram model is trained to predict the surrounding words given the current word.
To understand how the skip-gram word2vec model works, consider the following example
sentence:

I love green eggs and ham.

Assuming a window size of three, this sentence can be broken down into the following sets
of (context, word) pairs:

([I, green], love)
([love, eggs], green)
([green, and], eggs)
...

Since the skip-gram model predicts a context word given the center word, we can convert
the preceding dataset to one of (input, output) pairs. That is, given an input word, we
expect the skip-gram model to predict the output word:

(love, I), (love, green), (green, love), (green, eggs), (eggs, green), (eggs, and), ...

We can also generate additional negative samples by pairing each input word with some
random word in the vocabulary. For example:

(love, Sam), (love, zebra), (green, thing), ...

Finally, we generate positive and negative examples for our classifier:

((love, I), 1), ((love, green), 1), ..., ((love, Sam), 0), ((love, zebra), 0), ...

Word Embeddings

[144]

We can now train a classifier that takes in a word vector and a context vector and learns to
predict one or zero depending on whether it sees a positive or negative sample. The
deliverables from this trained network are the weights of the word embedding layer (the
gray box in the following figure):

The skip-gram model can be built in Keras as follows. Assume that the vocabulary size is
set at , the output embedding size is , and the window size is . A window size of
one means that the context for a word is the words immediately to the left and right. We
first take care of the imports and set our variables to their initial values:

Word Embeddings

[145]

We then create a sequential model for the word. The input to this model is the word ID in
the vocabulary. The embedding weights are initially set to small random values. During
training, the model will update these weights using backpropagation. The next layer
reshapes the input to the embedding size:

The other model that we need is a sequential model for the context words. For each of our
skip-gram pairs, we have a single context word corresponding to the target word, so this
model is identical to the word model:

The outputs of the two models are each a vector of size (). These outputs are
merged into one using a dot product and fed into a dense layer, which has a single output
wrapped in a sigmoid activation layer. You have seen the sigmoid activation function in

, Neural Network Foundations. As you will recall, it modulates the output so
numbers higher than 0.5 tend rapidly to 1 and flatten out, and numbers lower than 0.5 tend
rapidly to 0 and also flatten out:

The loss function used is the ; the idea is to minimize the dot
product for positive examples and maximize it for negative examples. If you recall, the dot
product multiplies corresponding elements of two vectors and sums up the result—this
causes similar vectors to have higher dot products than dissimilar vectors, since the former
has more overlapping elements.

Word Embeddings

[146]

Keras provides a convenience function to extract skip-grams for a text that has been
converted to a list of word indices. Here is an example of using this function to extract the
first 10 of 56 skip-grams generated (both positive and negative).

We first declare the necessary imports and the text to be analyzed:

The next step is to declare the and run the text against it. This will produce a list
of word tokens:

The creates a dictionary mapping each unique word to an integer ID and makes
it available in the attribute. We extract this and create a two-way lookup table:

Finally, we convert our input list of words to a list of IDs and pass it to the
function. We then print the first 10 of the 56 (pair, label) skip-gram tuples generated:

Word Embeddings

[147]

The results from the code is shown below. Note that your results may be different since the
skip-gram method randomly samples the results from the pool of possibilities for the
positive examples. Additionally, the process of negative sampling, used for generating the
negative examples, consists of randomly pairing up arbitrary tokens from the text. As the
size of the input text increases, this is more likely to pick up unrelated word pairs. In our
example, since our text is very short, there is a chance that it can end up generating positive
examples as well.

(and (1), ham (3)) -> 0
(green (6), i (4)) -> 0
(love (2), i (4)) -> 1
(and (1), love (2)) -> 0
(love (2), eggs (5)) -> 0
(ham (3), ham (3)) -> 0
(green (6), and (1)) -> 1
(eggs (5), love (2)) -> 1
(i (4), ham (3)) -> 0
(and (1), green (6)) -> 1

The code for this example can be found in in the source code
download for the chapter.

The CBOW word2vec model
Let us now look at the CBOW word2vec model. Recall that the CBOW model predicts the
center word given the context words. Thus, in the first tuple in the following example, the
CBOW model needs to predict the output word love, given the context words I and green:

([I, green], love) ([love, eggs], green) ([green, and], eggs) ...

Like the skip-gram model, the CBOW model is also a classifier that takes the context words
as input and predicts the target word. The architecture is somewhat more straightforward
than the skip-gram model. The input to the model is the word IDs for the context words.
These word IDs are fed into a common embedding layer that is initialized with small
random weights. Each word ID is transformed into a vector of size () by the
embedding layer. Thus, each row of the input context is transformed into a matrix of size
(,) by this layer. This is then fed into a lambda layer, which
computes an average of all the embeddings. This average is then fed to a dense layer, which
creates a dense vector of size () for each row. The activation function on the
dense layer is a softmax, which reports the maximum value on the output vector as a
probability. The ID with the maximum probability corresponds to the target word.

Word Embeddings

[148]

The deliverable for the CBOW model is the weights from the embedding layer shown in
gray in the following figure:

The corresponding Keras code for the model is shown as follows. Once again, assume a
vocabulary size of , an embedding size of , and a context window size of . Our
first step is to set up all our imports and these values:

Word Embeddings

[149]

We then construct a sequential model, to which we add an embedding layer whose weights
are initialized with small random values. Note that the of this embedding
layer is equal to the number of context words. So each context word is fed into this layer
and will update the weights jointly during backpropagation. The output of this layer is a
matrix of context word embeddings, which are averaged into a single vector (per row of
input) by the lambda layer. Finally, the dense layer will convert each row into a dense
vector of size (). The target word is the one whose ID has the maximum value
in the dense output vector:

The loss function used here is , which is a common choice for
cases where there are two or more (in our case,) categories.

The source code for the example can be found in the file in the source code
download for the chapter.

Extracting word2vec embeddings from the model
As noted previously, even though both word2vec models can be reduced to a classification
problem, we are not really interested in the classification problem itself. Rather, we are
interested in the side effect of this classification process, that is, the weight matrix that
transforms a word from the vocabulary to its dense, low-dimensional distributed
representation.

Word Embeddings

[150]

There are many examples of how these distributed representations exhibit often surprising
syntactic and semantic information. For example, as shown in the following figure from
Tomas Mikolov's presentation at NIPS 2013 (for more information refer to the article:
Learning Representations of Text using Neural Networks, by T. Mikolov, I. Sutskever, K. Chen,
G. S. Corrado, J. Dean, Q. Le, and T. Strohmann, NIPS 2013), vectors connecting words that
have similar meanings but opposite genders are approximately parallel in the reduced 2D
space, and we can often get very intuitive results by doing arithmetic with the word vectors.
The presentation provides many other examples.

Intuitively, the training process imparts enough information to the internal encoding to
predict an output word that occurs in the context of an input word. So points representing
words shift in this space to be nearer to words with which it co-occurs. This causes similar
words to clump together. Words that co-occur with these similar words also clump together
in a similar way. As a result, vectors connecting points representing semantically related
points tend to exhibit these regularities in the distributed representation.

Keras provides a way to extract weights from trained models. For the skip-gram example,
the embedding weights can be extracted as follows:

Similarly, the embedding weights for the CBOW example can be extracted using the
following one-liner:

Word Embeddings

[151]

In both cases, the shape of the weights matrix is and . In order to
compute the distributed representation for a word in the vocabulary, you will need to
construct a one-hot vector by setting the position of the word index to one in a zero vector
of size () and multiply it with the matrix to get the embedding vector of size
().

A visualization of word embeddings from work done by Christopher Olah (for more
information refer to the article: Document Embedding with Paragraph Vectors, by Andrew M.
Dai, Christopher Olah, and Quoc V. Le, arXiv:1507.07998, 2015) is shown as follows. This is
a visualization of word embeddings reduced to two dimensions and visualized with T-SNE.
The words forming entity types were chosen using WordNet synset clusters. As you can
see, points corresponding to similar entity types tend to cluster together:

The source code for the example can be found in in the source code
download.

Word Embeddings

[152]

Using third-party implementations of word2vec
We have covered word2vec extensively over the past few sections. At this point, you
understand how the skip-gram and CBOW models work and how to build your own
implementation of these models using Keras. However, third-party implementations of
word2vec are readily available, and unless your use case is very complex or different, it
makes sense to just use one such implementation instead of rolling your own.

The gensim library provides an implementation of word2vec. Even though this is a book
about Keras and not gensim, we include a discussion on this because Keras does not
provide any support for word2vec, and integrating the gensim implementation into Keras
code is very common practice.

Installation of gensim is fairly simple and described in detail on the
gensim installation page (

).

The following code shows how to build a word2vec model using gensim and train it with
the text from the text8 corpus, available for download at:

. The text8 corpus is a file containing about 17 million words derived from
Wikipedia text. Wikipedia text was cleaned to remove markup, punctuation, and non-ASCII
text, and the first 100 million characters of this cleaned text became the text8 corpus. This
corpus is commonly used as an example for word2vec because it is quick to train and
produces good results. First we set up the imports as usual:

We then read in the words from the text8 corpus, and split up the words into sentences of
50 words each. The gensim library provides a built-in text8 handler that does something
similar. Since we want to illustrate how to generate a model with any (preferably large)
corpus that may or may not fit into memory, we will show you how to generate these
sentences using a Python generator.

Word Embeddings

[153]

The class will generate sentences of words each from the text8
file. In this case, we do ingest the entire file into memory, but when traversing through
directories of files, generators allows us to load parts of the data into memory at a time,
process them, and yield them to the caller:

We then set up the caller code. The gensim word2vec uses Python logging to report on
progress, so we first enable it. The next line declares an instance of the
class, and the line after that trains the model with the sentences from the dataset. We have
chosen the size of the embedding vectors to be , and we only consider words that
appear a minimum of 30 times in the corpus. The default window size is , so we will
consider the words wi-5, wi-4, wi-3, wi-2, wi-1, wi+1, wi+2, wi+3, wi+4, and wi+5 as the context for word
wi. By default, the word2vec model created is CBOW, but you can change that by
setting in the parameters:

Word Embeddings

[154]

The word2vec implementation will make two passes over the data, first to generate a
vocabulary and then to build the actual model. You can see its progress on the console as it
runs:

Once the model is created, we should normalize the resulting vectors. According to the
documentation, this saves lots of memory. Once the model is trained, we can optionally
save it to disk:

The saved model can be brought back into memory using the following call:

We can now query the model to find all the words it knows about:

>>> model.vocab.keys()[0:10]
['homomorphism',
'woods',
'spiders',
'hanging',

Word Embeddings

[155]

'woody',
'localized',
'sprague',
'originality',
'alphabetic',
'hermann']

We can find the actual vector embedding for a given word:

We can also find words that are most similar to a certain word:

>>> model.most_similar("woman")
 [('child', 0.7057571411132812),
 ('girl', 0.702182412147522),
 ('man', 0.6846336126327515),
 ('herself', 0.6292711496353149),
 ('lady', 0.6229539513587952),
 ('person', 0.6190367937088013),
 ('lover', 0.6062309741973877),
 ('baby', 0.5993420481681824),
 ('mother', 0.5954475402832031),
 ('daughter', 0.5871444940567017)]

We can provide hints for finding word similarity. For example, the following command
returns the top 10 words that are like and but unlike :

>>> model.most_similar(positive=['woman', 'king'], negative=['man'],
topn=10)
 [('queen', 0.6237582564353943),
 ('prince', 0.5638638734817505),
 ('elizabeth', 0.5557916164398193),
 ('princess', 0.5456407070159912),
 ('throne', 0.5439794063568115),
 ('daughter', 0.5364126563072205),
 ('empress', 0.5354889631271362),
 ('isabella', 0.5233952403068542),
 ('regent', 0.520746111869812),
 ('matilda', 0.5167444944381714)]

Word Embeddings

[156]

We can also find similarities between individual words. To give a feel of how the positions
of the words in the embedding space correlates with their semantic meanings, let us look at
the following word pairs:

>>> model.similarity("girl", "woman")
 0.702182479574
 >>> model.similarity("girl", "man")
 0.574259909834
 >>> model.similarity("girl", "car")
 0.289332921793
 >>> model.similarity("bus", "car")
 0.483853497748

As you can see, and are more similar than and , and and are
more similar than and . This agrees very nicely with our human intuition about
these words.

The source code for the example can be found in in the source code
download.

Exploring GloVe
The global vectors for word representation, or GloVe, embeddings was created by Jeffrey
Pennington, Richard Socher, and Christopher Manning (for more information refer to the
article: GloVe: Global Vectors for Word Representation, by J. Pennington, R. Socher, and C.
Manning, Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Pp. 1532–1543, 2013). The authors describe GloVe as an unsupervised
learning algorithm for obtaining vector representations for words. Training is performed on
aggregated global word-word co-occurrence statistics from a corpus, and the resulting
representations showcase interesting linear substructures of the word vector space.

Word Embeddings

[157]

GloVe differs from word2vec in that word2vec is a predictive model while GloVe is a count-
based model. The first step is to construct a large matrix of (word, context) pairs that co-
occur in the training corpus. Each element of this matrix represents how often a word
represented by the row co-occurs in the context (usually a sequence of words) represented
by the column, as shown in the following figure:

The GloVe process converts the co-occurrence matrix into a pair of (word, feature) and
(feature, context) matrices. This process is known as matrix factorization and is done using
stochastic gradient descent (SGD), an iterative numerical method. Rewriting in equation
form:

Here, R is the original co-occurrence matrix. We first populate P and Q with random values
and attempt to reconstruct a matrix R' by multiplying them. The difference between the
reconstructed matrix R' and the original matrix R tells us how much we need to change the
values of P and Q to move R' closer to R, to minimize the reconstruction error. This is
repeated multiple times until the SGD converges and the reconstruction error is below a
specified threshold. At that point, the (word, feature) matrix is the GloVe embedding. To
speed up the process, SGD is often used in parallel mode, as outlined in the HOGWILD!
paper.

One thing to note is that predictive neural network based models such as word2vec and
count based models such as GloVe are very similar in intent. Both of them build a vector
space where the position of a word is influenced by its neighboring words. Neural network
models start with individual examples of word co-occurrences and count based models
start with aggregate co-occurrence statistics between all words in the corpus. Several recent
papers have demonstrated the correlation between these two types of model.

Word Embeddings

[158]

We will not cover generation of GloVe vectors in more detail in this book. Even though
GloVe generally shows higher accuracy than word2vec and is faster to train if you use
parallelization, Python tooling is not as mature as for word2vec. The only tool available to
do this as of the time of writing is the GloVe-Python project (

), which provides a toy implementation for GloVe on Python.

Using pre-trained embeddings
In general, you will train your own word2vec or GloVe model from scratch only if you have
a very large amount of very specialized text. By far the most common use case for
Embeddings is to use pre-trained embeddings in some way in your network. The three
main ways in which you would use embeddings in your network are as follows:

Learn embeddings from scratch
Fine-tune learned embeddings from pre-trained GloVe/word2vec models
Look up embeddings from pre-trained GloVe/word2vec models

In the first option, the embedding weights are initialized to small random values and
trained using backpropagation. You saw this in the examples for skip-gram and CBOW
models in Keras. This is the default mode when you use a Keras Embedding layer in your
network.

In the second option, you build a weight matrix from a pre-trained model and initialize the
weights of your embedding layer with this weight matrix. The network will update these
weights using backpropagation, but the model will converge faster because of good starting
weights.

The third option is to look up word embeddings from a pre-trained model, and transform
your input to embedded vectors. You can then train any machine learning model (that is,
not necessarily even a deep learning network) on the transformed data. If the pre-trained
model is trained on a similar domain as the target domain, this usually works very well and
is the least expensive option.

For general use with English language text, you can use Google's word2vec model trained
over 10 billion words from the Google news dataset. The vocabulary size is about 3 million
words and the dimensionality of the embedding is 300. The Google news model (about 1.5
GB) can be downloaded from here:

.

Word Embeddings

[159]

Similarly, a pre-trained model trained on 6 billion tokens from English Wikipedia and the
gigaword corpus can be downloaded from the GloVe site. The vocabulary size is about
400,000 words and the download provides vectors with dimensions 50, 100, 200, and 300.
The model size is about 822 MB. Here is the direct download URL (

) for this model. Larger models based on the Common Crawl and
Twitter are also available from the same location.

In the following sections, we will look at how to use these pre-trained models in the three
ways listed.

Learn embeddings from scratch
In this example, we will train a one-dimensional convolutional neural network (CNN) to
classify sentences as either positive or negative. You have already seen how to classify
images using two-dimensional CNNs in , Deep Learning with ConvNets. Recall that
CNNs exploit spatial structure in images by enforcing local connectivity between neurons
of adjacent layers.

Words in sentences exhibit linear structure in the same way as images exhibit spatial
structure. Traditional (non-deep learning) NLP approaches to language modeling involve
creating word n-grams (to exploit this linear
structure inherent among words. One-dimensional CNNs do something similar, learning
convolution filters that operate on sentences a few words at a time, and max pooling the
results to create a vector that represents the most important ideas in the sentence.

There is another class of neural network, called recurrent neural network (RNN), which is
specially designed to handle sequence data, including text, which is a sequence of words.
The processing in RNNs is different from that in a CNN. We will learn about RNNs in a
future chapter.

In our example network, the input text is converted to a sequence of word indices. Note that
we have used the natural language toolkit (NLTK) to parse the text into sentences and
words. We could also have used regular expressions to do this, but the statistical models
supplied by NLTK are more powerful at parsing than regular expressions. If you are
working with word embeddings, it is very likely that you are also working with NLP, in
which case you would have NLTK installed already.

Word Embeddings

[160]

This link () has information to help
you install NLTK on your machine. You will also need to install NLTK
data, which is some trained corpora that comes standard with NLTK.
Installation instructions for NLTK data are available here:

.

The sequence of word indices is fed into an array of embedding layers of a set size (in our
case, the number of words in the longest sentence). The embedding layer is initialized by
default to random values. The output of the embedding layer is connected to a 1D
convolutional layer that convolves (in our example) word trigrams in 256 different ways
(essentially, it applies different learned linear combinations of weights on the word
embeddings). These features are then pooled into a single pooled word by a global max
pooling layer. This vector (256) is then input to a dense layer, which outputs a vector (2). A
softmax activation will return a pair of probabilities, one corresponding to positive
sentiment and another corresponding to negative sentiment. The network is shown in the
following figure:

Word Embeddings

[161]

Let us look at how to code this up using Keras. First we declare our imports. Right after the
constants, you will notice that I set the value to . This is because we want
consistent results between runs. Since the initializations of the weight matrices are random,
differences in initialization can lead to differences in output, so this is a way to control that:

We declare our constants. For all subsequent examples in this chapter, we will classify
sentences from the UMICH SI650 sentiment classification competition on Kaggle. The
dataset has around 7,000 sentences, and is labeled 1 for positive and 0 for negative. The

 defines the path to this file of sentences and labels. The format of the file is a
sentiment label (0 or 1) followed by a tab, followed by a sentence.

The setting indicates that we will consider only the top 5,000 tokens in the text.
The setting is the size of the embedding that will be generated by the
embedding layer in the network. is the number of convolution filters we will
train for our convolution layer, and is the size of each filter, that is, how many
words we will convolve at a time. The and is the number of
records to feed the network each time and how many times we will run through the entire
dataset during training:

Word Embeddings

[162]

In the next block, we first read our input sentences and construct our vocabulary out of the
most frequent words in the corpus. We then use this vocabulary to convert our input
sentences into a list of word indices:

We pad each of our sentences to predetermined length (in this case the number of
words in the longest sentence in the training set). We also convert our labels to categorical
format using a Keras utility function. The last two steps are a standard workflow for
handling text input that we will see again and again:

Finally, we split up our data into a 70/30 training and test set. The data is now in a form
ready to be fed into the network:

Word Embeddings

[163]

We define the network that we described earlier in this section:

We then compile the model. Since our target is binary (positive or negative) we choose
 as our loss function. For the optimizer, we choose . We

then train the model using our training set, using a batch size of 64 and training for 20
epochs:

The output from the code looks as follows:

Word Embeddings

[164]

As you can see, the network gives us 98.6% accuracy on the test set.

The source code for this example can be found in in
the source code download for the chapter.

Fine-tuning learned embeddings from word2vec
In this example, we will use the same network as the one we used to learn our embeddings
from scratch. In terms of code, the only major difference is an extra block of code to load the
word2vec model and build up the weight matrix for the embedding layer.

As always, we start with the imports and set up a random seed for repeatability. In addition
to the imports we have seen previously, there is an additional one to import the word2vec
model from gensim:

Next up is setting up the constants. The only difference here is that we reduced the
 setting from to . Recall that initializing the matrix with values from a

pre-trained model tends to set them to good values that converge faster:

Word Embeddings

[165]

The next block extracts the words from the dataset and creates a vocabulary of the most
frequent terms, then parses the dataset again to create a list of padded word lists. It also
converts the labels to categorical format. Finally, it splits the data into a training and a test
set. This block is identical to the previous example and has been explained in depth there:

The next block loads up the word2vec model from a pre-trained model. This model is
trained with about 10 billion words of Google News articles and has a vocabulary size of 3
million. We load it and look up embedding vectors from it for words in our vocabulary, and
write out the embedding vector into our weight matrix . Rows of this
weight matrix correspond to words in the vocabulary, and columns of each row constitute
the embedding vector for the word.

Word Embeddings

[166]

The dimensions of the matrix is and . The
 is one more than the maximum number of unique terms in the vocabulary, the

additional pseudo-token representing words that are not seen in the vocabulary.

Note that it is possible that some words in our vocabulary may not be there in the Google
News word2vec model, so when we encounter such words, the embedding vectors for them
remain at the default value of all zeros:

We define our network. The difference in this block from our previous example is that we
initialize the weights of the embedding layer with the matrix we built
in the previous block:

We then compile our model with the categorical cross-entropy loss function and the Adam
optimizer, and train the network with batch size 64 and for 10 epochs, then evaluate the
trained model:

Word Embeddings

[167]

Output from running the code is shown as follows:

((4960, 42), (2126, 42), (4960, 2), (2126, 2))
 Train on 4960 samples, validate on 2126 samples
 Epoch 1/10
 4960/4960 [==============================] - 7s - loss: 0.1766 - acc:
0.9369 - val_loss: 0.0397 - val_acc: 0.9854
 Epoch 2/10
 4960/4960 [==============================] - 7s - loss: 0.0725 - acc:
0.9706 - val_loss: 0.0346 - val_acc: 0.9887
 Epoch 3/10
 4960/4960 [==============================] - 7s - loss: 0.0553 - acc:
0.9784 - val_loss: 0.0210 - val_acc: 0.9915
 Epoch 4/10
 4960/4960 [==============================] - 7s - loss: 0.0519 - acc:
0.9790 - val_loss: 0.0241 - val_acc: 0.9934
 Epoch 5/10
 4960/4960 [==============================] - 7s - loss: 0.0576 - acc:
0.9746 - val_loss: 0.0219 - val_acc: 0.9929
 Epoch 6/10
 4960/4960 [==============================] - 7s - loss: 0.0515 - acc:
0.9764 - val_loss: 0.0185 - val_acc: 0.9929
 Epoch 7/10
 4960/4960 [==============================] - 7s - loss: 0.0528 - acc:
0.9790 - val_loss: 0.0204 - val_acc: 0.9920
 Epoch 8/10
 4960/4960 [==============================] - 7s - loss: 0.0373 - acc:
0.9849 - val_loss: 0.0221 - val_acc: 0.9934
 Epoch 9/10
 4960/4960 [==============================] - 7s - loss: 0.0360 - acc:
0.9845 - val_loss: 0.0194 - val_acc: 0.9929
 Epoch 10/10
 4960/4960 [==============================] - 7s - loss: 0.0389 - acc:
0.9853 - val_loss: 0.0254 - val_acc: 0.9915
 2126/2126 [==============================] - 1s
 Test score: 0.025, accuracy: 0.993

The model gives us an accuracy of 99.3% on the test set after 10 epochs of training. This is
an improvement over the previous example, where we got an accuracy of 98.6% accuracy
after 20 epochs.

The source code for this example can be found in
in the source code download for the chapter.

Word Embeddings

[168]

Fine-tune learned embeddings from GloVe
Fine tuning using pre-trained GloVe embeddings is very similar to fine tuning using pre-
trained word2vec embeddings. In fact, all of the code, except for the block that builds the
weight matrix for the embedding layer, is identical. Since we have already seen this code
twice, I will just focus on the block of code that builds the weight matrix from the GloVe
embeddings.

GloVe embeddings come in various flavors. We use the model pre-trained on 6 billion
tokens from the English Wikipedia and the gigaword corpus. The vocabulary size for the
model is about 400,000, and the download provides vectors of dimensions 50, 100, 200, and
300. We will use embeddings from the 300 dimensional model.

The only thing we need to change in the code for the previous example is to replace the
block that instantiated a word2vec model and loaded the embedding matrix using the
following block of code. If we use a model with vector size other than 300, then we also
need to update .

The vectors are provided in space-delimited text format, so the first step is to read the code
into a dictionary, . This is analogous to the line instantiating the Word2Vec model
in our previous example:

We then instantiate an embedding weight matrix of size (and) and
populate the vectors from the dictionary. Vectors for words that are found in the
vocabulary but not in the GloVe model remain set to all zeros:

Word Embeddings

[169]

The full code for this program can be found in in the
book's code repository on GitHub. The output of the run is shown as follows:

This gives us 99.1% accuracy in 10 epochs, which is almost as good as the results we got
from fine-tuning the network using word2vec .

The source code for this example can be found in in the
source code download for this chapter.

Look up embeddings
Our final strategy is to look up embeddings from pre-trained networks. The simplest way to
do this with the current examples is to just set the parameter of the embedding
layer to . This ensures that backpropagation will not update the weights on the
embedding layer:

Word Embeddings

[170]

Setting this value with the word2vec and GloVe examples gave us accuracies of 98.7% and
98.9% respectively after 10 epochs of training.

However, in general, this is not how you would use pre-trained embeddings in your code.
Typically, it involves preprocessing your dataset to create word vectors by looking up
words in one of the pre-trained models, and then using this data to train some other model.
The second model would not contain an Embedding layer, and may not even be a deep
learning network.

The following example describes a dense network that takes as its input a vector of size
, representing a sentence, and outputs a or for positive or negative sentiment. Our

dataset is still the one from the UMICH S1650 sentiment classification competition with
around 7,000 sentences.

As previously, large parts of the code are repeated, so we only explain the parts that are
new or otherwise need explanation.
We begin with the imports, set the random seed for repeatability, and set some constant
values. In order to create the 100-dimensional vectors for each sentence, we add up the
GloVe 100-dimensional vectors for the words in the sentence, so we choose the

 file:

Word Embeddings

[171]

The next block reads the sentences and creates a word frequency table. From this, the most
common 5,000 tokens are selected and lookup tables (from word to word index and back)
are created. In addition, we create a pseudo-token for tokens that do not exist in the
vocabulary. Using these lookup tables, we convert each sentence to a sequence of word IDs,
padding these sequences so that all sequences are of the same length (the maximum
number of words in a sentence in the training set). We also convert the labels to categorical
format:

We load the GloVe vectors into a dictionary. If we wanted to use word2vec here, all we
have to do is replace this block with a gensim call
and replace the following block to look up the word2vec model instead of the
dictionary:

Word Embeddings

[172]

The next block looks up the words for each sentence from the word ID matrix and
populates a matrix with the corresponding embedding vector. These embedding vectors
are then added to create a sentence vector, which is written back into the matrix. The
output of this code block is the matrix of size (and):

We have now preprocessed our data using the pre-trained model and are ready to use it to
train and evaluate our final model. Let us split the data into 70/30 training/test as usual:

The network we will train for doing the sentiment analysis task is a simple dense network.
We compile it with a categorical cross-entropy loss function and the Adam optimizer, and
train it with the sentence vectors that we built out of the pre-trained embeddings. Finally,
we evaluate the model on the 30% test set:

Word Embeddings

[173]

The output for the code using GloVe embeddings is shown as follows:

The dense network gives us 96.5% accuracy on the test set after 10 epochs of training when
preprocessed with the 100-dimensional GloVe embeddings. With preprocessed with the
word2vec embeddings (300-dimensional fixed) the network gives us 98.5% on the test set.

The source code for this example can be found in (for
the GloVe example) and (for the word2vec
example) in the source code download for the chapter.

Summary
In this chapter, we learned how to transform words in text into vector embeddings that
retain the distributional semantics of the word. We also now have an intuition of why word
embeddings exhibit this kind of behavior and why word embeddings are useful for
working with deep learning models for text data.

We then looked at two popular word embedding schemes, word2vec and GloVe, and
understood how these models work. We also looked at using gensim to train our own
word2vec model from data.

Word Embeddings

[174]

Finally, we learned about different ways of using embeddings in our network. The first was
to learn embeddings from scratch as part of training our network. The second was to import
embedding weights from pre-trained word2vec and GloVe models into our networks and
fine-tune them as we train the network. The third was to use these pre-trained weights as is
in our downstream applications.

In the next chapter, we will learn about recurrent neural networks, a class of network that is
optimized for handling sequence data such as text.

66
Recurrent Neural Network —

RNN
In , Deep Learning with ConvNets, we learned about convolutional neural
networks (CNN) and saw how they exploit the spatial geometry of their input. For
example, CNNs apply convolution and pooling operations in one dimension for audio and
text data along the time dimension, in two dimensions for images along the (height x width)
dimensions and in three dimensions, for videos along the (height x width x time)
dimensions.

In this chapter, we will learn about recurrent neural networks (RNN), a class of neural
networks that exploit the sequential nature of their input. Such inputs could be text, speech,
time series, and anything else where the occurrence of an element in the sequence is
dependent on the elements that appeared before it. For example, the next word in the
sentence the dog... is more likely to be barks than car, therefore, given such a sequence, an
RNN is more likely to predict barks than car.

An RNN can be thought of as a graph of RNN cells, where each cell performs the same
operation on every element in the sequence. RNNs are very flexible and have been used to
solve problems such as speech recognition, language modeling, machine translation,
sentiment analysis, and image captioning, to name a few. RNNs can be adapted to different
types of problems by rearranging the way the cells are arranged in the graph. We will see
some examples of these configurations and how they are used to solve specific problems.

Recurrent Neural Network — RNN

[176]

We will also learn about a major limitation of the SimpleRNN cell, and how two variants of
the SimpleRNN cell—long short term memory (LSTM) and gated recurrent unit
(GRU)—overcome this limitation. Both LSTM and GRU are drop-in replacements for the
SimpleRNN cell, so just replacing the RNN cell with one of these variants can often result in
a major performance improvement in your network. While LSTM and GRU are not the only
variants, it has been shown empirically (for more information refer to the articles: An
Empirical Exploration of Recurrent Network Architectures, by R. Jozefowicz, W. Zaremba, and I.
Sutskever, JMLR, 2015 and LSTM: A Search Space Odyssey, by K. Greff, arXiv:1503.04069,
2015) that they are the best choices for most sequence problems.

Finally, we will also learn about some tips to improve the performance of our RNNs and
when and how to apply them.

In this chapter, we will cover the following topics:

SimpleRNN cell
Basic RNN implementation in Keras in generating text
RNN topologies
LSTM, GRU, and other RNN variants

SimpleRNN cells
Traditional multilayer perceptron neural networks make the assumption that all inputs are
independent of each other. This assumption breaks down in the case of sequence data. You
have already seen the example in the previous section where the first two words in the
sentence affect the third. The same idea is true of speech—if we are having a conversation in
a noisy room, I can make reasonable guesses about a word I may not have
understood based on the words I have heard so far. Time series data, such as stock prices or
weather, also exhibit a dependence on past data, called the secular trend.

RNN cells incorporate this dependence by having a hidden state, or memory, that holds the
essence of what has been seen so far. The value of the hidden state at any point in time is a
function of the value of the hidden state at the previous time step and the value of the input
at the current time step, that is:

Recurrent Neural Network — RNN

[177]

ht and ht-1 are the values of the hidden states at the time steps t and t-1 respectively, and xt is
the value of the input at time t. Notice that the equation is recursive, that is, ht-1 can be
represented in terms of ht-2 and xt-1, and so on, until the beginning of the sequence. This is
how RNNs encode and incorporate information from arbitrarily long sequences.

We can also represent the RNN cell graphically as shown in the following diagram on the
left. At time t, the cell has an input xt and an output yt. Part of the output yt (the hidden state
ht) is fed back into the cell for use at a later time step t+1. Just as a traditional neural
network's parameters are contained in its weight matrix, the RNN's parameters are defined
by three weight matrices U, V, and W, corresponding to the input, output, and hidden state
respectively:

Another way to look at an RNN to unroll it, as shown in the preceding diagram on the right.
Unrolling means that we draw the network out for the complete sequence. The network
shown here is a three-layer RNN, suitable for processing three element sequences. Notice
that the weight matrices U, V, and W are shared across the steps. This is because we are
applying the same operation on different inputs at each time step. Being able to share these
weight vectors across all the time steps greatly reduces the number of parameters that the
RNN needs to learn.

We can also describe the computations within an RNN in terms of equations. The internal
state of the RNN at a time t is given by the value of the hidden vector ht, which is the sum of
the product of the weight matrix W and the hidden state ht-1 at time t-1 and the product of
the weight matrix U and the input xt at time t, passed through the tanh nonlinearity. The
choice of tanh over other nonlinearities has to do with its second derivative decaying very
slowly to zero. This keeps the gradients in the linear region of the activation function and
helps combat the vanishing gradient problem. We will learn more about the vanishing
gradient problem later in this chapter.

Recurrent Neural Network — RNN

[178]

The output vector yt at time t is the product of the weight matrix V and the hidden state ht,
with softmax applied to the product so the resulting vector is a set of output probabilities:

Keras provides the SimpleRNN (for more information refer to:
) recurrent layer that incorporates all the logic we have seen so far, as well as

the more advanced variants such as LSTM and GRU that we will see later in this chapter, so
it is not strictly necessary to understand how they work in order to start building with
them. However, an understanding of the structure and equations is helpful when you need
to compose your own RNN to solve a given problem.

SimpleRNN with Keras — generating text
RNNs have been used extensively by the natural language processing (NLP) community
for various applications. One such application is building language models. A language
model allows us to predict the probability of a word in a text given the previous words.
Language models are important for various higher level tasks such as machine translation,
spelling correction, and so on.

A side effect of the ability to predict the next word given previous words is a generative
model that allows us to generate text by sampling from the output probabilities. In
language modeling, our input is typically a sequence of words and the output is a sequence
of predicted words. The training data used is existing unlabeled text, where we set the label
yt at time t to be the input xt+1 at time t+1.

For our first example of using Keras for building RNNs, we will train a character based
language model on the text of Alice in Wonderland to predict the next character given 10
previous characters. We have chosen to build a character-based model here because it has a
smaller vocabulary and trains quicker. The idea is the same as using a word-based language
model, except we use characters instead of words. We will then use the trained model to
generate some text in the same style.

First we import the necessary modules:

Recurrent Neural Network — RNN

[179]

We read our input text from the text of Alice in Wonderland on the Project Gutenberg website
(). The file contains line breaks and non-
ASCII characters, so we do some preliminary cleanup and write out the contents into a
variable called :

Since we are building a character-level RNN, our vocabulary is the set of characters that
occur in the text. There are 42 of them in our case. Since we will be dealing with the indexes
to these characters rather than the characters themselves, the following code snippet creates
the necessary lookup tables:

The next step is to create the input and label texts. We do this by stepping through the text
by a number of characters given by the variable (in our case) and then extracting a
span of text whose size is determined by the variable (in our case). The next
character after the span is our label character:

Using the preceding code, the input and label texts for the text
would look like this:

it turned -> i
 t turned i -> n
 turned in -> t
turned int -> o

Recurrent Neural Network — RNN

[180]

urned into ->
rned into -> a
ned into a ->
ed into a -> p
d into a p -> i
 into a pi -> g

The next step is to vectorize these input and label texts. Each row of the input to the RNN
corresponds to one of the input texts shown previously. There are characters in this
input, and since our vocabulary size is given by , we represent each input
character as a one-hot encoded vector of size (). Thus each input row is a tensor of
size (and). Our output label is a single character, so similar to the way
we represent each character of our input, it is represented as a one-hot vector of size
(). Thus, the shape of each label is :

Finally, we are ready to build our model. We define the RNN's output dimension to have a
size of 128. This is a hyper-parameter that needs to be determined by experimentation. In
general, if we choose too small a size, then the model does not have sufficient capacity for
generating good text, and you will see long runs of repeating characters or runs of repeating
word groups. On the other hand, if the value chosen is too large, the model has too many
parameters and needs a lot more data to train effectively. We want to return a single
character as output, not a sequence of characters, so . We have
already seen that the input to the RNN is of shape (and). In addition, we
set because it improves performance on the TensorFlow backend.

The RNN is connected to a dense (fully connected) layer. The dense layer has ()
units, which emits scores for each of the characters in the vocabulary. The activation on the
dense layer is a softmax, which normalizes the scores to probabilities. The character with
the highest probability is chosen as the prediction. We compile the model with the
categorical cross-entropy loss function, a good loss function for categorical outputs, and the
RMSprop optimizer:

Recurrent Neural Network — RNN

[181]

Our training approach is a little different from what we have seen so far. So far our
approach has been to train a model for a fixed number of epochs, then evaluate it against a
portion of held-out test data. Since we don't have any labeled data here, we train the model
for an epoch () then test it. We continue training like this
for 25 () iterations, stopping once we see intelligible output. So
effectively, we are training for epochs and testing the model after each
epoch.

Our test consists of generating a character from the model given a random input, then
dropping the first character from the input and appending the predicted character from our
previous run, and generating another character from the model. We continue this 100 times
() and generate and print the resulting string. The string gives
us an indication of the quality of the model:

Recurrent Neural Network — RNN

[182]

The output of this run is shown as follows. As you can see, the model starts out predicting
gibberish, but by the end of the 25th epoch, it has learned to spell reasonably well, although
it has trouble expressing coherent thoughts. The amazing thing about this model is that it is
character-based and has no knowledge of words, yet it learns to spell words that look like
they might have come from the original text:

Generating the next character or next word of text is not the only thing you can do with this
sort of model. This kind of model has been successfully used to make stock predictions (for
more information refer to the article: Financial Market Time Series Prediction with Recurrent
Neural Networks, by A. Bernal, S. Fok, and R. Pidaparthi, 2012) and generate classical music
(for more information refer to the article: DeepBach: A Steerable Model for Bach Chorales
Generation, by G. Hadjeres and F. Pachet, arXiv:1612.01010, 2016), to name a few interesting
applications. Andrej Karpathy covers a few other fun examples, such as generating fake
Wikipedia pages, algebraic geometry proofs, and Linux source code in his blog post at: The
Unreasonable Effectiveness of Recurrent Neural Networks at

.

The source code for this example is available in in the code
download for the chapter. The data is available from Project Gutenberg.

Recurrent Neural Network — RNN

[183]

RNN topologies
The APIs for MLP and CNN architectures are limited. Both architectures accept a fixed-size
tensor as input and produce a fixed-size tensor as output; and they perform the
transformation from input to output in a fixed number of steps given by the number of
layers in the model. RNNs don't have this limitation—you can have sequences in the input,
the output, or both. This means that RNNs can be arranged in many ways to solve specific
problems.

As we have learned, RNNs combine the input vector with the previous state vector to
produce a new state vector. This can be thought of as similar to running a program with
some inputs and some internal variables. Thus RNNs can be thought of as essentially
describing computer programs. In fact, it has been shown that RNNs are turing complete
(for more information refer to the article: On the Computational Power of Neural Nets, by H. T.
Siegelmann and E. D. Sontag, proceedings of the fifth annual workshop on computational
learning theory, ACM, 1992.) in the sense that given the proper weights, they can simulate
arbitrary programs.

This property of being able to work with sequences gives rise to a number of common
topologies, some of which we'll discuss, as follows:

Recurrent Neural Network — RNN

[184]

All these different topologies derive from the same basic structure shown in the preceding
diagram. In this basic topology, all input sequences are of the same length and an output is
produced at each time step. We have already seen an example of this with our character
level RNN for generating words in Alice in Wonderland.

Another example of a many to many RNN could be a machine translation network shown
as (b), part of a general family of networks called sequence-to-sequence (for more
information refer to: Grammar as a Foreign Language, by O. Vinyals, Advances in Neural
Information Processing Systems, 2015). These take in a sequence and produces another
sequence. In the case of machine translation, the input could be a sequence of English words
in a sentence and the output could be the words in a translated Spanish sentence. In the case
of a model that uses sequence-to-sequence to do part-of-speech (POS) tagging, the input
could be the words in a sentence and the output could be the corresponding POS tags. It
differs from the previous topology in that at certain time steps there is no input and at
others there is no output. We will see an example of such a network later in this chapter.

Other variants are the one-to-many network shown as (c), an example of which could be an
image captioning network (for more information refer to the article: Deep Visual-Semantic
Alignments for Generating Image Descriptions, by A. Karpathy, and F. Li, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015.), where the input is an
image and the output a sequence of words.

Similarly, an example of a many-to-one network as shown in (d) could be a network that
does sentiment analysis of sentences, where the input is a sequence of words and the output
is a positive or negative sentiment (for more information refer to the article: Recursive Deep
Models for Semantic Compositionality over a Sentiment Treebank, by R. Socher, Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP). Vol. 1631,
2013). We will see an (much simplified compared to the cited model) example of this
topology as well later in the chapter.

Vanishing and exploding gradients
Just like traditional neural networks, training the RNN also involves backpropagation. The
difference in this case is that since the parameters are shared by all time steps, the gradient
at each output depends not only on the current time step, but also on the previous ones.
This process is called backpropagation through time (BPTT) (for more information refer to
the article: Learning Internal Representations by Backpropagating errors, by G. E. Hinton, D. E.
Rumelhart, and R. J. Williams, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition 1, 1985):

Recurrent Neural Network — RNN

[185]

Consider the small three layer RNN shown in the preceding diagram. During the forward
propagation (shown by the solid lines), the network produces predictions that are
compared to the labels to compute a loss Lt at each time step. During backpropagation
(shown by dotted lines), the gradients of the loss with respect to the parameters U, V, and W
are computed at each time step and the parameters are updated with the sum of the
gradients.

The following equation shows the gradient of the loss with respect to W, the matrix that
encodes weights for the long term dependencies. We focus on this part of the update
because it is the cause of the vanishing and exploding gradient problem. The other two
gradients of the loss with respect to the matrices U and V are also summed up across all
time steps in a similar way:

Recurrent Neural Network — RNN

[186]

Let us now look at what happens to the gradient of the loss at the last time step (t=3). As
you can see, this gradient can be decomposed to a product of three sub gradients using the
chain rule. The gradient of the hidden state h2 with respect to W can be further decomposed
as the sum of the gradient of each hidden state with respect to the previous one. Finally,
each gradient of the hidden state with respect to the previous one can be further
decomposed as the product of gradients of the current hidden state against the previous
one:

Similar calculations are done to compute the gradient of losses L1 and L2 (at time steps 1 and
2) with respect to W and to sum them into the gradient update for W. We will not explore
the math further in this book. If you want to do so on your own, this WILDML blog post (

) has a very good explanation of BPTT, including more detailed
derivations of the mathematics behind the process.

For our purposes, the final form of the gradient in the equation above tells us why RNNs
have the problem of vanishing and exploding gradients. Consider the case where the
individual gradients of a hidden state with respect to the previous one is less than one. As
we backpropagate across multiple time steps, the product of gradients get smaller and
smaller, leading to the problem of vanishing gradients. Similarly, if the gradients are larger
than one, the products get larger and larger, leading to the problem of exploding gradients.

The effect of vanishing gradients is that the gradients from steps that are far away do not
contribute anything to the learning process, so the RNN ends up not learning long range
dependencies. Vanishing gradients can happen for traditional neural networks as well, it is
just more visible in case of RNNs, since RNNs tend to have many more layers (time steps)
over which back propagation must occur.

Exploding gradients are more easily detectable, the gradients will become very large and
then turn into not a number (NaN) and the training process will crash. Exploding gradients
can be controlled by clipping them at a predefined threshold as discussed in the paper: On
the Difficulty of Training Recurrent Neural Networks, by R. Pascanu, T. Mikolov, and Y.
Bengio, ICML, Pp 1310-1318, 2013.

Recurrent Neural Network — RNN

[187]

While there are a few approaches to minimize the problem of vanishing gradients, such as
proper initialization of the W matrix, using a ReLU instead of tanh layers, and pre-training
the layers using unsupervised methods, the most popular solution is to use the LSTM or
GRU architectures. These architectures have been designed to deal with the vanishing
gradient problem and learn long term dependencies more effectively. We will learn more
about LSTM and GRU architectures later in this chapter.

Long short term memory — LSTM
The LSTM is a variant of RNN that is capable of learning long term dependencies. LSTMs
were first proposed by Hochreiter and Schmidhuber and refined by many other researchers.
They work well on a large variety of problems and are the most widely used type of RNN.

We have seen how the SimpleRNN uses the hidden state from the previous time step and
the current input in a tanh layer to implement recurrence. LSTMs also implement recurrence
in a similar way, but instead of a single tanh layer, there are four layers interacting in a very
specific way. The following diagram illustrates the transformations that are applied to the
hidden state at time step t:

Recurrent Neural Network — RNN

[188]

The diagram looks complicated, but let us look at it component by component. The line
across the top of the diagram is the cell state c, and represents the internal memory of the
unit. The line across the bottom is the hidden state, and the i, f, o, and g gates are the
mechanism by which the LSTM works around the vanishing gradient problem. During
training, the LSTM learns the parameters for these gates.

In order to gain a deeper understanding of how these gates modulate the LSTM's hidden
state, let us consider the equations that show how it calculates the hidden state ht at time t
from the hidden state ht-1 at the previous time step:

Here i, f, and o are the input, forget, and output gates. They are computed using the same
equations but with different parameter matrices. The sigmoid function modulates the
output of these gates between zero and one, so the output vector produced can be
multiplied element-wise with another vector to define how much of the second vector can
pass through the first one.

The forget gate defines how much of the previous state ht-1 you want to allow to pass
through. The input gate defines how much of the newly computed state for the current
input xt you want to let through, and the output gate defines how much of the internal state
you want to expose to the next layer. The internal hidden state g is computed based on the
current input xt and the previous hidden state ht-1. Notice that the equation for g is identical
to that for the SimpleRNN cell, but in this case we will modulate the output by the output
of the input gate i.

Given i, f, o, and g, we can now calculate the cell state ct at time t in terms of ct-1 at time (t-1)
multiplied by the forget gate and the state g multiplied by the input gate i. So this is
basically a way to combine the previous memory and the new input—setting the forget gate
to 0 ignores the old memory and setting the input gate to 0 ignores the newly computed
state.

Recurrent Neural Network — RNN

[189]

Finally, the hidden state ht at time t is computed by multiplying the memory ct with the
output gate.

One thing to realize is that an LSTM is a drop-in replacement for a SimpleRNN cell, the
only difference is that LSTMs are resistant to the vanishing gradient problem. You can
replace an RNN cell in a network with an LSTM without worrying about any side effects.
You should generally see better results along with longer training times.

If you would like to know more, WILDML blog post has a very detailed explanation of
these LSTM gates and how they work. For a more visual explanation, take a look at
Christopher Olah's blog post: Understanding LSTMs (

) where he walks you step by step through these
computations, with illustrations at each step.

LSTM with Keras — sentiment analysis
Keras provides an LSTM layer that we will use here to construct and train a many-to-one
RNN. Our network takes in a sentence (a sequence of words) and outputs a sentiment value
(positive or negative). Our training set is a dataset of about 7,000 short sentences
from UMICH SI650 sentiment classification competition on Kaggle (

). Each sentence is labeled 1 or 0 for positive or negative
sentiment respectively, which our network will learn to predict.

We start with the imports, as usual:

Before we start, we want to do a bit of exploratory analysis on the data. Specifically we need
to know how many unique words there are in the corpus and how many words are there in
each sentence:

Recurrent Neural Network — RNN

[190]

Using this, we get the following estimates for our corpus:

maxlen : 42
len(word_freqs) : 2313

Using the number of unique words , we set our vocabulary size to a
fixed number and treat all the other words as out of vocabulary (OOV) words and replace
them with the pseudo-word UNK (for unknown). At prediction time, this will allow us to
handle previously unseen words as OOV words as well.

The number of words in the sentence () allows us to set a fixed sequence length and
zero pad shorter sentences and truncate longer sentences to that length as appropriate. Even
though RNNs handle variable sequence length, this is usually achieved either by padding
and truncating as above, or by grouping the inputs in different batches by sequence length.
We will use the former approach here. For the latter approach, Keras recommends using
batches of size one (for more information refer to:

).

Based on the preceding estimates, we set our to . This is 2,000
words from our vocabulary plus the UNK pseudo-word and the PAD pseudo word (used
for padding sentences to a fixed number of words), in our case 40 given by

:

Recurrent Neural Network — RNN

[191]

Next we need a pair of lookup tables. Each row of input to the RNN is a sequence of word
indices, where the indices are ordered by most frequent to least frequent word in the
training set. The two lookup tables allow us to lookup an index given the word and the
word given the index. This includes the and pseudo-words as well:

Next, we convert our input sentences to word index sequences, pad them to the
 words. Since our output label in this case is binary (positive or

negative sentiment), we don't need to process the labels:

Finally, we split the training set into a 80-20 training test split:

Recurrent Neural Network — RNN

[192]

The following diagram shows the structure of our RNN:

The input for each row is a sequence of word indices. The sequence length is given by
. The first dimension of the tensor is set to to indicate that the

batch size (the number of records fed to the network each time) is currently unknown at
definition time; it is specified during run time using the parameter. So
assuming an as-yet undetermined batch size, the shape of the input tensor is

. These tensors are fed into an embedding layer of size
 whose weights are initialized with small random values and learned

during training. This layer will transform the tensor to a shape
. The output of the embedding layer

is fed into an LSTM with sequence length and output layer size
, so the output of the LSTM is a tensor of shape

. By default, the LSTM will output a
single tensor of shape at its last sequence
(). This is fed to a dense layer with output size of with a
sigmoid activation function, so it will output either (negative review) or (positive
review).

Recurrent Neural Network — RNN

[193]

We compile the model using the binary cross-entropy loss function since it predicts a binary
value, and the Adam optimizer, a good general purpose optimizer. Note that the
hyperparameters , , and
(set as constants as follows) were tuned experimentally over several runs:

We then train the network for epochs () and batch size of ().
At each epoch we validate the model using the test data:

Recurrent Neural Network — RNN

[194]

The output of this step shows how the loss decreases and accuracy increases over multiple
epochs:

We can also plot the loss and accuracy values over time using the following code:

Recurrent Neural Network — RNN

[195]

The output of the preceding example is as follows:

Finally, we evaluate our model against the full test set and print the score and accuracy. We
also pick a few random sentences from our test set and print the RNN's prediction, the label
and the actual sentence:

Recurrent Neural Network — RNN

[196]

As you can see from the results, we get back close to 99% accuracy. The predictions the
model makes for this particular set match exactly with the labels, although this is not the
case for all predictions:

If you would like to run this code locally, you need to get the data from the Kaggle website.

The source code for this example is available in the file in the
code download for this chapter.

Gated recurrent unit — GRU
The GRU is a variant of the LSTM and was introduced by K. Cho (for more information
refer to: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, by K. Cho, arXiv:1406.1078, 2014). It retains the LSTM's resistance to the
vanishing gradient problem, but its internal structure is simpler, and therefore is faster to
train, since fewer computations are needed to make updates to its hidden state. The gates
for a GRU cell are illustrated in the following diagram:

Recurrent Neural Network — RNN

[197]

Instead of the input, forget, and output gates in the LSTM cell, the GRU cell has two gates,
an update gate z, and a reset gate r. The update gate defines how much previous memory to
keep around and the reset gate defines how to combine the new input with the previous
memory. There is no persistent cell state distinct from the hidden state as in LSTM. The
following equations define the gating mechanism in a GRU:

According to several empirical evaluations (for more information refer to the articles: An
Empirical Exploration of Recurrent Network Architectures, by R. Jozefowicz, W. Zaremba, and I.
Sutskever, JMLR, 2015 and Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling, by J. Chung, arXiv:1412.3555. 2014), GRU and LSTM have comparable
performance and there is no simple way to recommend one or the other for a specific task.
While GRUs are faster to train and need less data to generalize, in situations where there is
enough data, an LSTM's greater expressive power may lead to better results. Like LSTMs,
GRUs are drop-in replacements for the SimpleRNN cell.

Keras provides built in implementations of both and , as well as the
class we saw earlier.

Recurrent Neural Network — RNN

[198]

GRU with Keras — POS tagging
Keras provides a GRU implementation, that we will use here to build a network that does
POS tagging. A POS is a grammatical category of words that are used in the same way
across multiple sentences. Examples of POS are nouns, verbs, adjectives, and so on. For
example, nouns are typically used to identify things, verbs are typically used to identify
what they do, and adjectives to describe some attribute of these things. POS tagging used to
be done manually, but nowadays this is done automatically using statistical models. In
recent years, deep learning has been applied to this problem as well (for more information
refer to the article: Natural Language Processing (almost) from Scratch, by R. Collobert, Journal
of Machine Learning Research, Pp. 2493-2537, 2011).

For our training data, we will need sentences tagged with part of speech tags. The Penn
Treebank () is one such dataset, it is a human
annotated corpus of about 4.5 million words of American English. However, it is a non-free
resource. A 10% sample of the Penn Treebank is freely available as part of the NLTK (

), which we will use to train our network.

Our model will take in a sequence of words in a sentence and output the corresponding
POS tags for each word. Thus for an input sequence consisting of the words [The, cat, sat, on,
the, mat, .], the output sequence emitted would be the POS symbols [DT, NN, VB, IN, DT,
NN].

We start with the imports:

Recurrent Neural Network — RNN

[199]

We then download the data from NLTK in a format suitable for our downstream code.
Specifically, the data is available in parsed form as part of the NLTK Treebank corpus. We
use the following Python code to download this data into two parallel files, one for the
words in the sentences and one for the POS tags:

Once again, we want to explore the data a little to find out what vocabulary size to set. This
time, we have to consider two different vocabularies, the source vocabulary for the words
and the target vocabulary for the POS tags. We need to find the number of unique words in
each vocabulary. We also need to find the maximum number of words in a sentence in our
training corpus and the number of records. Because of the one-to-one nature of POS
tagging, the last two values are identical for both vocabularies:

Recurrent Neural Network — RNN

[200]

Running this code tells us that there are 10,947 unique words and 45 unique POS tags. The
maximum sentence size is 249, and the number of sentences in the 10% set is 3,914. Using
this information, we decide to consider only the top 5,000 words for our source vocabulary.
Our target vocabulary has 45 unique POS tags, we want to be able to predict all of them, so
we will consider all of them in our vocabulary. Finally, we set 250 to be our maximum
sequence length:

Just like our sentiment analysis example, each row of the input will be represented as a
sequence of word indices. The corresponding output will be a sequence of POS tag
indices. So we need to build lookup tables to translate between the words/POS tags and
their corresponding indices. Here is the code to do that. On the source side, we build a
vocabulary index with two extra slots to hold the and pseudo-words. On the target
side, we don't drop any words so there is no need for the pseudo-word:

Recurrent Neural Network — RNN

[201]

The next step is to build our datasets to feed into our network. We will use these lookup
tables to convert our input sentences into a word ID sequence of length ().
The labels need to be structured as a sequence of one-hot vectors of size +
1 (), also of length (). The function reads the data from
the two files and converts them to the input and output tensors. Additional default
parameters are passed in to build the output tensor. This triggers the call to

 to convert the output sequence of POS tag IDs to one-hot
vector representation:

We can then split the dataset into a 80-20 train-test split:

Recurrent Neural Network — RNN

[202]

The following figure shows the schematic of our network. It looks complicated, so let us
deconstruct it:

As previously, assuming that the batch size is as yet undetermined, the input to the
network is a tensor of word IDs of shape . This is sent through
an embedding layer, which converts each word into a dense vector of shape (),
so the output tensor from this layer has the shape .
This tensor is fed to the encoder GRU with an output size of . The GRU is set
to return a single context vector () after seeing a sequence of
size , so the output tensor from the GRU layer has shape

.

Recurrent Neural Network — RNN

[203]

This context vector is then replicated using the RepeatVector layer into a tensor of shape
 and fed into the decoder GRU layer. This is then

fed into a dense layer which produces an output tensor of shape
. The activation function on the dense layer is a softmax. The argmax of

each column of this tensor is the index of the predicted POS tag for the word at that
position.

The model definition is shown as follows: , , , and
 are hyperparameters which have been assigned these values after

experimenting with multiple different values. The model is compiled with the
 loss function since we have multiple categories of labels,

and the optimizer used is the popular optimizer:

We train this model for a single epoch. The model is very rich, with many parameters, and
begins to overfit after the first epoch of training. When fed the same data multiple times in
the next epochs, the model begins to overfit to the training data and does worse on the
validation data:

Recurrent Neural Network — RNN

[204]

The output of the training and the evaluation is shown as follows. As you can see, the
model does quite well after the first epoch of training:

Similar to actual RNNs, the three recurrent classes in Keras (, , and) are
interchangeable. To demonstrate, we simply replace all occurrences of in the previous
program with and rerun the program. The model definition and the import
statements are the only things that change:

As you can see from the output, the results of the GRU-based network are quite comparable
to our previous LSTM-based network.

Sequence-to-sequence models are a very powerful class of model. Its most canonical
application is machine translation, but there are many others such as the previous example.
Indeed, a lot of NLP tasks further up in the hierarchy, such as named entity recognition (for
more information refer to the article: Named Entity Recognition with Long Short Term Memory,
by J. Hammerton, Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL, Association for Computational Linguistics, 2003) and sentence parsing (for
more information refer to the article: Grammar as a Foreign Language, by O. Vinyals,
Advances in Neural Information Processing Systems, 2015), as well as more complex
networks such as those for image captioning (for more information refer to the article: Deep
Visual-Semantic Alignments for Generating Image Descriptions, by A. Karpathy, and F. Li,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.),
are examples of the sequence-to-sequence compositional model.

Recurrent Neural Network — RNN

[205]

The full code for this example can be found in the file in the the
code download for this chapter.

Bidirectional RNNs
At a given time step t, the output of the RNN is dependent on the outputs at all previous
time steps. However, it is entirely possible that the output is also dependent on the future
outputs as well. This is especially true for applications such as NLP, where the attributes of
the word or phrase we are trying to predict may be dependent on the context given by the
entire enclosing sentence, not just the words that came before it. Bidirectional RNNs also
help a network architecture place equal emphasis on the beginning and end of the
sequence, and increase the data available for training.

Bidirectional RNNs are two RNNs stacked on top of each other, reading the input in
opposite directions. So in our example, one RNN will read the words left to right and the
other RNN will read the words right to left. The output at each time step will be based on
the hidden state of both RNNs.

Keras provides support for bidirectional RNNs through a bidirectional wrapper layer. For
example, for our POS tagging example, we could make our LSTMs bidirectional simply by
wrapping them with this Bidirectional wrapper, as shown in the model definition code as
follows:

Recurrent Neural Network — RNN

[206]

This gives us performance comparable to the unidirectional LSTM example shown as
follows:

Stateful RNNs
RNNs can be stateful, which means that they can maintain state across batches during
training. That is, the hidden state computed for a batch of training data will be used as the
initial hidden state for the next batch of training data. However, this needs to be explicitly
set, since Keras RNNs are stateless by default and resets the state after each batch. Setting
an RNN to be stateful means that it can build a state across its training sequence and even
maintain that state when doing predictions.

The benefits of using stateful RNNs are smaller network sizes and/or lower training times.
The disadvantage is that we are now responsible for training the network with a batch size
that reflects the periodicity of the data, and resetting the state after each epoch. In addition,
data should not be shuffled while training the network, since the order in which the data is
presented is relevant for stateful networks.

Stateful LSTM with Keras — predicting electricity
consumption
In this example, we predict electricity consumption for a consumer using a stateful and
stateless LSTM network and compare their behaviors. As you will recall, RNNs in Keras are
stateless by default. In case of stateful models, the internal states computed after processing
a batch of input is reused as initial states for the next batch. In other words, the state
computed from element i in a batch will be used as initial state for for the element i in the
next batch.

Recurrent Neural Network — RNN

[207]

The dataset we will use is the electricity load diagram dataset from the UCI Machine
Learning Repository (

), and contains consumption information about 370 customers, taken at 15
minute intervals over a four year period from 2011 to 2014. We randomly choose customer
number 250 for our example.

One thing to remember is that most problems can be solved with stateless RNNs, so if you
do use a stateful RNN, make sure you need it. Typically, you would need it when the data
has a periodic component. If you think a bit, you will realize that electricity consumption is
periodic. Consumption tends to be higher during the day than at night. Let us extract the
consumption data for customer number 250 and plot the first 10 days of data. Finally we
also save it to a binary NumPy file for our next step:

Recurrent Neural Network — RNN

[208]

The output of the preceding example is as follow:

As you can see, there is clearly a daily periodic trend. So the problem is a good candidate
for a stateful model. Also, based on our observation, a of (number of 15
minute readings over 24 hours) seems appropriate.

We will show the code for the stateless version of the model simultaneously with the one
for the stateful version. Most of the code is identical for both versions, so we will look at
both versions simultaneously. I will point out the differences in the code as they arise.

First, as usual, we import the necessary libraries and classes:

Recurrent Neural Network — RNN

[209]

Next we load the data for customer 250 into a long array of size () from the saved
NumPy binary file and rescale it to the range (0, 1). Finally, we reshape the input to three
dimensions as needed by our network:

Within each batch, the model will take a sequence of 15 minute readings and predict the
next one. The length of the input sequence is given by the variable in the
code. Based on some experimentation, we get a value of as , that is, each
input row will be a sequence of length , and the output will have length . The next step
rearranges the input array into and tensors of shapes and .
Finally, we reshape the input tensor to three dimensions as required by the network:

We then split our and tensors into a 70-30 training test split. Since we are working with
time series, we just choose a split point and cut the data into two parts, rather than using
the function, which also shuffles the data:

Recurrent Neural Network — RNN

[210]

First we define our stateless model. We also set the values of and
, as we discussed previously. Our LSTM output size is given by

, another hyperparameter that is usually arrived at through experimentation.
Here, we just set it to since our objective is to compare two networks:

The corresponding definition for the stateful model is very similar, as you can see as
follows. In the LSTM constructor, you need to set , and instead of

 where the batch size is determined at runtime, you need to set
 explicitly with the batch size. You also need to ensure that your

training and test data sizes are perfect multiples of your batch size. We will see how to do
that later when we look at the training code:

Next we compile the model, which is the same for both stateless and stateful RNNs. Notice
that our metric here is mean squared error instead of our usual accuracy. This is because
this is really a regression problem; we are interested in knowing how far off our predictions
are with respect to the labels rather than knowing whether our prediction matched the
label. You can find a full list of Keras built-in metrics on the Keras metrics page:

Recurrent Neural Network — RNN

[211]

To train the stateless model, we can use the one liner that we have probably become very
familiar with by now:

The corresponding code for the stateful model is shown as follows. There are three things to
be aware of here.

First, you should select a batch size that reflects the periodicity of your data. This is because
stateful RNNs align the states from each batch to the next, so selecting the right batch size
allows the network to learn faster.

Once you set the batch size, the size of your training and test sets needs to be exact
multiples of your batch size. We have ensured this below by truncating the last few records
from both our training and test sets.

The second thing is that you need to fit the model manually, training the model in a loop for
the required number of epochs. Each iteration trains the model for one epoch, and the state
is retained across multiple batches. After each epoch, the state of the model needs to be reset
manually.

The third thing is that the data should be fed in sequence. By default, Keras will shuffle the
rows within each batch, which will destroy the alignment we need for the stateful RNN to
learn effectively. This is done by setting in the call to :

Recurrent Neural Network — RNN

[212]

Finally, we evaluate the model against the test data and print out the scores:

The output for the stateless model, run over five epochs, is as follows:

The corresponding output for the stateful model, also run in a loop five times for one epoch
each time, is as follows. Notice the result of the truncating operation in the second line:

Recurrent Neural Network — RNN

[213]

As you can see, the stateful model produces results that are slightly better than the stateless
model. In absolute terms, since we have scaled our data to the (0, 1) range, this means that
the stateless model has about 6.2% error rate and the stateful model has a 5.9% error rate, or
conversely, they are about 93.8% and 94.1% accurate respectively. In relative terms,
therefore, our stateful model outperforms the stateless model by a slight margin.

The source code for this example is provided in the files that parses the
dataset, and that defines and trains the stateless and stateful models,
available from the code download for this chapter.

Other RNN variants
We will round up this chapter by looking at some more variants of the RNN cell. RNN is an
area of active research and many researchers have suggested variants for specific purposes.

One popular LSTM variant is adding peephole connections, which means that the gate layers
are allowed to peek at the cell state. This was introduced by Gers and Schmidhuber (for
more information refer to the article: Learning Precise Timing with LSTM Recurrent Networks,
by F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, Journal of Machine Learning
Research, pp. 115-43) in 2002.

Another LSTM variant, that ultimately led to the GRU, is to use coupled forget and output
gates. Decisions about what information to forget and what to acquire are made together,
and the new information replaces the forgotten information.

Keras provides only the three basic variants, namely the SimpleRNN, LSTM, and GRU
layers. However, that isn't necessarily a problem. Gref conducted an experimental survey
(for more information refer to the article: LSTM: A Search Space Odyssey, by K. Greff,
arXiv:1503.04069, 2015) of many LSTM variants, and concluded that none of the variants
improved significantly over the standard LSTM architecture. So the components provided
in Keras are usually sufficient to solve most problems.

In case you do need the capability to construct your own layer, you can build custom Keras
layers. We will look at how to build a custom layer in the next chapter. There is also an
open source framework called recurrent shop (

) that allows you to build complex recurrent neural networks with Keras.

Recurrent Neural Network — RNN

[214]

Summary
In this chapter, we looked at the basic architecture of recurrent neural networks and how
they work better than traditional neural networks over sequence data. We saw how RNNs
can be used to learn an author's writing style and generate text using the learned model. We
also saw how this example can be extended to predicting stock prices or other time series,
speech from noisy audio, and so on, as well as generate music that was composed by a
learned model.

We looked at different ways to compose our RNN units and these topologies can be used to
model and solve specific problems such as sentiment analysis, machine translation, image
captioning, and classification, and so on.

We then looked at one of the biggest drawbacks of the SimpleRNN architecture, that of
vanishing and exploding gradients. We saw how the vanishing gradient problem is
handled using the LSTM (and GRU) architectures. We also looked at the LSTM and GRU
architectures in some detail. We also saw two examples of predicting sentiment using an
LSTM-based model, and predicting POS tags using a GRU-based sequence-to-sequence
architecture.

We then learned about stateful RNNs and how they can be used in Keras. We also saw an
example of learning a stateful RNN to predict CO levels in the atmosphere.

Finally, we learned about some RNN variants that are not available in Keras, and briefly
explored how to build them.

In the next chapter, we will look at models that don't quite fit into the basic molds we have
looked at so far. We will also look at composing these basic models larger and more
complex ones using the Keras functional API, as well as look at some examples of
customizing Keras to our needs.

77
Additional Deep Learning

Models
So far, most of the discussion has been focused around different models that do
classification. These models are trained using object features and their labels to predict
labels for hitherto unseen objects. The models also had a fairly simple architecture, all the
ones we have seen so far have a linear pipeline modeled by the Keras sequential API.

In this chapter, we will focus on more complex architectures where the pipelines are not
necessarily linear. Keras provides the functional API to deal with these sorts of
architectures. We will learn how to define our networks using the functional API in this
chapter. Note that the functional API can be used to build linear architectures as well.

The simplest extension of classification networks are regression networks. The two broad
subcategories under supervised machine learning are classification and regression. Instead
of predicting a category, the network now predicts a continuous value. You saw an example
of a regression network when we discussed stateless versus stateful RNNs. Many
regression problems can be solved using classification models with very little effort. We will
see an example of such a network to predict atmospheric benzene in this chapter.

Yet another class of models deal with learning the structure of the data from unlabeled data.
These are called unsupervised (or more correctly, self-supervised) models. They are similar
to classification models, but the labels are available implicitly within the data. We have
already seen examples of this kind of model; for example, the CBOW and skip-gram
word2vec models are self-supervised models. Autoencoders are another example of this
type of model. We will learn about autoencoders and describe an example that builds
compact vector representations of sentences.

Additional Deep Learning Models

[216]

We will then look at how to compose the networks we have seen so far into larger
computation graphs. These graphs are often built to achieve some custom objective that is
not achievable by a sequential model alone, and may have multiple inputs and outputs and
connections to external components. We will see an example of composing such a network
for question answering.

We then take a detour to look at the Keras backend API, and how we can use this API to
build custom components to extend Keras' functionality.

Going back to models for unlabeled data, another class of models that don't require labels
are generative models. These models are trained using a set of existing objects and attempt
to learn the distribution these objects come from. Once the distribution is learned, we can
draw samples from this distribution that look like the original training data. We have seen
an example of this where we trained a character RNN model to generate text similar to Alice
in Wonderland in the previous chapter. The idea is already covered, so we won't cover this
particular aspect of generative models here. However, we will look at how we can leverage
the idea of a trained network learning the data distribution to create interesting visual
effects using a VGG-16 network pre-trained on ImageNet data.

To summarize, we will learn the following topics in this chapter:

The Keras functional API
Regression networks
Autoencoders for unsupervised learning
Composing complex networks with the functional API
Customizing Keras
Generative networks

Let's get started.

Additional Deep Learning Models

[217]

Keras functional API
The Keras functional API defines each layer as a function and provides operators to
compose these functions into a larger computational graph. A function is some sort of
transformation with a single input and single output. For example, the function y = f(x)
defines a function f with input x and output y. Let us consider the simple sequential model
from Keras (for more information refer to:

):

As you can see, the sequential model represents the network as a linear pipeline, or list, of
layers. We can also represent the network as the composition of the following nested
functions. Here x is the input tensor of shape (None, 784) and y is the output tensor of (None,
10). Here None refers to the as-yet undetermined batch size:

Where:

Additional Deep Learning Models

[218]

The network can be redefined using the Keras functional API as follows. Notice how the
predictions variable is a composition of the same functions we defined in equation form
previously:

Since a model is a composition of layers that are also functions, a model is also a function.
Therefore, you can treat a trained model as just another layer by calling it on an
appropriately shaped input tensor. Thus, if you have built a model that does something
useful like image classification, you can easily extend it to work with a sequence of images
using Keras's wrapper:

The functional API can be used to define any network that can be defined using the
sequential API. In addition, the following types of network can only be defined using the
functional API:

Models with multiple inputs and outputs
Models composed of multiple submodels
Models that used shared layers

Models with multiple inputs and outputs are defined by composing the inputs and outputs
separately, as shown in the preceding example, and then passing in an array of input
functions and an array of output functions in the input and output parameters of the
constructor:

Additional Deep Learning Models

[219]

Models with multiple inputs and outputs also generally consist of multiple subnetworks,
the results of whose computations are merged into the final result. The merge function
provides multiple ways to merge intermediate results such as vector addition, dot product,
and concatenation. We will see examples of merging in our question answering example
later in this chapter.

Another good use for the functional API are models that use shared layers. Shared layers
are defined once, and referenced in each pipeline where their weights need to be shared.

We will use the functional API almost exclusively in this chapter, so you will see quite a few
examples of its use. The Keras website has many more usage examples for the functional
API.

Regression networks
The two major techniques of supervised learning are classification and regression. In both
cases, the model is trained with data to predict known labels. In case of classification, these
labels are discrete values such as genres of text or image categories. In case of regression,
these labels are continuous values, such as stock prices or human intelligence quotients
(IQ).

Most of the examples we have seen show deep learning models being used to perform
classification. In this section, we will look at how to perform regression using such a model.

Recall that classification models have a dense layer with a nonlinear activation at the end,
the output dimension of which corresponds to the number of classes the model can predict.
Thus, an ImageNet image classification model has a dense (1,000) layer at the end,
corresponding to 1,000 ImageNet classes it can predict. Similarly, a sentiment analysis
model has a dense layer at the end, corresponding to positive or negative sentiment.

Regression models also have a dense layer at the end, but with a single output, that is, an
output dimension of one, and no nonlinear activation. Thus the dense layer just returns the
sum of the activations from the previous layer. In addition, the loss function used is
typically mean squared error (MSE), but some of the other objectives (listed on the Keras
objectives page at:) can be used as well.

Additional Deep Learning Models

[220]

Keras regression example — predicting benzene
levels in the air
In this example, we will predict the concentration of benzene in the atmosphere given some
other variables such as concentrations of carbon monoxide, nitrous oxide, and so on in the
atmosphere as well as temperature and relative humidity. The dataset we will use is the air
quality dataset from the UCI Machine Learning Repository (

). The dataset contains 9,358 instances of hourly averaged
readings from an array of five metal oxide chemical sensors. The sensor array was located
in a city in Italy, and the recordings were made from March 2004 to February 2005.

As usual, first we import all our necessary libraries:

The dataset is provided as a CSV file. We load the input data into a Pandas (for more
information refer to:) data frame. Pandas is a popular data
analysis library built around data frames, a concept borrowed from the R language. We use
Pandas here to read the dataset for two reasons. First, the dataset contains empty fields
where they could not be recorded for some reason. Second, the dataset uses commas for
decimal points, a custom common in some European countries. Pandas has built-in support
to handle both situations, along with a few other conveniences, as we will see soon:

Additional Deep Learning Models

[221]

The preceding example removes the first two columns, which contains the observation date
and time, and the last two columns which seem to be spurious. Next we replace the empty
fields with the average value for the column. Finally, we export the data frame as a matrix
for downstream use.

One thing to note is that each column of the data has different scales since they measure
different quantities. For example, the concentration of tin oxide is in the 1,000 range, while
non-methanic hydrocarbons is in the 100 range. In many situations our features are
homogeneous so scaling is not an issue, but in cases like this it is generally a good practice
to scale the data. Scaling here consists of subtracting from each column the mean of the
column and dividing by its standard deviation:

To do this, we use the class provided by the library,
shown as follows. We store the mean and standard deviations because we will need this
later when reporting results or predicting against new data. Our target variable is the fourth
column in our input dataset, so we split this scaled data into input variables and target
variable :

We then split the data into the first 70% for training and the last 30% for testing. This gives
us 6,549 records for training and 2,808 records for testing:

Additional Deep Learning Models

[222]

Next we define our network. This is a simple two layer dense network that takes a vector of
12 features as input and outputs a scaled prediction. The hidden dense layer has eight
neurons. We initialize weight matrices for both dense layers with a specific initialization
scheme called glorot uniform. For a full list of initialization schemes, please refer to the Keras
initializations here: . The loss function used is mean
squared error () and the optimizer is :

We train this model for 20 epochs and batch size of 10:

This results in a model that has a mean squared error of 0.0003 (approximately 2% RMSE)
on the training set and 0.0016 (approximately 4% RMSE) on the validation set, as shown in
the logs of the training step here:

Additional Deep Learning Models

[223]

We also look at some values of benzene concentrations that were originally recorded and
compare them to those predicted by our model. Both actual and predicted values are
rescaled from their scaled z-values to actual values:

The side-by-side comparison shows that the predictions are quite close to the actual values:

Benzene Conc. expected: 4.600, predicted: 5.254
Benzene Conc. expected: 5.500, predicted: 4.932
Benzene Conc. expected: 6.500, predicted: 5.664
Benzene Conc. expected: 10.300, predicted: 8.482
Benzene Conc. expected: 8.900, predicted: 6.705
Benzene Conc. expected: 14.000, predicted: 12.928
Benzene Conc. expected: 9.200, predicted: 7.128
Benzene Conc. expected: 8.200, predicted: 5.983
Benzene Conc. expected: 7.200, predicted: 6.256
Benzene Conc. expected: 5.500, predicted: 5.184

Finally, we graph the actual values against the predictions for our entire test set. Once more,
we see that the network predicts values that are very close to the expected values:

Additional Deep Learning Models

[224]

The output of the preceding example is as follows:

Unsupervised learning — autoencoders
Autoencoders are a class of neural network that attempt to recreate the input as its target
using back-propagation. An autoencoder consists of two parts, an encoder and a decoder.
The encoder will read the input and compress it to a compact representation, and the
decoder will read the compact representation and recreate the input from it. In other words,
the autoencoder tries to learn the identity function by minimizing the reconstruction error.

Even though the identity function does not seem like a very interesting function to learn,
the way in which this is done makes it interesting. The number of hidden units in the
autoencoder is typically less than the number of input (and output) units. This forces the
encoder to learn a compressed representation of the input which the decoder reconstructs. If
there is structure in the input data in the form of correlations between input features, then
the autoencoder will discover some of these correlations, and end up learning a low
dimensional representation of the data similar to that learned using principal component
analysis (PCA).

Additional Deep Learning Models

[225]

Once the autoencoder is trained, we would typically just discard the decoder component
and use the encoder component to generate compact representations of the input.
Alternatively, we could use the encoder as a feature detector that generates a compact,
semantically rich representation of our input and build a classifier by attaching a softmax
classifier to the hidden layer.

The encoder and decoder components of an autoencoder can be implemented using either
dense, convolutional, or recurrent networks, depending on the kind of data that is being
modeled. For example, dense networks might be a good choice for autoencoders used to
build collaborative filtering (CF) models (for more information refer to the
articles: AutoRec: Autoencoders Meet Collaborative Filtering, by S. Sedhain, Proceedings of the
24th International Conference on World Wide Web, ACM, 2015 and Wide & Deep Learning
for Recommender Systems, by H. Cheng, Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, ACM, 2016), where we learn a compressed model of user
preferences based on actual sparse user ratings. Similarly, convolutional neural networks
may be appropriate for the use case covered in the article: See: Using Deep Learning to Remove
Eyeglasses from Faces, by M. Runfeldt. and recurrent networks a good choice for
autoencoders building on text data, such as deep patient (for more information refer to the
article: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the
Electronic Health Records, by R. Miotto, Scientific Reports 6, 2016) and skip-thought vectors
((for more information refer to the article: Skip-Thought Vectors, by R. Kiros, Advances in
Neural Information Processing Systems, 2015).

Autoencoders can also be stacked by successively stacking encoders that compress their
input to smaller and smaller representations, and stacking decoders in the opposite
sequence. Stacked autoencoders have greater expressive power and the successive layers of
representations capture a hierarchical grouping of the input, similar to the convolution and
pooling operations in convolutional neural networks.

Additional Deep Learning Models

[226]

Stacked autoencoders used to be trained layer by layer. For example, in the network shown
next, we would first train layer X to reconstruct layer X' using the hidden layer H1
(ignoring H2). We would then train the layer H1 to reconstruct layer H1' using the hidden
layer H2. Finally, we would stack all the layers together in the configuration shown and fine
tune it to reconstruct X' from X. With better activation and regularization functions
nowadays, however, it is quite common to train these networks in totality:

The Keras blog post, Building Autoencoders in Keras (
) has great examples of building autoencoders that reconstructs

MNIST digit images using fully connected and convolutional neural networks. It also has a
good discussion on denoising and variational autoencoders, which we will not cover here.

Keras autoencoder example — sentence vectors
In this example, we will build and train an LSTM-based autoencoder to generate sentence
vectors for documents in the Reuters-21578 corpus (

). We have already seen in
, Word Embeddings, how to represent a word using word embeddings to create

vectors that represent its meaning in the context of other words it appears with. Here, we
will see how to build similar vectors for sentences. Sentences are a sequence of words, so a
sentence vector represents the meaning of the sentence.

Additional Deep Learning Models

[227]

The easiest way to build a sentence vector is to just add up the word vectors and divide by
the number of words. However, this treats the sentence as a bag of words, and does not take
the order of words into account. Thus the sentences The dog bit the man and The man bit the
dog would be treated as identical under this scenario. LSTMs are designed to work with
sequence input and do take the order of words into consideration thus providing a better
and more natural representation for the sentence.

First we import the necessary libraries:

The data is provided as a set of SGML files. We have already parsed and consolidated this
data into a single text file in , Recurrent Neural Network — RNN, for our GRU-
based POS tagging example. We will reuse this data to first convert each block of text into a
list of sentences, one sentence per line:

To build up our vocabulary, we read this list of sentences again, word by word. Each word
is normalized as it is added. The normalization is to replace any token that looks like a
number with the digit and to lowercase them. The result is the word frequency table,

. We also compute the sentence length for each sentence and create a list of
parsed sentences by rejoining the tokens with space so it is easier to parse in a subsequent
step:

Additional Deep Learning Models

[228]

This gives us some information about the corpus that will help us figure out good values for
our constants for our LSTM network:

This gives us the following information about the corpus:

number of sentences: 131545
 distribution of sentence lengths (number of words)
 min: 1, max: 429, mean: 22.315, median: 21.000
 vocab size (full): 50751

Based on this information, we set the following constants for our LSTM model. We choose
our as , that is, our vocabulary covers the most frequent 5,000 words that
cover over 93% of the words used in the corpus. The remaining words are treated as out of
vocabulary (OOV) and replaced with the token . At prediction time, any word that the
model hasn't seen will also be assigned the token . is set to
approximately twice the median length of sentences in the training set, and indeed,
approximately 110 million of our 131 million sentences are shorter than this setting.
Sentences that are shorter than will be padded by a special
character, and those that are longer will be truncated to fit the limit:

Additional Deep Learning Models

[229]

Since the input to our LSTM will be numeric, we need to build lookup tables that go back
and forth between words and word IDs. Since we limit our vocabulary size to 5,000 and we
have to add the two pseudo-words and , our lookup table contains entries for the
most frequently occurring 4,998 words plus and :

The input to our network is a sequence of words, where each word is represented by a
vector. Simplistically, we could just use a one-hot encoding for each word, but that makes
the input data very large. So we encode each word using its 50-dimensional GloVe
embeddings. The embedding is generated into a matrix of shape

 where each row represents the GloVe embedding for a word in our
vocabulary. The and rows (and respectively) are populated with zeros and
random uniform values respectively:

Additional Deep Learning Models

[230]

Our autoencoder model takes a sequence of GloVe word vectors and learns to produce
another sequence that is similar to the input sequence. The encoder LSTM compresses the
sequence into a fixed size context vector, which the decoder LSTM uses to reconstruct the
original sequence. A schematic of the network is shown here:

Because the input is quite large, we will use a generator to produce each batch of input. Our
generator produces batches of tensors of shape

. Here is , and since we are using 50-dimensional GloVe
vectors, is . We shuffle the sentences at the beginning of each epoch, and
return batches of 64 sentences. Each sentence is represented as a vector of GloVe word
vectors. If a word in the vocabulary does not have a corresponding GloVe embedding, it is
represented by a zero vector. We construct two instances of the generator, one for training
data and one for test data, consisting of 70% and 30% of the original dataset respectively:

Additional Deep Learning Models

[231]

Now we are ready to define the autoencoder. As we have shown in the diagram, it is
composed of an encoder LSTM and a decoder LSTM. The encoder LSTM reads a tensor of
shape representing a batch of sentences.
Each sentence is represented as a padded fixed-length sequence of words of size

. Each word is represented as a 300-dimensional GloVe vector. The output
dimension of the encoder LSTM is a hyperparameter , which is the size of the
sentence vector that will get out of the encoder part of the trained autoencoder later. The
vector space of dimensionality represents the latent space that encodes the
meaning of the sentence. The output of the LSTM is a vector of size () for each
sentence, so for the batch the shape of the output tensor is .
This is now fed to a RepeatVector layer, which replicates this across the entire sequence,
that is., the output tensor from this layer has the shape

. This tensor is now fed into the decoder LSTM, whose output dimension is
the , so the output tensor has shape

, that is, the same shape as the input tensor.

We compile this model with the optimizer and the loss function. The reason we use
MSE is that we want to reconstruct a sentence that has a similar meaning, that is, something
that is close to the original sentence in the embedded space of dimension :

Additional Deep Learning Models

[232]

We train the autoencoder for 10 epochs using the following code. 10 epochs were chosen
because the MSE loss converges within this time. We also save the best model retrieved so
far based on the MSE loss:

The results of the training are shown as follows. As you can see, the training MSE reduces
from 0.14 to 0.1 and the validation MSE reduces from 0.12 to 0.1:

Additional Deep Learning Models

[233]

Or, graphically it shows as follows:

Since we are feeding in a matrix of embeddings, the output will also be a matrix of word
embeddings. Since the embedding space is continuous and our vocabulary is discrete, not
every output embedding will correspond to a word. The best we can do is to find a word
that is closest to the output embedding in order to reconstruct the original text. This is a bit
cumbersome, so we will evaluate our autoencoder in a different way.

Since the objective of the autoencoder is to produce a good latent representation, we
compare the latent vectors produced from the encoder using the original input versus the
output of the autoencoder. First, we extract the encoder component into its own network:

Then we run the autoencoder on the test set to return the predicted embeddings. We then
send both the input embedding and the predicted embedding through the encoder to
produce sentence vectors from each, and compare the two vectors using cosine similarity.
Cosine similarities close to one indicate high similarity and those close to zero indicate low
similarity. The following code runs against a random subset of 500 test sentences and
produces some sample values of cosine similarities between the sentence vectors generated
from the source embedding and the corresponding target embedding produced by the
autoencoder:

Additional Deep Learning Models

[234]

The first 10 values of cosine similarities are shown as follows. As we can see, the vectors
seem to be quite similar:

0.982818722725
0.970908224583
0.98131018877
0.974798440933
0.968060493469
0.976065933704
0.96712064743
0.949920475483
0.973583400249
0.980291545391
0.817819952965

A histogram of the distribution of values of cosine similarities for the sentence vectors from
the first 500 sentences in the test set are shown as follows. As previously, it confirms that
the sentence vectors generated from the input and output of the autoencoder are very
similar, showing that the resulting sentence vector is a good representation of the sentence:

Additional Deep Learning Models

[235]

Composing deep networks
We have looked extensively at these three basic deep learning networks—the fully
connected network (FCN), the CNN and the RNN models. While each of these have
specific use cases for which they are most suited, you can also compose larger and more
useful models by combining these models as Lego-like building blocks and using the Keras
functional API to glue them together in new and interesting ways.

Such models tend to be somewhat specialized to the task for which they were built, so it is
impossible to generalize about them. Usually, however, they involve learning from multiple
inputs or generating multiple outputs. One example could be a question answering
network, where the network learns to predict answers given a story and a question.
Another example could be a siamese network that calculates similarity between a pair of
images, where the network is trained to predict either a binary (similar/not similar) or
categorical (gradations of similarity) label using a pair of images as input. Yet another
example could be an object classification and localization network where it learns to predict
the image category as well as where the image is located in the picture jointly from the
image. The first two examples are examples of composite networks with multiple inputs,
and the last is an example of a composite network with multiple outputs.

Additional Deep Learning Models

[236]

Keras example — memory network for question
answering
In this example, we will build a memory network for question answering. Memory
networks are a specialized architecture that consist of a memory unit in addition to other
learnable units, usually RNNs. Each input updates the memory state and the final output is
computed by using the memory along with the output from the learnable unit. This
architecture was suggested in 2014 via the paper (for more information refer to: Memory
Networks, by J. Weston, S. Chopra, and A. Bordes, arXiv:1410.3916, 2014). A year later,
another paper (for more information refer to: Towards AI-Complete Question Answering: A Set
of Prerequisite Toy Tasks, by J. Weston, arXiv:1502.05698, 2015) put forward the idea of a
synthetic dataset and a standard set of 20 question answering tasks, each with a higher
degree of difficulty than the previous one, and applied various deep learning networks to
solve these tasks. Of these, the memory network achieved the best results across all the
tasks. This dataset was later made available to the general public through Facebook's bAbI
project (). The implementation of our memory
network resembles most closely the one described in this paper (for more information refer
to: End-To-End Memory Networks, by S. Sukhbaatar, J. Weston, and R. Fergus, Advances in
Neural Information Processing Systems, 2015), in that all the training happens jointly in a
single network. It uses the bAbI dataset to solve the first question answering task.

First, we will import the necessary libraries:

Additional Deep Learning Models

[237]

The bAbI data for the first question answering task consists of 10,000 short sentences each
for the training and the test sets. A story consists of two to three sentences, followed by a
question. The last sentence in each story has the question and the answer appended to it at
the end. The following block of code parses each of the training and test files into a list of
triplets of story, question and answer:

Our next step is to run through the texts in the generated lists and build our vocabulary.
This should be quite familiar to us by now, since we have used a similar idiom a few times
already. Unlike the previous time, our vocabulary is quite small, only 22 unique words, so
we will not have any out of vocabulary words:

Additional Deep Learning Models

[238]

The memory network is based on RNNs, where each sentence in the story and question is
treated as a sequence of words, so we need to find out the maximum length of the sequence
for our story and question. The following block of code does this. We find that the
maximum length of a story is 14 words and the maximum length of a question is just four
words:

As previously, the input to our RNNs is a sequence of word IDs. So we need to use our
vocabulary dictionary to convert the (story, question, and answer) triplet into a sequence of
integer word IDs. The next block of code does this and zero pads the resulting sequences of
story and answer to the maximum sequence lengths we computed previously. At this point,
we have lists of padded word ID sequences for each triplet in the training and test sets:

Additional Deep Learning Models

[239]

We want to define the model. The definition is longer than we have seen previously, so it
may be convenient to refer to the diagram as you look through the definition:

Additional Deep Learning Models

[240]

There are two inputs to our model, the sequence of word IDs for the question and that for
the sentence. Each of these is passed into an Embedding layer to convert the word IDs to a
vector in the 64-dimensional embedding space. Additionally the story sequence is passed
through an additional embedding that projects it to an embedding of size

. All these embedding layers start with random weights and are
trained jointly with the rest of the network.

The first two embeddings (story and question) are merged using a dot product to form the
network's memory. These represent words in the story and question that are identical or
close to each other in the embedding space. The output of the memory is merged with the
second story embedding and summed to form the network response, which is once again
merged with the embedding for the question to form the response sequence. This response
sequence is sent through an LSTM, the context vector of which is sent to a dense layer to
predict the answer, which can be one of the words in the vocabulary.

The model is trained using the RMSprop optimizer and categorical cross-entropy as the loss
function:

Additional Deep Learning Models

[241]

We train this network for 50 epochs with a batch size of 32 and achieve an accuracy of over
81% on the validation set:

Here is the trace of the training logs:

Additional Deep Learning Models

[242]

The change in training and validation loss and accuracy for this training run is shown
graphically in this graph:

We ran the model against the first 10 stories from our test set to verify how good the
predictions were:

Additional Deep Learning Models

[243]

As you can see, the predictions were mostly correct:

Customizing Keras
Just as composing our basic building blocks into larger architectures enables us to build
interesting deep learning models, sometimes we need to look at the other end of the
spectrum. Keras has a lot of functionality built in already, so it is very likely that you can
build all your models with the provided components and not feel the need for
customization at all. In case you do need customization, Keras has you covered.

As you will recall, Keras is a high level API that delegates to either a TensorFlow or Theano
backend for the computational heavy lifting. Any code you build for your customization
will call out to one of these backends. In order to keep your code portable across the two
backends, your custom code should use the Keras backend API (

), which provides a set of functions that act like a facade over your chosen backend.
Depending on the backend selected, the call to the backend facade will translate to the
appropriate TensorFlow or Theano call. The full list of functions available and their detailed
descriptions can be found on the Keras backend page.

In addition to portability, using the backend API also results in more maintainable code,
since Keras code is generally more high-level and compact compared to equivalent
TensorFlow or Theano code. In the unlikely case that you do need to switch to using the
backend directly, your Keras components can be used directly inside TensorFlow (not
Theano though) code as described in this Keras blog (

).

Additional Deep Learning Models

[244]

Customizing Keras typically means writing your own custom layer or custom distance
function. In this section, we will demonstrate how to build some simple Keras layers. You
will see more examples of using the backend functions to build other custom Keras
components, such as objectives (loss functions), in subsequent sections.

Keras example — using the lambda layer
Keras provides a lambda layer; it can wrap a function of your choosing. For example, if you
wanted to build a layer that squares its input tensor element-wise, you can say simply:

You can also wrap functions within a lambda layer. For example, if you want to build a
custom layer that computes the element-wise euclidean distance between two input tensors,
you would define the function to compute the value itself, as well as one that returns the
output shape from this function, like so:

You can then call these functions using the lambda layer shown as follows:

Additional Deep Learning Models

[245]

Keras example — building a custom
normalization layer
While the lambda layer can be very useful, sometimes you need more control. As an
example, we will look at the code for a normalization layer that implements a technique
called local response normalization. This technique normalizes the input over local input
regions, but has since fallen out of favor because it turned out not to be as effective as other
regularization methods such as dropout and batch normalization, as well as better
initialization methods.

Building custom layers typically involves working with the backend functions, so it
involves thinking about the code in terms of tensors. As you will recall, working with
tensors is a two step process. First, you define the tensors and arrange them in a
computation graph, and then you run the graph with actual data. So working at this level is
harder than working in the rest of Keras. The Keras documentation has some guidelines for
building custom layers (),
which you should definitely read.

One of the ways to make it easier to develop code in the backend API is to have a small test
harness that you can run to verify that your code is doing what you want it to do. Here is a
small harness I adapted from the Keras source to run your layer against some input and
return a result:

And here are some tests with objects provided by Keras to make sure that the
harness runs okay:

Additional Deep Learning Models

[246]

Before we begin building our local response normalization layer, we need to take a moment
to understand what it really does. This technique was originally used with Caffe, and the
Caffe documentation ()
describes it as a kind of lateral inhibition that works by normalizing over local input regions.
In mode, the local regions extend across nearby channels but have no
spatial extent. In mode, the local regions extend spatially, but are in
separate channels. We will implement the model as follows. The formula
for local response normalization in the model is given by:

The code for the custom layer follows the standard structure. The method is used
to set the application specific parameters, that is, the hyperparameters associated with the
layer. Since our layer only does a forward computation and doesn't have any learnable
weights, all we do in the build method is to set the input shape and delegate to the
superclass's build method, which takes care of any necessary book-keeping. In layers where
learnable weights are involved, this method is where you would set the initial values.

The call method does the actual computation. Notice that we need to account for dimension
ordering. Another thing to note is that the batch size is usually unknown at design times, so
you need to write your operations so that the batch size is not explicitly invoked. The
computation itself is fairly straightforward and follows the formula closely. The sum in the
denominator can also be thought of as average pooling over the row and column dimension
with a padding size of (n, n) and a stride of (1, 1). Because the pooled data is averaged
already, we no longer need to divide the sum by n.

Additional Deep Learning Models

[247]

The last part of the class is the method. Since the layer normalizes
each element of the input tensor, the output size is identical to the input size:

You can test this layer during development using the test harness we described here. It is
easier to run this instead of trying to build a whole network to put this into, or worse,
waiting till you have fully specified the layer before running it:

Additional Deep Learning Models

[248]

While building custom Keras layers seems to be fairly commonplace among experienced
Keras developers, there are not too many examples available on the Internet. This is
probably because custom layers are usually built to serve a specific narrow purpose and
may not be widely useful. The variability also means that one single example cannot
demonstrate all the possibilities of what you can do with the API. Now that you have a
good idea of how to build a custom Keras layer, you might find it instructive to look at
Keunwoo Choi's (

) and Shashank Gupta's
 (

).

Generative models
Generative models are models that learn to create data similar to data it is trained on. We
saw one example of a generative model that learns to write prose similar to Alice in
Wonderland in , Recurrent Neural Network — RNN. In that example, we trained a
model to predict the 11th character of text given the first 10 characters. Yet another type of
generative model is generative adversarial models (GAN) that have recently emerged as a
very powerful class of models—you saw examples of GANs in , Generative
Adversarial Networks and WaveNet. The intuition for generative models is that it learns a
good internal representation of its training data, and is therefore able to generate similar
data during the prediction phase.

Another perspective on generative models is the probabilistic one. A typical classification or
regression network, also called a discriminative model, learns a function that maps the
input data X to some label or output y, that is, these models learn the conditional
probability P(y|X). On the other hand, a generative model learns the joint probability and
labels simultaneously, that is, P(x, y). This knowledge can then be used to create probable
new (X, y) samples. This gives generative models the ability to explain the underlying
structure of input data even when there are no labels. This is a very important advantage in
the real world, since unlabeled data is more abundant than labeled data.

Simple generative models such as the example mentioned above can be extended to audio
as well, for example, models that learn to generate and play music. One interesting one is
described in the WaveNet paper (for more information refer to: WaveNet: A Generative Model
for Raw Audio, by A. van den Oord, 2016.) which describes a network built using atrous
convolutional layers and provides a Keras implementation on GithHub (

).

Additional Deep Learning Models

[249]

Keras example — deep dreaming
In this example, we will look at a slightly different generative network. We will see how to
take a pre-trained convolutional network and use it to generate new objects in an image.
Networks trained to discriminate between images learn enough about the images to
generate them as well. This was first demonstrated by Alexander Mordvintsev of Google
and described in this Google Research blog post (

). It was originally called
inceptionalism but the term deep dreaming became more popular to describe the technique.

Deep dreaming takes the backpropagated gradient activations and adds it back to the
image, running the same process over and over in a loop. The network optimizes the loss
function in the process, but we get to see how it does so in the input image (three channels)
rather than in a high dimensional hidden layer that cannot easily be visualized.

There are many variations to this basic strategy, each of which leads to new and interesting
effects. Some variations are blurring, adding constraints on the total activations, decaying
the gradient, infinitely zooming into the image by cropping and scaling, adding jitter by
randomly moving the image around, and so on. In our example, we will show the simplest
approach—we will optimize the gradient of the mean of the selected layer's activation for
each of the pooling layers of a pre-trained VGG-16 and observe the effect on our input
image.

First, as usual, we will declare our imports:

Next we will load up our input image. This image may be familiar to you from blog posts
about deep learning. The original image is from here (

):

Additional Deep Learning Models

[250]

The output of the preceding example is as follows:

Next we define a pair of functions to preprocess and deprocess the image to and from a
four-dimensional representation suitable for input to a pre-trained VGG-16 network:

Additional Deep Learning Models

[251]

These two functions are inverses of each other, that is, passing the image through
 and then through will return the original image.

Next, we load up our pre-trained VGG-16 network. This network has been pre-trained on
ImageNet data and is available from the Keras distribution. You already learned how to
work with pre-trained models in , Deep Learning with ConvNets. We select the
version whose fully connected layers have been removed already. Apart from saving us the
trouble of having to remove them ourselves, this also allows us to pass in any shape of
image, since the reason we need to specify the image width and height in our input is
because this determines the size of the weight matrices in the fully connected layers.
Because CNN transformations are local in nature, the size of the image doesn't affect the
sizes of the weight matrices for the convolutional and pooling layers. So the only constraint
on image size is that it must be constant within the batch:

We will need to refer to the CNN's layer objects by name in our following calculations, so
let us construct a dictionary. We also need to understand the layer naming convention, so
we dump it out:

The output of the preceding example is as follows:

{'block1_conv1': <keras.layers.convolutional.Convolution2D at 0x11b847690>,
 'block1_conv2': <keras.layers.convolutional.Convolution2D at 0x11b847f90>,
 'block1_pool': <keras.layers.pooling.MaxPooling2D at 0x11c45db90>,
 'block2_conv1': <keras.layers.convolutional.Convolution2D at 0x11c45ddd0>,
 'block2_conv2': <keras.layers.convolutional.Convolution2D at 0x11b88f810>,
 'block2_pool': <keras.layers.pooling.MaxPooling2D at 0x11c2d2690>,

Additional Deep Learning Models

[252]

 'block3_conv1': <keras.layers.convolutional.Convolution2D at 0x11c47b890>,
 'block3_conv2': <keras.layers.convolutional.Convolution2D at 0x11c510290>,
 'block3_conv3': <keras.layers.convolutional.Convolution2D at 0x11c4afa10>,
 'block3_pool': <keras.layers.pooling.MaxPooling2D at 0x11c334a10>,
 'block4_conv1': <keras.layers.convolutional.Convolution2D at 0x11c345b10>,
 'block4_conv2': <keras.layers.convolutional.Convolution2D at 0x11c345950>,
 'block4_conv3': <keras.layers.convolutional.Convolution2D at 0x11d52c910>,
 'block4_pool': <keras.layers.pooling.MaxPooling2D at 0x11d550c90>,
 'block5_conv1': <keras.layers.convolutional.Convolution2D at 0x11d566c50>,
 'block5_conv2': <keras.layers.convolutional.Convolution2D at 0x11d5b1910>,
 'block5_conv3': <keras.layers.convolutional.Convolution2D at 0x11d5b1710>,
 'block5_pool': <keras.layers.pooling.MaxPooling2D at 0x11fd68e10>,
 'input_1': <keras.engine.topology.InputLayer at 0x11b847410>}

We then compute the loss at each of the five pooling layers and compute the gradient of the
mean activation for three steps each. The gradient is added back to the image and the image
displayed at each of the pooling layers for each step:

Additional Deep Learning Models

[253]

The resulting images are shown as follows:

Additional Deep Learning Models

[254]

As you can see, the process of deep dreaming amplifies the effect of the gradient on the
chosen layer, resulting in images that are quite surreal. Later layers backpropagate
gradients that result in more distortion, reflecting their larger receptive fields and their
capacity to recognize more complex features.

To convince ourselves that a trained network really learns a representation of the various
categories of the image it was trained on, let us consider a completely random image,
shown next, and pass it through the pre-trained network:

Additional Deep Learning Models

[255]

The output of the preceding example is as follows:

Passing this image through the preceding code results in very specific patterns at each layer,
as shown next, showing that the network is trying to find a structure in the random data:

Additional Deep Learning Models

[256]

We can repeat our experiment with the noise image as input and compute the loss from a
single filter instead of taking the mean across all the filters. The filter we choose is for the
ImageNet label African elephant (). Thus, we replace the value of the loss in the previous
code with the following. So instead of computing the mean across all filters, we calculate
the loss as the output of the filter representing the African elephant class:

Additional Deep Learning Models

[257]

We get back what looks very much like repeating images of the trunk of an elephant in the
 output, as shown here:

Keras example — style transfer
An extension of deep dreaming was described in this paper (for more information refer
to: Image Style Transfer Using Convolutional Neural Networks, by L. A. Gatys, A. S. Ecker, and
M. Bethge, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016), which showed that trained neural networks, such as the VGG-16, learn
both content and style, and these two can be manipulated independently. Thus an image of
an object (content) could be styled to look like a painting by combining it with the image of
a painting (style).

Let us start, as usual, by importing our libraries:

Our example will demonstrate styling our image of a cat with this image of a reproduction
of Claude Monet's The Japanese Bridge by Rosalind Wheeler ():

Additional Deep Learning Models

[258]

The output of the preceding example is as follows:

As previously, we declare our two functions to convert back and forth from the image and
the four-dimensional tensor that the CNN expects:

Additional Deep Learning Models

[259]

We declare tensors to hold the content image and the style image, and another tensor to
hold the combined image. The content and style images are then concatenated into a single
input tensor. The input tensor will be fed to the pre-trained VGG-16 network:

We instantiate an instance of a pre-trained VGG-16 network, pre-trained with the ImageNet
data, and with the fully connected layers excluded:

As previously, we construct a layer dictionary to map the layer name to the output layer of
the trained VGG-16 network:

The next block defines the code for computing the , the , and
the . Finally, we define our loss as a linear combination of these three
losses:

Additional Deep Learning Models

[260]

Additional Deep Learning Models

[261]

Here the content loss is the root mean square distance (also known as L2 distance) between
the features of the content image extracted from the target layer and the combination image.
Minimizing this has the effect of keeping the styled image close to the original one.

The style loss is the L2 distance between the gram matrices of the base image representation
and the style image. A gram matrix of a matrix M is the transpose of M multiplied by M,
that is, MT * M. This loss measures how often features appear together in the content image
representation and the style image. One practical implication of this is that the content and
style matrices must be square.

The total variation loss measures the difference between neighboring pixels. Minimizing
this has the effect that neighboring pixels will be similar so the final image is smooth rather
than jumpy.

We calculate the gradient and the loss function, and run our network in reverse for five
iterations:

Additional Deep Learning Models

[262]

The output from the last two iterations is shown as follows. As you can see, it has picked up
the impressionistic fuzziness and even the texture of the canvas in the final images:

Additional Deep Learning Models

[263]

Summary
In this chapter, we covered some deep learning networks that were not covered in earlier
chapters. We started with a brief look into the Keras functional API, which allows us to
build networks that are more complex than the sequential networks we have seen so far.
We then looked at regression networks, which allow us to do predictions in a continuous
space, and opens up a whole new range of problems we can solve. However, a regression
network is really a very simple modification of a standard classification network. The next
area we looked at was autoencoders, which are a style of network that allows us to do
unsupervised learning and make use of the massive amount of unlabeled data that all of us
have access to nowadays. We also learned how to compose the networks we had already
learned about as giant Lego-like building blocks into larger and more interesting networks.
We then moved from building large networks using smaller networks, to learning how to
customize individual layers in a network using the Keras backend layer. Finally, we looked
at generative models, another class of models that learn to mimic the input it is trained on,
and looked at some novel uses for this kind of model.

In the next chapter, we will turn our attention to another learning style called reinforcement
learning, and explore its concepts by building and training a network in Keras to play a
simple computer game.

88
AI Game Playing

In previous chapters, we looked at supervised learning techniques such as regression and
classification, and unsupervised learning techniques such as GANs, autoencoders and
generative models. In the case of supervised learning, we train the network with the
expected input and output and expect it to predict the output given a new input. In the case
of unsupervised learning, we show the network some input and expect it to learn the
structure of the data so that it can apply this knowledge to a new input.

In this chapter, we will learn about reinforcement learning, or more specifically deep
reinforcement learning, that is, the application of deep neural networks to reinforcement
learning. Reinforcement learning has its roots in behavioral psychology. An agent is trained
by rewarding it for correct behavior and punishing it for incorrect behavior. In the context
of deep reinforcement learning, a network is shown some input and is given a positive or
negative reward based on whether it produces the correct output from that input. Thus, in
reinforcement learning, we have sparse and time-delayed labels. Over many iterations, the
network learns to produce the correct output.

The pioneer in the deep reinforcement learning space was a small British company called
DeepMind, which in 2013 published a paper (for more information refer to: Playing Atari
with Deep Reinforcement Learning, by V. Mnih, arXiv:1312.5602, 2013.) describing how a
convolutional neural network (CNN) could be taught to play Atari 2600 video games by
showing it screen pixels and giving it a reward when the score increases. The same
architecture was used to learn seven different Atari 2600 games, in six of which the model
outperformed all previous approaches, and it outperformed a human expert in three.

AI Game Playing

[265]

Unlike the learning strategies we learned about previously, where each network learns
about a single discipline, reinforcement learning seems to be a general learning algorithm
that can be applied to a variety of environments; it may even be the first step to general
artificial intelligence. DeepMind has since been acquired by Google, and the group has been
on the forefront of AI research. A subsequent paper (for more information refer to: Human-
Level Control through Deep Reinforcement Learning, by V. Mnih, Nature 518.7540, 2015:
529-533.) was featured in the prestigious Nature journal in 2015, where they applied the
same model to 49 different games.

In this chapter, we will explore the theoretical framework that underlies deep reinforcement
learning. We'll then apply this framework to build a network using Keras that learns to play
a game of catch. We'll briefly look at some ideas that can make this network better as well as
some promising new areas of research in this space.

To sum up, we will learn the following core concepts around reinforcement learning in this
chapter:

Q-learning
Exploration versus exploitation
Experience replay

Reinforcement learning
Our objective is to build a neural network to play the game of catch. Each game starts with a
ball being dropped from a random position from the top of the screen. The objective is to
move a paddle at the bottom of the screen using the left and right arrow keys to catch the
ball by the time it reaches the bottom. As games go, this is quite simple. At any point in
time, the state of this game is given by the (x, y) coordinates of the ball and paddle. Most
arcade games tend to have many more moving parts, so a general solution is to provide the
entire current game screen image as the state. The following screenshot shows four
consecutive screenshots of our catch game:

AI Game Playing

[266]

Astute readers might note that our problem could be modeled as a classification problem,
where the input to the network are the game screen images and the output is one of three
actions--move left, stay, or move right. However, this would require us to provide the
network with training examples, possibly from recordings of games played by experts. An
alternative and simpler approach might be to build a network and have it play the game
repeatedly, giving it feedback based on whether it succeeds in catching the ball or not. This
approach is also more intuitive and is closer to the way humans and animals learn.

The most common way to represent such a problem is through a markov decision process
(MDP). Our game is the environment within which the agent is trying to learn. The state of
the environment at time step t is given by st (and contains the location of the ball and
paddle). The agent can perform certain actions (such as moving the paddle left or right).
These actions can sometimes result in a reward rt, which can be positive or negative (such as
an increase or decrease in the score). Actions change the environment and can lead to a new
state st+1, where the agent can perform another action at+1, and so on. The set of states, actions
and rewards, together with the rules for transitioning from one state to the other, make up a
markov decision process. A single game is one episode of this process, and is represented
by a finite sequence of states, actions, and rewards:

Since, this is a markov decision process, the probability of state st+1 depends only on current
state st and action at.

Maximizing future rewards
As an agent, our objective is to maximize the total reward from each game. The total reward
can be represented as follows:

In order to maximize the total reward, the agent should try to maximize the total reward
from any time point t in the game. The total reward at time step t is given by Rt and is
represented as:

AI Game Playing

[267]

However, it is harder to predict the value of the rewards the further we go into the future.
In order to take this into consideration, our agent should try to maximize the total
discounted future reward at time t instead. This is done by discounting the reward at each
future time step by a factor γ over the previous time step. If γ is 0, then our network does
not consider future rewards at all, and if γ is 1, then our network is completely
deterministic. A good value for γ is around 0.9. Factoring the equation allows us to express
the total discounted future reward at a given time step recursively as the sum of the current
reward and the total discounted future reward at the next time step:

Q-learning
Deep reinforcement learning utilizes a model-free reinforcement learning technique called
Q-learning. Q-learning can be used to find an optimal action for any given state in a finite
markov decision process. Q-learning tries to maximize the value of the Q-function which
represents the maximum discounted future reward when we perform action a in state s:

Once we know the Q-function, the optimal action a at a state s is the one with the highest Q-
value. We can then define a policy Ï€(s) that gives us the optimal action at any state:

We can define the Q-function for a transition point (st, at, rt, st+1) in terms of the Q-function at
the next point (st+1, at+1, rt+1, st+2) similar to how we did with the total discounted future
reward. This equation is known as the Bellman equation:

AI Game Playing

[268]

The Q-function can be approximated using the Bellman equation. You can think of the Q-
function as a lookup table (called a Q-table) where the states (denoted by s) are rows and
actions (denoted by a) are columns, and the elements (denoted by Q(s, a)) are the rewards
that you get if you are in the state given by the row and take the action given by the column.
The best action to take at any state is the one with the highest reward. We start by randomly
initializing the Q-table, then carry out random actions and observe the rewards to update
the Q-table iteratively according to the following algorithm:

You will realize that the algorithm is basically doing stochastic gradient descent on the
Bellman equation, backpropagating the reward through the state space (or episode) and
averaging over many trials (or epochs). Here α is the learning rate that determines how
much of the difference between the previous Q-value and the discounted new maximum Q-
value should be incorporated.

The deep Q-network as a Q-function
We know that our Q-function is going to be a neural network, the natural question is: what
kind? For our simple example game, each state is represented by four consecutive black and
white screen images of size (80, 80), so the total number of possible states (and the number
of rows of our Q-table) is 280x80x4. Fortunately, many of these states represent impossible or
highly improbable pixel combinations. Since convolutional neural networks have local
connectivity (that is, each neuron is connected to only a local region of its input), it avoids
these impossible or improbable pixel combinations. In addition, neural networks are
generally very good at coming up with good features for structured data such as images.
Hence a CNN can be used to model a Q-function very effectively.

The DeepMind paper (for more information refer to: Playing Atari with Deep Reinforcement
Learning, by V. Mnih, arXiv:1312.5602, 2013.), also uses three layers of convolutions
followed by two fully connected layers. Unlike traditional CNNs used for image
classification or recognition, there are no pooling layers. This is because pooling layers
makes the network less sensitive to the location of specific objects in the image. In case of
games this information is likely to be required to compute the reward, and thus cannot be
discarded.

AI Game Playing

[269]

The following diagram, shows the structure of the deep Q-network that is used for our
example. It follows the same structure as the original DeepMind paper except for the input
and output layer shapes. The shape for each of our inputs is (80, 80, 4): four black and white
consecutive screenshots of the game console, each 80 x 80 pixels in size. Our output shape is
(3), corresponding to the Q-value for each of three possible actions (move left, stay, move
right):

AI Game Playing

[270]

Since our output are the three Q-values, this is a regression task, and we can optimize this
by minimizing the difference of the squared error between the current value of Q(s, a) and
its computed value in terms of the sum of the reward and the discounted Q-value Q(s', a')
one step into the future. The current value is already known at the beginning of the iteration
and the future value is computed based on the reward returned by the environment:

Balancing exploration with exploitation
Deep reinforcement learning is an example of online learning, where the training and
prediction steps are interspersed. Unlike batch learning techniques where the best predictor
is generated by learning on the entire training data, a predictor trained with online learning
is continuously improving as it trains on new data.

Thus in the initial epochs of training, a deep Q-network gives random predictions which
can give rise to poor Q-learning performance. To alleviate this, we can use a simple
exploration method such as ε-greedy. In case of ε-greedy exploration, the agent
chooses the action suggested by the network with probability 1-ε or an action
uniformly at random otherwise. That is why this strategy is called exploration/exploitation.

As the number of epochs increases and the Q-function converges, it begins to return more
consistent Q-values. The value of ε can be attenuated to account for this, so as the
network begins to return more consistent predictions, the agent chooses to exploit the
values returned by the network over choosing random actions. In case of DeepMind, the
value of ε decreases over time from 1 to 0.1, and in our example it decreases from 0.1
to 0.001.

Thus, ε-greedy exploration ensures that in the beginning the system balances the
unreliable predictions made from the Q-network with completely random moves to explore
the state space, and then settles down to less aggressive exploration (and more aggressive
exploitation) as the predictions made by the Q-network improve.

AI Game Playing

[271]

Experience replay, or the value of experience
Based on the equations that represent the Q-value for a state action pair (st, at) in terms of
the current reward rt and the discounted maximum Q-value for the next time step (st+1, at+1),
our strategy would logically be to train the network to predict the best next state s' given
the current state (s, a, r). It turns out that this tends to drive the network into a local
minimum. The reason for this is that consecutive training samples tend to be very similar.

To counter this, during game play, we collect all the previous moves (s, a, r, s') into a large
fixed size queue called the replay memory. The replay memory represents the experience of
the network. When training the network, we generate random batches from the replay
memory instead of the most recent (batch of) transactions. Since the batches are composed
of random experience tuples (s, a, r, s') that are out of order, the network trains better and
avoids getting stuck in local minima.

Experiences could be collected from human gameplay as well instead of (or in addition to)
from previous moves during game play by the network. Yet another approach is to collect
experiences by running the network in observation mode for a while in the beginning, when
it generates completely random actions (= 1) and extracts the reward and next state from
the game and collects them into its experience replay queue.

Example - Keras deep Q-network for catch
The objective of our game is to catch a ball released from a random location from the top of
the screen with a paddle at the bottom of the screen by moving the paddle horizontally
using the left and right arrow keys. The player wins if the paddle can catch the ball and
loses if the balls falls off the screen before the paddle gets to it. The game has the advantage
of being very simple to understand and build, and is modeled after the game of catch
described by Eder Santana in his blog post (for more information refer to: Keras Plays Catch,
a Single File Reinforcement Learning Example, by Eder Santana, 2017.) on deep reinforcement
learning. We built the original game using Pygame (), a free
and open source library for building games. This game allows the player to move the
paddle using the left and right arrow keys. The game is available as in the code
bundle for this chapter in case you want to get a feel for it.

AI Game Playing

[272]

Installing Pygame:
Pygame runs on top of Python, and is available for Linux (various flavors),
macOS, Windows, as well as some phone operating systems such as
Android and Nokia. The full list of distributions can be found at:

. Pre-built versions are available for 32-
bit and 64-bit versions of Linux and Windows and 64-bit version of
macOS. On these platforms, you can install Pygame with

 command.
If a pre-built version does not exist for your platform, you can also build it
from source using instructions available at:

.
Anaconda users can find pre-built Pygame versions on the conda-forge:

In order to train our neural network, we need to make some changes to the original game so
the network can play instead of the human player. We want to wrap the game to allow the
network to communicate with it via an API instead of the keyboard left and right arrow
keys. Let us look at the code for this wrapped game.

As usual, we start with the imports:

We define our class. Our constructor can optionally set the wrapped version of the game to
run in headless mode, that is, without needing to display a Pygame screen. This is useful
where you have to run on a GPU box in the cloud and only have access to a text based
terminal. You can comment this line out if you are running the wrapped game locally
where you have access to a graphics terminal. Next we call the method to
initialize all Pygame components. Finally, we set a bunch of class level constants:

AI Game Playing

[273]

The method defines the operations that need to be called at the start of each game,
such as clearing out the state queue, setting the ball, and paddle to their starting positions,
initializing the scores, and so on:

In the original game, there is a Pygame event queue into which the left and right arrow key
events raised by the player as he moves the paddle, as well as internal events raised by
Pygame components are written to. The central part of the game code is basically a loop
(called the event loop), that reads the event queue and reacts to it.

AI Game Playing

[274]

In the wrapped version, we have moved the event loop to the caller. The method
describes what happens in a single pass in the loop. The method takes an integer , , or
representing an action (respectively move left, stay, and move right), and then it sets
variables that control the position of the ball and paddle at this time step. The

 variable represents a speed that moves the paddle that many pixels to
the left or right when the move left and move right actions are sent. If the ball has dropped
past the paddle, it checks whether there is a collision. If there is, the paddle catches the ball
and the player (the neural network) wins, otherwise the player loses. The method then
redraws the screen and appends it to the fixed length that contains the last four
frames of the game screen. Finally, it returns the state (given by the last four frames), the
reward for the current action and a flag that tells the caller if the game is over:

AI Game Playing

[275]

We will look at the code to train our network to play the game.

As usual, first we import the libraries and objects that we need. In addition to third-party
components from Keras and SciPy, we also import the class we described
previously:

AI Game Playing

[276]

We define two convenience functions. The first converts the set of four input images to a
form suitable for use by the network. The input comes in a set of four 800 x 800 images, so
the shape of the input is (4, 800, 800). However, the network expects its input as a four-
dimensional tensor of shape (batch size, 80, 80, 4). At the very beginning of the game, we
don't have four frames, so we fake it by stacking the first frame four times. The shape of the
output tensor returned from this function is (80, 80, 4).

The function samples state tuples from the experience
replay queue, and gets the reward and predicted next state from the neural network. It then
calculates the value of the Q-function at the next time step and returns it:

AI Game Playing

[277]

We define our network. This is the network that models the Q-function for our game. Our
network is very similar to the one proposed in the DeepMind paper. The only difference is
the size of the input and the output. Our input shape is (80, 80, 4) while theirs was (84, 84, 4)
and our output is (3) corresponding to the three actions for which the value of the Q-
function needs to be computed, whereas their was (18), corresponding to the actions
possible from Atari.

There are three convolutional layers and two fully connected (dense) layers. All layers,
except the last have the ReLU activation unit. Since we are predicting values of Q-functions,
it is a regression network and the last layer has no activation unit:

As we have described previously, our loss function is the squared difference between the
current value of Q(s, a) and its computed value in terms of the sum of the reward and the
discounted Q-value Q(s', a') one step into the future, so the mean squared error (MSE) loss
function works very well. For the optimizer, we choose Adam, a good general-purpose
optimizer, instantiated with a low learning rate:

AI Game Playing

[278]

We define some constants for our training. The constant defines the number
of output actions that the network can send to the game. In our case, these actions are , ,
and , corresponding to move left, stay, and move right. The value is the discount
factor for future rewards. The and refer to starting
and ending values for the parameter in -greedy exploration. The is the
size of the experience replay queue. The refer to the number of
epochs where the network is allowed to explore the game by sending it completely random
actions and seeing the rewards. The variable refers to the number of
epochs the network will undergo online training. Each epoch corresponds to a single game
or episode. The total number of games played for a training run is the sum of the

 and values. The is the size of the
mini-batch that we will use for training:

We instantiate the game and the experience replay queue. We also open up a log file and
initialize some variables in preparation for training:

Next up, we set up the loop that controls the number of epochs of training. As noted
previously, each epoch corresponds to a single game, so we reset the game state at this
point. A game corresponds to a single episode of a ball falling from the ceiling and either
getting caught by the paddle or being missed. The loss is the squared difference between
the predicted and actual Q-value for the game.

AI Game Playing

[279]

We start the game off by sending it a dummy action (in our case, a stay) and get back the
initial state tuple for the game:

The next block is the main loop of the game. This is the event loop in the original game that
we moved to the calling code. We save the current state because we will need that for our
experience replay queue, then decide what action signal to send the wrapped game. If we
are in observation mode, we will just generate a random number corresponding to one of
our actions, otherwise we will use -greedy exploration to either select a random action or
use our neural network (which we are also training) to predict the action we should send:

Once we know our action, we send it to the game by calling , which returns
the new state, the reward and a Boolean flag indicating the game is over. If the reward is
positive (indicating that the ball was caught), we increment the number of wins, and we
store this (state, action, reward, new state, game over) tuple in our experience replay queue:

AI Game Playing

[280]

We then draw a random mini-batch from our experience replay queue and train our
network. For each session of training, we compute the loss. The sum of the losses for all the
trainings in each epoch is the loss for the entire epoch:

When the network is relatively untrained, its predictions are not very good, so it makes
sense to explore the state space more in an effort to reduce the chances of getting stuck in a
local minima. However, as the network gets more and more trained, we reduce the value of

 gradually so the model gets to predict more and more of the actions the network sends to
the game:

We write out a per epoch log both on console and into a log file for later analysis. After 100
epochs of training, we save the current state of the model so that we can recover in case we
decide to stop training for any reason. We also save our final model so that we can use it to
play our game later:

AI Game Playing

[281]

We trained the game by making it observe 100 games, followed by playing 1,000, 2,000, and
5,000 games respectively. The last few lines of the log file for the 5,000 game run are shown
next. As you can see, towards the end of the training, the network gets quite skilled at
playing the game:

The plot of loss and win count over epoch, shown in the following graph, also tells a similar
story. While it does look like the loss could converge further with more training, it has gone
down from 0.6 to around 0.1 in 5000 epochs of training. Similarly, the plot of the number of
wins curve upward, showing that the network is learning faster as the number of epochs
increases:

AI Game Playing

[282]

Finally, we evaluate the skill of our trained model by making it play a fixed number of
games (100 in our case) and seeing how many it can win. Here is the code to do this. As
previously, we start with our imports:

We load up the model we had saved at the end of training and compile it. We also
instantiate our :

AI Game Playing

[283]

We then loop over 100 games. We instantiate each game by calling its method, and
start it off. Then, for each game, until it is over, we call on the model to predict the action
with the best Q-function. We report a running total of how many games it won.

We ran the test with each of our models. The first one that was trained for 1,000 games won
42 of 100 games, the one trained for 2,000 games won 74 of 100 games, and the one trained
for 5,000 games won 87 of 100 games. This clearly shows that the network is improving
with training:

If you run the evaluation code with the call to run it in headless mode commented out, you
can watch the network playing the game and it's quite amazing to watch. Given that the Q-
value predictions start off as random values and that it's mainly the sparse reward
mechanism that provides the guidance to the network during training, it is almost
unreasonable that the network learns to play the game this effectively. But as with other
areas of deep learning, the network does in fact learn to play quite well.

AI Game Playing

[284]

The example presented previously is fairly simple, but it illustrates the process by which
deep reinforcement learning models work, and hopefully has helped create a mental model
using which you can approach more complex implementations. One implementation you
might find interesting is Ben Lau's implementation of FlappyBird (for more information
refer to: Using Keras and Deep Q-Network to Play FlappyBird, by Ben Lau, 2016. and GitHub
page:) using Keras. The Keras-RL
project (), a Keras library for deep
reinforcement learning, also has some very good examples.

Since the original proposal from DeepMind, there have been other improvements
suggested, such as double Q-learning (for more information refer to: Deep Reinforcement
Learning with Double Q-Learning, by H. Van Hasselt, A. Guez, and D. Silver, AAAI. 2016),
prioritized experience replay (for more information refer to: Prioritized Experience Replay, by
T. Schaul, arXiv:1511.05952, 2015), and dueling network architectures (for more information
refer to: Dueling Network Architectures for Deep Reinforcement Learning, by Z. Wang,
arXiv:1511.06581, 2015). Double Q-learning uses two networks - the primary network
chooses the action and the target network chooses the target Q-value for the action. This
reduces possible overestimation of Q-values by the single network, and allows the network
to train quicker and better. Prioritized experience replay increases the probability of
sampling experience tuples with a higher expected learning progress. Dueling network
architectures decompose the Q-function into state and action components and combine
them back separately.

All of the code discussed in this section, including the base game that can be played by a
human player, is available in the code bundle accompanying this chapter.

The road ahead
In January 2016, DeepMind announced the release of AlphaGo (for more information refer
to: Mastering the Game of Go with Deep Neural Networks and Tree Search, by D. Silver, Nature
529.7587, pp. 484-489, 2016), a neural network to play the game of Go. Go is regarded as a
very challenging game for AIs to play, mainly because at any point in the game, there are an
average of approximately 10170 possible (for more information refer to:

) moves (compared with approximately 1050 for chess).
Hence determining the best move using brute force methods is computationally infeasible.
At the time of publication, AlphaGo had already won 5-0 in a 5-game competition against
the current European Go champion, Fan Hui. This was the first time that any computer
program had defeated a human player at Go. Subsequently, in March 2016, AlphaGo won
4-1 against Lee Sedol, the world's second professional Go player.

AI Game Playing

[285]

There were several notable new ideas that went into AlphaGo. First, it was trained using a
combination of supervised learning from human expert games and reinforcement learning
by playing one copy of AlphaGo against another. You have seen applications of both these
ideas in previous chapters.

Second, AlphaGo was composed of a value network and a policy network. During each
move, AlphaGo uses Monte Carlo simulation, a process used to predict the probability of
different outcomes in the future in the presence of random variables, to imagine many
alternative games starting from the current position. The value network is used to reduce
the depth of the tree search to estimate win/loss probability without having to compute all
the way to the end of the game, sort of like an intuition about how good the move is. The
policy network is used to reduce the breadth of the search by guiding the search towards
actions that promise the maximum immediate reward (or Q-value). For a more detailed
description, please refer to the blog post: AlphaGo: Mastering the ancient game of Go with
Machine Learning, Google Research Blog, 2016.

While AlphaGo was a major improvement over the original DeepMind network, it was still
playing a game where all the players can see all the game pieces, that is, they are still games
of perfect information. In January, 2017, researchers at Carnegie Mellon University
announced Libratus (for more information refer to: AI Takes on Top Poker Players, by T.
Revel, New Scientist 223.3109, pp. 8, 2017), an AI that plays Poker. Simultaneously, another
group comprised of researchers from the University of Alberta, Charles University of
Prague, and Czech Technical University (also from Prague), have proposed the DeepStack
architecture (for more information refer to: DeepStack: Expert-Level Artificial Intelligence in
No-Limit Poker, by M. Moravaak, arXiv:1701.01724, 2017) to do the same thing. Poker is a
game of imperfect information, since a player cannot see the opponent's cards. So, in
addition to learning how to play the game, the Poker playing AI also needs to develop an
intuition about the opponent's game play.

Rather than use a built-in strategy for its intuition, Libratus has an algorithm that computes
this strategy by trying to achieve a balance between risk and reward, also known as the
Nash equilibrium. From January 11, 2017 to January 31, 2017, Libratus was pitted against
four top human Poker players (for more information refer to: Upping the Ante: Top Poker Pros
Face Off vs. Artificial Intelligence, Carnegie Mellon University, January 2017), and beat them
resoundingly.

AI Game Playing

[286]

DeepStack's intuition is trained using reinforcement learning, using examples generated
from random Poker situations. It has played 33 professional Poker players from 17 countries
and has a win rating that makes it an order of magnitude better than a good player rating (for
more information refer to: The Uncanny Intuition of Deep Learning to Predict Human Behavior,
by C. E. Perez, Medium corporation, Intuition Machine, February 13, 2017).

As you can see, these are very exciting times indeed. Advances that started with deep
learning networks able to play arcade games have led to networks that can effectively read
your mind, or at least anticipate (sometimes non-rational) human behavior and win at
games of bluffing. The possibilities with deep learning seem to be just limitless.

Summary
In this chapter, we have learned the concepts behind reinforcement learning, and how it can
be used to build deep learning networks with Keras that learn how to play arcade games
based on reward feedback. From there, we moved on to briefly discuss advances in this
field, such as networks that have been taught to play harder games such as Go and Poker at
a superhuman level. While game playing might seem like a frivolous application, these
ideas are the first step towards general artificial intelligence, where a network learns from
experience rather than large amounts of training data.

Conclusion
Congratulations on making it to the end of the book! Let us take a moment and see how far
we have come since we started.

If you are like most readers, you started with some knowledge of Python and some
background in machine learning, but you were interested in learning more about deep
learning and wanted to be able to apply these deep learning skills using Python.

You learned how to install Keras on your machine and started using it to build simple deep
learning models. You then learned about the original deep learning model, the multi-layer
perceptron, also called the fully connected network (FCN). You learned how to build this
network using Keras.

You also learned about the many tunable parameters that you need to tweak to get good
results from your network. With Keras, a lot of the hard work has been done for you since it
comes with sensible defaults, but there are occasions where this knowledge will be helpful
to you.

Continuing on from there, you were introduced to convolutional neural network (CNN),
originally built to exploit feature locality of images, although you can also use them for
other types of data such as text, audio or video. Once again, you saw how to build a CNN
using Keras. You also saw the functionality that Keras provides to build CNNs easily and
intuitively. You saw how to use pre-trained image networks to make predictions about
your own images, via the process of transfer learning and fine-tuning.

Conclusion

[288]

From there, you learned about generative adversarial network (GAN), which are a pair of
networks (usually CNN) that attempt to work against each other and, in the process, make
each other stronger. GANs are a cutting-edge technology in the deep learning space; a lot of
recent work is going on around GANs.

From there, we turned our attention to text and we learned about word embeddings, which
have become the most common technology used for the vector representation of text in the
last couple of years. We looked at various popular word embedding algorithms and saw
how to use pre-trained word embeddings to represent collections of words, as well as
support for word embeddings in Keras and gensim.

We then looked at recurrent neural network (RNN), a class of neural network optimized
for handing sequence data such as text or time series. We learned about the shortcomings of
the basic RNN model and how these are alleviated in the more powerful variants such as
the long short term model (LSTM) and gated recurrent unit (GRU). We looked at a few
examples where these components are used. We also looked briefly at Stateful RNN models
and where they might be used.

Next up, we looked at a few additional models that don't quite fit the molds of the models
we have spoken so far. Among them are autoencoders, a model for unsupervised
learning—regression networks that predict a continuous value rather than a discrete label.
We introduced the Keras functional API, which allows us to build complex networks with
multiple inputs and outputs and share components among multiple pipelines. We looked at
ways to customize Keras to add functionality that doesn't currently exist.

Finally, we looked at training deep learning networks using reinforcement learning in the
context of playing arcade games, which many consider a first step toward a general
artificial intelligence. We provided a Keras example of training a simple game. We then
briefly described advances in this field in the context of networks playing even harder
games such as Go and Poker at a superhuman level.

We believe you are now equipped with the skills to solve new machine learning problems
using deep learning and Keras. This is an important and valuable skill in your journey to
becoming a deep learning expert.

We would like to thank you for letting us help you on your journey to deep learning
mastery.

Conclusion

[289]

Keras 2.0 — what is new
According to Francois Chollet, Keras was released two years ago, in March, 2015. It then
proceeded to grow from one user to one hundred thousand. The following image, taken
from the Keras blog, shows the growth of number of Keras users over time.

One important update with Keras 2.0 is that the API will now be a part of TensorFlow,
starting with TensorFlow 1.2. Indeed, Keras is becoming more and more the lingua franca for
deep learning, a spec used in an increasing number of deep learning contexts. For instance,
Skymind is implementing Keras spec in Scala for ScalNet, and Keras.js is doing the same for
JavaScript for running of deep learning directly in the browser. Efforts are also underway to
provide a Keras API for MXNET and CNTK deep learning toolkits.

Installing Keras 2.0
Installing Keras 2.0 is very simple via the followed by

.

Conclusion

[290]

API changes
The Keras 2.0 changes implied the need to rethink some APIs. For full details, please refer to
the release notes (
). This module summarizes the most impactful changes and prevents warnings
when using Keras 1.x calls:

Conclusion

[291]

There are also a number of breaking changes. In particular:

The maxout dense, time distributed dense, and highway legacy layers have been
removed
The batch normalization layer no longer supports the mode argument, because
Keras internals have changed
Custom layers have to be updated
Any undocumented Keras functionality could have broken

In addition, the Keras code base has been instrumented to detect the use of the Keras 1.x
API calls and show deprecation warnings that show how to change the call to conform to
the Keras 2 API. If you have some volume of Keras 1.x code already and are hesitant to try
Keras 2 because of the fear of non-breaking changes, these deprecation warnings from the
Keras 2 code base can be very helpful in making the transition.

Index

A
activation function
 about
 reference link
 ReLU
 sigmoid function
Adam
AlphaGo
Amazon AWS
 Keras, installing
 references
art forgery
 reference link
autoencoders
 about ,
 Keras autoencoder example , , ,
AWS Spot instance
 reference link

B
bAbI project
 URL
backpropagation
backpropagation through time (BPTT)
baseline
 establishing
batch computation
 size, increasing
batch normalization
 about
 reference link
Bellman equation
bias
bidirectional RNNs

C
Caffe
 reference link ,
callbacks
 for training process, customizing
CBOW word2vec model
checkpointing
CIFAR-10 images
 forging, Keras adversarial GANs
 performance, improving with data augmentation

 performance, improving with deep network
 predicting with
 recognizing, with deep learning
 reference link ,
collaborative filtering (CF)
concatenative TTS
convolutional neural network (CNN) , , ,

, ,
custom layer
 guidelines, for building

D
data augmentation
 CIFAR-10 images, performance improving
deep convolutional generative adversarial networks

(DCGAN)
 about
 reference link
deep convolutional neural network (DCNN)
 about
 bias
 image recognition
 LeNet, example
 pooling layers
 receptive fields

[293]

 weights
deep dreaming
deep learning
 about ,
 CIFAR-10 images, recognizing
 reference link
deep network
 CIFAR-10 images, performance improving
 composing
 memory network, for question answering ,

, ,
DeepMind
 reference link
 URL
dependencies
 installing
distributed representations
Docker
 Keras, installing
 references
dropout
 Keras net, improving

E
epochs
 count, increasing
event loop

F
features
 extraction, for recycling pre-built deep learning

models
fully connected network (FCN)

G
GAN applications
gated recurrent unit (GRU) , , ,
generative adversarial network (GAN) , ,

,
generative models
 about
 deep dreaming , , , ,
 style transfer , ,
GloVe-Python project
 reference link

GloVe
 about
 exploring
Google Cloud ML
 Keras, installing
 reference link
gradient descent (GD)
gradients
 exploding
 vanishing
GRU, with Keras
 POS tagging , , ,

H
handwritten digits recognizing example
 about
 baseline, establishing
 batch computation, size increasing
 epochs, count increasing
 experiments run, summarizing
 hyperparameter, tuning
 internal hidden neurons, count increasing
 Keras net, executing
 Keras net, improving with dropout
 Keras net, improving with hidden layers
 neural network, defining in Keras
 OHE
 optimizer learning rate, controlling
 optimizers, testing in Keras
 output, predicting
 regularization, adopting to avoid overfit
HDF5
 reference link
hidden layers
 Keras net, improving
hyperparameter
 tuning

I
image recognition
 DCNN
 inception-v3 net, used for transfer learning
 Keras built-in VGG-16 net module, utilizing
 pre-built deep learning models, recycling to

extract features

[294]

 with VGG-16 net
ImageNet ILSVRC-2012
 reference link
inception-v3 net
 used, for transfer learning
information retrieval (IR)
initializers
 reference link
intelligence quotients (IQ)
internal hidden neurons
 count, increasing

J
Jupyter Notebooks
 reference link

K
Keras 2.0
 about
 API
 installing
Keras adversarial GANs
 CIFAR-10 images, forging
 MNIST, forging
Keras adversarial
 references
Keras API
 about
 Keras architecture
 losses functions
 metric function
 model architectures, loading
 model architectures, saving
 optimizers
 predefined activation functions
 predefined neural network layers
 utility operations
 weights, loading
 weights, saving
Keras architecture
 about
 tensor
Keras built-in VGG-16 net module
 utilizing
Keras customization

 about
 custom normalization layer, building ,
 lambda layer, using
Keras deep Q-network
 for catch , , , , ,
Keras functional API ,
Keras metrics
 about
 reference link
Keras net
 executing
 improving, with dropout
 improving, with hidden layers
Keras objective functions
 reference link
Keras
 configuring
 customizing
 dependencies, installing
 installing ,
 installing, on Amazon AWS
 installing, on Docker
 installing, on Google Cloud ML
 installing, on Microsoft Azure
 LeNet code
 neural network, defining
 optimizers, testing
 reference link ,
 TensorFlow, installing
 TensorFlow, testing
 testing
 Theano, installing
 Theano, testing
 using ,

L
latent semantic analysis (LSA)
LeNet
 about
 code, in Keras
 deep learning
Libratus
local response normalization
long short term memory (LSTM) , ,
losses functions

[295]

 about
 reference link
LSTM, with Keras
 sentiment analysis , , ,

M
markov decision process (MDP)
mean squared error (MSE)
metric function
 about
 reference link
Microsoft Azure
 Keras, installing
MNIST
 forging, Keras adversarial GANs
 reference link ,
model architectures
 loading
 saving
models, Keras
 composing
 functional composition
 sequential composition
multilayer perceptron (MLP)
 activation function
 activation function, rectified linear unit (ReLU)

function
 activation function, sigmoid function
 example, of network
 perceptron, training issues
 perceptron, training solution

N
natural language processing (NLP)
natural language toolkit (NLTK)
neural network
 defining, in Keras

O
objective function
 binary cross-entropy
 categorical cross-entropy
 MSE
one-hot encoding (OHE) ,
OpenAI

 URL
optimizer learning rate
 controlling
optimizers
 about
 reference link ,
 testing, in Keras
out of vocabulary (OOV) ,

P
packages
 reference link
parametric TTS
part-of-speech (POS) tagging
perceptron
 about
 sequential Keras model
 training, issues
 training, solution
pooling layers
 about
 average pooling
 max-pooling
 reference link
pre-built deep learning models
 recycling, to extract features
pre-trained embeddings
 learned embeddings from GloVe, fine-tuning

,
 learned embeddings from word2vec, fine-tuning

,
 learning, from scratch , ,
 look up embeddings , ,
 using
predefined activation functions
predefined neural network layers
 about
 batch normalization
 convolution layers
 dense model
 pooling layers
 recurrent neural network
 regularization
preemptible virtual machine
 reference link

[296]

principal component analysis (PCA)
Pygame
 installing
 URL

Q
Q-learning
Q-table
Quiver
 reference link
 using

R
receptive fields
rectified linear unit (ReLU) function
recurrent neural network (RNN)
 about ,
 GRU
 LSTM
 simple
regression networks
 about
 Keras regression example ,
regularization, types
 Elastic net regularization
 L1 regularization
 L2 regularization
regularization
 about
 adopting, to avoid overfit
regularizers
 reference link
reinforcement learning
 about ,
 deep Q-network, as Q-function
 experience replay
 exploration, balancing with exploitation
 future rewards, maximizing
 Q-learning
replay memory
RMSprop
RNN topologies ,
RNN variants

S
sequential Keras model
sigmoid function
SimpleRNN cells
SimpleRNN, with Keras
 text, generating , , ,
skip-gram word2vec model ,
stateful LSTM, with Keras
 electricity consumption, predicting , ,

,
stateful RNNs
stochastic gradient descent (SGD)
stride length
style transfer

T
tensor
TensorBoard
 using
TensorFlow
 installing
 reference link
 references
 testing
 URL, for installing
text-to-speech (TTS) systems
 about
 concatenative TTS
 parametric TTS
Theano
 installing
 reference link
 testing
third-party implementations, word2vec
 using
training process
 checkpointing
 customizing, callbacks
 Keras, using ,
 Quiver, using
 TensorBoard, using
transfer learning
 inception-v3 net, used

U
unsupervised learning
utility operations

V
VGG-16 net
 used, for image recognition
visual cortex V1

W
WaveNet
 about

 reference link ,
weights
 about
 loading
 saving
word2vec
 about
 CBOW architecture
 CBOW word2vec model ,
 embeddings, extracting from model ,
 skip-gram word2vec model ,
 skip-skip-gram word2vec model ,
 third-party implementations, using ,

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Neural Networks Foundations
	Perceptron
	The first example of Keras code

	Multilayer perceptron — the first example of a network
	Problems in training the perceptron and a solution
	Activation function — sigmoid
	Activation function — ReLU
	Activation functions

	A real example — recognizing handwritten digits
	One-hot encoding — OHE
	Defining a simple neural net in Keras
	Running a simple Keras net and establishing a baseline
	Improving the simple net in Keras with hidden layers
	Further improving the simple net in Keras with dropout
	Testing different optimizers in Keras
	Increasing the number of epochs
	Controlling the optimizer learning rate
	Increasing the number of internal hidden neurons
	Increasing the size of batch computation
	Summarizing the experiments run for recognizing handwritten charts
	Adopting regularization for avoiding overfitting
	Hyperparameters tuning
	Predicting output

	A practical overview of backpropagation
	Towards a deep learning approach
	Summary

	Chapter 2: Keras Installation and API
	Installing Keras
	Step 1 — install some useful dependencies
	Step 2 — install Theano
	Step 3 — install TensorFlow
	Step 4 — install Keras
	Step 5 — testing Theano, TensorFlow, and Keras

	Configuring Keras
	Installing Keras on Docker
	Installing Keras on Google Cloud ML
	Installing Keras on Amazon AWS
	Installing Keras on Microsoft Azure
	Keras API
	Getting started with Keras architecture
	What is a tensor?
	Composing models in Keras
	Sequential composition
	Functional composition

	An overview of predefined neural network layers
	Regular dense
	Recurrent neural networks — simple, LSTM, and GRU
	Convolutional and pooling layers
	Regularization
	Batch normalization

	An overview of predefined activation functions
	An overview of losses functions
	An overview of metrics
	An overview of optimizers
	Some useful operations
	Saving and loading the weights and the architecture of a model

	Callbacks for customizing the training process
	Checkpointing
	Using TensorBoard and Keras
	Using Quiver and Keras

	Summary

	Chapter 3: Deep Learning with ConvNets
	Deep convolutional neural network — DCNN
	Local receptive fields
	Shared weights and bias
	Pooling layers
	Max-pooling
	Average pooling
	ConvNets summary

	An example of DCNN — LeNet
	LeNet code in Keras
	Understanding the power of deep learning

	Recognizing CIFAR-10 images with deep learning
	Improving the CIFAR-10 performance with deeper a network
	Improving the CIFAR-10 performance with data augmentation
	Predicting with CIFAR-10

	Very deep convolutional networks for large-scale image recognition
	Recognizing cats with a VGG-16 net
	Utilizing Keras built-in VGG-16 net module
	Recycling pre-built deep learning models for extracting features
	Very deep inception-v3 net used for transfer learning

	Summary

	Chapter 4: Generative Adversarial Networks and WaveNet
	What is a GAN?
	Some GAN applications

	Deep convolutional generative adversarial networks
	Keras adversarial GANs for forging MNIST
	Keras adversarial GANs for forging CIFAR
	WaveNet — a generative model for learning how to produce audio
	Summary

	Chapter 5: Word Embeddings
	Distributed representations
	word2vec
	The skip-gram word2vec model
	The CBOW word2vec model
	Extracting word2vec embeddings from the model
	Using third-party implementations of word2vec

	Exploring GloVe
	Using pre-trained embeddings
	Learn embeddings from scratch
	Fine-tuning learned embeddings from word2vec
	Fine-tune learned embeddings from GloVe
	Look up embeddings

	Summary

	Chapter 6: Recurrent Neural Network — RNN
	SimpleRNN cells
	SimpleRNN with Keras — generating text

	RNN topologies
	Vanishing and exploding gradients
	Long short term memory — LSTM
	LSTM with Keras — sentiment analysis

	Gated recurrent unit — GRU
	GRU with Keras — POS tagging

	Bidirectional RNNs
	Stateful RNNs
	Stateful LSTM with Keras — predicting electricity consumption

	Other RNN variants
	Summary

	Chapter 7: Additional Deep Learning Models
	Keras functional API
	Regression networks
	Keras regression example — predicting benzene levels in the air

	Unsupervised learning — autoencoders
	Keras autoencoder example — sentence vectors

	Composing deep networks
	Keras example — memory network for question answering

	Customizing Keras
	Keras example — using the lambda layer
	Keras example — building a custom normalization layer

	Generative models
	Keras example — deep dreaming
	Keras example — style transfer

	Summary

	Chapter 8: AI Game Playing
	Reinforcement learning
	Maximizing future rewards
	Q-learning
	The deep Q-network as a Q-function
	Balancing exploration with exploitation
	Experience replay, or the value of experience

	Example - Keras deep Q-network for catch
	The road ahead
	Summary

	Appendix: Conclusion
	Keras 2.0 — what is new
	Installing Keras 2.0
	API changes

	Index

