Advanced Oracle PL/SQL

Developer's Guide
Second Edition

Saurabh K. Gupta

Advanced Oracle PL/SQL
Developer's Guide
Second Edition

Master the advanced concepts of PL/SQL for
professional-level certification and learn the new
capabilities of Oracle Database 12c

Saurabh K. Gupta

enterprise 8
PUBLISHING

BIRMINGHAM - MUMBAI

Advanced Oracle PL/SQL Developer's Guide
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Second edition: February 2016
Production reference: 1080216

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-480-9

www . packtpub. com

www.packtpub.com

Credits

Author
Saurabh K. Gupta

Reviewers
Kamran Aghayev A

Patrick Barel
Nassyam Basha
Ramakrishna Kandula
Wissem EL Khilifi
Sean Stacey

Davor Zelic

Commissioning Editor
Priya Singh

Acquisition Editor
Tushar Gupta

Content Development Editor

Arwa Manasawala

Technical Editor
Rohan Uttam Gosavi

Copy Editor
Stephen Copestake

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Saurabh K. Gupta is a seasoned database technologist with extensive experience
in designing high performance and highly available database applications. His
technology focus has been centered around Oracle Database architecture, Oracle
Cloud platform, Database In-Memory, Database Consolidation, Multitenant,
Exadata, Big Data, and Hadoop. He has authored the first edition of this book. He
is an active speaker at technical conferences from Oracle Technology Network,
IOUG Collaborate'15, AIOUG Sangam, and Tech Days. Connect with him on his
twitter handle (or SAURABHKG) or through his technical blog www. sbhoracle.
wordpress . com, with comments, suggestions, and feedback regarding this book.

www.sbhoracle.wordpress.com
www.sbhoracle.wordpress.com

About the Reviewers

Patrick Barel is a PL/SQL developer for AMIS Services (http://www.amis.nl/)in
the Netherlands. Besides working with SQL and PL/SQL, he co-developed

CodeGen together with Steven Feuerstein, and has written different plugins
(http://bar-solutions.com/) for PL/SQL developer at (http://www.
allroundautomations.com/). He publishes articles on AMIS Technology Blog
(http://technology.amis.nl/blog) and on his own blog (http://blog.bar-
solutions.com).

He has been a reviewer for several books including Oracle PL/SQL Programming by
Steven Feuerstein. He has been an Oracle ACE since 2011.

Nassyam Basha is a database administrator and an Oracle ACE Director. He

holds a master's degree in Computer Applications from the University of Madras.
He is an Oracle 11g Certified Master and Exadata implementation specialist, and

has good knowledge of Oracle technologies, such as Data Guard, RMAN, RAC, and
Exadata. He actively participates in Oracle-related forums, such as OTN, where he
has superhero status. He maintains an Oracle-technology-related blog (www.oracle-
ckpt . com) and has coauthored Oracle Data Guard 11gR2 administration beginners guide,
Packt Publishing. He actively writes many articles on OTN in various languages. He is
a speaker at OTN, IOUG, and SANGAM, and he is the co-founder of Oraworld-team
(www .oraworld-team.com). He is part of the AIOUG community on Twitter, where
he occasionally expresses his views via the Twitter handle @ea10UG. He is currently
working with Pythian as an Oracle database consultant.

http://www.amis.nl/
http://bar-solutions.com/
http://www.allroundautomations.com/
http://www.allroundautomations.com/
http://technology.amis.nl/blog
http://blog.bar-solutions.com
http://blog.bar-solutions.com
www.oracle-ckpt.com
www.oracle-ckpt.com
www.oraworld-team.com

Nassyam Basha has written Oracle Data Guard 11¢R2 Beginner's Guide, Packt
Publishing.

I want to thank the almighty Allah and my parents, Abdul Aleem and
Rahimunnisa, for their support and blessings all the time —without
them, nothing is possible. Special thanks to my wife and 9-month-old
daughter Yashfeen Fathima, who've shared a lot of fun and crazy
things with me while I worked on this book, and, as always, I would
also like to thank my brother, Nawaz, and my cousins, for their

great support. Finally, thanks to Saurabh Gupta for referring me as a
technical reviewer, which was not an easy task for me, as this is my
first assignment as a reviewer. He did a great job on this book.

Wissem El Khlifi is the first Oracle ACE in Spain and an Oracle Certified
Professional DBA with over 12 years of IT experience.

He earned his Computer Science engineering degree from FST Tunisia, his master's
degree in Computer Science from the UPC, Barcelona, and another master's degree
in Big Data Science from the UPC, Barcelona.

His areas of interest are Linux System Administration, Oracle ERP and Databases
(RAC and Dataguard), big data NoSQL database management, and big data analysis.

His career has included the roles of Oracle and Java analyst/programmer, Oracle
DBA, architect, team leader, and big data scientist. He currently works as senior
database and application engineer for Schneider Electric/ APC.

He writes numerous articles on his website, http://www.oracle-class.com, and
you can contact him via Twitter at @orawiss.

http://www.oracle-class.com

Davor Zelic is an IT professional with more than 15 years of experience in
designing, developing, and implementing IT systems.

After getting his master's degree in Electrical Engineering, he began his professional
career working with Oracle technology in the Croatian IT company TEB Informatika.
For more than 10 years, Davor worked on IT projects related to road management,
where he gained extensive experience working as an Oracle SQL, PLSQL, Forms, and
Reports and Spatial developer. He has proved his knowledge by becoming an Oracle
Certified Professional issued by the Oracle Corporation.

Apart from Oracle technology, Davor has gained expertise in design and
development of geographic information systems for collection, storage,
transformation, analysis, and visualization of geo-referenced data. He originally
worked with Intergraph technology, but later his focus moved to open source GIS
technologies, such as Geoserver and OpenLayers.

Davor currently works as a software architect at the IT department of Croatian
Central Bank, designing software solutions for Croatian financial market data
collection and analysis.

I want to thank my parents for the support that they gave me

in choosing my educational path, which allowed me to find a job
that is not just a routine, but also a source of satisfaction and
constant challenge.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub. com, and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub . com for more details.

Atwww.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

(C)

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface Xi
Chapter 1: Overview of PL/SQL Programming Concepts 1
Introduction to PL/SQL 2
PL/SQL program fundamentals 3
Cursors — an overview 5
The cursor execution cycle 5
Cursor attributes 6
Cursor FOR loop 8
Exception handling in PL/SQL 9
System-defined exceptions 9
User-defined exceptions 1"
The RAISE_APPLICATION_ERROR procedure 13
Exception propagation 16
Creating stored procedures 17
Executing a procedure 19
Functions 20
Functions — execution methods 21
Restrictions on calling functions from SQL expressions 22
A PL/SQL package 23
Oracle Database 12c enhancements to PL/SQL subprograms 25
Managing database dependencies 26
Displaying the direct and indirect dependencies 26
Dependency metadata 27
Dependency issues and enhancements 27
Reviewing Oracle-supplied packages 28
Oracle SQL Developer 30
Oracle SQL Developer for DBA, Developers, and Application Architects 30
SQL Developer 4.0 31

[il

Table of Contents

Summary 32
Practice exercise 32
Chapter 2: Oracle 12c SQL and PL/SQL New Features 35
Database consolidation and the new Multitenant architecture 36
The Oracle Database 12c Multitenant architecture — features 38
Multitenant for Consolidation 39
Plug/unplug 39
Manage Many as One 40
Rapid provisioning 40
CDB Resource Management 41
Common users and local users 42
Oracle 12c¢ SQL and PL/SQL new features 43
IDENTITY columns 43
Default column value to a sequence in Oracle 12¢ 45
The DEFAULT ON NULL clause 45
Support for 32K VARCHAR2 46
Row limiting using FETCH FIRST 47
Invisible columns 49
Temporal databases 51
In-Database Archiving 53
Defining a PL/SQL subprogram in the SELECT query and PRAGMA UDF 55
Test setup 57
Comparative analysis 60
The PL/SQL program unit white listing 61
Granting roles to PL/SQL program units 62
Test setup 63
Miscellaneous PL/SQL enhancements 67
The Oracle Database 12¢ (12.1.0.2) In-Memory option 67
The challenge 68
The problem statement and Oracle Database 12c In-Memory 68
Oracle Database 12c In-Memory option features 68
The Oracle Database 12c In-Memory Architecture 69
Controlling the In-Memory column store 70
The INMEMORY clause 70
Performance optimizations 72
In-Memory Advisor 72
Oracle Database In-Memory benefits 73
Summary 73
Chapter 3: Designing PL/SQL Code 75
Cursor structures 76
Cursor execution cycle 76

Cursor attributes 78

Lii]

Table of Contents

Implicit cursors 78
Explicit cursors 80
Cursor variables 83
Strong and weak ref cursor types 85
Working with cursor variables 86
SYS_REFCURSOR 87
Cursor variables as arguments 88
Cursor variables — restrictions 89
Cursor design considerations 89
Cursor design—guidelines 90
Implicit statement results in Oracle Database 12c 91
Subtypes 93
Subtype classification 93
Type compatibility with subtypes 95
Summary 95
Practice exercise 96
Chapter 4: Using Collections 99
Introduction to collections 100
Collection types 100
Associative arrays 101
Nested tables 104
Modify and drop a nested table object type 105
Design considerations of a nested table 105
Nested table storage 105
Nested table in an index - organized table 105
Nested table locators 106
Nested table as the schema object 106
Operations on a nested table type column 107
Nested table collection type in PL/SQL 110
Querying the nested table metadata 112
Nested table comparison functions 113
Multiset operations on nested tables 114
Varray 116
Varray as a schema object 117
Operations on varray type columns 119
Varray in PL/SQL 122
Comparing the collection types 122
Selecting the appropriate collection type 124
Oracle 12c enhancements to collections 124
PL/SQL collection methods 127
EXISTS 127
COUNT 128

[iii]

Table of Contents

LIMIT 129
FIRST and LAST 129
PRIOR and NEXT 130
EXTEND 131
TRIM 132
DELETE 133
Summary 135
Practice exercise 136
Chapter 5: Using Advanced Interface Methods 139
Overview of External Procedures 139
External Procedures 140
Components of external procedure execution flow 140
The extproc agent 141
The Library object 141
Callout and Callback 142
Call Specification 142
How an External Procedure executes 143
Environment setup 143
TNSNAMES.ora 144
EXTPROC.ora 144
Executing external C programs from PL/SQL 145
Securing External Procedures with Oracle Database 12c 149
Executing Java programs from PL/SQL 150
Loading a Java class into a database 150
Steps to execute a Java class from an Oracle PL/SQL unit 151
Summary 155
Practice exercise 155
Chapter 6: Virtual Private Database 159
Oracle Database Security overview 160
Fine-Grained Access Control 163
How FGAC works 163
Virtual Private Database 164
How does Virtual Private Database work? 164
Column-level Virtual Private Database 164
Virtual Private Database with Oracle Database 12c Multitenant 165
Virtual Private Database components 165
Application Context 165
Virtual Private Database policy function 168
Policy types 169

The DBMS_RLS package 169
Demonstration 170
Virtual Private Database features and best practices 177

[iv]

Table of Contents

Virtual Private Database metadata 178
Policy utilities—refresh and drop 179
Oracle Database 12c Security enhancements 180
Oracle Database 12c Data Redaction 181
Data Redaction exemptions and miscellaneous features 182
Data Redaction function types 182
Demonstration 183

The Data Redaction metadata 186
Summary 187
Practice exercise 187
Chapter 7: Oracle SecureFiles 191
Introduction to Large Objects 192
Classification of Large Object datatypes 193
Internal LOB 193
External LOB 194
LOB restrictions 194
LOB data types in Oracle 194
BLOB and CLOB 194
BFILE 195
Some more related stuff 195
The LOB locator 195
LOB instance initialization 196
The DBMS_LOB package 197
LOB usage notes 201
Oracle SecureFiles 201
Deduplication and compression 201
Encryption 202
File System Logging 203
Write Gather Cache 203
Free space management 203
BasicFiles and SecureFiles 204
The db_securefile parameter 204
Working with LOBs 205
LOB metadata 207
Enabling the advanced features of a SecureFile 209
Populating the LOB data 212
Temporary LOB operations 215
Managing temporary LOBs 215
Working with a temporary LOB 216
Migrating LONG to LOBs 218
Use the ALTER TABLE command 219
Using the TO_LOB function 219

[v]

Table of Contents

Online Table Redefinition 220
Migrating BasicFiles to SecureFiles 220
Oracle Database 12c enhancements to SecureFiles 223
Summary 223
Practice exercise 224

Chapter 8: Tuning the PL/SQL Code 229
The PL/SQL Compiler 230
Subprogram inlining in PL/SQL 230
PRAGMA INLINE 231
PLSQL_OPTIMIZE_LEVEL 232
Native and interpreted compilation techniques 238

Oracle Database 11g Real Native Compilation 239

Selecting the appropriate compilation mode 240

Setting the compilation mode 240

Querying the compilation settings 241

Compiling a program unit for native or interpreted compilation 241

Recompiling a database for a PL/SQL native or interpreted compilation 243
Tuning PL/SQL code 247

Build secure applications using bind variables 247

Call parameters by reference 251

Avoiding an implicit data type conversion 252

Understanding the NOT NULL constraint 253

Selection of an appropriate numeric data type 254

Bulk processing in PL/SQL 257

BULK COLLECT 257
FORALL 262
Summary 270
Practice exercise 271
Chapter 9: Result Cache 275
Oracle Database 11g Result Cache 276

What is the Server Result Cache? 277

Configuring the Server Result Cache 278

Result Cache versus Buffer Cache 280

Result Cache versus Oracle 12c Database In-Memory 280

Result Cache versus In-Memory Database Cache 280
SQL query Result Cache 281

Monitoring the SQL Result Cache 284

Invalidation of the SQL Result Cache 288

Read consistency of the SQL Result Cache 289

Limitations 289

[vil

Table of Contents

PL/SQL Function Result Cache 290
Does it sound similar to deterministic functions? 290
Differences between Result Cache and other caching techniques 291
lllustration 291
Monitoring the PL/SQL Result Cache 293
Invalidation of the PL/SQL Result Cache 294
Limitation 294

OCI Client results cache 295

The DBMS_RESULT_CACHE package 295
Displaying the result cache memory report 297
Oracle Database 12c enhancements to the PL/SQL function
Result Cache 298

Result cache in Real Application Clusters 299

Summary 300

Practice exercise 301

Chapter 10: Analyzing, Profiling, and Tracing PL/SQL Code 305

A sample PL/SQL program 305

Tracking PL/SQL coding information 306
USER_ARGUMENTS 307
USER_OBJECTS 307
USER_OBJECT_SIZE 308
USER_SOURCE 308
USER_PROCEDURES 310
USER_PLSQL_OBJECT_SETTINGS and USER_STORED_SETTINGS 310
USER_DEPENDENCIES 312
The DBMS_DESCRIBE package 312
Tracking the program execution subprogram call stack 315
Tracking propagating exceptions in PL/SQL code 319

Determining identifier types and usages 323
USER_IDENTIFIERS 323
The PL/Scope tool 324

The PLSCOPE_SETTINGS parameter 325

The DBMS_METADATA package 328
DBMS_METADATA data types and subprograms 328
Parameter requirements 331
The DBMS_METADATA transformation parameters and filters 331
Demonstration 333

Tracing PL/SQL programs using DBMS_TRACE 336
Installing the DBMS_TRACE package 337
DBMS_TRACE subprograms 337

Compiling a PL/SQL program for debugging 339
[vii]

Table of Contents

Viewing the PL/SQL trace information 340
Steps to trace PL/SQL program execution 341
Profiling PL/SQL code 342
The DBMS_HPROF package 343
Differences between DBMS_PROFILER and DBMS_HPROF 343
DBMS_HPROF subprograms 344
Collecting raw profile data 344
Interpreting the raw profiler data 345
Analyzing profiler data 346
Creating the profiler tables 346
Analyzing the profiler output 347
Querying the profiler tables 347
The plshprof utility 348
What do these reports reveal? 350
Summary 351
Practice exercise 351
Chapter 11: Safeguarding PL/SQL Code against SQL injection 353
What is SQL injection? 354
SQL injection targets 354
How to exploit the PL/SQL code? 355
Preventing SQL injection attacks 359
Sanitizing inputs using DBMS_ASSERT 360
Choose the right subprogram for the right identifier 361
DBMS_ASSERT - limitations 364
Use of bind variables to prevent injection attacks 365
Best practices to avoid SQL injection 366
Testing the code for SQL injection flaws 367
Test strategy 367
An effective code review 367
Static code analysis 368
Fuzz tools 368
Generating test cases 369
Summary 369
Practice exercise 369
Chapter 12: Working with Oracle SQL Developer 373
An overview of SQL Developer 374
Key differentiators 374
History and background 375
SQL Developer for Developers 376
SQL Developer for Database Administrators 376
SQLcl — The new SQL command line 377

[viii]

Table of Contents

Getting started with SQL Developer 379
Creating a database connection 380
Using the SQL worksheet 381
Core features of SQL Developer 383

Object Browser 383
PL/SQL Editor and Debugger 383
DBA Panel 384
Database Utilities 385
The Data Modeler 386
SQL Developer reports 386
Version control 387
The SQL Translation Framework 388
SQL Developer 4.0 and 4.1 New Features 388
Summary 390

Index 391

[ix]

Preface

How many of us would believe that PL/SQL was introduced as a scripting language
for executing a bunch of SQL scripts? Well, that's true. With the growing need to
build computational logic and condition-based constructs, and to manage exception
rules within databases, Oracle Corporation first released PL/SQL along with Oracle
Database Version 6.0 with a limited set of capabilities. Within its capacity, PL/SQL
was capable of creating program units that could not be stored inside the database.
Eventually, Oracle's release in the application line, SQL *Forms version V3.0,
included the PL/SQL engine and allowed developers to implement the application
logic through procedures. Back then, PL/SQL used to be part of the transaction
processing option in Oracle 6 and the procedural option in Oracle 7. Since the

time of its ingenuous beginning, PL/SQL has matured immensely as a standard
feature of Oracle Database. It has been enthusiastically received by the developer
community, and the credit goes to its support for advanced elements such as
modular programming, encapsulation, support for objects and collections, program
overloading, native and dynamic SQL, and exception handling.

PL/SQL is loosely derived from Ada (named after Ada Lovelace, an English
mathematician who is regarded as the first computer programmer), a high-level
programming language, which complies with the advanced programming elements.
Building a database backend for an application demands the ability to design

the database architecture, skills to code complex business logics, and expertise in
administering and protecting the database environment. One of the principal reasons
why PL/SQL is a key enabler in the development phase is its tight integration

with Oracle's SQL language. In addition to this, it provides a rich platform for
implementing the business logic in the Oracle Database layer and store them as
procedures or functions for subsequent use. As a procedural language, PL/SQL
provides a diverse range of datatypes, iterative and control constructs, conditional
statements, and exception handlers.

[xi]

Preface

In a standard software development space, an Oracle database developer is expected
to get involved in schema design; code business logics on the server side by using
functions, procedures, or packages; implement action rules by using triggers; and
support client-side programs in setting up the application interface. While building
the server-side code, developers should understand that their code contributes

to the application's performance and scalability. Language basics are expected

to be resilient, but while building robust and secure applications using PL/SQL,
developers must take advantage of best practices and try to use advanced language
features. This book focuses on the advanced features of PL/SQL validated up to the
latest Oracle Database 12c.

Learning by example has always been a well-attested approach for diving deep

into a concept. This book will enable you to master the latest enhancements and
new features of Oracle Database 12c. For efficient reading, you just have to be
familiar with the PL/SQL fundamentals so that you can relate to the evolution of an
advanced feature from its ever-expanding roots.

This book closely follows the outline of the Oracle University certification; that

is, the Oracle Certified Advanced PL/SQL Developer Professional (1Z0-146)

exam. One of the most sought after certifications in the developer community, the
170-146 certification's objectives are quite comprehensive, and touch upon the
various progressive areas of PL/SQL. To name a few, PL/SQL code performance,
maintenance, bulk processing techniques, PL/SQL collections, security
implementation, and the handling of large objects. For certification aspirants, this
book will serve as a one-stop exam guide. At many stages, this book goes beyond the
certification objectives and attempts to build a deep understanding of the concepts.
Therefore, mid-level database developers will find this book a handy language
reference and would be keen to have it on their bookshelves.

My last work on the same subject will remain close to my heart, but this one is
straight from my experience. I hope that this book will help you improve your
PL/SQL development skills and gain confidence in using advanced features, along
with meticulous familiarization of Oracle Database 12c.

"The only real security that a man can have in the world is a reserve of
knowledge, experience and ability"

- Henry Ford

[xii]

Preface

What this book covers

Chapter 1, Overview of PL/SQL Programming Concepts, provides an overview of PL/SQL
fundamentals. It refreshes the basic concepts, such as PL/SQL language features, the
anonymous block structure, exception handling, and stored subprograms.

Chapter 2, Oracle 12c SQL and PL/SQL New Features, talks about the new features of
Oracle Database 12c. It starts with the idea of consolidation of databases on a cloud
and how the Oracle 12c Multitenant architecture addresses the requirements. It
consolidates the new features in Oracle 12c SQL and PL/SQL, and explains each

of them with examples. It will help you to feel the essence of Oracle Database 12c
and understand what the driving wheel of innovation is. A section on the Oracle
Database 12c In-memory option will familiarize you with the breakthrough feature
in the analytics and warehouse space.

Chapter 3, Designing PL/SQL Code, primarily focuses on the PL/SQL cursor's design
and handling. You will get to learn the basics of cursor design, cursor types and cursor
variables, handling cursors in PL/SQL, and design guidelines. This chapter will also
include the enhancements made by Oracle Database 12c with respect to cursors.

Chapter 4, Using Collections, introduces you to the world of collections; namely,
associative arrays, nested tables, and varrays. Taking you all the way from their
creation in SQL and PL/SQL to design considerations, this chapter makes you wise
enough to choose the right collection type in a given situation. A section on Oracle
Database 12c enhancements to collections introduces a very handy feature that will
allow you to join a table and collection.

Chapter 5, Using Advanced Interface Methods, focuses on a powerful feature of
PL/SQL: how to execute external procedures in PL/SQL. You will learn and
understand the specifics of executing a C or Java program in PL/SQL as an external
procedure through step-by-step demonstration. This chapter also mentions the
Oracle Database 12c enhancement which allows you to secure external procedures
through an additional safety net.

Chapter 6, Virtual Private Database, provides a detailed overview of the Oracle
Database Security Defense-in-depth architecture and focuses on one of the
developer-centric features, known as the Virtual Private Database. Oracle Database
12c security enhancements and a demonstration of data redaction will make you
understand Oracle's security offerings.

Chapter 7, Oracle SecureFiles, provides a thorough understanding of handling large
objects in Oracle and focuses on storage optimizations made by SecureFiles. Introduced
in Oracle 11g, SecureFiles is the new storage mechanism that scores high on its advanced
features, such as compression, encryption, and deduplication. This chapter also helps
you with the recommended migration methods from older LOBs to SecureFiles.

[xiii]

Preface

Chapter 8, Tuning the PL/SQL Code, introduces the best practices for tuning PL/SQL
code. It starts with the PL/SQL optimizer and rolls through the benefits of native
compilation, PL/SQL code writing skills, and code evaluation design. This chapter
includes the changes in Oracle 12¢ with respect to large object handling.

Chapter 9, Result Cache, explains the result caching feature in Oracle Database. It is a
powerful caching mechanism that enhances the performance of SQL queries and
PL/SQL functions that are repeatedly executed on the server. This chapter also
discusses the enhancements made to the feature in Oracle Database 12c.

Chapter 10, Analyzing, Profiling, and Tracing PL/SQL Code, details the techniques
used to analyze, profile, and trace PL/SQL code. If you are troubleshooting PL/
SQL code for performance, you must learn the profiling and tracing techniques.
In an enterprise application environment, these practices are vital weapons in a
developer's arsenal.

Chapter 11, Safequarding PL/SQL Code against SQL injection, describes ways to protect
your PL/SQL from being attacked. A vulnerable piece of code is prone to malicious
attacks and runs the risk of giving away sensitive information. Efficient code writing
and proofing the code from external attacks can help to minimizing the attack
surface area. In this chapter, you will learn the practices for safeguarding your code
against external threats.

Chapter 12, Working with Oracle SQL Developer, describes the benefits of the Oracle
SQL Developer for developers, database administrators, and architects. This chapter
not only helps you get started with SQL Developer, but also helps you gain a better
understanding of the new features of SQL Developer 4.0 and 4.1.

What you need for this book

If you are good with PL/SQL development basics, I'm sure you will enjoy reading
this book. You will learn new ways to program efficiently in PL/SQL.

Who this book is for

This book is for Oracle developers who are responsible for database management.
Readers are expected to have basic knowledge of the Oracle Database and the
fundamentals of PL/SQL programming. Certification aspirants can use this book
to prepare for the 1Z20-146 examination in order to be come an Oracle Certified
Professional in Advanced PL/SQL.

[xiv]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The modified SELECT query is then executed in the HR schema of the database."

A block of code is set as follows:

/*Create the stored procedure to set the context attribute*/
CREATE OR REPLACE PROCEDURE p_app_ context (p_val VARCHAR2)
IS

BEGIN

/*Create a namespace DEMO_CONTEXT*/
DBMS_SESSION.SET CONTEXT (
NAMESPACE => 'DEMO CONTEXT',
ATTRIBUTE => 'COUNTRY',
VALUE => P _VAL);
END;

/

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This is
how interpreted compilation works. In the case of native compilation,, a sharable
dynamic linked library (DLL) is generated instead of a machine code."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[xv]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[xvi]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xvii]

Overview of PL/SQL
Programming Concepts

Structured Query Language (SQL) is a language that has been widely accepted and
adopted for accessing relational databases. This language allows users to perform
database operations such as reading, creating, modifying, and deleting the data.
Since the summer of 1970, when Dr. E.F. Codd published the paper A Relational
Model of Data for Large Shared Data Banks for the ACM journal, the language has
matured comprehensively as an industry standard. With its broad range of features
and easy adaptation to enterprise environments, the SQL language has been typically
regarded as the most reliable language for interacting with relational databases.

PL/SQL was developed in 1991 by Oracle Corporation as a procedural language
extension to SQL. Its ability to integrate seamlessly with SQL makes it a powerful
language to construct the data access layer and the rich procedural extensions help
in translating business logic within the Oracle Database. This first chapter introduces
you to the PL/SQL language and refreshes some of the key programming concepts.
The chapter is outlined as follows:

* Introduction to PL/SQL

* Recapitulate procedures, functions, packages, and cursors

* Exception handling

* Object dependencies

* Major Oracle supplied packages

* Oracle Development tools —SQL Developer and SQL*Plus

[11]

Overview of PL/SQL Programming Concepts

Introduction to PL/SQL

PL/SQL stands for Procedural Language-Structured Query Language(PL/SQL).

It is part of the Oracle Database product, which means no separate installation is
required. It is commonly used to translate business logic in the database and expose
the program interface layer to the application. While SQL is purely a data access
language that directly interacts with the database, PL/SQL is a programming
language in which multiple SQLs and procedural statements can be grouped in

a program unit. PL/SQL code is portable between Oracle Databases (subject to
limitations imposed by versions). The built-in database optimizer refactors the code
to improve the execution performance.

The advantages of PL/SQL as a language are as follows:

* PL/SQL supports all types of SQL statements, data types, static SQL, and
dynamic SQL

* PL/SQL code runs on all platforms supported by the Oracle Database

* PL/SQL code performance can be improved by the use of bind variables in
direct SQL queries

* PL/SQL supports the object-oriented model of the Oracle Database

* PL/SQL applications increase scalability by allowing multiple users to
invoke the same program unit

Although it is not used to build user interfaces, it provides the opportunity to
build robust, secure, and portable interface layers, which can be exposed to a
high-level programming language. Some of the key faculties of PL/SQL (PL/SQL
accomplishments) are listed here:

* A procedural language: A PL/SQL program can include a list of operations
that can execute sequentially to get the desired result. Unlike SQL, which is just
a declarative language, PL/SQL adds selective and iterative constructs to it.

* Database programming language: Server side programs run faster than the
middle-tier programs. Code maintenance becomes easy as it needs to be
re-written less frequently.

* Anintegral language: Application developers can easily integrate a PL/SQL
program with other high-level programming interfaces such as Java, C++, or
NET. The PL/SQL procedures or subprograms can be invoked from client
programs as executable statements.

[2]

Chapter 1

PL/SQL program fundamentals

A well-written PL/SQL program should be able to answer the following
fundamental questions:

How do we handle an SQL execution in the program?
How do we handle the procedural execution flow in the program?
Does the program handle the exceptions?

How do we maintain (trace and debug) the PL/SQL program code?

Well, there are multiple tips and techniques to standardize PL/SQL coding practices.
But before we drill down to the programming skills, let us familiarize ourselves

with the structure of a PL/SQL program. A PL/SQL program can be broken down
into four sections. Each section carries a specific objective and must exist in the same
sequence in a program. Let us have a brief look at the sections:

Header: This is an optional section which is required for named blocks such
as procedures, functions, and triggers. It contains the program name, the
program's owner, and the parameter specification.

Declaration: This is an optional section used to declare local variables,
cursors, and local subprograms that are likely to be used in the program
body. The DECLARE keyword indicates the beginning of the declaration
section. The section can be skipped if the PL/SQL program uses no variables.

Execution: This is the procedural section of the program and comprises the
main program body and an exception section. The BEGIN and END keywords
indicate the beginning and end of the program body. It must contain at
least one executable statement. During block execution, these statements are
parsed and sequentially executed by the PL/SQL engine.

Exception: This is an optional section in the program body that contains a set
of instructions as procedural statements, for various errors, that may occur
in the program leading to abnormal termination. The program control lands
into the exception section and the appropriate exception handler is executed.
The ExcEPTION keyword indicates the start of the exception section.

[31]

Overview of PL/SQL Programming Concepts

The following block diagram shows the structure of a PL/SQL block:

Program Header
<; (Required for Stored subprograms only)
/ DECLARE
<Local variable declarations>

/ BEGIN
<Executable statements>

EXCEPTION
% <Exception handling statements>
END;

A PL/SQL block is the elementary unit of a program that groups a set of procedural
statements. Based on the sections included in a PL/SQL program unit, we can
classify a program under following categories:

* Anonymous PL/SQL block: This is the simplest PL/SQL program that
has no name, but has its DECLARE-BEGIN-END skeleton. It can either
be run for current execution as standalone block or embedded locally within
a PL/SQL program unit. An anonymous block cannot be stored
in the database.

* Named: This block is a named PL/SQL routine that is stored persistently
in the database as a schema object. It can be invoked either from a database
session or by another program unit. A named PL/SQL program can be a
function, procedure, trigger, or package.

* Nested: A block within another PL/SQL block forms a nested block structure.

So, let's get started with our first anonymous PL/SQL block. The block declares a
string and displays it on screen. Note that each line in the program ends with a semi-
colon and the block ends with a slash (/) for code execution.

/*Enable the Serveroutput to display block messages*/
SET SERVEROUTPUT ON

The SERVEROUTPUT parameter is a SQL*Plus variable that enables
= the printing of DBMS_OUTPUT messages from a PL/SQL block.

/*Start the PL/SQL block*/

[4]

Chapter 1

DECLARE

/*Declare a local variable and initialize with a default value*/
L STR VARCHAR2(50) := 'I am new to PL/SQL';

BEGIN

/*Print the result*/
DBMS_OUTPUT.PUT LINE('I Said - '||L_STR);

END;

/

I Said - I am new to PL/SQL

PL/SQL procedure successfully completed.

Cursors — an overview

Writing SQL in PL/SQL is one of the critical parts of database programming. All
SQL statements embedded within a PL/SQL block are executed as a cursor. A cursor
is a private memory area, temporarily allocated in the session's User Global Area
(UGA), that is used for processing SQL statements. The private memory stores the
result set retrieved from the SQL execution and cursor attributes. Cursors can be
classified as implicit and explicit cursors.

Oracle creates an implicit cursor for all the SQL statements included in the
executable section of a PL/SQL block. In this case, the cursor lifecycle is maintained
by the Oracle Database.

For explicit cursors, the execution cycle can be controlled by the user. Database
developers can explicitly declare an implicit cursor under the DECLARE section along
with a SELECT query.

The cursor execution cycle

A cursor moves through the following stages during execution. Note that, in the case
of an implicit cursor, all the steps are carried out by the Oracle Database. Let's take a
quick look at the execution stages OPEN, FETCH, and CLOSE.

I
1 | 1
| Open . Execute | Fetch Close '
! Cursor >> Parse SQL>> Bind SQL >> query > Result > Cursor > !

[51]

Overview of PL/SQL Programming Concepts

* The opPEN stage allocates the context area in the session's User Global Area
for performing SQL processing. The SQL processing starts with parsing and
binding, followed by statement execution. In the case of the SELECT query,
the record pointer points to the first record in the result set.

* The FETCH stage pulls the data from the query result set. If the result set is a
multi-record set, the record pointer moves incrementally with every fetch.
The fetch stage is alive until the last record is reached in the result set.

* The cLOSE stage closes the cursor, flushes the context area, and releases the
memory back to the UGA.

Cursor attributes

Cursor attributes hold the information about the cursor processing at each stage of
its execution:

* %ROWCOUNT: Number of rows fetched until the last fetch or impacted by the
last DML operation. Applicable for SELECT as well as DML statements.

* %ISOPEN: Boolean TRUE if the cursor is still open, if not FALSE. For an implicit
cursor, this attribute is always FALSE.

* 3FOUND: Boolean TRUE, if the fetch operation switches and points to a record;
if not, FALSE.

* $NOTFOUND: Boolean FALSE when the cursor pointer switches but does not
point to a record in the result set.

%$ISOPEN is the only cursor attribute that is accessible outside
L the cursor execution cycle.

The following program uses the cursor attributes $ISOPEN, $NOTFOUND, and
$ROWCOUNT to fetch the data from the EMP table and display it:

/*Enable the SERVEROUTPUT to display block messages*/
SET SERVEROUTPUT ON

/*Start the PL/SQL Block*/
DECLARE

/*Declare a cursor to select employees data*/
CURSOR C_EMP IS
SELECT EMPNO, ENAME
FROM EMP;
L EMPNO EMP.EMPNO%TYPE;

[6]

Chapter 1

L ENAME EMP.ENAME%TYPE;
BEGIN

/*Check if the cursor is already open*/
IF NOT C EMP%ISOPEN THEN
DBMS_OUTPUT.PUT LINE ('***Displaying Employee Info***');
END IF;

/*Open the cursor and iterate in a loop*/
OPEN C_EMP;
LOOP

/*Fetch the cursor data into local variables*/
FETCH C_EMP INTO L_EMPNO, L_ENAME;
EXIT WHEN C_EMP%NOTFOUND;

/*Display the employee information*/

DBMS_OUTPUT.PUT LINE (chr (10) | |'Display Information for
employee: ' ||C_EMP%$ROWCOUNT) ;
DBMS OUTPUT.PUT LINE('Employee Id:'||L_ EMPNO) ;
DBMS OUTPUT.PUT LINE ('Employee Name:'||L ENAME) ;
END LOOP;
END;
/

Displaying Employee Info

Display Information for employee:1l
Employee Id:7369
Employee Name:SMITH

Display Information for employee:2
Employee Id:7499
Employee Name:ALLEN

Display Information for employee:3
Employee Id:7521
Employee Name:WARD

Display Information for employee:4
Employee Id:7566

Employee Name:JONES

PL/SQL procedure successfully completed.

[71

Overview of PL/SQL Programming Concepts

Cursor FOR loop

Looping through all the records of a cursor object can be facilitated with the use of
the FOR loop. A FOR loop opening a cursor directly is known as a CURSOR FOR loop.
The usage of the CURSOR FOR loop reduces the overhead of manually specifying the
OPEN, FETCH, and CLOSE stages of a cursor.

The cursor FOR loop will best compact the code when working with multi-row
explicit cursors. The following PL/SQL block demonstrates the purpose:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE
/*Declare an explicit cursor to select employee information*/
CURSOR CUR_EMP IS
SELECT ename, sal
FROM emp;
BEGIN
/*FOR Loop uses the cursor CUR_EMP directly*/
FOR EMP IN CUR_EMP
LOOP
/*Display message*/
DBMS_OUTPUT.PUT LINE (EMP.ename||' earns '||EMP.sal||' per month');
END LOOP;
END;
/

SMITH earns 800 per month
ALLEN earns 1600 per month
WARD earns 1250 per month
JONES earns 2975 per month
MARTIN earns 1250 per month
BLAKE earns 2850 per month
CLARK earns 2450 per month
SCOTT earns 3000 per month
KING earns 5000 per month
TURNER earns 1500 per month
ADAMS earns 1100 per month
JAMES earns 950 per month
FORD earns 3000 per month
MILLER earns 1300 per month

PL/SQL procedure successfully completed.

[8]

Chapter 1

Note that, with the CURSOR FOR loop, you do not need to declare the block variables
to capture the cursor columns. The CURSOR FOR loop index implicitly acts as a record
of the cursor type. Also, you do not need to explicitly open or close the cursor in the
PL/SQL program.

Exception handling in PL/SQL

If a program shows an unusual and unexpected flow during runtime, which

might result in abnormal termination of the program, the situation is said to be an
exception. Such errors must be trapped and handled in the EXCEPTION section of the
PL/SQL block. The exception handlers can suppress the abnormal termination with
an alternative and secured action.

Exception handling is one of the important steps of database programming,.
Unhandled exceptions can result in unplanned application outages, impact business
continuity, and frustrate end users.

There are two types of exceptions —system-defined and user-defined. While the
Oracle Database implicitly raises a system-defined exception, a user-defined
exception is explicitly declared and raised within the program unit.

In addition, Oracle provides two utility functions, SQLCODE and SQLERRV, to retrieve
the error code and message for the most recent exception.

System-defined exceptions

As the name implies, system-defined exceptions are defined and maintained
implicitly by the Oracle Database. They are defined in the Oracle STANDARD
package. Whenever an exception occurs inside a program, the database picks up
the appropriate exception from the available list. All system-defined exceptions are
associated with a negative error code (except 1 to 100) and a short name, which is
used while specifying the exception handlers.

For example, the following PL/SQL program includes a SELECT statement to select
details of employee 8376. It raises NO_DATA FOUND exception because employee id
8376 doesn't exist.

SET SERVEROUTPUT ON

/*Declare the PL/SQL block */
DECLARE
L ENAME VARCHAR2 (100) ;
L_SAL NUMBER ;
L EMPID NUMBER := 8376;

[o]

Overview of PL/SQL Programming Concepts

BEGIN

/*Write a SELECT statement */
SELECT ENAME, SAL
INTO L ENAME, L SAL

FROM EMP

WHERE EMPNO = L _EMPID;
END;
/
DECLARE

*

ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 8

Let us rewrite the preceding PL/SQL block to include an EXCEPTION section and
handle the NO_DATA FOUND exception:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE
/*Declare the local variables*/
L_ENAME VARCHAR2 (100) ;
L SAL NUMBER;

L EMPID NUMBER := 8376;
BEGIN

/*SELECT statement to fetch the name and salary details of the
employee*/

SELECT ENAME, SAL

INTO L _ENAME, L SAL

FROM EMP

WHERE EMPNO = L_EMPID;
EXCEPTION

/*Exception Handler */

WHEN NO DATA FOUND THEN

/*Display an informative message*/

DBMS_OUTPUT.PUT LINE ('No Employee exists with the id '||L_EMPID) ;
END;

/

No Employee exists with the id 8376

PL/SQL procedure successfully completed.

[10]

Chapter 1

The following table lists some of the commonly used system-defined exceptions
along with their short name and ora error code:

Error Named exception Comments (raised when:)
ORA-00001 DUP_VAL ON INDEX Duplicate value exists
ORA-01001 INVALID CURSOR Cursor is invalid
ORA-01012 NOT LOGGED_ON User is not logged in
ORA-01017 LOGIN DENIED System error occurred
ORA-01403 NO_DATA_ FOUND The query returns no data
ORA-01422 TOO_MANY_ROWS A single row query returns
multiple rows
ORA-01476 ZERO_DIVIDE An attempt was made to divide
a number by zero
ORA-01722 INVALID NUMBER The number is invalid
ORA-06504 ROWTYPE_MISMATCH Mismatch occurred in row type
ORA-06511 CURSOR_ALREADY OPEN Cursor is already open
ORA-06531 COLLECTION IS NULL Working with NULL collection
ORA-06532 SUBSCRIPT_OUTSIDE LIMIT | Collection index out of range
ORA-06533 SUBSCRIPT_ BEYOND COUNT Collection index out of count

User-defined exceptions

Oracle allows users to create custom exceptions, specify names, associate error
codes, and raise statements in line with the implementation logic. If PL/SQL
applications are required to standardize the exception handling, not just to control
the abnormal program flow but also to alter the program execution logic, you
need to use user-defined exceptions. The user-defined exceptions are raised in the
BEGIN. . END section of the block using the RAISE statement.

There are three ways of declaring user-defined exceptions:

* Declare the EXCEPTION type variable in the declaration section. Raise it
explicitly in the program body using the RAISE statement. Handle it in the
EXCEPTION section. Note that no error code is involved here.

* Declare the EXCEPTION variable and associate it with a standard error
number using PRAGMA EXCEPTION_INIT.

[11]

Overview of PL/SQL Programming Concepts

A Pragma is a directive to the compiler to manipulate the
behavior of the program unit during compilation, and not at the

& time of execution.
/<~ PRAGMA EXCEPTION INIT can also be used to map an
exception to a non-predefined exception. These are standard
errors from Oracle but not defined as PL/SQL exceptions.

e Use the RAISE APPLICATION ERROR to declare a dedicated error number and
error message.

The following PL/SQL block declares a user-defined exception and raises it in the
program body:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

/*Declare a bind variable M _DIVISOR*/
VARIABLE M DIVISOR NUMBER;

/*Declare a bind variable M _DIVIDEND*/
VARIABLE M DIVIDEND NUMBER;

/*Assign value to M _DIVISOR as zero*/
EXEC :M _DIVISOR := 0;

PL/SQL procedure successfully completed.

/*Assign value to M _DIVIDEND as 10/
EXEC :M _DIVIDEND := 10;

PL/SQL procedure successfully completed.

/*Start the PL/SQL block*/

DECLARE

/*Declare the local variables and initialize with the bind
variables*/

L DIVISOR NUMBER := :M DIVISOR;

L DIVIDEND NUMBER := :M _DIVIDEND;

L QUOT NUMBER;
/*Declare an exception variablex*/
NOCASE EXCEPTION;
BEGIN
/*Raise the exception if Divisor is equal to zero*/

[12]

Chapter 1

IF L DIVISOR = 0 THEN
RAISE NOCASE;

END IF;

L QUOT := L DIVIDEND/L DIVISOR;

DBMS OUTPUT.PUT LINE ('The result : '||L QUOT) ;
EXCEPTION

/*Exception handler for NOCASE exception*/
WHEN NOCASE THEN
DBMS_OUTPUT.PUT LINE ('Divisor cannot be equal to zero');
END;
/

Divisor cannot be equal to zero
PL/SQL procedure successfully completed.

/*Assign a non zero value to M_DIVISOR*/
EXEC :M DIVISOR := 2;

PL/SQL procedure successfully completed.

/*Re-execute the block */
SQL> /
The result : 5

PL/SQL procedure successfully completed.

The RAISE_APPLICATION_ERROR procedure

The RAISE_APPLICATION_ ERROR is an Oracle-supplied procedure that raises a
user-defined exception with a custom exception message. The exception can be
optionally pre-defined in the declarative section of the PL/SQL.

The syntax for the RAISE_APPLICATION_ ERROR procedure is as follows:

RAISE APPLICATION ERROR (error number, error message[, {TRUE |
FALSE}])

In this syntax, the error_number parameter is a mandatory parameter with the error
value ranging between 20000 to 20999. error_message is the user-defined message
that appears along with the exception. The last parameter is an optional argument
that is used to add the exception error code to the current error stack.

[13]

Overview of PL/SQL Programming Concepts

The following PL/SQL program lists the employees who have joined the
organization after the given date. The program must raise an exception if the date of
joining is before the given date. The block uses RAISE_APPLICATION ERROR to raise
the exception with an error code 20005, and an appropriate error message appears
on the screen:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block */
DECLARE

/*Declare the birth date */
L DOB_MON DATE := '01-DEC-1981';

/*Declare a cursor to filter employees who were hired on birthday
month*/
CURSOR C IS
SELECT empno, ename, hiredate
FROM emp;
BEGIN
FOR I IN C
LOOP

/*Raise exception, if birthdate is later than the hiredate */
IF i.hiredate < 1 dob _mon THEN
RAISE APPLICATION_ ERROR (-20005, 'Hiredate earlier than the
given date!! Check for another employee');

ELSE
DBMS_ OUTPUT.PUT LINE(i.ename||'was hired on'||i.hiredate);
END IF;
END LOOP;
END;
/

*

ERROR at line 1:

ORA-20005: Hiredate earlier than the given date!! Check for another
employee

ORA-06512: at line 11

[14]

Chapter 1

In the preceding example, note that the exception name is not used to create the
exception handler. Just after the exception is raised through RAISE_APPLICATION_
ERROR, the program is terminated.

If you wish to have a specific exception handler for the exceptions raised through
RAISE_APPLICATION_ERROR, you must declare the exception in the declarative
section and associate the error number using PRAGMA EXCEPTION_INIT. Check the
following PL/SQL program:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SQL> SET SERVEROUTPUT ON

/*Start the PL/SQL block */
DECLARE

/*Declare the birth date */
L DOB_MON DATE := '01-DEC-1981"';

/*Declare the exception variable */
INVALID EMP_DATES EXCEPTION;
PRAGMA EXCEPTION_INIT(INVALID_EMP_DATES,—20005);

/*Declare a cursor to filter employees who were hired on birthday
month*/
CURSOR C IS
SELECT ename, deptno, hiredate
FROM emp;
BEGIN
FOR I IN C
LOOP
/*Raise exception, if birthdate is later than the hiredate */
IF i.hiredate < 1 dob _mon THEN
RAISE INVALID EMP DATES;
ELSE
DBMS_OUTPUT.PUT LINE(i.ename||'was hired on'||i.hiredate);
END IF;
END LOOP;
EXCEPTION
WHEN INVALID EMP DATES THEN
DBMS_OUTPUT.PUT LINE (SQLERRM| |'Hiredate earlier than the given
date!! Check for another employee');

[15]

Overview of PL/SQL Programming Concepts

END;
/

ORA-20005: Hiredate earlier than the given date!! Check for another
employee

PL/SQL procedure successfully completed.

Exception propagation

Until now, we have seen that, as soon as the exception is raised in the procedural
section of a PL/SQL block, the control jumps to the exception section and chooses
the appropriate exception handler. The non-existence of the exception handler may
lead to the abnormal termination of the program.

In the case of nested PL/SQL blocks, if the exception is raised in an inner block, the
program control flows down to the exception section of the inner block. If the inner
block handles the exception, it is executed and the program control returns to the
next executable statement in the outer block.

If the inner block does not handle the exception, the program control continues to
search for the appropriate handler and propagates to the exception section of the
outer block. Yes, the execution of the outer block is skipped and the program control
lands straight in to the exception section. The program control will continue to
propagate the unhandled exception in the outer blocks until the appropriate one is
found and handled.

For example, the following PL/SQL program contains a child block within the
parent block:

/*Parent block*/
DECLARE

BEGIN
/*Outer block executable statements*/

/*Child Block*/
DECLARE

BEGIN

/*Inner block executable statements*/

[16]

Chapter 1

EXCEPTION
/*Inner block exception handlers*/
END;

/*Outer block executable statements*/
EXCEPTION
/*Outer block exception handlers*/
END;

If the exception is raised in one of the /*Inner block executable statements*/,
the control flows to /*Inner block exception handlers*/.If the appropriate
exception handler is not found, it propagates straight to the /*Outer block
exception handlers*/ and execution of /*Outer block executable
statements*/ is skipped.

When working with nested PL/SQL blocks, developers must be cautious while
coding exception handling logic. The exception propagation should be thoroughly
tested to build fail-proof applications.

Creating stored procedures

A procedure is a derivative of a PL/SQL block that has a name and is stored
persistently within the database. It is the schema object that is primarily used to
implement business logic on the server side. A procedure promotes a modular
programming technique by breaking down complex logic into simple routines.

The key features of stored procedures are:

* A procedure must be invoked from the executable section of a PL/SQL block
as a procedural statement. You can also execute it directly from SQLPLUS
using the EXECUTE statement. Note that a procedure can not be called from a
SELECT statement.

* A procedure can optionally accept parameters in IN, OUT, or IN OUT mode.

* A procedure cannot return a value. The only way for a procedure to return
a value is through ouT parameters, but not through the RETURN [value]
statement. The RETURN statement in a procedure is used to skip the further
execution of the program and exit control.

[17]

Overview of PL/SQL Programming Concepts

The following table differentiates between the 1IN, OUT, and IN OUT parameters:

IN

ouT

IN OUT

Default parameter mode

Has to be explicitly defined

Has to be explicitly defined

Parameter's value is passed
to the program from the
calling environment

Parameter returns a
value back to the calling
environment

Parameter may pass a

value from the calling
environment to the program
or return value to the calling
environment

Parameters are passed by
reference

Parameters are passed by
value

Parameters are passed by
value

May be a constant, literal, or
initialized variable

Uninitialized variable

Initialized variable

Can hold default value

Default value cannot be
assigned

Default value cannot be
assigned

The syntax for a procedure is as follows:

CREATE [OR REPLACE]

PROCEDURE

[AUTHID DEFINER | CURRENT USER]

IS

[Declaration Statements]

BEGIN

[Executable Statements]

EXCEPTION

[Exception handlers]
END [Procedure Name] ;

[Procedure Name]

[Parameter List]

The following standalone procedure converts the case of the input string from lower

case to upper case:

/*Create a procedure to change case of a string */
CREATE OR REPLACE PROCEDURE P_TO UPPER (P_STR VARCHAR2)

IS

/*Declare the local variables*/

L STR VARCHAR2 (50) ;

BEGIN

/*Convert the case using UPPER function*/

L_STR :=

UPPER (P_STR) ;

/*Display the output with appropriate message*/

DBMS_OUTPUT.PUT LINE ('Input string in Upper case

END;
/

Procedure created.

"| |L_STR) ;

[18]

Chapter 1

Executing a procedure

A procedure can either be executed from SQL*Plus or a PL/SQL block. The
P_TO_UPPER procedure can be executed from SQL*Plus.

The following code shows the execution of the procedure from SQL*Plus (note that
the parameter is passed using bind variable):

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SQL> SET SERVEROUTPUT ON

/*Declare a session variable for the input*/
SQL> VARIABLE M_STR VARCHAR2 (50) ;

/*Assign a test value to the session variable*/
SQL> EXECUTE :M _STR := 'My first PLSQL procedure';

PL/SQL procedure successfully completed.

/*Call the procedure P_TO UPPER*/
SQL> EXECUTE P_TO UPPER(:M_STR) ;
Input string in Upper case : MY FIRST PLSQL PROCEDURE

PL/SQL procedure successfully completed.

The p_To_UPPER procedure can be called as a procedural statement within an
anonymous PL/SQL block:

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SQL> SET SERVEROUTPUT ON

/*Start a PL/SQL block*/
SQL> BEGIN
/*Call the P_TO UPPER procedure*/
P _TO UPPER ('My first PLSQL procedure') ;
END;
/

Input string in Upper case : MY FIRST PLSQL PROCEDURE

PL/SQL procedure successfully completed.

[19]

Overview of PL/SQL Programming Concepts

Functions

Similar to a stored procedure, a function is a named derivative of a PL/SQL block
that is physically stored within the Oracle database schema.

The key features of stored functions are as follows:

* A function can accept parameters in all three modes (IN, oUT, and IN OUT)
and mandatorily returns a value.

* Functions can be called in SQL statements (SELECT and DMLs). Such
functions must accept only IN parameters of valid SQL types. Alternatively,
a function can also be invoked from SELECT statements if the function body
obeys the database purity rules.

* If the function is called from an SQL statement, its return type should be a
valid SQL data type. If the function is invoked from PL/SQL, the return type
should be a valid PL/SQL type.

_ Starting from Oracle Database 12¢, PL/SQL —only data
a types can cross the PL/SQL to SQL interface. A PL/SQL
= anonymous block can invoke a PL/SQL subprogram with
parameters of BOOLEAN or a packaged collection type.

The syntax for a function is as follows:

CREATE [OR REPLACE] FUNCTION [Function Name] [Parameter List]
RETURN [Data type]
[AUTHID DEFINER | CURRENT USER]
[DETERMINISTIC | PARALLEL ENABLED | PIPELINED]
[RESULT_CACHE [RELIES_ON (table name)]]
IS
[Declaration Statements]
BEGIN
[Executable Statements]
RETURN [Valuel]
EXCEPTION
[Exception handlers]
END [Function Name] ;

Let us create a standalone function, F_GET_DOUBLE, which accepts a numeric
parameter and returns its double:

/*Create the function F_GET DOUBLE*/
CREATE OR REPLACE FUNCTION F GET DOUBLE (P_NUM NUMBER)
RETURN NUMBER /*Specify the return data type*/

[20]

Chapter 1

IS

/*Declare the local variable*/
L NUM NUMBER;
BEGIN

/*Calculate the double of the given number*/
L NUM := P_NUM * 2;

/*Return the calculated value*/
RETURN L_NUM;

END;

/

Function created.

Functions — execution methods

Functions can either be called from a SQL*Plus environment or invoked from
a PL/SQL program as a procedural statement.

The function F_GET DOUBLE can be executed in the SQL* Plus command prompt as
follows. As the function returns an output, you must declare a session variable and
capture the function result in the variable.

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

/*Declare a session variable M NUM to hold the function output*/
VARIABLE M NUM NUMBER;

/*Function is executed and output is assigned to the session
variablex*/
EXECUTE :M NUM := F _GET_DOUBLE (10) ;

PL/SQL procedure successfully completed.

/*Print the session variable M NUM*/
PRINT M_NUM

[21]

Overview of PL/SQL Programming Concepts

The F_GET DOUBLE function can be called from an anonymous block or a standalone
subprogram.

/*Enable the SERVEROUTPUT parameter to print the results in the
environment*/
SET SERVEROUTPUT ON

DECLARE
M_NUM NUMBER;
BEGIN
M _NUM := F_GET DOUBLE (10) ;
DBMS_OUTPUT.PUT LINE('Doubled the input value as : '||M_NUM) ;
END;
/

Doubled the input value as : 20

PL/SQL procedure successfully completed.

Restrictions on calling functions from
SQL expressions

Unlike procedures, a stored function can be called from a SELECT statement,
provided it does not violate the database purity levels. The rules are as follows:
e A function called from a SELECT statement cannot contain DML statements

* A function called from an UPDATE or DELETE statement on a table cannot
query (SELECT) or perform transactions (DMLs) on the same table

* A function called from an SQL expression cannot contain TCL (COMMIT or
ROLLBACK) commands or DDL (CREATE or ALTER) commands

The F_GET_DOUBLE function can easily be embedded within a SELECT statement as it
respects all the preceding rules:

/*Invoke the function F_GET DOUBLE from SELECT statement*/
SQL> SELECT F_GET DOUBLE(10) FROM DUAL;

F_GET_DOUBLE (10)

[22]

Chapter 1

In the Oracle Database, DUAL is a table owned by the SYS user, which
has a single row and a single column, DUMMY, of VARCHAR2 (1) type.
It was first designed by Charles Weiss while working with internal
views to duplicate a row. The DUAL table is created by default during
% the creation of the data dictionary with a single row whose value is X.
T All database users, other than SYS, use its public synonym to select
the value of pseudo columns such as USER, SYSDATE, NEXTVAL,
or CURRVAL. Oracle 10g considerably improved the performance
implications of the DUAL table through a fast dual-access mechanism.

A PL/SQL package

A PL/SQL package encapsulates multiple PL/SQL constructs under a single unit.
The PL/SQL constructs can be subprograms, cursors, variables, and exceptions.
As a schema object, a PL/SQL package demonstrates the principles of logic hiding,
encapsulation, and subprogram overloading.

Standalone subprograms cannot be overloaded.
Only packaged subprograms can be overloaded by
their signatures.

The following diagram shows the advantages of a package:

Overloading

g

: Package
Modul :" >
odularity Benefits

Data hiding Encapsulation

Better
<: performance

A package has two components — the package specification and package body. While
the package specification contains the prototype of public constructs, the package
body contains the definition of public as well as private (local) constructs.

The characteristics of the package specification are as follows:

* It is the mandatory component of the package. A package cannot exist
without its specification.

[23]

Overview of PL/SQL Programming Concepts

* It contains the prototypes of public constructs. The prototype is a forward
declaration of the constructs that includes the declaration, header
specification and signature information terminated by a semicolon. The
subprograms constructs, once prototyped, should be defined in the package
body section. The package specification cannot contain an executable section.

* These member constructs are visible within and outside the package. They can
be invoked from outside the package by the privileged users.

The public constructs of a package are accessed as
A [PACKAGE NAME] . [CONSTRUCT].

* Valid package constructs can be PL/SQL types, variables, exceptions,
procedures, and functions.

* If the package specification contains variables, they are implicitly initialized
to NULL by Oracle

The characteristics of the package body are as follows:

* The package body contains the definition of the subprograms that were
declared in the package specification.

* The package body can optionally contain local constructs. The accessibility of
the local constructs is limited to the package body only.

* The package body is an optional component; a package can exist in a
database schema without its package body.

The syntax for creating a package is as follows:

CREATE [OR REPLACE] PACKAGE [NAME] IS
[PRAGMA]
[PUBLIC CONSTRUCTS]

END;

CREATE [OR REPLACE] PACKAGE BODY [NAME] IS
[LOCAL CONSTRUCTS]
[SUBPROGRAM DEFINITION]
[BEGIN]

END;

Note the optional BEGIN section in the package body. It is optional, but gets executed
only the first time the package is referenced. It is used to initialize global variables.

[24]

Chapter 1

A package can be compiled with its specification component alone. In such cases,
packaged program units cannot be invoked as their executable logic has not been
defined yet.

The compilation of a package with a specification and body ensures the concurrency
between the program units prototyped in the specification and the program units
defined in the package body. All packaged program units are compiled in a single
package compilation. If a package is compiled with errors, it is created as an invalid
object in the database schema. You can query the STATUS column to check the current
status of an object in the USER_OBJECTS, ALL._OBJECTS, or DBA_OBJECTS dictionary
views.

Oracle Database 12c enhancements to
PL/SQL subprograms

Oracle Database Release 12c includes a number of PL/SQL feature enhancements.
These enhancements are focused on improving the usability of PL/SQL as a
language. Although the next chapter will discuss many more new features in detail,
it is worthwhile to mention a few of them that are exclusively related to Oracle PL/
SQL subprograms.

* Defining PL/SQL subprograms in the SELECT statement: Although PL/
SQL allows the invoking of a function from the SELECT statement, the context
switch from SQL to the PL/SQL engine degraded the performance. Oracle
12c allows creating PL/SQL units in the wITH clause of a subquery and using
it in the SELECT statement. The new approach to calling functions in SQL
statements enhances the performance as there is no context switching across
the engines. In addition, these functions are not stored in the database schema.

* Granting roles to program units: One of the challenges in PL/SQL before
Oracle 12c was that a program unit had to be created with definers rights, if it
was intended to be executed by all users. A user with a lower set of privileges
could perform the unauthorized changes. With Oracle 12c, granting roles to
PL/SQL program units adds a levels of safety. You can now create program
units with invoker's rights and control the privileges, which are required to
run the program, through a role.

* Protecting PL/SQL unit access through the ACCESSIBLE BY clause: With
Oracle 12c, you can restrict access to a PL/SQL unit by unauthorized
programs. A subprogram (a procedure, function or a package) can optionally
include an ACCESSIBLE BY clause to define a white list of PL/SQL program
units that can invoke it.

[25]

Overview of PL/SQL Programming Concepts

Managing database dependencies

PL/SQL program units, as well as other database objects such as views, may refer to
other database objects in their procedural section. The calling program unit is said
to be dependent on the called program units (known as referenced objects). If EMP
and DEPT are the base tables used in creating a view v_EMP_REP, then the view is
dependent on EMP and DEPT.

A sequence can always be a referenced object. A package body
= is always a dependent object.

Database dependency can be classified as direct or indirect. Consider three
objects—P, M, and N. If object P references object M and object M references object
N, then P is directly dependent on M and indirectly dependent on N.

Displaying the direct and indirect
dependencies

The dependency matrix is automatically generated and maintained within the
Oracle Database. The status of an object is the basis of dependency among the
objects. The status of an object can be queried from the USER_OBJECTS (or ALL_
OBJECTS or DBA_OBJECTS) dictionary view. The following query queries the status of
the function F_GET DOUBLE:

/*Check the status of the function F_GET DOUBLE*/
SELECT status

FROM user objects

WHERE object name='F GET DOUBLE'

/

STATUS

The system views DEPTREE and IDEPTREE capture the necessary information
about the direct and indirect dependencies. Database administrators can create the
views by running the script $ORACLE_HOME\RDBMS\ADMIN\utldtree.sql.

The execution steps for the script are as follows:

1. Login as syspBa in SQL Developer or SQL*Plus.
2. Copy the complete path and script name (prefixed with @).

[26]

Chapter 1

3. Execute the script (with F9).

4. Query the DEPTREE and IDEPTREE views to verify their creation.

The script creates the DEPTREE_TEMPTAB table and the DEPTREE_FILL procedure.
The DEPTREE_FILL procedure can be executed to populate the dependency details
of an object.

/*Populate the dependency matrix for the function F_GET DOUBLE*/
SQL> EXEC DEPTREE FILL('FUNCTION', 'SCOTT','F_GET DOUBLE') ;

PL/SQL procedure successfully completed.

Note that the first parameter of the DEPTREE_FILL procedure is the object type, the
second is the owner, and the third is the object name.

The DEPTREE and IDEPTREE views can now be queried to view the dependency
information.

Dependency metadata

Oracle provides the data dictionary views (USER_DEPENDENCIES, ALL, DEPENDENCIES,
and DBA_DEPENDENCIES) to view the complete dependency metrics shared by an
object. Besides the dependent object's list, it also lists its referencing object name

and owner.

The following screenshot shows the structure of the dictionary view
DBA_DEPENDENCIES:

S0QL> DESC DBA_DEPENDENCIES

OUNER NOT NULL UARCHARZ2<3@)
NAME NOT NULL UARCHARZ<(3@)
TYPE UARCHAR2<18>

REFERENCED_OUNER UARCHARZ2 (38>
REFERENCED_NAME UARCHAR2<64>
REFERENCED_TYPE UARCHAR2(18)>
REFERENCED_LINK_NAME UARCHAR2¢128)
DEPENDENCY_TYPE UARCHAR2<(4)

Dependency issues and enhancements

In line with the conventional dependency phenomenon, the status validity of

the dependent object depends upon the status of the referenced object. So, if the
definition of the referenced object is altered, the dependent object is marked INVALID
in the USER_OBJECTS view. Although object recompilation can easily solve the
problem, the object invalidations may impact the application flow.

[27]

Overview of PL/SQL Programming Concepts

Oracle 11g introduced Fine Grained DependencyTracking (FGD) to modify the
dependency principle as follows. If the alteration in the referenced object does not
affect the dependent object, the dependent object will remain in the VALID state.
For instance, if a view is created with a fixed set of columns of a table and the table is
altered to add a new column, the view will remain in a VALID state.

Reviewing Oracle-supplied packages

Oracle-supplied packages exist as prebuilt programs in the database as wrapper
code. These packages not only help database developers work on extended
functionalities but also reduce writing extensive and complex code. The use of the
Oracle-supplied API is always recommended as it improves code standardization.

The scripts for these packages are available in the $ORACLE_HOME\RDBMS\ADMIN\
folder. All packages reside on the database server. Public synonyms are available
(or can be created too) for these packages so that the packages are accessible to
the database users. Oracle 12c adds multiple packages to the Oracle-supplied PL/
SQL package list. The latest additions provide PL/SQL interfaces for the new
functionalities that have been added to the database release.

Some of the important Oracle-supplied packages are listed as follows:

* DBMS_ALERT: This package is used for the notification of database events.

* DBMS_LOCK: This package is used for managing lock operations (lock,
conversion, and release) in PL/SQL applications.

* DBMS_SESSION: This package is used to set session level preferences from
PL/SQL programs (similar to ALTER SESSION).

* DBMS_OUTPUT: This package is one of the most frequently used built-ins for
buffering data messages and displaying debug information.

* DBMS_HTTP: This package is used for HTTP callouts.

* UTL_FILE: This package is used for reading, writing, and performing other
file operations on the server.

* UTL_MAIL: This package is used to compose and send mails.

* DBMS_SCHEDULER: This package is used for scheduling execution of stored
procedures at a given time.

* DBMS_PARALLEL_ EXECUTE: This package can be used to execute a user-
defined task in parallel. If the PL/SQL block is running a large update on a
table, the package can be used to enable the parallel execution of the task by
splitting it into chunks.

[28]

Chapter 1

DBMS_PRIVILEGE_ CAPTURE: This package is introduced in Oracle Database
12c to set a policy in order to capture the usage of privileges (object and
system) in respect to users. It helps in controlling excess privileges for users.

DBMS_REDACT: This package is introduced in Oracle Database 12c to create
redaction policies, in order to mask data based on user authorization.

DBMS_RESOURCE_MANAGER: This package is used to create consumer groups,
directives, and resource manager plans for containers as well as a pluggable
database. The resource manager plan determines the resources allocated to
a pluggable database, a schema, or a task.

DBMS_DATAPUMP: This package is used to move data, metadata, or both
from one database to another. The source and target databases can be on
different platforms.

pBMS_PDB: This package is introduced in Oracle Database 12¢ to generate or
analyze the integration properties of a pluggable database for unplug/plug
operations.

DBMS_SQL: This package enables dynamic SQL in PL/SQL. You can run DML
or DDL statements using DBMS_SQL from a PL/SQL block.

DBMS_REDEFINITION: This package is used to perform online redefinition
tasks for tables.

DBMS_UTILITY: This package is used to accomplish many utility operations
such as analyze object, compile schema, get dependency, resolve a given
name, validate database objects, format call and error stack, expand SQL text,
and retrieve current database version.

Based on the objective to be achieved, the packages can be categorized as follows:

Standard application development: Many of the DBMS packages provide

an application interface for database features. For example, DBMS_REDACT
provides an interface to create and manage redaction policies. Similarly,
DBMS_UTILITY provides subprograms to retrieve instance or database
information, call stacks and error stacks, and analyze and validate objects. The
DBMS_OUTPUT package is one of the packages most frequently used to display
text messages. It can be efficiently used for tracing and debugging purposes.
Accessing and writing operating system files was made possible through
UTL_FILE.

General usage and application administration: Oracle has many packages
for monitoring applications and users. Statistics generation, load history, and
space management are the key objectives accomplished by these packages.
DBMS_UTILITY comprises subprograms for general usage.

Internal support packages: Oracle maintains these packages for its own use.

[29]

Overview of PL/SQL Programming Concepts

* Transaction processing packages: Oracle provides utility packages that
enable the monitoring of transaction stages. Though they are rarely used,
they can efficiently ensure transparent and smooth transactions. For
example, DBMS_TRANSACTION is used to access SQL transactions from stored
subprograms. DBMS_PARALLEL_EXECUTE executes a large update in parallel by
splitting it into small tasks.

Oracle SQL Developer

Oracle SQL Developer is a Graphical User Interface (GUI) integrated development
environment from Oracle Corporation. Oracle SQL Developer is a free tool that
simplifies PL/SQL code development, the database design, and modeling and
administration for standalone and cloud deployments. This tool enhances the user's
experience by maximizing productivity and extensibility.

SQL Developer is a Java-based cross-platform tool that can run on Linux, Windows,
and Mac OS X.

Oracle SQL Developer supports Oracle Database versions 10g, 11g, and 12c. With
Oracle Database 12c Multitenant architecture, SQL Developer extends full support for
various multitenant operations. In addition to the support for Oracle Databases, the
tool also allows users to connect to non-Oracle Databases including MySQL, Microsoft
SQL Server, Microsoft Access, Sybase, and Teradata. The extensible framework enables
users to develop custom extensions in order to address specific requirements.

SQL Developer was first released in March, 2006. The initial release of SQL
Developer included basic features such as a schema browser, an SQL worksheet to
run SQL and invoke SQL scripts, a PL/SQL editor, code debugging, and running
basic reports. Since then, the tool has grown immensely and matured over the years.
At the time of writing, the latest release of SQL Developer is 4.1.

Oracle SQL Developer for DBA, Developers,
and Application Architects

Oracle SQL Developer provides powerful features and interfaces for code
development, administrative activities, and data modeling. It offers rich editors for
developers who work with SQL, PL/SQL, and stored program units. SQL Developer
can run SQL queries, monitor performance through execution plans and SQL tuning,
and prepare scripts. Database developers can build PL/SQL applications, debug
them, and perform run-time testing.

[30]

Chapter 1

With SQL Developer 3.0, the DBA panel in the tool added the functionality to
perform common DBA tasks and activities. The new feature additions such as the
data miner, data modeler, database navigator, and DBMS scheduler provide a range
of administrative functionalities in the tool. Database administrators can perform
core administration tasks such as export/import through data pump, RMAN,

user and role management, and resource management. SQL Developer integrates
seamlessly with Oracle APEX, thereby allowing APEX developers to browse, deploy,
and export applications.

With the most recent version, more DBA activities have been incorporated to make it
more feature-rich and complete.

For database architects, SQL Developer offers a data modeling solution with SQL
Developer Data Modeler (SDDM). The SDDM enables architects to create data flow
diagrams, design versioning via subversion, import designer repositories, and most
importantly perform logical, relational, and physical data modeling.

SQL Developer 4.0

With the release of Oracle SQL Developer 4.0 and onwards, the tool follows Oracle's
data management strategy by supporting Oracle Database 12c Multitenant option,
cloud deployments, Oracle NoSQL and JSON. In addition, it includes a brand new
command line interface utility to enhance user experience. With native support for
Oracle Rest Data Services in Oracle Database 12c, Web application developers can
work with SQL Developer to create and alter services. Database administrators can
now run ASH, AWR, and ADDM reports from the performance page in the DBA
panel. SQL Developer 4.0's new features can be summarized as follows:

* Support for Oracle Database 12c Multitenant architecture

* Support for Oracle NoSQL Database

* Support for database products such as TimesTen, Data Miner, XML DB,
and Spatial and Graphs

* Support for Java 7
* Querying JSON data in relational format
* New instance viewer enables the monitoring of wait events, storage, log

switches, and database processes

Chapter 12, Working with Oracle SQL Developer, focuses on various features of the
Oracle SQL Developer tool.

[31]

Overview of PL/SQL Programming Concepts

Summary

Over the years, PL/SQL has matured a great deal and has produced a vast

library of objects, features, and standards. This chapter focused on giving a quick
summary of PL/SQL programming. It assumed readers were familiar with database
programming concepts and provided enough substance to get them ready for the
forthcoming chapters. It would have been a tough call to build a glossary of PL/SQL
objects in a single chapter.

We started with an overview of PL/SQL fundamentals, block structure, and
exception handling. Additionally, this chapter threw light on cursor handling in
PL/SQL, the curRsOR FOR loop, and schema objects such as procedures, functions,
and packages. In forthcoming chapters, we will focus on the key faculties of the
PL/SQL language as well as Oracle Database 12c features.

Practice exercise

* Which of the following features are not available in SQL Developer?

=

Query builder.

2. Database export and import.

3. Database backup and recovery functions.

4. Code Subversion repository.

* For a function to be called from a SQL expression, which of the following
conditions should it obey?

1. A function in the SELECT statement should not contain
DML statements.

The function should return a value.

A function in the UPDATE or DELETE statement should not query
the same table.

4. A function called from a SQL expression cannot contain TCL (COMMIT
or ROLLBACK) commands or DDL (CREATE or ALTER) commands.

* The following query is executed in the SCOTT schema:

SELECT NAME, referenced owner, referenced name

FROM all dependencies

WHERE owner = USER

AND referenced type IN ('TABLE', 'VIEW')

AND referenced owner IN ('SYS')

ORDER BY owner, NAME, referenced owner, referenced name;

[32]

Chapter 1

Which statement is true about the output of this query?

1.

It displays the schema objects, created by the user ORADEV, that use a
table or view owned by svs.

An exception occurs as user SCOTT has insufficient privileges to
access ALL_DEPENDENCIES view.

It displays all PL/SQL code objects that reference a table or view
directly for all the users in the database.

It displays only those PL/SQL code objects created by the user OE
that reference a table or view created by the user svs.

Which of the following is true about PL/SQL blocks?

1.

Exception is a mandatory section without which an anonymous
PL/SQL block fails to compile.

Bind variables cannot be referred inside a PL/SQL block.

The scope and visibility of the variables declared in the declarative
section of the block are within the current block only.

The RAISE APPLICATION ERROR procedure maps a predefined error
message to a customized error code.

From the following options, identify the ways of defining exceptions:

1.
2.

Declare an EXCEPTION variable and raise it using the RAISE statement.

Use PRAGMA EXCEPTION_INIT to associate a customized exception
message to a pre-defined oracle error number.

Declare an EXCEPTION variable and use it in RAISE APPLICATION
ERROR.

Use RAISE_APPLICATION_ERROR to create a dynamic exception at any
stage within the executable or exception section of a PL/SQL block.

Choose the differences between procedures and functions:

1.

A function must mandatorily return a value, while a procedure may
or may not.

A function can be called from a SQL query, while a procedure can
never be invoked from SQL.

A function can accept parameters passed by a value, while a
procedure can accept parameters passed by reference only.

A standalone function can be overloaded but a procedure cannot.

[33]

Overview of PL/SQL Programming Concepts

* Examine the values of the cursor attribute for the following query and pick
the attribute with the wrong value:

BEGIN

SELECT ENAME, SAL
INTO L ENAME, L SAL
FROM EMPLOYEES
WHERE EMPID = 7900;

1. SQL$ROWCOUNT = 1

2. SQL%ISOPEN = FALSE
3. SQL$FOUND = FALSE
4

SQL¥NOTFOUND = FALSE

[34]

Oracle 12c SQL and
PL/SQL New Features

Oracle released Oracle Database 12c in July 2013. From a technology standpoint, it
was an important product release as the focus was consolidation of databases on
public and private cloud infrastructures. Oracle Database 12¢ introduces the new
Multitenant architecture that allows multiple databases to run as a tenant within a
single database. The new design assures tenant isolation and security, and enhances
manageability of consolidated databases, Oracle Database 12¢ provides more than 500
new features including multitenant architecture and many others related to security,
high availability, and performance. The chapter covers the key features introduced in
the latest product release.

Oracle Database 12¢ has made considerable improvements to the SQL and PL/SQL
languages. The language enhancements in Oracle Database 12c focus on support

for ANSI SQL standards, effortless code writing and migration from non-Oracle to
Oracle compliant code. This chapter discusses many such enhancements and features
of Oracle Database 12c.

The outline of the chapter is as follows:

* The Multitenant architecture
* SQL new features
* PL/SQL new features

* Oracle Database 12¢ In-Memory option

[35]

Oracle 12¢ SQL and PL/SQL New Features

Database consolidation and the new
Multitenant architecture

Consolidation is the key enabler for moving databases to on-cloud models. An
efficient consolidation strategy can provide elastic sharing of resources and
maximize resource utilization in a consolidated stack. A database hosted on a public
or private cloud must guarantee tenant isolation and security. In addition to the
elementary requirements of cloud deployments, database provisioning on the cloud
should be quick and easy.

Oracle Database 12c introduces a multitenant architecture that meets the challenges
of cloud deployments. The new tenant-based architecture allows one or more
application databases (known as pluggable databases) to run within a single
database (known as the container database). Each pluggable database is completely
shielded from all other pluggable databases running within the same container
database. The architecture provides a unique mechanism to segregate the system
and application metadata at the container and pluggable level respectively. In a
single-tenant architecture, a root container can have just one pluggable database.

In a multitenant architecture, a root container can have more than one pluggable
database. While single-tenant is free of cost and available in Oracle Database
Standard Edition, multitenant can be licensed in Oracle Database Enterprise
Edition only.

Starting with Oracle Database 12.1.0.2, the non-tenant or standalone architecture of
Oracle Database is deprecated which means that it will not be further enhanced.

Let us get familiarized with the terms of the new world — the container and
pluggable databases.

An Oracle 12c container database (CDB) provides the instance that can be shared
by multiple databases. A CDB instance has the memory and a set of background
processes. From the server subsystem, the container database is the

only database visible.

A pluggable database (PDB) is similar to a pre 12c database that serves as an
application database backend. A pluggable database contains the application
tablespaces.

[36]

Chapter 2

The following diagram shows the Oracle Database 12¢ multitenant architecture:

-
|
Pluggable PDBSSEED HE. PDE ”|:| PDB(s) .
| - COH_ID=2 COH_ID=3
Database — —

CDBSR(DT Control file | spfile Bedo logs I
Boot CON ID = 1 Archive logs | Password file | UNDO
SYSTEM SYSAUX TEMP

i 4
System Global Area < I
Instance Background Process- %%%

Container : I
Database

A container database may contain one or more pluggable database containers.
With reference to the preceding architecture, let us drill into the specifics of
new components.

A container database (CDB) consists of one root container (known as CDBSROOT), one
seed pluggable database (known as PDB$SEED), and multiple pluggable databases.
Similar to the previous releases, a container database has an instance and set of files.
The database instance is of the container, which means that the System Global Area
(8GA) is common for all the pluggable databases. Also, there is a single copy of
background processes at the container instance level only, and not replicated for
each PDB.

A pluggable database is a database that stores the application data. As of Oracle
Database 12c Release 1, a multitenant database can have a maximum of 252 pluggable
databases. A PDB service is created at the time of provisioning that runs within the
CDB service and gets auto-registered with the CDB listener. Since a PDB runs as a
secured service within the container database administration service, it cannot be
authenticated by the server operating system. However, you can create a user-defined
service using DBMS_SERVICE for OS authentication and TNS connection.

[37]

Oracle 12¢ SQL and PL/SQL New Features

The redo logs and archive logs are at the container level. Every time a pluggable
database has to make a redo entry, the request is tagged with the PDB identity. The
identity in this case is nothing but the container identifier (coN_1D). Each container

in a container database is assigned a unique container id. The root has the container
id 1; the seed PDB has 2 and each pluggable database is assigned a container id in

a sequential fashion. The container id is quite a significant element as the common
redo is logically virtualized by annotating each and every entry with the container id.
All the dictionary views and metadata views have an additional column coN_1D to
identify the container to which the information belongs.

The control file and server parameter file are at the root container level. Starting
with Oracle 12¢, there are two categories of parameters — CDB modifiable and
PDB modifiable. The v$PARAMETER dictionary view has an additional column
1spPDB_MODIFIABLE. The value of the column is N for CDB-modifiable and v for
PDB-modifiable parameters.

The sYsTEM and sYSaUX tablespaces at the root container level store the system
metadata that is specific just to the Oracle Database. The application metadata for
each pluggable database is stored in each PDB's respective sYSTEM and SYSAUX
tablespaces. The UNDO tablespace is at the root container level. Once again, similar

to redo, each undo entry is tagged with the container identifier or con_1D. With one
undo for the entire container, you might be interested in evaluating the performance
implications of the system. Well, undo management in multitenant consolidation is
not too different from schema consolidation. The redo and undo entries are indexed
by the container ids, thus speeding up the concurrent record access for a specific PDB.

Although the multitenant architecture shows the TEMP tablespace at the container
level, but it can be created for each of the pluggable database too. Users can create
tablespaces within the pluggable databases as usual, whenever required.

The Oracle Database 12c Multitenant
architecture — features

Having mentioned the challenges of consolidation and cloud deployments, let us
take a look at the capabilities enabled by the multitenant architecture.

[38]

Chapter 2

Multitenant for Consolidation

In the past, enterprises have been following multiple approaches to consolidate
databases to achieve tenant isolation and manageability. You could have an
enormous physical server and then extract virtualized homes for each application.
The virtualized home is the application's world of operation and shares the server
subsystem. However the overhead of managing the heterogeneous pieces can be
a potential pain point. The consolidation density is limited by the fact that

the memory allocated to a virtualized home remains intact whether or not it is
getting used.

You can create multiple databases on a server for each application. An aggregation of
databases is possible until the server memory is exhausted. Keep in mind that each
database instance creates it's own copy of background processes, which holds the
CPU cycles, thus reducing the consolidation density.

One of the most efficient approaches before Oracle 12¢ was to adopt schema-based
consolidation. You can achieve the highest consolidation density as multiple schemas
are part of a single database. The downside of schema-based consolidation is that
tenant isolation was not guaranteed, while security and manageability were

a big concern.

The multitenant approach in Oracle Database 12c allows the effective sharing of
server resources, the operating system, and even the database. The advanced sharing
of resources makes it suitable to implement and deploy on the cloud. It guarantees
the tenant isolation as each pluggable database appears remote to other pluggable
databases sharing the same container. A common SGA and a single set of background
processes optimally utilize the server memory, thus maximizing consolidation.
Management capabilities add value to the new architecture in Oracle 12c.

Plug/unplug

A pluggable database can be unplugged from the current container and plugged into
another compatible container. Data mobility across the containers becomes easier
and quicker as you just have to work with the PDB metadata and not move the
application data. The unplug operation captures the PDB lineage in an XML manifest
file, allowing a PDB to be plugged into another container database.

The feature comes in handy in data center operations when the databases are
expected to move quickly to different service levels, without impacting business
continuity. Another very important use case of the plug/unplug feature is when you
are required to upgrade or patch subsets of PDBs in a container. You can unplug a
PDB from a 12.1 container and plug it in a Oracle 12.x container database.

[39]

Oracle 12¢ SQL and PL/SQL New Features

Manage Many as One

The multitenant architecture enables the "manage many as one" capability.
Organizations who are adopting a Multitenant architecture, are expected to see a
significant reduction in operational expenses by managing multiple databases as one.
Here is the list of multitenant operations that apply to all the pluggable databases:

Backing up the container database backs up the root container including all
the pluggable databases. However, point in time recovery at the pluggable
database level is possible.

[% You can also backup just the CDBSROOT or a particular PDB]

In a data guard setup, all pluggable databases are auto-discovered at the
standby site. Therefore, a high availability of all PDBs is maintained by
implementing the data guard at the container level.

In Oracle Database 12.1.0.2, you can provision a PDB on a
% primary site but disable its recovery at the standby site by
"~ specifying STANDBYS=NONE

Upgrading and patching the container database upgrades or patches all
the pluggable databases. However, if you are required to upgrade or patch
a subset of pluggable databases, you can unplug and plug into a different
container of a higher release or patch set.

Rapid provisioning
Pluggable databases can be quickly provisioned either locally within a container or from

a remote container. PDB provisioning doesn't involve copying the system metadata or
the creation of background processes, thereby speeding up the creation process.

A pluggable database can be provisioned in different ways as listed here:

A fresh PDB from seed (PDB$SEED) — creating a brand new pluggable
database from the seed PDB is a mere copy of sYSTEM and SYSAUX files from
the seed location to the target PDB location on the database server.

Clone/copy an existing PDB —an existing PDB can be cloned locally within
the current container. Operationally, cloning a PDB is copying the files to a
new PDB location. The PDB remote cloning feature is available from Oracle
Database 12c (12.1.0.2).

[40]

Chapter 2

* Snapshot Cloning —Oracle Database 12c supports snapshot cloning of
pluggable databases on copy-on-write file systems. By virtue of the copy-on-
write feature, snapshot cloning is an extremely fast method of creating copies
of pluggable databases.

Oracle Database 12.1.0.2 introduced new enhancements to PDB cloning in a
multitenant container database. The enhancements are briefly described here:

* Schema consolidation to PDB-based consolidation—you can create a new
pluggable database by specifying just the tablespaces to be available in the
new PDB. You can specify tablespaces in the USER_TABLESPACE clause at
the time of PDB creation. Pre 12¢ databases, which earlier used the schema
consolidation approach, will benefit from this new feature while moving to
Oracle 12c Multitenant.

* Metadata-only clone—You can clone a PDB data model, and not its data, by
specifying NO DATA at the time of cloning.

* Remote clone non-CDB as PDB — You can directly clone an Oracle 12¢ non-
CDB as the PDB in a multitenant container database.

CDB Resource Management

Resource management is an essential exercise in a multitenant container database
that hosts multiple application databases, with a common SGA and background
process. With multiple pluggable databases, scenarios may arise where databases
may compete for server resources. The request congestion might impact the
performance of critical databases, thus impacting business SLAs. The Database
Resource Manager (DBRM) feature has been enhanced in Oracle 12c¢ to extend
support to the multitenant architecture.

In a multitenant environment, you can create CDB plan directives to manage the
allocation of the CPU as shares, and parallel execution slaves across the multiple
pluggable databases. In the event of resource congestion, pluggable databases follow
the CDB resource plan to prioritize the requests.

Within a pluggable database, you can create the usual database resource management
plans to control the consumption of the available resources across consumer groups.

[41]

Oracle 12¢ SQL and PL/SQL New Features

Common users and local users

Starting with Oracle 12c Multitenant architecture, there will be two families of users,
namely common users and local users. The container DBA creates a common user in
the root container. Local users are the ones that are visible and operational within a
single pluggable database. All the users until Oracle Database 11g will fall under the
category of local users.

Here are the important points regarding common and local users:

* All common users must start with C##. SYS is an exception.

* Pluggable databases must grant CONNECT and CREATE SESSION privilege to
the common user to allow access to the container.

* The static views CDB_USERS and DBA USERS have a new column COMMON to
differentiate common and local users.

* A common user can be used to execute a generic script across multiple
containers (using catcon.pl).

* With Oracle 12c (12.1.0.2), common users can query common objects in root
the (cDB$ROOT) from multiple containers using the CONTAINERS clause.

Data mobility

via

plug/unplug

Rapid Manage many
as one

P:E‘V; f;?:il:lng capabilities
& enabled

Easyadoption; ReSOl_lrce
No applicatior; Benefits of :I: sharing
changes Multgtenant enha_nce_s
: Architecture consolidation
required density

[42]

Chapter 2

Oracle 12c SQL and PL/SQL new features

SQL is the most widely used data access language while PL/SQL is a popular language
that can integrate seamlessly with SQL commands. The biggest benefit of running PL/
SQL is that the code processing happens natively within the Oracle Database. In the
past, there have been debates and discussions on server side programming while the
client invokes the PL/SQL routines to perform a task. The server side programming
approach has many benefits. It reduces the network round trips between the client and
the database. It reduces the code size and eases the code portability because PL/SQL
can run on all platforms, wherever Oracle Database is supported.

Oracle Database 12c introduces many language features and enhancements that
focus on SQL to PL/SQL integration, code migration, and ANSI compliance. This
section discusses the SQL and PL/SQL new features in Oracle Database 12c.

IDENTITY columns

Oracle Database 12¢ introduces identity columns in SQL in compliance with the
American National Standard Institute (ANSI) SQL standard. A table column,
marked as IDENTITY, automatically generates an incremental numeric value at the
time of record creation.

Before the release of Oracle 12¢, developers had to create an additional sequence in
the schema and assign its value to the column through a trigger or in a PL/SQL block.
The new feature simplifies code writing and benefits the migration of a non-Oracle
database to Oracle.

The following script declares an identity column in the table T_ID_coL:

/*Create a table for demonstration purpose*/
CREATE TABLE t_id col

(id NUMBER GENERATED AS IDENTITY,

name VARCHAR2 (20))

/

The identity column metadata can be queried from the dictionary views USER_TAB_
CoLs and USER_TAB_IDENTITY COLS. Note that Oracle implicitly creates a sequence to
generate the number values for the column. However, Oracle allows the configuration
of the sequence attributes of an identity column. The custom sequence configuration
is listed under IDENTITY OPTIONS in USER_TAB IDENTITY COLS view:

/*Query identity column information in USER_TAB COLS*/

SELECT column _name, data default, user generated, identity column
FROM user tab cols

WHERE table name='T_ID_ COL'

[43]

Oracle 12¢ SQL and PL/SQL New Features

/

COLUMN_NAME DATA DEFAULT USE IDE
ID "SCOTT"."ISEQS$S 93001".nextval YES YES
NAME YES NO

Let us check the attributes of the preceding sequence that Oracle has implicitly
created. Note that the query uses REGEXP_SUBSTR to print the sequence configuration

in multiple rows:

/*Check the sequence configuration from USER_TAB IDENTITY COLS view*/
SELECT table name,column_name, generation type, REGEXP
SUBSTR(identity_options,'[A,]+', 1, LEVEL) identity options

FROM user tab identity cols
WHERE table name = 'T_ID_ COL'

CONNECT BY REGEXP SUBSTR (identity optionms,'[",]1+',1,level)

IS NOT NULL
/

TABLE NAME COLUMN NAME GENERATION IDENTITY OPTIONS

T ID COL ID ALWAYS
T ID COL ID ALWAYS
T ID COL ID ALWAYS
9599599999999999999999999999
T ID COL ID ALWAYS
T ID COL ID ALWAYS
T ID COL ID ALWAYS
T ID COL ID ALWAYS

7 rows selected

START WITH: 1
INCREMENT BY: 1
MAX VALUE:

MIN VALUE: 1

CYCLE_FLAG: N
CACHE_SIZE: 20
ORDER_FLAG: N

While inserting data in the table T_1D_cor, do not include the identity column as its

value is automatically generated:

/*Insert test data in the tablex*/

BEGIN
INSERT INTO t_id col (name) VALUES ('Allen');
INSERT INTO t_id col (name) VALUES ('Matthew');
INSERT INTO t_id col (name) VALUES ('Peter');

COMMIT;

END;

/

[44]

Chapter 2

Let us check the data in the table. Note the identity column values:

/*Query the tablex/
SELECT id, name FROM t_id col

ID NAME

1 Allen
2 Matthew
3 Peter

The sequence created under the covers for identity columns is tightly coupled with
the column. If a user tries to insert a user-defined input for the identity column, the
operation throws an exception ORA-32795:

INSERT INTO t_id col VALUES (7,'Steyn');
insert into t_id col values (7, 'Steyn')

*

ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

Default column value to a sequence in
Oracle 12c

Oracle Database 12c allows developers to default a column directly to a
sequence-generated value. The DEFAULT clause of a table column can be assigned
to SEQUENCE . CURRVAL Or SEQUENCE . NEXTVAL. The feature will be useful while
migrating non-Oracle data definitions to Oracle.

The DEFAULT ON NULL clause

Starting with Oracle Database 12¢, a column can be assigned a default non-null value
whenever the user tries to insert NULL into the column. The default value will be
specified in the DEFAULT clause of the column with a new ON NULL extension.

Note that the DEFAULT ON NULL cannot be used with an object type column.

The following script creates a table t_def_cols. A column ID has been defaulted to a
sequence while the column poJ will always have a non-null value:

/*Create a sequencex/
CREATE SEQUENCE seqg START WITH 100 INCREMENT BY 10

/

[45]

Oracle 12¢ SQL and PL/SQL New Features

/*Create a table with a column defaulted to the sequence value*/
CREATE TABLE t def cols
(id number default seqg.nextval primary key,
name varchar2 (30),
doj date default on null '01-Jan-2000'
)
/

The following PL/SQL block inserts the test data:

/*Insert the test data in the table*/
BEGIN

INSERT INTO t def cols (name, doj) values ('KATE', '27-FEB-2001"');

INSERT INTO t def cols (name, doj) values ('NANCY', '17-JUN-1998');

INSERT INTO t def cols (name, doj) values ('LANCE', '03-JAN-2004');
(

INSERT INTO t_def cols
COMMIT;

END;

/

name) values ('MARY');

Query the table and check the values for the 1D and DoJ columns. ID gets the value
from the sequence SEQ while DoJ for MARY has been defaulted to 01-JaN-2000.

/*Query the table to verify sequence and default on null values*/
SELECT * FROM t_def cols

/
ID NAME DOJ
100 KATE 27-FEB-01
110 NANCY 17-JUN-98
120 LANCE 03-JAN-04
130 MARY 01-JAN-00

Support for 32K VARCHAR2

Oracle Database 12¢ supports the VARCHAR2, NVARCHAR2, and RAW datatypes up to
32,767 bytes in size. The previous maximum limit for the VARCHAR2 (and NVARCHAR?2)
and rRaw datatypes was 4,000 bytes and 2,000 bytes respectively. The support for
extended string datatypes will benefit non-Oracle to Oracle migrations.

[46]

Chapter 2

The feature can be controlled using the initialization parameter MAX_STRING_SIZE. It
accepts two values:

* STANDARD (default) — The maximum size prior to the release of Oracle
Database 12c will apply.

* EXTENDED— The new size limit for string datatypes apply. Note that after the
parameter is set to EXTENDED, the setting cannot be rolled back.

The steps to increase the maximum string size in a database are:

1. Restart the database in UPGRADE mode. In the case of a pluggable database,
the PDB must be opened in MIGRATE mode.
Use the ALTER SYSTEM command to set MAX STRING SIZE to EXTENDED.

As SYsSDBa, execute the SORACLE_HOME/rdbms/admin/utl32k.sqgl script.
The script is used to increase the maximum size limit of VARCHAR2,
NVARCHAR2, and RAW wherever required.

Restart the database in NORMAL mode.

5. As sYsDBA, execute utlrp.sqgl to recompile the schema objects with
invalid status.

The points to be considered while working with the 32k support for string types are:

e COMPATIBLE must be 12.0.0.0

* After the parameter is set to EXTENDED, the parameter cannot be rolled back
to STANDARD

* In RAC environments, all the instances of the database comply with the
setting of MAX STRING_SIZE

Row limiting using FETCH FIRST

For Top-N queries, Oracle Database 12c introduces a new clause, FETCH FIRST, to
simplify the code and comply with ANSI SQL standard guidelines. The clause is
used to limit the number of rows returned by a query. The new clause can be used in
conjunction with ORDER BY to retrieve Top-N results.

The row limiting clause can be used with the FOrR UPDATE clause in an SQL query. In the
case of a materialized view, the defining query should not contain the FETCH clause.

Another new clause, OFFSET, can be used to skip the records from the top or middle,
before limiting the number of rows. For consistent results, the offset value must be

a positive number, less than the total number of rows returned by the query. For all
other offset values, the value is counted as zero.

[47]

Oracle 12¢ SQL and PL/SQL New Features

Keywords with the FETCH FIRST clause are:

* FIRST | NEXT—Specify FIRST to begin row limiting from the top. Use NEXT
with OFFSET to skip certain rows.

* ROWS | PERCENT —Specify the size of the result set as a fixed number of rows
or percentage of total number of rows returned by the query.

* ONLY | WITH TIES—Use ONLY to fix the size of the result set, irrespective of
duplicate sort keys. If you want all records with matching sort keys, specify
WITH TIES.

The following query demonstrates the use of the FETCH FIRST and OFFSET clauses in
Top-N queries:

/*Create the test table*/
CREATE TABLE t_fetch_first
(empno VARCHAR2 (30),
deptno NUMBER,

sal NUMBER,

hiredate DATE)

/

The following PL/SQL block inserts sample data for testing;:

/*Insert the test data in T FETCH FIRST table*/

BEGIN
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
INSERT INTO t_ fetch first VALUES
COMMIT;

END;

/

7

101, 10, 1500, '01-FEB-2011"')
102, 20, 1100, '15-JUN-2001"')
103, 20, 1300, '20-JUN-2000"');
104, 30, 1550, '30-DEC-2001"');

)

)

)

)

7

7

105, 10, 1200, '11-JUL-2012"'
106, 30, 1400, '16-AUG-2004"
107, 20, 1350, '05-JAN-2007"
108, 20, 1000, '18-JAN-2009'

7

7

7

The sELECT query pulls in the top-5 rows when sorted by their salary:

/*Query to list top-5 employees by salary*/
SELECT *

FROM t_fetch first

ORDER BY sal DESC

FETCH FIRST 5 ROWS ONLY

/

[48]

Chapter 2

EMPNO DEPTNO SAL HIREDATE
104 30 1550 30-DEC-01
101 10 1500 01-FEB-11
106 30 1400 16-AUG-04
107 20 1350 05-JAN-07
103 20 1300 20-JUN-00

The SELECT query lists the top 25% of employees (2) when sorted by their hiredate:

/*Query to list top-25% employees by hiredate*/
SELECT *

FROM t_fetch first

ORDER BY hiredate FETCH FIRST 25 PERCENT ROW ONLY

/

EMPNO DEPTNO SAL HIREDATE
103 20 1300 20-JUN-00
102 20 1100 15-JUN-01

The seLECT query skips the first five employees and displays the next two — the 6th
and 7th employee data:

/*Query to list 2 employees after skipping first 5 employees*/
SELECT *

FROM t_fetch first

ORDER BY SAL DESC

OFFSET 5 ROWS FETCH NEXT 2 ROWS ONLY

/

Invisible columns

Oracle Database 12¢ supports invisible columns, which implies that a user can
control the visibility of a column. A column marked invisible does not appear
in the following operations:

* SELECT * FROM queries on the table

* SQL*Plus DESCRIBE command

* Local records of $ROWTYPE

* Oracle Call Interface (OCI) description

[49]

Oracle 12¢ SQL and PL/SQL New Features

A column can be made invisible by specifying the INVISIBLE clause against the
column. Columns of all types (except user-defined types), including virtual columns,
can be marked invisible, provided the tables are not temporary tables, external
tables, or clustered. The SELECT statement can explicitly select an invisible column.
Similarly, the INSERT statement will not insert values in an invisible column unless
explicitly specified.

Furthermore, a table can be partitioned based on an invisible column. A column
retains its nullity feature even after it is made invisible. An invisible column can be
made visible, but the ordering of the column in the table may change.

In the following script, the column NICKNAME is set as invisible in the table

t_inv_col:

/*Create a table to demonstrate invisible columns*/
CREATE TABLE t_inv col

(id NUMBER,

name VARCHAR2 (30),

nickname VARCHAR2 (10) INVISIBLE,

dob DATE

)

/

The information about the invisible columns can be found in user tab cols. Note
that the invisible column is marked as hidden:

/*Query the USER TAB COLS for metadata information*/
SELECT column_id,

column_name,

hidden column
FROM user tab cols

WHERE table name = 'T INV_COL'
ORDER BY column_id
/
COLUMN_ID COLUMN_ NAME HID
1 ID NO
2 NAME NO
3 DOB NO
NICKNAME YES

Hidden columns are different from invisible columns. Invisible columns can be made
visible and vice versa, but hidden columns cannot be made visible.

[50]

Chapter 2

If we try to make the NICKNAME visible and NAME invisible, observe the change in
column ordering;:

/*Script to change visgibility of NICKNAME column*/
ALTER TABLE t_inv col MODIFY nickname VISIBLE
/
/*Script to change visgibility of NAME column¥*/
ALTER TABLE t_inv_col MODIFY name INVISIBLE
/
/*Query the USER_TAB COLS for metadata information*/
SELECT column_id,

column_name,

hidden_column
FROM user tab cols

WHERE table name = 'T INV_COL'
ORDER BY column_id
/

COLUMN_ID COLUMN NAME HID

1 ID NO
2 DOB NO
3 NICKNAME NO

NAME YES

Temporal databases

Temporal databases were released as a new feature in ANSI SQL:2011. The term
temporal data can be understood as a piece of information that can be associated
with a period within which the information is valid. Before the feature was included
in Oracle Database 12c, data whose validity is linked with a time period had to be
handled either by the application or using multiple predicates in the queries. Oracle
12c partially inherits the feature from the ANSI SQL:2011 standard to support the
entities whose business validity can be bracketed with a time dimension.

The temporal database feature in Oracle Database 12c is different from the total
recall feature in Oracle Database 11g. The total recall feature records the transaction
time of the data in the database to secure the transaction validity and not the
functional validity. For example, an investment scheme is active between January
to December. The date recorded in the database at the time of data loading is the
transaction timestamp.

[51]

Oracle 12¢ SQL and PL/SQL New Features

M Starting from Oracle 12¢, the Total Recall feature has been
Q rebranded as Flashback Data Archive and has been made
available for all versions of Oracle Database.

The valid time temporal feature can be enabled for a table by adding a time
dimension using the PERIOD FOR clause on the date or timestamp columns of the
table. The following script creates a table t_tmp_db with valid time temporal:

/*Create table with valid time temporalx/

CREATE TABLE t_tmp db(

id NUMBER,

name VARCHAR2 (30),

policy no VARCHAR2 (50),

policy term number,

pol st date date,

pol _end date date,

PERIOD FOR pol valid time (pol_ st date, pol end date))
/

Create some sample data in the table:

/*Insert test data in the tablex/

BEGIN
INSERT INTO t_tmp_db

VALUES (100, 'Packt', 'PACKT POL1', 1, '01-JAN-2015', '31-DEC-2015');
INSERT INTO t_tmp_db

VALUES (110, 'Packt', 'PACKT POL2', 2, '01-JAN-2015', '30-JUN-2015');
INSERT INTO t_tmp_db

VALUES (120, 'Packt', 'PACKT POL3', 3, '01-JUL-2015', '31-DEC-2015');
COMMIT;

END;

/

Let us set the current time period window using DBMS_FLASHBACK_ARCHIVE. Grant
the EXECUTE privilege on the package to the scott user.

/*Connect to sysdba to grant execute privilege to scott*/
conn sys/oracle as sysdba
GRANT EXECUTE ON dbms_flashback archive to scott

/
Grant succeeded.

/*Connect to scott*/
conn scott/tiger

[52]

Chapter 2

/*Set the valid time period as CURRENT*/
EXEC DBMS_FLASHBACK_ARCHIVE.ENABLE_AT_VALID_TIME('CURRENT');

PL/SQL procedure successfully completed.

Setting the valid time period as CURRENT means that all the tables with a valid time
temporal will only list the rows that are valid with respect to today's date. You can
set the valid time to a particular date too.

/*Query the tablex/
SELECT * from t_tmp db

ID POLICY NO POI, ST DATE POI,_END_DATE
100 PACKT POL1 01-JAN-15 31-DEC-15
110 PACKT POL2 01-JAN-15 30-JUN-15

1
~ Due to a dependency on the current date, the result may
vary when the reader runs the preceding queries.

The query lists only those policies that are active as of March 2015. Since, the third
policy starts in July 2015, it is currently not active.

In-Database Archiving

Oracle Database 12c introduces In-Database Archiving to archive the low priority data
in a table. The inactive data remains in the database but is not visible to the application.

You can mark old data for archival, which is not actively required in the application
except for regulatory purposes. Although the archived data is not visible to the
application, it is available for querying and manipulation. In addition, the archived
data can be compressed to improve backup performance.

A table can be enabled by specifying the Row ARCHIVAL clause at the table level,
which adds a hidden column ORA_ARCHIVE STATE to the table structure. The column
value must be updated to mark a row for archival. For example:

/*Create a table with row archiving*/
CREATE TABLE t_row_arch(

X number,

y number,

z number) ROW ARCHIVAL

/

[53]

Oracle 12¢ SQL and PL/SQL New Features

When we query the table structure in the USER_TAB_coOLS view, we find an
additional hidden column, which Oracle implicitly adds to the table:

/*Query the columns information from user_tab_cols view*/
SELECT column_id, column name,data type, hidden column
FROM user tab cols

WHERE table name='T_ROW _ARCH'

/

COLUMN_ID COLUMN NAME DATA TYPE HID

ORA_ARCHIVE STATE VARCHAR2 YES

1 X NUMBER NO
2 Y NUMBER NO
3 Z NUMBER NO

Let us create test data in the table:

/Insert test data in the table*/
BEGIN

INSERT INTO t_ row arch VALUES (10,20,30);
INSERT INTO t row arch VALUES (11,22,33);
INSERT INTO t_ row arch VALUES (21,32,43);
INSERT INTO t_ row arch VALUES (51,82,13);
commit;

END;

/

For testing purpose, let us archive the rows in the table where x > 50 by updating
the ora_archive state column:

/*Update ORA ARCHIVE STATE column in the table*/
UPDATE t_ row_arch

SET ora_archive state = 1

WHERE x > 50

/
COMMIT

/
By default, the session displays only the active records from an archival-enabled table:

/*Query the table*/
SELECT *
FROM t_row_arch

[54]

Chapter 2

10 20 30
11 22 33
21 32 43

If you wish to display all the records, change the session setting:

/*Change the session parameter to display the archived records*/
ALTER SESSION SET ROW ARCHIVAL VISIBILITY = ALL

/

Session altered.

/*Query the tablex/

SELECT *

FROM t_row_arch

/
X Y Z
10 20 30
11 22 33
21 32 43
51 82 13

Defining a PL/SQL subprogram in the SELECT
query and PRAGMA UDF

Oracle Database 12c includes two new features to enhance the performance

of functions when called from SELECT statements. With Oracle 12¢, a PL/SQL
subprogram can be created inline with the SELECT query in the WITH clause
declaration. The function created in the wITH clause subquery is not stored in the
database schema and is available for use only in the current query. Since a procedure
created in the WITH clause cannot be called from the SELECT query, it can be called

in the function created in the declaration section. The feature can be very handy in
read-only databases where the developers were not able to create PL/SQL wrappers.

Oracle Database 12c adds the new PRAGMA UDF to create a standalone function with
the same objective.

Earlier, the SELECT queries could invoke a PL/SQL function, provided the function
didn't change the database purity state. The query performance would degrade
because of the context switch from SQL to the PL/SQL engine (and vice versa)

and the different memory representations of data type in the processing engines.

[55]

Oracle 12¢ SQL and PL/SQL New Features

In the following example, the function fun_with_plsqgl calculates the annual
compensation of an employee

/*Create a function in WITH clause declaration*/
WITH FUNCTION fun_with_plsql (p_sal NUMBER) RETURN NUMBER IS

BEGIN

RETURN (p_sal * 12);
END;
SELECT ename, deptno, fun with plsgl (sal) "annual sal"
FROM emp
/
ENAME DEPTNO annual_sal
SMITH 20 9600
ALLEN 30 19200
WARD 30 15000
JONES 20 35700
MARTIN 30 15000
BLAKE 30 34200
CLARK 10 29400
SCOTT 20 36000
KING 10 60000
TURNER 30 18000
ADAMS 20 13200
JAMES 30 11400
FORD 20 36000
MILLER 10 15600

14 rows selected.

If the query containing the wITH clause declaration is not a
top-level statement, then the top level statement must use the
WITH PLSQL hint. The hint is used if INSERT, UPDATE, or DELETE
)~ statements are trying to use a SELECT with a WITH clause definition.
Failure to include the hint results in an exception ORA-32034:
unsupported use of WITH clause. o

A function can be created with the PRAGMA UDF to inform the compiler that the
function is always called in a SELECT statement. Note that the standalone function
created in the following code carries the same name as the one in the last example.
The local wITH clause declaration takes precedence over the standalone function in
the schema.

[56]

Chapter 2

/*Create a function with PRAGMA UDF*/
CREATE OR REPLACE FUNCTION fun_with_plsql (p_sal NUMBER)
RETURN NUMBER 1is

PRAGMA UDF;

BEGIN

RETURN (p sal *12);
END;

/

Since the objective of the feature is performance, let us go ahead with a case study to
compare the performance when using a standalone function, a PRAGMA UDF function,
and a WwITH clause declared function.

Test setup

The exercise uses a test table with 1 million rows, loaded with random data.

/*Create a table for performance test study*/
CREATE TABLE t_ fun plsgl

(1id number,

str varchar2 (30))

/

/*Generate and load random data in the table*/
INSERT /*+APPEND*/ INTO t fun plsqgl

SELECT ROWNUM, DBMS_RANDOM.STRING('X', 20)
FROM dual

CONNECT BY LEVEL <= 1000000

/

COMMIT

/

* Case 1: Create a PL/SQL standalone function as it used to be until Oracle
Database 12c. The function counts the numbers in the str column of the table.

/*Create a standalone function without Oracle 12c enhancements*/
CREATE OR REPLACE FUNCTION f count num (p_str VARCHAR2)
RETURN PLS INTEGER IS
BEGIN
RETURN (REGEXP_COUNT(p_Str,'\d'));
END;
/

[57]

Oracle 12¢ SQL and PL/SQL New Features

The PL/SQL block measures the elapsed and CPU time when working with a
pre-Oracle 12¢ standalone function. These numbers will serve as the baseline
for our case study.

/*Set server output on to display messages*/
SET SERVEROUTPUT ON

/*Anonymous block to measure performance of a standalone
function*/
DECLARE

1 el time PLS_INTEGER;

1 cpu time PLS_ INTEGER;

CURSOR C1 IS

SELECT f count num (str) FROM t fun plsql;

TYPE t tab rec IS TABLE OF PLS INTEGER;

1 tab t_tab rec;

BEGIN

1 el time := DBMS UTILITY.GET TIME () ;

1 cpu time := DBMS UTILITY.GET CPU TIME () ;

OPEN c1;

FETCH cl BULK COLLECT INTO 1 tab;

CLOSE cl1;

DBMS OUTPUT.PUT LINE ('Case 1: Performance of a standalone
functzon'); h

DBMS_OUTPUT.PUT LINE ('Total elapsed time:'||to_char (DBMS
UTILITY.GET TIME () - 1 el time));

DBMS_OUTPUT.PUT LINE ('Total CPU time:'||to char (DBMS UTILITY.
GET_CPU TIME () - 1 cpu time));
END;

/

Performance of a standalone function:

Total elapsed time:1559
Total CPU time:1366

PL/SQL procedure successfully completed.

* Case 2: Create a PL/SQL function using PRAGMA UDF to count the numbers in
the str column.

/*Create the function with PRAGMA UDF*/
CREATE OR REPLACE FUNCTION f count num pragma (p_str VARCHAR2)
RETURN PLS INTEGER IS
PRAGMA UDF;
BEGIN
RETURN (REGEXP_ COUNT (p_str, '\d'));
END;

/

[58]

Chapter 2

Let us now check the performance of the PRAGMA UDF function using the
following PL/SQL block.

/*Set server output on to display messages*/

SET SERVEROUTPUT ON

/*Anonymous block to measure performance of a PRAGMA UDF
function*/
DECLARE

1 el time PLS_INTEGER;

1 cpu time PLS_INTEGER;

CURSOR C1 IS

SELECT f count num pragma (str) FROM t_ fun plsql;

TYPE t tab rec IS TABLE OF PLS INTEGER;

1 tab t_tab rec;

BEGIN

1 el time := DBMS UTILITY.GET TIME ();

1 cpu time := DBMS UTILITY.GET CPU TIME () ;
OPEN c1;

FETCH cl BULK COLLECT INTO 1 tab;

CLOSE c1;

DBMS_OUTPUT.PUT LINE ('Case 2: Performance of a PRAGMA UDF
function') ;

DBMS_OUTPUT.PUT LINE ('Total elapsed time:'||to_char (DBMS_
UTILITY.GET TIME () - 1 el time));

DBMS_OUTPUT.PUT LINE ('Total CPU time:'||to char (DBMS UTILITY.
GET_CPU TIME () - 1 cpu time));

END;

/

Performance of a PRAGMA UDF function:

Total elapsed time:664
Total CPU time:582

PL/SQL procedure successfully completed.

Case 3: The following PL/SQL block dynamically executes the function in
the wITH clause subquery. Note that, unlike other SELECT statements, a
SELECT query with a WITH clause declaration cannot be executed statically in
the body of a PL/SQL block.

/*Set server output on to display messages*/
SET SERVEROUTPUT ON
/*Anonymous block to measure performance of inline function*/
DECLARE
1 el time PLS INTEGER;
1 cpu time PLS_ INTEGER;
1 sgl VARCHAR2(32767);

[59]

Oracle 12¢ SQL and PL/SQL New Features

cl sys refcursor;
TYPE t tab rec IS TABLE OF PLS INTEGER;
1 tab t tab rec;

BEGIN

1l el time := DBMS UTILITY.get time;

1 cpu time := DBMS UTILITY.get cpu time;

1 sql := 'WITH FUNCTION f count num with (p str VARCHAR2)
RETURN NUMBER IS
BEGIN

RETURN (REGEXP COUNT (p_str,'''|['\'|['d'"|[|'"'"));

END;

SELECT f count num with(str) FROM t fun plsqgl';
OPEN cl FOR 1 sqgl;
FETCH cl bulk collect INTO 1 tab;

CLOSE c1;

DBMS_OUTPUT.PUT LINE ('Case 3: Performance of an inline
function') ;

DBMS_OUTPUT.PUT LINE ('Total elapsed time:'||to_char (DBMS_
UTILITY.GET TIME () - 1_el time));

DBMS_OUTPUT.PUT LINE ('Total CPU time:'||to_char (DBMS UTILITY.
GET_CPU_TIME () - 1_cpu_time));
END;

/

Performance of an inline function:

Total elapsed time:830
Total CPU time:718

PL/SQL procedure successfully completed.

Comparative analysis

Comparing the results from the preceding three cases, it's clear that the Oracle 12c
flavor of PL/SQL functions out-performs the pre-12c standalone function by a high
margin. From the following matrix, it is apparent that the usage of the PRAGMA UDF
or WITH clause declaration enhances the code performance by (roughly) a factor of 2.

Case Description Elapsed Time | CPUtime | Performance gain
factor by CPU time

Standalone PL/SQL function in 1559 1336 1x

pre-Oracle 12c database

Standalone PL/SQL PRAGMA 664 582 2.3x

UDF function in Oracle 12¢

Function created in WITH clause | 830 718 1.9x

declaration in Oracle 12c

[60]

Chapter 2

Note that the numbers may slightly differ in the
reader's testing environment but you should be able to

draw the same conclusion by comparing them.

The PL/SQL program unit white listing

Prior to Oracle 12¢, a standalone or packaged PL/SQL unit could be invoked by

all other programs in the session's schema. Oracle Database 12c allows users to
prevent unauthorized access to PL/SQL program units. You can now specify the

list of whitelist program units that can invoke a particular program. The PL/SQL
program header or the package specification can specify the list of program units in
the ACCESSIBLE BY clause in the program header. All other program units, including
cross-schema references (even SYS owned objects), trying to access a protected
subprogram will receive an exception, PLS-00904: insufficient privileges to
access object [object name].

The feature can be very useful in an extremely sensitive development environment.
Suppose, a package PKG_FIN_PROC contains the sensitive implementation routines
for financial institutions, the packaged subprograms are called by another PL/

SQL package pkG_FIN_ INTERNALS. The API layer exposes a fixed list of programs
through a public API called PKG_CLIENT ACCESS. In order to restrict access to the
packaged routines in PKG_FIN_PROC, the users can build a safety net so as to allow

access to only authorized programs.
Client can call packaged
routines from
PKG_CLIENT ACCES (il

PKG_CLIENT_ACCESS
cannot access

PKG_FIN_PROC

[
PKG_FIN_PROC

(Sensitive)

[61]

Oracle 12¢ SQL and PL/SQL New Features

The following PL/SQL package PKG_FIN_PROC contains two subprograms—p_FIN_
QTR and P_FIN ANN. The ACCESSIBLE BY clause includes PKG FIN INTERNALS
which means that all other program units, including anonymous PL/SQL blocks, are
blocked from invoking PKG_FIN_PROC constructs.

/*Package with the accessible by clausex/

CREATE OR REPLACE PACKAGE pkg fin proc
ACCESSIBLE BY (PACKAGE pkg fin internals)

IS
PROCEDURE p_fin gtr;
PROCEDURE p_fin ann;
END;
/

& The ACCESSIBLE BY clause can be specified for
schema-level programs only.

Let's see what happens when we invoke the packaged subprogram from an
anonymous PL/SQL block.

/*Invoke the packaged subprogram from the PL/SQL block*/
BEGIN

pkg fin proc.p_fin gtr;
END;

/
pkg fin proc.p_ fin gtr;

*

ERROR at line 2:

ORA-06550: line 2, column 4:

PLS-00904: insufficient privilege to access object PKG_FIN_PROC
ORA-06550: line 2, column 4:

PL/SQL: Statement ignored

Well, the compiler throws an exception as invoking the whitelisted package from an
anonymous block is not allowed.

The ACCESSIBLE BY clause can be included in the header information of PL/SQL
procedures and functions, packages, and object types.

Granting roles to PL/SQL program units

Before Oracle Database 12c, a PL/SQL unit created with the definer's rights (default
AUTHID) always executed with the definer's rights, whether or not the invoker has the
required privileges. It may lead to an unfair situation where the invoking user may
perform unwanted operations without needing the correct set of privileges. Similarly
for an invoker's right unit, if the invoking user possesses a higher set of privileges
than the definer, he might end up performing unauthorized operations.

[62]

Chapter 2

Oracle Database 12c secures the definer's rights by allowing the defining user to
grant complementary roles to individual PL/SQL subprograms and packages.
From the security standpoint, the granting of roles to schema level subprograms,
provides granular control as the privileges of the invoker are validated at the
time of execution.

In the following example, we will create two users: Ul and U2. The user Ul creates a
PL/SQL procedure p_INC_PRICE that adds a surcharge to the price of a product by a
certain amount. U1 grants the execute privilege to user U2.

Test setup

Let's create two users and give them the required privileges.

/*Create a user with a password*/
CREATE USER ul IDENTIFIED BY ul
/

User created.

/*Grant connect privileges to the user*/
GRANT CONNECT, RESOURCE TO ul
/

Grant succeeded.

/*Create a user with a password*/
CREATE USER u2 IDENTIFIED BY u2
/

User created.

/*Grant connect privileges to the user*/
GRANT CONNECT, RESOURCE TO u2

Grant succeeded.

The user U1l contains the PRODUCTS table. Let's create and populate the table.

/*Connect to Ul*/

CONN ul/ul

/*Create the table PRODUCTS*/
CREATE TABLE products

[63]

Oracle 12¢ SQL and PL/SQL New Features

(

prod_ id INTEGER,
prod_name VARCHAR?2 (30) ,
prod_cat VARCHAR2 (30) ,
price INTEGER

/*Insert the test data in the table*/
BEGIN
DELETE FROM products;

INSERT INTO products VALUES (101, 'Milk', 'Dairy', 20);
INSERT INTO products VALUES (102, 'Cheese', 'Dairy', 50);
INSERT INTO products VALUES (103, 'Butter', 'Dairy', 75);
INSERT INTO products VALUES (104, 'Cream', 'Dairy', 80);
INSERT INTO products VALUES (105, 'Curd', 'Dairy', 25);
COMMIT;

END;

/

The procedure p_inc_price is designed to increase the price of a product by a given

amount. Note that the procedure is created with the definer's rights.

/*Create the procedure with the definer's rights*/
CREATE OR REPLACE PROCEDURE p_ inc price

(p_prod_id NUMBER, p_amt NUMBER)

IS

BEGIN

UPDATE products

SET price = price + p amt

WHERE prod id = p prod id;

END;

/

The user U1 grants execute privilege on p_inc_price to U2.

/*Grant execute on the procedure to the user U2*/
GRANT EXECUTE ON p_inc_price TO U2
/

The user U2 logs in and executes the procedure p_INC_PRICE to increase the price of

Milk by 5 units.

/*Connect to U2*/
CONN u2/u2
/*Invoke the procedure P _INC PRICE in a PL/SQL block*/

[64]

Chapter 2

BEGIN
U1l.P_INC_PRICE (101,5);
COMMIT;

END;

/

PL/SQL procedure successfully completed.

The last code listing exposes a gray area. The user U2, though not authorized to view
PRODUCTS data, manipulates its data with the definer's rights.

We need a solution to the problem. The first step is to change the procedure from
definer's rights to invoker's rights.

/*Connect to Ul*/

CONN ul/ul

/*Modify the privilege authentication for the procedure to invoker's
rights*/

CREATE OR REPLACE PROCEDURE p_ inc price
(p_prod_id NUMBER, p_amt NUMBER)

AUTHID CURRENT_ USER

IS

BEGIN

UPDATE products

SET price = price + p amt

WHERE prod id = p prod id;

END;

/

Now, if we execute the procedure from U2, it throws an exception because it couldn't
find the PRODUCTS table in its schema.

/*Connect to U2%*/

CONN u2/u2

/*Invoke the procedure P_INC PRICE in a PL/SQL block*/
BEGIN

U1.P_INC PRICE (101,5);

COMMIT;

END;

/

BEGIN

*

ERROR at line 1:

ORA-00942: table or view does not exist
ORA-06512: at "Ul.P_INC PRICE", line 5
ORA-06512: at line 2

[65]

Oracle 12¢ SQL and PL/SQL New Features

In a similar scenario in the past, the database administrators could have easily
granted select or updated privileges to U2, which is not an optimal solution from a
security standpoint. Oracle 12c allows users to create program units with invoker's
rights but grant the required roles to the program units and not the users. So, an
invoker right unit executes with invoker's privileges, plus the PL/SQL program role.

Let's check out the steps to create a role and assign it to the procedure. SYspsa
creates the role and assigns it to the user Ul. Using the ADMIN or DELEGATE option
with the grant enables the user to grant the role to other entities.

/*Connect to SYSDBA*/

CONN sys/oracle as sysdba

/*Create a role*/

CREATE ROLE prod_role

/

/*Grant role to user Ul with delegate option*/
GRANT prod role TO Ul WITH DELEGATE OPTION

/

Now, user U1 assigns the required set of privileges to the role. The role is then
assigned to the required subprogram. Note that only roles, and not individual
privileges, can be assigned to the schema level subprograms.

/*Connect to Ul*/

CONN ul/ul

/*Grant SELECT and UPDATE privileges on PRODUCTS to the rolex*/
GRANT SELECT, UPDATE ON PRODUCTS TO prod role

/

/*Grant role to the procedurex/

GRANT prod role TO PROCEDURE p_ inc price

/

User U2 tries to execute the procedure again. The procedure is successfully executed
which means the value of "Milk" has been increased by 5 units.

/*Connect to U2*/
CONN u2/u2

/*Invoke the procedure P _INC PRICE in a PL/SQL block*/
BEGIN

Ul.P_INC PRICE (101,5);

COMMIT;

END;

/

PL/SQL procedure successfully completed.

[66]

Chapter 2

User Ul verifies the result with a SELECT query.

/*Connect to Ul*/

CONN ul/ul

/*Query the table to verify the change*/
SELECT *

FROM products

/

PROD_ID PROD NAME PROD CAT PRICE

101 Milk Dairy 25
102 Cheese Dairy 50
103 Butter Dairy 75
104 Cream Dairy 80
105 Curd Dairy 25

Miscellaneous PL/SQL enhancements

Besides the preceding key features, there are a lot of new features in Oracle 12c.
The list of features is as follows:

* Aninvoker rights function can be result-cached — Prior to Oracle Database
12c onlythe definers' programs were allowed to cache their results. Oracle 12c
adds the invoking user's identity to the result cache to make it independent
of the definer.

* The compilation parameter PL.SQL_DEBUG has been deprecated.

* Two conditional compilation inquiry directives $$PLSQL_UNIT_ OWNER and
$SPLSQL_UNIT_TYPE have been implemented.

The Oracle Database 12c (12.1.0.2)
In-Memory option

The Oracle Database 12.1.0.2 introduces the In-Memory option that has the capability
to speed up real-time analytics by an order of magnitude. The faster analytics
complements and enables real-time decision making. Long-running reports and
ad-hoc analytical queries are expected to benefit the most. The feature can be
implemented without any application changes and works transparently with no
manual hindrance, thus resulting in improved productivity.

[67]

Oracle 12¢ SQL and PL/SQL New Features

The challenge

Enterprise applications have been reported to have mixed workloads —that is,

OLTP workloads and analytics processing. In the past, there have been a couple of
approaches to segregating the workloads. Mixed workload production databases can
run on the same system, but running both of them simultaneously would degrade
the OLTP performance. Running workloads on separate server systems impacts the
real-time decision making because data on the analytics server has to be refreshed
from time to time.

The problem statement and Oracle Database
12¢ In-Memory

Oracle Database is a trusted relational database management system that stores

data in a row format. For transactional databases, data stored in a row format is a
mandate because transactions work on a record basis and require all the attributes of
a table in a single fetch. On the other hand, data analytics and reports, which run on
few columns of data while also spanning many rows, work well with the columnar
format. Until now, enterprises were forced to choose either of the two formats.

Oracle Database 12c In-Memory allows the database to be represented in a row
format as well as a columnar format, thus providing the flavor of a "dual-format"
architecture within the database. A piece of data can be represented in a row format
as well as columnar format. The transactions continue to follow the row format of the
data while the analytics workload work with the columnar format. The analytics get
more real-time as the columnar format accelerates it by an order of magnitude. The
best-of-both-worlds strategy is enabled by switching on the In-Memory feature in the
Oracle Database.

The In-Memory feature marks a memory area (known as the In-Memory Column
Store) within the System Global Area (SGA). This memory space is used to hold
the objects frequently referenced by the analytics queries and reports. It implies
that enabling the In-Memory feature for a database doesn't require double memory
requirements. However, databases may require some additional memory to
accommodate their active objects in the In-Memory store.

Oracle Database 12c In-Memory option
features

The Oracle Database 12c In-Memory feature was released as an option in the patchset
release (12.1.0.2) of Oracle Database 12c Release 1. The following list of features
includes some must-know information about this option:

[68]

Chapter 2

* The In-Memory column store is not a replacement for the buffer cache;
rather, it supplements it.

* In-Memory Column Store is a new static pool within the System Global
Area (SGA). Being In-Memory, it is non-persistent and non-logging. It is not
affected by Automatic Memory Management and the resident objects stay
populated until they are manually flushed out.

* Administrators or users are authorized to identify those objects which when
populated in the In-Memory column store, would yield the best performance.

* All objects except Index Organized Tables, Clustered tables, LONG columns,
and Out-of-Line LOBs can be populated in the In-Memory column store.

* The Oracle Database optimizer is fully aware of the In-memory store; it
decides which query would benefit from the buffer cache or in-memory
columnar store.

* Itis alicensed option, available starting from Oracle Database 12.1.0.2
Enterprise edition.

The Oracle Database 12c In-Memory
Architecture

The System Global Area contains a new static pool, known as the In-Memory column
store. The segments that are marked and populated in the In-Memory column store are
oriented in the columnar format. Diving deep into the technical aspects of In-Memory
column store, the static pool comprises of two pools: the IMCU (or IMB) pool and the
SMU (or 64KB) pool. The IMCU pool comprises In-memory compression units (IMCU)
that hold the actual data in a columnar format. For each IMCU, there is a co-related
SMU to store the IMCU's metadata and a transaction journal. The distribution of 1MB
and 64KB pools are based completely on internal factors. The current allocation can be
viewed under the v$INMEMORY AREA dictionary view. The following figure shows the
architecture of SGA and the In-Memory column store in Oracle Database 12c:

System Global Area IMCU i SMU
Pool 1 Pool

"\ !

Shared Pool ’ i

= e [1
Redo Buffer et Memory i

Cache Column \

Store [

I
components = 1

1

/ .

Y

[69]

Oracle 12¢ SQL and PL/SQL New Features

Controlling the In-Memory column store

The In-Memory Column Store can be configured through a new set of initialization
parameters, introduced in Oracle 12c. These parameters control In-Memory
dynamics such as sizing, the optimizer's behavior, and worker processes to be
deployed for the population. Here is the list of initialization parameters:

* INMEMORY SIZE (default 0): This configures the In-Memory store by setting
this parameter for a minimum of 700MB. The database must be bounced for
the changes to take effect.

* INMEMORY_ QUERY (default ENABLE): This parameter controls whether the
queries should be optimized using the In-Memory store.

* INMEMORY MAX POPULATE_ SERVERS (default 0): Configures the number of
worker processes (max) to be used for In-Memory column store populate
operations.

* INMEMORY CLAUSE DEFAULT: This sets the default In-Memory clause or sub
clause. By default, the value of the clause is NULL.

* INMEMORY TRICKLE_ REPOPULATE_ SERVERS_PERCENT: This sets the
percentage of worker processes that can perform trickle repopulation.
The default value of the parameter is 1%.

* INMEMORY_ FORCE (default DEFAULT): Setting this to OFF restricts the In-memory
column store population.

* OPTIMIZER INMEMORY AWARE (default TRUE): This controls whether the
optimizer should be aware or unaware of the In-Memory column store.

The INMEMORY clause

The objects required to be populated in the In-Memory column store can have the
additional INMEMORY clause. The INMEMORY attribute can be specified for a table,
columns, partition, materialized view, or a tablespace. In addition to the INMEMORY
clause, there are other sub-clauses for some important aspects, such as population
priority and compression.

The following In-Memory sub-clauses are applied by default along with the INMEMORY
clause. To override the default behavior, you must specify the desired value.

* MEMCOMPRESS: The sub-clause determines the compression mode of the
in-memory objects. The admissible compression modes are:
° NO MEMCOMPRESS: No compression.

° MEMCOMPRESS FOR DML: Compression for frequently transactional
objects.

[70]

Chapter 2

MEMCOMPRESS FOR QUERY LOW (default): Balanced compression mode
to optimally compress and ensure space savings. Enhances the query
performance.

MEMCOMPRESS FOR QUERY HIGH: Compression mode that focuses on
query performance but checks the space savings too.

MEMCOMPRESS FOR CAPACITY LOW: Compression mode for optimal
space savings.

MEMCOMPRESS FOR CAPACITY HIGH: Compression approach is the
highest degree of space savings.

* PRIORITY: The PRIORITY sub-clause determines whether an object, which is
marked as INMEMORY, can be populated automatically or manually. There are
five possible values of PRIORITY clause:

[e]

CRITICAL: Critical priority objects are populated immediately after
the database is opened or through the In-Memory Co-ordinator
(IMCO) process's timely wake-up

HIGH: After the population of CRITICAL priority objects completes
and the In-Memory column store has vacant space

MEDIUM: After the population of CRITICAL and HIGH priority objects
completes and the In-memory column store has vacant space

Low: After the population of CRITICAL, HIGH, and MEDIUM priority
objects completes and the In-memory column store has vacant space

NONE (Default): The NONE priority segments are populated after the
first full scan

* DISTRIBUTE: The DISTRIBUTE sub-clause is used in clustered environments
(Oracle Database Real Application Cluster) to distribute the object data
across the In-Memory Column Store on all the cluster nodes.

* DUPLICATE: The DUPLICATE sub-clause is exclusively for the members
of the Oracle Engineered Systems family. It allows the duplication of the
In-memory column store across selective or all nodes of the cluster for
high availability.

[71]

Oracle 12¢ SQL and PL/SQL New Features

Performance optimizations

Oracle Database In-Memory feature is designed for analytics performance. The
optimizations that account for overall performance are as follows:

* Columnar Format and Vector Processing: The column format enables only
the required column to be scanned, and not the complete record. The column
format supports Single Instruction Multiple Data (SIMD) processing, which
helps in processing multiple data values in each CPU instruction.

* Predicate evaluation and Join operations pushdown to the In-Memory
column store: Predicates can be pushed down to the IM column store for
evaluation. The In-Memory column store makes use of bloom filters to join
multiple tables together.

* The In-Memory storage index provides min-max pruning that helps in
preventing the IMCUs from scanning: Predicates can be checked against the
IMCU header, which maintains information about minimum and maximum
values. It helps in determining whether to scan or skip an IMCU.

* The evaluation of a query predicate can be minimized if the IMCU header
satisfies the predicate: If the IMCU header fully or partially satisfies the
predicate condition, the predicate evaluation can be prevented or reduced for
the columnar units.

In-Memory Advisor

For large application databases, choosing the most suitable objects to be populated
in the In-Memory Column Store can be a challenge. Oracle provides an In-Memory
Adpvisor kit to recommend those objects whose in-memory format will yield the
maximum benefits. The tool analyses the database workload through Automatic
Workload Repository (AWR) and Active Session History (ASH) repositories, plan
cardinalities, and parallel execution. Once the analysis is completed, it generates
HTML advisory reports. The reports provide the list of objects that would benefit the
most, when placed in the In-Memory column store.

The In-Memory Advisor is part of Oracle Tuning Pack and can be installed in Oracle
Database 11.2.0.3 and above.

[72]

Chapter 2

Oracle Database In-Memory benefits

Oracle Database 12¢ In-Memory offers a dual-format architecture to support mixed
workloads. An object can be represented in row format as well as columnar format.
The columnar format is read-consistent and transactional-consistent with the data on
disk. The In-Memory feature is embedded natively in the Oracle Database. Therefore,
it is supported on all Oracle Database-supported platforms. Also, it is compatible
with all database technologies such as Real Application Clusters, Multitenant, High
Availability, and Exadata Engineered Systems.

Summary

This chapter familiarizes the readers with an overview of Oracle Database 12c.
This chapter provides valuable insight to database developers in the application
development space. Also, the chapter covers the top rated features of Oracle
Database 12c, that is Multitenant and Database In-Memory. This chapter will help
you understand the basic building blocks of a multitenant container database.

In the next chapter, we will cover the fundamentals of PL/SQL code design
through cursors.

[73]

Designing PL/SQL Code

The structure of a PL/SQL block is one of the elementary components of PL/SQL as
it showcases its modeling capabilities. It enables users to declare variables, include
procedural constructs in the executable section, and embed exception management
within the program.

All SQL statements within a PL/SQL block are executed as a cursor. Cursors are
PL/SQL constructs that enable interaction with the data within a PL/SQL block.
Cursor designing is an important skill in PL/SQL programming as it impacts the
data access paradigm and also code performance. In this chapter, we are going to
focus our discussion on cursors. Here is the chapter outline:

¢ Cursor fundamentals

a.
b.
C.
d.

How cursors work?
Implicit and explicit cursors
Cursor attributes

Cursor design guidelines

e Cursor variables

* Implicit REF CURSOR parameter binding

* Introduction to subtypes

[75]

Designing PL/SQL Code

Cursor structures

In PL/SQL, a cursor structure allows the processing of a SELECT statement and
accesses the result returned by that query. Each and every SQL statement in a PL/SQL
block is a cursor. A cursor is a handle to the chunk of the memory area where the SQL
statements are processed and the result is stored. For a dedicated database, the chunk
of memory is in the User Global Area (UGA) while, for shared server connections, the
cursor context area is allocated in the System Global Area (SGA).

Cursors can be of two types:

* Implicit cursors: Every SQL query in the executable or exception section of a
PL/SQL block is an implicit cursor. SELECT. . INTO, SELECT. .BULK COLLECT
INTO, SELECT in CURSOR FOR loop, INSERT, UPDATE, DELETE, and MERGE are
implicit cursors.

* Explicit cursors: A cursor defined by the user or developer in the declaration
section of a PL/SQL program is an explicit cursor.

Cursor execution cycle

A cursor is a handler to execute an SQL query and lives for the life of a session. Once
the current session ends, the cursor no longer exists. After the cursor gets created
implicitly or explicitly, it goes through the following stages of execution.

* OPEN: As soon as the cursor gets created, Oracle allocates a private area in the
session's user global area (UGA). This private area is used for SQL statement
processing. Prior to opening a cursor, it remains as a null pointer variable.

The initialization parameter OPEN_CURSORS governs the
% maximum number of cursors (from the library cache) that
T can be opened in a session.

* pARSE: Oracle checks the SQL statement for the syntactical correctness,
semantics, and privileges.

* BIND: If the SQL statement needs additional input values for processing, the
respective placeholders are replaced by actual values.

[76]

Chapter 3

* EXECUTE: The SQL statement is executed following the conventional
execution process. Oracle generates the hash value for the SQL statements
and places it in the shared pool. Oracle also performs library cache lookup to
search for any past executions of the same SQL. A successful lookup in the
library cache avoids hard parsing of SQL statement. If the hash is not found,
a new execution plan is generated and the SQL is processed. Once the SQL
query is executed, the result set is placed in the UGA.

* FETCH: Fetch the record from the result set corresponding to the current
position of the record pointer. The record pointer leaps forward by one after
every successful fetch.

* cLosE: The cursor handle is closed and the private context area is flushed out.

You can query the VSOPEN_CURSOR view to get the list of cursors used in the current
session. Let us execute the following PL/SQL anonymous block and check the
entries in VSOPEN CURSOR:

connect scott/tiger
/*Declare a quick PL/SQL block */
DECLARE
count emp NUMBER;
count dep NUMBER;
BEGIN
/*Create two implicit cursors */
SELECT COUNT (*) INTO count_ emp FROM emp;
SELECT COUNT (*) INTO count dep FROM dept;
END;
/

PL/SQL procedure successfully completed.

Let us query the V$OPEN_CURSOR view to check the open and PL/SQL cached
Cursors:

conn sys/oracle as sysdba

SELECT cursor_type,
sgl_text

FROM v$open cursor

WHERE user name='SCOTT'

AND cursor type != 'DICTIONARY LOOKUP CURSOR CACHED'
ORDER BY cursor_type

/

CURSOR_TYPE SQL_TEXT

Designing PL/SQL Code

OPEN declare count rec number; be
in select count(*) into count

PL/SQL CURSOR CACHED SELECT COUNT (*) FROM DEPT
PL/SQL CURSOR CACHED SELECT COUNT (*) FROM EMP

In the preceding output, the two SELECT queries (or implicit cursors of the PL/SQL
block) are PL/SQL cursor-cached while the PL/SQL block is in the OPEN state.

Cursor attributes

Cursor attributes reveal the necessary information about the last active cursor.
Cursor attributes are not persisted in the database but are aligned along with the
query result set in the session memory. These attributes are $ROWCOUNT, $ISOPEN,
$FOUND, and $NOTFOUND.

$BULK_ROWCOUNT and $BULK EXCEPTIONS are
%@“ additional cursor attributes used in bulk processing
’ using the FORALL statement.

The cursor attributes are briefly explained as below:

* 3ROWCOUNT: The attribute returns the number of rows fetched or affected
by the SQL statement in the context area. It must be referenced within the
cursor execution cycle. If referenced outside, it raises the INVALID CURSOR
exception.

* 3150PEN: The attribute is set to TRUE if the cursor is currently open; otherwise
it is FALSE. Programmers use this attribute outside the cursor execution cycle
to check if the cursor is open or closed.

* 3FOUND: The attribute returns TRUE if the row pointer points to a valid record.
After the last record of the result set is reached, the attribute is set to FALSE.

e 3NOTFOUND: The attribute returns the reverse of the $FOUND attribute.

Implicit cursors

Every SQL statement in the executable or exception section of a PL/SQL block is an
implicit cursor. The database takes full charge of its entire execution cycle, meaning
that the implicit cursor is auto-created, auto-opened, auto-fetched, and auto-closed.
All of these steps are taken care by the Oracle Database. SQL statements can be
SELECT, INSERT, UPDATE, DELETE, or MERGE, thus making an implicit cursor an SQL
cursor.

[78]

Chapter 3

The sELECT statement forming an implicit cursor is expected to return exactly one
row. If it fails to return a single row, the implicit cursor raises TOO_MANY ROWS

or NO_DATA_FOUND exception. Exceptions can be trapped and handled with an
informational message. If the cursor SQL is expected to return more than one row,
you must create an explicit cursor.

Note that SQL% prefixes the cursor attributes for implicit cursors.

Cursor attributes | Description

SQL%FOUND This attribute returns TRUE if SELECT fetches a single row or
the DML statement affects a minimum of one row in the table.
Otherwise, it is set as FALSE.

SQLSNOTFOUND This attribute returns TRUE if SELECT...INTO fetches no row
from the database. You might encounter NO DATA FOUND
exception.

SQL%ROWCOUNT This attribute returns 1 for the SELECT statement. For DML
statements, it returns the number of rows affected by the DML.
However, the attribute value is independent of the transaction
state. If the transaction is rolled back to a savepoint, the
attribute value is not restored to the one before rollback

was issued.

SQL$ISOPEN Always FALSE for implicit cursors.

In Oracle Database 12¢, the maximum number returned by
o SQL%ROWCOUNT is 4,294,967,295.

The following PL/SQL block contains a SELECT. . . INTO statement in the executable
section of the block:

/*Enable the SERVEROUTPUT to print the results */
SET SERVEROUTPUT ON
/*Demonstrate implicit cursor in PL/SQL execution block*/
DECLARE
1 ename emp.ename$TYPE;
1 sal emp.sal%TYPE;
BEGIN
/*Select name and salary of employee 7369 */
SELECT ename, sal
INTO 1 _ename, 1 sal

FROM emp
WHERE empno = 7369;
DBMS OUTPUT.PUT LINE ('Rows selected:'||SQL%ROWCOUNT) ;

[79]

Designing PL/SQL Code

END;
/

Rows selected:1

PL/SQL procedure successfully completed.

The preceding PL/SQL block returns 1 because empno is the primary key in the emp
table and there exists only one row against the value 7369.

Now let us try to update a multi-row data set in the employees table. The following
PL/SQL block increases the salary of employees who are working in department 10:

/*Enable the SERVEROUTPUT to print the results */
SET SERVEROUTPUT ON
/*Demonstrate the cursor attribute during DML in a PL/SQL block*/
BEGIN
/*Increase the salary of employees from department 10%*/
UPDATE emp
SET sal = sal + 1000
WHERE deptno = 10;
DBMS OUTPUT.PUT LINE ('Rows updated:'||SQL$ROWCOUNT) ;
END;
/

Rows updated:3

PL/SQL procedure successfully completed.

Explicit cursors

Application developers can choose to create a cursor manually, perform open and
fetch operations, and close the cursor. Such cursors are known as explicit cursors.
They are more developer-friendly as they allow users to manage their execution
stages and, most importantly, handle multi-row data sets.

An explicit cursor can be associated with SELECT queries only. The cursor prototype,
defined in the DECLARE section of a PL/SQL block, should contain a valid name. The
following PL/SQL block shows the cursor prototyping and handling stages in the
executable section.

DECLARE
CURSOR [Cursor Name] [Parameters]
RETURN [Return typel
IS

[SELECT statement] ;

[80]

Chapter 3

BEGIN
OPEN [Cursor Name] ;
FETCH..INTO [scalar or composite variables];
CLOSE [Cursor Name] ;

END;

In the executable section of a PL/SQL block, a user has to open a cursor as OPEN
[cursor name].The data can be fetched using FETCH [cursor name] INTO
[variables or record variable].Once the fetch operation is over, a cursor can
be closed using the CLOSE [cursor name] statement. Here is what happens at each
of these stages:

* OPEN stage:

1. Open cursor: It allocates a private work area in the user's session
memory for cursor processing.

Parse SQL: It validates the SQL query for syntax and privileges.

Bind SQL: This provides an input value to the bind variables in
the query.

4. Execute the query: It executes the parsed SQL statement.

* FETCH stage: This stage iterates the data set for each fetch request. It fetches
the data into block variables (or records) and increments the record pointer.

* CLOSE stage: This stage closes the cursor and releases the memory back to sGa.

Oracle supports parameterization of explicit cursors. If a SELECT statement has to

be executed with the same predicates but different values, it is advisable to use
parameterized cursors. Parameterization of a cursor is a powerful programming
feature as it can improve coding standards by reducing the number of explicit cursor
constructs in a program.

Structurally, a parameterized cursor is an explicit cursor with parameters.
Parameters may or may not have default values. The developer supplies the
parameter values at the time of opening the cursor in the program body. Optionally,
you can also strongly prototype a parameterized cursor by specifying RETURN clause.
The following cursor definition takes the department number as a parameter:

/*Cursor to fetch employee details from a department*/
CURSOR CUR_EMP (P_DEPTNO NUMBER)
IS

SELECT *

FROM emp

WHERE deptno = P_DEPTNO;

[81]

Designing PL/SQL Code

You can also specify default value for the cursor parameters. For example:

/*Cursor to fetch employee details from a department*/
CURSOR CUR_EMP (P_DEPTNO NUMBER DEFAULT 10)
IS

SELECT *

FROM emp

WHERE deptno = P_DEPTNO;

You can restrict the structure of cursor return type to protect its access.

/*Cursor to fetch employee details from a department*/
CURSOR CUR_EMP (P_DEPTNO NUMBER)
RETURN emp%ROWTYPE
IS
SELECT *
FROM emp
WHERE deptno = P_DEPTNO;

If you wish to perform a transaction (update or delete) on a cursor result set, you
can use the WHERE CURRENT OF clause in a DML statement. The WHERE
CURRENT OF clause updates or deletes a the current row of the cursor result set. It
is mandatory to declare the cursor with a SELECT FOR UPDATE query to secure a
row-level exclusive lock on the cursor result set. The lock is released only after the
transaction is committed or rolled back.

For example, the cursor cur_inc_comm in the following PL/SQL block locks the
employee records in the cursor result set. The UPDATE statement modifies the
employee's commission.

DECLARE
CURSOR cur_inc comm IS
SELECT empno, comm

FROM emp
FOR UPDATE OF comm;
BEGIN

FOR i IN cur inc_comm
LOOP
UPDATE emp
SET comm = comm*1.2
WHERE CURRENT OF cur inc_comm;
END LOOP;
END;
/

Note that you can reproduce the WHERE CURRENT OF scenario by using the
ROWID pseudocolumn.

[82]

Chapter 3

Cursor attributes play a key role in accessing the explicit cursor execution cycle. The
attributes are auto-set at each stage and the following table shows the behavioral flow:

Event %$FOUND $NOTFOUND %$ISOPEN %$ROWCOUNT
Before OPEN Exception Exception FALSE Exception
After OPEN NULL NULL TRUE 0

Before the first NULL NULL TRUE 0

FETCH

After the first FETCH | TRUE FALSE TRUE 1

Before the next TRUE FALSE TRUE 1

FETCH

After the next FETCH | TRUE FALSE TRUE n+1l
Before the last FETCH | TRUE FALSE TRUE n+1l

After the last FETCH | FALSE TRUE TRUE n+1l
Before CLOSE FALSE TRUE TRUE n+1

After CLOSE Exception Exception FALSE Exception

Cursor variables

A cursor variable enables a cursor handler to be associated with multiple SQL
queries. With respect to functionality, it is similar to an explicit cursor but with
certain implementation changes. One of the fundamental differences is that, unlike a
cursor, it is a variable of a cursor type. Therefore, it can potentially be referenced in a

similar way to other program variables.

[83]

Designing PL/SQL Code

As a variable, it can be passed as a parameter to subprograms or used as a return
type of a PL/SQL function. Cursor variables can be quite handy when sharing result
sets between two subprograms or when a client pulls a data set from the database.

v - I

/ P

Cursor variable is a pointer variable
which can point multiple work areas and
is linked to different SELECT statements
TYPE cur is REF CURSOR; during runtime

cur_emp cur;

Cursor variables are created by defining a variable of the REF CURSOR type variable
or an SYS_REFCURSOR type variable.

%j%“ Cursor FOR loop does not support cursor variables

The REF CURSOR syntax is as follows:

TYPE [CURSOR VARIABLE NAME] IS REF CURSOR [RETURN (return type)]

In the preceding syntax, the RETURN type of a cursor variable must be a record type.
It is required in strong ref cursors to fix the return type of the result set.

In the following example, the PL/SQL block declares a ref cursor as a cursor type
and a subsequent cursor variable. We will open the cursor variables for different
SELECT statements in separate execution cycles.

/*Enable the SERVEROUTPUT parameter to print the results*/
SET SERVEROUTPUT ON
DECLARE
/*Declare a REF cursor type*/
TYPE C_REF IS REF CURSOR;
/*Declare a Cursor variable of REF cursor type*/
CUR C_REF;
1 ename emp.ename%TYPE;
1 sal emp.sal%TYPE;
1 deptno dept.deptno%TYPE;
1 dname dept.dname%TYPE;

[84]

Chapter 3

BEGIN
/*Open the cursor variable for first SELECT statement*/
OPEN cur FOR
SELECT ename, sal
FROM emp
WHERE ename='JAMES';
FETCH cur INTO 1 ename, 1 sal;
CLOSE cur;
DBMS OUTPUT.PUT LINE('Salary of '||L ENAME||' is '||L SAL);

/*Reopen the cursor variable for second SELECT statement*/
OPEN cur FOR
SELECT deptno, dname
FROM dept
WHERE loc='DALLAS';
FETCH cur INTO 1 deptno, 1 dname;
CLOSE cur;

DBMS_OUTPUT.PUT LINE ('Department name '||l dname ||' for '||1l_
deptno) ;

END;
/

Salary of JAMES is 950
Department name RESEARCH for 20

PL/SQL procedure successfully completed.

Strong and weak ref cursor types

A REF CURSOR can be typed either strong or weak.

A REF CURSOR is strong if its return type is fixed at the time of declaration. The
RETURN clause is used to specify the record type. A strong ref cursor can be opened
for a SELECT statement, which returns the specified record type.

For example, a strong ref cursor having the return type record structure of the
employees table:

TYPE c_strong rf IS REF CURSOR RETURN emp%ROWTYPE;

[85]

Designing PL/SQL Code

A user-defined record can be declared and assigned as the return type of a strong ref
cursor. The following PL/SQL declares a local record and cursor variable of the REF
CURSOR type.

/*Demonstrate the strong ref cursor where type is a local record
structurex/
DECLARE
TYPE myrec IS RECORD
(myname VARCHAR2 (10),
myclass VARCHAR2(10)) ;
TYPE mycur IS REF CURSOR RETURN myrec;
cur_var mycur;

A REF CURSOR without a return type makes it weak and SELECT statements with a
different number of projected columns can be associated with it.

The cursor attributes of a cursor variable are same as those of an explicit cursor.

Working with cursor variables

By now, you may have realized that the execution cycle of a cursor variable is the
same as that of an explicit cursor. Once opened for a SELECT query, the records can
be fetched before the cursor is closed.

The following PL/SQL block declares a strong cursor variable that returns a record
of EMP record type, but the cursor variable is opened for a different record structure
(DEPT record type). The block fails to compile and raises a PLS exception.

/*Enable the SERVEROUTPUT parameter to print the results*/
SET SERVEROUT ON

/*Demonstrate the usage of cursor variablex*/

DECLARE

/*Declare the local variables*/
1 emp details emp%ROWTYPE;
1 row_num number;
1 random str varchar2 (20) ;

/*Declare a ref cursor and its variable*/
TYPE c_type IS REF CURSOR RETURN emp%ROWTYPE;
cur_var c_type;

BEGIN

/*Open the cursor for SELECT query on DEPT tablex*/
OPEN cur_var FOR

[86]

Chapter 3

SELECT *
FROM dept;

/*Iterate the result set to display the fetch count*/
LOOP
FETCH cur_var INTO 1 emp details;
EXIT WHEN cur_var%NOTFOUND;
DBMS_OUTPUT.PUT LINE ('Display results = ' || cur var%rowcount) ;
END LOOP;

/*Close the cursor variable*/
CLOSE cur_var;

END;
/

SELECT *

*
ERROR at line 16:
ORA-06550: line 16, column 5:
PLS-00382: expression is of wrong type
ORA-06550: line 15, column 3:
PL/SQL: SQL statement ignored.

If the cursor variable is opened for a query whose record structure has fewer
attributes than the ref cursor's return record, it raises the preceding exception. If
the latter has more, it raises PLS-00394: wrong number of values in the INTO
list of a FETCH statement.

SYS_REFCURSOR

SYS_REFCURSOR is an Oracle built-in cursor variable data type that declares a weak
REF CURSOR variable without declaring the ref pointer type. The generic cursor
variable is extensively used when passing a cursor variable as a parameter in stored
subprograms with the return type of a PL/SQL function.

SYS_REFCURSOR acts as a cursor variable type in the following syntax:

DECLARE
[Cursor variable name] SYS REFCURSOR;

You can use SYS_REFCURSOR as parameter type in Oracle subprograms shown below:

PROCEDURE P_DEMO (P_DATA OUT SYS REFCURSOR)
IS

END;

[87]

Designing PL/SQL Code

Cursor variables as arguments

A cursor variable can be passed as a formal parameter to a PL/SQL subprogram.
Subprograms can share the pointer variable to access the result sets between them.

The following procedure accepts the department number as an input and displays
the salary line-graph sorted by job codes:

/*Procedure using cursor variable as formal parameter*/
CREATE OR REPLACE PROCEDURE

p_sal graph (p_dept NUMBER, p emp data OUT SYS REFCURSOR)
IS

/*Declare a local ref cursor variable*/
TYPE cur_emp IS REF CURSOR;
cur_sal cur emp;

BEGIN

/*Open the local ref cursor variable for the SELECT query*/
OPEN cur sal FOR
SELECT empno, job, LPAD('*',sal/100,'.') graph
FROM emp
WHERE deptno=P DEPT
ORDER BY job;

/*Assign the cursor OUT parameter with the local cursor variablex*/
p_emp data := cur_sal;

END;
/

Procedure created.

/*Declare a host cursor variable in SQL* PLUS*/
VARIABLE M _EMP_SAL REFCURSOR;

/*Execute the procedure P_SAL GRAPH */
EXEC P_SAL GRAPH (30, :M_EMP SAL);

PL/SQL procedure successfully completed.

/*Print the host cursor variable*/
PRINT M_EMP_SAL

EMPNO JOB GRAPH

Chapter 3

7900 CLERK *

7698 MANAGERttt *
7844 SALESMAN *

7521 SALESMAN *

7499 SALESMAN *

7654 SALESMAN *

6 rows selected.

Cursor variables — restrictions

The following list shows the restrictions on the usage of cursor variables:

Cursor variables cannot be declared as the public construct in a package
specification

Cursor variables cannot be shared remotely across servers

Cursor variables cannot be opened for a SELECT FOR UPDATE query
Cursor variables are not physically stored in the Oracle Database
Cursor variables cannot be assigned to NULL

Cursor design considerations

The factors that can impact the cursor design are as follows:

Implicit versus Explicit cursor: If a SELECT query is confirmed to return only
one record, it should be used as SELECT. . . INTO, thus making an implicit
cursor. Another consideration could be cursor re-usability as implicit cursors
are faster than explicit cursors.

Use Parameterized cursors: Explicit cursor design depends on whether or
not a cursor will be reused in a PL/SQL block. If the cursor query is expected
to be re-run for similar predicates but different input values, it can be made
parameterized. Parameterized cursors enhance the reusability of a cursor.

o

The query in the following cursor definition filters employee records
by their hire date:

CURSOR cur IS

SELECT ename, deptno

FROM emp

WHERE hiredate < TO DATE('01-01-1985','DD-MM-YYYY');

[89]

Designing PL/SQL Code

[e]

If the query stands to be reused within the same program, it can be
parameterized:

CURSOR cur (p_date DATE) IS

SELECT ename, deptno

FROM emp

WHERE hiredate < p date;

» Usage of cursor variables: A cursor variable of REF CURSOR can be
dynamically associated with multiple SQL queries.

Cursor design—guidelines

Here are some of the best practices that can be followed during application
development to make the best use of cursors.

* Use a parameterized cursor if the explicit cursor has to be opened multiple
times for different input values.

* You should follow the complete execution cycle of the cursor. An explicit
cursor must be opened, fetched, and closed. If it is not closed, the cursor
resources (data structures) are not cleared from the UGA, until the block
execution is over.

* Except for $1S0PEN, all the cursor attributes must be referenced within the
cursor execution cycle. It also holds true for implicit cursors.

* Use of $ROWTYPE must be encouraged to fetch a record from the cursor result
set. It not only reduces the overhead of maintaining multiple local variables,
but it also inherits the structure of the SELECT column list. For example,
consider the following code snippet:

/*Cursor to select employees with its annual salary*/
CURSOR cur_dept IS

SELECT ename, deptno, (sal*12) annual sal

FROM emp;

1 cur_dept cur dept%ROWTYPE;

Note that the columns that are created virtually for calculative purposes must
have an alias name for reference through the record variable.

[90]

Chapter 3

* A cursor FOR loop associates a cursor with the For loop construct. It is
a powerful feature in PL/SQL to simplify and enhance code writing
techniques. It implicitly takes care of all the stages of cursor execution
such as OPEN, FETCH, and CLOSE.

/*Demonstrate working with cursor FOR loop*/

DECLARE

CURSOR cur_dept IS
SELECT ename, deptno
FROM emp;

BEGIN
FOR c IN cur dept
LOOP

END LOOP;
END;

Implicit statement results in Oracle
Database 12c

Oracle Database 12c allows a stored subprogram to return a result set implicitly
using the DBMS_SQL package, and not just through the REF CURSOR variable. The new
functionality is designed to ease the migration of non-Oracle application programs
to Oracle.

Prior to this enhancement in Oracle Database 12¢, the only way a PL/SQL stored
subprogram could share a result set was through OUT REF CURSOR parameters.
Later, parameter binding was required at the client end to retrieve the result sets.

The cursor is returned to the calling environment using new overloaded
subprograms: RETURN_RESULT and GET_NEXT RESULT. The GET_NEXT RESULT
can be used if the cursor query returns multiple result sets. The prototype for
RETURN RESULT is as follows:

PROCEDURE RETURN RESULT (param res IN OUT SYS REFCURSOR,
to _client IN BOOLEAN DEFAULT TRUE) ;

PROCEDURE RETURN RESULT (param res IN OUT INTEGER,
to _client IN BOOLEAN DEFAULT TRUE) ;

The param_res parameter takes either the variable of SYS_REFCURSOR type or

cursor id, which can be retrieved from DBMS SQL.OPEN CURSOR. The to client
parameter determines if the result set can be returned to the client program or calling
subprogram.

[91]

Designing PL/SQL Code

Let us re-create the procedure p_SAL_GRAPH (created earlier) using the enhancement.

/*Create procedure to implicitly return the result set*/
CREATE OR REPLACE PROCEDURE p_sal graph 12c (p_dept IN NUMBER)
AS

/*Declare a SYS REFCURSOR variable*/
cur_sal SYS REFCURSOR;
BEGIN

/*Open the cursor for department*/
OPEN cur sal FOR
SELECT empno, job, LPAD('*',sal/100,'.') graph
FROM emp
WHERE deptno=P_ DEPT
ORDER BY job;

/*Use DBMS_SQL.RETURN_RESULT to return the cursor*/
DBMS_SQL.RETURN RESULT (cur_sal) ;

END;

/

Now we will invoke this procedure for department 30 in SQL* Plus. We get identical
results with much reduced efforts:

/*Execute the procedure for department id 30%*/
EXEC p_sal graph 12c (30);

PL/SQL procedure is successfully completed.
ResultSet #1

EMPNO JOB GRAPH
7900 CLERK *
7698 MANAGERt *
7844 SALESMAN *
7521 SALESMAN *
7499 SALESMAN *
7654 SALESMAN *

6 rows selected.

[92]

Chapter 3

Subtypes

A subtype is a data type that gets evolved from an existing scalar data type. The
purpose of creating subtypes, though not mandatory, is to customize the primary data
types by controlling certain features such as nullability, range, or sign. An unconstrained
subtype is often used in place of primary data types to maintain application standards.

The subtype inherits the behavior of its parent base type and extends it further by
a distinguishing feature. For example, NATURALN is a subtype of BINARY INTEGER,
which prevents the entry of nulls and negative values. Similarly, SIGNTYPE permits
only three fixed values: -1, 0, or 1.

The following table shows the base types and subtypes under each scalar data type:

Number Character Date/Time Boolean
NUMBER VARCHAR DATE BOOLEAN
DECIMAL/DEC VARCHAR2 INTERVAL

DOUBLE PRECTSTION | NVARCHAR2 TIMESTAMP

FLOAT CHAR

INTEGER/INT NCHAR

NUMERIC CHARACTER

REAL LONG

SMALLINT LONG RAW

PLS INTEGER RAW

BINARY DOUBLE ROWID

BINARY FLOAT STRING

BINARY INTEGER UROWID

POSITIVE

POSITIVEN

NATURAL

NATURALN

SIGNTYPE

Subtype classification

Subtypes can be predefined or user-defined. Pre-defined subtypes are system-built
and maintained in the STANDARD package by Oracle Database. Here is a small extract

from the sTANDARD package listing the subtypes of the NUMBER family:

/*NUMBER family from STANDARD packagex/

type NUMBER is NUMBER BASE;

[93]

Designing PL/SQL Code

subtype FLOAT is NUMBER;

subtype INTEGER is NUMBER (38,0) ;

subtype INT is INTEGER;

subtype SMALLINT is NUMBER(38,0) ;

subtype DECIMAL is NUMBER (38,0) ;

subtype NUMERIC is DECIMAL;

subtype DEC is DECIMAL;

subtype BINARY INTEGER is INTEGER range '-2147483647'..2147483647;
subtype NATURAL is BINARY INTEGER range 0..2147483647;
subtype NATURALN is NATURAL not null;

subtype POSITIVE is BINARY INTEGER range 1..2147483647;
subtype POSITIVEN is POSITIVE not null;

subtype SIGNTYPE is BINARY INTEGER range '-1'..1;

* FLOAT is an unconstrained subtype of NUMBER. Constrained
subtypes such as NATURAL and NATURALN work mostly on

ranges and nullability.

User-defined subtypes are created on top of predefined types with a specific
manipulation. They are defined in the DECLARE section of a PL/SQL block or
subprogram:

SUBTYPE [SUBTYPE NAME] IS [PREDEFINED TYPE] [CONSTRAINT | RANGE (range
specification)]

The following PL/SQL block declares a subtype of the NUMBER base type that has
been constrained in the range of 1 to 10. If a variable of subtype datatype is assigned
an out-of-range value, the VALUE_ERROR exception is raised.

DECLARE
/*Create a subtype with value range between 1 to 10%/
SUBTYPE ID IS BINARY INTEGER RANGE 1..10;

L _NUM ID;

BEGIN

/*Assign a value beyond range*/
L NUM := 11;

END;

/

DECLARE

*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 5

[94]

Chapter 3

Type compatibility with subtypes

Subtypes are interchangeable with their base types as long as the subtype definition

is not violated. In the following program, the SUBTYPE ID is a BINARY INTEGER with

an assigned range between 1 and 10. The program raises the VALUE_ERROR exception
if an out-of-range value is assigned to the subtype variable:

DECLARE
/*Create a subtype with value range between 1 to 10. Declare the
subtype variablex*/

SUBTYPE ID IS binary integer range 1..10;

L NUM ID ;
L BN BINARY INTEGER;

BEGIN

/*Assign a NUMBER variable to SUBTYPE variable*/
L NUM := 4;
L BN := 15;
L NUM := L BN;

END;

/

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 8

Summary

In this chapter, we discussed the importance of cursor structures in PL/SQL code.
We covered the working of a cursor, the execution cycle, design considerations,
and guidelines. The usage of cursors can be imperative while developing PL/SQL
applications.

In the next chapter, we shall cover composite data types, and you will understand
how collections can boost PL/SQL code performance and perform data caching.

[95]

Designing PL/SQL Code

Practice exercise

* What are the possible reasons that cause the INVALID_CURSOR exception

to occur?
1. Cursor result set has not been fetched.
2. The cursor does not have parameters.
3. The value of the $ROWCOUNT attribute has been referenced after
closing the cursor.
4. Cursor result set has been fetched into a non matching variable.
* Identify the guidelines to be considered when designing cursors in
a PL/SQL block:
1. Explicit cursors must be used irrespective of the number of records
returned by the query.
2. Cursor FOR loops must be used as it implicitly takes care of OPEN,
FETCH, and CLOSE stages.
3. Cursor data must be fetched as a record.
4. Use ROWNUM to index the records in the cursor result sets.

* While processing DMLs as implicit cursors in a PL/SQL executable block,
implicit cursor attributes can be used anywhere in the block.

1.
2.

True.

False.

* From the following options, identify the two correct statements about the
REF CURSOR type?

1.

2.
3.
4

Ref cursors are reference pointers to cursor objects.
REF CURSOR types can be declared in the package specification.
SYS_REFCURSOR is a strong ref cursor type.

A cursor variable cannot be used as arguments in stored
subprograms.

* The RETURN type for a ref cursor can be declared using $TYPE, $ROWTYPE,
or a user-defined record.

1.
2.

True.

False.

[96]

Chapter 3

* Which two statements, among the following, are true about cursor variables?

1. Cursor variables can process more than one SELECT statement.

2. A cursor variable can be passed as program arguments across
subprograms and even to the client end programs.

3. A cursor variable can be declared as a public construct in the package
specification.

4. Cursor variables can be stored in a database as database columns.

* Similar to static explicit cursors, cursor variables can also be opened in the
FOR loop
1. True.
2. False.

* Which of the following is true while creating subtypes from a table record
structure?

SUBTYPE [Name] IS [TABLE]%ROWTYPE

1.

The subtype inherits complete column structure of the record
structure.

The subtype inherits the default values of the database columns
in table.

The subtype inherits the index information of the database columns.

The subtype inherits none except the NOT NULL constraint
information of the database columns.

[97]

Using Collections

A collection is a single-dimensional structure of homogeneous elements. Behaviorally
speaking, it is quite similar to an array and a list structure available in other third
generation languages. First introduced in Oracle 7 as PL/SQL tables, Oracle 8i
rebranded collections as Index-by tables. Oracle 8i also introduced persistent
collection types, namely nested tables and varrays. Oracle Database 9i renamed
Index-by-tables to associative arrays.

Oracle Database offers a wide scope of usability of collections in PL/SQL
programming. The language semantics not only allow you to create and maintain
collections, but also provides multiple methods for array operations. This chapter
helps you to understand the collection types in Oracle and, most importantly, which
types suit a given problem. The chapter outline looks like this:

* An introduction to collections

[e]

Categorization

o

Selection of an appropriate collection type

* Associative arrays

* Nested tables

* Varrays

* PL/SQL collection methods

* Manipulating collection elements

* Collection design considerations

[99]

Using Collections

Introduction to collections

A collection is an array like homogeneous single-dimensional structure, which
holds a set of elements of similar data type. Each cell in a collection, and hence, each
element, is uniquely identified by its position index or the subscript. The element or
the value contained in a cell can be of a valid SQL data type or a user-defined type.
There are three types of collections: associative array; nested table; and varray.

A collection can be bounded or unbounded on the basis of it's collection size.
Bounded collections have a fixed number of elements, as in arrays. Unbounded
collections can have any number of elements. Varrays are bounded collections while
the associative arrays and nested tables are unbounded.

On the basis of persistence in the database, a collection can be either a persistent
or non-persistent collection. A persistent or SQL collection can either be created in
the Oracle Database schema or declared within the PL/SQL block. A PL/SQL or
non-persistent collection is declared in a PL/SQL block only. A nested table and

a varray are persistent collections. An associative array is always a non-persistent
collection.

N 7 N 7 ™

Associative .
¢ Nested table Varray
Array ./

Unbounded Unbounded
Non-
Persistent

/ \

/. J/

\

Collection types

An associative array is a non-persistent unbounded collection which means that
an associative array cannot be created in the Oracle Database schema, but locally
declared within the declarative section of a PL/SQL block.

[100]

Chapter 4

A nested table is a persistent collection of homogeneous elements that can be created
in a database as a schema object as well as declared within a PL/SQL block. A nested
table being an unbounded collection, has no limit on the number of elements.

A varray is a single-dimensional homogeneous collection that can be created in a
database as well as in PL/SQL. Being a bounded collection, it can hold only a fixed
number of elements.

Associative arrays

Associative arrays in Oracle are similar to conventional lists in other programming
languages. An associative array is an unbounded array of cells and always defined
in the declarative section of a PL/SQL program. While a cell is identified by an index
of number or string type, it can hold a value of a scalar data type or user-defined
composite type.

The syntax to declare an associative array in a PL/SQL block is as follows:

TYPE [COLL NAME] IS TABLE OF [ELEMENT DATA TYPE] NOT NULL
INDEX BY [INDEX DATA TYPE]

In the syntax, the [INDEX DATA TYPE] signifies the data type of an array subscript. It
can be BINARY INTEGER, PLS_INTEGER, POSITIVE, NATURAL, SIGNTYPE, Or VARCHAR2.
The data types that are not supported as index types are RAW, NUMBER, LONG-RAW,
ROWID, and CHAR.

The [ELEMENT DATA TYPE] can be one of the following:
* PL/SQL scalar data type: NUMBER (along with its subtypes), VARCHAR2 (and its
subtypes), DATE, BLOB, CLOB, Or BOOLEAN

* Inferred data: The data type inherited from a table column, cursor expression
or predefined package variable

* User-defined type: A user-defined object type or collection type

Here are some sample declarations of an associative array:

/*Associative array of CLOB indexed by a number*/
TYPE clob t IS TABLE OF CLOB INDEX BY PLS INTEGER;

/*Array of employee ids indexed by the employee names*/
TYPE empno t IS TABLE OF emp.empno%TYPE NOT NULL
INDEX BY emp.ename%type;

[101]

Using Collections

The following PL/SQL program declares an associative array of some elements with
a string type subscript. The FIRST and NEXT collection methods are discussed in
detail in the PL/SQL collection methods section in this chapter:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare an associative array and a local variable of collection
type*/

TYPE string asc_arr t IS TABLE OF NUMBER

INDEX BY VARCHAR2 (10) ;

1 str string asc_arr t;

1 idx VARCHAR2(10) ;
BEGIN

/*Assign the total days in each quarter*/

1 str ('JAN-MAR') := 90;
1 str ('APR-JUN') := 91;
1 str ('JUL-SEP') := 92;
1 str ('OCT-DEC') := 93;
1 idx := 1 str.FIRST;

WHILE (1 idx IS NOT NULL)

LOOP
DBMS_ OUTPUT.PUT LINE('Value at '||l_idx||' is '||1l_str(l_idx));
1 idx := 1 str.NEXT (1l idx);
END LOOP;
END;

/

Value at APR-JUN is 91
Value at JAN-MAR is 90
Value at JUL-SEP is 92
Value at OCT-DEC is 93

PL/SQL procedure successfully completed.

Similarly, the following PL/SQL block populates an associative array of string values
with random values:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL Block*/

[102]

Chapter 4

DECLARE

/*Declare an array of string indexed by numeric subscripts*/
TYPE random t IS TABLE OF VARCHAR2 (12) INDEX BY PLS INTEGER;
1 random random t;

BEGIN
/*Insert the values using a FOR loop*/
FOR I IN 1..100
LOOP
1 random(I) := DBMS RANDOM.STRING('X', 10);
END LOOP;

/*Display the values randomly*/
DBMS_OUTPUT.PUT_LINE(l_random(5)) ;
DBMS_OUTPUT.PUT LINE (1 random(10)) ;
DBMS_OUTPUT.PUT LINE (1 random(50))

END;

/

1

SNHU5R5UMU
98P7NUDZZB
E6AG6TRO7S

PL/SQL procedure successfully completed.
The features of associative arrays are as follows:
* An associative array can be sparse, meaning the index need not be
consecutive.

* Being a non-persistent collection, it cannot participate in DML transactions.
However, elements of an associative array can be used in the DML within a
FORALL statement.

* It can be passed as an argument to other local subprograms.
* Sorting of an associative array depends on the NLS_SORT parameter.

* An associative array declared in a package specification behaves as a
persistent array in a session.

[103]

Using Collections

Nested tables

A nested table is a persistent SQL collection that is used as a list to hold elements of
the same data type. It can also be created in the database and defined in a PL/SQL
program. It is an unbounded collection and the user doesn't have to maintain the
cell index. Oracle automatically assigns the cell index as 1 to the first cell and moves
onwards incrementally. A nested table collection type initially starts off as a dense
collection but it becomes sparse due to delete operations.

. A dense collection refers to a collection that is tightly
a populated which means no empty cells between the lower
— and upper indexes of the collection. A dense collection may
become sparse by performing delete operations.

When a nested table is created as a schema object in the database, it can be referenced
in a PL/SQL block as a variable parameter. A column of nested table types can be
included in a table. An attribute of nested table types can exist in an object type. In a
database schema, a nested table can be declared using the CREATE TYPE. .. statement:

CREATE [OR REPLACE] TYPE type name IS TABLE OF [element type] [NOT
NULL] ;

/

In the preceding syntax, [element_type] can be an SQL-supported scalar data type,
a database object type, or a REF object type. The unsupported element types are
BOOLEAN, LONG, LONG-RAW, NATURAL, NATURALN, POSITIVE, POSITIVEN, REF CURSOR,
SIGNTYPE, STRING, PLS INTEGER, SIMPLE INTEGER, BINARY INTEGER and all other
non-SQL supported data types.

When a nested table is declared in a PL/SQL program, it behaves as a
one-dimensional array without any index type or upper limit specification. It
can be referenced only within the program in which it is declared. A table type
definition in a PL/SQL block follows the below syntax:

DECLARE
TYPE type name IS TABLE OF element type [NOT NULL] ;

The element_type is a primitive data type (except cursor variables) or a user-
defined type.

[104]

Chapter 4

Modify and drop a nested table object type

To increase the precision of nested table elements, use the ALTER TYPE command
with CASCADE or INVALIDATE options:

ALTER TYPE [type name] MODIFY ELEMENT TYPE [modified element type]
[CASCADE | INVALIDATE] ;

The cascaDE and INVALIDATE options determine whether the collection alteration
has to cascade or invalidate the dependents.

The nested table type can be dropped using the DROP command, as shown in the
following syntax (note that the FORCE keyword drops the type irrespective of its
dependents):

DROP TYPE [collection name] [FORCE]

Design considerations of a nested table

As a database developer, you must understand the factors that influence nested table
design and layout. For instance, retrieval of an out-of-line stored nested table structure
along with the table columns could potentially impact the query design. This section
talks about key aspects that should be considered during nested table design.

Nested table storage

Oracle maintains a separate storage table to store the nested table data. This storage
table is integrally connected to the parent table through a system-generated 16-byte
value known as NESTED TABLE_ID. This value is used to correlate the parent row
value and the connected storage table rows.

Nested table in an index - organized table

A nested table with a primary key behaves as an index-organized table (IOT). If
the primary key is constituted with NESTED TABLE_1ID, the parent and child rows
are clustered together, which helps in fast retrieval of child rows. In addition,
nested table compression can be enabled using the coMpRESS clause. A nested
table in compressed mode prevents the repetition of a parent key for a set of child
rows in the storage table, thus optimizing the space consumption. This format of
organization in nested tables can be beneficial when the application retrieves a
nested table as a complete unit.

Alternatively, indexing NESTED_TABLE_1ID in the storage table can also accelerate the
access and retrieval of child rows.

[105]

Using Collections

Nested table locators

Nested table locators are useful when a parent row correlates to a large set of child
rows. Instead of performing joins and returning large data sets, Oracle retrieves a
locator that can be used to access the child records whenever required. There are two
ways to fetch the collection type as a location:

* Specify RETURN AS LOCATOR in the storage clause
* Use the NESTED TABLE GET REFS hint in the SELECT statement

Nested table as the schema object

The following example demonstrates the creation of a nested table type in the
database and using it as a column data type in a table. The object type NT_SCORES
records the scores of a batsman in a cricket tournament:

/*Create the nested table in the database*/
CREATE TYPE nt scores AS TABLE OF NUMBER;

/

Type created.

The metadata information for NT SCORES is available in the USER TYPES and USER_
COLL_TYPES dictionary views:

/*Select query to get nested table metadata as collection type*/
SELECT type name, typecode, type oid
FROM USER TYPES

WHERE type name = 'NT_ SCORES'

/

TYPE NAME TYPECODE TYPE OID

NT_ SCORES COLLECTION 1218C13A817D0OD9FEO530F02000A6119

Note that the TYPECODE value shows the type of the object in the database and
differentiates collection types from user-defined object types. Let's now query

the USER_coLL_TYPES dictionary view to query the collection type and element type
of the nested table:

SELECT type name, coll type, elem type name
FROM user coll types

WHERE type name = 'NT SCORES'

/

[106]

Chapter 4

TYPE NAME COLL_TYPE ELEM TYPE NAME

NT_SCORES TABLE NUMBER

The CREATE TABLE statement creates a table with a column of the NT SCORES table
type. Although a nested table type column in a table resembles a table within a table,
Oracle creates a separate storage table from the parent table. The NESTED TABLE
[Column] STORE AS [storage table] clause specifies the storage table for the
nested table type column. At the time of record creation, the data in the storage table
is connected to the row in the parent table through a row identifier:

CREATE TABLE t bat scores

(name VARCHAR2 (30),

pos NUMBER,

score NT SCORES)

NESTED TABLE score STORE AS nt_ scores_ st
/

Table created.

By default, the storage options for the storage table are the same as that of the main
table. If you want the storage table on a different tablespace, you can specify the
TABLESPACE clause alongside the NESTED TABLE clause:

NESTED TABLE score STORE AS nt_ scores_ st
(TABLESPACE nt_tbs_storage)
/

If you move the parent table to a different tablespace using the ALTER TABLE. . . MOVE
statement, then the storage table doesn't move unless you explicitly move the storage
table as follows:

ALTER TABLE nt scores_ st MOVE TABLESPACE nt tbs_ storage
/

Operations on a nested table type column

In terms of data contained in a column, the nested table type column stores the object
type instance, instead of scalar data values. The structure of the object type instance
must be noted while inserting the records in the table and querying the data from the
table.

This section takes you through the different operations on the nested table type
column and the object type instance.

[107]

Using Collections

Create a nested table instance

Let's insert the runs scored by the first two batsmen of the team in the last five
innings. Note the object type instance can be inserted in a nested table type column
using a collection type constructor. It is a default constructor with the same name as
the collection and all member attributes:

INSERT INTO t bat scores (name, pos, score) VALUES
('Duckworth', 1, nt scores (115, 37))

/

INSERT INTO t bat scores (name, pos, score) VALUES
('Duckworth', 2, nt scores(71, 29, 13))

/

INSERT INTO t bat scores (name, pos, score) VALUES
('Lewis', 1, nt scores(34, 65, 23))

/

INSERT INTO t bat scores (name, pos, score) VALUES
('Lewis', 2, nt scores(0, 1))

/

commit

/

Querying the table data, you can see the nested values that is the instances of
nested tables:

SELECT *

FROM t bat scores

/

NAME POS SCORE

Duckworth 1 NT SCORES (115, 37)
Duckworth 2 NT_ SCORES (71, 29, 13)
Lewis 1 NT_SCORES(34, 65, 23)
Lewis 2 NT_SCORES (0, 1)

In the next innings, Duckworth opens at No. 1 position and scores 125, while Lewis
scores 45 at No. 2 position. You would want to update the existing object instances
and not create a duplicate entry for the batsmen. Oracle allows the piecewise inserts
and updates on the object instances. The piecewise score is inserted using the
following INSERT statement:

INSERT INTO TABLE (SELECT score
FROM t bat scores
WHERE name = 'Duckworth'
AND pos=1)

[108]

Chapter 4

VALUES (125)
/
INSERT INTO TABLE (SELECT score
FROM t bat scores

WHERE name = 'Lewis'
AND pos=2)

VALUES (45)

/

COMMIT

/

After the new scores are updated in the table, the object instances look like this:

SELECT *

FROM t_bat_scores

/

NAME POS SCORE

Duckworth 1 NT SCORES (115, 37, 125)
Duckworth 2 NT SCORES (71, 29, 13)
Lewis 1 NT_SCORES (34, 65, 23)
Lewis 2 NT SCORES(0, 1, 45)

Due to a short run, Duckworth loses a run and his score is now 124. This change
has to reflect back in the table. The following UPDATE statement helps you perform
piecewise updates. The following SELECT query verifies the value update:

UPDATE TABLE (SELECT score
FROM t bat scores
WHERE name = 'Duckworth' and pos=1) P
SET P.COLUMN_VALUE = 124
WHERE P.COLUMN_VALUE = 125
/
SELECT *
FROM t bat scores

Duckworth 1 NT SCORES (115, 37, 124)

(
Duckworth 2 NT_SCORES (71, 29, 13)
Lewis 1 NT_SCORES(34, 65, 23)
Lewis 2 NT_SCORES(O, 1, 45)

[109]

Using Collections

Querying a nested table column

When a table with a nested table column is queried, the nested table column appears
as an instance of nested table object type. We already saw this in action in the last
section.

The TABLE expression can be used to unnest or open the instance and display the
data in relational format. The TABLE expression is used to access the attributes of
nested table type. Oracle implicitly joins the parent row with the nested table row in
the query output:

SELECT T.name, T.pos, Tl.column value
FROM t bat scores T, TABLE (T.score) T1

/

NAME POS COLUMN_ VALUE
Duckworth 1 115
Duckworth 1 37
Duckworth 1 124
Duckworth 2 71
Duckworth 2 29
Duckworth 2 13
Lewis 1 34
Lewis 1 65
Lewis 1 23
Lewis 2 0
Lewis 2 1
Lewis 2 45

12 rows selected.

In the preceding SELECT query, COLUMN_VALUE is an Oracle pseudo-column that is
used in the SELECT queries to signify the nested table column with no attribute name.

Nested table collection type in PL/SQL

In PL/SQL, a nested table can be declared and defined in the declaration section of
a PL/SQL block as a local collection type. The PL/SQL variable of nested table type
must be initialized before using it in the program body. Oracle raises the exception
ORA-06531: Reference touninitialized collection if an uninitialized
collection type variable is accessed in the program body.

[110]

Chapter 4

Collection initialization

When used in a PL/SQL program, the variables of nested table or varray collection
types must be initialized. Associative arrays are local non-persistent arrays, so no
initialization is required for them. This section has been included to give a brief
description of collection initialization methods:

Initialize a collection in the declarative section by using the default
constructor:

/*Start the PL/SQL block*/
DECLARE

TYPE coll nt t IS TABLE OF NUMBER;
/*Collection variable initialization using a default constructor*/

L _LOCAL VARl coll nt t := coll nt t (10,20);

/*collection variable initialization with an empty collection*/
L LOCAL VAR2 coll nt t := coll nt t();

BEGIN

END;

Initialize a collection in the executable section through assignment or the
SELECT. . . INTO statement:

In the executable section, a SELECT statement can pull a collection instance
(of the same collection type) into the local collection variable. This method of
collection initialization is permissible only when the collection type exists as
a schema object and is used to declare a PL/SQL variable.

In our earlier illustrations, nt _scores is a nested table in the database. Let us
use the same type to declare a local collection variable:

/*Start the PL/SQL block*/
DECLARE
1 loc_num nt scores;
1 loc _idx nt scores;
BEGIN
/*Initializing the collection variable with SELECT...INTO*/
SELECT num INTO 1 loc num
FROM tab use nt col
WHERE id = 1;

/*Initializing the collection variable with an assignment*/
1 loc _idx := 1 loc num;

END;

/

[111]

Using Collections

The following PL/SQL block declares a nested table in the declarative section.
Observe the scope and visibility of the collection variable. Note that the counT
method has been used to display the array elements:

/*Enable the SERVEROUTPUT to display the results*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare a local nested table collection type*/
TYPE nt local IS TABLE OF NUMBER;
1 array nt local := nt local (10,20,30);

BEGIN
/*Use FOR loop to parse the array and print the elements*/
FOR I IN 1..1 array.COUNT
LOOP
DBMS_OUTPUT.PUT LINE ('Showing '||i]||' value: '||l array(I));
END LOOP;
END;
/

Showing 1 value: 10
Showing 2 value: 20
Showing 3 value: 30

PL/SQL procedure successfully completed.

Querying the nested table metadata

As a collection type, the nested table's metadata can be queried from the USER_TYPES
or USER_COLL_TYPES views. For the nested table type column in a table, Oracle's
USER_NESTED_TABLES and USER_NESTED_TABLE_COLS data dictionary views
maintain the information of the parent and the nested tables. The USER_NESTED
TABLES static view maintains the information about the mapping of a nested table
collection type with its parent table.

The following SELECT statement on USER_NESTED_TABLES queries the details of the
storage table associated with the parent table:

SELECT parent table name,
parent table column,
table name,

[112]

Chapter 4

table type name,
storage_ spec
FROM user nested tables
WHERE parent table name='T BAT SCORES'

/
PARENT TABLE NA PARENT TAB TABLE NAME TABLE_TYPE STORAGE_SPEC
T BAT SCORES SCORE NT_SCORES_ST NT_SCORES DEFAULT

Let us now query the nested storage table in the preceding dictionary view to list all
its attributes:

SELECT COLUMN_ NAME, DATA TYPE, DATA LENGTH, HIDDEN COLUMN
FROM user nested table cols
where table name='NT SCORES ST'

/

COLUMN_NAME DATA TYP DATA LENGTH HID
NESTED_TABLE ID RAW 16 YES
COLUMN_VALUE NUMBER 22 NO

The cOLUMN_VALUE attribute is the default pseudo-column of the nested table as
there are no named attributes in the collection structure. The other attribute, NESTED
TABLE_ID, is a hidden, unique, 16-byte, system-generated raw hash code, which
stores the parent row identifier alongside the nested table instance to distinguish

the parent row association. Its value is the same as the system supplied id (sys_
NCxxxx$) value in the parent table.

Nested table comparison functions

Oracle provides SQL functions that can be applied to nested tables for multiset
purposes. The functions are briefly described in the following table:

Collection function Description

SET Returns distinct elements of a nested table

CARDINALITY Returns the count of elements in a nested table

[NOT] SUBMULTISET Returns TRUE, if a nested table is a subset of the other
nested table

POWERMULTISET (SQL Generates all possible non-empty sub-multisets from an

only) input collection. Maximum cardinality is 32.

POWERMULTISET BY Generates the non-empty sub-multisets from an input

CARDINALITY (SQL only) | collection, filtered by the given cardinality.

[113]

Using Collections

Multiset operations on nested tables

The set operators (UNION, INTERSECT, and MINUS) in SQL are used to combine the
results from more than one SQL query into a single result set. Oracle Database 10g
introduced multiset operators to allow set operations on nested tables. A multiset
operation combines more than one nested tables and returns a collection resulting
from a multiset operator.

The multiset operations add a unique and exclusive capability to nested tables.
Instead of following the trivial loop-through-collection approach to row-compare
two collections for common or difference elements, you can now compare a
collection as an object.

[Multiset operators are available in PL/SQL, and SQL too.]

The multiset operators are listed as below:

* MULTISET UNION [ALL | DISTINCT]:combines two nested tables of the
same type and returns a nested table containing the elements from both
the input collections. You can use ALL or DISTINCT to allow or prevent
duplication of elements. ALL is the default.

* MULTISET INTERSECT [ALL | DISTINCT]:combines two nested tables of
the same type and returns a nested table containing the elements, which are
common in the two nested tables. If you use the DISTINCT option, Oracle
removes the duplicate values from the final result set.

* MULTISET EXCEPT [ALL | DISTINCT]:works with two nested tables of
the same type and returns a nested table containing the elements, which are
present in the first but not in the second. If you use the DISTINCT option,
Oracle removes the common elements.

For multiset operations, the input nested tables should -

be of the same type with comparable elements. If you are
M working with complex collection types that is a nested
Q table with complex attributes, you must use the MAP order
method to enable sorting of the collection elements. The
result of a multiset operation is of the same collection type
— as the operands. -

The following PL/SQL block demonstrates the usage of multiset operators.

/*Create a nested table collection object in SCOTT schema */
CREATE OR REPLACE TYPE list_of_letters AS TABLE OF VARCHAR2 (1) ;

/

[114]

Chapter 4

/*Enable the serveroutput */
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare two local collection variables*/

strl list of letters := list of letters('O','R','A','C','L','E');
str2 list of letters := list of letters('D','A','T','A','B','A','S"',
!E!);

/*Local procedure to print the collection elements */
PROCEDURE print nt (str IN list of letters)

IS

BEGIN

FOR i in 1..str.COUNT
LOOP

DBMS_OUTPUT.PUT (str(i)||'.");
END LOOP;

DBMS_ OUTPUT.NEW_LINE;
DBMS_OUTPUT.PUT_LINE(RPAD(' ',50,'-"'));
END print nt;

BEGIN
/*Multiset intersect operation*/
DBMS_OUTPUT.PUT ('MULTISET INTERSECT => ');
PRINT NT(str2 MULTISET INTERSECT strl);

/*Multiset intersect distinct operation*/
DBMS_OUTPUT.PUT ("MULTISET INTERSECT DISTINCT => ') ;
PRINT_NT(Str2 MULTISET INTERSECT DISTINCT strl);

/*Multiset union operation*/
DBMS_OUTPUT.PUT ('"MULTISET UNION => ') ;
PRINT_NT(Strl MULTISET UNION str2);

/*Multiset union distinct operation*/
DBMS_OUTPUT.PUT ("MULTISET UNION DISTINCT => ') ;
PRINT_NT(Strl MULTISET UNION DISTINCT str2);

/*Multiset except operation*/
DBMS_ OUTPUT.PUT ('MULTISET EXCEPT => ');

[115]

Using Collections

PRINT NT(str2 MULTISET EXCEPT strl);

/*Multiset except distinct operation*/
DBMS_OUTPUT.PUT ('MULTISET EXCEPT DISTINCT => ');
PRINT NT(str2 MULTISET EXCEPT DISTINCT strl);
END;
/

MULTISET INTERSECT => A.E.

MULTISET INTERSECT DISTINCT => A.E.

MULTISET UNION => O.R.A.C.L.E.D.A.T.A.B.A.S.E.

MULTISET UNION DISTINCT => O.R.A.C.L.E.D.T.B.S.

MULTISET EXCEPT => D.T.A.B.A.S.

MULTISET EXCEPT DISTINCT => D.T.B.S.

PL/SQL procedure successfully completed.

Varray

Oracle Database 8i introduced varrays as a modified format of a nested table.

The varray or variable size array is quite similar to nested tables but bounded in
nature. The varray declaration includes the count of elements that a varray can
accommodate. The minimum varray index is 1, the current size is the total number of
elements, and the maximum limit is the varray size. At any moment, the current size
cannot exceed the maximum limit. Varrays are appropriately used when you know
the maximum number of elements in a collection structure.

Like nested tables, varrays can be created in the database as schema objects as well
as in a PL/SQL block. When created in the database as a schema object, varrays
can be referenced in PL/SQL program units as variables, parameters and function
return types. A table can have a column of a varray type. An object type can have
an attribute of a varray type. The syntax for varrays, when defined as a database
collection type, is as follows:

CREATE [OR REPLACE] TYPE type name IS {VARRAY | VARYING ARRAY} (size
limit) OF element type

[116]

Chapter 4

When a varray type column is included in a table, it is stored in line with the
corresponding row in the parent table. Therefore, there is no need to have a separate
storage table. If the varray column size exceeds 4 kilobytes, Oracle follows the out-of-
line storage mechanism and stores the varray as an LOB.

The in-line storage mechanism of varrays helps Oracle to
o reduce the disk I/Os.

When declared in a PL/SQL block, a varray can be referenced within the current
block only. In PL/SQL, varrays can be declared as follows:

DECLARE

TYPE type name IS {VARRAY | VARYING ARRAY} (size limit) OF
element type [NOT NULL];

In the syntax, size_limit determines the maximum count of elements in the array.
If the varray size has to be modified after creation, follow this ALTER TYPE syntax:

ALTER TYPE [varray name] MODIFY LIMIT [new size limit]
[INVALIDATE | CASCADE] ;

The varray size can only be increased by using the ALTER
. TYPE..MODIFY statement. Even if the current maximum size
% is not utilized, Oracle doesn't allow the ripping-off of a varray
/S size. If you try to reduce the varray size, Oracle raises the
compilation error PLS-00728: the 1imit of a VARRAY can
only be increased and to a maximum 2147483647.

The INVALIDATE and CASCADE options signify the invalidation or propagation effect
on the dependent objects as a result of the type alteration.

Use the DROP command to drop a varray type from

the database:
'S

DROP TYPE [varray type name] [FORCE]

Varray as a schema object

The following example demonstrates the usage of a varray as a schema object. The
varray captures the annual production values recorded by a geography for the years.

[117]

Using Collections

Let's create a varray of a composite object type:

CREATE OR REPLACE TYPE ot num 2 AS OBJECT

(str VARCHAR2 (25),

num NUMBER

)i

/
CREATE OR REPLACE TYPE v_geo prod AS VARRAY (5) OF ot num 2;

/
For metadata information, we'll query the USER_TYPES and USER_COLL_TYPES views:

SELECT type name, typecode, type oid
FROM USER_TYPES

WHERE type name = 'V_GEO_PROD'
/
TYPE NAME TYPECODE TYPE OID

V_GEO_PROD COLLECTION 122DC43ECA0412EEE0530F02000AC98A

SELECT type name, coll type, elem type name
FROM user coll types

WHERE type name = 'V_GEO_PROD'

/

TYPE NAME COLL_TYPE ELEM TYPE NAME
V_GEO_PROD VARYING ARRAY OT_NUM_2

The following CREATE TABLE script creates a table using the varray object type.
Note that there is no storage table required for varrays:

CREATE TABLE t_annual prod
(prod _code VARCHAR2 (8),
year NUMBER,

production V_GEO_PROD)

/

At this stage, if we need to modify the varray structure that is, to increase the limit
size, we can do so using the ALTER TYPE...MODIFY statement. Here is an example
that increases the varray limit size to 10:

ALTER TYPE v_geo prod MODIFY LIMIT 10 INVALIDATE;

The previous script invalidates all dependent objects. The other option is CASCADE,
which cascades the changes to the dependent objects. The CASCADE [NOT]
INCLUDING TABLE DATA option controls whether the underlying data image of
varray type instances needs to be updated or just the table metadata.

[118]

Chapter 4

If the size of varray column value exceeds 4000 bytes, it has to be stored as an
LOB. For this purpose, you must include the LoB storage information in the varray
metadata. We'll create a varray column with 1.0oB storage for demo purpose and
drop it later:

CREATE TYPE ref geo prod AS VARRAY (10) OF ot num 2;
/

ALTER TABLE t_annual prod

ADD (gl prod ref geo prod)

VARRAY gl prod STORE AS LOB prod lob

/

ALTER TABLE t_annual prod DROP COLUMN gl prod

/

Operations on varray type columns

Similar to nested tables, the columns of varray store instances of varray object types.
However, fundamental differences from nested tables impact certain operations in
varrays. One of the major differences is that piecewise operations are not possible
with varrays.

Inserting varray collection type instance

The following INSERT statements create two records in the T ANNUAL PROD table. The
varray instance uses a collection constructor, while the object type instance uses the
default object type constructor to provide the input values:

INSERT INTO t annual prod

VALUES ('PROD-A', 2010, v_geo prod(ot num 2('NAS',650),
ot _num 2 ('EMEA',32),
ot _num 2 ('APAC',47)))

/

INSERT INTO t annual prod

VALUES ('PROD-A', 2011, v_geo prod(ot num 2('NAS',654),
ot _num 2 ('APAC',57),
ot _num 2 ('EMEA',37)))

/

COMMIT

/

With varrays, piecewise inserts are not possible. If you have to add a new varray
element, you must follow the varray column atomic update process.

[119]

Using Collections

Querying varray column

A varray column can be queried either as an object type instance or in a relational
format. Let's check the ways to query data from T_ANNUAL_PROD table (ignore the
output formatting issues):

set lines 150
col production format a50
SELECT * FROM t_ annual prod

/

PROD_COD YEAR PRODUCTION (STR, NUM)

PRoD-A 2010 V_COUNTRY_PROD(OT NOM_2('NAS',50),
OT _NUM 2 ('EMEA',32), OT NUM 2('APAC',47))

PROD-A 2011 V_COUNTRY PROD(OT NUM 2('NAS', 54),

OT_NUM 2 ('APAC',57), OT NUM 2('EMEA', 37))

The previous result contains the instances of varrays as well as the object type. The
following query simply select the object type instances:

SELECT T.prod code, T.year, value(tl) val
FROM t_annual prod T, TABLE (T.production) T1

/

PROD_COD YEAR VAL (STR, NUM)

PROD-A 2010 OT NUM 2 ('NAS', 50)
PROD-A 2010 OT NUM 2 ('EMEA', 32)
PROD-A 2010 OT NUM 2 ('APAC', 47)
PROD-A 2011 OT NUM 2 ('NAS', 54)
PROD-A 2011 OT NUM 2 ('APAC', 57)
PROD-A 2011 OT NUM 2 ('EMEA', 37)

Well, this looks good. To unnest all the object values of an instance in a relational
format, you can use the TABLE clause. Here is the query:

SELECT T.prod code, T.year, Tl.str, Tl.num
FROM t_annual prod T, TABLE (T.production) T1

/

PROD_COD YEAR STR NUM
PROD-A 2010 NAS 50
PROD-A 2010 EMEA 32

Chapter 4

PROD-A 2010 APAC 47
PROD-A 2011 NAS 54
PROD-A 2011 APAC 57
PROD-A 2011 EMEA 37

6 rows selected.

If the rows exist in the parent table without any child instance, you can specify the
(+) sign as you would do with outer joins. For example, the previous query can be
rewritten as:

SELECT T.prod_code, T.year, Tl.str, Tl.num
FROM t_annual prod T, TABLE (T.production) (+) T1
/

Updating the varray instance

For varrays, piecewise inserts and updates are not possible. Only atomic changes are
allowed, which means that an entire varray instance has to be modified to update a
varray element.

The following PL/SQL block updates the production values of EMEA in the year 2010
through a constructor. Note the use of a SQL varray in the PL/SQL block:

/*Start the PL/SQL block*/

DECLARE
/*Create a local varray variable and initialize with the new varray
instance*/

1 new geoprod v_geo prod := v_geo prod(ot num 2('NAS',650), ot
num 2 ('EMEA',42), ot num 2 ('APAC',47));
BEGIN

/*Update the production instance with the local varray variable*/
UPDATE t_annual prod
SET production = 1 new geoprod
WHERE prod_code = 'PROD-A'
AND year=2010;
COMMIT;
END;
/

[121]

Using Collections

Varray in PL/SQL

The following PL/SQL shows the local declaration of a varray object in a

PL/SQL block:

/*Enable the SERVEROUTPUT to display the results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local varray type, define collection variable and
initialize it*/

TYPE local varray IS VARRAY (4)

OF VARCHAR2 (100) ;

1 obj local varray := local varray('ORCL', 'SAP',6'IBM');

BEGIN

/*Iterate the array object to print the varray elements*/
FOR I IN 1..1 obj.COUNT

LOOP

DBMS_OUTPUT.PUT LINE ('Varray elements:'
END LOOP;

END;
/

Varray elements:ORCL

Varray elements:SAP

Varray elements:IBM

PL/SQL procedure successfully completed.

Comparing the collection types

[|1 _obj (1)) ;

The following table compares the collection types based on the considerations.

only be increased
thereafter.

Comparing Nested table Varray Associative array

factor

Maximum size | Unbound and grows Bounded. However, Unbound and grows
dynamically. varray size, can dynamically.

Sparsity

Starts dense but may
become sparse due to
deletions.

Always dense.

Can be sparse.

[122]

Chapter 4

Comparing Nested table Varray Associative array
factor
Storage Out-of-line storage in a In-line storage up to Non-persistent
considerations | separate storage table. 4000 bytes. collection uses
For out-of-line program memory
storage, the LOB that is UGA.
clause must be
specified.
Querying A nested table type A varray type column | Non-persistent
ability column can be queried can be queried as an collection.
as an instance. However, | instance. However,
unnesting of an instance | unnesting of an
is possible using the instance is possible
TABLE or CAST clause. using the TABLE or
CAST clause.
DML Piecewise and atomic Only atomic Only atomic
operations operations possible. operations are operations allowed
possible. within a PL/SQL
block.
Ordering Unordered index Retains the index Retains the index
order. order.
Performance The join between the Varrays stored Performance
parent and storage table | in-line give better dependent on the
might be a deciding performance than size of associative
factor. Optimize using nested tables because | arrays and block
IOTs and locators. no joins are made operations.
during data retrieval.

The common exceptions that you might encounter during the collection design phase

are as follows:

* COLLECTION_ IS NULL: This exception occurs when the collection is NULL

* NO_DATA_FOUND: This exception occurs when the element corresponding to a
subscript does not exist

* SUBSCRIPT_BEYOND_ COUNT: This exception occurs when the index exceeds
the number of elements in the collection

* SUBSCRIPT_OUTSIDE LIMIT: This exception occurs when the index is not a
legal value

* VALUE_ERROR: This exception occurs, if you try to access an element without

an index

[123]

Using Collections

Selecting the appropriate collection type

Here are a few guidelines that can help you decide the appropriate usage of
collection type in programs:

* Associative arrays:

° Use when you have to temporarily hold the program data in a hash
map like a structure or an array

° Note that there is no method to compare associative arrays

° Can be used for key-value data models with string keys

¢ Nested tables:

° Can be used for modeling one-to-many relationships within the
parent table

° You can compare collections using equality and non-equality, or
multiset operators

° Can be used For performing piecewise transactions on the child rows

° Use when you know the maximum count of elements in the
collection structure

° Except for nullity, you cannot perform comparison operations

© The order of the elements has to be preserved

Oracle 12c enhancements to collections

Oracle Database 12c allows a join between a table and a collection type. If an SQL
collection type is used as a return type of a function, the table and the function
output can be joined using CROSS APPLY and OUTER APPLY. The function must use
a value from the joining table as a parameter and return a collection variable of a
nested table or varray type.

For the purpose of illustration, let us create the test tables using dictionary views
from the Oracle Database. The table T TBS_0BJ contains the tablespace information
and T_SEGMENTS contains the segments created on these tablespaces:

/*Create table T TBS OBJ*/

CREATE TABLE t_ tbs_ obj

AS

SELECT tablespace name, status, allocation type
FROM user tablespaces

[124]

Chapter 4

/

/*Create table T SEGMENTS*/

CREATE TABLE t_segments

AS

SELECT segment name, segment type, tablespace name, bytes, blocks
FROM user segments

/
We'll create the nested table collection to be used in the string:

CREATE TYPE nt string AS TABLE OF VARCHAR2 (128) ;
/

The function F_GET SEGMENTS returns the segments created on a given tablespace as
a nested table collection type:

/*Create a function to return segments created on a tablespace*/
CREATE OR REPLACE FUNCTION f get segments (p_name VARCHAR2)
RETURN nt_string
AS

1 seg nt_string;
BEGIN

/*Select query to fetch the segments from T SEGMENTS*/
SELECT CAST (COLLECT (segment_name) as nt_string)
INTO 1 seg
FROM t_segments
WHERE tablespace name = p name;

RETURN 1 seg;
END;
/

The following query uses the crRoSs APPLY method to join the table and the
function. Note that the output lists the tablespace name and the segments created
on it. Uniquely, there are two tablespaces that is USERS and orCL. What about the
remaining tablespaces? Let's figure that out in the next code listing:

SELECT *

FROM t_tbs obj CROSS APPLY f get segments(tablespace name)
/

TABLESPACE NAME STATUS ALLOCATION COLUMN_ VALUE
USERS ONLINE SYSTEM DEPT

USERS ONLINE SYSTEM EMP

USERS ONLINE SYSTEM SALGRADE

ORCL ONLINE SYSTEM T BAT SCORES
ORCL ONLINE SYSTEM T ANNUAL_ PROD
ORCL ONLINE SYSTEM T OBJ

[125]

Using Collections

ORCL ONLINE SYSTEM T TMP_DB

ORCL ONLINE SYSTEM T ROW_ARCH

ORCL ONLINE SYSTEM T DEF_COLS

ORCL ONLINE SYSTEM T FUN_ PLSQL

ORCL ONLINE SYSTEM NT_ SCORES_ST

USERS ONLINE SYSTEM PK DEPT

USERS ONLINE SYSTEM PK_EMP

USERS ONLINE SYSTEM SYS C0010393

USERS ONLINE SYSTEM SYS C0010392

USERS ONLINE SYSTEM SYS FK0000093178N00003$

16 rows selected.

Note that there are other tablespaces such as sYSTEM and sYSAUX with no user segments
created on them. By virtue of cross join, the tablespaces with no segments were
eliminated from the output. In such case, we can use the OUTER APPLY join method:

SELECT *
FROM t_tbs obj OUTER APPLY f get segments(tablespace name)
/

TABLESPACE NAME STATUS ALLOCATION COLUMN_ VALUE
SYSTEM ONLINE SYSTEM

SYSAUX ONLINE SYSTEM

UNDOTBS1 ONLINE SYSTEM

TEMP ONLINE UNIFORM

USERS ONLINE SYSTEM DEPT

USERS ONLINE SYSTEM EMP

USERS ONLINE SYSTEM SALGRADE
ORCL ONLINE SYSTEM T BAT SCORES
ORCL ONLINE SYSTEM T ANNUAL_PROD
ORCL ONLINE SYSTEM T OBJ

ORCL ONLINE SYSTEM T TMP_DB
ORCL ONLINE SYSTEM T ROW_ARCH
ORCL ONLINE SYSTEM T DEF_COLS
ORCL ONLINE SYSTEM T FUN_ PLSQL
ORCL ONLINE SYSTEM NT_ SCORES_ST
USERS ONLINE SYSTEM PK _DEPT
USERS ONLINE SYSTEM PK_EMP

USERS ONLINE SYSTEM SYS C0010393
USERS ONLINE SYSTEM SYS C0010392
USERS ONLINE SYSTEM SYS FK0000093178N00003$
DWH_DATA ONLINE SYSTEM

FIN_ DATA ONLINE SYSTEM

22 rows selected.

[126]

Chapter 4

PL/SQL collection methods

Oracle provides a set of methods that can work with collections for development
operations. The development operations can be deleting an element, trimming the
collection type, or fetching first and last subscripts. The syntax for all the collection
methods is as follows:

[COLLECTION] .METHOD (PARAMETERS)

EXISTS

The Ex15TS function checks the existence of an element in a collection. The general
syntax of this function is [COLLECTION] .EXISTS (<index>). It accepts the subscript
as the input argument and searches for it in the associated collection. If the element
corresponding to the index exists, it returns TRUE, or else returns FALSE. It is the only
method that doesn't raise any exception when used with a collection.

The following PL/SQL block declares a local nested table collection and its two
variables. While one array is uninitialized, the other one is initialized with sample
data. It checks the existence of the first element in both arrays:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare a local nested table collection*/
TYPE coll method demo t IS TABLE OF NUMBER;

/*Declare collection type variables*/
L ARRAY1l coll method demo_ t;
L ARRAY2 coll method demo t := coll method demo t (45,87,57);

BEGIN
/*Check if the first cell exists in the array 1*/
IF L ARRAY1.EXISTS(1l) THEN
DBMS_OUTPUT.PUT LINE ('Element 1 found in Array 1');
ELSE
DBMS_OUTPUT.PUT LINE ('Element 1 NOT found in Array 1');
END IF;

/*Check if the first cell exists in the array 2*/
IF L_ARRAY2.EXISTS(1) THEN
DBMS_OUTPUT.PUT LINE ('Element 1 found in Array 2');

[127]

Using Collections

ELSE
DBMS_OUTPUT.PUT LINE ('Element 1 NOT found in Array 2');
END IF;
END;
/

Element 1 NOT found in Array 1
Element 1 found in Array 2

PL/SQL procedure successfully completed.

COUNT

The couNT function counts the number of elements in an initialized collection. For
uninitialized collections, the method raises the COLLECTION IS NULL exception.

The COUNT function returns zero when:

% A nested table or varray collection is initialized with an
—" empty collection

An associative array doesn't have any elements
It can be used with all three types of collections.

The following PL/SQL block declares a local nested table collection and a variable of
nested table type. Let us check the element count in both the collection variables:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare the local collection type*/
TYPE nt_ local IS TABLE OF NUMBER;

/*Declare and initialize the collection variables*/

1 loc_var nt local := nt local (10,20,30);
BEGIN

DBMS_OUTPUT.PUT_LINE('The array size is '||1l_loc_var.count);
END;

/
The array size is 3

PL/SQL procedure successfully completed.

[128]

Chapter 4

LIMIT

The LIMIT function returns the maximum number of elements that can be stored in
a VARRAY collection type. The method raises the COLLECTION_ IS_NULL exception for
uninitialized collections.

% For associative arrays or nested tables, the LIMIT method
A returns NULL.

The following PL/SQL block declares a local varray type and a variable of its type.
The varray type variable has been initialized with test data. Observe the difference
between the cOUNT and LIMIT methods:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare local varray and its variable*/
TYPE va_ local IS VARRAY (10) OF NUMBER;

1 array va_local := va_local (10,20,30);
BEGIN
/*Display the current count¥*/
DBMS_OUTPUT.PUT LINE('The varray size is '||L_ARRAY.COUNT) ;

/*Display the maximum limitx*/
DBMS OUTPUT.PUT LINE ('The varray max size is '||L_ARRAY.LIMIT);
END;

/

The varray size is 3
The varray max size is 10

PL/SQL procedure successfully completed.

FIRST and LAST

The FIRST and LAST functions return the first and last elements of a collection. For an
empty collection, both the methods return a NULL value. These methods can be used
with all three types of collections. The FIRST and LAST methods raise the exception
COLLECTION IS NULL to uninitialized collections.

[129]

Using Collections

The following PL/SQL block demonstrates the use of the FIRST and LAST methods
with an initialized collection:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL bock*/
DECLARE

/*Display a local nested table collection*/
TYPE coll_method_demo_t IS TABLE OF NUMBER;
L _ARRAY coll method demo t := coll method demo t (10,20,30);

BEGIN

/*Display the first and last elements*/

DBMS_OUTPUT.PUT LINE ('First element: '|| L_ARRAY (L ARRAY.FIRST));
DBMS_OUTPUT.PUT LINE ('Last element: '|| L _ARRAY (L ARRAY.LAST)) ;
END;

/

First element: 10
Last element: 30

PL/SQL procedure successfully completed.

PRIOR and NEXT

The PrRIOR and NEXT functions take an input index and return its previous and
next index. If the PRIOR and NEXT functions are used with first and last indexes
respectively, the result is NULL.

Both the methods can be used with all three types of collections. The PrRIOR and
NEXT methods raise COLLECTION IS NULL exception when applied to uninitialized
collections. The following PL/SQL shows the usage of the PRIOR and NEXT methods
with a PL/SQL type collection:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare a local nested table collection*/
TYPE nt local IS TABLE OF NUMBER;
L ARRAY nt local := nt local (10,20,30,100,48,29,28) ;

[130]

Chapter 4

1 num idx NUMBER;

BEGIN
/*Capture the element before 4th index*/
1 num idx := 1 array.prior (4);
DBMS_OUTPUT.PUT LINE ('Index before 4th element: '||l num idx);

/*Delete the fifth element*/
1 array.delete (5);

/*Capture the element after 4th index*/

1 num idx := 1 array.next (4);

DBMS_OUTPUT.PUT LINE ('Index after 4th element: '||l num idx) ;
END;
/

Index before 4th element: 3
Index after 4th element: 6

PL/SQL procedure successfully completed.

In the preceding PL/SQL block, the local nested table collection was rendered sparse
after the fifth element was deleted.

EXTEND

The EXTEND function is used to append elements to a persistent collection. It cannot
be used with associative arrays. Being an overloaded function, EXTEND can be used to
append a finite number of elements with a default value:

* EXTEND: It appends the collection with a NULL element.
* EXTEND (x): It appends the collection with an x number of NULL elements.

* EXTEND (x, y):Itappends the collection with x elements with values as
that of the y element. If the y element doesn't exist, the system raises a
SUBSCRIPT BEYOND_COUNT exception.

The following PL/SQL block demonstrates the extension of a collection type using
all three signatures of the EXTEND method. The first extension appends the fourth
NULL element to the array. The second extension appends the fifth and sixth NULL
elements to the array. The third extension appends the seventh and eighth elements
as 10 (the value of the first element) to the array:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

[131]

Using Collections

DECLARE
/*Declare local nested table collection type*/
TYPE nt local IS TABLE OF NUMBER;

/*Declare collection type variable and initialize it*/

L ARRAY nt local := nt local (10,20,30);
1 num idx NUMBER;
BEGIN

/*Extend the collection using default signature */
1 array.extend;
1 num idx := 1 array (1 _array.last);
DBMS OUTPUT.PUT LINE(L ARRAY.LAST||' element is = '||l1 num idx);

/*Extend the collection by adding two NULL elements*/
1 array.extend (2);
1 num idx := 1 array (1 _array.last);
DBMS OUTPUT.PUT LINE(L ARRAY.LAST||' element is = '||1l num idx);

/*Extend the collection by adding two elements with a value*/
1 array.extend (2,1);

1 num idx := 1 array (1 array.last);
DBMS_OUTPUT.PUT LINE (L ARRAY.LAST||' element is = '||l _num idx);
END;

/

4 element is
6 element is
8 element is

10

PL/SQL procedure successfully completed.

The EXTEND method raises the COLLECTION_IS_NULL exception for uninitialized
collections. If a varray is attempted for extension beyond its maximum allowed limit,
Oracle raises an SUBSCRIPT_BEYOND_LIMIT exception.

TRIM

The TRIM function is used to cut the elements from a persistent collection. It cannot
be used with associative array type collections. TRIM is an overloaded method, which
can be used in the following two signatures:

e TRIM: It trims one element from the end of the collection.

* TRIM(n): It trims n elements from the end of the collection. If n exceeds the
total count of elements in the collection, the system raises a SUBSCRIPT
BEYOND_COUNT exception. No action is defined for NULL value of n.

[132]

Chapter 4

The following PL/SQL block shows the operation of the TRIM method on an
initialized PL/SQL table collection type:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare a local nested table collection type*/
TYPE nt local IS TABLE OF NUMBER;

/*Declare a collection variable and initialize it*/

1 array nt_local := nt_local (10,20,30,40,50);
1 num idx NUMBER;
BEGIN

/*Trim the last element of the collection*/
1 array.trim;
1 num idx := 1_array (l1_array.last);
DBMS_OUTPUT.PUT_ LINE (L ARRAY.LAST||'element is = '||l_num_ idx);

/*Trim the last 2 elements of the collection*/
DBMS_OUTPUT.PUT LINE ('Trimming the array...');
1 array.trim (2);

1 num idx := 1 array (1 _array.last);

DBMS_OUTPUT.PUT_ LINE (L ARRAY.LAST||'element is = '||l_num_ idx);
END;
/
4 element is = 40

Trimming the array...
2 element is = 20

PL/SQL procedure successfully completed.

The TRIM method raises a COLLECTION_IS_NULL exception for uninitialized
collections.

DELETE

The DELETE function is used to delete elements from a given collection. The DELETE
operation leaves the collection sparse. Any reference to the deleted index would

raise a NO_DATA_ FOUND exception. The DELETE method raises a COLLECTION IS NULL
exception for uninitialized collections. It can be used with all three types of collections.

[133]

Using Collections

The overloaded method can be used in the following signatures:

e DELETE: It flushes out all the elements of a collection

* DELETE (n): It deletes the nth index from the collection

* DELETE (n,m): It performs range deletion, where all the elements within the
range of the subscripts n and m are deleted

The following PL/SQL block declares a collection along with its collection variable.
This program displays the first element of the collection before and after the deletion
of the first subscript:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare the local nested table collection*/
TYPE nt_local IS TABLE OF NUMBER;

/*Declare and initialize a collection variable*/

1 _array nt_local := nt_local (10,20,30,40,50);
1 num idx NUMBER;
BEGIN

/*Capture the element at the first place*/
1 num idx := 1 array (1 _array.first);
DBMS_OUTPUT.PUT LINE('lst element is '||l_num idx);

/*Delete the 1lst element from the collection*/
L_ARRAY.DELETE(I);

/*Capture the element at the first place*/
1 num idx := 1 array (1 _array.first);

DBMS_OUTPUT.PUT LINE('lst element is '||l_num idx);

END;

/

lst element is 10
lst element is 20

PL/SQL procedure successfully completed.

[134]

Chapter 4

Oracle doesn't allow the deletion of individual elements in a varray collection. Either
all the elements of a varray are removed using the [VARRAY] . DELETE method or the
elements can be trimmed from the end of the varray collection:

/*Enable the SERVEROUTPUT on to display the output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Declare the local varray collection*/
TYPE va_array IS VARRAY (10) OF NUMBER;

/*Declare a collection variable and initialize it*/
L ARRAY va_array := va_array (10,20,30,40,50);

BEGIN
/*Delete the second element of varray*/
L_ARRAY.DELETE(2);
END;
/
L_ARRAY.DELETE(2);
*
ERROR at line 8:
ORA-06550: line 8, column 3:
PLS-00306: wrong number or types of arguments in call to 'DELETE'
ORA-06550: line 8, column 3:
PL/SQL: Statement ignored.

It is recommended that the TRIM and DELETE methods
must not be operated together or simultaneously on a
M collection. The DELETE method retains a placeholder
Q for the deleted element while the TRIM method destroys
the element from the collection. Therefore, the operation
sequence DELETE (last) followed by TRIM(1) would
result in the removal of a single element only.

Summary

This chapter covers one of the more interesting features of PL/SQL programming —
collections. We discussed and learned the three types of collections in PL/SQL that
is associative arrays, nested tables and varrays. Readers should understand the
application of these collection types in different situations. The comparative study of
all three would help readers to differentiate between each one and choose the most
appropriate one in their development.

[135]

Using Collections

The next chapter will explore another distinctive capacity of PL/SQL as a language,
that is in the use of external procedures.

Practice exercise

* Which two statements are true about associative arrays?
1. Associative arrays can have negative subscripts.
2. Associative arrays are always dense collections.
3. Associative arrays don't need initialization in a PL/SQL block.
4

The upper limit of associative arrays can by dynamically modified.

* Which of the following statements is true about nested tables?

1. Nested tables are stored in a segment different from that of
a parent table.

Nested table columns can have string subscripts.
Nested tables can grow dynamically up to any extent.
A database column of nested table collection type can be separately
queried by its storage name.
* Only varrays can have sequential numbers as subscripts.
1. True
2. False

* Which of the following associative array declarations is/are correct:

DECLARE

TYPE Tl IS TABLE OF NUMBER INDEX BY BOOLEAN;

TYPE T2 IS TABLE OF VARCHAR2 (10) INDEX BY NUMBER;

TYPE T3 IS TABLE OF DATE INDEX BY SIGNTYPE;

TYPE T4 IS TABLE OF EMPLOYEES%ROWTYPE INDEX BY POSITIVE;

BEGIN
END;
1. T1
2. T2
3. T3
4. T4

[136]

Chapter 4

* Which of the following statements is/are true about varrays?

1. The limit of varray elements can be modified during runtime using
the ALTER TABLE statement.

A varray element can be deleted using the DELETE method.

For an empty collection of varray type, the value of LAST is equal
to COUNT.

4. varrays can exist as sparse collections.

* What will be the output of the following PL/SQL block:

DECLARE
TYPE T IS TABLE OF NUMBER;
L NUM T := T(1,2);
BEGIN
DBMS_OUTPUT.PUT LINE (L _NUM(1));
L NUM := T(10,20);
DBMS_OUTPUT.PUT LINE (L _NUM(1));
END;

land1.

1 and 10.

Oracle raises a COLLECTION_IS_NULL exception at line 5.
10 and 10.

Ll s

* The EMPLOYEES table stores the details of 14 employees. Identify the solution
of the error in the following PL/SQL program:

DECLARE
TYPE EMP_VARRAY T IS VARRAY (10) OF EMPLOYEES$ROWTYPE;
L _EMP EMP VARRAY T := EMP_VARRAY T();
BEGIN
DBMS_OUTPUT.PUT LINE (L _EMP.COUNT) ;
SELECT *

BULK COLLECT INTO L_EMP
FROM EMPLOYEES;
DBMS_OUTPUT.PUT LINE (L_EMP.COUNT) ;
END;
/
0
DECLARE
*
ERROR at line 1:
ORA-22165: given index [11] must be in the range of [1] to [10]
ORA-06512: at line 6

[137]

Using Collections

Ll

The varray size must be increased to 14 or a higher limit.
The varray variable must be initialized.
Data for only 10 employees must be selected into a varray variable.

The varray definition is wrong; a record type cannot be used as an
element type of a varray collection.

* Which of the following statements are wrong about the collection methods?

1.

EXISTS raises a NO_DATA FOUND exception if the element for the input
subscript does not exist.

DELETE can be used with varrays.
LIMIT returns the current limit of nested table collections.

TRIM removes an element of the collection from the end.

[138]

Using Advanced
Interface Methods

Oracle enables the application developers to create PL/SQL routines that can invoke
programs written in non-Oracle programming languages. An external program can
be a C, C++ based, or Java-based program. External procedures were introduced

in Oracle 8i to add extensibility to the Oracle Database engine by allowing the non-
Oracle programs to execute in the database kernel. This chapter covers the external
procedures and their implementation in the following topics:

* Understanding external routines
* Architecture and benefits
* Executing external C programs from PL/SQL

* Executing external Java programs from PL/SQL

Overview of External Procedures

Oracle provides a rich platform for application programming through PL/SQL
and the support for multilanguage programs. Programming languages

that allow the technical translation of real world problems have different features
and advantages, for example, PL/SQL is tightly integrated with SQL and
computation-based logic can be run efficiently in C. Some of the crucial factors
that determine the choice of a programming language can be code performance,
portability, and security. Therefore, you might see application development
involving multiple programming languages.

[139]

Using Advanced Interface Methods

Oracle PL/SQL allows users to create a PL/SQL program that calls a C or Java
procedure. The special purpose interface allows the users to utilize the strengths and
features of multiple programming languages and support code reusability.

External Procedures

An external procedure is stored in a dynamic linked library (DLL) or a similar unit,
which is prototyped in a call specification using Oracle PL/SQL. Whenever a PL/
SQL procedure is called, the language compiler loads the target library at runtime
and executes the external program as a PL/SQL procedure, entirely and natively
within the Oracle Database. An interesting capability of an external procedure is that
the call specification is independent of the code changes to the program.

m
K PL/SQL ’/

C

program

The preceding diagram shows a high-level overview of the components involved in
an external procedure call. We will discuss them in detail in this chapter.

External procedures enhance the development platform of the Oracle Databases.
A C-based or Java-based program, when executed from the database server, avoids
the network roundtrips made for client-to-database communication.

Components of external procedure
execution flow

In this section, we will learn about the database components involved in the
execution of an external procedure.

[140]

Chapter 5

The extproc agent

The extproc agent plays the most vital role in interfacing external procedures in the
Oracle Database. It is a process started by the Oracle Database or database listener,
which facilitates the execution of an external procedure whenever required. It carries
relevant information such as the library path, procedure name, and arguments. It
returns the result of the execution back to the database processing engine.

In a dedicated server mode, each session will have a new instance of the extproc
process. In a multiuser application, multiple sessions with multiple extproc
processes may result in a disproportionate allocation of memory resources. In

a shared server mode, a multithreaded extproc agent can provide the efficient
utilization of server resources by maintaining a shared pool of the extproc processes.

The Library object

An external procedure can be executed as a shared library in Oracle. A library is

an operating system file, which can be dynamically loaded upon request. On a
Windows machine, you might be aware of the library files with a .d11 extension,
while on Unix and its flavors, the library is stored with a . so extension. A library can
be shared by multiple external procedures. The external procedure can be written

in C, C++, Fortran, COBOL, or Visual Basic. A shared library can be shared across
multiple database sessions, thus optimizing the memory consumption.

For the representation of the shared library across a schema, a schema object is
created as an alias library. This library can be created using the following syntax:

CREATE LIBRARY [schema].library name
{1s | As} 'library path!
[AGENT 'agent link'];

A library can be created by svs or a user with the CREATE LIBRARY privilege. A

user with the EXECUTE privilege on the library can refer it in the call specifications.
The library path must be accessible by the extproc process, that is, either it must be
explicitly specified in EXTPROC_DLLS or the library must reside in the $ORACLE_HOME/
bin/ or SORACLE HOME/lib/ folders.

% EXTPROC_DLLS is an environment parameter set in
Le—" extproc.ora, (discussed later in this chapter).

[141]

Using Advanced Interface Methods

Callout and Callback

There are two relevant terms — callout and callback — associated with the handling of
an external program.

When the PL/SQL procedure invokes an external procedure, the call is referred to
as a callout. If the external procedure invokes an SQL statement, which drives the
database engine, the call is referred to as a callback.

Call Specification

A call specification is required to publish an external procedure. It enables the
registration of an external procedure, database library, parameter mapping, memory
management, and external procedure execution. It consists of a set of statements
embedded in a PL/SQL subprogram. It can be specified in standalone PL/SQL
subprograms, PL/SQL package specifications or body, and abstract data types.

The syntax for a call specification is as follows:

AS LANGUAGE [C | JAVA method signature]
[LIBRARY (library name)]

[NAME (external program name)]

[WITH CONTEXT]

[AGENT IN (formal parameters)]
[PARAMETERS (parameter list)]

The As LANGUAGE clause specifies the publication of C and Java programs. The As
EXTERNAL clause is used to support the external programs with legacy applications.
For Java programs, you need to specify the complete signature.

The LIBRARY is a valid schema object. It is a mandatory clause. You must have the
EXECUTE privilege on the library.

The NAME is the external procedure name that has to be executed in the library. It is a
mandatory input only if the calling PL/SQL subprogram is named differently from
the external procedure.

The PARAMETERS clause specifies the parameter along with the data type, the
respective position, and the pass by method (pass by value or reference).
There might be some challenges in providing the parameter list because of the
disparate data types available across the programming languages, support for
nullability, and precision.

[142]

Chapter 5

How an External Procedure executes

Whenever the PL/SQL runtime engine encounters an external procedure call, the
Oracle Database starts the extproc process. The database passes on the information
received from the call specification to the extproc process, which helps it to

locate the external procedure within the library and execute it using the supplied
parameters. The extproc process loads the dynamic linked library, executes the
external procedure, and returns the result back to the database.

The extproc process runs separately from the main
% database kernel processes. Even if it crashes, it wouldn't
’ impact the Oracle database instance.

If any of the preceding steps fail to execute, an exception is raised. The following is a
list of commonly encountered exceptions:

® ORA-28576: Lost RPC connection to external procedure agent:
This exception is raised when the Oracle listener is not able to establish the
connection with the extproc process.

* ORA-28595: Extproc agent: Invalid DLL path: This exception is raised
when the extproc process is not able to locate the DLL in the specified
location. You need to ensure that the library path is accessible by the process.

* ORA-06521: PL/SQL Error mapping function: This exception is raised
when the external program is wrongly prototyped in the call specification.
The reasons could be a parameter data type mismatch or the wrong
program name.

Environment setup

The extproc process attempts to locate the library files in an accessible location.
The location of the target libraries can either be specified with the listener or in an
extproc.ora file. By default, the extproc process will be started by the Oracle
Database. If you want to continue with the default behavior, it is recommended to
specify the library paths in extproc.ora.

If you are working with distributed databases or a multithreaded extproc agent,
you can override the default behavior by modifying 1istener.ora file.

[143]

Using Advanced Interface Methods

TNSNAMES.ora

The TNSNAMES . ora file that gets configured at the time of the database software
installation (or can be configured later), includes an entry for the ORACLR_CONNECTION_
DATA service to support external services. This service verifies the network connection
by using the ADDRESS parameter value and connects using the CONNECT DATA
parameter value. The following is the entry in tnsnames.ora file:

ORACLR_CONNECTION DATA =
(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROC1521))
)
(CONNECT DATA =
(SID = CLRExtproc)
(PRESENTATION = RO)

)

The ADDRESS parameter value checks for the listener, which can receive IPC
(Internet Procedure Calls) requests through the Ky value, ExTPROC1521. The
PROTOCOL parameter has a fixed 1pC value to establish the interaction between the
server and external service requests. Once the ADDRESS setup matches the current
active listener, it uses the CONNECT DATA parameter value to spawn the extproc
process. The PRESENTATION parameter is a performance optimizing parameter
that directs the database server to concentrate and respond to the client through a
protocol — Remote-Ops (RO).

programs to access external programs.

1
[‘Q CLRExtproc is a listener mode that allows a PL/SQL]

EXTPROC.ora

In the default configuration, you will need to set the EXTPROC_DLLS environment
variable in extproc.ora for the extproc process. The syntax to be used is as follows:

SET EXTPROC_DLLS= <library paths>

The possible values for the environment variable are oNLY, ANY, or a colon (:),
separated by the actual DLL path.

* NULL (default):The extproc process can only load the libraries located in the
$ORACLE_HOME/bin and $ORACLE_HOME/1lib paths.

[144]

Chapter 5

®* ONLY: [DLL:DLL. . .]: This provides maximum protection by limiting
the number of libraries on the system. The extproc process loads either
of these libraries.

e [DLL:DLL ...]:This allows you to specify the DLL paths separated by a
colon. The extproc process can load the libraries located in these paths or
from the $ORACLE_HOME/bin and $ORACLE_HOME/1ib folders.

* ANY: This allows any DLL on the server to be loaded by the extproc process.

1
~ Use a semicolon as a delimiter while specifying libraries on
a Windows server.

In a distributed database system, you need to use the multithreaded extproc
process to be spawned by the Oracle listener and not the database. The advantage
of having the multithreaded extproc agent in an Oracle Database shared server
architecture is optimized resource consumption. It uses a shared pool of extproc
agent threads which are sequentially assigned in an database sessions in a queue.
The multithreaded extproc agent ensures the efficient utilization of the system
resources.

% When running an Oracle database server in shared mode, the agent
= process and listener must reside on the same physical server.

Executing external C programs from
PL/SQL

Let's us walk through an illustration on how to execute an external procedure,
written in the C language, in the Oracle Database.

* Step 1: Creating and compiling the C program.
The following C program (GetMax. c) finds the maximum of the two number
values:

#include <stdio.h>

/* Define the function returning the max between two numbers */
int GetMax (int numl, int num2)

/* local variable declaration */

int result;

[145]

Using Advanced Interface Methods

if (numl > num2)
result = numl;
else
result = num2;

return result;

}

Compile the program by using a C compiler.
sh-4.3# gcc -c GetMax.c

* Step 2: Generating the DLL and creating the library object in the
Oracle Database.

We will now generate the DLL for the C program:
sh-4.3# gcc -shared GetMax.c -o GetMax.dll

° The library location

The default paths searched by the extproc process for loading the

required library are $ORACLE_HOME/bin and $ORACLE_HOME/1ib. For
testing purposes, we will continue with the defaults. For this reason,
the setting in extproc . ora remains unchanged (to NULL), as follows:

SET EXTPROC DLLS =

We will place the shared library generated by the compiler in the
SORACLE_HOME/1ib folder. If you want to use a non-default path,
set the EXTPROC DLLS environment variable in the extproc.ora
(SORACLE_HOME/hs/) file.

The following script creates the library object in the scoTT schema.
Note that the sYs has granted the SCOTT user the CREATE LIBRARY
privilege:

/*Connect as SYSDBA*/

CONN sys/oracle AS SYSDBA

/*Grant the CREATE LIBRARY privilege*/
GRANT CREATE LIBRARY TO SCOTT
/

Grant succeeded.

[146]

Chapter 5

Now, the SCOTT user can create a library in the database for the
shared library path.

/*Connect as SCOTT user*/
CONN scott/tiger

/*Create the alias library object using the .so DLL path*/
CREATE OR REPLACE LIBRARY GetMaxDll

AS '/uO0l/app/oracle/product/12.1.0.2/db 1/1lib/GetMax.so"’

/

Library created.

The library metadata can be queried from the USER_LIBRARIES
dictionary view. This view captures the data for the libraries owned
by the current user:

SELECT library name,
file spec,
dynamic,
status

FROM user libraries

/

LIBRARY NA FILE SPEC D STATUS

GETMAXDLL /u0Ol/app/oracle/product/12.1.0.2 Y VALID
/db_1/1ib/GetMax.so

Step 3: Creating the PL/SQL wrapper function with a call specification.

For the GetMax external program, let's create a call specification. Within the
call specification, we will provide the library name, C program name, and
parameters:

/* Create the function with call specification*/
CREATE OR REPLACE FUNCTION f get max

(p_numl PLS INTEGER, p _num2 PLS INTEGER)

RETURN PLS INTEGER

/* Call Specification starts */
AS LANGUAGE C

/*Specify the PL/SQL library object name*/
LIBRARY GetMaxDl1l

[147]

Using Advanced Interface Methods

/*Specify the external function name*/
NAME "GetMax"

/*Specify the parameters*/
PARAMETERS (p_numl, p num2) ;
/

Function created.

* Step 4: Testing the PL/SQL procedure.

The following anonymous PL/SQL block invokes the F_GET MAX function:

/*Enable the SERVEROUTPUT to display the block output*/
SET SERVEROUTPUT ON
DECLARE

/*Declare local variables*/

a PLS_INTEGER := 10;
b PLS INTEGER := 30;
c PLS_INTEGER;

BEGIN

/*Call the F _GET MAX function */
c := F_GET MAX (a, b);

/*Display the output*/

DBMS_OUTPUT.PUT LINE ('The maximum number is - '||c);
END;
/
The maximum number is - 30

PL/SQL procedure successfully completed.

That's the correct result. We have just executed a C program from Oracle PL/SQL.
As soon as the PL/SQL block execution starts, you can trace the extproc process by
listing the processes. The extproc process is active until the end of the session.

[oracleedevhost ~]$ ps -ef | grep extproc

oracle 5264 1 0 15:01 2 00:00:00 /u0l/app/oracle/
product/12.1.0.2/db 1/bin/extproc (DESCRIPTION= (LOCAL=YES)
(ADDRESS:(PROTOCOL:EEQ)))

oracle 5266 5115 0 15:01 dev/1 00:00:00 grep extproc

[148]

Chapter 5

The restrictions on C external procedures are listed as follows:

* The feature is limited to the platforms that support dynamically linked libraries
* The extproc process and PL/SQL procedure need to be on the same host

* The library clause cannot point to a remote location through a database link
* The maximum number of parameters to an external procedure is 128

* Parameters of cursor variable types are not supported with external
procedures

Securing External Procedures with
Oracle Database 12c

The Oracle Database creates the extproc process and runs under the operating
system user, that starts the listener or runs an Oracle server process. Quite often, you
will see the extproc process running as the oracle user. The extproc process is not
physically associated with the Oracle Database.

Oracle Database 12c enables enhanced security for extproc by authenticating it
against a user-supplied credential. This new feature allows the creation of a user
credential and associates it with the PL/SQL library object. Whenever the application
calls an external procedure, the extproc process authenticates the connection before
loading the shared library.

The DBMS_CREDENTIAL package allows the configuration of the credential through
member subprograms. The CREATE LIBRARY statement has been enhanced for
credential specification. A new environment variable, ENFORCE_CREDENTIAL, can
be specified in extproc.ora to control the authentication by the extproc process.
The default value of the parameter is FALSE. Another new environment variable,
GLOBAL_EXTPROC_CREDENTIAL, serves as the default credential and is only used
when the credential is not specified for a library. If ENFORCE CREDENTIAL is FALSE
and no credential has been defined in the PL/SQL library, there will be no user
authentication; this means the extproc process will authenticate by using the
privileges of the user running the Oracle server.

The following PL/SQL block creates a credential by using DBMS_CREDENTIAL.
CREATE_CREDENTIAL. This credential is built using the ORADEV user:

BEGIN
DBMS_CREDENTIAL.CREATE CREDENTIAL (
credential_name => 'devhost_auth',
user_ name => 'oradev',

[149]

Using Advanced Interface Methods

password => 'oradev')
END;
/

The library definition will include an additional CREDENTIAL clause:

CREATE OR REPLACE LIBRARY myextlib
AS 'HelloWorld.so'

CREDENTIAL devhost_auth

/

When the extproc process reads the call specification and finds the shared library
with a secured credential, it authenticates the library on behalf of the credential and
then loads it.

Executing Java programs from PL/SQL

Like the C programs, Java programs can also natively execute in the Oracle Database.
However, unlike C external programs, the Java classes and Java source files are
stored as schema objects in the database.

External Java programs are not executed through OS-based shared libraries but use

a Java shared library or libunit for execution. Libunits are similar to dynamically
linked libraries but they are mapped one-to-one to the Java class and are not sharable
across the other methods.

The libunit is loaded and executed by the Java Virtual Machine (JVM) which resides
natively in the Oracle Database. The JVM uses the Java pool component of the shared
global area to execute the Java-based external program.

Loading a Java class into a database

A Java program can be loaded into an Oracle Database by using the CREATE JavA
statement or the LOADJAVA utility.

The CREATE JAVA statement enables the Java Virtual Machine library manager to
load a Java class into the Oracle Database and generate the RDBMS shared library or
libunit in the target directory. The CREATE JAVA statement syntax is as follows:

CREATE JAVA CLASS USING BFILE (directory, java class)

[150]

Chapter 5

Java classes can also be loaded by using the LoaDJAVA utility. The command line
utility uploads the Java class as a large object in a system-generated table and
generates the shared library.

The loadjava utility can be used as per the following syntax:

loadjava {-user | -u} username/password[edatabase] [option ...]

filename [filename]...

[Q You can use loadjava -h | -help to get a helper index.]

Steps to execute a Java class from an Oracle
PL/SQL unit

In this section, we will illustrate the loading of a Java class into an Oracle Database
and invoke it by using a PL/SQL procedure.
* Step 1: Creating a Java class.
The compute Java class includes the following two methods to add and

multiply two numbers:

public class Compute {

public static int Sum (int x, int y) {
return xX+y;

}

public static int Cross (int x, int y) {
return x*y;

}

}
* Step 2: Loading the Java class into Oracle.

We will now upload the Java class into the Oracle Database by using the
loadjava utility:

[oracle@devhost ~]3$ loadjava -user scott/tiger Compute.java

[151]

Using Advanced Interface Methods

A successful upload operation gets terminated without any confirmation
message. You can confirm the load operation by querying the Java class in
the USER_JAVA CLASSES, USER_OBJECTS and USER_SOURCE dictionary views:

/*Query the USER JAVA CLASSES view*/
SELECT name, kind, accessibility, source
FROM user java classes

/
NAME KIND ACCESSIBILITY SOURCE
Compute CLASS PUBLIC Compute

/*Query the USER OBJECTS view*/

COL object name format a30

SELECT object name, object type, status
FROM USER OBJECTS

WHERE TRUNC (created)=TRUNC (SYSDATE)
ORDER BY timestamp

/

OBJECT_ NAME OBJECT_TYPE STATUS
SYS LOB0000093463C0000253 LOB VALID
SYS IL0000093463C00002$$S INDEX VALID
SYS C0010407 INDEX VALID
CREATESJAVASLOBSTABLE TABLE VALID
JAVASOPTIONS TABLE VALID
Compute JAVA SOURCE INVALID
Compute JAVA CLASS INVALID

7 rows selected.

You can ignore the invalid status of the JAVA SOURCE and JAVA CLASS objects.
They both will get validated upon invocation.

The JAVASOPTIONS table stores the compiler options:

SELECT *

FROM JAVASOPTIONS

/

WHAT OPT VALUE

Compute encoding UTF-8

[152]

Chapter 5

The system-generated CREATESJAVASLOBSTABLE table stores the Java class as
a SecureFile large object.

Starting with Oracle Database 12c, SecureFile is the
= default storage mechanism for large objects.

Let's drill down by a step to further check out the table structure from the
USER_TAB_COLS dictionary view:

SELECT table name,
column_name,
data_type
FROM user tab cols
WHERE table name='CREATESJAVASLOBSTABLE'

/

TABLE_NAME COLUMN_NAME DATA TYPE
CREATESJAVASLOBSTABLE LOADTIME DATE
CREATESJAVASLOBSTABLE LOB BLOB
CREATESJAVASLOBSTABLE NAME VARCHAR2

Verify the LOB storage as a SecureFile for the L.OB column in the table:

SELECT table name, column name, securefile
FROM user lobs

WHERE table name = 'CREATESJAVASLOBSTABLE'

/

TABLE_NAME COLUMN_NAME SEC
CREATESJAVASLOBSTABLE LOB YES

Step 3: Publishing the Java class method by using a call specification.

Let's create a PL/SQL wrapper that will include a call specification to register
the Java program and specify the parameter mapping. Note that, unlike C
program publishing, you don't need to specify the library unit and external
procedure name. The AS LANGUAGE provides the interface between the Java
class and Oracle PL/SQL.

The syntax for the call specification is as follows:

{1s | AS} LANGUAGE JAVA
NAME 'method fullname (parameters)
[return java_ type fullname]';

[153]

Using Advanced Interface Methods

We shall now create the call specification for the compute Java class. The
standalone function accepts two numbers and returns their sum using the
Sum method:

/*Function to publish Java class method*/
CREATE OR REPLACE FUNCTION F_COMPUTE SUM
(P_X NUMBER, P_Y NUMBER)

RETURN NUMBER

AS

/*Specify the external programs base language*/
LANGUAGE JAVA
NAME 'Compute.Sum(int,int) return int';

Function created.

* Step 4: Verifying the Java class execution method.

Let's invoke the F_coMPUTE_SuUM function to verify the execution of the Java
class method:

variable x number;

variable y number;

exec :X := 100;

PL/SQL procedure successfully completed.
exec :y := 95;

PL/SQL procedure successfully completed.

variable result number;
exec :result := £ compute sum (:x, :y);

PL/SQL procedure successfully completed.
print result

RESULT

[154]

Chapter 5

Summary

External procedures demonstrate the extensibility feature of an Oracle Database
that allows a program developed in non-Oracle scripting language to be executed
natively in the database kernel. The readers will find it interesting to explore how
they can enable complex algorithms to run on the server side.

In the next chapter, we will be discussing a data security feature called Virtual
Private Database. From a data access standpoint, this feature is quite important and
easy to implement with bigger benefits.

Practice exercise

Which of the following statements are true about the extproc process?

1. Itloads the shared library of the external C program.

2. Itis started by the PL/SQL runtime engine.

3. [Itis a session-specific process.

4. The extproc process compiles the C program while loading.
Oracle 7 introduced the external procedure feature for sending e-mails
from PL/SQL.

1. True

2. False
Determine the effect of dropping the library object that has been used in a
PL/SQL call specification while it is still in use:

1. The PL/SQL wrapper method gets invalidated.

2. The shared library gets corrupted.

3. The PL/SQL wrapper method still works fine as it has already been
executed once.

4. The PL/SQL wrapper method gives no output.

Examine the following TNSNAMES . ora and LISTENER. ora entries and choose
the correct option:

//TNSNAMES . ora
ORACLR_CONNECTION DATA =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROC1521))
)

[155]

Using Advanced Interface Methods

(CONNECT_DATA =
(SID = extproc)
(PRESENTATION = RO)

)
//LISTENER.Ora
SID LIST LISTENER =
(SID_LIST =
(SID _DESC =
(SID_NAME = CLRExtproc)
(ORACLE HOME = C:\ORCL\11.2.0\dbhome 1)
(PROGRAM = EXTPROC1521)
(ENVS= "EXTPROC DLLS=ONLY:C:\ORCL\product\11l.2.0\dbhome 1\BIN\

Ext.dll")
)
)
LISTENER =
(DESCRIPTION LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROC1521))
(ADDRESS = (PROTOCOL = TCP) (HOST = localhost) (PORT = 1521))

1. The KEY value under ADDRESS of ORACLR_CONNECTION DATA must be
extproc.

2. The s1D value under CONNECT DATA of ORACLR CONNECTION DATA
must be CLRExtproc.

The KEY value under ADDRESS of LISTENER must be extproc.

The PROGRAM value of SID LIST LISTENER must be extproc.

* Which of the following statements about the 1oadjava utility are true?

1. It generates a shared library for the Java programs.

2. Itloads the Java program in the Oracle Database.

3. The loadjava utility requires a Java compiler to run.

4. Itloads the Java class file into the Java pool in the database instance.
* External programs in Java don't require the shared libraries to be executed

from PL/SQL.
1. True
2. False

[156]

Chapter 5

An external C program looks like this:

#include<stdio.h>
#include<conio.h>
int GetDouble (int num)
{
return num * 2;
getch() ;

}

The PL/SQL wrapper method looks like this:

CREATE OR REPLACE FUNCTION F _GET DOUBLE (P_NUM NUMBER)
RETURN NUMBER

AS EXTERNAL LIBRARY NUMLIB

NAME "GETDOUBLE"

LANGUAGE C

PARAMETERS (P_NUM INT) ;

When you call the PL/SQL wrapper, you get the following exception:
DECLARE

*
ERROR at line 1:
ORA-06521: PL/SQL: Error mapping function
ORA-06522: Unable to load symbol from DLL
ORA-06512: at "ORADEV.F_GET DOUBLE", line 1
ORA-06512: at line 4
Identify the cause for this exception:
1. The NuMLIB library has been incorrectly placed.
2. The C program has syntactical errors.

3. The C program name in the call specification (the PL/SQL wrapper)
should be GetDouble instead of GETDOUBLE.

4. The extproc process is not working properly.

[157]

Virtual Private Database

Information security is one of the key challenges that organizations have to address
to protect data privacy and its regulation. Leakage of sensitive information or
unauthorized access to data might lead to hazardous consequences. With the
stringent protocols of data distribution and steep rise of the internet usage, data
security can pose a tedious question to the organizations. Information that is prone
to invasions can be personal details, financial data, credit card information, business
leads, or an intellectual property. A relational database can expose potential areas of
injection in the form of network access, over privileged user accounts, non-database
file access, non sanitized inputs, and proliferation of production data to unregulated
environments. Knowing the fatal consequences of data breaches, the data security
solutions must be efficient to bypass the attacks from the database layer, network,
and application.

In this chapter, we will walk through an overview of Oracle's Database Security
solution. We will focus on the implementation of a Virtual Private Database
to develop secure applications. In addition, we will highlight the key security
enhancements in Oracle Database 12c.

* Oracle Database Security overview

* Virtual Private Database

* Oracle Database 12¢ Security enhancements

[159]

Virtual Private Database

Oracle Database Security overview

Oracle offers a comprehensive suite of database security solutions that aim to secure the
databases and applications by protecting sensitive information, detecting threats and
attacks, and managing security policies along the lines of organizational compliance.
The defense-in-depth approach of Oracle can be categorized under preventive,
detective, and administrative controls that ensure all the vulnerable areas of an
application are covered. A powerful security strategy can be developed and laid down
by using the right mix of security features. The factors impacting the formulation of a
security strategy can be threat anticipation, data sensitivity, data distribution and user
classification, compliance, and internal regulations.

Each of the above categories includes various products and technical features. The
following diagram bifurcates the security pillars into security measures:

. . . L Keyand Wallet
Enecryption/Redaction Active Monitoring Management
Data Mﬂsk1_ng and Database Firewall Pr1v1lege andData
Subsetting Discovery
DEA | Andifi 4R . Configuration
\ controls |/ \ uditing and Reporting |/ \ Managerment |/

Oracle Database security feature under three categories
The Oracle Database Security solution includes the following database products:

* Oracle Advanced Security: Oracle Advanced Security is a licensed option
available with the Oracle Database Enterprise Edition. This option includes
various features that can be implemented at the database level to prevent
data hacking and reduce the direct exposure of sensitive information to
an unauthorized user. It helps protect the data from malicious attacks
and comply with the security regulations like Payment Card Industry
Data Security Standard (PCI-DSS) and Health Insurance Portability and
Accountability Act (HIPAA). For example, you can encrypt the customer's
bank account information in the database. Similarly, the sensitive information
in the database can be redacted for support or call center executives.

[160]

Chapter 6

The Oracle Advanced Security option includes:

o

Data Redaction: The Data Redaction feature was introduced

in Oracle Database 12c to apply on-the-fly masking policies to

the sensitive information in the database. The feature has been
backported to Oracle Database 11.2.0.4. Data redaction can be a
handy feature as it is cost-efficient and dynamically obfuscates
the data. This feature is covered in detail in the Oracle Database 12¢
Security Enhancements section of this chapter.

Transparent Data Encryption (TDE): The encryption feature
prevents the data, which is lying in storage, from outside attacks.

The data is stored in an encrypted format, which gets auto-decrypted.
It is installed at the time of the Oracle Database software installation.
It is an easy-to-implement transparent solution and requires no
changes to the existing SQL queries.

Securefile encryption is part of the
=" Advanced Security option.

The other features included under the Advanced Security option
are Data Pump Export file encryption and RMAN Backup encryption
to disk.

Virtual Private Database (VPD): This is a security feature available in Oracle
Database Enterprise Edition that controls the data visibility and accessibility
depending on the database user authorization. First introduced in Oracle 8i,
the feature works with VPD policies and session contexts. All queries issued
by a user are appended by an additional predicate to restrict the rows in

the result set. It is also known as Fine Grained Access Control or Row Level
Security.

Real Application Security (RAS): This feature was introduced in Oracle
Database 12c to support the diversified security requirements in an
enterprise application model. It presents an advanced version of the Virtual
Private Database technology. Not only the data visibility, a Real Application
Security policy also allows you to control the transactional permissions on
the application objects. It is one of the smartest security solutions that can
control the privileges of an application user on the business objects.

Oracle Key Vault (OKV): Oracle Key Vault provides a robust key
management platform that can be used as the centralized repository of TDE
master keys, Oracle wallets, Java key stores, SSH keys, and other security
credential files. The OKV store allows the end-to-end administration of the
key lifecycle including creation, retention, and key rotation.

[161]

Virtual Private Database

Oracle Database Vault: Oracle Database Vault enables a security solution
to safeguard the application data from privileged database users and ad hoc
access. A multifactor database vault policy imposes deterrent controls on
the user access to the database and reports violations, if any. It is a powerful
proactive solution that helps in reducing the attack surface for highly
privileged users like SYSTEM, SYSDBA, or a user with a large set of roles and
privileges. Oracle provides default vault policies for the Oracle E-Business
Suite (versions 11.5.10, 12.0, and 12.1), Oracle PeopleSoft application, Oracle
Siebel CRM (version 7.7 and higher), and SAP applications.

Privilege Analysis: The new feature in Oracle Database 12c analyzes

the privileged users, roles, and database to report the used and unused
privileges. Based on the analysis, the security administrator (or the DBA)
can determine whether to retain or revoke the privileges of the developers
or database users. This feature is quite important from the point of view of
application security and helps reduce the risks from internal users.

Oracle Data Masking and Subsetting: The Oracle Data Masking and
Subsetting pack masks the original copy of the application data by physically
obfuscating the sensitive information in either the complete application
database or just its subset. The masked data can then be proliferated for
analytical, testing, or regulatory purposes. The sensitive information and
referential integrity model can be discovered based on the prebuilt data
patterns. A portion of a large database can be extracted based on factors such
as percentage, the number of rows, or column predicates. This pack contains
a variety of masking formats and transformations that can be applied to the
application data.

Oracle Label Security (OLS): Oracle Label Security, first introduced in
Oracle 8i, is a database option available in the enterprise edition of the Oracle
Database. It enables the classification of data by labels. The security policies
control the user access privileges and authorization on the application by the
data labels. This option is very useful in implementing multilevel security in
large legacy applications.

Oracle Audit Vault and Database Firewall (AVDEF): This product can be
deployed in all Oracle Database editions and non-Oracle products such as
Microsoft SQL Server, IBM DB2 for LUW, SAP Sybase ASE, MySQL databases
and Oracle Big Data Appliance. You can define the rules to capture and

block the unauthorized SQL access to the application data. Another feature

of this product is the consolidation of the database audit with the system and
network audit information, which then generates alerts and reports.

[162]

Chapter 6

Strong authentication services such as Kerberos, PKI, and
% RADIUS along with network encryption are available in all the
T~ editions of the Oracle Database.

Fine-Grained Access Control

In an enterprise application, user isolation or role-based multitenancy ensures that
data is accessed by the authorized users only. In a Software as a Service (SaaS)
model application, tenant isolation is one of the prime demands. Application users
are authorized to access only their world of data and not peek into other user's data.

Fine-grained access control (FGAC) enables the enforcement of security policies on the
access of rows and columns based on the user's role and authorization. For example,

an HR representative is authorized to view the details of employees that belong only to
his vertical. Similarly, a relationship officer in a bank is authorized to access the account
details of those customers that belong to his branch. The FGAC feature provides you
with the mechanism to expose the authorized piece of data only to the approved user.

How FGAC works

Fine-grained access control enables the creation of security policies that can be
associated with a table or view. Upon invocation, the security policy evaluates the
policy function that returns a predicate clause, which is dynamically appended to the
SQL queries issued by the user. Thus, the user views only the authorized rows from
the table or a view. The security policy can limit either rows or columns or both.

In the following figure, a user from department 10 queries the EMP table. He issues
a SELECT statement to view the employee details. Oracle invokes the FGAC policy
attached to the EMP table and appends a predicate (that is, the WHERE clause) to the
SELECT query. The modified SELECT query is then executed in the HR schema of
the database.

DeptNo -10 SELECT empna, job, =zal //,———‘\\
*| FROM enp ____—__,/

! | FGAC Policy hr fhr

SELECT empno, job, sal

FROM enp EMP

THERE deptno = 10

How Fine-Grained Access Control works

[163]

Virtual Private Database

The following are the salient features of fine-grained access control:

* Oracle provides the DBMS_RLS package for the management of security
policies such as creation, drop, enable, and disable

* A policy can be set to be invoked only when given columns are accessed
* Multiple security policies can be associated with a table or view

* All security policies and the predicates are appended with the AND clause

Virtual Private Database

The working principle of the Virtual Private Database technology is that users
should have isolated and distinguished data access. Virtual Private Database (VPD)
is a feature that is built on fine-grained access control and uses application contexts
to define and add the predicates to the SQL queries. Similar to FGAC, Virtual
Private Database lays down the security framework through the security policies

in the Oracle Database and associates them directly to tables, views, or synonymes.
The security policies act as a safety net on the objects, and by no means they can be
bypassed.

How does Virtual Private Database work?

Whenever a user issues an SQL query against a Virtual Private Database protected
table, Oracle invokes the policy and evaluates the policy function. The policy
function is a PL/SQL function that returns a predicate or a WHERE clause. The query
is then rewritten using dynamic views to add the predicate clause. The modified
query is executed against the database server and the result set is returned to the
user. The predicate or the WHERE clause participates in the execution of the query,
that is, the column indexes will impact the query execution plan.

Note that the Virtual Private Database protects only the SELECT, INDEX, and DML
operations (INSERT, UPDATE, and DELETE). It doesn't work with DDL's like TRUNCATE
or ALTER TABLE statements.

Column-level Virtual Private Database

Row-level security can also be imposed on tables and views whenever a user selects
sensitive columns. The sensitive columns can be specified at the time of the policy
creation, that is, the SEC_RELEVANT COLS parameter of the DBMS_RLS.ADD POLICY
procedure.

[164]

Chapter 6

The column-level policy works only for the SELECT queries. When a user selects
sensitive columns (implicitly or explicitly), the non-authorized rows are excluded
from the result set. For example, if an HR representative queries public information
such as the name and department of employees, the query will list all the records
from the table. If he attempts to select the secured columns like SaL, the result set
will be limited by the row-level security condition.

You can include all the rows with the sensitive column values marked as NULL. It
can be achieved by specifying an attribute known as SEC_RELEVANT COLS_OPT in the
DBMS_RLS.ADD_POLICY procedure.

Virtual Private Database with Oracle Database 12c
Multitenant

Virtual Private Database is supported within a pluggable database. You cannot
create a security policy in the root container, that is, the container database.

Virtual Private Database components

The VPD technology makes use of the application package, policy function, application
context, and the DBMS_RLS package to add policies. In the following section, we will
discuss the building blocks of the Virtual Private Database implementation.

Application Context

A Virtual Private Database implementation with application contexts is useful when
working with multiple security attributes. For example, in an organization, the data
view authorization may be different for different job roles. In a manufacturing unit,
A supervisor can be authorized to query the global parts while an executive can see
only the local parts. In such cases, the job role can be a context attribute whose value
can be used in the predicate clause returned by the policy function.

Application contexts are session variables that hold the user and session information
securely. Context attributes are stored as key-value pairs under a given namespace,
which is also known as a label. USERENV is a system-defined namespace in the Oracle
Database that can provide session information such as DB_NAME, SESSION_USER, and
others. User-defined application contexts can be created by a SYSDBA or users with
the CREATE ANY CONTEXT privilege by using a trusted application package.

An application context can be either database session-based, client session-based,
or global.

[165]

Virtual Private Database

A database session-based application context is accessible only within a database
user's session. Its attributes and values are stored in a session cache, User Global
Area (UGA). The database session-based application contexts can either be
initialized locally from the session, externally using a database link, OCI interface or
job queue process, or globally from a centralized directory using the Oracle Internet
Directory. You can query the database session-based context attributes from the
SESSION_CONTEXT dictionary view.

A client session-based application context is initialized using OCI functions
(ociappctxset) and is stored in User Global Area (UGA) under the CLIENTCONTEXT
namespace. The application can set the non-database attributes within the contexts
and use them during policy creation. Ensure that the database session and client
session-based application contexts do not conflict with each other.

A global application context can be accessed by all the database user sessions
in a single instance or RAC environment. The context attributes and their
values are stored in System Global Area (SGA), which can be queried from the
GLOBAL_CONTEXT dictionary view.

The following SQL queries the database name from the USERENV namespace using
the sYS_CONTEXT function:

/*Query the database name from USERENV namespace*/
SELECT SYS_CONTEXT('USERENV','DB_NAME')

FROM dual

/

SYS CONTEXT ('USERENV', 'DB_NAME')

You can create database session-based application contexts using the CREATE
CONTEXT statement, as per the following syntax:

CREATE CONTEXT [context name]
USING [trusted package]
INITIALIZED [EXTERNALLY | GLOBALLY]
ACCESSED [LOCALLY | GLOBALLY]

[166]

Chapter 6

Trusted package is a PL/SQL package or stored procedure that controls the
values of the context attributes. A database session-based context can be initialized
locally, externally or globally. The context type can be ACCESSED GLOBALLY for
global application contexts or ACCESSED LOCALLY (default) for session-based
application contexts. The following example shows the creation of a context using
a trusted package:

/*Connect as SYSDBA*/
CONN sys/oracle AS SYSDBA

Connected.

/*Grant CREATE ANY CONTEXT, DROP ANY CONTEXT privileges to SCOTT*/
GRANT CREATE ANY CONTEXT, DROP ANY CONTEXT TO SCOTT

/

Grant succeeded.

/*Connect to SCOTT user*/
CONN scott/tiger

Connected.

You can create the trusted PL/SQL program before or after creating the context. The
following PL/SQL procedure p_aAPP_CONTEXT uses the Oracle supplied package
DBMS_SESSION to create a context namespace and member attributes.

/*Create the stored procedure to set the context attributex/
CREATE OR REPLACE PROCEDURE p_app context (p val VARCHAR2)
IS

BEGIN

/*Create a namespace DEMO_ CONTEXT*/
DBMS_SESSION.SET CONTEXT (
NAMESPACE => 'DEMO_CONTEXT',
ATTRIBUTE => 'COUNTRY',
VALUE => P _VAL);
END;

[167]

Virtual Private Database

The PL/SQL procedure can now be used to create the application context.

/*Create the context*/
CREATE CONTEXT demo_ context USING p app context
/

Context created.

Now, use the trusted program to set the value of the COUNTRY context key. Use the
same program to modify the context attribute value.

/*Call P_APP CONTEXT to set context value*/
EXEC p_app_context ('LUXEMBOURG')

/

PL/SQL procedure successfully completed.
/*Query the COUNTRY context*/

SELECT SYS_ CONTEXT ('DEMO_CONTEXT', 'COUNTRY')
FROM DUAL

/

SYS CONTEXT ('DEMO_CONTEXT', 'COUNTRY')

LUXEMBOURG

Virtual Private Database policy function

The Virtual Private Database policy function is a PL/SQL function that is used to
construct the predicate (or WHERE) clause. The policy function is specified during
policy creation that gets executed at the time of policy enforcement. Note that the
function execution performance directly impacts the query performance.

The following are the features of the policy function:

* The schema name and database object name are mandatory parameters (and
in the same sequence) to the policy function. Upon execution, the parameter
values are supplied by the DBMS_RLS package.

* The function must return a valid predicate in string format.

* The function must not perform SELECT or DML on the table to be protected
through the Virtual Private Database.

[168]

Chapter 6

Policy types

You can specify a policy type to optimize the performance of a Virtual Private
Database security policy. The policy performance is limited by the resources

consumed during the execution of the policy function and frequency of its execution.

A Virtual Private Database policy can be STATIC, DYNAMIC, SHARED STATIC,
CONTEXT SENSITIVE, Or SHARED CONTEXT SENSITIVE. The following table shows
the different VPD policy types:

Policy type

Comments

When to use

STATIC

Same predicate for all the
queries

Predicate clause is cached
in SGA

Used when all the

queries on a table have
a mandatory predicate
and performance is the

priority.

DYNAMIC (Default)

Policy function is
executed for every query

No performance
optimization

Used when the predicate
condition changes for

each query issued on the
Virtual Private Database
protected object or table.

SHARED STATIC

Policy shareable across
schema objects

Predicate clause is cached
in SGA

Used when multiple
tables or views have the
same columns.

CONTEXT_SENSITIVE

Policy is applicable only
to a fixed value of the
application context

Include the namespace
and attribute parameters
in the policy definition

Used when the predicate
varies by the user or

group.

SHARED CONTEXT
SENSITIVE

Same as the context-
sensitive policy

Policy can be shared
among multiple objects

Used when the predicate
varies by the user

and can be shared

by multiple database
objects.

The DBMS_RLS package

The security policies are enforced using the Oracle-supplied DBMS_RLS package. It
can be used to add, drop, or refresh a security policy, enable or disable a policy, and
handle the policy groups. It is owned by the sYs user and available in enterprise

edition only.

[169]

Virtual Private Database

For complete details, it is recommended that you refer to the
% Oracle Database 12c documentation at https://docs.oracle.
’ com/database/121/ARPLS/d_rls.htm.

The following table lists the subprograms contained in the DBMS_RLS package:

Subprogram Description

ADD_POLICY Adds a fine-grained access control policy to a table, view,
or synonym

DROP_POLICY Drops a fine-grained access control policy from a table,
view, or synonym

REFRESH_POLICY Causes all the cached statements associated with the
policy to be reparsed

ENABLE_POLICY Enables or disables a fine grained access control policy

CREATE_ POLICY GROUP Creates a policy group

ADD_GROUPED_POLICY Adds a policy associated with a policy group

ADD_POLICY_CONTEXT Adds the context for the active application

DELETE POLICY GROUP Deletes a policy group

DROP_GROUPED_POLICY Drops a policy associated with a policy group

DROP_POLICY_ CONTEXT Drops a driving context from the object so that it will

have one less driving context
ENABLE_GROUPED_POLICY | Enables or disables a row-level group security policy
DISABLE_GROUPED_ POLICY | Disables a row-level group security policy
REFRESH_GROUPED_POLICY | Re-parses the SQL statements associated with a refreshed
policy

Demonstration

This section demonstrates the implementation of a Virtual Private Database to
enforce row-level and column-level security.

Let's suppose that SCOTT is a master user that owns the employee details. All other
sub users are authorized to view the details of the employees that belong to their job
roles. For example, CLERK is authorized to view only the clerk's details while SALES is
authorized to view only salesman data.

[170]

https://docs.oracle.com/database/121/ARPLS/d_rls.htm
https://docs.oracle.com/database/121/ARPLS/d_rls.htm

Chapter 6

Let's prepare the test environment by creating the test users and granting them
required privileges:

/*Create user CLERK, MGR, SALES. Grant CONNECT, RESOURCE roles*/
CONN sys/oracle as sysdba
CREATE USER clerk IDENTIFIED BY clerk

/

CREATE USER mgr IDENTIFIED BY mgr

/

CREATE USER sales IDENTIFIED BY sales
/

GRANT CONNECT, RESOURCE TO clerk

/

GRANT CONNECT, RESOURCE TO mgr

/

GRANT CONNECT, RESOURCE TO sales

/

GRANT EXECUTE ON dbms_rls TO public
/

GRANT CREATE ANY CONTEXT TO scott

/

GRANT CREATE PUBLIC SYNONYM TO scott
/

Let's create the MYJoB context using a trusted program:

CONN scott/tiger

/*Create the context MYJOB*/
CREATE CONTEXT myjob USING scott.job context

/

The following JOB_CONTEXT procedure sets the MYJOB context attributes, based on
the current session user. The context attribute values should match the expected
value to be used in the query predicates:

/*Create the PL/SQL procedure */
CREATE OR REPLACE PROCEDURE job_context IS
BEGIN

/*Set the context based on the session user*/
IF SYS_CONTEXT ('"USERENV', 'SESSION_USER') = 'CLERK' THEN
DBMS_SESSION.SET_CONTEXT ('myjob','role’,’CLERK’);

ELSIF SYS CONTEXT ('USERENV', 'SESSION USER') = 'SALES' THEN
DBMS_SESSION.SET CONTEXT ('myjob', 'role', 'SALESMAN') ;

[171]

Virtual Private Database

ELSIF SYS CONTEXT ('USERENV', 'SESSION USER') = 'MGR' THEN
DBMS_SESSION.SET CONTEXT ('myjob', 'role', '"MANAGER') ;
END IF;
END;
/

As this procedure will be accessed by SALES, CLERK, and MGR, let's create a public
synonym and grant the execute privilege to the users:

/*Create synonym for JOB_CONTEXT procedure¥*/
CREATE PUBLIC SYNONYM job context FOR scott.job context

/
GRANT EXECUTE ON scott.job context TO clerk, mgr, sales

/

/*Grant select privilege on EMP table to the users */
GRANT SELECT ON emp TO clerk, mgr, sales
/

To set the context at the time of the database logon, let's create a logon trigger.
This trigger calls the context setting procedure:

CONN sys/oracle AS SYSDBA

/*Create a logon trigger*/
CREATE OR REPLACE TRIGGER scott.set security context
AFTER LOGON ON DATABASE
BEGIN
scott.job context;
END;
/

Now, it's time to create the Virtual Private Database policy function. It lays down
the logic of row-level security by constructing the predicate clause. In this case, the
security policy virtually partitions the data view by job roles. The predicate uses the
SYS_CONTEXT function to retrieve the job role corresponding to the session user.

CONN scott/tiger

/*Create policy function */

CREATE OR REPLACE FUNCTION fun vpd
(schemaowner VARCHAR2, objectname VARCHAR2)
RETURN VARCHAR2 IS

BEGIN

[172]

Chapter 6

/*Return the predicate clause*/

RETURN 'job = SYS CONTEXT(''myjob'',''role'')';
END;

/

/*Create public synonym for the policy function */
CREATE PUBLIC SYNONYM fun vpd FOR scott.fun vpd

/

GRANT EXECUTE ON scott.fun vpd TO clerk, mgr, sales

/

The final step is the creation of policy on the object using the DBMS_RLS.ADD POLICY
procedure:

conn scott/tiger

BEGIN
DBMS_RLS.add policy(
object schema =>'SCOTT',
object name =>'EMP',
policy name =>'VPD_RLS',

function schema =>'SCOTT',
policy function =>'FUN VPD',
statement types =>'SELECT');
END;
/

Let's connect to the MGR user and verify the Virtual Private Database in operation:

conn mgr/mgr
SELECT empno, ename, job, mgr, deptno
FROM scott.emp

/

EMPNO ENAME JOB MGR DEPTNO
7566 JONES MANAGER 7839 20
7698 BLAKE MANAGER 7839 30
7782 CLARK MANAGER 7839 10

The cLERK user can query the details of only those employees that are clerks.
Similarly, the other users can try to log in the database and verify the data view:

conn clerk/clerk

SELECT empno, ename, job, mgr, deptno
FROM scott.emp

/

[173]

Virtual Private Database

EMPNO ENAME JOB MGR DEPTNO
7369 SMITH CLERK 7902 20
7876 ADAMS CLERK 7788 20
7900 JAMES CLERK 7698 30
7934 MILLER CLERK 7782 10

And then the SALES user:

conn sales/sales
SELECT empno, ename, job, mgr, deptno
FROM scott.emp

/

EMPNO ENAME JOB MGR DEPTNO
7499 ALLEN SALESMAN 7698 30
7521 WARD SALESMAN 7698 30
7654 MARTIN SALESMAN 7698 30
7844 TURNER SALESMAN 7698 30

You can enforce a column-level policy by specifying the sensitive columns at the time
of the policy creation. The following PL/SQL block drops the last Virtual Private
Database policy and creates a new one to enforce the row-level security:

conn scott/tiger
BEGIN

/*Drop the row-level policy*/
DBMS_RLS.DROP_POLICY ('SCOTT','EMP','VPD RLS');

/*Create a column level VPD policy*/
DBMS_RLS.ADD_ POLICY (

object schema => 'SCOTT',
object name => 'EMP',
policy name => 'VPD COLUMN',

policy function => 'FUN VPD',
sec_relevant cols => 'sal,comm') ;
END;
/

[174]

Chapter 6

The preceding security policy specifies that whenever a user will try to query the
saL and coMM columns of the EMP table, the row-level security will be enforced.
Let's verify this statement by connecting to the MGR user and querying the employee
records:

CONN mgr/mgr

/*Select non-sensitive columns from EMP tablex*/
SELECT empno, deptno, job

FROM scott.emp

/

EMPNO DEPTNO JOB

7369 20 CLERK
7499 30 SALESMAN
7521 30 SALESMAN
7566 20 MANAGER
7654 30 SALESMAN
7698 30 MANAGER
7782 10 MANAGER
7788 20 ANALYST
7839 10 PRESIDENT
7844 30 SALESMAN
7876 20 CLERK
7900 30 CLERK
7902 20 ANALYST
7934 10 CLERK

14 rows selected.

Note that the preceding query displays all the employees because the SELECT query
didn't project the sAL and comM sensitive columns. If the query had contained the
SAL column, the output would have been as follows:

/*Select sensitive columns from EMP table*/
SELECT empno, deptno, sal, job
FROM scott.emp

/

EMPNO DEPTNO SAL JOB
7566 20 2975 MANAGER
7698 30 2850 MANAGER
7782 10 2450 MANAGER

[175]

Virtual Private Database

In the preceding output, the employee records with the sensitive columns are
restricted in the query output. However, you can still list all the employees and mask
the saL and comM sensitive columns with NULLs by setting the SEC_RELEVANT COLS_
OPT attribute to DBMS_RLS.ALL ROWS:

CONN scott/tiger
BEGIN

/*Drop the previous policy*/
DBMS_ RLS.DROP_POLICY ('"SCOTT', 'EMP', 'VPD_COLUMN') ;

/*Create a new column-level policy*/
DBMS_RLS.ADD POLICY (

object schema => 'SCOTT',
object name => 'EMP',
policy name => 'VPD COLUMN',

policy function => 'FUN_VPD',

sec_relevant cols => 'sal,comm',

sec_relevant cols _opt => DBMS RLS.ALL ROWS) ;
END;

/
With the preceding security policy, the output of the SELECT query will be as follows:

CONN mgr/mgr

/*Select sensitive columns from EMP table*/
SELECT empno, ename, job, sal, deptno

FROM scott.emp

ORDER BY job

/

EMPNO ENAME JOB SAL DEPTNO
7788 SCOTT ANALYST 20
7902 FORD ANALYST 20
7934 MILLER CLERK 10
7900 JAMES CLERK 30
7369 SMITH CLERK 20
7876 ADAMS CLERK 20
7698 BLAKE MANAGER 2850 30
7566 JONES MANAGER 2975 20
7782 CLARK MANAGER 2450 10
7839 KING PRESIDENT 10
7844 TURNER SALESMAN 30

[176]

Chapter 6

7654 MARTIN SALESMAN 30
7521 WARD SALESMAN 30
7499 ALLEN SALESMAN 30

14 rows selected.

Virtual Private Database features and best
practices

The following are the features and best practices that can be followed while working
with a Virtual Private Database:

You cannot query a Virtual Private Database protected table as SELECT FOR
UPDATE because of the query rewrite implementation. However, the FOr
UPDATE user query may work provided the VPD implied inline view for the
query is not a complex one, that is, a non-analytic query, with no DISTINCT,
NO cursor expression, no SET operator.

sys user is exempted from the Virtual Private Database security policies.
However, the sYsSDBA actions can be monitored using Database Vault.

Users with the EXEMPT ACCESS POLICY system privilege are exempt from
the Virtual Private Database security policies. This privilege must be used
judiciously as it bypasses all the fine-grained security controls.

The policy function should be executed with definer's rights in major cases to
avoid any uncertainty due to privileges.

Avoid using outer joins and the ANST join operations on the Virtual Private
Database protected tables.

If you are using edition-based redefinition in your application, you can
associate an editioning view to apply the Virtual Private Database policies
across all the editions.

Virtual Private Database works with flashback query. You can query
the business data to a past time or older scN using the most recent
security policies.

During a direct path export operation, the Oracle Virtual Private Database
policies (and Oracle Label Security policies) are not enforced.

A schema level export operation fails if the schema contains a VPD protected
object. In a scenario where a user has a valid justification to bypass security
policies, he can be granted EXEMPT ACCESS POLICY privilege (without
WITH ADMIN OPTION) to ignore VPD policies.

[177]

Virtual Private Database

Virtual Private Database metadata

Oracle captures the static and dynamic details of the VPD policies in dictionary
views. You can query the following dictionary views to find the metadata about the
Virtual Private Database security policies:

Dictionary view Comments

[ALL | USER | DBA] POLICIES | The view captures the security policy on
objects accessible to a user, owned by a
user, or within a database.

[ALL | USER | DBA]_POLICY_ | The view captures the application

ATTRIBUTES context namespaces, their attributes, and
their association with the Virtual Private
Database policy.
[ALL | USER | DBA]_POLICY_ | The view captures information about the
CONTEXTS driving contexts for the objects.
[ALL | USER | DBA]_POLICY_ | The view captures information about the
GROUPS policy groups on the objects.
[ALL | USER | DBA]_SEC_ The view captures the specifications
RELEVANT COLS of the column-level Virtual Private

Database policy on the objects.

VSVPD_POLICY The dynamic view captures information
about the security policy associated with
the cached cursors. In a multitenant
environment, the view shows
information about the current pluggable
database. It's extremely useful in
troubleshooting policy execution.

The following query gives the predicate applied to the queries executed against the
Virtual Private Database protected table owned by the scoTT user:

connect sys/oracle as sysdba
SELECT object name,

policy,

s.sqgl text,

predicate
FROM v$vpd policy vp, vS$sqgl s
WHERE vp.sqgl id=s.sqgl id
AND object owner='SCOTT'
/

[178]

Chapter 6

OBJECT NAME POLICY SQL_TEXT PREDICATE

EMP VPD_COLUMN select * from scott.emp job = SYS
CONTEXT ('myjob', 'role')

For further information about the vPD_coLUMN policy, you can refer to the USER_
POLICIES dictionary view:

connect scott/tiger

SELECT policy name,
policy type,
static policy,

function,
pf_owner
FROM USER_POLICIES
/
POLICY NAME POLICY TYPE STA FUNCTION PF_OWNER
VPD_COLUMN DYNAMIC NO FUN_VPD SCOTT

Policy utilities—refresh and drop

The policy utility activities such as refreshing or dropping can be done through

the DBMS_RLS package subprograms. Refreshing a policy inherits the latest changes
made to the policy and its dependents. A policy refresh is required when the
underlying referenced objects of the policy undergo any change that invalidates

the dependent objects. During the policy refresh process, all the cached statements
associated with the policy are parsed again. A policy that is already disabled cannot
be refreshed.

A Virtual Private Database policy can be dropped using the broP_pPOLICY
subprogram of the DBMS_RLS package:

EXEC DBMS RLS.DROP_POLICY ('SCOTT', 'EMP', 'VPD COLUMN')
/

[179]

Virtual Private Database

Oracle Database 12c Security
enhancements

Oracle Database 12c introduced a number of features and enhancements to further
strengthen the in-depth security collateral. In this section, you will understand some
of the key security enhancements and features in Oracle Database 12c. The following
is a summary of the new security features:

Real Application Security(RAS): Oracle Database 12c introduces a data
authorization solution to provide end-to-end security in a multitier application
architecture. You can now declare and enforce the application-level security
policies in the database kernel. The RAS security model understands the
application-level security policy constructs, such as application users,
privileges, and roles within the database, and enforces the security policies

in the context of the application. As well as data access, RAS can help the
applications to secure the access control operations of an application user.

Oracle Data Redaction: The Data Redaction feature masks the sensitive
data on-the-fly before it is displayed to the user. This feature provides a rich
library for masking the sensitive information while the data in the storage
remains in an actual, that is, unmasked format.

Role and privilege analysis: Privilege analysis helps to enhance operational
security by identifying the least set of privileges to run an application. During
application development, you may have granted system privileges SELECT
ANY TABLE to a user or object privileges to the PUBLIC role. However, before
moving it to production, you must verify the security aspect of the application
by retaining the required privileges and revoking the unnecessary ones. You
can now analyze the roles, users or contexts, sessions or database to detect
used and unused privileges. A privilege is considered as unused if it is not
utilized for compilation or run-time operations.

A user with the CAPTURE_ADMIN role can kick-off a privilege analysis
operation. Note that a sYS user cannot be analyzed under privilege analysis.

Unified Auditing: Oracle Database 12¢ introduces a unified audit trail which
resolves the pain to maintain different stores of audit information. The new
UNIFIED AUDIT_TRAIL data dictionary view replaces the previous auditing
views and consolidates the audit information from all the sources. The

new AUDIT_VIEWER and AUDIT_ ADMIN roles enable the separation of duty
and provide easy management of auditing within the database. The new
auditing framework supports conditional auditing to prevent the auditing of
irrelevant operations.

[180]

Chapter 6

New administrative privileges such as SYSBACKUP, SYSDG, and SYSKM: These
are the new privileges for dedicated tasks like backup, data guard operations,
and key management in order to reduce dependency on sYSDBA and enable
the separation of duties.

The READ object privilege and the READ ANY TABLE system privilege: You
can now grant the READ object privilege that allows a user to query tables,
views, materialized views, and synonyms. The difference between the
SELECT and READ object privileges is that SELECT allows a user to lock the
table data using the Lock statement or the FOR UPDATE clause, while READ is
only for query purpose.

The ADMIN and DELEGATE options for code-based access control: You can
now protect your PL/SQL programs by granting roles to the program units
and not to the users. You can grant the roles with the ADMIN or DELEGATE
option to a program unit. With the DELEGATE option, the grantee is not
allowed to grant the role to the other programs.

Oracle Database 12c Data Redaction

Oracle Database 12c Data Redaction prevents the exposure of sensitive data to

the non-authorized users. The beauty of this feature lies in the fact that it enables
dynamic masking, which means that the data is never changed on the storage or
cache but gets redacted at runtime just before it is displayed to the user. The security
policies are created in the database and are consistently active to hide sensitive
information whenever requested by the applications. In addition, this feature has

no impact on the integrity constraints and database operations such as the backup,
restore, export, import, grid, and cluster operations.

/gr;; D aiabas:-l;?\

|~ T T T T T T T T |
I'I___:::::::::'l_} I
Accourt ro (Sereitive) | | | @
000000191478 | | AR D
000000774562 I 000000191478 } | HX DA KIN G2
000000835612 L/ 000000773562 XX XXX XK HHKL 2
000000163810 ¢ 000000835612 Py e st eeall
| 000000163810 |
Anthonzed User ! =TT Unanthorized User

The Oracle Database 12¢ Data Redaction feature has been
—"backported to Oracle Database 11.2.0.4.

[181]

Virtual Private Database

A typical use case of Data Redaction would be a read-only application that fetches
the data from a production warehouse. Similarly, the redaction policies can be
created for a call center application. There will be many such cases where data view
is based on the user authorization.

Data Redaction exemptions and miscellaneous
features

Data Redaction is a part of the Advanced Security option, which can be purchased
with Oracle Database Enterprise Edition. The following are the salient features of
Data Redaction:

The sys and sYSTEM users are always exempt from the redaction policies.
The virtual columns cannot be redacted.
The editioning views cannot be redacted.

Users with the EXEMPT REDACTION POLICY system privilege are exempt from
the redaction policies.

You cannot perform the CTAS (CREATE TABLE AS SELECT) operation on
a redacted table.

A redaction policy can be controlled using the DBMS_REDACT package.A user
must have the EXECUTE privilege on the package.

Data Redaction policies can be created from Enterprise Manager Cloud
Control 12c.

Data Redaction function types

Data Redaction can use the following methods of redaction:

Full redaction: Full redaction refers to the complete replacement of a column
value. A number type value will be replaced with zero or a dummy date

can replace a date. For example, 15/01/2015 (and all the date values) can be
redacted as 01/01/00.

Partial redaction: Partial redaction refers to the masking of a portion of a
column value. For example, the first few digits of telephone numbers or
social security numbers are replaced with X. The masking format shown in
the preceding figure depicts partial redaction.

[182]

Chapter 6

* Regular expressions: You can use regular expressions to mask the data
based on a pattern and not on the basis of a fixed length of the characters. For
example, email addresses or credit card numbers can be masked based on the
position of the special character.

* Random redaction: You can direct the redaction policy to generate a random
value with a matching data type for the column carrying the sensitive data.

* No redaction: This is used for testing purposes and can be used before
deploying the security policies during production.

Demonstration

Let's continue the case study from the Virtual Private Database demonstration. Note
that EMP is a Virtual Private Database protected table. With Data Redaction, the
objective will be to mask the values from the saL and comm columns of the EMP table
for the CLERK, MGR, and SALES users.

The following PL/SQL block creates a redaction policy on the sAL column of the
EMP table. As the redaction is for the access from three users, that is, SALES, MGR, and
CLERK, the predicate expression using the sYs_CONTEXT function has been included.

CONNECT sys/oracle AS SYSDBA

/*Grant execute privilege on DBMS REDACT to scott */
GRANT EXECUTE ON sys.dbms_ redact TO SCOTT

/

CONNECT scott/tiger

BEGIN

/*Add a policy to redact SAL column */
DBMS_REDACT.add policy(
object schema => 'SCOTT',

object name => 'EMP',

column_ name => 'SAL',

policy name => 'redact employee info',

function type => DBMS REDACT.full,

expression => q'|sys_context ('userenv', 'current user') IN

('SALES', 'MGR', 'CLERK') |
) ;
END;

[183]

Virtual Private Database

Let's verify the impact of the redaction policy. The SAL column is fully redacted by
replacing the original column values by a default value, zero. Note that the Virtual
Private Database policy is still active and enforced:

CONN mgr/mgr
SELECT empno, ename, job, sal, deptno
FROM scott.emp

/
EMPNO ENAME JOB SAL DEPTNO
7566 JONES MANAGER 0 20
7698 BLAKE MANAGER 0 30
7782 CLARK MANAGER 0 10

For a full redaction policy type, the default values for the columns
are picked up from the REDACTION VALUES FOR TYPE FULL
g dictionary view.

You can alter a redaction policy using the ALTER_POLICY procedure from the
DBMS_REDACT package. The ACTION attribute is used to record the changes that you
make while altering the policy.

Let's alter the redaction policy and mask the HIREDATE column value. This time, we
will use the partial redaction technique to mask the date value.

CONNECT scott/tiger
BEGIN

/*Alter policy to include HIREDATE column */
DBMS_REDACT.alter policy (

object schema => 'SCOTT',

object name => 'EMP',

policy name => 'redact_employee info',
action => DBMS_REDACT.add_column,
column_name => 'hiredate’',

function type => DBMS_ REDACT.partial,

function_parameters => 'mldly1900'

END;

[184]

Chapter 6

Now, let's connect to the saLES user and check the masked values of the
HIREDATE column:

CONN sales/sales
SELECT empno, ename, job, sal, hiredate
FROM scott.emp

/
EMPNO ENAME JOB SAL HIREDATE
7499 ALLEN SALESMAN 0 01-JAN-00
7521 WARD SALESMAN 0 01-JAN-00
7654 MARTIN SALESMAN 0 01-JAN-00
7844 TURNER SALESMAN 0 01-JAN-00

Let's mask another column to demonstrate the redaction using regular expression.
We'll alter the EmMP table to add the EMAIL column:

CONNECT scott/tiger
ALTER TABLE emp

ADD (email VARCHAR2 (30))
/

UPDATE emp
SET email = LOWER (ename) || 'exyz.com'

/
COMMIT

/
The following PL/SQL block masks the EMAIL column using a regular expression:

BEGIN

/*Alter policy to include EMAIL column */
DBMS_REDACT.alter policy (

object schema => 'SCOTT',

object name => 'EMP',

policy name => 'redact employee info',

action => DBMS_REDACT.add column,

column_ name => 'email"',

function type => dbms_redact.regexp,

regexp pattern => dbms_ redact.RE_PATTERN EMAIL ADDRESS,

regexp replace string => dbms_ redact.RE REDACT EMAIL NAME
)i
END;

[185]

Virtual Private Database

The preceding policy includes the EMAIL column and masks it using a regular
expression. Note the regular expression pattern and replace the string constants.
The DBMS_REDACT package includes a list of the standard security constructs that can
be readily used while creating the redaction policy. Let's connect to CLERK user and
check the email column:

CONN clerk/clerk
SELECT empno, ename, job, sal, hiredate, email
FROM scott.emp

/
EMPNO ENAME JOB SAL HIREDATE EMAIL
7369 SMITH CLERK 0 01-JAN-00 xXXX@XyZz.com
7876 ADAMS CLERK 0 01-JAN-00 xXXX@XyZz.com
7900 JAMES CLERK 0 01-JAN-00 xXXX@XyZz.com
7934 MILLER CLERK 0 01-JAN-00 xXXX@XyZz.com

The Data Redaction metadata

You can query the following dictionary views to find the metadata information about
the redaction policies:

* REDACTION_POLICIES: This view stores the redaction policy details
* REDACTION COLUMNS: This view stores the details of redacted columns

in the database

The following two queries display the redaction policy details that were created in
the preceding demonstration:

CONNECT sys/oracle AS SYSDBA
SELECT policy name, expression
from REDACTION POLICIES

/
POLICY NAME EXPRESSION
redact_employee info sys context ('userenv', 'current user') IN

('SALES', 'MGR', 'CLERK"')

SELECT object name, column name, function type, function parameters
FROM redaction columns

/

[186]

Chapter 6

OBJECT NAME COLUMN NAME FUNCTION TYPE FUNCTION_ PARAMETERS
EMP HIREDATE PARTIAL REDACTION mldly1900

EMP SAL FULL REDACTION

EMP EMAIL REGEXP REDACTION

Summary

In this chapter, we covered the fundamentals of database security solutions from
Oracle. After an overview of the Oracle Database Security solution, we dived

into the fine-grained access control and Virtual Private Database. The Virtual
Private Database enforces row-level security through the policies and restricts the
data access for unauthorized users. Depending on a user's identity and role, the
application can set up multitenancy and ensure user isolation as well.

Oracle Database 12c made considerable enhancements to its security offering. The
summary of these enhancements was included, while the Data Redaction feature
was covered in detail along with demonstrations. In the next chapter, we will dive
into another key area that has continuously gained more weight with time: handling
of large objects in the Oracle Database. We will be focusing the majority of our
discussion around SecureFiles and its optimizations.

Practice exercise

* Identify the correct statements about the working of Fine Grained
Access Control.

1. A table can have only one security policy.

2. Different policies can be used to protect the SELECT, INSERT, UPDATE,
and DELETE statements on a table, but not one.

3. The policy function returns the predicate information as WHERE
<Column> = <Value>.

4. Once associated, the FGAC policy cannot be revoked from the table.
* A security policy can be associated to a group of objects by the DBA. State
whether this is true or false.
1. True
2. False

[187]

Virtual Private Database

* Choose the correct statement about DBMS_RLS.
1. DBMS_RLS is used only for row-level security policies.
2. The package is owned by svs.
3. Itcan create / drop / refresh policies and create/drop policy groups.
4. Using DBMS_RLS to set the policy degrades the application
performance.
* Identify the correct statements about the context of an application.
1. A user who holds the CREATE CONTEXT privilege can create a context.
2. Itis owned by the sys user.
3. A user can check the context metadata in USER_CONTEXTS.
4. The trusted package associated with the context must exist before the
context is created.
* Arrange the sequence of the Virtual Private Database implementation using
application contexts.
i. Creating policy function.
ii. Creating trusted package.
iii. Creating and setting application contexts.
iv. Associating a policy using DBMS_RLS.
1. iii, i, i, iv
2. ii,dii, iv, i
3. iii,iv,i,ii
4. iv,1i, i, iii

* All the policies on different columns of the same table are collectively known

as policy groups.
1. True
2. False

* Identify the correct statements about the policy types.

1. Shared static policy is an extension to the static policies where
multiple static policies can be shared among multiple users.

2. Shared static policy is an extension to the static policies where a
single static policy can be shared among multiple objects.

3. sTATIC is the default policy type.
DYNAMIC is the default policy type.

[188]

Chapter 6

Pick the correct statement about the application contexts.

1. Only a DBA can create a custom application context and add
attributes under it.

The DBA can modify all USERENV attributes.

The package used for the context creation may or may not exist in the
schema.

4. Global contexts can be used by all the users on a server.

A policy of the CONTEXT SENSITIVE type executes the policy function once,
every time the query is reparsed, if the local context has been changed.

1. True
2. False

Identify the cause of the following exception:

SQL>SELECT * FROM employees;
select * from employees

*
ERROR at line 1:

ORA-28110: policy function or package ORADEV.F JOB_POLICY has
error

1. The policy function F_JoB_POLICY does not exist.

2. The policy function F_JoB_POLICY has not been specified in
DBMS_RLS.ADD_ POLICY to add the policy on the employees table.

3. The predicate returned by the policy function is not appropriate for
this query.

4. The Virtual Private Database policy on the employees table is invalid
and has errors.

[189]

Oracle SecureFiles

The fact that data is growing multifolds at a tremendous speed has led to the
evolution of a number of data management trends and Big Data is one of them.
A large amount of information from web content, sensors, documents, images,
and location services has pushed organizations to place serious thought to data
management strategies and distil out nuggets of information. The data can be
structured, semi-structured, or unstructured.

In relational database terminology, unstructured data such as binary files or
documents are classified as large objects. Oracle has been allowing users to store
large objects in the tables of a relational database for a long time. While the large
objects are prototyped as BLOB or CLOB in a table, there is a provision to store XML
documents, spatial data and text using dedicated data types. In this chapter, we will
focus on large object handling in the Oracle Database. You will understand how
large objects or LOBs are stored in the database, what the optimization features are,
and how it has evolved over time. The Oracle Database 11g introduced a new format
of the OB storage known as SecureFiles. SecureFiles offer optimized storage and
enable a better performance of the large objects in an Oracle database.

The chapter is outlined as follows:

* Introduction to Large Objects
* (lassification of Large Objects
* Working with LoB data types

° Creating LOB data types

Managing LOB data types
° Migrating LONG to LOB

[191]

Oracle SecureFiles

¢ QOracle SecureFiles

° Anoverview

[e]

Working with Securefiles

o

Migrating BasicFiles to SecureFiles

¢ QOracle Database 12c SecureFiles enhancements

Introduction to Large Objects

As the name suggests, large objects or LOBs refer to large data. A column of a large
object type in a table can store semi-structured or unstructured data. Semi-structured
data can be a character-based document that can be processed in a near relational
format. Unstructured data is a binary file that is difficult to interpret logically. For
example, an XML file is a semi-structured document while an image or a graphics
file is an unstructured format of the data.

Oracle Database supports the storage of large objects along the following aspects:

* Storage: Just like any other data, the Oracle Database allows the storage of
large objects in columns within a table. The columns of L.0B data types can
efficiently store a semi or unstructured data object, compress it and even
encrypt it in the database. The LoB datatype stored in the Oracle Database
abides by the ACID (Atomicity, Consistency, Isolation, and Durability)
properties. Oracle provides a wide range of administrative controls to
manage and maintain large objects in the database.

* Access: Oracle SecureFiles (discussed later in this chapter) provides you
with highly optimized access of large objects from the Oracle Database.
SecureFiles, introduced in Oracle Database 11g and the default LOB storage
option in Oracle Database 12c, accelerates LOB performance through vector
optimization techniques. For semi-structured data types such as Oracle Text
or Oracle Spatial, Oracle enables indexing techniques to improve
query performance.

* Security: The L.0B data type in the Oracle Database stays protected and
secure. Fine-grained data access security policies apply to large objects
as well.

[192]

Chapter 7

The use of the LONG and LONG RAW data types was succeeded by the L.oB data
types in Oracle 8i. Although L.ONG and LONG RAW are still supported, Oracle
recommends the usage of the LoB data types in place of LONG and LONG RAW
due to the following reasons:

* A table can have only one LONG or LONG RAW column
* A LONG or LONG RAW column can store data only up to 2 GB
* The LoNG data can only be accessed sequentially
It is recommended for legacy applications using LONG or LONG RAW, to migrate

to LOBs so as to leverage the benefits of storage optimization and enhanced
performance.

Classification of Large Object datatypes

A L0B data type can be classified on the basis of its storage properties. The following
figure branches out the different LoB types in Oracle:

LOB
: —
Internal I External
' S |
Persistent [Temporary || BFILE

Internal LOB

An internal LOB can be stored in and accessed from the database. A column of BLOB,
CLOB, or NCLOB can be included in a table to store large objects, like all other columns.
Note that the internal 1.0B data types can be used in PL/SQL as well.

Persistent and Temporary LOB

A LoB data type is persistent if it is physically stored in the database tables. As with
all other column values, it can be a part of a database transaction.

A temporary LOB is used to instantiate a Lo in a PL/SQL program. It is used
to perform the LOB operations, which are carried out in a temporary tablespace.
If the temporary LOB value is inserted into a database table, the LOB instance
becomes persistent.

[193]

Oracle SecureFiles

External LOB

If the LoB data does not reside inside the Oracle Database, it is an External L.oB.

A column of an external LoB data type, BFILE, stores only the LOB locator and not
the data. The data resides outside the database storage as an operating system file on
the server host. The integrity and durability of external LOBs must be layered at the
operating system level.

BFILE is a read-only data type and does not participate
s in database transactions.

LOB restrictions
A LOB is a special feature that allows a database management system to store
unstructured data such as files and documents. However, there are certain
restrictions on the usage of a LoB and its related operations, listed as follows:

* A LOB column cannot be a primary key of a table

* A LOB column cannot be used in the ORDER BY clause of SELECT query

* A LOB column cannot appear in the GROUP BY clause of a SELECT query

* A L0B column cannot be used to join two tables

* You cannot use the DISTINCT clause with a LOB column in a SELECT query

* A L0B column cannot be selected in a UNION query

* A B-Tree index or a bitmap index cannot be created on a LOB column

LOB data types in Oracle

Oracle provides four data types dedicated for declaring large objects, namely: BLOB,
CLOB, NCLOB, and BFILE.

BLOB and CLOB

There are three types of internal LoB data types, namely:

* BLOB: The Binary Large Object data type is used to store large binary files
that cannot be logically broken down to data bits such as PDFs, images,
audios or videos, and so on.

[194]

Chapter 7

* cLoB: The Character Large Object data type stores the single-byte character
data in the database character set format. It supports fixed-width character
formats.

* NcLoB: The cLOB data type that can store national character set data and
support varying width format character sets.

Starting from Oracle 10g, Oracle can cast the CLOB data to
I the VARCHAR?2 data implicitly.

BFILE

A BFILE is an SQL data type for the external L.oB data type. It is the read-only data
type that stores a locator for a binary file whose physical location is outside the
Oracle Database. Deleting a BFILE column value (or setting it to NULL) will drop the
reference pointer to the external file but will not delete the file.

The security and integrity of the externally located file must
be managed and advised at the operating system level. Oracle
recommends the usage of database directories in order to secure
M the user actions to the file location. A session-level initialization
Q parameter SESSION_MAX OPEN_FILES determines the maximum
number of BFILESs that can be opened in a session. The default
parameter value is 10 but this can be modified using the ALTER
SESSION command. If you want to close all the open files, you can
do so by calling DBMS_LOB. FILECLOSEALL.

Some more related stuff

While working with the L.oB data types, you must be familiar with a few more terms
such as the LOB instance, LOB initialization, and the DBMS_L0B package. A thorough
understanding is essential to perform the L.OB operations.

The LOB locator

Structurally, a LOB instance is made up of a LOB locator and value. The L.0B locator
stores the pointer to the L.oB value while the L.OB value stores the actual physical data.

Be it an internal or external L.0B, the column in the table holds just the locator. In
the case of BLOB, cLOB, and NCLOB, the LOB locator is used to retrieve the value from
the L.0B instance. For BFILE, the locator is used to retrieve the externally located
operating system file.

[195]

Oracle SecureFiles

LOB instance initialization

The state of a LoB column can be NULL, empty, or populated. A LOB instance
without a locator is a NULL L.oB and cannot be passed as an argument to a program.
To allow a LOB to be passed as a parameter to a program, it must be initialized. You
can initialize a L.OB instance of a persistent LOB column using the Oracle-supplied
constructor functions, EMPTY BLOB () and EMPTY CLOB () for BLOB and CLOB
respectively. The functions initialize the LOBs but do not populate them with any
data. These functions can be used in the following scenarios:

The 1.0B column default can be set to one of the constructor functions in a
CREATE TABLE statement:

CREATE TABLE t LOB init

(id NUMBER,

b LOB BLOB DEFAULT EMPTY BLOB (),
c_LOB CLOB DEFAULT EMPTY CLOB ()
)

/

Similarly, the column default can be set while adding a column using the
ALTER TABLE command.

An empty LOB instance can be inserted into the L.OB column in an INSERT
statement. For example, the following INSERT statement uses the EMPTY
BLOB () function or the empty locator instead of a profile image:
/*Insert test data in the above table*/

INSERT INTO t_LOB_init (ID, B_LOB, C_LOB)

VALUES

(129, EMPTY_BLOB (), EMPTY_CLOB())

/

The L.0B variables in a PL/SQL block can be initialized either in the
declarative section or program body:

/*Start the PL/SQL block*/
DECLARE

/*Declare local LOB variables*/

1 my cLOB CLOB := EMPTY CLOB () ;
1 my bLOB BLOB := EMPTY BLOB () ;
BEGIN

--executable section

[196]

Chapter 7

END;

PL/SQL procedure successfully completed.

You can initialize a BFILE column using the BFILENAME function. The BFILENAME
function accepts the database directory and file as inputs and returns a BFILE locator.
A BFILE locator is a reference to the file located externally in the operating system.
The syntax of the BFILENAME function is as follows:

FUNCTION BFILENAME (directory IN VARCHAR2, filename IN VARCHAR2)
RETURN BFILE;

The BFILENAME function is also used while populating a LoB instance from
an external file in a PL/SQL block.

The DBMS_LOB package

Oracle provides a built-in package, DBMS_L0B, that allows users to perform
transactional operations on the internal LOBs and read operations for BFILEs. The
package is owned by sys. A user with the EXECUTE privilege on the DBMS_L0OB
package can invoke its subprograms.

_ For the following subsections, refer to the Oracle Database
% Online Documentation 12¢ Release 1 (12.1)/Database
s Administration at https://docs.oracle.com/
database/121/ARPLS/d_LOB.htm.

The DBMS_LOB constants

The pBMS_LOB package constants have been consolidated in the following table:

Constant | Description Value
The DBMS_LOB constants
FILE_READONLY Open BFILE in read-only 0
LOB_READONLY Read-only L.oB 0
LOB_READWRITE Read write LoB 1
LOBMAXSIZE Maximum size of LOB 18446744073709551615
SESSION Create temporary LOB for the 10
duration of a session
CALL Create temporary LOB for the 12
duration of a transaction

[197]

https://docs.oracle.com/database/121/ARPLS/d_LOB.htm
https://docs.oracle.com/database/121/ARPLS/d_LOB.htm

Oracle SecureFiles

Constant Description Value

The DBMS_LOB option types

OPT_COMPRESS SecureFile compression 1
option

OPT_ENCRYPT SecureFile encryption option | 2

OPT_DEDUPLICATE SecureFile deduplicate option | 4

The DBMS_LOB option values

COMPRESS_OFF SecureFile compression OFF 0

COMPRESS_ON SecureFile compression ON 1

ENCRYPT OFF SecureFile encryption OFF 0

ENCRYPT ON SecureFile encryption ON 2

DEDUPLICATE OFF SecureFile deduplication OFF | 0

DEDUPLICATE ON SecureFile deduplication ON | 4

The DBFS state value types

DBFS_LINK NEVER Non-archived L.oB 0

DBFS_LINK NO LOB archived but read by the
database

DBFS_LINK YES LOB archived 1

The DBFS Cache Flags

DBFS_LINK_CACHE Archive and cache the LoB 1
data

DBFS_LINK_NOCACHE Archive the LOB data without 0
caching it in the database

The DBMS_LOB data types
The pBMS_1.0B package works with the following data types:

Data type Description

BLOB Source or destination binary LOB

RAW Source or destination RAW buffer (used with BLOB)

CLOB Source or destination character LoOB (including NCLOB)

VARCHAR2 Source or destination character buffer (used with cLOB and NCLOB)

INTEGER Specifies the size of a buffer of a LoB
BFILE Large, binary object stored outside the database

[198]

Chapter 7

The DBMS_LOB subprograms

The DBMS_L.OB subprograms are listed in the following table:

Subprogram Type Description

APPEND Procedure | Appends the contents of the LOB source to the
LOB destination

CLOSE Procedure | Closes a previously opened internal or
external LOB

COMPARE Function Compares two entire LOBs or parts of two
LOBs

CONVERTTOBLOB Procedure | Reads the character data from a source cLOB

or NCLOB instance, converts the character data to
the specified character, writes the converted data
to a destination BLOB instance in binary format,
and returns the new offsets

CONVERTTOCLOB Procedure | Takes a source BLOB instance, converts the
binary data in the source instance to the character
data using the specified character, writes the
character data to a destination CLOB or NCLOB
instance, and returns the new offsets

COPY Procedure | Copies all, or a part, of the LOB source to the
LOB destination

CREATETEMPORARY Procedure | Creates a temporary BLOB or CLOB and
its corresponding index in the user's default
temporary tablespace

ERASE Procedure | Erases the entire, or a part, of a LOB

FILECLOSE Procedure | Closes the file

FILECLOSEALL Procedure | Closes all previously opened files

FILEEXISTS Function Checks if the file exists on the server

FILEGETNAME Procedure | Gets the directory object name and filename

FILEISOPEN Function Checks if the file was opened using the input
BFILE locators

FILEOPEN Procedure | Opens a BFILE

FRAGMENT_DELETE Procedure | Deletes the data at the given offset for the
given length from the LoB

FRAGMENT_INSERT Procedure | Inserts the given data (limited to 32 KB) into

the LOB at the given offset

[199]

Oracle SecureFiles

Subprogram Type Description

FRAGMENT_MOVE Procedure | Moves a chunk of bytes (BLOB) or characters
(CLOB/NCLOB) from the given offset to the new
offset specified

FRAGMENT_REPLACE | Procedure | Replaces the data at the given offset with the
given data (not to exceed 32 KB)

FREETEMPORARY Procedure | Frees the temporary BLOB or CLOB in the
default temporary tablespace

GETCHUNKSIZE Function Returns the amount of space used in LoB
CHUNK to store the L.OB value

GETLENGTH Function Gets the length of the LOB value

GETOPTIONS Function Obtains settings corresponding to the
option_types field for a particular LOB

GET_STORAGE_LIMIT | Function Returns the storage limit for LOBs in your
database configuration

INSTR Function Returns the matching position of the nth
occurrence of the pattern in the LoB

ISOPEN Function Checks to see if the LOB was already opened
using the input locator

ISTEMPORARY Function Checks if the locator is pointing to a
temporary LOB

LOADBLOBFROMFILE | Procedure | Loads the BFILE data into an internal BLOB

LOADCLOBFROMFILE | Procedure | Loads the BFILE data into an internal CLOB

LOADFROMFILE Procedure | Loads the BFILE data into an internal LOB

OPEN Procedure | Opens a LOB (internal, external, or temporary) in
the indicated mode

READ Procedure | Reads the data from the LOB starting at the
specified offset

SETOPTIONS Procedure | Enables CSCE features on a per-LOB basis,
overriding the default LOB column settings

SUBSTR Function Returns part of the LOB value starting at the
specified offset

TRIM Procedure | Trims the LOB value to the specified short length

WRITE Procedure | Writes the data to a LOB from a given offset

WRITEAPPEND Procedure | Writes a buffer at the end of a LoB

[200]

Chapter 7

LOB usage notes

As a database administrator, you will find the following notes useful while working
with LOBs in a database application:

* Object types can have the LOB type attributes.

* You can change the tablespace of a LOB segment by using the ALTER
TABLE. . .MODIFY command.

* LOBs are stored inline along with the table row if the LOB size is less than or
equal to 4000 bytes. You can specify ENABLE | DISABLE STORAGE IN ROW in
the L.0B storage clause for inline and out-of-line storage. However, the L.oB
locators are always stored in the LoB column of the table.

* No LOB storage specifications are applicable to the BFILE columns.

Oracle SecureFiles

Oracle SecureFiles were introduced in Oracle Database 11g Release 2 to enable
optimized storage of large objects and enhanced performance. SecureFiles are
re-engineered LOB storage architecture that is designed to leverage the joint
capabilities of an Oracle Database and a file system. Oracle SecureFiles greatly
benefitted from the file system-like features such as deduplication, compression, and
encryption. In addition, the SecureFiles data works with trusted database features
such as flashback, fine-grained auditing, Real Application Clusters, Automatic
Storage Management, and Information Lifecycle Management. The optimization
features in SecureFiles are deduplication, compression, and encryption.

With the introduction of Oracle Securefiles, the older L.0B, that is, all LOBs until
Oracle Database 11g Release 1, will be known as BasicFiles.

Deduplication and compression

Let us first understand what optimizes the SecureFiles storage on the disk. Oracle
SecureFiles gives the best performance during the write operations due to the bulk
allocation of contiguous blocks on the disk. The SecureFile segments must reside on
an Automatic Segment Space Management (ASSM) managed tablespace.

[201]

Oracle SecureFiles

In addition, advanced features such as deduplication and compression contribute
largely to the LOB storage optimization by reducing the overall size of data getting
written to the storage. The Oracle Database maintains an internal index of prefix
hash and full hash for all the objects. During the write operations, the prefix hash is
generated for the object, which is then matched against the prefix hashes available
in the internal index. If the prefix hash is not matched, the object is written to the
disk, otherwise the object hash comparison is performed. A mismatch during full
hash comparison will again result in an object write. If the object hashes are matched,
then a pointer (memory vector) to the master hash is written to the LoB column for
the current write operation. Thus, for duplicate objects, the Oracle Database stores
a single master copy. You can use DEDUPLICATE or KEEP_DUPLICATES to enable or
disable the deduplicate feature.

With regular checks on the size and access, the Oracle Database can compress

the SecureFiles, which maximizes their space utilization. You can specify the
compression level as COMPRESS LOW, COMPRESS MEDIUM (default) or COMPRESS HIGH
depending on the SecureFile access rate and available CPU cycles. To completely
disable the compression, specify NOCOMPRESS in the SecureFile LOB storage
specification. Note that the LOB compression is different from the table compression.

The deduplication and compression features transparently account for the enhanced
performance of SecureFiles. The deduplication and compression features can be
specified at the table as well as the partition level.

Encryption

A SecureFile L.0B column can be safely and transparently encrypted or decrypted
using the Transparent Data Encryption (TDE) feature of Oracle. You can use the
ENCRYPT or DECRYPT clause to enable or disable the encryption feature.

If you enable all three advanced features for a SecureFile, the Oracle Database will
first deduplicate, then compress, and finally encrypt it.

* Oracle SecureFile compression and deduplication are part of the Oracle
Advanced Compression option

* Oracle SecureFile encryption is part of the Oracle Advanced Security option

[202]

Chapter 7

File System Logging

You can also enable a file system-like logging for Oracle SecureFiles to reduce redo
generation while loading the LoOB data into a table. Typically, Oracle Database logs
the data changes as well as metadata changes in the redo logs. On the other hand, a
typical file system simply tracks the metadata changes. The Oracle SecureFile logging
level can be set to FILESYSTEM LIKE LOGGING in order to enable the logging of only
the OB metadata. In the case of large size SecureFiles, the file system-like logging
cuts short the redo generation by a huge margin and improves the data loading
performance. The default logging mode for SecureFiles is NOCACHE LOGGING.

Write Gather Cache

Write Gather Cache (WGC) is a chunk of memory allocated within the buffer cache
for staging large L.OB write operations. The maximum size of the cache can be 4 Mega
Bytes (MB). When multiple concurrent server processes attempt to write the LOB

data to the storage layer, the WGC facilitates the buffering of large write I/Os, which
helps in the allocation of large adjacent space allocation. It is recommended to avoid
frequent cOMMIT operations as they will flush this cache. The SecureFile deduplication
check is performed while the data is in Write Gather Cache. The usage of Write
Gather Cache greatly improves the write performance of the SecureFiles.

Free space management

The free space management keeps track of the allocation and deallocation of the
SecureFile LOBs in the L.oB segments. A background free space monitor keeps a
check on the current space usage of the SecureFile LOBs in the LoB segments. It is the
background free space monitor that determines the allocation of extents.

While writing in a segment, the fixed CHUNK parameter value can lead to the
fragmentation of the large object data. The Oracle SecureFiles use a larger and
dynamic chunk size in order to support the large allocation of contiguous blocks on
disk and avoid fragmentation. This feature greatly improves the write performance
of SecureFiles.

Oracle SecureFiles require no indexes such as b-tree. In concurrent environments,
index maintenance on the large objects can be a costly operation. SecureFiles use
private metadata blocks that are contiguously located in the

LOB segment.

Unlike older LOBs, SecureFiles do not suffer from high water mark contention issues
because the freed space is deallocated and reclaimed simultaneously.

[203]

Oracle SecureFiles

Oracle SecureFiles allow a LoB to be prefetched from the Oracle Database to improve
read performance. The prefetch intelligence comes from the SecureFiles access
patterns that increase throughput by a significant margin.

BasicFiles and SecureFiles

Starting from Oracle Database 11g, a LOB data can be stored either as a BasicFile or
SecureFile. Oracle recommends that you use the SecureFile approach for storing
large objects in the database because it optimizes the storage mechanism and boosts
both the read and write performance. If your application uses an ASSM managed
tablespace, you must create a LOB as a SecureFile.

Until Oracle 11g, the default storage type was BasicFile. However, with Oracle
Database 12c, SecureFile is the default storage mechanism. The applications working
with an older version of the large objects, that is, BasicFiles are advised to migrate to
SecureFiles using the online redefinition approach.

The db_securefile parameter

Oracle Database 11g introduced a new initialization parameter db_securefile to
control the behavior of LOB storage in the database. Until Oracle 11g, the default
value of the parameter was PERMITTED. Starting from Oracle Database 12c, the
default value of the db_securefile parameter is PREFERRED. The parameter can be
set using the ALTER SYSTEM or ALTER SESSION statement. The parameter values are
briefly described as follows:

* PREFERRED: This is the default parameter value in Oracle Database 12c or
COMPATIBLE set to 12.0.0.0 and higher.

* PERMITTED: It allows the creation of LOBs as SecureFiles, if the LOB storage is
specified as SECUREFILE.

* ALWAYS: All the LOB segments on the ASSM managed tablespaces are created
as SecureFiles. Note that LOBs on a non-ASSM tablespace will still be
BasicFiles.

* FORCE: All the LOB columns on an ASSM tablespace will be forcibly created as
SecureFiles. In addition, no LOB can be created on a non-ASSM tablespace.

* NEVER: It restricts the creation of SecureFiles.

* IGNORE: It ignores the creation of SecureFiles. All the LOB columns are created
as BasicFiles.

[204]

Chapter 7

Working with LOBs

Now that we know the benefits of Oracle SecureFiles, let's illustrate how to work
with the L.oB data in the Oracle Database. In our case study, you will see the
comparison between BasicFiles and SecureFiles.

Let's first verify the setting of the db_securefile initialization parameter:

conn sys/oracle as SYSDBA
show parameter db securefile

db securefil string PREFERRED

We will use the default setting of the parameter because it allows the creation of a
SecureFile on the ASSM tablespace and the behavior can be overridden by explicitly
specifying BasicFile.

For testing purposes, let's create two tablespaces with different segment space
management. The TBS_BASIC tablespace is a manually managed tablespace while
TBS_SECURE is an ASSM tablespace:

conn sys/oracle as SYSDBA

/*Create a manually managed tablespace*/

CREATE TABLESPACE tbs basic

DATAFILE '/u0Ol/app/oracle/oradata/orcl/tbs basic.dbf’
SIZE 200M

SEGMENT SPACE MANAGEMENT MANUAL

/

Tablespace created.

/*Create a tablespace with ASSM*/

CREATE TABLESPACE tbs secure

DATAFILE '/u0Ol/app/oracle/oradata/orcl/tbs_secure.dbf'
SIZE 200M

SEGMENT SPACE MANAGEMENT AUTO

/

Tablespace created.
/*Verify the segment space management of tablespaces*/

SELECT tablespace name, segment space management
FROM dba_tablespaces

[205]

Oracle SecureFiles

WHERE tablespace name like 'TBS%'

/

TABLESPACE NAME SEGMEN
TBS_BASIC MANUAL
TBS_SECURE AUTO

The following CREATE TABLE scripts create two tables: EMP_BASIC and EMP_SECURE.
Both the tables include a BLOB column: MISC_DoOCS. In the EMP_BASIC table, the
MISC_DOCS column is stored as a BasicFile while in the EMP_SECURE table, the column
is stored as a SecureFile. Note the BASICFILE and SECUREFILE keyword specification
to differentiate the two storage approaches. The L.0OB segments will be created on the
preceding tablespaces as well:

conn scott/tiger

/*Create a table EMP_ BASIC*/

CREATE TABLE emp basic

(empno, ename, deptno, job, sal, misc_docs)

LOB (misc_docs)

STORE AS BASICFILE

(tablespace TBS BASIC)

AS

SELECT empno, ename, deptno, job, sal, empty bLOB ()
FROM emp

/

/*Create a table EMP_SECURE*/

CREATE TABLE emp secure

(empno, ename, deptno, job, sal, misc_docs)

LOB (misc_docs)

STORE AS SECUREFILE

(tablespace TBS_SECURE)

AS

SELECT empno, ename, deptno, job, sal, empty bLOB ()
FROM emp

/

[206]

Chapter 7

LOB metadata

The UsEr_L0BS dictionary view includes a SECUREFILE column to identify a
column as SecureFile or BasicFile in a table. For each L.0B type column in a table,
Oracle creates a LOB segment separately from the table segment. Implicitly, Oracle
also creates an internal index structure for the LoB column on the same tablespace
specified for LoB. Note that the LoB index structure does not need to be rebuilt

or maintained.

The following SQL statement queries the USER_L0Bs dictionary view and lists
the OB segment, tablespace, in-row attribute, and SecureFile characteristic of
the LOB columns:

conn scott/tiger

/*Query USER _LOBS for LOB metadata*/
WITH C AS
(
SELECT table_ name,
column_name,
segment_name,
tablespace_name,
in_row,
securefile
FROM user_LOBs
WHERE table name in ('EMP_BASIC', 'EMP_SECURE')
)
SELECT * FROM c
UNPIVOT
(column_value FOR column_name IN (table_name,column_name, segment_
name, tablespace_name, in_row, securefile))

/

COLUMN_NAME COLUMN_VALUE

TABLE_NAME EMP_BASIC

COLUMN_NAME MISC_DOCS

SEGMENT NAME SYS_LOB0000093890C00007$%
TABLESPACE_NAME TBS_BASIC

IN_ROW YES

SECUREFILE NO

TABLE_NAME EMP_SECURE

COLUMN_NAME MISC_DOCS

SEGMENT NAME SYS_LOB0000093893C00007$%
TABLESPACE_NAME TBS_SECURE

IN_ROW YES

SECUREFILE YES

[207]

Oracle SecureFiles

The following query shows the segment space allocation and initial extents and
blocks allocated for BasicFile LOBand SecureFile LOB:

/*Query USER _ SEGMENTS to query initial bytes for LOB*/
WITH C AS
(
SELECT table name,
column_name,
1.segment name,
s.segment_type,
s.segment subtype,
to_char(s.bytes/1024) as bytes
FROM user LOBs 1, user_ segments s
WHERE 1.segment name=s.segment name
AND l.table name in ('EMP_BASIC', 'EMP_SECURE')
)
SELECT * FROM C
UNPIVOT
(column_value FOR column name IN (table name,column name, segment
name, segment_ type, segment subtype,bytes))

/

COLUMN_NAME

COLUMN_VALUE

TABLE_NAME EMP_BASIC

COLUMN_NAME MISC DOCS

SEGMENT NAME SYS LOB0000093890C00007$S
SEGMENT_TYPE LOBSEGMENT
SEGMENT_SUBTYPE MSSM

BYTES 64

TABLE_NAME EMP_SECURE

COLUMN_NAME MISC DOCS

SEGMENT NAME SYS LOB0000093893C00007$$
SEGMENT_TYPE LOBSEGMENT
SEGMENT_SUBTYPE SECUREFILE

BYTES 128

The preceding query output shows that a SecureFile needs a minimum of 16 blocks
(that is, 128/8) in the first extent. At the same time, BasicFile requires a minimum
of 3 blocks in the initial extent. However, the query result shows the allocation of 8
extents for the EMP_BASIC.MIS DOCS columns.

Temporary L.0oB metadata can be queried from the V$TEMPORARY LOBS dictionary view.

[208]

Chapter 7

Enabling the advanced features of a
SecureFile

Let's check whether the advanced features, that is, compression, deduplication, and
encryption for a SecureFile L.oB are enabled or not:

/*Query USER LOBS to view advanced features of SecureFilex/
SELECT column_ name,
encrypt,
compression,
deduplication
FROM user LOBs
WHERE table name='EMP_ SECURE'

/

COLUMN_NAM ENCR COMPRE DEDUPLICATION

MISC DOCS NO NO NO

The output from the preceding query shows that compression, deduplication, and
encryption is not yet switched on for the MIsc_pocs column in the EMP_SECURE table.
You can use the ALTER TABLE command to enable compression and deduplication for
the SecureFile L.oB column:

/*Modify the MISC DOCS to enable compression and deduplication*/
ALTER TABLE emp_secure

MODIFY LOB (misc_docs)

(

COMPRESS HIGH

DEDUPLICATE

)

/

Table altered.

Let's verify the changes from the USER_LOBS table:

/*Query USER _LOBS to view advanced features of SecureFile*/
SELECT column_name,
encrypt,
compression,
deduplication
FROM user_LOBs
WHERE table name='EMP_SECURE'
/

[209]

Oracle SecureFiles

COLUMN_NAM ENCR COMPRE DEDUPLICATION

You can also enable the LOB encryption for the MISC_Docs table using the ALTER
TABLE command. A SecureFile supports the following encryption algorithms:

* 3DES168: This is the triple data encryption standard with a 168-bit key size

* AESI128: This is the advanced data encryption standard with a 128-bit
key size

* AES192: This is the default encryption algorithm. It is the advanced data
encryption standard with a 192-bit key size

* AES256: This is the advanced data encryption standard with a 256-bit
key size

The following program modifies a column to enable encryption:

/*Modify MISC_DOCS column to enable encryption*/
ALTER TABLE emp_secure
MODIFY
(
misc docs ENCRYPT USING 'AES192'
)
/
ALTER TABLE emp_secure
*
ERROR at line 1:
ORA-28365: wallet is not open

You might receive the preceding exception if the encryption wallet is not open. We
will now authenticate the wallet by setting a password:

conn sys/oracle as SYSDBA
ALTER system

SET ENCRYPTION KEY
IDENTIFIED BY "orcl"

/

System altered.
Using the preceding password, you can authenticate and open the wallet:

ALTER system
SET ENCRYPTION WALLET OPEN
IDENTIFIED BY "orcl"

[210]

Chapter 7

System altered.

Once the wallet is opened, it will create a file, ewallet.p12, in the default
wallet directory:

[oracle@oradevl2c wallet]s 11
total 4
-rw-r--r--. 1 oracle oinstall 2848 May 16 06:54 ewallet.pl2

You can also check the wallet status from the V$ENCRYPTION WALLET
dictionary view:

/*Query VSENCRYPTION WALLET to check the wallet status*/
SELECT wrl type,

wrl parameter,

status
FROM v$encryption wallet

/
WRL _TYPE WRL_PARAMETER STATUS
FILE /u0l/app/oracle/admin/orcl/wallet OPEN

Let's rerun the ALTER TABLE command to enable encryption for the MISC_DoCs
column:

conn scott/tiger

/*Modify the MISC DOCS to enable encryption*/
ALTER TABLE emp_secure
MODIFY
(
misc docs ENCRYPT USING 'AES192'

Table altered.

You can verify the advanced setting feature under the USER_L0BS dictionary view:

/*Query USER LOBS to view advanced features of SecureFilex/
SELECT column_name,

encrypt,

compression,

deduplication

[211]

Oracle SecureFiles

FROM user LOBs
WHERE table name='EMP_SECURE'

/
COLUMN_NAM ENCR COMPRE DEDUPLICATION

MISC DOCS YES HIGH LOB

Populating the LOB data

The following PL/SQL procedure writes an operating system file to a LoB column
against a table record. It is customized for our test case to accept the directory name,
file name, table name, and employee ID, for which the file has to be uploaded:

/*Start the PL/SQL block*/

CREATE OR REPLACE PROCEDURE upload emp docs
(p_dir VARCHAR2,

p_file VARCHAR2,

p_table VARCHAR2,

p_empno NUMBER)

IS

/*Declaring LOB locator for the BLOB*/
L SOURCE_BLOB BFILE;

/*Declaring offset value for the LOB column*/
L AMT BLOB INTEGER := 4000;

/*Declaring temporary LOB columns for the LOB column*/

L BLOB BLOB := EMPTY BLOB () ;
L STMT CLOB := EMPTY CLOB () ;
BEGIN

/*Create a BFILE locator for the external filex*/
L SOURCE_BIOB := BFILENAME(p_dir, p_file);

/*Create a temporary LOB*/
DBMS LOB.CREATETEMPORARY (1 bLOB, true);

/*Opening the LOB locator in read only mode*/
DBMS LOB.OPEN (L SOURCE BLOB, DBMS LOB.LOB READONLY) ;

/*Calculating the length of LOB locator*/

[212]

Chapter 7

L _AMT BLOB := DBMS LOB.GETLENGTH (L. SOURCE BLOB) ;

/*Load the temporary LOBs with the LOB locator*/
DBMS LOB.LOADFROMFILE (L BLOB, L SOURCE BLOB, L AMT BLOB) ;

/*Close the LOB locators*/
DBMS_LOB.CLOSE (L_SOURCE_BLOB) ;

/*Update the table with the temporary LOB variable*/

L _STMT := 'UPDATE '||p_table||' SET misc_docs = :p2 WHERE empno =
p3';

EXECUTE IMMEDIATE 1 stmt using 1 bLOB, p empno;

IF SQL%ROWCOUNT = 0 THEN
DBMS_ OUTPUT.PUT LINE ('Wrong input - Employee does not exsts');
ELSE

DBMS_OUTPUT.PUT LINE ('Document uploaded successfully for employee
"| |p_empno) ;
END IF;

END;
/

Procedure created.

Let's test the procedure by uploading a PDF file for all the employees. Before we run
the procedure, you must create a directory pointing to the file location and grant the
read write privilege on the directory to the scoTT user. Note that the database directory
must point to a valid location on the server operating system; the reason being that the
directory location is validated at the time of the directory execution only:

CONN sys/oracle AS SYSDBA
CREATE OR REPLACE DIRECTORY secure dir AS '/uOl/app/oracle/LOBs/'
/

Directory created.

GRANT READ, WRITE ON DIRECTORY secure dir TO SCOTT
/

Grant succeeded.

[213]

Oracle SecureFiles

The following PL/SQL block calls the upLoAD _EMP_DOCS procedure to upload the
PDF files in the EMP_BASIC and EMP_SECURE table for all the employees:

SET SERVEROUT OFF
BEGIN

FOR I IN (SELECT rownum, empno FROM emp)
LOOP

/*Call the procedure to load in EMP BASIC table*/
upload emp docs ('SECURE DIR',

"ebook' | |i.rownum]| |',pdf",
'EMP_BASIC',
i.empno) ;

/*Call the procedure to load in EMP_SECURE table*/
upload emp docs ('SECURE DIR',

'ebook' | |i.rownum]| |',pdf",
'EMP_SECURE',
i.empno) ;

END LOOP;

END;
/

PL/SQL procedure successfully completed.

You can check the size of the file uploaded against an employee using the DBMS_LOB.
GETLENGTH function:

/*Verify the size of the BLOB in a row*/
SELECT empno, DBMS LOB.GETLENGTH (misc_docs)
FROM emp_ secure

WHERE empno = 7839

/

EMPNO DBMS LOB.GETLENGTH (MISC_DOCS)

7839 5769744

You can check the number of extents and blocks allocated for BasicFile and
SecureFile using the following query:

/*Query USER SEGMENTS to compare the total blocks consumed*/

[214]

Chapter 7

SELECT table name,
1.segment name,
bytes/1024 KB,
blocks,
extents
FROM user LOBs 1, user segments s
WHERE 1.segment name=s.segment name
AND l.table_name in ('EMP_BASIC', 'EMP_SECURE')

/

TABLE_NAME SEGMENT_NAME KB BLOCKS EXTENTS
EMP_BASIC SYS LOB0000093890C000075S 81920 10240 81
EMP_SECURE SYS LOB0000093893C000075$ 7360 920

Temporary LOB operations

A temporary LOB enables the LOB operations such as creation and modification of
the OB column values. A temporary LOB consumes space in a temporary tablespace
but it must be freed after usage. The DBMS_L0B package provides the APIs to handle
temporary LOB actions.

Managing temporary LOBs

The DBMS_L.OB package offers subprograms for temporary LOBs. The DBMS_LOB
subprogram, ISTEMPORARY, determines whether a given LOB is temporary or not.
Syntactically, the overloaded subprogram is as follows:

DBMS LOB.ISTEMPORARY (LOB loc IN BLOB)
RETURN INTEGER;

DBMS LOB.ISTEMPORARY (LOB loc IN CLOB CHARACTER SET ANY CS)
RETURN INTEGER;

In the syntax, LOB_LOC is the L.OB locator. A LOB locator can be a CLOB or BLOB
type variable.

To create a temporary LOB, you use the DBMS_LOB.CREATETEMPORARY subprogram. It
is an overloaded API to allow the LoB locator from a fixed or variable character set:

DBMS_LOB.CREATETEMPORARY
(

LOB_loc IN OUT NOCOPY BLOB,

cache IN BOOLEAN,

duration IN PLS INTEGER := DBMS_LOB.SESSION
)

[215]

Oracle SecureFiles

DBMS_LOB.CREATETEMPORARY

(
LOB loc IN OUT NOCOPY CLOB CHARACTER SET ANY CS,
cache IN BOOLEAN,
duration IN PLS INTEGER := 10

)

In the preceding subprogram signatures:

* LOB_loc: This is the LoB locator.

* cache: This is the boolean parameter to specify whether the L.oB should be
cached in the buffer cache or not.

* duration: It specifies the life of the temporary LoB. It can be one of SESSION,
TRANSACTION, or CALL. The default duration of a temporary LOB is SESSION.

DBMS_LOB.FREETEMPORARY frees the memory allocated for the temporary LoB. The
syntax for the overloaded subprogram is as follows:

DBMS_LOB.FREETEMPORARY (LOB loc IN OUT NOCOPY BLOB) ;

DBMS_LOB.FREETEMPORARY (LOB loc IN OUT NOCOPY CLOB CHARACTER SET
ANY CS) ;

Working with a temporary LOB

Let's write a PL/SQL program to illustrate the usage of the temporary L.oB
subprograms. We shall observe the creation, validation, and release
of the temporary LOB in the program:

/*Enable the SERVEROUT to display the block output*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

I, TEMP_LOB CLOB;

AMT NUMBER;

OFFSET NUMBER := 5;

L WRITE VARCHAR2 (100) := 'Oracle 8i introduced LOB types';

L _APPEND VARCHAR2 (100) := 'Oracle 11g introduced SecureFiles';
BEGIN

reate the temporar

/*C h p y LOB*/
DBMS_LOB.CREATETEMPORARY
(

[216]

Chapter 7

LOB_loc => L TEMP LOB,
cache => true,
dur => dbms LOB.session

)i

/*Verify the creation of temporary LOB*/
IF (DBMS_LOB.ISTEMPORARY (L TEMP LOB) = 1) THEN
DBMS_OUTPUT.PUT LINE('Given LOB 1is a temporary LOB') ;
ELSE
DBMS_OUTPUT.PUT LINE('Given LOB is a persistent LOB') ;
END IF;

/*Open the temporary LOB is read write mode*/
DBMS_LOB.OPEN
(
LOB_loc => L TEMP LOB,
open_mode => DBMS LOB.LOB READWRITE
)i

/*Write the sample data in the temporary LOB*/
DBMS_LOB.WRITE
(
LOB_loc => L TEMP LOB,
amount => LENGTH(L WRITE),
offset => OFFSET,
buffer => L WRITE);
DBMS_OUTPUT.PUT LINE
(
'Temporary LOB length after Write '||DBMS_LOB.GETLENGTH (L_TEMP
LOB)
)i

/*Append the sample in the temporary LOB*/
DBMS_LOB.WRITEAPPEND
(
LOB loc => L TEMP_LOB,
amount => LENGTH (L APPEND) ,
buffer => L APPEND
)i

DBMS_OUTPUT.PUT LINE
(

'Temporary LOB length after Append '||DBMS_LOB.GETLENGTH (L _TEMP
LOB)

[217]

Oracle SecureFiles

/*Display the complete content of the temporary LOB*/

)i

DBMS_OUTPUT.PUT LINE
(

CHR (10) | | 'Temporary LOB Content:
)i

DBMS_OUTPUT.PUT LINE
(
DBMS_LOB.SUBSTR
(
L TEMP_LOB,DBMS_ LOB.GETLENGTH
(L_TEMP_LOB), 1
)
)

DBMS_LOB.CLOSE (LOB_loc => L TEMP LOB) ;
DBMS_LOB.FREETEMPORARY (LOB_loc => L_TEMP LOB) ;

END;

/

Given LOB is a temporary LOB

Temporary LOB length after Write 34

Temporary LOB length after Append 67

Temporary LOB Content:

Oracle 8i

PL/SQL procedure successfully completed.

Migrating LONG to LOBs

The database applications using LONG data types should migrate to LoB due to the

following reasons:

A LONG column can store a maximum of (2GB - 1) while an LOB can store a

maximum data of (4GB - 1)

A table can have one, and only one, LONG data type column while there is no

restriction on the number of LOB columns in a table

Data replication is not allowed with the LONG and LONG RAW columns

introduced LOB typesOracle 1lg introduced SecureFiles

[218]

Chapter 7

S Migrating LONG to the LOB columns may generate a lot of redo.
Q Therefore, it is advised to switch off the logging for the table
containing the LONG column.

You can convert LONG to CLOB and LONG RAW to BLOB using either of the following
listed approaches:

Use the ALTER TABLE command

For a table with the LONG type column, you can use the ALTER TABLE command to
modify the column type to LoB with new storage specifications and migrate the data
to a new space. Note that all the LONG data is migrated as LoB in the table. All the
column-level characteristics of the LONG column are retained and carried forward to
the 0B column. As a best practice, you should drop the domain indexes on the LoNG
columns, if any exist.

For example, the following command converts the TEXT column from LONG to LOB:

ALTER TABLE need to migrate MODIFY (text CLOB)
/

Using the TO_LOB function

You can use the To_LOB utility function to convert the LONG data into LoB while
performing the CREATE TABLE AS SELECT Oor INSERT INTO..SELECT actions. This
method is beneficial when you want to perform the conversion of a subset of the
LONG values by applying predicate clauses to the SELECT query. It cannot be used
in a PL/SQL block.

The To 1.0B function converts LONG to CLOB or NCLOB and LONG RAW to BLOB data.
Refer to the following example:

CREATE TABLE sales_new

AS

SELECT sales_id, sales name, TO LOB (sales_doc)
FROM sales old

/

The To_1.0B function in a CTAS operation doesn't work for an Index Organized
Table. However, the INSERT AS SELECT operation on an index-organized table
still works.

[219]

Oracle SecureFiles

Online Table Redefinition

Online table redefinition uses the To_r0B utility function to perform the LONG to LoB
conversion. You have to create a work-in-progress table of the same structure as the
original table. Note that this time, you will use the LoB columns in place of the LoNG
columns. Later, you can call DBMS_REDEFINITION.START REDEF TABLE with the
required parameters to kick off the conversion.

Migrating BasicFiles to SecureFiles

It is recommended to migrate the BasicFile LOBs to SecureFile LOBs using the Online
Table Redefinition method. The advantage of using the Online Table Redefinition
method is that none of the objects have to be offline during the process. In addition,
the performance of the redefinition process can be enhanced by enabling parallelism.
The following example demonstrates the online redefinition process.

A TAB BASICFILE table contains the DoC column that is a BasicFile cLOB column:

SELECT *

FROM tab basicfile

/
ID DOC
1 Oracle 9i
2 Oracle 10g
3 Oracle 11g
4 Oracle 12c

The following query checks the L.oB behavior from the USER_1.0BS dictionary view:

SELECT column_ name,
securefile
FROM user LOBs
WHERE table name='TAB BASICFILE'
/

COLUMN_NAME SEC

For redefinition, we will create a work-in-progress table with the same structure as

the TAB_BASICFILE table. You can drop this table after the table redefinition activity is
over. Note that this table should not have any indexes. During the redefinition process,
the target table will carry the same data as the original table. Therefore, the host server
must have sufficient free space available to perform the redefinition operation:

[220]

Chapter 7

/*Creating target table TAB SECUREFILE for redefinition¥*/
CREATE TABLE TAB_ SECUREFILE

(id NUMBER,

doc CLOB)

LOB (doc) STORE AS SECUREFILE

/

/*Verify the SecureFile feature*/
SELECT column_ name,

securefile
FROM user LOBs
WHERE table name='TAB SECUREFILE'
/

COLUMN_NAME SEC

You can kick-start the table redefinition operation by calling the
DBMS_REDEFINITION.START REDEF_TABLE subprogram:

conn sys/oracle as SYSDBA
/*Start the PL/SQL block*/
DECLARE

L ERROR PLS_INTEGER := 0;
BEGIN

/*Specify source and target tables for redefinition*/
DBMS REDEFINITION.START REDEF TABLE

(uname => 'SCOTT', --Schema name of the tables
orig table =>'TAB BASICFILE', --Table to be redefined

int table =>'TAB_SECUREFILE', --Interim table

col mapping => 'id id, doc doc' --Column mapping from

source to interim table

)i

/*Specify source and target tables for copying the dependents*/
DBMS_ REDEFINITION.COPY TABLE DEPENDENTS

(uname => 'SCOTT', --Schema name of the tables
orig table =>'TAB BASICFILE', --Original table

int table =>'TAB SECUREFILE', --Interim table
copy_indexes = 1, --Copy indexes (1) or not (0)
copy_triggers => true, --Copy triggers(T) or not (F)
copy_constraints => true, --Copy constraints(T) or not (F)
copy_privileges => true, --Copy privileges (T) or not (F)
ignore errors => false, --Ignore errors while copying a

dependent object

[221]

Oracle SecureFiles

num_errors => L ERROR, --Number of errors occurred while
copying dependent objects
copy_statistics => FALSE, --Copy statistics (1) or not (0)
copy_mvlog => FALSE --Copy materialized view log (1) or
not (0)
)i
DBMS OUTPUT.PUT LINE('Errors := ' || TO CHAR(L ERROR)) ;

/*Finish the redefinition process*/
DBMS REDEFINITION.FINISH REDEF TABLE

(uname => 'SCOTT', --Schema name of the tables
orig table => 'TAB BASICFILE', --Table to be redefined

int table => 'TAB SECUREFILE' --Interim table
)i

END;
/

PL/SQL procedure successfully completed.

You can use DBMS_REDEFINITION.ABORT REDEF TABLE to abort the table redefinition
process if you encounter the ORA-23539: table "SCOTT"."TAB BASICFILE"
currently being redefined exception.

Let's verify the SECUREFILE property for the TAB_BASICFILE table:

SELECT column_name,
securefile
FROM USER_LOBS
WHERE TABLE NAME='TAB BASICFILE'

/
COLUMN_NAME SEC
DOC YES

TAB_BASICFILE exchanges its table properties with TAB_ SECUREFILE:

SELECT column_name, securefile
FROM USER_LOBS
WHERE TABLE NAME='TAB_ SECUREFILE'

/
COLUMN_NAME SEC
DOoC NO

[222]

Chapter 7

Oracle Database 12c enhancements to
SecureFiles

Oracle Database 12c adds the following features to the SecureFile LOBs:

SecureFiles LoB will be the default storage: You might have seen this point
earlier in the chapter so this is just reiterating the fact that SecureFiles will
be the default storage option in Oracle Database 12c. The value of the
db_securefile initialization parameter is PREFERRED, which means that
all LOBs on the ASSM enabled tablespace will be created as SecureFiles
(unless BasicFile is explicitly specified or the tablespace is non ASSM).

Parallel DML support for LOBs: If all the L.0B columns in a partitioned or
non-partitioned table are SecureFiles, then DML operations can be executed
in parallel.

Data Pump uses SecureFile as the default LoB storage: You can now migrate
a BasicFile to SecureFile using the Data Pump utility. During an export
data pump operation, you can set the TRANSFORM handle as LOB_STORAGE to
decide how the L.0B segments will be created in the target database.

The L.OB_STORAGE handle can be SECUREFILE, BASICFILE, DEFAULT, Or
NO_CHANGE (default): The NO_CHANGE option does not manipulate the LoB
storage. The DEFAULT option follows the default LOB storage on the target
database. The SECUREFILE | BASICFILE options enable the creation of the
LOB segments as SecureFiles or BasicFiles.

Summary

In this chapter, you learned how to handle large objects in Oracle. You now
understand the dynamics of storing large objects in a database. A detailed discussion
on the optimization features of Oracle SecureFiles would have helped you to
differentiate the two storage approaches. The comparative illustration of a BasicFile
and SecureFile will help in deducing the appropriate conclusions.

Moving forward, the next chapter will deal with another important aspect of
database programming, that is, tuning the PL/SQL code. Tuning —an indispensable
part of programming —is a skill for writing optimized code, which comes from
knowledge and matures with experience.

[223]

Oracle SecureFiles

Practice exercise

* Internal LOBs can be used as attributes of a user-defined data type:
1. True.
2. False.

* Internal LOBs cannot be passed as parameters to PL/SQL subprograms:
1. True.
2. False.

* Internal LOBs can be stored in a tablespace that is different from the
tablespace that stores the table containing the L.oB column:

1. True.
2. False.

* You issue the following command to create a table called LOB_STORE:
CREATE TABLE LOB_store
(LOB_id NUMBER (3),
photo BLOB DEFAULT EMPTY CLOB(),
cv CLOB DEFAULT NULL,
ext file BFILE DEFAULT NULL)
/
Identify the issue in this script:
1. The table is created successfully.

2. It generates an error because a BLOB column cannot be initialized
with EMPTY CLOB().

3. It generates an error because DEFAULT cannot be set to NULL for a
CLOB column during table creation.

4. It generates an error because DEFAULT cannot be set to NULL for a
BFILE column during table creation.
* Identify the correct statements relating to the initialization of LOBs:
1. Aninternal LOB cannot be initialized in the CREATE TABLE statement.
2. A BFILE column can be initialized with the EMPTY BFILE () constructor.

3. The EMPTY CLOB() and EMPTY BLOB () functions can be used to
initialize both the NULL and NOT NULL internal LOBs of the cLoB and
BLOB types.

4. Initialization is a mandatory step for LoB type columns.

[224]

Chapter 7

Which two statements are true about the FILEOPEN subprogram in the DBMS_
LOB package?

1. FILEOPEN can be used to open only internal LOBs.

2. FILEOPEN can be used to open only external LOBs.

3. FILEOPEN cannot be used to open temporary LOBs.

4. FILEOPEN can be used to open internal and external LOBs.
Temporary LOBs can be shared among the users who are currently
connected to the server:

1. True.

2. False.

Identify the correct statements about BFILEs:
1. A BFILE column in a table must be initialized with a dummy locator.
2. BFILEs cannot be used as attributes in an object type.
3. The BFILE data type is a read-only data type.
4. The external file still persists if the BFILE locator is deleted or
modified.
Pick the incorrect statements about Temporary LOBs:
It resides in the user's temporary tablespace.
It can be used during the LONG to LOB data type migration.

It can be persistent for SESSION, TRANSACTION, Or CALL.

Ll

Temporary LOB of a BFILE type can be created.

A savMPLE_DATA table has the following structure:

Name Null? Type
SD_1ID NUMBER
SD_SOURCE BFILE

You update a row in the table using the UPDATE statement, as follows:

UPDATE sample data
SET sd_source = BFILENAME('SD FILE', 'sample.pdf')
WHERE Sd_id = 448;

However, you receive the error —ORA-22286: insufficient privileges—
on the file or directory to perform FILEOPEN.

[225]

Oracle SecureFiles

What could be the probable cause of this error?
1. The directory sD_FILE does not exist.
2. The file sample.pdf does not exist.
3. The user does not have the READ privilege on the directory.
4

The file sample.pdf is a read-only file.

* Which of the following statements about SecureFiles are true?
1. SecureFiles require an ASSM-enabled tablespace.
2. A BFILE type column in a table can be declared as SecureFiles.
3. A SecureFile is not affected by a LoB index contention.
4. SecureFiles use a new cache component of the buffer cache to hold
the L.oB data.
* Identify the incorrect statement about the compression feature in SecureFiles:
1. Compression impacts performance during a LOB write operation.

2. SecureFiles compression is part of the advanced compression feature
in Oracle.

3. Possible degrees of compression can be MEDIUM and HIGH.
Oracle compresses all the L.oB data at high priority if the feature has
been enabled for a SecureFile.
* The compression feature can be enabled only for encrypted SecureFiles:
1. True.
2. False.
* A compressed table containing a SecureFile column will automatically
enable compression for SecureFiles:
1. True.
2. False.

* Identify the true statements about the deduplication feature of SecureFiles:
1. KEEP_DUPLICATES is the default option.
2. DEDUPLICATE retains one copy of the duplicate LOB data.

3. The deduplication feature impacts write performance as Oracle
compares the secure hash code with the available hash codes before
writing to the disk.

4. The deduplication of SecureFiles is checked on the basis of
the filenames.

[226]

Chapter 7

* Pick the correct statement for the encryption feature in SecureFiles:

L

The secureFile encryption keys are stored in the table.
The secureFile encryption keys are stored in the database.
The secureFile encryption keys are stored outside the database.

Encryption algorithms cannot be modified for an encrypted
SecureFile column.

* Which of the following statements are true for BasicFile to SecureFile
migration in Oracle?

1.

The BasicFile to SecureFile migration can be done through a data
pump operation.

Table redefinition is preferred as it does the migration with all the
resources connected online.

The DBMS_REDEFINITION package can migrate only one LOB column
at a time.

Unnecessary space consumption makes the redefinition process less
preferable over the partition method.

[227]

Tuning the PL/SQL Code

Database tuning refers to an exercise that aims to improve the performance of a
database. The art of optimizing the database performance largely depends on how
well one understands the database architecture, application design and server
environment. The areas that can be potentially tuned are the application design,
network, SQL queries, and PL/SQL code. This exercise starts with the detection and
identification of a problem, followed by analysis and tuning recommendations. In
this chapter, we will see tuning practices related to the Oracle PL/SQL code.

Programs written in Oracle PL/SQL can be tuned to optimize data-centric and
CPU-intensive operations. In a PL/SQL program unit, statements like loops,
dynamic SQL statements, routine calls, and the compilation mode can be tuned
for better performance. This chapter will discuss the different code compilation
techniques and their benefits. The chapter outline is as follows:

* The PL/SQL Compiler

o

Subprogram inline

* Native compilation of the PL/SQL Code
* Tuning the PL/SQL Code

[e]

Build secure applications using bind variables

o

Call parameters by reference
° Avoid an implicit data type conversion
° Understand the NOT NULL constraint
Select an appropriate numeric data type

° Bulk processing in PL/SQL

[229]

Tuning the PL/SQL Code

The PL/SQL Compiler

The PL/SQL compiler converts a piece of PL/SQL code that is written in user-
readable language semantics to system code. At a higher level, the code compilation
is a three-step process that includes code parsing, parameter binding, and translation
into machine code (M-code). The compiler raises a syntax or compilation error if a
PL/SQL construct or statement is incorrectly used. Once the PL/SQL program code
is error-free and argument binding is done, the system code is generated and stored
in the database.

Until Oracle 10g Release 1, the M-code was generated without any code optimization.
Starting from Oracle Database10g Release 2, M-code uses the PL/SQL optimizer

to apply code formatting for better performance. The PL/SQL optimizer level is
governed by a compilation parameter known as PLSQL_OPTIMIZE LEVEL. The
parameter value can be set at the system or session level as a number between 1 to 3.
By default, the parameter value is 2.

The PL/SQL optimizer uses multiple techniques to optimize the PL/SQL code, for
example, the removal of dead code from the program unit, or inlining the calls to
subprograms. Let us first see how subprogram inlining works.

Subprogram inlining in PL/SQL

A PL/SQL program unit with a locally-declared and invoked subprogram can be
optimized using the inlining method. While optimizing the program code, the PL/SQL
optimizer replaces the subprogram invocation calls by the subprogram body itself. For
the PL/SQL compiler to inline a local subprogram, the following criteria must be met:

* Set PLSQL OPTIMIZE_LEVEL to 2 and use PRAGMA INLINE: The compiler
inlines only those subprograms that are specified with PRAGMA INLINE.

* Set PLSQL OPTIMIZE_LEVEL to 3: The compiler inlines all the subprogram
calls. However, you can specify PRAGMA INLINE to prevent the inlining of
a particular subprogram. To disable the inlining of a program unit, specify
PRGMA INLINE ([subprogramunit], 'NO').

PRAGMA INLINE directs the compiler to inline the subprogram calls that are just
succeeding it. For example, in the following PL/SQL block, the subprogram call is
inlined in Line 5 butnotin Line 7:

PROCEDURE P_SUM NUM (P_A NUMBER, P B NUMBER) /* Line 1 */
/* Line 2 */
BEGIN /* Line 3 */
PRAGMA INLINE ('P_SUM NUM', 'YES') /* Line 4 =*/
result 1 := P_SUM NUM (10, 20); /* Line 5 */

[230]

Chapter 8

/* Line 6 */
result_2 := P_SUM NUM (100, 200); /* Line 7 */

END ; /* Line 8 */
/ /* Line 9 */

At most of the scenarios, subprogram inlining improves the performance of a PL/
SQL program. If the subprogram is a large unit, the cost of inlining would be more
than the modular execution.

PRAGMA INLINE ([subprogram], 'NO') will always
override PRAGMA INLINE ([subprogram], 'YES') in
’ the same declaration.

It is recommended that you inline those utility subprograms that are frequently
invoked in a PL/SQL block. The intra-unit inlining is traceable through session-
level warnings. The session-level warnings can be turned on by setting the PLSQL_
WARNINGS parameter to ENABLE : ALL.

PRAGMA INLINE

PRAGMA is a compiler directive that hints the compiler. Any error in the usage
of PRAGMA results in a compilation error. Note that a PRAGMA, which accepts an
argument, cannot accept a formal argument but always needs an actual argument.

PRAGMA INLINE was introduced in Oracle Database 11g to support subprogram
inlining for better PL/SQL performance. When the compilation parameter PLSQL_
OPTIMIZE_LEVEL is 2, you have to specify the subprogram to be inlined using
PRAGMA INLINE. When PLSQL OPTIMIZE LEVEL is 3, the PL/SQL optimizer tries to
inline most of the subprogram calls, without requiring any PRAGMA specification. At
this stage, if you perceive an inlined subprogram to be irrelevant or undesirable, you
can disable the inlining of that particular subprogram through PRAGMA INLINE.

PRAGMA INLINE impacts only when PLSQL_OPTIMIZE_

LEVEL is either 2 or 3. When PLSQL_OPTIMIZE LEVEL is
’ 1, it has no effect.

[231]

Tuning the PL/SQL Code

PLSQL_OPTIMIZE_LEVEL

Oracle Database 10g introduced the PLSQL_OPTIMIZE LEVEL initialization parameter
to enable or disable PL/SQL optimization. If enabled, the optimizer deploys several
optimization techniques in accordance with the level. The compilation settings

of a PL/SQL program can be queried from the USER_PLSQL_OBJECT SETTINGS
dictionary view.

Until Oracle Database 10g, the parameter value could be either o, 1, or 2. Starting
from Oracle Database 11g, the new optimization level can be enabled by setting
the parameter value to 3. Note that the default value of the parameter is 2. The
parameter value can be modified using the ALTER SYSTEM or ALTER SESSION
statements. Only the PL/SQL programs that are compiled after the parameter
modification are impacted. You can also specify the PLSQL_OPTIMIZE LEVEL value
at the time of explicit compilation of a program unit. For example, a P_OPT LVL
procedure can be recompiled using the following statement:

ALTER PROCEDURE p opt 1lvl COMPILE PLSQL OPTIMIZE LEVEL=1
/

The following PL/SQL procedure demonstrates the subprogram inlining using
PRAGMA INLINE. The procedure adds the series (1*2) + (2*2) + (3*2) + ...+ (N*2)
up to N terms:

/*Create a procedure*/
CREATE OR REPLACE PROCEDURE P_SUM SERIES (p count NUMBER)
IS

1 series NUMBER := 0;
l_time NUMBER ;

/*Declare a local subprogram which returns the double of a number*/
FUNCTION F CROSS (p num NUMBER, p multiplier NUMBER) RETURN NUMBER
IS
1 result NUMBER;

BEGIN
1 result := p num * p multiplier;
RETURN (1 result);

END F_CROSS;

BEGIN

/*Capture the start time*/
1 time := DBMS UTILITY.GET TIME () ;

[232]

Chapter 8

/*Begin the loop for series calculation*/
FOR J IN 1..p count
LOOP

/*Set inlining for the local subprogram*/
PRAGMA INLINE (F_CROSS, 'YES');
1l series := 1 series + F_CROSS(J,2);

END LOOP;

/*Time consumed to calculate the result*/
DBMS_OUTPUT.PUT LINE ('Execution time:'||TO CHAR(DBMS UTILITY.GET
TIME() - L TIME)) ;

END;

Case 1: When PLSQL_OPTIMIZE_LEVEL =0

Atlevel 0, the PL/SQL optimizer doesn't kick in, so no code optimization is enabled.
The compiler maintains the code evaluation order, and performs object checks.

Enable PLSQL_WARNINGS to capture the inline operations:

ALTER SESSION SET plsgl warnings = 'enable:all'
/

Session altered.

Let's recompile the P_SUM_SERIES procedure with the PLSQL_OPTIMIZE LEVEL=0
setting:

ALTER PROCEDURE P_SUM SERIES COMPILE PLSQL OPTIMIZE LEVEL=0

/

SP2-0804: Procedure created with compilation warnings

show errors
Errors for PROCEDURE P SUM SERIES:

LINE/COL ERROR

1/1 PLW-05018: unit P_SUM_SERIES omitted optional AUTHID clause;
default value DEFINER used

[233]

Tuning the PL/SQL Code

Let's execute the procedure with a relatively large input value for a computation-
intensive operation:

BEGIN

p_sum series (10000000) ;
END;
/

Execution time:776

PL/SQL procedure successfully completed.

Case 2: When PLSQL_OPTIMIZE_LEVEL =1

Atlevel 1, the PL/SQL optimizer applies conventional optimization techniques to
a PL/SQL program unit. It eliminates the dead code, and skips the redundant and
unnecessary code in the program while generating the p-code instructions.

What is dead code? If a PL/SQL statement remains unchanged within an iterative
or conditional construct, and doesn't contribute to the program logic, it is known as
dead code. While translating the program into the system code instructions, the PL/
SQL optimizer identifies the pieces of dead code and prevents their conversion.

Let's recompile the p_suM_SERIES procedure using the ALTER PROCEDURE statement
for PLSQL_OPTIMIZE_LEVEL=1 and check the warnings:

ALTER PROCEDURE P_SUM SERIES COMPILE PLSQL OPTIMIZE LEVEL=1
/

SP2-0804: Procedure created with compilation warnings

show errors
Errors for PROCEDURE P SUM SERIES:

LINE/COL ERROR

1/1 PLW-05018: unit P_SUM SERIES omitted optional AUTHID clause;
default value DEFINER used

You can also query the compilation warnings from the USER_ERRORS dictionary
view.

Although PRAGMA was specified, the F_CROSS invocation was not inlined. Therefore, the
subprogram inlining doesn't seem to work when PLSQL_OPTIMIZE LEVEL is set to 1:

BEGIN
P _SUM SERIES (10000000) ;
END;

[234]

Chapter 8

/

Execution time:710
PL/SQL procedure successfully completed.

Case 3: When PLSQL_OPTIMIZE_LEVEL = 2

At level 2, the PL/SQL optimizer performs the intelligent code optimization through
techniques like explicit subprogram inlining and code reorganization.

Recompile the P_suM_SERIES procedure with PLSQL_OPTIMIZE LEVEL=2 using the
ALTER PROCEDURE statement:

ALTER PROCEDURE p sum series COMPILE PLSQL OPTIMIZE LEVEL=2
/

SP2-0805: Procedure altered with compilation warnings

Let's retrieve the compilation warnings. Oracle includes a new set of compilation
warnings to demonstrate the inlining flow in the program. The PL/SQL optimizer is
instructed by PRAGMA to inline the subprogram in 1ine 28. At line 8, the function
was removed and its body was merged into the main program. Line 28 shows the
inlining request and action:

SQL> show errors
Errors for PROCEDURE P_SUM SERIES:

LINE/COL ERROR

1/1 PLW-05018: unit P_SUM SERIES omitted optional AUTHID clause;
default value DEFINER used

8/3 PLW-06006: uncalled procedure "F_CROSS" is removed.

28/7 PLW-06004: inlining of call of procedure 'F_CROSS' requested

28/7 PLW-06005: inlining of call of procedure 'F _CROSS' was done

Let's check how a level 2-optimized and compiled program performs:

BEGIN
P _SUM SERIES (10000000) ;
END;
/
Execution time:456
PL/SQL procedure successfully completed.

Well done! It runs in 456ms, which is almost half of its baseline, that is, 2 times better
performance.

[235]

Tuning the PL/SQL Code

Case 4: When PLSQL_OPTIMIZE_LEVEL =3

Level 3 optimization focuses on the predictive and automatic inlining and
code refactoring. Modify the compilation parameter in the session using the
following statement:

ALTER SESSION SET plsqgl optimize level=3
/

Session altered.

To see the implicit inlining of the subprogram, let's recreate the p_suM_SERIES
procedure without the PRAGMA specification:

/*Create a procedure*/
CREATE OR REPLACE PROCEDURE P SUM SERIES (p_count NUMBER)
IS

1 series NUMBER := 0;
1 time NUMBER;

/*Declare a local subprogram to return the double of a number*/
FUNCTION F_CROSS (p num NUMBER) RETURN NUMBER IS
BEGIN
RETURN (p num * 2);
END F_CROSS;

BEGIN

/*Capture the start time*/
1 time := DBMS UTILITY.GET TIME();

/*Begin the loop for series calculation*/
FOR J IN 1..p count
LOOP

/*Set inlining for the local subprogram*/
1 series := 1 series + F_CROSS (J);
END LOOP;

/*Time consumed to calculate the result*/
DBMS_OUTPUT.PUT LINE ('Execution time:'||TO CHAR(DBMS UTILITY.GET
TIME() - L TIME));
END;

SP2-0805: Procedure altered with compilation warnings

[236]

Chapter 8

Let's check the compilation warnings:

show errors
Errors for PROCEDURE P SUM SERIES:

LINE/COL ERROR

1/1 PLW-05018: unit P_SUM SERIES omitted optional AUTHID clause;
default value DEFINER used

8/3 PLW-06006: uncalled procedure "F _CROSS" is removed.

25/7 PLW-06005: inlining of call of procedure 'F_CROSS' was done

Note the warnings at line 8 and line 24. No PRAGMA specified, but the PL/SQL
optimizer inlines the subprogram. Let's see how the procedure execution is impacted
by level 3 optimization:

BEGIN
P_SUM SERIES
END;

/

(10000000) ;

Execution time:420
PL/SQL procedure successfully completed.

The execution time is almost equal to the level 2 optimization, because the technique
to optimize the code was similar in both the cases.

The consolidation of the execution numbers is shown in the following table:

PLSQL_OPTIMIZE_LEVEL Inlining Inlining | Execution | Performance
Requested | Done time factor

PLSQL OPTIMIZE LEVEL 0 | Yes No 776 1

PLSQL OPTIMIZE LEVEL = 1 | Yes No 710 1.1x

PLSQL OPTIMIZE LEVEL = 2 | Yes Yes 456 1.7x

PLSQL OPTIMIZE LEVEL 3 | No Yes 420 1.8x

It is recommended that you have PLSQL._OPTIMIZE LEVEL as

2 for the database development and production environments.
It ideally optimizes the PL/SQL code and enables the database
developers to control the subprogram inlining.

[237]

Tuning the PL/SQL Code

Native and interpreted compilation
techniques

Until Oracle 9i, all PL/SQL program units were compiled in interpreted mode.
Starting with Oracle 9i, PL/SQL programs can be compiled either in interpreted
mode or native mode. Let's quickly understand what are interpreted and native
compilation modes.

The PL/SQL compiler generates machine code for the program units. Machine code

is a set of instructions stored in the database dictionaries that runs against the PL/SQL
virtual machine (PVM). At the time of the program invocation, the M-code is scanned
by one of the subroutines in the PVM. The scanning process involves the identification
of the operation code and operands and routing the call to the appropriate subroutine.
The scanning of the machine code instructions consumes systems resources, which
may impact the runtime performance of the code. This is how interpreted compilation
works. In the case of native compilation, a shareable dynamic linked library (DLL) is
generated instead of a machine code. At runtime, the DLL is directly invoked and it
invokes the subroutine along with the required set of arguments. With DLL, you don't
have to go through the scanning procedure at runtime, which contributes to better
code performance.

Until Oracle Database 9i and 10g, the challenge with native compilation was to
generate a platform-specific shareable and nonportable library. It was made possible
by the C compiler and linker commands located in $ORACLE HOME/plsql/spnc_
commands, which would compile and link the C translation of the machine code to

a platform-specific library. In Oracle Database 9i, the libraries were stored on a file
system, while in Oracle Database 10g, the libraries were stored in a catalog (database
dictionary). A copy of the shared libraries was stored on a file system for backup and
operating-system operations. The file system location used to be specified in PLSQL_
NATIVE_LIBRARY DIR and PLSQL_NATIVE LIBRARY SUBDIR_COUNT. The shared
libraries were automatically extracted, restored, and deleted from the file system. If
any of the file system libraries were lost or dropped accidently, they were re-extracted
and restored in the file system after the database was restarted.

The shared libraries generated during native compilation
Lo are stored in the NCOMP_DLLS dictionary.

Native compilation is supported with the Real Application Cluster (RAC)
database option.

[238]

Chapter 8

This approach worked well until the production DBAs showed reluctance in having
the C compiler on production environments and procuring an additional C compiler
license.

Oracle Database 11g Real Native Compilation

Oracle Database 11g introduced the real native compilation technique to address
the below:

* Remove the C compiler and linker dependencies to generate platform
specific libraries

* Improve code compilation performance

* No compromise with the runtime performance
Starting from Oracle Database 11g, the Oracle Database can generate platform-
specific machine code from PL/SQL code and store it in the database catalog or an
internal dictionary without the intervention of a third party C compiler. The native
code is then loaded directly from the catalog without staging it on a filesystem.

Oracle Database 11g real native compilation improves the compilation performance
by a degree of magnitude.

The following list summarizes the salient features of real native compilation process:

* There is no dependency on a third party C Compiler.
* The native code is stored in the SYSTEM tablespace.
* There is no DBA task to set the filesystem initialization parameter.

* The compilation method is controlled by an initialization parameter:
PLSQL_CODE_TYPE [native/interpreted].

* Native compilation is supported for all types of PL/SQL program units.

* In INTERPRETED mode, the PL/SQL code is compiled to the equivalent
machine code. The machine code instructions are scanned during the runtime
and routed to the appropriate subroutine on the PL/SQL Virtual Machine.

* InNATIVE mode, the PL/SQL code is compiled to machine code, which is
directly translated to the platform-specific. At runtime, the machine code is
executed natively by the PL/SQL Virtual Machine.

* The real native compilation mode can be set at system level, session level,
and object level. A natively compiled program unit can call an interpreted
program and vice versa.

[239]

Tuning the PL/SQL Code

Selecting the appropriate compilation mode

During the database development phase, the PL/SQL program units tend to
get recompiled frequently. At this stage, you would want to have the faster
compilation of programs. Therefore, you can choose to compile the program
units in interpreted mode.

Once the database is deployed for production, and has fewer chances of frequent
recompilation, you can choose native compilation. PL/SQL native compilation
enhances the runtime performance of the program units. Computation-intensive
programs are expected to benefit most from the native compilation method. The
performance gains will be less if the program is frequently switching the context
between the SQL and PL/SQL engines.

Oracle allows having a mix of program units with different compilation modes.
However, keep in mind that if a natively compiled unit invokes an interpreted unit,
the program execution performance will be impacted.

Setting the compilation mode

The compilation method is set using the PL.SQL_CODE_TYPE parameter. The
admissible values for the parameter are INTERPRETED and NATIVE. The default value
of the parameter is INTERPRETED. The parameter can be set using the ALTER SYSTEM
or ALTER SESSION statement.

At the sYSTEM level:

ALTER SYSTEM SET PLSQL CODE TYPE = [NATIVE | INTERPRETED]

At the sEss1ON level:

ALTER SESSION SET PLSQL CODE_TYPE = [NATIVE | INTERPRETED]

Alternatively, you can also compile a particular PL/SQL program unit in the native
or interpreted method by recompiling an object using the ALTER <object type>
statement. For example, the following script will recompile a procedure with a new
value for PLSQL_CODE_TYPE, but reusing the existing compilation parameters:

ALTER PROCEDURE <procedure name> COMPILE PLSQL_ CODE_TYPE=NATIVE REUSE
SETTINGS

/

The PL/SQL program units retain their compilation mode setting unless they are
recompiled in a different compilation mode.

[240]

Chapter 8

Querying the compilation settings

The compilation mode of an object can be queried from the data dictionary view:
[USER | DBA | ALL]_PLSQL OBJECT_ SETTINGS. This dictionary view contains the
compilation settings for standalone program units, package specification, package
body, and packaged subprograms:

/*Describe the structure of USER PLSQL OBJECT SETTINGS*/
SQL> DESC USER_PLSQL OBJECT_ SETTINGS

Name Null? Type

NAME NOT NULL VARCHAR2 (30)
TYPE VARCHAR?2 (12)
PLSQL_OPTIMIZE LEVEL NUMBER
PLSQL_CODE_TYPE VARCHAR2 (4000)
PLSQL_DEBUG VARCHAR2 (4000)
PLSQL_WARNINGS VARCHAR2 (4000)
NLS_LENGTH SEMANTICS VARCHAR?2 (4000)
PLSQL_CCFLAGS VARCHAR2 (4000)
PLSCOPE_SETTINGS VARCHAR?2 (4000)
ORIGIN CON_ID NUMBER

Compiling a program unit for native or
interpreted compilation

In this section, let's check how a PL/SQL program unit can be compiled in different
compilation modes at the object level.

1. Show the compilation mode of the session:

/*Connect as sysdba*/
connect sys/oracle as sysdba

/*Display current setting of parameter PLSQL_ CODE TYPE*/
SELECT name,

value
FROM vS$parameter

WHERE name = 'plsqgl code_type'

/

NAME VALUE
plsgl_code type INTERPRETED

[241]

Tuning the PL/SQL Code

2.

Create a standalone function, which currently gets compiled in the
INTERPRETED mode:

/*Create a function*/
CREATE OR REPLACE FUNCTION f_get_caps (p_name VARCHAR2)
RETURN VARCHAR2
IS
BEGIN
RETURN UPPER (p_name);
END;
/

Function created.

Verify the compilation mode of the F_GET_caPs function:

/*Query the compilation settings for the function F_GET CAPS*/
SELECT name,

type,

plsgl code type,

plsgl optimize level OPTIMIZE
FROM USER PLSQL OBJECT SETTINGS

WHERE name = 'F_GET CAPS'

/

NAME TYPE PLSQL CODE_TYPE OPTIMIZE
F_GET_CAPS FUNCTION INTERPRETED 2

Recompile the function using native mode:

/*Explicitly compile the function*/

ALTER FUNCTION f_get_caps COMPILE PLSQL_CODE_TYPE=NATIVE
/

Function altered.

Confirm the change in the compilation mode of the ¥ _GET caps function:

/*Query the compilation settings for the function F_GET CAPS*/
SELECT name,

type,

plsgl code type,

plsgl optimize level OPTIMIZE
FROM USER PLSQL OBJECT SETTINGS

WHERE name = 'F_GET CAPS'

/

NAME TYPE PLSQL CODE _TYPE OPTIMIZE
F_GET_CAPS FUNCTION NATIVE 2

[242]

Chapter 8

You can also verify the generation of a shared library for the ¥ GET caps
function by querying the NcoMp_DLL$ dictionary view. The library is stored
as a BLOB in the NCOMP_DLL$ view:

connect sys/system as sysdba
SELECT object name,

dllname
FROM ncomp dlls, dba objects
WHERE obj#=object_id
AND owner='SCOTT'
/

OBJECT NAME DLLNAME

F_GET_CAPS 465F4745545F434150535F5F53434F54545F5F465F
5F3934303837

The library is automatically deleted from the dictionary if the object is recompiled
with a different compilation mode.

Recompiling a database for a PL/SQL native
or interpreted compilation

You can compile all the PL/SQL program units in a database from interpreted to
native compilation mode and vice versa. Oracle enables the bulk compilation of the
PL/SQL program units through inbuilt scripts: dbmsupnv. sql and dbmsupgin.sqgl.
The dbmsupgnv. sql script compiles all the program units using native compilation
mode while dbmsupgin. sql compiles all the program units in interpreted mode.
The following points should be considered during the planning stage:

Choose the right compilation mode — the selection of the appropriate
compilation mode is the key to ensure better code performance.

SYSDBA or a user with DBA privileges can run the recompilation procedure.
If the user is protected through the Oracle Database Vault option, the user
must be granted the DV_PATCH_ADMIN role.

Object type specifications cannot be compiled in native compilation mode.

Skip the PL/SQL package specifications without an executable section from
native compilation.

You cannot exclude any PL/SQL program unit while compiling an entire
database for interpreted compilation.

[243]

Tuning the PL/SQL Code

The following steps show how to compile a database for native or interpreted
compilation mode:

1.

Shutdown the database — you must shutdown the Oracle Database and the
TNS listener. Ensure that all connections to the database from the application
tier are terminated.

Set PLSQL_CODE_TYPE as NATIVE or INTERPRETED in the parameter file. If
you are using a server parameter file (spfile), you can modify the parameter
value before a database is shutdown, or after the database is started. The
dbmsupgnv . sql script also sets PLSQL._CODE_TYPE before compiling the PL/
SQL program units:

/*Alter the system to set the new compilation mode*/
SQL> ALTER SYSTEM SET PLSQL CODE TYPE=NATIVE SCOPE=SPFILE
/

System altered.

Verify and set PLSQL_OPTIMIZE LEVEL as 2 (or higher).

Start the database in the upgrade mode:

SQL> connect sys/oracle as sysdba
Connected to an idle instance.

/*Startup in upgrade mode*/
SQL> startup upgrade
ORACLE instance started.

Database mounted.
Database opened.

If you are working in an Oracle Database 12c Multitenant architecture, you
have to open the pluggable database in the UPGRADE and RESTRICTED mode:

ALTER PLUGGABLE DATABASE <pdb name> OPEN UPGRADE RESTRICTED
/

Connected as the sys user, execute the dbmsupgnv . sql script:

/*Execute the recompilation script*/
SQL> @ORACLE_HOME/rdbms/admin/dbmsupgnv.sqgl

FHEFH
HHHEHH

[244]

Chapter 8

HHEH
HEHHH

dbmsupgnv.sgl completed successfully. All PL/SQL procedures,

functions, type bodies, triggers, and type bodies objects in
the

database have been invalidated and their settings set to
native.

Shut down and restart the database in normal mode and
run utlrp.sgl to recompile invalid objects.

HHEH R
HEHHH

HHEH R
HEHHH

The dbmsupgnv. sql and dbmsupgin.sql scripts create a PL/SQL package
sys.dbmsncdb with two subprograms: SETUP_FOR_NATIVE_COMPILE and
SETUP_FOR_INTERPRETED COMPILE. The dbmsupgnv.sql involves SETUP_
FOR_NATIVE_COMPILE with a user supplied input. The input should be TRUE
to compile all functions, procedures, package bodies, triggers, and type
bodies. If the input is FALSE, package and object type specifications are also
included in the process. If the PL/SQL package specifications contain an
executable section, you should provide the input as FALSE.

The script modifies the compilation of all the PL/SQL programs to native but
invalidates them at the same time.

Shut down and restart the database in the NORMAL mode:

/*Shutdown and startup the database*/
SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup

ORACLE instance started.

Database mounted.
Database opened.

[245]

Tuning the PL/SQL Code

7. Execute the ut1lrp.sqgl script to recompile the invalidated objects. Although
the objects that have been invalidated get automatically recompiled
whenever they are subsequently invoked, it is recommended that you
compile and revalidate the objects to reduce recompilation latencies.

M It is recommended that you run ut1lrp. sqgl in a restricted
Q session. Any connection request from the application
services or a database session may lead to deadlocks.

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION
/

System altered.

SQL> @ORACLE_ HOME\rdbms\admin\utlrp.sql

The script recompiles all the program units that have a default compilation
mode. You can rerun the script any number of times to recompile the
invalidated objects. The recompilation operation can be optimized through
parallelization wherein the degree of parallelism is selected based on cpu_
COUNT and PARALLEL_THREADS_PER_CPU.

For troubleshooting and diagnosis, you can use the following queries:

[e]

Query the invalid objects:

SELECT o.OWNER,
0.OBJECT_NAME,
0.OBJECT_TYPE
FROM DBA OBJECTS o, DBA PLSQL OBJECT SETTINGS s
WHERE o.OBJECT NAME = s.NAME
AND o.STATUS='INVALID'
/

° Query the count of the PL/SQL programs in each compilation mode:

SELECT TYPE,
PLSQL_CODE_TYPE,
COUNT (*)
FROM DBA PLSQL OBJECT SETTINGS
WHERE PLSQL CODE TYPE IS NOT NULL
GROUP BY TYPE, PLSQL CODE TYPE
ORDER BY TYPE, PLSQL CODE_TYPE
/

[246]

Chapter 8

The PL/SQL objects with NULL p1sgl code type
S are Oracle's internal objects.

° Query the number of the PL/SQL objects that are compiled so far
using utlrp.sqgl:

SELECT COUNT (*) FROM UTL RECOMP_ COMPILED
/

8. Disable the restricted session:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION
/

System altered.

If you want to rollback the compilation mode to interpreted, you can follow the same
steps, and replace dbmsupgnv . sql with the dbmsupgin. sql script.

Tuning PL/SQL code

We have just discussed two key features in the performance management space.

The PL/SQL code optimization and compilation can significantly improve runtime
performance. Apart from the code optimization techniques, there are several efficient
coding practices that may impact overall PL/SQL performance. PL/SQL performance
management is often regarded as less tedious, when compared to the database tuning
exercise because the area of operation is a program unit and doesn't require the
instance to be restarted. In this section, we will discuss some of the selective but key
features to improve PL/SQL coding practices for better performance.

Build secure applications using bind variables

It is highly encouraged to use bind variables in SQL statements while building robust
database applications. Bind variables reduce the parsing overhead by enabling an
SQL statement to be executed using its already parsed image stored in the shared
SQL area of the database memory.

Every SQL statement executed by the SQL engine is parsed, optimized, and

executed. Only after the SQL statement is executed is the result fetched and

displayed to the user. The SQL execution steps are briefly described, as follows:
* Generate a hash value for the SQL statement.

* Look for a matching hash value of cached cursors in the shared pool.

[247]

Tuning the PL/SQL Code

* If the match is not found, Oracle continues with the statement parsing and
optimization stages. This is hard parsing. It is a CPU-intensive operation and
involves contention for latches in the shared SQL area.

* If the match is found, reuse the cursor and reduce parsing to a privilege
check. This is a soft parse. Thereafter, without needing further optimization,
the explain plan is retrieved from the library cache, and the SQL query
is executed.

Oracle Database 12c introduced adaptive query optimization,
%j%‘\ which allows the optimizer to re-optimize the existing explain
’ plans upon subsequent executions of an SQL query.

e The result set is fetched.

In an enterprise application, many SELECT statements or transactional statements
(INSERT, UPDATE, or DELETE) are similar in structure but they run with different
predicate values. The hashes for two of the same SQL statements with different
values will never be the same, thus resulting in a hard parse. A hard parse, being a
non-scalable expensive operation, degrades the application performance. The only
way to get rid of the problem is to encourage soft parsing by maximizing the use of
cached cursors and associated explain plans.

The use of bind variables promotes soft parsing. A bind variable is a substitution
variable that acts as a placeholder for the literal values. Bind variables enable an SQL
statement to appear the same even after multiple runs with different input values.
This reduces hard parsing and the existing plans in the library cache can be used to
optimize the current SQL statements.

NG Avoid using hard-coded literals in SQL queries and
PL/SQL programs.

For example, the following SELECT query will have the same hash value for the
different values of employee ids:

/*Select EMP table with a bind variable*/
SELECT ename,

deptno,
sal
FROM emp
WHERE empno = :empid

/

[248]

Chapter 8

Oracle PL/SQL supports the use of bind variables. All references to a block variable
or program argument are treated as a bind variable. In the case of a dynamic SQL,
either using DBMS_SQL or EXECUTE IMMEDIATE, you must use bind variables. Bind
variables help dynamic SQL in two ways. First it improves the code performance.
Secondly, it reduces the risk of SQL injection by covering the vulnerable areas. Let's
conduct a small illustration to see the benefits of bind variables in PL/SQL.

The following PL/SQL block finds the count of distinct object type accessible by the
SCOTT user. It executes the SELECT query using EXECUTE IMMEDIATE. In order to get
the accurate results, we will flush the shared pool:

connect sys/oracle as sysdba
ALTER SYSTEM FLUSH SHARED POOL
/

connect scott/tiger

SET SERVEROUT ON

/*Start the PL/SQL block*/
DECLARE

/*Local block variables */
1 count NUMBER;

1 stmt VARCHAR2(4000) ;
clock in NUMBER;

clock out NUMBER;

TYPE v_obj type is TABLE OF varchar2(100) ;

1 obj type v_obj type := v_obj type ('TYPE', 'PACKAGE', 'PROCEDURE',
'TABLE', 'SEQUENCE', 'OPERATOR', 'SYNONYM') ;
BEGIN

/*Capture the start time */
clock in := DBMS UTILITY.GET TIME ();

/*FOR loop to iterate the collections */
FOR I IN 1 obj type.first..l obj type.last

LOOP
1 stmt := 'SELECT count (*)
FROM all objects
WHERE object type = '|[|''''||1l_obj type(i)||'''"';
EXECUTE IMMEDIATE 1 stmt INTO 1 count;
END LOOP;

/*Capture the end time */

[249]

Tuning the PL/SQL Code

clock out := DBMS UTILITY.GET TIME () ;

DBMS_OUTPUT.PUT LINE ('Execution time without bind variables:'||TO_
CHAR (clock out-clock in));

END;
/

Execution time without bind variables:948

PL/SQL procedure successfully completed.

Now, we'll rewrite the above PL/SQL block using bind variables:

connect sys/oracle as sysdba
ALTER SYSTEM FLUSH SHARED POOL
/

connect scott/tiger

SET SERVEROUT ON

/*Start the PL/SQL block */
DECLARE

/*Local block variables */
1 count NUMBER;

1 stmt VARCHAR2(4000) ;
clock_in NUMBER;

clock out NUMBER;

TYPE v_obj type is TABLE OF varchar2(100) ;

1 obj type v _obj type := v_obj type ('TYPE', 'PACKAGE', 'PROCEDURE',
'"TABLE', 'SEQUENCE', 'OPERATOR', 'SYNONYM');
BEGIN

/*Capture the start time */
clock_in := DBMS UTILITY.GET TIME ();

/*FOR loop to iterate the collection */
FOR I IN 1 obj type.first..l obj type.last
LOOP

/*Build the SELECT statement by using bind variablex*/
1 stmt := 'SELECT count (*)
FROM all objects
WHERE object type = :pl';
/*Use dynamic SQL to execute the SELECT statement*/
EXECUTE IMMEDIATE 1 stmt INTO 1 count USING 1 obj type(i);

[250]

Chapter 8

END LOOP;
clock out := DBMS UTILITY.GET TIME () ;
DBMS_OUTPUT.PUT LINE ('Execution time with bind variables:'||TO_

CHAR (clock out-clock in)) ;

END;
/

Execution time with bind variables:121

PL/SQL procedure successfully completed.

The block with the bind variables gets executed at least 8 times faster than the one
which uses literals in the SQL query inside the PL/SQL block. The reason for the
performance gain is the soft parsing of the SELECT statement.

In the case of legacy applications or access protected applications, you might face
difficulties in modifying the code to include the bind variables. Oracle makes this
daunting task easier by controlling the cursor sharing behavior through a switch.

You can set CURSOR_SHARING parameter to EXACT or FORCE to share the cursors across
the sessions in a database instance. If the parameter is set to EXACT, only the SQL
statements that have exactly the same structure and parameters will be shared. If the
parameter is set to FORCE, then Oracle attempts to substitute all the literals in a query
with system-generated bind variables. By default, the parameter value is set to EXACT.
Cursor sharing greatly improves the performance. At the same time, forced cursor
sharing involves extra effort in searching for the same cursor in the shared pool.

The SIMILAR value of CURSOR_SHARING has been
s deprecated in Oracle Database 12c.

Call parameters by reference

A PL/SQL program invocation can pass a parameter either by its value or by
reference. Arguments in the IN mode are passed by reference (the default) while the
arguments in the ouT and IN OUT modes are passed by value. In the case of pass

by value method, the parameter value before the invocation has to be stored in a
temporary variable. This temporary variable is a memory variable and is used to
assign the value back to the parameter, if the subprogram call ends in an unhandled
exception. If the PL/SQL program accepts composite data types and complex variables
in the ouT and IN OUT modes, copying and maintaining the temporary variable can
cause a performance overhead, thereby slowing down the program execution.

[251]

Tuning the PL/SQL Code

Oracle recommends that you specify the NocopY hint for the pass by value
parameters. A parameter with the pass mode as OUT NOCOPY or IN OUT NOCOPY is
passed by reference, thus avoiding the overhead of maintaining a temporary variable.
For simple data values, which are generally small, the gain will be negligible.

Avoiding an implicit data type conversion

Oracle converts the data types to a compatible type during the operations

like assignment, predicates with value comparison, or passing parameters to
subprograms. This is an implicit activity that follows a data type precedence to
convert the data types. However, it may cause an overhead when executing a critical
program. The following are the best practices that can reduce the implicit data type
conversion in the programs:

* Understand that SQL data types and PL/SQL data types have different internal
representations. You should explicitly convert the SQL type variables to PL/
SQL types and then use those in an expression. For example, PL.S_INTEGER is a
PL/SQL data type that uses machine arithmetic to speed up compute intensive
operations. If NUMBER type variables are used in an expression, Oracle uses
library arithmetic, and therefore, there are no performance gains.

* A variable getting assigned to a table column should be of the same data
type to avoid an implicit data type conversion. As a best practice, declare
the variables with the $TYPE attribute. Similarly, a record can be declared
with the $ROWTYPE attribute. Such variable declarations always remain
synchronized with the database columns, improve the program's scalability,
and reduce human errors. Consider the following declarations:

empname emp.ename%type

type emp rec is record of emp%rowtype;
CURSOR ¢ IS

SELECT prod_id, prod code, prod name
FROM products;

prod _rec c%rowtype;

* Use the SQL conversion function to convert the to-be assigned variable to the
target variable's data type. Some of the conversion functions are To_CHAR,
TO_NUMBER, TO_DATE, TO_TIMESTAMP, CAST, and ASCIISTR.

[252]

Chapter 8

* Pass a variable of correct data type while invoking the PL/SQL program
units with parameters. You can also include overloaded subprograms in a
PL/SQL package that accepts the parameters of the different data types. You
can invoke the packaged subprogram that best matches the available set of
variables. For example, the following package has two overloaded functions.
You can invoke either of the two depending on the type of variables available:

CREATE OR REPLACE PACKAGE pkg sum AS
FUNCTION p sum series (p_term PLS INTEGER, p_factor PLS INTEGER)
RETURN PLS_INTEGER;

FUNCTION p sum series (p_term NUMBER, p_ factor NUMBER)
RETURN NUMBER;
END;

/

Understanding the NOT NULL constraint

A block variable can be declared NOT NULL at the time of the declaration. Oracle
performs the nullability test every time a value is assigned to the NOT NULL variable.
In large PL/SQL program units, the nullability check can be an overhead and impact
the PL/SQL block's runtime performance. Instead, it is advised to have an explicit
nullability check for the variable in the executable section of the block.

The following PL/SQL program compares the performance of a NOT NULL variable
and nullable local variable:

/*Enable the SERVEROUTPUT to display block results*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE
1 nn num NUMBER NOT NULL := 0;
1 num NUMBER := 0;

clock in NUMBER;
clock out NUMBER;
BEGIN

/*Capture the start time*/
clock in := DBMS UTILITY.GET TIME();

/*Start the loop*/
FOR I IN 1..1000000
LOOP

[253]

Tuning the PL/SQL Code

1 nn num := 1 nn num + i;
END LOOP;
clock out := DBMS UTILITY.GET TIME() ;

/*Compute the time difference and display*/
DBMS_OUTPUT.PUT LINE('Time for NOT NULL:'||TO CHAR(clock out-clock
in)) ;

/*Capture the start time*/
clock_in := DBMS UTILITY.GET TIME () ;

/*Start the loop*/
FOR I IN 1..1000000

LOOP
1 num := 1 num + i;
END LOOP;
clock out := DBMS UTILITY.GET TIME() ;

/*Compute the time difference and display*/
DBMS_OUTPUT.PUT LINE ('Time for NULL:'||TO CHAR (clock out-clock in));

END;
/

Time for NOT NULL:111
Time for NULL:76

PL/SQL procedure successfully completed.

In the preceding PL/SQL block, the nullable variable outperforms the NOT NULL
variable by one and a half times. The reason for this performance gain is the
reduction in the number of nullability checks.

Selection of an appropriate numeric data type

The pPLS_INTEGER data type is a part of the NUMBER data type family. Most of
the number or integer data types are generic ones and the reason behind this is
to support code portability. However, PLS_INTEGER is specifically designed for
performance. It was introduced in Oracle Database Release 7 to speed up the
computation-intensive operations through native machine arithmetic instead of
library arithmetic.

[254]

Chapter 8

The following PL/SQL block compares the performance of the PL.S_INTEGER and
NUMBER variables:

/*Enable the SERVEROUTPUT to display block results*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE
1 pls int PLS INTEGER := 1;
1 num NUMBER:= 1;
1 factor PLS INTEGER := 2;

clock_in NUMBER;
clock _out NUMBER;
BEGIN

/*Capture the start time*/
ClOCk_in = DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/

FOR I IN 1..10000000

LOOP
/*The mathematical operation increments a variable by one*/

1l num := 1 num + 1_factor;

END LOOP;

clock out := DBMS UTILITY.GET TIME() ;
/*Display the execution time consumed*/

DBMS_OUTPUT.PUT LINE ('Time by NUMBER:'||TO CHAR (clock out-clock
in));

/*Capture the start time*/
ClOCk_in = DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/
FOR J IN 1..10000000
LOOP

/*The mathematical operation increments a variable by onex/

1 pls_int := 1_pls_int + 1_factor;
END LOOP;
clock out := DBMS UTILITY.GET TIME() ;

/*Display the time consumed*/
DBMS_OUTPUT.PUT LINE('Time by PLS INTEGER:'||TO CHAR(clock out-
clock in));

[255]

Tuning the PL/SQL Code

END;
/

Time by NUMBER:231
Time by PLS INTEGER:69

PL/SQL procedure successfully completed.

The performance of the PLS_INTEGER variable is at least three times better than a
NUMBER variable. An arithmetic expression having a mix of the PL.S_INTEGER and
NUMBER type variables will use library arithmetic and no performance gains will
be obtained.

PLS_INTEGER is a 32-bit data type that can store values in the range of -2147483648
to 2147483647. It accepts integer values only. If a floating value is assigned to
PLS_INTEGER, it is rounded to the nearest integer. If the PLS_INTEGER precision
range is violated, Oracle raises an ORA-01426: numeric overflow exception. To
resolve such scenarios, Oracle 11g introduced a new subtype of PLS_INTEGER, which
is known as SIMPLE_INTEGER. The SIMPLE_INTEGER data type has the same range as
that of PLS_INTEGER, but in the case of numeric overflows, it is automatically set to
-2147483648 instead of raising an exception. As the overflow check is suppressed
for SIMPLE INTEGER, it is faster than PLS_INTEGER.

SIMPLE_INTEGER is a NOT NULL data type; therefore, all local
s variables must be initialized or defaulted to a definitive value.

The following PL/SQL anonymous block declares a SIMPLE INTEGER variable
and defaults it to 2147483646, that is, the last value in the precision range. In the
program body, the variable is incremented by 1. Let's check what happens:

/*Enable the SERVEROUTPUT to display block results*/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE
1 simple SIMPLE INTEGER:= 2147483646;
BEGIN
/*Increment the variable by 1%/
1 simple:= 1 simple +1;
DBMS_OUTPUT.PUT_ LINE('After lst increment:'|| 1_simple);

/*Re-Increment the variable by 1*/

1 simple:= 1 simple +1;

DBMS_OUTPUT.PUT_ LINE('After 2nd increment:'|| 1_simple);
EXCEPTION

[256]

Chapter 8

WHEN OTHERS THEN
DBMS_ OUTPUT.PUT LINE ('Numeric Overflow exception occurred') ;
END;
/

After 1lst increment:2147483647
After 2nd increment:-2147483648

PL/SQL procedure successfully completed.

Bulk processing in PL/SQL

Bulk data processing is one of the key features in performance management.

Bulk SQL is a feature that reduces context switches between the SQL and PL/

SQL processing engines. One of the biggest benefits of PL/SQL development is its
seamless integration with the SQL language. The SQL statements can directly appear
in the PL/SQL program body. In a PL/SQL unit with the SQL statements and PL/
SQL constructs, the PL/SQL engine and SQL engine communicate through a context
switch. The PL/SQL engine switches the program context to the SQL engine to
execute the SQL statements and get the result. The frequent back-and-forth context
switching between the processing engines causes a severe overhead and slows
down the program execution. The row-by-row processing of records is quite slow
compared to bulk processing.

Oracle implements bulk operations through the BULK COLLECT clause and the
FORALL statement. The BULK COLLECT clause retrieves multiple records in a single
fetch while the FORALL statement can process multiple DML statements in groups
rather than row by row. In many implementations, the performance gains by the use
of bulk processing features have been phenomenal.

BULK COLLECT

You can use BULK COLLECT in:

e The SELECT...INTO statement
e The RETURNING INTO clause with the UPDATE or DELETE statement

* The FETCH INTO clause with an explicit cursor

The bulk collect feature depends largely on collections and can be used with all

the three forms of collections, that is, associative arrays, nested tables, and varrays.
Multiple records can be fetched into a collection in a single fetch. This reduces the
number of the context switches between the two processing engines. During the
fetch operation, the collection variables get densely populated. In the case of no rows
being fetched, the collections are left empty resulting in an empty collection.

[257]

Tuning the PL/SQL Code

Bulk operations are a CPU-intensive operation. They cannot
s be parallelized.

Until Oracle Database 9i, BULK COLLECT could be used only with static SQL
statements, but starting with Oracle Database 10g, it can be used in dynamic SQL
statements too.

The CREATE TABLE script creates the test table with the sample data from the
ALL_OBJECTS dictionary view to be used in this illustration. The ALL_OBJECTS
dictionary view contains details of the schema objects. During our illustration, we
will work with the object id, object type, and object name columns of the table:

CREATE TABLE local objects AS
SELECT * FROM all objects
/

/*Query the record count*/
SELECT COUNT (*)
FROM local objects

/

COUNT (*)

The following PL/SQL block opens a cursor, fetches row by row, and counts the
number of procedures that can be accessed by the SCOTT user:

SET SERVEROUTPUT ON
/*Start the PL/SQL block*/
DECLARE

/*Local PL/SQL variables*/

obj_id local objects.object id%TYPE;
obj_ type local objects.object type%TYPE;
obj name local objects.object name%TYPE;

counter NUMBER ;
clock in NUMBER;
clock out NUMBER;

/*Cursor to fetch the object details*/
CURSOR c¢ IS
SELECT object_id, object type, object name

[258]

Chapter 8

FROM local objects;
BEGIN

/*Capture the start time*/
clock_in := DBMS UTILITY.GET TIME();
OPEN c;

LOOP
FETCH c INTO obj id, obj type, obj name;
EXIT WHEN c%NOTFOUND;
/*Count the number of procedures in the test table*/

IF obj type = 'PROCEDURE' THEN
counter := counter+1l;
END IF;
END LOOP;
CLOSE c¢;

/*Capture the end time*/

clock_out := DBMS UTILITY.GET TIME();

DBMS_OUTPUT.PUT LINE ('Time taken in row fetch:'||to_char (clock
out-clock in));

END;
/

Time taken in row fetch:369

PL/SQL procedure successfully completed.

The row-by-row fetch took 369 hsec to get executed. There were 73673 context
switches made between the PL/SQL and SQL engines. Now, let's apply the bulk
fetch techniques to the preceding block, and check the performance gains:

SET SERVEROUTPUT ON
/*Start the PL/SQL block*/
DECLARE

/*Declare the local record and table collection*/
TYPE obj rec IS RECORD

(obj_id local_objects.object id$TYPE,

obj type local objects.object TYPE$TYPE,

obj _name local objects.object name$TYPE) ;

TYPE obj_tab IS TABLE OF obj_rec;
t_all objs obj tab;

[259]

Tuning the PL/SQL Code

counter NUMBER ;
clock in NUMBER;
clock out NUMBER;
BEGIN

/*Capture the start time*/
clock_in := DBMS UTILITY.GET TIME();

/*Select query to bulk fetch multi-record set in nested table
collection*/

SELECT object id, object TYPE, object name
BULK COLLECT INTO t all objs
FROM local objects;

/*Loop through the collection to count number of procedures*/
FOR I IN t all objs.FIRST..t all objs.LAST

LOOP
IF (t_all objs(i).obj_ type = 'PROCEDURE') THEN
counter := counter+1l;
END IF;
END LOOP;

/*Capture the end time*/

clock_out := DBMS UTILITY.GET TIME();

DBMS_OUTPUT.PUT LINE ('Time taken in bulk fetch:'||to_char (clock_
out-clock in));
END;

/
Time taken in bulk fetch:35

PL/SQL procedure successfully completed.

Well, the bulk SQL is around 10 times faster than the usual fetch operation. The
reason is that there was only one context switch made between the SQL and PL/SQL
engines. Note that the nested table collection variable is not required to be initialized
for bulk operations.

% The BULK COLLECT operation does not raise the NO DATA FOUND
e exception.

[260]

Chapter 8

Bulk processing is a CPU-intensive operation, and fetching into a collection
consumes your session memory. If the bulk collect fetches a large number of rows
and the session memory is not large enough, you might experience a hung session
or an abnormal termination. To resolve such cases, Oracle provides the LIMIT clause
to control the number of records retrieved in a single fetch operation. The following
PL/SQL block uses the LIMIT clause to control the number of records fetched during
the FETCH operation:

SET SERVEROUTPUT ON
/*Start the PL/SQL block */
DECLARE

/*Local block variables - object type record and nested table*/
TYPE obj rec IS RECORD

(obj id local objects.object idS%TYPE,

obj type local objects.object TYPESTYPE,

obj name local objects.object name$TYPE) ;

TYPE obj tab is table of obj rec;
t _all objs obj tab;

counter NUMBER;

p_rec limit NUMBER := 100;
clock in NUMBER;

clock out NUMBER;

/*Cursor to fetch object details from LOCAL_OBJECTS*/
CURSOR C IS
SELECT object id, object TYPE, object name
FROM local objects;
BEGIN

/*Capture the start time*/

clock in := DBMS UTILITY.GET TIME();
/*Open the cursor*/

OPEN c;

LOOP

/*Bulk fetch the records by specifying the limit*/
FETCH ¢ BULK COLLECT INTO t all objs LIMIT p rec limit;
EXIT WHEN c%NOTFOUND;

/*FOR loop to count the procedures */

FOR I IN t_all objs.FIRST..t all objs.LAST

LOOP

[261]

Tuning the PL/SQL Code

IF (t_all objs(i).obj_ type = 'PROCEDURE') THEN
counter := counter+1l;
END IF;
END LOOP;
t all objs.DELETE;
END LOOP;
CLOSE c;
clock out := DBMS UTILITY.GET TIME() ;
DBMS_OUTPUT.PUT LINE ('Time taken in controlled fetch:'||to_char

(clock_out-clock_in)) ;

END;
/

Time taken in controlled fetch:94

PL/SQL procedure successfully completed.

A controlled bulk operation, limited to 100 records per bulk fetch, took 94 hsec to
get executed, which is still 4 times better than the row-by-row fetch operation. This
time the program makes 737 context switches between the PL/SQL and SQL engines.

FORALL

More than iterative, FORALL is a declarative statement. The DML statements
specified in FORALL are generated once, but they send in bulk to the SQL engine for
processing, thus making only a single context switch. There can be only one DML
statement in FORALL that can be INSERT, UPDATE, or DELETE, or the FORALL statement
can be used, as per the following syntax:

FORALL index IN

[
lower bound...upper bound |
INDICES OF indexing collection |
VALUES OF indexing collection

1

[SAVE EXCEPTIONS]

[DML statement]

If the DML statements contain bind variables, the bulk SQL binds all the statements
in a single step. This is known as bulk binding.

[262]

Chapter 8

Let's set up the environment for our performance test. The performance test will
compare the execution time of a FOR loop versus a FORALL statement:

/*Create table Tl with basic object columns*/
CREATE TABLE T1

AS

SELECT object id, object type, object name
FROM all objects

WHERE 1=2

/

/*Create table T2 with basic object columns*/
CREATE TABLE T2

AS

SELECT object id, object type, object name
FROM all objects

WHERE 1=2

/

The following PL/SQL block bulk collects the data from the LOCAL_0OBJECTS table,
creates an interim collection (associative array) for only the synonym information,
and inserts it into two different tables. For verification, we will query the records
inserted in both the tables:

SET SERVEROUTPUT ON
/*Start the PL/SQL block*/
DECLARE

/*Local block variables - object type record and nested table
collection*/

TYPE obj rec IS RECORD

(obj_id local objects.object id%TYPE,

obj type local objects.object TYPESTYPE,

obj name local objects.object name$TYPE) ;

TYPE obj tab IS TABLE OF obj rec;

TYPE syn tab IS TABLE OF obj rec index by pls integer;
t_all objs obj tab;

t_all syn syn tab;

counter NUMBER := 1;
clock in NUMBER;
clock out NUMBER;
BEGIN

[263]

Tuning the PL/SQL Code

/*BULK COLLECT the data from LOCAL OBJECTS in nested table
collection*/

SELECT object id, object TYPE, object name

BULK COLLECT INTO t all objs

FROM local objects;

FOR I IN t all objs.FIRST..t all objs.LAST

LOOP
/*Capture all synonyms in another collection*/
IF (t_all objs(i).obj type = 'SYNONYM') THEN

t_all syn(t_all syn.count+1l) := t all objs(i);

END IF;

END LOOP;

clock in := DBMS UTILITY.GET TIME();

/*FOR loop to insert the data in table T1*/
FOR I IN t all syn.first..t all syn.last

LOOP
INSERT INTO tl VALUES t all syn(i);

END LOOP;

clock out := DBMS UTILITY.GET TIME() ;

DBMS_OUTPUT.PUT LINE ('Time taken by FOR loop:'||to_char (clock_

out-clock in));
clock in := DBMS UTILITY.GET TIME();
/*FORALL statement to insert the data in table T2%*/

FORALL I IN t all syn.first..t _all syn.last
INSERT INTO t2 VALUES t all syn(i);

clock out := DBMS UTILITY.GET TIME() ;

DBMS_OUTPUT.PUT LINE ('Time taken by FORALL:'||to char (clock out-
clock in));
END;

/

Time taken by FOR loop:1637
Time taken by FORALL:29

PL/SQL procedure successfully completed.

[264]

Chapter 8

/*Query the record count in T2*/
SQL> SELECT COUNT (*) FROM t2
/

COUNT (*)

/*Query the record count in T1*/
SQL> SELECT COUNT (*) FROM t1
/

COUNT (*)

This is phenomenal! The FORALL statement inserted more than 37000 records in less
than a second, whereas the FOR LOOP statement took 16 sec to insert the same number
of records. The reason is again the context switch between the processing engines;
one switch against 37000 context switches.

In the case of a sparse collection, use INDICES OF or VALUES OF in the FORALL
statement. It will use only those indexes of the collection that hold a value. The
following PL/SQL block uses the FORALL statement to insert a sparse collection into
the T2 table. To sparse the interim collection, the synonyms starting with sys% are
deleted from it:

/*Truncate table T2 for the current test*/
TRUNCATE TABLE t2

/
SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Local block variables - object type record and nested table
collection*/

TYPE obj rec IS RECORD

(obj_id local_objects.object id$TYPE,

obj type local objects.object TYPESTYPE,
obj _name local objects.object name$TYPE) ;

TYPE obj_tab IS TABLE OF obj_rec;
TYPE syn tab IS TABLE OF obj rec index by pls integer;
t_all objs obj tab;

[265]

Tuning the PL/SQL Code

t all syn syn tab ;

counter NUMBER := 1;
clock in NUMBER;
clock out NUMBER;
BEGIN

/*BULK COLLECT the data from LOCAL OBJECTS in nested table
collection*/

SELECT object id, object TYPE, object name

BULK COLLECT INTO t all objs

FROM local objects;

/*FOR loop to collect all synonyms in nested table collection*/
FOR I IN t all objs.FIRST..t all objs.LAST

LOOP
IF (t_all objs(i).obj type = 'SYNONYM') THEN
t_all syn(t_all syn.count+1l) := t all objs(i);
END IF;
END LOOP;

/*Delete all the synonyms whose names starts with SYS%*/
FOR I in 1..t all syn.count
LOOP
IF t all syn(i).obj name like 'SYS%' THEN
t all syn.delete (i);
END if;
END LOOP;

clock in := DBMS UTILITY.GET TIME() ;
/*Insert the sparse collection using INDICES of clause*/

FORALL I IN INDICES OF t all syn
INSERT INTO t2 VALUES t all syn(i);

clock out := DBMS UTILITY.GET TIME() ;

DBMS_OUTPUT.PUT LINE ('Time taken by FORALL:'||to char (clock out-
clock in));
END;

/

[266]

Chapter 8

Time taken by FORALL:30

PL/SQL procedure successfully completed.

/*Query the record count in table T2*/
SQL> select count (*) from t2;

COUNT (*)

There were six synonyms starting with sys% that were not inserted in this run.
If you hadn't used the INDICES OF clause, the block would have terminated with the
ORA-22160: element at index [3] does not exist exception.

FORALL and exception handling

FORALL is specifically designed for bulk transactions. Any faulty transaction in the
bulk operation may cause the entire bulk operation to abort with an exception,
thereby rolling back all the changes made by the earlier transactions of the same
DML statement. Oracle gracefully deals with such scenarios by saving the erroneous
record and exception information separately and by continuing the DML execution.
There are two ways to handle an exception in the FORALL statement:

1.

Abort the FORALL execution but commit the changes made by the earlier
transactions: Traditional exception handling but with a coMMIT in the
exception handler. For example, the following exception handle will commit
the transactions that have been executed already:

EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE (SQLERRM) ;
COMMIT;
RAISE;

Continue the FORALL execution and save the failed transactions: Use SAVE
EXCEPTIONS with the FORALL statement. The feature is known as bulk
exception handling. With SAVE EXCEPTION, Oracle stores the faulty DML
details in the bulk exception logger known as SQL$BULK_EXCEPTIONS. After
the FORALL execution is over, database administrators can look into the
exception log and troubleshoot the defective records. The defective records
are skipped and logged under the SQL$BULK_EXCEPTIONS pseudocolumn.
For example, if FORALL generated 5000 update statements, out of which 13
were failed transactions, 4987 records will still be updated. The 13 defective
transactions will be logged in the SQL$BULK_EXCEPTIONS array structure
with the cursor index.

[267]

Tuning the PL/SQL Code

The $BULK_EXCEPTIONS attribute maintains two fields —ERROR INDEX and
ERROR_CODE. ERROR _INDEX stores the defect record index where the exception was
raised, while ERROR_CODE records the exception message. $BULK_EXCEPTIONS.COUNT
stores the count of exceptions raised during the execution of the FORALL statement.
Note that the standard error code captured by the ERROR_CODE attribute is not
prefixed with the negative (-) sign. Therefore, in order to fetch its equivalent error
message, pass the error code multiplied by -1 to the SQLERRM function.

In the last illustration, we explicitly removed the values starting with syss. For the
current demonstration, we will add a check constraint on the OBJECT NAME column
of the T2 table. The following script adds the check constraint:

/*Truncate table T2 for current test*/
TRUNCATE TABLE t2
/

/*Add check constraint on OBJECT NAME*/

ALTER TABLE t2

ADD CONSTRAINT t2 obj name CHECK (object name NOT LIKE 'SYS%')
/

Now, we will run the following PL/SQL block to insert the dense collection into the
T2 table. As SAVE EXCEPTIONS has been specified along with the FORALL statement, if
there are any exceptions while loading, they will be saved in the bulk exception log;:

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/
DECLARE

/*Local block variables - object type record and nested table
collection*/

TYPE obj rec IS RECORD

(obj_id local objects.object id%TYPE,

obj type local objects.object TYPE$TYPE,

obj name local objects.object name$TYPE) ;

TYPE obj tab IS TABLE OF obj rec;

TYPE syn tab IS TABLE OF obj rec index by pls integer;
t_all objs obj tab;

t all syn syn tab ;

counter NUMBER := 1;
clock in NUMBER;
clock out NUMBER;

[268]

Chapter 8

/*Declare user defined exception for error number -24381%/
bulk errors EXCEPTION;

PRAGMA EXCEPTION_ INIT (bulk errors, -24381);
BEGIN

/*Bulk collect object details in nested table collection variable*/
SELECT object id, object TYPE, object name

BULK COLLECT INTO t all objs

FROM local objects;

/*Filter all synonyms and capture in another collection*/
FOR I IN t all objs.FIRST..t all objs.LAST

LOOP
IF (t_all objs(i).obj type = 'SYNONYM') THEN
t_all syn(t_all syn.count+1l) := t all objs(i);
END IF;
END LOOP;

/*FORALL statement to insert the records in table T2*/
FORALL I IN 1..t all syn.count

/*Save faulty records in bulk collection cursor attributes*/
SAVE EXCEPTIONS
insert into t2 values t_all syn(i);
EXCEPTION

/*Exception handler to query the failed transactions*/
WHEN BULK ERRORS THEN
FOR J IN 1..SQL%BULK EXCEPTIONS.COUNT

LOOP
DBMS_OUTPUT.PUT LINE('--------------- - mmmmmmmmoo oo ") ;
DBMS OUTPUT.PUT LINE('Error in INSERT:'||SQL$BULK EXCEPTIONS (J) .

ERROR INDEX) ;

DBMS_OUTPUT.PUT LINE ('Error Message is: '||sglerrm('-'||SQL%BULK

EXCEPTIONS (J) .ERROR_CODE)) ;

END LOOP;

END;

/

[269]

Tuning the PL/SQL Code

Error in INSERT:3
Error Message is: ORA-02290: check constraint (.) violated

Error in INSERT:2089
Error Message is: ORA-02290: check constraint (.) violated

Error in INSERT:2091
Error Message is: ORA-02290: check constraint (.) violated

Error in INSERT:2093
Error Message is: ORA-02290: check constraint (.) violated

Error in INSERT:2094
Error Message is: ORA-02290: check constraint (.) violated

Error in INSERT:3545
Error Message is: ORA-02290: check constraint (.) violated

PL/SQL procedure successfully completed.

SQL> select count (*) from t2;

COUNT (*)

The transactions that failed to get executed due to the check constraint violation were
saved in the BULK EXCEPTIONS cursor attribute. Besides these six records, all the
other data was inserted, and this can be confirmed by a SELECT query on the table.

Summary

In this chapter, we have discussed the features that can tune your PL/SQL code to
run faster. We have also seen how code compilation and optimization can speed up
the performance of the PL/SQL programs. In the later half, we discussed the
PL/SQL tuning features in detail with the help of demonstrations.

In the next chapter, we will focus on one of the major new features introduced in
Oracle Database 11g. The feature is known as result caching that is primarily built to
accelerate the performance of queries that are repeatedly executed. We will discuss
the different flavors of result caching in the next chapter.

[270]

Chapter 8

Practice exercise

* Identify the nature of the program that is best suited for the interpreted mode
of compilation.

1. The program unit contains multiple SQL statements.
2. The program unit has just been developed and is in the debug stage.
3. The program unit uses collections and bulk bind statements.
4. The program unit is in the production phase.
* Choose the correct statements about the real native compilation mode in
Oracle 11g.

1. The compilation method uses the C compiler to convert the program
into an equivalent C code.

2. The compilation method mounts the shared libraries through the
PLSQL_NATIVE_ LIBRARY DIRand PLSQL NATIVE LIBRARY_ SUBDIR_
COUNT parameters.

3. The compilation does not use the C compiler but converts the
program unit directly to the M code.

4. The real native compilation is supported for RAC environments and
participates in the backup recovery processes.
* Determine the behavior of the PLSQL_OPTIMIZE LEVEL optimizer when it has
been set to 3.
1. The optimizer would inline the programs that are necessary.
2. The optimizer would inline all the programs irrespective of the gains.

3. The optimizer would inline only those subprograms which have
PRAGMA INLINE.

4. The setting has no effect on the inlining of the subprograms.

* Choose the correct statements about the compilation setting in Oracle.
1. From Oracle 11g, the default value of PLSQL._CODE_TYPE is NATIVE.

2. An object can be recompiled in a compilation mode that is different
from the current database setting.

3. During the database upgrade, PLSQL_CODE_TYPE must be modified in
the pfile instance.

4. Inreal native compilation, the libraries generated are stored in a
secured file system.

[271]

Tuning the PL/SQL Code

* Identify the tuning tips in the following PL/SQL block:

DECLARE

CURSOR C IS
SELECT ENAME, SAL, COMM
FROM EMPLOYEES;
L COMM NUMBER;

BEGIN
FOR I IN C
LOOP
L_COMM := I.SAL + ((I.COMM/100) * (I.SAL * 12));
DBMS_ OUTPUT.PUT LINE (I.ENAME||' earns '||L_COMM||' as
commission') ;
END LOOP;
END;
/
1. Use BULK COLLECT to select the employee data.
2. Declare L_COMM as NOT NULL.
3. Use PLS_INTEGER for L_COMM.
4. No tuning is required.

* Which of these statements are true about inlining in PL/SQL subprograms?
1. The optimizer can inline only the standalone stored functions.
2. The optimizer can inline only the locally declared subprograms.

3. Inlining is always useful in the performance irrespective of the size of
the subprogram.

4. The optimizer cannot identify any subprogram for inlining when the
optimizer level is set at 0.

* Examine the following code and determine the output:

DECLARE
FUNCTION F _ADD (P_NUM NUMBER)
RETURN NUMBER
IS
BEGIN
RETURN P_NUM + 10;
END;
BEGIN
FOR I IN 122..382
LOOP
PRAGMA INLINE (F_ADD, 'YES');

[272]

Chapter 8

L SUM := L _SUM + F ADD (I);
END LOOP;
END;
/
PLSQL OPTIMIZE LEVEL is set to 2.

The F_aDD local function would not be called inline unless PLSQL
OPTIMIZE LEVEL is set to 3.

3. The r_aDD local function may be called inline because PLSQL
OPTIMIZE LEVEL is set to 2.

4. The r_aDD local function would be called inline because PRAGMA
INLINE marks it for inline.

5. Inlining cannot be done for locally declared subprograms.
The libraries generated from real native compilation are stored in the sysaux
tablespace.

1. True

2. False

Suggest the tuning considerations in the following PL/SQL block:

DECLARE
I, SUM NATURALN := O;
I, ID VARCHAR2 (10) ;

BEGIN
I, ID := 256;

I, SUM := I_ID * 1.5;

END;

1. The datatype of L_suM can be changed to NATURAL and nullability can
be verified in the executable section.

L_SuM must not be initialized with zero.
The 1.5 multiple must be assigned to a variable.

L_ID must be of an appropriate datatype such as NUMBER or
PLS_INTEGER.

[273]

Tuning the PL/SQL Code

* Identify the correct statements about PRAGMA INLINE.

1.

It is the fifth pragma in Oracle besides AUTONOMOUS_TRANSACTION,
EXCEPTION_INIT, RESTRICT REFERENCE, and SERIALLY REUSABLE.

It does not work for overloaded functions.
It does not work for PLSQL_OPTIMIZE LEVEL = 1.

PRAGMA INLINE (<Function names>,' YES') is meaningless at
PLSQL_OPTIMIZE_LEVEL = 3, because the optimizer inlines all the
subprograms.

[274]

Result Cache

In the last chapter, we learned quite a few techniques to tune PL/SQL code. By
now, you must have got the idea that tuning is nothing less than an art that comes
by practice and grows with experience. The better you understand the data and the
application, the higher the probability of tuning the right areas. Most DBAs around
the world are familiar with the commonly used tuning practices such as query
rewriting, column indexing, instance optimization, materialized views, and
PL/SQL code optimization.

As Oracle Database professionals, we might already be aware of multiple caches
resident in the database instance architecture (to name a few: the buffer cache, library
cache, dictionary cache, or recycle cache). Primarily, caches are meant to hold data so
that the data access operations are served faster.

Oracle Database 11g Release 2 introduced a new cache component within the shared
pool, known as the Server Result Cache, for a specific job. The Result Cache enables
caching of results from an SQL query or even a PL/SQL function in the Server
Result Cache. This chapter will discuss the Result Cache feature in detail. We will
understand how to configure the result cache in a database and what makes it a
brilliant feature. The outline of the chapter is as follows:

* Oracle Database 11g Result Cache:
° What is Server Result Cache?

o

Configuring the Server Result Cache

[e]

Result Cache versus Buffer Cache

o

Result Cache versus Database In-Memory

[e]

Result Cache versus the In-Memory Database Cache

e SQL Result Cache

[275]

Result Cache

* PL/SQL function Result Cache
* OCI client Result Cache
* The DBMS_RESULT CACHE package

* Result cache in Real Application Clusters

Oracle Database 11g Result Cache

Oracle Database 11g offered plenty of performance management features; one

of those was server side result caching. Result caching implements a caching
mechanism in an Oracle Database. Using this feature, you can cache the results of
an SQL query or a PL/SQL function within a designated area in the SGA (System
Global Area), known as Server Result Cache.

The result caching feature is available in Oracle Database
S Enterprise Edition only.

Conventionally, when a query is executed for the first time, Oracle looks for the
required data blocks in the buffer cache first. If the data blocks are already in the
buffer cache (because previous SELECT queries had retrieved them), the current SQL
query gets executed using that data. If not, Oracle performs physical I/Os to fetch
the table data from the disk into the buffer cache and then moves ahead for the query
processing. The next time the same SELECT query with the identical predicates and
inputs is re-executed, in the same user session — Oracle performs logical I/Os to read
the data from the buffer cache and execute the query, but still goes through the entire
query processing cycle.

Result Cache is intended to tune the scenarios where a query is executed more

than once for the same predicates and literals. Oracle stores the result of a query

in the Server Result Cache during its first execution. On the subsequent execution

of an identical SELECT query (with the same predicates and literals), the result is
fetched direct from the server cache directly without re-executing the query, thereby
achieving impressive performance gains. Where do these gains come from? Well,
these gains are collectively contributed by the reduction in logical and physical I/Os,
sorts, and, hence, the CPU consumption.

[276]

Chapter 9

Result caching can be enabled at three levels:

* SQL query Result Cache: Results from SQL queries can be cached in the
database server.

* PL/SQL function Result Cache: Results from PL/SQL functions can be
cached in the database server.

* OCI Result Cache: Results from SQL queries can be cached in the client
process cache. Within the scope of the chapter, we will restrict our discussion
to the SQL and PL/SQL Result Cache only.

The Result Cache feature can bring huge benefits to warehouse and analytic
workloads. Database applications, where the data does not change often but is
frequently selected, are the right candidates to implement result caching. Another
point to consider is that the server cache is a memory component, albeit a non-
persistent one. It gets auto-flushed when the database instance crashes or restarts.

What is the Server Result Cache?

Starting with Oracle Database 11g, the Server Result Cache is a component of
database instance memory, that resides within the shared pool of SGA. It is used to
store the results of SQL queries and PL/SQL functions. It is further logically divided
into two sub-pool components known as SQL query Result Cache and PL/SQL
function Result Cache. The SQL query Result Cache stores the results SQL queries
and their dependencies. The PL/SQL function Result Cache stores results from
PL/SQL functions.

The Server Result Cache is pre-configured to use a small portion of the shared

pool. If the database uses Automatic Memory Management (memory_target) for
memory sizing, then 0.25 percent of memory target is allocated to the Result Cache.
In the case of automatic shared memory management (sga_target), 0.5 percent

of sga_target is pre-allocated to the Result Cache. For manual shared memory
management (shared_pool_size), the Result Cache is pre-allocated with 1 percent
of shared pool size.

You can define your own Server Result Cache size using the initialization parameter
RESULT CACHE_MAX_SIZE. The user-supplied value to the parameter is rounded

off to the nearest multiple of 32K. If the value of this parameter is zero, the result
caching feature is disabled.

[277]

Result Cache

You must also note that, being a native part of SGA, the Server Result Cache is
affected by Automatic Memory Management (AMM). In addition, it abides by the
regular cache features such as dynamic sizing and the Least Recently Used (LRU)
algorithm to flush out the result sets. The following figure locates the server Result
Cache component in the Oracle Database memory architecture:

Buffer cache Shared Pool
Shared SQL Area
o ——
Drictionary Library | Server 1 Reserved
SGA J | Cache Cache 1 Result | TFool
L | | Cache 1
In-Memory Column Large pool Jawa Pool Streams Misc
Store Fool

Session
Memory

Configuring the Server Result Cache

In this section, we will learn about the configuration of the server-side result cache
feature. There are four initialization parameters that control the result cache
feature in the Oracle Database:

PGA SCL Worl Area Private SQL
fired

Oracle Database memory architecture

* RESULT CACHE MAX SIZE: This parameter determines if the caching is
enabled or disabled on the database server. If it is zero, the caching feature is
disabled. You must set this parameter to a value greater than zero to enable
result caching on the server. Actually, it sets the maximum size of the server
result cache in the shared pool. Oracle recommends to restrict the Server
Result Cache up to 75 percent of the shared pool.

In RAC environments, this parameter must be set at each instance.

* RESULT CACHE MAX_ RESULT: This parameter defines the size of a single
result set in the server cache. It is expressed as a percentage value of RESULT _
CACHE_MAX_SIZE. By default, its value is 5 percent.

[278]

Chapter 9

* RESULT CACHE_MODE: It determines whether an SQL query has to be served
from the SQL query result cache. In other words, the parameter decides if
the ResultCache operation has to be added in the query execution plan. The
caching mode can be MANUAL or FORCE:

° MANUAL (default): The server caches the results of only the
annotated queries that are marked with the RESULT CACHE hint.

FORCE: The database enforces a cache lookup for all the queries and
will attempt to store the results for all the queries that are executed
on the server. However, you can use the NO_RESULT CACHE hint to
skip the cache lookup.

Use FORCE mode cautiously as it enforces caching for all SQL
/s queries and this behavior may exhaust the server result cache.

* RESULT CACHE REMOTE_EXPIRATION: This parameter defines the retention
time of a result cached from a remote object. It is expressed in minutes and its
value is zero, by default.

For example, the following ALTER SYSTEM command sets the size of the Server
Result Cache:

CONNECT sys/oracle as SYSDBA
ALTER SYSTEM SET result cache max size=25M SCOPE=BOTH
/

Let's query the V$PARAMETER view to confirm the effect of the preceding command.
Note the ISPDB_MODIFIABLE column.

SELECT name,

value,

ispdb modifiable
FROM v$parameter
WHERE name like 'result$%'

/

NAME VALUE ISPDB
result cache mode MANUAL TRUE
result cache max size 26214400 FALSE
result cache max result 5 FALSE
result cache remote expiration 0 TRUE

[279]

Result Cache

The preceding query output shows that, in a multitenant container database (Oracle
Database 12c), the Server Result Cache is elastically shared by all the pluggable
databases. The parameters that can be modified from the context of a pluggable
database are RESULT CACHE MODE and RESULT CACHE REMOTE_EXPIRATION. A
pluggable database administrator (PDBA) can either switch on automatic result
caching for the database or use the manual mode of caching. In addition, the result
set expiration time can vary for each pluggable database in a multitenant container
database. Mission-critical databases or those at higher service levels can retain their
result sets for longer than low-priority databases.

What happens when the result cache gets full? The least recently used result is
automatically flushed from the cache to make room for new results.

Result Cache versus Buffer Cache

The Result cache and buffer cache are part of the database memory architecture, but both
are meant to achieve different objectives. The Buffer cache is used to store the data blocks
of a table and these blocks are not coupled to an SQL query. The Result cache stores the
end results and not the blocks from the SQL queries and thus is tied to a particular SQL
query. The Result cache doesn't work on the concepts of blocks or buffers.

Result Cache versus Oracle 12c Database
In-Memory

The Server Result Cache stores the results from SELECT queries and these results are
dependent on the underlying data sources. But Database In-Memory enables the
columnization of row-format data and stores it within the In-Memory Column Store
of the SGA. The columnar data in the In-Memory column store can be compressed
while results in the server cache cannot be compressed.

Result Cache versus In-Memory Database
Cache

The In-Memory Database Cache (IMDB) is a database option that uses Oracle's
Times Ten database under the covers. It is deployed in the application tier to stage
business-critical data closer to the application and, hence improve the response

time. The application connects to the IMDB cache and performs transactions on the
cached data; the changes are posted to the database tier through the synchronous or
asynchronous methods. On the other hand, the Server Result Cache feature stores the
results of SQL queries and PL/SQL functions, but not the table data. However, it is
dependent on the table data and turns stale if the underlying data gets modified.

[280]

Chapter 9

SQL query Result Cache

You can store the results of a SQL query in the SQL query result cache in three ways:

* Enabling automatic result cache at the database level: Automatic SQL result
caching is enabled by setting the initialization parameter RESULT_CACHE_
MODE to FORCE, which enforces caching for all the SQL statements. However,
you can prevent specific SQL queries from exhausting the Server Result
Cache by using the NO_RESULT CACHE hint.

* Enabling automatic result cache at the table level: You can set RESULT
CACHE mode to FORCE for a particular table so that the results from the
queries on this table will be cached in the query result cache.

ALTER TABLE my objects RESULT CACHE (MODE FORCE)
/

You can specify a NO_RESULT CACHE hint to avoid the cache lookup operation
for a query using the cache enforced table, and even rollback the caching
mode to MANUAL.

* Manually annotating selective SQL queries: You can also specify a RESULT
CACHE hint in a frequently executed SQL query to cache its results. This is
known as manual result caching. In this case, RESULT CACHE_MODE must be
set to MANUAL. Queries that scan large volumes of data and return a small
result are good candidates for caching.

in-line views.

[% The RESULT CACHE hint can also be used in sub-queries and]
o

How are the results stored in the SQL query result cache? Whenever a query
executes, the database performs a cache lookup to search for a result from previous
executions of the same query. If the result is found, the cached result is returned
without further re-executing the SQL query. If the result is not found, the SQL query
is executed as usual and the result is returned to the user. The result is then cached in
the query result cache.

How is it different from materialized views? Result Caching and materialized views
appear similar in concept as both improve query performance by maintaining a
separate copy of a query result, but they are very different in implementation. A
materialized view occupies occupy database storage to store the data while the
Server Result Cache consumes the instance memory. The data in materialized views
gets periodically refreshed by re-executing the base query but the result cache gets
automatically built on the subsequent run of the SQL query or PL/SQL function.
Materialized view is persistent while the result cache is non-persistent.

[281]

Result Cache

A result set in the server cache can be used only if the same query is re-executed
(ignoring blank spaces and indentation of the query). A result set is uniquely
identified as a combination of dependent tables, predicates, literal inputs, and the
result. If the query uses bind variables, Oracle stores a distinct result set for each
unique combination of bind variable values.

Let us create a scenario to demonstrate SQL result caching. The following script
creates a table from the ALL_0BJECTS dictionary view for our case study:

CONNECT scott/tiger

CREATE TABLE my objects

AS SELECT * FROM all objects
/

SELECT count (*)

FROM my objects

The following SQL gives the count of objects by their object type and status. Notice
that the RESULT_CACHE hint has been used to add the ResultCache operator in the
execution plan and do a cache lookup. Additionally, we are also adding GATHER _
PLAN STATISTICS to gather additional statistics for the query execution:

SET TIMING ON

SELECT /*+RESULT_ CACHE GATHER PLAN STATISTICS*/
object type,
status,
count (*)

FROM my objects

GROUP BY object type, status

ORDER BY object type, status

/

Elapsed: 00:00:00.92

[282]

Chapter 9

The preceding query returns 43 rows. Now let us check the explain plan:

SELECT *
FROM TABLE (DBMS_ XPLAN.DISPLAY CURSOR (FORMAT=>'ALLSTATS LAST'))

/

PLAN_TABLE_OQUTPUT

select /*+result cache gather plan statistics*/ object type, status,
count(*) from my _objects group by object type, status

Plan hash value: 3257108458

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem

| @ | SELECT STATEMENT | | 1] | 43 |009:00:00.33 | 348 |] | |
| 1| RESULT CACHE | brep4fgjgh7ipl28udpaxavkns | 1] | 43 |00:06:00.33 | 348 |] | |
| 2| HASH GROUP BY | 1] 54 | 43 |00:06:00.33 | 348 | 1116K| 1116K| 1374K (8)
| 3] TABLE ACCESS FULL| MY_OBJECTS | 1| 89507 | 89507 |09:00:00.18 | 348 | | |

- automatic DOP: Computed Degree of Parallelism is 1 because of parallel threshold

25 rows selected.

The explain plan shows the RESULT CACHE operation, which confirms the result of
the cache lookup operation. Since this is the first execution of the query, the result is
cached in the query result cache by the ID 'brop4fgjgh7jpl28udpaxavkns'. The
Starts column shows that all operations were carried out at least once in the current
execution. The actual rows (A-Rows) show the count of rows scanned during the full
table scan and grouped by row count.

Let us re-execute this query and check the explain plan:

SELECT /*+RESULT CACHE GATHER PLAN STATISTICS*/
object type,
status,
count (*)

FROM my objects

GROUP BY object type, status

ORDER BY object type, status

/

Elapsed: 00:00:00.01

[283]

Result Cache

Note that the second execution is significantly faster than the first execution.
Querying the explain plan:

SELECT *
FROM TABLE (DBMS_ XPLAN.DISPLAY CURSOR (FORMAT=>'ALLSTATS LAST'))

/

PLAN_TABLE OUTPUT

select /*+result cache gather plan statistics*/ object type, status,
count(*) from my objects group by object type, status

Plan hash value: 3257108458

| Id | operation | Name | starts | E-Rows | A-Rows | A-Time | OMem | 1Mem | Used-Mem

®	SELECT STATEMENT		1]	43	00:00:00.01			
1	RESULT CACHE	brepafgjoh7jpl28udpaxavkns	1]	43	00:00:00.81			
2	HASH GROUP BY	0	54	9	80:00:00.81	1116K	1116K	1374K (8)
1 31 TABLE ACCESS FULL| MY_OBJECTS | 0 | 89507 | © |00:00:00.01 | | |

- automatic DOP: Computed Degree of Parallelism is 1 because of parallel threshold

25 rows selected.

The starts column shows that the result is retrieved from the query result cache. It
shows zero for the HASH GROUP BY and TABLE ACCESS FULL operations, which means
that these operations were ignored. A-rows values are zero as there were no rows
scanned in this execution.

Monitoring the SQL Result Cache

Oracle provides dynamic views to query the current state of the result cache. These
views are VSRESULT_CACHE_OBJECTS, VSRESULT_CACHE_STATISTICS, VSRESULT
CACHE_MEMORY, and VSRESULT CACHE DEPENDENCY. Before querying these views, let
us check what is in the result cache:

/*Monitor the result cache components in shared pool */
SELECT *

FROM v$sgastat

WHERE POOL='shared pool'

and name like 'Result%'

/

[284]

Chapter 9

POOL NAME BYTES CON_ID
shared pool Result Cache: Memory Mgr 208 0
shared pool Result Cache: Cache Mgr 256 0
shared pool Result Cache: State Objs 2928 0
shared pool Result Cache 163952 0
shared pool Result Cache: Bloom Fltr 2048 0

From the preceding query output, it is evident that the result cache is a component
of the shared pool and contains memory management drivers such as memory
manager, cache manager, state objects, and bloom filters.

The rRCBG background process coordinates the result cache management activities. The
process plays a bigger role in Oracle RAC than in a single instance database:

/*Query the RCBG background process */
SELECT paddr, name, description

FROM vSbgprocess

WHERE name='RCBG'

/
PADDR NAME DESCRIPTION
00 RCBG Result Cache: Background

Coming back to the cached results, the following query shows the properties of the
result set cached in the preceding query:

/*Query the result cache objects */
SELECT status,
type,
build time,
depend_count,
column_count,
scan_count,
row_count
FROM v$result cache objects
WHERE cache id='brOp4fgjgh7jpl28ulpaxavkns'’

/

STATUS TYPE BUILD TIME DEPEND COUNT COLUMN_ COUNT SCAN_ COUNT
ROW_COUNT

Published Result 21 1 3 1

43

[285]

Result Cache

In the preceding output:

* BUILD_TIME is the time spent in building the result (in hundredths of a
second).

* DEPEND_COUNT is the count of dependent objects for this result. In this case, it
is just the table (MY_OBJECTS).

* COLUMN COUNT is the count of columns in the result.
* SCAN_COUNT is the number of times the result is used by an SQL query.
* ROW_COUNT is the number of rows contained in the result.

e STATUS is the current status of the result; PUBLISHED, in this case. Other
values of the STATUS column, which you might see in different cases, can be:

° NEW: An under-construction cache result

° PUBLISHED: A valid result ready for use

° INVALID: An invalidated and non-usable result

° EXPIRED: A result which has crossed the expiration time

° BYPASS: A bypass result is prevented from being used by a SQL
query
* TYPE is RESULT. The other type can be DEPENDENCY for the objects while
building up the result.

The NAMESPACE column in VSRESULT CACHE_OBJECTS
determines whether a result is from a SQL query cache or a PL/
SQL function cache. The following SQL query lists the count of
results in SQL and PL/SQL result caches in the shared pool:

<

Q SELECT namespace, count (*)
FROM v$result cache objects
WHERE namespace IS NOT NULL
GROUP BY namespace

/

The following query lists the result cache statistics. Note that the values against the
statistic name match the result cache settings:

/*Query the result cache block statistics */
SELECT id, name, value
FROM V$RESULT_CACHE_STATISTICS

/
ID NAME VALUE

[286]

Chapter 9

1 Block Size (Bytes) 1024
2 Block Count Maximum 25600
3 Block Count Current 32

4 Result Size Maximum (Blocks) 1280
5 Create Count Success 1

6 Create Count Failure 0

7 Find Count 0

8 Invalidation Count 0

9 Delete Count Invalid 0

10 Delete Count Valid 0

11 Hash Chain Length 1

12 Find Copy Count 0

13 Latch (Share) 0

13 rows selected.

Interpretation: The size of one result cache block in the server cache is 1 kilobyte.
Therefore, a maximum of 25,600 blocks can be allowed in the cache and a single
result size can contain a maximum of 1,280 blocks (5 percent of 25600). The current
result cache has one result and in total 32 blocks are currently allocated.

You can also query these 32 blocks from V$RESULT CACHE_MEMORY. Out of these
32 blocks, only 3 are occupied while the other 29 are free. The math for 3 occupied
blocks is quite simple. SQL takes 2 blocks while the dependent table (My_0OBJECTS)
consumes 1 block:

/* Query the count of occupied blocks in result cache memory*/
SELECT free, COUNT (*)

FROM v$result cache memory

GROUP BY free

/

FREE COUNT (*)

YES 29

You can query the dependency matrix of the result set by querying the
V$RESULT CACHE_DEPENDENCY dictionary view:

/*Query the dependencies of cached results */
SELECT rc.result id,

o.object name
FROM VSRESULT CACHE DEPENDENCY rc, user objects o

[287]

Result Cache

WHERE rc.object no = o.object id
/

RESULT_ ID OBJECT NAME

1 MY OBJECTS

Invalidation of the SQL Result Cache

For a cached result to stay valid, the state of dependent tables and data must be
preserved. If the table is altered or the underlying data is updated, the cached result
gets invalidated. It's only after the next execution that the query result is rebuilt and
cached as a new result. The following UPDATE statement modifies one row in the

MY OBJECTS table.

UPDATE my objects

SET object name=initcap (object name)
WHERE object_ 1id=30

/

COMMIT

/

The result in the query result cache gets invalidated:

/*Query the cache result status */

SELECT cache id, status

FROM véresult cache objects

WHERE cache id='brOp4fgjgh7jpl28ulpaxavkns'
/

CACHE_1ID STATUS

brop4fgjgh7jpl28ulpaxavkns Invalid

We will re-execute the group by querying the My_0BJECTS table to rebuild the result
in the query result cache:

/*Re-execute the SQL query to rebuild the result */
SELECT /*+RESULT CACHE GATHER_PLAN_STATISTICS*/
object type,
status,
count (*)
FROM my objects
GROUP BY object type, status

[288]

Chapter 9

ORDER BY object type, status
/

/*Query the cache result status */

SELECT cache id, status

FROM v$result cache objects

WHERE cache id='brOp4fgjgh7jpl28ulpaxavkns'

/

CACHE_1ID STATUS

brop4fgjgh7jpl28ulpaxavkns Published
brop4fgjgh7jpl28ulpaxavkns Invalid

Note that the invalidated result is retained in the query result cache unless it is
manually flushed out, ages out, or the database instance is restarted.

Read consistency of the SQL Result Cache

The result cache uses the System Change Number (SCN) to maintain the read
consistency of SQL queries whose result is retrieved from the SQL query result cache.
Each and every result added to the query result cache also stores the SCN until it is
valid. A result will stay valid or consistent until an ongoing transaction is committed.

For example, in the preceding code listing, note the change in SCN while the result in
the query result cache was invalidated and got rebuilt after the SQL was re-executed:

/*Query the SCN numbers for each query result cached */
SELECT cache id, status, scn

FROM vé$result cache objects

WHERE cache id='brOp4fgjgh7jpl28ulpaxavkns'

/

CACHE_1ID STATUS SCN

brop4fgjgh7jpl28ulpaxavkns Published 7713754

brOop4fgjgh7jpl28ulpaxavkns Invalid 7680436
Limitations

The SQL result cache doesn't work with:

* Temporary tables
* SYS- or SYSTEM-owned objects

[289]

Result Cache

* Sequence pseudo columns (CURRVAL and NEXTVAL)
* Date and Time SQL functions

* The sys_ CONTEXT function with a non-constant variable

PL/SQL Function Result Cache

You must create a PL/SQL function with a RESULT CACHE clause to add its result

to the PL/SQL function result cache. When a cache-enabled PL/SQL function is
invoked for the first time, the database looks into the PL/SQL result cache for its
result with the matching arguments. If the result is found, it is returned to the calling
environment without executing the function body. If the result is not found, the
function body is executed and the result is stored in the PL/SQL function cache.
Upon subsequent function calls for the same input parameters, the result is fetched
directly from the cache.

Note that a result cache function doesn't need the dependent database tables to be
result-cached.

_ Oracle Database 11g Release 1 used the RELIES_ON clause to
% specify the dependent data sources whose state would affect
% the status of the cached result. The clause was deprecated in
Oracle Database 11g Release 2.

Does it sound similar to deterministic
functions?

Developers who are familiar with deterministic functions in PL/SQL might be
thinking that the function caching concept is quite close to deterministic behavior.
Well, the idea is similar but function result caching comes with many more
capabilities. A function is deterministic if it always returns the same output for the
same input arguments in a given session only, when invoked from an SQL query.
The PL/SQL function result cache overcomes the limitations of a deterministic
function by being sharable across sessions of the same user and can be invoked from
SQL as well as PL/SQL.

[290]

Chapter 9

Differences between Result Cache and other
caching techniques

Yes, that's a good point. Prior to the introduction of this feature in Oracle Database
11g, caching was implemented using package level collection variables. The two
major drawbacks of that approach were that it served as a session level cache and
consumed a substantial amount of Process Global Area (PGA). Being a session-
specific cache, the packaged variables were not sharable with other sessions. PGA
usage can grow enormously for large collection variables, which may impact
performance. The Server result cache wins by a wide margin on these points. It is
sharable across a user's sessions, preserves data integrity, and most importantly, it
uses the Oracle-managed SGA instead of throttling the PGA.

lllustration

We will create a PL/SQL function ¥_COUNT_0OBJ with the RESULT CACHE clause. The
function returns the count of objects for a specific object type:

/*A function with the RESULT_CACHE clause */
CREATE OR REPLACE FUNCTION f count obj (obj type VARCHAR2)
RETURN NUMBER RESULT CACHE IS
1 count NUMBER;
BEGIN
/*Select query to fetch record count in a local variable */
SELECT COUNT (object_type)
INTO 1 _count
FROM my objects
WHERE object type = obj_type;

RETURN 1 count;
END;

/
We will invoke this function in a SELECT statement and check the statistics:

SET AUTOTRACE ON

/*Invoke function in SELECT statement for a valid input */
SELECT f count obj ('PROCEDURE')

FROM DUAL

/

M_PROC_COUNT

[291]

Result Cache

Statistics
2 recursive calls
0 db block gets
348 consistent gets
0 physical reads
0 redo size
559 bytes sent via SQL*Net to client
551 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

Note the consistent gets in the preceding statistics. This is for the execution of the
SELECT statement in the function body. Now let's run the function for the second time:

/*Invoke function in SELECT statement again for the same input */
SELECT f count obj ('PROCEDURE')

FROM DUAL

/

M_PROC_COUNT

0 recursive calls
0 db block gets
0 consistent gets
0 physical reads
0 redo size
559 bytes sent via SQL*Net to client
551 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

There were absolutely no consistent gets this time as the result is fetched directly
from the PL/SQL cache. Now let's run the F_COUNT 0OBJ function for a different
input value and check the statistics:

/*Invoke function in SELECT statement for another input */
SELECT f_Count_obj ('FUNCTION')
FROM DUAL

[292]

Chapter 9

F_COUNT_OBJ ('FUNCTION')

Elapsed: 00:00:00.09

Statistics
4 recursive calls
0 db block gets
348 consistent gets
0 physical reads
0 redo size
558 Dbytes sent via SQL*Net to client
551 Dbytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

Once again, consistent gets appear in the statistics because a different input is

supplied so the function body is executed and a new result set is added to the cache.

Monitoring the PL/SQL Result Cache

For monitoring, we can query the dynamic dictionary views and confirm the caching
of results from the PL/SQL function. The following query lists the results present in
the server cache:

SELECT

cache id, name, status, depend count, scan count

FROM v$result cache objects, dba users

WHERE creator uid=user_id
AND username='SCOTT'

/
CACHE_ID NAME STATUS DEPEND_COUNT SCAN_COUNT
SCOTT.MY_OBJECTS SCOTT.MY_OBJECTS Published 2]
SCOTT.F_COUNT_0BJ SCOTT.F_COUNT_0BJ Published 2 2]
Or7x7k9yusn2dgx5qd94tk3pe7 "SCOTT"."F_COUNT 0BJ"::8."F_COUNT 0B]"#32fb3b6bdac49cs #1 Published 2 2]
0r7x7k9yusn2dgx50d94tk3pa7 "SCOTT"."F_COUNT 0BJ"::8."F_COUNT OB]"#32fb3b6bdac49cs #1 Published 2]

[293]

Result Cache

From the preceding output, it is evident that there are two result sets in the cache
(that is to say, for two different inputs). Also there are two dependent objects — the
F_COUNT_OBJ function and the MY_0BJECTS table. Any change in the state of these
two objects will result in the invalidation of the cached results.

Another point of interest is the cache ID. Yes, both the results have the same cache
ID. In the case of the PL/SQL function cache, all the results have the same cache ID
but different cache keys.

The following query retrieves two PL/SQL result cache statistics that determine
how many results were created in the cache (Create Count Success) and how many
times they were served (Find Count):

SELECT *
FROM v$result cache statistics
WHERE NAME IN ('Create Count Success', 'Find Count')

/
ID NAME VALUE CON_1ID
5 Create Count Success 2 0
7 Find Count 2 0

Invalidation of the PL/SQL Result Cache

The function result cache gets invalidated when:

* The underlying data sources are altered or the data is modified

* The function is recompiled
In the next invocation of the function, the result is rebuilt and cached in the PL/SQL
function result cache. Note that the invalidated result set will still exist and gets flushed

off by a manual flush operation or during an instance restart. By virtue of it being a
cache, the results can also get flushed off by the least recently used (LRU) algorithm.

Limitation

The PL/SQL function result cache does not work for:
* Pipelined functions
* ouTand IN OUT parameters

* The IN parameter of BLOB, CLOB, NCLOB, ref cursor, collection, object,
or record

[294]

Chapter 9

* BLOB, CLOB, NCLOB returns, ref cursor, collection, object, or record

* A function declared locally in an anonymous PL/SQL block

OCI Client results cache

Applications with the Oracle Call Interface (OCI) client can largely benefit from the
result cache feature. The results from an SQL query and a PL/SQL function can be
cached within the OCI client process cache and not in the database server memory.
Caching results in the client process cache helps in multiple ways. First, the query
response time improves drastically as the results are served directly from the cache
without even hitting the database server. Second, the reduced network roundtrips
enhance application performance and the effective utilization of database resources.

How is the consistency of results in the client process cache maintained? The Oracle
Database server is responsible for monitoring the consistency of cached results.

If the underlying data is modified, the database server notifies the client process
and invalidates the result set. On its next roundtrip to the server, the client process
rebuilds the stale results.

The client result cache is independent of the database server cache and deduces that
a result from an SQL query can be cached on the database server cache, the client
process cache, or both.

To set up the client result cache, you are required to set the following parameters:
* CLIENT RESULT CACHE: This determines the maximum size of the client
process cache, which must be more than 32KB.

* CLIENT RESULT_CACHE LAG: This specifies the time (in seconds) after which
the OCI call to the database is forced to validate the cached results. The
default value is 3,000 seconds.

* coMPATIBLE: This is the Oracle Database-compatible version.

The DBMS_RESULT_CACHE package

The Oracle-supplied package DBMS_RESULT CACHE is used to regulate the Server
Result Cache component of the shared pool. The package is owned by sys and only
privileged users should be granted the EXECUTE privilege.

[295]

Result Cache

The public constants used in the package are as follows:

DBMS_RESULT_CACHE constants (reference: Oracle documentation)
STATUS_BYPS | CONSTANT VARCHAR(10) := 'BYPASS';
STATUS DISA | CONSTANT VARCHAR(10) := 'DISABLED';
STATUS_ENAB | CONSTANT VARCHAR (10) = 'ENABLED';
STATUS_SYNC | CONSTANT VARCHAR (10) = 'SYNC';

STATUS CORR | CONSTANT VARCHAR(10) := 'CORRUPT';

The subprograms used in the package are described in the following table:

DBMS_RESULT_CACHE subprograms (reference: Oracle documentation)

BYPASS procedure

If set to TRUE, the result cache usage is bypassed in
the current or every session.

Used when modifying and recompiling a PL/SQL
function whose results have been cached earlier.

In RAGC, since each instance has its own server cache,
the BYPASS procedure must be run in all instances.

FLUSH function and
procedure

Flushes out all the results from the server cache.

You can also retain or release memory and statistics.
Default action is release.

INVALIDATE functions and
procedures

Invalidates all the results that are dependent on a
given object.

Returns the number of results invalidated.

INVALIDATE OBJECT
functions and procedures

Invalidates the specified result set in the server
cache.

MEMORY REPORT procedure

Generates the summary report for the server result
cache.

Specify (detailed => TRUE) to generate a detailed
version of the report.

STATUS function

Checks the status of the result cache.

[296]

Chapter 9

Displaying the result cache memory report

You can generate a server cache memory report via the DBMS_RESULT CACHE
package. A sample cache memory report (summarizing results from our
illustrations) looks as follows:

CONNECT sys/oracle as sysdba
SET SERVEROUTPUT ON

/*Generate the cache memory report*/
EXEC DBMS RESULT CACHE.MEMORY REPORT
Result Cache Memory Report

[Parameters]

Block Size = 1K bytes

Maximum Cache Size = 25M bytes (25K blocks)
Maximum Result Size = 1280K bytes (1280 blocks)
[Memory]

Total Memory = 169392 bytes [0.044% of the Shared Pool]
Fixed Memory = 5440 bytes [0.001% of the Shared Pool]
Dynamic Memory = 163952 bytes [0.042% of the Shared Pool]

....... Overhead = 131184 bytes

....... Cache Memory = 32K bytes (32 blocks)

........... Unused Memory = 26 blocks

........... Used Memory = 6 blocks

............... Dependencies = 2 blocks (2 count)

............... Results = 4 blocks

2 blocks (1 count)

2 blocks (2 count)

g 0
[O]
n =
0
=
Il Il

PL/SQL procedure successfully completed.

The preceding report lists the maximum cache size, maximum result size, and
standard block size. The report can be interpreted as follows:

* The result cache is allocated from the dynamic section of the shared pool.
Currently, only 169,392 bytes are allocated and the maximum stretch is up
to 25MB.

* Fixed memory is the memory consumed by Memory Mgr, Cache Mgr, State
Objs and Bloom Fltr.

* Out of 32K blocks, only 6 blocks are used. The 6 used blocks include 2
for dependencies (1 each by F_CoOUNT 0OBJ and MY _OBJECTS) and 4 by
sub-pools (2 by the SQL query result cache and 2 by the PL/SQL function
result cache —2 function calls).

[297]

Result Cache

You can also generate a detailed report by specifying the DETAILED parameter as
TRUE in the MEMORY REPORT procedure:

exec dbms_result cache.memory

Result Cache M e
[Parameters]
Block Size

Maximum Cache Size

1K bytes

Maximum Result Size

[Memory]

Total Memory 169392 bytes [
5440 bytes
208 byte
256 byte

2K bytes

Fixed Memory

Memory Mgr

Cache Mgr

Bloom Fltr
State Objs
Dynamic Memory

Overhead 131184
Hash Table
Chunk Ptrs
Chunk Maps 1
Miscellaneous 1
32K by
Unused Memory 2
6 b
Dependencies
4

= byt
6

2

Cache Memory =

Used Memory =

Results b

PL/SQL procedure successfully

25M bytes
1280K bytes

(TRUE) ;
mory Report

report

(25K blocks)
(1280 blocks)

0.044% of the Shared Pool]
[0.001% of the Shared Pool]

s

s

2928 bytes
163952 bytes

[0.042% of the Shared Pool]
es

4K bytes
4K bytes
2K bytes
31184 bytes
tes (32 blocks)
6 blocks
locks

2 blocks
locks

2 blocks
2 blocks

(4K buckets)
(3K slots)

(2 count)

(1 count)
(2 count)

completed.

Oracle Database 12c enhancements to the
PL/SQL function Result Cache

Until Oracle Database 11g, results from a PL/SQL function created with invoker's
rights (that is, the AUTHID CURRENT_USER clause) cannot be result-cached. The
restriction was imposed from a security standpoint as the database users can have
different access levels which may contradict the result caching mechanism. For
instance, a user FIN executes a PL/SQL function to retrieve salary details of a
department and adds the result to the cache. Another user CLERK invokes the same

function and gets the results from the

PL/SQL function result cache. Had it been an

invoker's rights function, he would have received an exception.

[298]

Chapter 9

Starting from Oracle Database 12c, the invoker's rights function can be result cached.
The idea is quite simple. While performing a cache lookup, Oracle passes the current
user along with the function signature. While adding a result to the cache, the

user information is also cached. Next time, whenever the function is invoked, the
database verifies whether the current user has invoked this function earlier. So now a
result is tightly coupled with the user who has added it in the cache. Consequently, a
result is sharable across the sessions of the same user.

For example, the following PL/SQL function is an invoker's rights function with the
result cache feature:

/*Create an invoker right result cache function */
CREATE OR REPLACE FUNCTION f count myobj (obj type VARCHAR2)
RETURN NUMBER
AUTHID CURRENT_ USER
RESULT_ CACHE IS
1 count NUMBER;
BEGIN

/*Capture the record count in a local variable */
SELECT COUNT (object type)

INTO 1 count

FROM my objects

WHERE object type = obj type;

RETURN 1 count;
END;
/

Function created.

Result cache in Real Application Clusters

The Oracle Database Real Application Cluster (RAC) option allows the sharing of
a cluster database across multiple database instances. It enhances the scalability and
availability of database applications.

[299]

Result Cache

The Result cache, being the native component of database instance memory, is
supported on RAC environments. The behavior and handling of result caching on
RAC is the same as that of a single instance database. Here are the salient features of
result caching in RAC:

¢ FEach RAC instance maintains a local version of the Server Result Cache in the
shared pool of the SGA

e A resultis added to the instance result cache when a user executes a SQL
query or a PL/SQL function on a database instance

* If the same user executes the same query from another instance, the cached
result is copied to that instance's result cache over RAC interconnect

* The dynamic view GV$RESULT CACHE_OBJECTS will show duplicate entries
with the same cache ID, but for different instances (INST_1ID)

e If the table data is modified or the table is altered, the result is invalidated in
the Server Result Cache on all the instances of the cluster

* Whichever instance re-executes the query, the result is rebuilt and cached for
that instance only

Summary

In this chapter, we have explored the caching mechanism in the Oracle Database
server. We saw how server result caching can dramatically improve performance
in SQL and PL/SQL applications. We learned how to configure the Server Result
Cache, how to enable manual and automatic SQL query result caches, and how to
work with the PL/SQL function result cache.

In the next chapter, we will learn about PL/SQL code profiling and tracing
techniques.

[300]

Chapter 9

Practlce exercise

The initialization parameter settings for your database are as follows:

MEMORY TARGET = 500M
RESULT_CACHE_MODE = MANUAL
RESULT_CACHE MAX SIZE = 0

You execute a query by using the RESULT CACHE hint. Which statement is
true in this scenario?

1. The query results are not stored in the cache because no memory is
allocated for the result cache.

2. The query results are stored in the cache because Oracle implicitly
manages the cache memory.

3. The query results are not stored in the cache because RESULT CACHE_
MODE is MANUAL.

4. The query results are stored in the cache automatically when
RESULT CACHE_MODE is MANUAL.

* You set the following initialization parameter settings for your database:

MEMORY TARGET = 500M
RESULT_ CACHE MODE = FORCE
RESULT_ CACHE MAX SIZE = 200M

You execute the following query:

SELECT /*+RESULT CACHE*/ ENAME, DEPTNO
FROM EMPLOYEES

WHERE EMPNO = 7844

/

Which of the following statements are true?

1. The query results are cached because SQL uses the RESULT CACHE hint.
2. The query results are cached because the result cache mode is FORCE.

3. The query results are not cached because SQL uses the RESULT_CACHE
hint.

4. The RESULT_CACHE hint is ignored when the result cache mode is FORCE.

* The cached query result becomes invalid when the data accessed by the

query gets modified.
1. True.
2. False.

[301]

Result Cache

* The SQL query result cache is persistent only for the current session.
1. True.
2. False.

* Which of the following PL/SQL object results cannot be cached?
1. A Standalone function.
2. A Procedure.
3. A function local to a procedure.
4. A Packaged function.
* The RELIES ON clause in the PL/SQL function result cache can be used

to specify the dependent tables or views whose state would affect the
cached result.

1. True.
2. False.

* Server settings are as follows:

MEMORY TARGET = 500M
RESULT_ CACHE MODE = FORCE
RESULT_CACHE MAX SIZE = 200M

Identify the SQL queries whose results cannot be cached by the server.

1. SELECT ename, sal FROM employees WHERE empno = 7900;
2. SELECT seq empid.nextval FROM DUAL;
3. SELECT ename, sysdate, hiredate FROM employees;

4. SELECT dname, loc FROM departments WHERE deptno = 10;

* Identify the correct statements about the PL/SQL function result cache.

1. The PL/SQL function result cache requires additional server
configuration.

The PL/SQL function result cache cannot be operated on procedures.

The PL/SQL function result cache works with all categories of
functions.

4. The PL/SQL function result cache features can work with functions
that take collection type arguments.

[302]

Chapter 9

Identify the admissible value of the STATUS column in V$RESULT CACHE
OBJECTS.

1. PUBLISHED.
2. INVALID.

3. USED.

4. UNUSED.

Choose the correct statement about the following sample cache memory
statistics report:

ID NAME VALUE

1 Block Size (Bytes) 1024

2 Block Count Maximum 204800

3 Block Count Current 32

4 Result Size Maximum (Blocks) 40960

5 Create Count Success 1

6 Create Count Failure 0

7 Find Count 0

8 Invalidation Count 0

9 Delete Count Invalid 0

10 Delete Count Valid 0

11 Hash Chain Length 1
1. Create Count Success is the count of successfully cached results.
2. Find Count is the count of the successfully cached results found and

used in the queries.

3. Invalidation Count is the count of the invalidated cached results.

Block Count Maximum is the static value of total blocks available in
the cache memory.

[303]

10

Analyzing, Profiling, and
Tracing PL/SQL Code

During the database development stage and even after, the developers are required
to analyze and maintain the database objects. Analyzing the PL/SQL code is an
essential exercise that enables you to draw out key information about a program.
PL/SQL code analysis can be help the developers in: tracking object dependencies,
unused variables, retrieving compilation settings, tracking program execution flow,
and building the performance profile of an object.

Oracle provides a powerful set of metadata sources, known as dictionary views, to
reveal the metadata of PL/SQL objects. For all the objects that are created, modified,
or compiled in a database, Oracle captures the metadata and continues to update it
at each action. This chapter will focus on how to analyze a PL/SQL code unit, how
to trace the program execution, and how to profile it in a very simplistic way. In this
chapter, we will learn techniques to:

* Analyze PL/SQL metadata information through dictionary views

* Trace PL/SQL program execution flow
* Profile PL/SQL code for performance

A sample PL/SQL program

Before we plunge into code analysis techniques, let us write down a standard
PL/SQL program for demonstrating code analysis, profiling, and tracing. The
following PL/SQL procedure calculates the score of a user in an exam (Note that
negative scoring is applicable). The procedure p_cALC_USER_POINTS declares a local
function and a procedure to calculate the points:

/*Create a PL/SQL procedure*/
CREATE OR REPLACE PROCEDURE p calc_user points

[305]

Analyzing, Profiling, and Tracing PL/SQL Code

(p_user VARCHAR2 DEFAULT USER, p correct NUMBER, p wrong NUMBER)
IS
1 num NUMBER;

/*A local function F_CALC_POINTS */

FUNCTION f calc points (p_ques NUMBER, p factor NUMBER)
RETURN NUMBER

IS

BEGIN

RETURN (p ques*p factor);

END;

/*A local procedure */

PROCEDURE P NET CALC (p net points OUT NUMBER) IS

BEGIN

p_net points := £ calc points (p correct,4) + £ calc points (p_
wrong, -2) ;

END;

/*Main procedure body */

BEGIN

p_net calc (1 _num);

DBMS OUTPUT.PUT LINE (USER||' earned '||TO CHAR (1 num)||' points');
END;

/

We will now query the Oracle-supplied dictionary views to find ways to track PL/
SQL program properties such as argument details, identifier usage, and object
compilation settings.

Tracking PL/SQL coding information

The Oracle-supplied dictionary views are a great source of information for performing
drill-down analysis of PL/SQL code. Although there are several dictionaries that
store PL/SQL object information, the important ones are USER_ARGUMENTS, USER_
OBUJECTS, USER_SOURCE, USER_PROCEDURES, and USER_DEPENDENCIES. These views
also have their ALL._* and DBA_* counterparts. For your reference, the USER, ALL, and
DBA category views are described as follows:

* UskR: Contains only the objects that are owned by a user

* aLL: Contains the objects that can be accessed by a user

* DBA: Contains all the objects accessible by the sys user or a user with DBA
privileges

[306]

Chapter 10

You can query the data dictionary views from the DICTIONARY view and their
column structure from DICT COLUMNS view. Let us query the metadata information
of the procedure p_CALC_USER_POINTS in these dictionary views.

USER_ARGUMENTS

The USER_ARGUMENTS view captures the argument information of a PL/SQL
program. The argument information includes the position of an argument in the
parameter list, its data type, defaults, and pass mode.

% Usage of a NOCOPY hint in an OUT or IN OUT parameter is not
= tracked in USER_ARGUMENTS

The following query lists argument_name, its position, pass mode, data_type,
and default.

/*Query the arguments of the procedure P _CALC USER_POINTS*/

SELECT argument name, data type, defaulted, position, data_level, in_
out, pls_type

FROM user arguments

WHERE object name IN ('P_CALC USER_POINTS')

ORDER BY position

/

ARGUMENT NAME DATA TYPE D POSITION DATA LEVEL IN_OUT PLS_TYPE

P_USER VARCHAR2 Y 1 0 IN VARCHAR2
P_CORRECT NUMBER N 2 0 IN NUMBER
P_WRONG NUMBER N 3 0 IN NUMBER

In the preceding query result, the DATA_LEVEL represents the level of nesting in
a composite data type. Since the procedure had scalar data types only, DATA LEVEL
is zero.

USER_OBJECTS

The user_o0BJECTS dictionary view is the primary source to check the validity of
a PL/SQL object. The view also includes relevant details such as creation and last
update timestamps, namespace, and edition.

/*Query the object properties of P _CALC USER_POINTS */
SELECT object_id, object type, status,namespace
FROM user_ objects

[307]

Analyzing, Profiling, and Tracing PL/SQL Code

WHERE object name='P_CALC_USER POINTS'
/

OBJECT_ID OBJECT TYPE STATUS NAMESPACE

81410 PROCEDURE VALID 1

The ORACLE_MAINTAINED column of the dictionary view determines if a given object
is managed by the Oracle Database or the user. All the Oracle-supplied packages
(such as sTANDARD, DBMS_OUTPUT and all others) are maintained implicitly by Oracle
and can be queried from ALL_OBJECTS.

USER_OBJECT_SIZE

The USER_OBJECT SIZE view provides the size (in bytes) of the source code, parsed
code and compiled code of a PL/SQL object. The size information can be quite
relevant, if the program invocation results in out-of-memory issues. Database
developers can determine if a large program can be broken down into smaller
subprograms or multiple modules can be clubbed under a single PL/SQL unit.

The following query shows the size of the p_CALC_USER_POINTS procedure:

/*Query the code size of procedure P_CALC USER POINTS */
SELECT type, source size, parsed size, code size, error size
FROM user object size

WHERE name='P_CALC USER_POINTS'

/
TYPE SOURCE_SIZE PARSED _SIZE CODE_SIZE ERROR SIZE
PROCEDURE 472 1096 827 0

In the preceding output, ERROR_SIZE is the size of the error messages raised during
code compilation.

USER_SOURCE

The USER_SOURCE dictionary view provides the text source code of a PL/SQL object.
This view can be handy in building up a text-based code search engine.

The following query shows the program body of the procedure p_CALC_USER_
POINTS:

/*Query the source code of P_CALC USER POINTS*/
SELECT line, text

[308]

Chapter 10

FROM user source
WHERE name='P_ CALC_USER_POINTS'
ORDER BY line

/
LINE TEXT

1 PROCEDURE p calc user points

2 (p_user VARCHAR2 DEFAULT USER, p correct NUMBER, p wrong NUMBER)

3 1Is

4 1 num NUMBER;

5 FUNCTION f calc points (p_ques NUMBER, p factor NUMBER)

6 RETURN NUMBER

7 Is

8 BEGIN

9 RETURN (p ques*p factor);

10 END;

11

12 PROCEDURE P _NET CALC (p_net points OUT NUMBER) IS

13 BEGIN

14 p_net points := f calc points (p correct,4) + £ calc points
(p_wrong, -2) ;

15 END;

16

17 BEGIN

18 p_net calc (1 _num);

19 DBMS OUTPUT.PUT LINE (USER||' earned '||TO CHAR (1 num) ||
points') ;

20 END;

20 rows selected.

The following SELECT query finds the objects that have customized exception
handling through RAISE APPLICATION ERROR:

/*Query to build text based code search */

SELECT DISTINCT owner, name

FROM all source

WHERE UPPER (text) LIKE '$RAISE APPLICATION_ ERROR%'

/

OWNER NAME

SYS UTL_SMTP

SYS DBMS_STANDARD

[309]

Analyzing, Profiling, and Tracing PL/SQL Code

SYS UTL_HTTP
APEX_040200 WWV_FLOW_ERROR_API
APEX_040200 WWV_FLOW_ESCAPE

5 rows selected.

USER_PROCEDURES

The USER_PROCEDURES dictionary view captures the subprogram properties of an
object. Contrary to its name (which just says "procedures"), it displays the behavioral
aspects such as aggregate, pipelined, parallel, deterministic, or privilege
authentication of not just procedures, but also of PL/SQL functions and

PL/SQL packages.

The procedural properties of the P_CALC_USER_POINTS subprogram can be queried
from the view as follows:

/*Query the subprogram properties of P _CALC_USER POINTS*/
SELECT object_ type,

aggregate,

pipelined,

parallel,

interface,

deterministic,

authid
FROM user_ procedures
WHERE object name='P_ CALC USER POINTS'
/

OBJECT_TYPE AGG PIP PAR INT DET AUTHID

PROCEDURE NO NO NO NO NO DEFINER

USER_PLSQL_OBJECT SETTINGS and
USER_STORED_SETTINGS

The USER PLSQL OBJECT SETTINGS and USER STORED SETTINGS views are used
to display the compilation parameter values of a PL/SQL object. The difference
between the two views is that the USER_PLSQL_ OBJECT SETTINGS view contains a
column for each compilation parameter, while the USER_STORED SETTINGS view
stores parameter values as a key-value pair (the parameter name as the key) for a
PL/SQL program.

[310]

Chapter 10

Let's check the value of compilation parameters from both of the views. The
following SELECT pivot query shows the compilation parameter values for the

procedure P_CALC_USER_POINTS

/*Query the compilation parameters for P_CALC USER_POINTS */

SELECT name,

FROM user plsgl object settings

UNPIVOT INCLUDE NULLS

(

pval FOR
(
PLSQL CODE TYPE as 'PLSQL CODE TYPE',
PLSQL DEBUG as 'PLSQL DEBUG',
PLSQL WARNINGS as 'PLSQL WARNINGS',
NLS LENGTH SEMANTICS as
PLSQL CCFLAGS as 'PLSQL CCFLAGS',
PLSCOPE_SETTINGS as 'PLSCOPE SETTINGS'
)

pname, pval

(pname) IN

)
WHERE name='P_CALC USER_ POINTS'

'NLS LENGTH SEMANTICS',

/

NAME PNAME PVAL
P_CALC_USER POINTS PLSQL_ CODE_TYP NATIVE
P_CALC_USER POINTS PLSQL DEBUG FALSE
P_CALC_USER POINTS PLSQL_ WARNINGS DISABLE:ALL
P_CALC_USER POINTS NLS LENGTH SEMANTICS BYTE

P_CALC_USER_POINTS
P_CALC_USER_POINTS

PLSQL CCFLAGS
PLSCOPE_SETTINGS

6 rows selected.

IDENTIFIERS:ALL

/*Query the compilation parameters for P_CALC USER_POINTS */

SELECT object name, param name, param value
FROM user stored settings

WHERE object name = 'P_CALC USER_POINTS'

/

OBJECT NAME PARAM NAME

P_CALC_USER_POINTS
P_CALC_USER_POINTS
P_CALC_USER_POINTS

plsgl optimize level
plsgl code type
plsgl debug

PARAM VALUE

NATIVE
FALSE

[311]

Analyzing, Profiling, and Tracing PL/SQL Code

P_CALC USER POINTS nls length semantics BYTE

P_CALC USER POINTS plsgl warnings DISABLE:ALL
P_CALC USER POINTS plsgl ccflags

P_CALC_USER POINTS plscope settings IDENTIFIERS:ALL
P_CALC USER POINTS plsgl compiler flags NATIVE,NON DEBUG

8 rows selected.

USER_DEPENDENCIES

The USER_DEPENDENCIES dictionary view gives you the list of objects on which a
given PL/SQL subprogram is dependent. If any of these dependent objects gets
invalidated, the PL/SQL program will also be invalidated. The following query lists
the objects that are referenced in the p_CALC_USER_POINTS function:

/*Query the dependent objects of P _CALC USER_POINTS */
SELECT referenced owner,
referenced name rname,
referenced type rtype,
dependency type dtype
FROM user dependencies
WHERE name='P_CALC USER_POINTS'

/

OWNER RNAME RTYPE DTYP
SYS STANDARD PACKAGE HARD
SYS SYS STUB_FOR PURITY ANALYSIS PACKAGE HARD
PUBLIC DBMS_OUTPUT SYNONYM HARD

The DBMS_DESCRIBE package

The DBMS_DESCRIBE package is an Oracle supplied package that is used to describe
the structure of a PL/SQL object. In terms of functionality, the DBMS_DESCRIBE
package gives information that is similar to USER_ARGUMENTS or USER_PROCEDURES,
but it is used where the program structure has to be exposed based on a client
request. It is owned by sys and its public synonym is available to all users.

The DBMS_DESCRIBE package contains one subprogram DESCRIBE_PROCEDURE and
uses associative arrays to capture the PL/SQL object structure.

TYPE VARCHAR2 TABLE IS TABLE OF VARCHAR2 (30)
INDEX BY BINARY INTEGER;

TYPE NUMBER TABLE IS TABLE OF NUMBER
INDEX BY BINARY INTEGER;

[312]

Chapter 10

SET SERVEROUTPUT ON

DECLARE
/*Declare the

v_overload
v_position
v_level
Vv_arg_name
v_datatype
v_def_value

v_in_out

local variables of associative array type*/

DBMS DESCRIBE
DBMS DESCRIBE
DBMS_ DESCRIBE
DBMS_ DESCRIBE
DBMS_ DESCRIBE
DBMS DESCRIBE
DBMS_ DESCRIBE

.NUMBER_TABLE;
.NUMBER_TABLE;
.NUMBER_TABLE;
.VARCHAR2 TABLE;
.NUMBER_TABLE;
.NUMBER_TABLE;
.NUMBER_TABLE;

The following PL/SQL block retrieves the signature of the PL/SQL procedure
P_CALC_USER_POINTS

v_length DBMS DESCRIBE.NUMBER TABLE;

v_precision DBMS DESCRIBE.NUMBER TABLE;

v_scale DBMS DESCRIBE.NUMBER TABLE;

v_radix DBMS DESCRIBE.NUMBER TABLE;

V_spare DBMS DESCRIBE.NUMBER TABLE;
BEGIN

/*Call the procedure DESCRIBE PROCEDURE for P CALC USER_POINTS */
DBMS DESCRIBE.DESCRIBE PROCEDURE
(object_name=> 'P_CALC_USER_POINTS',
reservedl => null,
reserved2 => null,

overload => v_overload,
position => v_position,
level => v_level,

argument name => v_arg name,datatype => v_datatype,
default value => v_def value,

in out => v_in out,
length => v_length,
precision => v_precision,
scale => v_scale,
radix => v_radix,
spare => Vv_spare,

include_ string constraints => null);

FOR i IN v_arg name.FIRST
LOOP
DBMS_OUTPUT.PUT LINE (RPAD(' ',40,' '"));

v_arg_name.LAST

[313]

Analyzing, Profiling, and Tracing PL/SQL Code

/*Check if the position if zero or not*/
IF v_position(i) = 0 THEN

/*Zero position is reserved for RETURN types*/

DBMS_OUTPUT.PUT LINE (' RETURN type of the function: ');
DBMS_OUTPUT.PUT LINE (rpad('Function Return type:',30,' ')|]|v_
datatype(i)) ;
ELSE

/*Print the argument name*/
DBMS_OUTPUT.PUT LINE (RPAD ('Parameter name:',30,' ')||v_arg_
name (1)) ;
END IF;

/*Display the position, type and mode of parameters*/
DBMS_OUTPUT.PUT LINE (rpad('Parameter position:',30,' ')|]|
v_position(i));
DBMS_OUTPUT.PUT LINE (rpad('Parameter data type:',30,' ') ||
case v_datatype(i)
when 1 then 'VARCHAR2'
when 2 then 'NUMBER'
when 3 then 'BINARY INTEGER'
8 then 'LONG'
when 11 then 'ROWID'
when 12 then 'DATE'
when 23 then 'RAW'
when 24 then 'LONG RAW'
when 58 then 'OPAQUE TYPE'
when 96 then 'CHAR'
when 106 then 'LONG RAW'
when 121 then 'OBJECT'
when 122 then 'NESTED TABLE'
when 123 then 'VARRAY'
when 178 then 'TIME'
when 179 then 'TIME WITH TIME ZONE'
when 180 then 'TIMESTAMP'
when 230 then 'PL/SQL RECORD'
when 251 then 'PL/SQL TABLE'
when 252 then 'PL/SQL BOLLEAN'
end) ;
DBMS_OUTPUT.PUT LINE (rpad('Parameter default:',30,' ')]||
case v_def value (i)
when 0 then 'No Default'
when 1 then 'Defaulted'

when

[314]

Chapter 10

end) ;

DBMS_OUTPUT.PUT LINE (rpad('Parameter pass mode:',30,' ')||
case v_in out (i)
when 0 then 'IN mode'
when 1 then 'OUT mode'
when 2 then 'IN OUT mode'

end) ;
DBMS_OUTPUT.PUT LINE (rpad('_',40,'_"'));
END LOOP;
END;
/
Parameter name: P_USER
Parameter position: 1
Parameter data type: VARCHAR2
Parameter default: Defaulted
Parameter pass mode: IN mode
Parameter name: P_CORRECT
Parameter position: 2
Parameter data type: NUMBER
Parameter default: No Default
Parameter pass mode: IN mode
Parameter name: P_WRONG
Parameter position: 3
Parameter data type: NUMBER
Parameter default: No Default
Parameter pass mode: IN mode

PL/SQL procedure successfully completed.

Tracking the program execution subprogram
call stack

The call stack information lets you determine the stages of program execution. A
program call stack includes the nested information of the referenced subprograms.
You can track the call stack for a program using the DBMS_UTILITY.FORMAT CALL
STACK function or UTL_CALL_STACK package.

[315]

Analyzing, Profiling, and Tracing PL/SQL Code

The function FORMAT CALL_STACK returns the current call stack information, which
includes the object handle number, line number, and the name of the subprogram.

Let's create three standalone procedures: p1, P2, and P3. P3 invokes p2, while p2
invokes P1. By the time the program control reaches p1, the call stack includes
P1, P3 and p2.

/*Create the procedure P1l*/
CREATE OR REPLACE PROCEDURE P1

Is

BEGIN
DBMS_ OUTPUT.PUT LINE ('Executing P1..');
DBMS_OUTPUT.PUT LINE (RPAD ('~',15,'~'));
DBMS_OUTPUT.PUT LINE (dbms utility.format call Stack);

END;

/

/*Create the procedure P2*/

CREATE OR REPLACE PROCEDURE P2

IS

BEGIN
DBMS_ OUTPUT.PUT LINE ('Executing P2..');
DBMS_OUTPUT.PUT LINE ('Calling P1..');

DBMS_OUTPUT.PUT LINE (RPAD ('~',15,'~'));
/*Call procedure P1*/

P1;
END;

/

/*Create the procedure P3*/

CREATE OR REPLACE PROCEDURE P3

IS

BEGIN
DBMS_ OUTPUT.PUT LINE ('Executing P3..');
DBMS_OUTPUT.PUT LINE ('Calling P2..');

DBMS_OUTPUT.PUT LINE (RPAD ('~',15,'~'));
/*Call procedure P2*/

P2;
END;

/

/*Enable the serveroutput to display the error messages*/
SET SERVEROUTPUT ON

/*Start a PL/SQL block to invoke P3*/

[316]

Chapter 10

BEGIN

/*Call P3*/
P3;

END;

/

Executing P3..
Calling P2..

Executing P2..
Calling P1..

——————— PL/SQL Call Stack -------

object handle line number object name
Oxec4c4cel 6 procedure SCOTT.P1
0xec438220 8 procedure SCOTT.P2

O0xe4e00448
0xe4c98298

[ee]

procedure SCOTT.P3
anonymous block

[

PL/SQL procedure successfully completed.

In the preceding program output, you can check the program execution flow from
p3 to p2, followed by p1. But one issue with the FORMAT CALL_STACK output is the
inability to extract the drill-down up to local routine information and use it for
debugging tasks.

Oracle Database 12¢ introduces a new API, known as UTL._CALL_STACK, to give a
structured call stack as well as error stack. The structured call stack output allows
developers to extract the information and use it for debug purposes.

The procedure sHOW_CALL_STACK uses the UTL_CALIL_STACK subprograms to display
the structured call stack information:

/*Create the procedure to print call stack using UTL_CALL STACK*/
CREATE OR REPLACE PROCEDURE show call stack
is
1vl PLS INTEGER;
BEGIN

/*Retrieve the dynamic depth of the call stack */
1vl := UTL_CALL_STACK.DYNAMIC_DEPTH();

/*Iterate the call depth structure */

[317]

Analyzing, Profiling, and Tracing PL/SQL Code

FOR i IN 1..lvl LOOP
DBMS_OUTPUT.put_line (
RPAD ('Call depth:'||UTL CALL STACK.lexical depth(i), 15) ||
RPAD ('Line:'||TO CHAR(UTL CALL STACK.unit line(i),'99'), 15)]|]|
UTL_CALL_STACK.CONCATENATE SUBPROGRAM
(UTL_CALL_STACK.SUBPROGRAM (1))
) ;
END LOOP;
END;
/

In the preceding procedure:

* DYNAMIC_DEPTH denotes the number of subprograms in the call stack

* LEXICAL_DEPTH is the relative call depth within a subprogram

* UNIT_ LINE is the line number where the call statement is made

* SUBPROGRAM returns the name of the subprogram currently under execution

* CONCATENATE_SUBPROGRAM concatenates a subprogram name to its
calling program

P_CALC_POINT CALLSTACK invokes SHOW_ CALL_STACK to print the structured
call stack:

/*Create a procedure to invoke SHOW CALL_ STACK */
CREATE OR REPLACE PROCEDURE p calc point callstack
(p_user VARCHAR2, p_ correct NUMBER, p wrong NUMBER)
IS

1 _num NUMBER;

FUNCTION f calc_points (p_gues NUMBER, p_ factor NUMBER)
RETURN NUMBER

IS
BEGIN

/*Invoke SHOW CALL STACK */

show_call_stack;

RETURN (p_ques*p_ factor) ;
END;

PROCEDURE p_net_calc (p_net points OUT NUMBER) IS

BEGIN

p_net points := f calc_points (p_correct,4) + f _calc_points (p_
wrong, -2) ;

END;
BEGIN

[318]

Chapter 10

p_net calc (1 _num);
DBMS_OUTPUT.PUT LINE (USER||' earned '||TO CHAR (1 num)||' points');
end;

/
Execute the preceding procedure in a PL/SQL block:

SET SERVEROUTPUT ON

BEGIN

p_calc point_callstack (user, 10, 3);

END;

/

Call depth:1 Line: 10 P_CALC_ POINT CALLSTACK.F CALC_POINTS
Call depth:1 Line: 15 P_CALC_POINT CALLSTACK.P NET CALC
Call depth:o0 Line: 18 P_CALC_ POINT CALLSTACK

Call depth:0 Line: 2 __anonymous_block

Call depth:0 Line: 6 SHOW_CALL STACK

Call depth:1 Line: 10 P_CALC_ POINT CALLSTACK.F CALC_POINTS
Call depth:1 Line: 15 P_CALC_POINT CALLSTACK.P NET CALC
Call depth:0 Line: 18 P_CALC_ POINT CALLSTACK

Call depth:0 Line: 2 __anonymous_block

SCOTT earned 34 points

PL/SQL procedure successfully completed.

The preceding output shows the call stack in last-in-first-out order. To read the stack
from top to bottom, you can loop the dynamic depth in REVERSE order.

Tracking propagating exceptions in
PL/SQL code

Traditionally, database developers are keen to use SQLERRM and SQLCODE to

find an exception code and message. In a modular programming approach,
PL/SQL programs invoke routines and it may happen that a routine call fails with
an exception. The exception propagates to the calling block and traverses through
multiple blocks in search of its handler.

If you want to track the path of propagating exceptions, you can either use the
FORMAT ERROR BACKTRACE function from DBMS UTILITY or the new UTL CALL
STACK package.

[319]

Analyzing, Profiling, and Tracing PL/SQL Code

The PL/SQL procedure here raises user-defined exceptions to demonstrate the
working of back-tracing the exceptions:

/*Create a procedure to trace print error stack */
CREATE OR REPLACE PROCEDURE p calc point errStack
(p_user VARCHAR2, p correct NUMBER, p_wrong NUMBER)
IS

1 num NUMBER;

/*Declare user defined exceptions */
myFunkExp EXCEPTION;

myProcExp EXCEPTION;

myBlkExp EXCEPTION;

PRAGMA EXCEPTION_ INIT (myFunExp,-20020) ;
PRAGMA EXCEPTION INIT (myProcExp,-20021);
PRAGMA EXCEPTION_ INIT (myBlkExp,-20022) ;

/*Explicitly raise the user defined exception in the local function*/
FUNCTION f calc points (p_ques NUMBER, p factor NUMBER)
RETURN NUMBER
IS
BEGIN
RAISE myFunExp;
RETURN (p_ques*p factor) ;
EXCEPTION
WHEN myFunExp THEN
RAISE myProcExp;
END;

/*Explicitly raise the user defined exception in the local procedure
*/

PROCEDURE p net calc (p_net points OUT NUMBER) IS

BEGIN

p_net points := £ calc points (p _correct,4) + £ calc points (p_
wrong, -2) ;

EXCEPTION

WHEN myProcExp THEN

RAISE myBlkExp;
END;

/*Explicitly raise the user defined exception in the program body*/

BEGIN

p_net calc (1_num);

DBMS_OUTPUT.PUT LINE (USER||' earned '||to char (1 num)||' points');
EXCEPTION

[320]

Chapter 10

WHEN myBlkExp THEN

DBMS OUTPUT.PUT LINE(DBMS UTILITY.FORMAT ERROR BACKTRACE) ;
END;
/

Upon execution, the block gives the following output:

SET SERVEROUTPUT ON

BEGIN

p_calc_point_errstack (USER, 10, 3);

END;

/

ORA-06512: at "SCOTT.P_CALC POINTS ERRSTACK", line 28
ORA-06512: at "SCOTT.P_CALC POINTS ERRSTACK", line 20
ORA-06512: at "SCOTT.P_CALC POINTS ERRSTACK", line 32

PL/SQL procedure successfully completed.

Note that, since the exception in the inner block is not handled in the exception
sections of the outer blocks, it propagates through the line numbers 19 (F_caLc_
POINTS), 27 (P_NET CALC), and 31 (P_CALC_POINTS_ ERRSTACK).

Once again, FORMAT_ERROR_BACKTRACE presents an output which is hard to parse
and doesn't include the names of local subprograms. Let's re-write the program
using UTL_CALL_STACK.

The following procedure DISPLAY ERROR_STACK shows the error stack along with
the error numbers raised in the error block:

/*Create a procedure to print error stack using UTL_CALL STACK*/
CREATE OR REPLACE PROCEDURE display error stack AS

1 depth PLS INTEGER;
BEGIN

/*Retrieve the count of the error stack */
1 depth := UTL_CALL_ STACK.ERROR DEPTH;

/*Iterate the error stack structure to print errors */
FOR i IN 1..1 depth LOOP
DBMS_OUTPUT.put_ line (
RPAD (i, 10) ||
RPAD ('ORA-' | |LPAD (UTL_CALL STACK.error number (i), 5, '0'), 10) ||
UTL_CALL STACK.error msg (i)
) ;
END LOOP;
END;
/

[321]

Analyzing, Profiling, and Tracing PL/SQL Code

In the preceding program code:

* ERROR_DEPTH is the count of errors in the error stack

* ERROR_NUMBER and ERROR_MSG are the error number and statement of the
error in the stack

/*Rewrite the procedural logic to invoke DISPLAY ERROR_STACK*/
CREATE OR REPLACE PROCEDURE p calc point errStack
(p_user VARCHAR2, p correct NUMBER, p_ wrong NUMBER)
Is
1 num NUMBER;

/*Declare user-defined exceptions */
myFunExp EXCEPTION;

myProcExp EXCEPTION;

myBlkExp EXCEPTION;

PRAGMA EXCEPTION_ INIT (myFunExp,-20020) ;
PRAGMA EXCEPTION INIT (myProcExp,-20021);
PRAGMA EXCEPTION_ INIT (myBlkExp,-20022) ;

/*Explicitly raise the user defined exception in the local function*/
FUNCTION f calc points (p_ques NUMBER, p factor NUMBER)
RETURN NUMBER
IS
BEGIN
RAISE myFunExp;
RETURN (p_ques*p factor) ;
EXCEPTION
WHEN myFunExp THEN
RAISE myProcExp;
END;

/*Explicitly raise the user defined exception in the local
procedure*/

PROCEDURE p net calc (p_net points OUT NUMBER) IS

BEGIN

p_net points := £ calc points (p _correct,4) + £ calc points (p_
wrong, -2) ;

EXCEPTION

WHEN myProcExp THEN

RAISE myBlkExp;
END;

[322]

Chapter 10

/*Explicitly raise the user defined exception in the program body*/

BEGIN
p_net calc (1 _num);
DBMS_OUTPUT.PUT LINE (USER||' earned '||to char (1 num)||' points');
EXCEPTION

WHEN myBlkExp THEN
display error stack;
END;
/

Execute the procedure P_CALC_POINT_ ERRSTACK:

SET SERVEROUTPUT ON

BEGIN

p_calc_point_errStack (user, 10, 3);

END;

/

1 ORA-20022

2 ORA-06512 at "SCOTT.P_CALC POINT ERRSTACK", line 27
3 ORA-20021

4 ORA-06512 at "SCOTT.P_CALC POINT ERRSTACK", line 19
5 ORA-20020

PL/SQL procedure successfully completed.

Determining identifier types and usages

A lexical unit in a PL/SQL program code is built up using literals, identifiers,
delimiters, and comments. All items that are declared in a PL/SQL program as
variables, cursors, constants, and subprogram names are identifiers. Identifiers can
be reserved words (such as BEGIN and END), predefined (declared globally within
STANDARD package), or quoted.

USER_IDENTIFIERS

The USER_IDENTIFIERS dictionary view reports the usage of identifiers in a PL/SQL
program unit. The view includes information about an identifier's name, its type,
and usage by line number in a PL/SQL program.

[323]

Analyzing, Profiling, and Tracing PL/SQL Code

Tracking identifier details for all the subprograms would be additional task during
code compilation and therefore, it is collected only for enabled PL/SQL objects.

The structure of the USER_IDENTIFIERS view is as follows:

Name Null? Type

NAME VARCHAR?2 (128)
SIGNATURE VARCHAR?2 (32)
TYPE VARCHAR?2 (18)
OBJECT_ NAME NOT NULL VARCHAR?2 (128)
OBJECT _TYPE VARCHAR2 (13)
USAGE VARCHAR2 (11)
USAGE_ID NUMBER

LINE NUMBER

COL NUMBER
USAGE_CONTEXT_ID NUMBER

ORIGIN _CON_1ID NUMBER

Key points to note:

* The SIGNATURE is the unique code of an identifier and differentiates
identifiers with the same name

e Use of an identifier can be DECLARATION, DEFINITION, ASSIGNMENT, CALL,
Or REFERENCE

* Use of an identifier in a program unit is uniquely identified by its Usage ID
or the combination of line, column, and usage

* The USAGE_CONTEXT_ID establishes a self-referencing integrity with the
usage ID

The PL/Scope tool

The PL/Scope tool was introduced in Oracle Database 11g to capture the use of
identifiers in a PL/SQL program. The identifier details are stored in the sysaux
tablespace and can be queried from the USER_IDENTIFIERS dictionary view (or its
ALL * Oor DBA_* views).

[a You can use the PL/Scope tool from SQL Developer.]

[324]

Chapter 10

Key features of the PL/Scope tool are as follows:

e The feature can be enabled at the database instance or session level.
A PL/SQL subprogram can be compiled for PL/Scope.

* The PL/Scope tool cannot capture information for obfuscated subprograms.

* The PL/Scope tool cannot collect the identifier information if the sysaux
tablespace is absent. However, no error is raised but a warning is stored in
the USER_ERRORS view.

The PLSCOPE_SETTINGS parameter

The compilation parameter PLSCOPE_SETTINGS enables the collection of
identifier data in a PL/SQL program. By default, the parameter is disabled
(IDENTIFIERS:NONE). It should be set to IDENTIFIERS:ALL in order to enable
identifier tracking.

If you enable this parameter at the instance level, Oracle will capture database
wide identifier information. You must be careful while setting this parameter at
the database instance level as it might impact the compilation performance of
large packages.

Setting PLSCOPE_SETTINGS at system or session level:

ALTER [SYSTEM | SESSION]
SET PLSCOPE SETTINGS = ['IDENTIFIERS:ALL' | 'IDENTIFIERS:NONE']

Being a compilation parameter, you can also compile a PL/SQL subprogram for
identifier tracking by specifying the PLSCOPE_SETTINGS parameter:

ALTER [PROGRAM NAME] COMPILE
PLSCOPE_SETTINGS = ['IDENTIFIERS:ALL' | ' IDENTIFIERS:NONE']

You can query the current setting of the PLSCOPE_SETTINGS parameter from the
V$PARAMETER dynamic dictionary view.

/*View the current setting of PLSCOPE_SETTINGS parameter*/
SELECT value

FROM v$parameter

WHERE name='plscope settings'

IDENTIFIERS :NONE

[325]

Analyzing, Profiling, and Tracing PL/SQL Code

You can view the space consumed by the PL/Scope tool in sYsaux tablespace by
running the following query as SYSDBA:

/*Verify the PL/Scope occupancy in SYSAUX tablespace*/
SELECT occupant_desc, schema name, space usage kbytes
FROM v$sysaux_occupants

WHERE occupant_name='PL/SCOPE'

/
OCCUPANT_DESC SCHEMA_NAME SPACE_USAGE_KBYTES
PL/SQL Identifier Collection SYS 2496

Let us recompile the procedure p_CALC_USER_POINTS with the PLSCOPE_SETTINGS
parameter:

ALTER PROCEDURE p calc user points COMPILE PLSCOPE
SETTINGS='IDENTIFIERS:ALL'

/

Query the USER_PLSQL_OBJECT SETTINGS view to verify whether the identifier
information has been captured:

SELECT plscope_ settings

FROM user plsgl object settings
WHERE name='P CALC USER POINTS'
/

PLSCOPE_SETTINGS

IDENTIFIERS:ALL

Oracle Database documentation provides a handy script for generating a hierarchical
report of program identifiers by its usage. The following script generates the PL/
Scope identifier report from the USER_IDENTIFIERS dictionary view:

WITH v AS

(
SELECT line, col,

name,
LOWER (type) Type,
LOWER (usage) Usage,
usage_ id,

usage context id

FROM user identifiers

WHERE object name = 'P_CALC USER_POINTS'
AND object type = 'PROCEDURE'

[326]

Chapter 10

SELECT line, RPAD(LPAD(' ', 2*(level-1)) ||name, 25, '.")||" '|]|
RPAD (Type, 15)|| RPAD(Usage, 15) IDENTIFIER USAGE CONTEXTS
FROM v

START WITH usage context id = 0
CONNECT BY PRIOR usage id = usage context id
ORDER SIBLINGS BY line, col

/
LINE IDENTIFIER USAGE_CONTEXTS

1 P _CALC USER_POINTS........ procedure

1 P_CALC_USER POINTS...... procedure

1 PUSER......covuivunnun.. formal in

1 PUSER......covuivunun.. formal in

1 USER......oviiinnn. function

1 VARCHAR2.............. character datatype
1 P CORRECT............. formal in

1 NUMBER.oouoo.. number datatype
1 P WRONG. formal in

1 NUMBER. number datatype
3 LNUM......ovvvunnen... variable

3 NUMBER. number datatype
4 F_CALC_POINTS......... function

4 F_CALC_POINTS......... function

4 PQUES.............. formal in

4 NUMBER............ number datatype
4 P FACTOR............ formal in

4 NUMBER............ number datatype
5 NUMBER.............. number datatype
9 PQUES.............. formal in

9 P FACTOR............ formal in
12 P NET CALC............ procedure
12 P NET CALC............ procedure
12 P NET POINTS........ formal out
1 NUMBER............ number datatype
14 P NET POINTS........ formal out
1 F_CALC_POINTS..... function
14 P CORRECT....... formal in
14 F_CALC_POINTS..... function
14 P WRONG......... formal in
17 P NET CALC............ procedure
17 L NUM......ovvvnnn... variable

32 rows selected.

declaration
definition
declaration
assignment
call
reference
declaration
reference
declaration
reference
declaration
reference
declaration
definition
declaration
reference
declaration
reference
reference
reference
reference
declaration
definition
declaration
reference
assignment
call
reference
call
reference
call
reference

In a similar way to the preceding query, application developers can explore multiple

use cases where identifier information can be useful.

[327]

Analyzing, Profiling, and Tracing PL/SQL Code

The DBMS_METADATA package

The DBMS_METADATA package was introduced in Oracle 9i. The API enables the
extraction of object metadata from database dictionaries that can be optionally
manipulated and re-executed on a database server. The package is owned by svs
whose public synonym is used by all users. A user with SELECT CATALOG_ROLE can
directly access the DBMS_METADATA package.

DBMS_METADATA is a key enabler of metadata export
= functionality in Data Pump

The package pulls the object's metadata in XML form from the database dictionary
and provides transform handlers to build it in the desired form. The formatted XML
can then be re-executed in the database.

DBMS_ METADATA data types and
subprograms

As we said earlier, the DBMS_METADATA package uses the public synonyms of sys-
owned data structures. The following list shows sys-owned object types:

* SYS.KU$_PARSED ITEM: An object type used to capture the attributes of
an object's metadata. The object type structure is as follows:

CREATE TYPE sys.ku$ parsed item AS OBJECT
(

item VARCHAR2 (30),

value VARCHAR2 (4000),

object row NUMBER
)

ITEM, VALUE form the attribute name-value pair for OBJECT ROW.

* SYS.KUS$ PARSED ITEMS: A nested table of SYS.KUSPARSED ITEM used to
hold the object metadata attributes for multiple objects.

* SYS.KU$_DDL: An object type used to capture the DDL of an object along
with its parsed item information. The object type structure is as follows:

CREATE TYPE sys.ku$_ddl AS OBJECT

(
ddlText CLOB,
parsedItem sys.ku$ parsed items

)

The parsed object information is stored in PARSEDITEM.

[328]

Chapter 10

SYS.KU$_DDLS: A nested table of sYs.ku$_DDL returned by the FETCH_DDL
subprogram used to hold the metadata of an object transformed into multiple
DDL statements.

SYS.KU$_MULTI_DDL: An object type used to hold the DDL for an object in
multiple transforms.

SYS.KU$_MULTI_DDLS: A nested table of SYs.Ku$_MULTI_DDL returned by
the CONVERT subprogram.

SYS.KU$_ERRORLINE: An object type used to capture error information.
The object type structure is as follows:

CREATE TYPE sys.ku$ ErrorLine IS OBJECT

(
errorNumber NUMBER,
errorText VARCHAR2 (2000)

)

SYS.KU$_ERRORLINES: A nested table of the SYS.KU$_ERRORLINE object type
used to hold bulk error information during extraction of each DDL statement.

SYS.KU$_SUBMITRESULT: An object type used to capture the complete error
information incurred in a DDL statement. The object type structure
is as follows:

CREATE TYPE sys.ku$_SubmitResult AS OBJECT
(

ddl sys.ku$ ddil,

errorLines sys.ku$ ErrorLines

)

SYS.KU$_ SUBMITRESULTS: A nested table of the SYS.KUS SUBMITRESULT
object type used to hold multiple DDL statements and associated
error information.

A complete list of subprograms can be found on Oracle
%j%‘\ documentation at https://docs.oracle.com/
’ database/121/ARPLS/d _metada.htm

[329]

https://docs.oracle.com/database/121/ARPLS/d_metada.htm
https://docs.oracle.com/database/121/ARPLS/d_metada.htm

Analyzing, Profiling, and Tracing PL/SQL Code

The following table shows the frequently used subprograms of the DBMS_METADATA

package:

Subprogram

Remarks

ADD_TRANSFORM function

Specifies a transform that FETCH [XML | DDL
| CcLOB] applies to the XML representation of
the retrieved objects

CLOSE procedure

Invalidates the handle returned by OPEN and
cleans up the associated state

CONVERT functions and procedures

Convert an XML document to DDL

FETCH [XML | DDL | CLOB] functions
and procedures

Returns metadata for objects meeting the criteria
established by OPEN, SET FILTER, SET COUNT,
ADD_TRANSFORM, and so on

GET [XML | DDL | CLOB] functions

Fetches the metadata for a specified object as
XML or DDL in a single call

GET_QUERY function

Returns the text of the queries that are used by
FETCH_ [XML | DDL | CLOB]

OPEN function Specifies the type of object to be retrieved, the
version of its metadata, and the object model
OPENW function Opens a write context

PUT function

Submits an XML document to the database

SET COUNT procedure

Specifies the maximum number of objects to be
retrieved in a single FETCH [XML | DDL |
CLOB] call

SET FILTER procedure

Specifies restrictions on the objects to be
retrieved —for example, the object name or
schema

SET PARSE ITEM procedure

Enables output parsing by specifying an object
attribute to be parsed and returned

SET TRANSFORM PARAMand SET
REMAP_PARAM procedures

Specifies parameters to the XSLT style sheets
identified by transform_handle

[330]

Chapter 10

Out of the preceding list, the subprograms can be grouped based on their work
function:

Subprograms used to retrieve multiple | Subprograms used to submit XML metadata

objects from the database to the database
ADD TRANSFORM function ADD TRANSFORM function
CLOSE procedure CLOSE procedure 2

FETCH [XML | DDL | CLOB] functions | CONVERT functions and procedures
and procedures

GET_QUERY function OPENW function

GET_[XML | DDL | CLOB] functions PUT function

OPEN function SET PARSE ITEM procedure

SET_COUNT procedure SET TRANSFORM PARAM and SET REMAP

PARAM procedures

SET_FILTER procedure

SET PARSE ITEM procedure

SET TRANSFORM PARAM and SET
REMAP_PARAM procedures

Parameter requirements

You must note that the parameters to the metadata API are case-sensitive and should
be passed in their respective position only (no named notation).

The DBMS_METADATA transformation
parameters and filters

As listed in the preceding API list, the SET_TRANSFORM_PARAM subprogram is used
to format and control the DDL output. It is used for both retrieval and submission
of metadata from or to the database. It is an overloaded procedure with the
following syntax:

DBMS METADATA.SET TRANSFORM PARAM
(
transform handle IN NUMBER,
name IN VARCHAR2,
value IN VARCHAR2,
object type IN VARCHAR2 DEFAULT NULL
)i
DBMS METADATA.SET TRANSFORM PARAM

[331]

Analyzing, Profiling, and Tracing PL/SQL Code

(
transform handle IN NUMBER,
name IN VARCHAR2,
value IN BOOLEAN DEFAULT TRUE,
object type IN VARCHAR2 DEFAULT NULL
)
DBMS_ METADATA.SET TRANSFORM PARAM
(
transform handle IN NUMBER,
name IN VARCHAR2,
value IN NUMBER,
object type IN VARCHAR2 DEFAULT NULL
)

In the preceding program signature:

* TRANSFORM_HANDLE: A handler either from ADD_TRANSFORM, or a generic
handler constant SESSTION TRANSFORM used to affect the whole session

* NaME: Name of the parameter to be modified

* VALUE: New value of the parameter

The following is a list of the common set of parameters that are applicable to all
objects in a schema:

Parameter Value Meaning

PRETTY TRUE | FALSE (default | If TRUE, produces properly indented
value is TRUE) output

SQLTERMINATOR | TRUE | FALSE (default | If TRUE, appends SQL terminator (; or /)
value is FALSE) after each DDL

DEFAULT TRUE | FALSE If TRUE, resets all parameters to their

default state
INHERIT TRUE | FALSE If TRUE, inherits session -level settings

Transform handlers applicable for tables and views are as follows:

Parameter Value Meaning

SEGMENT ATTRIBUTES TRUE | FALSE If TRUE, includes segment, tablespace,
(default value is logging, and physical attributes
TRUE)

STORAGE TRUE | FALSE If TRUE, includes storage clause
(default value is
FALSE)

[332]

Chapter 10

Parameter Value Meaning

TABLESPACE TRUE | FALSE If TRUE, includes tablespace
specification

CONSTRAINTS TRUE | FALSE If TRUE, includes table constraints

REF_CONSTRAINTS TRUE | FALSE If TRUE, includes referential
constraints

CONSTRAINTS AS TRUE | FALSE If TRUE, includes constraints in the

ALTER ALTER TABLE statements

0ID TRUE | FALSE If TRUE, includes the object table 0OID

SIZE_BYTE_KEYWORD TRUE | FALSE If TRUE, includes the BYTE keywords
in string type column specifications

FORCE TRUE | FALSE If TRUE, creates view with the FORCE
option

The DBMS_METADATA.SET FILTER procedure is used to specify the filters on
the schema objects. It accepts the metadata handle, filter name, and its value
as input arguments.

PROCEDURE set filter (

handle IN NUMBER,

name IN VARCHAR2,

value IN VARCHAR2 |BOOLEAN | NUMBER,
object type path VARCHAR2

)

Frequently used filters can be schema, user, object dependencies, table data, tables,
indexes, constraints, and so on. There are more than 70 filters available in Oracle 11g.
It can be set as follows:

DBMS METADATA.SET FILTER (handle, 'SCHEMA', 'SCOTT') ;
DBMS METADATA.SET FILTER (handle, 'NAME', 'DEPARTMENTS') ;

Demonstration

Let us retrieve the DDL of the entire EMP table in the sScoTT schema. The SQL query
returns a CLOB output:

/*Query to retrieve DDL of EMP table */

SELECT dbms_metadata.get ddl ('TABLE', 'EMP', 'SCOTT')
FROM DUAL

/

CREATE TABLE "SCOTT"."EMP"

[333]

Analyzing, Profiling, and Tracing PL/SQL Code

("EMPNO" NUMBER (4,0),
"ENAME" VARCHAR2 (10),
"JOB" VARCHAR2 (9),
"MGR" NUMBER (4,0),
"HIREDATE" DATE,
"SAL" NUMBER(7,2),
"COMM" NUMBER(7,2),
"DEPTNO" NUMBER(2,0),
"EMAIL" VARCHAR2 (50),
CONSTRAINT "PK EMP" PRIMARY KEY ("EMPNO")
USING INDEX
PCTFREE 10
INITRANS 2
MAXTRANS 255
COMPUTE STATISTICS
STORAGE (INITIAL 65536
NEXT 1048576
MINEXTENTS 1
MAXEXTENTS 2147483645
PCTINCREASE 0
FREELISTS 1
FREELIST GROUPS 1
BUFFER_POOL DEFAULT
FLASH CACHE DEFAULT
CELL_FLASH CACHE DEFAULT)
TABLESPACE "USERS" ENABLE,
CONSTRAINT "FK DEPTNO"
FOREIGN KEY ("DEPTNO")
REFERENCES "SCOTT"."DEPT" ("DEPTNO") ENABLE)
SEGMENT CREATION IMMEDIATE
PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
NOCOMPRESS LOGGING
STORAGE (INITIAL 65536
NEXT 1048576
MINEXTENTS 1
MAXEXTENTS 2147483645
PCTINCREASE 0
FREELISTS 1
FREELIST GROUPS1
BUFFER_POOL DEFAULT
FLASH CACHE DEFAULT
CELL_FLASH CACHE DEFAULT)
TABLESPACE "USERS"

[334]

Chapter 10

In the preceding output, if you wish to skip the storage clause specification for the

table, you can do so by setting the transform parameters:

/*Anonymous block to set transform handles */
BEGIN

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, 'STORAGE', false) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, 'SEGMENT ATTRIBUTES', false) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, ' PRETTY', true) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

QLTERMINATOR', true) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, 'REF_CONSTRAINTS', false) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, 'TABLESPACE', false) ;

DBMS_METADATA.SET_ TRANSFORM PARAM (DBMS_METADATA.

TRANSFORM, 'SIZE_BYTE KEYWORD', false) ;
END;

/

SESSION_
SESSION_
SESSION_
SESSION_TRANSFORM, 'S
SESSION_
SESSION_

SESSION_

Now, if you execute the GET_DDL function to retrieve the DDL of the EmP table, the

output will be much neater and cleaner:

/*Query to retrieve DDL of EMP table */

SELECT dbms metadata.get ddl ('TABLE', 'EMP', 'SCOTT')

FROM DUAL
/

CREATE TABLE "SCOTT"."EMP"
("EMPNO" NUMBER (4,0),
"ENAME" VARCHAR2 (10),
"JOB" VARCHAR2 (9),
"MGR" NUMBER (4,0),
"HIREDATE" DATE,
"SAL" NUMBER(7,2),
"COMM" NUMBER (7,2),
"DEPTNO" NUMBER (2,0),
"EMAIL" VARCHAR2 (50),
CONSTRAINT "PK EMP" PRIMARY KEY ("EMPNO")
USING INDEX ENABLE
)i

You can use the GET_ XML function to retrieve the XML format of the EMP table.

[335]

Analyzing, Profiling, and Tracing PL/SQL Code

The following SQL query retrieves the object grants of the EMP table using the
GET_DEPENDENT DDL function:

/*Query to retrieve DDL of object grants of EMP */
SELECT
DBMS_ METADATA.GET DEPENDENT DLL ('OBJECT GRANT', 'EMP', 'SCOTT') OBJ_
GRANTS
FROM DUAL
/

GRANT SELECT ON "SCOTT"."EMP" TO "SALES";
GRANT SELECT ON "SCOTT"."EMP" TO "MGR";
GRANT SELECT ON "SCOTT"."EMP" TO "CLERK";
GRANT INSERT ON "SCOTT"."EMP" TO "SALES";
GRANT INSERT ON "SCOTT"."EMP" TO "MGR";
GRANT INSERT ON "SCOTT"."EMP" TO "CLERK";

You can also retrieve the DDL for the indexes on the table columns. The following
SELECT query displays the DDL for the unique index on the EMPNO column of the
EMP table:

/*Query to retrieve DDL of primary key in EMP table */
SELECT DBMS METADATA.GET DDL('INDEX', 'PK EMP', 'SCOTT')
FROM DUAL

/

CREATE UNIQUE INDEX "SCOTT"."PK EMP" ON "SCOTT"."EMP" ("EMPNO")

’

Tracing PL/SQL programs using
DBMS_TRACE

Tracing program execution is an important exercise in a scrum based database
development environment. Sometimes, in a modular programming model, it
becomes difficult to track the program execution path. Oracle provides the
DBMS_TRACE package to trace PL/SQL program code.

DBMS_TRACE is an Oracle supplied package that can be used to enable and disable
tracing in database sessions. The program execution path is traced when you execute
a PL/SQL program in a trace-enabled session. The trace information is captured and
stored in database tables. These trace tables can be further analyzed to examine the
execution path of a PL/SQL program.

[336]

Chapter 10

The following figure shows the steps involved in PL/SQL code tracing:

Enable Trace feature for system,
session, or program

A4

Start Tracing in the program

S

Execute the program to be traced

A4

Stop the tracing

server environment

[PL/SQL code tracing cannot be done in a shared]
e

Installing the DBMS_TRACE package

You can install the DBMS_TRACE package by running the following scripts from the
$ORACLE HOME/rdbms/admin folder:

* dbmspbt.sqgl: This script creates the DBMS_TRACE package specification

* prvtpbt.plb: This script creates the DBMS_TRACE package body

1
< The scripts must be executed as the SYS user and in the
same order.

DBMS_TRACE subprograms

The DBMS_TRACE package contains trace constants and member subprograms. The
trace constants are used to specify the tracing level in a session.

For complete details, please refer to the Oracle
%j%‘\ documentation at https://docs.oracle.com/
’ database/121/ARPLS/d_trace.htm

[337]

https://docs.oracle.com/database/121/ARPLS/d_trace.htm
https://docs.oracle.com/database/121/ARPLS/d_trace.htm

Analyzing, Profiling, and Tracing PL/SQL Code

The DBMS TRACE constants are summarized as follows:

DBMS_TRACE constant

Default | Remarks

TRACE_ALL_CALLS 1 Traces all calls

TRACE ENABLED CALLS 2 Traces calls that are enabled for tracing

TRACE ALL_ EXCEPTIONS 4 Traces all exceptions

TRACE_ENABLED_EXCEPTIONS 8 Traces exceptions that are enabled for
tracing

TRACE_ALL_SQL 32 Traces all SQL statements

TRACE_ENABLED SQL 64 Traces SQL statements that are enabled

for tracing

TRACE_ALL_ LINES 128 Traces each line

TRACE_ENABLED_LINES 256 Traces lines that are enabled for tracing

TRACE_PAUSE 4096 Pauses tracing (controls the tracing
process)

TRACE_RESUME 8192 Resume tracing (controls the tracing
process)

TRACE_STOP

16384 | Stops tracing (controls the tracing process)

TRACE_LIMIT

16 Limits the trace information (controls the
tracing process)

TRACE MINOR VERSION

0 Administers the tracing process

TRACE_MAJOR_VERSION

1 Administers the tracing process

NO_TRACE ADMINISTRATIVE

32768 | Prevents tracing of administrative events
such as:

* PL/SQL Trace Tool started
* Trace flags changed

* PL/SQL Virtual Machine
started

* PL/SQL Virtual Machine
stopped

NO TRACE_HANDLED
EXCEPTIONS

65536 | Prevents tracing of handled exceptions

The subprograms contained in the DBMS_TRACE package are as follows:

DBMS_TRACE subprogram

Remarks

CLEAR PLSQL_TRACE procedure

Stops trace data dumping in session

GET PLSQL TRACE LEVEL function Gets the trace level

[338]

Chapter 10

DBMS_TRACE subprogram Remarks

GET_PLSQL_TRACE RUNNUMBER Gets the current sequence of execution of
function trace

PLSQL TRACE VERSION procedure Gets the version number of the trace package
SET PLSQL TRACE procedure Starts tracing in the current session

COMMENT PLSQL_ TRACE procedure Includes comment on the PL/SQL tracing

INTERNAL VERSION CHECK function Has a value as 0, if the internal version check
has not been done

LIMIT PLSQL TRACE procedure Sets limit for the PL/SQL tracing
PAUSE PLSQL TRACE procedure Pauses the PL/SQL tracing
RESUME_PLSQL_TRACE procedure Resumes the PL/SQL tracing

In the preceding list, the key subprograms are:

* SET_PLSQL_TRACE: It kicks off the PL/SQL tracing session. For example,
DBMS_TRACE.SET PLSQL_TRACE (DBMS_TRACE.TRACE ALL SQL) traces all
SQL in the program.

* CLEAR_PLSQL_TRACE: It stops the tracing session.

The PLSQL_TRACE VERSION returns the current trace version as the ouT
parameter.

The trace level that controls the tracing process (stop, pause,

resume, and limit) cannot be used in combination with

other trace levels

Compiling a PL/SQL program for debugging

A PL/SQL subprogram can be traced only after it is compiled in debug mode. You
must compile the program to be traced by specifying the PL.SQL_OPTIMIZE LEVEL as
1. (In earlier releases, the compilation parameter PLSQL_DEBUG was used to compile a
program for debug.)

The PLSQL DEBUG parameter has been deprecated in Oracle

Database 12c, but retained for backward-compatibility.
s Oracle recommends to use PLSQL OPTIMIZE LEVELas 1 to

compile a PL/SQL program for debugging.

[339]

Analyzing, Profiling, and Tracing PL/SQL Code

Viewing the PL/SQL trace information

The trace information is logged into the trace tables that can be created by invoking
the SORACLE HOME/rdbms/admin/tracetab.sgl script from the sYs account. The
successful execution of the script will create the following two tables:

* PLSQL_TRACE_RUNS: The table stores execution-specific information. RUNID is
a unique run identifier that derives its value from a sequence, PLSQL_TRACE_
RUNNUMBER. The RUN_DATE and RUN_END columns specify the start and end
time of the run respectively. The RUN_SYSTEM INFO and SPARE1 columns are
currently unused columns in the table.

* PLSQL_TRACE_EVENTS: This table displays the traces of the program
execution path. The table structure is described as follows:

o

The RUNID column references the RUNID column of the
PLSQL_TRACE_RUNS table

The EVENT SEQ is the unique event identifier within a single run

The EVENT UNIT, EVENT UNIT KIND, EVENT UNIT OWNER, and EVENT_
LINE columns capture the program unit information (such as name,
type, owner, and line number) that initiates the trace event

The PROC_NAME, PROC_UNIT, PROC_UNIT KIND, PROC_OWNER, and
PROC_LINE columns capture the procedure information (such as
name, type, owner, and line number) that is currently traced

The Excp and USER_EXCP columns apply to the exceptions occurring
during the trace

The EVENT COMMENT column gives a user-defined comment or the
actual event description

The MODULE, ACTION, CLIENT INFO, CLIENT ID, ECID_ID, and ECID_
SEQ columns capture information about the session running on a

SQL*Plus client

The cALLSTACK and ERRORSTACK columns store the call stack
information

Once the script has been executed, the DBA can optionally create their public
synonyms that can be accessed by all users.

/*Connect as SYSDBA*/
Conn sys/oracle as SYSDBA

/*Create synonym for PLSQL TRACE RUNS*/
CREATE PUBLIC SYNONYM plsqgl trace runs FOR plsgl trace runs

/

[340]

Chapter 10

/*Create synonym for PLSQL TRACE EVENTS*/
CREATE PUBLIC SYNONYM plsgl trace events FOR plsgl trace events

/

/*Create synonym for PLSQL TRACE RUNNUMBER sequence*/
CREATE PUBLIC SYNONYM plsqgl trace runnumber FOR plsgl trace runnumber

/

/*Grant privileges on the PLSQL TRACE RUNS*/
GRANT select, insert, update, delete ON plsqgl trace runs TO PUBLIC

/

/*Grant privileges on the PLSQL TRACE EVENTS*/
GRANT select, insert, update, delete ON plsgl trace events TO PUBLIC

/

/*Grant privileges on the PLSQL TRACE RUNNUMBER*/
GRANT select ON plsgl trace runnumber TO PUBLIC

/

Steps to trace PL/SQL program execution
PL/SQL tracing is demonstrated in the following steps:

1.

Compile the procedure p_CALC_USER_POINTS for debug by specifying
PLSQL_OPTIMIZE LEVEL as 1:

ALTER PROCEDURE p calc user points COMPILE PLSQL OPTIMIZE LEVEL=1
/

Enable tracing in the session:

Note the trace levels while enabling tracing in the current session. The
following PL/SQL block will enable tracing of all calls excluding the tracing
of administrative events.

BEGIN

/*Enable tracing for all calls in the session*/
DBMS TRACE.SET PLSQL TRACE (
DBMS_ TRACE.TRACE ALL CALLS +
DBMS TRACE.NO TRACE ADMINISTRATIVE) ;

END;

/

Execute the procedure p_CALC USER POINTS:

SET SERVEROUTPUT ON
BEGIN

[341]

Analyzing, Profiling, and Tracing PL/SQL Code

p_calc user points (USER, 10, 3);
END;
/

4. Disable tracing in the session:

BEGIN
/*Stop the trace session*/
DBMS TRACE.CLEAR PLSQL TRACE;
END;
/

5. Query the trace log tables PL.SQL_TRACE_RUNS and PLSQL_TRACE_EVENTS:

Query the RUNID of the current trace from PLSQL_TRACE_RUNS

SELECT MAX (runid)
FROM PLSQL_TRACE_RUNS
WHERE run_ owner='SCOTT'

For rRUNID=13, query the trace events from PLSQL_TRACE_EVENTS

SELECT event_seq,
event comment,
event unit owner||'.'||event unit unit,
proc_name,
proc_unit,
proc_unit kind
FROM PLSQL TRACE_EVENTS
WHERE RUNID=13
ORDER BY EVENT_ SEQ
/

Profiling PL/SQL code

Oracle enables database developers to perform dynamic analysis of their PL/SQL
code through tracing and profiling. As an application developer, you write a multi-
line PL/SQL subprogram, which may include SQL statements, PL/SQL constructs,
calls to routine subprograms, exceptions, and many more items. You can follow

the execution flow of the program by using the DBMS_TRACE package, but it doesn't
reveal the time consumed at each step. You can profile the PL/SQL program to check
its performance aspects. The performance profile reveals how much time is spent at
each line of code in a PL/SQL program.

[342]

Chapter 10

Profiling is a vital exercise in the development stage of a database, as you can identify
the areas in your PL/SQL program code that can be fine-tuned for performance.
Oracle provides two built-in utility packages to profile PL/SQL code: DBMS_PROFILER
and DBMS_HPROF. The DBMS_PROFILER package gathers the performance metrics and
produces a flat profiler output. On the other hand, DBMS_HPROF gathers the profiler
data and writes the profile information into interactive HTML reports.

In the scope of this chapter, we will discuss the DBMS_HPROF package.

The DBMS_HPROF package

The pBMS_HPROF package was introduced in Oracle Database 11g Release 1. It
enables hierarchical profiling of a PL/SQL program and provides a detailed
performance analysis of time spent by subprogram calls, by namespace, and by

call descendants through the HTML reports. It is known as a "hierarchical profiler"
because of its ability to drill-down to descendant and sub-tree levels of a subprogram
execution. The distinctive features of a hierarchical profiler are as follows:

* It gathers and stores profiler information into database tables
* Itis supported by SQL Developer
* Itreports the performance of SQL and PL/SQL execution in the program
* The number of distinct subprograms calls and time spent in each one of them
* The subprogram call hierarchy
The DBMS_HPROF package is installed by default and is executed with the

invoker's privileges. A user should have the EXECUTE privilege on the sys-owned
DBMS_HPROF tool.

Differences between DBMS_ PROFILER and
DBMS HPROF

DBMS_PROFILER profiles a given PL/SQL program at the line level, while DBMS_
HPROF builds a call level profile of a program. DBMS_HPROF is easy to use and requires
no additional efforts when run on critical database environments. DBMS PROFILER
produces flat output while the raw data from DBMS_HPROF can be further analyzed
and written into HTML reports.

[343]

Analyzing, Profiling, and Tracing PL/SQL Code

DBMS_HPROF subprograms

The DBMS_HPROF package contains the subprograms to collect the profile data (Data
Collector) and analyze it (Analyzer).

Data Collector: The following subprograms open and close the profiling
window. All the PL/SQL programs executed within this window will be
profiled and written in raw format to a file.

o

START PROFILING procedure

° STOP_PROFILING procedure

Analyzer: The ANALYZE subprogram reads and analyzes the raw profiler data
and populates the profiler tables. You can analyze either the complete raw
profiler data or even a particular subprogram call. Oracle also lets you profile
the allocation of UGA (User Global Area) and PGA (Program Global Area)
for a function during the program execution.

Collecting raw profile data

We will list the steps to profile the execution of the P_CALC_USER_POINTS procedure:

1.

Create a database directory. Oracle will create the raw profiler data output
file in this location:

connect sys/oracle as SYSDBA

CREATE DIRECTORY dir profiles

AS '/uOl/app/oracle/diag/profiles/"'
/

Make the necessary grants to the scoTT user. This step is an important pre-
requisite for a user to use the DBMS_HPROF package:

connect sys/oracle as SYSDBA

GRANT READ,WRITE ON DIRECTORY dir_ profiles TO SCOTT

/
GRANT EXECUTE ON DBMS HPROF TO SCOTT

/

Enable profiling in the current session:
connect scott/tiger
BEGIN
DBMS_HPROF.START PROFILING ('DIR_PROFILES', 'hprof p calc.log');
END;
/

[344]

Chapter 10

4. Execute the P_CALC_USER_POINTS procedure:

connect scott/tiger
SET SERVEROUT ON
BEGIN
P _CALC USER_POINTS (USER, 10, 3);
END;
/

5. Stop profiling in the session

connect scott/tiger

BEGIN

/*Stop the profiling */
DBMS_HPROF.STOP_PROFILING;

END;

/

6. Check the raw profiler data created at the specified directory location:

Oracle gathers the profiler data in text format but the raw format is hard to
interpret and draw conclusions from. Following are the first initial lines of
the raw profiler data:

P#V PLSHPROF Internal Version 1.0

P#! PL/SQL Timer Started

P#C PLSQL.""."". " plsqgl vm"

P#X 14

P#C PLSQL.""."" . " anonymous block"

P#X 334

P#C SQL."SYS"."STANDARD"::11." static sgl exec 1inel80" #180
P#X 3504

P#R

P#X 132056

P#C PLSQL."SCOTT"."P CALC USER POINTS"::7."P CALC USER
POINTS"#9d831f6c5a526d3e #1 - T

P#X 224

P#C PLSQL."SCOTT"."P CALC USER POINTS"::7."P CALC USER POINTS.P
NET CALC"#el7d780a3c3eae3d #12 - -
P#X 1

Interpreting the raw profiler data

Although the raw profiler data is a bit tricky to understand and interpret, you can get
first-level indications from the following information.

[345]

Analyzing, Profiling, and Tracing PL/SQL Code

Event indicators — each line of the profiler starts with an event indicator, which
carries a meaning. Here are the distinct event indicators from the profiler output:
* P#V: PLSHPROF banner information
* p#!: Comment
* p#c: Call to SQL or PL/SQL subprogram:

Determines the call namespace, line number, calling and called subprogram
name, and hash signature.

* p#x: Elapsed time between the two events

* P#R: Return from a subprogram call
Operational functions —Functions to execute a PL/SQL program can be the
following:

* _ anonymous_block indicates anonymous block execution

* _ dyn_sqgl_exec_line indicates dynamic SQL execution at line#

* _ pkg_init indicates PL/SQL package initialization

* plsql vmindicates PL/SQL virtual machine call

* _ sqgl_fetch line indicates fetch operation at line#

* static_sgl exec_line indicates static SQL execution at line#

Analyzing profiler data

After the raw profiler data is collected, we will analyze it and populate the profiler
tables. Let us now create the profiler tables.

Creating the profiler tables

By default, the profiler tables are not created. Therefore, either the SYS DBA or
the user with DBA privileges will have to run the $ORACLE_HOME/rdbms/admin/
dbmshtab. sql script to create the profiler tables. On execution of this script, the
following three tables are created:

* DBMSHP_ RUNS: Maintains flat information about each command executed
during profiling

* DBMSHP FUNCTION_INFO: Contains information about the profiled function

* DBMSHP_ PARENT CHILD INFO: Contains parent-child profiler information

A database administrator can create a public synonym on the preceding tables or
grant the SELECT privilege to the user who intends to use the profiler.

[346]

Chapter 10

Analyzing the profiler output

Before invoking the subprogram to analyze the raw profiler data, first grant object
privileges to the SCOTT user:

connect sys/oracle as sysdba

GRANT select, insert on DBMSHP_ RUNS to scott

/

GRANT select, insert on DBMSHP FUNCTION INFO to scott

/

GRANT select, insert on DBMSHP PARENT CHILD INFO to scott
/

The following PL/SQL anonymous block invokes the ANALYZE subprogram to
interpret the trace file passed as the parameter:

connect scott/tiger
/*Start the PL/SQL block*/
DECLARE

1 runid NUMBER;
BEGIN

/*Invoke the analyzer API*/

1 runid := DBMS_ HPROF.analyze
(location => 'DIR PROFILES',
FILENAME => 'hprof p calc.log',

run_comment => 'Analyzing the execution of P _CALC USER POINTS');

DBMS_OUTPUT.put line ('l runid=' || 1 _runid);
END;
/

Querying the profiler tables

You can query profiler data from the DBMSHP_RUNS, DBMSHP FUNCTION_INFO, and
DBMSHP_PARENT_CHILD_INFO tables. The following SQL query selects the most recent
RUNID from the DBMSHP RUNS table:

SELECT runid, total elapsed time,run comment
FROM dbmshp runs
ORDER BY runid

/

RUNID TOTAL EL RUN_ COMMENT

2 19973 Analyzing the execution of P_CALC USER_POINTS

[347]

Analyzing, Profiling, and Tracing PL/SQL Code

The following SQL query selects the subprogram information from
DBMSHP_FUNCTION_ INFO:

SELECT namespace,

function,
module,
calls,

function elapsed time "time_ ms"

FROM dbmshp function info

WHERE runid = 2

/

NAMES FUNCTION

time_ms

PLSQL anonymous block

132558 a

PLSQL _ plsgl vm

23

PLSQL P CALC USER POINTS

2489

PLSQL P CALC USER POINTS.F CALC POINTS
14 I -
PLSQL P CALC USER POINTS.P NET CALC
. _ _ _ _NmL
PLSQL STOP PROFILING

. —

PLSQL PUT LINE

3 _

SQL __static_sqgl exec 1inel80
3727

8 rows selected.

MODULE

P _CALC USER POINTS
P _CALC_USER POINTS
P _CALC USER POINTS
DBMS_HPROF
DBMS_OUTPUT

STANDARD

The preceding output shows the time elapsed in each program function along with
the namespace to which it belongs. The profiler data in the tables can be used to
build custom reports in development tools.

The plshprof utility

Oracle provides a command-line utility tool, called plshprof, to perform in-depth
analysis of raw profiler data and generate neat HTML reports. It can also be used
to generate a difference report between two raw profiler output files. The tool is not
dependent on the analyzer phase or the profiler table's data.

[348]

Chapter 10

The plshprof utility syntax is as follows:

[oracle@packt ~]$ plshprof
PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production

Usage: plshprof [<option>...] <tracefilels [<tracefile2>]
Options:

(no default)

-skip <counts> (default=0)

(default=1)

(default=<symbol>.html or <tracefilels.html)

print time only

-trace <symbols> specify function name of tree root
skip first <counts> invokations

-collect <count> collect info for <counts> invokations
-output <filenamex>

-summary

In the following example, the plshprof utility summarizes the raw profiler data
from the log hprof_p calc.log

[oracle@profiles] $ plshprof -summary hprof p calc.log

PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production

Total subtree time: 138820 microsecs (elapsed time)

Note that the summary only gives you the total elapsed time. Let us now fully
analyze the profiler data and generate the HTML output:

[oraclee@profiles]$ plshprof -output HPROF_ PCALC hprof p calc.log

PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production

[8 symbols processed]
[Report written to 'HPROF PCALC.html']

Once the plshprof utility is processed, the following HTML files are generated in
the directory location:

[oracle@ profiles]$ 1ls *.html

HPROF_PCALC_2c.html
HPROF_PCALC_2f.html
HPROF_PCALC_2n.html
HPROF_PCALC_fn.html
HPROF_PCALC.html

HPROF_PCALC_md.html

HPROF_PCALC mf.html
HPROF_PCALC ms.html
HPROF PCALC nsc.html
HPROF_PCALC nsf.html
HPROF PCALC nsp.html
HPROF_PCALC pc.html

HPROF_PCALC_tc.html
HPROF_PCALC_td.html
HPROF_PCALC_tf.html
HPROF_PCALC_ts.html

[349]

Analyzing, Profiling, and Tracing PL/SQL Code

Here, HPROF_PCALC.html is the report index file and links all other profiler reports.
The main index page is shown in the following screenshot:

PL/SQL Elapsed Time (microsecs) Analysis

138820 microsecs (elapsed lime) & 12 function calls

The PL/SQL Hierarchical Profiler produces a collection of reports that present information derived from the profiler's output log in a variety of
formats. The following reports have been found to be the most generally useful as starting points for browsing:

 Function El artid by To ed Time (microsecs
+ Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time (microsecs)
In addition, the following reports are also available:

+ Function Elapsed Time (microsecs) Data sorted by Function Name
C (! i (microsec i by Lk

+ Function Elapsed Time (microsecs) Data sorted by Mean Subtres Elapsad Time (microsacs)
. 5 d T & Ll i

+ Function Elapsed Time (microsecs) Data sorted by Mean Descendants Elapsed Time (microsecs)
N Il i Time (<) Dat. i i T i i (microse:
« Modul ; ; Module N

{odule Elapsed Time (microsecs) Dita sorted b i I
+ Module Elapsed Time (microsecs) Data sorted by Total Function Call Count
- N s ElL i] i laps:
+ Namespace Elapsed Time (microsecs) Data sorted by Namespace
N : El jcrosec: - chi
| [CIOSECS.

What do these reports reveal?

The various reports give a detailed breakdown of elapsed time by each program
function, module, descendent, and namespace. Let's explore the main reports from
the complete set:

* Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed
Time (microsecs): This report provides a flat view of the raw profiler data. It
includes the total call count, self time, subtree time, and descendants of each
function.

* Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed
Time (microsecs): This module-level summary report shows the total time
spent in each module and the total calls to the functions in the module.

* Namespace Elapsed Time (microsecs) Data sorted by Namespace: This
report provides the distribution of time spent by the PL/SQL and SQL
engines. SQL and PL/SQL are the two namespace categories available for a
block. It is very useful in reducing the disk I/O and hence enhancing block
performance. The net sum of the distribution is always 100 percent.

[350]

Chapter 10

Summary

In this chapter, we learned various techniques to maintain PL/SQL program code.
A skill in analyzing a PL/SQL program is required in order to troubleshoot code
issues or diagnose performance bottlenecks. There are many dictionary views

that can provide lot of metadata about a program, but developers need to pick the
right one for the job. Tracing and profiling are the techniques with which database
developers should be familiar. In large scale developments, tracing and profiling
can be of great help in identifying opportunities to improve performance.

In the next chapter, we will discuss how to safeguard your database applications
against SQL injection attacks.

Practice exercise

* Which of the following dictionary views is used to get information about
subprogram arguments?

1. ALL OBJECTS

2. ALL ARGUMENTS

3. ALL DEPENDENCIES
4. ALL PROGRAMS

* The tablespace information on a database server is as follows:

SELECT tablespace name
FROM DBA TABLESPACES
/

TABLESPACE NAME
SYSTEM

UNDOTBS1

TEMP

USERS

EXAMPLE

You execute the following command in the session:

SQL> ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';
Session altered.

[351]

Analyzing, Profiling, and Tracing PL/SQL Code

Identify the correct statements:
1. The identifier information would be captured by PL/Scope for the
program created or compiled in the session.

2. The identifier information would not be captured by PL/Scope as
IDENTIFIERS:ALL can be enabled only at the sysTEM level.

3. The identifier information would be captured by PL/Scope only for
the programs that are created in the session.

4. The identifier information would not be captured by PL/Scope since
the sysaux tablespace is not available.

* The parameters specified in DBMS_METADATA are case-sensitive:
1. True
2. False
* DBMS_UTILITY.FORMAT CALL_STACK accomplishes which of the following
objectives:
1. Captures exceptions in a PL/SQL block.
2. Prepares the stack of sequential calls.
3. Prepares the stack of execution actions.

4. Prepares the stack of block profiler.

* Which of the following does the DBMS_METADATA package achieve:
1. Generates report of invalidated objects in a schema.
2. Generates DDL for a given or all object(s) in a schema.
3. Generates an object-to-table dependency report in a schema

4. Generates a report of object statistics in a schema

e The PL/Scope tool can store identifier data only in the USERS tablespace.
1. True
2. False

* Which of the following are the valid parameter values of SET_TRANSFORM
PARAM for tables alone?

1. STORAGE
2. FORCE

3. PRETTY
4. INHERIT

[352]

11

Safeguarding PL/SQL Code
against SQL injection

An incidence of a security breach involves: a hacker and a vulnerable system.

A hacker can be an insider or an outsider, who attacks the system to expose and
access confidential information, which may lead to fatal consequences. A system
could be vulnerable to attacks because of low coding standards and a half-baked
understanding of technologies. The steep growth of web application users and
sharp rise in social media interactions has widened the attack surface area. The
systems that are a hacker's paradise are those which contain personal identifiable
information, financial information, government data, and business transactions. The
hazardous consequences of a security breach have pushed many organizations to
look seriously after data security. As a first layer of protection, organizations must
bolt the network penetration through the adoption of products like Audit Vault
and Database Firewall (AVDF) and protect data access through strong data access
policies, encryption or redaction.

SQL injection is a technique to break through the application design and

extract sensitive data. In 1998, an author by pen name Rain Forest Puppy (rfp)
first identified the technology vulnerabilities in his paper NT Web Technology
Vulnerabilities for Phrack magazine and evangelized the best practices of writing
code to dilute such acts. The chapter outline is as follows:

* What is SQL injection?
* Preventing SQL injection attacks

* Testing the code for SQL injection flaws

[353]

Safequarding PL/SQL Code against SQL injection

What is SQL injection?

A database application on the server side contains the programmable logic
embedded within the PL/SQL packages and subprograms. These PL / SQL
program units may contain SQL statements, which are intended to perform specific
operations. The SQL statements, whose query text is built at runtime (dynamically
derived) and based on client-supplied inputs, open ways for SQL injection. A
malicious user can supply a manipulated input that can break through the PL/SQL
program logic by replacing the SQL syntax and perform arbitrary execution.

The reason it is known as Injection is because the manipulated text, which replaces
or appends to the original SQL text in a PL/SQL program unit, is parsed along with
the original SQL statement. The undetected attacker's code is legally executed by the
SQL engine, along with the original programmed SQL.

For example, a string type malicious input from the client is executed as legal code
by the SQL engine; thus, exploiting a server-side SQL statement. As a consequence,
an attacker can gain access to sensitive and restricted information from the database.
The data, considered to be attack-prone, can be personal information, credit card
information, an organization's internal data, or government data.

Although there are multiple platform targets, techniques and remedies for SQL
injection, this chapter restricts the scope of discussion to the attacks on PL/SQL units
with the best practices to avoid them.

SQL injection targets

In many of the cases reported to date, the client-supplied inputs were identified as
the major cause of SQL injection attacks. The dynamic SQL, which works directly
with the client-supplied inputs, is more prone to injection attacks. After the code
vulnerabilities are discovered, an attacker can exploit the code to any extent. By
extracting restricted data, they can update or delete sensitive information. Not only
the data modification, data definitions can also be modified through SQL injection.

Apart from the client-supplied inputs, a definer PL/SQL program unit can indirectly
lead to code injection because it executes with the privileges of the unit owner and
not the invoker. Therefore, an invoker can execute a PL/SQL program with an
elevated set of privileges.

[354]

Chapter 11

How to exploit the PL/SQL code?

There are numerous forms of SQL injection. An attacker can create a function to
update sensitive information with PRAGMA AUTONOMOUS_TRANSACTION. He can gain
access to the DBA privileges and make irrevocable changes to the database.

Let's understand the SQL injection through a credit card case study. The following
CREATE TABLE statement creates an EMP_CREDIT BAL table, which contains the credit
card details of employees:

/*Test table to generate credit card details of employees */
CREATE TABLE emp credit bal

As
SELECT empno card holder,

deptno,

ename,

job,

sal,
REGEXP REPLACE (str, ' (\d{4}) (\a{a}) (\a{a}) (\a{a}) ', '\1-\2-\3-\4") card_
no,

TRUNC (DBMS_RANDOM.VALUE (sal, 5*sal)) credit balance

FROM emp E ,

(SELECT TO_CHAR (

TRUNC (
DBMS_RANDOM.VALUE (1000000000000000,
9999999999999999))) str
FROM dual
)

/*Verify the data in the table */
SELECT ename,

card_no,

credit balance
FROM emp credit bal

/

ENAME CARD NO CREDIT_BALANCE
SMITH 4020-3009-1084-0345 2844

ALLEN 9205-3519-4278-7993 2034

WARD 7838-5801-5970-8060 4038

JONES 7556-7454-2248-0850 4336

MARTIN 6689-9703-5168-5282 1690

BLAKE 3662-7700-4489-3187 5443

Safequarding PL/SQL Code against SQL injection

CLARK 6195-2171-8232-3240 11152
SCOTT 1961-7153-0620-9366 14337
KING 7930-1567-7029-0943 19497
TURNER 8166-4431-5647-3579 2286
ADAMS 8155-2229-9107-3634 2301
JAMES 4788-5716-1863-6983 1540
FORD 8683-1130-1302-1498 9750
MILLER 5522-2843-9553-5188 3585

14 rows selected.

A p_REP_CC_BAL procedure is a low standard program that accepts the last four
digits of the credit card and prints the credit balance report of the employee:

/*Procedure to print the credit card info of a card holder */
CREATE OR REPLACE PROCEDURE p rep cc bal (p card no VARCHAR2)
IS

/*Declare ref cursor variable */
TYPE c_ref IS REF CURSOR;
cc_bal C_REF;

/*Declare a record of EMP_CREDIT CARD row type */
emp cc_rec emp credit bal%rowtype;
BEGIN

/*Open the ref cursor variable for a SELECT query */
OPEN cc_bal FOR 'SELECT * FROM emp credit bal

WHERE substr(card no,-4,4)='||p_card no;
LOOP

/*Iterate through the result set to fetch the record */
FETCH cc_bal INTO emp cc_rec;
EXIT WHEN cc_bal%NOTFOUND;

/*Print the credit card information */

DBMS_OUTPUT.PUT_LINE (RPAD('_',50,'_"'));
DBMS_OUTPUT.PUT LINE ('Emp Name/Title:'||emp_cc rec.ename||' |
"| | INITCAP (emp_cc_rec.job)) ;
DBMS_OUTPUT.PUT LINE ('Emp CCard:'||emp cc_rec.card no);
DBMS_OUTPUT.PUT LINE ('CCard Balance:'||emp cc rec.credit balance) ;
END LOOP;
CLOSE cc_bal;
END;

/
/*Enable the SERVEROUTPUT to print the program output */
SET SERVEROUTPUT ON

[356]

Chapter 11

Let's test the preceding procedure with a sample input:

EXEC p_rep cc_bal('0345');

Emp Name/Title:SMITH | Clerk
Emp CCard:4020-3009-1084-0345
CCard Balance:2844

PL/SQL procedure successfully completed.

Let's check how a hacker can tweak the string input to extract the details of
the PRESIDENT

EXEC p_rep cc _bal('''XXX'' OR JOB=''PRESIDENT''') ;

Emp Name/Title:KING | President
Emp CCard:7930-1567-7029-0943
CCard Balance:19497

PL/SQL procedure successfully completed.

What we have just seen is how a manipulated input bypasses the procedural
logic by supplying a manipulated value to the existing predicate(s). It appends a
new predicate to the SQL that fetches the president's credit details. The following
procedure call fetches the credit card details of employees from

department 10:

EXEC p_rep cc bal('''XXX'' OR DEPTNO=10') ;

Emp Name/Title:CLARK | Manager
Emp CCard:6195-2171-8232-3240
CCard Balance:11152

Emp Name/Title:KING | President
Emp CCard:7930-1567-7029-0943
CCard Balance:19497

Emp Name/Title:MILLER | Clerk
Emp CCard:5522-2843-9553-5188
CCard Balance:3585

PL/SQL procedure successfully completed.

[357]

Safequarding PL/SQL Code against SQL injection

Likewise, an attacker can generate the report for all the employees by bypassing all
the filters and predicates:

EXEC p rep cc_bal('''XXX'' OR 1=1');

Emp Name/Title:SMITH | Clerk
Emp CCard:4020-3009-1084-0345
CCard Balance:2844

Emp Name/Title:ALLEN | Salesman
Emp CCard:9205-3519-4278-7993
CCard Balance:2034

Emp Name/Title:WARD | Salesman
Emp CCard:7838-5801-5970-8060
CCard Balance:4038

Emp Name/Title:JONES | Manager
Emp CCard:7556-7454-2248-0850
CCard Balance:4336

Emp Name/Title:MARTIN | Salesman
Emp CCard:6689-9703-5168-5282
CCard Balance:1690

Emp Name/Title:BLAKE | Manager
Emp CCard:3662-7700-4489-3187
CCard Balance:5443

Emp Name/Title:CLARK | Manager
Emp CCard:6195-2171-8232-3240
CCard Balance:11152

Emp Name/Title:SCOTT | Analyst
Emp CCard:1961-7153-0620-9366
CCard Balance:14337

Emp Name/Title:KING | President
Emp CCard:7930-1567-7029-0943
CCard Balance:19497

Emp Name/Title:TURNER | Salesman
Emp CCard:8166-4431-5647-3579
CCard Balance:2286

[358]

Chapter 11

Emp Name/Title:ADAMS | Clerk
Emp CCard:8155-2229-9107-3634
CCard Balance:2301

Emp Name/Title:JAMES | Clerk
Emp CCard:4788-5716-1863-6983
CCard Balance:1540

Emp Name/Title:FORD | Analyst
Emp CCard:8683-1130-1302-1498
CCard Balance:9750

Emp Name/Title:MILLER | Clerk
Emp CCard:5522-2843-9553-5188
CCard Balance:3585

PL/SQL procedure successfully completed.

Now, you can realize how the good old arguments can be exploited to leak
confidential information. A badly coded procedure, which is not too uncommon, is
vulnerable to such attacks.

The preceding case study is a classic example of a First Order Attack, where the data
loses its confidentiality after it is attacked. If the data attack does not happen through
program execution, it is called a Second Order Attack.

The following diagram branches the impacts of SQL injection:

Unintentded Data Alter database
manipulation state
Leakage of Manipulate
confidential data database services
SQL
injection

The impact of SQL injection

Preventing SQL injection attacks

SQL injection is not a design bug, but an intentional malicious practice. Database
developers must adopt best practices while writing PL/SQL code. If code modification
is not possible, the application interface layer may also work to reduce the attack
surface area.

[359]

Safequarding PL/SQL Code against SQL injection

Let's take a brief look at the precautionary measures to minimize injection attacks:

* Check your dynamic SQL: Dynamic SQL query text, which is constructed
at runtime and directly uses the user-supplied inputs, creates a pregnable
hitch point in the application. You can protect them against injection attacks
through either of these techniques:

° Reduce the direct exposure of client inputs to dynamic SQL: You can
sanitize and validate the client-supplied inputs before they are used
in dynamic SQL. Oracle provides the DBMS_ASSERT package to verify
the inputs.

° Use bind arguments in dynamic SQL: Database developers are
encouraged to make use of bind arguments for multiple reasons
and one of them is security. Bind arguments nearly eliminate the
possibility of attacks. Manipulated argument values would end in
an exception, thereby terminating the program execution.

* Monitor a user's object privileges: Irregularity in object privileges can be a
potential threat to an application. A user can invoke a definer's program unit
which may be at a higher privilege level. From a security standpoint, a user
at a lower privilege level can gain access to unauthorized datasets objects.
The use of the invoker's program units should be encouraged to regulate
object privileges. Oracle Database 12¢c enhances the security of the definer's
program units by allowing the granting of roles to program units.

Sanitizing inputs using DBMS_ASSERT

Oracle 10g Release 2 introduced the DBMS_ASSERT package to validate user inputs
before they are consumed by the server-side program units. The package asserts
or postulates an input for a certain fact such as quoted and unquoted identifiers,
or object validity, and so on. Upon assertion, the input is returned as the actual
instance. If the assertion fails, the VALUE_ERROR exception will be raised.

The DBMS_ASSERT package is owned by s¥s and contains seven packaged functions.
The package subprograms are demonstrated as follows:

Subprograms Description

ENQUOTE_LITERAL function | Encloses a string literal within single quotes

ENQUOTE_NAME function Encloses the input string in double quotes

NOOP functions An overloaded function returns the value without any
checking; does no operation

[360]

Chapter 11

QUALIFIED SQL NAME * Verifies if the input string is a qualified SQL name

function * Raises ORA-44004 if the input string is not a valid
qualified SQL name

SCHEMA NAME function * Verifies if the input string is a valid schema name

* Raises ORA-44001 if the input string is an invalid
schema name

SIMPLE SQL_ NAME function * Verifies if the input string is a simple identifier
(quoted and unquoted)

* Raises ORA-44003 if the input string is an invalid
SQL name

SQL OBJECT NAME function * Verifies if the input parameter string is a valid
object in the database

* Raises ORA-44002 if the input string is an invalid
object name

Choose the right subprogram for the right identifier

The DBMS_ASSERT subprogram aims to verify the properties of identifiers and literals.
An identifier is used to denote each and every item used in the database. All the
object names or variable names in a PL/SQL block are identifiers. An identifier can
be quoted, unquoted, or literal.

Unquoted identifiers

This identifier abides by the naming convention of the Oracle Database: it must begin
with an alphabet followed by numbers or a set of defined special characters (_).

The verification algorithm of unquoted identifiers is basic and it checks whether the
identifier follows a proper naming convention.

You can use SIMPLE_SQL_NAME to check whether an unquoted identifier contains any
nonadmissible characters and starts with an alphabet.
Note that it doesn't verify the validity status of the input identifier.

In the following example, SIMPLE_SQL_NAME confirms the input identifier as it
correctly follows the naming convention:

/*Verify an unquoted identifier using SIMPLE_ SQL NAME*/
SELECT DBMS ASSERT.SIMPLE SQL NAME ('emp credit bal')
FROM DUAL

/

DBMS ASSERT.SIMPLE SQL NAME ('EMP CREDIT BAL')

emp credit bal

Safequarding PL/SQL Code against SQL injection

Any violation in the naming convention would throw an exception:

/*Verify an unquoted identifier using SIMPLE_ SQL NAME*/
SELECT DBMS_ ASSERT.SIMPLE SQL NAME ('lemp credit bal')
FROM DUAL

/

*

ERROR at line 1:
ORA-44003: invalid SQL name
ORA-06512: at "SYS.DBMS_ ASSERT", line 206

An identifier with more than one SQL name should be validated through
QUALIFIED SQL NAME. A qualifier may include a schema name, an object name,
or a database link:

/*Verify an unquoted qualifier using SIMPLE SQL NAME*/
SELECT DBMS ASSERT.SIMPLE SQL NAME ('scott.emp credit bal')
FROM DUAL
/

SELECT DBMS ASSERT.SIMPLE SQL NAME ('scott.emp credit bal') FROM
DUAL

*

ERROR at line 1:
ORA-44003: invalid SQL name
ORA-06512: at "SYS.DBMS ASSERT", line 206

/*Verify an unquoted qualifier using QUALIFIED SQL NAME*/
SELECT DBMS_ASSERT.QUALIFIED_SQL_NAME(’Scott.emp_credit_bal') FROM
DUAL

/

DBMS_ASSERT.QUALIFIED SQL NAME ('SCOTT.EMP_ CREDIT BAL')

scott.emp_credit_bal

Schema names and object names can be distinctly verified using the SCHEMA NAME and
SQL_OBJECT NAME subprograms of DBMS_ASSERT. For example, the following SELECT
query verifies the schema name and object name before sanitizing the qualifier:

/*Verify an unquoted qualifier using QUALIFIED SQL NAME*/
SELECT DBMS_ ASSERT.QUALIFIED SQL NAME (

DBMS_ ASSERT.SCHEMA NAME ('SCOTT')||"'."']]|

DBMS ASSERT.SQL OBJECT NAME ('emp credit bal')) obj
FROM DUAL
/

[362]

Chapter 11

SCOTT.emp_credit bal

s . ..
‘Q SCHEMA NAME is a case-sensitive subprogram. A lower case

string input will not be verified as a schema name.

Quoted identifiers

A quoted identifier is always enclosed within double quotes and follows no naming
convention. It may start with a number or even contain any special character. You
can use SIMPLE_SQL_NAME to check the sanity of quoted identifiers:

/*Unquoted identifier with special characters raise exception */
SELECT DBMS ASSERT.SIMPLE SQL NAME ('***emp credit bal+**')

FROM DUAL

/

ERROR at line 1:
ORA-44003: invalid SQL name
ORA-06512: at "SYS.DBMS_ ASSERT", line 206

/*Quoted identifier with special characters return value */

SELECT DBMS_ASSERT.SIMPLE_SQL_NAME('"***emp_credit_bal***"') FROM DUAL
/

DBMS_ASSERT.SIMPLE_SQL_NAME('"***EMP_CREDIT_BAL***"')

"x**emp credit bal***"

You can also use the ENQUOTE_NAME subprogram to enclose a constant value or
identifier in double quotes. Quoted identifiers, which are qualifiers, can be verified
using the QUALIFIED_ SQL_NAME subprogram.

* The Oracle-supplied DBMS_UTILITY.NAME TOKENIZE
% subprogram helps in differentiating a simple SQL name from a
qualified SQL name.

Literals
A literal can be any fixed constant used in a SQL query or a PL/SQL program:
/*Demonstrate the use of a literal in a SELECT query */

SELECT *
FROM emp

[363]

Safequarding PL/SQL Code against SQL injection

WHERE ename = 'KING'

/

/*Use (EMP) as a literal*/
SELECT *

FROM user tables
WHERE table name='EMP'

/

While working with literals, you can use ENQUOTE LITERAL to sanitize the
client-supplied inputs and avoid additional predicates or the union SELECT query.
Let's look at a user input that was used earlier to inject and extract the credit card
information of employees:

/*Sanitize the input before supplying it to procedure call*/

DECLARE

1 cc VARCHAR2 (4000) := '''XXX'' OR DEPTNO=10';
BEGIN

/*Sanitize using DBMS_ ASSERT */

1 cc := DBMS ASSERT.ENQUOTE LITERAL(1 cc);
p_rep cc _bal (1 cc);
END;

/
DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error
ORA-06512: at "SYS.DBMS ASSERT", line 409
ORA-06512: at "SYS.DBMS ASSERT", line 493
ORA-06512: at line 4

The preceding block throws an exception because the client input could not be
verified by the DBMS_ASSERT package.

DBMS_ASSERT - limitations

The limitations of the DBMS_ASSERT package are listed as follows:

* No validation for the TNS connection strings.
* No validation for string lengths or buffer overflow attacks.
* No validation for the validity of SQL identifiers.

* No validation for object privileges or the unintended use of privileges. For
privilege evaluation, you can use the Oracle Database 12c privilege analysis
feature to determine whether to retain or revoke object privileges.

[364]

Chapter 11

Use of bind variables to prevent injection
attacks

Using bind variables is a good programming practice. From a performance
standpoint, bind variables eliminate hard parses of SQL statements and improve
the performance of a PL/SQL block. From a security standpoint, a bind variable
avoids the concatenation of literal values to a dynamic SQL statement.

Let's revisit the credit card case study and rewrite the procedure with the help of
bind variables. Note the use of the B_CARD NO bind variable in the ref cursor:

/*Re-write the procedure P _REP_CC BAL to use bind variables */
CREATE OR REPLACE PROCEDURE p rep cc bal (p card no VARCHAR2)
IS

/*Declare ref cursor variable */
TYPE c_ref IS REF CURSOR;
cc_bal C REF;

/*Declare record structure of EMP_CREDITBAL row type */
emp cc_rec emp credit bal%rowtype;
BEGIN

/*Open the ref cursor variable with a bind variable */

OPEN cc_bal FOR 'SELECT * FROM emp credit bal
WHERE substr (card no,-4,4)=:b card no'
USING p_card no;

LOOP

/*Iterate the result set and print the credit card info */
FETCH cc_bal INTO emp cc_rec;
EXIT WHEN cc_bal%NOTFOUND;

DBMS_OUTPUT.PUT LINE (RPAD('_',50,'_"'));
DBMS_OUTPUT.PUT LINE ('Emp Name/Title:'||emp_cc rec.ename||' |
"| | INITCAP (emp_cc_rec.job)) ;
DBMS_OUTPUT.PUT LINE ('Emp CCard:'||emp cc_rec.card no);
DBMS_OUTPUT.PUT LINE ('CCard Balance:'||emp cc rec.credit balance) ;
END LOOP;
CLOSE cc_bal;
END;
/

SET SERVEROUTPUT ON

[365]

Safequarding PL/SQL Code against SQL injection

You can check the procedure output with a test input:

/*Verify with Input-1 */
EXEC p_rep cc_bal('0345');

Emp Name/Title:SMITH | Clerk
Emp CCard:4020-3009-1084-0345
CCard Balance:2844

PL/SQL procedure successfully completed.

Let's invoke the procedure with the manipulated inputs, which were earlier used to
access restricted data:

/*Verify with Input-2 */
EXEC p_rep cc_bal('''XXX'' OR JOB=''PRESIDENT''') ;

PL/SQL procedure successfully completed.

/*Verify with Input-3 */
EXEC p_rep cc _bal('''XXX'' OR DEPTNO=10"') ;

PL/SQL procedure successfully completed.

/*Verify with Input-4 */
EXEC p_rep cc bal('''XXX'' OR 1=1"');

PL/SQL procedure successfully completed.

Well, none of them returned an output, because the bind variable value or the
tweaked input didn't create a valid SQL cursor. Therefore, it could not be executed.

Best practices to avoid SQL injection

There are multiple best practices to mitigate the effect of SQL injection. The objective
of these best practices is to reduce the attack surface area by covering the vulnerable
areas of the database code. The listed best practices are safe to follow and easy

to remember:

* Avoid dynamically constructed SQL query text in the
PL/SQL program units. Use static SQL wherever possible, as it avoids the
code vulnerability. With dynamic SQL, bind variables should be used.

* Expose database program units to the client through the API units only.

* Monitor and control the object privileges carefully before granting the
EXECUTE privilege on an object to a user.

[366]

Chapter 11

* Encourage the use of the DBMS_ASSERT subprogram in policing; not just for
user inputs, but also dynamic SQL texts and placeholder values in a SQL
statement. Application clients can also programmatically restrict arbitrary
inputs and allow only the expected ones.

* Examine and evaluate the use of PUBLIC privileges.

* Encourage the adoption of data security solutions such as encryption, data
redaction, database vault, audit vault, and database firewall.

Testing the code for SQL injection flaws

So far, we have discussed the symptoms and remedies of SQL injection. We
demonstrated the programming recommendations to mitigate the effects of code
injections and smuggles. Assuring code quality during the testing cycle plays a
crucial role towards preventing code attacks. The code testing resources must adopt
a concrete strategy to discover and hit upon the code's vulnerabilities before it
invites an attacker to exploit the database. Now, we will discuss some of the testing
considerations to test the code for SQL injection flaws.

Test strategy

A logical and efficient test strategy must be employed to discover injection flaws. Of
course, there is no magic bullet to filter out all the vulnerabilities of a piece of code.

Usual code reviews are a part of static testing while testing programs with sample
data and inputs come under dynamic testing. These days, static testing has been
absorbed into the development stage, where developers and their peers and seniors
review the code. Major syntactical errors, logical issues, code practices, and injection
bugs can be traced at this level. The Dry Run concept can even check multiple
scenarios and ensure bug-free application submission to the quality assurance team.

An effective code review

As a code reviewer, the first and foremost step is to measure the attack surface area.
The code reviewer must verify the exposure of the database program units in the
application interface layer. In addition, they must check the privileges available

to the database users. Once these steps are passed with the right justification, the
PL/SQL code can be reviewed to identify the vulnerable areas. In PL/SQL-based
applications, always be careful to look for:

* Dynamic SQL using:

° EXECUTE IMMEDIATE

[367]

Safequarding PL/SQL Code against SQL injection

° REF CURSOR quetries
° DBMS SQL
° DBMS_SYS SQL
* Check for the appropriate usage of bind arguments

* Parameter sanitization using DBMS_ASSERT

Similarly, in a Java or C client architecture, the reviewer must look for dynamic
callable statement preparation.

Static code analysis

SQL injection attacks are mostly due to coding unawareness and dynamic SQL.
Therefore, static code analyzers cannot easily trace an application's vulnerability.
The Oracle documentation defines static code analysis as follows:

Static code analysis is the analysis of computer software that is performed without
executing programs built from that software. In most cases, the analysis is performed
on some version of the source code and in other cases, some form of the object code.
The term is usually applied to the analysis performed by an automated tool.

It is advisable that such analysis tools should not be considered as the testing
benchmark and confirmatory tools. Instead, they can be used for white box testing,
where the application is tested for a smooth logical flow and the program executions
for different nature of input data.

Fuzz tools

Fuzz testing is a rough testing that is not based on any preset logic or use case. It
measures the application's sustainability against junk and malicious inputs. Without
any preconception of the system or program behavior, it uses raw inputs to check the
program semantics. The environment for fuzz testing tools can be explicitly made by
modifying the context values and manipulating the test data to all odds.

The bugs reported in fuzz testing may not always be real threats to the application,
but they may provide a clue to the vulnerability attacks.

[368]

Chapter 11

Generating test cases

The last and the final call is the preparation of test cases. Although this is skipped
during the development stage, the test cases serve as the proof of testing at later
stages. Test cases can measure the robustness of database programs, application
security, and the validation of client inputs.

Summary

In this chapter, we learned about a malicious hacking concept—SQL injection.

We discussed the causes of a code attack and its impact on the database. We covered
the techniques to safeguard an application against the injection attacks through
demonstrations and illustrations. At the end of the chapter, we discussed some of
the testing considerations to expose the vulnerable areas in the code.

Practice exercise

* Which method would you employ to protect the PL/SQL code against SQL
injection attacks?

1. Replace Dynamic SQLs with Static SQLs.
2. Replace concatenated inputs in Dynamic SQL with bind arguments.
3. Declare the PL/SQL program to be executed by its invoker's rights.
4. Remove string type parameters from the procedure.

* You should use static SQL to avoid SQL injection when all Oracle identifiers

are known at the time of code execution.

1. True.
2. False.

* Choose the impact of SQL injection attacks:
1. Malicious string inputs can extract confidential information.
2. Unauthorized access can drop a database.
3. It can insert the ORDER data in to the EMPLOYEES table.
4

A procedure executed by owners, (sYs) rights can change the
password of a user.

[369]

Safequarding PL/SQL Code against SQL injection

Pick the correct strategies to fight against SQL injection:

1. Sanitize the malicious inputs from the application layer with
DBMS_ASSERT.

Remove string concatenated inputs from the Oracle subprogram.
Dynamic SQL should be removed from the stage.
Execute a PL/SQL program with its creator's rights.
Statistical code analysis provides an efficient technique to trace the
application's vulnerability by using ideal and expected parameter values.
1. True.
2. False.
The fuzz tool technique is a harsh and rigorous format of testing which uses
raw inputs and checks a programs' sanctity.
1. True.
2. False.
Choose the objectives that can be addressed by the DBMS_ASSERT package to
prevent SQL injection
1. Enclose a given string in single quotes.
2. Enclose a given string in double quotes.
3. Verify a schema object name.
4. Verify a simple SQL and qualified SQL identifier.

Identify the nature of the table name in the following SELECT statement:

SELECT TOTAL
FROM "ORDERS"
WHERE ORD ID = P_ORDID

/
1. A unquoted identifier.
2. A quoted identifier.
3. A literal.
4. A placeholder.

[370]

Chapter 11

Which of the following DBMS_ASSERT subprograms modifies the input value?

1.

2.
3.
4

SIMPLE_SQL_NAME.
ENQUOTE LITERAL.
QUALIFIED SQL_NAME.

NOOP.

The code reviews must identify certain vulnerable key areas for SQL
injection. Select the correct ones from the following list:

1.

2
3.
4

DBMS_SQL.
BULK COLLECT.
EXECUTE IMMEDIATE.

REF CURSOR.

The AUTHID CURRENT_USER clause achieves which of the following purposes?

1.

2.
3.
4

The code executes with the invoker's rights.
The code executes with the current logged in user.
It eliminates SQL injection vulnerabilities.

The code executes with the creator's rights.

[371]

12

Working with Oracle
SQL Developer

SQL Developer is an integrated development environment from Oracle that serves
as a one-stop solution for major Oracle Database activities, thereby standardizing the
development tasks and enhancing the productivity of database professionals. As a
free graphical user interface (GUI) tool, SQL Developer offers a wide set of features
and solutions for database development, administration, and management, in on-
premise and cloud deployments. The SQL Developer tool supports Oracle Database
10g, 11g, and 12c.

For database developers, SQL Developer offers rich editors for working with core
and advanced functionalities, such as execute, debug, and test, using SQL, PL/

SQL, XML, Stored Java procedures, query tuning, and much more. Database
administrators can use SQL Developer to perform various operations like data export
and import via data pump, database backup and recovery tasks via RMAN, resource
monitor and management, performance analysis and diagnosis, use data modeler
and third-party migration.

In this chapter, we will describe the benefits of SQL Developer, for database
administrators, and architects. Note that the chapter does not intend to provide
a step-by-step tutorial for various tool operations. The outline of the chapter is
as follows:

* Overview of SQL Developer

o

Key differentiators
° History and background
° SQL Developer for DBA

SQL Developer for Developers

[373]

Working with Oracle SQL Developer

* Getting started with SQL Developer
* New features of SQL Developer 4.0 and 4.1

An overview of SQL Developer

SQL Developer is a free integrated development environment from Oracle that
allows the database community to develop PL/SQL applications and, perform
administrative tasks, and enables management activities such as data modeling,
versioning, scripting, and third-party migration. The latest version of SQL Developer
(as of the time of writing this book) is 4.1.1.

The tool is built using Java (on JDeveloper Framework), which enables it to run on
Windows, Linux, and Mac OS X. By default, it uses the thin JDBC (Type IV Java
driver) driver to connect to the database, thus reducing the requirements of any
further database clients. In addition, the extensible architecture of SQL Developer
allows the developer community to incorporate their own custom extensions in to the
tool. You can leverage Oracle JDeveloper's Extension SDK (Software Development
Kit) to develop and add the required functionality as an extension to the SQL
Developer tool.

u Visit the SQL Developer Extensions Exchange (http://
~ www.oracle.com/technetwork/developer-tools/
Q sql-developer/extensions-083825.html) to look for
extensions that were built within and outside Oracle.

Key differentiators
The following are the key factors that differentiate SQL Developer from other
contemporary tools:
* SQL Developer is a free tool and shipped along with the Oracle Database
software. No separate installation is required.

* Oracle support is available for the customers who have licensed the
Oracle Database.

* It supports traditional on-premise as well as cloud deployments of
Oracle Database.

* It supports database products such as Data Miner, Times Ten, Spatial,
and Graph.

* Itis developer-rich and administrator-friendly too. The DBA console
provides a wide set of features for administrative tasks.

[374]

http://www.oracle.com/technetwork/developer-tools/sql-developer/extensions-083825.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/extensions-083825.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/extensions-083825.html

Chapter 12

* There are pre-built reports for providing information about the database
management, database schemas, and performance. There is provision for
creating custom reports and creating multilevel with predefined reports.

* There is logical, relational, and physical modelling enabled through the Data
Modeler extension.

* It has the ability to connect to not just the Oracle Database, but also
non-Oracle databases such as SQL server, Sybase, and DB2.

* Build on the JDeveloper framework. There is provision for including
custom-built extensions in the tool.

* There is a wide community of SQL Developer users who interact through
various channels, such as Oracle Technology Network forums, developer
communities, and blogs. Users are encouraged to participate in the Oracle
SQL Developer Exchange program (https://sqgldeveloper.oracle.com),
where you can register a feature request and submit code snippets or tooltips.

History and background

The first release of SQL Developer was made in March 2006. The initial release
included the basic functionalities, such as executing SQL queries and PL/SQL blocks,
and invoking SQL* Plus scripts. Thereafter, there were a few quick patches and an
important release of SQL Developer 1.1 was made in December 2006. Since then, the
tool has evolved with a broad spectrum of features and support for database options.

Let's take a quick glance at the earlier releases of the SQL Developer tool:

SQL Developer Release date Key new features
release version
SQL Developer 1.0 | March 2006 * Initial release enabled the execution of

SQL and PL/SQL statements
SQL Developer 1.1 | December 2006 * File-based PL/SQL editing.

* Patches SQL Developer 1.1.1 (Jan 2007),
SQL Developer 1.1.2 (March 2007), and
SQL Developer 1.1.3 (May 2007)

SQL Developer 1.2 | June 2007 * Developer migration workbench
* Support for Oracle Application Express
3.0.1
SQL Developer 1.5 | April 2008 * Support for version control

[375]

https://sqldeveloper.oracle.com

Working with Oracle SQL Developer

SQL Developer Release date Key new features
release version

SQL Developer 2.1 | December 2009 * Third-party database migration support
* PL/SQL unit testing

* Integrated data modeler viewer

SQL Developer March 2010 * Patch release
211
SQL Developer 3.0 | March 2011 * Query builder

* DBA navigator

* Schedule builder

SQL Developer 3.1 | February 2012 * Support for Recovery Manager (RMAN)
* Support for Data Pump

* PDF reporting

SQL Developer 3.2 | November 2012 * Support for managing the APEX listener
* Improved Database Diff and DB DOC
features

SQL Developer 4.0 | December 2013 * Support for Oracle Database 12c Multitenant
and Database as a Service platform

* Stable release with updated framework

SQL Developer 4.1 | May 2015 * Optimal memory footprint
* Requirement for Java 7 JDK

* Support subversion 1.7

SQL Developer for Developers

SQL Developer provides a powerful editor for running and analyzing SQL queries
and developing PL/SQL programs. As a database developer, you can browse
schema objects, view object attributes, and compile stored subprograms. You can run
a SQL query (or invoke a script), retrieve the result, export it into an XML, XLS, or
PDF, and examine the query explain plan. You can create, edit, debug, compile, or
drop stored PL/SQL subprograms.

SQL Developer for Database Administrators

In its initial days, SQL Developer was a developer-centric tool. However, the later
releases of the tool broadened its administrative offerings. Database administrators
can perform their routine database activities including storage management, backup
and recovery operations, data export and import, database auditing, diagnostics
pack features, and database resource management.

[376]

Chapter 12

The latest version of SQL Developer supports pluggable database operations in
a multitenant container database. You can create, drop, unplug, plug, or clone, a
pluggable database.

The Manage Database option in the connection tree allows a user with SYSDBA
privilege to report the usage of database tablespaces. Besides, there are a variety

of pre-defined Database Administration reports, which furnish a great deal of
information from a database-management standpoint. A new dedicated DBA panel
is available for database administration activities. Existing DBA connections can be
copied from the connection tree to the DBA panel and can be used to manage the
Oracle Database.

Not only for developers and administrators, SQL Developer successfully connects
the architect community as well. Database architects can perform data modeling
with the SDDM (SQL Developer Data Modeler) module, integrated

with SQL Developer.

SQLcl — The new SQL command line

SQLcl is the modernized and rebranded version of the good old SQL* Plus. SQL*
Plus has been the primary command-line interface for SQL execution for many years.

Oracle SQL Developer, as we are all aware, provides multiple-user interface
features for application developers to format and edit SQL text, export query result
in desired file formats, object name completion, maintains SQL history, and does
much more. SQLcl, being a command-line interface utility, inherits the
developer-friendly formatting and editing elements of SQL worksheet from the SQL
Developer. With SQLcl, the developer and user experiences will be improved by an
order of magnitude.

_ You can download the SQLcl - Early Adopter binaries from
the downloads page of SQL Developer (http://www.
i

oracle.com/technetwork/developer-tools/sql-
developer/downloads/index.html).

[377]

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

Working with Oracle SQL Developer

Currently, the utility is available for standalone download, but in future it will be
part of the SQL Developer 4.1 and Oracle Database 12c Release 2 software packages.
For installation, you must have Java Runtime Environment (JRE) 1.7 or higher on
your system.

For the SQLcl overview, watch the YouTube video at
A https://www.youtube.com/watch?v=HApdy-0525A.

Let's briefly discuss some of the key features and commands of SQLcl:

Database connection: SQLcl supports database connection through
EZConnect, TNS from the Oracle client or the TNS_ADMIN environment
variable, and LDAP. You can store the database connections using the
NET command.

Object-name/Command completion: Pressing the Tab key while you type
an object name will auto-complete the object name in uppercase.

Multiline edits: Instead of using an editor to make changes to the SQL query,
SQLcl allows you to work with the keyboard keys (Enter, Backspace, forward
and backward) to edit the SQL query.

arn1as: SQLcl enables you to create an alias for an SQL query or a PL/SQL
block. To invoke the alias, simply type the alias name in the SQLcl prompt.

cp: Similarly to the OS command, you can change the directory from the
SQLcl interface by using the cD command. This command will prevent SQL
developers from including OS paths in the scripts.

cTas: This acronym can be used directly in place of CREATE TABLE AS
SELECT to generate a DDL script of a new table from an existing one.
You can transform the command output by setting the transformation
parameters using the DBMS_METADATA package.

ppL: This command generates the DDL script for a given object (it optionally
writes the output to a file too).

SQLFORMAT: You can apply different formats to the query results. It may be
applying a different color in ansiconsole, JSON, XML, CSV, HTML, insert,
loader, delimited, or text.

SQL history: SQLcl stores the last 100 commands executed by all the
database users.

INFORMATION: The new SQLcl command is an advanced version of the
DESCRIBE command. Besides listing the object structure or a program
signature, the INFO and INFO+ commands provide more detailed
information.

[378]

https://www.youtube.com/watch?v=HApdy-o525A

Chapter 12

Getting started with SQL Developer

To start working with the SQL Developer tool, you must follow the following steps:

1. Download the latest binaries of the SQL Developer tool from the Oracle
Technology Network.

Gotohttp://www.oracle.com/technology/products/
database/sql developer for the most recent standalone

version of the tool. This tool can be downloaded for free.

2. Alternatively, you may also find the software binaries shipped along with the
Oracle Database or Oracle JDeveloper software media.

3. Ensure that the Java Development Kit (JDK) is installed on the target
system. Usually, the SQL Developer product doesn't include the JDK except
on Microsoft Windows. On Windows, a version of product binaries also
includes the JDK. After startup, the correct JDK path must be specified for
SQL Developer.

4. Run the sqldeveloper executable from the unzipped SQL Developer folder.
Specify the full path of the JDK:

Q ORACLE
i
o @ SQL DEVELOPER
Initializing Extensions
T | | |
oracle.balixml.addin XMLEditorAddin
k Version 4.0.0

[379]

http://www.oracle.com/technology/products/database/sql_developer
http://www.oracle.com/technology/products/database/sql_developer

Working with Oracle SQL Developer

The SQL Developer homepage includes multiple tutorials to help you get started,
and it assists you with the key functionalities of the tool:

Efe Gdn View Mg Pun Team Toals

Windew biele

AuEg woé 9-0- & N

Oracle SQL Developer : Start Page

Commpesions
Ll I L
[, connecizns

= Cloud Comnectient

DA
+ @S

[Connecns

3 3w Page

o

ORACLE

0L DEVILOPEA

o Stanned

Overview Video

Feamured Tumod fals

Communy

Teaured Online Demsoiraions

W' New Optimicer Access Patha Databsas e Copy

Release Hotes 501 Tuning Advhor Reporting Featuies k
Documensation Working with Tuniesg Utilities Ovinche Dt Py Feature

SiHL Developer on OTH

AlN Dl Tutorials

¥ $hew an Staug

AIN Db Demonatrations

Creating a database connection

If you know the login credentials of a database user, you can save the connection
details within SQL Developer. The login credentials include the username, password,
server IP address, and database SID. The following image shows how to create a
database connection in SQL Developer:

L

New / Select Database Connection X

Connection Mame Connection Details

®7

Connection Name |[SCOTT_HR

Username scott

Password sssss

Saye Password [Connection Color

Oracle |DEC

Connection Type ‘Easic

v‘ Role ‘default =

O,

5tatus: Success

Help

Save Clear

Hostname localhost
Part 1521
[O)] orcl

() Service name

[] OS Authentication [| Kerberos Authentication || Proxy Connection

est I Connect | Cancel

@/

-

RO,

[380]

Chapter 12

The steps for creating a database connection are as follows:

Provide a Connection Name, database Username, and Password.

Provide the connection type, role (default/syspBa), and database server

details such as the machine name or IP address, Port, and database SID.

the connection properties.

Click on Test to verify the connection details. Status: Success will confirm

Click on Save to store the connection properties for future use.

Click on Connect to connect to the database using the current

connection details.

Using the SQL worksheet

After establishing the connection to the database, SQL Developer opens up an SQL
worksheet to execute SQL queries and PL/SQL programs.

For example, the following screenshot from SQL Developer shows a SELECT query
on the EMP table and the query output in the following grid. Note the schema
browser and the DBA panel in the left pane of the tool:

[Oracle SQL Developer
Eile Edit View DNavigate Bun Team Tools Window Help
AoHE@ 9@ 9 Q- @
Connections SCOTT_HR
_—
o - |6 e Schema PEB-BA BB gued
[, Connections Browser Worksheet | Query Bui
e ry Builder
WEYscoTT_HR
& lﬂ, --Select all employees——
53 Tables (Filerzcy .
: SELECT
28 views FROM emp;
- [B3) Editioning Views
-8 Indexes | |
- Packages SQL Worksheet
fﬁ Procedures
B Functions av
-E7 queues [Query Result x
(B2 Queves Tales A 5 @) B soL | AllRows Fetched: 14 in 0.259 seconds
-8 Triggers
[@ Crossednion Triggers EMPNO | ENAME|} JOB [mcr [HirepaTE [saL [comm [DEPTNG [EMAIL
Types 1 7369 SHITH CLERK 7902 17-DEC-80 800 (null) 20 smith@xyz. con
- [sequences 2 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30 a1 Ten@xyz. con
% ateriallzenhe B 3 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30 ward@xyz. con
Materialized Wiew L
= S;‘Z:::: 1ewLegs 4 7566 10MES MANAGER 7830 02-APR-81 2975 (nul1) 20 jones@xyz.con
B Public synonyms 5 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30 martincyz. con
@ patabase Links 6 7608 BLAKE MANAGER 7833 01-HAY-B1 2850 (nul1) 30 b aks@xyz. con
[Public Database Links 7 7782 CLARK MANAGER 7833 09-1UN-B1 2450 (nul1) 10 clark@xyz. con
(& Directories 8 T7BBSCOTT ANALYST 7566 19-APR-B7 3000 (nu11) 20 scotT@xyz. con
%Ed‘“;’"‘ . a 7839 KING PRESIDENT (null) 17-NOV-81 5000 (null) 10 king@xyz. con
- "

LTRSS 10 7844 TURNER SALESHAN 7698 0B-SEP-81 1500 o 30 turner@xyz. con
pEA L 11 7876 ADAMS CLERK 7788 23-HAY-BT 1100 (nu11) 20 adans@xyz. con
L BN RS DBA Panel 1z 7900 JAMES CLERK 7658 03-DEC-B1 950 (nul1) 30 james@xyz. con
&, Connections 13 790ZFORD ANALYST 7566 03-DEC-81 3000 (nu11) 20 fordaxyz. con

14 7934 MILLER CLERK 778223-18N-82 1300 (nu11) 10 miTler@xyz. con

SQL Worksheet in the SQL Developer

[381]

Working with Oracle SQL Developer

Each of the SQL worksheets comprise multiple icons, as shown in the
following figure:

& SCOTT_HR
PEO-BR BRR &Yu¢d

Worksheet Cuery Builder

The function of each icon, going from left to right, is described as follows:

Run Statement: Select an SQL query text or PL/SQL block and click on
this to execute it

Run Script: execute a stored script
Explain Plan: generate the explain plan of an SQL
Autotrace: examine the autotrace parameters

SQL Tuning Advisor: analyze simple or complex SQL statements and
provide tuning recommendations

Commit: COMMIT an active transaction

Rollback: ROLLBACK a transaction

Open a SQL Worksheet: open a nonshared SQL worksheet

To Upper/Lower/Initcap: change the case of the query identifiers
Clear: clear the content of the SQL worksheet

SQL History: list the SQL statements previously executed

TimesTen Index Advisor: analyze the SQL workload and recommend
indexes

[382]

Chapter 12

The resulting grid at the bottom provides icons for pinning a query result, printing
output, refreshing the result, and displaying the SQL statement. At the result set
level, it includes the following functionalities:

* Save Grid as Report: This allows the user to save an SQL query as a report.
* Single Record View: This provides a single record view in a dialog box.

* Count Rows: This returns the count of rows in the query result set.

* Find/Highlight: This searches for text and highlights its occurrences.

e Publish to APEX: This allows quick creation of an APEX application page
from the SQL query. It requires details such as the workspace, application
name, theme, page name, and underlying SQL.

* Export: This exports the query result set as insert scripts, SQL* Loader, CSV,
delimited, HTML, XLS, PDF, or XML.

Core features of SQL Developer

The core functionalities of SQL Developer are those that help developers and
administrators to drive their day-to-day activities with ease and enhanced
productivity.

Object Browser

You can browse the objects in a user schema by expanding a saved connection
(which represents a schema). You can find tables, (editioning) views, indexes,
packages, procedures, functions, (cross edition) triggers, types, sequences,
materialized views, materialized view logs, (public) synonyms, (public) database
links, editions, directories, and other schema objects.

PL/SQL Editor and Debugger

The procedure editor allows you to create or edit a PL/SQL package, stored
procedure, or stored function. You can compile/compile for debug, debug, or profile
the program units from the editor.

[383]

Working with Oracle SQL Developer

The following screenshot shows a procedure, P_CALC_POINT_ CALLSTACK, in the
procedure editor. Note the Errors, Grants, Profiles, References, Details, and
Dependencies tabs. The toolbar icons allow the user to run, debug, compile, set
read-only mode, and profile the program unit:

Oracle SQL Developer : Procedure SCOTT.P_CALC POINT CALLSTACK@SCOTT HR

e Help

(2) start Page 3] P_CALC_POINT_CALLSTACK

Code Errors | Grants |Profiles | References | Details |Dependencies
Q- Find 3 > i _N;# ~ 23

';reate or replace PROCEDURE p_calc_point_callstack
(p_user VARCHARZ, p_correct NUMEBER, p_wrong NUMBER)
IS

1_num NUMEER;

FUNCTION F_calc_paints (p_ques NUMBER, p_factor NUMBER)
RETURN NUMBER

IS

BEGIN

dbms_output. put_line (dbms_utility.format_call_stack);
RETURN (p_ques*p_factor);

END;
PROCEDURE p_net_calc (p_net_paints OUT NUMBER) IS
BEGIN
p_net_points := T_calc_points (p_correct,4) + f_calc_points (p_wrong,-2);
END;
BEGIN
p_net_calc (1_num);
DEMS_OUTPUT.PUT_LINE (USER||' earned '||TO_CHAR {(1_num)||' points'l);

end;

k

DBA Panel

You can either add existing connections from the connection tree or create a new
connection with syspBa privileges. Under the DBA panel, you can perform the core
functions of a database administrator like the one shown in the following figure:

[384]

Chapter 12

DEA
W=
[E.“ C_unneu:tiuns
=~ SYS_ORCL

l_‘—j[ﬁ Database Configuration
i@ Initialization Parameters

Connections

{fj Current Database Properties
i IE Restore Points
o E Wiew Database Feature Usage
I:EI---E@ Database Status

[3---@ Data Pump

I:—:I% Performance

Snapshots (Filtered)

Baselines

' Baseline Templates

Automatic Database Diagnostic Monitor (Filtered)
% ASH Report Viewer

- i) AWR

I:—:I[.:'J EMAMN Backup/Recovery

- GJ Backup Jobs

t B Backup Sets

{Eﬁﬂ Image Copies

- (o) RMAN Settings

#-[-f Scheduled RMAN Actions

]@ Resource Manager

:IEE SQL Translator Framework

b7 Scheduler

]{_ﬂ Security

:I[Ej Storage

oy O e T oy (OO o T |

Use of Performance under DBA Console requires Oracle
= Diagnostics Pack. It is included in SQL Developer 4.0.

Database Utilities
This section briefly describes the database utilities available in SQL Developer:
* Database Copy: This allows the copying of data from one connection to

another connection. Copy options can be object copy, schema copy or
tablespace copy.

[385]

Working with Oracle SQL Developer

* Database Diff: This utility compares two connections on all or selected types
of object, and generates the delta report.

* Database Export: This is used to generate the creation (DDL), as well as data
insert scripts, for all selected object types.

* Migration: This is used to migrate a third-party database to Oracle. The non-
Oracle databases that can be translated to Oracle can be MySQL, Microsoft
SQL Server, Sybase, and IBM DB2. SQL Developer allows you to create a
database connection to the non-Oracle databases. The migration process
involves the creation of a migration project and a migration repository
to hold the meta information of the non-Oracle objects. The translation
framework is then used to translate all non-Oracle objects to Oracle-specific
code and generate the DDL scripts. After the DDL scripts are executed, the
last step of the process is data migration.

* SQL Monitor: This enables real-time SQL monitoring for a connection. The
feature requires the Oracle Tuning Pack.

The Data Modeler

The Data Modeler is a free database design and modeling tool integrated with SQL
Developer. SQL Developer provides a graphical user interface to create and manage
data models. The unique capabilities of the Data Modeler simplify modeling tasks
and helps designers to achieve better productivity. Although it is integrated with
SQL Developer as an extension, the tool is available for standalone download as well.

This tool allows you to strategize and analyze logical data models. It also allows
you to draw relational and physical data models. You can also import the ERDs and
share them with your peers for review discussions, future reference, re-engineering
or management approval.

SQL Developer reports

Oracle SQL Developer stores multiple predefined reports, which run based on user-
provided inputs. The user must supply the values for the bind variables required for
the report execution. Some of the popular reports are object reports, PL/SQL reports,
and DBA reports. Object reports can be used to generate dependency tracking and
invalid objects. PL/SQL reports can be used to report the argument usage in a given
program unit or complete schema. Database administration reports can be used to
generate reports on SQL cursors, database parameters, locks, memory consumption,
session-wise information, top SQL reports, and waits and events. Other reports, such
as the AWR and ASH reports, reveal active session history statistics and the last
AWR generated.

[386]

Chapter 12

Note that these reports are different from the user-defined reports. The Oracle-
defined reports are non-editable, but they can be included in the user-defined reports
as child reports or multilevel reports:

Connections

Reports

Fj All Reports
=z Data Dictionary Reports

[I e W e O |

Elﬂ About Your Database

b f% Mational Language Support Parameters
e fﬁ Wersion Banner
[=-{z All Objects

----- {i@m Al Objects

----- EE Collection Types

----- fﬁ Dependencies

----- {5 Invalid Objects

----- fﬁ Object Count by Type
----- Object Distribution
----- EE Public Database Links
----- fﬁ Public Synonyms
H-{& Application Express

H- {2 ASH and AWR

H-{Z Database Administration
t-{z Data Dictionary

- PLSOL

L fﬁ Program Unit Arguments
f% Search Source Code
“-fi§ Unit Line Counts
@ scheduler

{ ey IO Yy IO e

- XML

t--{z8 Data Modeler Reports
H-{z OLAP Reports

t-{= TimesTen Reports
t-{g User Defined Reports

Version control

SQL Developer includes support for version control, which helps in maintaining
the source code versions. You can implement source control by importing the files
to be versioned, check-out when required, and check-in after the changes have

been committed.

[387]

Working with Oracle SQL Developer

The SQL Translation Framework

The SQL Translation Framework is used to translate SQL statements from a non-
Oracle Database script to an Oracle Database SQL script. It is installed along with
the Oracle Database software. However, it must be configured with the appropriate
SQL Translator to identify the non-Oracle code and convert it into Oracle-compliant
code. During the translation process, a profile (known as the SQL Translation Profile)
is generated for the SQL Translator to review and edit the translations. A SQL
Translator may have multiple SQL Translation Profiles.

SQL Developer 4.0 and 4.1 New Features

The latest version, SQL Developer 4.1, introduces numerous enhancements and
features. The following is a list of new features:

* Support for JDK 8: SQL Developer 4.1 runs on JDK 8.

* Database performance monitoring: SQL Developer 4.0 included a node
under the DBA connection tree for Oracle Diagnostics Pack. The performance
engineers can now capture snapshots, establish baselines, run ASH and AWR,
and display Automatic Database Diagnostic Monitor (ADDM) reports.

* Full support for Oracle Database 12c features: SQL Developer 4.0 fully
supports the Oracle Database 12c features. In a multitenant database, a
container database administrator can comfortably work with SQL Developer
to manage pluggable databases. You can create, clone, drop, plug, or unplug
a pluggable database. Similarly, you can create and manage data redaction
policies on the tables. You can also clone a pluggable database directly to the
Oracle cloud.

Other language enhancements in Oracle Database 12c, such as the IDENTITY
columns, FETCH FIRST, 32K VARCHAR2 support, implicit cursors, and default
to a sequence generator, enable efficient migration from non-Oracle to Oracle.

* Support for Oracle Database products: SQL Developer 4.0 supports Data
Mining, Times Ten, XML DB, and Spatial and graphs.

* Instance Viewer: Without the need for an agent installation on the server,
SQL Developer can display your database instance status and current
activity. The instance activity is locally cached and graphically drawn, and
gets refreshed from time to time. From the DBA Panel connection tree, select
Database Status node and click on DB Instance.

[388]

Chapter 12

Object search: The enhanced object search allows an object to be searched
across schemas and object types and through the identifiers and their
appearances. The history of searched objects, along with the choices,

is saved for future access:

Find Database Object
| SCOTT_HR -
| | @ co
~[w] All Schemas
[#] &1l Object Types

~[] All ldentifier Types
~[] All ldentifier Usages

Columns

)~ Source Lines

New search and replace: The search text field in the procedure editor is
enhanced to highlight the occurrences of searched text, save the history of
texts searched, and to allow replacement of existing text with replacement
text. In addition, multicursor editing enables easy formatting of multiple
rows in an SQL worksheet.

PDB cloning to Oracle Database Cloud Service: SQL Developer 4.1 allows a
PDB to be cloned directly to the Oracle Database Cloud. A cloud connection
must be created with the Database Cloud Service environment details.

Support for Oracle NoSQL Database: SQL Developer 4.1 supports Oracle
NoSQL KVLite stores.

Import data from a spreadsheet: SQL Developer 4.1 allows the data from a
spreadsheet to be directly imported into a table. The spreadsheet data can be
imported to an existing table or a new table.

[389]

Working with Oracle SQL Developer

Summary

SQL Developer has matured immensely over the years and has emerged as the
primary IDE for Oracle Database. Full support for Oracle Database options in
traditional as well as cloud deployments and the most recent database features
are the key differentiators of the tool. This tool is not only meant for application
developers, but also provides wide support for database administrators and
architects. SQLcl is gaining a lot of traction in the developer community because
of its advanced formatting and editing features.

[390]

Symbols
32K VARCHAR?2 46, 47

A

Active Session History (ASH) 72
American National Standard Institute
(ANSI) 43
archive logs 38
associative arrays
about 101-103
features 103
Automatic Database Diagnostic
Monitor (ADDM) 388
Automatic Segment Space
Management (ASSM) 201
Automatic Workload Repository (AWR) 72

B

BasicFiles
migrating, to SecureFiles 220-222
BFILE 195
binaries, SQL Developer
URL, for downloading 379
Binary Large Object (BLOB) 194
Buffer Cache
versus Result Cache 280
bulk binding 262
bulk processing, in PL/SQL
about 257
BULK COLLECT 257-262
FORALL 262-267
FORALL and exception handling 267-270

Index

C

Character Large Object (CLOB) 195

collection

about 99
associative array 100
nested table 101
non-persistent collection 100
overview 100
persistent collection 100
types 100
types, comparing 122,123
types, selecting 124
varray 101
collection methods, PL/SQL
about 127
COUNT function 128
DELETE function 133-135
EXISTS function 127, 128
EXTEND function 131, 132
FIRST function 129
Last function 129
LIMIT function 129
NEXT function 130
PRIOR function 130
TRIM function 132, 133
common users 42
compilation mode
selecting 240
setting 240
settings, querying 241
COUNT function 128
cursor attributes
%FOUND 6, 78
%ISOPEN 6, 78
%NOTFOUND 6, 78

[391]

%ROWCOUNT 6, 78
about 78
cursor execution cycle, stages
BIND 76
CLOSE 77
EXECUTE 77
FETCH 77
OPEN 76
PARSE 76
cursors
about 5
cursor attributes 6
Cursor FOR loop 8
execution cycle 5, 6
cursor structures
about 76
cursor execution cycle 76
explicit cursors 76-83
implicit cursors 76-80
cursor variables
about 83-85
as arguments 88
design, considerations 89, 90
design, guidelines 90, 91
restrictions 89
strong ref cursor, types 85, 86
SYS_REFCURSOR 87
weak ref cursor, types 85, 86
working with 86, 87

D

database connection
creating 380, 381
database consolidation 36-38
database dependency
direct 26
direct dependency, displaying 26, 27
enhancement 27, 28
indirect 26
indirect dependency, displaying 26, 27
issues 27, 28
managing 26
metadata 27
Database In-Memory
versus Result Cache 280
database resource manager (DBRM) 41

database tuning 229
Database Utilities option
Database Copy 385
Database Diff 386
Database Export 386
Migration 386
SQL Monitor 386
Data Modeler 386
DBMS_ASSERT subprogram
limitations 364
literal 363
quoted identifier 363
unquoted identifier 361, 362
used, for sanitizing inputs 360, 361
DBMS_HPROF package
about 343
Analyzer 344
and DBMS_PROFILER, differences 343
Data Collector 344
subprograms 344
DBMS_LOB package
about 197
DBMS_LOB constants 197, 198
DBMS_LOB data types 198
DBMS_LOB subprograms 199, 200
DBMS_METADATA package
about 328
data types 328, 329
demonstration 333-336
filters 331-333
subprograms 330, 331
transformation parameters 331
URL 329
DBMS_RESULT_CACHE package
about 295, 296
Oracle Database 12c enhancements,
to PL/SQL function cache 298
result cache memory report,
displaying 297, 298
DBMS_TRACE package
installing 337
subprograms 337, 338
DBMS_TRACE subprograms
URL 337
dead code 234
DEFAULT ON NULL clause 45, 46
dense collection 104

[392]

dynamic linked library (DLL) 140, 238

E

Early Adopter binaries, SQLcl
URL 377
environment setup, external procedures
EXTPROC.ora 144, 145
TNSNAMES.ora 144
exception handling
about 9
exception propagation 16, 17
system-defined exceptions 9, 10
user-defined exceptions 11-13
EXISTS function 127,128
explicit cursors 5, 76, 80-83
EXTEND function 131,132
external C programs
executing, from PL/SQL 145-149
external LOB 194
external procedures
about 139, 140
callback 142
callout 142
call specification 142
environment setup 143
executing 143
execution flow, components 140
extproc agent 141
library object 141
securing, with Oracle database 12c 149, 150
extproc agent, external procedures 141

F

FETCH FIRST clause 47
Fine-grained access control (FGAC)

about 163

working 163, 164
Fine Grained Dependency (FGD) 28
FIRST function 129
FORALL

about 262-267

and exception handling 267-270
functions

about 20

calling from SQL expressions,

restrictions 22,23

execution methods 21, 22
features 20, 21

G

graphical user interface (GUI) 373

icons, SQL worksheet
Run Statement 382
identifier types
determining 323
PLSCOPE_SETTINGS parameter 325-327
PL/Scope tool 324
USER_IDENTIFIERS view 323
implicit cursors 5 76-80
implicit data type conversion
avoiding 252
In-Database Archiving 53-55
index-organized table (IOT) 105
injection 354
In-Memory Database Cache (IMDB)
versus Result Cache 280
interpreted compilation
program unit, comparing 241, 242
IPC (Internet Procedure Calls) 144

J

Java Development Kit (JDK) 379
Java programs, executing from PL/SQL
about 150
Java class, executing from Oracle PL/SQL
unit 151-154
Java class, loading into database 150, 151
Java Runtime Environment (JRE) 378

L

LAST function 129
library object, external procedures 141
Libunits 150
LIMIT function 129
Large Objects (LOBs)
about 192
data, populating 212-214
datatypes, classifying 193

[393]

DBMS_LOB package 197
external LOB 194
instance initialization 196, 197
internal LOB 193
locator 195
LONG, migrating to 218
metadata 207, 208
permanent LOB 193
restrictions 194
SecureFile advanced features,
securing 209-211

security 192
temporary LOB 193
temporary LOB operations 215, 216
usage notes 201
working with 205, 206

Large Objects (LOBs), data types
about 194
BFILE 195
Binary Large Object (BLOB) 194
Character Large Object (CLOB) 195
NCLOB 195

local user 42

LONG, migrating to LOBs
ALTER TABLE command, using 219
Online Table Redefinition 220
TO_LOB function, using 219

LRU (Least Recently Used) 278

machine code (M-code) 230

N

native compilation
about 238
program unit, comparing 241-243
nested table
about 101-104
as schema object 106, 107
collection, initialization 111, 112
collection type, in PL/SQL 110
column, querying 110
design considerations 105
in index organized table 105
instance, creating 108, 109
locators 106

metadata, querying 112
object type, dropping 105
object type, modifying 105
storage 105
type column, operations 107
NEXT function 130, 131
NOT NULL constraint 253, 254

(0

Object Browser 383
OCI Client results cache
about 295
parameters 295
OCI (Oracle Call Interface) 295
Oracle 8i 99
Oracle 11g 39
Oracle 12¢ container database (CDB) 36
Oracle 12¢ SQL and PL/SQL, features
32K VARCHAR?2, support for 46, 47
about 43
column value, to sequence in Oracle 12¢ 45
DEFAULT ON NULL clause 45
IDENTITY columns 43, 44
In-Database Archiving 53-55
invisible columns 49-51
Row limiting, FETCH FIRST used 47, 48
temporal databases 51-53
Oracle Advanced Security 160
Oracle Audit Vault and Database
Firewall (AVDF) 162
Oracle Database 11g real native
compilation 239
Oracle Database 11g result cache
about 276
Result Cache, versus Buffer Cache 280
Result Cache, versus Database
In-Memory 280
Result Cache, versus In-Memory Database
Cache (IMDB) 280
Server Result Cache 277
Server Result Cache, configuring 278-280
Oracle Database 12¢
about 35
enhancements, to collections 124-126
enhancements, to PL/SQL subprograms 25
external procedures, securing with 149, 150

[394]

implicit statement results 91, 92
security, enhancements 180-182

Oracle Database 12¢ (12.1.0.2),

In-Memory option

about 67

and problem statement 68

architecture 69

challenge 68

features 68, 69

In-Memory Advisor 72

INMEMORY clause 71

Oracle Database In-Memory benefits 73

performance optimizations 72
store, controlling 70
Oracle Database 12c Data Redaction
about 181
demonstration 183-186
features 182
function types 182,183
metadata 186
Oracle Database 12¢ multitenant
architecture, features
about 38
CDB resource management 41
common users 42
manage many as one 40
multitenant for consolidation 39
plug/unplug 39
rapid provisioning 40
Oracle Database Security 160
Oracle Database Vault 162
Oracle Key Vault (OKV) 161
Oracle SecureFiles
and BasicFiles 204
compression 201, 202
db_securefile parameter 204
deduplication 201
file system logging 203
free space management 203, 204
Write Gather Cache (WGC) 203
Oracle SQL Developer
about 30
Exchange program, URL 375
for application architects 30
for DBA 30
for developers 30

SQL Developer 4.0 31
Oracle-supplied packages

categorizing 29

DBMS_ALERT 28

DBMS_DATAPUMP 29

DBMS_HTTP 28

DBMS_LOCK 28

DBMS_OUTPUT 28

DBMS_PARALLEL_EXECUTE 28

DBMS_PDB 29

DBMS_PRIVILEGE_CAPTURE 29

DBMS_REDACT 29

DBMS_REDEFINITON 29

DBMS_RESOURCE_MANAGER 29

DBMS_SCHEDULER 28

DBMS_SESSION 28

DBMS_SQL 29

DBMS_UTILITY 29

reviewing 28, 29

UTL_FILE 28

UTL_MAIL 28

P

Payment Card Industry Data Security
Standard (PCI-DSS) 160
persistent LOB 193
PGA (Process Global Area) 291
PL/Scope tool
about 324

PLSCOPE_SETTINGS parameter 325-327

plshprof utility
about 348-350
reports, exploring 350
PL/SQL
about 2
accomplishments 2
advantages 2
block 4
bulk processing 257
collection methods 127
database, recompiling for interpreted
compilation 243-247
database, recompiling for native
compilation 243-247
Editor and Debugger 383
enhancements 67

[395]

exception handling 9
external C programs, executing 145-148
Java programs, executing 150
package 23, 24
program, fundamentals 3
unit white listing 61, 62
PL/SQL block
anonymous PL/SQL block 4
named 4
nested 4
PL/SQL code

implicit data type conversion, avoiding 252

NOT NULL constraint 253, 254
numeric data type, selecting 254, 256
parameters, calling by reference 251
secure applications building, bind
variables used 247, 251
tuning 247
PL/SQL code, designing
cursor structures 76
cursor variables 83-85
subtypes 93
PL/SQL code, profiling
about 343
DBMS_HPROF package 343
plshprof utility 348
profiler data, analyzing 346
raw profile data, collecting 344, 345
PL/SQL coding information, tracking
about 306, 307
DBMS_DESCRIBE package 312, 313

program execution subprogram call stack,

tracking 315-319
propagating exceptions in PL/SQL code,

tracking 319-323
USER_ARGUMENTS view 307
USER_DEPENDENCIES view 312
USER_OBJECT_SIZE view 308
USER_OBJECTS view 307, 308
USER_PLSQL_OBJECT_SETTINGS

view 310, 311
USER_PROCEDURES view 310
USER_SOURCE view 308, 309

USER_STORED_SETTINGS view 310, 311

PL/SQL compiler
about 230
subprogram inlining 230, 231

PL/SQL function result cache
about 290
and other caching techniques,
differences 291
illustration 291, 292
invalidation 294
limitations 294
monitoring 293
PLSQL_OPTIMIZE_LEVEL
about 232
cases 233-237
PL/SQL programs
compiling, for debugging 339
DBMS_TRACE package, installing 337
DBMS_TRACE subprograms 337-339
execution, tracing 341, 342
PL/SQL trace information, viewing 340
profiling 342
sample 305, 306
tracing, DBMS_TRACE used 336, 337
PL/SQL program units
roles, granting 62, 63
test setup 63-66
PL/SQL subprogram
comparative analysis 60
defining, in PRAGMA UDF 55, 56
defining, in SELECT query 55, 56
test setup 57-60
PL/SQL virtual machine (PVM) 238
pluggable database (PDB) 36, 40
PRAGMA INLINE 231
PRIOR function 130, 131
Procedural Language-Structured Query
Language. See PL/SQL
procedures. See stored procedures
profiler data
analyzing 346
profiler output, analyzing 347
profiler tables, creating 346
profiler tables, querying 347, 348

R

RAC (Real Application Clusters)
about 238
features 300
result cache 299

[396]

RAISE_APPLICATION_ERROR
procedure 13-15
raw profile data
collecting 344, 345
interpreting 345
Real Application Security (RAS) 161
redo logs 38
Remote-Ops (RO) 144
Result Cache
OClI result cache 277
PL/SQL function result cache 277
SQL query result cache 277
versus Buffer Cache 280
versus Database In-Memory 280
versus In-Memory Database
Cache (IMDB) 280

S

SCN (system change number) 289
SDDM (SQL Developer Data Modeler) 377
SDK (software development kit) 374
Server Result Cache

about 275-277

configuring 278-280
Shared Global Area (SGA) 37
Single Instruction Multiple Data (SIMD) 72
SQLcl

about 377

commands 378

key features 378

URL, for YouTube video 378
SQLcl, key features and commands

CD 378

CTAS 378

database connection 378

DDL 378

INFORMATION 378

multiline edits 378

Object-name/ Command completion 378

SQLFORMAT 378

SQL history 378
SQL Developer

background 375

database connection, creating 380, 381

Extensions Exchange, URL 374

features 383

for database administrators 376
for developers 376
history 375
overview 374
reports 386
releases 375, 376
version 4.1, enhancements 388, 389
version control 387
working with 379, 380
SQL Developer, features
about 383
Data Modeler 386
Object Browser 383
PL/SQL Editor and Debugger 383
SQL Developer reports 386
SQL Translation Framework 388
version control 387
SQL Developer Data Modeler (SDDM) 31
SQL Developer tool
key factors, for differentiating from
other tools 374, 375
SQL injection
about 354
PL/SQL code, exploiting 355-359
targets 354
SQL injection, attacks
DBMS_ASSERT, limitations 364
inputs sanitizing, DBMS_ASSERT
used 360, 361
preventing 359, 360
preventing, best practices 366, 367
preventing, bind variables used 365, 366
right subprogram, selecting for right
identifier 361
SQL injection, code
fuzz tools 368
review 367
static code analysis 368
test cases, generating 369
testing strategy 367
SQL query result cache
about 281-284
invalidation 288
limitations 289
monitoring 284-287
read consistency 289
SQL Translation Framework 388

[397]

SQL worksheet

functionalities 383

icons 382

using 381-383
SQL worksheet, functionalities

Count Rows 383

Export 383

Find/Highlight 383

Publish to APEX 383

Save Grid as Report 383

Single Record View 383
stored procedures

creating 17,18

executing 19
Structured Query Language (SQL) 1
subprogram inlining

PLSQL_OPTIMIZE_LEVEL 232

PRAGMA INLINE 231
subtype

about 93

classifying 93, 94

type compatibility 95
SYSAUX tablespace 38
system-defined exceptions 9,10
system global area (SGA) 76
SYSTEM tablespace 38

T

TEMP tablespace 38
Total Recall feature 52

\'

varray

about 101, 116, 117
as schema object 117, 118
in PL/SQL 122

varray type columns, operations

about 119

varray collection type instance,
inserting 119

varray column, querying 120, 121

varray instance, updating 121

Virtual Private Database (VPD)

about 161, 164

best practices 177

column-level 164, 165

components 165

demonstration 170-176

features 177

metadata 178

policy utility activities 179

with Oracle Database 12¢ multitenant 165
working 164

Virtual Private Database (VPD),

Transparent Data Encryption (TDE) 161, 202

TRIM function 132,133

U

UNDO tablespace 38
user-defined exceptions
RAISE_APPLICATION_ERROR
procedure 13-16
User Global Area (UGA) 5, 76, 166

components
application context 165-167
DBMS_RLS package 169, 170
policy function 168
policy type 169

Write Gather Cache (WGC) 203

[398]

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying

Advanced Oracle PL/SQL Developer's Guide
Second Edition

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

enterprise

"PUBLISHING

Oracle Advanced PL/SQL
Developer Professional Guide
ISBN: 978-1-84968-722-5 Paperback: 440 pages

Master advanced PL/SQL concepts along with plenty
of example questions for 1Z0-146 examination

1. Blitz the 120-146 exam.

Oracle Advanced PL/SQL 2. Master the advanced features of PL/SQL to
Developer Professional Guide design and optimize code using real-time
demonstrations.

3. Efficiently design PL/SQL code with cursor
design and subtypes.

Saurabh K. Gupta

PostgreSQL Server Programming
ISBN: 978-1-84951-698-3 Paperback: 264 pages

Extend PostgreSQL and integrate the database layer
into your development framework

1. Understand the extension framework of
PostgreSQL, and leverage it in ways that
you haven't even invented yet.

2. Write functions, create your own data types,
(01 gre erver y typ

. all in your favourite programming language.
Programming y Prog §langliag

3. Step-by-step tutorial with plenty of tips and
tricks to kick-start server programming.

Please check www.PacktPub.com for information on our titles

"PUBLISHING

enterprise 8

professional expertise distilled

Oracle Database XE 11gR2
Jump Start Guide

Asit Momen

Oracle Database XE 11gR2 Jump

Start Guide
ISBN: 978-1-84968-674-7 Paperback: 146 pages

Build and manage your Oracle Database 11g XE
environment with this fast paced, practical guide

1. Install and configure Oracle Database XE on
Windows and Linux.

2. Develop database applications using Oracle
Application Express.

3. Back up, restore, and tune your database.

4. Includes clear step-by-step instructions and
examples.

Oracle Database 11gR2

Performance Tuning Cookbook

Ciro Fiorillo

[.p_r.l C ..;'_..[] enterprise®

Oracle Database 11gR2
Performance Tuning Cookbook
ISBN: 978-1-84968-260-2 Paperback: 542 pages

Over 80 recipes to help beginners achieve better
performance from Oracle Database applications

1. Learn the right techniques to achieve best
performance from the Oracle Database.

2. Avoid common myths and pitfalls that slow
down the database.

3. Diagnose problems when they arise and
employ tricks to prevent them.

4. Explore various aspects that affect performance,
from application design to system tuning.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview of PL/SQL Programming Concepts
	Introduction to PL/SQL
	PL/SQL program fundamentals

	Cursors – an overview
	The cursor execution cycle
	Cursor attributes
	Cursor FOR loop

	Exception handling in PL/SQL
	System-defined exceptions
	User-defined exceptions
	The RAISE_APPLICATION_ERROR procedure

	Exception propagation

	Creating stored procedures
	Executing a procedure

	Functions
	Functions – execution methods
	Restrictions on calling functions from
SQL expressions

	A PL/SQL package
	Oracle Database 12c enhancements to PL/SQL subprograms
	Managing database dependencies
	Displaying the direct and indirect dependencies
	Dependency metadata
	Dependency issues and enhancements

	Reviewing Oracle-supplied packages
	Oracle SQL Developer
	Oracle SQL Developer for DBA, Developers, and Application Architects
	SQL Developer 4.0

	Summary
	Practice exercise

	Chapter 2: Oracle 12c SQL and
PL/SQL New Features
	Database consolidation and the new Multitenant architecture
	The Oracle Database 12c Multitenant
architecture – features
	Multitenant for Consolidation
	Plug/unplug
	Manage Many as One
	Rapid provisioning
	CDB Resource Management
	Common users and local users

	Oracle 12c SQL and PL/SQL new features
	IDENTITY columns
	Default column value to a sequence in
Oracle 12c
	The DEFAULT ON NULL clause

	Support for 32K VARCHAR2
	Row limiting using FETCH FIRST
	Invisible columns
	Temporal databases
	In-Database Archiving
	Defining a PL/SQL subprogram in the SELECT query and PRAGMA UDF
	Test setup
	Comparative analysis

	The PL/SQL program unit white listing
	Granting roles to PL/SQL program units
	Test setup

	Miscellaneous PL/SQL enhancements

	The Oracle Database 12c (12.1.0.2)
In-Memory option
	The challenge
	The problem statement and Oracle Database 12c In-Memory
	Oracle Database 12c In-Memory option features
	The Oracle Database 12c In-Memory Architecture
	Controlling the In-Memory column store
	The INMEMORY clause
	Performance optimizations
	In-Memory Advisor
	Oracle Database In-Memory benefits

	Summary

	Chapter 3: Designing PL/SQL Code
	Cursor structures
	Cursor execution cycle
	Cursor attributes
	Implicit cursors
	Explicit cursors

	Cursor variables
	Strong and weak ref cursor types
	Working with cursor variables
	SYS_REFCURSOR

	Cursor variables as arguments
	Cursor variables – restrictions
	Cursor design considerations
	Cursor design–guidelines

	Implicit statement results in Oracle Database 12c
	Subtypes
	Subtype classification
	Type compatibility with subtypes

	Summary
	Practice exercise

	Chapter 4: Using Collections
	Introduction to collections
	Collection types
	Associative arrays
	Nested tables
	Modify and drop a nested table object type
	Design considerations of a nested table
	Nested table storage
	Nested table in an index - organized table
	Nested table locators

	Nested table as the schema object
	Operations on a nested table type column
	Nested table collection type in PL/SQL

	Querying the nested table metadata
	Nested table comparison functions
	Multiset operations on nested tables

	Varray
	Varray as a schema object
	Operations on varray type columns

	Varray in PL/SQL

	Comparing the collection types
	Selecting the appropriate collection type

	Oracle 12c enhancements to collections
	PL/SQL collection methods
	EXISTS
	COUNT
	LIMIT
	FIRST and LAST
	PRIOR and NEXT
	EXTEND
	TRIM
	DELETE

	Summary
	Practice exercise

	Chapter 5: Using Advanced
Interface Methods
	Overview of External Procedures
	External Procedures

	Components of external procedure execution flow
	The extproc agent
	The Library object
	Callout and Callback

	Call Specification
	How an External Procedure executes
	Environment setup
	TNSNAMES.ora
	EXTPROC.ora

	Executing external C programs from
PL/SQL
	Securing External Procedures with Oracle Database 12c
	Executing Java programs from PL/SQL
	Loading a Java class into a database
	Steps to execute a Java class from an Oracle PL/SQL unit

	Summary
	Practice exercise

	Chapter 6: Virtual Private Database
	Oracle Database Security overview
	Fine-Grained Access Control
	How FGAC works

	Virtual Private Database
	How does Virtual Private Database work?
	Column-level Virtual Private Database
	Virtual Private Database with Oracle Database 12c Multitenant

	Virtual Private Database components
	Application Context
	Virtual Private Database policy function
	Policy types
	The DBMS_RLS package

	Demonstration
	Virtual Private Database features and best practices

	Virtual Private Database metadata
	Policy utilities—refresh and drop

	Oracle Database 12c Security enhancements
	Oracle Database 12c Data Redaction
	Data Redaction exemptions and miscellaneous features
	Data Redaction function types
	Demonstration
	The Data Redaction metadata

	Summary
	Practice exercise

	Chapter 7: Oracle SecureFiles
	Introduction to Large Objects
	Classification of Large Object datatypes
	Internal LOB
	External LOB

	LOB restrictions

	LOB data types in Oracle
	BLOB and CLOB
	BFILE
	Some more related stuff
	The LOB locator
	LOB instance initialization
	The DBMS_LOB package

	LOB usage notes

	Oracle SecureFiles
	Deduplication and compression
	Encryption
	File System Logging
	Write Gather Cache
	Free space management
	BasicFiles and SecureFiles
	The db_securefile parameter

	Working with LOBs
	LOB metadata
	Enabling the advanced features of a SecureFile
	Populating the LOB data
	Temporary LOB operations
	Managing temporary LOBs

	Working with a temporary LOB

	Migrating LONG to LOBs
	Use the ALTER TABLE command
	Using the TO_LOB function
	Online Table Redefinition

	Migrating BasicFiles to SecureFiles
	Oracle Database 12c enhancements to SecureFiles
	Summary
	Practice exercise

	Chapter 8: Tuning PL/SQL Code
	The PL/SQL Compiler
	Subprogram inlining in PL/SQL
	PRAGMA INLINE
	PLSQL_OPTIMIZE_LEVEL

	Native and interpreted compilation techniques
	Oracle Database 11g Real Native Compilation
	Selecting the appropriate compilation mode
	Setting the compilation mode
	Querying the compilation settings
	Compiling a program unit for native or interpreted compilation
	Recompiling a database for a PL/SQL native or interpreted compilation

	Tuning PL/SQL code
	Build secure applications using bind variables
	Call parameters by reference
	Avoiding an implicit data type conversion
	Understanding the NOT NULL constraint
	Selection of an appropriate numeric data type
	Bulk processing in PL/SQL
	BULK COLLECT
	FORALL

	Summary
	Practice exercise

	Chapter 9: Result Cache
	Oracle Database 11g Result Cache
	What is the Server Result Cache?
	Configuring the Server Result Cache
	Result Cache versus Buffer Cache
	Result Cache versus Oracle 12c Database
In-Memory
	Result Cache versus In-Memory Database Cache

	SQL query Result Cache
	Monitoring the SQL Result Cache
	Invalidation of the SQL Result Cache
	Read consistency of the SQL Result Cache
	Limitations

	PL/SQL Function Result Cache
	Does it sound similar to deterministic functions?
	Differences between Result Cache and other caching techniques
	Illustration
	Monitoring the PL/SQL Result Cache
	Invalidation of the PL/SQL Result Cache
	Limitation

	OCI Client results cache
	The DBMS_RESULT_CACHE package
	Displaying the result cache memory report
	Oracle Database 12c enhancements to the
PL/SQL function Result Cache

	Result cache in Real Application Clusters
	Summary
	Practice exercise

	Chapter 10: Analyzing, Profiling, and Tracing PL/SQL Code
	A sample PL/SQL program
	Tracking PL/SQL coding information
	USER_ARGUMENTS
	USER_OBJECTS
	USER_OBJECT_SIZE
	USER_SOURCE
	USER_PROCEDURES
	USER_PLSQL_OBJECT_SETTINGS and USER_STORED_SETTINGS
	USER_DEPENDENCIES
	The DBMS_DESCRIBE package
	Tracking the program execution subprogram call stack
	Tracking propagating exceptions in
PL/SQL code

	Determining identifier types and usages
	USER_IDENTIFIERS
	The PL/Scope tool
	The PLSCOPE_SETTINGS parameter

	The DBMS_METADATA package
	DBMS_METADATA data types and subprograms
	Parameter requirements
	The DBMS_METADATA transformation parameters and filters
	Demonstration

	Tracing PL/SQL programs using
DBMS_TRACE
	Installing the DBMS_TRACE package
	DBMS_TRACE subprograms
	Compiling a PL/SQL program for debugging
	Viewing the PL/SQL trace information
	Steps to trace PL/SQL program execution

	Profiling PL/SQL code
	The DBMS_HPROF package
	Differences between DBMS_PROFILER and
DBMS_HPROF
	DBMS_HPROF subprograms

	Collecting raw profile data
	Interpreting the raw profiler data

	Analyzing profiler data
	Creating the profiler tables
	Analyzing the profiler output
	Querying the profiler tables

	The plshprof utility
	What do these reports reveal?

	Summary
	Practice exercise

	Chapter 11: Safeguarding PL/SQL Code against SQL injection
	What is SQL injection?
	SQL injection targets
	How to exploit the PL/SQL code?

	Preventing SQL injection attacks
	Sanitizing inputs using DBMS_ASSERT
	Choose the right subprogram for the right identifier
	DBMS_ASSERT – limitations

	Use of bind variables to prevent injection attacks
	Best practices to avoid SQL injection

	Testing the code for SQL injection flaws
	Test strategy
	An effective code review
	Static code analysis
	Fuzz tools
	Generating test cases

	Summary
	Practice exercise

	Chapter 12: Working with Oracle
SQL Developer
	An overview of SQL Developer
	Key differentiators
	History and background
	SQL Developer for Developers
	SQL Developer for Database Administrators
	SQLcl – The new SQL command line

	Getting started with SQL Developer
	Creating a database connection
	Using the SQL worksheet
	Core features of SQL Developer
	Object Browser
	PL/SQL Editor and Debugger
	DBA Panel
	Database Utilities
	The Data Modeler
	SQL Developer reports
	Version control
	The SQL Translation Framework

	SQL Developer 4.0 and 4.1 New Features
	Summary

	Index

