phplarchitect’s
Guide to
PHP Design Patterns

A Practical Approach to Design Patterns
for the PHP 4 and PHP 5 Developer

» W
.
\ E

h hitect
Al rreienies

PHP|ARCHITECT’S GUIDE TO
PHP DESIGN PATTERNS

by Jason E. Sweat

hp |architect
AL Prelersiies

php|architect’s Guide to PHP Design Patterns

Contents Copyright © 2004-2005 Jason E. Sweat - All Right Reserved
Book and cover layout, design and text Copyright © 2004-2005 Marco Tabini & Associates, Inc. - All Rights Reserved

First Edition: July 2005

ISBN 0-9735898-2-5
Produced in Canada
Printed in the United States

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
reviews or articles.

Disclaimer

Although every effort has been made in the preparation of this book to ensure the accuracy of the information con-
tained therein, this book is provided "as-is" and the publisher, the author(s), their distributors and retailers, as well
as all affiliated, related or subsidiary parties take no responsibility for any inaccuracy and any and all damages
caused, either directly or indirectly, by the use of such information.

We have endeavoured to properly provide trademark information on all companies and products mentioned in this
book by the appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

Marco Tabini & Associates, The MTA logo, phpl|architect, the php|architect logo, NanoBook and NanoBook logo are
trademarks or registered trademarks of Marco Tabini & Associates Inc.

Bulk Copies

Marco Tabini & Associates, Inc. offers trade discounts on purchases of ten or more copies of this book. For more
information, please contact our sales offices at the address or numbers below.

Credits
Written by Jason E. Sweat
Published by Marco Tabini & Associates, Inc.
28 Bombay Ave.
Toronto, ON M3H 1B7
Canada
(416) 630-6202
(877) 630-6202 toll free within North America
info@phparch.com / www.phparch.com
Edited By Martin Streicher
Technical Reviewer Marcus Baker
Layout and Design Arbi Arzoumani

Managing Editor Emanuela Corso

Biography

Jason E. Sweat

Jason graduated from Colorado State University in 1992 as a University Honor Scholar with a Bachelors of Science
in Business Administration, concentrations in Computer Information Systems and Finance & Real Estate, and a
minor in Mathematics.

He spent seven years working for a small engineering firm doing process control work in the steel industry. This let
to extensive SQL development and Jason's first web development experience creating ASP pages. He changed
employers and worked as a Senior Project Leader for a Fortune 100 industrial manufacturer, leading a team of
developers for commercial applications, and acting as the web master for his business unit. His role changed again
in January 2005, and Jason is now the Manager of eBusiness/Commercial Systems for the same business unit.

Jason has used PHP since 2001, where he was searching for a free<as in beer ;) (substitute for IIS/ASP to create
an accounting system for a home business. His Unix administrator pointed him towards Linux, Apache and PHP. He
has since adopted PHP as an intranet development standard at work, as well as using PHP in a Unix shell script-
ing environment.

He was a co-author of PHP Graphics Handbook (Wrox 2003), has published several articles for the Zend website
and for php|architect magazine, and has presented numerous talks on PHP at various conferences. Jason is a Zend
Certified Engineer, and maintains a blog at http://blog.casey-sweat.us/.

Jason currently resides in lowa with his wife and two children. He enjoys many activities with his family including
camping, hiking and swimming. He also enjoys practicing the Japanese martial art of Aikido.

To my wife, Vicki, and to my children, Madeline and Caleb,
for putting up with “even more” time with Daddy on the computer.
Thank you for your support and love.

CONTENTS

INtroductionccoiiiiiiinnnnnnnnnnnneeesdl?

The Goal of This BOOKo i 19
Object Oriented Programmingc.coiiiiiiiniiiiinneennnn.. 19
Assumed Reader Skill Set ... 19
PHP4 and PHPS oo e e 19
Object Handlesttt e et 20
Additional Resources and References i, 22
Acknowledgments 22

1 Programming Practices25

Testing Your Codeooiniiii i e e 25
Refactoringottt e 30
Other PractiCesttt e e e e e e e e 34
UM L . o 34
SoUrce CONtIOl . ..ot e e 35
Source Code Documentationouiriinn i, 35

2 The Value Object Pattern39

The Problem 41
The Solution e 41
PHP5Sample Codeot et 42
In Context Example i e 43
PHP 4 Sample Codeot et 47
Business Logic in ValueObjectsot iiiinnan. 49

3 The Factory Pattern53

The Problemt e e 53

10

Table of Contents

The Solution ... 53
Sample Codeottt e e e 54
Addinga Little Color i 57
Factories to Hide Object State Setupot 61
Factories to Promote Polymorphism L 63
Factories for Lazy Loadingc.c.iiiiiiiiiiiiiiiii s, 71
[SSUES . .o e 72

4 The Singleton Pattern75

The Problem 75
The Solution e 76
Sample Codet e e e 77
A“Global” Approach i e 77
AStatic Approach e e e 79
The Singleton in PHPS 80
ISSUES . .t e e e 81
The Monostate Pattern: Stealth Singletons 81

5 The Registry Pattern85

The Problem 85
The Solution ... 85
Sample Codettt e e e 86
An Example e e e 90
Implementing the Registry as a MonoState Object....................... 92
Implementing with Class Static Variables 95
[SSUES . . o 98
Embedded Registryoiiiiiiiiii i 98

6 The MockObject Pattern.....................101

The Problem e 101
The Solution o e e 102
Sample Codet e e 102
ALegacy Application 106
ISSUS . .o e 119

RESOUICES ..ottt e e e e e e e 120

Table of Contents

7 The Strategy Pattern123

The Problem i e e 124
The SoIUtion e e e e e 124
An Example e 124
Sample Codeooiii e 131
| STS] § < 134
Related Patternsiiniii i et et et 134

8 The IteratorPatternccooeeveeeeee...137

The Problem i e e e 137
The SoIUution e e e e e 138
Sample Codet e 142
AVariant Iterator AP e 148
Filtering Iterator it i 150
Sorting Iteratoro it e 151
QP It eratOr ..ottt e e e e e 153
| STS] § < 158

9 The Observer Patternccovvveeee....161

The Problem e e 161
The SOIULION ...t e e e e e e e et e 161
Sample Codeooii it e 162
LSS ittt e e e e e 170

10 The Specification Pattern...................173

The Problem 174
The Solution i 174
Traveling to Warm Destinations, 174
Sample Codeooii e e 176
Parameterized Specification i i 178

11 The Proxy Pattern..........................191
The Problem e e 191
The Solution e e e 191
Sample Codeovi it e e 194

1

12

Table of Contents

RemoteProxXyo e 194
Lazy ProXyt e 198
Dynamic ProxXyc.iiii i e 200
[SSUES . .\ 201

12 The DecoratorPatternccco0vveeee...203

The Problem e 203
The SoIUtion . ..o e e e e 204
Sample Codeoouii e 206
| S3S] § 1 216
13 The Adapter Pattern219
The Problem ... e 219
The SoIUtion . ..o e e e e e e e 219
Sample Codeoiniii e 220
ISSUES .« vttt e e e e e e e 224

14 The Active Record Pattern227

The Problem 227
The Solution e 227
Sample Codeoiniii e 228
Test Independenceouuiiiniiiniiin it 230
Record Creation oottt 231
Testing Database Failure i i 236
Active Record Instance ID i 237
Searching for Recordsiiiiii i 238
Updating Records e 240
ISSUES . oot e e 243

15 The Table Data Gateway Pattern247

The Problem e 247
The SoIUtion . ..o e e e e e e 247
Sample Codeooii e 248
Test Case StIUCKTUIE . ..ot i ittt e et et et ettt e 249

Returning Recordsets @S ATTaysuuieiinneeinneenneennn.. 250

Table of Contents 13

Returning Iterable Object Collections 252
Updating ROWS o 255
ISSUES . .o 258

16 The Data Mapper Pattern...................261

The Problem e e 261
The SoIUution e e e e e 262
Sample Codeooiii 263
| STS] § < 281

17 The Model-View-Controller Pattern283

The Problem e 283
The SoIUtion e e e e e 283
The Model-View-Controller i, 284
The Model e e e 285
Domain Model e 285
TE VIEW . . e 286
Template VIEWo 286
The Transform View e e 290
The Controller e e e e 291
Front Controllers e e e e 291
Application Controllerso i i 292
Cross-Cutting MVC CONCEINS . ..cviit ittt 295
Non-MVC Frameworkso i ci i 296
Event Handling o i e 296
Inversion of Control Containersttt innenann. 296
CONCIUSION ..ot 296

18CoNClusSion ...coovvviiiinieeeeeeeeeennnees 299

A Pattern Quick Reference303
BoOK Referencest e e 310

B SimpleTest Testing Practices313

Best Practices for Using SimpleTest, 314

14

Table of Contents

MOCK ODJECES . . oottt e 317
WeED TeStingiii i e et 319
Our Legacy Applicationottt i 320
Partial Mock Objectso e 325

INAEX oot iiiiiiiiiiieeeeesnsssnnneensnessssssed3]

Introduction

AVE YOU EVER STARTED to tackle a new feature in your application only to realize that its
solution is strikingly similar to something that you've already implemented? If you've been a
programmer for even a short time, the answer is probably “Yes” and it’s likely that you’ll reach
for some existing code to bootstrap your new development. You might even realize that your solution
is fundamental, an approach that can be applied widely and repeatedly, not just by you, but by all pro-
fessional developers.
In fact, many programming problems are faced over and over again, and many fundamental solu-
tions—or design patterns—have emerged to address them. Design patterns are a template for how to
organize your code so you can take advantage of a tried-and-true design.

18

®

Introduction

Design Pattern History

The term “design pattern” was originally coined in the field of architecture. Christopher Alexander, in
his 1977 work, “A Pattern Language: Towns/Building/Construction,” describes common issues of archi-
tectural design and explains how new, effective designs can be created through the aggregation of exist-
ing, well-known patterns. Alexander’s concepts translate well into software development, where it’s long
been desirable to construct solutions from previously existing components.

All design patterns have several common characteristics: a name, a problem statement, and a solu-
tion.

* The name of a design pattern is important, because it allows you to instantly communi-
cate the intent of your code with other programmers—at least programmers familiar
with patterns—without going into too much detail.

* The problem is the domain where the pattern can be applied.

* The solution describes the implementation of the pattern. Good coverage of a pattern
should discuss the pros and cons of the pattern’s use.

A pattern is a useful technique to solve a given problem. A design pattern isn't a library—code
to be included and used directly in your project—but rather a template for how your code can be
structured. Indeed, a code library and a design pattern are applied much differently.

For example, a shirt you buy off the rack at a department store is a code library. Its color, style,
and size were determined by the designer and manufacturer, but it meets your needs.

However, if nothing in the store suits you, you can create your own shirt—designing its form,
choosing a fabric, and stitching it together. But unless you are a tailor, you may find it easier to sim-
ply find and follow an appropriate pattern. Using a pattern, you get an expertly-designed shirt in far
less time.

Returning the discussion to software, a database abstraction later or a content management
system is a library—it’s pre-designed and already coded, and a good choice if it meets your require-
ments exactly. But if you're reading this book, chances are that off-the-shelf solutions don’t always
work for you. Yet you know what you want and are capable of realizing it; you just need a pattern to
guide you.

One last thought: like a sewing pattern, a design is of little use on its own. After all, you can’t wear
a pattern—it’s just a patchwork of thin paper. Similarly, a software design pattern is just a guide. It
must still be tailored specifically to a programming language and your application’s features and
requirements.

Introduction

The Goal of This Book

The goal of this book is not to present a comprehensive catalog of software design patterns or to
develop any new design patterns or terminology, but rather to highlight a few of the existing, well-
known design patterns. In particular, the book presents those patterns that I've found most useful
for development of dynamic web applications and shows reference implementations for these pat-
terns in PHP.

Object Oriented Programming
By the very nature of design patterns, a good deal of this book is based on the concepts and prac-
tices of Object Oriented Programming (OOP).

If youre not familiar with OOP, there are many resources—books, web sites, magazines, and
classes—to help you learn more about it. Much of the OOP materials extol the benefits of code reuse,
robustness, encapsulation, polymorphism, and extensibility, each of which is important and valuable.
However, I believe the main benefit of OOP is how it encourages you to distill the problem at hand
into manageable pieces. Designed and implemented in focused, small pieces, your code can be test-
ed more thoroughly and is easier to understand and maintain.

Assumed Reader Skill Set

This book assumes that you're already fluent with PHP. In particular, it presupposes that you have a
working knowledge of PHP and its syntax and understand the fundamentals of PHP’s implementa-
tion of OOP. This book isn’t intended to be an introduction to PHP programming, nor to OOP in PHP.

Because not all practitioners of OOP use the same terminology, where new terminology is intro-
duced, it’s defined in the text or in a sidebar.

PHP4 and PHP5

As I write this book, PHP5 has been released for some time but has yet to be widely adopted in the
hosting community. In my own job, I've started to migrate new development of applications to PHP
5.0.3 and am very pleased so far with both its backwards compatibility with PHP4 code and its new
object model, which is one of the significant new features of PHP5 and the main driver for my adop-
tion.

There are many fine articles and tutorials dealing with the nuances of the change in the object
model between PHP versions, but the short story is that PHP5 offers:

* Object handles (explained below, and further in Chapter 2: The Value Object Pattern)
e Better constructors (uniform name, changing $this not allowed)

19

20

Introduction

¢ Destructors now exist

* Visibility (public, protected, private for methods and attributes)

* Exceptions (an alternative to triggering errors using the new try{} catch{} syntax)
* Class constants (defines using the class for a name space)

* Reflection (dynamic examination of classes, methods and arguments)

* Type hinting (specifying expected classes or interfaces for method arguments)

PHP5 also offers a few more obscure features:

e New magic methods (__get() and __set() allow you to control attribute access;
_call1(Q) lets you dynamically intercept all method calls to the object; __sTeep() and
_wakeup() let you override serialization behavior; and __toString() lets you control
how an object represents itself when cast as a string)

* Autoloading (allows the end user to try to automatically load the class the first time a ref-
erence to it is made)

* Final (do not allow a method or a class to be overridden by subclasses)

Object Handles
The best news in PHP5 is all objects are now defined by handles, similar to a system resource like a
file or a database handle. Passing an object to a PHP function no longer implicitly makes a copy of
the object.

To see the difference, consider the following two examples:

// PHP4 class
class ExamplePl {
var $foo;
function setFoo($foo) {
$this->foo = $foo";
}
function getFoo() {
return $this->foo;
}
}
function changeExample($param) {
$param->setFoo(‘blah’);
return $param->getFoo();
}
$obj = new ExamplePl;
$obj->setFoo(‘bar’);
echo $obj->getFoo(); // bar
echo changeExample($obj); //blah
echo $obj->getFoo(); // bar

Introduction

In PHP4, the variable $param in changeExample() contains a copy of $obj. So, the function doesn’t
alter the value of $foo in the original object and the final $obj->getFoo() prints “bar.”

In PHP5, because $obj is passed as a handle, the same changeExample () function does effect the
original object. In other words, using handles, a copy isn’t made and $param is the instance $obj.

// PHP5 class
class Examplep2 {
protected $foo;
function setFoo($foo) {
$this->foo = $foo;
}
function getFoo() {
return $this->foo;
}
}
$obj = new Examplep2;
$obj->setFoo(‘bar’);
echo $obj->getFoo(); // bar
echo ChangeExample($obj); //blah
echo $obj->getFoo(); // IMPORTANT, produces blah

This issue becomes even more complicated when you pass the $this variable to other objects or
functions inside of the object constructor.
What this boils down to is that in PHP4 you need to (nearly) always:

« Create an object by reference, as in $obj =& new Class;

e Pass an object by reference, like function funct(&$obj_param) {}

e Catch an object by reference function &some_funct() {} $returned_obj =&
some_funct()

Now, there are some cases where you actually want to have a copy of the original object. In my PHP4
code, I always comment any non-reference assignment of an object as an intentional copy. In the
long run, such a brief comment can save you or anyone else maintaining your code a great deal of
headaches. Reference passing, object handles, and object copies are explored in greater detail in
Chapter 2, “The Value Object Pattern.”

Despite my personal preference to move towards PHP5 development, my feeling is that PHP4
will continue to be with us for quite some time and existing public projects should continue to sup-
port it. To that end, this book tries to provide equal footing to both versions of PHP. Whenever pos-
sible, both PHP4 and PHP5 versions of example code are provided and explained. Within each chap-
ter, each code block that changes from one version of PHP to another has a comment of // PHP4 or

21

22

Introduction

// PHP5 to indicate the change. Subsequent blocks of code are in the same version of PHP, until the
next switch is indicated.

Additional Resources and References
There are a number of great references available to help you learn more about design patterns. The
“bible” of design patterns is Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides (his seminal work is often referred to as
the “Gang of Four” or simply “GoE” in reference to the four authors). Throughout this book, the GoF
names of patterns are used as the canonical source.

Following “Design Patterns,” the next most useful book on design patterns for PHP web appli-
cation developers is Patterns of Enterprise Application Architecture by Martin Fowler. Fowler’s book
details many patterns that are of use specifically in the task of developing web application, in con-
trast with the broader coverage of general patterns in GoE

The Web offers many good resources for information on design patterns. One particular stand-
out is the Portland Pattern Repository at http://c2.com/ppr/.

A good site for reference patterns implemented in PHP is ::phpPatterns(), located online at

http://www.phppatterns.com/.

Acknowledgments
I would like to thank my employer, where my role and responsibilities allow me to spend a portion
of my time in this area I love, providing me with the knowledge and experience to have the confi-
dence to write this book.

Another source of inspiration, ideas, and experience is the SitePoint

(http://www.sitepoint.com/) forums. In particular, the regular contributors to the “Advanced PHP
Forum” have a great wealth of experience and knowledge, which they regularly share in one of the
most generous and helpful communities I've found on the Internet. It was through this resource I
located SimpleTest (http://simpletest.sf.net/), WACT (http://wact.sf.net/) and numerous other
PHP projects that I've found invaluable. I hope SitePoint continues to be a great resource for PHP

developers for many years to come.

This book clearly could not have come into existence without the significant efforts and dedica-
tion of the PHP team, who developed a useful, easy to learn, and versatile language that’s very well-
suited to the ecological niche of web applications.

Finally, I'd like to thank Marco Tabini and the staff of php|architect. The magazine has been a
source of many varied PHP topics, presented by professional developers with extensive knowledge
to share. The conferences organized by Marco and company have been great as well.

Programming
Practices

EARNING A NEW TECHNIQUE means adopting new practices. This chapter introduces, or per-
haps reinforces, several practices that you'll likely find very useful as you implement design pat-
terns in your code.
Many of the practices summarized here are worthy of an individual chapter, even an entire book.
You should consider this chapter an introduction to pattern-related practices with a PHP spin and
look at the references listed throughout to investigate a topic further.

Testing Your Code

Probably no other coding practice is as important as festing your code. With good testing comes great
freedom.

At first, that “motto” might strike you as counter-intuitive. If anything, you might assert, testing
seems an impediment to freedom. To the contrary: if you can run tests that completely exercise your
software’s public interface, you can change the internals of your implementation without changing (or

26

Programming Practices

worse, breaking) existing applications. Testing validates the veracity and accuracy of your published
interface, letting you readily change the inner workings of your code with complete confidence that
it remains accurate and bug-free — that you've not introduced new bugs or reintroduced old bugs.
Before talking more about the benefits of testing, let’s look at an example. All of the tests in this
book use the SimpleTest PHP testing framework, available at http://simpletest.org/.
Consider this code:

<?php

// PHP4

// the subject code

define(‘TAX_RATE’, 0.07);

function calculate_sales_tax($amount) {
round($amount * TAX_RATE,2);

}

// include test library
require_once ‘simpletest/unit_tester.php’;require_once ‘simpletest/reporter.php’;

// the test
class TestingTestCase extends UnitTestCase {
function TestingTestCase($name="") {
$this->UnitTestCase($name);

}

function TestSalesTax() {
$this->assertequal(7, calculate_sales_tax(100));
}
}

// run the test
$test = new TestingTestCase(‘Testing Unit Test’);
$test->run(new HtmlReporter());

The code defines a constant, TAX_RATE, and defines a function that calculates the amount of sales tax
owed. Next, the code includes the required SimpleTest components: the unit tester itself and a
“reporter” module that displays the results of the test.

The test itself, TestingTestCase, is a class that extends SimpleTest’s UnitTestCase class. By
extending UnitTestCase, all of the methods (except the constructor) within TestingTestCase that
begin with the word Test are used as test cases — code that creates conditions to exercise your code
and makes assertions about the results.

TestingTestCase defines one test, TestSalesTax(), which contains an assertEqual () assertion.
This assertion passes if its first two arguments are equal and fails otherwise. (If you'd like to display
an informative message if asserttqual() fails, pass a third argument, as in $this->assertEqual(7,
calculate_sales_tax(100), “The sales tax calculation failed”)).

Programming Practices

The last two lines in the code create an instance of the test case and run it with an Htm1Reporter.
You can run this test case simply by browsing to its web page.

Running the test shows the test name, the details of any assertions that failed, and a summary
“bar”. (A green bar indicates success (all assertions passed), while a red bar indicates failure (at least
one assertion did not pass).

The code above has an (intentional) error, so running it yields a failure such as this:

Testing Unit Test

Fal TestSalesTax -> Equal expectation fails because [Integer: 7] differs from [INULL] by 7 at line [20]

1/1 test cases complete: O passes, 1 fails and 0 exceptions.

What went wrong in calculate_sales_tax(), a simple, one-line function? You may have noticed that
the function doesn’t return a result. Here’s the corrected function:

function calculate_sales_tax($amount) {
return round($amount * TAX_RATE,2);

}

Rerunning the test with the corrected code passes. “If the bar is green, the code is clean.”

Testing Unit Test

1/1 test cases complete: 1 passes, 0 fails and 0 exceptions.

But a single test does not guarantee that the code is robust. For example, if you rewrote
calculate_sales_tax() as function calculate_sales_tax($amount) { return 7; }, the test would
pass, but would be correct only for the single dollar amount of 100. You can add additional Test
methods to test other static values...

27

28

Programming Practices

function TestSomeMoreSalesTax() {
$this->assertequal (3.5, calculate_sales_tax(50));

}

. or change TestSalesTax() to validate the results of a second (and third, and so on) value:

function TestSalesTax() {
$this->assertEqual(7, calculate_sales_tax(100));
$this->assertEqual(3.5, calculate_sales_tax(50));
}

Better yet, you might add another test that chooses values at random to give you more confidence
in your code:

function TestRandomvaluesSalesTax() {
$amount = rand(500,1000);
$this->assertTrue(defined(‘TAX_RATE’));
$tax = round($amount*TAX_RATE*100)/100;
$this->assertequal($tax, calculate_sales_tax($amount));

}

TestRandomvaluesSalesTax() introduces assertTrue(), which passes if the first parameter evalu-
ates to the boolean value true. (Like the assertEqual() assertion, assertTrue() also takes an
optional, additional argument to present an informative failure message.) So,
TestRandomvaluesSalesTax() asserts that the constant TAX_RATE has been defined and then uses
that constant to calculate what the tax should be on the randomly selected amount.

TestRandomvaluesSalesTax() has a problem, though: it depends greatly on significant details
from the actual implementation of the calculate_sales_tax() function, probably more than what’s
ideal for testing. Tests should be insensitive to the specifics of an implementation. Perhaps a better
test might just be to establish a reasonable boundary and test for it. The following test assumes and
asserts that sales tax rate will never be more than 20%:

function TestRandomvaluesSalesTax() {
$amount = rand(500,1000);

Programming Practices

$this->assertTrue(calculate_sales_tax($amount)<$amount*0.20);
}

Making sure your code works is the primary benefit of testing, but there are additional, secondary
benefits that you can realize by thoroughly testing your code:

* Testing forces you to write code that is easily testable. This leads to looser coupling, flex-
ible designs, and good modularity.

* Writing tests forces you to explicitly clarify your expectations of how your code is to
behave, distilling your design into sharper focus from the beginning. Writing tests forces
you to consider the universe of possible inputs and the corresponding results.

* Tests are a very explicit way of communicating the intent of your code. In other words,
test cases act as examples and documentation, showing exactly how a given class,
method, or function should behave. In this book, I sometimes demonstrate the desired
effect of code via a test case. By reading a test method’s assertions, you can see how the

code is intended to operate. A test case defines how code works in a non-ambiguous
way.

Finally, if your test suite—your set of test cases—is very thorough, you can say your code is com-
plete when all of your tests pass. Interestingly, that notion is one of the hallmarks of Test Driven
Development.

Test Driven Development (TDD), also referred to as 7Test First Coding, is a
methodology that takes testing one step further: you write your tests before you ever
write any code. A nice, brief summary of the tenants of TDD is available at
http://xprogramming.com/xpmag/testFirstGuidelines.htm, and a good introductory book on the
strategy is “Test Driven Development: By Example” by Kent Beck. (The book’s examples are in Java,
but it’s a quick read and gives you a very good overview and introduction to the subject.)

Agile Development

Recently, unit testing — in particular Test Driven Development — has been associated with agile devel-
opment methodologies such as Extreme Programming (XP) that focus on rapid iterations of releasing
functional code to customers and welcoming changing customer requirements as a natural part of the
development process. Some good online resources for learning about agile development include:

» http://en.wikipedia.org/wiki/Agile_software_development

« http://agilemanifesto.org

e http://www.extremeprogramming.org/

29

30

®

Programming Practices

Testing Works for Functions, Too

Most of the examples of testing shown in this book test object-oriented code, but all forms of program-
ming can benefit. Unit testing frameworks, like PHPUnits or SimpleTest, can very easily test functions,
too. Consider the SimpleTest example above, which tested the calculate_sales_tax() function.
Procedural programmers of the world: include unit tests cases with your function libraries, too!

I hope you get infected after this discussion—“Test infected!” (This term, coined by Erich Gamma,
is detailed in the article at http://junit.sourceforge.net/doc/testinfected/testing.htm.) As Gamma

writes, you may feel that testing is cumbersome at first, but after you begin to build an extensive test
suite for your software, you’ll begin to have more confidence in all of your code.

Refactoring

Even the most thoughtful and skilled programmer cannot anticipate every nuance and subtlety of a
software project. Problems crop up unexpectedly, requirements can and do change, and as a result,
code is refined, shared, and obsoleted.

Refactoring is the practice of examining all of your code, looking for commonalities and similar-
ities that can be unified and simplified to make the code easier to maintain and extend. Refactoring
also includes recognizing when a design pattern can be applied to a problem—again to make solu-
tions simpler.

Refactoring can be a simple as renaming an attribute or method, or can be as complex as col-
lapsing an existing class. Changing your code to make it match one or more design patterns is
another kind of refactoring—something you may do after reading this book.

Nothing explains refactoring better than an example.

Let’s take two simple classes, CartLine and Cart. CartLine records the per unit price and the
quantity of each item added to a shopping cart. For example, CartLine might record “four red polo
shirts at $19.99 each.” Cart is a container for one or more CartLine objects and performs calculations
such as the total cost of all items in the cart.

Here is a simple implementation of Cartline and Cart:

// PHPS

class CartLine {
public $price = 0;
pubTic $qty = 0;

}

class cart {
protected $lines = array();

Programming Practices

public function addLine($1ine) {
$this->Tines[] = $1ine;

}

public function calcTotal() {
$total = 0;
// add totals for each Tine
foreach($this->Tlines as $1ine) {
$total += $line->price * $line->qty;

// add sales tax
$total *= 1.07;
return $total;

The first step in refactoring is to have adequate test coverage for your code. That ensures that your
modified code does not produce different results from your original code. By the way, unless you
change a requirement (the intended result of your code) or find a bug in a test case, your tests should
not change.

Here is a sample test for CartLine and Cart, which won't change during refactoring:

function TestCart() {
$1inel = new CartLine;
$linel->price = 12; $1linel->qty = 2;
$1ine2 = new CartLine;
$1ine2->price = 7.5; $1line2->qty = 3;
$1ine3 = new CartLine;
$1ine3->price = 8.25; $line3->qty = 1;

$cart = new Cart;

$cart->addLine($1inel);
$cart->addLine($1ine2);
$cart->addLine($1ine3);

$this->assertequal(
(12%2 + 7.5%*3 + 8.25) * 1.07,
$cart->calcTotal());

Looking at the code for CartLine and Cart, there are several “code smells”—curious looking and
seemingly problematic code—that are likely candidates for refactoring. (Point your nose at
http://c2.com/cgi/wiki?Codesmell for more telltale code smells.) Two immediate candidates for

refactoring are the comments and calculations related to line totals and sales tax. One form of refac-
toring, Extract Method, would pull these uglier pieces of code out of the flow of Cart::calcTotal()

31

32

Programming Practices

and replace them with appropriately named methods that make the overall flow clearer.
For example, you might add two calculation methods, TineTotal() and calcSalesTax():

protected function lineTotal($1ine) {
return $line->price * $line->qty;

}

protected function calcSalesTax($amount) {
return $amount * 0.07;

}

Now, you can rewrite calcTotal () as:

public function calcTotal() {
$total = 0;
foreach($this->Tines as $1ine) {
$total += $this->TineTotal($1ine);
}
$total += $this->calcsalesTax($total);
return $total;

Since the changes made so far are significant (at least in the context of this example), it’s beneficial
to pause and run the test again to verify that the results are still correct. Remember, a green bar indi-
cates success!

However, there are still some nagging doubts about the current code. One is the access of pub-
lic properties in the new 1ineTotal () method. It’s clear that the responsibility for calculating the line
total doesn’t belong in the Cart class, but should be in CartLine instead.

Refactoring again, add a total () method to CartLine to calculate the extended price of an item
in the order ...

public function total() {
return $this->price * $this->qty;
}

... then remove lineTotal () method from Cart, and change the calcTotal () method to use the new

Programming Practices

CartLine::total() method. Then run the test again, looking for the green bar.
The newly refactored code is thus:

class CartLine {
public $price = 0;
public $qty = 0;
public function total() {
return $this->price * $this->qty;
}
}

class cart {
protected $lines = array();

public function addLine($1ine) {
$this->Tines[] = $Tine;

}

public function calcTotal() {
$total = 0;
foreach($this->lines as $1ine) {
$total += $Tine->total();
}
$total += $this->calcSalesTax($total);
return $total;

}

protected function calcSalesTax($amount) {
return $amount * 0.07;
}
}

Now the code no longer requires inline comments, because the code itself documents what is hap-
pening much better. The new methods better encapsulate the calculation, allowing more flexibility
in the future if the calculation must change (say, to consider different sales tax rates). In addition, the
classes are now more balanced, maintaining code in better alignment with each classes role.

This example is obviously trivial, but hopefully you can extrapolate and envision what this can
do for your own code.

When coding, you should be in one of two modes: adding features or refactoring. When adding
features, write tests and add code. When refactoring, change only existing code, making sure all that
all relevant tests still run correctly.

The primary reference on refactoring is Refactoring: Improving the Design of Existing Code by
Martin Fowler. To be so bold as to summarize Fowler’s book in a few bullet points, the steps in refac-
toring are:

33

34

Programming Practices

¢ Identify the code in need of refactoring.

* Have test coverage for the code.

* Work in small steps.

* Run your tests after each step. Code and test in quick iterations — which is much easier
in an interpreted language like PHP as compared with compiled languages.

* Use refactoring to make your more readable and to improve performance.

Other Practices
There are several other practices that are worthy of mention and valuable to incorporate into your
own coding habits.

UML

The Unified Modeling Language (UML, a synthesis of the notations of Booch, Rumbaugh, and
Jacobson) is a programming language- and vendor-independent notation for describing object ori-
ented programming concepts. General information on UML can be found at http: //www.uml.org/.

There are many aspects to UML, but the two most relevant for PHP developers are the class dia-
gram and the sequence diagram.

The class diagram describes one or more classes and how the classes relate to each other in your
program. Each class is represented by a box with up to three divisions: the first division is the name
of the class; the second division enumerates the classes attributes (variables); and the last division
lists the class’s methods. The visibility of attributes and methods are designated with + for public, —
for private, and # for protected.

Person

+first name: string Address

+last_name: string +street: string
-addresses: Array +city: ;tring

+addAddress (Address) |-@w——- +state: string
+postal code: string

The sequence diagram illustrates the typical interaction of objects in the code for a particular task
or event. A sequence diagram conveys when different methods are called, by whom, and in what
order (hence the name, “sequence diagram”), and are incredibly useful instruments to communicate
interactions between sets of objects to other developers.

In my own work, I typically use
both kinds of diagrams to sketch
out designs, but rarely formalize
them into project documentation.
Often, the relationships between
objects change as your knowledge
of the system evolves and as user
requirements change, and the dia-
grams can age quickly. That being
said, “A picture is worth a thousand
words.” These diagrams can be
very useful in communicating the
design of a system to new develop-
ers and can serve as documenta-
tion for developers that use your
software.

Source Control
“Save code early and often” is
valuable

another developer

mantra. Even if youre the sole
developer on a project, you should
maintain everything under source

control.

While there are many source control solutions available, two are standouts: CVS
(https://www. cvshome.org/) and Subversion (http://subversion.tigris.org/). CVS is a very popular

solution, used by both the PHP and Apache projects. Meanwhile, Subversion is rapidly becoming a

Programming Practices

Mailer ContactFinder Contact
T T T
— | |
| |
<<Create>> — |
ContactFinder L
FindByld
<<Create>>
Contact
Contact
T
getEmailAddress |
| -
I emailAddress
= - - - - - = o Rl
|
|
|
|
|

popular alternative, because the project’s design has overcome several of CVS’s shortcomings (par-

ticularly in the areas of atomic commits and moving/renaming directories and files). However, fewer

projects run Subversion servers.

I have adopted use of CVS for projects at work, and the chapters and code in this book were

maintained in a Subversion repository.

Source Code Documentation

If you flip through the pages of this book, you may notice some distinctly formatted comment blocks

similar to:

35

36

Programming Practices

/;“H‘:
* funny multi-Tine comments
* @something what is this?

These are docblocks and are used by programs like phpDocumentor (http://phpdocu.sf.net/) to
automatically generate application programming interface (API) documentation for your PHP proj-
ects.

Docblocks are specifically formatted multi-line comments that start with /**, continue on each
subsequent line with a leading *, and are terminated by */, with white space allowed before each
prefix (which allows docblocks to be indented at the same level as your code).

The @something represents a “tag,” which clarifies information when the documentation is con-
verted to the parsed format. An example of a tag is @private, which was used in PHP4 to mark a
method or attribute of a class as private, since the language did not provide that capability natively
(all functions and variables are public in PHP4).

Source code documentation such as docblocks serve both as a useful reference and as an adver-
tisement for open source projects. One example (that I help to maintain) is the SimpleTest API doc-
umentation at http://simpletest.org/.

The Value
Object Pattern

n all but the simplest applications, most objects have an “identity.” An important business object,

such as a Customer or a SKU, will have one or more attributes—an ID, or a name and an email

address, say—that differentiate it from other instances of the same class. Moreover, an object with
an identity “persists”: it’s a singularity that exists across the entire application. To you, the program-
mer, “Customer A” is “Customer A” everywhere, and changes to “Customer A” endure for as long as
your application is running.

But an object need not have an identity. Some objects merely describe the characteristics of other
objects.

For example, it's common to use an object to represent a date, a number, or money. A Date,
Integer, or Dollar class is a handy—and inexpensive—encapsulation, easily copied, compared, or
created when needed.

At first blush, small descriptive objects may seem a cinch to implement: they’re just (tiny or small)
classes, no different in structure than a Customer or SKU. That’s almost right, but “almost right” leads to
bugs.

40 The Value Object Pattern

Consider the following implementation of a dollar that’s almost right (the class is named
BadDollar because it’s not an ideal implementation). See if you can find the bug.

// PHPS
class Badbollar {
protected $amount;
public function __construct($amount=0) {
$this->amount = (float)$amount;
}
pubTic function getAmount() {
return $this->amount;

}
pubTic function add($dollar) {
$this->amount += $dollar->getAmount();
}
}

class work {
protected $salary;

public function __construct() {
$this->salary = new Badbollar(200);
}

public function paybay() {
return $this->salary;
}
}

class Person {
public $wallet;
}

function testBadbollarworking() {
$job = new work;
$pl = new Person;
$p2 = new Person;

$pl->wallet = $job->payDay(Q);
$this->assertequal (200, $pl->wallet->getAmount());
$p2->wallet = $job->payDay();
$this->assertequal (200, $p2->wallet->getAmount());

$pl->wallet->add($job->paybay());

The Value Object Pattern

$this->assertequal (400, $pl->wallet->getAmount());

//this is bad - actually 400
$this->assertequal (200, $p2->wallet->getAmount());

//this is really bad - actually 400
$this->assertequal (200, $job->paybay()->getAmount());

So, what's the bug? If the test case didn’t make the problem apparent, here’s a hint: employees $pl
and $p2 share the same BadDol1ar.
First, instances of Work and Person are created. Then, assuming that each person initially has an
empty wallet, Person: :wallet is set to the BadDo11ar object returned by Work: :paybay ().
Remember your “friend” the PHP 5 object handle? Because of it, $job::salary, $pl::wallet,
and $p2::wallet, three conceptually different objects with different “identities,” actually all refer to
the same object.
So, the second pay day, $job->paybay(), which was intended just to fatten the wallet of $p1,
inadvertently pays $p2 again and changes the base $salary of $job. Hence, the last two assertions
fail:

value Object PHP5 Unit Test

1) Equal expectation fails because [Integer: 200] differs from [Float: 400] by 200
in testBadbDollarworking
in valueObjTestCase

2) Equal expectation fails because [Integer: 200] differs from [Float: 400] by 200
in testBadDollarworking
in valueObjTestCase

FAILURES!!!

The Problem

So, how do you implement a lightweight, or easy to construct, descriptive object like Date or Dol1ar?

The Solution
Lightweight objects should behave like PHP integers: if you assign the same object to two different
variables and then change one of the variables, the other variable should remain unaffected. And
indeed, this is the goal of the Value Object pattern.

Implementing Value Object differs between PHP 4 and PHP 5.

1

42

The Value Object Pattern

As you saw above, PHP 5’s (new) method of referring to objects via a handle—a paradigm we
typically try to emulate with references in PHP 4—is an issue. To solve that problem and implement
a proper Dollar Value Object, make the $amount attribute—and, in the general case, all attributes of
a Value Object—immutable, or unchangeable. While PHP does not provide immutability as a facili-
ty of the language, you can combine attribute visibility and getter and setter methods to simulate it
adequately.

In contrast, PHP4 (almost) treats all objects like Value Objects, because the PHP4 assignment
operator = makes a copy of the object if you omit the reference operator & To implement Value
Objects in PHP 4, simply break your carefully-cultivated habit of always creating, passing and catch-
ing objects by reference.

Terminology - Immutable
The dictionary definition of immutable is “not capable of or susceptible to change”. In programming, the
term denotes a value that does not change once it’s been set.

PHP 5 Sample Code

Since we started with PHP 5 code, let’s flesh out a PHP 5 Value Object implementation and build a
better Do11ar class. Naming is very important in OOP: selecting a single currency type as the name
of this class explicitly declares that it doesn’t handle multiple forms of currency.

class Dollar {
protected $amount;

public function __construct($amount=0) {
$this->amount = (float)$amount;

}

public function getAmount() {
return $this->amount;

}

pubTic function add($dollar) {
return new Dollar($this->amount + $dollar->getAmount());
}
}

Using protected $amount so the attribute Do1Tar: :amount is not accessible from outside of the class
itself is the first step towards making Dollar: :amount immutable. protected (and private) denies
direct access to the attribute.

The Value Object Pattern

Normally, when you use this OOP idiom, you create a “setter” function like public
setAmount($amount) { $this->amount = S$amount; }. In this case, no setter function has been
defined since Dol1ar: :amount is set during the instantiation of the object. Dollar: :getAmount() is
an accessor method, giving public access to the Dollar objects amount as a float.

The most interesting change is in the Dol1ar::add() method. Instead of changing the value of
$this->amount, thereby altering the state of the existing Dollar instance, the method creates and
returns a new instance of Dollar. Now, even if you assign this object to multiple variables, each is
insulated from changes made to any other.

Immutability is key to the Value Object pattern. Any change to the amount of a Value Object is
accomplished by creating a new instance of the class with the different desired value. Above,
$this->amount never changes.

To review briefly, the fundamentals of the ValueObject pattern in PHP 5 are:

1. Protect the attributes of a Value Object so direct access is forbidden.
2. Set the object’s attributes in the constructor.
3. Provide no “setter” functions, which otherwise allow attributes to be altered.

These three steps create an immutable value—one that can not change after it’s initially set. Of
course, you should also provide “getters,” or methods to access a Value Object’s attributes and pro-
vide any functions that are germane to the class. A Value Object need not be a simple structure,
either; it can hold important business logic as well. Let’s look at that next.

In Context Example
Let’s explore the Value Object pattern in the context of a larger example. Let’s begin an implementa-
tion of a game of Monopoly, building upon the PHP 5 Dol1ar class created above.

The first class is Monopoly, a frame to build on:

class Monopoly {
protected $go_amount;
/**
* game constructor
* @return void
*/
public function __construct() {
$this->go_amount = new Dollar(200);

}
/**
* pay a player for passing “Go”
* @param Player $player the player to pay

43

44 The Value Object Pattern

* @return void
:’:/
public function passGo($player) {
$player->collect($this->go_amount);
}
}

So far, the Monopoly class is very minimal. The constructor creates $go_amount, an instance of the
DolTar Value Object class, set to $200. $go_amount is used by passGo(), which takes a Player as an
argument and tells the Player to collect() $200.

Player should be next. The Monopoly class calls a Player::collect() method with one argu-
ment, a Dollar, to add that Dol1ar amount to the player’s cash balance. In addition to that method,
let’s add the method Player: :getBalance() to access a player’s cash reserve current to validate that
the Player and Monopoly objects are working,

class Player {
protected $name;
protected $savings;
/7‘:1‘:
* constructor
* set name and initial balance
* @aram string $name the players name
* @return void
*/
public function __construct($name) {
$this->name = $name;
$this->savings = new Dollar(1500);
}
Vi
* receive a payment
* @aram Dollar $amount the amount received
* @return void
*/
public function collect($amount) {
$this->savings = $this->savings->add($amount);

}

* return player balance
* @return float
*/
pubTic function getBalance() {
return $this->savings->getAmount();
}
}

The Value Object Pattern

Given Monopoly and Player, you can now write a test case for what’s been implemented so far.

MonopoTlyTestCase might look like:

class MonopolyTestCase extends UnitTestCase {
function TestGame() {

$game = new Monopoly;
$playerl = new Player(‘Jason’);
$this->assertequal (1500, $playerl->getBalance());
$game->passGo($playerl);
$this->assertequal (1700, $playerl->getBalance());
$game->passGo($playerl);
$this->assertequal (1900, $playerl->getBalance());

If you run MonopolyTestCase, you should get a green bar. Time to continue adding features.

Another important concept in Monopoly is paying rent. Let’s write a test case first (a la Test
Driven Development) to set the goals for the next round of coding:

function TestRent() {
$game = new Monopoly;
$playerl = new Player(‘Madeline’);
$player2 = new Player(‘cCaleb’);
$this->assertequal (1500, $playerl->getBalance());
$this->assertEqual (1500, $player2->getBalance());

$game->payRent($playerl, $player2, new Dollar(26));

$this->assertequal (1474, $playerl->getBalance());
$this->assertEqual (1526, $player2->getBalance());

Looking at the test, the payRent () method needs to be added to the Monopoly class to allow one play-

er to pay rent to another.

Class Monopoly {
YV
Vi
* pay rent from one player to another
* @param Player $from the player paying rent
* @param Player $to the player collecting rent
* @param Dollar $rent the amount of the rent

45

46 The Value Object Pattern

* @return void
*/
public function payrRent($from, $to, $rent) {
$to->collect($from->pay($rent));
}
}

payRent() effectuates the transaction between two players, $from and $to. Player::collect()
already exists, but the Player: :pay() method must be added to let $from pay() aDollar amount to
$to. Player: :pay () might look like:

class Player {
/] ..
public function pay($amount) {
$this->savings = $this->savings->add(-1 * $amount);
}
}

Unfortunately, you can’t multiply an object by a number in PHP (unlike some programming lan-
guages, PHP does not allow for the overloading of operators, which might allow for a construct like
this). Instead, add a debit() method to Dollar to perform subtraction.

class Dollar {
protected $amount;
pubTic function __construct($amount=0) {
$this->amount = (float)$amount;
}
public function getAmount() {
return $this->amount;

}
public function add($dollar) {
return new Dollar($this->amount + $dollar->getAmount());
}
public function debit($dollar) {
return new pollar($this->amount - $dollar->getAmount());
}
}

Given Dollar: :debit(), Player: :pay() remains simple:

The Value Object Pattern 47

class Player {
/...
* make a payment
* @param Dollar $amount the amount to pay
* @return Dollar the amount payed
*/
public function pay($amount) {
$this->savings = $this->savings->debit($amount);
return $amount;
}
}

Player::pay() returns the $amount paid so the statement in Monopoly::payRent() of
$to->collect($from->pay($rent)) works properly. This can help in the future if you refine the
“business logic” to not allow a payment greater than the player’s balance. (Such a circumstance
would then return the players balance and perhaps raise a “BankruptException” to calculate a mod-
ified payment instead of the full amount. The $to player would still want to collect as much as pos-
sible from player $from.)

Terminology — Business Logic

Mentioning “business logic” in the context of modeling a board game may seem odd. The business here
does not refer to companies engaged in the act of commerce, but rather to the concept of application-
specific requirements in the domain the application is addressing. Think of the definition of business as
“an immediate task or objective,” as in “What is your business here?”,

Of course, given the problem domain for Monopoly, perhaps the connotations of “business logic” apply

just the same.

PHP 4 Sample Code
Unlike PHP 5, PHP 4’s copy-by-value object semantics work naturally with the Value Object pattern.
However, because PHP 4 does not support property or method visibility, implementing a Value
Object in PHP 4 has its nuances as well.

If you recall, the “Object Handles” section of the Preface of this book presented three “rules” to
“nearly always” apply when working with objects in PHP 4 to simulate PHP 5’s object handles:

1. Create objects by reference ($obj =& new Class;)
2. Pass objects by reference (function funct(&$obj_param) {})

48

The Value Object Pattern

3. Catch by reference (function &some_funct() {} $returned_obj =& some_funct())

The Value Object pattern is one significant exception to the “nearly always” part of these rules. Just
ignore the rules and you’ll always get a copy of the PHP 4 object (the equivalent of the PHP5 “clone”
operation, described at http://www.php.net/manual/en/language.oop5.cloning.php.

While PHP 4 makes object copying a breeze—its an inherent behavior in the language—
immutability can only be realized by convention. To create Value Objects in PHP 4, never create or
catch Value Objects by reference, and prefix all “private” property or method names prefixed with an
underscore (_). By convention then, variables that hold Value Object attributes should be with an
underscore to indicate it’s private.

Here is the Dol1ar class in PHP 4:

// PHP4
class Dollar {
var $_amount;
function Dollar($amount=0) {
$this->_amount = (float)$amount;
}
function getAmount() {
return $this->_amount;
}
function add($dollar) {
return new Dollar($this->_amount + $dollar->getAmount());
}
function debit($dollar) {
return new Dollar($this->_amount - $dollar->getAmount());

}
}

And here is a test case that demonstrates you can not make an immutable property in PHP4:

function TestChangeAmount() {
$d = new Dollar(5);
$this->assertEqual(5, $d->getAmount());
//only possible in php4 by not respecting the _private convention
$d->_amount = 10;
$this->assertequal (10, $d->getAmount());

Again, in all PHP 4 objects, prefix private variables with an underscore, and do access such private
properties and methods directly.

The Value Object Pattern

Business Logic in ValueObjects
Value Objects need not be restricted to be simple structures of data with minimal accessor methods;
they can contain valuable business logic as well. Consider the case where you want to divide money
equally among a number of people.

If the amount is divisible exactly, you might return an array of Dol1ar objects, with each contain-
ing one of the equal portions. But what happens when the amount to be divided does not divide
equally into round numbers of dollars and cents?

Let’s start coding with a few simple test cases:

// PHPS
function testDollarDivideReturnsArrayofDivisorsize() {
$full_amount = new Dollar(8);
$parts = 4;
$this->assertIsA(
$result = $full_amount->divide($parts)
,’array’);
$this->assertEqual($parts, count($result));
}

assertisA

The assertIsA() assertion lets you test if a particular variable is an instance (or descendant) of a named
class. You can also use this assertion to validate against PHP base types like string, number, or array as
well.

ADollar::divide() method could pass this test by being coded as...

public function divide($divisor) {
return array_fil1(0,$divisor,null);

}

.. s0 it'd be better to add more specifics:

function testDollarDrivesequallyForExactMultiple() {
$test_amount = 1.25;
$parts = 4;
$dol1lar = new Dollar($test_amount*$parts);
foreach($dollar->divide($parts) as $part) {

49

50

The Value Object Pattern

$this->assertIsA($part, ‘Dollar’);
$this->assertequal($test_amount, $part->getAmount());
}
}

Now, instead of just being the correct size array, the returned array must be populated with Dollar
objects of the correct amount. The implementation can still be a one liner:

public function divide($divisor) {
return array_fil11(0,$divisor,new Dollar($this->amount / $divisor));

The last feature to code is the possibility of rounding errors caused by a divisor that does not divide

evenly into the Dol1lar amount. That’s a sticky point: does the first portion or the last portion get the

extra penny if there’s a rounding issue? How can that be tested independent of the implementation?
One means is to specify the end goal of the code explicitly: the size of the array should be equal

to the number of parts, no part should differ more than $0.01 from any other part, and the sum of all

the part’s amounts should equal the value of the amount being dividing.

This expressed as a test case is:

function testDollarDivideImmuneToRoundingErrors() {
$test_amount = 7;
$parts = 3;
$this->assertNotequal(round($test_amount/$parts,2),
$test_amount/$parts,
"Make sure we are testing a non-trivial case %s’);
$total = new Dollar($test_amount);
$last_amount = false;
$sum = new Dollar(0);
foreach($total->divide($parts) as $part) {
if ($last_amount) {
$difference = abs($last_amount-$part->getAmount());
$this->assertTrue($difference <= 0.01);
}
$last_amount = $part->getAmount();
$sum = $sum->add($part);
}

$this->assertequal($sum->getAmount(), $test_amount);

®

The Value Object Pattern

assertNotEqual
The assertNotEqual() assertion fails if the first two arguments passed to it satisfy a PHP = conditional
test. You can use it in test cases whenever you need to make sure two values are different.

With some test cases in hand, how does Dollar: :divide() shape up?

class Dollar {
protected $amount;
public function __construct($amount=0) {
$this->amount = (float)$amount;
}
public function getAmount() {
return $this->amount;

}
public function add($dollar) {
return new Dollar($this->amount + $dollar->getAmount());
}
public function debit($dollar) {
return new Dollar($this->amount - $dollar->getAmount());

public function divide($divisor) {
$ret = arrayQ;
$alloc = round($this->amount / $divisor,2);
$cumm_alloc = 0.0;
foreach(range(1, $divisor-1) as $i) {
$ret[] = new Dollar($alloc);
$cumm_alloc += $alloc;
}
$ret[] = new pollar(round($this->amount - $cumm_alloc,2));
return $ret;

This code works, but still has some issues. Consider boundary conditions like changing the begin-
ning of testbollarDivide() to $test_amount = 0.02; $num_parts = 5;. Or consider what happens
when you don'’t provide an integer divisor?

The methodology to solve issues like these? Use the Test Driven development cycle: add a test
case, observe for failure, code to allow the new test case to pass, and refactor if needed. Repeat as
necessary.

51

The Factory
Pattern

N OBJECT-ORIENTED PROGRAMMING, the most common way to create an object is with the new
operator, the language construct provided to do just that. But in some cases, new can be problem-
atic. For instance, the creation of many kind of objects requires a series of steps: you may need to
compute or fetch the object’s initial settings; you might have to choose which of many sub classes to
instantiate; or perhaps you have to create a batch of other helper objects before you can create the
object you need. In those cases, new is a “process” more than an operation—a cog in a bigger machine.

The Problem

How can you create such “complex” objects easily and conveniently—without cut-and-paste pro-
gramming?

The Solution
Create a “factory”—a function or a class method— to “manufacture” new objects. To understand the

54

The Factory Pattern

value of a factgory, think about the difference between ...

$connection =& new MySqlConnection($user, S$password, $database);

... spread throughout your code, and the more concise ...

$connection =& create_connection();

The latter code snippet centralizes the code to create a database connection in the create_connec-
tion() “factory,” and, following the analogy earlier, transforms the process of creating the database
connection to a simple operation—an operation just like new. The Factory pattern injects “intelli-
gence” to object creation. It encapsulates the creation of an object and returns the new object to the
caller.

Need to change the structure of an object and how it’s created? Just go to the object’s factory and
change the code once. (The Factory pattern is so useful, it’s foundational, meaning that it appears
again and again in many other complex patterns and applications.)

Sample Code
The Factory pattern encapsulates the creation of objects. You can create a Factory within the object
itself or in an external Factory class—the exact implementation depends on the needs of your appli-
cation. Let’s look at an example of a Factory.

The application code below repeats the same code to create a database connection in multiple
places:

// PHP4
class Product {
function getList() { $db =& new MysqlConnection(DB_USER, DB_PW, DB_NAME);
//...
}
function getByName($name) { $db =& new MysqlConnection(DB_USER, DB_PW, DB_NAME);
/]
}
/]

The Factory Pattern

Why is this bad? Connection parameters are spread all over, and while I've shown the parameters as

constants, implying you have a way to define them centrally and globally, the solution is obviously

not optimal:

* While you can change the values of the parameters easily, you cannot add or change the

order of parameters without changing (at least) two sections of code.

*You cannot easily instantiate a new class to use another kind of database connection, say

a PostgresqlConnection.
o It is difficult to separately test and validate the behavior of the connection object.

The code would be much improved with the use of a Factory:

class Product {
function getList() {

$db =& $this->_getConnection();
//-..
1
function & getConnection() {
return new MysqlConnection(DB_USER, DB_PW, DB_NAME);
1
1

The class method _getConnection() centralizes the otherwise repetitious
MysqglConnection(DB_USER, DB_PW, DB_NAME) calls found in the class’s other methods.
Here’s another variation of a Factory, this one a static call to a Factory class:

class Product {
function getList() {
$db =& DbConnectionBroker::getConnection();
//.--
1
}

class DbConnectionBroker {
function &getConnection() {
return new MysqlConnection(DB_USER, DB_PW, DB_NAME);
1
}

new

DbConnectionBroker: :getConnection() produces the same result as the previous Factory, but has a

55

56 The Factory Pattern

distinct advantage: it replaces the repeated new MysqlConnection(DB_USER, DB_PW, DB_NAME) calls
in every method in every class that uses the database.
Yet another variation is a call to a Factory class that’s been previously associated with the object:

class Product {
var $_db_maker;
function setDbFactory(&$connection_factory) {
$this->_db_maker =& $connection_factory;
}
function getList() {
$db =& $this->_db_maker->getConnection();
/]
}
}

Lastly, a Factory can be implemented as a procedural function, a reasonable way to achieve global
visibility for the Factory:

function &make_db_conn() {

return new MysqlConnection(DB_USER, DB_PW, DB_NAME);
}

class Product {
function getList() {
$bar =& make_db_conn();
/...
}
}

Here’s a UML class diagram for an idealized implementation of the Factory:

ConcreteFactory

+Factory() — — Y| ConcreteProduct

ConcreteProduct

Factory() returns new 1

The Factory Pattern 57

Adding a Little Color
To go into the Factory pattern in more detail, let’s take a small segue and build a simple class that can
serve as an example for the rest of the chapter. Let’s build a class to output an HTML RGB color in
hex. The R, G, and B values are passed in as three arguments to the constructor and a function
getRgb() returns a string of the hex color value.

As before let’s follow the Test Driven Development (TDD) methodology: write a test, write the
code to satisfy the test, refactor if needed, and repeat.

Here’s a very simple initial test:

function TestInstantiate() {
$this->assertIsA($color = new Color, ‘Color’);
$this->assertTrue(method_exists($color, ‘getRgh’));

}

The code to satisfy this test looks just like the pseudo-code you might sketch out on a white board
while designing the class:

class color {
function getRgh() {}
}

(This Color class might look like a baby step, but TDD is an iterative process. Code in very small
increments when necessary—perhaps when you're initially learning a new concept or when you're
struggling with a particular implementation.)

Next, the getRgb() method should return the hex string based on the red, green, and blue val-
ues passed when the Color object is created. Specify that with a test:

function TestGetRgbwhite() {
$white =& new Color(255,255,255);
$this->assertequal (‘#FFFFFF’, S$white->getRgh());
}

Per TDD, you write the simplest possible code to satisfy your test, not necessarily the code that sat-
isfies your sense of aesthetic or the code you think is the proper implementation.

58 The Factory Pattern

The simplest implementation of the Color class that passes this test is:

class Color {
function getRgb() { return ‘#FFFFFF’; }
}

This Color isn't very satisfying, but it does represent incremental progress.
Next, let’s add an additional test to force the Color to save some state information inside the
object for a more realistic implementation:

function TestGetRgbRed() {
$red =& new Color(255,0,0);
$this->assertEqual(‘#FF0000’, $red->getRgh());
}

So what must change in Color? The constructor must take the red, green, and blue arguments and
store them in instance variables. Color also requires a method to convert decimal integer numbers
to hexadecimal. Some code to implement those requirements might look like:

class Color {

var $r=0;
var $g=0;
var $b=0;
function Color($red=0, $green=0, $blue=0)
{
$this->r =$red;
$this->g = $green;
$this->b = $blue;
}

function getRgh() {
return sprintf(‘#%02x%02x%02Xx", $this->r, $this->g, $this->b);
}
}

The constructor is very simple: collect the red, green, and blue values passed into the constructor
and store them in instance variables. The getRgb() method uses sprintf() to convert the values to
hexadecimal.

The Factory Pattern 59

To gain still more confidence in the code, you can test it with more values. This test runs with
the code as-is:

function TestGetRghRandom() {
$color =& new Color(rand(0,255), rand(0,255), rand(0,255));
$this->assertwantedPattern(
¢ /A#[0-9A-F1{6}$/",
$color->getRgh());
$color2 =& new Color($t = rand(0,255), $t, $t);
$this->assertwantedPattern(
f/AE([0-9A-FT{2D\I\1S/’,
$color2->getRgh());

assertWantedPattern

The assertwWantedPattern() assertion tries to match its second parameter to the PCRE expression in the
first parameter. If there’s a match, the assertion passes; otherwise it fails.

Building on the power of regular expression matching, the assertwantedpPattern() assertion can allow for
flexible tests.

All of these tests detail how the Color class behaves under normal, expected circumstances. But
every well-designed class should also account for boundary conditions. For example, what should
happen if a negative number is passed into the constructor as a color value? What happens for num-
bers greater than 2552 What happens for non-numeric data? A good test suite for Color would
account for these boundary conditions in the tests.

function testColorBoundaries() {
$color =& new Color(-1);
$this->assertErrorPattern(‘/out.*0.%255/1");
$color =& new Color(1111);
$this->assertErrorpPattern(‘/out.*0.%255/1");
}

assertErrorPattern
The assertErrorPattern() assertion allows you to specify a PCRE expression that should match a PHP
error. If the error doesn’t materialize or doesn’t match the specified pattern, the assertion fails.

60 The Factory Pattern

With those tests in place, Color could be further implemented as:

class Color {
var $r=0;
var $g=0;
var $b=0;

function Color($red=0, $green=0, $blue=0) {
fred = (int)$red;
if ($red < 0 || $red > 255) {
trigger_error(“color ‘$color’ out of bounds, “
."please specify a number between 0 and 255");
}

$this->r = $red;
$green = (int)$green;
if ($green < 0 || $green > 255) {
trigger_error(“color “$color’ out of bounds, “
."please specify a number between 0 and 255");
}

$this->g = $green;
$blue = (int)$blue;
if ($blue < 0 || $blue > 255) {
trigger_error(“color ‘$color’ out of bounds, “
."please specify a number between 0 and 255");
}

$this->b = $blue;
}

function getRgh() {
return sprintf(‘#%02x%02x%02x’, $this->r, $this->g, $this->b);
}
}

This code passes the test, but the “cut-and-paste” style of the code should smell bad to you. In TDD,
a rule of thumb is to code the simplest possible solution and if you need the same code tfwice—
wince—but duplicate the code. However, if you need the same a third or more times, then refactor.
So, Color is a great candidate for Extract Method refactoring.

@ Refactoring — Extract Method
When you have two or more sections of code that can be assimilated, combine the sections of code into
a separate method named according to its purpose. Extract method refactoring is most powerful when
the same section of code is repeated several times in one or more methods in your class.

The Factory Pattern 61

class color {
var $r=0;
var $g=0;
var $b=0;
function color($red=0, $green=0, $blue=0) {
$this->r = $this->validatecolor($red);
$this->g = $this->validateColor($green);
$this->b = $this->validatecolor($blue);
}
function validateColor($color) {
$check = (int)$color;
if ($check < 0 || $check > 255) {
trigger_error(“color ‘$color’ out of bounds,
."please specify a number between 0 and 255");
} else {
return $check;

}
}
function getRgh() {
return sprintf(‘#%02x%02x%02X’, $this->r, $this->g, $this->b);
}
}

Factories to Hide Object State Setup

Let’s add a Factory to Color that makes creating new instances easy. Really easy. Let’s add a method
that creates a Color given a name—after all, who can remember the RGB values of his or her favorite
color?

Factory objects or functions don't have to be named “Factory.” Factories are pretty obvious
whenever you read code. Instead, it’s better to use a meaningful name that expresses how the
Factory corresponds to the problem you're solving.

In this example code, I am going to call the Color Factory CrayonBox. The static method
CrayonBox: :getColor() takes a text string containing the name of a color and returns a Color object
with the appropriate values set.

Here’s the desired behavior as a test case:

function TestGetColor() {
$this->assertisA($o =& CrayonBox::getColor(‘red’), ‘Color’);
$this->assertEqual (‘#FF0000’, $o->getRgh());
$this->assertisA($o =& CrayonBox::getColor(‘LIME’), ‘Color’);
$this->assertequal (‘#00FF00’, $o->getRgh());

}

62 The Factory Pattern

The test case validates that each returned object is an instance of the class Color and that its
getRgh() method responds with the correct string. The “red” used for the test was all lowercase, so
the second case, “LIME,” is passed as all uppercase to make sure the code is case-insensitive.

To be safe, let’s also add an additional test to explore boundary conditions that should not work.
The TestBadColor() method expects an invalid color name to trigger a PHP error containing the
name of the bad color and expects the Factory to return the color black instead.

function TestBadColor() {
$this->assertIsA($o =& CrayonBox::getColor(‘Lemon’), ‘Color’);
$this->asserterrorPattern(‘/lemon/i’);
// got black instead
$this->assertequal (‘#000000°, $o->getRghb());
}

A sample implementation of a CrayonBox class to fulfill these tests might be:

class CrayonBox {
/7‘:1':

Return valid colors as color name => array(red, green, blue)

“ Note the array is returned from function call

* pecause we want to have getColor able to be called statically
“ so we can’t have instance variables to store the array

* @return array

#/

function colorList() {
return array(
‘black’ => array(0, 0, 0)

, green’ => array(0, 128, 0)
// the rest of the colors ...
,aqua’ => array(0, 255, 255)
);
}
/7‘:1‘:
* Factory method to return a Color
* @param string $color_name the name of the desired color
* @return Color
*/

function &getColor($color_name) {
$color_name = strtolower($color_name);
if (array_key_exists($color_name,
$colors = CrayonBox::colorList())) {
$color = $colors[$color_name];
return new Color($color[0], $color[1], $color[2]);
}

trigger_error(“No color ‘$color_name’ available”);

The Factory Pattern

// default to black
return new Color;
}
}

This is obviously a very simple factory, but it does simplify object creation (using text names for col-
ors rather than RGB values) and shows how the internal state of an object can be established at the
time the object is created but before the client code calling the factory receives the new object.

Factories to Promote Polymorphism

Controlling the internal state of returned objects is important, but promoting polymorphism—
returning objects of varying classes with the same interface—is an even more powerful capability of
the Factory pattern.

Let’s revisit the Monopoly example and implement the game’s real estate properties. In the
game, you get a deed when you purchase a property; the deed contains a number of basic facts
about the property that are used throughout game play. Further, there are three different types of
properties: streets, railroads, and utilities. All three kinds of properties have some aspects in com-
mon: each can be owned by a player; each has a price; and each generates rent for its owner when-
ever other players land on it. But some aspects of each kind of real estate are very different. For
example, the formula for calculating rent depends on the type of property.

The following code can act as a base real estate property class:

// PHPS

abstract class Property {
protected $name;
protected $price;
protected $game;

function __construct($game, $name, S$price) {
$this->game = $game;
$this->name = $name;
$this->price = new Dollar($price);

}
abstract protected function calcrRent();

public function purchase($player) {
$player->pay($this->price);
$this->owner = $player;

}

pubTic function rent($player) {
if ($this->owner
&% $this->owner != $player) {
$this->owner->collect(

63

64 The Factory Pattern

$player($this->calcrent())
);

Here, the Property class and the method CalcRent() are declared abstract.

@ Terminology — Abstract Class
An abstract class is a class that cannot be instantiated directly. An abstract class contains one or more
abstract methods that must be overridden in a subclass. Once all of the abstract methods have been real-
ized by actual methods, the subclass can be instantiated.

Abstract classes make good prototypes for families of similar classes.

calcrent() must be overridden in a subclass to make a concrete class. Hence, each subclass of
Property, Street, Utility, and Railroad, must define a calcRent() method.
An implementation of those latter three (sub)classes might be:

class Street extends Property {
protected $base_rent;
pubTic $color;
public function setRent($rent) {
$this->base_rent = new Dollar($rent);

}

protected function calcrRent() {
if ($this->game->hasMonopoly($this->owner, $this->color)) {
return $this->base_rent->add($this->base_rent);
}
return $this->base_rent;
}
}

class RailRoad extends Property {
protected function calcrRent() {
switch($this->game->railRoadCount($this->owner)) {
case 1: return new Dollar(25);
case 2: return new Dollar(50);
case 3: return new Dollar(100);
case 4: return new Dollar(200);
default: return new Dollar;
}
}
}

class Utility extends Property {

The Factory Pattern 65

protected function calcRent() {
switch ($this->game->utilityCount($this->owner)) {
case 1: return new Dollar(4*$this->game->TlastRo11());
case 2: return new Dollar(10*$this->game->TastRo11());
default: return new Dollar;

}

Each subclass extends the Property class and includes its own protected ClacRent() method. Since
all of the abstract methods are defined, each subclass can be instantiated.

To set up the game, all of the Monopoly properties have to be created. Since this is the chapter
on the Factory design pattern—and because the property types in Monopoly have much in com-
mon—you should be thinking about a polymorphic Factory to create all of the necessary objects.

Start by creating a Property factory class. Where I live, the County Assessor handles property
taxes and deeds, so I named my Property factory Assessor. Next, the factory has to manufacture all
of the Monopoly properties. In a real application, all of the Monopoly assets might come from a
database or a configuration file, but for this example, let’s just hard code an array with the relevant
data:

class Assessor {
protected $prop_info = array(

// streets
‘Mediterranean Ave.’ => array(‘Street’, 60, ‘Purple’, 2)
,’Baltic Ave.’ => array(‘Street’, 60, ‘Purple’, 2)
//more of the streets...
, 'Boardwalk’ => array(‘Street’, 400, ‘Blue’, 50)
// railroads
,’sShort Line R.R.’ => array(‘Railroad’, 200)

//the rest of the railroads...
// utilities
,’Electric Company’ => array(‘Utility’, 150)
,’Water works’ => array(‘Utility’, 150)
)3

The Property subclasses require an instance of Monopoly as part of the constructor. For now, simply
make a setter function and define an instance variable, $game, to hold it in the Assessor class.

class Assessor {
protected $game;
public function setGame($game) { $this->game = $game; }

66

The Factory Pattern

protected $prop_info = array(/* ... */);
}

Although you'd likely prefer a database of records over such an array, there are times when long lists
of parameters are unavoidable. If you run into such an occasion—such as here—consider the
“Introduce Parameter Object” refactoring.

Refactoring — Introduce Parameter Object

Methods with long lists of parameters are complex and therefore prone to error. You can replace natu-
rally grouped sets of parameters with an object encapsulating those parameters. For example, “start
date” and “end date” parameters could be replaced with a DateRange object.

In the case of Monopoly, what might a parameter object for the real estate properties, say,
PropertyInfo, look like? The intent is to pass each properties array into the constructor of the
PropertyInfo class and receive a new object. Intent implies design, and according to TDD, that
means a test case.

Here is a sample test that begins to sketch a PropertyInfo class:

function testPropertyInfo() {
$list = array(‘type’,’price’,’color’,’rent’);
$this->assertIsA(
$testprop = new PropertyInfo($1ist), ‘PropertyInfo’);
foreach($1ist as $prop) {
$this->assertequal($prop, $testprop->$prop);
}
}

This test verifies that each PropertyInfo has four public attributes and validates the exact order of
the array parameters.

But because the RailRoad and Utility classes don't require color or rent information when
instantiated, another test is needed to verify that PropertyInfo can also be instantiated given a
shorter list of parameters:

function testPropertyInfoMissingColorrent() {
$list = array(‘type’,’price’);
$this->assertIsA(

The Factory Pattern 67

$testprop = new PropertyInfo($1ist), ‘PropertyInfo’);
$this->assertNoErrors();
foreach($1ist as $prop) {

$this->assertEqual($prop, $testprop->$prop);
}
$this->assertNull($testprop->color);
$this->assertNull($testprop->rent);

assertNoErrors()
assertNoerrors() validates that no PHP errors have occured. If any errors are present, the assertion fails.

assertNull()

assertNul1() passes if the first parameter passed is null. Any other valid PHP value causes the assertion
to fail. Like most other SimpleTest assertions, you can optionally pass a failure message as a second
parameter.

A PropertyInfo class to satisfy the two previous tests might look like:

class PropertyInfo {
const TYPE_KEY
const PRICE_KEY
const COLOR_KEY
const RENT_KEY
public $type;
public $price;
public $color;
public $rent;
public function __construct($props) {
$this->type =
$this->propvalue($props, ‘type’, self::TYPE_KEY);
$this->price =
$this->propvalue($props, ‘price’, self::PRICE_KEY);
$this->color =
$this->propvalue($props, ‘color’, self::COLOR_KEY);
$this->rent =
$this->propvalue($props, ‘rent’, self::RENT_KEY);

|
w N o

}
protected function propvalue($props, $prop, $key) {
if (array_key_exists($key, $props)) {
return $this->$prop = $props[$key];
}
}
}

So, PropertyInfo can now act as a parameter object for the various Property classes, and Assessor

68 The Factory Pattern

has the data needed to create valid PropertyInfo objects.

It’s time to creates new instances of the PropertyInfo class based on the data from our
Assessor->$prop_info array.

Such code might look like:

class Assessor {
protected $game;
public function setGame($game) { $this->game = $game; }
pubTic function getProperty($name) {
$prop_info = new PropertyInfo($this->prop_info[$name]);
switch($prop_info->type) {
case ‘Street’:
$prop = new Street($this->game, $name, $prop_info->price);
$prop->color = $prop_info->color;
$prop->setRent($prop_info->rent);
return $prop;
case ‘RailRoad’:
return new RailRoad($this->game, $name, $prop_info->price);
break;
case ‘Utility’:
return new Utility($this->game, $name, $prop_info->price);

break;
default: //should not be able to get here
}
1
protected $prop_info = array(/* ... */);

}

This code is functional, but brittle. Consider what happens if you pass a key that doesn’t exist in the
$this->prop_info array. Because the instantiation of the PropertyInfo object is embedded in the
code, there is no effective way to test the created object. A better solution is to create a Factory
method to facilitate creation of the PropertyInfo objects. Hence, the next step is to write a test for
the PropertyInfo factory method in the Assessor class.

There is a problem, however: this method shouldn't be a part of the public API of the Assessor
class. How then can it be tested?

There are a couple of approaches here, and delving into any requires a fair amount of testing
theory. Briefly, you can perform black box testing or white box testing.

@ Black Box Testing
Black Box Testing treats the tested object as a “black box,” where the specification (the published API) is
known, but nothing of the actual implementation of the object is known. Testing therefore focuses only
on the inputs and outputs to the public methods of the object.

The Factory Pattern

White Box Testing

White Box Testing is the opposite of Black Box Testing, in that it assumes the tester has both
knowledge of and access to all of the code for the tested object. The goal of this style of
testing is typically complete code coverage and extensive failure condition testing. See
http://c2.com/cgi/wiki?whiteBoxTesting for a good introduction to this style of testing.

To avoid straying too far off topic, though, is there a compromise between Black Box and White Box

Testing to enable use of TDD? One option is to make the method public during development and

protected upon release (commenting out any effected tests). This is not a very satisfying approach,

so an alternative is to subclass the object and make the method public in the testing subclass.
Here’s the subclass approach:

class TestableAssessor extends Assessor {
public function getPropInfo($name) {
return Assessor::getPropInfo($name);
}
}

The advantage of this solution is you can have the correct Assessor public API, but still allow for test
coverage through the TestableAssessor subclass. Additionally, any other code you might introduce
specifically for test coverage would not be present in your normal run-time version of Assessor.

The disadvantages include testing an additional class, which could introduce additional prob-
lems due to the additional complexity. And since you're specifying the behavior for the object’s inter-
nal API, your tests become brittle if you ever refactor this internal structure again.

Weighing the pros and cons, a test case is the correct way to go for this example, so let’s get
started.

function testGetPropInforeturn() {
$assessor = new TestableAssessor;
$this->assertIsA(
$assessor->getPropInfo(‘Boardwalk’), ‘PropertyInfo’);

To ensure that all calling code passes valid key values, use an exception. SimpleTest is currently a
PHP4 based testing framework, so it doesn’t have any built-in features to test for exceptions, but you

69

70 The Factory Pattern

can easily work around this in a test case.

function testBadPropNameReturnsexception() {
fassessor = new TestableAssessor;
$exception_caught = false;

try { $assessor->getPropInfo(‘Main Street’); }

catch (InvalidPropertyNameException $e) {
$exception_caught = true;

}

$this->assertTrue($exception_caught);

$this->assertNoErrors();

Finally, the implementation of Assessor can be completed:

class Assessor {
protected $game;

public function setGame($game) { $this->game = $game; }

public function getProperty($name) {

$prop_info = $this->getPropInfo($name);

switch($prop_info->type) {

case ‘Street’:
$prop = new Street($this->game, $name, $prop_info->price);
$prop->color = $prop_info->color;
$prop->setRent($prop_info->rent);
return $prop;

case ‘RailRoad’:
return new RailRoad($this->game, $name, $prop_info->price);
break;

case ‘Utility’:
return new Utility($this->game, $name, $prop_info->price);

break;
default: //should not be able to get here
}
}
protected $prop_info = array(/* ... */);

protected function getPropInfo($name) {
if (larray_key_exists($name, $this->prop_info)) {
throw new InvalidPropertyNameException($name);
}
return new PropertyInfo($this->prop_info[$name]);
1
}

The Factory Pattern

The method Assessor::getPropInfo() represents the logical introduction of a PropertyInfo
factory as a protected method of the Assessor class. The Assessor: :getProperty() method is the
public factory that returns one of our three Property subclasses, depending on what property name
is requested.

Factories for Lazy Loading

Another significant benefit to using a Factory is the ability to perform lazy loading. Where this sce-
nario comes into play most often is when a factory can instantiate a number of subclasses that are
defined in separate PHP source files.

The term lazy loading refers to not performing expensive operations (generally IO operations like includ-

® Terminology — Lazy Loading
ing PHP files or querying a database) before they are absolutely required by the script.

A common technique with web sites is to have multiple web pages dynamically controlled through
a single script. Consider blog software that might have different pages for viewing the recent entries,
a single entry with comments, a comment submitting page, an archive navigation page, a page for
the administrator to edit page, and so forth. You might encapsulate the logic to generate each of
these in a class, and use a Factory to load both the class definition and the object. Each of these class-
es might be stored in a separate file in a ‘pages’ subdirectory of your application.

The code to implement a lazy loading page factory might look like:

class PageFactory {
function &getPage() {
$page = (array_key_exists(‘page’, $_REQUEST))
? strtolower ($_REQUEST[‘page’])

sw{tch,($page) {

case ‘entry’: $pageclass = ‘Detail’; break;
case ‘edit’: $pageclass = ‘Edit’; break;
case ‘comment’: $pageclass = ‘Comment’; break;
default:

$pageclass = ‘Index’;

if (!class_exists($pageclass)) {
require_once ‘pages/’.$pageclass.’.php’;
}

return new $pageclass;

71

72

The Factory Pattern

You can take advantage of PHP’s dynamic nature and use run-time logic to determine the class name
you wish to create. In this case, an HTTP request parameter, page is evaluated to determine which
page has been requested. You can implement lazy loading by not loading all possible “page” classes
during every script execution, but instead including the class definition only when you are about to
create the new object. This occurs in the conditional require_once above. This technique is not as
important on a system with a PHP accelerator—a byte code cache—because the cost of including
the additional source code is negligible there. Otherwise; it’s a good performance enhancer for most
typical PHP hosted environments.
For a more detailed look at lazy loading, read Chapter 11—The Proxy Pattern.

Issues
The Factory pattern is reasonably simple and very powerful. You may have examples of this pattern
in your code already, and you will soon notice many more. The GoF book includes several addition-
al related construction patterns: AbstractFactory and Builder. An AbstractFactory handles families of
related components and the Builder pattern is designed to facilitate construction of complex
objects.

In many of this chapter’s examples, a parameter was passed to the Factory method (e.g.
CrayonBox::getColor(‘red’);). The GoF refer to this as a “parameterized factory” and it is fairly
typical of the Factory methods I have seen in PHP web applications.

You have now been introduced to the Factory pattern, a technique for managing creation of new
objects within your code. You have seen how the Factory pattern can centralize the creation of com-
plex objects or even substitute objects of different classes. Factories support the very important
principal of polymorphism in OOP.

The Singleton
Pattern

N NEARLY EVERY OBJECT-oriented program, there are usually one or two resources that are cre-

ated once and shared for the duration of the entire application. For example, a database connec-

tion in an e-commerce application is one such resource: it’s initialized when the application
launches, is used to effectuate all transactions, and is finally disconnected and destroyed when the
program ends. In your code, there’s no need to conjure a database connection each and every time;
that’s a hassle and very inefficient. Instead, your code can simply re-use the connection that’s already
been established. The challenge then is how do you refer to the connection (or to any other unique
perennial resource, such as an open file or a queue).

The Problem

How do you ensure that an instance of a particular class is exclusive (it's always the lone instance of
that class) yet is also readily-accessible?

76

The Singleton Pattern

The Solution

Of course, a global variable is an obvious solution, but it’s also a Pandora’s Box (The saying, “Good
judgment comes from experience, but experience usually comes from poor judgment” comes to
mind.) Any portion of your code can modify a global variable, causing endless aggravation debug-
ging any number of serendipitous problems. In other words, the state of a global variable is
always questionable. (A good description of the global variable dilemma can be found at
http://c2.com/cgi/wiki?GlobalvariablesAreBad.)

When you need an exclusive instance of a particular class, use the aptly-named Singleton pat-
tern. A class based on the Singleton pattern properly instantiates and initializes one instance of the
class and provides access to the exact same object every time, typically through a static method
named getInstance().

Getting the exact same instance every time is critical and worthy of a test:

// PHP4
function TestGetInstance() {
$this->assertIsA(
$objl =& DbConn::getInstance(),
‘DbConn’,
‘The returned object is an instance of DbConn’);
$this->assertReference(
$obj1,
$obj2 =& DbConn::getInstance(),
‘Two calls to getInstance() return the same object’);

assertReference
assertReference() ensures that the two passed parameters are references to the same PHP variable.

In PHP4, this asserts the two tested parameters are in fact the same object. assertReference() may be
deprecated as SimpleTest is migrated to PHP 5.

This test method makes two assertions: that the value returned from calling the static
DhConn::getInstance() method is an instance of the DbConn class and that a second call to
getInstance() returns the same reference, which implies it’s the very same object.

Besides asserting the expected behavior of the code, the test also demonstrates the proper
(PHP4) usage of getInstance(): $local_conn_var =& DbConn::getInstance();.Thelocal variable is
assigned the result of the static method call by reference (=&).

There’s one other test to write, at least for now: verify that instantiating a Singleton class

The Singleton Pattern

directly via new causes an error of some kind. Here’s that test:

function TestBadInstantiate() {
$obj =& new DbConn;
$this->assertErrorpPattern(
‘/(bad|nasty|evil|do not|don\’t|warn).*’.
‘(instance|create|new|direct)/i’);

The code creates an instance of the DbConn class by using new directly, which should cause a PHP
error. To make the code less brittle, a PCRE pattern is provided to match the error message. (The
exact wording of the error message is relatively unimportant.)

Sample Code

The Singleton is an interesting pattern. Let’s explore its implementation in both PHP4 and PHP5,
starting with PHP4.

A “Global” Approach

Conceptually, a global variable makes an ideal Singleton, but a global variable is unpredictable:
there’s no guarantee that it contains the exact same object over the entire course of your script.
However, you can mitigate the problem of “unrestrainted access” to a global variable by never refer-
encing the global directly. For instance, this code “hides” the reference in a global variable with a
very long unique and descriptive name.

class DbConn {
function DbConn($fromGetInstance=false) {
if (M_E != $fromGetInstance) {
trigger_error(‘The DbConn class 1is a Singleton,’
’ please do not instantiate directly.’);

}
}
function &getInstance() {
fkey = ‘__some_unique_key_for_the_bDbConn_instance__’;
if (!(array_key_exists($key, $GLOBALS) && is_object($GLOBALS[$key])
&& ‘dbconn’ == get_class($GLOBALS[$key]))) {
$GLOBALS[$key] =& new DbConn(M_E);
}
return $GLOBALS[S$key];
}

77

78

The Singleton Pattern

You may be wondering about the default parameter $fromGetInstance in the DbConn constructor. It

provides (pretty weak) protection from instantiating the object directly: unless the default value is

changed to e (the PHP math constant M_E = 2.718281828459), the code triggers an error. The

getInstance() method calls new DbConn(M_E), creating the object in the correct manner.
Expressed as a UML class diagram, the solution looks like this:

DbConn

+DbConn(fromGetInstance:mixed=false)

—
+getInstance(): DbConn (—I

|_| returns the only single unique
instance of the DbConn class

|_| triggers a PHP error if
instantiated directly

If you don'’t care for this “secret parameter”-style guard, another option is to create a global token to
validate you're creating the object from the getInstance() method. This moves the guard condition
from “something you know” to “something in the environment.”

Here’s a sample of how the constructor guard code might look like with a global semaphore:

class DbConn {
function bbconn() {
$token = ‘__some_DbConn_instance_create_semaphore__’;
if (larray_key_exists($token, $GLOBALS)) {
trigger_error(‘The DbConn class is a Singleton,’
’ please do not instantiate directly.’);
}
}
function &getInstance() {
static $instance = array(Q);
if (!$instance) {
$token = ‘__some_DbConn_instance_create_semaphore__’;
$GLOBALS[$token] = true;
$instance[0] =& new DbConn;
unset ($GLOBALS[$token]);
}
return $instance[0];
}
}

The Singleton Pattern

Tip

PHP4 allows you to change the value of $this in the constructor. In the past, I have used $this = null;
when I had a construction error, ensuring the invalid object could not be used by further code. While
useful in PHP4, it’s not compatible with PHP5, so in the interest of future-proofing your code, this tech-
nique is no longer recommended.

Another important aspect of the code is the use of the reference operator, & There are two locations
where the use of & is required. The first is in the function definition, prior to the function name,
which indicates the return is a reference. The second is the assignment of the new DbConn object to
the $GLOBALS array. (Both uses emphasize the point mentioned in the preface and the ValueObject
chapter: in PHP4 code, you nearly always want to create, pass, and return objects by reference, lead-
ing to a proliferation of & reference operators in your code.)

The conditional check in the getInstance() method is written to always run without warnings,
even at the E_ALL error reporting level. It verifies there’s an object of the class DbConn in the appro-
priate spot in the $GLOBALS array, else it creates the object there. The method then returns the object
that may or may not have been created on this iteration through the method, but by the time the
method is finished, you're sure you have the one valid instance of the class, and that it'’s been initial-
ized correctly.

A Static Approach
One problem with the global variable solution, even with the global variable access hidden within
getInstance(), is you still have the potential to corrupt the global variable inadvertently, simply
because the variable is potentially in scope anywhere in your script.

A cleaner solution is to use a static variable inside of the getInstance() method to store the
Singleton. A first cut at the code might look like:

class DbConn {
/] ...
function &getInstance() {
static $instance = false;
if (!$instance) $instance =& new DbConn(M_E);
return $instance;
}
}

Alas, the Zend 1 engine in PHP4 doesn't store references in static variables (see
http://www.php.net/manual/en/language.variables.scope.php#AEN3609). A workaround is to store a

79

80 The Singleton Pattern

static array, and place the reference to your Singlefon instance in a known index of that array.
getInstance() method might then look like:

class DbcConn {
function DbConn($fromGetInstance=false) {
if (M_E != $fromGetInstance) {
trigger_error(‘The DbConn class 1is a Singleton,’
’ please do not instantiate directly.’);
}
}
function &getInstance() {
static $instance = array();
if (!$instance) $instance0 =& new DbConn(M_E);
return $instance0;
}
}

This code simply chooses the first element of the static $instance array to hold the reference to our
Singleton DbConn instance.

This code is much tighter than the global version, though it does it does rely on a bit of PHP
boolean magic: an empty array evaluates to false in a conditional check. As in the previous version
of the DbConn class, reference operators are required in the function definition and in the assign-
ment.

The Singleton in PHP5

A Singleton in PHP5 is much simpler to implement, because PHP5 provides and enforces visibility
for variables and functions inside of classes. By making the DbConn::__construct() method pri-
vate, no code can directly instantiate the class. Expressed in a UML diagram, a PHP5 DbConn
singleton looks like:

DbConn

-instance: DbConn

-__construct() —
+getInstance(): DbConn (-|

AN
|__| returns the only single unique
instance of the DbConn class

AN

triggers a PHP fatal error if
instanciated directly (access
to private method)

The Singleton Pattern 81

Combining the static method variable to hold the instance and the private constructor to prevent
inadvertent construction, you now have a class like:

class DbConn {

/-!:
* static property to hold singleton instance
=‘:/

static $instance = false;

Vi

*

constructor
* private so only getInstance() method can instantiate
* @return void
#/
private function __construct() {}
Vi
* factory method to return the singleton instance
* @return DbConn
*/
public function getInstance() {
if (!DbConn::$instance) {
DbConn::$instance = new DbConn;
}
return DbConn::$instance;
}
}

Issues
Now that you've seen several possible implementations of the Singleton design pattern, let’s look at
some of the tradeoffs you should consider when looking at implementing this design pattern.

First, a Singletons isn't a “better” global variable. For example, if a method requires a Singleton,
pass it as a parameter to make its usage plainly obvious.

Also, you may be tempted to lump “utility functions” of all sorts into a Singleton class because
of its “global” availability to your application. Avoid this, limiting the Singleton’s methods to the
functions that are purposeful for the class.

More discussion related to these issues is available online at:

® http://c2.com/cgi/wiki?SingletonGlobalProblems
® http://c2.com/cgi/wiki?GlobalvariablesAreBad

The Monostate Pattern: Stealth Singletons
Occasionally, I've wanted a class where all of the instances of that class share a global state — in
other words, any instance of the class returns the exact same information. Similar in behavior to a

82 The Singleton Pattern

Singleton, this is a design pattern called the MonoState (http://c2.com/cgi/wiki?Monostatepattern).

In PHP, you can use a neat trick with references to bind global data to an instance variable to

achieve a MonoState.

As an example, let’s create a class to provide global application configuration. No matter what

instance of this MonoState class you access, you get the same values.

Here are those requirements expressed as a test:

// PHP4
function TestApplconfig() {
$this->assertIsA(

$objl =& new ApplicationConfig, ‘ApplicationConfig’);

$this->assertIsA(

$obj2 =& new ApplicationConfig, ‘ApplicationConfig’);

$test_val = ‘/path/to/cache’.rand(1,100);
$objl->set(‘cache_path’, $test_val);

$this->assertequal($test_val, $obj2->get(‘cache_path’));

The test creates two different instances of the MonoState class, changes one, and then verifies that

the other instance was indeed affected by the change.
Here is the code to implement the MonoState:

class ApplicationConfig {
var $_state;
function ApplicationConfig() {
fkey = ‘__stealth_singleton_state_index__’;
if (!(array_key_exists($key, $GLOBALS)
&& is_array($GLOBALS[$key]))) {
$GLOBALS[$key] = array();
}
$this->_state =& $GLOBALS[$key];
}
function set($key, $val) {
$this->_state[$key] = $val;
}
function get($key) {
if (array_key_exists($key, $this->_state)) {
return $this->_state[$key];
}
}
}

The core of this trick is $this->state =& $GLOBALS[$key;]

. After making sure $GLOBALS[$key] is an

The Singleton Pattern

array, the code binds a reference to the global array to the class variable $this->state. From then
on, any changes to $this->state are seamlessly reflected in the global array and therefore in any
other instance of the class.

This trick can be used with any of PHP’s superglobal arrays and is particularly effective with
$_SESSION for the user notification queue. A MonoState can store a series of messages to present to
the user for use throughout your code (but you might redirect to another page prior to actually dis-
playing the messages). $_SESSION is a good place to store these messages so that the messages per-
sist after redirection.

83

The Registry
Pattern

ecause it’s generally considered “good form” to avoid the use of global variables, objects are
B usually passed from one code segment to another as parameters. But the problem with pass-
ing instances is that objects sometimes end up as “tramp data,” passed into one function only

to be passed again to another function which truly needs the object.
To make writing, reading, and consuming code simpler, it's best to minimize the number of dif-
ferent objects and consolidate knowledge of how to get to a myriad of other widely-used objects into

a single, well-known object.

The Problem

How can you get references to objects through a single, well-known, object?

The Solution
The Registry design pattern is like an “object phone book”—a directory—that stores and retrieves

86 The Registry Pattern

references to objects. (PHP associative arrays perform a similar “phone book” function, and in fact,
the heart of a Registry implementation can center around PHP’s powerful arrays.) The features of a
Registry are most often encapsulated in a Singlefon (see Chapter 4), making the Registry a definitive
source of information for your entire application.

The primary reference on the Registry pattern is Patterns of Enterprise Application Architecture, where
Martin Fowler describes the pattern using Java as the implementation language.

Marcus Baker wrote a detailed article on using the Registry pattern in PHP, which is available on the
phpPatterns.com site at (http://www.phppatterns.com/index.php/article/articleview/75/1/1/). Baker

also focuses on testing considerations and demonstrates more of the Test Driven Development method-
ology.

Sample Code
As Martin Fowler mentions in his chapter on the Registry pattern, you can implement the pattern in
a number of ways and offer a variety of interfaces. Let’s explore that notion and build several varia-
tions of the Registry pattern in PHP4.
Let’s start with writing code to store and retrieve instances of objects and provide global access
to the Registry. An instance variable caches the objects, and the Registry itself is a Singleton.
@ As always, tests capture the requirements. This first test verifies that the Registry is a Singleton.

// PHP4
class RegistryPHP4TestCase extends UnitTestCase {
function testRegistryIsSingleton() {
$this->assertIsA($reg =& Registry::getInstance(), ‘Registry’);
$this->assertReference($reg, Registry::getInstance());
}
}

Given what you've learned from the previous chapter on the Singleton pattern, you should be able
to quickly write a Registry class that passes this test. Here’s a Registry class that satisfies the test
(ignoring the code required to enforce no direct object creation):

class Registry {
function &getInstance() {
static $instance = array();

The Registry Pattern

if (!$instance) $instance[0] =& new Registry;
return $instance[0];
}
}

A simple static array is sufficient to record the single instance.

Next, let’s turn to the specific features of the Registry. A registry should provide get () and set()
methods to store and retrieve objects using some key and should also offer an isvalid() method to
determine if a specific key has been set.

The very easiest of these three methods is the latter. Here are two test cases for isvalid():

class RegistryPHP4TestCase extends UnitTestCase {
function testRegistryIsSingleton() { /*...*/ }
function testEmptyRegistryKeyIsInvalid() {
$reg =& Registry::getInstance();
$this->assertFalse($reg->isvalid(‘key’));

}

function testEmptyRegistryKeyReturnsNull() {
$reg =& Registry::getInstance();
$this->assertNull($reg->get(‘key’));
1
}

assertFalse()
assertFalse() is simply the negation of assertTrue(): it passes if the first parameter evaluates to a PHP

boolean false.

Per Test Driven Development, do the minimum coding possible to satisfy your existing tests and
then add more tests if you haven't satisfied all of the class’ requirements. Here’s the simplest amount

of code that satisfies the previous test:

class Registry {
function isvalid(Q) {
return false;
1
function get() {

function &getInstance() {
static $instance = array();
if (!$instance) $instance[0] =& new Registry;

87

88

The Registry Pattern

return $instance[0];
}
}

Admittedly, the code snippets for isvalid() and get() aren’t very inspired, but all of the tests do
pass. Time to add some more meaty tests.

class RegistryPHP4TestCase extends UnitTestCase {
function testRegistryIsSingleton() { /*...%/ }
function testEmptyRegistryKeyIsinvalid() { /*...*/ }
function testEmptyRegistryKeyReturnsNull(Q) { /*...*/ }

function testSetRegistryKeyBecomesvalid() {
$reg =& Registry::getInstance();
$test_value = ‘something’;
$reg->set(‘key’, $test_value);
$this->assertTrue($reg->isvalid(‘key’));
1
}

To satisfy testSetRegistrykeyBecomesvalid(), the Registry class must have some means of track-
ing if a particular key has been stored using set (). The obvious implementation is to use a PHP asso-
ciative array as an instance variable and use PHP’s array_key_exists() function to determine if the
index of interest has been created yet. Here’s a possible next step for Registry:

class Registry {
var $_store = array(Q);

function isvalid($key) {
return array_key_exists($key, $this->_store);
1
function set($key, $obj) {
$this->_store[$key] = $obj;
1
function get() {
}
function &getInstance() {
static $instance = array();
if (!$instance) $instance[0] =& new Registry;
return $instance[0];
}
}

By initializing the $_store variable when it's declared, there’s no need for a constructor method.

The Registry Pattern

(With no proper visibility in PHP4, the code follows the convention of prefixing a private variable

with an underscore.)

The tests pass again; time to move on to the final feature: given a key, the Registry: :get() oper-

ation needs to return a reference to the specified object. Here’s a test that captures that intent:

class RegistryPHP4TestCase extends UnitTestCase {
function testRegistryIsSingleton() { /*...*/ }
function testEmptyRegistryKeyIsInvalid() { /*...*/ }

function testEmptyRegistryKeyReturnsNnull(Q) { /*...*/ }

function testSetRegistryKeyBecomesvalid() { /*...*/ }

function testSetRegistryvalueIsReference() {
$reg =& Registry::getInstance();
$test_value = ‘something’;
$reg->set(‘key’, $test_value);

$this->assertReference($test_value, $reg->get(‘key’));

//another way to test the reference
$test_value .= * else’;
$this->assertEqual(

‘something else’

,$reg->get(‘key’)

);

And here is a complete implementation of the Registry class:

class Registry {

var $_store = array(Q);

function isvalid($key) {
return array_key_exists($key, $this->_store);

}

function &get($key) {
if (array_key_exists($key, $this->_store))

return $this->_store[$key];

1

function set($key, &S$obj) {
$this->_store[$key] =& $obj;

}

function &getInstance() {
static $instance = array();
if (!$instance) $instance[0] =& new Registry;
return $instance[0];
}
}

89

90

The Registry Pattern

The Registry::get() method returns a reference. Similarly, the $obj parameter of the
Registry::set() method is defined to be pass by reference and a reference is assigned to $this-
>_store[$key]. The combination of these get() and set() methods and the proper use of reference
allows the assertReference() assertion in testRegistry() test to pass.

The Registry::get() code could be written return @$this->_store[$key;], however, it’s best to avoid the
error suppression operator. Moreover, the code using the error suppression operator would be ambigu-
ous, requiring more time to digest if you have to revisit the code again later. The array_key_exists()
function makes it clear what error is being avoided.

In PHPS5, object handles come to the rescue again, saving you from the hassle of object reference
passing. In fact, Registry implementations become trivial because you can access associative arrays
without worrying about the possibility of a fatal error from not passing the object by reference. Using
PHP5, you can also mix objects and literals in Registry.

An Example

So what might a Registry look like in action? In web application development, it’s fairly typical to
have a single database connection (hence the widespread use of a Singleton for managing that con-
nection). But, say, for legacy reasons, that your application’s customer database is separate from
your online orders database and that your database analyst (DBA) has moved older orders to an
archive database, again, completely separate from your customer database and the (current and
recent) orders databases. How can you manage those three database connections easily, without
coding three different Singletons? Use a Registry.

class DbConnections extends Registry {}

Tip
When you integrate a design pattern into your code, the name of your class should still reflect it’s role or
function in your application, not necessarily the pattern’s name.

Referring to code using a pattern name is good for communication with programmers outside of your
project; within your project, however, the names of your classes should be appropriate to the domain of
your application and be well understood by your colleagues.

Continued ...

The Registry Pattern

Tip: Continued...
Throughout the rest of this chapter the example class names reflect the patterns name and the specific
implementation being developed, not a role in an application. This is done for clarity of the example, not

as an example of a good naming convention

DbConnections is a Singleton and since it inherits from the Registry class, DbConnections combines

all of the benefits of the two patterns.
The following code snippet creates and stores a connection to each of the databases in the

Registry.

// initial setup, somewhere near the start of your script
$dbc =& DbConnections::getInstance();
$dbc->set(

‘contacts’,

new MysqlConnection(‘userl’, ‘passl’, ‘dbl’, ‘hostl’));
$dbc->set(

‘orders’,

new MysqlConnection(‘user2’, ‘pass2’, ‘db2’, ‘host2’));
$dbc->set(

‘archives’,

new MysqlConnection(‘user3’, ‘pass3’, ‘db3’, ‘host3’));

With the Registry loaded with data, it’s ready to be used.

// domain model classes
class Customer {
var $db;
function customer() {
$dbc =& DbConnections::getInstance();
$this->db =& $dbc->get(‘contacts’);
}
/]

class orders {
var $db_cur;
var $db_hist;
function contact() {
$dbc =& DbConnections::getInstance();
$this->db_cur =& $dbc->get(‘orders’);
$this->db_hist =& $dbc->get(‘archive’);
}
/]
}

91

92

The Registry Pattern

One class models the customer database and the other class models both the historical and current
orders databases. Obtaining the right connection is two lookups: one to find the Registry and one to
find the object associated with the key.

Implementing the Registry as a MonoState Object
As mentioned earlier, there are a number of possible implementations for the Registry pattern.

The first variation realizes the Registry as a MonoState object (the MonoState pattern was cov-
ered briefly at the end of Chapter 4—The Singleton Pattern). With this design, any instance of the
Registry would need access to the same array. Let’s call the new class RegistryGlobal to distinguish
it from the Registry class that was just developed and to reflect the nature of the implementation.
Here’s a test to flesh out the idea (it should look very familiar):

class RegistryGlobalPHP4TestCase extends UnitTestCase {

function testRegistryGlobal() {
$reg =& new RegistryGlobal;
$this->assertFalse($reg->isvalid(‘key’));
$this->assertNull($reg->get(‘key’));
$test_value = ‘something’;
$reg->set(‘key’, $test_value);
$this->assertReference($test_value, $reg->get(‘key’));

The implementation should look reasonably familiar as well:

class RegistryGlobal {
var $_store = array();
function isvalid($key) {
return array_key_exists($key, $this->_store);
}
function &get($key) {
if (array_key_exists($key, $this->_store))
return $this->_store[$key];
}
function set($key, &$obj) {
$this->_store[$key] =& $obj;
}
}

The isvalid(), get(), and set() methods are identical to the methods of the Registry class devel-
oped earlier.

The Registry Pattern

Next, let’s write a test to verify that the RegistryGlobal class functions as a MonoState:

class RegistryGlobalPHP4TestCase extends UnitTestCase {
function testRegistryGlobal() { /*...*/ }
function testRegistryGlobalIsMonoState() {
$reg =& new RegistryGlobal;
$reg2 =& new RegistryGlobal;
$this->assertCopy($reg, $reg2);
$test_value = ‘something’;
$reg->set(‘test’, $test_value);
$this->assertReference(
$reg->get(‘test’)
,$reg2->get(‘test’));

assertCopy()
The assertCopy() assertion is the negation of assertReference(), so if the two variables passed are not
references, the assertion passes.

Here, the test creates two instances of the RegistryGlobal class, verifies they're not references to the
same object, sets a value in one Registry, and finally validates that the same object is returned by
both instances. If the tests pass, the RegistryGlobal class exhibits MonoState behavior.

define(“REGISTRY_GLOBAL_STORE’, ‘__registry_global_store_key__’);
class RegistryGlobal {
var $_store;
function RegistryGlobal() {
if (larray_key_exists(REGISTRY_GLOBAL_STORE, $GLOBALS)
|| 'is_array($GLOBALS[REGISTRY_GLOBAL_STORE])) {
$GLOBALS[REGISTRY_GLOBAL_STORE] = array();
1
$this->_store =& $GLOBALS[REGISTRY_GLOBAL_STORE];
1
function isvalid($key) {
return array_key_exists($key, $this->_store);
}
function &get($key) {
if (array_key_exists($key, $this->_store))
return $this->_store[$key];
}
function set($key, &$obj) {
$this->_store[$key] =& $obj;
}
}

93

94

The Registry Pattern

The real magic in this alternative is the line $this->_store =& $GLOBALS[REGISTRY_GLOBAL_STORE;],
where the reference operator binds the global array to the instance variable $_store. This is the key
to MonoState implementations: each time $this->_store is used in the object, the actual effect is
mirrored to the global variable.

But it hardly makes sense to recommend a solution based on global variables. A static class vari-
able would be a better solution, if only PHP4 provided such a feature. Yet, is there a way to use refer-
ences to implement a static class variable in your own code?

The tests can be similar to the RegistryGlobal tests:

class RegistryMonoStatePHP4TestCase extends UnitTestCase {
function testRegistryMonoState() {

$this->assertCopy(

$reg =& new RegistryMonoState

,$reg2 =& new RegistryMonoState);
$this->assertFalse($reg->isvalid(‘key’));
$this->assertNull($reg->get(‘key’));
$test_value = ‘something’;
$reg->set(‘key’, $test_value);
$this->assertReference($reg->get(‘key’), $reg2->get(‘key’));

To make your own class static variable, bind a reference to a function static variable to a class
instance variable.

class RegistryMonoState {
var $_store;

function & initRegistry() {
static $store = array(Q;
return $store;

}

function RegistryMonoState() {
$this->_store =& $this->_initRegistryQ;
}

function isvalid($key) {
return array_key_exists($key, $this->_store);

}

function &get($key) {
if (array_key_exists($key, $this->_store))
return $this->_store[$key];

function set($key, &$obj) {
$this->_store[$key] =& $obj;
}
}

The Registry Pattern

The initRegistry() method contains a static variable, $store, initialized to an array. This static vari-

able is returned by reference. In the constructor, the $_store instance variable is set to the returned
reference from the initRegistry() method and thus to the static array. Voila! A PHP4 class static

variable.

Implementing with Class Static Variables

In PHP5, there’s no need to implement your own class static variables, because the language sup-
ports the concept of static class variables directly. Thus, PHP5 simplifies the implementation a bit.
Also, reference and objects no longer have the meaning they had in PHP4, but assertReference()
handles this distinction, passing the test if two variables refer to the same object handle.

Here’s the familiar Registry test case modified for PHP5:

// PHP5S
class RegistryMonoStatePHP5TestCase extends UnitTestCase {
function testRegistryMonoState() {
$this->assertCopy(
$reg = new RegistryMonoState
,$reg2 = new RegistryMonoState);
$this->assertFalse($reg->isvalid(‘key’));
$this->assertNull($reg->get(‘key’));
$test_value = new TestObj;
$reg->set(‘key’, $test_value);
$this->assertReference($test_value, $reg2->get(‘key’));

And here’s the PHP5 version of the Registry class using static class variables.

class RegistryMonoState {
protected static $store = array(Q);

function isvalid($key) {
return array_key_exists($key, RegistryMonoState::$store);

}

function get($key) {
if (array_key_exists($key, RegistryMonoState::$store))

95

96 The Registry Pattern

return RegistryMonoState::$store[$key];

}

function set($key, $obj) {
RegistryMonoState: :$store[$key] = $obj;
}
}

An interesting side effect of coding the Registry in PHP5 this way is you can actually use both
instance and static method calls with the same set of code. Here is a test case that proves that—it
uses static method calls only.

class RegistryMonoStatePHP5TestCase extends UnitTestCase {
function testRegistryMonoState() { /*...*/ }

function testRegistryMonoStateStaticCalls() {
$this->assertFalse(RegistryMonoState::isvalid(‘key’));
$this->assertNull(RegistryMonoState::get(‘key’));
$test_value = new Testobj;
RegistryMonoState::set(‘key’, $test_value);
$this->assertIdentical($test_value,
RegistryMonoState::get(‘key’));

Now that you've seen how the static call interface looks in PHP5, let’s code the same interface in
PHPA4. As in the previous PHP4 “static class variable” emulation, this implementation needs to use
the “function static returning a reference” trick.

The test for PHP4 static call interface looks similar to the PHP5 version of the test.

// PHP4
class RegistryStaticPHP4TestCase extends UnitTestCase {

function testRegistrystatic() {
$this->assertFalse(RegistryStatic::isvalid(‘key’));
$this->assertNull(RegistryStatic::get(‘key’));
$test_value = ‘something’;
RegistryStatic::set(‘key’, $test_value);
$this->assertReference($test_value, RegistryStatic::get(‘key’));

And here is an implementation that satisfies the test:

The Registry Pattern

class Registrystatic {

function & getRegistry() {
static $store = array(Q;
return $store;

1

function isvalid($key) {
$store =& Registrystatic::_getRegistry();
return array_key_exists($key, $store);

}

function &get($key) {
$store =& RegistryStatic::_getRegistry();
if (array_key_exists($key, $store))

return $store[$key];

}

function set($key, &$obj) {
$store =& RegistryStatic::_getRegistry();
$store[$key] =& $obj;

}

}

The key to this implementation is having the getRegistry() method return a reference to a static
array. The line $store =& RegistryStatic::_getRegistry(); in subsequent functions sets the local
variable $store by reference to this static array, granting all of the functions static access to the array

and allowing all of the methods to be called statically.

There is another way to achieve the same effect without using the PHP4 static class variable

trick: combine the original Singleton-based Registry class with a wrapper class to allow for static
method calls. This class has an identical test to the testRegistryStatic(), but is implemented like

this:

class Registrystatic {

function isvalid($key) {
$reg =& Registry::getInstance();
return $reg->isvalid($key);

}

function &get($key) {
$reg =& Registry::getInstance();
return $reg->get($key);

}

function set($key, &$obj) {
$reg =& Registry::getInstance();
$reg->set($key, $obj);

}

}

97

98

The Registry Pattern

Issues

While the Registry simplifies access to a number of objects, it still has many of the problems associ-
ated with global variables. You have to make sure the requested key is initialized before you access
it, and because there’s global access to the setter method, your object can still be replaced in anoth-
er portion of your code unexpectedly. Obviously there are benefits and reasons for global data, but
you should remember that any global data is always a bit suspect.

Embedded Registry

Rather than using the Registry pattern standalone, as has been shown in this chapter, the Registry
can be very powerful when combined as a feature of another object. Consider a situation where
object creation is somewhat expensive (perhaps due to the number of database calls required to ini-
tialize the object) and where the object may be requested one or more times in any given execution
of the program, if ever. Could you create a “Finder” class combining aspects of the Factory (see
Chapter 3) and Registry patterns to maintain a cache of objects that have already been created
instead of creating them again?

Here’s a Contact class, where AddressBook is the Factory.

class AddressBook {
function &findById($id) {
return new Contact($id);
}
}

class Contact {
function Contact($id) {
// expensive queries to create object using $id
}
// ... other methods
}

You could embed the Registry within the AddressBook class to seamlessly provide caching. That
might look like this:

class AddressBook {
var $registry;

function AddressBook() {
$this->registry =& Registry::getInstance();
}

function &findByI1d($id) {
if (!$this->registry->isvalid($id)) {

The Registry Pattern 99

$this->registry->set($id, new Contact($id));
1
return $this->registry->get($id);
}
}

The AddressBook constructor binds the registry to an instance variable. When a particular ID is cre-
ated and requested in the findById() method, the Registry is checked to see if the object has already
been cached. If not, the new object is created and stored in the Registry. The requested object is then
returned by the function by extracting it from the Registry.

The MockObject
Pattern

HE RICHNESS OF OBJECT-ORIENTED PROGRAMMING comes in part from the

interconnections and interactions between objects. A single object can encapsulate a complex

subsystem, making otherwise complicated operations as simple as calling a handful of meth-
ods. (The ubiquitous database connection is one such object.)

But often, the interactions between objects are so complex that you become faced with a “chick-
en and egg”-like conundrum: how to develop and test a new object that depends on the creation of
many other objects or on some circumstance that is difficult to realize, such as the recreation of an
entire database.

The Problem

How can you easily isolate and test a segment of code that depends on other objects and resources?
How can you recreate one or more objects or application states to validate that your code is operating
properly?

102

The MockObject Pattern

The Solution

When it’s difficult or expensive to test an object in situ (or in a facsimile of its production environ-
ment), use a MockObject to simulate behavior. A MockObject has the same interface as the real object
it’'s standing in for, but provides pre-programmed responses, tracks method calls, and validates call
sequences.

MockObjects are the “special forces” of the testing world. Trained in stealth, they infiltrate target-
ed code, emulate and monitor communication patterns, and report back results. MockObjects can
halp search for and destroy bugs and can support the more mundane “peacekeeping” operations of
a normal application test suite.

The ServerStub

The MockObject pattern is an extension of another testing pattern called the ServerStub. The ServerStub
pattern stands-in for a resource and returns known values in response to method calls. A ServerStub
becomes a MockObject when you can anticipate the specific sequence of method calls to be made on
your ServerStub.

Not Really a Design Pattern

This chapter is different from the other chapters in this book because MockObiject is a testing pattern
rather than a design pattern. This may seem like an odd diversion, but the use of this testing pattern can
really become foundational and is well worth having in your coding tool set. It differs in another aspect
as well while the basics of how to code this pattern is covered, more emphasis is placed on the usage of
the existing MockObject implementation in SimpleTest.

This chapter first presents a very simple example that demonstrates the basic mechanics of
SimpleTest MockObjects. It then shows how you can use MockObjects to help restructure legacy code
and test the new solution.

Sample Code
A MockObject is a substitute object that makes testing code much simpler. For instance, rather than
use a real database connection—which may be impractical for any number of reasons—you can cre-
ate a MockObject to simulate it. Practically, this means a MockObject needs to respond to the exact
same API as the code that it’s standing in for.

Let’s create a MockObject to stand-in for a simple class called Accumulator that sums numeric
values. Here’s the original Accumulator:

The MockObject Pattern

// PHP4
class Accumulator {
var $total=0;
function add($item) {
$this->total += $item;
}
function total() {
return $this->total;
}
}

add() accumulates values in instance variable $total, and total() returns what’s been accumulat-
ed so far. A simple use of Accumulator is shown below (the code is written as functions, but could be
a class just as well).

function calc_total($items, &$sum) {
foreach($items as $item) {
$sum->add($item);
}
}

function calc_tax(&$amount, $rate=0.07) {
return round($amount->total() * $rate,2);

}

The first function, calc_total(), uses an Accumulator to sum the values in a list and is simple
enough to test:

class MockObjectTestCase extends UnitTestCase {
function testCalcTotal() {
$sum =& new Accumulator;

calc_total(array(1,2,3), $sum);
$this->assertEqual(6, $sum->total());
}
}

Let’s move on to the second case. Assume that instantiating a real Accumulator is very expensive. It'd
be ideal if a simple object could stand in for Accumulator and return a set of responses to the sur-
rounding code. Using SimpleTest, you can create a mock Accumulator with this code:

103

104

The MockObject Pattern

Mock: :generate(‘Accumulator’);
class MockObjectTestCase extends UnitTestCase {
/] ..

function testCalcTax() {
$amount =& new MockAccumulator($this);
$amount->setReturnvalue(‘total’,200);

$this->assertequal(
14, calc_tax($amount));

To use a MockObject, you must typically create a new class for it by hand (more on that momentari-
ly). Luckily, SimpleTest has an easy means of accomplishing this: the Mock: :generate() method.

In the example above, the method creates a class named MockAccumulator that responds to all
the Accumulator class methods. Additionally, the MockAccumulator has other methods to manipulate
the MockObiject instance itself. Once such method is setReturnvalue(). Given a method name and
a value, setReturnvalue() changes the MockObject to return the given value when the named
method is called. So, the statement $amount->setReturnvalue(‘total’, 200) returns 200 whenev-
er the total () method is called.

Once initialized, you can pass the MockAccumulator class into the calc_tax() function to have it
act in the place of a real Accumulator object.

If you stopped here—with an object returning “canned” responses to method calls—you would
have implemented the ServerStub pattern. But the MockObject goes further to validate which meth-
ods were called, how many times, and in what sequence.

Here’s an example of validating the “flow” through an object:

class MockObjectTestCase extends UnitTestCase {

Y/

function testCalcTax() {
$amount =& new MockAccumulator($this);
$amount->setReturnvalue(‘total’,200);
$amount->expectonce(‘total’);

$this->assertequal(
14, calc_tax($amount));

$amount->tally();
}
}

The MockObject Pattern 105

The expectonce() method takes a string containing the name of a method that you expect to be
called once. The tally() is the actual check to determine if your expectations were met. Here, if
MockAccumulator: :total() isn't called once and only once, the test fails.

You can use this “tracking” feature of a MockObject in many ways. For example, if you pass an
array of three values into calc_total(), is Accumulator::add() called three times as is expected?

class MockobjectTestCase extends UnitTestCase {

/...

function testCalcTotalAgain() {
$sum =& new MockAccumulator($this);
$sum->expectonce(‘add’);
calc_total(array(1,2,3), $sum);

$sum->tallyQ;

Whoops, what happened here? The test failed instead of passing. The SimpleTest error message
states something like:

MockObject PHP4 Unit Test

1) Expected call count for [add] was [1] got [3] at line [51]
in testcalctotalagain
in mockobjecttestcase

FAILURES!!!

Test cases run: 1/1, Passes: 2, Failures: 1, Exceptions: 0

This error message indicates that the add() method was called three times, not the single time the
expectonce() assertion asked for. Instead of expectonce(), the test should use expectCallCount().

class MockObjectTestCase extends UnitTestCase {
/] ...
function testCalcTotalAgain() {
$sum =& new MockAccumulator($this);
$sum->expectCallCount(‘add’, 3);
calc_total(array(1,2,3), $sum);
$sum->tallyQ;

106 The MockObject Pattern

A MockObiject has the role of an actor—as a SeverStub providing reasonable test data in response to
method calls—and the role of a critic, validating assumptions about which methods were called.

A Legacy Application
As the next example let’s use the MockObiject to assist in the restructuring of a legacy application.
Consider a simple script that mimics the kind of behaviors you might expect to see in any number
of PHP applications: A PHP page generates a login for the user if the user has not yet logged in; the
very same page acts as a form handler for the form; it shows different content after a successful
login; and it provides logout.

Let’s write such a page. First, display a login form if the user hasn’t logged in yet:

<html>

<body>

<form method="post”>

Name:<input type="text” name="name”>
Password:<input type="password” name="passwd”>
<input type="submit” value="Login”>

</form>

</body>

</html>

Next, provide some content if the user is logged in:

<html>

<body>welcome <?php echo $_SESSION[‘name’]; 7>

Super secret member only content here.

<a href="<?php echo SELF; ?>?clear”>Logout
</body>

</html>

Adding in the form handling capabilities, session startup, and logout capabilities, and the whole
script might look like:

session_start();

define(‘SELF’,
‘http://’ .$_SERVER[‘ SERVER_NAME’].$_SERVER[‘PHP_SELF’]);

if (array_key_exists(‘name’, $_REQUEST)
&& array_key_exists(‘passwd’, $_REQUEST)
& ‘admin’ == $_REQUEST[‘name’]

The MockObject Pattern

&% ‘secret’ == $_REQUEST[‘passwd’]) {
$_SESSION[‘name’] = ‘admin’;
header(‘Location: *.SELF);

}

if (array_key_exists(‘clear’, $_REQUEST)) {
unset($_SESSION[‘name’]);
1

if (array_key_exists(‘name’, $_SESSION)
&& $_SESSION[‘name’]) { 7>
<htm1>
<body>Welcome <?=$_SESSION[‘name’]?>

Super secret member only content here.
<a href="<?php echo SELF; ?>?clear”>Logout
</body>
</htm1> <?php
} else { 7>
<html>
<body>
<form method="post”>
Name:<input type="text” name="name”>
Password:<input type="password” name="passwd”>
<input type="submit” value="Login">
</form>
</body>
</html> <?php

A goal of restructuring this legacy application should be to create a “testable” application.
Immediately, this goal affects the design: if you choose to use some of the convenient features of
PHP—such as the superglobals—you sacrifice testing for convenience.

For example, if you use $_SESSION directly, say, then the only way to test such code is to alter
$_SESSION. Alas, if you forget to change $_SESSION back to a known state, you could experience inter-
ference between tests.

A solution to this problem is to wra

p $_SESSION inside of another class and pass an instance of that wrapper class into any object
that needs access to $_SESSION. If you then make a MockObject version of the wrapper object for test-
ing, you can have complete control over the object’s responses to method calls (acting as a
ServerStub) and you can verify how it was called (which is the purpose of the MockObject).

With this in mind, let’s see what a wrapper for the $_SESSION superglobal might look like.

class Session {
function Session() {
$this->init(Q;
}
function init() {

107

108 The MockObject Pattern

if (lisset($_SESSION)) {
if (headers_sent()) {
trigger_error(
‘Session not started before creating session object’);
} else {
session_start();
}
}
}
function isvalid($key) {
return array_key_exists($key, $_SESSION);
}
function get($key) {
return (array_key_exists($key, $_SESSION))
? $_SESSION[$key]
:null;
}
function set($key, $value) {
$_SESSION[$key] = $value;
}
function clear($key) {
unset($_SESSION[S$key]l);
}
}

Session is a wrapper for the $_SESSION superglobal. The tests for Session are similar to the tests
developed for the Registry class earlier (see Chapter 5), but without any intention of getting or set-
ting the values by reference.

You may have noticed the constructor calls a Session::init() method. Why is this method not
a part of the constructor itself? It's separate so you can call it statically to make sure the session was
started. Here is an example of how the class might be used:

Session::init();

$page =& new PageDirector(new Session);

Most testing literature devoted to MockObjects suggest that you write MockObjects by hand. If you
want to do that, just flesh out the methods you need far enough to get by testing. For instance, a
hand-coded ServerStub for the Session class might look like:

class MyMockSessionUserl {
function isvalid($key) {
return (‘user_id’ == $key) ? true : false;

}

The MockObject Pattern 109

function get($key) {
if (‘user_id’ == $key) {
return 1;
}
}
}

Fortunately, you can avoid this error-prone drudgery using SimpleTest. The Mock::generate()
method allows you to generate a class that you can instantiate and configure dynamically to respond

as you need.

MockObject Techniques

SimpleTest’s approach is just one of many techniques for using MockObjects. Hand-coding MockObjects
is another (as shown above). With the advent of PHP5, you might see a PHP MockObject implementation
that makes use of the __cal1() method on objects.

Here’s how to recreate MyMockSessionUserl (shown above) in a SimpleTest-generated MockObject

test case:

Mock: :Generate(‘Session’);
class PageDirectorTestCase extends UnitTestCase {
function testSomethingwhichusesSession() {
$session =& new MockSession($this);

$session->setReturnvalue(‘isvalid’, true);
$session->setReturnvalue(‘get’, 1);

/] ...

Further, you can set expectations about what methods will be called and how many times. You can
even verify some methods should not be called at all.
Here’s an expanded test to create and validate some mroe compliex expectations.

class PageDirectorTestCase extends UnitTestCase {
function testSomethingwhichusesSession() {
$session =& new MockSession($this);

$session->setReturnvalue(‘isvalid’, true);

110 The MockObject Pattern

$session->setReturnvalue(‘get’, 1);
$session->expectonce(‘isvalid’, array(‘user_id’));
$session->expectonce(‘get’, array(‘user_id’));
$session->expectNever(‘set’);

// the actual code which uses $session

$session->tally(Q);

There are many more reasons and ways to use the MockObject. Before continuing, let’s put together
some additional classes to have a context to work from.

Here is the next component in the refactoring of the legacy script, a UserLogin class to check if
the user credentials are correct.

class UserLogin {
var $_valid=true;
var $_id;
var $_name;
function UserLogin($name) {
switch (strtolower($name)) {
case ‘admin’:
$this->_id = 1;
$this->_name = ‘admin’;
break;
default:
trigger_error(“Bad user name ‘$name’”);
$this->_valid=false;
}
}
function name() {
if ($this->_valid) return $this->_name;
}
function validate($user_name, $password) {
if (‘admin’ == strtolower($user_name)
&& ‘secret’ == $password) {
return true;
}
return false;
}
}

(In a real application, youd likely base this kind of logic on querying a database table. This sort of a
small, hard-coded class represents what you might code as a ServerStub—a small class that behaves
the way you want, but only in a limited set of circumstances.)

The MockObject Pattern

The last component to create is the Response. It must handle the task of accumulating HTML
content for eventual output to the browser, as well as issuing an HTTP redirect if necessary. (You
could perform other header manipulation—say for the purposes of caching—in a mature imple-
mentation, but this is simpler code meant to serve as a focused, comprehensible example.)

class Response {
var $_head="";
var $_body="";
function addHead($content) {
$this->_head .= $content;
}
function addBody($content) {
$this->_body .= $content;
}
function display() {
echo $this->fetch();
}
function fetch() {
return ‘<html>’
.’<head>’.$this->_head.’</head>’
."<body>".$this->_body.’</body>’

L'</html>;
}
function redirect($url, $exit=true) {
header(‘Location: “.$url);
if ($exit) exit;
}

}

Given these building blocks, it’s time to assemble a page built from these newly developed, tested
components. Let’s put together one final class to coordinate all of the activity for the page, the aptly-
named named PageDirector. PageDirector has a very simple APIL: you instantiate it and call its
run() method.

The “bootstrap” file to run the new application would then look like:

<?php
require_once ‘classes.inc.php’;
define(‘SELF’, ‘http://www.example.com/path/to/page.php’);

$page =& new PageDirector(new Session, new Response);
$page->run();
7>

This file includes the requisite class definitions, defines a constant for itself, creates an instance of

111

112 The MockObject Pattern

the PageDirector class (passing dependent instances of the Session and Response class as part of the
constructor), and executes the PageDirector::run() method.
Now let’s build some test cases to define the expected behavior of the restructured application.

require_once ‘simpletest/unit_tester.php’;
require_once ‘simpletest/reporter.php’;
require_once ‘simpletest/mock_objects.php’;
require_once ‘simpletest/web_tester.php’;

require_once ‘classes.inc.php’;
Session::initQ);

class PagewebTestCase extends webTestCase { /*...*/ }

class ResponseTestCase extends UnitTestCase { /*...*

class UserLoginTestCase extends UnitTestCase { /*...*/ }
class SessionTestCase extends UnitTestCase { /*...*/ }
class PageDirectorTestCase extends UnitTestCase { /*...*/ }

$test = new GroupTest(‘Application PHP4 Unit Test’);
$test->addTestCase(new PagewebTestCase);
$test->addTestCase(new ResponseTestCase);
$test->addTestCase(new UserLoginTestCase);
$test->addTestCase(new SessionTestCase);
$test->addTestCase(new PageDirectorTestCase);

This code block shows a bit more of how a typical test file for an application might shape up. It starts
by including the SimpleTest files, including the mock_object.php file to test with mock objects.
Next, the subject classes are included and the Session: :init() method is called to start the session.

Following immediately next are all of the test cases, starting with the “safety harness,” the
WebTestCase that ensures the overall application still performs as required, followed by the individ-
ual unit tests for the classes used in the new design (though not detailed in this chapter). Last is the
PageDirectorTestCase, which is discussed next.

The core responsibility of the PageDirector class is to coordinate the Session and Response
objects to produce the final output of your page.

Mock: :Generate(‘Session’);
Mock: :Generate(‘Response’);
define(‘SELF’, ‘testvalue’);

class PageDirectorTestCase extends UnitTestCase {
/] ..
}

The MockObject Pattern

At the top of the code, Mock: :generate () creates MockObject class definitions and defines a constant
needed later in the tests.

Assuming that tests already exist for Session and Response, the next step is to create tests using
MockSession to simulate the desired state of Session. That MockObject setup is similar to the exam-
ple shown at the very start.

Because the PageDirector::run() method is echoing content, you can use output buffering to
capture the content and verify it with assertions.

class PageDirectorTestCase extends UnitTestCase {
/...
function TestLoggedoutContent() {
$session =& new MockSession($this);
$session->setReturnvalue(‘get’, null, array(‘user_name’));
$session->expectonce(‘get’, array(‘user_name’));

$page =& new PageDirector($session, new Response);

ob_start();
$page->runQ);
$result = ob_get_clean();

$this->assertNoUnwantedPattern(‘/secret.*content/i’, $result);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’
."name.*<input[A>]*password[A>]*passwd/ims’
,$result);

$session->tally(Q);

This code demonstrates the essentials of using a MockObject in SimpleTest. The line $session =&
new MockSession($this); creates the mock object. You can then use the methods inherited from the
SimpleStub class (http://simpletest.sf.net/SimpleTest/Mockobjects/SimpleStub.html#sec-method-

summary) to create the responses you expect back from this object (as it works in your tested code).
Next, instantiate the PageDirector class and use the MockSession in place of the regular class
instance the code is expecting.

setReturnValue()

The setReturnvalue() method lets the MockObject participate as an “actor” in the code by specifying what
should be returned when a particular method of the MockObject is called. There are several variants of
this type of method: one speicifes a series of different values to return in sequence and one returns
results by reference instead of by value.

113

114 The MockObject Pattern

@ expectOnce()

The expectonce() method allows your MockObject to act as a “critic” of the tested code by setting up
assumptions about which methods will be called and how often. These expectations are reported in the
test when you call the MockObject’s tally() method.

class PageDirector {
var $session;
var $response;
function PageDirector(&$session, &$response) {
$this->session =& $session;
$this->response =& $response;
}
}

Because the PageDirector class believes it is participating in a real application rather than a test
case, it echoes the resulting page to the browser. Since you don’t actually want this behavior during
the test, you can use PHP’s output buffering (http://php.net/outcontrol) feature to capture what
would have been sent to the browser during the execution of the test code.

class PageDirector {

/] ..

function run(Q) {
if (!$this->isLoggedin()) {

$this->showLogin();

}
$this->response->display();

}

function isLoggedin() {
return ($this->session->get(‘user_name’)) ? true : false;

}

function showLogin() {
$this->response->addBody(‘<form method="post”>’);
$this->response->addBody(‘Name:<input type="text” name="name”>’);
$this->response->addBody(“\n”);
$this->response->addBody(

‘Password:<input type="password” name="passwd”>’);

$this->response->addBody(“\n”);
$this->response->addBody(‘<input type="submit” value="Login”>");
$this->response->addBody(‘</form>");

The MockObject Pattern

Like application code, tests can also be refactored. In this case, you can see the output buffering trick
is going to be required multiple times, so use the “Extract Method” refactoring to simplify the tests.
(Recall that methods that begin with the word “test” are the ones that the test suite runs automati-
cally; any other methods can be created to make your testing easier.)

The next code block shows the result of the output buffering being refactored to the runpage
method, as well as another test for the output generated when the user is logged in.

class PageDirectorTestCase extends UnitTestCase {
/...

function TestLoggedoutContent() {
$session =& new MockSession($this);
$session->setReturnvalue(‘get’, null, array(‘user_name’));
$session->expectonce(‘get’, array(‘user_name’));

$page =& new PageDirector($session, new Response);
$result = $this->runpage($page);
$this->assertNoUnwantedPattern(‘/secret.*content/i’, $result);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’
."name.*<input[A>]*password[A>]*passwd/ims’
,$result);

$session->tally();

}

function TestLoggedInContent() {
$session =& new MockSession($this);
$session->setReturnvalue(‘get’, ‘admin’, array(‘user_name’));
$session->expectAtLeastonce(‘get’);

$page =& new PageDirector($session, new Response);
$result = $this->runpPage($page);
$this->assertwantedPattern(‘/secret.*content/i’, $result);
$this->assertNoUnwantedPattern(‘/<form.*<input[A>]*text[A>]*’
."name.*<input[A>]*password[A>]*passwd/ims’
,$result);
§session->tally();
}
function runpage(&$page) {
ob_start();
$page->runQ);
return ob_get_clean();
}
}

Next, add a conditional check to the PageDirector::run() method to see if the user has logged in
and decide what template to display based on the result:

115

116 The MockObject Pattern

class PageDirector {

/] ...

function run() {

if ($this->isLoggedIn()) {

$this->showPage (

new UserLogin($this->session->get(‘user_name’)));

} else {

$this->showLogin();
}
$this->response->display();

}

function showpage(&S$user) {
$vars = array(
‘name’ => $user->name()
,’self’ => SELF
);
$this->response->addBodyTemplate(‘page.tpl’, $vars);
}
}

page.tpl might look like this:

welcome <?php echo $name; ?>

Super secret member only content here.
<a href="<?php echo $self; ?>?clear”>Logout

At this point, MockSession is acting as a ServerStub to control conditions for determining whether the
user is logged in or not. It also functions as a critic, determining if this information was used correct-
ly in two ways: explicitly by defining expectations and verifying them via tally(), and implicitly by
generating the correct output based on the values returned by the ServerStub.

To continue restructuring of this code, the next step is to move on to form processing. There are
two actions to perform: clear the already logged in user and validate the user name and password

submitted by the login page to authenticate a user.
Let’s start with the logout capability:

class PageDirectorTestCase extends UnitTestCase {

/] ...

function TestClearLoginFunctionality() {
$_REQUEST[‘clear’] = null;

The MockObject Pattern 117

$session =& new MockSession($this);
$session->expectonce(‘clear’, array(‘user_name’));
$session->setReturnvalue(‘get’, null, array(‘user_name’));
$session->expectAtLeastonce(‘get’);

$response = new MockResponse($this);
$response->expectonce(‘redirect’, array(SELF));

$page =& new PageDirector($session, $response);
$this->assertequal(‘’, $this->runpage($page));

$response->tally(Q);
$session->tally();
unset($_REQUEST[‘clear’]);

In the code, the Response object is mocked; otherwise, the script would stop executing once it hit the
exit() call in the Response: :redirect() method. By mocking the object, you can verify the method
was called and what parameters were passed to the method, without actually having the negative
side effect—exiting the script—actually taking place.

Here is some code to realize this test:

class PageDirector {

/] .

function run() {

$this->processLogin(Q);
if ($this->isLoggedin()) {

$this->showPage (

new UserLogin($this->session->get(‘user_name’)));

} else {

$this->showLogin();
}
$this->response->display();

}

function processLogin() {
if (array_key_exists(‘clear’, $_REQUEST)) {
$this->session->clear(‘user_name’);
$this->response->redirect(SELF);
}
1
}

Last is a test for the form handling for login itself.

118 The MockObject Pattern

class PageDirectorTestCase extends UnitTestCase {

/] ...

function TestLoginFromRequest() {
$_REQUEST[‘name’] = ‘admin’;
$_REQUEST[‘passwd’] = ‘secret’;

$session =& new MockSession($this);
§session->expectonce(‘set’, array(‘user_name’,’admin’));

$response = new MockResponse($this);
$response->expectonce(‘redirect’, array(SELF));

$page =& new PageDirector($session, $response);
$this->assertEqual(‘’, $this->runpage($page));

$response->tally();
$session->tally();

unset($_REQUEST[‘name’]);
unset($_REQUEST[‘passwd’]);

And here’s the code required to implement the features specified by the test shown immediately
above:

class PageDirector {

/]

function processLogin() {

if (array_key_exists(‘clear’, $_REQUEST)) {
$this->session->clear(‘user_name’);
$this->response->redirect(SELF);

}

if (array_key_exists(‘name’, $_REQUEST)
&% array_key_exists(‘passwd’, $_REQUEST)
&% UserLogin::validate(

$_REQUEST[“name’], $_REQUEST[‘passwd’])) {

$this->session->set(‘user_name’, $_REQUEST[‘name’]);
$this->response->redirect(SELF);

The application is now restructured and has sufficient test coverage so that additional refactoring
can clean up oddities like the main script accessing the Session class and looking up the

The MockObject Pattern

‘user_name’ key instead of the UserLogin class knowing about the key and using the session as a
resource.

And why does the code access the $_REQUEST superglobal when it could be wrapped in a
resource similar to the Session class to facilitate mocking it? There are many more issues with the
code: it was after all a somewhat contrived example to lead you gently into these concepts, and
hopefully it has served that purpose.

More importantly, you've made use of the MockObject testing pattern to isolate the code, decou-
pling the $_SESSION resource for testing and avoiding the undesirable consequences of a dependent
object (the exit() contained in the Response class).

Issues

Testing using MockObjects lets you isolate the code you're developing. You can eliminate nasty side
effect and latency issues, greatly speeding up the overall time it takes to run your entire test suite.
This is good because the longer it takes to run your tests, the less inclined you may be to actually run
them, and you want to be able and willing to run your tests often.

There are still gaps in the freshly-refactored application. The $_REQUEST should have been
wrapped by a class so it also could be mocked for testing. Recall the showLogin() method, too. It just
looks cluttered with all of the addBody () method calls.

Another disadvantage of this kind of coding style is you have no opportunity to use any kind of
WYSIWYG HTML editing tools, as all the HTML is embedded inside of the PHP method calls. To get
around these limitations, you could add a very simple template mechanism based on PHP. You
might introduce a template file like this:

<form method="post”>

Name:<input type="text” name="name”>
Password:<input type="password” name="passwd”>
<input type="submit” value="Login”>

</form>

It then needs a method to make use of it:

class Response {

/]
/:'.':"r

* adds a simple template mechanism to the response class
* @param string S$template the path and name of the template file

119

120

The MockObject Pattern

* @return void
*/
function addBodyTemplate($template, $vars=array()) {
if (file_exists($template)) {

extract($vars);
ob_start();
include $template;
$this->_body .= ob_get_clean();

Clearly, this is not the fanciest template engine in the world, but it does allow the code in this chap-
ter’s example to be tidied up.
The concept of separation of responsibilities is encouraged in GoF:

“Create objects in a separate operation so that subclasses can override the way they are
created.”

You can get a lot of mileage from this statement if you apply it wholeheartedly to testing: you
can have the internal Factory method replace the expected instance of the class with a replacement
MockObject. The traditional testing pattern to follow is subclassing your testing code, and then
rewriting the method producing the object. Marcus Baker, the author of SimpleTest, has created the
PartialMock technique for PHP, which is a shortcut for this testing pattern. You can use a PartialMock
to inject other MockObjects at the point of creation.

If you have difficulty with understanding how to get your MockObject into your code, look over
the Partial MockObject section of Appendix B—SimpleTest Testing Practices.

Resources
There are a few helpful resources to learn more about the MockObject pattern.
Specific to PHP, you can look at the MockObject documentation for SimpleTest
(http://simpletest.sf.net/SimpleTest/tutorial_Mockobjects.pkg.html). Additionally, Marcus Baker
wrote an article titled “Testing Made Easy with Mock Objects” in the January 2004 edition of
php|architect.

More generally, the web site http: //ww.mockobjects.com/ and the c2 wiki page for MockObjects

(http://www.c2.com/cgi/wiki?Mockobject) both make excellent starting points for investigation.

The Strategy
Pattern

EN DEVELOPING OBJECT-ORIENTED CODE, you sometimes need an object to vary its
behavior slightly based on circumstance. For example, a Menu might render itself horizon-
tally or vertically depending on a user’s “skin” preference, or an Order might calculate sales

tax differently based on the customer’s shipping address.

A typical implementation of an object like Menu has methods to add(), delete(), and replace()
menu items, set() the style, and render() itself. No matter what kind of menu you want to create,
Menu offers a consistent interface; only the internal algorithms of one or more methods—at least ren-
der(), for example—differ.

But what happens, say, as the number of menu styles expands? Or, in the case of Order, what hap-
pens as county, state, and foreign country tax rules are taken into account? If many methods have case
statements to implement special cases, an otherwise simple encapsulation soon becomes convolut-
ed, difficult to read and difficult to maintain.

124

The Strategy Pattern

The Problem

How can you change the internal implementation of an object easily, choosing an implementation
to use at the time your script is executed, rather than when it was written? How can you code a set
of implementations that are easy to maintain and extend?

The Solution

When a class embodies multiple implementations and an instance can dynamically choose any of
those implementations, use the Strategy pattern to separate the object from its algorithms. Or, put
more simply, if a class’s methods use case statements pervasively, it's a good candidate for refactor-
ing into the Strategy pattern.

The Strategy design pattern is very powerful because the core idea of the pattern is the OOP
principal of polymorphism.

There are clear examples of the Strategy pattern outside of the domain of programming. If I need
to get from home to work in the morning, I can choose among several strategies: I can drive my car,
take the bus, walk, ride a bike, or fly in a helicopter. Each strategy has the same result, but uses
resources differently, and the choice of the strategy depends on expense, time, the availability of a
particular resources (like owning a vehicle), and the convenience of each method. A good strategy
on one day may be a poor one the next, so the choice of strategy has to be made dynamically.

You've already seen the start of an example similar to the Strafegy pattern in the chapter on the
Factory pattern: the framework for the Monopoly game used a family of similar property classes,
because rent calculations for different kinds of properties vary greatly. However, because the calcu-
lation of rent was not extracted into it’s own class, the rent calculation is actually more representa-
tive of the TemplateMethod pattern.

An Example

As an example, let’s create a cache to store PHP variables. The cache class must write out a represen-
tation of a variable to a file, so you can later reload and reuse it. The class should also let you speci-
fy an identifier for the cached data and a storage methodology.

Data Caching

A cache saves a resource for later reuse. You might create and use a cache if re-creation of the resource
from the original source is significantly more expensive than reading it from your cache. Examples of this
might be slow aggregate queries from a database or parsing of large XML or configuration files.

Caches are not without issues: your cache can fall out of synch with the data source (becoming stale) and
some caches require extra memory.

The Strategy Pattern

Let’s start by developing a cache implementation without the Strategy pattern.

Because you might want to cache more than one value, you'll need an identifier to specify which
cached item you're interested in. In this example, the identifier is ‘application_config’. Here’s an
example of how a cache might be used:

// PHP4
$config_cache =& new varcache(‘application_config’);
if ($config_cache->isvalidQ)) {
$config = $config_cache->get();
} else {
$config = slow_expensive_function_to_get_config(Q);
$config_cache->set($config);

}

The code creates a new VarCache object stored in the variable $config_cache. The data in the cache
is associated with the identifier ‘application_config’ If the cache contains a value, isvalid()
returns true and the cached value is returned; otherwise, the value is computed anew and is saved
into the cache for retrieval later on.

As usual, let’s start coding by writing a test case. First, an empty cache should always return
false in response to the isvalid() method.

class VvarCacheTestCase extends UnitTestCase {
function TestunsetvalueIsInvalid() {
$cache =& new varcache(‘foo’);
$this->assertFalse($cache->isvalid());

}

Since there’s no code for VarCache yet, the simplest implementation is to just stub out the method.

class varcache {
function isvalid() {}
}

That produces a green bar, so it’s OK to continue, adding to the test case.

125

126

The Strategy Pattern

class varCacheTestCase extends UnitTestCase {
function TestUnsetvalueIsinvalid() { /* ... */ }
function TestIsvalidTrueAfterset() {
$cache =& new varcache(‘foo’);
$cache->set(‘bar’);
$this->assertTrue($cache->isvalid());

}

The test above verifies that a cache is valid when it’s non-empty.

Time to start coding the cache class in earnest. VarCache is passed an identifier, so the construc-
tor for an instance must record that. There’s also the set () method, which stores a value in the cache
and has the side effect of changing the value returned by isvalid().

class varcCache {
var $_name;
function varcache($name) {
$this->_name = ‘cache/’.$name;
1
function isvalid() {
return file_exists($this->_name.’.php’);
}
function set(Q) {
$file_handle = fopen($this->_name.’.php’, ‘w’);
fclose($file_handle);
}
}

The instance variable $_name stores the cache’s identifier for the data. In this simple implementa-
tion, $_name is used as part of a file name (which would probably be replaced by a database or other
store in a real application). set() uses fopen() and fclose() to “touch” a file based on $_name. After
calling set(), the file_exists() call in VarCache: :isvalid() returns true.

Running this test yields a green bar, but running it again provokes a failure! What happened? The
first invocation of the tests leaves a file behind, thus interfering with the second run of the tests, a
very undesirable condition. Ideally, each test case should be independent.

Fortunately, unit testing frameworks, in general, and SimpleTest specifically, provide facilities to
prepare an environment before a test runs and restore the environment to a known state after.
UnitTestCase: :setUp() performs the former; UnitTestCase: : tearbDown() performs the latter.

By adding the following to the test case, you can be sure that each test method begins with a
fresh start:

The Strategy Pattern

class VvarCacheTestCase extends UnitTestCase {
function setup() {
@unTink(‘cache/foo.php’);
}
/...
}

Now the cached file is removed prior to the execution of each test method, ensuring isolation for
each test method. (In a more realistic use of Test Driven Development, you'd probably write a
varcache: :clear() method to handle removal of a cached variable.)

Now that the artifact from the test’s been removed, the tests run again, meaning you're ready to
continue testing and coding.

class VvarCacheTestCase extends UnitTestCase {
function setup() { /* ... */ }
function TestUnsetvalueIsInvalid() { /* ... *
function TestIsvalidTrueAfterset() { /* ... *
function TestCacherRetainsvalue() {
$test_val = ‘test’.rand(1,100);
$cache =& new varcache(‘foo’);
$cache->set($test_val);
$this->assertEqual($test_val, $cache->get());
}

/}
/}

The test above validates that varCache::get() returns the same value that was passed to
varcache: :set().

class varcache {
var $_name;
function varcache($name) { /* ... */ }
function isvalid() { /* ... */ }
function get() {
if ($this->isvalidQ) {
return file_get_contents($this->_name.’.php’);
}
1
function set($value) {
$file_handle = fopen($this->_name.’.php’, ‘w’);
fwrite($file_handle, $value);
fclose($file_handle);
}
}

127

128 The Strategy Pattern

With the additions highlighted in bold, varcache: : set() writes the contents of the $value parame-
ter to the file and varcCache: :get () returns the value with file_get_content().

The implementation so far works great for strings and numbers, but fails for more complex vari-
ables such as arrays and objects. Expressed as a test case:

class varCacheTestCase extends UnitTestCase {

/] ..

function TestStringFailsForArray() {
ftest_val = array(‘one’,’two’);
$cache =& new varcache(‘foo’);
$cache->set($test_val);
$this->assertError(‘Array to string conversion’);
$this->assertNotEqual ($test_val, $cache->get());
$this->assertequal(‘array’,strtolower($cache->get()));

For the sake of brevity, let’s jump to the end of this implementation, which subsequently serves as a
starting point for the Strategy refactoring.
Here’s a series of additions to complete this variation of varCache.

class varcache {
I/
function get() {
if ($this->isvalidQ)) {
include $this->_name.’.php’;
return $cached_content;
}
/]
}

The key change here is that the get () method is included (and is therefore expected to be valid PHP).
Further, the method returns the variable $cached_content, so whatever the set() method does, it
must set that variable!

So, what might this look like for a numeric value?

class varcache {
//...
function set($value) {
$file_handle = fopen($this->_name.’.php’, ‘w’);
$template = ‘<?php $cached_content = %s;’;
$content = sprintf($template

The Strategy Pattern

,(float)$value);
fwrite($file_handle, $content);
fclose($file_handle);

}
}

This works fine for a number, but what about strings? For strings, the PHP cache file template must
endin= ‘%s’; instead of = %s;. This is where a “type” parameter comes in: it will specify a numer-
ic or string (or other type). And in anticipation of adding yet more types, let’s add a case statement
in the set() method and a _getTemplate() method to make adding new types easier.

class varcache {
var $_name;
var $_type;
function varcache($name, $type=’string’) {
$this->_name = ‘cache/’.$name;
$this->_type = $type;

}
/...
function _getTemplate() {
$template = ‘<?php $cached_content = *;
switch ($this->_type) {
case ‘string’:
$template .= “‘%s’;";
break;
case ‘numeric’:
$template .= ‘%s;’;
break;
default:
trigger_error(‘invalid cache type’);
}
return $template;
}
function set($value) {
§file_handle = fopen($this->_name.’.php’, ‘w’);
switch ($this->_type) {
case ‘string’:
$content = sprintf($this->_getTemplate()
,str_replace("*","\\"",$value));
break;
case ‘numeric’:
$content = sprintf($this->_getTemplate()
, (float)$value);
break;
default:
trigger_error(‘invalid cache type’);
}
fwrite($file_handle, $content);
fclose($file_handle);

129

130 The Strategy Pattern

At this point, the constructor has an optional second parameter that indicates type, with choices of
‘numeric’ and ‘string’. The final version of the class, shown beow, includes a ‘serialize’ storage
type that stores complex types like arrays or objects.

class varcache {

var $_name;

var $_type;

function varCache($name, $type='serialize’) {
$this->_name = ‘cache/’.$name;
$this->_type = $type;

}

function isvalid() {
return file_exists($this->_name.’.php’);
}
function get() {
if ($this->isvalidQ)) {
include $this->_name.’.php’;
return $cached_content;
}
}
function _getTemplate() {
$template = ‘<?php $cached_content = *;
switch ($this->_type) {
case ‘string’:
$template .= “‘%s’;”;
break;
case ‘serialize’:
ftemplate .= “unserialize(stripslashes(‘%s’));”;
break;
case ‘numeric’:
$template .= ‘%s;’;
break;
default:
trigger_error(‘invalid cache type’);
}
return $template;
}
function set($value) {
§file_handle = fopen($this->_name.’.php’, ‘w’);
switch ($this->_type) {
case ‘string’:
$content = sprintf($this->_getTemplate()
,str_replace(“‘“,”"\\"”,$value));
break;
case ‘serialize’:
fcontent = sprintf($this->_getTemplate()
,addslashes(serialize($value)));
break;
case ‘numeric’:
$content = sprintf($this->_getTemplate()
, (float)$value);
break;
default:
trigger_error(‘invalid cache type’);

fwrite($file_handle, $content);

The Strategy Pattern

fclose($file_handle);
}
}

Notice the case statement in both the _getTemplate() and set() methods. Both of these “switch”
based on the $_type instance variable. The get() method does not behave differently based on
$_type, so it looks like the variability is limited solely to how the information is stored. Multiple case
statements are a warning sign that it may be appropriate to refactor to apply the Strategy pattern
instead.

Sample Code
A change from multiple switch statements to the Strategy pattern is a classic example of refactoring.
The test cases remain identical; only the internals of the varCache class change.

The first step in refactoring is to isolate the variations that you want to encapsulate in a separate
class. Based on the foregoing example, you have the three “type” variations: ‘string’, ‘numeric’,
and ‘serialize’. The previous example also selects the output format at the time the object is cre-
ated. Given that “algorithm,” you need to create an API that encapsulates it.

You can start with:

class Cachewriter {
function store($file_handle, $var) {
die(‘abstract class-implement in concrete Cachewriter’);
}
}

This is the PHP4 version of an interface. (You could inherit from this class to guarantee that you cor-
rectly wrote the subclass, but that just adds to processing overhead, particularly if you have the def-
inition of the abstract Cachewriter class in a different file from the concrete CacheWriter subclass-
es.)

The abstract Cachewriter calls for a store() method that accepts a file handle and the variable
to store. Each concrete class must implement store(), using whatever algorithm is necessary to out-
put the content of a file that, when included as a PHP script, populates the variable $cached_content
with the variable passed as a parameter to the store() method. Each algorithm is implemented as
a separate class.

Recall the code that you're replacing:

131

132 The Strategy Pattern

class varcache {
// ...
function _getTemplate() {
$template = ‘<?php $cached_content = *;
switch ($this->_type) {
case ‘string’:
$template .= “‘%s’;”;
break;
}
// ...
}
function set($value) {
§file_handle = fopen($this->_name.’.php’, ‘w’);
switch ($this->_type) {
case ‘string’:
$content = sprintf($this->_getTemplate()
,str_replace(“*“,”"\\"”, $value));
break;
/] ...
}
fwrite($file_handle, $content);
fclose($file_handle);

For each “type” of caching, you need to extract the relevant portions of the _getTemplate() and
set() methods into each respective class. Here is StringCachewriter:

class StringCachewriter /* implements Cachewriter */ {
function store($file_handle, $string) {
$content = sprintf(
“<?php\n\$cached_content = ‘%s’;”
,str_replace(“‘",”\\"”,$string));
fwrite($file_handle, $contents);
}
}

(Because PHP 4 does not support the concept of interfaces, simply note the interface in a comment
for documentation.)
Here are the other algorithms—the storage “strategies.”

class NumericCachewriter /* implements Cachewriter */ {
function store($file_handle, $numeric) {
$content = sprintf(“<?php\n\$cached_content = %s;”
, (double) $numeric);

The Strategy Pattern 133

fwrite($file_handle, $content);
}
}

class SerializingCachewriter /* implements Cachewriter */ {
function store($file_handle, $var) {
$content = sprintf(
“<?php\n\$cached_content = unserialize(stripslashes(‘%s’));”
,addslashes(serialize($var)));
fwrite($file_handle, $content);
}
}

With the algorithm encapsulated as interchangeable classes (the same API, polymorphism), you can
now move back to the varCache() class to re-implement it using the Strategy pattern. The very same
test cases should continue to run for the refactored version.

class varcache {

var $_name;
var $_type;
function varcCache($name, S$type=’serialize’) {
$this->_name = ‘cache/’.$name;
switch (strtolower($type)) {
case ‘string’: $strategy = ‘String’; break;
case ‘numeric’: §strategy = ‘Numeric’; break;
case ‘serialize’:
default: $strategy = ‘Serializing’;
1
§strategy .= ‘Cachewriter’;
$this->_type =& new $strategy;
}

function isvalid() {
return file_exists($this->_name.’ .php’);
}
function get() {
if ($this->isvalid(Q)) {
include $this->_name.’.php’;
return $cached_content;
}
}
function set($value) {
$file_handle = fopen($this->_name.’.php’, ‘w’);
$this->_type->store($file_handle, $value);
fclose($file_handle);
}
}

By creating a concrete instance of the Cachewriter class and binding it to the $_type instance vari-
able, you can use the line $this->_type->store($file_handle, $value) to write the complete

134

The Strategy Pattern

cache file, no longer caring which of the algorithms was selected initially.

This shows the defining characteristics of the Strategy pattern: a family of algorithms, each
encapsulated in an individual class but bound to a container object that only uses the public API in
the exact same way independent of the selection of a particular concrete strategy.

Issues

The Strategy design pattern is very powerful. While the other patterns introduced so far in this book
provide fundamental building blocks for applications, Strategy is the first pattern that has the capa-
bility to play a truly pivotal part in application design and the transformation of a project.

The ability to swap out the “guts” of an object, altering the behavior or performance of the entire
object, is very powerful. Also, a particular strategy is bound to the object once and then forgotten,
making the rest of the API easier to implement. Ultimately, which algorithm is in use is completely
transparent to the rest of your code.

An unattributed quote seen on the Internet says “Eventually, everything starts to look like the
Strategy pattern.” Why? Because this pattern captures the very spirit of polymorphism, one of the
more powerful aspects of OOP.

Related Patterns

The Strategy pattern is similar to several other patterns. The main difference between the Strategy
pattern and the State pattern is that Strategy binds once, whereas the State pattern changes behav-
ior with changes in the values of instance variables (the state of the object). Or, put another way, the
Strategy pattern changes the behavior of the object during constructon; State changes the behavior
of the object dynamically over the lifetime of the object.

The State pattern allows an object to alter its behavior when its internal state changes. Effectively, the

@ | Design Pattern—State

object appears to change its class.

The Decorator pattern (see Chapter 12) is the conceptual opposite of the Strategy pattern. To borrow
an analogy from GoE where the Strategy changes the “guts” of an object, the Decorator pattern
changes its “skin.”

One last, related pattern is the Visitor. In the Strategy pattern, you create a concrete instance of
the selected strategy and bind it to an instance variable; in the Visitor pattern, the Strategy is passed
in as a parameter. You could then think of the Visitor pattern as the dependency inverse of the
Strategy pattern.

The lterator
Pattern

BJECT-ORIENTED PROGRAMMING ENCAPSULATES application logic in classes. Classes, in

turn, are instantiated as objects, and each individual object has a distinct identity and state.

Individual objects are a useful way to organize your code, but often you want to work with a
group of objects, or a collection. A set of rows from a SQL query is a collection, as is the list of Property
objects in the Monopoly game examples shown earlier in the book.

A collection need not be homogeneous either. A Window object in a graphical user interface frame-
work could collect any number of control objects — a Menu, a Slider, and a Button, among others.
Moreover, the implementation of a collection can vary: a PHP array is a collection, but so is a hash
table, a linked list, a stack, and a queue.

The Problem

How can one easily manipulate any collection of objects?

138

The Iterator Pattern

The Solution

Use the Iterator pattern to provide uniform access to the contents of a collection.

You may not realize it, but you use the Iterator pattern every day—it’s embodied in PHP’s array
type and rich set of array manipulation functions. (Indeed, given the combination of the native array
type in the language and a host of flexible functions designed to work with this native type, you need
a pretty compelling reason not to use arrays as your means of manipulating collections of objects.)

Here’s native array iteration in PHP:

$test = array(‘one’, ‘two’, ‘three’);
Soutput = ‘’;
reset($test);
do {
$output .= current($test);
} while (next($test));

echo $output; // produces ‘onetwothree’

The reset() function restarts iteration to the beginning of the array; current() returns the value of
the current element; and next () advances to the next element in the array and returns the new cur-
rent() value. When you advance past the end of the array, next() returns false. Using these itera-
tion methods, the internal implementation of a PHP array is irrelevant to you.

Iterator couples the object-oriented programming principles of encapsulation and polymor-
phism. Using Iferator, you can manipulate the objects in a collection without explicitly knowing how
the collection is implemented or what the collection contains (what kinds of objects). Iterator pro-
vides a uniform interface to different concrete iteration implementations, which do contain the
details of how to manipulate a specific collection, including which items to show (filtering) and in
what order (sorting).

Let’s create a simple object to manipulate in a collection. (Though this example is in PHP5,
Iterators are not unique to PHP5 and most of the examples in this chapter work in PHP4 as well,
albeit with a healthy amount of reference operators added). The object, Lendable, represents media
such as movies and albums and is intended to be part of a web site or service to let users review or
lend portions of their media collection to other users. (For this example, do not concern yourself
with persistence and the like.)

Let’s start with the following test as a basis for the design of Lendab1e.

// PHPS
class LendableTestCase extends UnitTestCase {

The Iterator Pattern 139

function TestCheckout() {
$item = new Lendable;
$this->assertFalse($item->borrower);
$item->checkout(‘John’);
$this->assertequal(‘borrowed’, $item->status);
$this->assertequal(‘John’, $item->borrower);

}

function TestCheckin() {
$item = new Lendable;
$item->checkout(“John’);
$item->checkinQ);
$this->assertequal(‘library’, $item->status);
$this->assertFalse($item->borrower);

To implement the requirements of this initial test, let’s create a class with a few public attributes and
some methods to toggle the values of these attributes:

class Lendable {
public $status = ‘Tibrary’;

public $borrower = ‘’;

public function checkout($borrower) {
$this->status = ‘borrowed’;
$this->borrower = $bhorrower;

}

public function checkin() {
$this->status = ‘library’;
$this->borrower = *’;

}
}

Lendable is a good, generic start. Let’s extend it to track items like DVDs or CDs.
Media extends Lendable and tracks details about specific media, including the name of the item,
the year it was released, and what type of item it is:

class Media extends Lendable {
public $name;
public $type;
public $year;

public function __construct($name, S$year, $type="dvd’) {
$this->name = $name;

140 The lterator Pattern

$this->type
$this->year
}
}

$type;
(int)$year;

To keep things simple, Media has three public instance variables, Media: :name, Media: :year, and
Media: :type. The constructor takes two arguments and stores the first in $name and the second in
$year. The constructor also allows an optional third parameter to specify type (which defaults to
“dvd”).

Given individual objects to manipulate, you can now create a container to hold them: a Library.
Like a regular library, Library should be able to add, remove and count the items in the collection.
Eventually, Library should also permit access to individual items (objects) in the collection (which
is shown momentarily in the Sample Code section of this chapter).

For right now, let’s build a test case for Library.

class LibraryTestCase extends UnitTestCase {
function TestCount() {
$1ib = new Library;
$this->assertEqual (0, $1ib->count());
}
}

It’'s easy enough to write a class that satisfies this test:

class Library {
function count() {
return 0;
}
}

Let’s continue and add some interesting features to the test:

class LibraryTestCase extends UnitTestCase {
function TestCount() { /* ... */ }

function Testadd() {

The Iterator Pattern

$1ib = new Library;
$1ib->add(‘one’);
$this->assertequal (1, $1ib->count());
}
}

An easy way to implement add () is to piggyback on PHP’s flexible array functions: you can add items
to an array instance variable and use count() to return the number of items in the collection.

class Library {
protected $collection = array();

function count() {
return count($this->collection);
}

function add($item) {
$this->collection[] = $item;
}
}

Library is now a collection, but it provides no way to retrieve or manipulate the individual members
of the collection.
Let’s move on to the purpose of the chapter, implementation of the Iterator design pattern.
The following UML class diagram shows the GoF Iterator pattern with the Media and Library
classes used to make the example concrete.

* Your collection class must provide a Factory (see Chapter 3) to create an instance of your
Iterator.

e Iterator classes define an interface of first() to go to the beginning of a collection,
next() to move to the next item in sequence as you iterate, currentItem() to retrieve the
current item from the collection as you iterate, and isDone() to indicate when you have
iterated over the entire collection.

In the Sample Code section, the LibraryGofIterator class is an example of a direct implementation
of the GoF Iterator design pattern.

141

142

The Iterator Pattern

Collection
+getlterator() frp === === = = = = = = = Iterator
+first()
+next()
+isDone()
+currentItem()
Library

#collection: array
+count(): integer

< >t+add (item:Media)
+del(item:Media): boolean
—O+getIterator(): LibraryGofIterator - — = = = = LibraryGoflterator
#collection: array
+_ _construct(collection:array)
return new LibraryGofIteratorlﬁ = — —|+first(): Media
L= ={+next(): Media
! +isDone(): boolean
Lo —{+currentItem(): Media
Loanable 1
+status: string :
+borrower: string 1
+checkOut (borrower:string) 1
+checkIn() 1
1
1
1
— Media =1

+name: string
+year: integer
+type: string
+_ _construct(name:string,year:int,type:string=dvd)

Sample Code
The first step in implementing the GoF Iferator pattern within Library is to write a new test case for
the new concrete Iterator. Since each test method will manipulate a Library filled with Media
instances, you can employ the UnitTestCase: : setUp() method to populate a variable with a Library
in a known state for each test.

Start by adding the Library::getIterator() method as a Factory for instances of the
LibraryGofiterator class.

class IteratorTestCase extends UnitTestCase {
protected $1ib;

function setup() {
$this->1ib = new Library;
$this->1ib->add(new Media(‘namel’, 2000));
$this->Tib->add(new Media(‘name2’, 2002));
$this->1ib->add(new Media(‘name3’, 2001));
}

function TestGetGofIterator() {

The Iterator Pattern 143

$this->assertIsA($it = $this->1ib->getIterator()
,’LibraryGofIterator’);

Here’s the implementation:

class Library {
/...
function getIterator() {
return new LibraryGofIterator($this->collection);
}
}

The getIterator() method passesthe Library’s $collection to the constructor of the new concrete
iterator. This technique has two important implications: each iterator is independent, so multiple
iterators can operate at the same time. Additionally, the iterator operates on the collection as it exist-
ed at the time the iterator was requested. If another item is added to the collection at any time later,
you must request another iterator to display it (at least in this implementation).

Let’s continue enhancing the test suite by adding assertions to the TestGetGofIterator()
method to match the Iterator design pattern. The isDone () method should only be true if you've iter-
ated over the entire collection. If the iterator’s just been created, isbone() should obviously return
false to indicate it’s okay to iterate.

class IteratorTestCase extends UnitTestCase {
function setup() { /* ... */ }

function TestGetGofIterator() {
$this->assertIsA($it = $this->Tib->getIterator()
,’LibraryGofIterator’);
$this->assertFalse($it->isdone());
}
}

As usual with TDD, implement the simplest possible code that satisfies your test case:

class LibraryGofiterator {

144 The lterator Pattern

function isbone() {
return false;
}
}

So, what should happen during the firstiteration? currentItem() should return the first Media object
added in the IteratorTestCase::setUp() method and isbone() should continue to be false, since
two additional items remain to be iterated over.

class IteratorTestCase extends UnitTestCase {

function setup() { /* ... */ }

function TestGetGofIterator() {
$this->assertIsA($it = $this->1ib->getIterator()

,'LibraryGofIterator’);

$this->assertFalse($it->isdone());
$this->assertIsA(§first = §it->currentIitem(), ‘Media’);
$this->assertEqual(‘namel’, $first->name);
$this->assertFalse($it->isdone());

It’s critical that LibraryGofIterator receives the $collection in the constructor (see the minimal
implementation of Library above) and returns the current() item of that array from the
currentItem() method.

class LibraryGofiterator {
protected $collection;
function __construct($collection) {
$this->collection = $collection;
1
function currentItem() {
return current($this->collection);
}
function isbone() {
return false;
}
}

What should happen in the next iteration? The next () method should change what item is returned
by the currentItem() method. This next test captures that expected behavior:

The Iterator Pattern 145

class IteratorTestCase extends UnitTestCase {

function setup() { /* ... */ }

function TestGetGofIterator() {
$this->assertisA($it = $this->Tib->getIterator(), ‘LibraryGofIterator’);
$this->assertFalse($it->isdone());
$this->assertIsA($first = $it->currentitem(), ‘Media’);
$this->assertequal(‘namel’, $first->name);
$this->assertFalse($it->isdone());

$this->assertTrue($it->next());

$this->assertisA($second = $it->currentitem(), ‘Media’);
$this->assertequal(‘name2’, $second->name);
$this->assertFalse(§it->isdone());

Piggybacking again on PHP’s array functions, use next () on the array:

class LibraryGofiterator {
protected $collection;
function __construct($collection) {
$this->collection = $collection;
}
function currentitem() {
return current($this->collection);
}
function next() {
return next($this->collection);
}
function isbone() {
return false;
}
}

The third iteration looks much like the others, except the isbone() method must return true. You
also want next () to indicate success of moving to the next iteration:

class IteratorTestCase extends UnitTestCase {

function setup() { /* ... */ }

function TestGetGofIterator() {
$this->assertisA($it = $this->Tib->getIterator(), ‘LibraryGofiterator’);
$this->assertFalse($it->isdone());
$this->assertIsA($first = $it->currentitem(), ‘Media’);
$this->assertEqual(‘namel’, $first->name);
$this->assertFalse($it->isdone());

146 The lterator Pattern

$this->assertTrue($it->next());

$this->assertIsA($second = $it->currentItem(), ‘Media’);
$this->assertequal(‘name2’, $second->name);
$this->assertFalse($it->isdone());

$this->assertTrue($it->next());

$this->assertIsA($third = §it->currentItem(), ‘Media’);
$this->assertequal(‘name3’, $third->name);
$this->assertFalse($it->next());
$this->assertTrue($it->isdone());

With small modifications to the next() and isDone() methods, all of the tests pass Here’s the code
so far:

class LibraryGofIterator {
protected $collection;
function __construct($collection) {
$this->collection = $collection;

}

function first() {
reset($this->collection);

}

function next() {
return (false !== next($this->collection));

}

function isbone() {
return (false === current($this->collection));

}

function currentItem() {
return current($this->collection);
}
}

There’s just one problem with the Iterator test case: it doesn't reflect how iterators are typically used.
Yes, it tests all of the features of the Iferator pattern, but application code uses the Iterator in a much
simpler way. So, the next step is to write a test using more realistic code.

class IteratorTestCase extends UnitTestCase {
protected $1ib;
function setup() { /* ... */ }
function TestGetGofIterator() { /* ... */ }

The Iterator Pattern

function TestGofIteratorusage() {
foutput = ‘’;
for ($it=$this->1ib->getIterator(); !$it->isbone(); $it->next()){

$output .= $it->currentItem()->name;

1
$this->assertEqual (‘namelname2name3’, S$output);

1

}

So far, the implementation of Iterator copies an array (the collection) and uses PHP’s internal point-
er to track the iteration. You can also implement the Iterator by keeping track of the collection index
by yourself. This requires a new accessor method in Library to fetch an object by key.

class Library {
/] ...
function get($key) {
if (array_key_exists($key, $this->collection)) {
return $this->collection[$key];
}
}
}

Also, you'd pass $this (the library itself) to the constructor instead of $this->collection (the array
containing the Media collection) in the Library: :getIterator() method.

The “external” iterator would then just track a pointer internally to know which element of the
Library collection it’s currently referencing, and would use the reference to the Library passed in
the constructor to call the get() method to retrieve the current object.

class LibraryGofexternaliterator {
protected $key = 0;
protected $collection;

function __construct($collection) {
$this->collection = $collection;
}
function first() {
$this->key=0;
}
function next() {
return (++$this->key < $this->collection->count());
}
function isbone() {
return ($this->key >= $this->collection->count());
}

147

148

The Iterator Pattern

function currentItem() {
return $this->collection->get($this->key);
}
}

This implementation assumes your collection array is indexed starting with 0 and is completely
sequential.

A Variant Iterator API
While the foregoing code is a complete implementation of the Iferator pattern as described by GoE
you may find the four-method API a bit cumbersome. If so, you can collapse next (), currentItem(),
and isDone() into just next() by having the latter either advance and return the current item from
the collection or return false if the entire collection has been processed.

Here’s one way to write a test for this variation of the API:

class IteratorTestCase extends UnitTestCase {
/] ..
function TestMediaIteratorusage() {
$this->assertIsA(
$it = $this->lib->getIterator(‘media’)
,’LibraryIterator’);
foutput = ‘7;
while ($item = $it->next()) {
$output .= $item->name;
}

$this->assertequal(‘namelname2name3’, S$output);

In the code above, notice the simplified control structure for looping. next () returns an object or
false, allowing you to perform the assignment inside the while loop conditional.

The next few examples explore variations of the Iterator pattern using the smaller interface. As
a convenience, change the Library: :getIterator() method to a parameterized Factory so you can
get either the four-method iterator or the two-method iterator (next() and reset()) from that sin-
gle method.

class Library {

// ...
function getIterator($type=false) {
switch (strtolower($type)) {

The Iterator Pattern

case ‘media’:
$iterator_class = ‘LibraryIterator’;

break;
default:
$iterator_class = ‘LibraryGofIterator’;
1
return new $iterator_class($this->collection);

Here, Library: :getIterator() now accepts a parameter to select what kind of iterator to return. The
defaultis LibraryGofIterator (so the existing tests still pass). Passing the string media to the method
creates and returns a LibraryIterator instead.

This is some code to implement LibraryIterator:

class LibraryIterator {
protected $collection;
function __construct($collection) {
$this->collection = $collection;
}
function next() {
return next($this->collection);
}
}

Oops! The dreaded red bar! What happened to get the error “Equal expectation fails at character 4
with namelname2name3 and name2name3”? Somehow, the first iteration was skipped—that’s a bug. To
fix the error, return current() for the first call of the next() method.

class LibraryIterator {
protected $collection;
protected $first=true;
function __construct($collection) {
$this->collection = $collection;
}
function next() {
if ($this->Ffirst) {
$this->first = false;
return current($this->collection);
1
return next($this->collection);
}
}

149

150 The lterator Pattern

Presto! A green bar and a streamlined while loop iterator.

Filtering Iterator

With Iterators, you can do more than just present each item of the collection. You can also select
what items are presented. Let’s modify the Library: :getIterator() to allow two additional iterator
types.

class Library {
Y7
function getIterator($type=false) {
switch (strtolower($type)) {
case ‘media’:
$iterator_class = ‘LibraryIterator’;
break;
case ‘available’:
$iterator_class = ‘LibraryAvailableIterator’;
break;
case ‘released’:
$iterator_class = ‘LibraryReleasedIterator’;

break;
default:
$iterator_class = ‘LibraryGofIterator’;
}
return new $iterator_class($this->collection);
}

The class LibraryAvailableIterator should only iterate over items that have a status of “library”
(recall that the checkout() method changes the status to “borrowed”).

class IteratorTestCase extends UnitTestCase {
/] ...
function TestAvailableIteratorusage() {
$this->1ib->add($dvd = new Media(‘test’, 1999));
$this->Tib->add(new Media(‘name4’, 1999));
$this->assertIsA(
$it = $this->1ib->getIterator(‘available’)
,’LibraryAvailableIterator’);
$output = ‘’;

while ($item = $it->next()) {
$output .= $item->name;
}

$this->assertEqual(‘namelname2name3testname4’, S$output);

$dvd->checkout(“Jason’);
$it = $this->1ib->getIterator(‘available’);

foutput = ‘’;

The Iterator Pattern

while ($item = $it->next()) {
Soutput .= $item->name;
}
$this->assertequal(‘namelname2name3name4’, $output);
}
}

This test creates a new Media instance and stores it in the variable $dvd. The first highlighted
assertEqual() assertion verifies that the new item is present when iterating with
LibraryAvailableIterator. Next, the test uses the checkout() method and verifies that the new
item is missing from the display.

The code to implement filtering is very similar to LibraryIterator::next(), except filtering is
done prior to returning the item. If the current item does not match the filter criteria, the code
returns $this->next() instead.

class LibraryAvailableIterator {

protected $collection = array();
protected $first=true;
function __construct($collection) {

$this->collection = $collection;
}
function next() {

if ($this->first) {

$this->first = false;

$ret = current($this->collection);

} else {
$ret = next($this->collection);

}

if ($ret & ‘l1ibrary’ != $ret->status) {
return $this->next(Q);

1

return $ret;

Sorting Iterator
An iterator can do more than show all or a portion of the collection. An iterator can also show the
collection in a specific order. Let’s create an iterator that sorts the Media in the collection by release
date.

For a test, add some Media instances with dates older that those of the items added in the
setUp() method. If the iterator works, these older items should be sorted to the beginning of the iter-
ation.

151

152 The lterator Pattern

class IteratorTestCase extends UnitTestCase {
/] ...
function TestReleasedIteratorUsage() {
$this->1ib->add(new Media(‘second’, 1999));
$this->1ib->add(new Media(‘first’, 1989));
$this->assertIsA(
$it = $this->Tib->getIterator(‘released’)
,’LibraryReleasedIterator’);
Soutput = array();
while ($item = $it->next()) {
$output[] = $item->name .’-’. $item->year;
}
$this->assertequal(
‘first-1989 second-1999 namel-2000 name3-2001 name2-2002’
,implode(‘ *,$output));

This test uses the items in each iteration slightly differently: instead of just appending the $name val-
ues in a string, a string is formed from both the $name and $year properties, which is then append-
ed to an $output array.

The implementation of LibraryReleasedIterator is nearly identical to LibraryIterator,
except for one additional line in the constuctor:

class LibraryReleasedIterator extends LibraryIterator {
function __construct($collection) {
usort($collection, create_function(‘$a,$b’,’return ($a->year - $b->year);’));
$this->collection = $collection;
}
}

The line in bold sorts the $collection array prior to iteration. You can avoid copying all of the other
code for the class by simply inheriting from the LibraryIterator class itself.

Is it possible to use an external iterator to accomplish this same sorted iteration? Yes, but you
must pull a few tricks to accomplish it.

class LibraryReleasedExternalIterator {
protected $collection;
protected $sorted_keys;
protected $key=-1;

function __construct($collection) {

The Iterator Pattern

$this->collection = $collection;
$sort_funct = create_function(
‘$a,$b,$c=false’,
‘static $collection;
if ($c) {
$collection = $c;
return;

return ($collection->get($a)->year -
$collection->get($b)->year);’);
$sort_funct(null,null,$this->collection);
$this->sorted_keys = $this->collection->keysQ);
usort($this->sorted_keys, $sort_funct);

}

function next() {
if (++$this->key >= $this->collection->count()) {
return false;
} else {
return $this->collection->get($this->sorted_keys[$this->key]l);
}
}
}

Key here is the creation of a utility function for performing the sort. The sorting function needs to
have access to the collection so it can fetch members for comparison. However, because the gener-
ated function is used in a usort (), you don’t have the option of passing the collection as an addition-
al parameter. Instead, you can use the trick shown in the code block above to store a reference to the
collection inside the function prior to calling it with usort().

What you're sorting is the list of keys for the collection. When usort() is complete, the keys will
be sorted in order by the year attribute of each object in the collection.

In the next () method, an object in the collection is accessed via the get () method, but indirect-
ly through the $sorted_keys mapping. If you recall the external version of the GoF-style iterator,
arrays with gaps or strings in the keys could be problematic. This same trick could be used for a sim-
ple external iterator to alleviate the problem of gaps in the sequence of keys.

SPL Iterator
No chapter on the Iterator design pattern and PHP would be complete without discussing the
“Standard PHP Library” (SPL) iterator.

The while loop structure used so far is very compact and usable, but PHP coders may be more
comfortable with the foreach structure for array iteration. Wouldn't it be nice to use a collection
directly in a foreach loop? That’s exactly what the SPL iterator is for.

(Even though this chapter has been written entirely for PHP5, the following SPL code is the only
code that works solely in PHP5, and then only if you've compiled PHP 5 with SPL enabled.) Harry

153

154 The lterator Pattern

Fuecks wrote a nice article introducing the SPL and covering the SPL iterator; see http: //ww.site-

point.com/article/php5-standard-Tibrary.

Using SPL is essentially a completely different way to implement iteration, so let’s start over with
a new unit test case and a new class, the ForeachableLibrary.

class SplIteratorTestCase extends UnitTestCase {
protected $1ib;

function setup() {
$this->1ib = new ForeachableLibrary;
$this->Tib->add(new Media(‘namel’, 2000));
$this->Tib->add(new Media(‘name2’, 2002));
$this->1ib->add(new Media(‘name3’, 2001));
}

function TestForeach() {
Soutput = ‘’;
foreach($this->1ib as $item) {
foutput .= $item->name;
}

$this->assertEqual(‘namelname2name3’, S$output);

ForeachableLibrary is the collection that implements the SPL Iterator interface. You have to
implement five functions to create an SPL iterator: current(), next(), key(), valid(), and rewind().
key() returns the current index of your collection. rewind() is like reset(): iteration restarts at the
start of your collection.

class ForeachableLibrary
extends Library
implements Iterator {
protected $valid;

function current() {
return current($this->collection);

}

function next() {
$this->valid = (false !== next($this->collection));

}
function key() {
return key($this->collection);

}

function valid() {

The Iterator Pattern 155

return $this->valid;

}

function rewind() {
$this->valid = (false !== reset($this->collection));
}
}

Here, the code we just implements the required functions working on the $collection attribute. (If
you don’t implement all five functions and you add the implements Iterator to your class defini-
tion, PHP will generate a fatal error.) The tests are “green,” so everything is happy.

There’s just one problem: the implementation is limited to one style of iteration — sorting or fil-
tering is impossible.

Can anything be done to rectify this? Yes! Apply what you learned from the Strategy pattern (see
Chapter 7) and delegate the SPL iterator’s five functions to another object.

This is a test for PolymorphicForeachableLibrary.

class PolySplIteratorTestCase extends UnitTestCase {

protected $1ib;

function setup() {
$this->1ib = new PolymorphicForeachableLibrary;
$this->Tib->add(new Media(‘namel’, 2000));
$this->Tib->add(new Media(‘name2’, 2002));
$this->Tib->add(new Media(‘name3’, 2001));

}

function TestForeach() {
Soutput = ‘’;
foreach($this->1ib as $item) {
$output .= $item->name;

3

$this->assertequal (‘namelname2name3’, S$output);

The only difference between this case and the test for SplIteratorTestCase is the class of the
$this->T11b attribute created in the setUp() method. That makes sense: the two classes must behave
identically.

Here’s PolymorphicForeachableLibrary.

class PolymorphicForeachableLibrary
extends Library

156 The lterator Pattern

implements Iterator {
protected $iterator;
function current() {
return $this->iterator->current();
}
function next() {
return $this->iterator->next();
}
function key() {
return $this->iterator->key(Q);
}
function valid(Q {
return $this->iterator->valid(Q);
}
function rewind() {
$this->iterator =
new StandardLibraryIterator($this->collection);
$this->iterator->rewind();
}
}

Library is extended to get the collection manipulation methods. The SPL methods are added, too,
all delegating to the $iterator attribute, which is created in rewind(). Below is the code for the
StandardLibraryIterator.

class StandardLibraryIterator {
protected $valid;
protected $collection;
function __construct($collection) {
$this->collection = $collection;
}
function current() {
return current($this->collection);
}
function next() {
$this->valid = (false !== next($this->collection));
}
function key() {
return key($this->collection);
}
function valid() {
return $this->valid;

}
function rewind() {

$this->valid = (false !== reset($this->collection));
}

}

This code should look familiar: essentially, it's a copy of the five SPL functions from the

The Iterator Pattern

ForeachableLibrary class. The tests pass.
OK, the code is more complex now, but how does it support additional iterator types? Let’s add
a test for a “released” version of the iterator to see how additional iterator types work in this design.

class PolySplIteratorTestCase extends UnitTestCase {
/...
function TestReleasedForeach() {
$this->Tib->add(new Media(‘second’, 1999));
$this->Tib->add(new Media(‘first’, 1989));
$output = array();
$this->Tib->iteratorType(‘Released’);
foreach($this->1ib as $item) {
$output[] = $item->name .’-’. $item->year;
}
$this->assertequal(
‘first-1989 second-1999 namel-2000 name3-2001 name2-2002’
,implode(‘ *,$output));

This test case above should look familiar, too, as it’s very similar to the previous “release” iterator, but
using the foreach control structure to loop.

class PolymorphicForeachableLibrary
extends Library
implements Iterator {
protected $iterator_type;
protected $iterator;
function __construct() {
$this->iteratorType();
}
function iteratorType($type=false) {
switch(strtolower($type)) {
case ‘released’:
$this->iterator_type = ‘ReleasedLibraryIterator’;
break;
default:
$this->iterator_type = ‘StandardLibraryIterator’;
}
$this->rewind();

1

/...

function rewind() {
$type = $this->iterator_type;
$this->iterator = new $type($this->collection);
$this->iterator->rewind();

}

}

157

158

The Iterator Pattern

The new iteratorType() method lets you switch which style of iterator you want to use. (Since the
iterator type isn't chosen during the instantiation of the object and because you can choose a differ-
ent iterator type on-the-fly by calling the iteratorType() method again, the code is actually imple-
menting the State pattern, rather than the Strategy pattern.)

class ReleasedLibraryIterator
extends StandardLibraryIterator {
function __construct($collection) {
usort($collection
,create_function(‘$a,$b’, return ($a->year - $b->year);’'));
$this->collection = $collection;
}
}

You can easily implement ReleasedLibraryIterator by extending StandardLibraryIterator and
overriding the constructor to add the sorting of the incoming array. And with that you have a work-
ing PolymorphicForeachableLibrary.

Issues

Iterators are a nice way to standardize working with collections of objects in your applications. The
examples here have been based on arrays, but the ability to work on non-array based collections
with an identical interface is powerful.

The ability to use collections in the foreach control structure is indeed cool. The only unfortu-
nate issue with the SPL implementation is the significant potential for name space clashing with
“Iterator”. How much PHP4 object-oriented code has some sort of an Iterator class as a base class
for the libraries’ iterators? Of those, how many define the five required methods in the same capac-
ity? Perhaps implements Foreachable would have been a less intrusive name.

If you choose to use the SPL, you should investigate the other supported iterators, like
RecursiveArrayIterator and numerous other flavors.

The Observer
Pattern

ART OF THE EXPRESSIVENESS OF OBJECT-ORIENTED PROGRAMMING is the ability to build
complex networks of interconnections between objects. Linked together, objects can exchange
services and information.

Often, you want objects to “chatter” when the state of an object changes. But for many reasons,
you may prefer to not “hard code” the lines of communications. Perhaps you want to form and reform
connections to respond to conditions in your application or perhaps you simply want to refactor the
communication code to avoid interdependencies between classes.

The Problem
How can you alert (potentially) many objects when a certain object’s state changes? Is there a scheme
that’s dynamic—one that allows interconnections to come and go as a script executes?

The Solution
The Observer pattern allows objects to express interest in the state of another object and provides a

162

The Observer Pattern

mechanism for the “observed,” or the subject, to contact all of its “observers,” the clients, when its
state changes.

The Observer is a collaboration between an Observable class (the subject) and one or more
Observer classes (the clients). The Observable class allows Observers to register with it. Then, when-
ever the state of the Observable object changes, all registered Observers are notified.

The Observer pattern separates the subject from the client, leaving it up to each Observer to take
its own action in response to the change. (The Observer pattern is also known as Publish/Subscribe,
which is an equally valid metaphor for the interaction between the objects in the pattern.)

The Observer pattern is flexible and extensible. The burden of knowing what classes want to fol-
low the Observable’s state information and how each of those classes intends to use the information
is removed from the Observable class itself. Additionally, an Observer can register or unregister at
any time, as appropriate. You can also define multiple concrete Observer classes, allowing for varied
behavior in your application.

Sample Code

As an example, you can use the Observer pattern to create a much more flexible error handler for
your PHP scripts. The default error handler might dump information to the screen, but additional
handlers could write to a log file, write to syslog, send email, or transmit a page to your beeper. You
might even conceive of a tiered scheme that only alerts those Observers that have registered for cer-
tain kinds of errors, say, from warnings to something severe like a database server crash.

In fact, let’s create a set of classes to implement just such an error handler for PHP using
Observer. A new class, ErrorHandler, is the subject of the Observer design pattern. Two other class-
es, FileErrorLogger and EmailErrorLogger, are Observer clients that log errors in a file and via
email, respectively. Expressed in UML, this is what you're after:

Observable
observers: array < Observer
+attach(observer:0bserver)
+detach(observer:0bserver) +update()
+notify() Sl
“~<] foreach observer in _observers
observer->update()
FileErrorLogger EmailErrorLogger
fh: resource # addr: string
Handl +FileErrorLogger(file handle:resource) # subject: string
ErrorHandler +write(msg:string) +EmailErrorLogger(addr:string,subject:string)
error_info: array +update(error_handler:ErrorHandler) +mail(msg:string)
+setState(inforarray) M—+update(error7handler:ErrorHandler)
+getState()

The Observer Pattern

To implement an error handler based on the Observer pattern, start by looking at the complexities
and commonalities of FileErrorLogger and EmailErrorLogger that have nothing to do with being
observers. How does the FileErrorLogger write to a file and how does the EmailErrorLogger send
an email? Next, look at the mechanics required to implement the Observer pattern and then focus
on the details of ErrorHandler, the subject of the pattern. Finally, write the error handler function
to use the ErrorHandler class.

The end game is expressed in this code snippet:

// PHP4

$eh =& getErrorHandlerInstance();

$eh->attach(new EmailErrorLogger(‘jsweat_php@yahoo.com’));
$eh->attach(new FileErrorLogger(fopen(‘error.log’,’w’)));

set_error_handler(‘observer_error_handler’);

// ... later
trigger_error(‘this is an error’);

ErrorHandler is a Singleton (see Chapter 4: The Singleton Pattern) that various error logging
observers can register with using attach(). set_error_handler() points to a function that uses
ErrorHandler. Later, when an error is triggered, all of the observers are notified.

To validate the operation of this Observer, your tests have to verify that all of the actions of the
observers (logging to a file, emailing the error) have taken place and worked properly. To be brief,
let’s look at an abbreviated set of tests. (More complete test cases for this example are available in the
source code download for this book.)

Here’s a portion of the FileErrorLogger unit test case that validates: that the class has the capa-
bility to log to a file handle passed into the object at the time it is instantiated:

class FileErrorLoggerTestCase extends UnitTestCase {
var $_fh;
var $_test_file = ‘test.log’;

function setup() {
@unTink($this->_test_file);
$this->_fh = fopen($this->_test_file, ‘w’);
}

function TestRequiresFileHandleToInstantiate() { /* ... */ }
function Testwrite() {

$content = ‘test’.rand(10,100);
$Tog =& new FileErrorLogger($this->_fh);

163

164 The Observer Pattern

$1og->write($content);
$file_contents = file_get_contents($this->_test_file);
$this->assertwantedrattern(‘/’.$content.’$/’, $file_contents);

}

function TestwriteIsTimeStamped() { /* ... */ }
}

The setup() method in this test case creates a file handle pointing to a new file called test.log and
stores the handle in the $_fh attribute. This writable file handle is then passed as an argument to the
constructor of the FileErrorLogger object being tested. The value of $content is passed to the
write() method and the file is checked to see that $content has indeed written to the test.log file.
(This test is predicated on the ability of PHP to write to the directory where the test.log file is being
created.)

Some code to allow FileErrorLogger to pass the test might be:

class FileErrorLogger {
var $_fh;
function FileErrorLogger($file_handle) {
$this->_fh = $file_handle;
}
function write($msg) {
fwrite($this->_fh, date(‘y-m-d H:i:s: ‘).$msg);
}
}

A similar test validates the EmailErrorLogger class.

class EmailErrorLoggerTestCase extends UnitTestCase {
function TestEmailAddressFirstConstructorParameter() {
$log =& new EmailErrorLogger;
$this->asserterrorPattern(‘/missing.*1/i’);
}
function TestMail() {
$1og =& new EmailErrorLogger(‘jsweat_php@yahoo.com’);
$1og->mail(‘test message’);
}
}

And the following EmailErrorLogger code passes the tests:

The Observer Pattern

class EmailErrorLogger {
var $_addr;
var $_subject;

function EmailErrorLogger($addr,
$subject="Application Error Message’) {
$this->_addr = $addr;
$this->_subject = $subject;

}

function mail($msg) {
mail($this->_addr
,$this->_subject
,date(‘y-m-d H:i:s: *).$msg);

How do you validate that EmailErrorLogger actually sent email? Yes, you can open your mailbox and
look for the message, but that’s not an automated test. Instead, this test looks like an ideal candidate
for MockObject. (Creating one to handle the mail side of the interaction is left as an exercise for you,
the reader. See Chapter 6: The MockObject Pattern for more information and look over the FakeMail
project at http://sf.net/projects/fakemail/.)

With the concrete observers in place, let’s move on and implement the Observer pattern in the
ErrorHandler class, starting with the attach() method.

class Observer {
function update() {
die(‘abstract method’);
}
}

Mock: :Generate(‘Observer’);

class ErrorHandlerTestCase extends UnitTestCase {
function TestAttach() {
$eh =& new ErrorHandler;
$observer =& new MockoObserver($this);
$observer->expectonce(
‘update’
,array(‘*’)); // array(&$eh)

$eh->attach($observer);
$eh->notify();

$observer->tally(Q);

}
function Testbetach() { /* ... */ }

165

166 The Observer Pattern

For this test, a simple Observer class is created to represent the interface of all the concrete
observers. To test the attach() method, a MockObject based on Observer is created and attached to
the ErrorHandler test instance. Then, when the public notify() method is called, the MockObject
verifies that update() was called.

Notice the commented array(&$eh) in the creation of the mock Observer expectations. Ideally,
this is what the test should validate; however, due to a limitation of the PHP language, this generates
a Fatal error: Nesting level too deep - recursive dependency?. To avoid that problem, the
code uses the “wild card” capability of SimpleTest expectations to allow for any argument to allow
the expectation to pass.

@ Nesting Level Too Deep
Because ErrorHandler contains a reference to the mock Observer in the $_observers array that’s then
passed to the mock Observer as part of the expectation, PHP generates a “Nesting level too deep” error.
Recursive dependencies like this one are a fundamental PHP issue that can be found in even simple con-
ditions . See http://bugs.php.net/bug.php?id=31449.

The ErrorHandler would start to shape up like this:

class ErrorHandler {
var $_observers=array();

function attach(&$observer) {
$this->_observers[] =& $observer;

}

function notify() {
foreach(array_keys($this->_observers) as $key) {
$observer =& $this->_observers[$key];
$observer->update($this);
}
}

Based on the code above, you need to add an update() method to each of the concrete observers. In
each case, the update () method needs to know how to get information from the ErrorHandler class
being observed to perform its function. Here is the added code:

class FileErrorLogger {
var $_fh;
function FileErrorLogger($file_handle) {

The Observer Pattern 167

$this->_fh = $file_handle;
}
function write($msg) {
fwrite($this->_fh, date(‘y-m-d H:i:s: ‘).$msg);
}
function update(&$error_handler) {
$error = $error_handler->getstate();
$this->write($error[‘msg’]);
}
}

class EmailErrorLogger {
var $_addr;
var $_subject;
function EmailErrorLogger($addr,
$subject="Application Error Message’) {
$this->_addr = $addr;
$this->_subject = $subject;
}
function mail($msg) {
mail($this->_addr
,$this->_subject
,date(‘Y-m-d H:i:s: ‘).$msg);
}
function update(&$error_handler) {
$error = $error_handler->getState(Q);
$this->mail($error[‘msg’]);
}
}

Each of the two update() methods takes the ErrorHandler as an argument, extracts the error infor-
mation from that object, and calls an internal instance method to process the error. Each of the
update() methods extracts the error information from the getState() method of ErrorHandler. The
method is named getState() to keep with the pattern outlined in GoE, but may be more appropri-
ately named getError() or getErrorInfo(), which are more meaningful to the domain.

Optionally, if you dislike the coupling between the objects in this pattern, you can change
update() to send a message (the error array in this case or perhaps some messenger object) instead
of a reference to itself.

Here is a new version of ErrorHandler that implements the latter variation, and includes the
detach() code:

class ErrorHandler {
var $_observers=array(Q);
var $_error_info;
function attach(&$observer) {
$this->_observers[] =& $observer;
}

function detach(&$observer) {

168 The Observer Pattern

foreach(array_keys($this->_observers) as $key) {
if ($this->_observers[$key] === $observer) {
unset($this->_observers[$key]);
return;
1
1
}
function notify() {
foreach(array_keys($this->_observers) as $key) {
$observer =& $this->_observers[$key];
$observer->update($this);
}
}
function getState() {
return $this->_error_info;
}
function setState($info) {
$this->_error_info = $info;
$this->notify();
1
}

You now have a complete implementation of the Observer pattern.

Now, returning to the original goal of this chapter, let’s see how to use ErrorHandler in a real
PHP script. To include the Observer in a PHP application, you must setup the instance of
ErrorHandler and make sure the function bound to the set_error_handler () method uses the exact
same reference. This sounds like a problem from the recent past: a Singleton.

Lets make a Factory method that’s a simple PHP function to return the Singleton instance of
ErrorHandler:

function &getErrorHandlerInstance() {
static $instance = array(Q);
if (!$instance) $instance[0] =& new ErrorHandler();
return $instance[0];

}

Now, let’s write the error handler function that gets the Singleton ErrorHandler, changes its state to
reflect the error, and triggers the Observer notifications:

function observer_error_handler(
$errno, $errstr, $errfile, $errline, S$errcontext) {
$eh =& getErrorHandlerinstance();
$eh->setState(array(
‘number’ => S$errno

The Observer Pattern 169

,’msg’ => S$errstr

, file’ => $errfile
,’Tine’ => $errline
,’context’ => $errcontext
));

You may notice that there’s no call to ErrorHandler: :notify(). Why? Because ErrorHandler auto-
matically sends notifications whenever the state is changed:

class ErrorHandler {
/] ...
function setState($info) {
$this->_error_info = $info;
$this->notify(Q);
}
}

There are obviously pros and cons to this “notify on set” approach. The advantage is the client code
doesn’'t have to remember to trigger the notification.

However, if you had several changes to make to the state of the subject object, all of which were
performed in different methods, you might choose instead to force the client code to explicitly call
notify(Q).

Since you have all of this scaffolding in place, how easy is it to add another type of logging into
the mix? Say you now want the capability to log to the system log. A quick check of the PHP manual
(http: //ww.php.net/syslog) reveals a few helpful functions to set up logging. These can easily be

wrapped into a new class, ready to attach to ErrorHandler:

class SyslogErrorLogger {
function SyslogErrorLogger($msg) {
define_syslog_variables();
openlog($msg, LOG_ODELAY, LOG_USER);
}
function log($msg) {
sys1og(LOG_WARNING, $msg);
}
function update(&$error_handler) {
$error = $error_handler->getsState();
$this->Tog($error[‘msg’1);
}
}

170 The Observer Pattern

@ The Utility of Error Logs
Logs are very useful—if someone reads them. On the other hand, if no one makes user of the logs, then
logging is just clutter in your code.

For a more eloquent treatment of this subject, take a look at :
http://www.lastcraft.com/blog/index. php?p=4

Issues

The Observer pattern is very useful. The example shown here was a fairly static—the observers would
be configured during the initialization of the script and left static after that. Where the Observer pat-
tern really shows its flexibility is in a more dynamic application where you add and remove observers
based on other events in your script. Given the usually brief “lifetime” or execution time of PHP
scripts, this is more likely to be different configurations of observers during different executions of a
script, rather than dynamically changing over the course of a script. This would likely be much dif-
ferent in an environment like PHP-GTK, which does have protracted script execution.

10

The Specification
Pattern

S AN APPLICATION TAKES SHAPE, bits of business logic sprout up everywhere, seemingly of

their own volition. One object must limit items based on price; another object must choose

the right rate for sales tax; and yet another must determine if any special conditions apply to
the current order. Some business rules are simple, requiring little more than one or two boolean com-
parisons, while other rules can require protracted computations, needing database queries and user
input to guide them.

Writing code transforms the abstract (a business rule) into something concrete. But abstractions
(such as shopping styles, tax rates, and shipping fee calculations) have a way of evolving and multiply-
ing and such changes can easily overwhelm a hapless developer. To stay safe—as you've seen so far in
this book—it’s ideal to encapsulate and isolate what readily changes whenever possible. And indeed,
that’s also a wise strategy for business rules, too.

174

®

The Specification Pattern

The Problem

Is there a clean way to encapsulate business logic? Is there a technique that facilitates adaptation
and reuse?

The Solution
The Specification pattern is designed to validate and select.

* Validation determines if a particular object satisfies a certain criteria.
* Selection identifies those elements of a collection that satisfy the given criteria.

The Specification pattern allows you to structure these criteria for flexible use in your application.

Refactoring already encourages you to capture decisions in methods to promote clarity and
reuse. The Specification pattern takes this one step further by systematizing this structure into sep-
arate objects that can then be plugged back into your application where appropriate. In many cases,
Specification objects are parameterized and can often be combined to easily build complex logical
expressions in your application’s domain.

Additional Reading
Eric Evans and Martin Fowler published an article about the Specification pattern available at:
http://www.martinfowler.com/apsupp/spec.pdf.

This pattern is also covered in detail in Eric Evans’s book “Domain Driven Design” on pages 224 and 273.

To provide reasonable coverage of this pattern, this chapter is organized into three logical steps. The
first is a “pure” example that shows the basic concepts of the pattern applied to an object. (Evans
and Fowler refer to this as a “Hard Coded Specification.”) The next step demonstrates how to build
parameterized specifications, which provide a more dynamic and flexible framework for reusing the
Specification pattern (a so-called “Parameterized Specification”). Finally, the last step develops a
“Policy Factory” as an easy means of assembling many Specification objects together into an easily
used package (a “Composite Specification”).

Traveling to Warm Destinations

My family and I recently planned a vacation and my wife wanted to go “somewhere warm.” While
there are umpteen travel-related sites, none that we visited provided a temperature for each desti-
nation. Instead, we had to constantly flip over to weather.com and do searches. That’s terribly incon-
venient. Let’s remedy the situation and add a temperature search feature to a hypothetical travel

The Specification Pattern

web site. Let’s use the Specification pattern as a guide to show what you might code to compare a
traveler’s desired minimum temperature to the average temperature of a number of destinations.

Let’s start by creating some very simple domain objects. First is a Traveler, which stores a pre-
ferred minimum temperature.

// PHPS

class Traveler {
public $min_temp;

}

Next, let’s create a class to represent destinations. Since average temperature is a key criterion, the
constructor for Destination should expect an array with twelve values, where each value is the aver-
age temperature for each month of the year.

class Destination {
protected $avg_temps;

public function __construct($avg_temps) {
$this->avg_temps = $avg_temps;
}
}

Destination also needs a means of retrieving the average temperature of the destination for any
given month:

class Destination {
/]

public function getAvgTempByMonth($month) {
$key = (int)$month - 1;
if (array_key_exists($key, $this->avg_temps)) {
return $this->avg_temps[$key];
}
1
}

Finally, the Trip class combines a Traveler and a Destination with a date.

175

176

The Specification Pattern

class Trip {
public $date;
pubTic $traveler;
public $destination;

}

Given these objects, you can extract the month of travel from Trip: :date and compare the average
temperature of the Destination for that month with the minimum temperature desired by the
Traveler. (This comparison may not be very complicated, but it gives you something to work with.)
Let’s look at how to implement the “warm destination” business logic as a Specification pattern
and see how to apply the pattern to validate each destination and select all suitable destinations.

Sample Code
The heart of the Specification pattern is an object with an IsSatisfiedBy() method that accepts a
parameter to evaluate and returns a boolean value based on the Specification’s criteria.

Trip

+date: integer
<t+traveler: Traveler
——<>t+destination: Destination

Traveler

+min_temp: float

TripRequiredTemperatureSpecification

Destination

+isSatisfiedBy($trip:Trip): boolean —

#avg_ temps: array

+ construct(avg temps:array) 7~
+getAvgTempByMonth(month:integer) e
e
/

returns true if the average temperature

at the Destination for the month specified by
the Trip date is greater than or equal to the
Traveler min_temp

The “destination is warm enough” criteria might look like:

The Specification Pattern

class TripRequiredTemperatureSpecification {
public function isSatisfiedBy($trip) {
$trip_temp = $trip->destination->getAvgTempByMonth(
date(‘m’, $trip->date));
return ($trip_temp >= $trip->traveler->min_temp);
}
}

Here are some tests to verify how this Specification works.

An initial unit test case provides some Destinations to work with:

class TripspecificationTestCase extends UnitTestCase {
protected $destinations = array(Q);
function setup() {
$this->destinations = array(
‘Toronto’ => new Destination(
array(24, 25, 33, 43, 54, 63, 69, 69, 61, 50, 41, 29))
,’Cancun’ => new Destination(
array(74, 75, 78, 80, 82, 84, 84, 84, 83, 81, 78, 76))
)5

(Recall that Destination requires an array of monthly average temperatures to be passed to each
instance at creation. Being an American author, I have selected degrees Fahrenheit for these exam-
ples. For reference, Vicki’s desired 70 degrees Fahrenheit is equivalent to 21 degrees Celsius.)

The next test builds a Traveler, setting its preferred minimum temperature and travel date and

selecting a Destination. The first combination, 70 degrees in Toronto in mid-February, should fail,
as expected:

class TripSpecificationTestCase extends UnitTestCase {
/...
function TestTripTooCold() {
$vicki = new Traveler
$vicki->min_temp = 70;

$toronto = $this->destinations[‘Toronto’];

$trip = new Trip;

$trip->traveler = $vicki;
$trip->destination = $toronto;
$trip->date = mktime(0,0,0,2,11,2005);

177

178

The Specification Pattern

$warm_enough_check = new TripRequiredTemperatureSpecification;
$this->assertFalse($warm_enough_check->issatisfiedBy($trip));
}
}

However, the next combination, at least 70 degrees in mid-February in Cancun, passes as expected:

class TripSpecificationTestCase extends UnitTestCase {
/] ...
function TestTripwarmenough() {
$vicki = new Traveler;
$vicki->min_temp = 70;

$cancun = $this->destinations[‘Cancun’];

$trip = new Trip;

$trip->traveler = $vicki;
$trip->destination = $cancun;
$trip->date = mktime(0,0,0,2,11,2005);

$warm_enough_check = new TripRequiredTemperatureSpecification;
$this->assertTrue($warm_enough_check->isSatisfiedBy($trip));

Parameterized Specification

TripRequiredTemperatureSpecification knows quite a bit about the structure of a Trip object, dig-
ging into all three public attributes. This isn’t bad per se; in fact, when I've used the Specification pat-
tern, I've found there are usually a few Specifications that benefit from this detailed knowledge of
specific expected parameter objects. However, that kind of intimacy tends to make reusing the
Specification in other contexts much harder.

Fortunately, reuse has been addressed in variants of the Specification pattern. In particular, the
Parameterized Specification pattern changes the constructor to accept a parameter (hence the
name), which is then used in the criteria evaluation in isSatisfiedBy().

Let’s look at a Parameterized Specification using the same travel site domain objects. Assume
that you want to scan a list of destinations and present a list of cities that meet the “warm enough”
criteria.

To use the existing TripRequiredTemperatureSpecification, you'd have to create a Trip object
for each evaluation. But because (in this specific problem) the Traveler and the date of travel are
constant, only the Destination need change as you iterate over the list of possible destinations.

The Specification Pattern

Using the Parameterized Specification, you remember the traveler’s preferred temperature and trav-
el date and compare against a Destination passed as a parameter to the isSatisfiedBy() method.

The constructor for DestinationRequiredTemperatureSpecification, Parameterized
Specification object, requires a Traveler and a date to instantiate the Specification:

class DestinationRequiredTemperatureSpecification {
protected $temp;
protected $month;
public function __construct($traveler, $date) {
$this->temp = $traveler->min_temp;
$this->month = date(‘m’, $date);
}
}

With the consistent data of temperature and date stored in instance variables,
DestinationRequiredTemperatureSpecification’s isSatisfiedBy() method takes a Destination as
a parameter and evaluates the criterion:

class DestinationRequiredTemperatureSpecification {
/] ...
function isSatisfiedBy($destination) {
return
($destination->getAvgTempByMonth($this->month) >= $this->temp);

You can now write a test case to filter a list of destinations:

class DestinationSpecificationTestCase extends UnitTestCase {
// similar setup to TripSpecificationTestCase

function TestFindingDestinations() {
$this->assertequal (2, count($this->destinations));

$valid_destinations = array();

$vicki = new Traveler;

$vicki->min_temp = 70;

$travel_date = mktime(0,0,0,2,11,2005);

$warm_enough = new DestinationRequiredTemperatureSpecification(
vicki, $travel_date);

179

180

The Specification Pattern

foreach($this->destinations as $dest) {
if ($warm_enough->issatisfiedBy($dest)) {
$valid_destinations[] = $dest;
1
1

$this->assertequal (1, count($valid_destinations));

$this->assertIdentical(
$this->destinations[‘Cancun’],
$valid_destinations[0]);

You can see how a Parameterized Specification gives you an extra degree of freedom.

Let’s look at another example where the data type and the Specification are extremely flexible by
necessity.

One of the most common and most maddening problems to solve in a web application is vali-
dating form input. Forms tend to change during development (and even beyond) and the number
of forms in a rich application can grow rather quickly. You could create a unique object to encapsu-
late each and every form and use the Specification pattern to validate each object, but that’s a main-
tenance nightmare.

Is there a convenient data type that can adapt readily to any form? If so, is there a way to vali-
date such a dynamic data type?

The answer to each of those questions is an emphatic yes.

The Web Application Component Toolkit's (WACT) DataSource interface can get, set, and
dynamically create object properties (something akin to PHP4’s __get() and __set() methods),
which are a handy encapsulation of a form. (Readers familiar with Java can think of a DataSource as
a HashMmap.) Meanwhile, the Parameterized Specification pattern provides a model to validate a
DataSource against a set of criteria.

WACT
WACT, the Web Application Component Toolkit, available on SourceForge at http://wact.sf.net/, is a

library of PHP code for solving common web application problems. WACT focuses heavily on techniques
of refactoring, unit testing, and design pattern use. Information related to the WACT concept of a
DataSource is located at http://wact.sf.net/index.php/DataSource.

The include file for the WACT DataSource class is included in this book’s source code download so you
can test the policy code.

For this example, the DataSource class can be thought of as the following code, which is nearly iden-

The Specification Pattern

tical to the Registry class developed in Chapter 5:

class DataSource {
protected $store = array();

function get($key) {
if (array_key_exists($key, $this->store))
return $this->store[$key];

}

function set($key, $val) {
$this->store[$key] = $val;
}
}

DataSource accesses an object’s properties indirectly using string identifiers. set() alters existing
properties or dynamically creates new properties; get() retrieves properties by name.

When your application must process a form, load the DataSource with $_POST values and then
use the Parameterized Specification to perform the validation. (The same technique can also be
applied to configuration files. Load the DataSource from your configuration file and then validate it
with Specifications.)

Let’s construct some simple Parameterized Specification classes to use as building blocks. First,
let’s make a Specification that passes if a certain field is equal to a specified value.

class Fieldequalspecification {
protected $field;
protected $value;

public function __construct($field, $value) {
$this->field = $field;
$this->value = $value;

}

public function isSatisfiedBy($datasource) {
return ($datasource->get($this->field) == $this->value);
}
}

The idea here is very simple: store a field and its desired value during construction, fetch the desired
field from the DataSource passed to isSatisfiedBy(), and compare it to the desired value.
To test this Specification, write a test case to instantiate a DataSource:

181

182 The Specification Pattern

class SpecificationsTestCase extends UnitTestCase {

protected $ds;

function setup() {
$this->ds = new DataSource;
$this->ds->set(‘name’, ‘Jason’);
$this->ds->set(‘age’, 34);
$this->ds->set(‘email’, ‘jsweat_php@yahoo.com’);
$this->ds->set(‘sex’, ‘male’);

}

Above, setup() creates a DataSource object with a known set of properties. This test method
includes one assertion that should pass and another that should fail.

class SpecificationsTestCase extends UnitTestCase {
/] ..
function TestFieldEqualspecification() {
$name_jason = new FieldEqualsSpecification(‘name’, ‘Jason’);
$this->assertTrue($name_jason->isSatisfiedBy($this->ds));

§sex_other = new Fieldequalspecification(‘sex’, ‘other’);
$this->assertFalse($sex_other->isSatisfiedBy($this->ds));
}
}

Often when evaluating strings, a regular expression can help you define what you’re looking for far
better than a series of exact comparisons. Let’s add the power of regular expression matching to our
Specification tool set with FieldMatchSpecification:

class Fieldmatchspecification {
protected $field;
protected $regex;
public function __construct($field, S$regex) {
$this->field = $field;
$this->regex = $regex;
}
pubTic function isSatisfiedBy($datasource) {
return preg_match($this->regex, $datasource->get($this->field));
}
}

The Specification Pattern

Here, the name of the field to evaluate and a PCRE expression are saved during construction.
issatisfiedBy() then extracts the named field from the passed DataSource and compares its value
to the regular expression using preg_match().

Here’s how you might write a test for FieldMatchSpecification:

class SpecificationsTestCase extends UnitTestCase {
/...

function TestFieldMatchspecification() {
$valid_email = new FieldvatchsSpecification(
‘email’,
f/ANS@I+@[A\s. J+(7:\. [M\s.]H)+/7);
$this->assertTrue($valid_email->isSatisfiedBy($this->ds));

$name_ten_Tletters = new FieldMatchSpecification(
‘name’,
“/Mw{10}$/°);
$this->assertFalse($name_ten_letters->isSatisfiedBy($this->ds));
}
}

The email regex looks for “a bunch of non-space, non-@ characters, followed by an @ character, fol-
lowed by two or more groups of non-space, non-period characters separated by periods.” The asser-
tion for the $name_ten_letters Specification says the value should consist of exactly ten “word”

characters.

Regular Expressions

Many books devote entire chapters to regular expressions and entire books are devoted to the topic, so
please realize this is a simplistic example rather than a complete example of what an email address regex
should look like.

Let’s make one last concrete Specification to verify if a field is greater than or equal to a value. Not
surprisingly, its name is FieldGreaterThanorequalspecification.

class FieldGreaterThanorequalspecification {
protected $field;
protected $value;

public function __construct($field, $value) {
$this->field = $field;
$this->value = $value;

}

183

184 The Specification Pattern

pubTic function isSatisfiedBy($datasource) {
return ($datasource->get($this->field) >= $this->value);
}
}

There’s not much magic here: store the relevant field and value to be compared in the constructor
and verify the extracted field in the isSatisfiedBy() method.
Here’s a test case showing the FieldGreaterThanorEqualSpecification in action.

class SpecificationsTestCase extends UnitTestCase {

/]
function TestFieldGreaterThanoreEqualspecification() {
$adult =
new FieldGreaterThanOoreEqualspecification(‘age’, 18);
$presidential_age =
new FieldGreaterThanoreEqualspecification(‘age’, 35);
$this->assertTrue($adult->isSatisfiedBy($this->ds));
$this->assertFalse($presidential_age->isSatisfiedBy($this->ds));
}
}

Have you noticed how the code begins to document itself when Specification objects are labeled
with reasonable names? $adult->isSatisfiedBy($something) can be understood at a glance, with-
out really having to dig into the details of the code. This is one of the “bonuses” of the Specification
pattern.

It should be clear by now that the Specification pattern represents an interface. To explicitly
express this in PHP5:

interface Specification {
public function isSatisfiedBy($datasource);

}

Armed with some basic building blocks, let’s assemble them into a format with even greater utility.
Because the net result from a Specification’s isSatisfiedBy() method is a boolean, it would be nice
to be able to apply boolean logic to the different concrete specifications.

To implement logical And, create a class that combines two concrete specification instances

and returns true if a given DataSource parameter satisfies both.

The Specification Pattern

class Andspecification implements Specification {

protected $spec;

protected $andspec;

public function __construct($spec, $andspec) {
$this->spec = $spec;
$this->andspec = $andspec;

}

function issatisfiedBy($datasource) {
return ($this->spec->isSatisfiedBy($datasource)

&& $this->andSpec->issatisfiedBy($datasource));

You can achieve Logical Or with a similar structure:

class orspecification implements Specification {

protected $spec;

protected $orspec;

public function __construct($spec, $orSpec) {
$this->spec = $spec;
$this->orspec = $orspec;

}

function isSatisfiedBy($datasource) {
return ($this->spec->isSatisfiedBy($datasource)

|| $this->orspec->isSatisfiedBy($datasource));

Given these “logical” Specifications and the earlier set of Specifications, you can perform some com-

plex validations:

class PolicyFactory {
public function createlasonpolicy() {
$name_jason = new FieldEqualspecification(‘name’, ‘Jason’);
$age_at_least_thirty =
new FieldGreaterThanoreEqualspecification(‘age’, 30);
$male = new FieldEqualspecification(‘sex’, ‘male’);
$jasons_email = new OrsSpecification(
new Fieldequalspecification(‘email’, ‘jsweat_php@yahoo.com’)
,new FieldEqualspecification(‘email’,
‘jsweat@users.sourceforge.net’));
return new AndSpecification(
$name_jason, new AndSpecification(

185

186

The Specification Pattern

$age_at_least_thirty,
new Andspecification($male, $jasons_email)

);

PolicyFactory looks a bit messy at first, primarily due to the number of temporary variables hold-
ing instances of the individual concrete specifications. However, the interesting part of the code is
the use of Orspecification and AndSpecification classes (highlighted above). The two concrete
instances of FieldEqualspecification for email are passed as parameters to the constructor
method of the OrSpecification. Because the OrSpecification implements the Specificationinter-
face, the $jasons_email object can be treated just like any other concrete Specification instance.
Indeed, it’s used just that way four lines later in new AndSpecification($male, $jasons_email).
Given PoTicyFactor, it's now possible to do:

$jason = PolicyFactory::createJasonPolicy();
$jason->issatisfiedBy($datasource);

These two lines of code verify that $datasource’s name field is “Jason”, its age field is at least 30, and

its email field is either “jsweat_php@yahoo.com” or “jsweat@users.sourceforge.net”.

All of those intermediate variables to hold the concrete specifications are not aesthetically
pleasing. Can the generation of the policy be cleaned up to make the code easier to read and main-
tain? Yes! Simply take advantage of a new feature in PHP5 to chain method calls from objects
returned by methods.

A first step might be to allow individual concrete Specifications to know how to “And” and “Or”
themselves. This could be done by introducing Factory methods (see Chapter 3 -The Factory Method
Pattern) to create AndSpecification and OrSpecification classes. Since these features would be
common to all Specifications, it would be a good idea to move them into an abstract base class.

abstract class BaseSpecification implements Specification {
protected $field;
pubTic function and_($spec) { return new Andspecification($this, $spec); }
public function or_($spec) { return new orspecification($this, $spec); }

}

The Specification Pattern

The funny method names and_() and or_() are needed because “and” and “or” are keywords in PHP.
By introducing this base class, the concrete classes written so far must be modified to inherit
from BaseSpecification:

class Fieldequalspecification extends BaseSpecification {
/...
}

The next step is to introduce Factory methods to create the individual concrete specifications more
easily. This might be done in a separate factory class, but for convenience, you can add the meth-
ods to the PolicyFactory class.

class PolicyFactory {
protected function equal($field, $value) {
return new Fieldequalspecification($field, $value);
}
protected function gToreq($field, $value) {
return new FieldGreaterThanorEqualsSpecification($field, $value);
1
}

Now, let’s combine both of these Factory methods to create a statement like the following:

class PolicyFactory {

// ..
public function createJasonPolicy() {
return $this->equal(‘name’, ‘Jason’)->and_(
$this->gToreq(‘age’, 30)->and_(
$this->equal(‘sex’, ‘male’)->and_(
$this->equal(‘email’, ‘jsweat_php@yahoo.com’)->or_(
$this->equal(‘email’, ‘jsweat@users.sourceforge.net’)
IN);
}

createJasonPolicy() creates a policy just as before, but the code is far more readable.
After all of this refactoring, the class diagram looks like this:

187

The Specification Pattern

<<Interface>>
Specification

+isSatisfiedBy($datasource): boolean

AndSpecification

OrSpecification

BaseSpecification

#spec: Specification
#andSpec: Specification

#field: string

#spec: Specification
#orSpec: Specification

+__construct($spec,$andSpec)

+isSatisfiedBy($datasource): boolean
+and_($andSpec:Specification):

AndSpecification
+or_($orSpec:Specification): OrSpecifcation

+isSatisfiedBy($datasource): boolean

+__construct($spec, $orSpec)
+isSatisfiedBy($datasource): boolean

FieldEqualSpecification

FieldGreaterThanOrEqualSpecification

FieldMatchSpecification

#value

#value

#regex

+__construct($field, $value)
+isSatisfiedBy($datasource): boolean

+__construct($field, $value)
+isSatisfiedBy($datasouce): boolean

+__construct($field, $regex)

+isSatisfiedBy($datasource): boolean

PolicyFactory

+createJasonPolicy(): Specification
+equal($field, $value): FieldEqualSpecification
+gTorEq($field, $value): FieldGreaterThanOrEqualSpecification

The Specification pattern facilitates better structure and organizes business logic in your applica-
tion’s domain model. One of the reasons I wanted to include this pattern in the book is because it
begins to show how patterns are modified and combined in real world applications.

11

The Proxy Pattern

AVE YOU EVER WANTED to delay the creation of an object because it uses expensive

resources and not every path through your code requires the object? Have you ever wanted

to restrict access to an object, say, to provide one set of methods to a user and additional,
privileged methods to an administrator? Both needs are fairly common and are representative of a
larger problem: how do you provide a consistent interface to an object that may vary in nature—or not
even exist yet?

The Problem

How can you provide access to an object without providing the object directly?

The Solution

The Proxy pattern provides a surrogate—a placeholder—for another object, effectively placing code in
between a client object and a subject object. A Proxy might provide lazy instantiation, access control,

192

®

The Proxy Pattern

or just about anything else, including just passing through the calls. A Proxy for purely local

resources is sometimes referred to as a virtual proxy. A Proxy for remote services is often called a

remote proxy. A Proxy that enforces access control is called a protection proxy.

Here is a diagram of (one method in) a remote proxy. SoapClient is a go-between for local

objects (the clients) that want to call SoapServer (the subject) to acquire weather information. The

entire task of constructing, transmitting, and receiving via HTTP, and parsing complex XML docu-

ments to effectuate the remote communications is handled within the SoapClient class. The net

result is a replication of the remote SoapServer objects API, thus having the SoapClient acting as a

local surrogate—a proxy—for the remote SoapServer resource.

fetches and parses WSDL file to determine
what methods are available to call
from the remote web service

packages calls and receives returns
as XML documents transmitted over HTTP

defines available methods via WSDL
(Web Service Description Language) file

parses XML formatted requests and returns
response in XML documents

7
/

SoapClient

—]+getWeatherReport($code)

returns WeatherReport object
| acting as a data structure

containing timestamp,
location of the report,
temperature, wind speed, etc.
for use in the PHP script as
a local variable

N\
AN

A

SoapServer

HgetWeatherReport($code)

There is another variant of the Proxy pattern called a smart proxy. This term is a sort of a catch-

all for additional logic added before allowing access to the subject object.

Handle-Body Patterns

The Proxy Pattern, the Decorator Pattern, and the Adapter Pattern (the latter two patterns are covered in

the next two chapters) have a similar structure when programmed. The essential difference between the

three patterns is how they’re used.

Other variations of this structure can be found at http://www.c2.com/cgi/wiki?HandleBodyPattern.

The Proxy Pattern

The essence of the Proxy is to hold a reference to the subject object in an instance variable and to
pass method calls on the Proxy class down to the subject.
Let’s look at the Proxy pattern in it’'s simplest form. First, you need a subject class to proxy.

// PHP4
class Subject {
function someMethod() {
sleep(1); //do something
}
}

Next, you need the Proxy class. This class needs to have an instance of the subject to proxy to.

class ProxySubject {
var $subject;
function ProxySubject() {
$this->subject =& new Subject;
}
}

In the ProxySubject above, the subject is created in the constructor (but other alternatives, such as
passing in as a parameter to the constructor or creating the subject from a Factory, are equally
viable).

Lastly, your Proxy class must provide all of the public methods your subject class supports. In
this case, that’s just the someMethod() method.

class ProxySubject {
var $subject;
function ProxySubject() {
$this->subject =& new Subject;
}
function someMethod() {
$this->subject->someMethod () ;
1
}

ProxySubject calls the real Subject using $this->subject->someMethod().
A Proxy might have some methods that pass straight through, and others where additional logic

193

194

The Proxy Pattern

(lazy loading, guarding) is applied before for- |

1
1
warding the call. v .
Here’s ProxySubject expressed as a UML Subject ;
class diagram: +someMethod () .
ProxySubject
<t+subject
+ProxySubject($subject:Subject)
+someMethod ()
Sample Code

The simple example above shows the basic structure of the Proxy pattern, but let’s move on to a more
interesting and realistic example.

Web services have become very popular and PHP5 includes a good deal of support for protocols
like SOAP that make it very easy to consume a remote service. Part of the construction of a SOAP
client is the processing of the WSDL file. However, you may wish to delay processing the WSDL file
until you're sure you need to use the object. This next example of a Proxy shows both a remote
proxy—accessing a SOAP service—and lazy instantiation.

RemoteProxy

First, some quick basics on the new PHP5 SoapClient code. You must have compiled PHP5 with the
—-enable-soap option to use the SoapClient class. Once you do that, you can create a SoapClient
instance by passing the URL to the service’s WSDL file in the constructor:

// PHPS
$client = new SoapClient(
‘http://live.capescience.com/wsd1/Globalweather.wsd1’);

PHP4 SoapClients

If you have coded PHP4 SOAP clients before, PHP5’s technique may seem almost like cheating. PHP5’s
SoapClient is an extension, so it’s native PHP code and fast, since the actually parsing and formatting of
XML messages is done in C.

Some PHP4 SOAP Libraries include:
* phpsoaptoolkit (http://phpsoaptoolkit.sf.net/phpsoap/),
* PEAR::SOAP (http://pear.php.net/package/SOAP)
* ez SOAP (http://ez.no/ez_publish/documentation/development/libraries/ez_soap)

e nusoap (http://sf.net/projects/nusoap/).

All of these PHP4 libraries handle the remote message formatting and transmission in PHP code and are
examples of a remote proxy.

The Proxy Pattern

The first question you might have is what methods does the SoapClient respond
to? You can easily enumerate the methods at runtime by doing
var_dump(get_class_methods(get_class($cTient)));. To be more precise, you could express this
as a test case:

class ProxyTestCase extends UnitTestCase {
const WSDL = ‘http://live.capescience.com/wsdl/Globalweather.wsdl1’;
private $client;
function setup() {
$this->client = new SoapClient(ProxyTestCase::WSDL);
}
function TestMethodsofSoapClient() {
$soap_client_methods = array(
‘__construct’,
_call’,
__soapcall’,
__getLastRequest’,
__getLastResponse’,
__getLastRequestHeaders’,
__getLastResponseHeaders’,
__getFunctions’,
__getTypes’,
‘__doRequest’);
$this->assertEqual(
$soap_client_methods,
get_class_methods(get_class($this->client)));

At first, it might seem useless to write a test like this—couldn’t you just dump this information any
time you wanted to? Perhaps, but this test could be useful to have in your application test suite to
protect yourself during PHP upgrades, to understand if any methods have been added, or to discov-
er if any methods you rely on have been removed, and to verify PHP was compiled with the SOAP
option. That being said, this test is extremely fragile: it'’s vulnerable to changes caused by refactoring
and is highly dependent on the ordering of the listed functions. For now, though, the test describes
how SoapClient looks. If you want to put in a similar test in your test suite, it’s best to refactor it to
do in_array lookups and only target the functions you are explicitly using in your code.

You can use the SoapClient::__getFunctions() method to understand what facilities the tar-
geted SOAP service provides. In the case of GlobalWeather.wsdl, you have:

class ProxyTestCase extends UnitTestCase {
function TestSoapFunctions() {
$globalweather_functions = array(

195

196

The Proxy Pattern

‘Station getStation(string $code)’,

‘boolean isvalidCode(string $code)’,
‘Arrayofstring TistCountries()’,

‘Arrayofstation searchByCode(string $code)’,
‘Arrayofstation searchByCountry(string $country)’,
‘Arrayofstation searchByName(string $name)’,
‘ArrayofStation searchByRegion(string $region)’,
‘Weatherreport getweatherReport(string $code)’

)5

$this->assertequal(
$globalweather_functions,
$this->client->__getFunctions());

SoapClient::__getFunctions() returns an array of strings that represent the API for the web serv-
ice. For each method, the expected return type, the name of the method, and the expected parame-
ter types are listed.

(Again this kind of test is useful in an application suite to immediately alert you to changes in
the published web service. You can easily envision a bug hunt ensuing if weather information sud-
denly stopped appearing on your page due to a subtle change in the API that you were unaware of.
With this kind of a check in place, you'd be alerted to the change as soon as you ran the unit test
case.)

The last thing to look at in this brief introduction to the PHP5 SoapClient is actually consuming
the service. As an example, let’s look up the weather for Moline, Illinois. The airport code for Moline
is “KMLI.” To get the current weather status at the Moline airport, call the getWeatherReport()
method and pass the string ‘KMLI’ as an argument. The call returns a WeatherReport object:

class ProxyTestCase extends UnitTestCase {
function TestGetweatherReport() {
$moline_weather = $this->client->getweatherrReport(‘KMLI’);
$this->assertIsA($moline_weather, ‘stdClass’);
}
}

Because WeatherReport is not actually a class defined in your application, the SoapClient returns all
objects as instances of stdClass. You can then move on to evaluate the attributes of the returned
object:

class ProxyTestCase extends UnitTestCase {
function TestGetweatherrReport() {

$moline_weather = $this->client->getweatherreport(‘KMLI’);

$this->assertIsA($moline_weather, ‘stdcClass’);
$weather_tests = array(
‘timestamp’ => ‘String’
,’station’ => ‘stdClass’
,'phenomena’ => ‘Array’
,'precipitation’ => ‘Array’
,’extremes’ => ‘Array’
,'pressure’ => ‘stdClass’
,'sky’ => ‘stdClass’
,'temperature’ => ‘stdClass’
,’visibility’ = ‘stdclass’
,’wind’ => ‘stdclass’
);
foreach($weather_tests as $key => $isa) {
$this->assertIsA($moline_weather->$key,
$isa,
“$key should be $isa, actually [%s]”);

The Proxy Pattern

This code creates a mapping between attribute and the expected type. You can then iterate over this

list of expectations and use assertIsA() to verify the correct type. You can verify other aggregated

objects as well:

class ProxyTestCase extends UnitTestCase {
function TestGetweatherReport() {
// continued ...
$temp = $moline_weather->temperature;
$temperature_tests = array(
‘ambient’ = ‘Float’
, 'dewpoint’ => ‘Float’
,'relative_humidity’ => ‘Integer’
,’string’ => ‘String’
);
foreach($temperature_tests as $key => $isa) {
$this->assertIsA($temp->S$key,
$isa,
“$key should be $isa, actually [%s]”);

Some abbreviated actual output from this method might look like:

197

198 The Proxy Pattern

stdClass Object
(
[timestamp] => 2005-02-27713:52:00z
[station] => stdClass Object
(
[icao] => KMLI
[wmo] => 72544
[iata] =>
[elevation] => 179
[Tatitude] => 41.451
[Tongitude] => -90.515
[name] => Moline, Quad-City Airport
[region] => IL
[country] => United States

[string] => KMLI - Moline, Quad-City Airport, IL, United States @ 41.451’N -90.515’w 179m

)
/] ..
[temperature] => stdClass Object
(
[ambient] => 0.6
[dewpoint] => -2.8
[relative_humidity] => 78
[string] => 0.6c (78% RH)
)
/] ...
)

Lazy Proxy

Now that you have a basic understanding of the PHP5 SoapClient—which is itself a remote proxy—

how can you write a Lazy Instantiating Proxy for SoapClient?

class Globalweather {
private $client;

// ‘Station getStation(string $code)’,
public function getStation($code) {
return $this->client->getStation($code);
}
}

getStation() should proxy to the $c1ient instance variable’s getStation() method. However, at this
point, the SoapClient instance hasn’t been created and stored it in the $c1ient variable, because, as
mentioned earlier, processing of the WSDL file involves remote processing that should be delayed

until absolutely needed.

The Proxy Pattern 199

You can delay instantiation of SoapClient by interposing some lazy loading code prior to making the
client call:

class Globalweather {
private $client;

private function lazyLoad() {
if (! $this->client instanceof SoapClient) {
$this->client = new SoapClient(
‘http://Tlive.capescience.com/wsd1/Globalweather.wsd1’);
1
1

// ‘Station getStation(string $code)’,
public function getStation($code) {
$this->lazyLoad();
return $this->client->getStation($code);
}
}

lazyLoad() creates the SoapClient on demand. There’s just one problem: I'm a lazy coder and I'm
already disappointed that I have to create all of the proxied methods and add the
$this->lazyLoad(); line to each one. Is there something more succinct? Yes. Once again, take
advantage of the new PHP5 ability to chain method calls of returned objects.

Rename lazyLoad() to client() and return the $client instance from the method. Now all of
the proxied methods can access the cTient() method rather than the $client attribute. Lazy instan-
tiation made easy!

class Globalweather {
private function client() {
if (! $this->client instanceof SoapClient) {
$this->client = new SoapClient(
‘http://Tlive.capescience.com/wsd1/Globalweather.wsd1’);

return $this->client;

}
/...
// ‘boolean isvalidCode(string $code)
public function isvalidCode($code) {
return $this->client()->isvalidcode($code);
}

// and so on for other SOAP service methods ...

// ‘weatherrReport getweatherreport(string $code)

200 The Proxy Pattern

public function getweatherReport($code) {
return $this->client()->getweatherreport($code);
}
}

So what does the Lazy Instantiation Proxy class for the GlobalWeather service buy you? You have a
local class that you can create in your program at any time and the remote resources aren’t parsed
until you actually need them. And there is yet another advantage of using this Proxy class: with the
supported methods of the SOAP service enumerated in the Proxy, you can now mock this class for
testing.

@ LazyProxy Delayed Exceptions
In PHP5, creation of an object can generate an exception. By using a Lazy Instantiation Proxy, you delay
this potential exception until the first time you use a method that creates the object. (This might even be
what you are trying to accomplish with the Proxy.) This is obviously not a central part of the pattern, but
is something you should keep in mind.

Dynamic Proxy
PHP5 provides some nice features to quickly assemble a Proxy class without writing out each
method explicitly.

class GenericProxy {
protected $subject;
public function __construct($subject) {
$this->subject = $subject;
}
pubTic function __call($method, $args) {
return call_user_func_array(

array($this->subject, $method),
$args);

The key here is the __call() method (also available in PHP4 via the EXPERIMENTAL overload
extension). The method __cal1() allows you to redirect every call to the Proxy class to the $subject
instead.

Since __cal1() has lower precedence than actual methods, you can define a real method of the
Proxy class and it executes instead of the __cal1() proxy. You can use this structure as scaffolding for
your Proxy class, and then add in the specific features required for your use of the Proxy pattern.

Issues

The Proxy Pattern 201

The Proxy pattern is useful in many circumstances where you want to hold an object “at arms dis-
tance” for some reason: lazy loading, guarding state changing methods, and so on. As demonstrat-
ed by the Globalweather class developed in this chapter, you can also use the Proxy pattern to make
remote resources appear to be available on your local computer.

SoapClient

+getWeatherReport($code)

GlobalWeather

-client: SoapClient

+__construct()
-client(): SoapClient
+getWeatherReport($code)

SoapServer

GlobalWeather

-client: SoapClient

+__construct()
-client(): SoapClient

our GlobalWeather Proxy

provides the illusion we have a
Weather Station available to query
for weather reports on our local computer

+getWeatherReport($code)
T

+getWeatherReport($code)
T

Weather Station

Weather Station

Dynamic proxies are trivial to code and therefore quick and easy for you to implement in your
application. However, (as with any implementation relying on __cal1()), reflection cannot provide
visibility into such an object. In particular, if you want to have a Proxy that adheres to an interface,
you cannot rely on the __cal1(), but must code at least all of the interface methods explicitly in your

Proxy class.

12

The Decorator
Pattern

FYOU’VE DEVELOPED OBJECT-ORIENTED PHP code for even a short time or have come this far

in this book, you know that you can change or augment the capabilities of a class via inheritance,

an essential feature of any object-oriented programming language. If an existing PHP class is miss-
ing a method or if an existing method needs a little more “oomph,” you simply extends the class into
anew class and bolt on the extra code.

But subclassing is not always possible or appropriate. What if you want to change the behavior of
an object after it's been instantiated? Or, what if you want to slightly extend the behavior of many
classes? The former can only be done at run-time; the latter is obviously possible, but may lead to a
proliferation of subtly-different classes—a maintenance nightmare.

The Problem

How can you structure your code to easily add conditional or rarely used features without putting the
extra code directly in your class?

204

The Decorator Pattern

The Solution

The Decorator Pattern provides a flexible alternative to subclassing. Decorator allows you to modify
objects dynamically, adding capabilities without causing an explosion of subclasses.

Decorator is especially useful when used with families of subclasses. If you have a set of sub-
classes (derived from the same superclass) and you need to add additional capabilities that can be
applied independent of the subclass, you can use Decorator to avoid both duplicating code and
increasing the number of concrete subclasses.

This idea is easiest to understand with some example class diagrams. Consider a simple form
library based on the “widget” concept, where you have a class for each type of form control you want
to represent. Such as class diagram might look like:

Widget
+paint()
Select Textinput
+paint() +paint()

Select and TextInput are subclasses of Widget. Say that you want to add a “labeled” widget, a form
input that tells you what the input is for. Since any given form control might be labeled, you might
subclass each concrete widget like this:

Widget
+paint()
Select Textlnput
+paint() +paint()
LabeledSelect LabeledTextinput

+paint() +paint()

The Decorator Pattern 205

That class diagram doesn’t look too bad, so let’s add another feature. During form validation you
want to be able to indicate if a form control is invalid. The code you need to apply for an “invalid”
control again applies to any widget, so it’s off to the races to make even more subclasses:

Widget
+paint()
Select Textinput
+paint() +paint()
LabeledSelect InvalidSelect LabeledTextinput InvalidTextinput
+paint() +paint() +paint() +paint()
InvalidLabeledSelect InvalidLabeledTextinput
+paint() +paint()

Here the explosion of subclasses isn’t the only problem. Think about all of the duplicated code you'd
now have spread throughout your entire class hierarchy. There has to be a better way! Indeed, the
Decorator pattern is the way out of this mess.

The Decorator pattern is structurally very similar to the Proxy pattern (see Chapter 11). A
Decorator object holds a reference to an object and faithfully recreates the public interface to the
decorated object. The Decorator can also add methods, extending the interface of the decorated
object or can override methods at will, even overriding methods conditionally during the execution
of a script.

To explore the Decorator pattern, let’s take the notion of the form widget library discussed ear-
lier and implement the label and invalidation features using the Decorator pattern instead of inher-
itance.

206 The Decorator Pattern

Sample Code
What should the widget library do?

* Easily create form elements;
* Output form elements as an HTML form; and
¢ Perform some simple validation on each element.

For this example, let’s create a form with inputs for a first name, a last name, and an email address.
All of the fields should be required and the email address should vaguely resemble a valid email
address. As HTML, the form might look something like this:

<form action="formpage.php” method="post”>

First Name: <input type="text” name="fname” value="">

Last Name: <input type="text” name="Tname” value="">

Email: <input type="text” name="email” value="">

<input type="submit” value="Submit”>

</form>

And with a little bit of CSS styling might render like this:

J & Decorator Example

First Name: |
Last Name: L |
FEmail: _ |

To establish a uniform API, let’s create a Widget base class (if this was a PHP5 example, this might be

an interface). Since all widgets (form elements) must render at least some output, Widget holds only
a paint() method.

class widget {
function paint() {
return $this->_asHtm1();
}
}

The Decorator Pattern 207

Let’s start with a basic text input widget. It must include the name of the input field and the value of
the input and must be able to render as HTML.

class TextInput extends Widget {
var $name;
var $value;
function TextInput($name, $value='’) {
$this->name = $name;
$this->value = $value;
}
function _asHtm1() {
return ‘<input type="text” name="’.$this->name.’
.$this->value.’”>’;

value=""’

A basic test can verify that the HTML is correct and the name and value passed in as parameters to
the constructor carry through to the rendered output:

class WidgetTestCase extends UnitTestCase {
function testTextInput() {
$text =& new TextInput(‘foo’, ‘bar’);

$output = $text->paint();

$this->assertwantedpPattern(

‘~A<input type="text”[A>]*>$~i’, Soutput);
$this->assertwantedPattern(‘~name="foo”~i’, S$output);
$this->assertwantedPattern(‘~value="bar”~i’, S$output);

The TextInput widget works, but its user interface is horrible, as it lacks a friendly description, such
as “First Name” or “Email Address.” So, the next logical feature to add to a Widget is a description.
Enter the Decorator pattern, which can add a capability uniformly to any Widget.

To start, let’s make a generic WidgetDecorator class that can be extended to create specific con-
crete decorators. At a minimum, the WidgetDecorator class must accept a Widget in its constructor
and replicate the public paint() method.

class widgetDecorator {
var $widget;

208 The Decorator Pattern

function widgetDecorator(&$widget) {
$this->widget =& $widget;
}
function paint() {
return $this->widget->paint();
}
}

To construct a label, pass the content of the label and an original widget:

class Labeled extends widgetDecorator {
var $label;
function Labeled($1abel, &$widget) {
$this->label = $label;
$this->wWidgetDecorator($widget);
}
}

Labeled also needs to intercept the paint() call and add the label information to the output:

class Labeled extends widgetDecorator {
var $label;

function Labeled($1abel, &$widget) {
$this->1abel = $1abel;
$this->widgetDecorator($widget);

}

function paint() {
return ‘’.$this->Tlabel.’: ‘.$this->widget->paint(Q);
}
}

You can verify this works with a test like this:

class widgetTestCase extends UnitTestCase {
function testLabeled() {
$text =& new Labeled(
‘Email’
,new TextInput(‘email’));

$output = $text->paint();

The Decorator Pattern

$this->assertwantedPattern(‘~AEmail: <input~i’, S$output);
}
}

With the basic capabilities of TextInput and Labeled, you can start to assemble a class to manage
the form in aggregate.

FormHandler has a static build() method to create an array of Widget form elements:

class FormHandlerTestCase extends UnitTestCase {
function testBuild() {
$this->assertIsA($form = FormHandler::build(new Post), ‘Array’);
$this->assertequal (3, count($form));
$this->assertIsA($form[1], ‘Labeled’);
$this->assertwantedPattern(‘~email~i’, $form[2]->paint());
}
}

Some code to realize FormHandler might be:

class FormHandler {
function build() {
return array(
new Labeled(‘First Name’, new TextInput(‘fname’))
,new Labeled(‘Last Name’, new TextInput(‘Iname’))
,new Labeled(‘Email’, new TextInput(‘email’))

);

Now, this code doesn’t do you much good without the corresponding $_POST values. Because this
code must be tested using a MockObject (see Chapter 6), let’s wrap the $_POST values in a hash-like
object similar to a Registry (see Chapter 5) or the simulated WACT DataSource from the
Specification pattern (see Chapter 10):

class Post {
var $store = array();
function get($key) {
if (array_key_exists($key, $this->store))
return $this->store[$key];

209

210 The Decorator Pattern

}
function set($key, $val) {
$this->store[$key] = $val;
}
}

A convenience method can act as both a Factory and a means of automatically filling the hash with
the keys from $_POST.

class Post {
/] ...
function &autoFil1() {
fret =& new Post;
foreach($_POST as $key => $value) {
$ret->set($key, $value);
1

return $ret;

Using Post class, you can modify FormHandler::build() to use the existing $_POST values for
defaults:

class FormHandler {
function build(&$post) {
return array(
new Labeled(‘First Name’
, new TextInput(‘fname’, $post->get(‘fname’)))
,new Labeled(‘Last Name’
, hew TextInput(‘Tname’, $post->get(‘Tname’)))
,new Labeled(‘Email’
, hew TextInput(‘email’, $post->get(‘email’)))
)3

You can now create a PHP script to use this FormHandler to generate the HTML form:

<form action="formpage.php” method="post”>
<?php

The Decorator Pattern

$post =& Post::autoFill();
$form = FormHandler::build($post);

foreach($form as $widget) {
echo $widget->paint(), “
\n";
}

7>
<input type="submit” value="Submit”>
</form>

You now have a form handler that posts back to itself and retains the posted values.

Let’s move on to adding some validation for the form. The approach is to write another Widget
Decorator to represent an “invalid” state and to extend the FormHandTer class to add a validate()
method to process the array of Widget instances. If a Widget is “invalid,” let'’s make it stand out by
wrapping it in a element with a class of “invalid”. Here’s a test that demonstrates that goal:

class widgetTestCase extends UnitTestCase {
/...
function testInvalid() {
$text =& new Invalid(
new TextInput(‘email’));

Soutput = $text->paint();

$this->assertwantedPattern(
‘~A<input[A>]+>$~i’, $output);

Here’s the Invalid WidgetDecorator subclass:

class Invalid extends widgetDecorator {
function paint() {
return ‘’.$this->widget->paint().’’;
}
}

One nice thing about Decorators is that you can chain them together. The Invalid Decorator just
knows that it is wrapping a widget: it doesn'’t care if the widget is a TextInput, a Select, or a Labeled-
decorated version of any Widget.

211

212 The Decorator Pattern

This leads to the next logical test case:

class widgetTestCase extends UnitTestCase {
/] ...
function testInvalidLabeled() {
$text =& new Invalid(
new Labeled(
‘Email’
,new TextInput(‘email’)));
$output = $text->paint();

$this->assertwantedPattern(‘~Email: <input~i’, $output);
$this->assertwantedpPattern(
‘~A.*$~i’, S$output);

With the Invalid Decorator in hand, let’s tackle the FormHandler: :validate() method:

class FormHandlerTestCase extends UnitTestCase {

/] .

function testvalidateMissingName() {
$post =& new Post;
$post->set(‘fname’, ‘Jason’);
$post->set(‘email’, ‘jsweat_php@yahoo.com’);

$form = FormHandler::build($post);
$this->assertFalse(FormHandler::validate($form, $post));

$this->assertNounwantedpPattern(‘/invalid/i’, $form[0]->paint());
$this->assertwWantedPattern(‘/invalid/i’, $form[1]->paint());
$this->assertNounwantedpPattern(‘/invalid/i’, $form[2]->paint());

This test captures all of the basics: set up a stub Post instance, use it to build a Widget collection,
and then pass that collection to the validate method.

class FormHandler {
function validate(&$form, &$post) {
// first name required
if (Istrlen($post->get(‘fname’))) {
$form[0] =& new Invalid($form[0]);
}

The Decorator Pattern

// last name required
if (Istrlen($post->get(‘Tname’))) {
$form[1] =& new Invalid($form[1]);
}
}
}

Ugly Code

Two “uglies” stare back at me when I look at this code: accessing the form element by a numeric index
and having to pass the $_Post array into the validation. In later refactoring, it'd probably be better to
make a Widget collection as an associative array indexed by the form element name, or perhaps a Registry
as a next logical step. You could also add a method to the Widget class to return it’s current value, remov-
ing the need to pass around the $_Post instance past the construction of the Widget collection. Both of
these are out of scope for the purpose of this example.

With the names validating, let’s move on to adding a simple regex to validate the email address:

class FormHandlerTestCase extends UnitTestCase {

/] ...

function testvalidateBadeEmail() {
$post =& new Post;
$post->set(‘fname’, ‘Jason’);
$post->set(‘Iname’, ‘Sweat’);
$post->set(‘email’, ‘jsweat_php AT yahoo DOT com’);

$form = FormHandler::build($post);
$this->assertFalse(FormHandler::validate($form, $post));

$this->assertNounwantedpattern(‘/invalid/i’, $form[0]->paint());
$this->assertNounwantedpattern(‘/invalid/i’, $form[1]->paint());
$this->assertwantedpPattern(‘/invalid/i’, $form[2]->paint());

Code to implement this simple email validation might look like:

class FormHandler {
function validate(&$form, &$post) {
// first name required
if (Istrlen($post->get(‘fname’))) {
$form[0] =& new Invalid($form[0]);
}

// last name required

213

214 The Decorator Pattern

if (Istrlen($post->get(‘1name’))) {
$form[1] =& new Invalid($form[1]);

}

// email has to look real

if (!preg_match(‘~\w+@Q(\W+\.)+\W+~’

,$post->get(‘email’))) {

$form[2] =& new Invalid($form[2]);

}

}
}

You can also create a test case for when the form does validate:

class FormHandlerTestCase extends UnitTestCase {

/] ...

function testvalidate() {
$post =& new Post;

$post->set(‘fname’, ‘Jason’);
$post->set(‘Tname’, ‘Sweat’);
$post->set(‘email’, ‘jsweat_php@yahoo.com’);

$form = FormHandler::build($post);
$this->assertTrue(FormHandler::validate($form, $post));

$this->assertNounwantedpPattern(‘/invalid/i’, $form[0]->paint());
$this->assertNounwantedpattern(‘/invalid/i’, $form[1]->paint());
$this->assertNounwantedpPattern(‘/invalid/i’, $form[2]->paint());

This creates the need to track any validation failures inside the method so it can return true if every-
thing checks out.

class FormHandler {
// ...
function validate(&$form, &$post) {
$valid = true;
// first name required
if (Istrlen($post->get(‘fname’))) {
$form[0] =& new Invalid($form[0]);
$valid = false;
}
// last name required
if (!strlen($post->get(‘Iname’))) {
$form[1] =& new Invalid($form[1]);
$valid = false;

}

The Decorator Pattern 215

// email has to look real
if (Ipreg_match(‘~\w+@(\w+\.)+\w+~’
,$post->get(‘email’))) {
$form[2] =& new Invalid($form[2]);
$valid = false;

return $valid;

Those are all the building blocks required to add validation to the page. Here’s a screen shot of the
end game.

| & Decorator Example

First Name:
Last Name:
Email: jsweat_php AT yahoo DOT com

And the page to generate it:

<html>

<head>

<title>Decorator Example</title>

<style type="text/css”>

.invalid {color: red; }

.invalid input { background-color: red; color: yellow; }

#myform input { position: absolute; Teft: 110px; width: 250px; font-weight: bold;}
</style>

</head>

<body>

<form action="<?php echo $_SERVER[‘PHP_SELF’]; ?>” method="post”>
<div id="myform”>

<?php

error_reporting(E_ALL);

require_once ‘widgets.inc.php’;

$post =& Post::autoFill(Q);

$form = FormHandler::build($post);

if ($_posT) {
FormHandler::validate($form, $post);

}

foreach($form as $widget) {
echo $widget->paint(), “
\n”;

216 The Decorator Pattern

}

7>

</div>

<input type="submit” value="Submit”>
</form>

</body>

</html>

Issues
Decorators are another one of those design patterns that grow on you after you've worked with them
a bit. The Decorator pattern allows you to easily bypass rigid inheritance problems. You can think of
a Decorator as effectively changing the class of an object at run-time or perhaps even several times
as you use the object in different contexts throughout your scripts.

Perhaps the most important aspect of the Decorator pattern is it’s ability to “trump” inheritance.
The “Problem” section showed a subclass explosion using inheritance. With a Decorator-based solu-
tion, the UML class diagram now resembles this more succinct and flexible solution:

- l WidgetDecorator
Widget
+WidgetDecorator($widget)
+paint() +paint()
Select Textlnput
asHtml() # asHtml() Labeled
—>}#$widget
+Labeled($label, $widget)
+paint()
Invalid
<t#$widget

+Invalid($widget)
+paint()

13

The Adapter
Pattern

NTERFACES CHANGE. It’s a simple and perennial fact that programmers have to (albeit grudging-

ly) accept and contend with. Vendors change their code; system libraries are revised; and program-

ming languages and their incumbent libraries evolve. One of my son’s countless toys succinctly
describes the dilemma: you can't fit a square peg in a round hole.

The Problem

How can you protect yourself from changes in the API of external libraries you use? If you write a
library, can you provide a means to allow existing users of your software to seamlessly upgrade, even
if you've changed your API? How can you change the interface of an object to better suit your needs?

The Solution

The Adapter pattern provides a different interface to an object. You can use an Adapter to realize a
familiar interface to a different object, avoiding the hassle of updating or refactoring your client code.

220 The Adapter Pattern

Consider what happens when (not if!) the API of a third-party library changes. You could just bite the
bullet and change all of your client code, but it’s often not that simple. You might be working on a
new project that requires the features of the newer version of the library, but already have dozens of
older legacy applications that work fine with the previsou version of the library. You probably could-
n't justify the use of the new feature if the upgrade meant touching the client code for all of the other
applications as well.

@ Handle-Body Pattern
The Adapter pattern is the last example of a Handle-Body style pattern. The structure of an Adapter is
similar to a Proxy and a Decorator, but the intent of an Adapter is to change the API of the wrapped object,
where both the Proxy and the Decorator keep the same interface.

Sample Code
Let’s see how to protect an existing application from API changes.

Assume that you've searched high and low for exactly the right library and finally discovered
HwLib, a (hypothetical) set of code designed to send messages.

This is the source code for the HwL1ib class:

// PHP4
/;‘: *
* the HwLib helps programmers everywhere write their first program
* @package Helloworld
* @version 1
:\-/
class HwLib {
/:‘: *
* Say “Hello”
* @deprec this function is going away in the future
* @return string
*/
function hello() {
return ‘Hello *;

}

/‘«‘: *
* target audience
* @return string

function world() {
return ‘world!’;
}
}

The Adapter Pattern

And here’s an example of the library in action:

$hw =& new HwLib;
echo $hw->hello(), $hw->worldQ);

HwLib is well-documented. The authors have even commented explicitly that the hel1o() method
will be deprecated (obsoleted) in a future version.

Next, assume the future has arrived and HwLib version 2 has just been released. A brand new
greet() method replaces hello().

Here’s the new version of the library (with comments stripped):

// version 2
class HwLib {
function greet() {
return ‘Greetings and Salutations *;
}
function world() {
return ‘world!’;
}
}

To start coding against both versions of HwLib, first create some tests based on the HwLib version 1
interface:

class AdapterTestCase extends UnitTestCase {
function TestoriginalApp() {
$1ib =& new HwLib;
$this->asserteEqual(
‘Hello world!’
,$Tib->he110() . $Tib->wor1d());

You can also show that simply upgrading the library causes the application to fail.

class AdapterTestCase extends UnitTestCase {

221

222 The Adapter Pattern

function TestoriginalAppwouldrFail() {
$1ib =& new HwLib; // now using HwLib version 2
$this->assertFalse(method_exists($1ib, ‘hello’));
}
}

(The test uses method_exists() as an illustration. If you simply switch to version 2 of the library and
rerun the AdapterTestCase with the TestOriginalApp() test, PHP fails with the message Fatal
error: Call to undefined function: hello().)

The solution to the API “upgrade” is to build an Adapter.

The first item of business is to get a reference to an instance of the HwLib version 2 class into your

Adapter class.

class HwLibv2TovlAdapter {
var $1ibv2;
function HwLibv2TovlAdapter (&$1ibv2) {
$this->Tibv2 =& $1ibv2;
}
}

This example shows the instance passed into the constructor, but you might just create a new
instance, use a Factory or a Singleton, or use some other creational pattern that’s appropriate for
your requirements. (The use of composition in HwLibV2Tov1Adapter should seem familiar after the
past two chapters.)

Given the HwLib version 2 object, how can you make it appear to be an instance of the HwLib

version 12

class HwLibv2TovlAdapter {
var $1ibv2;
function HwLibv2TovlAdapter (&$1ibv2) {
$this->1ibv2 =& $1ibv2;

}
function hello() {
return $this->1ibv2->greetQ;
}
function world() {
return $this->Tibv2->world();
}
}

The Adapter Pattern

The HwLibv2TovlAdapter: :hel1o() method delegates to the $1ibv2 objects greet() method.
So, how do you use this in your application?

class AdapterTestCase extends UnitTestCase {
function TestoriginalAppwithAdapter() {
$1ib =& new HwLibv2TovlAdapter(new HwLib);
$this->assertequal(
‘Greetings and Salutations world!’
,$1ib->he110Q) . $Tib->wor1d());

But now the application test and the application code are somewhat brittle. Is there a way to make
both of these easier to maintain in the long run? Yes!

Recall (from Chapter 3) how a Factory provides a more flexible means of creating instances of
objects. To better “future proof” the code, start with a simple Factory function:

function &HwLibInstance() {
return new HwLib;

}

To test the Factory, call it instead of creating the instance directly:

class AdapterTestCase extends UnitTestCase {
function TestAppwithFactory() {
$1ib =& HwLibInstance(Q);
$this->assertwantedrattern(
“/\w+ world!$/’
,$Tib->he110() .$1ib->wor1d());

There are two things to notice: the Factory creates the object and the assertEqual() validation has
been changed to the more flexible assertwantedPattern(). You can now use a regular expression to
capture the “core” of what you're looking for from the library, perhaps making the test itself less brit-
tle.

Next, upgrade the HwLib library. As you install HwLib version2, you can modify the

223

224 The Adapter Pattern

HwLibInstance() function to accommodate the new version:

function &HwLibInstance($ver=false) {
switch ($ver) {
case ‘V2’:
return new HwLib;
default:
return new HwLibv2TovlAdapter(new HwLib);
}
}

Now re-run the AdapterTestCase. The tests continue to pass! (Green bars are great.) Because the
original application call didn’t pass a parameter, the HwLibInstance() Factory defaults to returning
an instance of the HwLib wrapped in the HwLibv2tovlAdapter class. However, if you're writing new
code, you can pass in a parameter of ‘V2’ to let the function know you want the HwL1ib newer version
directly without adapting it.

In the future, if you choose to upgrade to version 3 of the HwLib library, the Factory might
change to look like:

function &HwLibInstance($ver=false) {

switch ($ver) {
case ‘v3’:

return new HwLib;
case ‘v2’:

return new HwLibv3Tov2Adapter(new HwLib);
default:

return new HwLibv2TovlAdapter(

new HwLibv3Tov2Adapter(new HwLib));

Issues
As the sample code showed, you can use the Adapter pattern to protect yourself from a changing
external library — providing forwards compatibility. As a developer of a library, you could write the
adapter yourself to give users of your library an easier path to use the newer version without chang-
ing all of their existing code.

The Adapter pattern as presented in the GoF book uses inheritance rather than composition.
This is advantageous in a strongly-typed language, because the Adapter is actually a subclass of the

The Adapter Pattern

target class, and therefore integrates better with typed methods.
Here’s an example of the HwLib adapter using inheritance:

class HwLibGofAdapter extends HwLib { // extending version 2.0
function hello() {
return parent::greet();
}
}

A world() method isn’'t provided because it’s already a part of the subclass due to inheritance.

class AdapterTestCase extends UnitTestCase {
function TestHwLibGofAdapter() {
$1ib =& new HwLibGofAdapter;
$this->assertequal(
‘Greetings and Salutations world!’
,$1ib->hel10() . $1ib->wor1d());

I personally favor the composition method for greater flexibility (particularly in combination with
Dependency Inversion); however, the inheritance method does provide both versions of the inter-
face, which might be a point of flexibility for you to consider in your own implementation.

Dependency Inversion Principle

The Dependency Inversion Principle (first defined at
http://www.objectmentor.com/resources/articles/dip.pdf by Robert C. Martin) is an OOP design guide-
line that states: higher level modules should not depend on lower levels and details should depend on
abstractions. A very simple example of the Dependency Inversion Principle in combination with an

Adapter pattern is available at http://www.phplondon.org/wiki/DependencyInversion.

The Adapter pattern focus alters the API for a single object. A related design pattern (not covered in
this book) is the Facade pattern. The purpose of the Facade is to present a simpler interface to an
entire sub-system composed of many objects—in contrast to wrapping a single object—and may be
a pattern worth investigating if you are trying to isolate your code from third-party libraries.

225

14

The Active
Record Pattern

he design patterns you've seen so far greatly improve the readability and maintainability of

script internals; however, none have confronted a fundamental requirement and challenge of

architecting and developing web applications: connecting to a database. This chapter and the
next two chapters—7Table Data Gateway and Data Mapper—provide three design patterns that better
organize how your application interacts with a database.

The Problem

Most web applications persist information in a database. Is there a way to abstract database connec-
tivity to simplify table access and integrate persistence with business logic?

The Solution

Conceptually, the Active Record pattern is the simplest of the database-related design patterns. The
Active Record pattern embeds the knowledge of how to interact with the database directly into the

228

The Active Record Pattern

class performing the interaction.

While Active Record leads to a high degree of coupling between application code and database
structure, in relatively simple circumstances the issues inherent in coupling may be far easier to
manage than adopting a more complex solution. Active Record is also sufficient for many first-time
database projects. Only if complications arise that cannot be easily addressed with the Active Record
pattern should you refactor to a Table Data Gateway (see Chapter 15), a Data Mapper (see Chapter
16), or another database design pattern.

Patterns of Enterprise Application Architecture

According to Martin Fowler’s book, Patterns of Enterprise Application Architecture, an enterprise applica-
tion is integrated with other applications, contains significant business logic (or illogic, as application
requirements often reveal), and includes lots of concurrently accessed, persistent data that’s accessed
from a variety of interfaces. Interestingly, web applications share many of those very characteristics,
which may explain why Fowler’s book resonates strongly with PHP programmers.

PHP Data Objects

One project to watch is PDO. PDO is a PHP extension for high-performance database access (not data-
base abstraction). PDO is a C—language wrapper of the native drivers and is therefore very fast. PDO pro-
vides prepared statements for all PDO drivers, enhancing the security of scripts using the library.

Sample Code

Any discussion of database connectivity depends on choosing both a database and an access layer.
This and the following two chapters use the popular open source database MySQL
(http://www.mysql.com/) and the ADOdb (http://adodb.sf.net/) access layer. I established ADOdb
as a standard in my workplace because it has excellent performance and it abstracts the Oracle OCI
interface and interfaces to PostgreSQL, Sybase, MySQL, and other databases in a uniform, simple-
to-use PHP API, allowing you to focus on your programming and business logic.

Feel free to substitute you own database and access layer, as most of the concepts presented
here readily port to other solutions.

Before looking at the Active Record pattern, let’s start with basic database connectivity. It’s ideal
to have a central, simple way to specify connection parameters (the hostname, username, password,
and database) and to create a database connection object. A Singleton (see Chapter 4) typically suf-
fices.

Here’s a DB class with a conn() method that returns the Singleton instance of the ADOConnection
class.

The Active Record Pattern

// PHP5
require_once ‘adodb/adodb.inc.php’;

class DB {
//static class, we do not need a constructor
private function __construct() {}

public static function conn() {
static $conn;

if (!$conn) {
$conn = adoNewConnection(‘mysql’);
$conn->connect(‘localhost’, ‘username’, ‘passwd’, ‘database’);
$conn->setFetchMode (ADODB_FETCH_ASSOC) ;

}

return $conn;

}

The DB class allows you to control the type of database and the connection parameters used in con-
necting to the database. At the top, the code includes the ADOdb library (you may need to adjust the
include path to suit your environment); The DB constructor is private since there’s no need to ever
create an instance of DB; And the line $conn->setFetchMode (ADODB_FETCH_ASSOC) instructs the result
set object to return rows as associative arrays of field_name => value. Using an associative array is
an important best practice to adopt in working with databases, so your code remains unaffected
(less brittle) by the ordering of fields in SELECT clauses of your SQL statements.

As an example application, let’s create an Active Record object to maintain a table of hyperlinks.
Here’s the SQL to create the hyperlinks table in a MySQL database:

define(‘BOOKMARK_TABLE_DDL’, <<<EOS
CREATE TABLE “bookmark™ (
“id® INT NOT NULL AUTO_INCREMENT ,
“url’ VARCHAR(255) NOT NULL ,
"name” VARCHAR(255) NOT NULL ,
“description’ MEDIUMTEXT,
“tag® VARCHAR(50) ,
“created’ DATETIME NOT NULL ,
‘updated” DATETIME NOT NULL ,
PRIMARY KEY (“id")
)
EOS
);

229

230 The Active Record Pattern

Test Independence
Tests should be independent of each other; otherwise, the mere running of a certain test could inter-
fere with the results of latter tests.

To avoid interference between tests that rely on a database, it’s best to drop and recreate the
database (or just specific tables) between each test method. SimpleTest provides the standard xUnit
setup() method to prepare for each test.

Here’s how you might “reset” the database between each test:

class ActiveRecordTestCase extends UnitTestCase {
protected $conn;
function __construct($name="") {
$this->UnitTestCase($name);
$this->conn = DB::conn();

}

function setup() {
$this->conn->execute(‘drop table bookmark’);
$this->conn->execute (BOOKMARK_TABLE_DDL) ;
}
}

The code populates the $conn attribute with a standard ADOConnection object and then uses the con-
nection’s execute() method to perform SQL statements dropping and recreating the table. Because
this is in the setup() method, each test method starts out with a fresh copy of the database table to
work with.

Going a little further, you can do some basic sanity checks of the setup() method (and learn a
little bit about the ADOConnection API along the way):

class ActiveRecordTestCase extends UnitTestCase {

/] ...

function testSetupLeavesTableEmptywithCorrectStructure() {

$rs = $this->conn->execute(‘select * from bookmark’);
$this->assertIsA($rs, ‘ADORecordSet’);
$this->assertequal (0, $rs->recordcount());
foreach(array(

“id’,

‘url’,

‘name’,

‘description’,

‘tag’,

‘created’,

‘updated’) as $i => $name) {

$this->assertequal ($name, $rs->fetchField($i)->name);

The Active Record Pattern

Even if you're unfamiliar with ADOdb, you can probably still discern that the execute() method
returns an ADORecordSet object if successful. The object has a recordCount () method, which is used
here to verify the table is empty. The record set object also has some methods to explore result set
metadata and the fetchField() is used to verify the structure of the table.

Record Creation
After connecting to the database, your “Create, Read, Update, and Delete” (CRUD) application must
be able to create rows in the database.

CRUD
The acronym CRUD stands for Create, Read, Update and Delete. These are the basic foundations of any
application that interacts with a database.

Many PHP web applications are examples of CrudScreen applications
(http://c2.com/cgi/wiki?CrudScreen).

The sample application saves bookmarks to a database, so let's name the Active Record class
Bookmark. To create a new bookmark, use new to create a Bookmark and set the instance’s properties.
When all of the (mandatory) properties are set, use the save() method to store the bookmark in the
database.

This test captures that intent:

class ActiveRecordTestCase extends UnitTestCase {
/...
function testNew() {
$1ink = new Bookmark;

$Tink->ur1 = ‘http://simpletest.org/’;

$1ink->name = ‘SimpleTest’;

$Tink->description = ‘SimpleTest project homepage’;
$1ink->tag = ‘testing’;

$1ink->save();
$this->assertEqual (1, $1ink->getid());

231

232 The Active Record Pattern

According to this test, the class Bookmark has a few public attributes and a save() method. After the
instance is saved in the database, getId() should return the database row ID assigned to this
Bookmark.

Here are the Bookmark class attributes:

class Bookmark {
pubTic $url;
pubTic $name;
public $description;
pubTic $tag;

Let’s turn to the save() method. It requires a database connection, so let’s use the DB: :conn() con-
nection factory in the constructor:

class Bookmark {
protected $id;
protected $conn;
/] ..

pubTic function __construct() {
$this->conn = DB::conn();
}
}

$conn is now a database connection suitable for save() to use.

class Bookmark {

/] .

const INSERT_SQL = “
insert into bookmark (url, name, description,
tag, created, updated)
values (?, 7, 7, ?, now(), now())

protected function save() {
$rs = $this->conn->execute(
self: :INSERT_SQL
,array($this->url, $this->name,
$this->description, $this->tag));
if ($rs) {
$this->id = (int)$this->conn->Insert_ID();
} else {

The Active Record Pattern

trigger_error(‘DB Error: ‘.$this->conn->errorMsg());
1
1
}

The ADOdb MySQL driver supports positional parameter substitution and also properly quotes the
parameters. SQL parameters are indicated in a query by question marks (?) and you pass the substi-
tution values in an array as a second parameter to the execute() method.

The Insert_ID() method should catch your eye: it returns the value of the AUTO_INCREMENT
field from the last executed insert statement.

So far, the tests have proven that attributes can be set, that save() is functional, and that the
$id attribute has been set to 1. Let’s dig a little more into the database table and verify that the other
bookmark attributes have been set properly, too.

class ActiveRecordTestCase extends UnitTestCase {
/] ...
function testNew() {
$1ink = new Bookmark;

$Tink->url = ‘http://simpletest.org/’;

$Tink->name = ‘SimpleTest’;

$1ink->description = ‘SimpleTest project homepage’;
$link->tag = ‘testing’;

$1ink->save();
$this->assertequal(l, $1ink->getId());

// fetch the table as an array of hashes
$rs = $this->conn->getAl1(‘select * from bookmark’);
$this->assertequal(l, count($rs), ‘returned 1 row’);
foreach(array(‘ur1’, ‘name’, ‘description’, ‘tag’) as $key) {
$this->assertequal($1ink->$key, $rs[0][$keyl);
}
}
}

The highlighted code fetches the entire bookmark table. The getA11() method executes the passed
query and returns the resultset as an array of row hashes. The assertequal () line validates that only
a single row is present in the result test. The foreach loop compares the attributes of the object $1ink
to fields in the row returned.

The code works, but adding bookmarks this way—setting each attribute by hand—can get a bit
tedious. Instead, let’s add a convenience method to the test case to facilitate adding bookmark
objects.

233

234 The Active Record Pattern

The ActiveRecordTestCase: :add() method takes four parameters and creates and inserts a new
Active Record Bookmark object. And just in case you want to use the new object in tests later, add ()
returns the created Bookmark object as well.

class ActiveRecordTestCase extends UnitTestCase {

/] ...

function add($url, $name, S$description, $tag) {
$1ink = new Bookmark;

$1ink->url = $url;

$1ink->name = $name;
$link->description = $description;
$1ink->tag = $tag;

$link->save();
return $1ink;

You can actually write a test method inside the test case to prove this works:

class ActiveRecordTestCase extends UnitTestCase {

/] ...

function testAdd() {
$this->add(‘http://php.net’, ‘PHP’,
‘PHP Language Homepage’, ‘php’);
$this->add(‘http://phparch.com’, ‘php|architect’,
‘phplarch site’, ‘php’);
§rs = $this->conn->execute(‘select * from bookmark’);
$this->assertequal(2,$rs->recordCount());
$this->assertequal (2, $this->conn->Insert_ID());

Now that bookmarks can be created and saved to the database, let’s add a way for an Active Record
Bookmark object to easily retrieve data from the database and store the values as instance attributes.
A common technique to create an Active Record object is to pass an identifier such as the bookmark
ID (or some set of criteria) to its constructor and load the row associated with that ID from the data-
base. Here is a test that demonstrates that:

The Active Record Pattern 235

class ActiveRecordTestCase extends UnitTestCase {

/]

function testCreateById() {
$1ink = $this->add(
‘http://blog.casey-sweat.us/’,
‘My Blog’,
‘Where I write about stuff’,
‘php’);
$this->assertequal (1, $1ink->getid());

$1ink2 = new Bookmark(1);
$this->assertIsA($1ink2, ‘Bookmark’);
$this->assertequal($1ink, $1ink2);

This test passes an ID to the constructor, something the existing tests do not do. Passing an ID has
to be optional, because existing tests that create new, empty Bookmark instances must continue to
work.

Here’s some code to realize the requirements of the test(s):

class Bookmark {

/]

const SELECT_BY_ID = ‘select * from bookmark where id = ?’;
public function __construct($id=Ffalse) {
$this->conn DB::conn();

if (§id) {
$rs = $this->conn->execute(
self: :SELECT_BY_ID
,array((int)$id));

if ($rs) {
$row = $rs->fetchrow();
foreach($row as $field => $value) {
$this->$field = $value;

}
} else {
trigger_error(‘DB Error: ‘.$this->conn->errorMsg());
1
}
1

/]
}

236

The Active Record Pattern

This constructor allows an $id parameter, which is false by default. If a non-false $id parameter is
passed, then Bookmark queries the database for a row in the bookmark table with the corresponding
ID. If such a row exists, all of the attributes of the object are set to the values recovered by the data-
base query.

Testing Database Failure

Databases usually just work, but failure is not unheard of. To make sure your code operates correct-
ly under failure conditions, let’s simulate a failure using a Mock Object (see Chapter 6 — The Mock
Object Pattern), which stands in for the connection object.

Mock: :generate(‘ADOConnection’);

class ActiveRecordTestCase extends UnitTestCase {

/]

function testbbFailure() {
$conn = new MockADOConnection($this);
$conn->expectonce(‘execute’, array(‘*’,’*’));
$conn->setReturnvalue(‘execute’,false);
$conn->expectonce(‘errorMsg’);
$conn->setReturnvalue(‘errormsg’,

‘The database has exploded!!!!’);

This code calls Mock: :generate() to create a MockADOConnection class, creates an instance of the
mock connection, sets up some basic return values to indicate failure, and defines some expecta-
tions about what'’s to be called in these circumstances.

However, because the Bookmark constructor makes a call to the static DB:conn() method to
retrieve the database connection, it’s difficult to inject the mock connection into that code. There are
several possible workarounds: add a method to change $this->conn, add an optional parameter to
each method, or add a parameter to the constructor. Let’s opt for the latter: add an optional connec-
tion class parameter to the Bookmark constructor:

class Bookmark {
/] ..
public function __construct($id=false, $conn=false) {
$this->conn = ($conn) ? $conn : DB::conn();
// ...
}
}

The Active Record Pattern 237

Now new Bookmark works as normal, but new Bookmark(l, $connection) uses the $connection
object instead of the normal ADOConnection object.

With that code in place, you can now easily replace the “normal” database connection object
with a MockADOconnection and verify the results of a “database failure.”

class ActiveRecordTestCase extends UnitTestCase {

/] ..

function testbbFailure() {
$conn = new MockADOConnection($this);
$conn->expectonce(‘execute’, array(‘*’,’*’));
$conn->setReturnvalue(‘execute’,false);
$conn->expectonce(‘errorMsg’);
$conn->setReturnvalue(‘errormsg’,
‘The database has exploded!!!!’);

$1ink = new Bookmark(l,$conn);
$this->assertErrorpattern(‘/exploded/i’);

$conn->tally(Q;

Active Record Instance ID

In the previous example, most of the attributes are public; however, the ID of the bookmark is pro-
tected to avoid accidents changing its value (this would be problematic when you wanted to later
update the bookmark). Since $id is protected, add an accessor method to retrieve it from the
Bookmark.

class Bookmark {
protected $id;
/]
public function getId() {
return $this->id;
}
}

How do you test this?

class ActiveRecordTestCase extends UnitTestCase {
/...

238

The Active Record Pattern

function testGetId() {
$this->add(‘http://php.net’, ‘PHP’,
‘PHP Language Homepage’, ‘php’);
// second bookmark, id=2
$1ink = $this->add(‘http://phparch.com’,
‘phplarchitect’, ‘phplarch site’, ‘php’);

$this->assertequal(2, $1ink->getrd(Q);
}
}

Immediately above, add() persists several bookmarks and verifies that the latter of the two matches.

So far, so good, but what if you want to verify the database entry based on a different criteria
than the bookmark ID? How can you make sure the correct ID from the database is being returned?
A good technique is to SELECT from the database using a known attribute and verify the ID from the
returned row. Here’s a test using this methodology:

class ActiveRecordTestCase extends UnitTestCase {
/] ...
function testGetid() {
$this->add(‘http://php.net’, ‘PHP’,
‘PHP Language Homepage’, ‘php’);
// second bookmark, id=2
$link = $this->add(‘http://phparch.com’,
‘php|architect’, ‘phplarch site’, ‘php’);

$this->assertEqual(2, $1ink->getId());

falt_test = $this->conn->getone(
“select id from bookmark where url = ‘http://phparch.com’”);
$this->assertEqual(2, $alt_test);
//alternatively
$this->assertequal($1ink->getid(), $alt_test);

Notice that this test resembles the SQL you might execute manually to verify the insertion of the data
into the bookmark table. By coding this as a test, rather than simply performing it once by hand, you
can continue to verify it is taking place each time you run the tests.

Searching for Records

At the moment, a Bookmark can be stored in a database and can be (re)created by retrieving the data-
base row that matches the bookmark’s ID. But what happens—as is usually the case—when the ID
is not known or you want to search the database for a more pertinent value, such as a partial name

The Active Record Pattern 239

or a URL. A common solution is to add “finder” methods.
For example, you might want a findByuUr1() method to find Bookmarks similar to the parameter
passed to the method. Here’s that intention expressed as a test:

class ActiveRecordTestCase extends UnitTestCase {

/]

function testFindByur1() {
$this->add(‘http://blog.casey-sweat.us/’, ‘My Blog’,
‘Where I write about stuff’, ‘php’);
$this->add(‘http://php.net’, ‘PHP’,
‘PHP Language Homepage’, ‘php’);
$this->add(‘http://phparch.com’, ‘phplarchitect’,
‘phplarch site’, ‘php’);

$result = Bookmark::findByur1(‘php’);

$this->assertIsA($result, ‘array’);
$this->assertequal (2, count($result));
$this->assertequal (2, $result[0]->getId());
$this->assertequal(‘phplarchitect’, $result[1]->name);

The test creates some data, searches for rows that contain “php” somewhere in the URL, and then
verifies characteristics of the returned array of Bookmark objects. FindByUr1() is a static method,
because you want Bookmark objects, but do not yet have an instance of the Bookmark class to work
with. (Alternatively, you could move these “finder” methods to an object of their own, but for now
the finder methods are a part of the Active Record Bookmark class.)

Here’s some code to realize the requirements expressed by the test:

class Bookmark {
/] ...
const SELECT_BY_URL = *
select 1id
from bookmark
where url Tike ?7;
public static function findByurl($url) {
$rs = DB::conn()->execute(
self::SELECT_BY_URL
,array (“%$ur1%”));
$ret = array();
if ($rs) {
foreach ($rs->getArray() as $row) {
$ret[] = new Bookmark($row[‘id’]);
}

240 The Active Record Pattern

}
return $ret;
}
}

Updating Records

The Create and Read portions of CRUD are complete; what about Update? It makes sense to use
save() to update an Active Record object, but as it is now, save() only handles INSERT statements. To
recap, save() looks like this:

class Bookmark{
/] ...
const INSERT_SQL = “
insert into bookmark (url, name, description,
tag, created, updated)
values (?, ?, 7, ?, now(), now())
protected function save() {
$rs = $this->conn->execute(
self::INSERT_SQL
,array($this->url, $this->name,
$this->description, $this->tag));

if ($rs) {
$this->id = (int)$this->conn->Insert_ID();
} else {
trigger_error(‘DB Error: ‘.$this->conn->errormMsg());
}
}

However, after you already have a valid instance, you would rather see something like:

class Bookmark {
/] ..
const UPDATE_SQL = “
update bookmark set
url = 7,
name = 7,
description = ?,
tag = ?,
updated = now()
where id = ?

The Active Record Pattern 241

public function save() {
$this->conn->execute(
self::UPDATE_SQL
,array(
$this->url,
$this->name,
$this->description,
$this->tag,
$this->id));

To differentiate between INSERT and UPDATE, you need to detect if a bookmark is new or if it’s
been loaded from the database.

First, refactor the two “versions” of save() into individual protected methods with the descrip-
tive names insert() and update().

class Bookmark {

/e

protected function insert() {
$rs = $this->conn->execute(
self::INSERT_SQL
,array($this->url, $this->name,
$this->description, $this->tag));
if ($rs) {
$this->id = (int)$this->conn->Insert_ID();
}
}
protected function update() {
$this->conn->execute(
self::UPDATE_SQL
,array(
$this->url,
$this->name,
$this->description,
$this->tag,
$this->id));

Now you can change save()to look at this info:

class Bookmark {
const NEW_BOOKMARK = -1;
protected $id = Bookmark: :NEW_BOOKMARK;
/] ..

242 The Active Record Pattern

public function save() {
if ($this->id == Bookmark: :NEW_BOOKMARK) {
$this->insert();
} else {
$this->update();
}
}
}

Just one last issue: timestamps change in the database whenever you insert or update a record.
There is no other way to keep an accurate timestamp in the Bookmark other than making another trip
to the database to retrieve it. Since this applies to either inserts or updates, change the Active Record

class to always update the timestamp before leaving the save() method in order to prevent the lat-
ter from getting out of sync.

class Bookmark {
/]
pubTic function save() {
if ($this->id == self::NEW_BOOKMARK) {
$this->insert();
} else {
$this->update();
}
$this->setTimestamps(Q);
}
protected function setTimeStamps() {
$rs = $this->conn->execute(
self::SELECT_BY_ID
,array($this->id));
if ($rs) {
$row = $rs->fetchrow();
$this->created = $row[‘created’];
$this->updated = $row[‘updated’];
}
}
}

Bookmark gets to the heart of the ActiveRecord pattern: save() knows the SQL statement required to
update or insert into the database table, knows the object’s current state, and can assemble the
needed parameter substitution array from the object’s own attributes. Let’s test it:

class ActiveRecordTestCase extends UnitTestCase {

/] ...

The Active Record Pattern

function testSave() {
$1ink = Bookmark::add(
‘http://blog.casey-sweat.us/’,
‘My Blog’,
‘Where I write about stuff’,
‘php’);

$1ink->description =
‘Wwhere I write about PHP, Linux and other stuff’;
$Tink->save();

$1ink2 = Bookmark($1ink->getId());
$this->assertequal ($1ink->get1d(), $1ink2->get1d());
$this->assertequal ($1ink->created, $1ink2->updated);

For now, let’s skip how to implement DELETE. There is an example in Chapter 16—The Data Mapper
Pattern, but you can easily derive it from the insert() and update() methods.

Issues

The Active Record pattern is simple in both concept and execution and probably represents what
most initial attempts to refactor from procedural coding to object-oriented programming would
look like. It’s nice to have all of your SQL code grouped into a single location and the Active Record
pattern gives you a nice way to couple business logic with database access to persist the object.

The example in this chapter used an actual database to develop and test the code. Another way
to test simple database code is to use Mock Objects (see Chapter 6) to completely simulate the data-
base connection. Unfortunately though, this approach does not scale. SQL is a complex language
and mocking individual statements tightly couples tests with database specifics. Using freshly-cre-
ated, actual tables provide a higher degree of comfort, without the brittle effects of Mocking SQL.

If there’s a downside to the Active Record pattern, it's complexity. An Active Record class can grow
quite quickly—it attracts features like a magnet. For example, the Bookmark classes only included a
findById() method, but you'd likely also want findByur1(), findByDescription(), findByGroup(),
findRecentlyCreated(), and so on.

Another issue, which is possible to see in the testing of the save() method, is that objects can
become “duplicated.” For example, $1ink and $1ink2 in the test case aren’t the same objects, though
they both refer to the same bookmark ID. You could test this explicitly also:

class ActiveRecordTestCase extends UnitTestCase {

/A

function testSave() {

243

244

The Active Record Pattern

/] ...

$this->assertNotIdentical($1ink, $1ink2);
}
}

If it’s important to work around this issue, you might want to add an internal Registry (see Chapter
5) to make sure all instances of the object returned by Bookmark(1l) are in fact the same object.
Because you're actually using the new operator to create the objects instead of a Factory method, you
might have to restructure the Bookmark class as a Proxy (see Chapter 11) to the actual Active Record
class to really pull this off.

Another aspect of the Active Record pattern is that it is designed to work with data one row at a
time. This is fairly typical of “admin” screens for applications where you might be editing an article,
a link, a comment or any other row from a database, but a good deal of web pages deal with result
sets or combinations of rows, which is more the domain of our next chapter—The Table Data
Gateway Pattern.

15

The Table Data
Gateway Pattern

HE PREVIOUS CHAPTER USED the Active Record pattern to create, retrieve, update, (and by

extension, delete) individual rows in a database table. Active Record is one of the simplest ways

to abstract database connectivity, but its simplicity is also its Achilles heel. An Active Record
class manages only a single row, making it inefficient for web applications that present information en
masse, such as travel booking or online shopping. In those kinds of applications—likely the majority
of all web applications—result sets are the more common currency.

The Problem

How can you easily manipulate a database table and all of the rows in that table?

The Solution

The Table Data Gateway pattern resembles the Active Record pattern. In fact, much of the code for this
new pattern is borrowed from the code in Chapter 14—The Active Record Pattern (it reuses the exact

248 The Table Data Gateway Pattern

same DB class and BOOKMARK_TABLE_DDL constant, and as before, ADOdb serves as the database
access library). However, the Table Data Gateway pattern focuses on tables—collections of rows—
instead of individual rows.

Sample Code
Let’s start with the create operation, which adds new records to a table.

The test case function TableDataGatewayTestCase::testAdd() captures the steps
required to add two URLs to the bookmark table. It largely mirrors Chapter 14’s
ActiveRecordTestCase: :testAdd(), but is distinct because it introduces the new BookmarkGateway
Table Data Gateway class.

class TableDataGatewayTestCase extends UnitTestCase {

function testAdd() {

$gateway = new BookmarkGateway($conn = DB::conn());

$gateway->add(
‘http://simpletest.org/’,
‘SimpleTest’,
‘The SimpleTest homepage’,
‘testing’);

$gateway->add(
‘http://blog.casey-sweat.us/’,
‘My Blog’,
‘Where I write about stuff’,
‘php’);

$rs = $this->conn->execute(‘select * from bookmark’);
$this->assertequal (2, $rs->recordcount());
$this->assertequal(2,$conn->Insert_ID());

Similar to Active Record, TableDataGatewayTestCase instantiates the pattern class and adds some
records to the database. However, because the Table Data Gateway pattern works on an entire table,
you need only create one pattern object and re-use that object to add any number of new records to
its table.

Here’s one possible implementation of BookmarkGateway:

class BookmarkGateway {
protected $conn;
public function __construct($conn) {

The Table Data Gateway Pattern

$this->conn = $conn;
}
const INSERT_SQL =
insert into bookmark (url, name, description,
tag, created, updated)
values (7, ?, ?, 7, now(), now())

public function add($url, $name, $description, S$group) {
$rs = $this->conn->execute(
self::INSERT_SQL
,array($url, $name, $description, $group));
if (1$rs) {
trigger_error(‘DB Error: ‘.$this->conn->errorMsg());
}
}
}

Much of this is likely to look familiar, as the “scaffolding” of the Active Record and Table Data
Gateway pattern is similar: the INSERT_SQL statement, the mapping of function parameters, and the
management of database errors are the same as Active Record. add() creates one record at a time,
too.

With the “create” of CRUD implemented, it’s time to move on to “retrieve.”

Test Case Structure
Since the point of the Table Data Gateway is to work with a database table populated with records,
you'll likely need a convenient way to initialize the table to a known state before running each test.
One quick solution is to create a base class for all of your tests, including two helper functions,
setup() and addSeveralBookmarks, to recreate the table from scratch and load some data, respec-
tively.

Here’s such a BaseTestCase class:

class BaseTestCase extends UnitTestCase {
protected $conn;
function __construct($name="") {
$this->UnitTestCase($name);
$this->conn = DB::conn();

}

function setup() {
$this->conn->execute(‘drop table bookmark’);
$this->conn->execute (BOOKMARK_TABLE_DDL) ;

}

function addseveralBookmarks($gateway) {
// add(url, name, desc, tag)
$gateway->add(‘http://blog.casey-sweat.us/’

249

250 The Table Data Gateway Pattern

,’Jason\’s Blog’

, PHP related thoughts’

»'php’);
$gateway->add(‘http://www.php.net/’

,PHP homepage’

,’The main page for PHP’

»'php’);
$gateway->add(‘http://slashdot.org/’

/Y

,’News for Nerds’

, new’);
$gateway->add(‘http://google.com/’

,’Google’

,’Google Search Engine’

,'web’);
$gateway->add(‘http://www.phparch.com/’

,’phplarchitect’

,’The home page of phplarchitect,

an outstanding monthly PHP publication’
,'php’);

Now every test case derived from BaseTestCase inherits its constructor, a setup() method, and
addseveralBookmarks (), which pre-loads some data.

Returning Recordsets as Arrays
Whenever you realize a Table Data Gateway class, you must choose a data structure to represent
result sets returned from access methods. A very common idiom in PHP is to return a vector (a
0-indexed array) of row hashes, which are associative arrays of field => value pairs.

Getting such a structure from the ADOConnection in BookmarkGateway is nearly trivial, since the
ADOResultSet::getArray() method follows the exact same idiom.

For example, here’s a findA11() method that returns the entire contents of the Table Data
Gateway class’s table:

class BookmarkGateway {
/] ..
public function findA11Q {
§rs = $this->conn->execute(‘select * from bookmark’);
if ($rs) {
return $rs->getArray(Q;
} else {
trigger_error(‘DB Error: ‘.$this->conn->errorMsg());
}
}
}

Trivial or not, it needs a test:

The Table Data Gateway Pattern

class TableDataGatewayTestCase extends BaseTestCase {
/...
function testFindAl1() {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks($gateway) ;

$result = $gateway->findal1Q);
$this->assertIsA($result, ‘Array’);
$this->assertequal (5, count($result));

If you want to go further, you can check some of the individual returned rows:

class TableDataGatewayTestCase extends BaseTestCase {
/...
function testFindA11() {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks ($gateway) ;

$result = $gateway->findA11(Q);
$this->assertIsA($result, ‘Array’);
$this->assertequal (5, count($result));

$this->assertisA($result[0], ‘Array’);
$this->assertEqual(7, count($result[1]));

$expected_keys = array(
G
,url’
, “’name’
,"description’
,'tag’
, created’
, updated’);
$this->assertEqual(
$expected_keys
,array_keys($result[3]));

(Indexes 0, 1, and 3 were selected at random, and could have been any of the five returned rows.)
Because the values in the returned set are (supposed to be the) values you initially stored, you can

also create tests to compare values directly:

251

252

The Table Data Gateway Pattern

class TableDataGatewayTestCase extends BaseTestCase {

/] ...

function testFindA11(Q) {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks ($gateway) ;
$result = $gateway->findA11(Q);

/] ...

$this->assertequal (‘PHP homepage’, $result[1][‘name’]);
$this->assertEqual (‘http://google.com/’, $result[3]1[‘url’1);

Returning Iterable Object Collections

Arrays are a native PHP type, and the large number of PHP array functions makes them easy to use
in your application. However, you may want to return result sets as a collection of objects instead.
Indeed, it’s fairly common to return collections of data transfer objects (basic containers for values,
with little additional logic)—there’s even an ADOResuTtSet() method provided just for that purpose.
Let’s create a finder method to lookup records based on the value of the table’s ‘tag’ field. And since
this example is in PHP5, let’s also require that the returned result set be iterable (see Chapter 8—The
Iterator Pattern), usable with using the PHP foreach construct.

(Returning an array of row hashes is the default for the ADOdb iterator. I intentionally made the
requirements for this example a bit more complicated to force the return of data transfer objects
instead, which makes for more interesting code. And as you'll see, the sample solution applies some
of the design patterns you learned earlier in this book.)

Here are those requirements (perhaps) more succinctly expressed as a test case:

class TableDataGatewayTestCase extends BaseTestCase {
/] ..
function testFindByTag() {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks($gateway) ;

$result = $gateway->findByTag(‘php’);
$this->assertIsA($result, ‘AdoResultSetIteratorDecorator’);

$count=0;
foreach($result as $bookmark) {
++$count;
$this->assertIsA($hookmark, ‘ADOFetchobj’);

The Table Data Gateway Pattern 253

}
$this->assertEqual(3, $count);
}
}

What's the code look like?

class BookmarkGateway{
/...
public function findByTag($tag) {
$rs = $this->conn->execute(
‘select * from bookmark
where tag Tike ?’
,array($tag.’%’));
return new AdoResultSetIteratorDecorator($rs);
}
}

As is typical, findByTag() first calls execute() to collect a result set. The ADOdb execute() method
takes a SQL statement to execute and an optional array of bind variables as parameters. Because
findByTag() requires a wild-carded LIKE operator and because ADOdb automatically quotes the
query string, it's necessary to append the wild card % to the variable inside of the bind array.

The method execute() yields a result set, which is then wrapped by
AdoResultSetIteratorDecorator(), the next bit of code to write. The purpose of
AdoResultSetIteratorDecorator() isto “transform” a result set into an iterable collection of objects,
hence its name.

ADOQdb provides iterator support by including the adodb-1iterator.inc.php file. This defines an
ADODB_Iterator class that essentially decorates an ADOResultSet in the PHP5 SPL Iterator interface.
This quickly allows you to provide a foreach-able result set. However, the default behavior of the
iterator is to return an associative array, as you can see from this new test case:

class AdoResultSetIteratorDecoratorTestCase extends BaseTestCase {
function testADodbDecorator() {
$gateway = new BookmarkGateway($this->conn);
$this->addseveralBookmarks ($gateway) ;

$rs = $this->conn->execute(‘select * from bookmark’);
foreach($rs as $row) {
$this->assertIsA($row, ‘array’);
$this->assertIsA($rs->fetchobj(), ‘ADOFetchobj’);
}

254 The Table Data Gateway Pattern

Here, the table is created, populated, and iterated over using the ADOdb iterator.

The highlighted line is effectively a cheat to be avoided. Yes, you can extract an object for each
row, but then you have to repeat this awkward code everywhere in your production to iterate over
the collection.

A far better solution—and one that meets the requirement of an iterable collection of objects
more directly—is to decorate the ADOdb iterator.

@ Testing External Libraries
Writing small test cases can help you explore a third-party library to gain a better understanding of its
features. A batch of test cases can also capture dependencies, or how your code specifically uses the
library, which allows you to find and resolve problems quickly if the library changes during an upgrade.

If you're worried about such external dependencies, it might be appropriate to introduce an Adapter (see
Chapter 13—The Adapter Pattern) to isolate your code from the dependency.

Let’s write a test case to demonstrate how the iterator should behave:

class AdoResultSetIteratorDecoratorTestCase extends BaseTestCase {
/] ...
function testRsDecorator() {
$gateway = new BookmarkGateway($this->conn);
$this->addseveralBookmarks($gateway) ;
$rs = $this->conn->execute(‘select * from bookmark’);
$count=0;
foreach(new AdoResultSetIteratorDecorator($rs) as $bookmark) {
++$count;
$this->assertIsA($bookmark, ‘ADOFetchobj’);
$this->assertTrue($bookmark->id > 0);
$this->assertTrue(strien($bookmark->url) > 10);
}
$this->assertequal (5, $count);

And here’s how to decorate the ADODB_Iterator to meet the expectations of the test case:

The Table Data Gateway Pattern 255

require_once ‘adodb/adodb-iterator.inc.php’;

class AdoResultSetIteratorDecorator implements Iterator {
protected $rs;
public function __construct($rs) {
$this->rs = new ADODB_Iterator($rs);

}

public function current() {
return $this->rs->fetchobjQ;
1

pubTic function next() {
return $this->rs->next();

}

public function key() {
return $this->rs->key();

pubTic function valid(Q) {
return $this->rs->valid(Q);
}
public function rewind() {
return $this->rs->rewind();
}
}

Here, most of the Iterator interface method is proxied to the decorated result set, but the current()
method is overridden to return the result of the fetchobj() method.
Back to the Table Data Gateway, you should now understand how findByTag() works.

class BookmarkGateway {
YV
public function findByTag($tag) {
$rs = $this->conn->execute(
‘select * from bookmark
where tag like ?’
,array($tag.’%’));
return new AdoResultSetIteratorDecorator($rs);
}
}

Updating Rows
Next, let’s tackle the “update” of CRUD. Conceptually, you need to populate the table, find an object,
change it, store it, and then find it again to verify that the change has been persisted.

Returning to the TableDataGatewayTestCase, here’s the code to find a record...

256 The Table Data Gateway Pattern

class TableDataGatewayTestCase extends BaseTestCase {
/] ...
function testupdate() {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks($gateway) ;

$result = $gateway->findByTag(‘php’);
$bookmark = $result->current();
$this->assertIsA($bookmark, ‘ADOFetchobj’);
$this->assertequal(

‘http://blog.casey-sweat.us/’

, $bookmark->ur1);
$this->assertequal(

‘PHP related thoughts’

, $bookmark->description);

... and the code to change it:

class TableDataGatewayTestCase extends BaseTestCase {
/] ...
function testUpdate() {
$gateway = new BookmarkGateway(DB::conn());
$this->addseveralBookmarks($gateway) ;

$result = $gateway->findByTag(‘php’);
$bookmark = $result->current();
$this->assertIsA($bookmark, ‘ADOFetchobj’);
$this->assertequal(

‘http://blog.casey-sweat.us/’

, $bookmark->ur1);
$this->assertequal(

‘PHP related thoughts’

, $bookmark->description);

$new_desc = ‘A change to see it is updated!’;
$hookmark->description = $new_desc;
$gateway->update ($bookmark) ;

Having changed the record, find it again to verify the change:

class TableDataGatewayTestCase extends BaseTestCase {

// ...
function testUpdate() {

The Table Data Gateway Pattern 257

$gateway = new BookmarkGateway(DB::conn());
$this->addSeveralBookmarks ($gateway) ;

$result = $gateway->findByTag(‘php’);
$bookmark = $result->current();
$this->assertIsA($bookmark, ‘ADOFetchobj’);
$this->assertEqual(

‘http://blog.casey-sweat.us/’

, $bookmark->ur1);
$this->assertEqual(

‘PHP related thoughts’

, $bhookmark->description);

$new_desc = ‘A change to see it is updated!’;
$bookmark->description = $new_desc;
$gateway->update ($bookmark) ;

$result = $gateway->findByTag(‘php’);
$bookmark = $result->current();
$this->assertEqual(

‘http://blog.casey-sweat.us/’

, $bookmark->url1);
$this->assertEqual(

$new_desc

, $bookmark->description) ;

With that test case in hand, it’s time to add the update() method to BookmarkGateway:

class BookmarkGateway{

/...
const UPDATE_SQL = ‘update bookmark set
url =7
,name = ?
,description = ?
,tag = ?

,updated = now()
where id = ?7;

public function update($bookmark) {
$this->conn->execute(
self::UPDATE_SQL
,array/(
$hookmark->ur1l
, $bookmark->name
, $bookmark->description
, $bookmark->tag
, $bookmark->id
)

258

The Table Data Gateway Pattern

BookmarkGateway knows both the SQL to perform the update, and the mapping of the data transfer
object attributes to the parameter substitution in the SQL statement.

Issues

The Table Data Gateway operates on tables, which is likely to better correlate to the work performed
in web applications. Yet the Table Data Gateway is still strongly-coupled with the structure of the
database table. Decoupling code from the structure of the database is the subject of the next chap-
ter, The Data Mapper Pattern.

16

The Data Mapper
Pattern

he two previous chapters—The Active Record Pattern and The Table Data Gateway Pattern—
showed strategies that abstract a table row and an individual table, respectively. While both
patterns are useful, each pattern’s implementation is closely coupled with the structure of the
underlying database, so solutions based on those patterns tend to be brittle. For instance, if your code
uses field names as keys in row arrays or attributes in row data objects, you're application is tied to the
structure of the database and you may have to make extensive changes in PHP for every (relatively)
minor change in a table.
Because code and databases often change during development and evolve after they're deployed,
there are real benefits to separating domain code and its database(s) as much as possible, insulating
each other from interdependencies and reducing the work required to realize a change in either.

The Problem

How can you minimize the coupling between your application’s classes and its database? For example,

262

The Data Mapper Pattern

how can you minimize the rework required if one or more fields in a table change names?

The Solution

The Data Mapper pattern decouples the attributes of objects from the table fields that persist them.
The essence of the Data Mapper pattern is a class that maps or translates domain object attributes
and/or methods to database table fields and vice versa. It is the job of the Data Mapper to under-
stand both representations of the information and be able to route information back and forth, cre-
ating new domain objects based on information in the database and updating or deleting informa-
tion in the database using the information from the domain objects.

The mapping between object-oriented code and the database tables and fields can be stored in
a variety of forms. One possibility would be hand-coding the correlation in the Data Mapper class.
Another option is a PHP array coded into the class itself. The class can also draw the information
from an external source, such as INI files or XML files.

The figure below shows a class diagram of the Data Mapper pattern applied to the problem
domain—storing URL bookmarks—used in the previous two chapters. In the figure, the Bookmark
object is the domain object and the BookmarkMapper is an implementation of the Data Mapper pat-
tern. Bookmark should contain business logic such as the validation of URLs. BookmarkMapper acts as
a complete cross-reference between Bookmark getter and setter methods and the bookmark table
field structure.

Bookmark
#$id
#surl The save() method examines
#$name the getId() method of the BookmarkMapper
#$desc Bookmark instance passed. If the id m ADOC t
: : conn: onnection
#$group appears to be a valid database id, #man: SimpleXMLElement
#scrt time the Bookmark instance is passed to N B: P
#¢mod_time the update() method, otherwise, it is \+__C°?;Eruit($i‘))n”)
- ; +save ($bookmar
+getId(). passed to the insert() method #insert ($booknark)
+setId($id) #update ($bookmark)
+getUrl()) #createBookmarkFromRow ($row)
+setUrl($url) findById() returns +delete($bookmark)
+getName () an instance of the Bookmark class - 1+ findById($id)
+se:game§?name) [—>]+findByGroup(sgroup)
+getDesc —1+add ($url, $name, $description, $group)
+setDesc($desc) e
+getGroup()
+setGroup($group)
+getCrtTime() findByGroup() returns
+setCrtTime($ctime) an array of Bookmark instances
+getModTime()
+setModTime ($mtime)
+fetch()

The two classes are closely related: BookmarkMapper acts as a Factory for Bookmark instances and

The Data Mapper Pattern

accepts instances of the Bookmark class as a parameter for many of the BookmarkMapper operations.

Sample Code

Using the UML diagram as a roadmap, let’s develop the two classes Bookmark and Bookmarkmapper.
First, as mentioned above, some kind of configuration is required to handle the mapping

between table columns and object methods. In this example, let’s use an XML configuration file.
The goal of this configuration is to list the bookmark table’s fields and to specify which methods

populate and extract the respective information in the Bookmark object. A very simple XML format

suffices, consisting of a <bookmark> root element and a series of <field> elements that look like this:

<field>
<name>url</name>
<accessor>getUrl</accessor>
<mutator>setUrl</mutator>
</field>

The <name> element holds the actual physical database field name. The <accessor> element names
the method to extract attributes and is optional, as some of the fields, such as timestamps, need not
be mapped. The <mutator> element holds the Bookmark method to use when populating object val-
ues.

(Other information could be added to this mapping. For example, you could also declare the
type and size of each field and use that information to dynamically construct the SQL necessary to
create the database table from scratch. This might be of particular interest to you if your application
has some kind of a packaged installation script written in PHP, where you could create the table
structures using this mapping. You might also automatically type cast numeric and date fields when
setting the PHP object attributes based on such information.)

The complete XML file looks like this:

<bookmark>

<field>
<name>id</name>
<accessor>getId</accessor>
<mutator>setId</mutator>

</field>

<field>
<name>url</name>
<accessor>getuUrl</accessor>
<mutator>setUrl</mutator>

</field>

263

264 The Data Mapper Pattern

<field>
<name>name</name>
<accessor>getName</accessor>
<mutator>setName</mutator>
</field>
<field>
<name>description</name>
<accessor>getDesc</accessor>
<mutator>setDesc</mutator>
</field>
<field>
<name>tag</name>
<accessor>getGroup</accessors
<mutator>setGroup</mutator>
</field>
<field>
<name>created</name>
<mutator>setCrtTime</mutators>
</field>
<field>
<name>updated</name>
<mutator>setModTime</mutators>
</field>
</bookmark>

We can use PHP5’s aptly-named SimpleXML features to read and parse this file. All you do is call sim-
plexml_load_file(‘bookmark.xm1’) and you have a ready made composite SimplexMLElement
object with all of the information from the XML file. Here, the result looks like:

object(SimplexMLETement)#21 (1) {
[“field”]=>
array(7) {
[0]=>
object(SimplexMLETement)#15 (3) {
[“name”]=>
string(2) “id”
[“accessor”]=>
string(5) “getId”
[“mutator”]=>
string(5) “setId”

}

[1]=>

object(SimplexMLETement)#19 (3) {
[“name”]=>
string(3) “url”
[“accessor”]=>
string(6) “geturl”
[“mutator”]=>
string(6) “seturl”

}

//...<snip>...

[4]=>

object(SimplexMLETement)#23 (3) {

The Data Mapper Pattern

[“name”]=>
string(3) “tag”
[“accessor”]=>
string(8) “getGroup
[“mutator”]=>
string(8) “setGroup

}

//...<snip>...

}

Since the XML file maps the domain space to the database space, BookmarkMapper will read this XML
configuration file when it’s constructed.

Before diving into BookmarkMapper, lets delve into the Bookmark class a bit.

Assuming that Bookmark has been used quite a bit in existing projects, it’s best to affect it as little as
possible. Moreover, Bookmark shouldn’t change simply to accommodate BookmarkMapper. Indeed, the
Data Mapper pattern is intended to be unobtrusive. The domain object itself remains completely
oblivious to the existence of the Data Mapper.

This brings up another important requirement for implementing the Data Mapper pattern:
since each domain object remains unaware of the Data Mapper, all pertinent domain objects must
provide public access of some kind to all relevant attributes so that the DataMapper can properly
initialize the domain object during creation and read the properties while saving the domain object.
Bookmark has all protected attributes, but provides getter and setter methods for each, so it meets the
requirement.

Let’s start with code for setting and retrieving the “url” attribute of our Bookmark class.

class Bookmark {
protected $url;
/] ...

public function getur1() {
return $this->url;
}
public function seturl($url) {
$this->url = $url;
}
}

You can avoid the monotony of writing umpteen simple getter and setter methods using reflection.
By having the object “peer” into itself, you can have the object determine if a particular property
should have getters and setters or not and what those methods should be named.

Let’s start with some tests:

265

266 The Data Mapper Pattern

class BookmarkTestCase extends BaseTestCase {
/]
function testAccessorsAndMutators() {
$bookmark = new Bookmark(false);

$props = array(‘url’, ‘Name’, ‘Desc’,
‘Group’, ‘CrtTime’, ‘ModTime’);
foreach($props as $prop) {
$getprop = “get$prop”;
$setprop = “set$prop”;
$this->assertNull($bookmark->$getprop());

$vall = ‘some_val’;

$bookmark->$setprop($vall);

$this->assertequal($vall,
$bookmark->$getprop());

$val2 = ‘other_val’;
$bookmark->$setprop($val2);
$this->assertNotEqual($vall,
$bookmark->$getprop());
$this->assertequal($val2,
$bookmark->$getprop());

For each of the Bookmark attributes, the test sets a value using the mutator method and then vali-
dates that the accessor method returns the same value. The value is then changed again and veri-
fied again.

This code relies on convention rather than some explicit mapping. Access and mutator method
names begin with get and set, respectively, and are then named after the attribute (which is in low-
ercase). For example, the name of the access method for “url” is getUr1(); the mutator method for
“url” is setur1().

Here’s some code to implement the dynamic access and mutator methods.

class Bookmark {
protected $url;
protected $name;
protected $desc;
protected $group;
protected $crttime;
protected $modtime;

/]

public function __call($name, $args) {
if (preg_match(‘/A(get|set) (\w+)/”, strtolower($name), $match)

The Data Mapper Pattern 267

&& $attribute = $this->validateAttribute($match[2])) {
if (‘get’ == $match[1]) {
return $this->$attribute;
} else {
$this->$attribute = $args[0];
}
}
}
protected function validateAttribute($name) {
if (in_array(strtolower($name),
array_keys(get_class_vars(get_class($this))))) {
return strtolower($name);
}
}
}

This code relies on the PHP5 “magic” method __call1(), which is called whenever an undefined (not
explicitly defined in the class) instance method is called. __cal1() is essentially a fallback method.
The name of the (missing) method called is passed to __cal1() as the first parameter and any meth-
ods arguments are passed in an array as the second parameter.

To achieve dynamically-created getter and setter methods, the name of the method called is
extracted to see if it starts with “get” or “set” and correctly names one of the object’s attributes. If so,
the attribute is modified or returned as appropriate. This dynamic approach replaces the hand-
coded getUr1() and setUr1(), so those can be safely elided from the code.

There is one side effect to be concerned about, though: this code silently fails for any other
methods called. To prevent that, let’s throw an exception if the called method is improper.

class Bookmark {

/...

public function __call($name, $args) {
if (preg_match(‘/A(get|set) (\w+)/’, strtolower($name), $match)
&& $attribute = $this->validateAttribute($match[2])) {
if (‘get’ == $match[1]) {
return $this->$attribute;
} else {
$this->$attribute = $args[0];

}
} else {
throw new Exception(
‘call to undefined method Bookmark::’.$name.’()’);

You can also test for this exception:

268 The Data Mapper Pattern

class BookmarkTestCase extends BaseTestCase {

/]

function testBadGetSetExceptions() {
$mapper = new BookmarkMmapper($this->conn);
$this->addseveralBookmarks($mapper) ;
$bookmark = $mapper->findById(1);

try {
$this->assertNull($bookmark->getFoo());
$this->fail(‘no exception thrown’);

}

catch (Exception $e) {
$this->assertwantedrPattern(‘/undefined.*getfoo/i’,

$e->getMessage());
}

try {
$this->assertNull($bookmark->setFoo(‘bar’));
$this->fail(‘no exception thrown’);
}
catch (Exception $e) {
$this->assertwantedPattern(‘/undefined.*setfoo/i’,
$e->getMessage());

There’s one other caveat: the $id attribute should be immutable once set.
Let’s create a test for an immutable ID attribute. setId() can be called once to set the ID and
retrieved innumerable times with getId(), but subsequent calls to setId() should have no effect.

class BookmarkTestCase extends BaseTestCase {

/e

function testunsetIdIsNull() {
$bookmark = new Bookmark;
$this->assertNull($bookmark->get1d());
}

function testIdonlySetonce() {
$bookmark = new Bookmark;

$id = 10; //just a random value we picked
$bookmark->setId($id);
$this->assertequal($id, $bookmark->getId());

$another_id = 20; // another random value, != $id
//state the obvious
$this->assertNotEqual($id, $another_id);

The Data Mapper Pattern

$bookmark->setId($another_id);
// still the old id
$this->assertequal($id, $bhookmark->getId());
}
}

It’s important to remember that methods explicitly defined in a class always override the catch-all
_cal1(Q). You can define a specific, different behavior for any named method just by adding the
named method to a class. Here, setId() overrides any fallback call to __call().

class Bookmark {
protected $id;
/]

public function setId($id) {
if (1$this->id) {
$this->id = $id;
}
}
}

So far, all we have is a basic data object, so let’s add some domain logic into the mix—after all, one
of the reasons for applying the Data Mapper pattern is the separation of domain logic from the per-
sistent storage of the domain object. In keeping with the design principal of “tell, don’t ask”, add a
fetch() method to return the actual (HTML) contents of the bookmarked page.

Here’s a test for this capability:

class BookmarkTestCase extends BaseTestCase {
I/

function testFetch() {
$bookmark = new Bookmark;
$bhookmark->setur1(‘http://www.google.com/’);

$page = $hookmark->fetch();
$this->assertwantedPattern(
‘~<input[A>]*name=q[A>]*>~im’, $page);

And here’s an example implementation:

269

270 The Data Mapper Pattern

class Bookmark {

/]

public function fetch(Q) {
return file_get_contents($this->url);
}
}

Now the full class looks like this:

class Bookmark {
protected $id;
protected $url;
protected $name;
protected $desc;
protected $group;
protected $crttime;
protected $modtime;

pubTic function setId($id) {
if (1$this->id) {
$this->id = $id;
}
}
public function __call($name, $args) {
if (preg_match(‘/A(get|set) (\w+)/’, strtolower($name), $match)
&& $attribute = $this->validateAttribute($match[2])) {
if (‘get’ == $match[1]) {
return $this->$attribute;
} else {
$this->$attribute = $args[0];
}
} else {
throw new Exception(
‘call to undefined method Bookmark::’.$name.’()’);
}
}
protected function validateAttribute($name) {
if (in_array(strtolower($name),
array_keys(get_class_vars(get_class($this))))) {
return strtolower($name);

}

pubTic function fetch() {
return file_get_contents($this->url);
}
}

With a grip on the Bookmark class, let’s get back to Bookmarkmapper class. The core job of
BookmarkMapper is to retrieve data from the database and create Bookmark objects.

The Data Mapper Pattern

The first task to accomplish with BookmarkMapper is the addition of new records to the database
table.

In the Data Mapper pattern, the domain object is unaware of the Data Mapper, but contains all
of the business logic, including potential rules regarding creation of the object. A logical way to cre-
ate records then is to create a new instance of the Bookmark class, set the attributes, and then ask the
BookmarkMapper to save the newly-created instance. Let’s move forward with implementing this kind
of an interface.

BookmarkMapper must interact with the database. As in the previous two chapters, let’s use
ADOdb as the database access layer. Furthermore, let’s pass in an ADOdb connection during the
construction of BookmarkMapper.

class Bookmarkmapper {
protected $conn;
public function __construct($conn) {
$this->conn = $conn;
}
}

BookmarkMapper must also read the XML file shown earlier. To make the XML even more convenient
to use, store the mappings as a hash of name => simplexml element for each field in the mapping
file. Adding this to the constructor yields:

class BookmarkMapper {
protected $map = array(Q);
protected $conn;
public function __construct($conn) {
$this->conn = $conn;
foreach(simplexml_load_file(‘bookmark.xm1’) as $field) {
$this->map[(string)$field->name] = $field;
}
}
}

Now you'’re ready to create a test case for the save() method.

class BookmarkMapperTestCase extends BaseTestCase {
function testSave() {
$bookmark = new Bookmark;

271

272

The Data Mapper Pattern

$hookmark->setur1(‘http://phparch.com/’);
$bookmark->setName(‘php|architect’);
$bookmark->setbesc(‘php|arch magazine homepage’);
$bookmark->setGroup(‘php’);

$this->assertNull($bookmark->get1d());

$mapper = new BookmarkMapper($this->conn);
$mapper->save($bookmark) ;

$this->assertequal(l, $bookmark->getId());
// a row was added to the database table

$this->assertequal(l, $this->conn->getone(
‘select count(l) from bookmark’));

Here, the test creates a new instance of the Bookmark class, sets the relevant attributes of the object,
and then asks a BookmarkMapper instance to save() the Bookmark. Along the way, the test also vali-
dates that saving the object also sets its ID and inserts a row into the database.

Next, let’s write some code to implement this.

class Bookmarkmapper {
/...
const INSERT_SQL = “
insert into bookmark (url, name, description,
tag, created, updated)
values (?, ?, ?, ?, now(), now())
pubTic function save($bookmark) {
$rs = $this->conn->execute(
self::INSERT_SQL
,array(
$bookmark->getur1()
, $bookmark->getName ()
, $bookmark->getbesc()
, $bookmark->getGroup()));

A class constant holds the statement to perform the insert, and the code “manually” maps the acces-
sor methods of the Bookmark class to the correct bind values in the SQL statement.

This is all well and good, but two more things are needed: code to handle database errors and
setting or modifying the $hookmark attributes that are initialized or changed by the database, respec-
tively.

The Data Mapper Pattern

class BookmarkMapper {

/]

public function save($bookmark) {
$rs = $this->conn->execute(
self::INSERT_SQL
,array(
$hookmark->getur1()
, $bookmark->getName ()
, $bookmark->getbesc()
, $bookmark->getGroup()));

if ($rs) {
$inserted = $this->findById($this->conn->Insert_ID());
//clean up database related fields in parameter instance
$bookmark->setId($inserted->getid());
$bookmark->setcCrtTime($inserted->getCrtTime());
$bookmark->setModTime($inserted->getModTime());

} else {
throw new Exception(‘DB Error: ‘.$this->conn->errorMsg());

}

findBy1d() is shown shortly, but its purpose is to find and return the Bookmark that matches the
given ID. Essentially, the Bookmarkmapper inserts the new Bookmark, extracts that record from the
database, and sets the appropriate properties based on the new correct values. Nothing need be
returned because the Bookmark instance itself was the parameter and it’s already been updated to be
correct.

Let’s move on to the details of the findById() method. You can use the same BaseTestCase from
the previous Table Data Gateway chapter:

class BookmarkMapperTestCase extends BaseTestCase {

/] ..

function testFindById() {
$mapper = new BookmarkMapper($this->conn);
$this->addseveralBookmarks ($mapper) ;

$this->assertIsA(
$bookmark = $mapper->findById(1)
, ‘Bookmark’);
$this->assertequal (1, $bookmark->getIid());
}

273

274 The Data Mapper Pattern

Technically, addSeveralBookmarks() won't work until findById() works (because of the code just
shown in the save() method), but let’s come to that in a minute.

class Bookmarkmapper {

/] ...

pubTic function findById($id) {
$row = $this->conn->getRow(
‘select * from bookmark where id = ?’
,array((int)$id)
)s
if ($row) {
$bookmark = new Bookmark($this);
foreach($this->map as $field) {
$setprop = (string)$field->mutator;
$value = $row[(string)$field->name];
if ($setprop &% $value) {
call_user_func(array($bookmark, $setprop), $value);
1
1
return $bookmark;
} else {
return false;
}
}
}

Since every finder method in the mapper must transform a database row into a Bookmark instance,
it makes sense to extract this capability into a separate method called createBookmarkFromRow().

class Bookmarkmapper {

/] ...

protected function createBookmarkrromRow($row) {
$bookmark = new Bookmark($this);
foreach($this->map as $field) {
$setprop = (string)$field->mutator;
$value = $row[(string)$field->name];
if ($setprop & $value) {
call_user_func(array($bookmark, $setprop), $value);
1

return $bookmark;
}
}

With this method, you can slim findById() down to just:

The Data Mapper Pattern 275

class BookmarkMapper {

/] ...

public function findById($id) {
$row = $this->conn->getRow(
‘select * from bookmark where id = ?’
,array((int)$id)
);
if ($row) {
return $this->createBookmarkFromRow($row) ;
} else {
return false;
}
}
}

All of this was all somewhat complicated, so a UML sequence diagram may be useful to help under-
stand what is going on.

parsed from
passed to bookmark.xml in
BookmarkMapper BookmarkMapper
as parameter constructor
in constructor AN /
N /
BookmarkMapper ADOConnection SimpleXMLElement Bookmark
T T T T
findByld(1) , L ! !
> getRow('select * from bookmark where id = 1') | |
> 1 |
| |
$row | |
e | |
| |
1 1 1
| <<create>> 1 _
| 1 o
* field->mutator |
T >
1
& - - - - - - - - - - - === P =-
N |
\ I I
| |
N * setMethod(value) | o
- | T —>
AN . |
\\ iteration inside of
Bookmark BookmarkMapper: :createBookmarkFromRow() method
*+ - --- finds correct Bookmark setter method to call !
and passes field value from $row array :
I
|
1

276

The Data Mapper Pattern

First, the data is retrieved from the database; next, an instance of the Bookmark class is created. Then,
for each field in the mapping, the code finds the appropriate setter method and passes the row value
to that setter. The Bookmark instance, now populated with database data, is then returned by
findById().

Now let’s look at the Bookmarkmapper::add() method, used by
BaseTestCase: :addSeveralBookmarks(). Using a test case, verify that it both creates a row in the
table and returns an instance of the Bookmark class with the correct data mapped in.

class BookmarkMapperTestCase extends BaseTestCase {

/] ...

function testAdd() {
$mapper = new BookmarkMapper($this->conn);
$hookmark =
$mapper->add(

‘http://phparch.com’,
‘phplarch’,
‘phplarchitect magazine homepage’,
‘php’);

$this->assertequal(l,
$this->conn->getone(‘select count(l) from bookmark’));
$this->assertEqual(‘http://phparch.com’, $bookmark->getur1());
$this->assertequal(‘php|arch’, $bookmark->getName());
$this->assertEqual(‘php|architect magazine homepage’,
$bookmark->getbesc());
$this->assertEqual(‘php’, $bookmark->getGroup());

Here’s the relevant BookmarkMapper code.

class Bookmarkmapper {

// ...

public function add($url, $name, $description, $group) {
$bookmark = new Bookmark;
$bookmark->setur1($url);
$bookmark->setName ($name) ;
$bookmark->setDesc($description);
$bookmark->setGroup($group) ;

$this->save($bhookmark);
return $bookmark;

The Data Mapper Pattern 277

This is similar to to the Active Record ActiveRecordTestCase: :add() convenience method, but here
it's been added it to the mapper instead of the test case, making it available within the project code.

You can now move on to implementing additional finder methods, including methods that
return collections of Bookmark instances.

class BookmarkMapperTestCase extends BaseTestCase {

/] ..

function testFindByGroup() {
$mapper = new BookmarkMmapper($this->conn);
$this->addseveralBookmarks($mapper) ;

$this->assertIsA(
$php_links = $mapper->findByGroup(‘php’)
,'array’);

$this->assertequal (3, count($php_links));

foreach($php_Tinks as $1ink) {
$this->assertIsA($1ink, ‘Bookmark’);

}

}
}

Finding all bookmarks in a specific group can be implemented as:

class BookmarkMapper {

/]

public function findByGroup($group) {

$rs = $this->conn->execute(
‘select * from bookmark where tag 1like ?’
,array($group.’%’));

if ($rs) {
$ret = array();
foreach($rs->getArray() as $row) {

$ret[] = $this->createBookmarkFromrow($row);

}

return $ret;

The ADOConnection::execute() method returns an ADOResultSet object. This result set has a
getArray() method that returns an array of associative arrays (field => value) for each of the rows.
These row arrays are in turn passed to the createBookmarkFromRow() method to create instances of

278 The Data Mapper Pattern

the Bookmark class.

How about update in the mapper? The process of updating is also a collaboration between
Bookmark and BookmarkMapper. Ensuring that bookmarks are indeed updated is best tested in
BookmarkTestCase. Testing the round trip to the database belongs in the tests for Bookmarkmapper.

class BookmarkTestCase extends BaseTestCase {

/] ...

function testSaveUpdatesDatabase() {
$mapper = new BookmarkMmapper($this->conn);
$this->addseveralBookmarks ($mapper) ;
$bookmark = $mapper->findById(1);

$this->assertequal(
‘http://blog.casey-sweat.us/’
, $bookmark->getur1(Q));

$bookmark->seturl(
‘http://blog.casey-sweat.us/wp-rss2.php’);
$mapper->save ($bookmark) ;

$bookmark2 = $mapper->findBy1d(1);

$this->assertequal(
‘http://blog.casey-sweat.us/wp-rss2.php’
, $bookmark2->getur1(Q));

As it is now, the save () method inserts new bookmarks into the database via INSERT. However, as this
test case implies, save() must now determine if the Bookmark parameter is new or has previously
been added to the database. For the former, INSERT is appropriate; for the latter, an UPDATE is
required.

That being the case, let’s refactor the code performing the INSERT statement, which was in the
save() method, into a new protected method called insert().

class Bookmarkmapper {
/]

protected function insert($bookmark) {
$rs = $this->conn->execute(

self: :INSERT_SQL

,array(
$bhookmark->geturl()
, $bookmark->getName ()
, $bookmark->getbesc()
, $bookmark->getGroup()));

The Data Mapper Pattern

if ($rs) {
$inserted = $this->findById($this->conn->Insert_ID());
// clean up database related fields in parameter instance
if (method_exists($inserted,’setid’)) {
$bookmark->setId($inserted->getid());
$hookmark->setcCrtTime($inserted->getCrtTime());
$bookmark->setModTime($inserted->getModTime());
}
} else {
throw new Exception(‘DB Error: ‘.$this->conn->errorMsg());
}
}
}

With the existing save () method renamed to insert(), the (yet-to-be-written) save () method must
check if the $id attribute has been set using getId():

class Bookmarkmapper {

/...

public function save($bookmark) {
if ($bookmark->get1id()) {
$this->update($bookmark) ;
} else {
$this->insert($bookmark) ;
}
}
}

Now you need an update() method that’s similar to the insert() method. If you recall, the insert()
method hard-codes mappings from attributes to field names. For update(), let’s use a more dynam-
ic approach, using the information gleaned from the bookmark.xml mapping file.

class Bookmarkmapper {
/...

const UPDATE_SQL = *“
update bookmark set
url = ?,
name = 7,
description = ?,
tag = ?,
updated = now()
where id = ?
protected function update($bookmark) {
$binds = array();

279

280 The Data Mapper Pattern

foreach(array(‘url’, ’name’,
‘description’,’tag’,’id’) as $fieldname) {
$field = $this->map[$fieldname];
$getprop = (string)$field->accessor;
$binds[] = $bookmark->$getprop(Q);

1

$this->conn->execute(
self::UPDATE_SQL
,$binds);

Notice that the order of the elements in the array appear in the same order as what'’s needed in our
SQL statement. The update() method captures the essence of the Data Mapper: it establishes rela-
tionships between attributes and fields.

Finally, let’s look at an implementation of the “delete” CRUD capability. Let’s write a method for
the BookmarkMapper class that accepts a Bookmark and deletes it from the database.

First, a test:

class BookmarkMapperTestCase extends BaseTestCase {

/]

function testbDelete() {
$mapper = new BookmarkMapper($this->conn);
$this->addseveralBookmarks ($mapper) ;

$this->assertequal(5, $this->countBookmarks());

$delete_me = $mapper->findById(3);
$mapper->delete($delete_me);

$this->asserteEqual (4, $this->countBookmarks());
}

function countBookmarks() {
return $this->conn->getone(
‘select count(1l) from bookmark’);

And the code:

class Bookmarkmapper {
/...

The Data Mapper Pattern

public function delete($hookmark) {
$this->conn->execute(
‘delete from bookmark where id = ?’
,array((int) $bookmark->getId()));

And now you've implemented a Data Mapper pattern for the bookmark table with complete CRUD
capabilities.

If your domain objects are particularly expensive to create, you'd probably want to write a
Bookmarkmapper: :deTeteById() method which did not required the domain object to be loaded
prior to deleting it.

Issues

Clearly, adding a translation layer between a database schema and domain objects adds a bit of
complexity. However, this complexity gives you tremendous flexibility in your code, as you're free to
evolve your class independently from the table structure in the database.

You should also remember all of this is still a fairly simple translation mechanism. If you want
to evolve this mechanism towards handling relationships between tables and their corresponding
relationships in your domain model, you are headed towards the holy grail of ORM—ODbiject
Relational Mapping—which is not to be treaded lightly.

281

17

The Model-View-
ontroller Pattern

eb applications vary greatly and that variety causes a great deal of confusion about what
pattern or patterns are best for architecting a certain application. Having said that, though,
is there a “best” architecture for web applications?

The Problem

Can you deploy a single web site architecture to accommodate every common web application,
including common presentation elements, authentication, form validation, and so on?

The Solution

The Model-View-Controller (MVC) pattern organizes and separates your software into three distinct
roles:

* The Model encapsulates your application data, application flow, and business logic.

* The View extracts data from the Model and formats it for presentation.

284

®

The Model-View-Controller Pattern

* The Controller directs application flow and receives input and translates it for the Model and
View.

The Origins of MVC

The Model-View-Controller pattern was originally developed by Trygve Reenskaug at Xerox’s Palo Alto
Research Center (PARC) in the late 1970s. The original reference implementation was coded in Smalltalk-
80, and was originally designed to solve the GUI interaction problem in applications.

As you work with the MVC pattern, you'll appreciate its utility, especially for graphical user interface
(GUI) applications. Moreover, MVC is also useful for web applications, albeit the discontinuities of
accessing a server application through a series of stateless web connections present some unique
challenges (and opportunities).

If you flipped to this chapter looking for the “one true way” to implement MVC for web appli-
cations, I hope you won't be too disappointed with the answers contained here. A perfect solution
doesn’t exist, but there are many “best practices” and related patterns that can surely help you real-
ize an effective MVCimplementation. Hopefully, the ideas presented here can serve as a springboard
for your code and lead you to do more research.

The Model-View-Controller
Unlike other design patterns, the MVC pattern does

. HTTP Request
not map directly to a class structure that you can
code and deploy. Instead, MVC is more of a concep-

tual guideline or paradigm.

The conceptual MVC pattern is depicted as the
relationship between three objects, the Model, the
View, and the Controller. The Controller and the V)
View both depend on the Model, because both the :
View and the Controller may request data from the I
Model. Any inputs to your system enter through the A v
Ccontroller, which selects a View to emit results. To |

B Controller

put this in more concrete terms for you, a PHP view
developer, the Controller handles each incoming ¢
HTTP request and the View generates the HTTP

response.

HTTP Response
Here is the conceptual MVC pattern pictured as

a diagram on the right:

The Model-View-Controller Pattern

In this ideal MVC world, communication is straightforward, as expressed in this sequence diagram:

Controller Model View

HTTP Request ' !
- |

T
|
update(request data) - |
- |
|
T |
h | |
show() | >
| | [] getData()
|
|
[B I -
HTTP Response ' B
- -—-—-—-—-—-—-— - - - = |J= = = === =
|
|
|

Of course the devil is in the details. When MVC is implemented in a web application, the Model,
View, and Controller are never captured in single classes, but are instead implemented as closely-
related groups of objects, where each group performs one specific MVC task. The Controller might
be composed of several classes that combine to analyze the HTTP response and determine the
desired action required by the application. The Model is almost certainly composed of many class-
es. And the View in a web application is usually some kind of a template system, and is likely com-
posed of several objects.

In the following sections, let’s dig a little deeper into each portion of the MVC triad to determine
what design patterns exist in or facilitate each part and how they can help you organize your code.

The Model

The Model contains your application logic and data and is likely the primary driver of value in your
application. The Model has no presentation-related features and is also completely decoupled from
the responsibility to process HTTP requests. (As a quick rule of thumb, you should never see HTML
tags or $_GET superglobals in any PHP Model.)

Domain Model
The Domain Model is a layer of objects that abstract the real world logic, data, and problems your
application deals with. The Domain Model can be classified in two broad categories: a Simple
Domain Model and a Rich Domain Model.

A Simple Domain Model tends to have a one-to-one correspondence between business objects
and database tables. You've seen several patterns — Active Record, Table Data Gateway, and Data

285

286

The Model-View-Controller Pattern

Mapper, all database-related design patterns — that can help you organize your database-related
logic into a Domain Model (although to keep examples reasonable, compact, and understandable in
this book, the material never expanded beyond a one-to-one correspondence — an isomorphic
mapping — of the simple Domain Model.)

A Rich Domain Model includes complex webs of tightly interwoven objects using inheritance,
and leverages many of the design patterns covered in this book and the GoF book. Rich Domain
Models tend to be supple, well-covered by tests, continuously refactored, and tightly coupled with
the business needs for the domain they express.

Which style of Domain Model you adopt depends on the context of your application. If you're
delivering a fairly simple form processing web application, it’s not necessary to build a Rich Domain
Model. However, if you're writing a library that’s to be the core of a multi-million dollar enterprise’s
intranet infrastructure, then the effort you put into developing a Rich Domain Model is likely to pay
off, providing you a platform to accurately express business processes and allowing you to rapidly
deliver value.

Martin Fowler briefly covers both styles of the Domain Model in POEAA, and Eric Evans’s book,
Domain Driven Design, is entirely devoted to the practices and process of developing a Rich Domain
Model.

The View
The View manages all aspects of presentation. A View extracts data from a Model and might format
it as HTML for a web page, as XML for a web service, or as text for email.

One good way to identify if you've succeeded in separating your code into well-defined roles is
to try substituting (at least conceptually) another View that produces completely different output.
For example, if you have a web application, what would you have to change to make your program
work at the command-line prompt using the PHP CLI binary?

While the View has access to the Model, it is bad form for a View to call methods of the Model
that change state—updates should only be performed by the Controller. The Model methods called
by the View should be read-only data retrieval methods with no side effects.

There are two design patterns commonly used in Views: the Template View and the Transform
View.

Template View
The primary pattern used in a View for a web application is the Template View. This pattern uses a
template file (usually HTML) that includes special markers that are replaced with data from the
Model when the Template View is executed.

PHP itself is an example of a specific type of Template View called a server page. A template sys-
tem based on using PHP as the template itself is Savant (http://ww.phpsavant.com/).

The Model-View-Controller Pattern

An example of using Savant is:

// PHP4
require_once ‘Savant2.php’;

$tpl =& new Savant2();

$tpl->assign(‘title’, ‘Colors of the Rainbow’);
$tpl->assign(‘colors’, array(‘red’, ‘orange’, ‘yellow’,
‘green’, ‘blue’, ‘indigo’, ‘violet’));

$tpl->display(‘rainbow.tpl.php’);

The file rainbow.tpl.php is a Savant template that resembles:

<html><head>
<title><?php echo $this->title ?></title>
</head><body>
<h1l><?php echo $this->title ?></hl>

<?php foreach ($this->colors as $color): ?>
<1i><?php echo $color ?></1i>
<?php endforeach; ?>

</body></htm1>

There’s always some temptation with complex template engines or even with Plain Old PHP Pages
(POPP) to go beyond variable replacement and embed control structures and other logic into the
pages. However, giving in results in business logic entangled within the presentation layer of your
application, leading to a maintenance nightmare.

Writing Template Engines

It seems that writing a template engine is some kind of a right of passage in the PHP community, as a
search for template engines in PHP reveals literally hundreds of them (see
http://www.sitepoint.com/forums/showthread.php?t=123769 for an experiment in this area). If you choose

to not use one of the popular engines and instead roll you own, there’s a rich environment of example
code to review.

The page http://wact.sf.net/index.php/Templateview does a good job of outlining what styles of
marker’s can be used with a Template View. These include an attribute language, custom tags, HTML
comments, and custom syntax.

287

288 The Model-View-Controller Pattern

The popular template engine Smarty (http://smarty.php.net/) is an example of a template

engine that uses the custom syntax method. Loading a Smarty template might look like:

require_once ‘Smarty.class.php’;

$tpl =& new Smarty;
$tpl->assign(array(
‘title’ => ‘Colors of the Rainbow’
,’colors’ => array(‘red’, ‘orange’, ‘yellow’,
‘green’, ‘blue’, ‘“indigo’, ‘violet’)
)
$tpl->display(‘rainbow.tpl’);

The Smarty custom syntax of rainbow.html looks like:

<html><head>

<title>{$title}</title>

</head><body>

<h1>{$title}</h1>

{section name=rainbow loop=$colors}

{$colors[rainbow]}</1i>

{/section}

</0o1>

</body></htm1>

The WACT (http: //wact.sf.net/) template engine follows the Custom Tag pattern that Martin Fowler
outlines in POEAA. Although WACT supports a custom syntax similar to Smarty as a shortcut, WACT’s
custom tag array output might look like:

require_once ‘wact/framework/common.inc.php’;
require_once WACT_ROOT.’ template/template.inc.php’;
require_once WACT_ROOT. datasource/dictionary.inc.php’;
require_once WACT_ROOT.’iterator/arraydataset.inc.php’;

// simulate tabular data

$rainbow = array(Q);

foreach (array(‘red’, ‘orange’, ‘yellow’,

‘green’, ‘blue’, ‘indigo’, ‘violet’) as $color) {
$rainbow[] = array(‘color’ => $color);

}

$ds =& new DictionaryDataSource;
$ds->set(‘title’, ‘Colors of the Rainbow’);

The Model-View-Controller Pattern 289

$ds->set(‘colors’, new ArrayDataSet($rainbow));

$tpl =& new Template(‘/rainbow.html’);
$tpl->registerdatasource($ds);
$tpl->displayQ;

The template rainbow.html might look like:

<html><head>

<title>{$title}</title>

</head><body>

<h1>{$title}</h1>

<list:Tist id="rainbow” from="colors”>

<list:item>{$color}</Ti></Tist:item>
</o0l>

</Tist:Tist>

</body></html>

There are quite a number of included files for this WACT example. This is because the framework has
a variety of components to address different portions of the web application problem and you only
include the components you need. In the example above, the Template class is a View, the
DictionaryDataSource is a proxy for the Model, and the PHP script itself is acting as the Controller.
Many of the custom tags are designed to work with tabular data — like what you might extract from
a database as a result set — hence the transformation of the simple array before using it in the tem-
plate.

One last style is to have a valid XML file for a template and use attributes of the individual ele-
ments as the targets for your template replacements. Here’s an example of this technique using PHP-
TAL (http://phptal.motion-twin.com/).

// PHPS
require_once ‘PHPTAL.php’;

class RainbowColor {
public $color;
public function __construct($color) {
$this->color = $color;
}
}

// make a collection of colors
$colors = array();
foreach (array(‘red’, ‘orange’, ‘yellow’,

290 The Model-View-Controller Pattern

‘green’, ‘blue’, ‘indigo’, ‘violet’) as $color) {
$colors[] = new RainbowColor($color);

}

$tpl = new PHPTAL(‘rainbow.tal.html’);
$tpl->title = ‘Colors of the Rainbow’;
$tpl->colors = $colors;

try {
echo $tpl->execute();
}
catch (Exception $e){
echo $e;

}

The rainbow.tal.html template file might look like:

<?xml version="1.0"7>
<html>
<head>
<title tal:content="title”>
place for the page title
</title>
</head>
<body>
<hl tal:content="title”>sample title</hl>
<01>
<1i tal:repeat="item colors”>
color
</Ti>

</body>
</html>

Of course, the point of all of these solutions is to separate the presentation of Model data from the
Model and from the application itself. Each of the prior examples produced essentially the same
content, so the selection of which to use is largely a matter of personal preference.

The Transform View
The Transform View extracts data from your model and transforms the data into the desired output
format. It essentially amounts to using a language to step through the elements of your data one by
one, assembling the output along the way.

The difference between the Template View and the Transform View is the direction of data flow.
In the Template View you start with a skeleton of your output and insert domain data into it. With the
Transform View you start with the data and build the output from it.

The Model-View-Controller Pattern 291

The dominant technology for implementing a Transform View is XSLT.

The Controller

The Controller is the one role of MVC that most PHP MVC frameworks address. This is reasonable
considering that Models are specific to the application and nearly every developer already has their
favorite template engine, a major component of the View. That leaves interpreting the HTTP
response, and controlling application flow (selecting the appropriate action to take or view to dis-
play), both approachable tasks for a generic framework.

Front Controllers

It’s often helpful to centralize the control of application flow at a single point. Centralization can
help you understand how a complex system operates and it also provides a single place where you
can insert global code such as an Intercepting Filter pattern. A Front Controller is perfect for central-
ization.

Intercepting Filter
The Intercepting Filter pattern is an implementation of the Chain of Responsibility pattern from the GoF
book. It allows for sequential processing of a request to apply common tasks such as logging or security.

There are two common implementations, one where the filters are applied sequentially in a chain until
the application controller is reached, and another that resembles a series of decorators, useful for per-
forming both pre- and post-filter actions (think of a whitespace removal or a compressing filter where
you might start output buffering in pre-processing and perform your filter in the post-processing action).

As a simple example of what an Intercepting Filter might look like integrated with a Front Controller,
assume we have in interface for our Filters which has both preFilter() and postFilter() methods.
We can then build a means of adding filters to our FrontController:

class FrontController {
var $_filter_chain = array(Q);
function registerFilter(&$filter) {
$this->_filter_chain[] =& $filter;
}
}

And then we can apply the preFilter() methods in sequence, prior to running the actual work of
the FrontController (page generation, dispatching, etc). After the FrontController has performed

292 The Model-View-Controller Pattern

its task, the postFilter() methods could be called in reverse order.

class FrontController {

/]

function run() {
foreach(array_keys($this->_filter_chain) as $filter) {
$this->_filter_chain[$filter]->preFilter(Q);
}
$this->_process();
foreach(
array_reverse(array_keys($this->_filter_chain)) as $filter) {
$this->_filter_chain[$filter]->postFilter();
}
}

function _process() {
// do the FrontController work
}
}

As an example, this Htm1CommentFilter class would remove all HTML comments from the resulting
output of the page.

class HtmlCommentFilter {

function preFilter() {
ob_start();
}

function postFilter() {
$page = ob_get_clean();
echo preg_replace(
frgl= ¥ —>~ims’

,Spage) ;

Application Controllers
Front Controllers often delegate control to an Application Controller and the Application Controller
pattern is really the heart of what the MVC Controller is all about. The primary responsibility of the
Controller is deciding what the application should do in response to an incoming request.

A typical way of implementing a Controller is using the Command pattern. The Command pat-

The Model-View-Controller Pattern 293

tern encapsulates an action in an object so you can parameterize a request, queue it, log it, or sup-
port operations like undoing an action. In the context of a web application, they are useful as the tar-
get of code that dispatches to a concrete Command to carry out the work of a particular HTTP
request. Essentially, the Command pattern lets you break down the discrete behaviors of your appli-
cation and code, each as a small, manageable class, with a uniform API to allow the Controller to dis-
patch to a specific concrete Command to implement the desired application functionality.

Don'’t let this buzzword-laden talk of controllers and dispatching confuse you. If you've spent
even a few hours with PHP, you've likely written some kind of an Application Controller. For exam-
ple, a simple form that posts back to itself, such as...

if (count($_PoST)) {

// do form handling code
} else {

// display the form
}

... is a form of Application Controller. A somewhat more complex Application Controller is some-
thing like this:

switch ($_PoST[‘action’])
case ‘del’: $action_class
case ‘upd’: $action_class
case ‘add’: $action_class
case ‘show’:
default:

$action_class = ‘DisplayBookmark’;

}

‘DeleteBookmark’; break;
‘UpdateBookmark’; break;
‘InsertBookmark’; break;

(LI | | B

if (!class_defined($action)) {
require_once ‘actions/’.$action_class.’.php’;
}
$action =& new $action_class;
$action->runQ);

Another possible way to implement dispatching is to have a configuration that loads an associative
array. You might end up with:

$action_map = array(
‘de1’ => ‘DeleteBookmark’

294

The Model-View-Controller Pattern

,’upd’ => ‘UpdateBookmark’
,’add’ => ‘InsertBookmark’

);

$action_class = (array_key_exists($_POST[‘action’], $action_map))
? $action_map[$_POST[‘action’]] : ‘DisplayBookmark’;

if (!class_defined($action)) {
require_once ‘actions/’.$action_class.’.php’;
}
$action =& new $action_class;
$action->run();

My experience with web applications has shown that a “double dispatching” architecture can be a
useful mental map to compare frameworks’ dispatching mechanisms against. The first dispatch is
to an “action,” any event that needs to perform an action using your Model. After any visible action,
an HTTP redirect would be issued to instruct the client to fetch a particular View. The second dis-
patch is to select a specific View. (In early procedural incarnations of this methodology, [used a case
statement, but the MVC paradigm lends itself to using the Command pattern to perform this dis-
patch.)

The “real life” version of a Model-View-Controller sequence diagram looks fairly similar to the
“ideal” sequence diagram shown above. The main addition is an ActionFactory to produce each
Action, which is a concrete Command.

Controller ActionFactory Action Model

HTTP Request !
—»-I-

getAction

T
|
|
<<create>> |

run

update
D

HTTP Redirect

In many of the MVC implementations I have developed, the second dispatch is performed by the
default ShowviewAction.

The Model-View-Controller Pattern

Controller ActionFactory ShowViewAction ViewFactory View Model TemplateEngine

T T
| |
| |

<<create>> |

T
HTTP Request |
|
|
- |
|
|
|

getAction

Y

display

!

setTemplate

* getData
€ - - -

Y

* setVars

render

HTTP Response

This diagram shows the first dispatch creating the concrete Command ShowviewAction. This action
would in turn use a ViewFactory to create a concrete View class, which is an example of what Martin
Fowler calls a View Helper in the POEAA section on Views in MVC. This View would use your preferred
TemplateEngine to select and parse a template file, populate template variable: from data in the
Model, and render the resulting content from the template and return it to the client.

It is this kind of a diagram that can give MVC a reputation for bloat, but in fact, each element of
this diagram was added in response to a need to organize the code to make it easier to maintain.

In general, I have found the most significant hurdle to using a specific framework is gaining an
understanding of how that framework operates and how to add application-specific features. The
actual organization is typically straightforward once understood, but it seems at first daunting and
unapproachable with no context to work from.

Cross-Cutting MVC Concerns
There seems to be a number of “what goes where” questions surrounding MVC, and you can receive
substantially different answers from different MVC proponents.

Where does $_SESSION belong? One argument says that sessions are a persistent data store, usu-
ally implemented as files on the server and are therefore best kept in the Model. A second set of
developers argues that like the other PHP superglobals, session data is an input to the system and
therefore belongs in the Controller. Yet another set of developers say sessions are implemented using
cookies, a technology that only works with HTML over HTTP and therefore sessions are View relat-
ed.

Where does authentication belong? It seems like it’s part of application logic and would there-
fore belong to the Model. But what if you want to limit certain actions (part of the Controller) to only

295

296

The Model-View-Controller Pattern

authenticated users? Well, the Controller can access the Model, so it seems a perfect place. But what
about HTTP authentication? Does it too go into the Controller?

Where does the browser fit in this whole concept? Clearly the View, right? What if you try to
implement Javascript validation? Doesn’t validation belong in the Controller and the Model? How do
you get it into the View?

None of these issues are show stoppers, but each can cause some thought provoking, even gut-
wrenching moments when trying to figure out just how to align these concerns in your MVC imple-
mentation.

Non-MVC Frameworks
Clearly not every framework is centered on the separation of concerns and ideas embodied by the
MVC pattern. Here is a small sampling of non-MVC framework ideas.

Event Handling
When you work in a GUI environment, the tools are generally set up to responsd to events. Think
button.click(). Several PHP frameworks have tried to adopt this as a core idea.

Prado was recently recognized in Zend’s PHP5 coding contest and has event handling as a core
concept. WACT has the concept of using the Composite pattern to aggregate controllers, each of
which has “listeners” that can approximate an event handling perspective.

Inversion of Control Containers
A hot topic in Java circles is Inversion of Control (IoC) Containers, also known as the Dependency

Injection pattern. A good introductory article on this pattern is available at http://www.martin-
fowler.com/articles/injection.html.

There is a promising PHP5 project that’s a port of the original Java PicoContainer at

http://www.picocontainer.org/.

Dependency Injection is a pattern I personally am very interested in using in my own develop-
ment efforts because it inherently works well with the Test Driven Development methodology, allow-
ing you to more readily test your code because it is designed to play nicely with other components
right from the start.

This pattern is really orthogonal to MVC—one of the areas I am most interested in is combining
a Dependency Injection container like Pico and a MVC framework like WACT to produce an applica-
tion that “autowires” itself. Ideally this will create easy to assemble web applications, and at the same
time allow for easily testable code by instructing the container to inject Mock Objects instead of real
dependencies.

The Model-View-Controller Pattern

Conclusion

This has been a whirlwind tour of MVC and of related design patterns. If you want to look at fully

developed PHP MVC frameworks, I would recommend reviewing Mojavi (http://www.mojavi.org/);

it'’s a good example of the pattern and the project has active development and a robust community.
As you should know by now, I am partial to WACT (http://phpwact.org/), which has the distinc-

tion of having framework components for all three parts of the MVC triad: a Composite Controller

mechanism, a Custom Tag template system for Views, and the DataSource (see Chapter 10 — The

Specification Pattern) as a generic proxy for the Model.

While this chapter may not have solved any web architecture problems you have, hopefully it
has provided you with some ideas—starting points for further research—and perhaps even the
inspiration for you to write the Magic Web Application Architecture that revolutionizes PHP devel-
opment. If you do, please make sure to let the rest of us know.

297

18

Conclusion

E HAVE COME TO the end of our brief journey together. It is my hope we have accom-

plished something together, both the overt goal of introducing the concepts of Design

Patterns with specific examples in PHP, but also more subtle accomplishments, such as
the introduction of Agile Development techniques like Test Driven Development.

Design Patterns are a useful tool for you to have in your programming toolkit, to be pulled out and
applied appropriately to complicated design problems. Design patterns give you the possibility to
quickly add flex points to your design, using time-worn, proven techniques. Using Design Patterns
also gives you an additional ability to communicate with other developers, with the names of the each
patterns now acting as a short cut for a whole body of knowledge.

It is possible to go overboard with any technique, including OOP or Design Patterns. This is where
it's important to apply other Agile Development practices, specifically “Do the simplest possible thing
that will work.” If the task at hand doesn’t require the flexibility or warrant the complexity of the
Design Pattern based solution, then don't use it. Design Patterns are mean to solve specific problems

300

Conclusion

in your code, not to create problems.

Testing your code is incredibly powerful. There has been clear evidence of this throughout the
book, with each chapter heavily emphasizing the testing of the patterns as well as the coding of the
pattern implementation itself. No other practice has influenced the design, stability, and maintain-
ability of the code I have written as much as adopting the practice of testing.

The code in this book was developed by first writing the unit test cases and the code, and only
when the code passed the tests did I migrate it into the body of each chapter. The full source code
for each of these tests is available for you in the source code download for the book. I encourage you
to review these tests, understand them, even see their shortcomings. But most of all I encourage you
to take the step of testing your own code if you're not doing so now.

The Design Patterns presented in this book are by no means comprehensive, but were instead
intended to provide you with a sample of some of the most commonly applicable patterns in the
PHP/Web Application context. This book is a starting point for you begin your own journey of under-
standing and application of Design Patterns.

One of my personal goals in writing this text was to gain better clarity and understanding of the
patterns myself, under the assumption there is no better way to learn than to teach. I believe I have
achieved this goal, and I hope you find as much utility in reading this work as I had in authoring it.

I wish you the best in applying Design Patterns to your PHP applications.

Happy coding.

Pattern Quick
Reference

ne of the downsides of design patterns is that there are so many of them—this book covers
almost twenty of them in great detail, and there are several more that are not directly relevant
to PHP.

Therefore, I thought that it might have been handy to have a simple (and, thankfully, relatively
short) reference table that can help you jog your memory when you're looking for a pattern to solve a
particular problem but can't quite remember which pattern you should use.

The table in the following pages provides you with a short overview of every pattern covered in
this book, together with the chapter in which it is covered and pointers to external resources like
books. Together with the index, it will hopefully provide you with a quick way to locate the pattern for
every occasion.

304

Pattern Quick Reference

AbstractFactory

Summary | Facilitates the building of families of
related objects.

Reference |3

Chapter

Other GoF—Page 87

Resources

Summary | Creates an object that wraps a row
from a database table or view, pro-
vides database access one row at a
time, and encapsulates relevant busi-
ness logic.

Reference |14

Chapter

Other PoEAA—pPage 160

Resources | Data Access Patterns—Page 33

Summary | Allow classes to support a familiar
interface so you can use new classes
without refactoring old code.

Reference |13

Chapter

Other GoF—Page 139

Resources | Agile Software Development—Page 317
Roles, Responsibilities and Collaborations—Page 340
Design Patterns Explained—Page 95
Advanced PHP Programming—Page 44

Application Controller

Summary | A central point for handling naviga-
tion for an application, typically imple-
mented in an index.php file dispatch-
ing based on URL query parameters.

Reference |17

Chapter

Other PoEAA—pPage 379

Resources

Builder

Summary | Facilitates the initialization of complex
object state.

Reference |3

Chapter

Other GoF—pPage 97

Resources

Command

Summary | Encapsulate a request as an object.
Reference |17

Chapter

Other GoF—Page 233

Resources

Pattern Quick Reference

Decorator

Summary | Manage a collection of objects where Summary | Attach responsibilities to an object
each "part" can stand in as a "whole". dynamically. Can simplify class hierar-
Typically organized in a tree hierarchy. chies by replacing subclasses.

Reference | 10,17 Reference |12

Chapter Chapter

Other GoF—Page 163 Other Gof—Page 175

Resources | Agile Software Development—Page 293 Resources | Design Patterns Explained——Page 241

Summary |Improve presentation separation by
encapsulating components to appear
as new HTML tags.

Reference |17

Chapter

Other GoF—Page 139

Resources | PoFAA—pPage 374

http://wact.sfnet/index.php/TemplateView

DataMapper

Summary | An object that acts as a translation
layer between domain objects and the
database table that contains related
data.

Reference |16

Chapter

Other PoEAA—pPage 165

Resources | Data Access Patterns—Page 53

Dependency Injection

Summary | Construct classes to accept collabora-
tors through the constructor or setter
methods, so that a framework can
assemble your objects.

Reference |17

Chapter

Other PoEAA—pPage 777

Resources | http://www.martinfowler.com/articles/injection.ht

ml

Domain Model

Summary | An object model of business logic that
includes both data and behavior.

Reference |17

Chapter

Other PoEAA—pPage 116

Resources | Evans DDD

305

306

Pattern Quick Reference

FactoryMethod

terator

Summary | Facilitates the creation of objects.
Reference |3

Chapter

Other GoF—Page 107

Resources | Agile Software Development—Page 269

Design Patterns Explained—Page 285
Advanced PHP Programming—Page 54

Front Controller

Summary | A controller that handles all requests
for a web application.

Reference |17

Chapter

Other PoEAA—pPage 379

Resources

Handle—Body

Summary | A collective name for design patterns
that hold a reference to a subject
object (for example, Proxy, Decorator,
and Adapter).

Reference | N/A

Chapter

Other http://www.c2.com/cqi/wiki?HandleBodyPattern

Resources

Summary | Easily manipulate collections of
objects.

Reference |8

Chapter

Other GoF—Page 257

Resources

M ockObject

Summary | Supplies a stub that validates whether
certain methods were or were not
called during testing.

Reference | 6,Appendix B

Chapter

Other http.//www.lastcraft.com/mock objects documen-

Resources | tation.php

http://www.mockobjects.com/MocksObjectsPaper.ht
ml

Model-View-Controller

Resources

Summary | An application layering pattern that
separates concerns between your
domain model, presentation logic and
application flow.

Reference |17

Chapter

Other PoEAA—pPage 330

http.//wact.sf.net/index.php/ModelViewController

MonoState

Summary | Allow all instances of an object to
share the same state.

Reference |4

Chapter

Other Agile Software Development——Page 177

Resources | http://c2.com/cgi/wiki?MonostatePattern

Observer

Summary | Register objects for later callback.
Event-based notification.
Publish/Subscribe.

Reference |9

Chapter

Other GoF—Page 293

Resources | Agile Software Development—Page 297
Design Patterns Explained—Page 263

Proxy

Summary | Provide access to an object through a
surrogate object to allow for delayed
instantiation or protection of subject
methods.

Reference |11

Chapter

Other GoF—Page 207

Resources | PofAA—rPage 200
Agile Software Development—nPage 327

Pattern Quick Reference

Registry

Summary | Manages references to objects
through a single, well-known, object.

Reference |5

Chapter

Other PoEAA—pPage 480

Resources

ServerStub

Summary | Simulates a portion of your applica-
tion for testing purposes.

Reference |6

Chapter

Other PoEAA—pPage 504

Resources

Singleton

Summary | Provide global access to a single
instance of an object.

Reference |4

Chapter

Other GoF—Page 127

Resources | Agile Software Development—Page 177

Design Patterns Explained—Page 255
Advanced PHP Programming——Page 56

307

308 Pattern Quick Reference

Specification

TabIeDataGateway

Summary | An object that acts as a gateway to a
database ta ble or view, providing pro-

Summary |Flexible evaluation of objects against
dynamic criteria.

Reference |10 vide access to multiple rows.
Chapter
Reference |15
Other Evans DDD—Page 224,273 Chapter
Resources

Other PoEAA—Page 165
Resources

State

Summary |Have an object change its behavior
depending on state changes.

Template View

Summary | Render a page by replacing embed-
ded markers with domain data.

Reference |7,8

Chapter Reference |17

Chapter

Other GoF—Page 305

Resources Other PoEAA—DPage 361

Resources

TemplateMethod

Summary | Define an algorithm with "hook"
methods allowing subclasses to
change the behavior without chang-
ing the structure.

Strateq

i

Summary | Allows for switching between a selec-
tion of algorithms by creating objects
with identical interfaces.

Reference |6

Chapter Reference |7,12

Chapter

Other GoF—Page 315

Resources | Agile Software Development——Page 161

Roles, Responsibilities and Collaborations—Page 338
Design Patterns Explained—Page 229

Other GoF—Page 325

Resources | Roles, Responsibilities and Collaborations—Page 330
Design Patterns Explained—Page 279

Advanced PHP Programming——Page 49

Pattern Quick Reference

Transform View Visitor

Summary | Process domain data sequentially to Summary | Defines an algorithm as an object that
transform it to some form of output. "visits" each member of a aggregate

performing an operation.

Reference |17 Reference |7,10

Chapter Chapter

Other PoFAA—Page 361 Other Gof—Page 331

Resources Resources

ValueObject

Summary | Handles objects whose equality is
determined by the value of the
objects' attributes, not by the identity
of the objects.

Reference |2

Chapter

Other PoEAA—pPage 486

Resources | Fvans DDD—Page 99

View Helper

Resources

Summary | A class that helps the view by collect-
ing data from the Model.

Reference |17

Chapter

Other PofEAA—pPage 355

309

Pattern Quick Reference

Book References

e GOF - Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley;,
1995.

¢ POEAA - Martin Fowler Patterns of
Enterprise Application Architecture
Addison-Wesley, 2003.

e Harry Fuecks, PHP Anthology: Object
Oriented PHP Solutions, SitePoint Pty.
Lt., 2003

e Allen Holub, Holub on Patterns:
Learning Design Patterns by Looking
at Code, Apress, 2004.

* Robert Martin, Agile Software
Development, Prentice Hall, 2003.

e Clifton Nock, Data Access Patterns,
Addison-Wesley, 2004.

* George Schlossnagle, Advanced PHP
Programming, SAMS, 2004

e Alan Shalloway and James R. Trott,
Design Patterns Explained, Addison-
Wesley, 2005

* Rebecca Wirfs-Brock and Alan
McKean, Roles, Responsibilities and
Collaborations, Addison-Wesley,
2003.

e Matt Zandstra, PHP 5 Objects,
Patterns, Practice, Apress, 2004.

SimpleTest
Testing Practices

HOUGH TESTING YOUR CODE is not specifically related to the implementation of design pat-
terns, testing your code is such a powerful coding tool, it’s tightly integrated into the text of this
book. The tests shown in this book ensure the code’s accuracy, but also implicitly describe how
a section of code is supposed to work.
The most practical way to approach automated testing is with a festing framework, most of which
are derived from the design of JUnit (http://junit.org/). There are quite a number of

PHP unit testing frameworks in existence, with 90 percent of them named PHPUnit
(see http://www.google.com/search?g=phpunit). Sebastian Bergmann’s PHPUnit2 seems to
be under the most active development, supporting PHP5 since July 2004 (http://pear.php.net/pack-
age/PHPUN1i t2/download).

This book uses SimpleTest (http://sf.net/projects/simpletest/). It has excellent tutorials and
documentation, and it supports web testing and the Mock Object testing pattern (covered in
Chapter 6—The Mock Object Pattern).

This appendix includes additional material that can help ramp up your testing skills. Specifically,

314

SimpleTest Testing Practices

there’s a section about “scaffolding” and how to best structure and execute your test code; a section
on the WebTestCase feature of SimpleTest, which allows you to test your entire web application as a
“black box” just as an end-user would; and you can read about the Partial Mock Object technique,
which can be used effectively to introduce Mock Objects into test code by systematically replacing
internal Factory methods.

Best Practices for Using SimpleTest

SimpleTest is a unit testing framework developed by Marcus Baker. The current version of
SimpleTest is coded for PHP4, but it runs on PHP5 with very minimal issues. You can look at the
SimpleTest documentation and tutorials either on http://simpletest.org/ or http://www.last-

craft.com/simple_test.php. These provide a very thorough introduction to using the tool.

The first step in building a test suite for a reasonable size project is to make a project-specific
testing include file. The primary content of this file should be a subclass of UnitTestCase written
specifically for your project.

The first line of code should be a definition of the SIMPLE_TEST constant. SIMPLE_TEST is both a
historical artifact and a useful feature: in past versions, SimpleTest used this constant itself, but this
dependency has now been removed. Otherwise, for practical reasons, the constant can be used as
an indication that you're currently running a test (normally it’s not a good practice to alter your
code’s behavior under testing conditions, but an example of where you might is to guard against
exit() inside of your projects when running test cases) and can be used to record a library path.

JE*®

* relative path to SimpleTest

*@ignore

*/

if (!defined(‘SIMPLE_TEST’)) define(‘SIMPLE_TEST’, ‘simpletest/’);

Once this constant is defined, include the SimpleTest files you use in every test case:

/**#Q+
SimpleTest includes

*/

require_once SIMPLE_TEST. unit_tester.php’;
require_once SIMPLE_TEST.’reporter.php’;
require_once SIMPLE_TEST.’mock_objects.php’;
require_once SIMPLE_TEST. web_tester.php’;
/;“::“:#@_;‘:/

SimpleTest Testing Practices

Another best practice I have is to place all of my test cases in a subdirectory “tests/” immediately
below my project root. (One problem with this practice is any code that relies on relative includes
from this project root may break under test conditions. This can be solved by adding the parent
directory “../” to the include path.) I also include any common setup for the application (such as
base library includes, constant definitions, and so on).

* modify php include path to include parent directory

* this is required because the tests are run from

* the tests subdirectory and the application is run from
* (and coded for) the parent directory

* @ignore

%

if (!defined(‘TEST_PATH_MODIFIED')) {

ini_set(‘include_path’, ‘..:’.ini_get(‘include_path’));
define(‘TEST_PATH_MODIFIED’, true);

}

Vaad

*include standard setup file for this application
*/

require_once ‘setup.php’;

Finally, I create a project-specific subclass of the UnitTestCase class to use for testing. You can then
include assertions and utility functions unique to this project inside this class and have them avail-
able in all of your test cases.

*UnitTestCase for myProject application
*@packagemyProject
*@subpackagetests
*/
class MyProjectUnitTestCase extends UnitTestCase {
function projAssertSomething() {}
function projHelperutil() {}
}

I also highly recommend that you make your test cases as easy to run as possible. That means sev-
eral things. First, you should be able to run a specific unit test case or a collection of cases for one
aspect of your code, and you should be able to run every test that you've written.

It is also helpful to be able to run your tests through the browser or via the command-line.
Handling the latter is straightforward: detect if you are using the CLI interface and select the appro-

315

316

SimpleTest Testing Practices

priate test runner to execute the test:

if (TextReporter::inC1i()) {
exit ($test->run(new TextReporter()) ? 0 : 1);
}

$test->run(new HtmlReporter());

The ability to select and run individual tests or the entire test suite depends on how you organize
your test case files and how you organize your tests.

If you don’t include an index file and have auto indexing enabled in your web server, you can
run an individual test case just by clicking on its filename. Here, each test case has to differentiate
if it’s running singly or as part of a larger suite and behave appropriately.

In addition, I find that I typically define more than one test case in each file, because I may
define one UnitTestCase for the actual unit test and another as an integration test. Because of this
possibility, I define even a single test case in standalone test files as group tests. Here is a trimmed
down example:

require_once ‘myprojunittestcase.php’;

class TestSomething extends MyProjunitTestCase {

function TestSomething($name) {
$this->UnitTestCase($name);

}

function setup() {}

function teardown() {}

function TestSomething() {
$this->assertTrue(true, ‘this should pass’);

}

}

class TestSomethingIntegration extends MyProjuUnitTestCase {
/7.

}

//run if stand alone

if (lisset($this)) {
$test =& new GroupTest(‘Something Unit Test’);
$test->addTestCase(new TestSomething);
$test->addTestCase(new TestSomethingIntegration);

if (TextReporter::inC1i()) {
exit ($test->run(new TextReporter()) ? 0 : 1);
}

$test->run(new HtmIReporter());

SimpleTest Testing Practices

You also need a file to run the entire test suite for your project. I usually name this file the highly
imaginative “run.php”. In this file, add each of the individual test case files to a single group test,
using $this->addTestFile(...) for each test. A stub of this file looks like:

define(‘SIMPLE_TEST’, ‘simpletest/’);
require_once ‘myprojunittestcase.php’;

$test =& new GroupTest(‘My Project Application Tests’);
$test->addTestFile(‘testsomething.php’);
/]

set_time_Timit(0);
if (TextReporter::inC1i()) {

exit ($test->run(new TextReporter()) ? 0 : 1);
}

$test->run(new HtmIReporter());

If your testing needs are more complicated than this, you might want to take a look at the scripts that
run the Web Application Component Toolkit (WACT) test suite at http://wact.sf.net/test/ and
http://cvs.sf.net/viewcvs. py/wact/wact/tests/.

Mock Objects
We covered Mock Objects in some depth in Chapter 6, but let’s review the concept again as part of
this discussion on test practices.

Mock Objects follow a five-step testing pattern:

¢ Create the Mock Objects (generate the Mock Object code, instantiate).

* Setup the state of the Mock Objects (return values, etc.).

* Establish expectations for the Mock Objects (method X() is called with parameter ‘Y’,
method z() should never be called, and so on).

¢ Invoke the code you are testing with the Mock Objects as parameters.

* Verify the expectations of the Mock Objects.

The classic example of how a Mock Object can be used is simulating database interactions inside of
a class. The following example shows how to simulate the Oracle driver provided by the popular
ADOdb (http://adodb.sf.net/) database access library (used as the database access layer for the
database-related patterns presented in Chapters 14—16).

317

318

SimpleTest Testing Practices

// PHP5 code
Function TestGetData() {
$this->assertTrue(defined(‘SomeModel: :DATA_FUNCT’)
, ‘DATA_FUNCT constant defined’);
$c = new MockADODBConnection($this);
$rs = new MockADORecordSet($this);
$test_parm = 5;
$test_array = array(
array(‘testkey’=>"testvall’)
,array(‘testkey’=>’testval2’)
)5
$rs->SetReturnvalue(‘GetArray’, $test_array);
$rs->Expectonce(‘GetArray’);

$c->SetReturnreference(‘execute’, $rs);
$expect = array(new WantedpPatternExpectation(
‘/’ .preg_quote(SomeModel: :DATA_FUNCT,’/’)." /")
,array(‘FO0’ => $test_parm));
$c->Expectonce(‘execute’, $expect);

$0 = new SomeModel($c);
$this->assertequal($o->getData($test_parm), $test_array);

$rs->tallyQ;
$c->tallyQ;

Notice that the example—like your code—must introduce the mock database connection object
somewhere in the code. There are many ways to do this, and you have probably used one or more
of them in the past: global variables, a Singleton class, or always passing the connection into the
retrieval method. This code uses a hybrid approach, passing the connection to the object at the time
of instantiation. (My personal approach has been to allow for an optional connection parameter,
otherwise retrieving the object from a Factory).

Lets walk through this test method step by step.

The first assertion verifies a particular class constant exists. Both the class method being tested
and the test case make use of this constant.

The next two lines create $c and $rs, which are the Mock database connection and Mock result
set, respectively. The test case itself is passed as an argument to Mock Objects when they are instan-
tiated.

The next two lines of code create variables to hold values used in the test. I don’t spend a lot of
time getting creative here, just slap in some values that approximate the right type. (I did not model
the number of records or the real field names of the records with reasonable values in the test data,
I just put together an array or an associative array and used those simplified values for testing.) In
most cases, you are just verifying that the expected value—meaning the one you put into the server

SimpleTest Testing Practices

stub—was returned by your tested code. (You can get into more specifics around the details of the
real returned structure when you do integration testing.) Sometimes I add random values to the test
data, particularly if I've implemented some kind of caching in the tested code and I want to verify
that the cache is being cleared.

The next line, $rs->SetReturnvalue(‘GetArray’, $test_array) instructs the mock result set to
return the $test_array any time it's getArray() method is called, followed immediately by telling
the mock to expect the getArray () method to be called exactly once in the tested code.

The line $c->SetReturnReference(‘execute’, $rs) tells the mock database connection to
return the mocked result set if anyone calls the execute() method.

Where Mock Objects really kick into overdrive is in simulating failure. (Just how gracefully does
your application handle the database returning an error instead of the expected result set?)

SimpleTest uses the static method Mock: :generate() to create a class definition for a Mock
Object. The generate() method takes the class name you want to mock and generates and evaluates
the PHP code for the mock class. You then create Mock Objects inside of the test case by $mock =&
new MockoriginalClass($this), where $this is the test case itself.

Web Testing

SimpleTest includes a WebTestCase class, similar in scope to jWebUnit (http://jwebunit.source-

forge.net/). WebTestCase provides a browser in a script, capable of fetching, validating, and manip-
ulating the end content of your PHP application.

WebTestCase

The SimpleTest WebTestCase allows you to test the end result of your PHP application, with the web site
with your PHP script acting as the user and browser. It is a PHP implementation of a web testing frame-
work, like http://htmlunit. sourceforge.net/. The WebTestCase can fetch pages, follow links, validate the

presence and default values of form elements, and submit forms, frames, HTTP response codes, and
more.

You can easily script actions like browsing to a main page, clicking on a “login” link, retrieving a
form, and submitting a username and password. The features of webTestCase are beneficial for both
integration testing (of your final application), as well as for working with legacy code (providing you
a test harness for major work at restructuring older scripts, ones that probably do not have unit tests
of their own).

Let’s build a WebTestCase for the “legacy” web application developed in Chapter 6—The Mock
Obiject Pattern. The tests will serve as a safety harness as the sample code is refactored.

319

320 SimpleTest Testing Practices

Our Legacy Application
The simple script below is typical and could appear in any number of PHP applications. The page
generates a login for if the user has not yet logged in, acts as a form handler for the form, shows dif-
ferent content after a successful login, and provides a logout feature.

Here’s the code to display a login form if the user is not yet logged in:

<html>

<body>

<form action="<?php echo SELF; 7>">
Name:<input type="text” name="name”>
Password:<input type="password” name="passwd”>
<input type="submit” value="Login">

</form>

</body>

</html>

Or, if the user is logged in, here’s the content to display:

<html>
<head>
<script type="text/javascript”’>
function Togout() {

document.location = “<?php echo SELF; ?>?clear”;
}
</script>
<body>wWelcome <?=$_SESSION[‘name’]?>

Super secret member only content here.
<button onClick="Togout();”>Logout</button>
</body>
</html>

Adding in the form handling capabilities, session startup and logout feature, and the whole script
might look like:

session_start();

define(‘SELF’,
‘http://’ .$_SERVER[‘ SERVER_NAME’].$_SERVER[‘PHP_SELF’]);

if (array_key_exists(‘name’, $_REQUEST)
&& array_key_exists(‘passwd’, $_REQUEST)
&% ‘admin’ == $_REQUEST[‘name’]

&% ‘s3cr3t’ == $_REQUEST[‘passwd’]) {

$_SESSION[*

name’] = ‘admin’;

header(‘Location: *.SELF);

}

if (array_key_exists(‘clear’, $_REQUEST)) {
unset($_SESSION[‘name’]);

}

if (array_key_exists(‘name’, $_SESSION)
&% $_SESSION[‘name’]) { 7>

<htm1>
<head>

<script type="text/javascript”>
function logout() {
document.location = “<?php echo SELF; ?>?clear”;

}

</script>

<body>Welcome <?=$_SESSION[‘name’]?>

Super secret member only content here.
<button onClick="Togout();”>Logout</button>

</body>

</htm1> <?php

} else { 7>
<html>
<body>

<form action="<?php echo SELF; 7>">
Name:<input type="text” name="name”>

Password:<i

nput type="password” name="passwd”>

<input type="submit” value="Login">

</form>
</body>

</html> <?php

SimpleTest Testing Practices

So how can you get a handle on this legacy code to start restructuring it?
One method is to create a WebTestCase covering all of the aspects of the application you are

about to restructure. This is a step removed from unit testing and is more like “acceptance testing”

where you simulate how the end-user is expected to interact with the application via the browser.

Include WebTestCase from SimpleTest and base your test cases on the WebTestCase class instead
of the UnitTestCase class. I also like to define a constant for the URL to the page I am testing. With

all of this, your te

st script contains this code:

<?php

require_once
require_once
require_once

define(“ TEST_|

‘simpletest/unit_tester.php’;
‘simpletest/reporter.php’;
‘simpletest/web_tester.php’;

URL’, ‘http://www.example.com/path/to/page.php’);

321

322 SimpleTest Testing Practices

class PagewebTestCase extends WebTestCase {
function TestInitalFetchNoSecretContent() {
$this->assertTrue($this->get(TEST_URL));
$this->assertNounwantedpPattern(‘/secret.*content/i’);
}
1

The $this->get () method fetches a URL into the testing script’s simulated browser. Later assertions,
like the assertNoUnwantedPattern() by default apply to the content of the page fetched into the
browser.

assertNoUnwantedPattern()
(D The assertion assertNoUunwantedPattern() fails if the specified PCRE regular expression is present in the
tested content. This allows you to verify content you do not want present is indeed missing.

One powerful use is to validate there are no PHP errors in the page (assuming the default error handler is
still in place for the application).

Run the test and verify it passes with a green bar. Let’s check some more of the application’s features
with further test methods.

class PagewebTestCase extends WebTestCase {

function TestInitalFetchNoSecretContent() { /*...*/ }
function TestInitalFetchContainsLoginForm() {
$this->assertTrue($this->get (TEST_URL));
$this->assertField(‘name’);
$this->assertField(‘passwd’);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’
."name. *<input[A>]*password[A>]*passwd/ims’);

@ assertField()

The assertion assertField() detects if a particular form input is present in the page. The assertion takes
one-three parameters: the name of the input and, optionally, the expected value and the message to dis-
play for failure.

These tests establish a fresh connection to the application and verify that it has a login form and
does not contain the “secret content”.

SimpleTest Testing Practices 323

Next, lets move on to validating that the login form works, starting with a failure (bad creden-
tials submitted) condition:

class PagewebTestCase extends WebTestCase {

function TestInitalFetchNoSecretContent() { /*...*/ }

function TestInitalFetchContainsLoginForm() { /*...*/ }

function TestBogusLoginFailure() {
$this->assertTrue($this->get (TEST_URL));
$this->setField(‘name’,’foo’);
$this->setField(‘passwd’, ’bar’);
$this->clicksubmit(‘Login’);
$this->assertNoUnwantedPattern(‘/secret.*content/i’);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’

. "name.*<input[A>]*password[A>]*passwd/ims’);

The webTestCase::setField() allows you to fill in the values of form elements.
WebTestCase: :clickSubmit() lets you submit the form, performing an HTTP GET or POST opera-
tions, as specified by the form. After submitting the form, the test verifies that the login form is
redisplayed.

Next, test the successful login case:

class PagewebTestCase extends WebTestCase {

function TestInitalFetchNoSecretContent() { /*...*/ }
function TestInitalFetchContainsLoginForm() { /*...*/ }
function TestBogusLoginFailure() { /*...*/ }

function TestSucessfulLogin() {
$this->assertTrue($this->get (TEST_URL));
$this->setField(‘name’,’admin’);
$this->setField(‘passwd’, ’s3cr3t’);
$this->clickSubmit(‘Login’);
$this->assertwantedPattern(‘/welcome\s+admin/i’);
$this->assertwWantedPattern(‘/secret.*content/i’);
$this->assertNounwantedPattern(‘/<form.*<input[A>]*text[A>]*’

. "name. *<input[A>]*password[A>] *passwd/ims’) ;

This validates that after posting the correct credentials, the “secret content” is present and the login
form is no longer present in the document.

You can also verify that new browsers do not have valid credentials, which is proof that you're
using the session to cache the login information. SimpleTest essentially creates a new instance of the

324 SimpleTest Testing Practices

browser for each test method, so an additional test and a subsequent method should create a new
session, and therefore go back to the login form.

class PagewebTestCase extends WebTestCase {

function TestInitalFetchNoSecretContent() { /*...*/ }

function TestInitalFetchcContainsLoginForm() { /*...*/ }

function TestBogusLoginFailure() { /*...*/ }

function TestSucessfulLogin() { /*...*/ }

function TestNewBroswerDoesNotCarrySession() {
$this->assertTrue($this->get (TEST_URL));
$this->assertField(‘name’);
$this->assertField(‘passwd’);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’

."name.*<input[A>]*password[A>]*passwd/ims’);

Lastly, you can test “logout”.

class PagewebTestCase extends WebTestCase {

function TestInitalFetchNoSecretContent() { /*...*/ }

function TestInitalFetchcContainsLoginForm() { /*...*/ }

function TestBogusLoginFailure() { /*...*/ }

function TestSucessfulLogin() { /*...*/ }

function TestNewBroswerDoesNotCarrySession() { /*...*/ }

function TestLogoutWorks() {
$this->assertTrue($this->get (TEST_URL));
$this->setField(‘name’,’admin’);
$this->setField(‘passwd’,’secret’);
$this->clicksubmit(‘Login’);
$this->assertwantedrattern(‘/welcome\s+admin/i’);
$this->assertwantedpPattern(‘/secret.*content/i’);
$this->assertTrue($this->get (TEST_URL. ?clear’));
$this->assertNounwantedPattern(‘/secret.*content/i’);
$this->assertwantedPattern(‘/<form.*<input[A>]*text[A>]*’

. "name. *<input[A>]*password[A>]*passwd/ims’);

With an adequate WebTestCase for the application, you can proceed to restructure it with a reason-
able confidence that you're achieving the same result, which was the end result of the testing per-
formed in Chapter 6.

SimpleTest Testing Practices

Partial Mock Objects

To use Mock Objects, you must make sure that you can inject the Mock Object into your code with
minimal intrusion. If you're used to creating objects in the middle of your code with a new operator,
this may seem problematic.

One simple restructuring you can do is to instead call an internal Factory that returns the newly
created instance. You can then use the Partial Mock Object technique to replace your target code’s
normal internal Factory with a replacement method that returns the Mock Object instead. This
allows you to inject an instance of an object where you otherwise could not get it into the flow of the
code, but otherwise be testing all of your actual code.

The next series of code examples show a simple case where you might find this kind of trick use-
ful. The example, using the Color class from Chapter 2—The Factory Method Pattern, is perhaps
overly simple, but it does convey all of the concepts; hopefully you can extrapolate this technique to
your own work.

This simple class manipulates text to add a tag to highlight some text.

class Textwriter {
var $_buffer = ‘’;
function addText($text) {
$this->_buffer .= $text;
}

function addHighlightedText($text) {
$color = new Color(255,255,0);
$this->_buffer .= ‘<span style="background-color:
.$color->getRgh().’”>".$text. ’’;

}

function render() {
$ret = $this->_buffer;
$this->_buffer = *’;
return $ret;
}
}

A simple example of this class in action is shown in this test case:

class TestTextWriter extends UnitTestCase {

/] .

function TestSimpleText() {
$0 =& new Textwriter;
$test_string = ‘this is some text’;
$o->addText($test_string);

325

326

SimpleTest Testing Practices

$this->assertEqual($test_string, $o->render());
$this->assertequal(‘’,$o->render());

}

function TestHighlightNoColorcChange() {
$0 =& new Textwriter;
$o->addText(‘This is a string with a ‘);
$o->addHighTightedText(‘yellow’);
$o->addText(* highlight’);
$this->assertwantedpPattern(
‘~string.*<span.*background.*#FFFF00. *yelTow.*highlight~i’
,$0->render());

This class works, but isn't very flexible.

The next requirement is to allow for the highlighted text color to change, but still allow for the
yellow default color. A first attempt at this might be to change the addHigh1ightedText() method as
follows:

class Textwriter {

/]

function addHighlightedText($text, $color=false) {
if (! (is_object($color)
&& method_exists($color, ‘getRgh’))) {
$color = new Color(255,255,0);
$this->_buffer .= ‘<span style="background-color: *
.$color->getRgh().’ ">’ .$text.’’;

This code works, but has one flaw—if you tried to pass in a Mock Object in the $color parameter, the
testing would function correctly, but because PHP4 passes copies of objects by default, the tally()
capability of the Mock Object would be broken. In this example, you can't just change the $color
parameter to be pass by reference because a by reference parameter can not have a default value
(and would therefore be required, violating our requirements).

One way to get around this is to have the addHighlightedText() method accept an object in an
“envelope”. An array, which contains an object reference, can be passed by value and yet still con-
tain the object reference. The addHighlightedText() method could be altered to accept this con-
vention as follows:

SimpleTest Testing Practices

class Textwriter {
/...
function addHighlightedText($text, $color=false) {
if (is_array($color)
&& is_object($color[0])
&& method_exists($color[0], ‘getRgb’)) {
$color =& $color[0];

}
if (! (is_object($color)
&& method_exists($color, ‘getRgh’))) {
$color = new Color(255,255,0);
$this->_buffer .= ‘<span style="background-color: °
.$color->getRgh().’”>’.$text. ’’;

Now a test like the one that follows passes because the Mock Object is passed by reference and is yet
still optional.

class TestTextWriter extends UnitTestCase {

/...

function TestHighlightBluewithMock() {
$0 =& new Textwriter;
$o->addText(‘This is a string with a “);
$test_color =& new Mockcolor($this);
$test_color->setReturnvalue(‘getRgb’, ‘#0000FF’);
$test_color->expectonce(‘getRgb’);
$o->addHighlightedText(‘blue’, array(&$test_color));
$o->addText(‘ highlight’);
$this->assertwantedpPattern(
‘~string.*<span.*background.*#0000FF.*blue.*highlight~i’

,$0->render());

$test_color->tallyQ;

You might think this is altering your code to allow for testing, but with more complex systems, you
nearly always want to make sure that you're operating on “the” object, not a copy, and this code is
one way to allow for an optional pass by reference mechanism anywhere in your code.

But all of this is still somewhat dissatisfying, after all, the many lines of code added to
addHighlightedText () simply deal with the optional passing of an object by reference. In addition,
there is still no way to test the default color as a Mock Object if that were necessary.

There is another way to structure your code that combines the CrayonBox Color Factory with a

327

328 SimpleTest Testing Practices

Factory Method internal to the Textwriter class that reduces the number of lines of code and deals
with the default object testing issue.

class Textwriter {

/] ..

function &getNamedColor($color_name) {
return CrayonBox::getColor($color_name);

}

function addHighlightedText($text, $color_name='yellow’) {
$color =& $this->getNamedColor($color_name);
$this->_buffer .= ‘<span style="background-color:

.$color->getrRgh().’ ">’ .$text.’’;

‘

This code introduces the protected factory method getNamedColor (), which returns by reference a
Color object created from the CrayonBox Factory. The second, optional, parameter to
addHighTightedText() is now $color_name, which is a string and can easily be passed by value.

Let’s take a look at the “traditional” means of testing this: hand code a subclass of Textwriter,
which allows you to replace the getNamedColor() method with code returning a Mock Object. Such
a subclass might look like:

class TextwriterwithMockFactory extends Textwriter {
var $_test_color;
function setcolor(&$color) {
$this->_test_color =& $color;
}
function &getNamedColor($color="") {
if ($this->_test_color) {
return $this->_test_color;
} else {
return parent::getNamedColor($color);
}
}
}

A test using this TextwriterewithMockFactory class might look like:

class TestTextwriter extends UnitTestCase {
I/
function TestHandCodedParticalMock() {
$col =& new MockcColor($this);

SimpleTest Testing Practices

$col->setReturnvalue(‘getRgb’, ‘#00FF00’);

$col->expectonce(‘getRgbh’);

$tw =& new TextwriterwithMockFactory;

$tw->setColor($col);

$tw->addText(‘This is a string with a ‘);

$tw->addHighlightedText4(‘1ime’, ‘lime’);

$tw->addText(‘ highlight’);

$this->assertwantedpPattern(
‘~string.*<span.*background.*#00FF00.*Time.*highTight~i’
,$tw->render());

$col->tallyQ;

Fortunately, similar to how Mock: :generate() can save you time hand coding Mock Objects for test-
ing, you can use Mock: :generatePartial() to generate a “partial” Mock Object of your class which
“knocks out” selected methods, similar to the hand coded example above. You can instead test the
TextWriter code by creating a Partial Mock Object of the TextWriter class and replacing the
getNamedColor() method with your own method which returns Mock Objects. The resulting test
might look like:

class TestTextWriter extends UnitTestCase {
/] ...
function TestHighTightwithFactoryMethodMocked() {

Mock: :generatePartial(‘Textwriter’,
‘MockTextwriterNamedColor’,
array(‘getNamedColor’));

$col =& new MockcColor($this);

$col->setReturnvalue(‘getRgb’, ‘#00FF00’);

$col->expectonce(‘getRgh’);

$tw =& new MockTextwriterNamedColor($this);

$tw->setReturnReference(‘getNamedColor’, $col);

$tw->expectonce(‘getNamedColor’, array(‘lime’));

$tw->addText(‘This is a string with a ‘);

$tw->addHighlightedText(‘1ime’, ‘lime’);

$tw->addText(‘ highlight’);

$this->assertwantedPattern(

‘~string. *<span.*background.*#00FF00.*Time.*highlight~i’
,$tw->render());

$tw->tally(Q;

$col->tally();

Internal Factory Methods are a powerful tool to reduce the complexity of your code, add flexibility,
and allow for detailed testing using the Partial Mock Object technique.

329

$_SESSION
encapsulating 107
::phpPatterns() 22, 86

@. See error suppression operator

__call() 20, 200, 267, 269
__get() 180. See

__set() 20,180

__sleep() 20
__toString() 20
__wakeup() 20

Index

abstract class 64
Active Record pattern 227, 247, 249, 261, 285

basic database connectivity 228

creating by passing identifier 234
differentiating between INSERT and
UPDATE 241

handling timestamp changes 242

instance ID 237

issues 243

problem 227

sample code 228

searching for records 238

332 Index

solution 227
updating records 240
using to return iterable object collections
252
using to test database failure 236
writing test cases for 230, 231, 233, 235,
237, 238, 239, 242, 251
Adapter pattern 219, 254
as a Handle-Body pattern 220
composition vs. inheritance 224
issues 224
problem 219
sample code 220
solution 219
using to test external libraries 254
writing test cases for 221
ADOdb 228, 229, 233, 248, 252, 253, 254
Agile Development 29
Alexander, Christopher 18
assertCopy() 93
assertEqual() 26
assertFalse() 87
assertField() 322
assertNoErrors() 67
assertNoUnwantedPattern() 322
assertNull() 67
assertReference() 76
assertTrue() 28

B

Baker, Marcus 86, 120

Beck, Kent 29

business logic 47, 173
in Data Mappters

C

in Value Objects 49

Chain of Responsibility pattern 291

circular references 166

code reuse 19

code smells 31

Command pattern 292

implementing controllers with 292

Create, Read, Update and Delete. See CRUD
CRUD 231, 249, 255, 280

CrudScreen 231

current() 138

CVS 35. See also source control

D

data caching 124
Data Mapper pattern 227, 228, 261, 285

deleting records 280

handling database errors

inserting rows 279

issues 281

mapping XML to 263

problem 261

solution 262

updating records 279

visibility of pertinent domain objects 265
writing test cases for

Decorator pattern 203

and inheritance 216

and Strategy 134

chaining together 211
implementing validation with 211

issues 216

problem 203

sample code 206

solution 204

writing test cases for 207, 208, 212
Dependency Injection pattern 296
design patterns 18, 90

enterprise application architecture 228

history 18

name 18

naming conventions 90

problem 18

solution 18
Design Patterns: Elements of Reusable
Object-Oriented Software 22
docblocks 36
documentation 35
Domain Driven Design 174, 286

E

encapsulation 19, 138

error suppression operator 90
Evans, Eric 174, 286

exit() 314

expectCallCount() 105
expectOnce() 105, 114
Extreme Programming 29

ez SOAP 194

F

Facade pattern
Factory 141, 142, 168, 186, 187, 210, 222, 223,
318, 328. See also Factory pattern

Index

Factory pattern 53
assertErrorPattern() 59
assertWantedPattern() 59
class diagram 56
implementing as a procedural function 56
improving database connection methods
with 55
issues 72
problem 53
sample code 54
solution 53
TDD 57
using to hide object state setup 61
using to promote polymorphism 63
writing test cases for 57, 61
FakeMail 165
Fowler, Martin 22, 33, 86, 174, 228, 286, 288
Fuecks, Harry 153

G

Gamma, Erich 30. See GoF
Gang of Four. See GoF
GoF 22, 120, 134, 141, 224, 291

H

Handle-Body Patterns 192, 220
Helm, Richard. See GoF
HtmlReporter 27

immutable 42, 43

333

334

Index

inheritance 224
Intercepting Filter pattern 291
implementing with a front controller 291
Iterator pattern 137, 252
class diagram for 141
array manipulation as 138
currentltem() 141, 144, 145, 146, 148
diferences between PHP4 and PHP5
implementations 138
example 139
filtering with 150
first() 141, 146, 147
implementing with SPL 153
adding sorting and filtering 155
isDone() 141, 143, 144, 145, 146, 147, 148
issues 158
next() 138, 141, 144, 145, 146, 147, 148, 149,
151, 153, 154, 156
problem 137
reset() 138
sample code 142
solution 138
sorting with 151
using external to perform sorting 152
variant API 148
writing test cases for 138, 143, 144, 145,
146, 152, 154, 155, 157

J

Johnson, Ralph. See GoF
JUnit 313
jWebUnit 319

L

lazy instantiation 191

lazy loading 71, 194

logging
encapsulating in an Observer object 169
PHP functions for 169
usefulness of 170

M

Martin, Robert C.
method_exists() 222
Mock Object pattern 101, 165, 166, 209, 236,
243,296, 313

documentation 120

generating with SimpleTest 101, 104

issues 119

more resources 120

reasons to use 110

sample code 102

solution 102

testing user login code with 110

using __call() to implement in PHP5 109

using the restructure a legacy application

106

writing by hand 108

writing test cases for 112, 117
Mock::generate() 104
Model-View-Controller pattern 2383

best practices 284

conceptual organization 284

controller 284, 291

application controller 292
front controller 291
double dispatching architecture 294

event handling 296
implementation in web applications 285
implementing with WACT 289
Inversion of Control Containers. See
Dependency Injection pattern
issues 295
model 283, 285
domain model 285
origins 284
problem 283
sequence diagram 285
solution 283
UML sequence diagram for 294
view 283, 286
difference between template and trans-
form view and 290
template view 286
transform view 290
Mojavi 297
Monostate pattern 81
MVC. See Model-View-Controller
MySQL 228, 229, 233

N

nusoap 194

(0

object handles 20
breaking the rules of 47
PHP4 vs. PHP5 21
Object Oriented Programming 19, 137, 203
abstract class 64
changing the value of $this in PHP 4 79

Index

Dependency Inversion Principle 225
extensibility 19
inheritance 203
naming in 42
robustness 19
setter function 43
subclassing 203
Observer pattern 161
as a Singleton 163
implementing error handlers with 163
issues 170
notify on set 169
Observable class 162
Observer class 162, 166
problem 161
sample code 162
solution 161
structure 162
UML class diagram 162
writing test cases for 163
OOP. See Object Oriented Programming
Oracle OCI 228
output buffering
using to capture output 113

P

Palo Alto Research Center 284

PARC. See Palo Alto Research Center
Pattern Language, A:
Towns/Building/Construction 18

Patterns of Enterprise Application
Architecture 22, 228, 286, 288. See

PCRE 183

PDO. See PHP Data Objects

335

336

Index

PEAR::SOAP 194
PHP Data Objects 228
php|architect 22, 120
PHP5 19
class 20
constructors 19
destructors 20
exceptions 20
magic methods 20
object handles in 19
reflection 20, 265
type hinting 20
visibility 20
writing test cases for 266
phpDocumentor 36
visibility and 36
PHP-GTK 170
phpsoaptoolkit 194
PHPUnit 313
PHPUnit2 313
PicoContainer 296
Plain Old PHP Pages 287
PoEAA. See Patterns of Enterprise
Application Architecture
polymorphism 19, 124, 133, 138
POPP. See Plain Old PHP Pages
Portland Pattern Repository 22
PostgreSQL 228
preg_match() 183
Proxy pattern 191, 205, 244
dynamic 200
essential principles 193
implementation in PHP4 193
lazy instantiating 198
delayed exceptions 200
problem 191

protection 192

remote 192, 194, 198

sample code. See also lazy loading

solution 191

virtual 192

writing test cases for 195, 197
Publish/Subscribe pattern. See Observer
pattern

R

Reenskaug, Trygve 284
refactoring 30
extract method 31, 60
introduce parameter object method 66
steps in 34
tests 115
Refactoring: Improving the Design of
Existing Code 33
Registry pattern 85, 108, 181, 209, 244
Regular Expressions 183

S

Savant 286
ServerStub pattern 102, 104
MockObject acting as a 116
setReturnValue() 113
SimpleTest 22, 26, 30, 104, 313
API 36
Baker, Marcus 314
best practices 314
file placement 315
introducing in legacy applications 320
mock objects 317

documentation 120
generating 104
partial 325
running a test 27
running individual tests 316
web testing 319
SimpleXML 264
simplexml_load_file() 264
Singleton pattern 75, 163, 168, 222, 228
class diagram for 78, 80
implementing in PHP5 80
issues 81
problem 75
sample code 77
secret parameter method 78
solution 76
stealth singletons. See Monostate pattern
using global variables to implement 77
using static variables to implement 79
writing tests for 76
SitePoint forums 22
Smarty 288
SOAP 194
support in PHP4 194
source control 35
Specification pattern 173, 209
additional reading 174
as a generic proxy for MVC
as an interface in PHP5 184
composite 174
hard coded 174
parameterized 174, 178
problem 174
refactoring 174
sample code 176
selection 174

Index

solution 174

UML class diagram for 176, 187

validation 174

writing test cases for 177, 179
SPL. See Standard PHP Library

implementing iterators with 154
Standard PHP Library 153
State pattern 134
static variables

storing references in PHP 4 79
Strategy pattern 123

example 124

issues 134

problem 124

related patterns 134

sample code 131

solution 124

using to implement sorting and filtering in

Iterator 155

writing test cases for 126, 128, 133
Subversion 35. See also source control
Sybase 228

T

Tabini, Marco 22
Table Data Gateway pattern 227, 228, 244,
247,261, 285

Data Mapper pattern 258

issues 258

problem 247

sample code 248

solution 247

updating rows 255

using to return Recordsets as arrays 250

337

338

Index

writing test cases for 249, 252, 254, 256
TDD 29, 127, 143
template engines 287
Test Driven Development. See TDD
Test Driven Development: By Example 29
testing. See also SimpleTest

benefits 29

black box testing 68

PHPUnits 30

test independence 230

using SimpleTest 26

white box testing 69

U

UML. See Unified Modeling Language
Unified Modeling Language 34
class diagram 34
sequence diagram 34
unit testing 29, 30
UnitTestCase 26
usort() 153

\%

Value Object pattern 39
assertIsA() 49
business logic in 49
example 43
fundamentals 43
PHP 4 sample code 47
PHP 5 sample code 42
problem 41
solution 41
writing test cases for 45, 48, 50

visibility
global, achieving with a Factory 56
in UML 34

Visitor pattern
and Strategy 134

Vlissides, John. See GoF

w

WACT 22, 288, 289, 296, 317. See Web
Application Toolkit

Web Application Component Toolkit 180
WebTestCase 319

WSDL 194

X

Xerox 284
XP. See Extreme Programming

Online Iraining Courses
from phplarchitect

' Zend PHP Essentials

. Our introductory PHP course, Zend PHP Essentials, was developed for us and Zend Technologies by
- PHP expert Chris Shiflett, co-founder of the PHP Security Consortium. This 19-hour course provides
1 a thorough introduction to PHP development, with particular care to "doing things right" by covering

i security, performance and the best development techniques. Rather than cramming as much theory
! as possible, PHP Essentials provides a thoroughly practical approach to learning PHP—thus ensuring
E that each student will be able to write good PHP code in a real-world setting by the end of the

| course.

__

i Zend PHP Certification Training

E If you want to become a Zend Certified Engineer, this

! course is the best preparation tool that you'll ever find!
1 Designed by some of the same Subject Matter Experts

1
1
i1 Zend Professional PHP Development
1
!

: who also helped write the exam itself, this course cov- E
:
1
:
:

S

1

i

This is our advanced course for the professional PHP |
developer. This course picks up from where PHP 1
Essentials ends and provides a thorough, in-depth E
nalysis of advanced features found in both PHP 4 '

. ers every single topic that is part of the exam. The]
. Zend PHP Certification Training (course) provides a]
- complete overview of the exam, and doubles as an]
:

1

1

: excellent refresher course in PHP for any developer.

a
and PHP 5, including object-oriented programming
and design patterns, XML development, regular
expressions, encryption, e-mail manipulation, perform-
ance management and advanced databases.

* Covers PHP 4 and PHP 5

7 Sessions
Zend PHP « Provides a thorough practical) $769.99 US
Essentials e (e FLE N =S ($999.99 CAD)

« Covers security and performance

Zend PHP « Covers every topic in the exam 7 Sessions
Certification « Provides an excellent refresher ~ Every month 19 Hours YES éend PHIP $$8%484é%90UASD
Training course for PHP at all levels 3 Weeks ssentials o)

« Covers advanced PHP 4 and

. PHP 5 topics 7 Sessions
IZ,(:lr;d; roffssmnatl « Perfect for going "beyond the Every month 19 Hours YES Eend PHIP $$9796999%9é" ASD
eve opinen basics" and learning the true 3 Weeks ssentials (’)
power of PHP

« All our courses are delivered entirely online using an innovative system that combines the con-
venience of the Internet with the unique experience of being in a real classroom.

* All sessions take place_in real time, and the students can interact directly with the instructor as if
they were in a real classroom either via voice or text messaging.

* In most cases, our system requires no software installation and works with the majority of oper-
ating systems and browsers, including Windows, Mac OS and Linux, as well as Internet
Explorer, Firefox and Safari.

* All courses include a generous amount of homework and in-class exercises to ensure that the
students assimilate each topics thoroughly.

* Tutoring is available (via e-mail) throughout the duration of the entire course.

» Each class includes a complete set of recordings that the students can peruse at their leisure.

For more information, visit our website at http:/www.phparch.com/phptraining

or call us toll-free at (877) 630-6202 (416-630-6202 outside Canada and the U.S.)

	Cover.pdf
	php|architect's Guide to PHP Design Patterns
	Table of Contents
	 1. Programming Practices
	 2. The Value Object Pattern
	 3. The Factory Pattern
	 4. The Singleton Pattern
	 5. The Registry Pattern
	 6. The MockObject Pattern
	 7. The Strategy Pattern
	 8. The Iterator Pattern
	 9. The Observer Pattern
	10. The Specification Pattern
	11. The Proxy Pattern
	12. The Decorator Pattern
	13. The Adapter Pattern
	14. The Active Record Pattern
	15. The Table Data Gateway Pattern
	16. The Data Mapper Pattern
	17. The Model-View-Controller Pattern
	18. Conclusion
	 A. Pattern Quick Reference
	 B. SimpleTest Testing Practices
	Index

	Live PHP Training from php|architect!

