

Oracle Certification Prep

Study Guide for
1Z0-071: Oracle Database 12c SQL

Study Guide for Oracle Database 12c SQL (Exam 1Z0-071) Rev 0.9

Copyright @ 2016 by Matthew Morris. All rights reserved. Except as
permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the
Author.

www.odbpress.com

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Information has been obtained by the Author from sources believed to be reliable.
However, because of the possibility of human or mechanical error by the sources, Author,
or others, Author does not guarantee to the accuracy, adequacy, or completeness of any
information included in this work and is not responsible for any error or omissions or the
results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy,
adequacy, or completeness of any information included in this work and is not responsible
for any errors or omissions or the results obtained from the use of such information.

Contents
Contents
What to expect from the test
What to Expect from this Study Guide
Additional Study Resources
Practice Questions
Oracle and Structured Query Language (SQL)

Identify the connection between an ERD and a Relational Database
Explain the relationship between a database and SQL
Describe the purpose of DDL
Describe the purpose of DML
Build a SELECT statement to retrieve data from an Oracle Database table

Restricting and Sorting Data
Use the ORDER BY clause to sort SQL query results
Limit the rows that are retrieved by a query
Use ampersand substitution to restrict and sort output at runtime
Use SQL row limiting clause

Using Single-Row Functions to Customize Output
Use various types of functions available in SQL
Use character, number, date and analytical functions in SELECT statements

Using Conversion Functions and Conditional Expressions
Describe various types of conversion functions that are available in SQL
Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions
Apply general functions and conditional expressions in a SELECT
statement

Reporting Aggregated Data Using the Group Functions
Describe the use of group functions
Group data by using the GROUP BY clause
Include or exclude grouped rows by using the HAVING clause

Displaying Data from Multiple Tables
Describe the different types of joins and their features
Use SELECT statements to access data from more than one table using
equijoins and nonequijoins
Join a table to itself by using a self-join
View data that generally does not meet a join condition by using outer joins

Using Subqueries to Solve Queries
Define subqueries
Describe the types of problems subqueries can solve
Describe the types of subqueries
Query data using correlated subqueries
Update and delete rows using correlated subqueries
Use the EXISTS and NOT EXISTS operators
Use the WITH clause
Use single-row and multiple-row subqueries

Using the Set Operators
Describe set operators
Use a set operator to combine multiple queries into a single query
Control the order of rows returned

Manipulating Data
Truncate data
Insert rows into a table
Update rows in a table
Delete rows from a table
Control transactions

Using DDL Statements to Create and Manage Tables
Describe data types that are available for columns
Create a simple table
Create constraints for tables
Drop columns and set column UNUSED

Create and use external tables
Managing Objects with Data Dictionary Views

Query various data dictionary views
Controlling User Access

Differentiate system privileges from object privileges
Grant privileges on tables and on a user
Distinguish between privileges and roles

Managing Schema Objects
Describe how schema objects work
Create simple and complex views with visible/invisible columns
Create, maintain and use sequences
Create and maintain indexes including invisible indexes and multiple
indexes on the same columns
Perform flashback operations

Manipulating Large Data Sets
Describe the features of multitable INSERTs
Merge rows in a table

What to expect from the test
The test consists of 73 multiple choice or multiple answer questions and a
duration of 100 minutes. The passing score listed on Oracle Education at this
time is 63%, but as with all Oracle certification tests, they note it is subject to
change. With only 82 seconds per question (as opposed to 96 seconds per
question on both 1Z0-047 and 1Z0-061), you will need to be very careful of
your time when taking this exam.

A significant percentage of the questions will involve recognizing whether or
not a given SQL statement will execute without error. You’ll be asked to
identify the SQL statement or statements that perform a given task. Generally
some of the alternatives contain errors, and you’ll need to be able to
recognize this.

To do well on the test you have to have a good grasp of SQL syntax rules.
You’ll also need to be able to utilize some common SQL functions, recognize
the result of basic DDL operations, and know some of the facts regarding
how SQL statements and functions are executed. Not all of the exhibits in the
test are really crucial to answering the question being asked. You should read
the question being asked before viewing the exhibit. If nothing else, reading
the question first will provide you with information on what to look for in the
exhibit, and it may allow you to skip viewing it entirely, giving you more
time for other questions. Be sure to look at all of the answers before selecting
what you think is the correct one. In some cases, more than one answer could
be considered ‘correct’, but one of the two is a better answer. Also, it’s
valuable to look through the questions that contain SQL statements to find
those with errors. Once you have eliminated those with obvious errors, you
can concentrate on the remaining options to find the best solution.

Database administrators and developers tend to use SQL on a daily basis. If
you do not currently know SQL well, this is not an area to skimp on. An
Oracle professional with poor SQL skills will have serious and continuing
problems fulfilling the job requirements of a DBA or developer. While you
are preparing for this exam, take the time to really read up on the subject and

practice writing SQL. This is knowledge that you will use. It is worth
spending the time to learn as much as possible.

What to Expect from this Study Guide
This document is built around the subject matter topics that Oracle Education
has indicated will be tested. This book contains material from several Oracle
documentation sources along with results from numerous SQL queries
similar to what you’ll see on the test. The guide covers a significant
percentage of the information and operations that you must be familiar with
in order to pass the exam.

What this guide is intended to do is to present the information that will be
covered on the exam at the level it will likely be asked. The guide assumes
that you have at least a rudimentary knowledge of SQL. While the guide
works from basic principles of SQL, no book in and of itself is a substitute
for hands-on experience. You need to have spent time writing queries,
running them, and seeing the results before scheduling this exam. Since
Oracle has made the Oracle XE version of its database free to download and
use, there is no reason why anyone who wants to learn to use Oracle cannot
get hands-on experience. XE will run under either Windows or Linux and
most PCs and laptops built in the past several years will have ample resources
to support an XE database instance. Note that there is not currently a 12c
version of XE, so you will not be able to practice features added in 12c such
as the row limiting clause.

If much of the information presented in this guide is completely new to you --
then you need to supplement it with other sources of study materials to build
a firm foundation of Oracle SQL knowledge. If you have a reasonable
grounding in the basic concepts and are comfortable writing SQL statements
of moderate complexity, then this book will supply you with the facts you
need to pass the exam and improve your skills as a SQL developer. If you
don’t have any experience with SQL at all, the compressed format of this
guide is not likely to be the best method for learning. It may provide you with
the information you need to pass the test, but you’re likely to have
deficiencies as a SQL Developer. In that case, I would highly recommend
using the materials at the companion website of this series that is discussed in
the next section. They can help to improve your basic SQL skills to the point
where this guide will be effective in honing the specific aspect you must be

most familiar with in order to pass the exam.

Additional Study Resources

The companion website to this series is www.oraclecertificationprep.com.
The site contains many additional resources that can be used to study for this
exam (and others). From the entry page of the website, click on the ‘Exams’
button, and then select the link for this test. The Exam Details page contains
links to the following information sources:

Applicable Oracle documentation.
Third-party books relevant to the exam.
White papers and articles on Oracle Learning Library on topics covered
in the exam.
Articles on the Web that may be useful for the exam.

The website will never link to unauthorized content such as brain dumps or
illegal content such as copyrighted material made available without the
consent of the author. I cannot guarantee the accuracy of the content links.
While I have located the data and scanned it to ensure that it is relevant to the
given exam, I did not write it and have not proofread it from a technical
standpoint. The material on the Oracle Learning Library is almost certain to
be completely accurate and most of the other links come from highly popular
Oracle support websites and are created by experienced Oracle professionals.

I recommend that you use more than one source of study materials whenever
you are preparing for a certification. Reading information presented from
multiple different viewpoints can help to give you a more complete picture of
any given topic. The links on the website can help you to do this. Fully
understanding the information covered in this certification is not just valuable
so that getting a passing score is more likely – it will also help you in your
career. I guarantee that in the long run, any knowledge you gain while
studying for this certification will provide more benefit to you than any piece
of paper or line on your resume.

Practice Questions
The guides in the Oracle Certification Prep series do not contain example
questions. The format that they are designed around is not really compatible.
The concise format used for the study guides means that adding a reasonable
number of questions would nearly double the size of the guides themselves.
However, because practice questions have been a common request from
readers of my books, I have created a series of practice tests for the exams.
The practice tests are available from the companion website listed in the
previous section of this guide. They are not free, but the price is a fraction of
that charged by other vendors for Oracle certification practice tests.

Unlike much of the material advertised online, these tests are not brain
dumps. All of the tests are original content that I developed. Using these
exams will not endanger your certification status with the Oracle certification
program. I submit each test to the certification team after I finish developing
it so that they can verify that they do not contain illicit material. These tests
serve as an inexpensive means for any certification candidate that wants to
determine how successful their preparation has been before scheduling the
real exam.

As a purchaser of this study guide, you can use the following promotional
code to get $2.00 off the purchase price of the practice exam for 1Z0-071:
071_CNSEWC

The tests are available at the following URL:

http://oraclecertificationprep.com/apex/f?p=OCPSG:Practice_Tests

http://oraclecertificationprep.com/apex/f?p=OCPSG:Practice_Tests

Oracle and Structured Query Language (SQL)

Identify the connection between an ERD and a
Relational Database
An entity is a grouping of things (or a class of things) with rules or data in
common. Among other possibilities, an entity might be used to represent a
group of people, objects, activities, or concepts. In order to have relevance to
a database, the entity must have some significance to an organization and
there must be a requirement to store data about it. When implementing a
database -- an entity corresponds to a table.

For Imaginary Airlines (a fictitious organization used for many examples in
this guide), airports are an important element to their business. An entity that
stores data about airports is therefore something that would need to be
included in a database application for the organization. In the conceptual
model, an entity is shown as simply a rectangle with the name of the entity
either inside or sometimes just above the rectangle.

Database developers should recognize that while an entity corresponds to a
table, it is not the exact same thing. An entity is an object in the real world
with an independent existence. Examples of potential entities include:

An object with physical existence (such as an airport or an aircraft).
An object with conceptual existence (such as a flight or a ticket
reservation).

Entities are the primary component of Entity Relationship Diagrams (ERDs).
ERDs are used as a design aid when developing relational database
applications. Below is a conceptual model ERD that contains two entities.

Conceptual models are intended to show a very high-level overview of the
various entities that must be contained in the database being designed and a
basic idea of the relationships between entities. It does not provide specific
details of the data that will be stored.

By the same token, the relationship shown between the entities has no details.
In the diagram, the connecting line indicates that a relationship exists
between the AIRPORT and AIRCRAFT FLEET entities, but not what the
relationship is based on. If the diagram were displaying tables rather than
entities, each of the tables would need to show all of the columns they
contain as well as indicating which columns were acting as primary and
foreign keys.

Because entities generally represent objects, their names are usually nouns.
By convention, in an ERD, entity names are singular (AIRPORT rather than
AIRPORTS) and they will be displayed in all capital letters (AIRPORT
rather than Airport).

Attributes

An attribute is a piece of information that describes an entity in some fashion.
They can quantify, qualify, classify, or specify the entity they belong to. In
the same way that entities correspond to tables without being tables,
attributes correspond to columns without actually being columns. In the
conceptual diagram from the previous section, neither of the entities had
attributes listed. In the Chen conceptual model ER, attributes are shown
broken out from their entity as with the below diagram:

Regardless of how they are displayed in an entity relationship diagram,
attributes do not provide any details about how data will be stored. Attributes
will never be associated with specific data types or sizes. Attributes will be
mapped to columns when the design moves to the physical model. At this
point, a column must detail the type of data to be stored, the amount of space
to be allocated for it, and the name that will be recorded for it in the database.
For example, the ‘Name’ attribute in a conceptual model ERD might be a
column called ACT_NAME in a physical model ERD, with a VARCHAR2
data type that is limited to 20 bytes. A physical model of the AIRCRAFT
TYPE entity might look like the following image:

The conceptual data model is used to help visualize the data that needs to be
stored in a database and which entities are related. The physical data model
documents how the data will actually be stored in the database. A physical
database model will contain the table structures, including the column names,
data types, and constraints. It will also include any primary keys, foreign
keys, and display the relationships between each of the tables. It is possible
for the physical data model to have differences from the logical data model

depending on the database. While some (probably most) of the required data
normalization takes place during the logical design process, it is possible that
additional normalization requirements will be found during the physical
design process. The diagram below shows three tables from the Imaginary
Airlines schema in a logical model ERD.

A logical model ERD is converted to a physical mode ERD using the
following basic steps:

1. Convert entities into tables.
2. Convert relationships into foreign keys.
3. Convert attributes into columns.
4. Modify the physical data model based on physical constraints /

requirements.

Shown below is a physical model diagram that contains the three tables from
the Imaginary Airlines database that correspond to the three entities in the
previous diagram. In contrast to the logical model, the columns displayed in
the diagram list the data types and sizes. The column names also match what
is actually stored in the database (i.e. ‘ACT_BODY_STYLE’) rather than a
human-friendly name (i.e. ‘Body Style’). The physical model also includes
the primary and foreign key columns. Unlike the conceptual or logical
models, the physical model is database-specific. Not all relational databases
use the same data types, for example.

If two entities in an ERD have a relationship (for example entity A and entity
B) there will always be an expectation of how many instances in A relate to
how many instances in B. There are only three possibilities:

One-to-one -- A single instance in A will never relate to more than a
single instance in B.
One-to-many -- A single instance in A can relate to one or more
instances in B.
Many-to-many -- Multiple instances in A can relate to multiple
instances in B.

On an ER diagram, there are actually four different notations to represent the
above three possibilities because the one-to-many is broken out by direction:

1:1 -- one-to-one
1:N -- one-to-many
M:1 -- many-to-one
M:N -- many-to-many

There are a number of different ERD notation styles that provide ways of
indicating in the relationships the exact cardinality and ordinality that exists
between two entities. Some of the possible options include the following:

First, Second, and Third Normal Forms

The term 'normalization' was first used with databases by E.F. Codd, the
creator of the relational model. It refers to the process of organizing the
logical structure of a database in order to facilitate both ad-hoc queries and
data updates. The most common term you will encounter as a database
developer when dealing with normalization is ‘Third Normal Form’,
sometimes abbreviated as 3NF. A table is in third normal form when it meets
all of the following three rules:

First rule of normalization -- A table shall contain no repeating
groups.
Second rule of normalization -- If a table has a compound primary
key, and one or more fields in a table depend on only part of the
primary key for that table, move them to a separate table along with
that part of the key.
Third rule of normalization -- If one or more fields in a table do not
depend at all on the primary key for that table (or any part of it), move
them to a separate table along with copies of the fields on which they
do depend.

Determinants and dependencies

To be able to normalize entities, it is necessary to understand determinants
and dependants. A determinant is any attribute (simple or composite) on
which some other attribute is fully functionally dependent. The terms
determinant and dependent can be described as follows:

The expression A → B means 'if I know the value of A, then I can
obtain the value of B.'

In the expression A → B, A is the determinant and B is the dependent
attribute.
The value A determines the value of B.
The value B depends on the value of A.

When more than one attribute acts as the determinant for an entity, it is
possible for the dependent attributes to be fully or partially dependent. Given
an entity for four attributes, A, B, C and D, where AB → CD:

Fully Functional Dependency -- The entity has a fully functional
dependency if both A & B are required in order to know the values of
both C & D. That is to say, AB → CD, and A does not→ CD and B
does not→ CD.
Partially Functional Dependency -- The entity has a partially
functional dependency if both A & B are not required in order to know
the values of both C & D. That is to say, AB → CD, and any of the
following are also true: A → C or A → D or B → C or B → D.

Explain the relationship between a database and SQL
Structured Query Language, almost always referred to as SQL (pronounced
either see-kwell or as separate letters: ess-kyu-ell), is a programming
language that was designed for managing items held in databases. SQL was
originally based upon relational algebra and tuple relational calculus. Despite
not adhering entirely to the relational model as originally defined by E.F.
Codd, SQL has become the most widely used database language in existence.

Although there are dialects of SQL for different database vendors, it is
nevertheless the closest thing to a standard query language that currently
exists. In 1986, ANSI approved a rudimentary version of SQL as the official
standard. However, most vendors have included many extensions to the
ANSI standard in their products. Many vendors support mostly ANSI-
compliant SQL, but few (if any) are 100% compliant.

The SQL language is used by many databases to access and store data. It
allows users to not only query and modify data, but also to communicate with
the DBMS to add new tables or other database objects, control numerous
database settings, and perform maintenance operations. While many GUIs
exist that allow users to interact graphically with relational database -- at their
base the interfaces are using SQL to power this interaction.

The SQL language is split into four broad categories:

Data Definition Language (DDL) -- DDL statements define,
structurally change, and drop schema objects in the database.
Data Control Language (DCL) – DCL statements are used to control
access to data stored in a database.
Data Manipulation Language (DML) -- DML statements query or
manipulate data in existing schema objects. DML statements do not
change the structure of the database, the only query or change the
contents of the database.
Transaction Control -- Transaction control statements manage the
changes made by DML statements and group DML statements into
transactions.

SQL is the standard language used to work with relational databases and it is
almost impossible to deal with one to any degree without requiring a
reasonable level of familiarity with the language. SQL is used by database
administrators, developers, architects, data analysts, business intelligence
specialists, and more. If you do not currently know much about the language
but plan to work with databases, you should make learning it a high priority.
There are a number of terms and concepts that may appear throughout the
next several chapters:

Alias – Aliases are used to provide an alternate (usually shorter or more
readable) name for an item in the select list or for a table reference.
Aliases improve readability of the statement and are required for
certain operations.
Keyword – Keywords are defined individual elements of a SQL
statement (SELECT, FROM, WHERE, GROUP BY, etc.)
Clause – A clause is a subset of a SQL statement that is tied to a
keyword. For example, “SELECT first_name, last_name” is a SELECT
clause.
Expression – An expression is an element in a select list that is not a
column. It may or may not contain a column. For example, given the
clause “SELECT last_name, first_name, first_name || ‘ ‘ || last_name”,
two elements in the clause (first_name and last_name) are columns, and
(first_name || ‘ ‘ || last_name) is an expression.
Statement – A statement is a combination of two or more clauses that
form a complete SQL operation. At the bare minimum a SQL statement
must include a SELECT clause and a FROM clause.
Text Literals -- Used to specify values whenever 'string' appears in the
syntax of expressions, conditions, SQL functions, and SQL statements.
Text literals are always surrounded by single quotation marks.

Describe the purpose of DDL
One of the most critical aspects of a relational database is its data dictionary.
The data dictionary is a read-only set of tables that contain metadata about
the database. A data dictionary contains all of the information about the
database structure including:

The definitions of every schema object in the database
The amount of space allocated for and currently used by the schema
objects
The names of database users
Privileges and roles granted to database users
Auditing information

The data dictionary is a central part of how the Database Management
System (DBMS) maintains and controls the system. The DBMS uses the data
dictionary to perform many actions such as locating information about users,
schema objects, and storage structures. ​Because the data dictionary data is
itself stored in tables, database users can query the data using SQL. Data
Definition Language (DDL) statements are used to make changes to the data
dictionary. They are utilized to perform the following tasks (among others):

Create, alter, and drop schema objects
Analyze information on a table, index, or cluster
Grant and revoke privileges and roles

Sometimes you will see the SQL statements that grant and revoke privileges
and roles broken out of DDL into a separate category called Data Control
Language (DCL). Oracle lists them under DDL, but not all vendors may do
so.

Some examples of the types of objects that are acted on by DDL commands
include:

TABLE -- The basic structure to hold user data.
INDEX -- A schema object that contains an entry for each value that
appears in one or more columns of a table and provides direct, fast
access to rows.

VIEW -- A logical table based on one or more tables or views,
although it contains no data itself.
CONSTRAINT -- A rule that restricts the values in a database column.
USER -- An account through which database users can log in to the
database and which provides the basis for creating schema objects.

Taking users as an example database object class, there are three basic DDL
commands that will operate on it:

CREATE USER – Creates a new user account in the relational
database.
ALTER USER – Makes a change to an existing user account.
DROP USER – Removes an existing user account from the database.

The same three commands (CREATE, ALTER, DROP) exist for most objects
in a database

Describe the purpose of DML
Data Manipulation Language (DML) is the name given to the SQL
statements used to manage data in a relational database. DML statements
include INSERT, UPDATE, DELETE and MERGE. Each of these statements
manipulates data in tables.

The SELECT statement is generally grouped with the other four statements
under the DML class of SQL operations. However, SELECT statements do
not add, alter, or remove rows from database tables – so no manipulation is
involved. However, if the SELECT command is not included with DML,
then it has no place to be. It certainly does not fit in with Data Definition
Language (DDL), Data Control Language (DCL), or Transaction Control
Language (TCL). Just be aware that when reference is made to DML
statements, the context may not include SELECT operations.

Data manipulation language statements are utilized to manage data in existing
schema objects. DML statements do not modify information in the data
dictionary and do not implicitly commit the current transaction. The most
commonly identified DML commands are:

INSERT – Used to populate data in tables. It is possible to insert one
row into one table, one row into multiple tables, multiple rows into one
table, or multiple rows into multiple tables.
UPDATE – Used to alter data that has already been inserted into a
database table. An UPDATE can affect a single row or multiple rows,
and a single column or multiple columns. The WHERE clause will
determine which rows in the table are altered. When executed with no
WHERE clause, it will update all rows in the target table. A single
UPDATE statement can only act on one table.
DELETE – Used to remove previously inserted rows from a table. The
command can remove a single row or multiple rows from a table. When
executed with no WHERE clause, it will remove all rows from the
target table. It is not possible to delete individual columns – the entire
row is deleted or it is not.
MERGE – Used for hybrid DML operations. The MERGE can insert,
update and delete rows in a table all in a single statement. There is no
operation that a MERGE can perform that could not be performed by a

combination of INSERT, UPDATE and DELETE.

Build a SELECT statement to retrieve data from an
Oracle Database table
Essentially all operations that pull data out of a table in an Oracle database
have a SELECT command involved at some level. A top-level SELECT
statement is also referred to as a query. If there is a second SELECT nested
within the first, it is called a subquery.

When a SELECT statement retrieves information from the database, it can
perform the following three types of work:

Selection -- You can filter the SELECT statement to choose only the
rows that you want to be returned. Without filtering, a query would
return every single row in the table.
Projection -- You can choose only the columns that you want to be
returned by your query, or create new information through the use of
expressions.
Joining -- You can use the SQL JOIN operators to link two or more
tables to allow you to return data that is stored in more than one table.

The following diagram illustrates a query performing both selection and
projection:

The syntax of a minimal SELECT statement in Oracle is:
SELECT select_list
FROM table_reference;

The four elements above (SELECT and FROM keywords and the select_list
and table_reference clauses) exist in every SQL query issued to Oracle (or at
least every one that completes without an error). The elements that make up
the select_list might be columns, functions, literals, etc. The table_reference
might be an Oracle table, remote table, external table, view, pipelined
function, etc. Regardless of the specifics, they must be valid references and
be present in the SELECT statement in order for it to execute successfully.

The most basic SELECT statement consists of the SELECT keyword, a list of
one or more columns or expressions (the select_list noted above), the FROM
keyword, and a table or view (the table_reference value shown above). When
executed with only the SELECT and FROM keywords, Oracle will return all
rows that currently exist in the table and the order that the rows will be
returned in is indeterminate (which is to say the order is not only
unpredictable but may change from one execution to the next).
SELECT apt_id, apt_name, apt_abbr
FROM airports;

APT_ID APT_NAME APT_ABBR
------ ------------------------------ --------
 1 Orlando, FL MCO
 2 Atlanta, GA ATL
 3 Miami, FL MIA
 4 Jacksonville, FL JAX
 5 Dallas/Fort Worth DFW

If you wish to display all columns from a table, rather than entering each
column into the SELECT clause, you can use the asterisk wildcard. The
asterisk will return the complete set of columns from the table (or tables)
listed in the FROM clause. If a query contains multiple tables, you can prefix
the asterisk with a table name or table alias to return all columns from just
one of the tables in the query.

When the asterisk is used in a SELECT, the columns to be returned by the
SELECT operation are pulled directly from the data dictionary table that is
used to store column information for user tables. The columns in the
SELECT list will appear in the order that they are stored in that table and

cannot be altered. The column headings returned by the operation will be the
upper-case column names as stored in the data dictionary. There is no way to
use the asterisk *and* supply column aliases or change the column order.
SELECT *
FROM airports;

APT_ID APT_NAME APT_ABBR
------ ------------------------------ --------
 1 Orlando, FL MCO
 2 Atlanta, GA ATL
 3 Miami, FL MIA
 4 Jacksonville, FL JAX
 5 Dallas/Fort Worth DFW

In the below example, the query contains two tables joined together. The
asterisk used in the SELECT list returns all columns from both tables. Both
tables contain a column called APT_ID (which is how the two are joined) and
so that column is returned once for each table.
SELECT *
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id;

APT_ID APT_NAME APT_ABBR AFL_ID ACT_ID APT_ID
------ ---------------------- -------- ------ ------ ------
 1 Orlando, FL MCO 1 2 1
 1 Orlando, FL MCO 2 2 1
 2 Atlanta, GA ATL 3 3 2
 2 Atlanta, GA ATL 4 4 2
 3 Miami, FL MIA 5 1 3
 3 Miami, FL MIA 6 1 3
 5 Dallas/Fort Worth DFW 7 1 5
 5 Dallas/Fort Worth DFW 8 2 5

When the asterisk is prefixed with the AIRPORTS table alias, only the
columns from that table are returned:
SELECT apt.*
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id;

APT_ID APT_NAME APT_ABBR
------ ---------------------- --------

 1 Orlando, FL MCO
 1 Orlando, FL MCO
 2 Atlanta, GA ATL
 2 Atlanta, GA ATL
 3 Miami, FL MIA
 3 Miami, FL MIA
 5 Dallas/Fort Worth DFW
 5 Dallas/Fort Worth DFW

In order to return a subset of the columns in the two tables and control the
order of display, it is necessary to supply the columns to be returned:
SELECT APT_ABBR, APT_NAME, ACT_ID
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id;

APT_ABBR APT_NAME ACT_ID
-------- ---------------------- ----------
MCO Orlando, FL 2
MCO Orlando, FL 2
ATL Atlanta, GA 3
ATL Atlanta, GA 4
MIA Miami, FL 1
MIA Miami, FL 1
DFW Dallas/Fort Worth 1
DFW Dallas/Fort Worth 2

Lexical Conventions

The Oracle SQL parser treats single spaces, multiple spaces, and tabs
interchangeably. That is to say it doesn’t matter when writing SQL if you use
one space or fifty, or a tab instead of a space. A single carriage return can be
used in lieu of a space in most cases. Two carriage returns together signal the
end of a SQL statement. The following SQL statements would be treated
identically by the Oracle SQL Parser:
SELECT emp_last,emp_first,salary/2080 FROM employees
WHERE emp_job='Pilot' ORDER BY salary;

SELECT emp_last, emp_first, salary / 2080
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY salary;

SELECT emp_last,

 emp_first,
 salary / 2080
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY salary;

SELECT
emp_last,
emp_first,
salary / 2080
FROM
employees
WHERE
emp_job = 'Pilot'
ORDER BY
salary;

SQL Statements are not case-sensitive with the exception of quoted elements.
The following statement is equivalent to the ones above. Changing the case
of the quoted element ‘Pilot’, however, would alter the results of the SQL
statement. Note that SINGLE quotes are used to enclose character literals in
SQL statements. DOUBLE quotes in SQL statements are used to enclose
names used by the Oracle SQL parser (column names, column aliases, table
names, table aliases, etc.)
select EMP_LAST, EMP_FIRST, SALARY / 2080
from EMPLOYEES
where EMP_JOB = 'Pilot'
order by SALARY;

Keywords cannot be split across lines, abbreviated, or run together with the
rest of their clause without a separator. The separation can be a space, tab, or
carriage return, but it must be present. The following three statements would
generate an error for each of the three reasons supplied above respectively.
SELECT emp_last, emp_first, salary/2080
FROM employees
WHERE emp_job='Pilot' ORD
ER BY salary;

SEL emp_last, emp_first, salary/2080
FRM employees
WHR emp_job='Pilot'
ORD BY salary;

SELECTemp_last,emp_first,salary/2080FROMemployees
WHEREemp_job='Pilot'ORDER BYsalary;

It should be noted that you can split multi-word keywords with a carriage
return, although it would be a very bad practice to actually do so. The
following statement will execute successfully, but please do not write code
like this on the job.
SELECT emp_last,
 emp_first,
 salary / 2080
FROM employees
WHERE emp_job = 'Pilot'
ORDER
BY salary;

SQL Statements that will be persistent (i.e. part of a script or procedure as
opposed to a single-use ad-hoc query), should be formatted for readability.
The use of indentation and selective capitalization will make SQL statements,
especially large and complex ones, much easier to read and maintain.
Spending a few extra seconds making your SQL readable will result in bigger
time savings if you ever have to look back at your work in the future.

This may seem like a small thing, but it has career implications. Not all
experienced developers write well-formatted code. However, enough do that
it is one element I use in evaluating potential new hires. Even if someone is
very knowledgeable of SQL, but creates poorly formatted code, this is a
significant downside. In most environments multiple developers work
together and must be able to easily interpret code developed by the other
team members. When the SQL is sloppy this is made more difficult than it
should be.

Arithmetic Operators & Precedence

Arithmetic operators can be used with one or two arguments to add, subtract,
multiply, and divide numeric values. The addition and subtraction operators
can also be used in datetime and interval arithmetic. The arguments used
must resolve to numeric data types or to a data type that can be implicitly

converted to a numeric type (datetime data types meet this requirement
because they are stored internally by Oracle as a numeric value).

You can perform math operations directly via a SQL statement:
SELECT 4+4
FROM dual;

4+4

 8

You can also use arithmetic operators to modify the results returned from
data in a table:
SELECT emp_last, emp_first, salary, salary * 1.05 SAL_WITH_RAISE
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY salary DESC;

EMP_LAST EMP_FIRST SALARY SAL_WITH_RAISE
---------- ---------- ------ --------------
McCoy Phil 105000 110250
Thomas James 98500 103425
Jones John 97500 102375
Kia Noh 92250 96862.5
Gun Top 91500 96075
Skytalker Luke 90000 94500
Aptop Dell 87500 91875
Picard John 49500 51975

Likewise date literals can be manipulated directly via SQL using arithmetic
operators, or date values in a table altered:
SELECT SYSDATE, SYSDATE+5
FROM dual;

SYSDATE SYSDATE+5
--------- ---------
10-AUG-13 15-AUG-13

SELECT emp_last, emp_first, start_date, start_date + 60
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY start_date;

EMP_LAST EMP_FIRST START_DATE START_DATE+60
---------- ---------- ---------- -------------
Jones John 10-APR-95 09-JUN-95
McCoy Phil 09-JUN-96 08-AUG-96
Gun Top 13-OCT-96 12-DEC-96
Thomas James 12-MAY-99 11-JUL-99
Picard John 11-NOV-01 10-JAN-02
Skytalker Luke 10-SEP-02 09-NOV-02
Aptop Dell 22-AUG-03 21-OCT-03
Kia Noh 07-JUL-04 05-SEP-04

Precedence is what determines the order in which different operators in the
same expression are evaluated. Oracle evaluates operators with higher
precedence before evaluating those with lower precedence. If there are
operators with equal precedence, they are evaluated from left to right within
the expression. The plus and minus signs have two different levels of
precedence depending on their usage. Both can be used in either a unary
fashion or in a binary fashion depending on whether they are applied to one
or two operands. For example, in '-1', the negative sign is acting as a unary
operator and evaluates to 'negative one'. By contrast, in '4 - 1' the negative
sign is acting as a binary operator and evaluates to 'four minus one'. The
arithmetic operators and their precedence follow:

1. +, - (as unary operators) -- Identity, negation,
2. *, / -- Multiplication, division
3. +, - (as binary operators) -- Addition, subtraction

In the below example, the multiplication symbol has a higher precedence
than the plus sign. Oracle multiplies two times four and then adds three to the
result:
SELECT 3 + 2 * 4
FROM dual;

3+2*4

 11

Parentheses can be used to change the order in which the operators are
evaluated. When parentheses are nested, the most deeply nested operators are

evaluated first. In the following example, the operation is three plus two and
then the result is multiplied by four.
SELECT (3 + 2) * 4
FROM dual;

(3+2)*4

 20

When the negative sign is used as a unary operator, it takes precedence over
multiplication or division:
SELECT -2 * 6
FROM dual;

-2*6

-12

Column Aliases

The default heading returned for columns selected in a query is simply the
column name itself. If the SELECT list item is an expression, the text of the
expression with spaces removed is returned. For a SELECT it may be
desirable to provide a cleaner, shorter, or more descriptive heading for the
results. For some SQL operations, providing an alias for expressions is a
requirement. To specify an alias for a column or expression, you can provide
the alias immediately after the column name, separated by a space. You can
also use the optional ‘AS’ keyword when specifying an alias. The AS
keyword makes the resulting query more readable, especially for long
statements. By default, aliases are returned in upper-case and cannot have
spaces or special characters. You can bypass that restriction by enclosing the
alias in double-quotation marks. The four examples below show the same
SQL statement using no alias, two alternate syntaxes for aliasing columns
and the use of an alias enclosed by double quotes.
SELECT emp_first, emp_last,
 emp_first || ' ' || emp_last
FROM employees
WHERE emp_job = 'CEO';

EMP_FIRST EMP_LAST EMP_FIRST||''||EMP_LAST
---------- ---------- -----------------------
Big Boss Big Boss

SELECT emp_first, emp_last,
 emp_first || ' ' || emp_last full_name
FROM employees
WHERE emp_job = 'CEO';

EMP_FIRST EMP_LAST FULL_NAME
---------- ---------- ---------------------
Big Boss Big Boss

SELECT emp_first, emp_last,
 emp_first || ' ' || emp_last AS full_name
FROM employees
WHERE emp_job = 'CEO';

EMP_FIRST EMP_LAST FULL_NAME
---------- ---------- ---------------------
Big Boss Big Boss

SELECT emp_first, emp_last,
 emp_first || ' ' || emp_last AS "Full Name"
FROM employees
WHERE emp_job = 'CEO';

EMP_FIRST EMP_LAST Full Name
---------- ---------- ---------------------
Big Boss Big Boss

Expressions

Expressions in the select list of a SQL statement include essentially
everything except a bare column name. They could be literals, column data
that has been modified by operators, or SQL functions.

Text Literals -- Use to specify values whenever 'string' appears in the
syntax of expressions, conditions, SQL functions, and SQL statements.
Text literals are always surrounded by single quotation marks.

SELECT 'Fred' AS STRING_LIT
FROM dual;

STRING_LIT

Fred

Text literals can be combined with information being selected from a table in
order to provide context or formatting.
SELECT emp_last || ', ' || emp_first || ' (' || emp_job ||
 ') started on ' || start_date AS EMP_BIO
FROM employees
WHERE emp_job = 'Pilot';

EMP_BIO

Jones, John (Pilot) started on 10-APR-95
Gun, Top (Pilot) started on 13-OCT-96
McCoy, Phil (Pilot) started on 09-JUN-96
Thomas, James (Pilot) started on 12-MAY-99
Picard, John (Pilot) started on 11-NOV-01
Skytalker, Luke (Pilot) started on 10-SEP-02
Aptop, Dell (Pilot) started on 22-AUG-03
Kia, Noh (Pilot) started on 07-JUL-04

Numeric Literals -- Use numeric literal notation to specify fixed and
floating-point numbers.

SELECT 14.5 AS NUM_LIT
FROM dual;

NUM_LIT

14.5

Datetime Literals -- You can specify a date value as a string literal, or
you can convert a character or numeric value to a date value using the
TO_DATE function.

SELECT ’10-JAN-16’ AS STRING_LIT,
 TO_DATE(‘01/10/2016’, ‘MM/DD/YYYY’) AS TD_LIT
FROM dual;

STRING_LIT TD_LIT
---------- ---------
10-JAN-16 10-JAN-16

In the above statement, the second column was explicitly converted to a date
data type, but the value returned by SQL*Plus looks exactly like the string in
the first column. This is because Oracle does not ever display dates as they
are stored in the database. What Oracle actually stores in a DATE field
behind the scenes is a numeric value. Internally, dates in Oracle are stored as
a fixed-length, seven-byte field. The information in the seven bytes is:

1. The Century
2. The Year
3. The Month
4. The Day
5. The Hour
6. The Minute
7. The Second

If this information were displayed as it is stored, the result would not make
sense from a human standpoint. Because of this, whenever a data is displayed
as the result of a SELECT operation, Oracle automatically converts it to a
character value. The default date format for this is dependent on how the
database was created and the value chosen for the NLS_DATE_FORMAT
initialization parameter. The most common format for databases created in
the US is ‘DD-MON-YY’. It is possible to alter the default by setting the
NLS_DATE_FORMAT parameter at the system of session level. Individual
SELECT statements can return specific formats by making use of the
TO_CHAR parameter and providing a format model.

Restricting and Sorting Data
Use the ORDER BY clause to sort SQL query results
The ORDER BY clause of a SQL query allows you to determine the sort
order of the rows returned by the operation. When a SQL statement does not
contain an ORDER BY clause, the order of the rows being returned is
indeterminate. Often rows will be returned in the order they were inserted
into a table, but that is not always the case. The same query may not return
rows in the same order in all cases. If the order is important, then you should
use the ORDER BY clause even if you find that the rows return in the order
you want without the clause (because the order might change at some future
date). When the ORDER BY clause is used, it must always be the last clause
of the SQL statement. When a SQL statement has subqueries, it is possible to
use an ORDER BY clause for them, but generally pointless. The final
ORDER BY determines the sort order of the data returned to the user. It is
not possible to use LONG or LOB columns in an ORDER BY clause.
SELECT NAME, STYLE, DECKS, SEATS
FROM
(
SELECT ACT_NAME AS NAME,
 ACT_BODY_STYLE AS STYLE,
 ACT_DECKS AS DECKS,
 ACT_SEATS AS SEATS
FROM aircraft_types
ORDER BY act_seats
)
WHERE decks = 'Single'
ORDER BY name;

NAME STYLE DECKS SEATS
------------ ---------- ---------- -----
Boeing 737 Narrow Single 200
Boeing 757 Narrow Single 240
Boeing 767 Wide Single 350

It’s possible to sort by a single column or by multiple columns (or
expressions). When sorting by multiple columns, the precedence of the sort

order will be determined by the position of the expression in the ORDER BY
clause. The leftmost expression will provide the initial sort order and each
expression to the right will be evaluated in turn. By default, data is sorted in
ascending order (1-2-3-4 / a-b-c-d). One item of note is the fact that upper
and lower case characters don’t sort together. When Oracle sorts by character
values, it is actually using the ASCII values for the logic. Because of this, a
lower case ‘a’ will sort *higher* than an upper case ‘Z’. In addition, numeric
data in a character field does not sort as you would expect. For example, if
you were to sort table rows with values containing ‘1’, ‘2’, and ‘100’ in
ascending order, the result would be 1-100-2. To sort number data in a
character field in numeric order, you would have to use the TO_NUMBER
function against the column in the ORDER BY clause to convert the data for
sort purposes. That said, if the column contains non-numeric data in addition
to the numeric data, using TO_NUMBER will generate an error if it hits one
of those rows.
SELECT char_column
FROM sort_example
ORDER BY char_column;

CHAR_COLUMN

1
100
2
A
B
C
a
b
c

The SORT_EXAMPLE table has a NUMBER column as well. When a query
is sorted by it, the expected ‘numeric’ sort results are returned.
SELECT num_column
FROM sort_example
ORDER BY num_column;

NUM_COLUMN

 1
 2

 3
 10
 20
 30
 100
 200
 300

If the data is sorted by the column after being converted to character data, the
result is completely different:
SELECT num_column
FROM sort_example
ORDER BY TO_CHAR(num_column);

NUM_COLUMN

 1
 10
 100
 2
 20
 200
 3
 30
 300

By default NULLS are sorted last when a sort is in ascending order and first
when descending. Effectively when being sorted, NULLs are treated as an
infinitely high value. The default behavior can be reversed by adding NULLS
LAST when sorting in descending order or NULLS FIRST when sorting in
ascending order.
SELECT *
FROM aircraft_fleet
ORDER BY apt_id;

AFL_ID ACT_ID APT_ID
------ ------ ------
 1 2 1
 2 2 1
 3 3 2
 4 4 2
 5 1 3
 6 1 3
 7 1 5

 8 2 5
 9 4
 10 3

SELECT *
FROM aircraft_fleet
ORDER BY apt_id NULLS FIRST;

AFL_ID ACT_ID APT_ID
------ ------ ------
 9 4
 10 3
 2 2 1
 1 2 1
 3 3 2
 4 4 2
 6 1 3
 5 1 3
 7 1 5
 8 2 5

When specifying the expressions to sort by, you can use either the expression
itself, the alias for the expression, or the numeric value of its position in the
SELECT list. Using the position rather than the expression can be useful of
the expression being sorted on is complex. It is also useful when sorting
compound queries using the set operators (UNION, INTERSECT, MINUS)
where the column names may not match. Set operators will be discussed in a
later section.
SELECT APT_ID, APT_NAME, APT_ABBR
FROM airports
ORDER BY apt_name;

APT_ID APT_NAME APT_ABBR
------ ------------------------------ --------
 2 Atlanta, GA ATL
 5 Dallas/Fort Worth DFW
 4 Jacksonville, FL JAX
 3 Miami, FL MIA
 1 Orlando, FL MCO

SELECT *
FROM airports
ORDER BY 2;

APT_ID APT_NAME APT_ABBR
------ ------------------------------ --------
 2 Atlanta, GA ATL
 5 Dallas/Fort Worth DFW
 4 Jacksonville, FL JAX
 3 Miami, FL MIA
 1 Orlando, FL MCO

To reverse the sort order of columns, you can use the descending operator,
DESC.
SELECT *
FROM airports
ORDER BY 2 DESC;

APT_ID APT_NAME APT_ABBR
------ ---------------------- --------
 1 Orlando, FL MCO
 3 Miami, FL MIA
 4 Jacksonville, FL JAX
 5 Dallas/Fort Worth DFW
 2 Atlanta, GA ATL

The default sort order on columns is always ascending. If a column is sorted
on more than one column, and you want to change multiple columns to sort
in descending order, each would need its own DESC keyword. The following
query sorts by three columns. First it sorts all the rows by the EMP_JOB field
in ascending order. For all employees in the same job, it sorts rows by the
AIRCRAFT_TYPE in descending order. For all rows with the same job and
aircraft type, it sorts in ascending order by last name.
SELECT emp_job,
 (SELECT act_name
 FROM aircraft_types act
 NATURAL JOIN aircraft_fleet afl
 WHERE afl.afl_id = e1.afl_id) AS aircraft_type,
 emp_last,
 (SELECT emp_last
 FROM employees e2
 WHERE e2.emp_id = e1.emp_supervisor) AS MANAGER
FROM employees e1
ORDER BY emp_job, aircraft_type DESC, emp_last;

EMP_JOB AIRCRAFT_TYPE EMP_LAST MANAGER
---------- ------------- ---------- ----------
CEO Boss

CFO Smith Boss
Mgr Storm Alien
Pilot Boeing 767 Gun Storm
Pilot Boeing 767 Jones Storm
Pilot Boeing 767 Kia Storm
Pilot Boeing 757 Thomas Storm
Pilot Boeing 747 Aptop Storm
Pilot Boeing 747 Picard Storm
Pilot Boeing 747 Skytalker Storm
Pilot Boeing 737 McCoy Storm
SVP Jameson Boss
SVP Stoner Boss
SrDir Alien Jeckson
SrDir Stoneflint Abong
VP Abong Jameson
VP Jeckson Stoner

Unlike the WHERE clause, aliases can be used in the ORDER BY clause.
The reason for this is because the SQL engine evaluates the WHERE clause
before the select list but the ORDER BY clause after the select list.
SELECT APT_ID,
 APT_NAME AS AIRPORT_NAME,
 APT_ABBR AS ABBREV
FROM airports
ORDER BY airport_name;

APT_ID AIRPORT_NAME ABBREV
------ ---------------------- ------
 2 Atlanta, GA ATL
 5 Dallas/Fort Worth DFW
 4 Jacksonville, FL JAX
 3 Miami, FL MIA
 1 Orlando, FL MCO

Limit the rows that are retrieved by a query
The ability to retrieve specific information from a database is possibly the
most important aspect of SQL. Limiting the rows being returned and defining
the order they should be returned in are both significant parts of that
functionality.

DISTINCT | UNIQUE

One of the ways in which to limit the amount of data returned by a query is to
display only one result when the table(s) being queried have multiple copies
of duplicate data. This can be done using either the DISTINCT or UNIQUE
keywords. The DISTINCT keyword is much more commonly used than the
UNIQUE keyword, but either will perform the same function. When a row
contains matching values for every expression in the select list, the
DISTINCT/UNIQUE keyword will only return a single row. It is not possible
to use DISTINCT/UNIQUE if one or more of the expressions being returned
is a LOB column. The two statements below show the effect of adding the
DISTINCT keyword to a query.
SELECT act_body_style, act_decks
FROM aircraft_types;

ACT_BODY_STYLE ACT_DECKS
-------------- ----------
Wide Double
Wide Single
Narrow Single
Narrow Single

SELECT DISTINCT act_body_style, act_decks
FROM aircraft_types;

ACT_BODY_STYLE ACT_DECKS
-------------- ----------
Wide Single
Wide Double
Narrow Single

In the second example, the duplicated rows from the first query with a body

style of narrow and a single deck have been reduced to a single row. The
DISTINCT query still has two rows with a wide body style and two rows
with a single deck, but no rows where every column value is identical.

The functionality works equally well when applied to a query involving
multiple tables. The following example uses the UNIQUE keyword against
the aliased wildcard query from the previous section and gets a result of four
rows rather than the eight returned above.
SELECT UNIQUE apt.*
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id;

APT_ID APT_NAME APT_ABBR
------ ---------------------- --------
 2 Atlanta, GA ATL
 5 Dallas/Fort Worth DFW
 1 Orlando, FL MCO
 3 Miami, FL MIA

WHERE Clause

The WHERE clause of SQL statements allows you to create conditions that
rows must meet in order to be returned by the query. The conditions in the
clause may be extremely simple or mind-numbingly complex. If you omit the
WHERE clause, all rows of the table or tables in the query will be returned
by the SQL (although the use of DISTINCT/UNIQUE would cause only the
unique results to be displayed).

When comparing values, there are some rules that you must be aware of:
When text or date literals are included in the where clause, they must
be enclosed in single quotes.
When a text literal is being compared to a text column, the comparison
is always case-specific.
If a date literal is being compared to a date data type in a table, Oracle
must convert the literal to a DATE data type before evaluating the two.
If the string value is supplied in the same format as the
NLS_DATE_FORMAT for the session, then Oracle can convert the

string to a date automatically. If the text does not match the
NLS_DATE_FORMAT, you must use explicitly convert the value to
the date data type. Date and character conversions will be covered later
in this guide.

The most common comparison operators for a WHERE clause are:
= -- Equal to
< -- Less than
> -- Greater than
<= -- Less than or equal to
>= -- Greater than or equal to
<> -- Greater than or Less than
!=, ^= -- Not equal to
IN(set) – Value contained within set
BETWEEN val1 AND val2 – Between val1 and val2 (inclusive)
LIKE – Matches a given pattern that can include wildcards
IS NULL – Is a NULL value
IS NOT NULL – Is a non-NULL value

The equality operator is almost assuredly the most common condition applied
to filter the data being returned from a SQL query. In the example below the
query will return only those rows of the AIRCRAFT_TYPES table where the
ACT_DECKS is equal to the text ‘Single’.
SELECT *
FROM aircraft_types
WHERE act_decks = 'Single';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

The results of the above query can be completely reversed by using the not-
equals operator ‘!=’. This operator (or the alternate ‘not equal’ operator ‘^=’)
is interchangeable with the Greater than/Less than operator ‘<>’.
SELECT *

FROM aircraft_types
WHERE act_decks != 'Single';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 1 Boeing 747 Wide Double 416

The example below makes use of the less-than sign ‘<’ for filtering the
results:
SELECT *
FROM aircraft_types
WHERE act_seats < 416;

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

The example below makes use of the IN operator for filtering the results:
SELECT *
FROM aircraft_types
WHERE act_name IN ('Boeing 737', 'Boeing 767');

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200

The example below makes use of the BETWEEN operator for filtering the
results. Note that the BETWEEN is inclusive because the endpoints of 200
and 240 are included in the results. If the BETWEEN operator were NOT
inclusive, the range would need to have been 199 -> 241.
SELECT *
FROM aircraft_types
WHERE act_seats BETWEEN 200
 AND 240;

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

The example below shows pattern matching using the LIKE operator. The %
wildcard looks for zero or more occurrences of any character or combination
of characters, whereas the _ wildcard looks for a single indeterminate
character. The condition below then will return any aircraft where the number
‘5’ is the second-to-last character in the string.
SELECT *
FROM aircraft_types
WHERE act_name LIKE '%5_';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 4 Boeing 757 Narrow Single 240

If columns are aliased in the SELECT clause, the alias names cannot be used
to reference columns in the WHERE clause. When the Oracle SQL engine
parses the SQL, the WHERE clause gets evaluated before the aliases are
applied, so the engine does not recognize the alias.
SELECT ACT_NAME AS NAME,
 ACT_BODY_STYLE AS STYLE,
 ACT_DECKS AS DECKS,
 ACT_SEATS AS SEATS
FROM aircraft_types
WHERE decks = 'Single';

SQL Error: ORA-00904: "DECKS": invalid identifier
00904. 00000 - "%s: invalid identifier"
*Cause:
*Action:

The following example is able to make use of the ‘DECKS’ alias in the
WHERE clause, however. This is because the aliased columns are inside of
parenthesis and the WHERE clause is outside. Just as with the earlier
discussion on operators, the Oracle SQL engine will evaluate SQL text inside
of parenthesis prior to SQL outside of it. By the time the WHERE clause is
evaluated, the aliases have already been applied to the columns.
SELECT NAME, STYLE, DECKS, SEATS
FROM
(
SELECT ACT_NAME AS NAME,

 ACT_BODY_STYLE AS STYLE,
 ACT_DECKS AS DECKS,
 ACT_SEATS AS SEATS
FROM aircraft_types
)
WHERE decks = 'Single';

NAME STYLE DECKS SEATS
------------ ---------- ---------- -----
Boeing 767 Wide Single 350
Boeing 737 Narrow Single 200
Boeing 757 Narrow Single 240

Combining two or more conditions with Logical Operators

There are three logical operators that can be used in conjunction with
operators in a WHERE clause to generate more complex (and specific) logic
for identifying rows:

AND – Evaluates to TRUE if the components on both sides are TRUE.
OR -- Evaluates to TRUE if the component on either side are TRUE.
NOT – Evaluates to TRUE if the identified component is FALSE

When two or more conditions in a WHERE clause are combined (or
reversed) through the use of logical operators, results are returned by the
query only when the complete clause evaluates to TRUE. The following two
examples make use of two conditions each, the first combined with the
‘AND’ operator and the second with the ‘OR’ operator. In the first statement,
both conditions have to evaluate to TRUE for a row to be returned. In the
second, a row is returned if either condition evaluates to TRUE.
SELECT *
FROM aircraft_types
WHERE act_seats < 416
AND act_body_style = 'Narrow';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

SELECT *
FROM aircraft_types
WHERE act_seats < 220
OR act_decks = 'Double';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 1 Boeing 747 Wide Double 416
 3 Boeing 737 Narrow Single 200

If a WHERE clause contains a combination of both ‘AND’ and ‘OR’
operators, it is very likely that the conditions must be combined within
parentheses for the desired results to be achieved. In the below example, the
first condition excludes planes with more than one deck (the 747). This is
AND’ed with the second condition that filters out planes with a wide body
style deck (excluding the 747 and 767). The final condition is OR’d in and
provides an exception for planes with more than 200 seats.

The intent of the final condition is to include the 767 but exclude the 747 (the
logic being to have one deck and either a narrow body or greater than 200
seats). However, the result of the query has all four aircraft types. The reason
for this is that the OR operator has equal precedence with the AND operator.
The clause as written will return planes with either of the following
conditions:

A single deck and not a wide body style
Greater than 200 seats

SELECT *
FROM aircraft_types
WHERE act_decks = 'Single'
AND act_body_style != 'Wide'
OR act_seats > 200;

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 1 Boeing 747 Wide Double 416
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

To return the 767 and not the 747, the second and third conditions must be

evaluated together and then the result ANDed to the first condition. To do
this, the conditions must be enclosed by parentheses to change the order of
evaluation. The updated clause will return planes with both of the following
conditions:

A single deck.
Greater than 200 seats and not a wide body style.

SELECT *
FROM aircraft_types
WHERE act_decks = 'Single'
AND (act_body_style != 'Wide'
 OR act_seats > 200);

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

Changing the order of the conditions in the SELECT statement would also
have altered the results. The better option is the parentheses, however.
Parentheses make it clear from the outset which conditions are intended to be
evaluated together.
SELECT *
FROM aircraft_types
WHERE act_body_style != 'Wide'
OR act_seats > 200
AND act_decks = 'Single';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

The NOT logical operator reverses a given operator. The statement below has
the condition ‘WHERE NOT act_decks = ‘Single’. This could just as easily
be written ‘WHERE act_decks != ‘Single’. However, NOT is the only
practical way to reverse the BETWEEN, IN, IS NULL, or LIKE operators.
SELECT *
FROM aircraft_types

WHERE NOT act_decks = 'Single';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 1 Boeing 747 Wide Double 416

Just as with the English language, double-negatives are possible. They should
be avoided because they make the intent of the SQL harder to determine. The
following statement returns rows where the number of decks is NOT not-
equal to ‘Single’. A query where the decks were equal to ‘Single’ would be
much easier to read.
SELECT *
FROM aircraft_types
WHERE NOT act_decks != 'Single';

ACT_ID ACT_NAME ACT_BODY_STYLE ACT_DECKS ACT_SEATS
------ ------------ -------------- ---------- ---------
 2 Boeing 767 Wide Single 350
 3 Boeing 737 Narrow Single 200
 4 Boeing 757 Narrow Single 240

Precedence in WHERE clauses

When evaluating a WHERE clause, the order in which Oracle executes each
of the conditions and operations is of critical importance in what the final
result will be. The rules of precedence according to the Oracle SQL
Reference manual are:

1. Arithmetic Operators (+, - , *, /)
2. Concatenation Operator (||)
3. Comparison conditions (=, !=, <, >, <=, >=)

4. IS [NOT] NULL, LIKE, [NOT] BETWEEN, [NOT] IN, EXISTS, IS

OF type
5. NOT logical condition
6. AND logical condition
7. OR logical condition

You can override the default order of precedence by making use of
parenthesis. When you have a particularly complex clause, adding

parenthesis is often advisable even if not strictly required in order to make the
order of precedence more evident.

Use ampersand substitution to restrict and sort output
at runtime
The ampersand symbol ‘&’ is used in the SQL*Plus and SQL Developer
tools to add a substitution variable to a SQL statement. Substitution variables
allow you to build scripts that are not 100% fixed to run the same way every
time they are executed. By replacing portions of one or more parts of a SQL
statement with ampersands, you can cause the tool to replace those elements
of the SQL with data that will be supplied at run-time. Substitution variables
can be used to replace the following:

Column Expressions
Table names
WHERE conditions
ORDER BY clauses
Complete SELECT statements

When the following SQL statement is executed, a dialog box will open up
requesting a value for the substitution variable AIRCRAFT_NAME. Note
that the substitution variable is enclosed in quotes. The tool will take the
information you supply, swap it for the substitution variable verbatim, and
then run the SQL. Since the below statement is a character field, it must be
enclosed in quotes. If the substitution variable were not enclosed in quotes,
you would have to quote the value entered in the dialog or the statement
would result in an error.
SELECT act_name, act_body_style, act_decks
FROM aircraft_types
WHERE act_name = '&AIRCRAFT_NAME';

Once the dialog box has been populated and the OK button clicked, the query
will continue and produce results with the new value. By default, the tool will
also provide information about the replacement that was just performed.
From this, you can see that '&AIRCRAFT_NAME' became 'Boeing'. Nothing
else in the SQL statement (including the enclosing quotes) was altered
old:SELECT act_name, act_body_style, act_decks
FROM aircraft_types
WHERE act_name = '&AIRCRAFT_NAME'
new:SELECT act_name, act_body_style, act_decks
FROM aircraft_types
WHERE act_name = 'Boeing 767';

ACT_NAME ACT_BODY_STYLE ACT_DECKS
------------ -------------- ----------
Boeing 767 Wide Single

The following example has substitution variables set up for a column, a
WHERE clause condition, and the ORDER BY clause. The user can specify
each of these values at run time:
SELECT apt_name, apt_abbr, act_name, &COLUMN_NAME
FROM aircraft_fleet_v
WHERE &WHERE_CLAUSE
ORDER BY &ORDER_BY;

old:SELECT apt_name, apt_abbr, act_name, &COLUMN_NAME
FROM aircraft_fleet_v
WHERE &WHERE_CLAUSE
ORDER BY &ORDER_BY
new:SELECT apt_name, apt_abbr, act_name, act_seats
FROM aircraft_fleet_v
WHERE apt_abbr = 'MCO'
ORDER BY act_seats

APT_NAME APT_ABBR ACT_NAME ACT_SEATS
---------------------- -------- ------------ ---------
Orlando, FL MCO Boeing 767 350
Orlando, FL MCO Boeing 767 350

The text returned by SQL*Plus and SQL Developer that shows the old and
new versions of a SQL statement using substitution variables is part of the

VERIFY function. You can disable this capability by issuing the command
SET VERIFY OFF. Likewise, if you have disabled it but wish to re-enable it,
you can issue the SET VERIFY ON command.

All of the examples so far have used one variant of the substitution variable.
Substitution variables can be specified with either a single ampersand or with
a pair of ampersands. The behavior difference is that when a substitution
variable is specified with two ampersands, it is possible to re-use the variable
in another portion of the statement without having to prompt the user again.
The value is persistent, in fact, not just for the remainder of the statement but
for the Oracle session as well. If the script were to be run a second time, the
user would not be prompted for the variable. Only the first occurrence of the
column needs to have the double-ampersand. Once it has been set, it can be
referenced again using either a single or double ampersand.
SELECT apt_name, apt_abbr, act_name, &&COLUMN_NAME
FROM aircraft_fleet_v
ORDER BY &COLUMN_NAME;

APT_NAME APT_ABBR ACT_NAME ACT_SEATS
---------------------- -------- ------------ ---------
Atlanta, GA ATL Boeing 737 200
Atlanta, GA ATL Boeing 757 240
Orlando, FL MCO Boeing 767 350
Dallas/Fort Worth DFW Boeing 767 350
Orlando, FL MCO Boeing 767 350
Dallas/Fort Worth DFW Boeing 747 416
Miami, FL MIA Boeing 747 416
Miami, FL MIA Boeing 747 416

DEFINE and UNDEFINE

The DEFINE command is used to set a substitution variable to a given value.
If the DEFINE command is used to set the value of a variable prior to
running a SQL statement that makes use of it, the user won’t be prompted for
the value. The double-ampersand works by accepting the variable supplied by
the user, and then performing an implicit DEFINE so that the value won’t be
requested again in the current session. The UNDEFINE command is used to
clear a substitution variable value (so that the next SQL statement using that
variable will prompt the user for a value).
DEFINE variable_name
UNDEFINE variable_name

Use SQL row limiting clause
Two new clauses were added to the SELECT command in the Oracle 12c
release: FETCH FIRST and OFFSET. The FETCH FIRST clause limits the
number of rows returned by a given query. The OFFSET clause allows you to
specify a starting row for the return set. FETCH FIRST and OFFSET
simplify syntax and comply with the ANSI SQL standard.

A common database reporting requirement is the need to generate a ‘Top-N’
result set. Examples include the top five highest-paid employees, the top ten
selling products and so forth. While there have been several ways to generate
this data in earlier releases, until 12c, there has been no native SQL syntax
designed for this. Commonly people have attempted to use the ROWNUM
pseudocolumn to generate a ‘Top-N’ result set. This does not generate the
correct results because the WHERE clause is evaluated before the ORDER
BY clause. Essentially the below query takes the first five unsorted rows
returned by the query and then orders them. It is possible to force Oracle to
sort the rows first, but not straightforward.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
WHERE rownum < 6
ORDER BY apt_name, act_name

APT_NAME APT_ABBR ACT_NAME
---------------------- -------- --------------------
Dallas/Fort Worth DFW Boeing 747
Dallas/Fort Worth DFW Boeing 767
Miami, FL MIA Boeing 747
Miami, FL MIA Boeing 747
Orlando, FL MCO Boeing 767

The FETCH FIRST and OFFSET operations take place after the ORDER BY
clause has been executed. This makes generating this type of information
simpler and more intuitive. The following example uses the FETCH FIRST
clause to return only the first five aircraft ordered by airport name and then
aircraft name in the AIRPORT_FLEET_V view.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
ORDER BY apt_name, act_name
FETCH FIRST 5 ROWS ONLY;

APT_NAME APT_ABBR ACT_NAME
---------------------- -------- -----------
Atlanta, GA ATL Boeing 737
Atlanta, GA ATL Boeing 757
Dallas/Fort Worth DFW Boeing 747
Dallas/Fort Worth DFW Boeing 767
Miami, FL MIA Boeing 747

The OFFSET syntax expands this functionality to allow you to pull a set of
rows in the middle of the available data (for example the 20th through the 25th

highest paid employees). The following example uses the same data and
order as the above query, but skips the first three rows and then pulls the next
four (i.e. the fourth through the seventh row). Note that the first two rows in
this query match the last two in the query above.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
ORDER BY apt_name, act_name
OFFSET 3 FETCH NEXT 4 ROWS NLY;

Dallas/Fort Worth DFW Boeing 767
Miami, FL MIA Boeing 747
Miami, FL MIA Boeing 747
Orlando, FL MCO Boeing 767

The FETCH FIRST syntax does not itself look for high or low values but
rather returns the rows as they are retrieved based on the sort order. Sorting
the same data in the reverse order produces the five aircraft that sorted to the
bottom of the initial query. The FETCH FIRST syntax does exactly what it
indicates, return the first ‘x’ number of rows from a query – whatever those
rows contain.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
ORDER BY apt_name DESC, act_name DESC
FETCH FIRST 5 ROWS ONLY;

APT_NAME APT_ABBR ACT_NAME
---------------------- -------- ----------
Orlando, FL MCO Boeing 767
Orlando, FL MCO Boeing 767
Miami, FL MIA Boeing 747
Miami, FL MIA Boeing 747

Dallas/Fort Worth DFW Boeing 767

When used by itself, the ONLY keyword will return the exact number of
rows specified in the FECTH FIRST clause (unless the table contains fewer
rows than the number specified of course). However, when used in
conjunction with the ‘WITH TIES’ syntax, a FETCH FIRST query can return
more than the specified number if the query result set contains rows with
values in the ORDER BY column(s) that are equal. For example, the
following query is similar to the initial query, but contains the WITH TIES
syntax. Because the fifth and sixth rows have the same airport and aircraft
names, the query returns six rows rather than five.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
ORDER BY apt_name, act_name
FETCH FIRST 5 ROWS ONLY WITH TIES;

APT_NAME APT_ABBR ACT_NAME
---------------------- -------- ----------
Atlanta, GA ATL Boeing 737
Atlanta, GA ATL Boeing 757
Dallas/Fort Worth DFW Boeing 747
Dallas/Fort Worth DFW Boeing 767
Miami, FL MIA Boeing 747
Miami, FL MIA Boeing 747

It is also possible to supply a percentage of rows to be fetched instead of a
value. However, a percentage value cannot be used for the offset. The
following example returns the first twenty-five percent of rows returned by
the query. The AIRCRAFT_FLEET_V view contains eight rows total, so two
rows are returned.
SELECT apt_name, apt_abbr, act_name
FROM aircraft_fleet_v
ORDER BY apt_name, act_name
FETCH FIRST 25 PERCENT ROWS ONLY;

APT_NAME APT_ABBR ACT_NAME
---------------------- -------- ----------
Atlanta, GA ATL Boeing 737
Atlanta, GA ATL Boeing 757

Using Single-Row Functions to Customize Output
Use various types of functions available in SQL
Functions are an extremely important part of Oracle’s capabilities. Functions
will sometimes accept one or more arguments, but they will always return a
value when called. When a single row function is included in a SQL query, it
will generate one result for each table row returned. By contrast, a multiple-
row function will return one result for a given set of rows. Single row
functions can be used in the following locations:

SELECT lists
WHERE clauses
START WITH clauses
CONNECT BY clauses
HAVING clauses
ORDER BY clauses

SQL functions are built into the Oracle Database and can be used in various
SQL statements. SQL functions should not be confused with user-defined
functions written in PL/SQL. There are too many SQL functions available in
Oracle to discuss all of them in this guide. I’ll define some of the more
common ones that might appear on the test. Before attempting the test, you
should investigate the SQL Functions in the Oracle SQL Language Reference
book. You are almost certain to see some on the test that are not in this guide
and you will need some familiarity with what they do.

There are five distinct types of single row functions available in Oracle.
Numeric – Accept numeric input and return numeric results.
Character – Accept character input and return character or numeric
results.
Datetime – Perform work on date data types and return date or numeric
results.
Conversion – Convert from one data type to another.

General – Perform operations that don’t fit any of the above four
descriptions.

Numeric Functions

ABS

Syntax: ABS(n)

Purpose: ABS returns the absolute value of n.
SELECT ABS(-5) "Abs_Ex"
FROM dual;

Abs_Ex

5

CEIL

Syntax: CEIL(n)

Purpose: CEIL returns the smallest integer that is greater than or equal to n.
SELECT CEIL(2343.2) "Ceil_Ex"
FROM dual;

Ceil_Ex

2344

FLOOR

Syntax: FLOOR(n)

Purpose: FLOOR returns the largest integer equal to or less than n.
SELECT FLOOR(21.2) "Floor_Ex"
FROM dual;

Floor_Ex

21

ROUND(number)

Syntax: ROUND(n, integer)

Purpose: ROUND returns n rounded to integer places to the right of the
decimal point. If integer is not supplied, then n is rounded to zero places. If
the integer value is negative, then n is rounded off to the left of the decimal
point.
SELECT ROUND(127.623, 1) "Round_Ex1",
 ROUND(127.623) "Round_Ex2",
 ROUND(127.623, -1) "Round_Ex3"
FROM dual;

Round_Ex1 Round_Ex2 Round_Ex3
---------- ---------- ----------
 127.6 128 130

SIGN(number)

Syntax: SIGN(n)

Purpose: SIGN returns the sign of n. This function takes as an argument any
numeric data type, or any nonnumeric data type that can be implicitly
converted to NUMBER, and returns NUMBER.

For a supplied value of type NUMBER, the result is:

-1 if n<0
0 if n=0
1 if n>0

For binary floating-point numbers (BINARY_FLOAT and
BINARY_DOUBLE), the function will return the sign bit of the number. The
sign bit is:

-1 if n<0
+1 if n>=0 or n=NaN

Character Functions

Character functions can return either a character value or a numeric value.
Some of those which return a character value are:

INITCAP

Syntax: INITCAP(char)

Purpose: INITCAP returns char, with the first letter of each word in
uppercase, and all other letters in lowercase. The delimiter used to determine
words are white space or non alphanumeric characters.
SELECT INITCAP('john jones') "Initcap_Ex"
FROM dual;

Initcap_Ex

John Jones

LOWER

Syntax: LOWER (char)

Purpose: LOWER returns char, with all letters lowercase.
SELECT LOWER('John Jones') "Lower_Ex"
FROM dual;

Lower_EX

john jones

LPAD

Syntax: LPAD(expr1, n, expr2)

Purpose: LPAD returns expr1, left-padded to length n characters with the
sequence of characters in expr2. If expr2 is not specified, then the default
value is a single space.
SELECT LPAD('Page 1', 14, '.') "Lpad_Ex"
FROM dual;

Lpad_Ex

........Page 1

LTRIM

Syntax: LTRIM(char, set)

Purpose: LTRIM removes from the left end of char all of the characters
contained in set. If set is not specified, it defaults to a single space.
SELECT LTRIM('\----/DATA\----/', '/\-') "Ltrim_Ex"
FROM dual;

Ltrim_Ex

DATA\----/

SUBSTR

Syntax: SUBSTR(char, position, substring_length)

Purpose: The SUBSTR functions return a portion of char, beginning at
character position, substring_length characters long. SUBSTR calculates
lengths using characters as defined by the input character set.
SELECT SUBSTR('Jack and Jill went up the hill', 10, 4) "Substr_Ex"
FROM dual;

Substr_Ex

Jill

The following character functions return a numeric value.

ASCII

Syntax: ASCII(char)

Purpose: ASCII returns the decimal representation in the database character
set of the first character of char.
SELECT ASCII('G') "Ascii_Ex"
FROM dual;

Ascii_Ex

 71

LENGTH

Syntax: LENGTH(char)

Purpose: The LENGTH functions return the length of char. LENGTH
calculates length using characters as defined by the input character set.
SELECT LENGTH('1Z0-047') "Length_Ex"
FROM dual;

Length_Ex

7

Datetime Functions

ADD_MONTHS

Syntax: ADD_MONTHS(date, integer)

Purpose: ADD_MONTHS returns the supplied date plus integer months.
SELECT TO_CHAR(ADD_MONTHS('10-MAR-11', 1), 'DD-MON-YY') "Add_months_Ex"
FROM dual;

Add_months_Ex

10-APR-11

LAST_DAY

Syntax: LAST_DAY(date)

Purpose: Returns the last day of the month that contains date.
SELECT LAST_DAY('12-MAR-11') "Last_day_Ex"
FROM dual;

Last_day_Ex

31-MAR-11

MONTHS_BETWEEN

Syntax: MONTHS_BETWEEN(date1, date2)

Purpose: MONTHS_BETWEEN returns number of months between date1
and date2. If date1 is later than date2, then the result is positive. If date1 is
earlier than date2, then the result is negative. If date1 and date2 are either the
same days of the month or both last days of months, then the result is an
integer.
SELECT MONTHS_BETWEEN('02-JAN-12', '04-JUN-12') "Months_Between_Ex"
FROM dual;

Months_Between_Ex

-5.06451612903225806451612903225806451613

NEXT_DAY

Syntax: NEXT_DAY(date, char)

Purpose: NEXT_DAY returns the date of the first weekday named by char
that is later than date. The return type is always DATE, regardless of the data
type of date.
SELECT NEXT_DAY('03-MAR-12','FRIDAY') "Next_day_Ex"
FROM dual;

Next_day_Ex

09-MAR-12

Conversion Functions

TO_NUMBER

Syntax: TO_NUMBER(expr, fmt, ‘nlsparam’)

Purpose: TO_NUMBER converts expr to a value of NUMBER data type.
The expr can be a BINARY_DOUBLE value or a value of character data
type containing a number in the format specified by the optional format
model fmt. The optional 'nlsparam' argument specifies the language in which
the number format is returned.
SELECT TO_NUMBER('$4,355.80', 'FML999G990D00') “To_Num_Ex”
FROM dual;

To_Num_Ex

4355.8

TO_CHAR

Syntax: TO_CHAR(datetime, fmt, ‘nlsparam’)

Purpose: Converts a datetime to a value of VARCHAR2 data type in the
format specified by the date format fmt. The optional 'nlsparam' argument
specifies the language in which month and day names and abbreviations are
returned.
SELECT TO_CHAR(SYSDATE, 'Day, Month DD, YYYY') AS "To_Char_Ex"
FROM dual;

To_Char_Ex

Saturday , April 07, 2012

TO_DATE

Syntax: TO_DATE(char, fmt, ‘nlsparam’)

Purpose: TO_DATE converts char of a character data type to a value of
DATE data type. The fmt is a datetime model format specifying the format of
char. The 'nlsparam' argument specifies the language of the text string that is
being converted to a date.
SELECT TO_DATE('Saturday , April 07, 2012 ',
 'Day, Month DD, YYYY') AS "To_Date_Ex"
FROM dual;

To_Date_Ex

07-APR-12

General Functions

NVL

Syntax: NVL(expr1, expr2)

Purpose: NVL will replace NULL with a string. If expr1 is NULL, then
NVL returns expr2. If expr1 is not NULL, then NVL returns expr1.
SELECT NVL('', 'Value is NULL') "Nvl_Ex1",
 NVL(dummy, 'Value is NULL') "Nvl_Ex2"
FROM dual;

Nvl_Ex1 Nvl_Ex2
------------- -------------
Value is NULL X

NULLIF

Syntax: NULLIF(expr1, expr2)

Purpose: If expr1 and expr2 are equal, then NULLIF returns null. If they are
not equal, then is returns expr1. You cannot specify the literal NULL for
expr1.
SELECT NULLIF(dummy, 'X') "Nullif_Ex2"
FROM dual;

Nullif_Ex2

Use character, number, date and analytical functions in
SELECT statements
Character Functions

The character functions of Oracle modify or provide information regarding
character data types in Oracle. Character SQL functions can be used in the
SELECT clause in order to modify the data returned by a statement. The
following function transforms airport names to upper-case:
SELECT UPPER(apt_name) APT_NAME, apt_abbr
FROM airports;

APT_NAME APT_ABBR
------------------------------ --------
ORLANDO, FL MCO
ATLANTA, GA ATL
MIAMI, FL MIA
JACKSONVILLE, FL JAX
DALLAS/FORT WORTH DFW

The INITCAP function works similarly to the UPPER function except that it
capitalizes only the initial letter of each word:
SELECT INITCAP(apt_name) APT_NAME, apt_abbr
FROM airports;

APT_NAME APT_ABBR
---------------------- --------
Orlando, Fl MCO
Atlanta, Ga ATL
Miami, Fl MIA
Jacksonville, Fl JAX
Dallas/Fort Worth DFW

People often use INITCAP as a means of capitalizing names. It works
reasonably well for that in most cases. However, in others, it does not
properly handle the name. When you make use of functions, you need to
understand their behavior and consider how it will apply to your data.
SELECT INITCAP('THURSTON HOWELL, III') "Initcap_Fail_Ex"
FROM dual;

Initcap_Fail_Ex

Thurston Howell, Iii

You can also use SQL functions in the WHERE clause to create custom
conditions that will locate specific rows. In the example below, the airport
name is upper cased, and then the third character pulled out via the SUBSTR
function to return all airports with an ‘L’ as the third letter. This is a common
method for making a case-insensitive query.
SELECT apt_name, apt_abbr
FROM airports
WHERE SUBSTR(UPPER(apt_name), 3, 1) = 'L';

APT_NAME APT_ABBR
------------------------------ --------
Orlando, FL MCO
Atlanta, GA ATL
Dallas/Fort Worth DFW

Numeric Functions

Just as character functions alter or provide information about character data,
numeric functions perform operations against numeric data. Unlike character
and date functions, numeric functions always accept a numeric value and
always return a numeric value. In the following example, the annual salary of
employees is divided by the number of hours in a work year, and the result
rounded to two decimal places with the ROUND function:
SELECT emp_first, emp_last, ROUND(salary / 2080, 2) AS HOURLY_SAL
FROM employees
WHERE emp_job = 'Pilot';

EMP_FIRST EMP_LAST HOURLY_SAL
---------- ---------- ----------
John Jones 46.88
Top Gun 43.99
Phil McCoy 50.48
James Thomas 47.36
John Picard 23.8
Luke Skytalker 43.27
Dell Aptop 42.07
Noh Kia 44.35

The TRUNC function performs a function similar ROUND. However, where
the ROUND function will perform a rounding operation on decimal values to
the right of the defined precision, TRUNC simply removes all numbers to the
right of the defined precision. In the example below, Jones, Thomas, Picard,
Skytalker, and Aptop are all shown a penny lower because the tenths of a
penny were truncated rather than being rounded.
SELECT emp_first, emp_last, TRUNC(salary / 2080, 2) AS HOURLY_SAL
FROM employees
WHERE emp_job = 'Pilot';

EMP_FIRST EMP_LAST HOURLY_SAL
---------- ---------- ----------
John Jones 46.87
Top Gun 43.99
Phil McCoy 50.48
James Thomas 47.35
John Picard 23.79
Luke Skytalker 43.26
Dell Aptop 42.06
Noh Kia 44.35

Date Functions

As mentioned earlier, Oracle stores date data in an internal format that
contains century, year, month, day, hours, minutes, and seconds. The Oracle
date model can store dates between January 1, 4712 B.C. and December 31,
9999 A.D. That means that in a little less than 8000 years, someone is going
to predict the world will end on Dec 31, 9999 because Larry Ellison said it
would.

Date SQL functions are used to transform information in DATE data types.
In the below example, the MONTHS_BETWEEN function is used to
determine the number of months it has been since each of the pilots was
hired. Note that while two DATE types are passed to the function, a
NUMBER type is returned. The value returned by SQL DATE functions is
not always the same as the value passed to it.
SELECT emp_first, emp_last,

 MONTHS_BETWEEN(SYSDATE, start_date) AS months_since_hire
FROM employees
WHERE emp_job = 'Pilot';

EMP_FIRST EMP_LAST MONTHS_SINCE_HIRE
------------- -------------- -----------------
John Jones 203.57773484169653524492234169
Top Gun 185.48096064814814814814814814
Phil McCoy 189.60999290621266427718040621
James Thomas 154.51321871266427718040621266
John Picard 124.54547677718040621266427718
Luke Skytalker 114.57773484169653524492234169
Dell Aptop 103.19063806750298685782556750
Noh Kia 92.674509035244922341696535244

The MONTH_SINCE_HIRE value is really awkward in the above example.
Because the result of the MONTHS_BETWEEN function is a NUMBER
type, we can apply the numeric function TRUNC to the result to clean it up:
SELECT emp_first, emp_last,
 TRUNC(MONTHS_BETWEEN(SYSDATE, start_date)) AS months_since_hire
FROM employees
WHERE emp_job = 'Pilot';

EMP_FIRST EMP_LAST MONTHS_SINCE_HIRE
------------- --------------- -----------------
John Jones 203
Top Gun 185
Phil McCoy 189
James Thomas 154
John Picard 124
Luke Skytalker 114
Dell Aptop 103
Noh Kia 92

Performing Date Calculations

Not only is the Oracle date format numeric, but it is stored in such a way that
a single day equals one. The means that if you take a given date value and
add the number three to it, the resulting value is exactly three days later than
the original date value. Likewise you can subtract three from a given date and
the result date will be exactly three days prior to the original. The following
two examples demonstrate adding and subtracting the number three from the
current date.

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(SYSDATE + 3, 'DD-MON HH24:MI:SS') AS SYS_DATE_P3
FROM dual;

SYS_DATE SYS_DATE_P3
------------------------ ------------------------
07-APR 21:28:10 10-APR 21:28:10

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(SYSDATE - 3, 'DD-MON HH24:MI:SS') AS SYS_DATE_M3
FROM dual;

SYS_DATE SYS_DATE_M3
------------------------ ------------------------
07-APR 21:28:42 04-APR 21:28:42

Just as the number one represents a single day, fractions of 1 represent a
fraction of a day. To add or subtract hours from a date, you can use
increments of 1/24 (one hour). To add or subtract minutes from a date, you
can use increments of 1/1440 (there are 1440 minutes in a day). The
following two examples demonstrate this. The first subtracts seven hours
from the current date, and the second subtracts 22 minutes.
SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(SYSDATE - 7/24, 'DD-MON HH24:MI:SS')
 AS SYS_DATE_TR
FROM dual;

SYS_DATE SYS_DATE_TR
------------------------ ------------------------
07-APR 21:29:16 07-APR 14:29:16

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(SYSDATE - 22/1440, 'DD-MON HH24:MI:SS')
 AS SYS_DATE_TR
FROM dual;

SYS_DATE SYS_DATE_TR
------------------------ ------------------------
07-APR 21:33:52 07-APR 21:11:52

One interesting function not normally associated with dates is TRUNC.
Because dates are numeric, the TRUNC function can be used to modify the

date value. When applied against a date with no format specified, it removes
the decimal portion (the part of a day past midnight). When a format is
supplied, you can truncate to the start of the most recent hour, month or year
(among other possibilities). It’s also possible to use the ROUND function
with dates.
SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(TRUNC(SYSDATE), 'DD-MON HH24:MI:SS')
 AS TRUNC_DAY
FROM dual;

SYS_DATE TRUNC_DAY
------------------------ ------------------------
07-APR 21:42:54 07-APR 00:00:00

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(TRUNC(SYSDATE, 'HH'), 'DD-MON HH24:MI:SS')
 AS TRUNC_HOUR
FROM dual;

SYS_DATE TRUNC_HOUR
------------------------ ------------------------
07-APR 21:42:54 07-APR 21:00:00

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(TRUNC(SYSDATE, 'MM'), 'DD-MON HH24:MI:SS')
 AS TRUNC_MONTH
FROM dual;

SYS_DATE TRUNC_MONTH
------------------------ ------------------------
07-APR 21:43:26 01-APR 00:00:00

SELECT TO_CHAR(SYSDATE, 'DD-MON HH24:MI:SS') AS SYS_DATE,
 TO_CHAR(TRUNC(SYSDATE, 'YYYY'), 'DD-MON HH24:MI:SS')
 AS TRUNC_YEAR
FROM dual;

SYS_DATE TRUNC_YEAR
------------------------ ------------------------
07-APR 21:43:49 01-JAN 00:00:00

RR date Format

This date format was a product of the Y2K hysteria in the late 90s. For years
two digits had been used as shorthand to represent a four-digit year (01-JAN-
71 instead of 01-JAN-1971). Suddenly, everyone realized that the millennium
was about to end and reset the numbering scheme. Programs that simply
added the current millennium and century to a two-digit year would produce
a date that was 100 years off from what was originally intended.

The RR date format was designed to allow existing interfaces with two-digit
years to be used and have the database logically determine what millennium
and century the user intended. The RR logic makes use of the current two-
digit year and compares it to the supplied two-digit year to determine what
was meant.

If current year is 0-49 (i.e. 2000-2049) and supplied year is 0-49, use
current century.
If current year is 50-99 (i.e. 2050-2099) and supplied year is 50-99,
use current century.
If current year is 0-49 and supplied year is 50-99, use prior century.
If current year is 50-99 and supplied year is 0-49, use next century.

Keep in mind that this logic isn’t always correct. For example, it would make
the wrong choice if you were entering a birth date into Oracle for someone
who was born in 1932. The RR logic would store this value as 2032. For
numbers that can span decades, you should really make use of a four-digit
year so that there is no ambiguity whatsoever in the meaning.

Analytic Functions

The Oracle test development team arguably could have put analytic functions
either in this section with single-row functions or in the next section on using
the group functions to report on aggregated data. Analytic functions are
somewhere in-between the two. Single-row functions produce one value per
row processed and act only on data in that row. Aggregate functions act on
groups of rows and return one result per group. The following two queries

against the AIRCRAFT_TYPES table make use of a single-row function and
aggregate function respectively:
SELECT UPPER(act_body_style) ACT_BODY_STYLE, act_seats
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS
-------------- ----------
WIDE 416
WIDE 350
NARROW 200
NARROW 240
WIDE 407
WIDE 296
NARROW 200
WIDE 525

SELECT act_body_style, AVG(act_seats) AVG_SEATS
FROM aircraft_types
GROUP BY act_body_style;

ACT_BODY_STYLE AVG_SEATS
-------------- ----------
Wide 398.8
Narrow 213.333333

Analytic functions act like aggregate functions in that they generate a value
based on a group of rows rather than a single row. However, instead of
returning a single row for each grouping, analytic functions return one result
per row acted on by the query. The following example executes an aggregate
function against the AIRCRAFT_TYPES table. The result of the function is
similar to the aggregate example above, but the number of rows is the same
as was returned by the single-row function above:
SELECT act_body_style, act_seats,
 AVG(act_seats) OVER (PARTITION BY act_body_style) AVG_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS AVG_BY_STYLE
-------------- ---------- ------------
Narrow 240 213.333333
Narrow 200 213.333333
Narrow 200 213.333333
Wide 525 398.8
Wide 407 398.8
Wide 296 398.8
Wide 350 398.8

Wide 416 398.8

The grouped rows in an analytic query are called a window. The window of
rows is not set but rather slides based on the row currently being acted on by
the function. For example, the analytic function might include ten rows above
and ten rows below the current row when calculating a value. The size of the
window can be either a count of rows or a logical interval such as time. The
SQL engine processes analytic functions immediately prior to the ORDER
BY clause (and after the WHERE, GROUP BY, and HAVING clauses). For
this reason, they can only appear in the SELECT list of a query.

The basic syntax for an analytic function is as follows.
analytic_function([arguments]) OVER (analytic_clause)

The analytic_clause can contain the following optional elements.
[query_partition_clause] [order_by_clause [windowing_clause]]

The query_partition_clause serves to partition the query result set into groups
based on one or more expressions. When omitted, the function will treat all
rows returned by the query as a single group. It is possible to have multiple
analytic functions in the same query, and the PARTITION BY keys can be
the same or different for each. The expressions used in the
query_partition_clause can be constants, columns, nonanalytic functions,
function expressions, or expressions involving any of these. The following
example uses the same query from above with a blank query_partition_clause
to generate the average number of seats across all aircraft:
SELECT act_body_style, act_seats,
 AVG(act_seats) OVER () AVG_OVER_ALL
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS AVG_OVER_ALL
-------------- ---------- ------------
Wide 416 329.25
Wide 350 329.25
Narrow 200 329.25
Narrow 240 329.25
Wide 407 329.25
Wide 296 329.25

Narrow 200 329.25
Wide 525 329.25

The order_by_clause is utilized to order the rows within a partition. It is
possible to order the values in the partitions for all analytic functions on one
or more keys. Each key is defined by an expression and can be qualified by
an ordering sequence. The following example shows the result of ordering
the AIRCRAFT_TYPES query by the ACT_SEAT column:
SELECT act_body_style, act_seats,
 AVG(act_seats) OVER (PARTITION BY act_body_style ORDER BY act_seats)
AVG_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS AVG_BY_STYLE
-------------- ---------- ------------
Narrow 200 200
Narrow 200 200
Narrow 240 213.333333
Wide 296 296
Wide 350 323
Wide 407 351
Wide 416 367.25
Wide 525 398.8

Many but not all of the analytic functions allow the windowing_clause. This
clause allows more control over the window used in calculating the function
value. Some of the options allowed in this clause include:

ROWS | RANGE -- Define the a window used for calculating the
function result for each row. ROWS specifies the window in physical
units (rows). RANGE specifies the window as a logical offset. In order
to use this clause, the function must also specify an order_by_clause.
BETWEEN ... AND -- This clause is used to specify a start point and
end point for the window.
UNBOUNDED PRECEDING -- This indicates that the window starts
at the first row of the partition.
UNBOUNDED FOLLOWING -- This indicates that the window ends
at the last row of the partition.
CURRENT ROW -- This can be used to specify that the window
begins at the current row or value (depending on whether you have

specified ROW or RANGE) or the end row or value of the range.

There are around fifty analytic functions defined in the Oracle 12c SQL
Reference manual. You should reference the documentation for more
examples. Following are more details on the handful specifically noted in the
section title:

PERCENTILE_CONT

This function accepts a percentile value and a sort specification, and returns
an interpolated value that would fall into that percentile value with respect to
the sort specification. Any NULL values in the data are ignored. The 'CONT'
suffix means that the function assumes a continuous distribution model.
There is a PERCENTILE_DISC function that assumes a discrete distribution
model. The difference between the two models gets deeper into statistics than
the exam (or this guide) will get into. Google it if you are particularly
interested.

The following example uses the PERCENTILE_CONT function to calculate
the value that is at the midpoint of the window for Narrow and Wide body
styles. For Narrow, the middle row has a value of 200 seats and for Wide it it
407.
SELECT act_body_style, act_seats,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY act_seats)
 OVER (PARTITION BY act_body_style) PC_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS PC_BY_STYLE
-------------- ---------- -----------
Narrow 200 200
Narrow 200 200
Narrow 240 200
Wide 296 407
Wide 350 407
Wide 407 407
Wide 416 407
Wide 525 407

STDDEV

This function generates the sample standard deviation of a supplied
expression. The following example calculates the standard deviation of the
aircraft seats by body style.
SELECT act_body_style, act_seats,
 STDDEV(act_seats) OVER (PARTITION BY act_body_style) STDV_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS STDV_BY_STYLE
-------------- ---------- -------------
Narrow 240 23.0940108
Narrow 200 23.0940108
Narrow 200 23.0940108
Wide 525 85.4967836
Wide 407 85.4967836
Wide 296 85.4967836
Wide 350 85.4967836
Wide 416 85.4967836

LAG

This function allows a query to access more than one row of a table
simultaneously without performing a self join. LAG provides access to a row
at a given physical offset prior to the current row. LAG takes two optional
arguments, an offset and a default value. The offset argument, if specified,
should be an integer greater than zero (the default is 1). The default value will
be returned if the offset goes beyond the scope of the window (by default this
is NULL). The following example uses LAG with an offset of two and no
default value set. The first two rows are outside the scope and return NULL.
The remaining rows return the ACT_SEATS value from two rows prior.
SELECT act_body_style, act_seats,
 LAG(act_seats, 2) OVER (ORDER BY act_seats) LAG_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS LAG_BY_STYLE
-------------- ---------- ------------
Narrow 200
Narrow 200
Narrow 240 200
Wide 296 200
Wide 350 240
Wide 407 296
Wide 416 350
Wide 525 407

LEAD

This is the counterpart to LAG and allows a query to access rows following
the current one. The arguments and defaults are the same as those of LAG.
SELECT act_body_style, act_seats,
 LEAD(act_seats, 1, 0) OVER (ORDER BY act_seats) LEAD_BY_STYLE
FROM aircraft_types;

ACT_BODY_STYLE ACT_SEATS LEAD_BY_STYLE
-------------- ---------- -------------
Narrow 200 200
Narrow 200 240
Narrow 240 296
Wide 296 350
Wide 350 407
Wide 407 416
Wide 416 525
Wide 525 0

LISTAGG

For a specified measure, LISTAGG orders data within each group specified
in the ORDER BY clause and then concatenates the values of the measure
column.

As a single-set aggregate function, LISTAGG operates on all rows and
returns a single output row.
As a group-set aggregate, the function operates on and returns an
output row for each group defined by the GROUP BY clause.
As an analytic function, LISTAGG partitions the query result set into
groups based on one or more expression in the query_partition_clause.

SELECT LISTAGG(act_name, ': ')
 WITHIN GROUP (ORDER BY act_seats, act_name) AIRCRAFT,
 MIN(act_seats) LEAST_SEATS
 FROM aircraft_types
 WHERE act_decks = 'Single';

AIRCRAFT LEAST_SEATS
-- -----------
Airbus A320: Boeing 737: Boeing 757: Boeing 787: Boeing 767: Boeing 777 200

Using Conversion Functions and Conditional
Expressions
Describe various types of conversion functions that are
available in SQL
From what’s been presented so far, it’s clear that the separation between data
types isn’t always as complete as it would appear at first glance. For example,
dates are stored as a number and can have arithmetic performed on them but
are always displayed as character data. For this reason, it’s an extremely
common occurrence for the Oracle server to receive data in one data type
when it expects a different one. When that happens, there must be a
conversion operation.

Implicit Conversion

Any time a SQL operation encounters an argument of a data type other than
the one expected, Oracle will make an attempt to convert the argument to the
expected type. If the conversion is successful, then Oracle will perform the
SQL function with no outward indication that the conversion took place. If
the conversion is unsuccessful, the operation will fail, and an error will be
generated.

This automatic process is called implicit conversion. Oracle is so good at
implicit conversion that the only time you realize that a conversion operation
is taking place is when something prevents it from doing so and you get an
error.

The implicit conversion of number to character and Oracle stored date values
to character is seamless and the conversion itself will never generate errors.
Any number value can also be a character value. Returned date values will
always be implicitly converted to a character format matching the current
NLS_DATE_FORMAT parameter (or the default of ‘DD-MON-YY’ if that
parameter isn’t set).

Implicit conversion of character to number only works when the character is
a valid number. Implicitly converting ‘2354’ to number will succeed whereas
implicitly converting ‘14a’, ‘2,423’, or ‘$12.52’ will fail because non-
numeric elements are present in the character string. Likewise converting a
character to a date implicitly will succeed only if the character data matches
the current NLS_DATE_FORMAT parameter. If there is anything that
prevents an implicit conversion from taking place, you must explicitly
convert the data.

In the following example, the NLS_DATE_FORMAT is DD-MON-RR and
so Oracle is able to implicitly convert the character data ’01-MAY-03’ into a
date and execute the query.
SELECT emp_first, emp_last, emp_job, start_date
FROM employees
WHERE start_date > '01-MAY-03';

EMP_FIRST EMP_LAST EMP_JOB START_DATE
---------- ---------- ---------- ----------
Dell Aptop Pilot 22-AUG-03
Noh Kia Pilot 07-JUL-04

Executing the query using a different date format generates an error because
implicit date conversion fails:
SELECT emp_first, emp_last, emp_job, start_date
FROM employees
WHERE start_date > '01-05-03';

SQL Error: ORA-01843: not a valid month
01843. 00000 - "not a valid month"

Explicit Conversion

Despite how good Oracle is at implicit conversion, it’s not really good
practice to rely on it. When implicit conversion fails, it generates errors and
stops whatever process was being performed. The recommended practice is
that you use the available functions where there is a need to convert data from
one data type into the required data type. This is known as explicit
conversion. The three most common conversion functions are:

TO_CHAR – Converts a number or date value into a character data

type.
TO_NUMBER – Converts a character string into a number data type.
TO_DATE – Converts a character or number data type into a date data
type.

There are other conversion functions – notably some involving LOB or Large
Object data types. However, you are very unlikely to see these on the exam.
To learn more about them, you should make use of the Oracle SQL
Reference Manual.

Explicitly converting the date from the previous example allows the query to
execute successfully:
SELECT emp_first, emp_last, emp_job, start_date
FROM employees
WHERE start_date > TO_DATE('01-05-03', 'DD-MM-YY');

EMP_FIRST EMP_LAST EMP_JOB START_DATE
---------- ---------- ---------- ----------
Dell Aptop Pilot 22-AUG-03
Noh Kia Pilot 07-JUL-04

Use the TO_CHAR, TO_NUMBER, and TO_DATE
conversion functions
Using the TO_CHAR function

The TO_CHAR function has three variants depending on the input data type:
TO_CHAR (character), TO_CHAR(datetime), and TO_CHAR(number). The
first of the three is used to convert multibyte characters or CLOB data to a
VARCHAR2 data type. It is the least commonly seen and is unlikely to be
represented on the test. This guide will deal with the second two variants.

TO_CHAR

Syntax: TO_CHAR(datetime, ‘fmt’, ‘nlsparam’)

Purpose: TO_CHAR (datetime) converts a datetime or interval value of
DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL DAY TO SECOND, or
INTERVAL YEAR TO MONTH data type to a value of VARCHAR2 data
type in the format specified by the date format fmt.

The following example demonstrates converting (and splitting) the system
date into separate date and time values.
SELECT TO_CHAR(SYSDATE, 'YYYY, MON DD') AS TC_DATE,
 TO_CHAR(SYSDATE, 'HH:MI AM') AS TC_TIME
FROM dual;

TC_DATE TC_TIME
--------------------- --------
2012, APR 07 11:23 PM

TO_CHAR

Syntax: TO_CHAR(n, ‘fmt’, ‘nlsparam’)

Purpose: TO_CHAR (number) converts n to a value of VARCHAR2 data
type, using the optional number format fmt. If you omit fmt, then n is
converted to a VARCHAR2 value exactly long enough to hold its significant
digits. When the nlsparam value is specified, it determines the decimal
character, group separator, local currency symbol, and the international

currency symbol of the returned value.
SELECT TO_CHAR('4235.34','FML9,999.99') "To_char_Ex"
FROM dual;

To_char_Ex

$4,235.34

Using the TO_NUMBER function

The TO_NUMBER function of Oracle is generally used when you have
numeric data that is currently in a character data type and you need to
perform arithmetic on it, pass it to a function expecting a numeric argument,
or store it in a NUMBER field of a table. Oracle’s implicit conversion works
extremely well when character data is already formatted as a bare number.
The most common use of TO_NUMBER is when the character string
contains non-numeric aspects. This might be dollar signs, commas, or other
formatting elements that will prevent Oracle from being able to determine the
specific numeric value to convert the string to.

TO_NUMBER

Syntax: TO_NUMBER(expr, fmt, 'nlsparam')

Purpose: Converts expr to a value of NUMBER data type. The expr can be
a BINARY_DOUBLE value or a character data type containing a number in
the format specified by the optional format model fmt. The optional
'nlsparam' argument specifies the language of the char input.
SELECT TO_NUMBER('$4,235.34','FML9,999.99') "To_number_Ex"
FROM dual;

To_number_Ex

4235.34

SELECT TO_NUMBER('3.4E+05', '9.9EEEE')
FROM dual;

TO_NUMBER('3.4E+05','9.9EEEE')

 340000

Using the TO_DATE Function

As with the TO_NUMBER function, you are required to use the TO_DATE
conversion function when a character value is in a date format that Oracle
does not recognize implicitly. The default date format that Oracle uses is
dependent on options chosen during the install. One of the more common
default formats is DD-MON-YY. This default can be altered by setting the
parameter NLS_DATE_FORMAT for either the session or the database. The
TO_DATE function, however, can be used to convert text to a date from any
format that can be expressed with a date format string. The date format
strings in Oracle are flexible enough that this evaluates to effectively any date
format.

TO_DATE

Syntax: TO_DATE(char, fmt, 'nlsparam')

Purpose: Converts character data to a value of DATE data type. fmt is a
datetime model format matching the char input. If fmt is omitted, char must
be in the default date format. The optional 'nlsparam' argument specifies the
language of the char input.
SELECT TO_DATE('February 23, 2012, 2:23 P.M.', 'Month dd, YYYY, HH:MI A.M.') AS
"To_date_Ex"
FROM dual;

To_date_Ex

23-FEB-12

Most of the conversion formats from character to date are alphanumeric. The
exception is a Julian date. When using TO_DATE to convert a Julian date,
the char value must evaluate to an integer value. The integer can be enclosed
in single quotes or not.
SELECT TO_DATE(2456029, 'J') AS "To_date_Ex"
FROM dual;

To_date_Ex

11-APR-12

Format Modifiiers

The fx format modifier alters the behavior of Oracle’s format checking when
it is included as part of the format model. FX stands for ‘format exact’ and
forces the character data being checked to match exactly with the supplied
format model. Using one of the previous examples, an extra space is added in
the string to be converted before ‘2012’. The original format model supplied
in that example is still able to recognize and convert the date.
SELECT TO_DATE('February 23, 2012, 2:23 P.M.', 'Month dd, YYYY, HH:MI A.M.') AS
"To_date_Ex"
FROM dual;

To_date_Ex

23-FEB-12

However, when the ‘fx’ modifier is placed in front of the format model and
the statement executed again, the conversion fails because the format model
expects only a single space between the comma and year.
SELECT TO_DATE('February 23, 2012, 2:23 P.M.',
 'fxMonth dd, YYYY, HH:MI A.M.') AS "To_date_Ex"
FROM dual;

SQL Error: ORA-01841: (full) year must be between -4713 and +9999, and not be 0
01841. 00000 - "(full) year must be between -4713 and +9999, and not be 0"
*Cause: Illegal year entered
*Action: Input year in the specified range

A second modifier available to format models is fm which stands for 'Fill
Mode'. By default Oracle fills format elements converted via the TO_CHAR
function to a constant width using trailing blanks for character models and
leading zeroes for numeric models. The width used is equal to the display
width of the largest relevant format model element. For example, when using
TO_CHAR to format a date value using the MONTH model when the date
language is AMERICAN, the longest month name is 'September' so all

months are right-padded to nine characters. The format model HH24 is left-
padded to two digits with a ‘0’. The fm modifier is used to toggle that
padding off or on. The first time it is used in a format model, the padding will
be turned off. If it appears a second time, the padding will be turned back on.
For example, the two queries below demonstrate the results with and without
the fm modifier:
SELECT TO_CHAR(SYSDATE, 'MONTH DD HH24:MI') AS no_fm
FROM dual;

JULY 13 09:50

SELECT TO_CHAR(SYSDATE, 'fmMONTH DD HH24:MI') AS no_fm
FROM dual;

JULY 13 9:50

Note that using the fm modifier a second time in the same model turns the fill
mode back on:
SELECT TO_CHAR(SYSDATE, 'fmMONTH DD fmHH24:MI') AS no_fm
FROM dual;

JULY 13 09:50

Apply general functions and conditional expressions in
a SELECT statement
Conditional expressions provide SQL statements with the ability to perform
IF-THEN-ELSE decisions. This is a very useful capability as it gives SQL a
small portion of the procedural capabilities that otherwise would require a
PL/SQL block. The two conditional expressions that can be performed within
SQL in Oracle are CASE and DECODE. The CASE function is part of the
capabilities defined within the ANSI SQL specification whereas DECODE is
an Oracle-proprietary function. As a general rule, using ANSI SQL is
considered better practice, so it is the conditional expression that I would
recommend using and the one more likely to appear on an exam question.

The syntax for a CASE statement is:
CASE expr
 WHEN comp_1 THEN return_1;
 [WHEN comp_2 THEN return_2, …]
 ELSE return_else
END CASE;

In processing a CASE statement, Oracle will evaluate the WHEN conditions
from top-down. As soon as any of the conditions evaluates to TRUE, the
evaluation process stops and the value listed in the current WHEN condition
is returned by the CASE statement. If none of the WHEN conditions
evaluates to TRUE, the value in the ELSE condition is returned by the CASE
statement. If a CASE statement doesn’t match any of the supplied WHEN
conditions and no ELSE condition is provided, Oracle will return NULL. The
following CASE example provides a return value that depends on the
employee’s job title.
SELECT emp_first || ' ' || emp_last,
 CASE emp_job
 WHEN 'CEO' THEN 'This is the big Kahuna'
 WHEN 'CFO' THEN 'The dude holding the piggy bank'
 WHEN 'SVP' THEN 'Senior right-hand guy'
 WHEN 'VP' THEN 'Right-hand guy'
 WHEN 'SrDir' THEN 'Middle Management'
 WHEN 'Mgr' THEN 'Lower Management'
 ELSE 'Just another peon'
 END CASE
FROM employees

ORDER BY emp_id;

EMP_FIRST||''||EMP_LAST CASE
----------------------- -------------------------------
Big Boss This is the big Kahuna
Adam Smith The dude holding the piggy bank
Rick Jameson Senior right-hand guy
Rob Stoner Senior right-hand guy
Bill Abong Right-hand guy
Janet Jeckson Right-hand guy
Fred Stoneflint Middle Management
Alf Alien Middle Management
Norm Storm Lower Management
John Jones Just another peon
Top Gun Just another peon
Phil McCoy Just another peon
James Thomas Just another peon
John Picard Just another peon
Luke Skytalker Just another peon
Dell Aptop Just another peon
Noh Kia Just another peon

When creating a CASE statement, the conditions must be given careful
consideration. The example below has two flaws that affect the results for the
747 and 757. There is no condition that covers planes with 220-250 seats, so
nothing is returned for the 757. The second problem is that the 747 should
class as a ‘Jumbo Airplane’ based on the conditions. However, since
conditions are evaluated from the top down, the 747 meets the criteria for the
‘Bigger Airplane’ and later conditions are not evaluated.
SELECT act_name, act_seats,
 CASE
 WHEN act_seats < 220 THEN 'Small Airplane'
 WHEN act_seats > 250 THEN 'Bigger Airplane'
 WHEN act_seats > 400 THEN 'Jumbo Airplane'
 END CASE
FROM aircraft_types;

ACT_NAME ACT_SEATS CASE
------------ --------- ---------------
Boeing 747 416 Bigger Airplane
Boeing 767 350 Bigger Airplane
Boeing 737 200 Small Airplane
Boeing 757 240

The DECODE statement predates Oracle’s implementation of the CASE

capability. It provides a similar capability to CASE, but is not quite as
flexible. It is designed to evaluate equality only, whereas CASE can use
multiple conditional operators (>, <, !=, etc.) In addition, when a DECODE
statement is evaluating multiple conditions, it becomes difficult to read. The
syntax for DECODE is:
DECODE(expr, search, result [,search2, result2…], default)

A DECODE function compares the value of expr to each search value one by
one. If expr is equal to a search value, then processing stops and the function
returns the corresponding result. If no match is found, the default is returned.
If there is no default, then the DECODE returns null. All of those are
identical to the behavior of a CASE except the last.
SELECT apt_name,
 DECODE(apt_abbr,
 'MCO', 'Going to Disneyworld',
 'MIA', 'CSI Miami, here I come',
 'ATL', 'Need to get some peaches',
 'DFW', 'Everything is bigger in Texas',
 'Is Jacksonville known for anything?')
 AS DC_RETVAL
FROM airports;

APT_NAME DC_RETVAL
------------------ ------------------------------------
Orlando, FL Going to Disneyworld
Atlanta, GA Need to get some peaches
Miami, FL CSI Miami, here I come
Jacksonville, FL Is Jacksonville known for anything?
Dallas/Fort Worth Everything is bigger in Texas

Reporting Aggregated Data Using the Group Functions

Describe the use of group functions
Group functions (also known as aggregate functions) act against one or more
rows and return a single result. This is in comparison to single-row functions
that always return one result for each row processed by a given query.
Aggregate functions are useful for analyzing data across multiple rows and
for generating data that applies to one or more sets of rows (like the highest
salary or the average age). The data returned might be in multiple groups
based on column data if the SELECT statement contains a GROUP BY
clause.

As with the Oracle SQL functions, there are too many group functions
available to define them all in this guide. Some of the more common ones
follow. For a complete list, you should refer to the SQL Language Reference
manual.

AVG

Syntax: AVG(DISTINCT/ALL expr)

Purpose: AVG returns average value of expr.
SELECT AVG(salary) "Average"
FROM employees;

Average

115814.7058823529411764705882352941176471

COUNT

Syntax: COUNT(DISTINCT/ALL expr)

Purpose: COUNT returns the number of rows where expr has at least one
non-NULL value.
SELECT COUNT(emp_id) "NoNullCount",
 COUNT(afl_id) "CountHasNulls"
FROM employees;

NoNullCount CountHasNulls
----------- -------------
 17 8

The above example demonstrates that the COUNT function will not count
individual columns when they contain a NULL value. However, COUNT(*)
will count all rows that meet the filter condition even if every single column
value is NULL. This is demonstrated with the below example:
CREATE TABLE count_null_test (
col1 VARCHAR2(1),
col2 VARCHAR2(1)
);
table COUNT_NULL_TEST created.

INSERT INTO count_null_test VALUES (NULL, NULL);
1 rows inserted.
INSERT INTO count_null_test VALUES (NULL, NULL);
1 rows inserted.
INSERT INTO count_null_test VALUES (NULL, NULL);
1 rows inserted.

SELECT COUNT(*), COUNT(col1), COUNT(col2)
FROM count_null_test;

COUNT(*) COUNT(COL1) COUNT(COL2)
-------- ----------- -----------
 3 0 0

MEDIAN

Syntax: MEDIAN(expr)

Purpose: MEDIAN takes a numeric or datetime value and returns the
middle value or an interpolated value that would be the middle value once the
values are sorted.
SELECT emp_job, MEDIAN(salary)
FROM employees
GROUP BY emp_job
ORDER BY MEDIAN(salary) DESC;

EMP_JOB MEDIAN(SALARY)
------------------------------ --------------
CEO 197500
CFO 157000
SVP 147150
VP 125650
SrDir 111000
Mgr 101500

Pilot 92875

MIN

Syntax: MIN(DISTINCT/ALL expr)

Purpose: MIN returns minimum value of expr.
SELECT MIN(start_date) "Earliest"
FROM employees;

Earliest

10-APR-92

MAX

Syntax: MAX(DISTINCT/ALL expr)

Purpose: MAX returns the maximum value of expr.
SELECT MAX(start_date) "Latest"
FROM employees;

Latest

07-JUL-04

SUM

Syntax: SUM(DISTINCT/ALL expr)

Purpose: SUM returns the sum of all expr values.
SELECT SUM(salary) "Sum_Salary"
FROM employees;

Sum_Salary

 1935350

Aggregate functions are intended to group together multiple rows based on a
supplied common factor and return a single result for the entire group rather

than one result for each row in the table. These functions can appear in select
lists and in ORDER BY and HAVING clauses. Aggregate functions are not
allowed in a WHERE clause:

Aggregates are commonly used in conjunction with the GROUP BY clause in
a SELECT statement. When a query contains a GROUP BY clause, the
individual elements of the select list can be aggregate functions, GROUP BY
expressions, constants, or expressions involving one of these. The aggregate
functions will be applied to each group of rows and a single result row
returned for each group.
SELECT emp_job, MAX(salary)
FROM employees
GROUP BY emp_job;

EMP_JOB MAX(SALARY)
---------- -----------
VP 127800
SrDir 111500
SVP 149100
Mgr 101500
Pilot 105000
CEO 197500
CFO 157000

When a query contains aggregate functions but no GROUP BY clause, the
aggregate functions in the select list are applied to all the rows returned by
the query. In this event, one row would be returned for the entire statement.
SELECT MAX(salary)
FROM employees;

MAX(SALARY)

 197500

Many aggregate functions that take a single argument will accept the use of
the DISTINCT/UNIQUE keyword. These will cause an aggregate function to
consider only distinct values of the argument expression. Aggregate functions
that will accept DISTINCT/UNIQUE will also accept the ALL keyword. This
causes an aggregate function to consider all values, including all duplicates.
If you specify no keyword, then the default is ALL. The first example below

uses the ALL keyword and the second does not. The results are identical.
SELECT COUNT(DISTINCT emp_job) distinct_values,
 COUNT(ALL emp_job) AS all_values
FROM employees;

DISTINCT_VALUES ALL_VALUES
--------------- ----------
 7 17

SELECT COUNT(DISTINCT emp_job) distinct_values,
 COUNT(emp_job) AS all_values
FROM employees;

DISTINCT_VALUES ALL_VALUES
--------------- ----------
 7 17

By default, NULL values are ignored by all of the aggregate functions. There
are exceptions to this rule: the COUNT(*) function as described earlier as
well as the GROUPING, and GROUPING_ID aggregate functions. The
GROUPING and GROUPING_ID syntax is not listed in the exam topics and
should not appear on this exam. If you are asked a question about NULLs and
aggregate functions, the answer they are looking for is almost certain to be
that they are ignored.

The COUNT function will never return a NULL no matter what the values in
the table are. The result of the COUNT function will be an integer value 0 or
greater. All other aggregate functions will return a NULL value if a data set
either has no rows or has only rows with NULL as the aggregate function
argument.

Not all of the aggregate functions can be used against all data types.

AVG, SUM, MIN, and MAX can be used against numeric data
MIN and MAX can be used against date and character data as well
COUNT can be used against essentially any data

Below, the MAX function is used successfully against date and character
data. Recall from earlier, however, that character-based sorting (and therefore
the ‘highest’ and ‘lowest’) values are not necessarily what you would expect.

The ‘MAX’ value of a character field that included ‘3’, ‘12’, and ‘1000000’
would be ‘3’.
SELECT MAX(emp_first) AS "Max_First",
 MAX(start_date) AS "Max_Start"
FROM employees;

Max_First Max_Start
---------- ---------
Top 07-JUL-04

If you try to use an aggregate function on a data type that is not supported,
you will receive an error. It might seem like pulling the average from a set of
dates would be reasonable, but this is not possible using AVG:
SELECT AVG(start_date)
FROM employees;

SQL Error: ORA-00932: inconsistent datatypes: expected NUMBER got DATE
00932. 00000 - "inconsistent datatypes: expected %s got %s"

Group data by using the GROUP BY clause
You specify the GROUP BY clause when you want Oracle to group selected
rows based on the value of one or more expressions for each row and return a
single row of summary information for each group. Expressions in the
GROUP BY clause can contain any columns of the tables in the FROM
clause, regardless of whether the columns appear in the select list. The
GROUP BY clause groups rows but it does not guarantee the order of the
result set. You must make use of the ORDER BY clause to order the grouped
results. When a SELECT clause contains one or more aggregate functions,
any column that is not included in a group function must be part of the
GROUP BY clause.
SELECT emp_job, MAX(salary) max_salary
FROM employees
GROUP BY emp_job;

EMP_JOB MAX_SALARY
------------------------------ ----------
VP 127800
SrDir 111500
SVP 149100
Mgr 101500
Pilot 98500
CEO 197500
CFO 157000

SELECT emp_job, MAX(salary) max_salary
FROM employees
GROUP BY emp_job
ORDER BY emp_job;

EMP_JOB MAX_SALARY
------------------------------ ----------
CEO 197500
CFO 157000
Mgr 101500
Pilot 98500
SVP 149100
SrDir 111500
VP 127800

When you add additional columns to a GROUP BY clause, you will

(generally) increase the number of groups returned by the query. The below
examples show data from the AIRCRAFT_FLEET_V view grouped by one
column, and then by two columns.
SELECT apt_name, SUM(act_seats)
FROM aircraft_fleet_v
GROUP BY apt_name;

APT_NAME SUM(ACT_SEATS)
---------------------- --------------
Miami, FL 832
Atlanta, GA 440
Orlando, FL 700
Dallas/Fort Worth 766

SELECT apt_name, act_name, SUM(act_seats)
FROM aircraft_fleet_v
GROUP BY apt_name, act_name;

APT_NAME ACT_NAME SUM(ACT_SEATS)
---------------------- ------------ --------------
Atlanta, GA Boeing 757 240
Dallas/Fort Worth Boeing 767 350
Orlando, FL Boeing 767 700
Atlanta, GA Boeing 737 200
Miami, FL Boeing 747 832
Dallas/Fort Worth Boeing 747 416

Grouping functions can be nested within another grouping function to a
limited degree. It is possible to nest two levels of grouped functions, but not
three. When nesting aggregate functions, the GROUP BY clause is
mandatory. In the example below, the average number of seats grouped by
the number of decks is calculated.
SELECT AVG(act_seats)
FROM aircraft_types
GROUP BY act_decks;

AVG(ACT_SEATS)

263.3333333333
 416

The SQL from the above query is modified to generate the maximum of the
average values returned and completes successfully:
SELECT MAX(AVG(act_seats))
FROM aircraft_types
GROUP BY act_decks;

MAX(AVG(ACT_SEATS))

 416

The following example attempts to add one more level of nesting and
generates an ORA-00935 error:
SELECT COUNT(MAX(AVG(act_seats)))
FROM aircraft_types
GROUP BY act_decks;

SQL Error: ORA-00935: group function is nested too deeply
00935. 00000 - "group function is nested too deeply"
*Cause:
*Action:

An error is also returned if the nesting SQL does not include a GROUP BY
clause:
SELECT MAX(AVG(act_seats))
FROM aircraft_types;

SQL Error: ORA-00978: nested group function without GROUP BY
00978. 00000 - "nested group function without GROUP BY"

Include or exclude grouped rows by using the HAVING
clause
When the GROUP BY clause is present in a SQL statement, you can also
make use of the HAVING clause. The HAVING clause is used to restrict the
groups of returned rows to those groups for which the specified condition is
TRUE. If the HAVING clause is omitted, then the database returns summary
rows for all groups generated by the query. The GROUP BY and HAVING
clauses must be after the WHERE clause and hierarchical query clause
(hierarchical queries are discussed later in this guide), but before the ORDER
BY clause. If you specify both GROUP BY and HAVING, then they can
appear in either order. If a HAVING clause contains a subquery, the
subquery is resolved before evaluating the HAVING clause.

The WHERE clause is evaluated before the data is aggregated by a query.
Therefore, any conditions in the WHERE clause will remove individual rows
prior to the aggregation. You should always keep in mind that WHERE
conditions apply to rows and HAVING conditions apply to groups.
Aggregate functions cannot be referenced in the WHERE clause and the
HAVING clause cannot filter individual rows.

We’ll add another filter to the above query to remove the CEO from the
results by adding a second condition to the HAVING clause. Since the CEO
is a single row in the table, you might expect this to generate an error.
However it succeeds and returns the expected results.
SELECT emp_job, MAX(salary) max_salary
FROM employees
GROUP BY emp_job
HAVING MAX(salary) > 111500
AND emp_job != 'CEO'
ORDER BY emp_job;

EMP_JOB MAX_SALARY
---------- ----------
CFO 157000
SVP 149100
VP 127800

Filtering the CEO using the WHERE clause also works:

SELECT emp_job, MAX(salary) max_salary
FROM employees
WHERE emp_job != 'CEO'
GROUP BY emp_job
HAVING MAX(salary) > 111500
ORDER BY emp_job;

EMP_JOB MAX_SALARY
---------- ----------
CFO 157000
SVP 149100
VP 127800

The reason why this works in either the WHERE or HAVING clauses is
because EMP_JOB is part of the GROUP BY clause. Even though only a
single row evaluates to ‘CEO’, the HAVING filter is still removing an entire
group. If the HAVING filter were changed to “emp_last != ‘Boss’” (which
evaluates to the same row in the table), the SELECT statement fails with an
error:
SELECT emp_job, MAX(salary) max_salary
FROM employees
GROUP BY emp_job
HAVING MAX(salary) > 111500
AND emp_last != 'Boss'
ORDER BY emp_job;

SQL Error: ORA-00979: not a GROUP BY expression
00979. 00000 - "not a GROUP BY expression"
*Cause:
*Action:

When filtering by columns that are not part of the SELECT list, you must use
a condition in the WHERE clause:
SELECT emp_job, MAX(salary) max_salary
FROM employees
WHERE emp_last != 'Boss'
GROUP BY emp_job
HAVING MAX(salary) > 111500
ORDER BY emp_job;

EMP_JOB MAX_SALARY
---------- ----------
CFO 157000
SVP 149100

VP 127800

Displaying Data from Multiple Tables
Describe the different types of joins and their features
Any query that combines rows from two or more tables, views, materialized
views, subqueries, or table functions must make use of joins (henceforth I’ll
use the word ‘table’ to mean any of these). Oracle will perform a join
operation any time multiple tables appear in the FROM clause of the query.
When multiple tables exist in the FROM clause, the select list can include
any combination of columns from any of the tables. When more than one
table has a column name in common, then references to duplicated columns
must be qualified in all parts of the query (with the exception of join columns
in NATURAL or JOIN USING joins). You qualify a column name by
prefixing it with the table name followed by a period, or with the table alias
followed by a period.

The following example joins three tables together: AIRPORTS,
AIRCRAFT_FLEET and AIRCRAFT_TYPES. Connecting the three tables
requires two join operations. First AIRPORTS is joined to the
AIRCRAFT_FLEET table using the APT_ID column that exists in both
tables. Second, the AIRCRAFT_FLEET table is joined to the
AIRCRAFT_TYPES table by the ACT_ID column that exists in both tables.
The AIRPORTS and AIRCRAFT_TYPES tables are not directly joined. The
connection between these two tables is through the AIRCRAFT_FLEET
table that both are joined to.
SELECT apt_name, apt_abbr, act_name, act_seats
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id
 INNER JOIN aircraft_types act
 ON act.act_id = afl.act_id;

APT_NAME APT_ABBR ACT_NAME ACT_SEATS
------------------- -------- ------------ ---------
Orlando, FL MCO Boeing 767 350
Orlando, FL MCO Boeing 767 350
Atlanta, GA ATL Boeing 757 240
Atlanta, GA ATL Boeing 737 200

Miami, FL MIA Boeing 747 416
Miami, FL MIA Boeing 747 416
Dallas/Fort Worth DFW Boeing 767 350
Dallas/Fort Worth DFW Boeing 747 416

Prior to release 9i, Oracle exclusively used a proprietary join format for
connecting tables. With the release of 9i, Oracle began supporting the ANSI
standard (SQL:1999) join format as well. As a general rule, people simply
refer to this as “ANSI SQL”. The ANSI style has no performance benefits
over the proprietary format. SQL written using ANSI style joins are generally
a bit more readable and offer more options when specifying OUTER joins
between tables. The ANSI format is the preferred style per Oracle and is what
you should see on the test in any questions containing joins. It is always
possible that the test developers might include one or more queries that
utilize the proprietary format, though.

The syntax for a join operation using SQL:1999 syntax is:
SELECT t1.*, t2.*
FROM table1 t1
 [NATURAL JOIN table2 t2] |
 [JOIN table2 t2 USING (col_name)] |
 [INNER JOIN table2 t2
 ON (t1.col1 = t2.col2)] |
 [LEFT|RIGHT|FULL OUTER JOIN table2 t2
 ON (t1.col1 = t2.col2)] |
 [CROSS JOIN table2 t2];

You should understand the various join definitions.

EQUIJOIN -- A join where the condition contains an equality
operator. An equijoin combines rows that have equivalent values for
the specified columns.
NON-EQUIJOIN -- A join where the condition does not contain an
equality operator – (e.g. the operator might be greater than or less than).
A non-equijoin combines rows that have non-equivalent values for the
specified columns.
SELF-JOIN -- A join of a table back to itself. The given table will
appear twice (or more) in the FROM clause. All incarnations should
have table aliases to allow you to qualify column names in the join
condition and other parts of the query.

INNER JOIN -- An inner join (sometimes called a simple join) is a
join of two or more tables that returns only those rows that satisfy the
join condition.
FULL OUTER JOIN -- An outer join returns all rows that satisfy the
join condition and also returns all of those rows from the tables for
which no rows from the other satisfy the join condition.
LEFT OUTER JOIN – A left join is a subset of the outer join where
all of the rows in the table on the left-side in the FROM clause are
returned and only the rows that meet the join condition are returned
from the table on the right side in the FROM clause.
RIGHT OUTER JOIN – A right join is the opposite of the left join.
All of the rows in the table identified on the right-side in the FROM
clause are returned and only the rows that meet the join condition are
returned from the table on the left side in the FROM clause.
CROSS JOIN -- A cross join is the result when two tables are included
in a query but no join condition is specified. When this is the case,
Oracle returns the Cartesian product of the two tables (this is
sometimes called a Cartesian Join). The Cartesian product is when
every row of one table is joined with every row of the other. Generally
considered to be useless, cross joins are most often created by mistake.
NATURAL JOIN – A natural join can only be used when the column
names and data types used for the join match in both tables. It will
perform an inner-equijoin between the two tables.

Note that the above definitions are not exclusive. A join will often fulfill
more than one of these definitions at a time. For example, a natural join is
always an equijoin and an inner join. A self join is probably an equijoin an
inner join as well.

Use SELECT statements to access data from more than
one table using equijoins and nonequijoins
When performing a SELECT operation against a single table, there is never
any question of what table a given column name in the query belongs to.
When multiple tables are joined together, however, it’s possible for a query
to reference a column name that exists in more than one of the joined tables.
When this happens, Oracle must have a means of identifying the correct
column. The method by which this is done is called qualifying the column.
The table name or table alias is placed in front of the column name followed
by a period (i.e. table_name.column_name or table_alias.column_name). It is
not required to prefix columns where the table name can be determined by
the Oracle SQL parser, but doing so makes the SQL more readable and
provides a slight performance improvement during the parse operation.

When a table has been aliased in a query, it is not legal to use the table name
as a prefix – you must use the alias. Using the table name will generate an
error.
SELECT airports.apt_name, airports.apt_abbr
FROM airports ap;

SQL Error: ORA-00904: "AIRPORTS"."APT_ABBR": invalid identifier
00904. 00000 - "%s: invalid identifier"
*Cause:
*Action:

If the table is given no alias, then using the full name for a column prefix is
legal (and the only way to qualify the column):
SELECT airports.apt_name, airports.apt_abbr
FROM airports;

APT_NAME APT_ABBR
---------------------- --------
Orlando, FL MCO
Atlanta, GA ATL
Miami, FL MIA
Jacksonville, FL JAX
Dallas/Fort Worth DFW

If the table is given an alias, then you must use the alias as a column prefix or
no prefix at all:
SELECT apt.apt_name, apt_abbr
FROM airports apt;

APT_NAME APT_ABBR
---------------------- --------
Orlando, FL MCO
Atlanta, GA ATL
Miami, FL MIA
Jacksonville, FL JAX
Dallas/Fort Worth DFW

Equijoins

The vast majority of JOIN operations use equijoins. In an equijoin there is a
condition such that column A in table one EQUALS column B in table two.
As a general rule, when there’s a need to join two tables, it will be by column
data that is exactly equal. The below query uses three equijoins and connects
four tables together to generate the required results.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id
 INNER JOIN aircraft_types act
 ON act.act_id = afl.act_id
 INNER JOIN employees emp
 ON afl.afl_id = emp.afl_id;

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
-------------------- ------------ ----------- --------------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Atlanta, GA Boeing 737 Phil McCoy
Atlanta, GA Boeing 757 James Thomas
Miami, FL Boeing 747 John Picard
Miami, FL Boeing 747 Luke Skytalker
Dallas/Fort Worth Boeing 747 Dell Aptop
Dallas/Fort Worth Boeing 767 Noh Kia

Because the joins in the above example all are equijoins where the column
names match in both tables, the NATURAL JOIN could have been used to
generate the same result. If the join column(s) for a NATURAL JOIN are

included anywhere else in the query, they should not be qualified with the
table name or alias. Many SQL developers (myself included) prefer not to
make use of the NATURAL JOIN syntax. When this type of join is used, the
join column(s) being used to connect the two tables is not obvious without
looking at the table structure. It is also possible to get unexpected results
when join being made is not what the developer anticipated. Without looking
at the SQL execution plan or performing detailed analysis of the rows
returned, this can go unnoticed and generate erroneous data.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 NATURAL JOIN aircraft_fleet afl
 NATURAL JOIN aircraft_types act
 NATURAL JOIN employees emp;

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
-------------------- ------------ ----------- --------------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Atlanta, GA Boeing 737 Phil McCoy
Atlanta, GA Boeing 757 James Thomas
Miami, FL Boeing 747 John Picard
Miami, FL Boeing 747 Luke Skytalker
Dallas/Fort Worth Boeing 747 Dell Aptop
Dallas/Fort Worth Boeing 767 Noh Kia

A third equivalent option for the query is the JOIN…USING syntax. When
the USING clause is utilized, only the column name(s) for the JOIN get
specified. JOIN..USING is a more flexible means of performing tables with
identical column names than a NATURAL join. Just as with a NATURAL
JOIN, it is always an EQUIJOIN and the join column names must always be
the same in both tables. However, with JOIN…USING, the columns need not
be the exact same data type (i.e. one could be CHAR and another
VARCHAR or NCHAR). A NATURAL join between two tables will also
join by all columns in the two tables that have matching names. The USING
clause can specify a subset of columns with matching names. As with a
NATURAL join, if the join column(s) are included anywhere else in the
query, they should not be qualified with the table name or alias.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 JOIN aircraft_fleet afl USING (apt_id)

 JOIN aircraft_types act USING (act_id)
 JOIN employees emp USING (afl_id);

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
-------------------- ------------ ----------- --------------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Atlanta, GA Boeing 737 Phil McCoy
Atlanta, GA Boeing 757 James Thomas
Miami, FL Boeing 747 John Picard
Miami, FL Boeing 747 Luke Skytalker
Dallas/Fort Worth Boeing 747 Dell Aptop
Dallas/Fort Worth Boeing 767 Noh Kia

Finally a fourth syntax option for the query is the JOIN…ON syntax. This is
nothing more than the ‘INNER JOIN…ON’ syntax with the optional
‘INNER’ left off. However, it’s easy to confuse with the JOIN…USING
syntax. When the ON syntax is used, the join condition must specify the join
columns from both tables (qualified if they are the same name) and the
operator. If the join columns are in the SELECT list, they must be qualified
with a table name or alias.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 JOIN aircraft_fleet afl ON (apt.apt_id = afl.apt_id)
 JOIN aircraft_types act ON (afl.act_id = act.act_id)
 JOIN employees emp ON (afl.afl_id = emp.afl_id);

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
---------------------- ------------ ---------- ----------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Atlanta, GA Boeing 737 Phil McCoy
Atlanta, GA Boeing 757 James Thomas
Miami, FL Boeing 747 John Picard
Miami, FL Boeing 747 Luke Skytalker
Dallas/Fort Worth Boeing 747 Dell Aptop
Dallas/Fort Worth Boeing 767 Noh Kia

NonEquijoins

On occasion, there is a need to perform a non-equijoin. In a non-equijoin, the
condition joining the columns of the two tables uses some condition other
than EQUALS. In the below example, the EMPLOYEES table is joined to

the SALARY_RANGES table. The join operation uses the BETWEEN
operator to find which range each employee’s salary falls into in order to
determine the salary code.
SELECT emp.emp_first, emp.emp_last, salary, slr_code
FROM employees emp
 INNER JOIN salary_ranges slr
 ON emp.salary BETWEEN slr.slr_lowval
 AND slr.slr_highval
ORDER BY slr_code DESC;

EMP_FIRST EMP_LAST SALARY SLR_CODE
------------ ----------------- ------ --------
Big Boss 197500 S09
Adam Smith 157000 S07
Rob Stoner 149100 S07
Rick Jameson 145200 S07
Janet Jeckson 127800 S06
Bill Abong 123500 S06
Norm Storm 101500 S05
Fred Stoneflint 111500 S05
Alf Alien 110500 S05
Luke Skytalker 90000 S04
Dell Aptop 87500 S04
Phil McCoy 93500 S04
Noh Kia 92250 S04
Top Gun 91500 S04
John Picard 94500 S04
James Thomas 98500 S04
John Jones 97500 S04

Additional JOIN conditions

You can add additional conditions to the JOIN clause when joining two
tables together.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 JOIN aircraft_fleet afl ON (apt.apt_id = afl.apt_id)
 JOIN aircraft_types act ON (afl.act_id = act.act_id)
 AND act.act_name='Boeing 767'
 JOIN employees emp ON (afl.afl_id = emp.afl_id);

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
---------------------- ------------ ---------- ----------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Dallas/Fort Worth Boeing 767 Noh Kia

With INNER JOINS, the result of adding this condition to the JOIN clause is
indistinguishable from adding the same condition to the WHERE clause.
Both will produce identical results. For OUTER JOINS, the location of the
condition can alter the resulting rows returned.
SELECT apt_name, act_name, emp_first, emp_last
FROM airports apt
 JOIN aircraft_fleet afl ON (apt.apt_id = afl.apt_id)
 JOIN aircraft_types act ON (afl.act_id = act.act_id)
 JOIN employees emp ON (afl.afl_id = emp.afl_id)
WHERE act.act_name='Boeing 767';

APT_NAME ACT_NAME EMP_FIRST EMP_LAST
---------------------- ------------ ---------- ----------
Orlando, FL Boeing 767 John Jones
Orlando, FL Boeing 767 Top Gun
Dallas/Fort Worth Boeing 767 Noh Kia

Join a table to itself by using a self-join
It’s sometimes very useful to join a table back to itself when rows in it
reference other rows. In the example below, we join the EMPLOYEES table
back to itself by using the EMP_ID and EMP_SUPERVISOR columns. In
this fashion we’re able to display each employee’s manager.
SELECT emp.emp_first, emp.emp_last, mgr.emp_first || ' ' || mgr.emp_last AS EMP_MANAGER
FROM employees emp
 LEFT JOIN employees mgr
 ON emp.emp_supervisor = mgr.emp_id
ORDER BY NVL(mgr.emp_supervisor, 0), emp.emp_last, emp.emp_first;

EMP_FIRST EMP_LAST EMP_MANAGER
------------ --------------- --------------
Big Boss
Rick Jameson Big Boss
Adam Smith Big Boss
Rob Stoner Big Boss
Bill Abong Rick Jameson
Janet Jeckson Rob Stoner
Fred Stoneflint Bill Abong
Alf Alien Janet Jeckson
Norm Storm Alf Alien
Dell Aptop Norm Storm
Top Gun Norm Storm
John Jones Norm Storm
Noh Kia Norm Storm
Phil McCoy Norm Storm
John Picard Norm Storm
Luke Skytalker Norm Storm
James Thomas Norm Storm

A self join like the above example connects a table back to itself on time.
There is a SQL clause called CONNECT BY PRIOR that performs what acts
much like multiple self-joins. One of the more common examples of this
function is the ability to create organization charts. With the CONNECT BY
PRIOR functionality, it is possible to return results that show the chain of an
employee to his manager, to his manager’s manager, and so forth. The
CONNECT BY PRIOR clause is not actually a join operation and will not be
on the SQL exam. It is mentioned here to provide a comparison to the way in
which a SELF JOIN operation works.
SELECT level, emp_first, emp_last, emp_job, emp_id, emp_supervisor

FROM employees emp
START WITH emp_supervisor IS NULL
CONNECT BY PRIOR emp_id = emp_supervisor;

LEVEL EMP_FIRST EMP_LAST EMP_JOB EMP_ID EMP_SUPERVISOR
----- ---------- ---------- ---------- ------ --------------
 1 Big Boss CEO 1
 2 Adam Smith CFO 2 1
 2 Rick Jameson SVP 3 1
 3 Bill Abong VP 5 3
 4 Fred Stoneflint SrDir 7 5
 2 Rob Stoner SVP 4 1
 3 Janet Jeckson VP 6 4
 4 Alf Alien SrDir 8 6
 5 Norm Storm Mgr 9 8
 6 John Jones Pilot 10 9
 6 Top Gun Pilot 11 9
 6 Phil McCoy Pilot 12 9
 6 James Thomas Pilot 13 9
 6 John Picard Pilot 14 9
 6 Luke Skytalker Pilot 15 9
 6 Dell Aptop Pilot 16 9
 6 Noh Kia Pilot 17 9
 5 Guy Newberry Mgr 18 8

View data that generally does not meet a join condition
by using outer joins
When you use an INNER join to link two tables where column A of table one
equals column B of table two, any rows from both tables that don’t meet the
specified condition are not returned by the query. In cases where you would
like non-matched rows to be returned, you must use one of the OUTER join
syntaxes. There are three varieties of OUTER joins. The behavior of the first
two is determined by which side of the join operator a table’s column appears
on. The definitions below make use of this example: Table1.Column_A =
Table2.Column_B

LEFT OUTER JOIN – Rows from the Table1 will be returned
regardless of whether or not there are rows in Table2 where Column_A
= Column_B. The ‘OUTER’ portion of the syntax is optional (i.e.
‘LEFT OUTER JOIN’ and ‘LEFT JOIN’ are equivalent)
RIGHT OUTER JOIN – Rows from the Table2 will be returned
regardless of whether or not there are rows in Table1 where Column_A
= Column_B. The ‘OUTER’ portion of the syntax is optional (i.e.
‘RIGHT OUTER JOIN’ and ‘RIGHT JOIN’ are equivalent)
FULL OUTER JOIN -- Rows from both tables will be returned
regardless of whether or not there are rows where Column_A =
Column_B.

For the join examples, we’ll create the following tables:
CREATE TABLE table_A (
 col1 NUMBER,
 col2 VARCHAR2(1)
);

CREATE TABLE table_B (
 col1 NUMBER,
 col2 VARCHAR2(1)
);

Now we’ll populate them with the below data:
INSERT INTO table_A VALUES (1, 'a');
INSERT INTO table_A VALUES (2, 'b');

INSERT INTO table_A VALUES (3, 'c');

INSERT INTO table_B VALUES (2, 'B');
INSERT INTO table_B VALUES (3, 'C');
INSERT INTO table_B VALUES (4, 'D');

An INNER JOIN between these two tables produces the following results:
SELECT a.col1 AS TA_COL1, a.col2 AS TA_col2,
 b.col1 AS TB.COL1, b.col2 AS TB_col2
FROM table_A a
 INNER JOIN table_B b
 ON a.col1 = b.col1;

TA_COL1 TA_COL2 TB_COL1 TB_COL2
------- ------- ------- -------
 2 b 2 B
 3 c 3 C

Changing to a LEFT JOIN produces the results below. The row in table_A
without a matching value in table_B is now displayed. The LEFT JOIN will
return rows without matches from the table represented on the left side of the
JOIN operator (in this case a.col1).
SELECT a.col1 AS TA_COL1, a.col2 AS TA_col2,
 b.col1 AS TB_COL1, b.col2 AS TB_col2
FROM table_A a
 LEFT JOIN table_B b
 ON a.col1 = b.col1;

TA_COL1 TA_COL2 TB_COL1 TB_COL2
------- ------- ------- -------
 2 b 2 B
 3 c 3 C
 1 a

Changing to a RIGHT JOIN produces the results below. Now the row in
table_B without a matching value in table_A is now displayed. The RIGHT
JOIN will return rows without matches from the table represented on the
right side of the JOIN operator (in this case b.col1). We could have gotten the
same results by continuing to use the LEFT JOIN but reversing the order of
the tables in the FROM clause(i.e. table_B b LEFT JOIN table_A a).
SELECT a.col1 AS TA_COL1, a.col2 AS TA_col2,

 b.col1 AS TB_COL1, b.col2 AS TB_col2
FROM table_A a
 RIGHT JOIN table_B b
 ON a.col1 = b.col1;

TA_COL1 TA_COL2 TB_COL1 TB_COL2
------- ------- ------- -------
 2 b 2 B
 3 c 3 C
 4 D

Changing to a FULL OUTER JOIN produces the results below. In this case,
all rows in both tables are returned regardless of whether the condition
evaluates to TRUE.
SELECT a.col1 AS TA_COL1, a.col2 AS TA_col2,
 b.col1 AS TB_COL1, b.col2 AS TB_col2
FROM table_A a
 FULL OUTER JOIN table_B b
 ON a.col1 = b.col1;

TA_COL1 TA_COL2 TB_COL1 TB_COL2
------- ------- ------- -------
 2 b 2 B
 3 c 3 C
 4 D
 1 a

Using Subqueries to Solve Queries
Define subqueries
Subqueries are generally used to answer questions that contain multiple parts.
For example, you might have a need to determine which pilots fly the same
type of aircraft as James Thomas. To determine that, it is first necessary to
determine which aircraft James pilots. Once the answer to that is located, a
second query is required to find out what other pilots fly that same aircraft.
This question can be answered by a single select statement that contains an
inner query (subquery) that finds James’ aircraft and an outer query (parent
query) that uses the results of the subquery to filter for pilots with the same
aircraft. With the exception of correlated queries, subqueries will always
execute before the parent query and the results of the subquery will then be
passed to the parent to be used in its execution. There are two classes of
subqueries that are determined by their location in the parent query:

Inline View: A subquery in the FROM clause of a SELECT statement.
It possible to nest any number of subqueries in an inline view.
Nested Subquery: A subquery in the WHERE clause of a SELECT
statement. You can nest up to 255 levels of subqueries in a nested
subquery.

The following is an example of an inline query:
SELECT apt_name, act_name, sum_seats
FROM (SELECT apt_name, act_name, SUM(act_seats) sum_seats
 FROM aircraft_fleet_v
 GROUP BY apt_name, act_name)
ORDER BY sum_seats;

APT_NAME ACT_NAME SUM_SEATS
---------------------- ------------ ---------
Atlanta, GA Boeing 737 200
Atlanta, GA Boeing 757 240
Dallas/Fort Worth Boeing 767 350
Dallas/Fort Worth Boeing 747 416
Orlando, FL Boeing 767 700
Miami, FL Boeing 747 832

The following is an example of a nested subquery:
SELECT emp_first, emp_last, emp_job
FROM employees emp
WHERE salary > (SELECT slr_highval
 FROM salary_ranges
 WHERE slr_code = 'S05');

EMP_FIRST EMP_LAST EMP_JOB
---------- ---------- ----------
Big Boss CEO
Adam Smith CFO
Rick Jameson SVP
Rob Stoner SVP
Bill Abong VP
Janet Jeckson VP

If columns in a subquery have the same name as columns in the outer query
and columns from the outer query are referenced in the subquery, then those
columns must be qualified in the subquery. You must prefix all references to
the column of the table from the containing statement with the table name or
alias. It’s good practice to prefix the subquery column references as well, but
not a requirement. The following example locates all pilots who have a
Boeing 767 as their primary aircraft assignment:
SELECT emp_first, emp_last
FROM employees emp
WHERE 'Boeing 767' = (SELECT act_name
 FROM aircraft_fleet_v afl
 WHERE afl_id = emp.afl_id);

EMP_FIRST EMP_LAST
---------- ----------
John Jones
Top Gun
Noh Kia

A subquery is a query that is nested inside another SQL statement. The parent
might be a SELECT, INSERT, UPDATE, or DELETE statement (or another
subquery). Subqueries can return a single row or multiple rows; a single
column or multiple columns. A subquery generally executes first and its
result then used as part of the outer query. The exception to this is a

correlated query which will be discussed later in this section. A subquery can
be used in any of the following locations:

The SELECT list

SELECT col1, col2, (SELECT expr FROM table) as sqexp
FROM table_name;

The FROM clause

SELECT col1, col2, col3
FROM (SELECT col1, col2, col3
 FROM table_name);

The WHERE clause

SELECT col1, col2, col3
FROM table_name
WHERE col1 = (SELECT col1
 FROM table_name2);

The HAVING clause

SELECT col1, col2, SUM(col3)
FROM table_name1
GROUP BY col1, col2
HAVING SUM(col3) = (SELECT expr
 FROM table_name2);

Describe the types of problems subqueries can solve
There are several ways in which subqueries can be utilized.

Create a Table Equivalent to SELECT From

A subquery can be used in the FROM clause of a query as a table-equivalent.
When used in this fashion, they are called inline views. The subquery is used
to format the table data in a fashion that makes it possible for the outer
SELECT to return the desired results. Inline views often aggregate data from
the base table.
SELECT emp_job, avg_sal, min_sal || ' - ' || max_sal AS salary_range
FROM (SELECT emp_job, AVG(salary) AVG_SAL, MIN(salary) MIN_SAL, MAX(salary)
MAX_SAL
 FROM employees
 GROUP BY emp_job)
ORDER BY max_sal DESC

EMP_JOB AVG_SAL SALARY_RANGE
---------- ------- -----------------
CEO 197500 197500 - 197500
CFO 157000 157000 - 157000
SVP 147150 145200 - 149100
VP 125650 123500 - 127800
SrDir 111000 110500 - 111500
Mgr 101500 101500 - 101500
Pilot 93156.25 87500 - 98500

Generate a Result Set to Filter by

You might use a subquery to answer questions such as which airports have
747s based at them. You could answer that with a subquery such as the below
example.
SELECT apt_name, apt_abbr
FROM airports apt
WHERE apt.apt_id IN (SELECT apt_id
 FROM aircraft_types act
 INNER JOIN aircraft_fleet afl
 ON act.act_id = afl.act_id
 WHERE act_name = 'Boeing 747')

APT_NAME APT_ABBR

---------------------- --------
Miami, FL MIA
Dallas/Fort Worth DFW

Generate Projection Columns

When utilized in the SELECT list of a query, scalar subqueries act like SQL
functions to generate new expressions.
SELECT emp_first, emp_last, salary,
 (SELECT AVG(salary)
 FROM employees
 WHERE emp2.emp_job = emp1.emp_job) AVG_SALARY
FROM employees
WHERE emp_job = 'Pilot';

EMP_FIRST EMP_LAST SALARY AVG_SALARY
---------- ---------- ------ ----------
John Jones 97500 88968.75
Top Gun 91500 88968.75
Phil McCoy 105000 88968.75
James Thomas 98500 88968.75
John Picard 49500 88968.75
Luke Skytalker 90000 88968.75
Dell Aptop 87500 88968.75
Noh Kia 92250 88968.75

Generate Data for an INSERT, UPDATE, or DELETE

A subquery can be used to generate a set of rows to be inserted into a table.
Alternately, a scalar subquery could be utilized as the source expression for
an update statement. Finally, a subquery could be used to identify rows that
meet a given criteria and pass the result to a delete statement.

The following statement would add a new row into the AIRCRAFT_TYPES
table for the Boeing 787, pulling some values from the 767. It does not
supply a primary key value, so if there were not a trigger in place to provide
that data, the INSERT would fail.
INSERT INTO aircraft_types (act_name, act_body_style,
 act_decks, act_seats)
SELECT 'Boeing 787', act_body_style, act_decks, 300
FROM aircraft_types
WHERE act_name = 'Boeing 767';

When using a subquery in an INSERT statement insert data into a table, the
VALUES clause is not used. A subquery inside a VALUES clause is illegal
and will generate an error. The reverse is also true. An INSERT that is not
using a subquery must have the VALUES keyword.

This statement would move all aircraft based in Orlando to Dallas/Ft Worth:
UPDATE aircraft_fleet
SET apt_id = (SELECT apt_id
 FROM airports
 WHERE apt_abbr = ‘DFW’)
WHERE apt_id = (SELECT apt_id
 FROM airports
 WHERE apt_abbr = ‘MCO’);

The following example would delete any rows from the AIRCRAFT_TYPES
table if there is not currently an aircraft of that type in the fleet.
DELETE FROM aircraft_types
WHERE act_id NOT IN (SELECT act_id
 FROM aircraft_fleet);

Describe the types of subqueries
At the highest level, there are three classes of subqueries:

Single-row subqueries

A single-row subquery returns a single result row to the parent SQL. When
only a single column is returned, it is a special subclass called a scalar
subquery. Scalar subqueries can be used in almost every location where you
can use an expression, literal value, or a constant. The following example
uses a scalar subquery to get the average salary for all pilots. The main query
then returns all pilots making more than that average.
SELECT emp_first, emp_last, salary
FROM employees emp1
WHERE emp_job = 'Pilot'
AND salary > (SELECT AVG(salary)
 FROM employees emp2
 WHERE emp2.emp_job = emp1.emp_job);

EMP_FIRST EMP_LAST SALARY
---------- ---------- ------
John Jones 97500
Top Gun 91500
Phil McCoy 105000
James Thomas 98500
Luke Skytalker 90000
Noh Kia 92250

Multiple-row subqueries -- A multiple-row subquery returns result sets with
more than one row to the surrounding SQL. Often they are used to generate
results for a SELECT statement or DML statement. The following statement
locates all employees coming up on their tenth-year work anniversary and
inserts them into an awards table.
INSERT INTO ten_year_awards
(SELECT emp_first, emp_last, emp_job, start_date
FROM employees emp1
WHERE start_date BETWEEN ADD_MONTHS(sysdate, -140)
 AND ADD_MONTHS(sysdate, -120)
);

Correlated subqueries – When a subquery references column data from the
parent query, the results become dependent on the parent. Since the parent
data can change with each row returned by the parent query, unlike a single
or multiple-row subquery that run a single time when a SQL statement is
executed, a correlated subquery must run once for each row of the parent.
The results can be useful, but correlated subqueries can create performance
problems depending on the execute time of the subquery and the number of
rows evaluated in the parent query. The following example of a correlated
query returns all pilots who are based out of Dallas/Fort Worth.
SELECT emp_first, emp_last
FROM employees emp
WHERE afl_id IS NOT NULL
AND 'Dallas/Fort Worth' = (SELECT apt_name
 FROM aircraft_fleet_v
 WHERE afl_id = emp.afl_id);

EMP_FIRST EMP_LAST
---------- ----------
Dell Aptop
Noh Kia

Query data using correlated subqueries
A correlated query occurs when a nested subquery references a column value
from table in a parent query one or more levels above the subquery. A
correlated subquery is executed once for each row processed by the
referenced parent statement. When columns in the subquery comparison have
not been qualified, Oracle resolves them by looking first at the subquery and
then in the tables in the parent statement. If a column name that exists in both
tables is used inside the subquery and is not qualified, Oracle will treat it as
belonging to the subquery table. Best practice is to qualify all such column
comparisons with the proper table or alias to avoid unintended behavior.
Correlated subqueries provide solutions for questions for which the answer
depends on a value in each row returned by the parent statement.
SELECT emp_first, emp_last, emp_job, salary
FROM employees emp1
WHERE salary < (SELECT AVG(salary)
 FROM employees emp2
 WHERE emp1.emp_job = emp2.emp_job);

EMP_FIRST EMP_LAST EMP_JOB SALARY
---------- ---------- ---------- ------
Rick Jameson SVP 145200
Bill Abong VP 123500
Alf Alien SrDir 110500
John Picard Pilot 49500
Dell Aptop Pilot 87500

Update and delete rows using correlated subqueries
Following are examples of using correlated subqueries to DELETE and
UPDATE data based on correlated subqueries. The first example deletes any
rows from the AIRCRAFT_TYPES table that do not currently exist in the
AIRCRAFT_FLEET table.
DELETE
FROM aircraft_types act
WHERE 0 = (SELECT COUNT(*)
 FROM aircraft_fleet afl
 WHERE afl.act_id = act.act_id);

The second example gives a 5% raise to all of the pilots currently below the
average pilot salary .
UPDATE employees emp1
SET salary = TRUNC(salary * 1.05)
WHERE salary < (SELECT AVG(salary)
 FROM employees emp2
 WHERE emp1.emp_job = emp2.emp_job)
AND emp_job = ‘Pilot’;

Use the EXISTS and NOT EXISTS operators
The EXISTS operator is used to test for the existence of any rows returned by
a subquery. When Oracle is testing the condition for an EXISTS operator, the
subquery will be executed. If any result row is returned by the subquery, the
condition is flagged as TRUE and the execution of the subquery stops. For
this reason, EXISTS can be faster than other operations that perform a
logically equivalent comparison. For example, you could have a subquery
that performs a SELECT COUNT(*) where the outer query looks for a value
greater than zero. This would have the same effect as an EXISTS against a
subquery performing SELECT * with the same conditions. However, the
COUNT(*) operation would have to process every row in the table that met
the subquery conditions before returning a result to the parent query. By
contrast, an EXISTS condition against a subquery would evaluate to TRUE
and stop after hitting a single row that met the specified conditions.
SELECT department_id, department_name
FROM hr.departments dpt
WHERE EXISTS (SELECT department_id
 FROM hr.employees emp
 WHERE dpt.department_id = emp.department_id)

DEPARTMENT_ID DEPARTMENT_NAME
------------- ------------------------------
 10 Administration
 20 Marketing
 30 Purchasing
 40 Human Resources
 50 Shipping
 60 IT
 70 Public Relations
 80 Sales
 90 Executive
 100 Finance
 110 Accounting

The NOT EXISTS operator performs the exact opposite evaluation. If any
row is returned by the subquery, a FALSE value is returned and the subquery
stops processing further rows.
SELECT department_id, department_name
FROM hr.departments dpt
WHERE NOT EXISTS (SELECT department_id

 FROM hr.employees emp
 WHERE dpt.department_id = emp.department_id)

DEPARTMENT_ID DEPARTMENT_NAME
------------- ------------------------------
 120 Treasury
 130 Corporate Tax
 140 Control And Credit
 150 Shareholder Services
 160 Benefits
 170 Manufacturing
 180 Construction
 190 Contracting
 200 Operations
 210 IT Support
 220 NOC
 230 IT Helpdesk
 240 Government Sales
 250 Retail Sales
 260 Recruiting
 270 Payroll

Use the WITH clause
The WITH query_name clause allows you to name a subquery block. Once
named, the block can be referenced multiple times in the same query. The
database treats the query name as either an inline view or as a temporary
table. When treated as a temporary table, the results of running the subquery
once are stored in the temporary tablespace and used every time the block is
called in the query.

You can specify this clause in any top-level SELECT statement and in most
types of subqueries. The query name is visible to the main query and to all
subsequent subqueries. For recursive subquery factoring, the query name is
even visible to the subquery that defines the query name itself.

In the following example the salaries for each department are calculated in
the query named DEPT_COSTS. The results of that query are then averaged
in the query named AVG_COST and the result used in the SELECT
operation to return only the departments for which the costs are above the
average.
WITH
 dept_costs AS (
 SELECT department_name, SUM(salary) dept_total
 FROM hr.employees e
 INNER JOIN hr.departments d
 ON e.department_id = d.department_id
 GROUP BY department_name),
 avg_cost AS (
 SELECT SUM(dept_total)/COUNT(*) avrg
 FROM dept_costs)
SELECT *
FROM dept_costs
WHERE dept_total > (SELECT avrg FROM avg_cost)
ORDER BY department_name;

DEPARTMENT_NAME DEPT_TOTAL
------------------------------ ----------
Sales 304500
Shipping 156400

Use single-row and multiple-row subqueries
Following are some examples of single- and multiple-row subqueries. While
either type of subquery may be used in the WHERE and HAVING clauses of
the parent query, you must use a valid comparison operator. The two lists
below show valid operators for single and multiple row subqueries. It’s
important to note that while multiple-row operators will work correctly if
only a single row is returned by a subquery, the reverse is not true. Single
row operators will generate an error if more than one row is returned.

Single Row Operators

= -- Equal to
> -- Greater than
>= -- Greater than or equal to
< -- Less than
<= -- Less than or equal to
<> or != -- Not equal to

Multiple Row Operators

IN -- Equal to any member in a list
NOT IN -- Not equal to any member in a list
ANY -- TRUE when any rows match the comparison value. Must be
preceded by <, >, <=, >=, =, or !=.
ALL – TRUE when all rows match the comparison value. Must be
preceded by <, >, <=, >=, =, or !=.
EXISTS -- TRUE when the subquery returns any rows
NOT EXISTS -- TRUE when the subquery returns no rows

Single-Row Subquery

The following example has a subquery that pulls the aircraft fleet record for
the pilot named Picard. That information is used in the outer query to pull in
information about that aircraft.
SELECT apt_name, apt_abbr, act_name, act_seats
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id

 INNER JOIN aircraft_types act
 ON act.act_id = afl.act_id
WHERE afl_id = (SELECT afl_id
 FROM employees
 WHERE emp_last = 'Picard');

APT_NAME APT_ABBR ACT_NAME ACT_SEATS
---------------------- -------- ------------ ---------
Miami, FL MIA Boeing 747 416

Multiple-Row Subquery

In this example, the only changes are the addition of two more pilots and a
change in the operator used for the subquery comparison. The ‘=’ operator
has been replaced by the ‘IN’ operator. The remainder of the query is
identical and the result is information about three aircraft instead of one. The
previous example could have used the ‘IN’ operator instead of the ‘=’
operator with no change in functionality.
SELECT apt_name, apt_abbr, act_name, act_seats
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id
 INNER JOIN aircraft_types act
 ON act.act_id = afl.act_id
WHERE afl_id IN (SELECT afl_id
 FROM employees
 WHERE emp_last IN ('Picard', 'McCoy', 'Aptop')
);

APT_NAME APT_ABBR ACT_NAME ACT_SEATS
---------------------- -------- ------------ ---------
Atlanta, GA ATL Boeing 737 200
Miami, FL MIA Boeing 747 416
Dallas/Fort Worth DFW Boeing 747 416

Subqueries can include GROUP functions as part of their syntax.
Subqueries cannot include an ORDER BY clause.
Subqueries that return no rows evaluate to NULL

Using the Set Operators
Describe set operators
Set operators allow you to combine the results from two or more SELECT
statements. The results of individual SELECT statements are treated as sets,
and SQL set operations are applied against the sets to generate the desired
result. Queries joined by set operators are also known as compound queries.

Oracle supports the following set operations:

UNION – Combines the results of two SELECT operations into a
single set. Duplicate rows are removed from the end result.
UNION ALL -- Combines the results of two SELECT operations into
a single set. Duplicate rows are included in the end result.
INTERSECT – Returns distinct rows where all selected values exist in
both queries.
MINUS – Returns distinct rows selected by the first query but not the
second.

All set operators have equal precedence. Any time a SQL statement contains
multiple set operators, Oracle will evaluate them from top to bottom unless
parentheses are used to explicitly specify a different order. The select lists of
every query being combined with SET operators must have the same number
of columns and each column position must be in the same data type group.
For example, column one in the first SELECT could be a VARCHAR2 field
and column one in the second SELECT a CHAR field. However, if column
one in the first query is a VARCHAR2 field and column one in the second
query is a NUMBER field, Oracle will generate an error. It is also possible to
use SET operators in subqueries.

Columns names returned by the query are determined by the first SELECT
statement. An ORDER BY clause can only be placed at the very end of a
compound query involving set operators.

Restrictions on the Set Operators

Set operations cannot be performed on BLOB, CLOB, BFILE,
VARRAY, or nested table columns.
UNION, INTERSECT, and MINUS operators are not valid on LONG
columns.
Expressions in the SELECT list must have an alias in order to be used
in the ORDER BY clause.
Set operators cannot be used with the for_update_clause.
Set operations are not allowed on SELECT statements containing
TABLE collection expressions.

Use a set operator to combine multiple queries into a
single query
Following are examples of each of the four types of SET operations. For the
examples, we’ll use the following tables and data:
CREATE TABLE table_setA (
 col1 VARCHAR2(1)
);

CREATE TABLE table_setB (
 col1 VARCHAR2(1)
);

INSERT INTO table_setA VALUES ('A');
INSERT INTO table_setA VALUES ('A');
INSERT INTO table_setA VALUES ('A');
INSERT INTO table_setA VALUES ('A');
INSERT INTO table_setA VALUES ('B');
INSERT INTO table_setA VALUES ('C');

INSERT INTO table_setB VALUES ('B');
INSERT INTO table_setB VALUES ('B');
INSERT INTO table_setB VALUES ('C');
INSERT INTO table_setB VALUES ('C');
INSERT INTO table_setB VALUES ('D');
INSERT INTO table_setB VALUES ('D');
INSERT INTO table_setB VALUES ('D');

If the UNION set operator is used to combine results from these two tables, it
will produce the distinct values returned by the two queries:
SELECT col1
FROM table_setA
UNION
SELECT col1
FROM table_setB

COL1

A
B
C
D

If the UNION ALL set operator is used to combine results from these two

tables, it will produce all values returned by the two queries. The UNION
ALL is the only set operator that does not produce distinct results.
SELECT col1
FROM table_setA
UNION ALL
SELECT col1
FROM table_setB;

COL1

A
A
A
A
B
C
B
B
C
C
D
D
D

If the INTERSECT set operator is used to combine results from these two
tables, it will produce only values returned by both queries.
SELECT col1
FROM table_setA
INTERSECT
SELECT col1
FROM table_setB;

COL1

B
C

If the MINUS set operator is used to combine results from these two tables, it
will produce only values returned by the first query, but not the second.
MINUS is the only set operator where the order of the queries will change
the results.
SELECT col1
FROM table_setA

MINUS
SELECT col1
FROM table_setB;

COL1

A

SELECT col1
FROM table_setB
MINUS
SELECT col1
FROM table_setA;

COL1

D

Control the order of rows returned
By default, the output of compound queries is not sorted. The output of the
individual sets will be returned in groups, and the sorting within the groups is
largely indeterminate. It is not allowable to make use of ORDER BY clauses
in the individual queries. To sort the results of a compound query, you must
place an ORDER BY clause at the very end of the SQL statement. This will
sort the entire output of the compound query. With compound queries,
making use of column position to sort by is often useful because the column
names of the components may be different. If you use column names or
aliases, you must use those from the topmost SELECT list in the compound
query.

The following example performs a SET operation UNIONing rows where the
employee has a salary greater than $100,000 with employees who are pilots.
Since both rows are coming from the same table, the query could be written
more efficiently without a SET operation. This is simply an easy way to
generate a SET example. The query contains ORDER BY operations after
each of the sets. This is illegal and generates an error:
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE salary > 100000
ORDER BY emp_last, emp_first
UNION
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY emp_last, emp_first;

SQL Error: ORA-00933: SQL command not properly ended
00933. 00000 - "SQL command not properly ended"

If the first ORDER BY is removed from the query, the data succeeds and
orders the rows as expected:
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE salary > 130000
UNION
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE emp_job = 'Pilot'

ORDER BY emp_last, emp_first;

EMP_FIRST EMP_LAST EMP_JOB SALARY
---------- ---------- ---------- ------
Dell Aptop Pilot 87500
Big Boss CEO 197500
Top Gun Pilot 91500
Rick Jameson SVP 145200
John Jones Pilot 97500
Noh Kia Pilot 92250
Phil McCoy Pilot 105000
John Picard Pilot 49500
Luke Skytalker Pilot 90000
Adam Smith CFO 157000
Rob Stoner SVP 149100
James Thomas Pilot 98500

Because the data from multiple sets often have different column names, they
are commonly ordered using the column position rather than the column
name.
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE salary > 130000
MINUS
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE emp_job = 'Pilot'
ORDER BY 2, 1;

EMP_FIRST EMP_LAST EMP_JOB SALARY
---------- ---------- ---------- ------
Big Boss CEO 197500
Rick Jameson SVP 145200
Adam Smith CFO 157000
Rob Stoner SVP 149100

Manipulating Data
Truncate data
While the Oracle TRUNCATE command is included under a section called
‘Manipulating Data’, it should be noted that this is not a DML command like
everything else in this section but rather a DDL command. The TRUNCATE
command performs a function similar to the DELETE command, but there
are significant differences in how that action is performed.

When deleting a large number of rows, it is possible, even likely, that the
operation may take quite some time to complete. There can be a great deal of
overhead to DELETE operations. A significant portion of DELETE overhead
comes from the need to store the UNDO information for each row so that the
operation can be rolled back. When you delete every row in a table, all of the
data in that table gets written out to UNDO simultaneously with being
removed from the original table. There may also be DELETE triggers that
fire for each row. There may be index records for each row to get removed.
The time to perform these operations adds up and make large deletes an
expensive operation.

The TRUNCATE is often portrayed as 'a fast DELETE'. That is not really
accurate. The result of a TRUNCATE operation is in several ways closer to
dropping the table and recreating it. When a DELETE is performed on a
table, whether it is one row or a million rows, Oracle removes the rows one at
a time iteratively until all of the rows covered by the DELETE statement are
gone. The TRUNCATE operation effectively performs a single data
dictionary operation that marks the table as empty. No WHERE clause can be
applied to it and no UNDO information is stored because the data is not
really being manipulated. TRUNCATE is a DDL operation and performs its
work in the data dictionary. It cannot be reversed if it was performed in error
by either a ROLLBACK or a FLASHBACK TABLE operation. The syntax
of a TRUNCATE is:
TRUNCATE TABLE table_name;

TRUNCATE is much faster and more efficient of database resources than a
DELETE statement. It generates much less overhead and completes within a
second or two. By default, Oracle will also perform the following tasks
during a TRUNCATE operation:

Deallocate all space used by the removed rows except that specified by
MINEXTENTS.
Set the NEXT storage parameter to the size of the last extent removed
from the segment by the TRUNCATE operation.

There are several restrictions to TRUNCATE operations:

If a table contains the parent key of a foreign key constraint, it is not
possible to TRUNCATE the table while the constraint is enabled.
When a temporary table is TRUNCATEd, only the rows created during
the current session are removed.
A table that is part of a cluster cannot be individually truncated.
If a domain index is defined on table, then neither the index nor any
index partitions can be marked IN_PROGRESS.
You cannot truncate the parent table of a reference-partitioned table.

Insert rows into a table
Data Manipulation Language (DML) is the name given to the SQL
statements used to manage data in the Oracle database. DML statements
include INSERT, UPDATE, DELETE and MERGE. The SELECT statement
could technically be considered a DML statement but is seldom considered
one in practice. As a general rule, only commands which add, alter, or
remove rows from database tables are considered to be data manipulation
statements. However, if SELECT is not included with DML, then it has no
place to be. It is certainly not Data Definition Language (DDL) or Data
Control Language (DCL). Just be aware that when reference is made to DML
statements, the context probably does not include SELECT operations.

Data manipulation language statements are utilized to manage data in existing
schema objects. DML statements do not modify information in the data
dictionary and do not implicitly commit the current transaction. The most
commonly identified DML commands are:

INSERT – Used to populate data in tables. It is possible to insert one
row into one table, one row into multiple tables, multiple rows into one
table, or multiple rows into multiple tables.
UPDATE – Used to alter data that has already been inserted into a
database table. An UPDATE can affect a single row or multiple rows,
and a single column or multiple columns. The WHERE clause will
determine which rows in the table are altered. When executed with no
WHERE clause, it will update all rows in the target table. A single
UPDATE statement can only act on one table.
DELETE – Used to remove previously inserted rows from a table. The
command can remove a single row or multiple rows from a table. When
executed with no WHERE clause, it will remove all rows from the
target table. It is not possible to delete individual columns – the entire
row is deleted or it is not.
MERGE – Used for hybrid DML operations. The MERGE can insert,
update and delete rows in a table all in a single statement. There is no
operation that a MERGE can perform that could not be performed by a
combination of INSERT, UPDATE and DELETE.

You can add new rows to an Oracle table with the INSERT statement. The
syntax of a single table INSERT is:
INSERT INTO table_name [(column [,column…])]
VALUES (value [, value…]);

In this statement, table_name is the table into which rows will be inserted,
column is the name of the column(s) of the table values are being added to,
and value is the data that will be inserted into the column. The column list is
optional, but if omitted, the values clause must include all columns of the
table in the order that they are recorded in the Oracle data dictionary. A
column list allows you to insert into a subset of the table columns and
explicitly match the order of the columns to the order of the values list. When
writing SQL that will be reused (such as in a stored PL/SQL procedure) is
best practice to always explicitly list the columns in an insert statement. This
makes the resulting code more robust if columns are added to the table at a
later date. When there are multiple rows or columns, they are enclosed by
parentheses and separated by commas.

The simplest form of an insert statement inserts a single row into a single
table. The following inserts a new person into the EMPLOYEES table
(described below).
desc employees
Name Null Type
-------------- -------- ------------
EMP_ID NOT NULL NUMBER
AFL_ID NUMBER
EMP_FIRST VARCHAR2(10)
EMP_LAST NOT NULL VARCHAR2(10)
EMP_JOB VARCHAR2(10)
EMP_SUPERVISOR NUMBER
SALARY NUMBER
START_DATE DATE

INSERT INTO employees (emp_id, afl_id, emp_first,
 emp_last, emp_job,
 emp_supervisor, salary,
 start_date)
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8,
 98250, '07-JAN-2012');

Note that character data is enclosed by quotes as is the one date field.
Numeric values being inserted into a NUMBER column are not generally
enclosed by quotes, but it will not generate an error if you do (Oracle will
implicitly convert the value back to a number data type during the INSERT
operation). The NULL keyword cannot be enclosed in quotes. If the text
NULL was enclosed in quotes, instead of a NULL value being inserted, the
text ‘NULL’ would be inserted (or an error generated if the column were not
a character field)..

The above INSERT statement contains all of the values of the EMPLOYEES
table and the column order matches that in the data dictionary. The column
list is therefore optional and the INSERT could have been written like this:
INSERT INTO employees
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8,
 98250, '07-JAN-2012');

To insert into only a subset of columns in a table, you must provide a list of
the columns that you wish to provide values for. Any columns not provided
in the column list will contain a NULL after the INSERT operation unless
they have a default value or are populated by a trigger. The following
statement would insert a row into the employees table, leaving the SALARY
and START_DATE fields NULL. Note that if either of the columns had a
NOT NULL constraint, then the statement would fail.
INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8);

The same operation could have been performed without a column list by
explicitly adding the NULL values to the INSERT statement:
INSERT INTO employees
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8, NULL, NULL);

DEFAULT column values

If a column in the table that is being inserted into contains a DEFAULT
value, you can make use of that value by using DEFAULT in your VALUES
clause. In the example below, a DEFAULT is added to the start_date field

such that is will use the current system date. An insert is then performed
explicitly using DEFAULT as the value for the START_DATE column:
ALTER TABLE employees MODIFY(start_date DEFAULT SYSDATE);
table EMPLOYEES altered.

INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor, salary,
 start_date)
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8, 90000, DEFAULT);
1 rows inserted.

SELECT emp_first, emp_last, start_date
FROM employees
WHERE emp_last='Newberry';

EMP_FIRST EMP_LAST START_DATE
---------- ---------- ----------
Guy Newberry 11-APR-12

Instead of using the DEFAULT keyword, the INSERT could have simply
ignored the START_DATE column such as the below example:
INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor, salary)
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8, 90000);
1 rows inserted.

SELECT emp_first, emp_last, start_date
FROM employees
WHERE emp_last='Newberry';

EMP_FIRST EMP_LAST START_DATE
---------- ---------- ----------
Guy Newberry 11-APR-12

However, if the field is included in the INSERT and VALUES clauses and a
NULL is explicitly inserted, then this will override the DEFAULT value of
the column (unless the new 12c ‘ON NULL’ clause has been used with the
default):
INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor, salary,
 start_date)
VALUES (18, NULL, 'Guy', 'Newberry', 'Mgr', 8, 90000, NULL);
1 rows inserted.

SELECT emp_first, emp_last, start_date
FROM employees
WHERE emp_last='Newberry';

EMP_FIRST EMP_LAST START_DATE
---------- ---------- ----------
Guy Newberry

You might assume that the START_DATE column could be omitted from the
INSERT without an explicit column list and that Oracle would automatically
fill the field with the current date. However, you would be wrong in making
that assumption:
INSERT INTO employees
VALUES (19, NULL, 'Test', 'Osterone', 'Mgr', 8, 92350);

SQL Error: ORA-00947: not enough values
00947. 00000 - "not enough values"

When a column list is not explicitly provided, the SQL parser expects to find
values for every column in the table. When a column list is provided and does
not contain all columns in the table, Oracle will automatically attempt to fill
the remaining columns. If the column has a default value, it will be used. If
the column does not have a default value, then Oracle will attempt to fill it
with a NULL. As noted earlier, that attempt will fail if the column has a NOT
NULL constraint.

Insert using subquery

In lieu of providing values explicitly for an INSERT statement, it’s possible
to generate data through a SELECT statement. The following operation
inserts a row into the AIRCRAFT_TYPES table using a subquery against the
same table. A subquery used for such an operation can be against any table
that will produce the data required. When inserting using a subquery, the
VALUES keyword is not used. The number and order of columns returned by
the subquery must match the number and order of columns in the INSERT
statement. The same rules mentioned above apply to inserted data generated
through a SELECT operation. The columns of the table being inserted into

can be named explicitly or not. If not named, the SELECT must return the
same count of columns as the target table.
INSERT INTO aircraft_types (act_name, act_body_style,
 act_decks, act_seats)
SELECT 'Boeing 787', act_body_style, act_decks, 300
FROM aircraft_types;

Update rows in a table
An UPDATE operation is used to modify existing data in a table. You can
update a single row in a table, multiple rows using a filter, or the entire table.
If an update does not contain a WHERE clause, every single row in the target
table will be updated. The syntax for an UPDATE is:
UPDATE table_name
SET column1 = value1 [, column2 = value2, …]
[WHERE condition];

The following statement moves all of the employees that used to report to the
employees with emp_id 9 to the new employee with emp_id 18. If no
WHERE clause were supplied, all rows in the employees table would have
the emp_supervisor field set to 18.
UPDATE employees
SET emp_supervisor = 18
WHERE emp_supervisor = 9;

The EMP_LAST column of the EMPLOYEES table has a NOT NULL
constraint. Trying to set this field to NULL will generate an error:
UPDATE employees
SET emp_last = NULL
WHERE emp_id = 12;

SQL Error: ORA-01407: cannot update ("OCPGURU"."EMPLOYEES"."EMP_LAST") to NULL
01407. 00000 - "cannot update (%s) to NULL"

As with the INSERT statement, it’s possible to use a subquery to provide the
data used for an UPDATE operation. The column count and order must
match between the UPDATE and the results generated by the subquery. The
syntax for this is:
UPDATE table_name
SET (column1 [, column2 …] = (SELECT column1 [, column2 …] FROM sqtab)
[WHERE condition];

Delete rows from a table
The DELETE operation removes rows that already exist in a table. The
syntax for a DELETE statement is:
DELETE
[FROM] table_name
[WHERE condition];

Only the keyword DELETE and a table name are required. If you issue the
command ‘DELETE employees’, then all rows in the EMPLOYEES table
will be deleted. The FROM keyword is seldom left off of DELETE
statements in practice, but it is strictly optional. The following statement
deletes from the EMPLOYEES table the employee with emp_id 9.
DELETE
FROM employees
WHERE emp_id = 9;

There is no data to be supplied for a DELETE operation as there is with
INSERT and UPDATE operations. However, it’s possible to use a subquery
in the WHERE clause to dynamically build the filter of rows to be deleted.
The following query would remove any aircraft from the
AIRCRAFT_TYPES table that did not currently exist in the fleet.
DELETE FROM aircraft_types
WHERE act_name NOT IN
 (SELECT act_name
 FROM aircraft_fleet_v);

Control transactions
A transaction is composed of one or more DML statements punctuated by
either a COMMIT or a ROLLBACK command. Transactions are a major part
of the mechanism for ensuring the database maintains data integrity. The
transaction control statements available in Oracle follow. Only the first three
of the below TCL statements are likely to appear on the exam. The last two
are for more advanced SQL operations.

COMMIT – Used to end the current transaction and make permanent
all changes performed in it.
ROLLBACK -- Used to undo work done in the current transaction or
to manually undo the work done by an in-doubt distributed transaction.
SAVEPOINT -- Used to create a name for a specific system change
number (SCN), which can be rolled back to at a later date.
SET TRANSACTION – Used to establish the current transaction as
read-only or read/write, establish its isolation level, assign it to a
specified rollback segment, or assign a name to it.
SET CONSTRAINT -- Used to specify, for a particular transaction,
whether a deferrable constraint is checked following each DML
statement (IMMEDIATE) or when the transaction is committed
(DEFERRED).

A transaction begins when an initial DML statement is issued against the
database. This can be followed by any number of additional DML statements.
The transaction will continue until one of the following events occurs:

A COMMIT or ROLLBACK statement is issued
A DDL statement is issued (DDL statements issue an implicit
COMMIT)
The user exits SQL*Plus or SQL Developer
SQL*Plus or SQL Developer terminates abnormally.
The database shuts down abnormally (a crash or shutdown abort).

When performing DML operations, if transaction control is left to only the
COMMIT and ROLLBACK commands, the only options to complete a
transaction are to accept everything that has been changed and make the

changes permanent or accept nothing and undo everything since the last
COMMIT. The SAVEPOINT transaction control statement of Oracle allows
there to be a middle ground between the two. With save points, you can
identify specific locations within the transaction that you can go back to –
undoing any DML statements later than that point, but leaving intact all the
ones prior to it. The example below shows an example of save points.
COMMIT;
INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (30, NULL, 'Adam', 'Apple', 'Pilot', 9);

INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (31, NULL, 'Bob', 'Hopeful', 'Pilot', 9);

SAVEPOINT A;

INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (32, NULL, 'Charlie', 'Chafing', 'Pilot', 9);

INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (33, NULL, 'Dude', 'Whersmicar', 'Pilot', 9);

SAVEPOINT B;

INSERT INTO employees (emp_id, afl_id, emp_first, emp_last,
 emp_job, emp_supervisor)
VALUES (33, NULL, 'Ed', 'Horse', 'Pilot', 9);

There are three places that this transaction can be rolled back to.

ROLLBACK TO SAVEPOINT B – Will undo only the last INSERT
statement.
ROLLBACK TO SAVEPOINT A – Will undo the last three INSERT
statements.
ROLLBACK – Will undo all five INSERT statements.

Note that any DDL operations will end a transaction immediately with an
implicit commit. Any SAVEPOINT prior to that operation can no longer be
rolled back to. Also, if within the same transaction you reuse a save point

name, then any ROLLBACK to that save point will only undo to the latest
one of that name – the earlier one of that name is deleted automatically when
the newer one is created..

Uncommited Transactions

Uncommitted transactions in Oracle are in limbo – it’s not certain whether
they will ever be permanent and so there is limited access to them. Until the
point that the transactions have been committed, it is possible to back out the
changes with a ROLLBACK. Because they might be reversed, the data
required to do so must be retained in the undo segment indefinitely until the
changes are either committed or rolled back. Pending transactions have the
following four characteristics:

The changed data is visible to the user that issued the DML.
The changed data is NOT visible to any other user.
The rows with the changed data are locked and cannot be altered by
any user other than the one with the ongoing transaction.
The data that existed prior to the DML operation can be recovered by
rolling back the transaction.

Committed Transactions

Committed transactions in Oracle have been made permanent (although
obviously they can be changed with another DML operation). Since they
have been made permanent, the portion of the undo segment holding the prior
data is released for reuse, and the changed rows are made accessible.
Committed transactions have the following four characteristics:

The changed data is visible to all database users.
The locks on the rows affected by the DML are released and they can
be updated by any user with the correct privileges.
The changed data has been made permanent and cannot be reversed
with a ROLLBACK.
Any SAVEPOINTs from the transaction are deleted.

If a DML statement fails due to an error, a constraint violation or some other

cause, Oracle will roll the statement back. If there are earlier uncommitted
DML operations that succeeded without error, they will not be affected by the
rollback of the failed statement. If the failed statement is itself a reason for
reversing the earlier DML statements, you can issue an explicit rollback. If
the statement can be repaired, then you can fix the failed statement and
continue on with the remaining portion of the transaction without having to
re-issue the preceding DML operations.

Using DDL Statements to Create and Manage Tables
Describe data types that are available for columns
Every value contained within the Oracle Database has a data type. The data
type associates a given set of properties with the value and causes Oracle to
treat the values differently. For example, it is possible to add, subtract, or
multiply two values of the NUMBER data type, but not two values of a
LONG data type. Any time a table is created, each of its columns must have a
data type specified. Data types define the domain of values that each column
can contain. There are a number of built-in data types in Oracle and it is
possible to create user-defined types that can be used as data types. The data
types available for columns are:

VARCHAR2(n) -- Variable-length character string of n characters or
bytes.
NVARCHAR2(n) -- Variable-length Unicode character string of n
characters.
NUMBER -- Number having optional precision and scale values.
FLOAT -- A subtype of the NUMBER data type having precision but
no scale.
LONG -- Character data of variable length up to 2 gigabytes.
DATE -- This data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND. It does not have fractional
seconds or a time zone.
BINARY_FLOAT -- 32-bit floating point number.
BINARY_DOUBLE -- 64-bit floating point number.
TIMESTAMP -- This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It contains
fractional seconds but does not have a time zone.
TIMESTAMP WITH TIME ZONE -- This data type contains the
datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, and TIMEZONE_MINUTE. It has fractional
seconds and an explicit time zone.
TIMESTAMP WITH LOCAL TIME ZONE – Identical to

TIMESTAMP WITH TIME ZONE, with the exceptions that data is
normalized to the database time zone when it is stored in the database,
and displayed in the current session time zone when retrieved.
INTERVAL DAY TO SECOND -- Stores a period of time in days,
hours, minutes, and seconds
RAW(n) -- Raw binary data of length n bytes.
LONG RAW -- Raw binary data of variable length up to 2 gigabytes.
ROWID -- Base 64 string representing the unique address of a row in
its table.
UROWID -- Base 64 string representing the logical address of a row of
an index-organized table.
CHAR(n) -- Fixed-length character data of length n bytes or
characters.
NCHAR(n) -- Fixed-length character data of length n characters.
CLOB -- A character large object containing single-byte or multibyte
characters.
NCLOB -- A character large object containing Unicode characters.
BLOB -- A binary large object.
BFILE -- Contains a locator to a large binary file stored outside the
database.

Create a simple table
At its most basic, an Oracle create table statement would look something like
the following:
CREATE TABLE ocp_example (
 ocp_id NUMBER,
 ocp_name VARCHAR2(20),
 ocp_date DATE);

The statement can be broken down into the reserved words CREATE and
TABLE, followed by a name for the table, and the column list. The column
list must be enclosed in parentheses, and contain column name/data type
pairs separated by commas. The table name and the column names must
follow Oracle naming rules (discussed next). The SQL statement will be
terminated by a semicolon.

A slightly more complex CREATE TABLE statement is below. In addition to
defining the column data types, it adds a NOT NULL constraint to the
EMP_LAST column and sets the EMP_ID column as the primary key of the
table. In addition, it creates a default for the START_DATE column of
SYSDATE.
CREATE TABLE employees (
 emp_id NUMBER,
 afl_id NUMBER,
 emp_first VARCHAR2(10),
 emp_last VARCHAR2(10) NOT NULL,
 emp_job VARCHAR2(10),
 emp_supervisor NUMBER,
 salary NUMBER,
 start_date DATE DEFAULT SYSDATE,
 PRIMARY KEY (EMP_ID)
);

Another way to create a table is by using a CREATE TABLE AS SELECT
(CTAS) operation. CTAS statements make use of an existing table to form
the basis for the structure (and possibly the contents) of a new table. A CTAS
statement can copy all, or only some of the existing columns of an existing
table, and likewise all or only a portion of the data. The following statement
would create a table called EMPLOYEES_COPY that contained the

emp_first, emp_last, emp_job, and start_date columns of EMPLOYEES, and
all employees hired in the past year. Tables created via CTAS statement will
inherit NOT NULL constraints from the parent table, but no others.
CREATE TABLE employees_copy
AS SELECT emp_first, emp_last, emp_job, start_date
 FROM employees
 WHERE start_date > SYSDATE - 365;

Database Object Naming Rules

Every object in the database must have a name. The names may be
represented with either a quoted identifier or a nonquoted identifier. A quoted
identifier is enclosed in double quotation marks (“). A nonquoted identifier
uses no punctuation. Quoted identifiers allow many of the Oracle database
naming rules to be circumvented. However, Oracle does not recommend
doing so. A complete list of the naming conventions is available in the Oracle
SQL reference. A partial list follows:

Names must be 1 to 30 bytes long with the exception of database names
(8 bytes) and database links (128 bytes).
Nonquoted identifiers cannot be Oracle SQL reserved words.
Nonquoted identifiers must begin with an alphabetic character.
Nonquoted identifiers can contain only alphanumeric characters from
your database character set and the underscore (_), dollar sign ($), and
pound sign (#).
Nonquoted identifiers are not case sensitive. Oracle interprets them as
uppercase. Quoted identifiers are case sensitive.
Columns in the same table or view cannot have the same name.
However, columns in different tables or views can have the same name.
Within a namespace, no two objects can have the same name.

Namespaces

Namespaces are a construct that Oracle uses when locating a database object
during the execution of a SQL command. In any single namespace, you may
not have more than one object of the same. Each schema in the database has

its own namespaces for the objects it contains.

The following schema objects share one namespace:
Tables
Views
Sequences
Private synonyms
Stand-alone procedures
Stand-alone stored functions
Packages
Materialized views
User-defined types

The following schema objects each has its own namespace:
Indexes
Constraints
Clusters
Database triggers
Private database links
Dimensions

The upshot of this is that because tables and views are in the same
namespace, you may not have a table and a view with the exact same name
for a given schema. Likewise a table and a private synonym of the same
name aren’t allowed or a sequence and a view. However, indexes are in a
separate namespace, so you could have a table and an index of the same
name. In addition, because each schema has its own namespace, you could
have tables of the same name in multiple schemas.

Schema References

When performing DML operations against objects that exist in the current
schema, the object name is sufficient for Oracle to locate it and execute the
operation against it. However, when an object exists in another schema, the
object name must be prefixed by the schema name. For example, the

departments table exists in the HR schema on the system used in creating this
guide. Selecting from this table without a schema reference generates an
error:
SELECT *
FROM departments
WHERE department_id < 70;

ORA-00942: table or view does not exist
00942. 00000 - "table or view does not exist"

If the table name is prefixed by the schema name and a period, the SELECT
operation succeeds:
SELECT *
FROM hr.departments
WHERE department_id < 70;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID
------------- ----------------- ---------- -----------
 10 Administration 200 1700
 20 Marketing 201 1800
 30 Purchasing 114 1700
 40 Human Resources 203 2400
 50 Shipping 121 1500
 60 IT 103 1400

Altering a Table

Once a table has been created, any changes to its structure must be applied
using the ALTER TABLE statement. Many of the options available during
table creation can also be performed after it exists. The ALTER TABLE
statement can be used to perform the following actions (among others – see
the Oracle SQL Reference Guide for a complete list):

Adding new columns
Modifying existing column definitions
Dropping existing columns
Setting existing columns to UNUSED
Renaming columns
Adding or removing column constraints
Adding default values to columns

Dropping a Table

If there is no longer a need for a table, you can use the DROP TABLE
command to remove it from the data dictionary. By default, when a table is
dropped in Oracle, it is not removed completely, but placed into a recycle
bin. While the table is in the bin, it is possible to restore it. If you drop the
table using the optional PURGE keyword, the table and its data will be
dropped completely – bypassing the recycle bin. Until the table is purged
from the recycle bin, no space is freed in the tablespace datafile from the
table drop. In addition, the space used by the dropped table still counts
against the QUOTA for the owning user.

When a table is dropped, the action has varying effects on objects related to
it. Some database objects that have a dependency on the table, such as views
and stored PL/SQL, are invalidated. Other types of dependent objects, such
as indexes, triggers, constraints, and object privileges for the table are
dropped when the table is. These have no reason to exist when the table is
gone. Any synonyms that point to the table are unaffected by the DROP
operation as they have no dependencies. Any sequences referenced by table
triggers are likewise unaffected (the table is dependent on the sequence via
the trigger, not the other way around)

Create constraints for tables
Constraints are database objects that are used to restrict (constrain) the data
allowed into table columns. They are essentially rules that must be met in
order for a value to be acceptable. There are several different kinds of
constraints available in Oracle:

PRIMARY KEY – The primary key of a table defines a column, or set
of columns that must be unique for every row of a table. To satisfy a
primary key constraint, none of the column(s) making up the key may
be NULL, and the combination of values in the column(s) must be
unique. A table can have only a single primary key constraint defined
(all other constraint types can exist multiple times in the same table).
UNIQUE – A unique key defines a column or set of columns that must
be unique for every row of a table. Unlike a primary key constraint, the
UNIQUE constraint does not prevent NULL values in the columns(s)
comprising the constraint.
NOT NULL – A NOT NULL constraint prevents a table column from
having NULL values. If a column with a UNIQUE constraint is also
defined as NOT NULL, it will have the same restrictive behavior as a
PRIMARY KEY.
FOREIGN KEY – Foreign keys are also referred to as Referential
Integrity constraints. A foreign key constraint ties a column value in
one table to a primary or unique key value in another. Values may not
be inserted in the table with the reference constraint that do not exist in
the referenced key.
CHECK – Check constraints allow for custom conditions to be
specified for a column. The conditions must evaluate to TRUE for the
operation altering the column value to succeed.

Constraints in Oracle are created by one of two methods. They can be created
simultaneously with the table during the CREATE TABLE statement.
Alternately they can be created on a table that already exists using the
ALTER TABLE statement. There is no such thing as a ‘CREATE
CONSTRAINT’ command. The SQL statement below creates a table with
two constraints:
CREATE TABLE aircraft_types (

 act_id NUMBER,
 act_name VARCHAR2(20),
 act_body_style VARCHAR2(10),
 act_decks NUMBER,
 act_seats NUMBER NOT NULL
 CONSTRAINT ac_type_pk PRIMARY KEY (act_id)
);

Beyond creating the table and columns with associated data types, it contains
the instructions for adding two constraints.

The act_seats column has been assigned a NOT NULL constraint. If an
insert to this table doesn’t reference this column, or references it but
attempts to add a NULL value to the column, an error will occur.
Because no name was specified for the constraint, Oracle will give it a
system-generated name. This is an in-line constraint definition because
it is added in the same line as the column. NULL and NOT NULL
constraints must be defined in-line during a CREATE or ALTER
TABLE statements.
The act_id column has been assigned a primary key constraint, and the
constraint given the name ‘ac_type_pk’. Oracle will create an index of
the same name to enforce the primary key constraint. This constraint
has been defined out-of-line.

In the example above, the PRIMARY KEY constraint definition was listed at
the end of the statement rather than with the column. This is known as out-of-
line constraint definition. The following is equivalent to the first SQL
statement, with the primary key constraint being defined inline. The end
result of a constraint defined inline or out-of-line is identical.
CREATE TABLE aircraft_types (
 act_id NUMBER CONSTRAINT ac_type_pk
 PRIMARY KEY,
 act_name VARCHAR2(20),
 act_body_style VARCHAR2(10),
 act_decks NUMBER,
 act_seats NUMBER NOT NULL
);

It’s possible to view these constraints by querying the

USER_CONSTRAINTS view for all constraints associated with the
AIRCRAFT_TYPES table. Note that the AC_TYPE_PK constraint is type P
(Primary Key), and has no search condition. It is enforced by an index, not by
a condition. By contrast the NOT NULL constraint is type ‘C’ which stands
for ‘Check.’ A NOT NULL constraint is a specific type of check constraint,
and always has a condition that indicates the column should be NOT NULL.
SELECT constraint_name, constraint_type, search_condition
FROM user_constraints
WHERE table_name = 'AIRCRAFT_TYPES'

CONSTRAINT_NAME CONSTRAINT_TYPE SEARCH_CONDITION
--------------- --------------- -----------------------
AC_TYPE_PK P
SYS_C007066 C "ACT_SEATS" IS NOT NULL

Drop columns and set column UNUSED
The DROP option of the ALTER TABLE statement allows you to
permanently remove one or more columns from a table. If a column is not
being utilized, dropping it will free up space and potentially improve
performance. There are two variants of the drop column syntax:
ALTER TABLE constraint_test
DROP COLUMN col2;

ALTER TABLE constraint_test
DROP (col2);

The first variant allows you to drop a single column from a table. The second
variant has the capability to drop multiple columns at once. To drop more
than one column, you would list them all in the parentheses, separated by
commas. It is possible to drop all but one column of the table (a table cannot
exist with zero columns).

If dropping a column that is referenced by a foreign key constraint, you
would need to add the CASCADE CONSTRAINTS clause to the statement.
This would cause any associated foreign key constraints to be dropped at the
same time as the column.
ALTER TABLE constraint_test
DROP COLUMN col2 CASCADE CONSTRAINTS;

There is a second approach to removing a column from a table. You may use
the SET UNUSED clause of the ALTER TABLE statement to make a
column permanently unusable. SET UNUSED is simply a precursor to
dropping the column – it’s not a halfway measure that you can change back
at some point in the future. In all ways except for recovering the space used
by the column, SET UNUSED is equivalent to DROP COLUMN in its
behavior. The only reason to set a column unused rather than dropping is if it
is important that the column be made inaccessible immediately, but it’s not
feasible to take the performance hit required when dropping a column. For
example, dropping a column of a multi-million row table would cause a good
bit of disk and database activity as the entire table is updated. The SET
UNUSED command, by contrast, simply updates the data dictionary and so is

instant and low impact. Just as with the DROP option, there are two variants
of SET UNUSED that allow you to set one column unused or multiple
columns
ALTER TABLE constraint_test
SET UNUSED COLUMN col2;

ALTER TABLE constraint_test
SET UNUSED (col2);

At some future point, presumably at a time of low usage, the column will be
dropped using the DROP UNUSED COLUMNS clause. Until the unused
column(s) have been dropped, the column data continues to be physically
present in the table (albeit completely inaccessible). The command to drop
columns in a table that have been marked unused is:
ALTER TABLE constraint_test
DROP UNUSED COLUMNS;

Create and use external tables
The external tables feature in Oracle allows you to access data in external
files as if it were in a table in the database. To create an external table, you
must know the file format and record format of the data source that will be
used for the table. External tables are created using the ORGANIZATION
EXTERNAL option of the CREATE TABLE statement. When creating an
external table, you specify the following attributes:

TYPE -- The two external table types are ORACLE_LOADER, and
ORACLE_DATAPUMP. The ORACLE_LOADER access driver is the
default. It can not write to the file, only read, and the data must come
from a text file. The ORACLE_DATAPUMP access driver can read
from and write to external binary dump files.
DEFAULT DIRECTORY -- Specifies the default location of the
external files. The location must be specified using an Oracle directory
object. The directory object must exist prior to the creation of the
EXTERNAL TABLE.
ACCESS PARAMETERS -- Specify the information about the
external data source required for the access driver to be able to read it.
The two access types have distinct parameter requirements. The access
parameters are also referred to as the opaque_format_spec in the
CREATE TABLE…ORGANIZATION EXTERNAL statement.
LOCATION -- Indicates the location of the external data. The file
locations are paired directory objects and filenames. If no directory is
specified, then the default directory object is used.

The following example shows the use of each of these attributes:
CREATE TABLE emp_load
 (emp_number CHAR(5),
 emp_dob CHAR(20),
 emp_last_name CHAR(20),
 emp_first_name CHAR(15),
 emp_middle_name CHAR(15),
 emp_hire_date DATE)
ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE

 FIELDS (emp_number CHAR(2),
 emp_dob CHAR(20),
 emp_last_name CHAR(18),
 emp_first_name CHAR(11),
 emp_middle_name CHAR(11),
 emp_hire_date CHAR(10)
 date_format DATE mask "mm/dd/yyyy"
)
)
 LOCATION ('info.dat')
);

Once created, external tables act in most ways like an internal table. There is
no special syntax when querying them via a SELECT statement. It’s not
possible to create indexes on them and every query against them effectively
performs a full-table scan, so performance can be an issue with large files.
Even when performing a specific query against what would normally be
considered a ‘primary key’ field, Oracle must scan every single row in the
file before the query is complete. Because the files making up an external
table are not really part of the database, transferring them between databases
is easy.

Managing Objects with Data Dictionary Views
Query various data dictionary views
The data dictionary of Oracle contains every single piece of information
about the tables, indexes, views, synonyms, procedures, and every other type
of object that exists in the database. If you know where to look (and have
sufficient privileges), it is possible to locate the SQL to recreate every object
in the system. The data dictionary also contains usage information, statistics
about the data, and information about the performance of the database.
Luckily, ninety percent of what can be done with the data dictionary is
outside the scope of this test so it can be ignored in this guide.

All of the data dictionary tables are owned by the SYS account, and tend to
have very cryptic names. Few accounts have access to view these tables at
all. Querying the tables directly is not recommended and in all but a
vanishingly small number of exceptions not worthwhile. The vast majority of
the data you need from the data dictionary can be retrieved from views
created specifically for the purpose of exposing the information required by
users and administrators. A significant number of these views come with one
of three prefixes:

DBA_ -- These views show data dictionary objects across all schemas.
The views are intended to be used by people with Database
Administrator-level privileges.
ALL_ -- These views show data dictionary objects across multiple
schemas. The objects shown are filtered based on object level
privileges, however. Objects in schemas other than the user querying
the view will only be shown if the user has privileges on the object in
the other schema.
USER_ – These views show only data dictionary objects that exist in
the schema that is performing the query. The USER views lack the
OWNER column that exists in the DBA_ and ALL_ views, since the
information is redundant.

The majority of the views outside the above three contain performance
statistics:

V$ -- Dynamic performance views for the local database
GV$ -- Global dynamic performance views for multiple instances when
utilizing Real Application Clusters.

It’s obviously not possible in this book to detail all of the available views.
However, some of the more useful views on non-schema objects are:

DBA_USERS -- Information about all users of the database.
DICTIONARY -- Description of data dictionary tables and views.
DICT_COLUMNS -- Description of columns in data dictionary tables
and views.
GLOBAL_NAME – Displays the global database name.
NLS_DATABASE_PARAMETERS -- Permanent NLS parameters of
the database.
SESSION_PRIVS – Displays all system privileges available in the
current session.

Likewise some of the more useful views on schema objects are: (USER
views shown, there are DBA and ALL equivalents)

USER_INDEXES -- Describes all indexes in the current schema.
USER_IND_COLUMNS -- Describes the columns of indexes on all
tables in the current schema.
USER_SEQUENCES -- Describes all sequences in the current
schema.
USER_SYNONYMS -- Describes all synonyms in the current schema.
USER_SYS_PRIVS -- Describes system privileges granted to the
current user.
USER_TAB_COLUMNS -- Describes columns of all tables, views,
and clusters in the current schema.
USER_TAB_PRIVS -- Describes all object grants in the current
schema.
USER_TABLES -- Describes all relational tables in the current
schema.
USER_OBJECTS -- Describes all objects in the current schema.

The dynamic performance views are extremely useful for getting information
about your database. They display information about your database in real
time. The views themselves actually have names that begin with V_$, but
they each have matching public synonyms that start with V$. When using
these views, you should be aware that Oracle does not recommend complex
queries against them, with or without joins. Because of the dynamic nature of
the views, Oracle cannot guarantee read consistency when anything other
than simple single-view queries are executed against them. Some of the V$
views are:

V$DATABASE -- This view lets you access information about the
database (such as archivelog status).
V$DATAFILE -- This view contains an entry for each datafile of the
database.
V$NLS_PARAMETERS -- The NLS parameters that are in effect for
the session querying this view.
V$PARAMETER -- Lists the name-value pairs of the init.ora file (or
their default, if not in the init.ora).
V$SQLTEXT_WITH_NEWLINES -- This view can be used to
construct the entire text for each session's actual SQL statement.
V$VERSION -- Use this view to find out the specific version of the
database components.

The USER_TABLES view can provide you with more information about a
table than you ever wanted to know. The columns below are just a fraction of
the ones available.
SELECT table_name, status, pct_free, pct_used,
 num_rows, blocks
FROM user_tables
WHERE table_name = 'AIRPORTS';

TABLE_NAME STATUS PCT_FREE PCT_USED NUM_ROWS BLOCKS
------------ ------- -------- -------- -------- ------
AIRPORTS VALID 10 40 5 1

The V$VERSION view is useful for determining exactly which versions of

Oracle software the current database is running.
SELECT *
FROM v$version;

BANNER

Oracle Database 11g Express Edition Release 11.2.0.2.0 - Production
PL/SQL Release 11.2.0.2.0 - Production
CORE 11.2.0.2.0 Production
TNS for 32-bit Windows: Version 11.2.0.2.0 - Production
NLSRTL Version 11.2.0.2.0 - Production

The DICTIONARY view is an excellent starting point for learning about the
data dictionary objects available. The COMMENTS field gives a brief
description of the vast majority of objects available.
SELECT *
FROM dictionary
WHERE table_name LIKE 'USER_COL%'

TABLE_NAME
COMMENTS
----------------------- -------------------------------------
USER_COLL_TYPES Description of the user's own named
 collection types
USER_COL_COMMENTS Comments on columns of user's tables
 and views
USER_COL_PENDING_STATS Pending statistics of tables,
 partitions, and subpartitions
USER_COL_PRIVS_MADE All grants on columns of objects
 owned by the user
USER_COL_PRIVS_RECD Grants on columns for which the
 user is the grantee

Controlling User Access
Differentiate system privileges from object privileges
In order for a RDBMS to be a viable platform for enterprise databases, the
data must be secure. The sum total of the data within it should not be freely
available to anyone that can log in to the database. Oracle maintains security
within the database through the use of user privileges. The two most common
means of controlling user privileges are:

Granting and revoking privileges to individual users or groups of users.
Creating a database role and assigning privileges to it. A role is a
named database object to which you grant related privileges. You can
then grant that role (and all associated privileges) to users or to other
roles.

A third means is through the use of secure application roles. However, that is
outside the scope of the test.

There are two broad classes of privileges that can be granted to a user or role:
System Privileges – Provide the ability to perform a task that has a
scope beyond that of a single database object. Many of the system
privileges have a scope of the entire database, for example ALTER
USER or CREATE ROLLBACK SEGMENT. Others have a scope that
is just for the schema of the user who has been granted the privilege,
for example CREATE TABLE or CREATE PROCEDURE.
Object Privileges – Provide the ability to perform a task on a specific
database object. For example, GRANT SELECT ON employees.

Some examples of System Privileges are:
CREATE TABLE -- Create a table in the grantee's schema.
CREATE ANY TABLE -- Create a table in any schema.
ALTER ANY TABLE -- Alter any table or view in any schema.
DELETE ANY TABLE -- Delete rows from tables in any schema.

DROP ANY TABLE -- Drop (or truncate) tables in any schema.
INSERT ANY TABLE -- Insert rows into tables in any schema.
CREATE ANY INDEX Create an index on any table in any schema.
ALTER ANY INDEX Alter indexes in any schema.

Some examples of Object Privileges are:
ALTER – Right to use ALTER TABLE to change a given table.
INDEX – Right to use the CREATE INDEX command on a given
table.
INSERT – Right to INSERT new rows into a given table.
SELECT – Right to SELECT data from a given table.
UPDATE – Right to UPDATE data in a given table.
DELETE – Right to use DELETE rows from a given table.

PUBLIC

If there is a requirement that every database user have a given privilege, its
possible to grant that privilege to PUBLIC. After granting a privilege to
PUBLIC, the privilege is freely available to every single database user
without exception. This must always be used with caution, especially when
dealing with system privileges. System grants to PUBLIC should be avoided
as a general rule.

ANY keyword

A significant percentage of system privileges have two similar commands,
with and without the ANY keyword (i.e. CREATE TABLE vs CREATE
ANY TABLE). The ANY keyword means that the grant is not schema-
specific. When a user is granted CREATE TABLE, they are able to create
tables in their own schema. However, when granted CREATE ANY TABLE,
they can create tables in any user’s schema. The ANY keyword makes the
privilege much less restrictive and therefore much more dangerous.

WITH ADMIN OPTION

System privileges may optionally be made using the WITH ADMIN option
(i.e. GRANT ALTER ANY TABLE WITH ADMIN OPTION). This option
allows the user granted this privilege to grant it to other users in turn. In fact,
they can grant the privilege to a third user ‘WITH ADMIN OPTION’ who
could in turn grant it to a fourth and so on. If the system privilege is later
revoked from a user who was given the admin option, any grants they made
of this system privilege are not revoked. The revoke of system privileges
does not cascade.

WITH GRANT OPTION

Object privileges have a similar clause called the WITH GRANT OPTION.
When an object privilege is granted to a user with this option, that user can
grant the object privilege to other users. One distinct difference between the
two is that if the privilege is revoked from a user given the WITH GRANT
OPTION, any privileges that the user granted are also revoked. The revoke of
object privileges does cascade.

Grant privileges on tables and on a user
In order to access tables that are owned by another schema, you must have
been granted access to do so. This might be through a system privilege such
as SELECT ANY TABLE, or by a grant on the table itself by the schema
owner, or a schema that has privileges that allow it to grant the required
access. Until a privilege has been granted, Oracle will treat attempts to
SELECT from it as if the table does not even exist.
SELECT *
FROM hr.regions;

ORA-00942: table or view does not exist
00942. 00000 - "table or view does not exist"
*Cause:
*Action:

If the SELECT privilege is granted to the querying schema, then the above
statement will succeed:
GRANT SELECT ON hr.regions TO ocpguru;

GRANT succeeded.

SELECT *
FROM hr.regions;

REGION_ID REGION_NAME
--------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

To remove a privilege that has been granted, the REVOKE statement is
required:
REVOKE SELECT ON hr.regions FROM ocpguru;

REVOKE succeeded.

There are a number of different privileges beyond SELECT that can be
granted to a user. As per the section above, these can be granted as object

privileges where they are applicable only for a specific object in the data
dictionary or as a system privilege where they cover all objects. Some of
these include:

DELETE -- Delete rows in a table.
INSERT -- Insert rows in a table.
UPDATE -- Update data in a table or a subset of columns in a table.
REFERENCES -- Create a foreign key reference on a table or a subset
of columns in a table.
TRIGGER -- Create a trigger on a table or a subset of columns in a
table.

It is possible to grant multiple privileges in a single statement by providing a
comma-separated list. It is also possible to grant one or more privileges to
multiple users in the same fashion. The following example grants the
UPDATE and DELETE privileges to the users JJONES and NGREENBE:
GRANT update, delete ON aircraft_types TO jjones, ngreenbe;
GRANT succeeded.

Distinguish between privileges and roles
A role is a container for a set of privileges. It is not in and of itself a privilege.
When created, a new role contains no privileges and granting it to a user
would confer no additional rights within the database. Once privileges have
been added to a role and the role granted to a user, the user can then enable it
and exercise the privileges granted by it.

Privileges granted to a schema are part of that schema even when the user is
not logged in to the database. By contrast, the privileges a schema has from a
role are only in effect while the user has an open database session (and even
then, it is possible to disable a role for a given session).

Although this is outside the scope of the test, I’ll note that one consequence
of roles being only in effect during a session is that it is not possible to create
stored PL/SQL objects that require a privilege granted to a schema via a role.
For example, if you had the SELECT privilege on the EMPLOYEES table
through a role, you would not be able to create a stored procedure that had a
cursor referencing the table (although you could make use of such a cursor in
an anonymous PL/SQL block). Since stored PL/SQL procedures might be
used when a user is not currently logged into the database, either by another
user or through a scheduled job, the rights required by the procedure must be
persistent.

Managing Schema Objects
Describe how schema objects work
Objects in the Oracle Database fall into two broad classes, schema objects
and non-schema objects. If an object is associated with a particular schema,
then it is a schema object. Conversely, if not, it is a non-schema object. A
database schema is owned by and has the same name as an Oracle database
user. The user and schema are not the same thing. However, since they are
created simultaneously, cannot exist independently, and dropping a user
drops the schema of the same name – the two are often treated as the same
thing. The schema itself is defined as a collection of logical structures of data,
or objects. Schema objects are created and manipulated via SQL statements.
A partial list of schema objects follows:

Constraints
Database triggers
Indexes
Sequences
Synonyms
Tables
Views

Nonschema Objects are also stored in the database and can be created and
manipulated with SQL. However, they are not contained in a schema and
(with the exception of users) have no affinity to any particular schema. A
partial list of these includes:

Directories
Roles
Rollback segments
Tablespaces
Users

Schemas provide for a way to separate the objects of different users. User A
stores their tables in Schema A and User B stores their tables in Schema B.
This makes it easier for users to keep track of their information and also
provides a level of security. By default, users have access only to objects in
their own schemas unless the owning user specifically grants them access.
Schemas also allow for resource allocation. The database administrator can
grant space in tablespaces to each user’s schema based on their job role and
requirements.

When DML and DDL statements are executed, Oracle always determines
what schema is being affected by the statement. Ideally, you should always
explicitly define the schema by prefixing the object name with the schema
and a period. This makes the intent of the statement perfectly clear by
avoiding ambiguity and also means the Oracle does not have to spend parse
time determining which schema should be referenced. In practice, however,
schemas are left off more often than they are specified. The following
statement works:
SELECT emp_first, emp_last, emp_job, salary
FROM employees
WHERE emp_job = 'SVP';
ORDER BY 2, 1;

EMP_FIRST EMP_LAST EMP_JOB SALARY
---------- ---------- ---------- ------
Rick Jameson SVP 145200
Rob Stoner SVP 149100

Because it works, SQL developers often do not explicitly define the schema:
SELECT emp_first, emp_last, emp_job, salary
FROM ocpguru.employees
WHERE emp_job = 'SVP';
ORDER BY 2, 1;

EMP_FIRST EMP_LAST EMP_JOB SALARY
---------- ---------- ---------- ------
Rick Jameson SVP 145200
Rob Stoner SVP 149100

When the object being referenced by a DML statement is not in the current
schema, however, often it is required that the schema where the object exists

be added to the statement. I should note that it is possible to reference objects
in different schema without a schema reference if a synonym has been
created to the destination object. An Oracle synonym is simply a database
object that redirects SQL references against a defined name to a specific
schema object. That said, synonyms are not a topic of this exam and so
should not appear in questions. You need to understand that schemas provide
a container to store database objects, assign privileges and resources, and
how to prefix object names with a schema.

Create simple and complex views with visible/invisible
columns
The base difference between simple and complex views is that a simple view
selects from a single table and does not aggregate data whereas a complex
view selects from more than one table and/or aggregates data. It is possible to
perform DML operations against simple views. It may be possible to perform
DML operations against a complex view, but it is dependent on the particular
view.

You cannot delete or modify data via a view if either of the following is true:

The view has aggregated data.
The view contains the DISTINCT/UNIQUE keyword

You cannot insert data in a view if either of the above is true, or:

There are NOT NULL columns in the table that are not selected by the
view (unless these columns have a default value defined).

As a general rule you also cannot use DML on a query that contains JOINs.
This rule can be circumvented if you have a key preserved table. However,
key preserved tables are not an exam topic.

The following example is a simple view. It does not include the salary
column from the EMPLOYEES table. Users given SELECT access on this
view but *not* the base table will not be able to access employee salary
information.
CREATE OR REPLACE VIEW employees_no_sal_v
AS
SELECT emp_first, emp_last, emp_job, start_date
FROM employees;

view EMPLOYEES_NO_SAL_V created.

The following example is a complex view. By joining the AIRPORTS and
AIRCRAFT_TYPES through the AIRCRAFT_FLEET table, this view
allows you to easily query all of the aircraft in the fleet without having to

create the joins each time.
CREATE OR REPLACE VIEW aircraft_fleet_v
AS
SELECT apt_name, apt_abbr, act_name, act_body_style, act_decks, act_seats
FROM airports apt
 INNER JOIN aircraft_fleet afl
 ON apt.apt_id = afl.apt_id
 INNER JOIN aircraft_types act
 ON act.act_id = afl.act_id;

view AIRCRAFT_FLEET_V created.

If any columns selected in the view are expressions, then the expression must
be provided with an alias in order for a view to be created. The alias must
meet normal naming convention rules. The following expands on the
EMPLOYEE_NOSAL_V view created above, adding two new columns, one
with the employee’s full name separated by a space, and the second with their
last name then the first name separated by a comma.
CREATE OR REPLACE VIEW employees_morenames_v
AS
SELECT emp_first, emp_last, emp_job, start_date,
 emp_first || ' ' || emp_last AS EMP_FULL_NAME,
 emp_last || ', ' || emp_first AS EMP_LAST_FIRST
FROM employees;

view EMPLOYEES_MORENAMES_V created.

Another syntax for defining the view column names during creation is:
CREATE OR REPLACE VIEW employees_morenames_v
 (emp_first, emp_last, emp_job, start_date, emp_full_name, emp_last_name)
AS
SELECT emp_first, emp_last, emp_job, start_date,
 emp_first || ' ' || emp_last,
 emp_last || ', ' || emp_first
FROM employees;

view EMPLOYEES_MORENAMES_V created.

Invisible columns

Just as it is possible to create invisible columns in a table, 12c provides the
capability to create invisible columns in a view. The behavior is essentially

identical to invisible columns in a table. Invisible columns in a view are only
accessible when directly referenced. The following examples make use of
INVISO_TEST that was used earlier in this book to demonstrate invisible
columns in a table. To recap -- that table was created with three columns:
COL1, COL2, and COL3 using the following SQL:
CREATE TABLE inviso_test (
col1 NUMBER,
col2 VARCHAR2(20),
col3 VARCHAR2(20) INVISIBLE);

If a view is created against this table using the asterisk syntax, the
INVISIBLE setting of COL3 will prevent it from being made part of the
view. The column cannot be selected from the view even if directly
referenced.
CREATE VIEW inviso_test_v1
AS
SELECT *
FROM inviso_test;

View created.

SELECT *
FROM inviso_test_v1;

 COL1 COL2
---------- -------------
 1 Visible

SELECT col1, col2, col3
FROM inviso_test_v1;

ERROR at line 1:
ORA-00904: "COL3": invalid identifier

DESC inviso_test_v1

Name Null Type
---- ---- ------------
COL1 NUMBER
COL2 VARCHAR2(20)

If the SELECT clause of the CREATE VIEW statement explicitly references
an invisible column in the table, the column will be included in the view.

However, the view does not inherit the INVISIBLE aspect of the column.
When accessing the view, the column is fully visible despite the fact that is
invisible at the table level.
CREATE VIEW inviso_test_v2
AS
SELECT col1, col2, col3
FROM inviso_test;

SELECT *
FROM inviso_test_v2;

 COL1 COL2 COL3
---------- -------------------- --------------------
 1 Visible
 2 Visible Invisible

DESC inviso_test_v2

Name Null Type
---- ---- ------------
COL1 NUMBER
COL2 VARCHAR2(20)
COL3 VARCHAR2(20)

Any columns created in a view will be VISIBLE regardless of their visibility
in the base tables unless they are explicitly marked INVISIBLE in the view
definition. In order to make a column invisible in a view, the column names
must be specified explicitly in the view definition. The INVISIBLE keyword
can be used to make one or more columns invisible in the view regardless of
their visibility in the base table. The following example explicitly sets COL3
to INVISIBLE. Its behavior then matches that of the column in the base table.
CREATE VIEW inviso_test_v3
(col1, col2, col3 INVISIBLE)
AS
SELECT col1, col2, col3
FROM inviso_test;

SELECT *
FROM inviso_test_v3;

 COL1 COL2
---------- --------------------
 1 Visible

 2 Visible

DESC inviso_test_v3

Name Null Type
---- ---- ------------
COL1 NUMBER
COL2 VARCHAR2(20)

There is no reason that the behavior of the view has to match that of the base
table, though. The following example makes a view where COL2 is invisible
while leaving COL3 visible. The view then acts quite differently from the
base table:
CREATE VIEW inviso_test_v4
(col1, col2 INVISIBLE, col3)
AS
SELECT col1, col2, col3
FROM inviso_test;

SELECT *
FROM inviso_test_v4;

 COL1 COL3
---------- --------------------
 1
 2 Invisible

DESC inviso_test_v4

Name Null Type
---- ---- ------------
COL1 NUMBER
COL3 VARCHAR2(20)

Create, maintain and use sequences
Sequences are database objects from which multiple users may generate
unique integers. They are often used to automatically generate primary key
values. Every time a sequence number is generated, the value is incremented,
independent of whether the transaction is committed or rolled back. If a SQL
statement generates an error, it is automatically rolled back, but any
sequences incremented by the call will not get rolled back to the value they
were previously.

One user can never acquire the sequence number that was generated by
another user. Once a sequence exists, the CURRVAL and NEXTVAL
pseudocolumns are used to access its values. The CURRVAL pseudocolumn
returns the current value of the sequence. The NEXTVAL pseudocolumn
increments the sequence and returns the new value. The NEXTVAL and
CURRVAL pseudocolumns cannot be used as part of a view, or in an
aggregate SELECT statement.

Since sequences do nothing more than return an integer when called, there
are only a few questions to be answered about them during creation and
CREATE SEQUENCE is a fairly simple command:

START WITH – Specifies the first number to be returned by the
sequence (default is 1).
INCREMENT BY – Specifies the integer that will be added to the
sequence value each time it is called. This number can be positive or
negative (default is 1).
MINVALUE – the lowest value that will be returned by the sequence
(default is NOMINVALUE).
MAXVALUE – The highest value that will be returned by the
sequence (default is NOMAXVALUE).
CYCLE – Determines whether the sequence will cycle through the
same set of numbers continuously or not (default is NOCYCLE).
CACHE – Determines whether or not the sequence will cache values
in memory for faster retrieval and how many (default is CACHE 20).
NOCACHE will turn off sequence caching entirely.

A sequence created with all default values will start at one, and increment by

1 with no maximum value and utilize a cache of 20 values). To create a
sequence that stops at a predefined limit, specify a value for the
MAXVALUE or MINVALUE parameters (for ascending/descending
sequences respectively) and add NOCYCLE. Once the sequence has reached
its limit, any further calls to NEXTVAL generate an error.

To create a sequence that restarts after reaching a predefined limit, specify
the MAXVALUE and MINVALUE parameters and the CYCLE keyword.
When an ascending sequence hits the MAXVALUE, the next call to
NEXTVAL will return the number set by MINVALUE. Likewise a
descending sequence will step from MINVALUE to the MAXVALUE.

The following example creates a sequence called SEQ_EMP_ID that starts
with the number 18, increments by one each time the NEXTVAL
pseudocolumn is referenced, and does not cache any values.
CREATE SEQUENCE seq_emp_id
START WITH 18
INCREMENT BY 1
NOCACHE;

sequence SEQ_EMP_ID created.

Once created, we can pull the next number from the sequence as follows:
SELECT seq_emp_id.nextval FROM dual;

NEXTVAL

 18

If we were to make the above call a second time, it would return the value 19.
However, we can pull the current sequence value without causing it to
increment by using the CURRVAL pseudocolumn:
SELECT seq_emp_id.currval FROM dual;

CURRVAL

 18

Create and maintain indexes including invisible indexes
and multiple indexes on the same columns
Indexes contain an entry for each value that is stored in the indexed
column(s) of the table. Each index entry contains a locator to the block(s) in
the data file containing the row(s) with that value and provide direct, fast
access to them. Tables can have multiple indexes created on them. The
tradeoffs involved in creating multiple indexes on the same table are outside
the scope of this test. A DML statement that includes an indexed column in a
WHERE clause might see a performance benefit. The uncertainty lies in the
fact that the Oracle Cost Based Optimizer may or may not choose to make
use of the index.

Oracle supports several types of index:

Normal indexes -- The default index type in Oracle is a B-tree index.
Bitmap indexes -- Store the ROWID values associated with a key
value as a bitmap. A bitmap index cannot be UNIQUE.
Partitioned indexes -- Consist of partitions containing an entry for
each value that appears in the indexed column(s) of the table.
Function-based indexes – Store expressions based on column data
rather than the column data itself. They enable you to construct queries
that filter by an expression and get the performance benefit of an index.

When creating indexes manually via the CREATE INDEX command, you
can index a single column:
CREATE INDEX emp_last_ndx
ON employees (emp_last);

index EMP_LAST_NDX created.

You can also create a single index that contains multiple columns:
CREATE INDEX emp_last_first_ndx
ON employees (emp_last, emp_first);

index EMP_LAST_FIRST_NDX created.

Whenever a DML query includes one or more indexed columns in the
WHERE clause, the Oracle Cost Based Optimizer has to decide whether or
not making use of the index will improve the performance of the operation.
The optimizer uses table statistics to try to determine what percentage of rows
in the table will be returned by the query. If the answer is most (or all) of the
rows in the table, then skipping the index in favor of a full-table scan is likely
to be the better option from a performance standpoint. The full scope of the
CBO decision-making process is much more complex, but this is a significant
part of the decision on using indexes. Indexes are never used when the
comparison being performed is ‘!=’, ‘NOT IN’, or ‘IS NULL’ or if the
column being compared is in a function and the index is not a function-based
index (using the same function as is in the WHERE clause).

Oracle maintains indexes automatically. There is no command that you must
issue to account for a row being added or deleted, or an indexed value being
changed. Every time a table change is made that affects an indexed value,
Oracle performs the necessary updates to all affected indexes on that table.
The automated work is part of the downside to having multiple indexes on a
given table. Multiple indexes might improve performance for selects, but
they will create overhead that reduces performance for inserts, updates and
deletes.

The only manual performance operation that you might perform on an index
is a rebuild. Index rebuilds can sometimes reduce the size and improve the
performance characteristics for an index that has had a lot of data changes
since the index was built (or last rebuilt).
ALTER INDEX emp_last_first_ndx REBUILD;

index EMP_LAST_FIRST_NDX altered.

If you decide that an index is not being used or if you want to replace it with
an index created in a different fashion, you can remove it from the data
dictionary with the DROP INDEX command. If a table with indexes is
dropped, all of the associated indexes will be dropped automatically.
DROP INDEX emp_last_first_ndx;

index EMP_LAST_FIRST_NDX dropped.

Indexes and Constraints

The two constraints that make use of indexes for enforcement are PRIMARY
KEY and UNIQUE constraints. If you add one of these two constraints to a
table then an index will be required for the constraint to create successfully. If
there is not already an appropriate unique index on the column(s) the
constraint is for, an index will be added to the table to enforce the constraint.
We can find the index created earlier for the aircraft_types primary key by
querying the USER_INDEXES view:
SELECT table_name, index_name
FROM user_indexes
WHERE table_name = 'AIRCRAFT_TYPES';

TABLE_NAME INDEX_NAME
------------------------ -------------
AIRCRAFT_TYPES SYS_C006988

When defining the state of the constraint, you can specify an existing index
for Oracle to use for enforcement, or you can instruct Oracle to create a new
index, or neither. The three possible options are:

If you specify USING schema.index, then Oracle attempts to use the
specified index. If Oracle cannot find the index or cannot use the index
to enforce the constraint an error will be returned.
If you specify the create_index_statement, then Oracle attempts to
create the index and use it to enforce the constraint. If Oracle cannot
create the index or cannot use the index to enforce the constraint, then
an error is returned.
If you neither specify an existing index nor create a new index, then
Oracle creates the index automatically and generates a unique (and
ugly) name for the new index.

Earlier, we added a UNIQUE constraint to the airports table with this
statement:
ALTER TABLE airports MODIFY (apt_abbr
 CONSTRAINT airport_codes_uk
 UNIQUE USING INDEX airport_codes_uk);

An alternate syntax that would have identical results is:
ALTER TABLE airports
 ADD CONSTRAINT airport_codes_uk
 UNIQUE (apt_abbr) USING INDEX airport_codes_uk;

If a unique index does not already exist on AIRPORTS.APT_ABBR, then
one can be created explicitly as part of the ALTER TABLE statement that
creates the constraint:
ALTER TABLE airports
 ADD CONSTRAINT airport_codes_uk
 UNIQUE (apt_abbr) USING INDEX
 (CREATE UNIQUE INDEX apt_abbr_uk
 ON airports(apt_abbr));

If you add a UNIQUE constraint and provide a constraint name but no
USING clause, an index with the same name as the constraint will be created
automatically.
ALTER TABLE airports
 ADD CONSTRAINT airport_codes_uk
 UNIQUE (apt_abbr);

If you add a UNIQUE constraint and provide no constraint name or USING
clause, and no index exists that could be used to enforce the constraint, an
index will be created automatically. The index and the constraint will be
given a system-generated name.
ALTER TABLE airports
 ADD UNIQUE (apt_abbr);

table AIRPORTS altered.

SELECT index_name, index_type, uniqueness
FROM user_indexes
WHERE table_name = 'AIRPORTS';

INDEX_NAME INDEX_TYPE UNIQUENESS
------------- ------------- ----------
SYS_C007010 NORMAL UNIQUE

Invisible Indexes

It is possible to create (or alter) indexes that are invisible to the Oracle
Optimizer. Invisible indexes are structurally identical to normal indexes and
are maintained by the database as rows in the indexed table are added,
updated or deleted. However, the index will never be used by the optimizer
when accessing data by default. The parameter
OPTIMIZER_USE_INVISIBLE_INDEXES can be set to TRUE at the
instance or session level to allow the optimizer to make use of invisible
indexes (the default is FALSE). Since making an index invisible seems to
violate the whole reason they exist, one might ask "What's the point?". Good
question. Oracle gives the following three reasons for creating an invisible
index:

Test the removal of an index before dropping it.
Use temporary index structures for certain operations or modules of an
application without affecting the overall application.
Add an index to a set of columns on which an index already exists.

Whatever the reason for creating them, the following example creates an
invisible index directly via the CREATE INDEX statement:
CREATE INDEX ac_fleet_act_inv_ndx ON aircraft_fleet(act_id) INVISIBLE;
index AC_FLEET_ACT_INV_NDX created.

The following example creates an index as VISIBLE, then alters it to
invisible using the ALTER INDEX statement:
CREATE INDEX ac_fleet_apt_inv_ndx ON aircraft_fleet(apt_id);
index AC_FLEET_APT_INV_NDX created.

ALTER INDEX ac_fleet_apt_inv_ndx INVISIBLE;
index AC_FLEET_APT_INV_NDX altered.

Finally, it is possible to make an invisible index visible with the ALTER
INEX statement:
ALTER INDEX ac_fleet_apt_inv_ndx VISIBLE;
index AC_FLEET_APT_INV_NDX altered.

Multiple indexes on the same column

Until 11g it was not possible to have more than one index on a single column.
The same column could appear in more than one index if one or more was a
multi-column index (i.e. index A was for column1, index B was for column1
and column 2). However, a given column or set of columns could only have a
single index. One of the spinoffs of invisible indexes is that they make it
possible to create multiple indexes on the same column (or column set). If
you are uncertain what type of index will provide the best performance in a
situation, you might create two or more indexes on a given column of
different types (such as B-Tree vs bitmap or partitioned vs unpartitioned).
When more than a single index exists for a given set of columns, only one
can be visible at any given time. Multiple indexes can be created on the same
set of columns when at least one of the following index characteristics is
different:

The indexes are of different types, such as B-Tree and Bitmap.
The indexes use different partitioning logic -- such as one partitioned
and the other non-partitioned or one globally partitioned and the other
locally partitioned.
The indexes have different uniqueness properties (i.e. one is UNIQUE
and the other is not).

Perform flashback operations
In release 11g, Oracle introduced a number of features under the umbrella of
flashback functionality. The capabilities are implemented and accessed via a
number of different methods. The common factor between them is that all of
them allow you to access data and or database objects as they existed at an
earlier point in time without having to perform media recovery of the
database. Capabilities of Oracle Flashback include:

Performing queries that return past data.
Performing queries that return metadata with a history of changes to the
database.
Recover tables or rows to a previous point in time.
Automatically create an archive of transactional data changes.
Roll back a transaction and its dependent transactions.

The scope of flashback capabilities is significant and many of the functions
are linked more closely to recovery and DBA level operations than to SQL
queries. In this guide, we’ll cover the three aspects most likely to appear on
the test: Flashback Query, Flashback Version Query, and Flashback
Transaction Query.

Oracle Flashback Query

Flashback Query is used to retrieve data for a time in the past that is specified
using the AS OF clause in a SELECT statement. When the AS OF clause is
included in a query and references a past time through a timestamp or System
Change Number (SCN), Oracle returns committed data that existed in the
database at that point in time. You can use this to recover lost data or reverse
committed changes. You can also use the results to compare current data with
past data.

The example below demonstrates recovery of an accidentally deleted row
using Oracle Flashback Query:
DELETE FROM employees
WHERE emp_last = 'Stoneflint';

1 rows deleted.

SELECT *
FROM employees
WHERE emp_last = 'Stoneflint';

no rows selected

SELECT emp_id, emp_first, emp_last, emp_job, salary
FROM employees
 AS OF TIMESTAMP
 TO_TIMESTAMP('29-MAR-12 11.00.00 PM',
 'DD-MON-YY HH:MI:SS AM')
 WHERE emp_last = 'Stoneflint';

EMP_ID EMP_FIRST EMP_LAST EMP_JOB SALARY
------ --------- ---------- ------- -------
 7 Fred Stoneflint SrDir 111500

INSERT INTO employees
(SELECT *
FROM employees
 AS OF TIMESTAMP
 TO_TIMESTAMP('29-MAR-12 11.00.00 PM',
 'DD-MON-YY HH:MI:SS AM')
 WHERE emp_last = 'Stoneflint');

1 rows inserted.

SELECT emp_id, emp_first, emp_last, emp_job, salary
FROM employees
WHERE emp_last = 'Stoneflint';

EMP_ID EMP_FIRST EMP_LAST EMP_JOB SALARY
------ --------- ---------- ------- -------
 7 Fred Stoneflint SrDir 111500

When utilizing a timestamp in the AS OF clause, Oracle converts the
timestamp to an SCN within a 3-second range. If you need to have absolute
accuracy on the query, you can use an SCN in the AS OF query instead of a
timestamp. If you specify SCN, then the supplied expression must evaluate to
a number.
SELECT emp_id, emp_first, emp_last, emp_job, salary

FROM employees
 AS OF SCN 392611
WHERE emp_last = 'Stoneflint';

EMP_ID EMP_FIRST EMP_LAST EMP_JOB SALARY
------ --------- ---------- ------- -------
 7 Fred Stoneflint SrDir 111500

It's possible to specify a relative time when using the AS OF clause. The
example below creates a view that will always return data as it existed three
hours in the past.
CREATE VIEW employees_minus3_hours_v AS
SELECT * FROM employees
AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '180' MINUTE);

view EMPLOYEES_MINUS3_HOURS_V created.

Oracle Flashback Version Query

Flashback Version Query is used to retrieve metadata and historical data for a
specific interval. The interval can be specified by two timestamps or by two
SCNs. The metadata returned includes the start and end time a version
existed, type of DML operation used to create it, and the identity of the
transaction that created each row version. The VERSIONS BETWEEN
clause of a SELECT statement is used to generate a Flashback Version
Query. The syntax of the VERSIONS BETWEEN clause is: VERSIONS
{BETWEEN {SCN | TIMESTAMP} start AND end}.

The Pseudocolumns returned by a Flashback version query are:

VERSIONS_START[SCN/TIME] -- Starting System Change
Number (SCN) or TIMESTAMP when the row version was created.
NULL if version is from before the start value.
VERSIONS_END[SCN/TIME] -- SCN or TIMESTAMP when the
row version expired. If NULL, then either the row version was current
at the time of the query or the row is for a DELETE operation.
VERSIONS_XID -- Identifier of the transaction that created the row
version.
VERSIONS_OPERATION -- Operation performed by the
transaction: I for insertion, D for deletion, or U for update. The version

is that of the row that was inserted, deleted, or updated.

A given row version is valid starting at VERSIONS_START* up to, but not
including, VERSIONS_END*. That is, it is valid for any time ‘t’ such that
VERSIONS_START* <= t < VERSIONS_END*. The following three
updates were issued against the EMPLOYEES table, with a pause in-
between.
UPDATE employees SET salary = 97000
WHERE emp_last='McCoy';
UPDATE employees SET salary = 102000
WHERE emp_last='McCoy';
UPDATE employees SET salary = 105000
WHERE emp_last='McCoy';
COMMIT;

Then the following Flashback Versions query was run against employees:
SELECT versions_starttime, versions_endtime,
 versions_xid, versions_operation AS OP,
 salary
 FROM employees
 VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('29-MAR-12 11.46.00PM','DD-MON-YY HH:MI:SSAM')
 AND TO_TIMESTAMP('29-MAR-12 11.52.00PM','DD-MON-YY HH:MI:SSAM')
 WHERE emp_last = 'McCoy';

VERSIONS_STARTTIME VERSIONS_ENDTIME VERSIONS_XID OP SALARY
-------------------- --------------------- ---------------- -- ------
29-MAR-12 11.51.08PM 09000900A9010000 U 105000
29-MAR-12 11.49.50PM 29-MAR-12 11.51.08PM 04001A003F010000 U 102000
29-MAR-12 11.49.02PM 29-MAR-12 11.49.50PM 03002100A2010000 U 97000
 29-MAR-12 11.49.02PM 93500

From the results above, you see the three updates against the table, each
increasing the salary column value. It’s clear when each salary value started
and ended (save the initial value for which the start time was outside the
window, and the end value which is current (and therefore has no end time).
You can use VERSIONS_XID with Oracle Flashback Transaction Query to
locate the metadata for any of the three transactions. This will include the
SQL required to undo the row change and the user responsible for the

change.

Oracle Flashback Transaction Query.

A Flashback Transaction Query is used to retrieve metadata and historical
data for a single transaction or for all transactions in a supplied interval. The
data is generated from the static data dictionary view
FLASHBACK_TRANSACTION_QUERY. The Flashback Transaction
Query creates a column UNDO_SQL. The SQL text in this field is the logical
opposite of the DML operation performed by the transaction shown. The
code from this field can usually reverse original transaction within reason
(e.g. a SQL_UNDO INSERT operation would be unlikely to insert a row
back at the same ROWID from which it was deleted). As a general rule,
Oracle Flashback Transaction Query is used in conjunction with an Oracle
Flashback Version Query that provides transaction IDs.
SELECT operation, start_scn, commit_scn, logon_user
 FROM flashback_transaction_query
 WHERE xid = HEXTORAW('09000900A9010000');

OPERATION START_SCN COMMIT_SCN LOGON_USER
------------ --------- ---------- ------------
UNKNOWN 393394 393463 OCPGURU
BEGIN 393394 393463 OCPGURU

The following statement uses Oracle Flashback Version Query as a subquery
to associate each row version with the LOGON_USER responsible for the
row data change.
SELECT xid, logon_user
 FROM flashback_transaction_query
 WHERE xid IN (
 SELECT versions_xid
 FROM employees VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('29-MAR-12 11.40.00 PM',
 'DD-MON-YY HH:MI:SS AM') AND
 TO_TIMESTAMP('29-MAR-12 11.56.00 PM',
 'DD-MON-YY HH:MI:SS AM')
);

Manipulating Large Data Sets
Describe the features of multitable INSERTs
A multitable INSERT statement allows you to conditionally insert rows
returned by a subquery into one or more tables. They’re often used in
Extract-Transform-Load (ETL) processes when populating data warehouses.
They can provide a significant performance enhancement over performing
multiple individual INSERT operations.

The different types of multitable inserts are:

Conditional INSERT FIRST – Each row returned by the subquery is
inserted into the first table for which it matches the condition.
Unconditional INSERT ALL – Each row returned by the subquery is
inserted into every target table.
Conditional INSERT ALL – Each row returned by the subquery is
inserted into every target table for which it matches the condition.
Pivot INSERT – A variant of the Unconditional INSERT ALL that
performs a pivot operation on the data during the insert – turning data
from multiple columns in the source subquery into multiple rows in the
destination table.

The syntax for a multitable INSERT is:
INSERT [conditional_insert_clause]
[insert_into_clause value_clause]
(subquery)

The syntax of the conditional_insert_clause is:
[ALL] [FIRST]
[WHEN condition THEN] [insert_into_clause value_clause]
[ELSE] [insert_into_clause value_clause]

When the ALL keyword is used, the operation will insert a row into every
table for which it matches the condition. When the FIRST keyword is used,
the operation will insert a row only into the first table for which it matches
the condition. If the ALL keyword is used and no conditions are supplied,

then every row returned by the subquery will be inserted into every table
supplied in the INSERT statement. On a conditional INSERT, if a row does
not evaluate to TRUE on any of the conditions and there is no ELSE, then no
action is taken for that row. Multitable inserts cannot be performed on views
or remote tables.

Conditional INSERT FIRST

The Conditional INSERT FIRST statement steps through the values returned
by the subquery. As each row is returned, it is evaluated against the
conditions from the top down. As soon as one of the conditions evaluate to
TRUE, the row will be inserted into the appropriate table. Oracle will skip
any remaining insertion conditions and begin evaluating the next row
returned by the subquery. The example below conditionally inserts
employees records into tables indicating they’ve been with the company >20
years, >15 years, >10 years, or >5 years.
INSERT FIRST
 WHEN MONTHS_BETWEEN(SYSDATE, start_date) >= 240 THEN
 INTO emps_20
 VALUES (emp_id, emp_first, emp_last)
 WHEN MONTHS_BETWEEN(SYSDATE, start_date) >= 180 THEN
 INTO emps_15
 VALUES (emp_id, emp_first, emp_last)
 WHEN MONTHS_BETWEEN(SYSDATE, start_date) >= 120 THEN
 INTO emps_10
 VALUES (emp_id, emp_first, emp_last)
 WHEN MONTHS_BETWEEN(SYSDATE, start_date) >= 60 THEN
 INTO emps_5
 VALUES (emp_id, emp_first, emp_last)
SELECT emp_id, emp_first, emp_last, start_date
FROM employees;

SELECT * FROM emps_5;

EMP_ID EMP_FIRST EMP_LAST
------ ---------- ----------
 6 Janet Jeckson
 15 Luke Skytalker
 16 Dell Aptop
 17 Noh Kia

SELECT * FROM emps_10;

EMP_ID EMP_FIRST EMP_LAST
------ ---------- ----------
 8 Alf Alien
 9 Norm Storm
 13 James Thomas
 14 John Picard
 7 Fred Stoneflint

SELECT * FROM emps_15;

EMP_ID EMP_FIRST EMP_LAST
------ ---------- ----------
 1 Big Boss
 2 Adam Smith
 3 Rick Jameson
 4 Rob Stoner
 5 Bill Abong
 10 John Jones
 11 Top Gun
 12 Phil McCoy

SELECT * FROM emps_20;

no rows selected

Unconditional INSERT ALL

The following inserts into the EMP_JOBS and EMP_EMAIL tables all rows
returned by the subquery. The column values being inserted into the
individual tables do not have to match. Every row returned by the subquery
results in two table insertions. In the below example, the employee EMAIL
and JOB_ID values are broken out into two new tables due to a new and
incomprehensible HR requirement.
INSERT ALL
 INTO emp_jobs (employee_id, job_id)
 VALUES (employee_id, job_id)
 INTO emp_email (employee_id, email)
 VALUES (employee_id, email)
SELECT employee_id, job_id, email
FROM hr.employees;

214 rows inserted.

SELECT * FROM emp_jobs WHERE employee_id < 110;

EMPLOYEE_ID JOB_ID
----------- ----------
 100 AD_PRES
 101 AD_VP
 102 AD_VP
 103 IT_PROG
 104 IT_PROG
 105 IT_PROG
 106 IT_PROG
 107 IT_PROG
 108 FI_MGR
 109 FI_ACCOUNT

SELECT * FROM emp_email WHERE employee_id < 110;

EMPLOYEE_ID EMAIL
----------- -------------------------
 100 SKING
 101 NKOCHHAR
 102 LDEHAAN
 103 AHUNOLD
 104 BERNST
 105 DAUSTIN
 106 VPATABAL
 107 DLORENTZ
 108 NGREENBE
 109 DFAVIET

Conditional INSERT ALL

The conditional INSERT ALL simply adds a condition that must be
evaluated before the insertion occurs. As each row is returned by the
subquery, Oracle checks it against the condition to see if it evaluates to
TRUE. If so, it will be inserted. If not, Oracle will move to the next condition
or to the next subquery row if no more conditions exist. The following query
splits up all of the employees evenly among two teams for a company-wide
morale-building game of football.
INSERT ALL
 WHEN MOD(ROWNUM,2) = 1 THEN
 INTO emp_shirts (emp_id, emp_first, emp_last)
 VALUES (emp_id, emp_first, emp_last)
 WHEN MOD(ROWNUM,2) = 0 THEN
 INTO emp_skins (emp_id, emp_first, emp_last)
 VALUES (emp_id, emp_first, emp_last)

SELECT emp_id, emp_first, emp_last
FROM employees;

17 rows inserted.

SELECT * FROM emp_shirts;

EMP_ID EMP_FIRST EMP_LAST
------ ---------- ----------
 1 Big Boss
 3 Rick Jameson
 5 Bill Abong
 8 Alf Alien
 10 John Jones
 12 Phil McCoy
 14 John Picard
 16 Dell Aptop
 7 Fred Stoneflint

SELECT * FROM emp_skins;

EMP_ID EMP_FIRST EMP_LAST
------ ---------- ----------
 2 Adam Smith
 4 Rob Stoner
 6 Janet Jeckson
 9 Norm Storm
 11 Top Gun
 13 James Thomas
 15 Luke Skytalker
 17 Noh Kia

Pivot INSERT

A Pivot INSERT is used to convert column data in the source subquery into
row data in the destination table. Converting columns to rows is generally
known as a pivot operation. In the example below, the subquery is run against
the SALES_BY_FY table. This table contains sales data for various fiscal
years with the numbers broken into columns by quarter. The Pivot INSERT
operation will use the source data to pull the quarterly sales data out into
individual rows to the SALES_BY_QUARTER table.
DESC sales_by_fy

Name Null Type
----------- ---- -----------

FISCAL_YEAR VARCHAR2(5)
Q1_SALES NUMBER
Q2_SALES NUMBER
Q3_SALES NUMBER
Q4_SALES NUMBER

SELECT * FROM sales_by_fy;

FISCAL_YEAR Q1_SALES Q2_SALES Q3_SALES Q4_SALES
----------- -------- -------- -------- --------
2010 250000 300000 175000 180000
2011 225000 280000 195000 189000
2012 270000 310000 187000 192000

INSERT ALL
 INTO sales_by_quarter VALUES (fiscal_year, 1, q1_sales)
 INTO sales_by_quarter VALUES (fiscal_year, 2, q2_sales)
 INTO sales_by_quarter VALUES (fiscal_year, 3, q3_sales)
 INTO sales_by_quarter VALUES (fiscal_year, 4, q4_sales)
 SELECT fiscal_year, q1_sales, q2_sales, q3_sales, q4_sales
 FROM sales_by_fy;

SELECT *
FROM sales_by_quarter
ORDER BY fiscal_year, quarter;

FISCAL_YEAR QUARTER SALES
----------- ------- -----
2010 1 250000
2010 2 300000
2010 3 175000
2010 4 180000
2011 1 225000
2011 2 280000
2011 3 195000
2011 4 189000
2012 1 270000
2012 2 310000
2012 3 187000
2012 4 192000

Merge rows in a table
MERGE is a DML operation that combines aspects of INSERT, UPDATE
and DELETE. A single MERGE statement can perform one, two, or all three
activities conditionally. There is nothing that can be performed by the
MERGE statement that cannot be performed individually by a combination
of INSERT, UPDATE and DELETE operations. The power of a MERGE
statement is in being able to perform multiple activities in a single pass. For
ETL activities in particular, a MERGE might be able to significantly improve
performance on operations involving a large amount of data. In order to
perform MERGE operations, you must have the neccesary rights. There is no
MERGE privilege – so you need, SELECT, UPDATE, and DELETE
privileges on the appropriate tables in order to perform MERGE operations.
The syntax for the MERGE statement is:
MERGE INTO dest_table tab_alias1
 USING (source_expr) tab_alias2
 ON (join_condition)
 WHEN MATCHED THEN
 UPDATE SET
 col1 = val1,
 col2 = val2
 DELETE WHERE (del_cond)
 WHEN NOT MATCHED THEN
 INSERT (col_list)
 VALUES (col_values)

dest_table – The table for which rows will be inserted, updated, or
deleted
source_expr – The source of row data for the MERGE, this can be a
table, view, or subquery.
join_condition – The condition which is evaluated for each row.
del_cond – Delete row if this condition is met.
WHEN MATCHED – The operation in this clause will be performed
when join_condition evaluates to TRUE.
WHEN NOT MATCHED -- The operation in this clause will be
performed when join_condition evaluates to FALSE.

An example of this operation follows. The statement is designed to update a

backup table to the employees table to match the original. Where employee
ids match between the two tables, the backup EMP_ID record is updated to
match all the current values in the primary table. Where the employee ID
does not exist in the backup, it is inserted directly from the primary.
MERGE INTO employees_bkup empb
USING (SELECT * FROM employees) emp
ON (empb.emp_id = emp.emp_id)
WHEN MATCHED THEN
UPDATE SET
 empb.afl_id = emp.afl_id,
 empb.emp_first = emp.emp_first,
 empb.emp_last = emp.emp_last,
 empb.emp_job = emp.emp_job,
 empb.emp_supervisor = emp.emp_supervisor,
 empb.salary = emp.salary,
 empb.start_date = emp.start_date
WHEN NOT MATCHED THEN
INSERT VALUES (emp.emp_id, emp.afl_id, emp.emp_first, emp.emp_last,
 emp.emp_job, emp.emp_supervisor, emp.salary, emp.start_date);

A MERGE statement cannot alter the column that is referenced in the join
condition of the ON clause.

	Contents
	What to expect from the test
	What to Expect from this Study Guide
	Additional Study Resources
	Practice Questions
	Oracle and Structured Query Language (SQL)
	Identify the connection between an ERD and a Relational Database
	Explain the relationship between a database and SQL
	Describe the purpose of DDL
	Describe the purpose of DML
	Build a SELECT statement to retrieve data from an Oracle Database table

	Restricting and Sorting Data
	Use the ORDER BY clause to sort SQL query results
	Limit the rows that are retrieved by a query
	Use ampersand substitution to restrict and sort output at runtime
	Use SQL row limiting clause

	Using Single-Row Functions to Customize Output
	Use various types of functions available in SQL
	Use character, number, date and analytical functions in SELECT statements

	Using Conversion Functions and Conditional Expressions
	Describe various types of conversion functions that are available in SQL
	Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions
	Apply general functions and conditional expressions in a SELECT statement

	Reporting Aggregated Data Using the Group Functions
	Describe the use of group functions
	Group data by using the GROUP BY clause
	Include or exclude grouped rows by using the HAVING clause

	Displaying Data from Multiple Tables
	Describe the different types of joins and their features
	Use SELECT statements to access data from more than one table using equijoins and nonequijoins
	Join a table to itself by using a self-join
	View data that generally does not meet a join condition by using outer joins

	Using Subqueries to Solve Queries
	Define subqueries
	Describe the types of problems subqueries can solve
	Describe the types of subqueries
	Query data using correlated subqueries
	Update and delete rows using correlated subqueries
	Use the EXISTS and NOT EXISTS operators
	Use the WITH clause
	Use single-row and multiple-row subqueries

	Using the Set Operators
	Describe set operators
	Use a set operator to combine multiple queries into a single query
	Control the order of rows returned

	Manipulating Data
	Truncate data
	Insert rows into a table
	Update rows in a table
	Delete rows from a table
	Control transactions

	Using DDL Statements to Create and Manage Tables
	Describe data types that are available for columns
	Create a simple table
	Create constraints for tables
	Drop columns and set column UNUSED
	Create and use external tables

	Managing Objects with Data Dictionary Views
	Query various data dictionary views

	Controlling User Access
	Differentiate system privileges from object privileges
	Grant privileges on tables and on a user
	Distinguish between privileges and roles

	Managing Schema Objects
	Describe how schema objects work
	Create simple and complex views with visible/invisible columns
	Create, maintain and use sequences
	Create and maintain indexes including invisible indexes and multiple indexes on the same columns
	Perform flashback operations

	Manipulating Large Data Sets
	Describe the features of multitable INSERTs
	Merge rows in a table

