Quick answers to common problems

Oracle Database 11gR2
Performance Tuning Cookbook

Ciro Fiorillo [PACKT] enterprise®

PUBLISHING

http://www.it-ebooks.info/

Oracle Database
11gR2 Performance
Tuning Cookbook

Over 80 recipes to help beginners achieve better
performance from Oracle Database applications

Ciro Fiorillo

enterprise

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Database 11gR2 Performance Tuning
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2012
Production Reference: 1050112

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-260-2
www . packtpub.com

Cover Image by Stanford Murray (stanmoore@l ive.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Ciro Fiorillo

Reviewers
April C. Sims

Advait V. Deo
Asif Momen

Paolo Napoletano

Acquisition Editor
Dhwani Devater

Lead Technical Editors
Kartikey Pandey

Pallavi lyenger

Technical Editors
Vanjeet D’souza

Conrad Sardinha

Merwine Machado

Copy Editors
Laxami Subramanian

Brandt D’Mello
Neha Shetty

Project Coordinator
Vishal Bodwani

Proofreader
Aaron Nash

Indexers
Monica Ajmera Mehta

Rekha Nair

Tejal Daruwale

Graphics
Manu Joseph

Production Coordinators
Prachali Bhiwandkar

Shantanu Zagade

Cover Work
Prachali Bhiwandkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ciro Fiorillo is an IT professional and consultant with more than a decade of experience in
different roles (Developer, Analyst, DBA, Project Manager, Data and Software Architect) among
software industries. He is an Oracle DBA Certified Professional and he has worked on different
technologies and architectures, such as Oracle, SQL Server, Delphi, C# and .NET Framework,
C/C++, Java, Flex, PHP, COBOL, Fortran, and Tibco.

He is based in Italy, near Naples, in the beautiful and historic Ercolano.

Ciro is currently employed as Information Systems Manager in a Financial Organization in Italy,
and he is in charge of databases and systems management and development, coordinating
the IT staff.

As a freelancer, he writes articles for websites and printed magazines about software and
computing, participates in workshops, and teaches C++ parallel programming with Intel
Software tools.

Ciro can be reached at ciro@cirofiorillo.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

Writing a book was my dream and this is the first book | have written, so | would like to thank
the entire staff at Packt Publishing, especially Dhwani Devater, who gave me the opportunity
to write my first book, and in supporting me during the long way to the publication.

I'd like to thank Vishal Bodwani, the project coordinator, who helped me in following the
agreed timeline without too many delays and Lata Basantani, the project leader.

I'd like to thank Kartikey Pandey and Pallavi lyenger, the development editors, for their
guidance and reviews.

I'd like to thank Suzanne Ritter, the marketing executive, for the "Behind the Book" campaign.

I'd also like to thank Vanjeet D'souza, Conrad Sardinha, and Merwine Machado, the technical
editors, for their sincere efforts on this book.

A special thanks to the technical reviewers: April Sims, Asif Momen, Advait Deo, and my
friend Paolo Napoletano, for reviewing my errors and for helping me provide better content
suggesting many improvements and helpful feedback.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

April Sims is currently the Database Administrator at Southern Utah University and an Oracle
Certified Professional: 8i, 9i, and 10g with a Master's degree in Business Administration from
the University of Texas at Dallas. Involved as a volunteer with the Independent Oracle Users
Group for over seven years, April is currently a Contributing Editor for the IOUG SELECT Journal.
April is an annual presenter at Oracle OpenWorld, IOUG COLLABORATE, and numerous regional
Oracle-related conferences.

Advait V. Deo is a graduate from NIT, Nagpur and a post graduate from Birla Institute of
Technology & Science (BITS), Pilani. After graduation he joined TCS and worked there for a
couple of years. Later, he joined Oracle Corp. and worked closely with databases.

He's had seven years' experience working in the database world, having spent time on many
aspects of database till now starting from Oracle Version 8 until 118. He mainly focuses on
database performance tuning, integrating databases with front-end application, scripting, and
automation. Currently he is working as a Lead Database Administrator in Amazon.com, Inc.
(world leader in retail business), handling a fleet of around 300 production databases.

Currently he resides in Hyderabad, India, with his wife Abha. In his time off from his busy work
schedule, he spends quality time with his family, riding a bike, and watching movies.

He updates some of his work and learning on his website at http://www.avdeo.com,
whenever he gets time.

Asif Momen has been working with Oracle technologies for over 12 years and has expertise
in performance tuning and high availability. He has a master"s degree in Software Systems
from Birla Institute of Technology & Science (BITS), Pilani.

Asif is an Oracle ACE and is OCP-Certified DBA, Forms Developer, and RAC Expert. He is a
speaker at Oracle OpenWorld and All India Oracle User Group (AIOUG). In addition, he is the
Editor of Oracle Connect—the quarterly publication of AIOUG. His particular interests are
Database tuning, Oracle RAC, Oracle Data Guard, and Backup and Recovery.

Asif posts his ideas and opinions on The Momen Blog (http://momendba.blogspot.com).
He can be reached at asif.momen@gmail .com.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKTL &°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To my extraordinary wife, Monica, who helped me to make my dream come true, supporting
me even when working late nights and on weekends.

To my children, Miriam and Mario. You are the essence of my life.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Starting with Performance Tuning 7
Introduction 7
Reviewing the performance tuning process 12
Exploring the example database 17
Acquiring data using a data dictionary and dynamic performance views 20
Analyzing data using Statspack reports 23
Diagnosing performance issues using the alert log 28
Analyzing data using Automatic Workload Repository (AWR) 29
Analyzing data using Automatic Database Diagnostic Monitor (ADDM) 32
A working example 36
Chapter 2: Optimizing Application Design 41
Introduction 41
Optimizing connection management 42
Improving performance sharing reusable code 48
Reducing the number of requests to the database using stored procedures 54
Reducing the number of requests to the database using sequences 59
Reducing the number of requests to the database using materialized views 65
Optimizing performance with schema denormalization 71
Avoiding dynamic SQL 79
Chapter 3: Optimizing Storage Structures 83
Introduction 83
Avoiding row chaining 84
Avoiding row migration 89
Using LOBs 96
Using index clusters 103
Using hash clusters 109
Indexing the correct way 113

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Rebuilding index 123
Compressing indexes 128
Using reverse key indexes 130
Using bitmap indexes 136
Migrating to index organized tables 142
Using partitioning 146
Chapter 4: Optimizing SQL Code 153
Introduction 153
Using bind variables 154
Avoiding full table scans 164
Exploring index lookup 173
Exploring index skip-scan and index range-scan 177
Introducing arrays and bulk operations 181
Optimizing joins 187
Using subqueries 192
Tracing SQL activity with SQL Trace and TKPROF 201
Chapter 5: Optimizing Sort Operations 207
Introduction 207
Sorting—in-memory and on-disk 208
Sorting and indexing 215
Writing top n queries and ranking 224
Using count, min/max, and group-by 232
Avoiding sorting in set operations: union, minus, and intersect 240
Troubleshooting temporary tablespaces 248
Chapter 6: Optimizing PL/SQL Code 253
Introduction 253
Using bind variables and parsing 254
Array processing and bulk-collect 257
Passing values with NOCOPY (or not) 262
Using short-circuit IF statements 266
Avoiding recursion 269
Using native compilation 271
Taking advantage of function result cache 276
Inlining PL/SQL code 281
Using triggers and virtual columns 284
Chapter 7: Improving the Oracle Optimizer 291
Introduction 291
Exploring optimizer hints 292
Collecting statistics 298
Using histograms 305

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Managing stored outlines 310
Introducing Adaptive Cursor Sharing for bind variable peeking 317
Creating SQL Tuning Sets 327
Using the SQL Tuning Advisor 331
Configuring and using SQL Baselines 335
Chapter 8: Other Optimizations 341
Introduction 341
Caching results with the client-side result cache 342
Enabling parallel SQL 346
Direct path inserting 351
Using create table as select 355
Inspecting indexes and triggers overhead 359
Loading data with SQL*Loader and Data Pump 366
Chapter 9: Tuning Memory 375
Introduction 375
Tuning memory to avoid Operating System paging 376
Tuning the Library Cache 384
Tuning the Shared Pool 388
Tuning the Program Global Area and the User Global Area 396
Tuning the Buffer Cache 400
Chapter 10: Tuning I/0 411
Introduction 411
Tuning at the disk level and strategies to distribute Oracle files 412
Striping objects across multiple disks 419
Choosing different RAID levels for different Oracle files 422
Using asynchronous I/0 425
Tuning checkpoints 428
Tuning redo logs 433
Chapter 11: Tuning Contention 437
Introduction 437
Detecting and preventing lock contention 438
Investigating transactions and concurrency 444
Tuning latches 452
Tuning resources to minimize latch contention 457
Minimizing latches using bind variables 460
Appendix A: Dynamic Performance Views 469
ALL_OBIJECTS 469
DBA_BLOCKERS 470
DBA_DATA_FILES 470

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

DBA_EXTENTS 471
DBA_INDEXES 471
DBA_SQL_PLAN_BASELINES 472
DBA_TABLES 472
DBA_TEMP_FILES 473
DBA_VIEWS 474
DBA_WAITERS 474
INDEX_STATS 474
DBA_SEQUENCES 475
DBA_TABLESPACES 476
DBA_TAB_HISTOGRAMS 476
VSADVISOR_PROGRESS 477
VSBUFFER_POOL_STATISTICS 477
VSCONTROLFILE 478
VSDATAFILE 478
VSDB_CACHE_ADVICE 479
VSDB_OBJECT_CACHE 480
VSENQUEUE_LOCK 480
VSFILESTAT 481
VSFIXED_TABLE 482
VSINSTANCE_RECOVERY 482
VSLATCH 483
VSLATCH_CHILDREN 483
VSLIBRARYCACHE 484
VSLOCK 485
VSLOCKED_OBIJECT 486
VSLOG 486
VSLOG_HISTORY 487
VSLOGFILE 488
VSMYSTAT 488
VSPROCESS 489
VSROLLSTAT 489
VSROWCACHE 490
VSSESSION 490
VSSESSION_EVENT 491
VSSESSTAT 492
VSSGA 492
VSSGAINFO 493
VSSHARED_POOL_RESERVED 493
VSSORT_SEGMENT 494
Vs$SsQL 494

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

VS$SQL_PLAN 495
VSSQLAREA 496
VSSTATNAME 496
VSSYSSTAT 497
VSSYSTEM_EVENT 498
VSTEMPFILE 498
VSTEMPSTAT 499
VSWAITSTAT 499
X$SBH 500

Appendix B: A Summary of Oracle Packages
Used for Performance Tuning 501
DBMS_ADDM 501
DBMS_ADVISOR 502
DBMS_JOB 502
DBMS_LOB 503
DBMS_MVIEW 503
DBMS_OUTLN 503
DBMS_OUTLN_EDIT 504
DBMS_SHARED_POOL 504
DBMS_SPACE 505
DBMS_SPM 505
DBMS_SQL 505
DBMS_SQLTUNE 506
DBMS_STATS 506
DBMS_UTILITY 507
DBMS_WORKLOAD_REPOSITORY 507
Index 509
v}

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

People use databases to organize and to manage their data. Oracle Database is the leader
in the relational database management systems market, with a broad adoption in many
industries. Using the best tool is not enough to be sure that the results of our efforts will be
satisfactory—driving the fastest car in a Formula 1 competition, though better than driving
the slowest, doesn’t guarantee the first place at the checkered flag.

Every developer—and every manager—knows that applications have to be responsive,
because users hate to spend their time waiting for a transaction to end, looking at an
hourglass. To meet this goal, it's important to adopt a correct tuning strategy, which starts
at the same time as the application design, then moves forward together, and will continue
even when the application and the database are in production.

Even though this is a cookbook on performance tuning, there are no silver bullets. Every
recipe in this book will show us how to solve a problem with the correct approach, so when
a similar problem arises in one of our databases, we can apply the correct solution even in
different situations than the ones presented in the book.

Before we start a database performance tuning process, we have to define what the tuning
goals that we aim to reach are. "As fast as possible" is not a tuning goal. The primary tuning
goal, generally speaking, is to reduce the response time or to reduce the resources needed
to do a certain amount of work in the same time.

At a lower level, to minimize response time we will try to:

» Reduce or eliminate waits
» Cache the largest number of blocks in memory

» Access the least number of data blocks (from disks)

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

To increase the throughput and availability we will try to:

» Increment hit ratios

» Decrease system memory utilization

» Eliminate paging and swapping

» Reduce recovery time, decreasing the Mean Time To Recovery (MTTR)

» Increase load balancing (distributing data files to different disks) to reduce 1/0 times

» Increase scalability

Before starting a tuning session, we have to define which are the goals, in terms of SLA, or
define precise and measurable objectives. So at the end of the tuning process, we will know
if we have reached the expected results. We will work to reduce the workload—so the same
task will consume less resources, allowing other tasks to use those resources—and to
minimize the response time.

In this book, we will find many recipes that can help us reach these goals. Have a good read!

What this book covers

Chapter 1, Starting with Performance Tuning will show how to set up the example database,
how to adopt a performance tuning process that can help in solving performance problems,
and how to collect and analyze data from Oracle Database using various methods.

Chapter 2, Optimizing Application Design presents the most common application design
issues that prevent an application from running without performance issues. You will see
how to improve database performance by sharing reusable code and by reducing the
number of requests to the database by using various database objects.

Chapter 3, Optimizing Storage Structures will show how to optimize the use of different
database storage structures, presenting the optimal use for tables, clusters, indexes, and
partitioning. You will see how to choose the appropriate structure to improve access time to
your data, also analyzing the possible drawbacks in the operations that modify the data.

Chapter 4, Optimizing SQL Code is focused on SQL code optimization. Throughout the
chapter you will find many methods to diagnose and solve typical performance problems
caused by poorly written SQL code. You will find answers on how (and when) to avoid full
table scans, how to use indexes, bulk operations and arrays, join and subquery optimization.
You will also see how to trace SQL activity to diagnose problems.

Chapter 5, Optimizing Sort Operations will show the importance of optimizing sort operations
to achieve better performance even when you don’t see any explicit sort operations in your
SQL code. In this chapter, we will see the difference between in-memory and on-disk sort,
how an index can improve the performance by reducing or avoiding sort operations, how to
perform top-n queries, and how to use aggregate functions, and the use of set operations.

-1

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 6, Optimizing PL/SQL Code will show how to optimize PL/SQL code in stored
procedures, triggers, and user-defined functions. You will see the advantages of using bulk-
collect and array processing, native compilation and function result cache.

Chapter 7, Improving the Oracle Optimizer is focused on how to help the Oracle Optimizer
in choosing the best execution plan using various tools, tricks, and tips, to obtain better
performance. You will see the use of hints, statistics, histograms, stored outlines, adaptive
cursor sharing, SQL tuning sets, and SQL baselines.

Chapter 8, Other Optimizations will show how to use Client Side Result Cache, parallel SQL,
CREATE TABLE AS SELECT, and direct path inserting to optimize performance in both queries
and DML operations. You will also see how to use SQL*Loader and Data Pump to load data
into your Oracle Database.

Chapter 9, Tuning Memory will show how to avoid different memory-related issues, starting

with Operating System paging. You will learn how to properly configure the library cache, the
shared pool, the Program Global Area (PGA), the User Global Area (UGA), and the database

buffer cache.

Chapter 10, Tuning I/0 will focus on how to optimize the 1/0, learning how to distribute
Oracle files and stripe objects on different disks, what RAID level is better for each type
of database files. The use of asynchronous 1/0, checkpoint and redo logs tuning are also
discussed in this chapter.

Chapter 11, Tuning Contention will show how to prevent, detect, and tune contention-related
issues. You will see both lock and latch contention, why they occur, and how to prevent and
solve any issue related to concurrency and contention in your database.

In Appendix A, Dynamic Performance Views you will find a list of the most used dynamic
performance views; for each view you will find a brief description and a list of the most useful
fields of the view, to be used as a reference in your daily work.

In Appendix B, A Summary of Oracle Packages Used for Performance Tuning you will find a brief
summary of Oracle supplied packages useful in order to solve performance-related problems.

What you need for this book

You need an Oracle Database 11gR2 instance available on your system; you can download
Oracle Software from Oracle Technology Network at the following site:

http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index._html

In Chapter 1 there is a recipe on how to set up the example database to follow the recipes in
this book and to use the code presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

This book is aimed at software developers, software and data architects, and DBAs who
are beginning to use the Oracle Database, and want to solve performance problems faster
and in a rigorous way.

If you are an architect who wants to design fast performing applications, a DBA who is keen
to dig into the causes of performance issues, or a developer who wants to learn why and
where the application is running slowly this book will provide a good start for your career in
performance tuning.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Drop the MYSTATS table."

A block of code is set as follows:

SELECT

C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh.CUSTOMERS C
WHERE C.CUST_YEAR_OF_BIRTH = 1949;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

SELECT

C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh.CUSTOMERS C
WHERE C.CUST_YEAR_OF_BIRTH = 1949;

Any command-line input or output is written as follows:

CONNECT sh@TESTDB/sh

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "From Oracle database 9iR2
onwards, Dynamic Sampling was introduced."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub .com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www . packtpub .com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www. packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with
Performance Tuning

Performance tuning is a complex process, which requires a deep knowledge of both
physical and logical database structures. In this chapter, we will introduce the process
and methodology to adopt in performance tuning an Oracle Database, covering the
following recipes:

>

>

Reviewing the performance tuning process

Exploring the example database

Acquiring data using a data dictionary and dynamic performance views
Analyzing data using Statspack report

Diagnosing performance issues using the alert log

Analyzing data using Automatic Workload Repository (AWR)

Analyzing data using Automatic Database Diagnostic Monitor (ADDM)

A working example

Introduction

There are a wide range of issues that could lead to poor performance. Performance of
our Oracle database problems could be related to different areas of the system:

>

>

>

>

Application design
Application code
Memory

I/0

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

» Resource contention
» Operating System
» CPU

When we want to tune a database in a proactive way, we can follow the previous list from
the top to the bottom.

Issues in the first two areas generally lead the database to very bad performance and to
scalability issues. The most common performance problems in an Oracle database related
to application design and coding are as follows:
» Incorrect session management
» Poorly designed cursor management
U Binding variables
U Cursor sharing
O Non-set operations
» Inadequate relational design
» Improper use of storage structures
Let's explain each performance problem listed in the previous paragraph. Troubles related
to memory, input/output, contention, and operating systems will be explored in the following

chapters. A well-tuned application can lead to a significant performance improvement, so it's
natural to concentrate the first efforts on performance tuning to application design and coding,

Incorrect session management

Poor session management can lead to scalability problems. For example, if a web page logs
on to a database, gets some data, and logs off; the time spent for the log on procedure could
be an order of magnitude greater than the time required to execute the queries needed to
bring the data which the user has requested.

Poorly designed cursor management

There are different problems related to cursor management.

The first rule in writing applications which connect to an Oracle database is to always use
bind variables, which means not to include parameters in SQL statements as literals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

For example, we could code something like the following (using SQL*Plus, connected as
user HR):

SQL>SELECT * FROM hr.jobs WHERE job_id

"SA_MAN";
This is equivalent to the following:

SQL>VARIABLE JOBID VARCHAR2(10)
SQL>EXEC :JOBID := "SA MAN*®
SQL>SELECT * FROM hr.jobs WHERE job_id = :-JOBID;

The big difference between the two examples is in the way the database parses the
statements when they are called more than once with different values. Executing the
statements the second time, in the first case will require a hard parse, whereas in the
second case, Oracle will reuse the execution plan prepared at the time of the first
execution, resulting in a huge performance gain.

This behavior is due to the way Oracle checks whether a SQL statement is
already in memory or needs to be parsed. A hash value of the SQL string
is calculated, and is compared to the hash values already in memory. If we
supply a different literal value each time, a new hash value will get generated
L for a SQL statement and hence Oracle has to parse the statement every time.

Using bind variables will not change the SQL string so Oracle has to parse the
statement only once; from there on it will find the hash value in memory—if it
doesn't age out—thus reusing the execution plan already existing in memory.

Cursor sharing is another problem related to the parse process. We can set the database
parameter CURSOR_SHARING to the values SIMILAR or FORCE, to mitigate the drawbacks
related to not using bind variables. In this situation, the database will parse two queries with
a different SQL text to a single cursor; for example:

SQL>SELECT * FROM hr.jobs WHERE job_id = "SA MAN";
SQL>SELECT * FROM hr.jobs WHERE job_id = "AC_ACCOUNT";

Both of these statements will be parsed to a single cursor if the parameter CURSOR_SHARING
is set to one of the values mentioned.

When a query is dynamically built by the application—for example, to reflect different types of
user-defined filters or sorting options—it's important that the statement is built always in the
same way—using bind variables, of course—to facilitate the reuse of the cursors, mostly if the
CURSOR_SHARING parameter is set to the value EXACT.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Another common problem related to cursor management, is the use of non-set operations.
While for the human mind it is simpler to think of an algorithm as an iterative sequence of
steps, relational databases are optimized for set operations. Many a times developers code
something like the following example code:

CREATE OR REPLACE PROCEDURE examplel (
JOBID IN hr.jobs.job_id%TYPE) IS
BEGIN
DECLARE
I_empid hr.employees.employee_id%TYPE;
1_sal hr._employees.salary%TYPE;
CURSOR jc IS SELECT e.employee_id, e.salary
FROM hr._employees e
INNER JOIN hr.jobs j ON j.job_id = e.job_id
WHERE e.job_id = JOBID
AND e.salary > (J-max_salary - j.min_salary) / 2;
BEGIN
OPEN jc;
LOOP
FETCH jc INTO 1_empid, I_sal;
EXIT WHEN jc%NOTFOUND;
DBMS_OUTPUT .PUT_LINE(TO_CHAR(I_empid) |1 = " 11
TO_CHAR(I_sal));
UPDATE hr._employees SET salary = I_sal * 0.9
WHERE employee_id = I_empid;
END LOOP;
CLOSE jc;
END;
END;

This example is trivial, but it's good enough to explain the concept. In the procedure, there is a
loop on the employees of a certain job, which decreases the salaries that are higher than the
average for a particular job. The stored procedure compiles and executes well, but there is a
better way to code this example, shown as follows:

CREATE OR REPLACE PROCEDURE example2 (
JOBID IN hr.jobs.job_ id%TYPE) IS
BEGIN
UPDATE hr.employees e SET
e.salary = e_salary * 0.9
WHERE e.job_id = JOBID

AND e.salary > (SELECT (J-max_salary - j.min_salary) /7 2 FROM
hr.jobs j
WHERE j.job_id = e.job_id);
END;

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In the latter version we have only used one statement to achieve the same results. Besides
the code length, the important thing here is that we thought in terms of set-operations,
rather than in an iterative way. Relational databases perform better when we use this type of
operation. We will see how much and why in Chapter 4, Optimizing SQL Code and Chapter 6,
Optimizing PL/SQL Code, in the Introducing arrays and bulk operations and Array processing
and bulk-collect recipes, respectively.

Inadequate relational design

A big issue could be the relational design of the database. Here we are not discussing
academic ways to design a database system, because in the real-world sometimes a
relational design could be less-than-perfect in terms of normalization, for example,

to provide better performance in the way the data is used.

When we speak about bad relational design, we mean problems like over-normalization,
which often leads to an overabundance of table joins to obtain the desired results.

Often, over-normalization is a problem which arises when we try to map an object-oriented
model to a relational database: a good volume and operations analysis could help in
designing the logical model of the database. For example, introducing a redundant column
to a table can lead to better performance because the redundant data, otherwise, have to
be calculated by scanning (in most cases) a big table.

Another big issue in relational design is related to the use of incorrect indexes on a table.
Based on the data selection approach an application is going to take, correct indexes should
be set on the table, and this is one of the design considerations while creating a relational
database model.

Improper use of storage structures

The Oracle database logical structure is determined by the tablespace(s) and by the
schema objects. Wrong choices about these structures often lead to bad performance.

While designing an Oracle database, we have a rich set of schema objects, and we have
to answer questions like "Which is better, a bitmap index or a reverse key index?", looking
at both the application and data.

In the latest releases of Oracle database, many operations to alter storage structures can
be performed with the database online, with minimal performance decay, and without
service shortage.

We will examine in depth the problems we have just been presented with in later chapters,
namely, session management and relational design in Chapter 2, cursor management in
Chapter 4, and storage structures in Chapter 3.

OK, let's begin!

-

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Reviewing the performance tuning process

Tuning the performance of an Oracle database is a complex task, which requires in-depth
knowledge in different areas. There are a lot of forums, documents, and tutorials online
responding to many performance tuning issues related to Oracle Database; often, however,
the information gathered from these sources may not be enough to solve the peculiar
problem we are experiencing, because of different database versions, different server
architectures, and a wide number of variables which make it difficult to find the correct
recipe to resolve the symptoms we are facing.

Many would-be DBAs approach a performance problem with a bad attitude; that is, they
pretend to solve performance issues without investigating the problem, or with little
knowledge about what happens under the hood. Often this approach leads to solutions
which don't work or—in the worst case—seem to work temporarily, presenting the same
problem or another one after a while.

In the following section, we will see the performance tuning process adopted in this book,
which can help us in finding the correct way to diagnose, solve, and prevent performance
issues on Oracle Databases.

How to do it...

To solve a performance problem on the database, we need to follow these steps:

1. Elaborate a baseline.

Investigate the problem.

Assume a solution, a test case, and a rollback strategy.
Implement the solution and test for correctness.

Test the solution.

Compare the results.

N o oA W N

If the results are not as good as expected, iterate the process.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In the first step, we have to elaborate a baseline, because without a comparison element we
will not be able to know if the adopted solution really solves the problems we are facing.

The kind of baseline to elaborate depends heavily on the performance issue. There are some
performance indicators which should always be checked, while others are more detailed
which can be verified only if a previous indicator points to a particular area of the database.
After the baseline is decided for the particular problem we are investigating, it is time to
automate the process of gathering data, so it is repeatable.

While investigating the problem the process is iterative, so you can return to the previous
step to add other elements to the baseline, for final testing of our solution.

When the investigation drives us to assume a particular solution, before we start
implementing it on the database we have to list all the changes we are going to do and
elaborate a "rollback solution" for these changes. This is especially the case if we don't have
the chance to test our solution over a test database similar to the production one which is
suffering the problem. If we think, for example, that adding an index 1X1 on table T1 could
solve our performance problem, we have to prepare a SQL script to create the index, and
another SQL script to drop it, in case we want to go back if something goes wrong. In Oracle
118, we have the opportunity to create an invisible index and check the execution plan of
the query, with minimal impact on other sessions.

We might want to prepare a test-case to test the solution we will implement. This task is
simpler if we have isolated the problem very well, so we are able to reproduce the issue. If
the problem is random, it might be a nightmare to isolate the steps that lead to poor
performance. In the latter case, we could evaluate the frequency of the problem, so we
could test our solution by measuring the number of occurrences and comparing the results.

After the solution has been implemented, it must be tested with the same process that
created the baseline. Check the results of the measure process and decide if the solution
has solved the issue. If the results are not acceptable, iterate the whole process until there
is a satisfactory outcome.

There's more...

The performance tuning process is a never-ending cycle; even when we solve our performance
issue there will be another aspect of the system we can tune to in order to obtain better
performance, or we need to satisfy more stringent requirements.

&=

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Due to these considerations, the iterative process of performance tuning that will be used
throughout the book is represented in the following diagram:

» Elaborate a baseline <

v

Investigate the problem

v

Assume a solution, a test case
and a rollback strategy

v

Implement the solution

v

Test the solution

v

Compare the results

Do it again

Results are

?
good? NO

Problem solved

To elaborate a baseline, keep track of how the system—and not only the database—is
performing. We need unbiased data to compare before and after different solutions are
implemented in the systems.

Al
‘Q Performance of the system here means performance of the server,

I/0, network, database, the application, and other factors.

If there is a generic "slow response-time problem", and new hardware resources (CPU, RAM)
are added to the database server, this may lead to a situation where it performs worse than
before. With a good baseline, before adding more resources, we could evaluate if the problem
we are experiencing is related to the lack of enough hardware power—for example RAM—or
something else.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To describe a good baseline we need as much data as possible; most are acquired directly
from the database itself, as we will see in the next section. There is information from other
sources: Operating System logs, performance counters, application logs, trace files, network
statistics, and the like.

In today's multi-layered applications, it's simple to say "the database is slow" when an
application is suffering poor performance, but there will be many cases when the database
is performing very well but the application responsiveness is very weak.

With a solid baseline, we can isolate the layer in which the problem first occurred and
concentrate our efforts on that application layer. After a baseline is established, start
investigating the problem.

In the rest of the book, we will learn how to interpret the results of the baseline to correctly
identify the problem. Sorry, there isn't a bullet list or a magic wand; this phase is based on
knowledge and previous experience. If a simple causal-effect was in place, it would have
already been coded with an automatic solution or a specific diagnostic advice, implemented
in the database itself. There are several automatic diagnostic tuning features in the latest
releases of Oracle database; SQL Tuning Advisor, SQL Access Advisor, Automatic Database
Diagnostic Monitor. These database-centric tools help solve common performance problems,
which tend to be easily identified. The real tuning process starts when the magic doesn't work,
or they don't work as good as we need them to.

We have seen the most common database performance issues in the previous recipe, divided
into several categories to help us in the investigation phase. During this stage, we decide what
database area is a bottleneck; for instance, the memory, the I/0, and the SQL code.

Once we have identified and delimited the database area involved in the performance
problem, we can assume a solution to the issue. As previously stated, both a test case and
a rollback strategy are necessary—the former to check the proposed solution, the latter to
revert back if the proposed solution wasn't satisfactory.

Once we have the solution, implementing it is often a trivial task, such as writing a small
SQL script to alter a database object or a initialization parameter. Be sure that the solution
is implemented using reproducible steps, especially when the task is quite complex or we
have to test the solution in a staged database before the production.

At the end of the implementation, we have to test the solution to verify its correctness—probably
in a test environment—and to know if the expected performance gain has been reached.

To test the solution there are various scenarios, depending on the work done in previous
steps and by the development team. A test case will verify the results; if there are application
test sets, they can be used to verify the correctness of the solution, especially if the
application logic has changed.

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

After we have assured ourselves about the correctness of the solution implemented, compare
the performance of the database (and of the application) to the baseline gathered in the first
step of the process.

If the comparison shows that we have not solved the puzzle, well, let's revert back to the applied
solution and start again from the first step, investigating the problem better or assuming another
solution. Alternately, if the result is satisfactory, very well, let's start again from the first step to
solve another problem. Always remember that the tuning process is something which evolves
from the application design and lasts throughout the application life cycle.

In describing the performance tuning process, we have stated a baseline. The Oracle
database helps us even in this task, with different tools that we can use to monitor the
database itself and to take measurements of various performance indicators.

In the following recipes, we will introduce different tools to acquire performance data from the
database, illustrating the guidelines to use them. The diagnostic tools presented are:
» Data Dictionary and Dynamic Performance Views
U Analyze command
U Analyze schema and database with DBMS_UTILITY package
» DBMS_STATS package
» Statspack report
» Alert log and trace files
» Automatic Workload Repository (AWR)
» Automatic Database Diagnostic Monitor (ADDM)

The tools specific for tuning SQL code will be presented in Chapter 4, Optimizing SQL Code.

Let's spend some time on Oracle Enterprise Manager (OEM). It is a graphical web-based
application, and it is the main tool the Oracle DBA uses to configure and monitor the database
in non-console mode.

In OEM, there is a performance palette which presents a dashboard with many graphs and
indicators, all updated live. At the bottom of the page, there are additional links to the most
common tasks related to performance tuning.

OEM itself is not a performance tuning tool, but it's just a front-end to the
. tools and functions in the previously mentioned list. It's a good idea to
% familiarize yourself with OEM and its user interface. However, if a DBA knows
s what happens in the backstage, he/she will be able to do the right thing with
any tool, and he/she will not feel lost if his/her favorite tool or GUI isn't up
and running (and sometimes this is a real scenario at the customer site).

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

See also

» Acquiring data using Data dictionary and dynamic performance views recipes in
this chapter

» Appendix B, Tools and Packages

Exploring the example database

In this recipe, we will prepare a database to use for our examples.

Getting ready

We need an Oracle Database 11gR2 system up and running to create our database. The
host system could be a UNIX/Linux or Windows physical or virtual machine. If you want to
use a virtual machine, be sure to follow the minimum CPU and memory requirements for
the Oracle installation.

If you have installed the database software along with the Create Database option, then
you have already set up a database with the necessary schema installed.

How to do it...

We will use the default demo database installed by the default OLTP template of Oracle
Database Configuration Assistant (DBCA) for all our examples.

* You can find the official Oracle Database Installation Guide 11gR2 for
% Linux at http://download.oracle.com/docs/cd/E11882_01/
T~ install.112/e16763/toc.htm.

1. Log on to the Operating System as a member of the administrative group, authorized
to install Oracle software and to create and run database instances.

2. Launch DBCA (for Windows users: Start | Programs | Oracle - home_name |
Configuration and Migration Tools | Database Configuration Assistant) for
*nix systems enter the following command at system prompt:

$ dbca
Please note that the dbca executable is by default in the $ORACLE_HOME/
bin directory.

3. A welcome screen is shown. Click Next.

4. You are presented with some options. Select the first, namely Create a database,
and click Next.

-

www.it-ebooks.info

http://download.oracle.com/docs/cd/E11882_01/install.112/e16763/toc.htm
http://download.oracle.com/docs/cd/E11882_01/install.112/e16763/toc.htm
http://www.it-ebooks.info/

Starting with Performance Tuning

5. You are presented a list of database templates. Choose the first, namely General
purpose / OLTP, and click Next.

6. You are asked for the global database name and SID; enter TESTDB in the global
database name (the SID should be set accordingly) and click Next.

7. Inthe next screen—shown in the following screenshot—leave the default options
selected (OEM configuration). If you wish, you can enable e-mail notifications,
checking the corresponding flag and entering the SMTP server to use (something
like smtp.yourdomain.comor smtp.your ISP._com) and the e-mail address
where the alerts will be delivered. Click Next to go to the next screen.

U]E Database Configuration Assistant, Step 4 of 12 : Management Options | =RRcn X

Enterprise Manager Automatic Maintenance Tasks
W Configure Enterprise Manager

C Register with Grid Contral for centralized management

Management Semice Mo Agents Found

® Configure Database Contral for local management

[Enahle Alett Motifications

Cutgoing Mail (SMTFY Semver: |

Fecipient Ermail Address: |
™ Enable Daily Disk Backup to Recaovery Area
Backup Btart Time; [0z] oo]2 ®am © Py

D5 L sernarme: |

D5 Fassword: |

Cancel)I Help)

8. Choose to use the same password for all administrative accounts, enter the password

you want to use twice, and click Next. If you are advised that the password you
entered is weak (not responding to the minimum complexity requirements) you can
ignore the message and go on. Please note that for a production database these are
very bad choices, but we are installing a demo database for testing purposes only
and don't want to bother with security issues.

9. Inthe next screen, leave the default option for the files position (Use Database
File Locations from Template) and click Next.

10. Leave the default options for the flash recovery area and click Next.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11. In the next screen, check the Sample Schemas flag and click Finish.

12. You are presented with the operations summary. Click OK and wait until the
database creation process is finished.

13. At the end of the creation process, we have to unlock the accounts created. In the
summary form, there is a Password Manager button; click on it, and you will be
presented with the list of accounts created.

14. Find the following accounts: Bl, HR, IX, OC, OE, PM, SH and uncheck the second
column (unlocking them). Insert the password for the accounts in the last two
columns, setting them the same as the account name.

N You can click on the username column to sort accordingly.

~

Don't use sample schemas or passwords the same as the
username in production databases!

Now our TESTDB database is ready for experimenting.

Oracle DBCA lets us create a database using predefined templates. For our examples, we will
use the default example schemas provided by Oracle (which are installed in the EXAMPLE
tablespace).

The sample schemas are HR (Human Resources), OE (Order Entry), OC (Order Catalog),
PM (Product Media), IX (Information eXchange), SH (Sales History), and Bl (Business
Intelligence). We will use mostly HR and SH schemas.

There's more...

If we want to reset the sample schemas to the initial state, we can use the script mksample.
sql located in the $ORACLE_HOME/demo/schema/ directory. This script requires eleven
parameters, with the following syntax:

SQL>@?/demo/schema/mksample systempwd syspwd hrpwd oepwd pmpwd ixpwd
shpwd bipwd default_tablespace temp_tablespace log_file_directory/

Please note that the log_Ffile_directory is an already existing folder
i and also the path must be terminated by a slash.

Our database—assuming test as the system and system password—will be reset with the
following statement:

SQL>@?/demo/schema/mksample test test hr oe pm ix sh bi EXAMPLE
TEMP testlog/

]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Please note that in the default installation of Oracle Database 11gR2
Enterprise Edition the mksample.sql script is not present.

You can find it in the Companion CD.

A

Acquiring data using a data dictionary and

dynamic performance views

In the Oracle database, there are many views which can be queried to acquire data about the
database state. They are divided into data dictionary views, with a name similar to DBA_*,
and dynamic performance views, named something similar to V$_*.

Getting ready

When we use a standard template in Oracle DBCA to create a database, both data dictionary
views and dynamic performance views are in place after database creation. If we prefer to
use our own scripts to create the database, we need to launch at least the catalog.sql and
catproc.sql scripts to populate the data dictionary with the views we need. These scripts
are located in the rdbms/admin subdirectory of the Oracle Home directory.

To collect timing information in the dynamic performance views, we have to set the parameter
TIMED_STATISTICS=TRUE in the Init.ora file of our database instance. We can also
accomplish this requirement with the following SQL statement:

ALTER SYSTEM SET TIMED_STATISTICS = TRUE SCOPE = BOTH;
M Please note that the default value for the TIMED_STATISTICS

Q parameter is already TRUE and that there isn't any perceptible
performance gain in changing this default value to FALSE.

How to do it...

We can query the data dictionary views and the dynamic performance views like any other
view in the database, using SQL statements.

We can also query DBA_VIEWS, which is a data dictionary view showing other views in the
database:

select view_name from dba views

where view_name like "DBA%" order by 1

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We can query the VSFIXED_TABLE view to get a list of all the V$ dynamic performance
views and X$ tables:

select name from V$FIXED_TABLE order by 1;

1
“‘Q You can find the definition of each view we will use in the book

in Appendix A, Dynamic Performance Views

Data dictionary views are owned by the user SYS and there is a public synonym for each
of them. They expose data about database objects, for example, tables and indexes.

In Oracle Database 11gR2 Enterprise Edition, the database installed from the DBCA template
will have more than 800 data dictionary views available. We will present the data dictionary
views that we need in our recipes when we have to query them.

Even dynamic performance views are owned by the user SYS; they are synonyms to V_$*
views. Those views are based on X$ tables, which are undocumented structures populated
at instance start-up. The data dictionary view contains two kinds of data, namely, fields that
store information on the characteristics of the object, and other fields that collect information
dynamically from object usage.

For example, in the DBA_TABLES there are fields about the physical structure of the table
(such as TABLESPACE_NAME, PCT_FREE, INITIAL_EXTENT) and other fields which expose
statistics on the table contents (such as NUM_ROWS, AVG_SPACE, AVG_ROW_LEN).

To collect these statistical data we have to perform the ANALYZE statement. For a table, we
will execute the following statement:

ANALYZE TABLE hr.employees COMPUTE STATISTICS;

To speed up and automate the analysis of many objects, we can use DBMS_UTILITY.
analyze_schemaor DBMS_UTILITY.analyze_database to analyze all the objects in
a schema in the first case, or in the database in the latter. To analyze the objects of the HR
schema, we will execute the following statement:

EXEC DBMS_UTILITY.analyze_schema("HR", *COMPUTE");

For both the ANALYZE command and the DBMS_UTILITY functions,
M we have two choices, which are either to compute the statistics or
Q to estimate these values based on the analysis of a restricted set of
data. When ESTIMATE is chosen, we have to specify the number of
rows to use for the sample or a percentage.

B

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Oracle advises us to use another method to compute statistics, namely, the DBMS_STATS
package, which allows deleting statistics, exporting, importing, and gathering statistics in
parallel. The following statement analyses the schema HR:

EXEC DBMS_STATS.gather_schema_stats("HR");

ANALYZE and the use of DBMS_UTILITY illustrated earlier
% are supported for backward compatibility only; use the package
T~ DBMS_STATS to collect statistics.

Similarly, we can gather statistics on tables, indexes, or database. Even with DBMS_STATS
we can use the ESTIMATE method, as in the first of the following examples:

EXEC DBMS_STATS.gather_database_stats(estimate_percent => 20);
EXEC DBMS_STATS.gather_table_stats("HR", "EMPLOYEES®);
EXEC DBMS_STATS.gather_index_stats("HR", "EMP_JOB_IX");

Using the DBMS__STATS package we can also delete statistics, as shown:
EXEC DBMS_STATS.delete_table_stats("HR", "EMPLOYEES");

To transfer statistics between different databases, we have to use a statistics table, as
shown in the following steps:

Create the statistics table on the source database.

Export the statistics from the data dictionary to the statistics table.

Move the statistics table (Export/Import, Datapump, Copy) to the target database.
Import the statistics from the statistics table to the data dictionary.

I

Drop the statistics table.

The corresponding statements to execute on the source database are as follows:

EXEC DBMS_STATS.create_stat_table("DBA_SCHEMA®, "MY_STAT TABLE"):
EXEC DBMS_STATS.export_schema_stats("DBA_SCHEMA®, *"MY_STAT TABLE", NULL,
*APP_SCHEMA");

With these statements we have created the statistics table MY_STAT_TABLE in the DBA_
SCHEMA and populated it with data from the APP_SCHEMA (for example, HR).

Then we transfer the MY_STAT_TABLE to the target database; using the export/import
command line utilities we export the table from source database and then import the table
into the target database, in which we execute the following statements:

EXEC DBMS_STATS.import_schema_stats("APP_SCHEMA™, *"MY_STAT TABLE", NULL,
*DBA_SCHEMA");

EXEC DBMS_STATS.drop_stat_table("DBA_SCHEMA®, "MY_STAT TABLE");

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In the example, we have transferred statistics about the entire schema APP_SCHEMA. We can
choose to transfer statistics for the entire database, a table, an index, or a column, using the
corresponding import_* and export_* procedures of the DBMS_STATS package.

There's more...

The COMPUTE STATISTICS and ESTIMATE STATISTICS parameters of the ANALYZE
command are supported only for backward compatibility by Oracle. However, there are other
functionalities of the command that allow validating the structure of a table, index, cluster,
materialized views, or to list the chained or migrated rows:

ANALYZE TABLE employees VALIDATE STRUCTURE;

ANALYZE TABLE employees LIST CHAINED ROWS INTO CHAINED_ROWS;

The first statement validates the structure of the EMPLOYEES table, while the second
command lists the chained rows of the same table into the CHAINED_ROWS table (created
with the script utlchain_sql orutlchnl._sql.)

See also

» Avoiding row chaining in Chapter 3, Optimizing Storage Structures

Analyzing data using Statspack reports

Statspack was first introduced in Oracle Database 8i R8.1.6. We shall now look at how to
use this tool.

Getting ready

To use Statspack, we have to set up a tablespace to store its structures; if we don't, in
the installation process we have to choose an already existing tablespace—SYSAUX is
the tablespace proposed by default. To create the tablespace, we will use the following
command (with the necessary change in the datafi le parameter, according to the
platform used and the database location):

CREATE TABLESPACE statspack

DATAFILE "/uOl/oracle/db/STATSPACK.DBF" SIZE 200 M REUSE

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 512K

SEGMENT SPACE MANAGEMENT AUTO PERMANENT ONLINE;

To collect timing information in the dynamic performance views, we have to set the parameter
TIMED_STATISTICS=TRUE, as shown in the recipe about the dynamic performance view.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

How to do it...

Follow these steps to make use of the Statspack tool:

1. Connect to the database with a user with the SYSDBA privilege and run the
spcreate.sql script from the $ORACLE_HOME/rdbms/adminr directory. This
script will ask for a password to assign to the PERFSTAT user.

2. We will then be asked for the tablespace to use. Select the previously created
tablespace by entering its name (STATSPACK). When the script asks for the
temporary tablespace just press Enter to use the default temporary tablespace
defined in the system.

3. The script will create the user PERFSTAT, identified by the password provided, and all
the objects needed to run the tool.

After the tool is created, we can collect statistics by executing the following
procedure:

EXEC STATSPACK.snap;

With this simple command, we have created a snapshot in the Statspack table.

4. When we have at least two snapshots, we can create a report using a pair of them.
To do so, we will execute the spreport.sql script.

The script will show us the completed snapshots and we will be asked for the ID of
the two which we want to compare.

5. The script will ask for the name to give to the report—the default will be sp_id1_id2,
where 1d1 and 1d2 are the beginning and ending snapshots chosen in the
previous step.

At the end of the process, we will find our Statspack report.

The spcreate.sql script internally launches the spcusr.sql, spctab.sql, and
spcpkg-sql scripts. For every script, after the execution, we will find a corresponding file
with the extension changed to . 1 is with the spool of the actions performed. In case anything
goes wrong, we can launch the spdrop.sql script to rollback the actions performed by
spcreate.sqgl.

A snapshot of Statspack contains information from the dynamic performance views. As
these views are emptied at database start-up, it makes no sense to elaborate Statspack
performance reports with the use of snapshots taken before and after a database shutdown.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The tables used to collect the data have names which start with STATS$, and are based on
the corresponding V$ dynamic performance views. For example, the table STAT$DB_CACHE _
ADVICE has the same columns of the view V$DB_CACHE_ADV ICE, with three columns
added in front of them, SNAP_ID, DBID, INSTANCE_NUMBER, which are used to identify the
snapshot, the database, and the instance respectively.

M If you want to use Statspack in an Oracle Real Application Cluster (RAC)
Q environment, you have to launch STATSPACK . snap connecting to every
instance you want to gather data from.

The report is divided into several sections:

» General information about the database instance and the snapshots used
» Cache sizes (buffer cache, shared pool, and log buffer)

» Load profile (instance events per second and per transaction)

» Instance efficiency indicators (buffer cache and shared pool statistics)

» Top five timed events, showing the first five events sorted by total wait time
in seconds

» Host CPU and Instance CPU, showing the load on the CPU
» Virtual Memory Paging and Memory Statistics

» Wait events, foreground, background, and both foreground and background
grouped together

» SQL ordered by different criteria, by CPU, by elapsed time for DB, by gets, by
executions, by parse calls, by sharable memory, by version count

» Instance activity statistics

» Tablespace and file I/0

» Memory, buffer pool, and PGA statistics
» Latch activity

» Dictionary cache statistics

» Library cache activity

» SGA activity

» init.oraparameters

There's more...

We can configure Statspack to collect different amounts of data and to produce a report
on specific SQL; we wish to automate snapshot collection, too.

Eas

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Collecting different amounts of data

We can configure Statspack to collect more or less data. The LEVEL parameter can be
used to instruct the tool about the kind of information we want to store in the snapshot.
The following table summarizes the available levels (the default level is 5):

Level Description

0 General performance statistics

5 Additional data: High resource usage SQL statements

6 Additional data: SQL Plans and SQL Plan usage
information for high resource usage SQL statements

7 Additional data: Segment level statistics including logical
and physical reads, row locks, and so on

10 Additional statistics: Parent and Child latches

We can use a different level parameter for a single snapshot, passing the corresponding
level to the STATSPACK . snap procedure:

EXEC STATSPACK.snap(i_snap_level=>10);

If we want our selection made permanent for subsequent snapshots, we add another
parameter to the procedure:

EXEC STATSPACK.snap(i_snap_level=>6, i_modify_parameter=>"true");

If we want to change the level of the snapshots without taking one, we will use the following
statement:

EXECUTE STATSPACK.modify_statspack parameter(i_snap_level=>6);

Producing a report on a specific SQL

Statspack provides another script, sprepsgl .sql, which allows us to elaborate a more
detailed report on a specific SQL statement.

If we find a statement in the Statspack report that we want to investigate deeper, we can
launch this script, indicating the beginning and ending snapshots, and the "Old Hash Value"
(a pre-10g memory) of the SQL statement on which we want to elaborate the report.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If in our Statspack report (elaborated between the snapshots identified by 2 and 3) we
have a row in the SQL ordered by CPU section that is similar to the one shown in the
following screenshot:

SQL ordered by CPU DB/Inst: TESTDB/testdb Snaps: 2-3
-> Total DB CPU (s): 51

—> Captured SQL accounts for 126.6% of Total DB CPU
—> SQL reported below exceeded 1.0% of Total DB CPU

CPU CPU per Elapsd 0ld
Time (s) Executions Exec (s) %Total Time (s) Buffer Gets Hash Value
50.15 1 50.15 97.8 55.77 1,718 3787177051

Module: SQL*Plus
BEGIN Chapterl.Workload2; END;

And we want to investigate the related statement, we can launch the sprepsql . sql script
and indicate ID 2 as begin, ID 3 as end, and 3787177051 as Old Hash Value.

The script will ask for the filename and will then produce a detailed report for the
statement analyzed.

Automating snapshot generation

We can automate snapshot generation in various ways. Besides using a Unix cron job or a
Windows Scheduled Task, we can instruct the database to capture the snapshots with a
simple job. There is the spauto.sql script in the $ORACLE_HOME/rdbms/admin directory
to set up an hourly snapshot. The script uses DBMS__JOB to schedule the snapshots.

Statspack maintenance

We can purge the no longer needed snapshots with the use of the spurge.sql script,
indicating the ID of the first and the last snapshot to delete. Before deleting the data, we
may want to export the PERFSTAT schema.

The sptrunc.sqgl script, instead, deletes all the data collected. All the scripts are in the
$ORACLE_HOME/rdbms/admin directory.

To completely uninstall Statspack, there is the already mentioned spdrop.sql script,
which has to be executed with SYSDBA privileges.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Diagnosing performance issues using the

alert log

To diagnose certain performance issues, even the alert log can be used successfully.

Getting ready

There are some parameters to look at in the init.ora file of our database instance.

The parameter BACKGROUND_DUMP_DEST indicates the directory in which the alert log is
located. If the parameter LOG_CHECKPOINTS_TO_ALERT is set to TRUE, we will find even
checkpoint information in the alert log. By default this parameter is set to FALSE.

Before starting, we can issue the following command:

ALTER SYSTEM SET LOG_CHECKPOINTS_TO_ALERT = TRUE;
SHOW PARAMETER BACKGROUND_DUMP_DEST

This writes checkpoint information to the alert log and shows the directory in which we will
find the alert log file (named alert_<instance_name>. log).

How to do it...

The following steps will demonstrate how to use the alert log:

1. Inthe alert log, we can find information like the following:

Sun Sep 19 12:25:26 2010
Thread 1 advanced to log sequence 5 (LGWR switch)
Current log# 2 seg# 5 mem# O: D:\APP\ORACLE\ORADATA\TESTDB\

REDOO2.L0OG
This informs us of a log-switch.
2. We can then verify the time between log switches.

If we have set the parameter LOG_CHECKPOINTS_TO_ALERT to TRUE, we will also
see lines like these in the alert log:

Sat Sep 25 20:18:01 2010

Beginning global checkpoint up to RBA [0x16.fd.10], SCN: 1296271
Completed checkpoint up to RBA [0x16.fd.10], SCN: 1296271

Then we can calculate checkpoint performance.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How it works...

The database writes information on the alert log about log switches and checkpoints.
We can inspect the alert log to diagnose a possible problem with log files.

There's more...

We can force a log switch by using the following command:
ALTER SYSTEM SWITCH LOGFILE;
A checkpoint can be forced by using the following statement:

ALTER SYSTEM CHECKPOINT;

See also

» We will see the use of SQL_TRACE and TKPROF to generate trace files and
the corresponding report over SQL activity of a particular session in Tracing
SQL activity with SQL Trace and TKPROF in Chapter 4, Optimizing SQL Code

Analyzing data using Automatic Workload

Repository (AWR)

With Oracle Database 10g, Automatic Workload Repository (AWR) was introduced. It is a
tool that extends the key concepts of Statspack.

In this recipe, we will create a manual snapshot, a baseline, and some reports.

Getting ready

To use AWR, the STATISTICS_LEVEL parameter of the init.ora file must be set to the
value TYPICAL or ALL.

With the default setting TYP 1CAL, all the statistics needed for
self-management functionalities are collected, providing best
sl .
~ overall performance. Using the parameter ALL the database
will collect all the statistics included in the TYPICAL settings,
as well as timed operating system statistics and row source
execution statistics.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

We can change the parameter online with the following statement without shutting down
the database:

ALTER SYSTEM SET STATISTICS_LEVEL = TYPICAL;

How to do it...

The following steps demonstrate use of AWR:

1.

To make a manual snapshot using AWR, we use the following stored procedure:
EXEC DBMS_WORKLOAD_REPOSITORY .create_snapshot();

With the default settings in place, AWR creates a snapshot every hour, and the
data collected are stored for seven days.

To modify the interval or the grace period of the snapshots, we can use the
modify_snapshot_settings procedure, as shown:

EXEC DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(interval =>
30);

EXEC DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(retention
=> 21600);

In AWR, we can also create a baseline to compare performances. A baseline is a set
of snapshots which will be held to compare with the same kind of data in the future.

We could have, for example, a baseline for the daily transactional work and a
baseline for a batch job or a peak (quarter end). We can define a baseline indicating
the start and end snapshots to be used, and we can name it:

EXEC DBMS_WORKLOAD_REPOSITORY .create_baseline(Start_snap_id => 1,
end_snap_id => 11, baseline_name => "Friday off-peak®);

To generate a report, we will use the awrrpt.sql script, located in the $ORACLE_
HOME/ rdbms/admin folder. The script will ask to choose the output format (text or
HTML) and the number of days to use to filter the snapshots.

Then they will be presented the list of the snapshots, according to the parameter
chosen in the previous step, and we are asked for the first and the last snapshot to
be used. The last question is about the name of the file to generate the output to.
The report generated is very similar to the Statspack report.

As with Statspack, even AWR collects data and statistics from the database and stores them
in tables. With AWR the concept of baseline is introduced.

NER

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The baselines can be fixed, moving window, or templates. The baseline we have defined in the
previous example is fixed, because it corresponds to a specific time period in the past. The
moving windows baseline corresponds to the AWR data within the entire retention period, and
it's useful when used with adaptive thresholds. The baseline templates, instead, are created
for a future time period, and can be single or repeating.

In the first statement of step 2, we have set the interval between snapshots to 30 minutes;
in the second statement the retention period of the snapshots collected is set to 21600
minutes, which corresponds to 15 days.

The adaptive thresholds just mentioned consent to adapt the thresholds of a performance
metric according to the workload of the system, eliminating false alerts. From Oracle 11g,
adaptive thresholds are adjusted based on different workload patterns (for example, a
system used for OLTP in daytime and for batch jobs at night) automatically recognized

by the database.

We have created a report in the previous example by using the awrrpt.sql script. There
are other reports available, generated by a corresponding script in the same folder; for
example, awrrpti.sql is the same as awrrpt.sql, but for a specific database instance.
awrsqgrpt.sql generates a report for a particular SQL statement, like the script sprepsql .
sql for Statspack. The corresponding script awrsqrpti .sql prepares the same report for
a specific database instance.

There are also compare period reports, which allow us to compare not two snapshots but
two AWR reports. If we have a database which performs well in a certain period, and we
experiment a lack of performance in another period, we can elaborate two reports for the
first and the latter period, and then compare the reports among them, to point out the
differences and try to identify the issue.

For example, in step 4, we have created a baseline based on the snapshots with IDs from 1
to 11, and we name it "Friday off-peak".

The timespan of the two reports we are comparing isn't important, because AWR normalizes
the data according to the different timeframe.

Compare period reports can be launched from Oracle Enterprise Manager or using the script
awrddrpt.sql (the script awrddrpti .sql to concentrate the result on a single instance).

There's more...

We can specify the adaptive thresholds as a percentage of the maximum value observed in
the moving window baseline, or as a statistical percentile, ranging from 0.95 to 0.9999—from
five observations expected to exceed the value in 100 to 1 observation in 10,000.

e

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

Analyzing data using Automatic Database

Diagnostic Monitor (ADDM)

In this recipe, we present the Automatic Database Diagnostic Monitor, a tool which analyzes
the data collected by AWR to diagnose the cause of a performance problem, providing advice
on how to solve the issue.

Getting ready

ADDM is enabled by default in Oracle Database 11g; it depends upon two configuration
parameters of the init.ora file, STATISTICS_LEVEL and CONTROL_MANAGEMENT_PACK _
ACCESS. The value for these parameters should be TYPICAL or ALL for the former and
DIAGNOSTIC or DIAGNOSTIC+TUNING for the latter. To show the current parameter values,
we can use the following statement:

SHOW PARAMETER STATISTICS_LEVEL

SHOW PARAMETER CONTROL_MANAGEMENT_PACK_ACCESS

While to set the parameters we can use the following commands:

ALTER SYSTEM SET STATISTICS_LEVEL = TYPICAL;
ALTER SYSTEM SET CONTROL_MANAGEMENT_PACK_ACCESS = "DIAGNOSTIC+TUNING®;

We are now ready to diagnose a problem using ADDM.

How to do it...

The following steps will demonstrate how to use ADDM:

1. Torunthe ADDM in Database mode (all instances of the database will be analyzed),
we will use the following statement where the parameters 3 and 5 in these steps are
the numbers identifying the beginning and ending snapshots to be used:

VAR task_name VARCHAR2(30);

BEGIN
:task_name := "Report for 3 to 57;
DBMS_ADDM_.ANALYZE_DB (:task_name, 3, 5);
END;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

2. Torunthe ADDM in Instance mode (a single instance of the database will be
analyzed), we will use the following statement:

VAR task_name VARCHAR2(30);

BEGIN
:task_name := "Report for 3 to 5 inst. 1-;
DBMS_ADDM.ANALYZE_INST (:task_name, 3, 5, 1);
END;

3. Torunthe ADDM in Partial mode (a subset of all database instances will be
analyzed), we will use the following statement:

VAR task_name VARCHAR2(30);

BEGIN
:task_name := "Custom for 3 to 5 inst. 1,2%;
DBMS_ADDM.ANALYZE_INST (:task_name, "1,2", 3, 5);
END;

4. To view the results we will query the DBMS_ADDM.GET_REPORT function, passing
the name of the task used in generating the reports:
SELECT DBMS_ADDM.get_report("Report for 3 to 5") FROM DUAL;
SELECT DBMS_ADDM.get_report("Report for 3 to 5 inst. 1) FROM
DUAL;

SELECT DBMS_ADDM.get_report(“"Custom for 3 to 5 inst. 1,2") FROM
DUAL ;

Each line in the previous code will display the corresponding ADDM report.

Automatic Database Diagnostic Monitor runs automatically every time a new snapshot is
taken by AWR (by default every hour), and the corresponding report is built comparing the
last two snapshots available, so we have an ADDM report every hour.

With the statement presented, we can run a report between snapshots to identify possible
problems. The reports can be built, for a Real Application Cluster configuration, with three
analysis models: database, instance, and partial. In non-RAC databases, only instance
analysis is possible because there is only one instance of the database.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

We can see the reports with SQL*Plus using the DBMS_ADDM.GET_REPORT function, which
returns a CLOB containing the report (80-columns formatted), or we can use Oracle Enterprise
Manager to view the reports generated both in automatic or manual mode. In OEM, we can
view ADDM findings in the homepage in the Diagnostic Summary information. We can choose
Advisor Central on the bottom of the page to see a list of the ADDM reports available, as
shown in the following screenshot:

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Database Control Database
Database Instance: orcl > Logged in As SYS
Advisor Central

Advisors Checkers

View Data Real Time: 15 Second Refresh «

Advisors

ADDM Automatic Undo Management Data Recovery Advisor
Memory Advisors MTTR. Advisor Segment Advisor

SQAL Advisors SQL Performance Analyzer Streams Performance Advisor

Advisor Tasks

| Change Default Parameters J

Search

Select an advisory type and optionally enter a task name to filter the data that is displayed in your results set.
Advisory Type Task Mame Advisor Runs Status

ADDM - Last 31 Days = All - Go)

By default, the search returns all uppercase matches beginning with the string you entered. To run an exact or case-sensitive match, double
guote the search string. ou can use the wildcard symbol (%) in a double quoted string.

Results

[view Result)| Delete JActions Re-schedule = jous 1-26 of 66 = Mext 26 =

Expires|
Advisory Duration In
Select Type Name Description User Status Start Time |seconds) (days)

@ ADDM ADDWM- 1257856451 1_65 ADDM aute run: svs COMPLETED Sep 26, 2010 0 30

snapshots [64, 6:12:09 PM
65], instance 1,

database id
1257856451

ADDM ADDM 1257856451 1 64 ADDM auto run: s¥S COMPLETED Sep 26, 2010 0 30
snapshots [63. 6:00:25 PM
64]. instance 1,
database id
1257856451

ADDM ADDM:1257856451_1_63ADDM auto run: g¥S COMPLETED Sep 26, 2010 0 30

snapshots [62, 5:30:20 PM
63]. instance 1,

database id
1257856451

S ED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Clicking on the name link in the previous list we can view the corresponding report; in the
following screenshot, we can see an example of an ADDM report viewed through OEM:

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Database Control Database

Database Instance: orcl > Advisor Central >

Automatic Database Diagnostic Monitor (ADDM:SYS.ADDM: 1257856451 1 45 = Logged in As SYS
Performance Finding Details: Soft Parse
Finding Soft parsing of SQL stat ts was Cc ing significant database time. [_Finding Histary)
Impact (Active Sessions) .01
Percentage of Finding's Impact (%) | | 9.5

Period Start Time Sep 25, 2010 12:00:58 PM CEST
Period Duration (minutes) 96.1

Filtered Mo | Filters)
Recommendations
Show All Details | Hide All Details

Details Category Benefit (%)

¥ Hide Application Analysis] 95

Acti Investigate application logic to keep open the frequently used cursors. Note that cursors are closed by both cursor
ction

close calls and session disconnects.
¥ Hice DB Configuration | 95

Consider increasing the session cursor cache size by increasing the value of parameter "session_cached_cursors”.

Irmplement | Filters |

Rationale The value of parameter "session_cached_cursors” was "50" during the analysis period.

Action

Findings Path

Expand All | Collapse All
Percentage of Finding's Impact Additional

Findings (%) Information
¥ Soft parsing of SQL statements was consuming significant database time. [] 9.5
¥ Contention for latches related to the shared pool was consuming 1 29 Additional Information
significant database time.
Wait class "Concurrency” was consuming significant database time. | 29

There's more...

The parameter DB10_EXPECTED influences the ADDM analysis of I/0 performance, because
it describes the expected I/0 subsystem performance, measuring the average time needed
to read a single database block. The default value of the parameter is 10 milliseconds,
corresponding to the average time of common hard disks. Please note that this measure
includes the seek time.

If our 1/0 subsystem is significantly slower or faster, we may end up with possible false alerts
or no alerts at all. We can adjust the parameter issuing the following statement:

EXEC DBMS_ADVISOR.SET DEFAULT_TASK_PARAMETER("ADDM®, *DBIO_EXPECTED",
12000) ;

The numeric value is the time expressed in microseconds.

E3s

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

See also

» Analyzing data using Automatic Workload Repository (AWR) in this chapter

A working example

In this recipe we will present a simple example of a performance tuning session, applying
the recipes seen earlier.

Getting ready

The example is based on the SH schema. Be sure Statspack is installed, as presented in an
earlier recipe.

How to do it...

The following steps demonstrate a simple example using the SH schema:

1. We assume the user PERFSTAT with the password PERFSTAT and the user SH
with the password SH. The TESTDB database is the default instance.

2. Launch SQL*Plus and connect to the SH schema:
$ sqlplus SH/SH

3. Create the package Chapterl:
CREATE OR REPLACE PACKAGE Chapterl AS
PROCEDURE Workload;
PROCEDURE Foo(CUSTID IN sh.sales.cust_id%TYPE);
END;
/

CREATE OR REPLACE PACKAGE BODY Chapterl AS
PROCEDURE Workload IS
BEGIN

FOR i in 1 .. 50000
LOOP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Foo(i);
END LOOP;
END Workload;
PROCEDURE Foo(CUSTID IN sh.sales.cust_id%TYPE) IS
BEGIN
DECLARE
I_stmt VARCHAR2(2000);
BEGIN

I_stmt := "SELECT * FROM sh.sales s WHERE s.cust_id = " ||
TO_CHAR(CUSTID);

EXECUTE IMMEDIATE I1_stmt;
END;
END Foo;
END;
/

Now we create the initial snapshot:
CONNECT PERFSTAT/PERFSTAT
EXEC statspack.snap;

Execute the test workload:
CONNECT SH/SH
EXEC Chapterl.Workload;

Now we can elaborate the end snapshot:
CONNECT PERFSTAT/PERFSTAT
EXEC statspack.snap;

Finally we can launch the report creation:
SQL>@?/RDBMS/ADMIN/SPREPORT . SQL

When asked, select the last two snapshots created to produce the Chapterl. Ist
report (naming the report accordingly).

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning

In this simple example, the stored procedure Foo inside the package Chapterl is executed
50,000 times to query the SALES table. We have not used bind variables, and the Statspack
report reflects this performance issue:

Instance Efficiency Indicators
Buffer Nowait %: 100.00 Redo NoWait %: 100.00
Buffer Hit %: 99.81 Optimal W/A Exec %: 100.00
Library Hit %: 91.42 Soft Parse % 2.92
Execute to Parse 3%: 0.50 Latch Hit %: 100.00
Parse CPU to Parse Elapsd %: 97.34 % Non-Parse CPU: 8.42

In the highlighted section of the Statspack report, we can see that only 2.92 percent of parses
have been "soft", because the cursor_sharing parameter is set to EXACT and we are not
using bind variables.

There's more...

To solve this issue, we can:

» Change the CURSOR_SHARING parameter to SIMILAR
» Recode the Foo procedure, introducing bind variables
In the first case, we have to execute the following statement:

ALTER SYSTEM SET CURSOR_SHARING = SIMILAR SCOPE=MEMORY;

Now we can recreate the snapshots:

CONNECT PERFSTAT/PERFSTAT
EXEC statspack.snap;
CONNECT SH/SH

EXEC Chapterl.Workload;
CONNECT PERFSTAT/PERFSTAT
EXEC statspack.snap;

And finally, we launch the report creation:

SQL>@?/RDBMS/ADMIN/SPREPORT . SQL

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The newly created report presents a significant change:

Instance Efficiency Indicators
Buffer Nowait %: 100.00 Redo NoWait %: 100.00
Buffer Hit %: 100.00 Optimal W/A Exec %: 100.00
Library Hit %: 99.99 Soft Parse %: 99.20
Execute to Parse %: 99.75 Latch Hit %: 99.99
Parse CPU to Parse Elapsd %: 100.00 % Non-Parse CPU: 99.64

Now the Soft Parse is 97.84 percent.

We can recode the procedure as well; let's rollback the change in CURSOR_SHARING:
ALTER SYSTEM SET CURSOR_SHARING=EXACT SCOPE = MEMORY;

And let's alter the Foo procedure:

CREATE OR REPLACE PACKAGE BODY Chapterl AS
PROCEDURE Workload IS
BEGIN
FOR i in 1 .. 50000
LOOP
Foo(i);
END LOOP;
END Workload;

PROCEDURE Foo(CUSTID IN sh.sales.cust_id%TYPE) IS
BEGIN
DECLARE
I_stmt VARCHAR2(2000);
BEGIN
I_stmt := "SELECT * FROM sh.sales s WHERE s.cust_id = :p_cust_id";
EXECUTE IMMEDIATE I_stmt USING CUSTID;
END;
END Foo;
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Performance Tuning
Let's launch the snapshots and the report:

CONNECT PERFSTAT/PERFSTAT

EXEC statspack.snap;

CONNECT SH/SH

EXEC Chapterl.Workload;

CONNECT PERFSTAT/PERFSTAT

EXEC statspack.snap;
SQL>@?/RDBMS/ADMIN/SPREPORT . SQL

The newly created report presents a result similar to the previous execution:

Instance Efficiency Indicators

Buffer Nowait %: 100.00

Buffer Hit %: 100.00

Library Hit %: 5899

Execute to Parse %: 99.75

Parse CPU to Parse Elapsd %: 100.00

Redo NoWait %

Optimal W/A Exec %

>3

G

Soft Parse %
Latch Hit %
Non—-Parse CPU

There is now a Soft Parse of 99.20 percent.

In this simple example, we have seen how to diagnose a simple problem using Statspack;
as an exercise, try to use the other tools presented using the same test case.

Al

~ To use AWR and ADDM take a manual snapshot before and after
running the Workload procedure.

See also

Using bind variables in Chapter 4, Optimizing SQL Code

>

>

Minimizing latches using bind variables and Tuning resources to minimize latch

contention in Chapter 11, Tuning Contention

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing
Application Design

In this chapter, we will optimize the application design, introducing various kinds of issues
and hints to improve an application's performance. We will present the following recipes:

>

>

Optimizing connection management

Improving performance by sharing reusable code

Reducing the number of requests to the database using stored procedures
Reducing the number of requests to the database using sequences
Reducing the number of requests to the database using materialized views
Optimizing performance with schema denormalization

Avoiding dynamic SQL

Introduction

It is very difficult to change the application design once the development process begins.

Often the primary aim of a software and data architect is to make things work, but designing
applications for optimal performance is not a marginal aspect, many applications need to
meet specific timing requirements to be useful.

In this chapter, we will investigate some aspects to keep in mind when designing an
application and some tips on specific database features, which can help us in this task.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

We will start inspecting the database connection phase, and then move on to general use
of SQL statements in our applications for performance enhancement.

Recipes on useful database objects will follow, and the chapter will close with schema
denormalization and dynamic SQL.

Optimizing connection management

In this recipe, we will see how to manage a database connection in our application, using Java.

Getting ready

To execute the source code we need the java compiler Javac and the java runtime
environment installed.

Make sure that jdbc\lib\ojdbc6. jar is in the CLASSPATH environment
variable. The jdbc folder is located under the Oracle home directory.

To set environment variables in Microsoft Windows environments, right-click
on My Computer, select Properties, then navigate to the Advanced button
or link—depending on the OS version—and click on Environment Variables
and find the CLASSPATH environment variable. If you don't find it, click on
- the New button and enter the variable name CLASSPATH and variable value
% %ORACLE_HOME%\ jdbc\lib\ojdbc6. jar. If the variable is already
=~ defined, click on the Edit button and enter the string %¥ORACLE_HOME%\

Jdbc\lib\ojdbc6. jar after the current value.

In Linux environments, export the variable CLASSPATH using the following
command line:
export CLASSPATH=$0ORACLE_HOME\jdbc\lib\ojdbc.jar

You can insert this line in your . profi le file to avoid manual execution
every time you start up.

We need the example database TESTDB installed, as explained in Chapter 1 in the Exploring
the example database recipe. If we want to use another database, we have to change the
value of the connection string to use the correct value. We will use the HR schema.

How to do it...

The following steps will demonstrate how to optimize connection management:

1. Create a OraclePerformanceTuningCookbook directory and a chapter02
directory inside it.

2. Open your preferred text editor.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

3. Create a class ConnectionManagement in the package chapter02 using the
following code and save it in a file named ConnectionManagement. java in the
previously created chapter02 directory:

package chapter02;
import java.sql.*;

public class ConnectionManagement {

private static final String driver =
"oracle.jdbc.driver._OracleDriver"';

private static final String connectionString =
"jdbc:oracle:thin:@localhost:1521:TESTDB";

private static final String user = "hr";

private static final String pass = "hr";

private static final int iterations = 100;

public static void singleConnection() throws SQLException {
Connection conn = null;
try {
Class.forName(driver);
conn = DriverManager.getConnection(connectionString,
user, pass);
} catch (Exception e) {
System.out._printIn(String.format("'Error %s',
e.getLocalizedMessage())):
System.exit(l);
}
try {
for (int j = 0; j < iterations; ++j) {
Statement query = conn.createStatement();
ResultSet result = query.executeQuery(
"select first_name,
last_name
from employees');
while (result.next()) {
String name = result._getString('first_name')
+ " "+ result._getString(*'last_name');
System.out.printin(name);
}
query.close();
}
} catch (Exception e) {
System.out._printIn(String.format("'Error %s',
e.getLocalizedMessage())):
System.exit(l);
} finally {

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

conn.close();

}

public static void multipleConnection() throws SQLException {
Connection conn = null;
for (int j = 0; j < iterations; ++j) {
try {
Class.forName(driver);
conn = DriverManager.getConnection(
connectionString, user, pass);
} catch (Exception e) {
System.out.printin(String.format("Error %s",
e.getLocalizedMessage()));
System.exit(l);
}

try {
Statement query = conn.createStatement();

ResultSet result = query.executeQuery(
"select first_name, last_name

from employees™);

while (result.next()) {

String name = result.getString('first_name')
+ " " + result.getString(*'last_name");

System.out.printin(name);

}

query.close();

} catch (Exception e) {
System.out.printIn(String.format("Error %s",
e.getLocalizedMessage()));

System.exit(l);
} finally {
conn.close();

}
}

public static void main(String[] args) throws SQLException {
long startTime = System.currentTimeMillis(Q);

singleConnection();
long stopTimeSingle = System.currentTimeMillis();

multipleConnection();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

long stopTimeMulti = System.currentTimeMillis(Q);
System.out.printIn(String.format(

"Execution with single connection %dms.\n
Execution with multiple connections %dms.",
(stopTimeSingle - startTime),

(stopTimeMulti - stopTimeSingle)));

}

Open a terminal and make chapter02 the current directory.
5. Build the program by using the following command:
jJavac ConnectionManagement. java

6. Open another terminal and make OraclePerformanceTuningCookbook, the
current directory. Run the program from the command line:

java chapter02.ConnectionManagement

7. The output will be as follows:

Matthew Weiss

Jennifer Whalen

Eleni Zlotkey

Execution with single connection 2863ms.
Execution with multiple connections 4176ms.

This simple example consists of two methods, singleConnection() and
multipleConnection(), which reads the names of all the employees in the HR schema
a hundred times.

The difference between the two procedures is in the way the connection to the database

is made. In singleConnection(), the connection is opened one time and closed after
100 executions. In multipleConnection(), for each iteration we open and close the
connection to the database. The only difference in the code is the position of the for loops,
as highlighted in the source code in step 3.

As we can easily see in the execution time presented in the output, the singleConnection()
procedure is approximately 30 percent faster than the multipleConnection(). Increasing
the number of iterations leads to a greater difference, and we consume more resources during
the log on and log off processes than while executing the SQL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

There's more...

In this recipe, we have seen an example of connection management in action. Let's
explore the scenarios, that could occur when we are designing our application, and
database architecture.

Dedicated server versus shared server

There are two types of configurations used to connect to an Oracle database: dedicated server
and shared server, called Multi-Threaded Server (MTS) in previous Oracle database releases.

In dedicated server mode, each client connected to the database will have a separate server
process that executes the requests. In a shared server configuration, when a client initiates
a connection to the database, the listener process chooses a dispatcher process configured
for the database and the dispatcher process passes the request to the least loaded server
process, which is already configured for the database, to execute the client request.

The shared server configuration shares a small number of server processes among many
users, reducing the resources (RAM) required to serve the user requests.

In a dedicated server configuration, a new server process has to be spawned when a client
logs in to the database. However, using a dedicated server is faster than using a shared
server configuration, and with memory becoming less expensive it's better to increase the
amount of RAM on the database server.

The dedicated server configuration is configured by default in most environments. There are
some DBA tasks that cannot be performed with a shared server connection, such as RMAN
backup/restore/recovery. Moreover, when a task uses structures stored in the PGA (Program
Global Area), the session cannot be migrated to another shared server, this situation can lead
to a contention.

Web applications

Web applications pool many users connecting at the same time, and this is the first thing
to consider when designing the connection management of our web application.

There are many tutorials about writing web pages which connect to the database, returning
data to the user or allowing them to modify and store updated information on the database.
These tutorials usually do not consider the correct approach to establishing a database
connection, and beyond the programming language used, we have a typical pattern for a
web page design:

1. Connect to the database.
2. Query the data and compose the HTML code.
3. Close the connection.

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As illustrated in this recipe, this approach is completely wrong, as we don't use connection
pooling and waste more time in establishing a connection to the database and then
terminating it, than in accessing the data. If connection pooling is in place, instead, we can
use this pattern successfully.

There are two things to consider in web applications. First, the application is disconnected, so
that we can treat each page as a single request disconnected from the previous. Second, with
many users, scalability is a goal to keep in mind starting at the first phase of application design.

To meet these requirements, we need to use connection pooling when connecting to the
database in our web application. When this is not possible—due to limitations in the language
used—we can implement a multi-tier system. Move the data access layer inside web services,
which could then use a dedicated connection, shared among many user requests.

This way we have pool connections at the application layer, which then uses a dedicated
connection to the database.

Client-server Online Transaction Processing
Client server Online Transaction Processing (OLTP) is the most common database application.

In this kind of an environment, a dedicated server connection to the database is an easy
choice. Estimate the RAM requirement to serve the requests, by multiplying the maximum
number of concurrent users with the amount of memory used per Oracle server process.

Due to the nature of transactions involved in this environment—they last for a few
milliseconds—a shared server approach could also be used.

For a multi-tier multi-layer application, use connection pooling on the data access layer—as
in the Web Application example discussed in the previous section—to save some memory
resources on the database server.

Batch processing
Batch processing is a typical activity paired with OLTP applications—often CPU-intensive
tasks are scheduled to work in off-peak time, optimizing the resource utilization.

For batch processing, a dedicated server connection is a must, because they often use
large queries and updates, which may last for minutes, if not hours on large systems.

See also

» Tuning the Program Global Area and the User Global Area in Chapter 9,
Tuning Memory

@1

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

Improving performance sharing

reusable code

In this recipe, we will see how to share reusable code in our application to improve performance.

Getting ready

To demonstrate the performance gain by sharing reusable code, the following example is
written in Java, similar to the one presented in the previous recipe.

How to do it...

The following steps will demonstrate how to share reusable code:

1. Create a OraclePerformanceTuningCookbook directory and a chapter02
directory inside it.

2. Open your preferred text editor.

3. Create a class called SharedCode in the package chapter02 using the following
code and save it in a file named SharedCode. java in the previously created
chapter02 directory:

package chapter02;
import java.sql.*;

public class SharedCode {
private static final String driver =
"oracle.jdbc.driver.OracleDriver";
private static final String connectionString =
"jdbc:oracle:thin:@localhost:1521:TESTDB";
private static final String user = "hr";
private static final String pass = "hr";
private static final int iterations = 1000;

public static void preparedQuery(Connection conn)
throws SQLException {
try {
PreparedStatement ps = conn.prepareStatement(
"select first_name, last_name
from employees');
for (int j = 0; j < iterations; ++j) {
ResultSet result = ps.executeQuery();
while (result.next()) {

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

String name = result.getString('first_name')
+ " " + result.getString("last_name");
System.out.printin(name);
}
}

ps.close();
} catch (Exception e) {
System.out.printin(String.format("Error %s",
e.getLocalizedMessage())):
System.exit(l);

}

public static void singleConnection(Connection conn)
throws SQLException {
try {
for (int j = 0; j < iterations; ++j) {
Statement query = conn.createStatement();
ResultSet result = query.executeQuery(
"select first_name, last_name
from employees™);
while (result.next()) {
String name = result.getString(*'first_name')
+ " " + result.getString('last_name');
System.out.printlIn(name);
}
query.close();
}

} catch (Exception e) {
System.out.printIn(String.format("Error %s",
e.getLocalizedMessage()));

System.exit(l);

}

public static void main(String[] args) throws SQLException {

Connection conn = null;

try {
Class.forName(driver);
conn = DriverManager.getConnection(connectionString,

user, pass);

long startTime = System.currentTimeMillis(Q);
singleConnection(conn);
long stopTimeSingle = System.currentTimeMillis();
preparedQuery(conn);

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

long stopTimePrep = System.currentTimeMillis();
System.out.printIn(String.format(
"Execution without prepared query %dms.\n
Execution with prepared query %dms.",
(stopTimeSingle - startTime),
(stopTimePrep - stopTimeSingle)));
} catch (Exception e) {
System.out.printIn(String.format("Error %s",
e.getLocalizedMessage()));
System.exit(l);
} finally {
conn.close();

}
}

Open a terminal and make chapter02 the current directory.

5. Build the program using the following command:
jJavac SharedCode. java

6. Open aterminal and make OraclePerformanceTuningCookbook the current
directory. Run the program from the command line:

java chapter02.SharedCode

7. The output will be as follows:

Matthew Weiss

Jennifer Whalen

Eleni Zlotkey

Execution without prepared query 15198ms.
Execution with prepared query 13033ms.

In this example, we have used the singleConnection() method from the previous recipe
and prepared a slightly modified version of the routine, called the preparedQuery().

The difference between the two methods can be seen in the highlighted section of code, in
preparedQuery() we use a prepared statement to benefit from parsing the query only once.

The timing presented at the end of the processing shows that the preparedQuery()
solution is more than 15 percent faster than the singleConnection(). Increasing the
number of iterations leads to an even greater savings, as it consumes fewer resources than
if the SQL statements are only parsed once.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

With this example, we have introduced the correct way to use SQL statements in our
applications:

1. Prepare the statement.
2. Execute the statement many times (using bind variables).
3. Close the statement.

In this way, the costly hard parse operation is performed only once, that is in step 1.

There's more...

Parsing is a CPU-bound operation (it requires many CPU cycles) that involves latches, hence
serialization, and hence waiting. We want to avoid unnecessary parsing.

The parsing process always performs a syntax and semantic check of the statement; after
this phase, the database engine first searches for the statement in the shared SQL area.
To do so, it calculates a hash of the literal statement, and compares it with the hash of the
shared SQL statements. In this way, similar statements, which differ only in whitespaces,
in case or in the name of bind variables are treated as different.

To avoid hard parsing, write SQL statements in reusable code sections. Use bind variables
and not constants, trying to minimize the number of different queries executed against
the database.

| have recommended the use of bind variables and not constants—this
is the general rule—but don't overstate it by writing something like
select substr(field, :start, :-end) as shortfield, ...
until it's not a requirement (return a variable part of the field).

In this situation, the correct size of shortfield is not known to
. the parser; in situations where bind variables are used in a predicate
% like select Fieldl from tablel where Field2 = zvalue
- and Field2 is always "Y" in tablel, except in some records where
it is "N". Different execution plans can be chosen by the optimizer
depending on bind variable values. If we query for "Y" records, a full
table scan will be more advantageous than an index scan, which
is perfectly suited if we ask for "N" records. If a constant is really
constant, don't use a bind variable because "it's always better", but
think about the drawbacks.

When the same statement is found in a shared SQL area, a soft parse occurs, otherwise
a hard parse operation is needed. This requires two extra steps, optimizing and generating
the execution plan for the query.

In developing our application, we will try to minimize the number of hard parses and
maximize the soft-to-hard parse ratio.

i

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

Using the pattern illustrated in this recipe we will reduce the number of soft parses; the
statement is parsed only once in this line:

PreparedStatement ps = conn.prepareStatement(‘'select first_name,
last_name from employees');

If the same statement had been parsed previously, a soft parse will occur. If the
PreparedStatement is not closed, it can be executed multiple times—changing the
values assigned to bind variables—and only a "light" soft-parse will occur, with no syntax
and semantic check.

PL/SQL and parsing

Good news! What we have seen regarding parsing in the previous paragraph is managed
automatically by the PL/SQL engine.

In a PL/SQL procedure, we don't need to explicitly prepare a statement before executing
it, because the DML statements inside our procedures are automatically parsed once per
session, and not once per execution. Subsequent calls use a "softer" soft-parse, which we
can call a "light" soft-parse to distinguish it.

For example, if our application is written in Java, we have to parse the execute procedure
statement once, and subsequent calls to the procedure won't produce unnecessary hard
(and soft) parses, but only the unavoidable "light" soft-parse.

Diagnosing soft and hard parsing

Now we know the difference between hard, soft, and "light" soft-parse, and how to design
and write our application to reduce parsing.

But can we diagnose a parsing problem, caused by any third-party application, whose
sources we cannot inspect?

To find the answer, take a look at the dynamic performance views and monitor the following
values—library cache hit ratio and parse count.

Query the VSLIBRARYCACHE, using the following statement to view hit ratios related to
different areas of the database:

SELECT NAMESPACE, GETS, PINS, GETHITRATIO FROM V$LIBRARYCACHE

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The output will be as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

966

(SIS IR

oo o
=)
o
-

o

We are interested in the SQL AREA values, the first in the response, which indicates a
GETHITRATIO of 26 percent (poor value) for our example. For an OLTP database, we probably
want a value of .99999, while in a data warehouse environment a value above .9 is good.

To investigate parse data in a session, use the following statement:

SELECT S_NAME, V.VALUE FROM V$STATNAME S, V$MYSTAT V
WHERE S.STATISTIC# = V._STATISTIC# AND S.NAME LIKE "parse%”;

The output will be as follows:

ec2-46-51-176-114.eu-west-1.compute.ama... |ﬂlﬁ

NAME

s

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

From this query we can see that there were a total of 248 parses, 47 of which were hard
and 201 were soft parses.

If for test purposes we want to flush the content of the library cache, we can execute the
following statement, which flushes the content of the shared pool (so the library cache):

ALTER SYSTEM FLUSH SHARED_POOL;

Please note that flushing the shared pool in a production

environment can have drastic effects on the database. We
g are doing this operation in a test environment.

See also

» The Using bind variables and parsing recipe in Chapter 6, Optimizing PL/SQL Code
gives more details on parsing in PL/SQL code

» Recipes in Chapter 7 are focused on the Oracle optimizer

» In Tuning the Shared Pool and Tuning the Library Cache recipes in Chapter 9, we
will explore the structure used in this recipe in more detail.

Reducing the number of requests to the

database using stored procedures

To achieve better performance, we should reduce the number of requests made to the
database, especially if those requests have to be routed to a network. There are many
strategies to reduce these requests. In this recipe, we discuss the use of stored procedures
and packages for achieving this goal.

In this recipe, we execute a simple query in the SH schema. In the first script, we will use
SQL*Plus to test the SQL statement and the corresponding stored procedure execution. In
the Java program, we will use the same query and stored procedure. For each of these tests,
record the execution time.

How to do it...

The following steps will demonstrate how to reduce the number of requests to the database:

1. Open your preferred text editor and copy the following script, and save it as
StoredProcedure.SQL:

SET ECHO OFF
SET FEEDBACK OFF

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

SET PAGESIZE 80

CREATE OR REPLACE PROCEDURE SH.SALES_BY_PRODUCT
(P OUT SYS_REFCURSOR) IS

BEGIN
OPEN P FOR

SELECT PROD_ID, SUM(AMOUNT_SOLD) AS AMOUNT FROM SH.SALES
GROUP BY PROD_ID;

END;
/

ALTER PROCEDURE SH.SALES_BY_ PRODUCT COMPILE;

/

ALTER SYSTEM FLUSH SHARED_POOL ;

ALTER SYSTEM FLUSH BUFFER_CACHE;

SET TIMING ON

SELECT PROD_ID, SUM(AMOUNT_SOLD) FROM SH.SALES GROUP BY PROD_ID;
SET TIMING OFF

ALTER SYSTEM FLUSH SHARED_POOL ;

ALTER SYSTEM FLUSH BUFFER_CACHE;

SET TIMING ON

VAR TEST REFCURSOR

EXEC SH.SALES_BY_PRODUCT(:TEST);

SET TIMING OFF

SET FEEDBACK ON

SET ECHO ON

Launch SQL*Plus and connect as user SYS:
sqlplus /@TESTDB AS SYSDBA

Launch the previous script (we assume the script is in the same directory from
which SQL*Plus has been executed):

@StoredProcedure

The output will be something similar to the following:

126 370204.56
127 1033311.97
16 2082330.3
122 84498.67
139 244595 .65
Elapsed: 00:00:01.26
Elapsed: 00:00:00.45

E3s

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

4. Create a OraclePerformanceTuningCookbook directory and a chapter02
directory inside it.

5. Open your preferred text editor. Create a class StoredProcedure in the
package chapter02 using the following code and save it in a file named
StoredProcedure. java in the previously created chapter02 directory:
package chapter02;

import java.sql.*;
import oracle.jdbc.*;
import javax.swing.*;

public class StoredProcedure {

private static final String driver =
"oracle.jdbc.driver._OracleDriver";

private static final String connectionString =
"jdbc:oracle:thin:@localhost:1521:TESTDB";

private static final String user = "sys as sysdba";

public static void useQuery(Connection conn)
throws SQLException {
try {
PreparedStatement ps = conn
-prepareStatement(""'SELECT PROD_ID, SUM(AMOUNT_SOLD) AS
AMOUNT FROM SH.SALES GROUP BY PROD_ID"™);
ResultSet result = ps.executeQuery();
while (result.next()) {
String row = result.getint('PROD_ID"™) + " ™
+ result.getDouble(""AMOUNT');
System.out.printin(row);
}
ps.close();
} catch (Exception e) {
System.out._printin(String.format("Error %s",
e.getLocalizedMessage()));
System.exit(l);
}
}

public static void useStoredProcedure(Connection conn)
throws SQLException {

try {
CallableStatement ps = conn

-prepareCal l (""BEGIN SH.SALES_FOR_PRODUCT(?); END;');

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

ps.registerOutParameter(l, OracleTypes.CURSOR);
ps.execute();
ResultSet result = ((OracleCallableStatement)
ps) -getCursor(l);
whille (result.next()) {
String row = result.getint(PROD_ID") + " "'
+ result.getDouble(""AMOUNT');
System.out.printin(row);
}
ps.close();
} catch (Exception e) {
System.out.printIn(String.format("Error %s",
e.getLocalizedMessage()));
System.exit(1);
}
}

public static void flush(Connection conn) throws SQLException {
try {
Statement s = conn.createStatement();
s.execute(""ALTER SYSTEM FLUSH SHARED_POOL'™);
s.execute(""ALTER SYSTEM FLUSH BUFFER_CACHE'™);
s.close();
System.out.printIn(’'System altered");
} catch (Exception e) {
System.out.printin(String.format("Error %s",
e.getLocalizedMessage()));
System.exit(l);
}
¥

public static void main(String[] args) throws SQLException {
Connection conn = null;

try {
Class.forName(driver);

String pass = JOptionPane.showlnputDialog(
"Insert SYS password:");

conn = DriverManager.getConnection(connectionString, user,
pass);

long startTime = System.currentTimeMillis(Q);
flush(conn);
useQuery(conn);

long stopTimeSingle = System.currentTimeMillis();
flush(conn);

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

useStoredProcedure(conn);
long stopTimePrep = System.currentTimeMillis();
System.out.printin(

String.format("Execution without prepared query %dms.
\nExecution with prepared query %dms.",
(stopTimeSingle - startTime),
(stopTimePrep - stopTimeSingle)));

} catch (Exception e) {
System.out.printin(String.format("Error %s",

e.getLocalizedMessage()));

System.exit(l);

} finally {
conn.close();

}

}

}

Open a terminal and make chapter02 as the current directory.
Build the program by using the following command:
jJavac StoredProcedure.java

8. Open aterminal and make OraclePerformanceTuningCookbook as the
current directory. Run the program from the command line:

java chapter02.StoredProcedure

The output will be as follows:

126 370204 .56

127 1033311.97

16 2082330.3

122 84498.67

139 244595.65

Execution without prepared query 1438ms.
Execution with prepared query 1722ms.

Let me explain the script. First we create a stored procedure that returns a cursor, querying
the amount of sales of a product. The stored procedure is compiled, so when it is called later,
the compilation phase will not be re-executed.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Then we flushed the shared pool and the buffer cache, as it is a good practice to start with an
empty working area in a test/development environment—if we don't do so, the first execution
will take longer than the subsequent calls because the data will already be in the buffer cache.

The next set of statements will execute the query and the stored procedure, while at the
same time measuring the time elapsed.

1
‘Q The stored procedure opens the cursor and returns it to

the caller, while the query actually returns all the records.

The Java class executes the same query and stored procedure. In either case, it executes
a loop on the ResultSet to show every record returned; before executing the query and
the stored procedure, flush the shared pool and the buffer cache for the same reason as
explained earlier.

There's more...

Using a stored procedure improves the performance while executing SQL statements on the
database. Another reason to use stored procedures—which are usually grouped in packages—is
that they allow the sharing of reusable code, as illustrated in the previous recipe. If we use only
stored procedures and packages to manipulate the data, there is a single place that stores

all the used statements, which can be easily reused without rewriting. Rewriting similar SQL
statements is not only a waste of time, when coding, but can also be a performance issue
during the execution phase.

See also

» Recipes from Chapter 6, Optimizing PL/SQL Code

Reducing the number of requests to the

database using sequences

In this recipe, we continue to explore ways to reduce the number of requests made to the
database, illustrating how the use of sequences can help us in achieving this as well as
improved database scalability.

Sequences are used to assign a sequential number—unique until the sequence is recreated
or reinitialized. In many non-Oracle databases, there are tools that allow developers to
automatically assign a sequential number to a field—often the primary key—the so-called
autoinc fields (Microsoft® SQL Server® and IBM® DB2® can define a field IDENTITY, MySQL™
has the AUTO_INCREMENT attribute, and so on).

e

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

Oracle database doesn't have a specific IDENTITY field, to achieve the same result
developers have to write a trigger for the table to assign a value to the "autoinc" field, using

a sequence. This behavior, however, allows developers to implement whatever policy they
want while generating the autoinc field. Sequences can also be used for purposes other than
generating the value for an autoinc field.

Without such a mechanism, a common approach to solve the problem would be to maintain

a counter in a separate table—when a new sequential number is needed, the user locks the
counter table, increments the counter (and uses a new value), and unlocks the counter table.
This approach has serious limitations—every request to the counter table is serialized, and if an
application keeps many counters in the same table, the serialization generates a new record
for every request. If we use the counters to generate the primary key of all (or nearly all) the
tables, our database will insert a single row for one table at a time. This is called a bottleneck,
because each new insert in each table in the database needs to use the counter table.

In this recipe, we use both the sequence and the counter table approach, populated with a
script, to generate the primary keys of a table.

How to do it...

The following steps will demonstrate how to reduce the number of requests to a databse:

1. Connect to SQL*Plus with user HR:
sqlplus hr@TESTDB/hr

2. Create the TRAVEL_SEQ sequence:
CREATE SEQUENCE TRAVEL_SEQ START WITH 10000 INCREMENT BY 1
CACHE 1000;
3. Create the TRAVELS table:
CREATE TABLE HR.TRAVELS (
TRAVELID NUMBER(9) NOT NULL,
EMPLOYEE_ID NUMBER(6) NOT NULL,
LOCATION_ID NUMBER(4) NOT NULL,
START_DATE DATE,
END_DATE DATE,
CONSTRAINT PK_TRAVELS PRIMARY KEY (TRAVELID),
CONSTRAINT FK_TRAVELS_EMPLOYEES
FOREIGN KEY (EMPLOYEE_I1D) REFERENCES EMPLOYEES,
CONSTRAINT FK_TRAVELS_LOCATIONS
FOREIGN KEY (LOCATION_ID) REFERENCES LOCATIONS);

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

4. Create and populate a table, and call it TRAVELS_COUNTER:

CREATE TABLE TRAVELS_COUNTER (1D NUMBER(9) NOT NULL);
INSERT INTO TRAVELS_COUNTER(ID) VALUES (0);
COMMIT;

5. Create a trigger to populate the primary key of the TRAVELS table using the
TRAVELS_COUNTER table:

CREATE OR REPLACE TRIGGER HR.TR_TRAVELS_INS
BEFORE INSERT ON HR.TRAVELS FOR EACH ROW
WHEN (NEW.TRAVELID IS NULL)
DECLARE MYID HR.TRAVELS.TRAVELID%TYPE;
BEGIN
SELECT 1D + 1 INTO MYID FROM TRAVELS_COUNTER FOR UPDATE;
UPDATE TRAVELS_COUNTER SET ID = MYID
RETURNING 1D INTO :NEW.TRAVELID;

END;

6. Populate the TRAVELS table for measuring performance:
SET TIMING ON
INSERT INTO HR.TRAVELS(EMPLOYEE_ID, LOCATION_ID,
START_DATE, END_DATE)

SELECT E.EMPLOYEE_ID, L.LOCATION_ID, SYSDATE, SYSDATE + ROWNUM
FROM HR.EMPLOYEES E, HR.LOCATIONS L;

SET TIMING OFF

7. Create a trigger to populate the primary key of the TRAVELS table using the
TRAVEL_SEQ sequence:

CREATE OR REPLACE TRIGGER TR_TRAVELS_INS

BEFORE INSERT ON TRAVELS FOR EACH ROW

WHEN (NEW.TRAVELID IS NULL)
BEGIN

SELECT TRAVEL_SEQ.NEXTVAL INTO :NEW.TRAVELID FROM DUAL;
END;

i}

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

8. Populate the TRAVELS table for measuring performance:
SET TIMING ON
INSERT INTO HR.TRAVELS(EMPLOYEE_ID, LOCATION_ID,
START_DATE, END_DATE)

SELECT E.EMPLOYEE_ID, L.LOCATION_ID, SYSDATE, SYSDATE + ROWNUM
FROM HR.EMPLOYEES E, HR.LOCATIONS L;

SET TIMING OFF

The relevant part of the code is included in steps 5 and 7. The trigger populates the primary
key field of the TRAVELS table. In the first implementation, we use the TRAVELS_COUNTER
table to obtain a sequential value, while in the second implementation, we use the
TRAVEL_SEQ sequence to obtain the next sequential number.

The following contain the timing for inserts in steps 6 and 8:

ELAPSED: 1.02
ELAPSED: 0.26

It is easy to see that sequence implementation is faster than using the
TRAVELS_COUNTER table.

There's more...

In the example used, measuring the time elapsed to insert 2461 (107 employees multiplied
by 23 locations) records in the table, you may wish to use a Statspack report to get more
details from the database statistics. Let's use the following script:
CONNECT hr@TESTDB/hr
CREATE OR REPLACE TRIGGER HR.TR_TRAVELS_INS

BEFORE INSERT ON HR.TRAVELS FOR EACH ROW

WHEN (NEW.TRAVELID 1S NULL)
DECLARE MYID HR.TRAVELS.TRAVELID%TYPE;
BEGIN

SELECT ID + 1 INTO MYID FROM TRAVELS_COUNTER FOR UPDATE;

UPDATE TRAVELS_COUNTER SET ID = MYID RETURNING ID INTO :NEW.TRAVELID;
END;
/

N

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

CONNECT perfstat@TESTDB/perfstat

EXECUTE STATSPACK.SNAP;

CONNECT hr@TESTDB/hr

INSERT INTO HR.TRAVELS(EMPLOYEE_ID, LOCATION_ID, START_DATE, END_DATE)

SELECT E.EMPLOYEE_ID, L.LOCATION_ID, SYSDATE, SYSDATE + ROWNUM FROM
HR.EMPLOYEES E, HR.LOCATIONS L;

CONNECT perfstat@TESTDB/perfstat
EXECUTE STATSPACK.SNAP;
@?/rdbms/admin/spreport

When requested, use the last two snapshots to prepare the report (using the
TRAVELS_COUNTER table).

With the following script, we can produce the same report using the sequence to generate
the primary keys:
CONNECT hr@TESTDB/hr
CREATE OR REPLACE TRIGGER TR_TRAVELS_INS
BEFORE INSERT ON TRAVELS FOR EACH ROW
WHEN (NEW.TRAVELID 1S NULL)
BEGIN
SELECT TRAVEL_SEQ.NEXTVAL INTO :NEW.TRAVELID FROM DUAL;
END;
/
CONNECT perfstat@TESTDB/perfstat
EXECUTE STATSPACK.SNAP;
CONNECT hr@TESTDB/hr
INSERT INTO HR.TRAVELS(EMPLOYEE_ID, LOCATION_ID, START_DATE, END_DATE)

SELECT E.EMPLOYEE_ID, L.LOCATION_ID, SYSDATE, SYSDATE + ROWNUM FROM
HR.EMPLOYEES E, HR.LOCATIONS L;

CONNECT perfstat@TESTDB/perfstat
EXECUTE STATSPACK.SNAP;
@?/rdbms/admin/spreport

As mentioned earlier, use the last two snapshots to prepare a report.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

In the following screenshots, you can identify the difference in elapsed time for the two
methods, the TRAVELS_COUNTER table and the sequence TRAVEL_SEQ. In the following
screenshot, you can see the results obtained when using the TRAVELS_COUNTER table
(see the third line):

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Iﬁ

40,054 37

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

By observation, it is easy to conclude that it consumes fewer resources when using the
sequence instead of the TRAVELS_COUNTER table.

Correct definition of a sequence
We have created the TRAVEL_SEQ sequence by using the following statement:

CREATE SEQUENCE TRAVEL_SEQ START WITH 10000 INCREMENT BY 1 CACHE 1000;

It's important to highlight the parameter CACHE 1000, which points out how many sequential
numbers the database caches.

To keep track of the current sequence number, the database stores it in the SYS.SEQ$ table.
When we indicate a parameter CACHE X, the database updates the SYS.SEQ$ and keeps
the current value of the sequence and the high watermark (the last number cached) in the
memory, as we have already called NEXTVAL X times on the sequence. When a NEXTVAL is
issued on the sequence, the database just increases the counter and if the high watermark
is reached, it caches other X numbers in the same manner.

With the NOCACHE parameter instead, for each invocation of the NEXTVAL, a sequential
number is generated accessing the SYS.SEQ$ table, increasing the contention on this object
and decreasing the scalability accordingly.

. When you are using the CACHE parameter and there are multiple
% sessions using that sequence, the numbers won't be contiguous
s and after an instance shutdown or when the sequence is aged out
of the shared pool, the cached sequence values are lost.

See also

» See Using reverse key indexes in Chapter 3, Optimizing Storage Structures for a hint
on using sequential values for primary keys to reduce contention on index leaf blocks

Reducing the number of requests to the

database using materialized views

In this recipe, we will see how to increase the performance of the database—especially in a
data warehousing environment—but the same recipe can be used with small changes in an
OLTP environment as well by using materialized views.

[G]-

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

Materialized views can be seen as snapshots of the data in one or more tables, on which

a computation has been applied, for example, a join or a group. This summary data can be
used to answer client queries readily, instead of reading all the data in the original table(s).
An example is worth a thousand words. For example, we have a SALES table in SH schema,
containing around 1 million rows, and we want a report of sales by product. We will see how
materialized views, in such cases, can help a lot in reducing access to the database, specially
the I/0.

How to do it...

We will use SQL*Plus to test a simple script:

1. Connect to the database TESTDB as user SH and execute a simple query on the
sales data, collecting statistics, timing, and execution plan:

CONNECT sh@TESTDB/sh

SET AUTOTRACE ON

SET TIMING ON

SELECT PROD_ID, SUM(AMOUNT_SOLD) FROM SH.SALES GROUP BY PROD_ID;
SET TIMING OFF

SET AUTOTRACE OFF

2. Create a materialized view with the following statement:
CREATE MATERIALIZED VIEW SH_.MV_SALES_BY_PRODUCT
BUILD IMMEDIATE REFRESH ON COMMIT
ENABLE QUERY REWRITE AS
SELECT PROD_ID, SUM(AMOUNT_SOLD) AS AMOUNT_SOLD FROM SH._SALES
GROUP BY PROD_ID;
3. Analyze the materialized view to let the optimizer use it if needed:
EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MV_SALES_ BY_PRODUCT",
estimate_percent => 100, method_opt => "for all columns size 1%);
4. Execute the same query as mentioned in step 1:
SET AUTOTRACE ON
SET TIMING ON
SELECT PROD_ID, SUM(AMOUNT_SOLD) FROM SH.SALES GROUP BY PROD_ID;
SET TIMING OFF
SET AUTOTRACE OFF

Review the results.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The execution plan and statistics of the first query execution are as shown in the following
screenshot:

2c2-46-51-176-114.eu-west-L.compute amazenaws.com - PuTTY |ﬂ‘—§:—3‘-]

We can see that in the execution plan, there is full table access to the SALES table examining
918K rows and reading 8075 KB. In the statistics, we can see that there are 41549 physical

reads with 41622 consistent gets, because the data wasn't in the buffer cache before the
execution of the query.

The following is the execution plan and statistics for the last query using the materialized view:

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

In this case we can see that, even when we have submitted the same query to the database,
our query was rewritten to use the materialized view MV_SALES_BY_PRODUCT. This behavior
is due to the ENABLE QUERY REWRITE clause in the CREATE MATERIALIZED VIEW
statement executed in step 2.

The result is astonishing: the statistics tell us that there are only 8 consistent gets to
achieve the same result. The absence of physical read is due to the fact that the rows of
the materialized view are already in the buffer cache from the previous statements.
However, from the execution plan, the number of rows processed is 72, and each row

is 648 bytes long. The following is the result of the query after flushing buffer cache:

In the latter case, we have 4047 consistent gets and 240 physical reads: there is a
difference of two orders of magnitude in the physical reads and an order of magnitude
in the consistent gets, resulting in a great performance improvement.

The developer may not know that a materialized view is active in the database; this behavior
is an interesting aspect of the materialized views. It is easy to identify queries that can benefit
from the introduction of a materialized view. The queries will benefit automatically, with the
new database object, without changing anything in the original query.

The magic behind this feature is the query rewrite mechanism. When a query is submitted,
the parser tries to identify if there is any materialized view that could answer the query,
reducing physical reads and response time. If such a materialized view is present, the query
is automatically rewritten using the materialized view instead of the base table(s), originally
involved. Later, if we drop the materialized view, the query is still functional, although slower
than before.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There's more...

Now that we have seen the potential of materialized views, let's take an in depth look at this
useful database object. We will also try to answer the frequently asked question "Can | use
materialized views in an OLTP environment?"

Materialized views in depth

We have seen how to write a statement for creating materialized views; there are many
options that can be used while creating a materialized view, such as the following:

>

The BUILD IMMEDIATE clause builds the materialized view immediately when
the command is executed. Instead if you use BUILD DEFERRED, the data in the
materialized view is populated in the next refresh operation.

The REFRESH ON COMMIT clause forces the database to refresh data in the
materialized view, when a change is committed to one of the base tables. This
type of a refresh is FAST (incremental).

We can also use the REFRESH ON DEMAND clause to instruct the database to
refresh the materialized view. Using this command, data is refreshed only when
we want—using the DBMS_MVIEW refresh procedures.

Using the START WITH and NEXT clauses, we can specify when to start the automatic
refresh operations and the interval between consecutive refreshes, respectively.

We can query the DBA_MVIEWS dynamic performance view, to obtain details
about all the materialized views available in the database, or the corresponding
USER_MVIEWS and ALL_MVIEWS to restrict the results to the materialized views
the current user owns or can access. These views contain the materialized view
statement and the implementation details.

Materialized views and grants
To create a materialized view there are a few required privileges:

>

>

>

>

CREATE SESSION

CREATE TABLE

CREATE MATERIALIZED VIEW
QUERY REWRITE

QUERY REWRITE has to be granted directly to the user who will use the materialized view,
not granted to a user through a role.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

Database parameters to use query rewrite
To use the query rewrite mechanism, two parameters have to be set in the initialization file or

server parameter file. Decide whether to enable it for all sessions, or to enable it for a specific
session only. In the latter case, use the ALTER SESSION statement. The two parameters are:

» QUERY_REWRITE_ENABLE=TRUE
» QUERY_REWRITE_INTEGRITY

The value for the parameter QUERY_REWRITE_INTEGRITY can be set to one of the following
three values, depending on how the query is to be rewritten:

» ENFORCED: When this parameter is set to ENFORCED, the database guarantees
consistency and integrity of the data.

» TRUSTED: When this parameter is set to TRUSTED, the database can rewrite
queries using declared relationships that are not enforced by the database itself.
The optimizer trusts that the relationships are correct, so it uses declared but not
ENABLED VALIDATED primary or unique key constraints.

» STALE_TOLERATED: When the parameter is set to STALE_TOLERATED, the queries
can be rewritten even if the used relationships are not declared nor enforced by the
database, in the presence of data in the materialized views known to be inconsistent
with the data in the base table(s).

The last value for the parameter QUERY_REWRITE_INTEGRITY is often used when the
materialized views are not refreshed on commit, but on a recurring basis. This is done
during off-peak periods. The data is updated to the last refresh of the materialized view,
if we are not interested in up-to-date data.

The same parameters have to be enabled to use another functionality, function-based indexes.

The default values for these initialization parameters are ENFORCED for QUERY_REWRITE_
INTEGRITY and TRUE for QUERY_REWRITE_ENABLE.

Can | use materialized views in an OLTP environment?

Materialized views were definitely created to help data warehouse queries achieve better
performance, and for pre-calculating values to use later.

Surely, if we create a REFRESH ON COMMIT materialized view based on a table involved in
OLTP, we might experience very poor performance in our OLTP environment. This is because
data in the materialized view is updated for every transaction committed to the underlying
tables—the operation is executed during the commit phase—meaning longer execution time,
which is unacceptable for OLTP environments.

For example, materialized views can be used in such environments with the REFRESH ON
DEMAND clause and execute the FULL refreshes during off-peak hours.

7]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If we have many reports in the OLTP application, it wouldn't matter if reports were from the
previous day's data. Against this limitation, which in many cases can be acceptable, the
performance gain in the report preparation is often significant.

Optimizing performance with schema

denormalization

In this recipe, we will see how schema denormalization can help improve database
performance, and what should be done before executing this operation.

Getting ready

We will implement a database schema representing a group of friends and their phone
numbers. The following are the requirements for the database:

» For each friend, we want to store the name, surname, and gender

» Each friend may have multiple phone numbers

» For each phone number, we want to know its type of usage (home, work, mobile,
and so on)

» A phone number can be shared by more than one friend, for example, Mrs. and Mr.
Smith will share the same home number—at least until they get divorced

» For each phone number we want to store, we need to know its availability, that is,
working hours, evening, afternoon, weekend only, and so on

The following is the logic schema that we will implement to satisfy the requirements
mentioned earlier:

Friend
PK | id
Friend_Phone
firstname P
lastname PK,FK1 |friendid
gender PK,FK2 | phoneid
Phone
PK |id
FK2| phonekindid
FK1 | availabilityid
phonenumber
Availability PhoneKind
PK |id PK | id
whenavailable description

(71}

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

How to do it...

The following steps will demonstrate schema denormalization:

1.

Launch SQL*Plus and create the schema corresponding to the logical schema shown
in the earlier diagram:

CONNECT sh@TESTDB/sh

CREATE TABLE FRIEND (

ID NUMBER NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR2(30) NOT NULL,
LASTNAME VARCHAR2(30) NOT NULL,
GENDER CHAR);

CREATE TABLE PHONEKIND (
ID NUMBER NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR2(20) NOT NULL);

CREATE TABLE AVAILABILITY (
ID NUMBER NOT NULL PRIMARY KEY,
WHENAVAILABLE VARCHAR2(30) NOT NULL);

CREATE TABLE PHONE (

ID NUMBER NOT NULL PRIMARY KEY,

PHONEKINDID NUMBER NOT NULL REFERENCES PHONEKIND(ID),
AVAILABILITYID NUMBER REFERENCES AVAILABILITY(ID),
PHONENUMBER VARCHAR2(20) NOT NULL);

CREATE TABLE FRIEND_PHONE (

FRIENDID NUMBER NOT NULL REFERENCES FRIEND(ID),

PHONEID NUMBER NOT NULL REFERENCES PHONE(ID),

CONSTRAINT PK_FRIEND_PHONE PRIMARY KEY (FRIENDID, PHONEID));

Populate the schema with some data, for example, the following values:
INSERT /*+APPEND */ INTO FRIEND (1D, FIRSTNAME, LASTNAME, GENDER)

SELECT CUST_ID, CUST_FIRST_NAME, CUST_LAST NAME, CUST_ GENDER
FROM SH.CUSTOMERS;

INSERT INTO PHONEKIND(ID, DESCRIPTION) VALUES (O, "HOME®);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

INSERT INTO PHONEKIND(ID, DESCRIPTION) VALUES (1, "BUSINESS®);
INSERT INTO PHONEKIND(ID, DESCRIPTION) VALUES (2, “"MOBILE-HOME®);

INSERT INTO PHONEKIND(ID, DESCRIPTION) VALUES (3,
"MOBILE-BUSINESS*®);

INSERT INTO PHONEKIND(ID, DESCRIPTION) VALUES (4, "OTHER®);

INSERT INTO AVAILABILITY(ID, WHENAVAILABLE) VALUES (0, “ALWAYS®);

INSERT INTO AVAILABILITY(ID, WHENAVAILABLE) VALUES (1,
"WORK-HOURS™) ;

INSERT INTO AVAILABILITY(ID, WHENAVAILABLE) VALUES (2,
"AFTERNOON™);

INSERT INTO AVAILABILITY(ID, WHENAVAILABLE) VALUES (3, "EVENING®);

INSERT /*+APPEND */ INTO PHONE (1D, PHONEKINDID, AVAILABILITYID,
PHONENUMBER)

SELECT ROWNUM, MOD(ROWNUM, 5), MOD(ROWNUM, 4),
CUST_MAIN_PHONE_NUMBER FROM SH.CUSTOMERS ORDER BY CUST_ID;

INSERT /*+APPEND */ INTO FRIEND_PHONE (FRIENDID, PHONEID)
SELECT CUST_ID, ROWNUM FROM SH.CUSTOMERS ORDER BY CUST_ID;
COMMIT;

Gather statistics related to the tables using the following statements:

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "FRIEND_PHONE",
estimate_percent => 100,
method_opt => "for all columns size 1%);

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "PHONE®",
estimate_percent => 100,
method_opt => "for all columns size 1%);

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", “AVAILABILITY",
estimate_percent => 100,
method_opt => "for all columns size 1%);

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "PHONEKIND",
estimate_percent => 100,
method_opt => "for all columns size 17%);

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "FRIEND",
estimate_percent => 100,
method_opt => "for all columns size 1%);

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

4. Empty the cache:
CONNECT /@TESTDB AS SYSDBA
ALTER SYSTEM FLUSH BUFFER_CACHE;
ALTER SYSTEM FLUSH SHARED_POOL;

5. Execute a query to retrieve the data (a simple list of friends with their phone

type/number/availability):

CONNECT sh@TESTDB/sh

SET AUTOTRACE TRACEONLY

SELECT F.FIRSTNAME, F.LASTNAME, PK.DESCRIPTION AS PHONEKIND,
PA_WHENAVAILABLE AS AVAILABILITY, P.PHONENUMBER

FROM FRIEND F
INNER JOIN FRIEND_PHONE FP ON FP_FRIENDID = F.ID
INNER JOIN PHONE P ON P.ID = FP.PHONEID
INNER JOIN PHONEKIND PK ON PK.ID = P.PHONEKINDID
LEFT OUTER JOIN AVAILABILITY PA ON PA.ID = P_AVAILABILITYID
WHERE F.ID = 29912;

SET AUTOTRACE OFF

6. Denormalization, alter the database schema, adjust the data, and gather
statistics again:

ALTER TABLE PHONE ADD PHONEKIND VARCHAR2(20);
ALTER TABLE PHONE ADD AVAILABILITY VARCHAR2(30);

UPDATE PHONE SET PHONEKIND = (SELECT DESCRIPTION FROM PHONEKIND
WHERE PHONEKIND.ID = PHONE.PHONEKINDID);

UPDATE PHONE SET AVAILABILITY = (SELECT WHENAVAILABLE
FROM AVAILABILITY WHERE AVAILABILITY.ID = PHONE.AVAILABILITYID);

COMMIT;
ALTER TABLE PHONE SET UNUSED COLUMN PHONEKINDID;
ALTER TABLE PHONE SET UNUSED COLUMN AVAILABILITYID;
ALTER TABLE PHONE DROP UNUSED COLUMNS;
EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "FRIEND",
estimate_percent => 100,
method_opt => "for all columns size 1%);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

7. Empty the cache once more:
CONNECT /@TESTDB AS SYSDBA
ALTER SYSTEM FLUSH BUFFER_CACHE;
ALTER SYSTEM FLUSH SHARED_POOL;

8. Execute the same query as mentioned in step 5:

CONNECT sh@TESTDB/sh

SET AUTOTRACE TRACEONLY

SELECT F.FIRSTNAME, F.LASTNAME, P.PHONEKIND, P.AVAILABILITY,
P . PHONENUMBER

FROM FRIEND F
INNER JOIN FRIEND_PHONE FP ON FP_FRIENDID = F.ID
INNER JOIN PHONE P ON P.ID = FP.PHONEID
WHERE F.ID = 29912;

SET AUTOTRACE OFF

9. Drop the schema:

DROP TABLE FRIEND_PHONE;
DROP TABLE PHONE;

DROP TABLE AVAILABILITY;
DROP TABLE PHONEKIND;
DROP TABLE FRIEND;

In the example, we first created a small database schema, based on the logical schema
presented in the Getting ready section of this recipe, which is in 3NF, and then we populated
it with some data.

Moving on, in step 3, we gathered statistics on the newly created objects and in step 4,
we cleared the buffers and cache.

(75}

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

In step 5, we executed a simple query against this schema, to retrieve the data of a single
friend (a common query for OLTP environments). We get the following output upon execution
of this query:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |£Iﬁj

W ot W RO

("R
("PE"

Observe the following statistics:

<
ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY | = | B |

In step 6, we have restructured the schema applying denormalization, then we integrated
in Phone table attributes from the lookup tables Avai labi lity and Phonekind, and
re-analyzed the table to reflect the changes in the statistics.

In step 7, we cleared the cache; the operation is pointless as we have changed the schema,
so the entries in the library and buffer cache are not usable. Then in step 8 we executed a
query logically equivalent to the previous one, obtaining the following output:

7]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i"]

Observe the statistics, and you will notice that we have reduced the number of recursive
calls, consistent gets, and the number of the nested loops in the execution plan, the number
of sorts has also reduced after denormalization.

1
‘Q In step 8, we dropped the objects created in this recipe

so that the SH schema is in its initial state.

However, there is no such thing as a free lunch, we have introduced redundancy. If the

attributes in the lookup tables—which we have migrated in Phone table—change often,

to update a single row in the normalized schema, we have to reflect the same update in
thousands of records in the denormalized one.

The "rule of thumb", in this case, is to avoid denormalization, when the data is updated
often—very common in OLTP environments. We can think about denormalization, when the
data is almost fixed over a period of time, for example, to minimize the number of joins, as
illustrated in this recipe.

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

There's more...

In relational database theory, normalization is a mandatory step, in order to minimize
redundancy and avoid several anomalies, such as update and insertion and deletion. The
advantage of a normalized database, is its general-purpose structure, that is, on a normalized
table we can execute any type of query—even those that are least expected at the time of
database design.

Several Normal Forms (NF) are defined in relational database theory. Identified by a number and
the abbreviation NF, the normal forms with higher numbers are less exposed to anomalies.

The first three Normal Forms were developed by E. F. Codd, and often we say that a table is
"normalized" when it is in 3NF, that is, when the following rules are met:

» There are no multi-value attributes

» There are no non-prime attributes, functionally dependent on a subset of a
candidate key

» There are no non-prime attributes, transitively dependent on a candidate key

M A candidate key is a minimal set of attributes such that there are no two
Q distinct tuples with the same value for the candidate key attributes and there
is no subset of the candidate key for which the preceding statement is true.

Although a 3NF table can be queried easily in many ways, there can be performance issues
even when we use a highly normalized database, which is theoretically very well designed but
is not practical to use and even worse, it can lead to poor performance.

We can apply denormalization even when creating materialized views with refresh on demand,
and take advantage of normalization with no extra cost in OLTP performance.

Not 1NF structures

With Oracle databases we can have tables that don't follow the 1NF, also called ONF. These
tables use nested tables or varray fields to store information, which are multi-value
attributes, for example, a table similar to the following;:

CREATE OR REPLACE TYPE PHONE AS OBJECT (

PHONEKIND VARCHAR2(20),

AVAILABILITY VARCHAR2(30),

PHONENUMBER VARCHAR2(20));

/

CREATE OR REPLACE TYPE TAB_PHONES AS TABLE OF PHONE;

/

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

CREATE TABLE FRIEND_ONF (

ID NUMBER NOT NULL PRIMARY KEY,

FIRSTNAME VARCHAR2(30) NOT NULL,

LASTNAME VARCHAR2(30) NOT NULL,

PHONES TAB_PHONES)

NESTED TABLE PHONES STORE AS FRIEND_PHONES;

In this example, we have created a table which stores an unlimited number of phone numbers
for every friend in the table. Structures like this are to be used only when we don't query

details in the nested table alone. Otherwise, we will spend a lot of time in un-nesting and
nesting the table, which isn't good from a performance point of view.

Avoiding dynamic SQL

The title of this recipe should be extended to say "... when you can do your stuff without using
it". In this recipe, we will see when and how to use dynamic SQL.

Dynamic SQL is the only choice when:

» We want to execute DDL statements in our application.

» We have to code different queries depending on user input, for example, a search
form with different search criteria that the user can choose from. This leads to
different predicates in the WHERE clause.

» We want to code generic procedures, which can act on any table, for example, a
generic "print" procedure, which shows the content of a table in a certain format.

For each of these situations, there are drawbacks to be taken care of.

How to do it...

To execute DDL statements in our application, we cannot use static SQL inside PL/SQL code.
So, if we want to grant the RESOURCE role to the user SH, we have to do something similar to
the following:
BEGIN

EXECUTE IMMEDIATE “GRANT RESOURCE TO SH*®
END;

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

To search the EMPLOYEES table of the schema HR by FIRST_NAME or LAST_NAME field,
we can write the following procedure:

CONNECT hr@TESTDB/hr
CREATE OR REPLACE PACKAGE DYNAMICSQL AS
TYPE T_REFCURSOR IS REF CURSOR;
PROCEDURE SEARCH_EMPLOYEES(
FIRST_NAME IN EMPLOYEES.FIRST_NAME%TYPE,
LAST_NAME IN EMPLOYEES.LAST_NAME%TYPE,
SEARCH_CURSOR OUT T_REFCURSOR);
END;
/
CREATE OR REPLACE PACKAGE BODY DYNAMICSQL AS
PROCEDURE SEARCH_EMPLOYEES(
FIRST_NAME IN EMPLOYEES.FIRST_NAME%TYPE,
LAST_NAME IN EMPLOYEES.LAST_NAME%TYPE,
SEARCH_CURSOR OUT T_REFCURSOR) IS
stmt VARCHAR2(4000);
bindvar varchar2(100);
BEGIN
stmt := "SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMPLOYEES*®;
bindvar := NULL;
IF (FIRST_NAME IS NOT NULL) THEN
stmt := stmt || " WHERE FIRST_NAME LIKE :B ORDER BY
FIRST_NAME";
ELSIF (LAST_NAME 1S NOT NULL) THEN
stmt := stmt || " WHERE LAST_NAME LIKE :B ORDER BY
LAST_NAME*";
ELSE
raise_application_error(-20001, "No values for
FirstName/LastName");
END IF;
bindvar = "%";
OPEN SEARCH_CURSOR FOR stmt USING bindvar;
END;
END;
/

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Static SQL is a common way in which SQL code is inserted in applications. The static SQL
statements are hardcoded in application sources. Dynamic SQL, instead, is evaluated at
runtime and then executed; this is the default behavior of many APIs, such as JDBC and
ODBC. Static SQL is the natural choice for pre-compiler-based environments, such as
PRO*COBOL and PRO*C.

In PL/SQL, we have both static and dynamic SQL. We are forced to use Dynamic SQL when
we are in one of the situations listed in the previous section, because there isn't any feature
to use with static SQL to meet those requirements.

In situations other than those listed earlier, the use of dynamic SQL can lead to unnecessary
parsing and poor performance.

In this recipe, we are discussing performance-related issues
related to the use of dynamic SQL in Oracle databases. We aren't
’ considering security flaws, such as SQL injection and others.

There's more...

Dynamic SQL is a powerful feature of the database but it should be used carefully.

When we execute Native Dynamic SQL (NDS), we are forcing a soft parse to occur, if the
statement executed is equal to the previous statement, the parse phase is skipped. To
avoid this drawback, we can use the DBMS_SQL package (its use is beyond the scope of this
book), with which we can control which cursor we want to reuse to avoid reparsing the same
statement over and over.

Even when we use dynamic SQL, we can use bind variables and we have to use them if we
want to obtain good performance. Often developers, who write dynamic SQL, append the
actual values within the query statement as literals. We have seen this in the A working
example recipe in Chapter 1, not using bind variables led to poor performance, and we will
investigate this further in Using bind variables in Chapter 4.

Obviously, there are elements that cannot bind, for example, table and column names cannot,
as actual values have to be there when the parser analyses the statement to generate the
execution plan. Besides parsing and the bind variables, there are other things to be cautious
about when using dynamic SQL in PL/SQL:

» The code is more prone to bugs

» The database can't check dependencies for dynamic SQL

» Tuning a dynamic SQL procedure can be difficult

Let's explore these issues.

[Ei}-

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Application Design

The code is more easily broken when we use dynamic SQL because the statements that our
application will generate at runtime are unknown. There could be a case that we have not
foreseen, which generates an error—often a syntactically wrong SQL statement to be exact.
It could take long to test every SQL statement generated by our procedures.

When we submit a stored procedure to the database, there is a compilation phase that not
only ensures that the syntax is correct and but also stores the dependencies of the stored
procedure in the data dictionary. If we are referencing the table EMPLOYEES in the static SQL,
the database knows it and stores this information to invalidate the procedure if there is a
change made to the referenced object, for example, an ALTER TABLE, forcing the procedure
to be recompiled the next time it's invoked.

The data dictionary is a read-only set of tables that provides
M administrative metadata about the database; it contains
Q the definitions of every schema object, the amount of space
allocated, the name of users and the privileges and roles granted
to them. Auditing information is also stored in the data dictionary.

With dynamic SQL, the database engine cannot anticipate which objects will be referenced
by the stored procedure, so these objects won't be stored in the data dictionary among the
dependencies of the stored procedure. If there is a change affecting the object—even if itis a
DROP TABLE—the database cannot force the procedure to be recompiled, because it doesn't
know that there is a relationship between the object and the procedure.

Moreover, when we use dynamic SQL in a stored procedure, tuning the procedure can be a
nightmare. If someone has coded a procedure similar to the example presented earlier, to
search for the EMPLOYEES table, there may be situations where the search does not perform
as expected, but by analyzing the code we cannot clearly point at the cause of slowdown,
because the actual query is built at runtime.

See also

» A working example in Chapter 1, Starting with Performance Tuning
» Using bind variables in Chapter 4, Optimizing SQL Code

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage
Structures

In this chapter, we will cover:

» Avoiding row chaining

» Avoiding row migration

» Using LOBs

» Using index clusters

» Using hash clusters

» Indexing the correct way
» Rebuilding index

» Compressing indexes

» Using reverse key indexes
» Using bitmap indexes

» Migrating to index organized tables

» Using partitioning

Introduction

In the previous chapter, we saw how to design an application which performs well (or has
less chance to perform badly) by applying some simple rules of thumb, namely, connection
management, reusable code, reducing requests to the database, schema denormalization,
and the use of dynamic SQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

In this chapter, we will look at some structures available in Oracle databases that store
data and improve the access time—that is, the time needed to retrieve data—when the
data is queried.

The first recipes relate to tables—the most used storage structure—with useful tips to avoid
bottlenecks related to data stored in tables.

We will then move on to indexes (and inspect different index flavors). At the end of the chapter,
we will finally see recipes related to index organized tables and partitioning options. Choosing

the right structure to store data can drastically improve the performance of applications; using
the right index can speed up our queries, as can introducing drawbacks in insert, update, and

delete operations. As always, the performance tuning process aims to balance different needs
to obtain the maximum average speed in the different operations involving the database.

Avoiding row chaining

We encounter row chaining when the size of the row data is larger than the size of the database
block used to store it. In this situation, the row is split across more than one database block, so,
to read it we need to access more than one database block, resulting in greater 1/0.

Getting ready

Before we can start, we have to alter an initialization parameter of the test database
(assuming the default block size is 8KB in the test database):

ALTER SYSTEM SET db_16k_cache_size = 16m scope=both;

We need to set this parameter to allocate a memory buffer dedicated to storing database
blocks of a different size; in this recipe, we will create a tablespace using a 16KB block size,
so we need the corresponding buffer allocated to use it.

How to do it...

In this recipe, we will examine how to detect row chaining issues, and how to avoid chaining in
our tables. Follow these steps:

1. Connect to the HR schema:
CONNECT hr@TESTDB/hr

2. Create the table BIG_ROWS:
CREATE TABLE HR.BIG_ROWS (
id number NOT NULL,
fieldl char(2000) DEFAULT "A®" NOT NULL,
field2 char(2000) DEFAULT "B" NOT NULL,

=0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

field3 char(2000) DEFAULT "C®" NOT NULL,

field4 char(2000) DEFAULT "D NOT NULL,

field5 char(2000) DEFAULT "E®" NOT NULL,

constraint PK_BIG_ROWS primary key (ID))
TABLESPACE EXAMPLE;

3. Populate the table:
INSERT INTO HR.BIG_ROWS (id)
select rownum from all_objects where rownum < 101;

4. Analyze the table to refresh the statistics:
ANALYZE TABLE HR.BIG_ROWS COMPUTE STATISTICS;

5. Verify if there are chained rows:
SELECT CHAIN_CNT FROM ALL_TABLES
WHERE OWNER = <HR> AND TABLE_NAME = <BIG_ROWS>;

6. Inthe next screenshot, we can see the results of these operations:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

COMPUTE STATISTICS:

IN CNT FROM ALL TABLE 'HR' AND TABLE NAME

7. Create a tablespace with a different block size:
CREATE TABLESPACE TS_16K BLOCKSIZE 16K DATAFILE "TS_16K._DBF*
SIZE 10M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;

(]

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

8. Move the table BIG_ROWS to the tablespace just created:
ALTER TABLE HR.BIG_ROWS MOVE TABLESPACE TS_16K;

9. Rebuild the indexes, as they are unusable after the move:

10.

11.

ALTER INDEX HR.PK_BIG_ROWS REBUILD;

Analyze the table to refresh the statistics:

ANALYZE TABLE HR.BIG_ROWS COMPUTE STATISTICS;

Verify if there are chained rows.
SELECT CHAIN_CNT FROM ALL_TABLES

WHERE OWNER = <HR> AND TABLE_NAME = <BIG_ROWS>;

12. In the next screenshot, we can see the results of these operations:

13.

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

DATAFILE 'T5 1

TAELE NRME = 'B

Drop the tablespace and the table:
DROP TABLESPACE TS_16K INCLUDING CONTENTS

AND DATAFILES;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We have created the table BIG_ROWS in which row length is greater than 8 Kbytes, the DB
block size value for the tablespace EXAMPLE of TESTDB.

We have populated this table with 100 rows, and after analyzing the table we know that
there are 100 chained rows. A chained row is a row which cannot fit into one DB block,
due to its size (when inserted or updated). So the database engine stores the initial part
of the row in a DB block, which is chained to another DB block where the remaining part
of the row content is stored.

To avoid chained rows, we can move the table to a tablespace with a greater DB block size;
we have created the tablespace TS 16K with a block size of 16K, greater than the average
row length of the BIG_ROWS table.

We have moved the BIG_ROWS table to the newly created tablespace and rebuilt the
primary key index—which is marked unusable after the move. We then analyzed the
table again to refresh the statistics.

After the move, the chained rows have disappeared from the BIG_ROWS table.

There's more...

We can use different block sizes in the Oracle database, but every tablespace can have only
one block size. Before adding a tablespace with a different DB block size, we have to make
room in the database buffer cache to store DB blocks of every size, as we have done in the
Getting ready section of this recipe.

As stated earlier, row chaining occurs when the database block size isn't big enough to store
a row entirely. In such cases, the only solution to avoid row chaining is to move the table to a
tablespace with a bigger DB block size, as we have done.

After moving the table, we had to rebuild the index. Why?

. The answer is simple. An index contains the ROWIDs of the table
% rows, and the ROWIDs identify the position of the row, madeup
- by the object, the datafile, the block number, and the slot (row)
number. When we move a table, the datafile and the block number
change, so the indexes have to be rebuilt.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

There are some considerations to be taken care of, however; when having tablespaces with
different DB block sizes in the database—as we have seen— we have to reserve space in the
database buffer for a different DB block size, and the memory reserved to a particular block
size cannot be used for caching database blocks of a different size. This situation led to a
possible waste of memory. For example, we have 512 MB reserved for db_16k_cache_size
unused, because we have few objects stored with this database block size, and the db_8k_
cache_size is fully utilized. Tuning the buffer cache can become a nightmare in such an
environment. Why? Because we need to identify the specific requirements for each database
block size used in the database and to optimize the corresponding buffer size.

Row chaining causes poor performance because accessing a row in the database has to read
more than one DB block, even when we access the table by an index lookup. When we plan to
introduce different block sizes in the database, we have to keep in mind the pros and cons of
a larger block size. The larger the block size, the more likely there will be contention issues on
the database block.

There are also advantages in using multiple block sizes, which are as follows:

>

Contention reduction: small rows in a large block perform worse under heavy DML
than large rows in a small block size.

Reduced row chaining: placing large object rows (BLOB, CLOB) into a tablespace
with a larger block size can greatly reduce row chaining and improve 1/0.

Faster updates: heavy insert/update tables can see faster performance when
segregated into another block size, which is mapped to a small data buffer cache.
Smaller data buffer caches often see faster throughput performance.

Reduced Pinging: RAC can perform far faster with a 2K block size, greatly reducing
cache fusion overhead.

Less disk space waste: when using Oracle 11g advanced compression, testing
shows that a 32k block size is the best choice to maximize compression and
minimize waste.

Less RAM waste: moving random access small row tables to a smaller block size
(with a corresponding small block size buffer) will reduce buffer waste and improve
the chances of the other data blocks remaining in the cache.

Minimize redo generation: some experts recommend a 2K block size for bitmap
indexes, to minimize redo generation during bitmap index rebuilds.

Faster scans: tables and indexes that require full scans can see faster performance
when placed in a large block size.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

>

The Avoiding Full Table Scan recipe in Chapter 4, Optimizing SQL Code and
Tuning the buffer cache in Chapter 9, Tuning Memory

Avoiding row migration

When we update a row and it does not fit entirely within the original database block due to
the corresponding growth in size, we have a row migration. In the original place (where the
row was stored) we have placed a pointer to the new location of the row.

How to do it...

In this recipe, we will see how to detect row migration issues, and how to avoid migrating
rows in our tables. Follow these steps:

1.

Connect to HR schema:
CONNECT hr@TESTDB/hr
Create the table BIG_ROWS:
CREATE TABLE HR.BIG_ROWS (
id number NOT NULL,
fieldl char(2000) DEFAULT "A®" NOT NULL,
field2 char(2000),
field3 char(2000),
field4 char(1000),
constraint PK_BIG_ROWS primary key (ID))
TABLESPACE EXAMPLE PCTFREE 10;

Populate the table:
INSERT INTO HR.BIG_ROWS (id)
select rownum from all_objects where rownum < 101;

Analyze the table to refresh the statistics:
ANALYZE TABLE HR.BIG_ROWS COMPUTE STATISTICS;

Verify if there are migrated rows:
SELECT CHAIN_CNT FROM ALL_TABLES
WHERE OWNER = <HR> AND TABLE_NAME = <BIG_ROWS>;3

(]

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

6. Inthe next screenshot, we can see the results of these operations:

S
ec2-46-51-176-114.eu-west- Loompute.amazonaws.com - PuTTY |ﬂlﬁj

DEFAULT 'A' NOT NULL,

where rownum <

"HR' AND TABLE NAME = 'B

~

Update some data in the table:
UPDATE HR.BIG_ROWS SET field2
field3 = <C>, field4 = <D>

WHERE MOD(id, 2) = 1;

B",

8. Analyze the table to refresh the statistics:
ANALYZE TABLE HR._BIG_ROWS COMPUTE STATISTICS;

©

Verify if there are migrated rows:
SELECT CHAIN_CNT FROM ALL_TABLES
WHERE OWNER = <HR> AND TABLE_NAME = <BIG_ROWS>;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

10. Create table CHAINED_ROWS:
create table HR.CHAINED_ROWS (

owner_name varchar2(30),
table_name varchar2(30),
cluster_name varchar2(30),
partition_name varchar2(30),
subpartition_name varchar2(30),
head_rowid rowid,
analyze_timestamp date
)

11. Analyze the table to list the migrated rows:
ANALYZE TABLE HR.BIG_ROWS LIST CHAINED ROWS
INTO HR.CHAINED_ROWS;

12. Count (or list) the migrated rows:
SELECT COUNT(*) FROM HR._CHAINED_ROWS;

13. In the next screenshot, we can see the results of these operations:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |ﬂlﬁj

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

14. Create a temporary table, which is an empty copy of BIG_ROWS:
CREATE.5* FROM HR.BIG_ROWS WHERE 1=0;
15. Copy the migrated rows to the temporary table:
INSERT INTO TEMP_BIG_ROWS
SELECT B.* FROM HR.BIG_ROWS B, HR.CHAINED_ROWS T
WHERE T.OWNER_NAME = <HR> AND T.TABLE_NAME <B1G_ROWS>
AND T.HEAD_ROWID = B.ROWID;

16. Delete the migrated rows from the BIG_ROWS table:
DELETE FROM HR_.BIG_ROWS B WHERE EXISTS (
SELECT T_.ROWID FROM HR.CHAINED_ROWS T
WHERE T.OWNER_NAME = <HR> AND T.TABLE_NAME

AND T._.HEAD_ROWID = B_.ROWID);

<BIG_ROWS>

17. Copy the migrated rows from the temporary table back to the BIG_ROWS table:
INSERT INTO HR.BIG_ROWS SELECT * FROM HR.TEMP_BIG_ROWS;

18. Analyze the table to refresh the statistics:
ANALYZE TABLE HR._BIG_ROWS COMPUTE STATISTICS;

19. Verify if there are migrated rows:
SELECT CHAIN_CNT FROM ALL_TABLES WHERE OWNER = "HR-
AND TABLE_NAME = <BIG_ROWS>;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

20. In the next screenshot, we can see the results of these operations:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

COMPUTE STATIS

21. Drop the tables used for testing;:
DROP TABLE HR.TEMP_BIG_ROWS;
DROP TABLE HR.CHAINED_ROWS;
DROP TABLE HR.BIG_ROWS;

Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

We have created the table BIG_ROWS in which row length is smaller than 8 KB, the DB block
size value for the tablespace example of TESTDB, but whose length can grow from 2 to 7 KB
depending on whether FIELD2, FIELD3, and FIELD4 are null or not.

The size in the previous example is calculated for single-byte

charactersets; if we use multi-byte charactersets the space
’ needed by a single character is more than 1 byte.

We have populated this table with 100 rows keeping the latter fields null. After analyzing the
table, we know that there aren't any chained/migrated rows.

A migrated row occurs when a row is updated but does not fit into the original DB block, due
to its new size. Thus, the database engine stores a pointer in the original position of the row,
which points to the new position of the row (hence "migrated").

Using the pointer allows us to avoid invalidating the indexes, because the original ROWID
is kept. The database stores the row header in the original place, pointing to the new block
where the row is entirely stored.

To prevent row migration, we have to set a higher value for the table PCTFREE storage
parameters, to allow more space in the block, which is free for subsequent updates of
the rows.

In the example, the table has a value of PCTFREE set to 10, meaning that the database
will keep 10 percent of the DB block free to allow row growth due to subsequent updates.

To solve the migrated row issue once it's in place, we have to list the migrated rows in a
(temporary) table, delete them from the original place, disable foreign key constraints and
triggers if they exist, to avoid violating them, and insert them back from the temporary table
to the original table. This is what we have done in the last part of the example, verifying that
after such a move row migration has disappeared.

There's more...

Row migration, similar to row chaining, causes poor performance because the database
engine must read more than one block in order to access to the row data.

The biggest difference between row chaining and row migration is that row chaining highlights
a bad row design or a small DB block size, while row migration indicates that a very small
PCTFREE parameter has been used for a table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We have also seen how to list all migrated rows in a (temporary) table with the ANALYZE
TABLE.. LIST CHAINED ROWS INTO.. command. The script to create a CHAINED_ROWS
table is located at $ORACLE_HOME/rdbms/admin/utlchain._sql.

There are two other methods to resolve row migration: performing an ALTER TABLE MOVE,
or using EXPORT/ IMPORT procedures to dump and reload the data into the table.

Estimating table size with different PCTFREE parameter

Often the value of PCTFREE is set very low to avoid wasting space, this is not a wise strategy,
unless we are talking about insert-only tables, for example, something similar to an audit trail,
where we can use a PCTFREE O parameter.

To estimate the size of a table using different values for the PCTFREE parameter, we can use
the CREATE_TABLE_COST of the DBMS_SPACE package:

SET SERVEROUTPUT ON
declare
1_used_bytes number;
I_alloc_bytes number;
begin
dbms_space.create_table_cost (
tablespace_name => "EXAMPLE",
avg_row_size => 4500,
row_count => 100,
pct_free => 10,
used_bytes => 1 _used_bytes,
alloc_bytes => I_alloc_bytes
)
dbms_output._put_line("Used Bytes: "||l_used_bytes);
dbms_output._put_line("Allocated Bytes: "||l1_alloc_bytes);
end;

/

In this procedure, we have set the tablespace to use the average row size and the row count,
we can try different pct_free parameters to estimate the space needed by the table, both
allocated and used.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

In the next screenshot, we can see the calculated Used and Allocated bytes:

-
ec2-46-51-176-114 eu-west-Lcompute.amazonaws.com - PuTTY | =NNCIN X

We can experiment with different input values for the previous procedure, obtaining what will be
the wasted space in our table using a different PCT_FREE parameter in the storage options.

Using LOBs

LOBs (Large OBjects) are a particular data type, used to store large binary or character
objects inside the database or outside the database when using BFILEs. In this recipe, we
will see how to use LOB fields to avoid performance degradation and space wasting.

Getting ready

The following steps have to be performed initially;

1. Connect to the database as SYSDBA:
CONNECT /@TESTDB AS SYSDBA

2. Grant the following permission to user SH:
GRANT CREATE ANY DIRECTORY TO SH;

3. Create a tablespace for LOBs:

CREATE TABLESPACE ASSM_TS DATAFILE "ASSM_TS_DBF®" SI1ZE 100M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

In this recipe, we will see how to use LOB felds to avoid performance degradation and space
wasting. Follow these steps:

1.

Connect to the database as user SH:
CONNECT s.5h@TESTDB/sh

Create a table to do some tests copying the CUSTOMERS table and its contents:
CREATE TABLE MyCustomers AS SELECT * FROM Customers;

Add a BLOB field to the table:
ALTER TABLE MyCustomers ADD (c_file BLOB)
LoB(c_Ffile) STORE AS SECUREFILE (
tablespace ASSM_TS
enable storage in row
nocache logging

):

Create a reference to the $ORACLE_HOME/rdbms/admin folder (fill in the correct
path for your Oracle Database installation):
CREATE DIRECTORY TESTBLOB AS

</u0l1/app/oracle/product/11.2.0/db_1/rdbms/admin>;

Load the blob field with some data:

declare
I_file bfile;
1_blob blob;
I_size number;
begin
I_file := bfilename(<TESTBLOB>, <catalog.sql>);
dbms_lob.fileopen(l_file);
I_size := dbms_lob.getlength(l_File);
for J in 1 .. 100 loop

update MyCustomers SET c_file = empty_blob() where CUST_ID = J
returning c_file into 1_blob;

dbms_lob. loadfromfile(l_blob, 1_file, 1_size);
end loop;
commit;
dbms_lob.close(l_Tfile);
end;

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

6. Test the space occupied by the BLOB data; the DBMS_SPACE . SPACE_USAGE
procedure returns information about free data blocks in an object whose segment
space management is AUTO:

SET SERVEROUTPUT ON

declare
1_segment_name VARCHAR2(30);
1_segment_size_blocks NUMBER;
I_segment_size_bytes NUMBER;
1_used_blocks NUMBER;
1_used_bytes NUMBER;
I_expired_blocks NUMBER;
1_expired_bytes NUMBER;
I_unexpired_blocks NUMBER;
I_unexpired_bytes NUMBER;

begin

select segment_name into I_segment_name from user_lobs where
table_name = "MYCUSTOMERS";

DBMS_OUTPUT.put_line("segment name: " || l_segment_name);
DBMS_SPACE . SPACE_USAGE(

segment_owner => USER,

segment_name => l_segment_name,

segment_type => "LOB",

segment_size_blocks => 1_segment_size_blocks,
segment_size_bytes => l_segment_size_bytes,

used_blocks => |_used_blocks,
used_bytes => |_used_bytes,
expired_blocks => |_expired_blocks,
expired_bytes => |_expired_bytes,
unexpired_blocks => |_unexpired_blocks,
unexpired_bytes => |_unexpired_bytes);

DBMS_OUTPUT.put_line("used_blocks * || 1_used_blocks);
DBMS_OUTPUT.put_line("used_bytes " || 1_used_bytes);
end;

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

8. The results of this step are shown in the following screenshot:

ec2-46-31-176-114.eu-west-Lecompute.amazonaws.com - PUTTY

OUTEUT CN

E=E—

9. Deduplicate the blob field:

ALTER TABLE MyCustomers MODIFY LOB (c_file) (deduplicate);

10. Test the space occupied by the BLOB data as in step 6.

www.it-ebooks.info

[}

http://www.it-ebooks.info/

Optimizing Storage Structures

11. The results of this step are shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NACEL X

12. Compress the blob field:
ALTER TABLE MyCustomers MODIFY LOB (c_file) (compress high);

13. Test the space occupied by the BLOB data as in step 6.
14. The results of this step are shown in the next screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY | =NASN X

BLOB fields are used to store binary unstructured data, such as multimedia data, that is,
pictures, video, and audio. We have created a table MYCUSTOMERS with the data of the
CUSTOMERS table in schema SH, adding a new BLOB field, c_file, to store a binary file
with every customer.

We have instructed the database to store BLOB data inline with the row, in a newly created
tablespace ASSM_TS whose segment space is set to automatic management.

We have chosen to store the BLOB data as SECUREFILE, an option available from Oracle
Database 11gR1, which allows us to carry out subsequent steps to optimize BLOB storage.

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To populate the BLOB field, we have defined a DIRECTORY called TESTBLOB to refer to
the folder $ORACLE_HOME/rdbms/admin, and we have used a PL/SQL block to populate
the c_File field for the first 100 customers in the table, loading the same file in it—the
catalog.sql script, which is about 58 Kbytes.

To do so, we have used a simple sequence of operations: updating the row with an empty
blob—returned by the function empty_blob()—and using the procedure DBMS_LOB.
LOADFROMFILE to populate the newly created empty BLOB reference.

We have then used the procedure DBMS_SPACE . SPACE_USAGE to measure the used space
—expressed in database blocks and in bytes—in the segment where the LOB data is stored.

We have then modified the definition of the c_Fi le field, enabling deduplicating first—which
means that Oracle stores only one copy for the same BLOB content—and then compression.

After each of these steps, we have again measured the space used by the BLOB storage,
verifying a great decrease in occupation.

There's more...

In the example, there is an aspect related to the trivial nature of the test case: the content of
the BLOB field is populated with the data of a text file; in real-life databases, we chose another
data type to store text data, for example, VARCHAR, NVARCHAR, CLOB, and reserved BLOB
fields to store binary data.

In creating the c_Fi le BLOB field, we have the clause enable storage in row, which
means "store the data in the same DB block in which other fields of the row are stored". We
saw that the data are not actually stored in rows, because when the size of the BLOB field is
greater than 4000 bytes it is always stored off-line. The same behavior occurs when the DB
block size is large enough to accommodate the BLOB field.

We can even specify a CHUNK size when defining a BLOB field, which is an integer multiple

of DB_BLOCK_SIZE: when the database engine reads BLOB fields, it accesses the data in
pieces sized accordingly to the CHUNK parameter, and it's more efficient to read large chunks
of data than small.

Here is an example of defining a BLOB field with a specified CHUNK size:

ALTER TABLE MyCustomers ADD (c_file BLOB)
LOB(c_fFile) STORE AS SECUREFILE (
tablespace ASSM_TS
CHUNK 4096
enable storage in row
nocache

logging

101

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

The drawback of having a large CHUNK parameter occurs when we want to update the field,
because the database engine writes CHUNK sized pieces of data in redo logs and in undo
segments. The redo log files have block sizes equal to the physical sector size of the disk and
since the release of 11gR2 we can specify a size of 512, 1024, or 4096 bytes. To write a
chunk of 8192 bytes, for example, we need to write from 2 to 16 blocks in the redo log, so it's
more efficient to have smaller CHUNK(S) in this situation.

We have specified the use of LOGGING for BLOB data. Sometimes we hear of using

NOLOGG ING for BLOB fields because it's faster; the counterpart of using NOLOGGING is in
data availability. When we use LOGG ING we are sure that data is recoverable in case of some
database server failure or should the disk/tape or storage media fail. In using NOLOGG ING we
cannot recover changes from the redo log because the changes were never logged.

The use of SecureFile (s) allows us to apply some of the enhancements using BLOB fields;
in fact we can deduplicate the field, compress, encrypt, manage caching, and log.

When we create a BLOB field in Oracle Database 11gR2, by default we are
M using BasicFile, that is, the standard BLOB definition that was in use before.
Q We can change this behavior with ALTER SYSTEM SET db_securefile
= "FORCE", to have any BLOB field created by default as SecureFile; other
options are PERMITTED (the default), ALWAYS, NEVER, 1GNORE.

Deduplication consists of storing one copy of a BLOB field when the same content is shared
among different rows, thus reducing the space requirements. It's a good practice and useful
in situations where the content of BLOB fields experience limited cardinality or a broad
repetition of data.

. The cardinality is the number of elements in a set; low cardinality refers to
& columns with few unique values, such as the gender column in a customer
o table, while high cardinality refers to columns with values which are (almost)
unique, such as e-mail addresses or IDs.

The concept of data compression is easy to understand, compressing BLOB data reduces the
size. The compression, obviously, will produce the best effect when the binary data is not initially
compressed. In the example presented in this recipe, we have stored a text file, which is a very
good candidate for data compression. If we are storing images compressed by a third party tool
before being inserted into the DB in a BLOB field, compression will not offer great improvement
because the original format is already compressed. In these situations, when we know that the
content of a BLOB field will be a compressed format, it's better to disable the compression to
save CPU time. However, from Oracle database 11gR2, the SecureFiles Compression feature
automatically avoids compressing data that would not benefit from compression.

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The encryption of BLOB data is an important feature that allows us to encrypt data stored in
a particular BLOB field, for example, when we store an image diagnosis or digital documents
that must remain confidential. To encrypt data we will use transparent database encryption,
as for regular fields.

Caching LOB data in the database can be a nightmare, because this kind of data is usually
very large in size, so caching a single field may prove costly in terms of the database buffers
used to store the object. To accommodate enough space for a LOB—which ultimately won't be
used anymore—there will be many database blocks which were once cached and have now
been freed. For this reason, caching for LOB fields is often disabled, as we have done when
defining the c_fi le field.

The last aspect to take care of when defining BLOB fields is logging. The default behavior is
the same that is used for other data types, namely, full logging enabled. Due to the large size
of BLOB data, we could choose to bypass the logging mechanism for this kind of information,
using the NOLOGG ING parameters. In this case, however, we are not able to rely on database
read consistency, because the changes to the BLOB field were never logged.

With Oracle SecureFiles, we have a third choice for logging: we can use Filesystem_like_
logging, which will log the metadata information changes about the BLOB, but won't log the
data itself, providing a comfortable alternative.

Using index clusters

A cluster is a group of tables that share common columns and are stored in the same data
blocks; this organization is useful when we access this data using joins in queries.

How to do it...

In this recipe, we will see how and when to use index clusters, and some tricks to adopt when
using this kind of storage. Follow these steps:

1. Connect to the HR schema of TESTDB database:
CONNECT hr@TESTDB/hr

2. Create a cluster:
CREATE CLUSTER LOC_ENTRIES (COUNTRY_ID CHAR(2)) SIZE 100;

3. Create the cluster index:
CREATE INDEX IDX_LOC_ENTRIES ON CLUSTER LOC_ENTRIES;

4. Create and populate the first table:
CREATE TABLE CL_COUNTRIES CLUSTER LOC_ENTRIES (COUNTRY_ID) AS
SELECT * FROM COUNTRIES;

103

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

5.

104

Create and populate the second table:

CREATE TABLE CL_LOCATIONS CLUSTER LOC_ENTRIES (COUNTRY_ID) AS
SELECT L.*, CAST(<*> AS CHAR(1000)) AS FOO_DATA

FROM LOCATIONS L;

Verify the database blocks where the data of the two tables is stored:
select

cl_countries.country_id,

dbms_rowid.rowid_block _number(cl_countries.rowid)

as cou_blk,

dbms_rowid.rowid_block _number(cl_locations.rowid) as loc_blk
from cl_countries, cl_locations
where cl_countries.country_id = cl_locations.country_id
order by 1;

In the following screenshot, we can see the results of the last query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NAS X

lni

aad g
m Lo

[=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

10.

11.

12.

13.

Clear the previous example:
DROP CLUSTER LOC_ENTRIES INCLUDING TABLES;

Recreate the cluster and index as before:
CREATE CLUSTER LOC_ENTRIES (COUNTRY_ID CHAR(2)) SIZE 100;
CREATE INDEX IDX_LOC_ENTRIES ON CLUSTER LOC_ENTRIES;

Create the first table without populating the data:
CREATE TABLE CL_COUNTRIES CLUSTER LOC_ENTRIES (COUNTRY_ID) AS
SELECT * FROM COUNTRIES WHERE 1=0;

Create the second table without populating the data:

CREATE TABLE CL_LOCATIONS CLUSTER LOC_ENTRIES (COUNTRY_ID) AS
SELECT L.*, CAST(<*> AS CHAR(1000)) AS FOO_DATA

FROM LOCATIONS L WHERE 1=0;

Populate the data in a "clustered" way using PL/SQL
declare
1_country_id char(2);
begin
for c in (select * from countries)
loop
insert into CL_COUNTRIES
(country_id, country_name, region_id) values
(c.country_id, c.country_hame, c.region_id);
insert into CL_LOCATIONS select L.*, <*> from locations L
where L.country_id = c.country_id;
end loop;
end;

Verify the database blocks where the data of the two tables are stored:
select

cl_countries.country_id,

dbms_rowid.rowid_block _number(cl_countries.rowid)

as cou_blk,

dbms_rowid.rowid_block _number(cl_locations.rowid) as loc_blk
from cl_countries, cl_locations
where cl_countries.country_id = cl_locations.country_id
order by 1;

105

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

14. In the following screenshot, we can see the results of the last query:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | (S e S

In the sample, we created the cluster LOC_ENTRIES to store information related to locations
and countries, which share the common COUNTRY__ID attribute.

After defining the cluster, we created an index on it, which is a mandatory operation to do
before the cluster can be used to store data.

We then created two tables, CL_COUNTRIES and CL_LOCATIONS, populating data from the
corresponding tables COUNTRIES and LOCATIONS of the HR schema. We added a column
FOO_DATA to the CL_LOCATIONS table to make the row size bigger emphasizing a particular
behavior of clustered tables.

We then used the procedure dbms_rowid. rowid_block _number to identify the block
number of the database blocks in which the rows of both tables are stored.

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In step 7, we dropped the newly created cluster and tables, and recreated them without
inserting data in the tables.

This time, the data—which in step 4 and step 5 was inserted one table at a time—was inserted
in step 11 using a PL/SQL block to practice a particular trick, useful when loading data in a
cluster (the first time). We load together the correlated data of both the CL_COUNTRIES and
CL_LOCATIONS tables, proceeding "one country at a time".

In step 12, we executed the same query as in step 6, to compare the results of the
two approaches.

There's more...

The major benefit of using clusters is in reduced 1/0 for accessing data from different tables
joined together, reducing even the space occupied by the cluster key that is stored once for
all the rows of all the tables participating in the cluster, which have the same key value.

This organization is called Multi-Table Index Cluster Tables; we can also create Single-Table
Index Cluster Tables, where rows from a single table are stored in sequence, thus enhancing
index range scan performance.

An index cluster works as an ordinary index, speeding up access to the rows with a specific
cluster key value.

In the example presented in this recipe, we can see that by loading the cluster one table

at a time, the rows which share the same cluster key value are stored in different database
blocks, reducing the performance gain, which can be obtained by the introduction of
clustered tables—we must read multiple database blocks to answer a query.

Loading the clustered tables involved inserting the rows which share the same cluster key
value in all the tables; we try to pack the records of the clustered tables in the same database
block. In our example, CN, JP, and UK countries are stored in different database blocks, thus
reducing the I/0 needed when accessing our tables.

The benefits of using clusters are reduced when we regularly access a single table of the
cluster or when we perform more DML operations—insert, update, and delete—than select.

The reason for this performance delay is that storing rows from more than one table in

the same database block, forces the engine to read a greater block than in the case of a
standard table; full table scan performance is affected by the same issue, which causes poor
performance in DML operations. This is because by updating an (eventually) small row in a
table of the cluster, all the blocks containing the rows for the particular cluster key affected
will be read and manipulated.

Introducing an index cluster must be a long-meditated decision: even if the rows for a cluster
key value cannot be stored in few (1-2) database blocks, clusters are not a good choice.

107

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

If you are thinking that cluster tables are something exotic, probably
not used in real world, take a look at the CLUSTER_NAME column of

% DBA_TABLES:

s select table_name, cluster_name from dba_tables
where cluster_name is not null;

You will discover that some data dictionary tables are stored in clusters.

Consider introducing clusters in situations where data is almost static and you often query
joined together tables.

Cluster size

When we have created the cluster, we have specified SIZE 100 in the CREATE
CLUSTER statement.

This optional parameter specifies the estimated size—in bytes—required to store an average
cluster key with related rows, which share the same cluster key value.

This value is used by the database to estimate the number of different cluster key values,
which will be stored in a database block, to optimize the storage space for the cluster.

In our example, we have deliberately used a very small sized factor to force Oracle to store a
lot of different key values in the same data block, for the sake of illustration.

Cluster index
We have built an index on the cluster key; this is a common index, except for two aspects:

» The cluster index stores only one entry for every key value, pointing to the database
block that contains the rows with that particular key value.

» The cluster index stores an entry for the null key value too. This is a peculiar behavior,
because the standard indexes don't store entries when the indexed fields contain all
null values.

Clustering and truncating

Another circumstance when table clustering is not appropriate is when we have tables that need
to be truncated. Due to the particular storage characteristics of a clustered table, we cannot
perform a TRUNCATE TABLE statement, because the database blocks are shared among the
tables in the cluster. The only way to eliminate the rows is with the DELETE command.

If we need to use the TRUNCATE TABLE statement on a table, clustering is not a choice.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Using hash clusters

In the previous recipe, we introduced index clusters and tested a particular way to load data
in a cluster to optimize the storage of rows with the same cluster key value.

In this recipe, we introduce a different kind of cluster—hash clusters. The biggest difference
between index clusters and hash clusters is in the way data is accessed given a particular
cluster key value.

How to do it...

The following steps will demonstrate the use of hash clusters:

1.

Connect to the HR schema of the TESTDB database:
CONNECT hr@TESTDB/hr

Create the cluster:
CREATE CLUSTER EMP_DEPT_CLUSTER (deptid NUMBER(4))
SIZE 8192 HASHKEYS 100;

Create the first table and populate it with data:
CREATE TABLE CL_DEPARTMENTS CLUSTER EMP_DEPT_CLUSTER
(department_id) AS SELECT * FROM DEPARTMENTS;

Create the second table, populate it with data, and gather statistics:
CREATE TABLE CL_EMPLOYEES CLUSTER EMP_DEPT_CLUSTER
(department_id) AS SELECT * FROM EMPLOYEES;
EXEC DBMS_STATS.GATHER_TABLE_STATS(<HR>, <CL_EMPLOYEES>,
estimate_percent => 100,
method_opt => <for all columns size 1>);

Verify the execution plan for the regular table:
SET AUTOT TRACE EXP
SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID = 20;

109

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

6. Inthe next screenshot, we can see the results of the previous statement:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =nRcR x|

7. Verify the execution plan for the clustered table:
SET AUTOT TRACE EXP

SELECT * FROM CL_EMPLOYEES WHERE DEPARTMENT_ID

20;

8. Inthe next screenshot, we can see the results of the query against the
clustered table:

ec2-46-51-176-114.eu-west- Lcompute.amazonaws.com - PuTTY |ﬂlﬁj

9. Drop the cluster and the related tables:
DROP CLUSTER EMP_DEPT_CLUSTER INCLUDING TABLES;

110

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The hash clusters use a hash function to identify the database block in which the rows with a
particular cluster key value are stored, replacing the index functionalities of index clusters.

In this recipe, we have created the EMP_DEPT_CLUSTER cluster to store information related
to DEPARTMENTS and EMPLOYEES, stored together using DEPARTMENT _ 1D as the cluster key.

We then created and populated the CL_DEPARTMENTS and CL_EMPLOYEES tables with the
data of the DEPARTMENTS and EMPLOYEES tables of the HR schema.

In step 5 and step 6, we analyzed a simple query against the EMPLOYEES table and its
hash-clustered counterpart CL_EMPLOYEES, to verify that. In the first query, we are using
the EMP_DEPARTMENT _IX index to access the rows corresponding to the department
identified by the ID 20. In the second query, we access only the clustered table segment
with a TABLE ACCESS HASH operation.

The performance gain is clear we are not accessing two segments—the index and the table — to
retrieve the queried data, but only the table segment.

There's more...

In hash-clustered tables, we have a greater saving in size, because we do not store any data
outside the rows in the clustered tables—no indexes—and the cluster key values won't be
duplicated as with index clusters.

The con is that we must know in advance the maximum cardinality of the tables, because in
the cluster creating phase, we need to declare the maximum number of different keys with
the HASHKEYS parameters. If the table grows over this value, we have to rebuild the cluster.

Someone could think of declaring a big HASHKEYS value, but this isn't a good idea. The space
required to store HASHKEYS rows in the cluster will be allocated when the cluster is created. If
we have oversized the hash cluster, there is a huge waste of space.

Hash clusters are useful when we know in advance—or can predict—the number of key values,
and when we perform regular queries on clustered tables using the equality predicate on the
cluster key.

Even for hash clusters, if we perform frequent full table scans, and we have to allocate a lot
of space for our growing table, it's better to use regular (heap) tables.

Sorted hash clusters

Beginning with Oracle Database 10g, hash clusters can be sorted. We can decide the order
in which the rows are sorted—within the same cluster key value—even on multiple fields.

111

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

The syntax to define sorted hash clusters is as follows:

CREATE CLUSTER ORDER_CLUSTER (orderid NUMBER(4))
SIZE 8192 HASHKEYS 100;

CREATE TABLE ORDERS(
orderid NUMBER(4),
date_placed DATE,
customer_id NUMBER(4)
) CLUSTER ORDER_CLUSTER(orderid);

CREATE TABLE ORDER_DETAILS (
orderid NUMBER(4),
part_id NUMBER(4),
price NUMBER(9,2) sort,
description VARCHAR2(30)

) CLUSTER ORDER_CLUSTER(orderid);

In this example, we have created the hash cluster ORDER_CLUSTER to store order data
with their details; these are sorted by the price column.

Custom hash function

By default, Oracle provides us with a hash function to generate the values to be used in
hash clusters.

If we prefer, we can define our own hash function for a cluster, using the HASH IS clause in
the CREATE CLUSTER statement. This capability is enabled only when the cluster key is
made up by a single integer column.

Our hash function must evaluate to a positive value, needs to reference at least one field,
and cannot reference PL/SQL functions. There are other restrictions, listed in the official
Oracle documentation (http://docs.oracle.com/cd/E11882_01/server.112/
€26088/toc . htm).

Single-table hash clusters

We can create a hash cluster consisting of a single table only, defining a so-called Single-table
hash cluster.

This might seem an oxymoron: a cluster—which is to store more than one table in the same
database block—made by a single table.

112

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The reason for using such a cluster is simple: we can gain very fast performance in retrieving
data from this kind of storage structure, when we access data by cluster key value; in this
case, the I/0 is better optimized than for regular hash clusters.

We have seen in the previous section that we can define a personalized hash function to use
in a hash cluster. Commonly, with single-table hash clusters it is very simple to define a hash
function based on the primary key value, which ensures that there will be no collisions at all.

Here follows an example of a single-table hash cluster:

CREATE CLUSTER SINGLE_CLUSTER (id NUMBER(6))
SIZE 8192 HASHKEYS 100
single table
hash is id;

CREATE TABLE SCL_EMPLOYEES
CLUSTER SINGLE_CLUSTER (employee_id) AS
SELECT * FROM EMPLOYEES;

Indexing the correct way

When a table grows in size, it's very difficult and time-consuming to find the data we need by
scanning the entire table data.

The well-known solution to this problem is indexing. We can build an index, which is a particular
storage structure, to identify quickly where data is stored in the table. In the real world, indexes
are often used, for example, in a book like this, so we are accustomed to using them.

In this recipe, we will see how indexes work and when to use them, and we'll also avoid over-
indexing; we will introduce the B-tree indexes, and then look at other types of indexes and
more details on their use.

How to do it...

In this recipe, we will use the CUSTOMERS table of SH schema. There are more than 55000
rows in the table. We will create several indexes on this table, and after the creation of each
index we will execute the following queries (we will call them TEST CASE onwards):
SET AUTOT TRACE EXP
SELECT CUST_FIRST_NAME, CUST_LAST_NAME, CUST_YEAR_OF_BIRTH,

CUST_EMAIL FROM CUSTOMERS WHERE CUST_LAST_NAME = "WADE";
SELECT CUST_FIRST_NAME, CUST_LAST_NAME, CUST_YEAR_OF_BIRTH,

CUST_EMAIL FROM CUSTOMERS WHERE CUST_LAST_NAME = "Wade";

113

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_YEAR OF BIRTH,
CUST_EMAIL FROM CUSTOMERS
WHERE UPPER(CUST_LAST NAME) = "WADE";
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_YEAR OF BIRTH,
CUST_EMAIL FROM CUSTOMERS WHERE CUST_FIRST NAME = "DARBY";
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_YEAR OF BIRTH,
CUST_EMAIL FROM CUSTOMERS WHERE CUST_FIRST NAME = "Darby";
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_YEAR OF BIRTH,
CUST_EMAIL FROM CUSTOMERS
WHERE UPPER(CUST_FIRST_NAME) = "DARBY";

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Execute the TEST CASE:

In the following screenshot, we can see only the results of the first query in the test
case; however, the results are also the same for other queries in the test case:

ec2-46-51-176-114.eu-west- Lcompute.amazonaws.com - PuTTY |ﬂ|ﬁj

CUST_EMATL FROM CUSTOMERS

4. Create the index 1X1_CUSTOMERS:
CREATE INDEX 1X1_CUSTOMERS ON
CUSTOMERS (CUST_LAST_NAME, CUST_FIRST_NAME);

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

5. Execute the TEST CASE.

6. In the following screenshot, we can see the relevant part of the TEST CASE results
after the index 1X1_CUSTOMERS is in place:

5
ec2-46-51-176-114.eu-west- Lcompute.amazonaws.com - PuTTY |£Iﬁ]

CUST_EMATL CUSTCMERS

CUST_EMATL CUSTCMERS

7. Create the index 1X2_CUSTOMERS:
CREATE INDEX 1X2_CUSTOMERS ON
CUSTOMERS (UPPER(CUST_LAST_NAME), UPPER(CUST_FIRST_NAME));

8. Execute the TEST CASE.

115

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

9. Inthe following screenshot, we can see the relevant part of the TEST CASE results
after the index 1X2_CUSTOMERS is in place:

ec2-46-531-176-114.eu-west- Lcompute.amazonaws.com - PuTTY |ﬂlﬁj

10. Create the index 1X3_CUSTOMERS:
CREATE INDEX 1X3_CUSTOMERS ON
CUSTOMERS (CUST_LAST_NAME, CUST_YEAR_OF BIRTH DESC);

11. Execute the following query to test the index just created:
SELECT CUST_LAST_NAME, CUST_YEAR_OF_BIRTH FROM CUSTOMERS
WHERE CUST_LAST_NAME = <Wade>
ORDER BY CUST_LAST_NAME, CUST_YEAR_OF_BIRTH DESC;

116

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

12. In the following screenshot, we can see the results of the last query:

5
ec2-46-51-176-114.eu-west- Leompute.amazonaws.com - PuTTY |ﬂli-J

13. Execute the following queries to test the different uses of the same index:
SELECT
CUST_FIRST_NAME, CUST_LAST_NAME
FROM CUSTOMERS
WHERE CUST_LAST_NAME = <Darby>;
SELECT
CUST_FIRST_NAME, CUST_LAST_NAME
FROM CUSTOMERS
WHERE CUST_FIRST_NAME = <Darby>;

117

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

14. The following are the results of the previous two queries:

ec2-46-51-176-114 eu-west-1.compute.amazonaws.com - PuTTY |ﬂli-J

CUST_LAST HAME = '

When we execute the queries in the TEST CASE for the first time, there aren't indexes in
place to help us, so every query ends in a FULL TABLE SCAN operation over the CUSTOMERS
table. This means that we will scan all the database blocks of the CUSTOMERS table to retrieve
the data we need, applying the different filters specified in our queries.

To solve this issue, we create the first index on the CUSTOMERS table—I1X1_CUSTOMERS—
made up by the columns CUST_LAST_NAME and CUST_FIRST_NAME.

When we execute the TEST CASE again, we have the following changes in place to retrieve
the rows queried:

» We use the index IX1_CUSTOMERS to answer the first two queries. If we try to
execute these queries, however, we will see that the first will answer "no rows
selected", because the names in the CUSTOMERS table are stored with the first letter
capitalized, so there is a "Wade" customer, but not a "WADE" one.

118

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

» To solve the issue represented by the possible different cases used in the
CUST_LAST_NAME field, the third query makes use of the UPPER function to
make a case-insensitive search. This query won't use the 1X1_CUSTOMERS
index, because of the function in place.

» The last three queries of the TEST CASE aren't affected by the new index; they will
end in a full table scan operation as before.

To solve the issue of the case-insensitive search, we create a function-based index,
1X2_CUSTOMERS, which uses the UPPER function in the definition of the indexed columns.

The new index affects the results for the third query of the TEST CASE, because it uses
the index to retrieve the data, avoiding the full table scan operation needed before.

Even after the 1X2_CUSTOMERS index creation, the last three queries are answered with
a full table scan operation.

We create the 1X3_CUSTOMERS index to show how we can create a descending index, that
is, an index which stores the data for one or more fields in descending order. In our index, we
have the CUST_LAST_NAME field in canonical order, and the CUST_YEAR_OF_BIRTH field

in descending order. This kind of indexing lets us speed up the sorting operation when we
execute a query with different ordering for the columns.

The query that we execute to test the new index will use it similarly to the other indexes we
have created earlier. We avoid a SORT phase because using the index retrieves the rows in
the correct order.

[Q We can also create a function-based descending index.]

In our TEST CASE, the last three queries didn't use either of the indexes we have created.

This happens because we have an equality predicate on the CUST_FIRST_NAME, which is
referenced in our indexes as the second field. In these situations, the indexes aren't used by
the database. The last query, instead, will use the index even if we are filtering the table on
the CUST_FIRST_NAME; this test allows us to dispel a myth. Oracle uses the indexes even

if the leading columns are not referenced in the WHERE predicate of the query. We can see
that in such a case, the operation will be an INDEX FAST FULL SCAN. Conversely, when
we reference the leading column of the index, we will end up in an INDEX RANGE SCAN.

There's more...

In this recipe, we have used standard B-tree Indexes. A B-tree Index is a very common data
structure in computer science, used to improve the performance of data access, when we are
interested in retrieving only a small percentage of the overall data in the table.

119

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

A B-tree Index contains the data for the fields included in the index and the ROWIDs of the
rows that contain the same values as for the indexed fields. These values are stored in index
entries, packed together in the leaf nodes of the tree representing the index.

When the indexed fields of a row are (all) NULL, the
i corresponding index entry is not stored in the index.

A peculiarity to this structure is in the way the leaf nodes are connected. They are linked
to both the left and right adjacent leaf nodes, to allow the operation of range scan, which
is useful when we have a predicate similar to WHERE FIELD BETWEEN A AND B. In this
situation, we visit the tree structure to reach the leaf node related to the value A, and then
we jump to the adjacent leaf node that contains the value B, without having to visit the
entire tree structure again.

We have seen in this recipe how to build an index, a function-based index, and a descending
index. The last type is useful when we want to use queries in which we want the data sorted in
a mixed ascending/descending way on the fields indexed. If we use a regular index to access
the data, Oracle is unable to do the sort in a mixed way, in a query like this:

SELECT FIELD1, FIELD2

FROM TABLE

WHERE FIELD1 BETWEEN A AND B
ORDER BY FIELD1 DESC, FIELD2

We have a regular (ascending) index in place on FIELD1, FIELD2.
If we create an index like this:
CREATE MIXED_INDEX ON TABLE (FIELD1 DESC, FIELD2)

Then, we can use the index to access the data and retrieve the rows sorted, that is, we don't
have to do a SORT step after retrieving the rows.

In the last two queries, we have seen how the Oracle database uses an INDEX FAST FULL
SCAN operation to retrieve the rows when there is a predicate, which involves the second field
of the index (CUST_FIRST_NAME) but not the first (CUST_LAST_NAME).

This operation consists of visiting all the database blocks of the index, without any order or
access path, to retrieve the data we are looking for. Why doesn't the fifth query of our TEST
CASE use an index?

Let's try to answer this question. The following is the query from the TEST CASE:

SELECT CUST_FIRST _NAME, CUST LAST NAME,
CUST_YEAR OF BIRTH, CUST_EMAIL
FROM CUSTOMERS WHERE CUST FIRST NAME = "Darby";

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following is the last query of the recipe:

SELECT CUST_FIRST_NAME, CUST_LAST_NAME
FROM CUSTOMERS WHERE CUST_FIRST_NAME = "Darby"®;

In the first case, we have a full table scan, because we cannot retrieve all the data from the
index, so we have to do a TABLE ACCESS BY ROWID operation for each row, which satisfies
the predicate. The latter query, instead, can be answered without accessing the table data,
because we have asked only the indexed fields.

In the first query, if we use the INDEX FAST FULL SCAN, we have to visit every index block
and, for each row with CUST_FIRST_NAME equaling "Darby”, we have to do a TABLE ACCESS
BY ROWID to retrieve CUST_YEAR_OF_BIRTH and CUST_EMAILL field values. The optimizer has
decided that this kind of access isn't as fast as a full table scan, hence the choice.

We can use the index even in the first query, using an optimizer hint (which will be discussed
in depth in Chapter 7):
SELECT /*+ INDEX(CUSTOMERS IX3_CUSTOMERS) */
CUST_FIRST_NAME, CUST_LAST_NAME,
CUST_YEAR_OF_BIRTH, CUST_EMAIL
FROM CUSTOMERS WHERE CUST_FIRST_NAME = "Darby";

In the next screenshot, we can see that Oracle knows (from the table statistics) that only 43
rows satisfy the where condition. If we use the index, we are going through 55500 potential
row accesses (the first plan in the picture is from the previous query, the second one from the
query shown in the screenshot itself):

ec2-46-51-176-114.eu-west-L.compute.amazenaws.com - PuTTY

121

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

Last but not least, we have looked at various ways of indexing, without any consideration as to
how indexes affect performance of operations other than as queries.

Surely, an index can improve query performance, reducing the number of I/0 operations
needed to retrieve the data. However, index maintenance has a cost in DML operations—on
INSERTs and UPDATEs—when the database engine must update the index to reflect the
changes to the data in the table.

The index, furthermore, requests space to store itself. This aspect, however, is less relevant
due to inexpensive disks and memory on the market, but has to be considered when planning
to add an index on a table.

What is the "small percentage" of the data which assures we can
improve performances using B-tree indexes?

There isn't a rule of thumb to define what is the right percentage above which there is no
improvement in the query using the index. We can however estimate the amount of data that
has to be read to satisfy our inquiries.

Suppose that we have a table with an average row size of 200 bytes, and we create an index
on some fields, which can be used to execute our query. The database block size is 8 KB,
that is, 8192 bytes available. If we are using a PCTFREE of 20 for the table, we are allowed
to insert about 30/32 rows in a database block—we are not considering row headers—we
are interested in an estimated value, not a calculation of the real value. If the table contains
10000 rows, we are using more than 300 database blocks for the table.

Accessing the table using the index requires us to read the index block and access the data

in the table by the ROWID. If the data we are retrieving with the index is 30 percent of the
entire table (as per our example) we will access 3000 rows using an operation called TABLE
ACCESS BY ROWID, reading 3000 blocks of data (many blocks will be read more than once).
If we do a full table scan, in this situation, we will read all table data, which we have estimated
to be slightly more than 300 blocks. Using the index, in this situation, won't be a good choice.

If the data we are interested in is one percent of the entire table, we will access 100 database
blocks using the index, which is a considerable speed improvement when compared to the
full table scan. Finally, if the average row size is 2000 bytes, we will have about three rows

in a database block, so the table is made up of more than 3300 database blocks. In this
situation, even the first query which accessed 30 percent of the entire table, would benefit
from indexing.

As we have seen from this example, whether to use indexes depends upon various
parameters, and there isn't a magic number to use for every situation.

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

>

We will talk about full table scans in Chapter 4 in the recipe Avoiding full table scans,
and optimizer hints are explained in depth in Chapter 7 in the recipe Exploring the
optimizer hints.

Rebuilding index

In the previous recipe, we saw that using indexes leads to performance improvements;
however, we need to take care that DML operations are slower due to the operations
involved to keep the index synchronized with table data.

Rebuilding an index is an operation that can provide performance benefits because it
reduces intra-block fragmentation.

Getting ready

The following steps have to be carried out initially:

1.

Open a SQL*Plus session and connect to the SH schema:
CONNECT sh@TESTDB/sh

Create a table to test:
CREATE TABLE BIG_CUSTOMERS AS SELECT * FROM CUSTOMERS;

Insert more than 5 million records:
BEGIN
FOR j IN 1..100 LOOP
INSERT INTO BIG_CUSTOMERS SELECT * FROM CUSTOMERS;
END LOOP;
COMMIT;
END;

Instruct SQL*Plus to show the timings for the next operations:
SET TIMING ON

Create an index on the table:

CREATE INDEX I1X1_BIG_CUSTOMERS
ON BIG_CUSTOMERS (CUST_LAST_NAME, CUST_FIRST NAME);

123

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

How to do it...

In this recipe, we will see how to rebuild an index minimizing the effects to the users who are
using the database. Follow these steps:

1. Open another session of SQL*Plus and connect as user SH. The newly opened
session is referred to as SESSION B from here on. The initial connection made in step
1 is SESSION A; set the timing in SESSION B too:
CONNECT sh@TESTDB/sh

SET TIMING ON

2. Start rebuilding the index in SESSION A:
ALTER INDEX 1X1_MYCUSTOMERS REBUILD ONLINE PARALLEL;

3. Insert arow in SESSION B while the operation in SESSION A is still in execution:
DECLARE
MAX_CUST NUMBER;
BEGIN
SELECT MAX(CUST_ID) INTO MAX_CUST FROM BIG_CUSTOMERS;
INSERT INTO BIG_CUSTOMERS(

CUST_ID, CUST_FIRST NAME, CUST LAST_NAME, CUST_GENDER,
CUST_YEAR_OF BIRTH,

CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE,

CUST_STATE_PROVINCE_ID, COUNTRY_ID, CUST_MAIN_PHONE_NUMBER,
CUST_TOTAL, CUST_TOTAL_ID)

SELECT

CUST_ID + MAX_CUST + 1, CUST FIRST_NAME, CUST_LAST NAME,
CUST_GENDER, CUST_YEAR_OF BIRTH,

CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE,

CUST_STATE_PROVINCE_ID, COUNTRY_ID, CUST_MAIN_PHONE_NUMBER,
CUST_TOTAL, CUST_TOTAL_ID

FROM CUSTOMERS
WHERE CUST_ID = 1;
COMMIT;

END;

/

Wait until the operations in SESSION A and SESSION B are finished.
5. Rebuild the index in SESSION A with a different option:
ALTER INDEX 1X1_MYCUSTOMERS REBUILD PARALLEL;

124

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. Insert arow in SESSION B while the operation in SESSION A is still in execution with

the same code in step 8.

7. Wait until the operations in SESSION A and SESSION B are finished.

In the next screenshot, we can see the results of SESSION A:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

ST_LAST NAME, CUST_F

ILD ONLINE PARRLLEL;

ILD PRARALLEL;

=

9. In the next screenshot, we can see the results of SESSION B:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY

www.it-ebooks.info

125

http://www.it-ebooks.info/

Optimizing Storage Structures

10. Inspect the index status in the data dictionary:
SELECT
TABLE_NAME, INDEX_NAME, STATUS
FROM USER_INDEXES
WHERE TABLE_NAME = <BI1G_CUSTOMERS>
ORDER BY 1,2,3

11. Drop the table (and the index) to clean the objects created by this recipe (we will
create the same table in the next recipe):

DROP TABLE BIG_CUSTOMERS;

In this recipe, we have rebuilt an index in both online and offline mode.

In the first steps, we created a table with an index on it. We then used two simultaneous
sessions to verify that an online index rebuild allows us to insert, update, and delete records
in the table on which our index rebuilding is based. If we don't specify the ONLINE clause, the
DML operations happen only at the end of the rebuild process.

This behavior is clear when we look at the screenshots with the timings. Looking at the
picture from Session A, we can see that rebuilding an index is faster than creating the
same index—and we will understand why later—while rebuilding an index online is slower
than rebuilding the same index without this option in place.

The drawback of rebuilding an index offline is that while the rebuild is happening, DML
commands are locked until the completion of the other operation. This can be verified
looking at the screenshot in which SESSION B results are shown and comparing it with
the screenshot for SESSION A. The second execution of the query—launched manually
in another SQL*Plus session after the offline index rebuild—terminates after the rebuild
operation, while when we are executing the ONLINE REBUILD the insert in SESSION B
terminates before the rebuild operation.

There's more...

An index has to be rebuilt when its status is in an UNUSABLE/ INVALID state. To inspect
the status of an index we can use the statement in step 8.

An index becomes INVALID for various reasons, such as a direct path load operation and
an ALTER TABLE MOVE command. Every time there is a change in the ROWIDs of a table,
the indexes on that table have to be rebuilt.

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The rebuild process is not like a DROP and CREATE sequence of operations. When an index

is created, the table is completely scanned to build the index, while a REBUILD recalculates
the ROWID for the index entries, which are already in the index, generating the new segments.
At the end of the process, the old segments of the index are dropped and replaced by the
new ones. The entries for the DML operations happened while the index was rebuilt, and are
added/updated to the new index. These DML operations were recorded in a journal table,
which is itself an index organized table. When all the operations are completed, information
about the index on the data dictionary is updated, and only during dictionary updates is DML
access blocked.

We have used the PARALLEL option too, to speed up the rebuild process.

As we have experimented, during an online index rebuild, we can execute DMLs on the base
table, but take care as the operation will be slower than usual.

Normally, there is no need to rebuild an index if the status of the indexes is VALID. However,
when we have a table on which there are many INSERTs and DELETESs, we could schedule an
index rebuild, because when deleting an index entry, the space is not freed in the index leaf,
but just marked as deleted. If we have massive DELETE and INSERT operations, we could
have a skewed index structure, which could slow performance due to intra-block fragmentation.

In such cases, an index rebuild can be helpful, and the ONL INE options allow us to perform
this operation without affecting the availability of the database.

We can check if an index needs to be rebuilt by executing the following statements:

ANALYZE INDEX index_name VALIDATE STRUCTURE;
SELECT HEIGHT, DEL_LF_ROWS, LF_ROWS, LF_BLKS FROM INDEX_STATS;

If the value for DEL_LF_ROWS/LF_ROWS is greater than 2, or LF_ROWS is lower than
LF_BLKS, or HEIGHT is 4 then the index should be rebuilt.

Index rebuild and statistics

When we rebuild an index, we can add the COMPUTE STATISTICS option to the statement.
With the index, even the statistics on it are rebuilt, with a minor effect on the performance of
the operation.

See also

» We will talk about data loading and direct path load in Chapter 8, in the recipes
Direct path inserting and Loading data with SQL loader and Data Pump

127

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

Compressing indexes

In this recipe, we will see another option we can use during index creation or rebuild—the
COMPRESS parameter—and how it could affect the performance when using the index.

We will use the same table and index created in the previous recipe, Index Rebuilding.

How to do it...

If you have dropped the table, you have to recreate it as mentioned in the following steps:

1. Open a SQL*Plus session and connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create a table to test:
CREATE TABLE BIG_CUSTOMERS AS SELECT * FROM CUSTOMERS;

3. Insert more than 5 million records:

BEGIN
FOR j IN 1..100 LOOP
INSERT INTO BIG_CUSTOMERS SELECT * FROM CUSTOMERS;
END LOOP;
COMMIT;
END;

4. Create an index on the table:
CREATE INDEX 1X1_BIG_CUSTOMERS
ON BIG_CUSTOMERS (CUST_LAST_NAME, CUST_FIRST_NAME);

5. Analyze the index to gather statistics:
ANALYZE INDEX 1X1_BIG_CUSTOMERS VALIDATE STRUCTURE;

6. Inspect statistics on the index:
SELECT HEIGHT, BLOCKS, BTREE_SPACE, USED_SPACE,
OPT_CMPR_COUNT, OPT_CMPR_PCTSAVE FROM INDEX_STATS
WHERE NAME = <I1X1_BIG_CUSTOMERS>;

7. Rebuild the index with the COMPRESS option, following the optimal parameter from
the previous query (OPT_CMPR_COUNT):

ALTER INDEX IX1_BIG_CUSTOMERS REBUILD ONLINE COMPRESS 2;

8. Analyze the index to refresh statistics:
ANALYZE INDEX 1X1_BIG_CUSTOMERS VALIDATE STRUCTURE;

128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

9. Inspect statistics on the index:
SELECT HEIGHT, BLOCKS, BTREE_SPACE, USED_SPACE,
OPT_CMPR_COUNT, OPT_CMPR_PCTSAVE FROM INDEX_STATS
WHERE NAME = <I1X1_BIG_CUSTOMERS>;

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |£Iﬁj

10. Drop the table and the index:

DROP TABLE BIG_CUSTOMERS;

We have created a table with more than five million records and an index on it, based on the
fields CUST_LAST_NAME and CUST_FIRST_NAME (which is not unique).

After creating the index, we have analyzed it to gather statistical information, using the data
dictionary view INDEX_STATS.

We have seen the space occupied by the index expressed in database blocks (BLOCKS field)
and in bytes (BTREE_SPACE and USED_SPACE).

129

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

There are two other fields on which we have to concentrate:

» OPT_CMPR_COUNT: It indicates how many fields can be compressed in the index to
obtain the maximum benefit from index key compression

» OPT_CMPR_PCTSAVE: It indicates the percentage of saved space if the previous
parameter is used in rebuilding the index

We have rebuilt the index with the recommended value for the COMPRESS parameter,
reanalyzed the index, and compared the results. We have saved 55 percent of database
blocks, as estimated previously. After the index was rebuilt, we have no further improvement
in compressing the index, as shown by the results of the query on INDEX_STATS.

There's more...

Compressing an index allows us to store the index in fewer database blocks, as in the
presented example, so we have fewer database blocks to read to navigate the index.

The value used when we execute a CREATE INDEX or ALTER INDEX REBUILD command
with the COMPRESS parameter indicates how many fields of the key fields—in the order they
are listed in the index creation statement—will be compressed.

We can compress any nonunique index with a value equal to the number of fields in the index,
as in our example. If the index is unique (that is, no duplicate values can be stored in the key
fields), we can use a value equal to the number of key fields minus one. By default, the prefix
length—this is another way to name this value—is the number of key columns.

Prefix length limitation does not allow us to compress a unique index with only one field, but
this isn't a problem. In this situation every key value is different—due to the uniqueness of the
index—so there won't be any improvement in compressing index keys because there aren't
duplicates.

From the performance point of view, when we use compressed indexes we make use of
slightly more CPU to manage the compress/decompress work.

Using reverse key indexes

In this recipe, we will introduce reverse key indexes. We will look at when to use them and
how they are related to performance.

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

The following steps will demonstrate reverse keys:

1.

Connect to SQL*Plus as user SH:
CONNECT sh@TESTDB/sh

Create a simple table:
CREATE TABLE REVERSE_TEST (
1D NUMBER NOT NULL,
NAME VARCHAR(100)
);
Create a sequence to generate the IDs for the table:
CREATE SEQUENCE REV_SEQ
START WITH 1 INCREMENT BY 1 CACHE 1000;

Create the trigger to insert sequence-generate values:
CREATE OR REPLACE TRIGGER TR_REVERSE_TEST_INS
BEFORE INSERT ON REVERSE_TEST FOR EACH ROW
WHEN (NEW.ID IS NULL)
BEGIN
SELECT REV_SEQ.NEXTVAL INTO :NEW.ID FROM DUAL;
END;

Create a UNIQUE INDEX on ID:
CREATE UNIQUE INDEX PK_REVERSE_TEST ON REVERSE_TEST(ID);

Populate the table:
INSERT INTO REVERSE_TEST (NAME)

SELECT CUST_LAST_NAME || CUST_FIRST_NAME FROM CUSTOMERS;
COMMIT;

Analyze the index:
ANALYZE INDEX PK_REVERSE_TEST VALIDATE STRUCTURE;

Query the statistics on the index:
SELECT
BLOCKS, LF_BLKS, LF_ROWS LEN,
BTREE_SPACE, USED_SPACE, PCT_USED
FROM INDEX_STATS WHERE NAME = <PK_REVERSE_TEST>;

131

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

9. Inthe next screenshot, we can see the results of the previous query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

10. Drop the index:
DROP INDEX PK_ REVERSE TEST;

11. Empty the table:
TRUNCATE TABLE REVERSE TEST;

12. Create a unique REVERSE KEY index on ID:
CREATE UNIQUE INDEX PK_REVERSE_TEST
ON REVERSE_TEST(ID) REVERSE;

13. Populate the table:
INSERT INTO REVERSE_TEST (NAME)
SELECT CUST_LAST_NAME || CUST_FIRST_NAME FROM CUSTOMERS;
COMMIT;

14. Analyze the index:
ANALYZE INDEX PK_REVERSE_TEST VALIDATE STRUCTURE;

15. Query the statistics on the REVERSE KEY index:
SELECT
BLOCKS, LF_BLKS, LF_ROWS LEN,
BTREE_SPACE, USED SPACE, PCT_USED
FROM INDEX_STATS WHERE NAME = <PK REVERSE_TEST>;

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

16. In the next screenshot, we can see the results of the previous query:

-
ec2-46-51-176-114. eu-west-1.compute.amazonaws.com - PuTTY | =RECIN X

17. Execute a query with an equality predicate:
SET AUTOT TRACE EXP
SELECT NAME FROM REVERSE_TEST WHERE 1D = 100;

18. Now, we can see the execution plan of the previous query:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |ﬂlﬁj

19. Execute a query with a range predicate:
SET AUTOT TRACE EXP
SELECT NAME FROM REVERSE TEST WHERE ID BETWEEN 100 AND 110;

133

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

20. In the next screenshot, there is the execution plan of the previous query:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂlﬁj

21. Drop the table and the sequence:

DROP TABLE REVERSE_TEST;
DROP SEQUENCE REV_SEQ;

In this recipe, we have created a small table, with a unique field 1D populated using a
sequence with a BEFORE INSERT trigger.

To ensure the uniqueness of the field, we have created a UNIQUE INDEX.

After populating the table with some data, we have analyzed the index and queried the
statistics on it.

We have then dropped the index and deleted the data in the table, to return to the initial state.
We have created a new UNIQUE INDEX with the REVERSE keyword, which creates the index,
storing the key values reverse order. A reverse key B-tree index stores the value in the leaf
nodes reversed (from right to left, instead of from left to right); for example, the value 123 will
be stored in the index as 321.

We have analyzed the index again and queried the statistics, to compare with the data
previously collected. We can see that by using the reverse key index, the index is spread
across more database blocks, occupying more space on the disk. This is the exact behavior
of this kind of index—distributing index key values in different database blocks.

134

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This feature can improve performance, because where we have a table with a field populated
by a sequence, massive inserts from multiple sessions could lead to contention issues on the
index blocks. In fact, every session tries to insert new values in the table. Because the key
values are produced by a sequence, the corresponding index entries will be adjacent in the
leaf nodes of the B-tree index (for example, the values 123, 124, 125, and so on). Storing key
values in reverse (for example, in the previous example the key values will be stored as 321,
421, 521, and so on) led to spreading the values in different leaf nodes of the index, reducing
contention issues.

Before dropping the table, we have executed two queries — first with an equality predicate,
the last with a range predicate, to analyze the execution plans generated
by the database engine.

We can see that the first query—with an equality predicate—can use the index, resulting in an
INDEX UNIQUE SCAN and a TABLE ACCESS BY INDEX ROWID operation to retrieve the data.

The last query, instead, has a range predicate. So, in the execution plan, the index is not
used and the database will do a TABLE ACCESS FULL (full table scan) operation to answer
our query.

The reason for this behavior is the particular way reversed key values are stored in the index.
In a standard B-tree index, we will have the entries for 123, 124, 125 values in the same or in
adjacent leaf nodes. In a reverse key index, the corresponding entries will be 321, 421, 521.
So the index entries for these values aren't adjacent as the values themselves, hence, the
INDEX RANGE SCAN cannot be used.

There's more...

We have stated that INDEX RANGE SCAN cannot be used. This is true when we are talking
about a single column reverse key index.

When we have a reverse key index with two fields, for example, CUST_LAST_NAME and
CUST_FIRST_NAME on the CUSTOMERS table of the SH schema, we could use the index
range scan operation when we execute the following query:

SELECT CUST_FIRST_NAME, CUST_LAST_NAME, CUST_EMAIL

FROM CUSTOMERS

WHERE CUST_LAST_NAME = "Rohrback*®

AND CUST_FIRST_NAME BETWEEN "Harry® AND "Romney*®;

If, we have created an index similar to the following;:

CREATE INDEX IXR_CUSTOMERS
ON CUSTOMERS(CUST LAST NAME, CUST FIRST NAME) REVERSE;

135

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

We have talked about a performance gain obtained when we use reverse key indexes
because they reduce contention on the index database blocks.

There is also another feature we can appreciate, related to the way the indexes grow.

When we add more rows in a table, the related index is updated. The index entries are
stored in an ordered fashion in the B-tree index structure. So there will be a situation in
which we have a full leaf block and we have to insert a new entry into that leaf.

When this occurs, the leaf block is split into two blocks, each one containing about 50
percent of the original block. The newly created block has to be added to the parent
branch block, which in turn can be full, and the splitting process is iterated again.

When a row is deleted—or the index key field values are updated—the corresponding index
entry is logically deleted, and the space will be reused only if we insert a new index entry
with a value, which has to be inserted in that particular block, due to the sort constraint.

In situations similar to the one described in this recipe—a field populated with a growing
value—when we delete an index entry, the space won't be claimed, ever, because the new
values will always be greater than the old value. And if the block is full, new entries will
always be in a new block.

Using reverse key indexes also solves this issue. For example, when the key 123—stored
as 321—is deleted, the space could be reused by a key 723—stored as 327—so the empty
space in index database blocks will be refilled when we insert new rows in the table.

Using bitmap indexes

In the last recipe, we looked at the use of B-tree indexes in depth.

In the Oracle database, there is also another type of index available, the bitmap index,
presented in this recipe.

How to do it...

The following steps will demonstrate bitmap indexes:

1. Connect to SQL*Plus as user SH:
CONNECT sh@TESTDB/sh

2. Create a table to do some tests:
CREATE TABLE MYCUSTOMERS AS SELECT * FROM CUSTOMERS;

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3. Execute the following queries to verify the execution plan adopted by the database:
SET AUTOT TRACE EXP STAT
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_GENDER = <F>;
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_MARITAL_STATUS = <single>;
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_MARITAL_STATUS = <married> AND CUST_GENDER = <F>;
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_MARITAL_STATUS = <single> AND CUST_GENDER = <M>
AND CUST_YEAR_OF_BIRTH BETWEEN 1970 AND 1980;
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_MARITAL_STATUS = <single>
AND CUST_YEAR_OF_BIRTH BETWEEN 1970 AND 1980;
SELECT COUNT(*) FROM MYCUSTOMERS
WHERE CUST_YEAR_OF_BIRTH BETWEEN 1970 AND 1980;

4. Inthe next screenshot, we can see the results for the first query executed:

ec2-46-51-176-114.eu-west-Lcompute.amazonaws.com - PuTTY |ﬂlﬁj

137

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

5. Create a BITMAP INDEX on some columns:
CREATE BITMAP INDEX BIX_GENDER_MARITAL_YOB
ON MYCUSTOMERS

(CUST_GENDER, CUST_MARITAL_STATUS, CUST_YEAR_OF_BIRTH);

6. Execute the same queries as in step 3 and compare the results.

7. Inthe next screenshot, we can see the results for the first query executed, after
the bitmap index creation:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i‘]

8. Drop the table:
DROP TABLE MYCUSTOMERS;

We have created a table with some data in it. We have executed six queries in this table, using
a different predicate combination on the fields CUST_MARITAL_STATUS, CUST_GENDER, and
CUST_YEAR_OF_BIRTH, with equality and range conditions.

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

When we first execute this set of queries, the execution plan is always a FULL TABLE
SCAN operation.

We have hence created a BITMAP INDEX on the table, choosing three fields as our key
fields on which we are filtering the queries.

After index creation, we execute (once again) the same set of six queries. This time the
execution plan uses the newly created bitmap index, with great enhancement in the
number of database blocks processed, using the INDEX RANGE SCAN or INDEX FAST
FULL SCAN operation, depending on whether we are filtering on the first key column of
the index—CUST_GENDER—or not.

This result is obtained thanks to the particular structure of bitmap indexes. In this kind

of index, the database stores few rows. These rows contain the different values in the key
fields and a bitmap—which is a map of binary values—in which for every row there is a bit,
which is "on" for value 1. For that row, the index key values correspond to those of the
bitmap index row to which the bitmap belongs.

There's more...

Bitmap indexes offer very fast performance when we have a low cardinality field indexed on
a table containing many rows. There isn't a fixed rule to define when field cardinality is "low":
the CUST_GENDER column surely is, similar to a COUNTRY_ID field. BILL_ 1D will likely have
very large cardinality, but we have to look at the table cardinality too. On a table containing
100 records, or 100 million records, a notion of low cardinality isn't the same.

When is it better to not use bitmap indexes? In OLTP environments.

When rows are frequently inserted, deleted, and updated, there is a performance bottleneck
if we use a bitmap index. When the index is updated, all the bitmap segments are locked.

Indeed, the database cannot lock a single entry in the bitmap. So, when there are concurrent
updates it will lead to poor performance.

The ideal environment where bitmap indexes fit very well is with Decision Support Systems,
where data in tables is quite static by nature, read-only, with many rows in the table.

Another difference between bitmap and B-tree indexes is in how NULL values are managed.
In bitmap indexes they are stored, in B-tree they are not.

There is also a big advantage in space when using bitmap indexes against B-Tree. Typically, a
bitmap index uses between 2 percent and 10 percent the space of the corresponding B-Tree
index on the same key fields. So even INDEX FAST FULL SCAN operations are faster with
bitmap indexes (we have seen that B-Tree indexes are capable of FAST FULL SCAN of the
values for key columns other than the first).

139

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

Bitmap join index

There is also another feature: starting with Oracle 9i, where we can have a particular kind of
bitmap index, the bitmap join index. This is a bitmap index which represents the join between
two tables, and can be used instead of a materialized view in certain conditions.

Before creating a bitmap join index, let's see the execution plan for the following query:

CONNECT sh@TESTDB/sh
SET AUTOT TRACE EXP
SELECT SUM(AMOUNT_SOLD) AS TOTAL

FROM CUSTOMERS, SALES

WHERE CUSTOMERS.CUST_ID = SALES.CUST_ID
AND CUSTOMERS.CUST_POSTAL_CODE = *38083";
SET AUTOT OFF

In the next screenshot, we can see the execution plan needed to answer the simple question
mentioned earlier: how much have we sold for a particular customer postal code?

ec2-46-51-176-114.eu-west- Lecompute.amazenaws.com - PuTTY |ﬂlﬁj

4
5
5

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now, we can create a bitmap join index on the join between the tables CUSTOMERS and
SALES. To do so, we will use the following statements:
ALTER TABLE CUSTOMERS ENABLE VALIDATE CONSTRAINT CUSTOMERS_PK;
CREATE BITMAP INDEX BJI_CUST_SALES

ON SALES(CUSTOMERS.CUST_POSTAL_CODE)

FROM SALES, CUSTOMERS

WHERE SALES.CUST_ID = CUSTOMERS.CUST_ID LOCAL;

And we can execute the same query again; we will see the results displayed in the
next screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We will read less data, accessing only the SALES segment and the bitmap join index that
we just created.

There are some clarifications needed:

» We have enabled and validated the primary key constraint on the CUSTOMERS table,
because we can create a bitmap join index only on a key field (dimension) on which
there is a unique constraint.

» We have used the LOCAL keyword when we built the bitmap join index because the
SALES table is partitioned, so only LOCAL (to the partition) BITMAP INDEXES can
be built on it.

141

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

A bitmap join index allows a denormalization without using materialized views, but in the
index itself.

See also

» We have talked about denormalization in the receipe Optimizing performance with
schema denormalization in Chapter 2.

Migrating to index organized tables

There are situations in which we access a table only—or mainly—using the primary key
value. Situations such as a code lookup table, or a table containing inverted indexes, fit
well in this definition.

In this recipe, we will see how to combine a heap table and a B-tree index in what is called
an index organized table, and what benefits—and caveats—we have in performance when
adopting this structure to store our data.

How to do it...

The following steps will demonstrate index organized tables:

1. Connect to the database as user SH:
CONNECT sh@TESTDB/sh

2. Create an index organized table based on the COUNTRIES table of the SH schema:

CREATE TABLE I10T_COUNTRIES (

COUNTRY_ID NUMBER NOT NULL,

COUNTRY_ISO_CODE CHAR(2) NOT NULL,

COUNTRY_NAME VARCHAR2(40) NOT NULL,

COUNTRY_SUBREGION VARCHAR2(30) NOT NULL,
COUNTRY_SUBREGION_ID NUMBER NOT NULL,

COUNTRY_REGION VARCHAR2(20) NOT NULL,
COUNTRY_REGION_I1D NUMBER NOT NULL,

COUNTRY_TOTAL VARCHAR2(11) NOT NULL,

COUNTRY_TOTAL_ID NUMBER NOT NULL,

COUNTRY_NAME_HIST VARCHAR2(40),

CONSTRAINT PK_IOT_COUNTRIES PRIMARY KEY (COUNTRY_ID))
ORGANIZATION INDEX

INCLUDING COUNTRY_NAME

OVERFLOW TABLESPACE USERS;

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3. Populate the table with data:
INSERT INTO 10T_COUNTRIES SELECT * FROM COUNTRIES;

4. Execute a query to the original (heap) table:
SET AUTOT TRACE EXP STAT
SELECT
COUNTRY_ID, COUNTRY_NAME
FROM COUNTRIES
WHERE COUNTRY_ID = 52770;

5. Inthe next screenshot, we can see the execution plan and statistics for the query
on the original table:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i-J

TS
o
[SI=N¥]

o oMo

o

6. Execute the same query to the table (index organized) we just created:
SELECT
COUNTRY_ID, COUNTRY_NAME
FROM 10T_COUNTRIES
WHERE COUNTRY_ID = 52770;

143

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

7. Now, we can see the execution plan and statistics for the query on the index
organized table in the following screenshot:

-
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂli_J

8. Drop the table:
DROP TABLE I0T_COUNTRIES;

We have created a table with the same fields of the COUNTRIES table of the SH schema,
specifying the ORGANIZATION INDEX clause in the CREATE TABLE statement. Hence,
we have created an Index Organized Table (10T).

After populating the index organized table with the same data as the heap table, we have
executed the same query against the two tables, collecting statistics and the execution plan.
The query is a simple lookup of the country name based on the primary key value.

144

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We can see that when we use the heap table, we look up on the INDEX segment, and then
we access the row data using the ROWID. We have two consistent gets (on the INDEX and
the TABLE segments) to access the data.

When we query the index organized table with the same query mentioned earlier, we have
only one operation, namely the INDEX UNIQUE SCAN of the index, which retrieves (with 1
consistent get) the data we are asking for.

This behavior depends on the way data is organized in an index organized table. Similar to an
index, there is a B-tree which stores the key values; instead of storing in the leaf nodes the
ROWID of the table segment, an 10T stores the table data in the leaf nodes, so we have the
table and the index in the same segment.

This solution allows space saving (the index key values are stored once) and performance is
gained when accessing the table data by primary key values—or partial primary key values
when the primary key is multi-field and we know the first value(s) of the key. The same
benefits are in place when we access data using the primary key with an equality operation
or with a range search.

On the other hand, if we want to scan the entire table, the operation reads more data on the
10T than on the heap table. This is because in the case of the 10T, it is the same segment of
the table where we have also stored the index.

There's more...

In index organized tables, we have some unique properties due to the dual nature of this
structure. One of these features is the use of COMPRESS and NOCOMPRESS options, to enable
the key compression we have seen for indexes.

INCLUDING, OVERFLOW, PCTTHRESHOLD

When we have created the table 10T_COUNTRIES, we have used INCLUDING and
OVERFLOW options.

These parameters—and the PCTTHRESHOLD, which we haven't used—are related to how
much row data will be in the leaf nodes of the index.

These features enable us to decide whether to store only a part of the columns in the index.
Because if we have many fields in the rows, we can store only a few index entries in each
database block, reducing the performance of index searching.

The INCLUDING option lets us specify what fields (except primary key fields) are included in
the index segment. In our example, we have included the COUNTRY__ID, COUNTRY_1SO_CODE,
and COUNTRY_NAME fields in the index. The other fields are stored in a table segment, named
OVERFLOW, which is stored in the USER tablespace, as requested, in our example.

145

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

The 10T can be stored in a different tablespace
s to the overflow segment.

The PCTTHRESHOLD parameter indicates the percentage of the leaf database block
reserved for a row. If the row size exceeds the size indicated by this parameter, the fields
not indicated by the INCLUDING option are stored in the OVERFLOW—if indicated,
otherwise the row is not accepted.

Logical ROWID

Due to their nature, index organized tables don't have physical ROWIDs, because the rows
are stored in the index and not in a regular table segment.

To avoid problems related to IOT not having ROWIDs, LOGICAL ROWIDs were introduced
by Oracle. They give access to the rows in a IOT using two paths:

» Adirect access to the file and block where the row is placed (this is a database
engine guess)

» An access to the row made by the primary key values, if the guess of the preceding
bullet fails

The guess in the first point is due to the fact that we have exact knowledge of the row position
when we create the row in the index. Later, when the leaf block has been eventually split, our
previous knowledge of the physical position is wrong, so the guess will fail.

We can use logical ROWIDs as if they were physical, so we can, for example, add secondary
indexes to an index organized table.

See also

» Inthis chapter, see the recipe Compressing indexes for details about how to use the
COMPRESS option

Using partitioning

Tables (and indexes) may become very large in a database, driving performance and
maintenance problems.

Partitioning is the way to improve performance in large tables (Oracle suggests to partition
tables with more than 2 GB of data), to ease the configuration and care of these objects and
to reduce downtime in case of failures or scheduled maintenance such as move the tables or
take some data offline.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In this recipe, we discuss partitioning a table using range partitioning. We will present hash,
list, and composite partitioning as options.

How to do it...

We can create a table range partitioned adding the PARTITION BY RANGE clause to the
CREATE TABLE statement:
CREATE TABLE SALES RP (
PROD_ID NUMBER NOT NULL,
CUST_ID NUMBER NOT NULL,
TIME_ID DATE NOT NULL,
CHANNEL__ 1D NUMBER NOT NULL,
PROMO_ID NUMBER NOT NULL,
QUANTITY_SOLD NUMBER(10,2) NOT NULL,
AMOUNT_SOLD NUMBER(10,2) NOT NULL)
PARTITION BY RANGE (TIME_ID)
(
PARTITION SALES BEFORE_2000 VALUES LESS THAN
(TO_DATE("20000101","YYYYMMDD*")) TABLESPACE EXAMPLE,
PARTITION SALES 2000_2001_2002 VALUES LESS THAN
(TO_DATE("20030101", "YYYYMMDD*")) TABLESPACE EXAMPLE,
PARTITION SALES 2003 VALUES LESS THAN
(TO_DATE("20040101","YYYYMMDD*")) TABLESPACE EXAMPLE

):

Please note that we are connected to the SH schema, and the SALES_RP table logical
structure is identical to the SALES table of this schema.

We have created a table, indicating that we want to partition it BY RANGE.

The field TIME_ID, which is used to partition the table, is called the PARTITION KEY. We are
partitioning the table in three parts, depending on the value of the partition key. We will store
sales data before the year 2000 in the SALES_BEFORE_2000 partition, sales data between
years 2000 and 2002 inclusive in the SALES_2000_2001_2002 partition, and sales data for
the year 2003 in the SALES_2003 partition.

For simplicity, we have stored all the partitions in the same EXAMPLE tablespace. In real-life,
you will probably spread the partitions in different tablespaces.

147

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

There's more...

Partitioning a table grants some advantages. When Oracle executes a query, there is an
operation called partition pruning, which avoids having the database consider partitions
not involved in the request. For example, if we execute the following query:

SELECT * FROM SALES_RP
WHERE TIME_ID < TO_DATE("19990630", "YYYYMMDD")
AND CUST_ID = 1511;

Oracle will automatically use only the SALES BEFORE_2000 partition to retrieve the data
needed. We could also put the tablespaces in which we store other partitions offline, without
affecting the execution of the query.

Splitting the table into more partitions, lets us operate even on single partitions. For example,
we can move the table to other tablespaces one partition at a time.

We can simply drop a partition instead of deleting rows related to certain partition key values.
For example, when we only want to store data of the last period (a quarter, a year, a day)
online, we can partition the table and drop the old partitions, instead of executing a long
operation, such as DELETE .. WHERE TIME < X.

Partitioning is often used in OLAP systems, because it allows us to perform parallel DML
operations, such as massive UPDATEs and INSERTs with a degree of parallelism equal to the
number of partitions of the table.

In OLTP environments, there isn't a great performance gain—and if we implement a bad
partitioning scheme we can have worse performance than without—but we will have easier
maintenance tasks and increased availability, both as important as performance gains.

List partitioning
We have partitioned a table based on the range of values, which is the most common way to
apply partitioning.

We can also partition a table based on a list of values. For example, the COUNTRY for a table
of customers or the CATEGORY for a products table.

To create a list partitioned table, we can execute a statement similar to the following, in which
we will partition the SALES_LP table based on CHANNEL _ID values:

CREATE TABLE SALES_LP (
PROD_ID NUMBER NOT NULL,
CUST_ID NUMBER NOT NULL,
TIME_ID DATE NOT NULL,
CHANNEL_ID NUMBER NOT NULL,
PROMO_ID NUMBER NOT NULL,

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

QUANTITY_SOLD NUMBER(10,2) NOT NULL,

AMOUNT_SOLD NUMBER(10,2) NOT NULL)

PARTITION BY LIST (CHANNEL_ID)

(
PARTITION DIRECT SALES VALUES (3,9) TABLESPACE EXAMPLE,
PARTITION INDIRECT SALES VALUES (4,5) TABLESPACE EXAMPLE,
PARTITION OTHER_SALES VALUES (DEFAULT) TABLESPACE EXAMPLE

):

We have defined two partitions to store direct and indirect sales, respectively and a default
partition to store the rows whose partition key is not listed in the partitions mentioned earlier.

We can add partitions to a table, but if we have defined a default partition when applying list
partitioning, we have to split the default partition instead of adding a new partition:
ALTER TABLE SALES LP SPLIT PARTITION OTHER_SALES

VALUES (2) INTO (PARTITION PARTNERS, PARTITION OTHER_SALES);

With the previous statement, we have split the OTHER _SALES partition, creating a new
PARTNERS partition to store the sales made by partners, leaving the other kind of sales in the
default OTHER_SALES partition. To test this assertion, we can insert two rows and query the
single partition of the table to see if each row is in the correct partition, as follows:

INSERT INTO SALES_LP VALUES (1,2,SYSDATE,2,4,5,6);
INSERT INTO SALES_LP VALUES (1,2,SYSDATE,19,4,5,6);

SELECT * FROM SALES_LP PARTITION (PARTNERS);
SELECT * FROM SALES_LP PARTITION (OTHER_SALES);

Hash partitioning

We have seen list and range partitioning. The first fits well when we have a discrete number
of values in the partition key, so we can easily split the table based on this criteria. The
second one helps us when we have distinct range of values—for example, for historical data
partitioned by a date, as in our example.

But can we partition a table when we aren't in the earlier mentioned situations? The answer
is yes, using hash partitioning.

This time we divide our table based on a hash function computed over the partition key, to
distribute table values without using a policy inherent in the data, ensuring only that the data
will be distributed in partitions.

To obtain the best uniform data distribution, it's better to choose a number of partitions which
is a power of 2, having a unique or near partition key.

149

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Storage Structures

The next statement creates a hash partitioned table:

CREATE TABLE SALES_HP (
PROD_ID NUMBER NOT NULL,
CUST_ID NUMBER NOT NULL,
TIME_ID DATE NOT NULL,
CHANNEL_ID NUMBER NOT NULL,
PROMO_ID NUMBER NOT NULL,
QUANTITY_SOLD NUMBER(10,2) NOT NULL,
AMOUNT_SOLD NUMBER(10,2) NOT NULL)
PARTITION BY HASH (CHANNEL_ID)
(
PARTITION P1 TABLESPACE EXAMPLE,
PARTITION P2 TABLESPACE EXAMPLE,
PARTITION P3 TABLESPACE EXAMPLE,
PARTITION P4 TABLESPACE EXAMPLE

):

Please note that in creating a hash partitioned table, we don't specify the values for
each partition.

Composite partitioning
We can adopt even a mixed partitioning schema, resulting in a composite partitioned table.

For example, we can partition a table by a range of dates and, within each partition, by a list
of values, as follows:

CREATE TABLE SALES_CP (

PROD_ID NUMBER NOT NULL,

CUST_ID NUMBER NOT NULL,

TIME_ID DATE NOT NULL,

CHANNEL_ID NUMBER NOT NULL,

PROMO_ID NUMBER NOT NULL,

QUANTITY_SOLD NUMBER(10,2) NOT NULL,
AMOUNT_SOLD NUMBER(10,2) NOT NULL)

PARTITION BY RANGE (TIME_ID)

SUBPARTITION BY LIST (CHANNEL_ID)

(

PARTITION SALES_BEFORE_2000

VALUES LESS THAN (TO_DATE("20000101%,"YYYYMMDD"))

(SUBPARTITION DIRECT_SALES_2000 VALUES (3,9)
TABLESPACE EXAMPLE,

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

SUBPARTITION INDIRECT SALES_2000 VALUES (4,5)
TABLESPACE EXAMPLE,
SUBPARTITION OTHER_SALES_2000 VALUES (DEFAULT)
TABLESPACE EXAMPLE
),
PARTITION SALES_2000_2001_2002
VALUES LESS THAN (TO_DATE("20030101","YYYYMMDD"))
(SUBPARTITION DIRECT_SALES_ 2000 2001 2002 VALUES (3,9)
TABLESPACE EXAMPLE,
SUBPARTITION INDIRECT SALES_2000_2001_2002 VALUES (4,5)
TABLESPACE EXAMPLE,
SUBPARTITION OTHER_SALES_2000_2001_2002 VALUES (DEFAULT)
TABLESPACE EXAMPLE
),
PARTITION SALES_ 2003
VALUES LESS THAN (TO_DATE("20040101","YYYYMMDD"))
(SUBPARTITION DIRECT_SALES_ 2003 VALUES (3,9)
TABLESPACE EXAMPLE,
SUBPARTITION INDIRECT SALES_2003 VALUES (4,5)
TABLESPACE EXAMPLE,
SUBPARTITION OTHER_SALES_2003 VALUES (DEFAULT)
TABLESPACE EXAMPLE

):

When using composite partitioning, the subpartitions will have the corresponding physical
segments in the tablespaces, while the partition will only have a logical meaning, because
the rows of a partition will be stored in the segment of the subpartition to which they belong.

151

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

In this chapter, we will cover the following topics:

» Using bind variables

» Avoiding full table scans

» Exploring index lookup

» Exploring index skip-scan and index range-scan
» Introducing arrays and bulk operations

» Optimizing joins

» Using subqueries

» Tracing SQL activity with SQL Trace and TKPROF

Introduction

In this chapter, we will see how to diagnose and solve typical performance problems caused
by poorly written SQL code. We will inspect both queries and Data Manipulation Language
(DML), starting with the correct use of bind variables in the first recipe.

This chapter will illustrate various aspects related to SQL code, providing solutions to the
most common issues. We will see how to avoid full table scans, when possible,using indexes.
For this, it is necessary to know the differences between index full scan, index skip-scan,

and index range-scan operations.

We will also discuss arrays and bulk operations, revealing some tricks to increase performance
in DML operations. Joins and subqueries will be discussed in the later part of the chapter.

The last recipe illustrates the use of SQL Trace and TKPROF, tools that help diagnose and
correct problems. After reading this chapter, if you experience a problem in the SQL code
of your database, you know how to start solving it using these tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

Using bind variables

We have discussed bind variables in the A working example recipe in Chapter 1, Starting
with Performance Tuning.

In this recipe, it is time to dig deeper into this topic, illustrating the benefits of using bind
variables and testing the result of our efforts with simple examples. We will see examples
on query statements, but the same methodologies and results apply to DML statements.

Getting ready

Follow these steps to prepare the database:

Create a package named Chapter4 to test various aspects related to bind variables.

Connect to SQL*Plus using the SH schema:
CONNECT sh@TESTDB/sh

3. Create the required package:
CREATE OR REPLACE PACKAGE sh.CHAPTER4 AS
PROCEDURE WORKLOAD_NOBIND;
PROCEDURE WORKLOAD_BIND;
PROCEDURE WORKLOAD_BIND_STATIC;
PROCEDURE TEST_INJECTION(NAME IN
sh.customers.cust_last_name%TYPE);
PROCEDURE TEST_INJECTION2(NAME IN
sh.customers.cust_last_name%TYPE);
END;
/

CREATE OR REPLACE PACKAGE BODY sh.CHAPTER4 AS
PROCEDURE TEST_NOBIND(CUSTID IN sh.customers.cust_id%TYPE)
1S
BEGIN
DECLARE aRow sh.customers%ROWTYPE;
1_stmt VARCHAR2(2000);
BEGIN
I_stmt := "SELECT * FROM sh.customers s WHERE s.cust_id="
|l TO_CHAR (CUSTID);

154

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4
EXECUTE IMMEDIATE 1_stmt INTO aRow;
END;
END TEST_NOBIND;

PROCEDURE TEST_BIND(CUSTID IN sh.customers.cust_id%TYPE) IS
BEGIN

DECLARE aRow sh.customers%ROWTYPE;

I_stmt VARCHAR2(2000);

BEGIN

I_stmt := "SELECT * FROM sh.customers s WHERE s.cust_id =
p_cust_id";

EXECUTE IMMEDIATE I_stmt INTO aRow USING CUSTID;
END;
END TEST_BIND;

PROCEDURE TEST_BIND_STATIC(CUSTID IN
sh.customers.cust_id%TYPE) 1S
BEGIN
DECLARE aRow sh.customers%ROWTYPE;
BEGIN
SELECT * INTO aROW FROM sh.customers s WHERE s.cust_id =
CUSTID;
EXCEPTION
WHEN NO_DATA_FOUND THEN
NULL;
END;
END TEST_BIND_STATIC;

PROCEDURE WORKLOAD_NOBIND 1S
BEGIN
FOR i IN 1..50000
LOOP
TEST_NOBIND(i);
END LOOP;
END WORKLOAD_NOBIND;

155

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code
PROCEDURE WORKLOAD_BIND IS

BEGIN
FOR i IN 1..50000
LOOP
TEST_BIND(i);
END LOOP;

END WORKLOAD_BIND;

PROCEDURE WORKLOAD_BIND_STATIC IS
BEGIN
FOR i IN 1..50000
LOOP
TEST_BIND_STATIC(i);
END LOOP;
END WORKLOAD_BIND_STATIC;

PROCEDURE TEST_INJECTION(NAME IN
sh.customers.cust_last_name%TYPE) 1S

BEGIN
DECLARE 1_stmt VARCHAR2(2000); res NUMBER;
BEGIN
I_stmt := "SELECT COUNT(*) FROM sh.customers s WHERE
s.cust_last_name = """ || NAME || """";

EXECUTE IMMEDIATE I_stmt INTO res;
DBMS_OUTPUT.PUT_LINE("Count: " || TO_CHAR(res)):
END;
END TEST_INJECTION;

PROCEDURE TEST_INJECTION2(NAME IN
sh.customers.cust_last_name%TYPE) 1S
BEGIN
DECLARE 1_stmt VARCHAR2(2000);
BEGIN
I_stmt := "BEGIN DBMS_OUTPUT.PUT_LINE (""You passed " ||
NAME || *""); END;";

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

EXECUTE IMMEDIATE I1_stmt;
END;
END TEST_INJECTION2;
END;
/

We are now ready to test bind variables.

How to do it...

We can test bind variables as follows:

1.

Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

Flush the shared pool to be sure that previous statements don't influence
current executions of the query:

ALTER SYSTEM FLUSH SHARED_POOL;

Execute the WORKLOAD_NOBIND procedure, keeping track of the timing:
SET TIMING ON

exec sh.CHAPTER4.WORKLOAD_NOBIND;

SET TIMING OFF

Execute the WORKLOAD_BIND procedure, keeping track of the timing, after
flushing the cache from the previous statement's execution:

ALTER SYSTEM FLUSH SHARED_POOL;
SET TIMING ON
exec sh.CHAPTER4._.WORKLOAD_BIND;
SET TIMING OFF

Execute the WORKLOAD_BIND_STATIC procedure; keep track of the
execution time:

ALTER SYSTEM FLUSH SHARED_POOL;

SET TIMING ON

exec sh.CHAPTER4_WORKLOAD_BIND_STATIC;
SET TIMING OFF

Review the results.

157

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

We have created a package with five stored procedures available in it. There are three
stored procedures in the package body that are not exposed to public execution—these
are in the package body and are not listed in the package definition.

The first time we run the WORKLOAD_NOBIND procedure, it executes the stored
procedure TEST_NOBIND 50,000 times, passing in a parameter between 1 and
50,000. The TEST_NOBIND procedure will look for a customer in the SH.CUSTOMERS
table with the same customer ID as the input parameter. Here we use dynamic SQL
statement execution, without using bind variables, but generating a new query for
each parameter passed, concatenating the current value of the parameter to the
query statement itself.

A dynamic SQL statement is built dynamically at runtime and lets
. the developer create flexible applications because the full text of
% the SQL statement is unknown at compile time and it is defined
L only at runtime. A typical example of dynamic SQL statement use
is in the software that lets the user type the query to execute—such
as SQL*Plus or Oracle SQL Developer.

The output screen appears as follows:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NECN X

You can see that execution of the test case takes more than a minute and 25 seconds.

The second time we execute the WORKLOAD_BIND stored procedure, it will launch the stored
procedure TEST_BIND, to do the same work as TEST_NOBIND, using bind variables to pass

the current parameter (the customer ID) to the query.

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following is the output when the WORKLOAD_BIND stored procedure is executed:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NAN X

Note that elapsed time, despite flushing of the shared pool, is slightly more than five seconds.

In the previous example, the WORKLOAD_BIND_STATIC procedure of the package was
executed, which is functionally equivalent to the previous function's use. This example uses
static SQL instead of dynamic SQL; the results obtained by this procedure are as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

completed.

This execution, on the test machine used, lasts for slightly more than four seconds.

There is better performance and reduced execution time in this example, when using bind
variables to execute the query. This is due to the process involved in evaluating queries (and
DML commands) by the parser. When using bind variables, the query is being hard parsed for
the first time, and subsequent calls to the same statements—but with different parameters—will
require only a soft parse, as illustrated in the example at the end of Chapter 1.

Another advantage of using static SQL to query the database instead of dynamic SQL, is
minimizing parser overhead when executing the query. The results show that using bind
variables is very important when evaluating database performance. However, this kind of
behavior has to be pursued in the implementation phase of the application. In order to
improve an application, which doesn't use bind variables, every query and DML command
would have to be rewritten.

159

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

There's more...

A bind variable is a placeholder, used in our SQL statement, which can bind with actual
values during execution. We can also obtain the statistics related to parses by selecting
from the dynamic performance view V$SYSSTAT:

SELECT * FROM V$SYSSTAT WHERE NAME LIKE "parse%”;

In the following screenshot, you can see an example of the output:

ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY | =RNCE X

In this example, 1095 out of 5110 are hard parses.

Concurrency and scalability

We have seen that using bind variables improves performance, due to the hard/soft parse
of the statements; there is a huge improvement in latch contention as well. When the
database is parsing a statement, it acquires a latch on the structures involved (shared SQL
area and library cache), and this is a huge limitation on concurrency and scalability. If there
are many users using the same application—without bind variables—the contention for these
shared latches will increase, and there will be many wait events as many users try to acquire
the same resource.

If there is an application that doesn't use bind variables, the entire database, and other
applications that use them, will suffer a drop in performance. The "bad" application (the
one that doesn't use bind variables) will insert many statements in the library cache. This
is because it doesn't reuse them, and every statement is different from the previous
execution. In most cases, the statements of the "good" applications are flushed from the
library cache because there isn't enough space.

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Security issues

We have seen that there are many reasons to restrict the use of bind variables, from a
performance point of view. Security is also one of the reasons to use bind variables in
database applications.

Let's try to execute the stored procedure TEST_INJECTION in our package. This simple
procedure has a string parameter NAME and shows the number of customers with the
last name passed as a parameter:

SET SERVEROUTPUT ON

exec sh_.CHAPTER4_.TEST_INJECTION("Hanson");

exec sh_.CHAPTER4_TEST_INJECTION(®*"" or 1=1--7);

The output screen is as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Ii]

ly completed.

In the second execution, we have passed a tricky parameter value, so the query executed
from the procedure will be as follows:

SELECT COUNT(*) FROM sh.customers s
WHERE s.cust_last_name = """ or 1=1--"

This statement, due to the 1=1 condition ORed, will count every customer in the table.
We have modified the behavior of the program. Think about the consequences if a similar
procedure can access sensible data, and the name parameter is bound to a field the user
can modify in the interface. If we use bind variables, this would not happen.

In the next sample, we will use the TEST_INJECTION2 procedure to illustrate how a
malicious user can use our application to make unwanted changes to the database.

161

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

Create a table TEST__INJ and fill it with some data:

CREATE TABLE sh_TEST_INJ (1D INT, NAME VARCHAR2(100));
INSERT INTO sh._TEST_INJ

SELECT cust_id, cust_first_name
FROM sh.customers WHERE ROWNUM < 101;

Let's see the result after executing the TEST_INJECTI10N2 procedure:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂ|i‘]

The procedure that is being called simply shows information on the screen and requires a
string parameter. With a certain parameter value, we can delete data from the database,
emptying the TEST_INJ table.

In such cases, the use of bind variables would have avoided the problems described.

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Implementing the previously mentioned functions using bind variables would be done
as follows:
PROCEDURE TEST_INJECTION(

NAME IN sh.customers.cust_last_name%TYPE) 1S
BEGIN

DECLARE
I_stmt VARCHAR2(2000);
res NUMBER;

BEGIN
I_stmt := "SELECT COUNT(*) FROM sh.customers s WHERE
s.cust_last_name = :p_name";

EXECUTE IMMEDIATE I_stmt INTO res USING NAME;
DBMS_OUTPUT.PUT_LINE("Count: " || TO_CHAR(res));
END;
END TEST_INJECTION;

PROCEDURE TEST_INJECTION2(
NAME IN sh.customers.cust_last_name%TYPE) 1S
BEGIN
DECLARE
1_stmt VARCHAR2(2000);
BEGIN
I_stmt := "BEGIN DBMS_OUTPUT.PUT_LINE (""You passed "" ||
p_name); END;";
EXECUTE IMMEDIATE I_stmt USING NAME;
END;
END TEST_INJECTION2;

See also

» We will see more about latches in the recipe Minimizing latches using bind
variables in Chapter 11, Tuning Contention

» To know more about dynamic SQL refer to Avoiding dynamic SQL in Chapter 2,
Optimizing Application Design and Introduce Adaptive Cursor Sharing for bind
variable peeking in Chapter 7, Improving the Oracle Optimizer

163

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

Avoiding full table scans

In this recipe, we will see what a full table scan is, how to avoid it, and when to choose a
full table scan over other methods.

How to do it...

Let's start by creating two tables from the data in the SALES table of the SH schema:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh
2. Create the MY_SALES ALL table:
CREATE TABLE sh.MY_SALES_ALL AS
SELECT ROWNUM AS ID, X.* FROM sh.SALES X;

3. Create the MY_SALES_2 table:
CREATE TABLE sh.MY_SALES 2 AS
SELECT * FROM sh_MY_SALES ALL NOLOGGING;

4. Compute statistics on the tables we just created:
EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MY_SALES_ALL",
estimate_percent => 100,
method_opt => "for all columns size 1%);
EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MY_SALES 27,
estimate_percent => 100,
method_opt => "for all columns size 1%);

5. Verify the database blocks used by the two tables:
SELECT BLOCKS FROM DBA_TABLES
WHERE TABLE_NAME IN ("MY_SALES ALL", "MY_SALES 2%);

6. Delete some rows from MY_SALES 2, resulting in a table with about 1/100 rows
of the original SALES table:

DELETE FROM sh._MY_SALES_2 WHERE MOD(ID,100) <> O;
COMMIT;

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

10.

11.

12.

Re-compute statistics on the MY_SALES_2 table:

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MY_SALES 27,
estimate_percent => 100,
method_opt => "for all columns size 1%);

Count the database blocks used by MY_SALES_ALL and MY_SALES_2 tables:
SELECT BLOCKS FROM DBA_TABLES
WHERE TABLE_NAME IN ("MY_SALES ALL", *MY_SALES 2%);

Select some rows from the MY_SALES_ALL table, showing the execution plan
with statistics:

SET LINESIZE 120
SET AUTOT TRACE EXP STAT
SELECT * FROM sh_MY_SALES_ALL
WHERE TIME_ID > TO_DATE("20011220", "YYYYMMDD®);

Flush the buffer cache:
CONNECT / AS SYSDBA
ALTER SYSTEM FLUSH BUFFER_CACHE;

Select some rows using the same query from MY_SALES_ 2 table, showing the
execution plan with statistics:

CONNECT sh@TESTDB/sh
SET LINESIZE 120
SET AUTOT TRACE EXP STAT
SELECT * FROM sh_MY_SALES_2
WHERE TIME_ID > TO_DATE("20011220", "YYYYMMDD®);
SET AUTOT OFF

Shrink space on the MY_SALES_2 table:

ALTER TABLE sh_MY_SALES 2 ENABLE ROW MOVEMENT;

ALTER TABLE sh_MY_SALES 2 SHRINK SPACE;

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MY_SALES 27,
estimate_percent => 100,
method_opt => "for all columns size 1%);

165

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

13. Count the used database blocks by MY_SALES_ALL and MY_SALES_2 tables after
space shrinking:

SELECT BLOCKS FROM DBA_TABLES
WHERE TABLE_NAME IN ("MY_SALES ALL", "MY_SALES 2%):

14. View some statistics on full table scans:
SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME LIKE "%table scan%";

15. Drop the tables created earlier:
DROP TABLE sh_MY_SALES ALL;
DROP TABLE sh_MY_SALES 2;

We have created two tables, MY_SALES_ALL and MY_SALES_2; they are equal and take
up 5157 database blocks, as shown in the following screenshot:

-
ec2-46-51-176-114. eu-west- 1.compute.amazonaws.com - PuTTY | = | E] |

', 'MY _SALES 2');

We have deleted more than 900,000 records from MY_SALES_2, which are about 90 percent
of the original records in the table. After re-analyzing the table, we execute the same SELECT
statement, and the results are the same, as shown in the following screenshot:

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

.
ecZ-46-51-176-114.eu-west- L.ocompute.amazonaws.com - PuTTY |ﬂlﬁj

TABLE NAME IN ('MY SALES ALL',

We have the same number of used blocks for both tables, even if one of these is 10 percent
the size of the other.

If we execute a query on the first table, we obtain the following results:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

167

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

We can see that there are 5068 physical reads to answer the query, because the database
is scanning the entire table—so each database block of the table—to find the data we have
asked for.

If we execute the same query on the MY_SALES_2 table, we obtain the following results:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

Comparing the previous two screenshots, we can observe that the number of physical reads
haven't changed between the execution. So, even if the MY_SALES_2 table contains only 10
percent of the rows, the number of database blocks scanned to answer the query will not vary,
because the number of blocks used by the table is the same.

We try to shrink the space used by the table, executing the ALTER TABLE SHRINK SPACE
command. After getting the updated stats, you can see that the number of blocks have changed.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

W MOVEMENT ;

=S

Execute the same query and you will notice that the statistics of the query execution have

changed accordingly, as shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

—mm—dd

169

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

In step 14, we query some data from the database dynamic performance views for full table
scans executed on the database, obtaining the following result:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬂ‘]

You can see from the results that they are divided between table scans on short tables and
table scans on long tables; let's see why.

When the database executes a Full Table Scan (FTS) operation, it reads all the database
blocks of a table to retrieve the data needed. This operation is often undesirable in OLTP
databases, because if we have to scan a very large table to retrieve the desired data, there
is most often something wrong with the access paths of data in the database.

It's better to use a Full Table Scan when we have small tables. You should follow this advice
because it may be more expensive to read an index entry and the corresponding data instead
of reading the full table. The first operation (index + data) reads a minimum of two database
blocks, one for the index and one for the data. Reading the full table, instead, is done by
reading only the table data, which could be only one database block in size. Hence, there is

a difference in the dynamic performance view between short tables and long tables.

The Full Table Scan operation has two problems related to performance; the first one is
obvious, many |I/0 operations are needed to perform the FTS to retrieve the blocks. The
second flaw is related to the buffer cache; if we have a well-tuned application, when we
execute a query it is better to find the data we need in the buffer cache, avoiding I/0
operations. If we do an FTS, database buffers are used to read all the table data, and this
situation may lead to flushing the buffer cache data to make room for the FTS data. To avoid
this situation and to limit the consequences on the database buffer cache, the database
blocks from FTS operations are put on the top of the LRU (Least Recently Used) list. This list
is used to keep track of the database buffers, deciding if they are good candidates to be
flushed. These candidates will be flushed before the database blocks the ones in use by
other kinds of operations in the database.

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

However, in data warehouse environments, the use of FTS operations is often preferable.
This is because when we have a larger database block, we can read many rows in a block
and even subsequent database blocks—in one operation—by setting the parameter
DB_FILE_MULTIBLOCK_READ_COUNT (at the instance or session level). This parameter
controls the number of database blocks read in one I/0 operation. Obviously, there is a
limit—imposed by the operating system—to the maximum size of bytes (or number of OS
blocks) that can be read with a single I/0 operation. The use of this parameter influences
even the optimizer—if it's less expensive to read all the rows in a table than using an index,
the optimizer will use an FTS even if there are usable indexes in place.

There's more...

We need to understand how database rows are stored in database blocks, and some
storage parameters used when creating a table that affects this conduct.

The High-Water Mark

The High-Water Mark (HWM) is recorded in the segment header block, which indicates
the last used block in the segment.

You need to differentiate between unused blocks above and below the HWM. If we think of
the segments as a tank, we start filling the segments from the bottom up; if we draw a line
when the level increases, then that is the HWM, representing the highest level reached by

water. If we empty the tank a bit, the HWM will remain at the same level.

When applied to tables, there is unused space (empty blocks) above the HWM; this space
of the segment is never used.

In our example, in step 6 we have deleted many rows from the MY_SALES_ 2 table, resulting
in a lot of unused space below the HWM. We have deleted the rows at many different points
in the blocks, so there are many unused rows in a block, but there aren't empty blocks at all.
We can inspect the situation with the following queries:

SELECT BLOCKS, EMPTY_BLOCKS

FROM DBA_TABLES

WHERE TABLE_NAME IN ("MY_SALES ALL", "MY_SALES 2%);

Please remember that a DELETE operation
e won't reset the High-Water Mark, ever!

The HWM is very important in FTS operations—the database will read every single block in
the table segments, which are below the HWM, even if they are not used. So keep the HWM
as low as possible, to avoid the unnecessary scan of unused database blocks.

171

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code
The only ways to reset the HWM are:

» TRUNCATE: Truncating the table will reset the HWM, but all the data in the table will
be lost. There is an option to de-allocate the space—REUSE STORAGE—this is useful
when we want to unload all the data and reload it keeping the same segments,
resulting in a faster loading process.

» ALTER TABLE MOVE: The table can be moved, but all indexes will be marked
unusable and must be rebuilt.

» EXPORT + DROP + IMPORT: You can export the table data, drop the table, and
import the data back in the database.

Please note that the ALTER TABLE .. DEALLOCATE UNUSED command de-allocates database
blocks above the High-Water Mark.

PctFree, PctUsed, and FREELISTs

When we create a table, PCTFREE and PCTUSED are two parameters of the STORAGE
clause— they are useful in specifying the behavior of the database blocks in the segment.

PCTFREE defines the minimum percentage of a database block to be reserved for future
updates on the rows in the data block. If we define a PCTFREE of 10, then the database
will fill the data block with new rows until the data block is filled up to 90 percent of its size;
then the data block is removed from the FREELIST, so it's not used for new inserts.

PCTUSED sets the minimum percentage of a database block above which a database block
can return on the FREELIST. In the previous example, after we have reached the PCTFREE,
the database block is removed from the FREELIST. We have set a PCTUSED of 45 on table
creation, so when we delete rows from the table and when the database block reaches a
percentage of usage space less than 45 percent, the database block is put in the FREELIST.
Now the subsequent inserts will put rows in the data block, until the free space reaches the
PCTFREE, and so on.

Having a table with a small PCTFREE parameter will lead to blocks with more data in it, so
FTS operations will benefit from this situation, accessing the same number of rows reading
fewer database blocks. Please note that setting small values to the PCTFREE parameter
could lead to ROW MIGRATION problems during subsequent updates to the rows. PCTUSED
has no meaning, when using Automatic Segment Space Management (ASSM).

See also

» Recipes in Chapter 3, Optimizing Storage Structures about indexing to avoid
Full Table Scans

» In Chapter 8, Other Optimizations the Loading data with SQL Loader and Data Pump
recipe explains the EXPORT/IMPORT process and data loading in more depth

» For row chaining refer to the Avoiding row migration recipe in Chapter 3

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Exploring index lookup

In the previous recipe, we have seen some issues related to FTS operations and when it's
better to avoid them.

One of the methods to avoid FTS is indexing. In this recipe, several issues related to index
lookup and index scan will be presented along with an illustration of the counterpart for
indexes of FTS operation—Index Full Scan.

Getting ready

The examples given are based on a copy of the CUSTOMERS table in the SH schema; we
will use SQL*Plus to execute our tests.

How to do it...

The following steps will demonstrate index lookup:

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Create the MY_CUSTOMERS table as a copy of CUSTOMERS:
CREATE TABLE sh.MY_CUSTOMERS AS
SELECT * FROM sh.CUSTOMERS NOLOGGING;

3. Update the CUST_VALID field to obtain a skewed distribution of values:
UPDATE sh.MY_CUSTOMERS SET
CUST_VALID = "I*
WHERE CUST_VALID = "A" AND MOD(CUST_ID,100) <> 0;
SELECT CUST_VALID, COUNT(*)
FROM sh._MY_CUSTOMERS
GROUP BY CUST_VALID;

4. Create an index on the MY_CUSTOMERS table to test different execution plans:
CREATE INDEX sh.MY_CUSTOMERS_IXVALID
ON sh.MY_CUSTOMERS (CUST_VALID);

5. Test a query on the table, looking for the most common value:
SET AUTOT TRACE EXP STAT
SELECT * FROM sh._MY_CUSTOMERS WHERE CUST_VALID = "1°7;

173

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

6. Test the same query from the previous step but with the less common value:
SET AUTOT TRACE EXP STAT
SELECT * FROM sh_MY_CUSTOMERS WHERE CUST_VALID = "A*";

7. Execute a slightly different query, and replace the previous predicate with a not
equal condition (resulting in the same data):
SET AUTOT TRACE EXP STAT
SELECT * FROM sh_MY_CUSTOMERS WHERE CUST_VALID <> "I1°7;

8. Finally, drop the table created for testing:
DROP TABLE sh_MY_CUSTOMERS;

After following step 1 to step 3, we will reach the following situation:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =RACN X

We have a table where the values in CUST_VALID column are largely skewed—we define a
column as skewed where the values in the column are not equi-distributed, resulting in less
than 0.2 percent of rows with a value of "A" in this field.

In the same column, create an index and execute a query with the same column in
the predicate.

In the first query (step 5), it will ask for the rows with the most common value for the
CUST_VALID field, resulting in the execution plan illustrated in the following screenshot:

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ec2-46-51-176-114.eu-west- Lecompute.amazonaws.com - PuTTY |£Iﬁj

We can see that the database will perform an FTS operation. Using the index to access

rows in the table will use more resources, because most of the data in the table satisfies
the where condition.

Execute the same query, in step 6, but ask for the least common value "A" in CUST_VALID
field. The execution plan of the query changes, as shown in the following screenshot:

ec2-46-51-176-114. eu-west- 1.compute.amazonaws.com - PuTTY |ﬂlﬁj

175

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

Due to the selectivity of the new value used in the predicate (less than 0.2 percent of the
rows in the table will satisfy the predicate), the database switches the execution plan to an
Index Range Scan operation. The index is scanned (only in the range related to "A" values
for the CUST_VALID attribute) to find the rows which satisfy the WHERE clause; this is a very
efficient way to access a table (when the returned rows are few when compared to the total
number of rows in the table).

The effectiveness of an index depends on the number of rows
M selected out of the total number of rows in the table. This is the
Q selectivity of an index. In an ideal index, there is only one row for
each index value. In the real world, an index with a selectivity of
less than 10 percent is considered suitable enough.

The last query will ask for the same result-set, but changing the way in which the
predicate is expressed. There are only "A" and "I" values in the column CUST_VALID,
so the condition expressed as not equal is equivalent to that of the previous query,
expressed with an equal comparison.

Again, there is a change in the execution plan, as shown in the following screenshot:

-
ec?-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

Why did the database optimizer switch back to a long-running FTS operation, instead of
the previous Index Range Scan? The answer is simple—indexes cannot be used when we
compare values with a not equal operator.

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There's more...

We have seen how using a not equal comparison in the WHERE clause of a query, doesn't
allow us to use an index to select the values.

There are other situations which prevent an index from being used:

» Using a function: A function is often used as a predicate. In such cases, it's better
to express the function on the constant side of the comparison and not on the field
side. For example, we want to know the orders less than 1000 including the shipping
fee of 5.25 percent. Suppose we have the TOTAL column of the ORDERS table in
which the value is stored without the shipping fee and this column is indexed, if we
query for (TOTAL * (1 +5.25 /7 100.00)) < 1000.00, it will not use the index.

If we express the same condition as TOTAL <1000.00 / (1+5.25/
100.00), the index on the TOTAL field will be used—if it's convenient to use
it instead of a Full Table Scan.

» Searching for NULL values: NULL values are not stored in indexes, so when we
query for the records with a NULL value in a field X, even if the X column is indexed,
the index will not be used.

The index will be used, instead, if we query for NOT NULL elements, but only
if the resulting operation (accessing the index plus accessing the table) is
less expensive than an FTS. In this case, a Fast Full Scan operation will be
performed on the index, that is, a complete scan of the entire index.

See also

» See the Indexing the correct way recipe in Chapter 3, Optimizing Storage Structures
for more info about using indexes

Exploring index skip-scan and index

range-scan

In this recipe, we will see how to use composite indexes and also the difference between
index skip-scan and index range-scan operations.

Getting ready

For this recipe, we will use a copy of the CUSTOMERS table in the SH schema and SQL*Plus
to execute our tests.

177

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

How to do it...

The following steps will demonstrate index skip-scan and index range-scan:

1.

178

Connect to SH schema:
CONNECT sh@TESTDB/sh

Create MY_CUSTOMERS table as a copy of CUSTOMERS:
CREATE TABLE sh.MY_CUSTOMERS AS
SELECT * FROM sh.CUSTOMERS NOLOGGING;

Create an index on the MY_CUSTOMERS table based on multiple fields:
CREATE INDEX sh.CUSTOMERS_IXMULTI ON sh.MY_CUSTOMERS
(CUST_GENDER, CUST_YEAR_OF_BIRTH, CUST_FIRST_NAME);

Compute statistics on the table:

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", "MY_CUSTOMERS®,
estimate_percent => 100,
method_opt => "for all columns size 1%);

Execute a query on the table, using the first two fields of the CUSTOMERS I XMULTI
index in the predicate:

SET AUTOT TRACE EXP
SELECT CUST_ID FROM sh.MY_CUSTOMERS
WHERE CUST_GENDER = "M" AND CUST_YEAR_OF_BIRTH = 1945;

Execute a query using the first and the last fields of the index in the predicate:
SELECT CUST_ID FROM sh.MY_CUSTOMERS
WHERE CUST_GENDER = "F® AND CUST_FIRST_NAME = "Yvette-";

Execute a query using the second and the last fields of the index in the predicate:
SELECT * FROM sh.MY_CUSTOMERS

WHERE CUST_YEAR_OF_BIRTH = 1951

AND CUST_FIRST_NAME = "Yvette~;

Drop the table used for testing:
SET AUTOT OFF
DROP TABLE sh.MY_CUSTOMERS;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

When we query the table using the first fields of a multi-column index, the optimizer can
choose to use an Index Range Scan operation. This is what happens in step 5, as shown
in the following screenshot:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

When running an Index Range Scan operation, the database finds the first block of the
index containing values that satisfy the predicate (in our example CUST_GENDER = ""M""
and CUST_YEAR_OF_BIRTH = 1945) and scans the index data block to find all the entries
that satisfy the conditions—examining the leaf blocks of the index using the link between
the leaves. This operation is very fast.

In step 6 we use the first and the third field of the index in our predicate in this case the
execution plan will change as shown in the following screenshot:

ec2-46-31-176-114 eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

179

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

The Index Skip Scan operation is a compromise between the Index Range Scan and Fast Full
Scan. In our example, the database looks up the first leaf in the index in which entries have
CUST_GENDER = ""F"", then scans all the possible values for CUST_YEAR_OF_BIRTH and, for
each value, scans the index for CUST_FIRST_NAME = ""Yvette".

See the Oracle Database Concepts 11gR2 documentation for a
complete description of how B-tree indexes work and what B-tree

branch and leaf nodes are, available online at:

http://download.oracle.com/docs/cd/E14072_01/
server.112/e10713/indexiot.htm#CNCPT811

This operation is slower than an Index Range Scan, but faster than a Fast Full Scan because
less data blocks have to be read.

In step 7, we query rows with a predicate not involving the first field of the
CUSTOMERS_IXMULT index, the results are as follows:

-
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |£Iﬁj

We can see that even in this case the Index Skip Scan is chosen by the optimizer, and the
behavior in executing this plan will be similar to the previous one.

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There's more...

In this recipe, we have seen that we can use multi-column indexes to access our data faster.
When creating such an index, keep in mind that if the first column of the index is more
selective, operations like Index Range Scans will benefit. If we perform Index Skip Scan
operations, instead, performance will benefit more with a less selective column in the first
place of the index.

Try to create multi-column indexes on the attributes of a table you use together in the
predicate. If the index contains fields of the projection, the database could use the index only
to answer the query, without accessing table data.

If the leading columns of the index have low cardinality (that is, the number of distinct values
in the column is very small compared to the number of rows in the table), using compression
will lead to performance improvement in Index Range Scanning operations.

See also

» See the Indexing the correct way recipe in Chapter 3, Optimizing Storage Structures
for more information on using indexes

Introducing arrays and bulk operations

In this recipe, we will see different ways to insert data in our tables and we will make some
considerations about the INSERT statement's performance.

We will see how arrays can be used to speed up insert and select statements, and why it may
be better to use a single statement to achieve certain goals than using a procedural approach.

How to do it...

The following steps will demonstrate the use of arrays to insert data into the tables:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create an empty table called MY_SALES with the same structure as the SALES table:
CREATE TABLE sh.MY_SALES AS
SELECT cust_id, prod_id FROM sh.sales WHERE 1=0;

181

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

3. Enable timing:
SET TIMING ON

4. Create a PL/SQL block to insert the sales of the second half of year 2001 from the
SALES table to the new table using a cursor to scroll the SALES table:

DECLARE
CURSOR curs_cl IS
SELECT cust_id, prod_id FROM sh.sales
WHERE time_id between TO_DATE("20010701", "YYYYMMDD")
AND TO_DATE("20011231%", "YYYYMMDD");
BEGIN
FOR x IN curs_cl
LOOP
INSERT INTO sh.MY_SALES (cust_id, prod_id)
VALUES (X.cust_id, x.prod_id);
END LOOP;
END;

5. Create a PL/SQL block to insert the sales of the second half of 2001 from the
SALES table to the new table using ARRAYS to collect and insert data:

DECLARE
TYPE t_products_list IS TABLE OF
sh_.sales._prod_id%TYPE INDEX BY BINARY_INTEGER;
TYPE t_customers_list IS TABLE OF
sh.customers.cust_id%TYPE INDEX BY BINARY_INTEGER;

products_list t_products_list;
customers_list t_customers_list;
BEGIN

SELECT cust_id, prod_id
BULK COLLECT INTO customers_list, products_list

FROM sh.sales

WHERE time_id between TO_DATE("20010701", "YYYYMMDD®")
AND TO_DATE("20011231%, "YYYYMMDD");

FORALL j IN 1 .. customers_list.COUNT
INSERT INTO sh_MY_SALES (cust_id, prod_id)
VALUES (customers_list(j), products_list(j));
END;

182

www.it-ebooks.info

http://www.it-ebooks.info/

6. Insert the data using a simple SQL statement:
INSERT /*+ APPEND */ INTO sh.MY_SALES (cust_id, prod_id)
SELECT cust_id, prod_id
FROM sh.sales
WHERE time_id between TO_DATE("20010701", "YYYYMMDD")
AND TO_DATE("20011231%, "YYYYMMDD");

7. After our tests, drop the used table:
SET TIMING OFF
DROP TABLE sh._MY_SALES;

Chapter 4

In the first steps, we have created an empty table called MY_SALES to test different methods

to insert data.

The first example, in step 4, uses a procedural approach. We open the curs_cl cursor to
loop through the SALES table, selecting the rows we want to insert in the MY_SALES table;

the insert is done using a row-by-row loop.

The results obtained are shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NEN X

4 [m

The second example, in step 5, again uses a PL/SQL block. This time we use two arrays,
customers_list and products_list, to store data temporarily; one is used for the

cust_id and the other for the prod_id, as defined in the DECLARE section of the code.

www.it-ebooks.info

183

http://www.it-ebooks.info/

Optimizing SQL Code

These arrays are used to BULK COLLECT the data from the SALES table and then to insert the
data in the MY_SALES table using a FORALL instruction. A common mistake is to think that
the FORALL statement is a loop—this statement is executed only once, for passing the arrays
as arguments to the INSERT.

We can see the results of this example in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i-J

QT I R, T, At}

-y products_list

We can see a huge improvement in performance using the latter approach, instead of the
cursor-for-loop used in the first example, because the latter approach is more than 10 orders
of magnitude faster.

In the last example, all of the work is done in a single INSERT statement, selecting from the
SALES table to insert directly into the MY_SALES table. We use the hint /*+ APPEND */ (see
Exploring the optimizer hints in Chapter 7, Improving the Oracle Optimizer for more details
about hints) to instruct the database to load the data in the table using a direct path load,
that is, bypassing the buffer cache and writing directly to the disk.

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We can see the results for this example in the following screenshot:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY | =ARC X

The timing for the operation is slightly better in this case than in the example in which we
used the arrays. However, there are some considerations to be taken care of, when using
direct path load, explained later in this recipe.

In the last step, we drop the table to clear the schema from our tests.

There's more...

Looking at the examples in this recipe, there are two lessons to be learned. The first is "never
write procedural code when you can perform the same task in a single SQL instruction" — let
the optimizer do the work it's designed for.

The second lesson is "use arrays and set operations when you can". The Oracle database
works better when the operations are expressed in sets, so the engine can use all the
resources available to satisfy the requests optimally.

When to use direct path load

In step 6, we used a direct path load to insert data in the MY_SALES table using the APPEND
hint. However, there are some considerations to be taken care of when using direct path load,
to understand when to use and when not to use this type of operation. If direct path load
would be the fastest method to insert data in tables, without constraints, the optimizer would
use it by default.

The first consideration is what happens when the database engine "moves" data blocks to the
disk, without using the buffer cache. When we have to move small datasets, direct path load
would be slower than conventional path load, which uses the buffer cache.

185

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

Another issue is serialization, there can be only one direct path load on a table, with no other
concurrent updates, deletes, or inserts. This is a scalability issue in a concurrent environment.
The table cannot be queried when the load operation is in progress, until a commit (or a
rollback) is executed.

The last peculiarity of direct path load is related to the High-Water Mark. It loads data above
the High-Water Mark, even if there is room in the blocks below it. We have analyzed the
effects of the High-Water Mark on performance in this chapter in Avoiding full table scans.

Now that we have a better comprehension of the direct path load, you will know when to use
it best—in data loading batches, populating staging, data warehouses, and so on. But also
when not to use it—in transaction processing and concurrent environments.

However, the considerations made when commenting our example are still valid. We can
use the single SQL statement without the APPEND hint, as follows:

INSERT INTO sh.MY_SALES (cust_id, prod_id)
SELECT cust_id, prod_id FROM sh.sales
WHERE time_id between

TO_DATE("20010701", "YYYYMMDD®)
AND TO_DATE("20011231%, "YYYYMMDD");

In this case, we obtain results similar to the previous execution with the APPEND hint, as
shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =HECN X

See also

» There's more on arrays and BULK COLLECT in Array processing and bulk collect
in Chapter 6, Optimizing PL/SQL Code

» You can find more details on optimizer hints in Exploring the optimizer hints in
Chapter 7, Improving the Oracle Optimizer

» Using create table as select in Chapter 8, Other Optimizations shows more
information on this kind of operation

» Direct path load from external files is explored in more detail in Chapter 9,
Tuning memory in the Direct path inserting recipe

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Optimizing joins

One of the most time-consuming operations in a database is the JOIN. We use this when we
need to join two or more tables due to the normalized structure of the database. There are
many types of joins (equi-join, self-join, outer join, anti-join, and so on).

In this recipe, we will see some join algorithms the database can use to answer our queries,
performance related to every type of join, and some tricks to avoid joins (when possible).

How to do it...

The following steps will demonstrate some common types of joins:

1.

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Create a table called MY_CUSTOMERS as a copy of the CUSTOMERS table:
CREATE TABLE sh.MY_CUSTOMERS AS SELECT * FROM sh.CUSTOMERS;
ALTER TABLE sh._MY_CUSTOMERS

ADD CONSTRAINT PK_MY_CUSTOMERS PRIMARY KEY (CUST_ID);

Create a table called MY_COUNTRIES as a copy of the COUNTRIES table:
CREATE TABLE sh.MY_COUNTRIES AS SELECT * FROM sh.COUNTRIES;
ALTER TABLE sh_MY_COUNTRIES

ADD CONSTRAINT PK_MY_COUNTRIES PRIMARY KEY (COUNTRY_ID);

Execute a first join between the table MY_CUSTOMERS and the original
CUSTOMERS table:

SET AUTOT TRACE EXP STAT

SELECT COUNT(*)
FROM sh.MY_CUSTOMERS M, sh.CUSTOMERS C
WHERE M.CUST_ID = C.CUST_ID;

Execute a join between the two tables:

SET AUTOT TRACE EXP STAT

SELECT C.CUST_FIRST_NAME, C.CUST_LAST_NAME, N.COUNTRY_NAME
FROM sh._MY_CUSTOMERS C, sh_MY_COUNTRIES N
WHERE C.COUNTRY_ID = N.COUNTRY_ID;

187

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

6. Execute the same join between the two tables with a different condition:
SET AUTOT TRACE EXP STAT
SELECT C.CUST_FIRST_NAME, C.CUST_LAST_NAME, N.COUNTRY_NAME
FROM sh._MY_CUSTOMERS C, sh_MY_COUNTRIES N
WHERE N.COUNTRY_ID BETWEEN C.COUNTRY_ID
AND C.COUNTRY_ID + 10;

7. Clean the SH schema:
DROP TABLE sh_MY_COUNTRIES;
DROP TABLE sh_MY_CUSTOMERS;

We have created two tables, MY_CUSTOMERS and MY_COUNTRIES, to experiment with some
of the different types of joins.

In the query in step 4, the MY_CUSTOMERS table is joined with CUSTOMERS, using an equi-join
on the primary key (the field CUST_ID).

We can see the execution plan and statistics for this query in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In this operation, the database used NESTED LOOPS to fulfill the query. This algorithm
works as follows:

1. Read a row from the first dataset (the CUSTOMERS_PK index, in our example,
using an INDEX FAST FULL SCAN to scroll all index leaf nodes).

2. For each row of the first dataset query the second dataset (the PK_MY_CUSTOMERS
index in our example, using an INDEX UNIQUE SCAN to locate the record that
matches the join condition).

3. Repeat from step 1 until the end of the first dataset is reached.

In the execution plan shown earlier, the last operation SORT AGGREGATE, calculates
the requested COUNT (*) value.

The use of a NESTED LOOP could be a problem if we need to access the major part of
the inner table and there isn't an index to speedup this operation.

In step 5, we query MY_CUSTOMERS and MY_COUNTRIES tables joined together
on COUNTRY_ID field, using an equi-join. We can see the execution plan in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

189

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code
In this operation, the algorithm selected by the database engine is the Hash Join.

To execute the join, the database first creates a hash table based on the join fields of the
inner table. It then executes the query for nested loops, locating the rows which satisfy the
join condition using the hash function.

In our example, we can see the full table scan of the MY_COUNTRIES table, used to build
the hash table, and the full table scan of MY_CUSTOMERS—scrolling the last table. The
hash sort is executed using the hash function to locate the corresponding values of the
MY_CUSTOMERS table.

The hash join is quickly executed, but it can be used only when we have an equi-join
condition, because we cannot perform a range operation on the hash table, to satisfy
for example, a "greater than" condition.

In step 6, we can see a slightly modified version of the previous example. Here the equi-join
condition is replaced by a range match criteria (this makes no sense in the real world, but is
useful to explain the matter).

We can see the execution plan for this query in the following screenshot:

ec2-46-51-176-114.eu-west-L.ocompute.amazonaws.com - PuTTY |ﬂlﬁj

SR (T RS FU R

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In the following screenshot, you can see statistics for the same query:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NRCN X

In the previous example, we have seen a Sort-Merge Join in action. This algorithm works
as follows:

1. The first table is sorted by join fields.
2. The second table is sorted by join fields.
3. A merge operation between the two sorted datasets is executed.
The Sort-Merge Join is more efficient than the NESTED LOOPS and doesn't need indexes

to quickly access the inner table. It's slower than the Hash Join, but can be used for
nonequi-join queries, as the one in our example.

There's more...

There are some considerations to be kept in mind when choosing the join method that
best fits your needs.

For example, Sort-Merge Joins joins are based upon two sort operations, which uses
memory and CPU, while Hash joins use memory to generate the hash table.

Generally speaking, nested loops are used only when there is an index on the inner
table—the table which is scanned for every row in the outer table—and the rows of the
inner table intersected by the join are a small subset (so scanning the entire table to
merge-sort or to build the hash table isn't efficient); otherwise the hash join method
is preferred.

There are also some tricks to avoid the join operation—denormalization, clusters, and
materialized views.

191

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

The first trick is denormalization. If we denormalize some tables, we don't need to join them
while executing our queries on these tables, because all the required data is in a single table.

We can also use clusters to speed our join queries (when the cluster key contains our join
keys); by reading clusters we get the data from both the tables, and hence can avoid joins.

The last trick is to use materialized views, enabling query rewrite, so we can find the answer
for our join queries in the materialized view.

See also

» We have seen denormalization in Chapter 2, Optimizing Application Design in the
Optimizing performance with schema denormalization recipe

» We have talked about index clusters in the Using index clusters recipe in Chapter 3,
Optimizing Storage Structures

» For more information on materialized views, see the Reducing the number of
requests to the database using materialized views recipe also in Chapter 2

Using subqueries

We often use subqueries in our SQL statements to nest more queries in one statement,
using the results from an "inner" query to calculate other values.

In this recipe, we will see the use of subqueries for getting only a subset of records,
demonstrating the constructs (NOT) EXISTS and (NOT) IN, highlighting the semantic
difference between them (and when to choose one type of statement or the other).

How to do it...

The following steps will demonstrate the use of subqueries:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh
SET AUTOT TRACE EXP STAT

2. Select a table using the IN operator:
SET AUTOT TRACE EXP STAT
SELECT AMOUNT_SOLD FROM sh.SALES S
WHERE S.CUST_ID IN (
SELECT C.CUST_ID FROM sh.CUSTOMERS C
WHERE C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)

):

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

3. Rewrite the same query using the EXISTS construct:
SELECT AMOUNT_SOLD FROM sh.SALES S
WHERE EXISTS (
SELECT NULL FROM sh.CUSTOMERS C
WHERE S.CUST_ID = C.CUST_ID
AND C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
)
4. Select a table using the NOT EXISTS operator:
SELECT AMOUNT_SOLD FROM sh.SALES S
WHERE NOT EXISTS (
SELECT NULL FROM sh.CUSTOMERS C
WHERE S.CUST_ID = C.CUST_ID
AND C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
)
5. Rewrite the same query using the NOT IN construct:
SELECT AMOUNT_SOLD FROM sh.SALES S
WHERE S_CUST_ID NOT EXISTS (
SELECT C.CUST_ID FROM sh.CUSTOMERS C
WHERE C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
)
6. The following is a different (algebraic) way to express the same query:
SELECT AMOUNT_SOLD FROM sh.SALES S
LEFT OUTER JOIN sh.CUSTOMERS C
ON S.CUST_ID = C.CUST_ID
AND C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
WHERE C.CUST_ID IS NULL;

The query in step 2 selects the amount sold for the sales regarding customers who have a
credit limit which is either 10000, 11000, or 15000.

We have expressed the query using a subquery to identify the customers with the appropriate
credit limit and the IN operator to filter only the sales related to those customers. We have
used the IN operator to correlate the subquery to the main query:

SELECT C.CUST_ID FROM sh_.CUSTOMERS C WHERE C.CUST_CREDIT_LIMIT

193

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

1
‘Q When we have a subquery, we can try to optimize

the subquery and the main query separately.

The execution plan for this query and the statistics are shown in the following screenshot:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂlﬁj

In step 3, we execute a query—similar to the previous one—changing the way in which
selection is made on the SALES table. We use the EXISTS operator to verify that for every
SALES row we are examining, there is at least one related row in the CUSTOMERS table with
one of the specified credit limits.

In the subquery we select NULL, but we can select every field or scalar value, even * (star).
We use NULL to explicitly clarify that we are "not selecting" anything from the CUSTOMERS
table, but we are using the subquery only to filter the outer query on SALES.

194

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In the following screenshot you can see the execution plan and statistics generated when the
query is executed:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|i_J

Comparing the results of the two queries, we can see that the same execution plan is
chosen by the optimizer, and the same gets/reads are made to satisfy our request. They
end up in the same execution plan, so the same work is done in the same execution time.

In step 4, we execute an anti-join query to obtain the opposite result of the query executed
in the previous step. We want the amount of SALES made by a customer with a credit limit
different from the values used earlier.

In our outer query, we use the NOT EXISTS clause to consider the records that are not
related to the customers with the undesired credit limit values.

195

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

The execution plan and statistics for this query are shown in the following screenshot:

ec2-46-51-176-114.eu-west-Lcompute.amazenaws.com - PuTTY |ﬂ|ﬁj

In step 5, we rewrite the previous query using the NOT IN operator; in the next screenshot we
can see the results of this execution:

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ec2-46-51-176-114. eu-west- l.compute.amazonaws.com - PuTTY |ﬂlﬁj

Even in the previous case we can see the substantial equivalence of the NOT IN and NOT
EXISTS operations, related to gets/reads.

In step 6, we do a transformation to the query, using an algebraic expression equivalent to
the intersection of two sets:

ANB=A-(A-B)
So we have:

A-B=A-(ANB)

197

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

In our query, we select all records in SALES (A) minus (NOT EX1STS) records in CUSTOMERS
(B). So we can use the equivalent A - (A N B) form, using a LEFT OUTER JOIN:
SELECT AMOUNT_SOLD FROM sh.SALES S
LEFT OUTER JOIN sh.CUSTOMERS C
ON S_CUST_ID = C.CUST_ID
AND C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
WHERE C.CUST_ID IS NULL;

The result of the execution of this query is in the next screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i‘]

) OR "C™,"CUS)IT LIMIT™ (+)=1100¢

Even if we have the same statistics and almost the same execution plan, the meaning of
the last query isn't as intuitive as in the previous case. So, it's better to avoid using such
transformation in our code, and we have seen that there is no performance improvement
(or detriment) in doing so.

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There's more...

We have seen that there is no performance improvement in using IN or EXISTS in our
queries. However, we cannot use one of them without considering the expected result.

Let's perform a small experiment:

1. Connect to the HR schema:
CONNECT hr@TESTDBZhr

2. Query for employees who are not managers using NOT IN:
SELECT COUNT(*) FROM hr.EMPLOYEES E
WHERE E.EMPLOYEE_ID NOT IN (
SELECT E2.MANAGER_ID FROM hr.EMPLOYEES E2
);

The result for this statement is as shown in the following screenshot:

-
ec2-46-51-176-114 eu-west-1.compute.amazonaws.com - PuTTY | | S

The query replies that there are no employees (zero) who aren't managers.
3. Query for employees who are not managers using NOT EXISTS:
SELECT COUNT(*) FROM hr.EMPLOYEES E
WHERE NOT EXISTS (
SELECT NULL FROM hr.EMPLOYEES E2
WHERE E2_MANAGER_ID = E.EMPLOYEE_ID

199

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

The result is as shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

The query shows that there are 89 employees who aren't managers.

What happens now? We have two equivalent queries showing
different results?

No errors: simply the IN and EXISTS behave differently when we consider
NULL values. Let's modify the query in step 2.

4. A modified version of the query in step 2 would look similar to the following:
SELECT COUNT(*) FROM hr.EMPLOYEES E
WHERE E.EMPLOYEE_ID NOT IN (
SELECT E2.MANAGER_ID FROM hr.EMPLOYEES E2
WHERE E2.MANAGER_ID IS NOT NULL
);

We have added the condition that MANAGER_ID is not null in our subquery.
The results of the modified query are shown in the following screenshot:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

The result is now equivalent (and correct); it replies that there are 89
employees who aren't managers in our table.

It's very important to remember this difference when using (NOT) IN queries instead
of (NOT) EXISTS, which isn't affected by the same problem.

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Tracing SQL activity with SQL Trace

and TKPROF

In this recipe, we will see how to use SQL Trace and TKPROF to trace SQL statements in
a session.

There could be situations when we have to diagnose and tune a database, on which an
application is running for which we don't have the source code, so we don't know which SQL
statements are executed. In these situations, or when we want to investigate deeper than the
AUTOTRACE feature we have used until now, the use of these tools is invaluable.

Getting ready

To trace SQL in our session, we have to make some modifications to the database parameters
(if not set according to our needs).

The first parameter to set is TIMED_STATISTICS=TRUE, it can be set at the system or
session level, to allow the database to trace the timing of the operations. It adds a very little
overhead to the operations, so it can be left in place forever.

ALTER SYSTEM SET TIMED_STATISTICS=TRUE;

We have to set the destination for our trace files also. When using dedicated servers, the
parameter is USER_DUMP_DEST. In the multi-threaded server environment the parameter is
BACKGROUND_DUMP_DEST, and it will be a nightmare to trace the SQL statements with the
session hopping from one shared server to another shared server.

For example, we can also set the maximum size of our trace file to 100 MB:

ALTER SYSTEM SET MAX_DUMP_FILE_SIZE="100M";

You can use the following statement to change the name of the generated

{* trace file:
'~ ALTER SESSION SET TRACEFILE_IDENTIFIER = SYSDUMP_SESSION;

201

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

How to do it...

The following steps will show how to trace SQL activity:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Start tracing by issuing the following command:
ALTER SESSION SET SQL_TRACE=TRUE;

3. Execute some work:
SELECT AMOUNT_SOLD
FROM sh.SALES S
WHERE S.CUST_ID IN (
SELECT C.CUST_ID
FROM sh.CUSTOMERS C
WHERE C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000)
)
4. Stop tracing by using the following command:
ALTER SESSION SET SQL_TRACE=FALSE;

5. Identify the session:
SELECT s.sid, s.serial#, s.process, p.spid
FROM v$session s, v$process p
WHERE s.audsid = userenv("sessionid®)
AND s.paddr = p.addr;

6. Run TKPROF (replacing 22801 in the example with the SP1D value returned
from the previous query):

SQL>HOST
$ TKPROF TESTDB ora_22801.trc 22801.txt

7. Review the generated report file (22801 . txt in our example).

To enable SQL tracing in our session, we can simply set the parameter SQL_TRACE to TRUE.

In step 3, we have executed a simple query, but we could perform many queries, procedures,
jobs, and so on.

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In step 4, we have stopped the trace by setting the SQL_TRACE parameter to FALSE.

To identify the trace file to use with TKPROF, we can query the database as in step 5. The
SPID field represents the server process ID used to name the trace file, while the process
field is the PID of our process in the operating system (as shown by PS).

In the following screenshot, we can see the results of the query and the PS command in the
test environment:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =RREN X

We can go to the directory set in the USER_DUMP_DEST parameter and launch TKPROF to
format the trace file to a human-readable form, as shown in the following screenshot:

== e |

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

203

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing SQL Code

In the following screenshot, we can see an excerpt of the report generated by TKPROF:

SQL ID: fd4gfjyhsjfhé

Plan Hash: 3549450340

SELECT AMCUNT SCLD

FROM

sh.SALES 5 WHERE 5.CUST_ID IN (SELECT C.CUST_ID FRCM sh.CUSTCMERS C WHERE
C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000})

call count cpu elapsed disk query current rows
Farse 2 0.00 0.00 4] 1] 4] 4]
Execute 2 0.00 0.00 0 L1} 0 0
Fetch 12540 0.84 2.38 44458 57373 [} 188070
total 12544 0.84 2.398 44458 57373 1} 188070

Misses in library cache during parse: 0
Cptimizer mode: ALL ROWS
Parsing user id: 35Y3

Rows Row Source Cperation

26716 HASH JOIN (cr=3556 pr=1454 pw=0 time=103392 us cost=11860 =size=15619957 card=918821)
10740 TABLE ACCESS FULL CUSTCMERS (cr=1457 pr=1454 pw=0 time=15724 us cost=405 size=145691
163647 PARTITION RANGE ALL PARTITICN: 1 28 (cr=209%9 pr=0 pw=0 time=273786 us cost=11451 =ize
163647 TABLE ACCESS FULL SALES PARTITICHN: 1 28 (cr=2099 pr=0 pw=0 time=122636 us cost=11451

In the results you can see a table showing different information related to the query.

The three phases required to execute the statement are reported in rows—Parse, Execute,
and Fetch. The parse step includes syntax and permission checks, and transforms the
statement into an execution plan. The execute step is the execution of the statement, and
the fetch step is the iteration over the returned rows.

For each phase, there are seven columns. They are as follows:
» count: The number of times the operation on the row (Parse, Execute, and Fetch)
is executed
» cpu: The total CPU time in seconds
» elapsed: The total elapsed time in seconds
» disk: The number of physical disk reads (from the datafiles)
» query: The number of buffers retrieved

» current: The number of buffers retrieved in current mode (for DML statements
UPDATE, INSERT, DELETE)

» rows: The number of rows returned

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

There's more...

We have seen how simple it is to trace SQL statements executed in our session.

However, if we want to set up tracing in a different session, we cannot use the SQL_TRACE
parameter as shown in our example. We have to execute the procedure SYS.DBMS_SYSTEM.
SET_SQL_TRACE_IN_SESSION, giving the SID and SERIAL# of the session to be traced as
parameters to the procedure.

The SID and SERIAL# of the sessions can be queried from the VSSESSION dynamic
performance view, as shown in the following query:
SELECT

SID, SERIAL#, AUDSID, PADDR, USERNAME,

COMMAND, SERVER, OSUSER, PROCESS, MACHINE,

PORT, TERMINAL, PROGRAM

FROM V$SESSION

See also

» In Appendix A, Dynamic Performance Views there is a summary of useful Dynamic
Performance Views used in the book

» Appendix B, A Summary of Oracle Packages Used for Performance Tuning shows
Oracle Tools and Packages used for performance tuning

205

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort
Operations

In this chapter, we will cover:

» Sorting—in-memory and on-disk
Sorting and indexing

Writing top n queries and ranking
Using count, min/max, and group-by

Avoiding sorting in set operations: union, minus, and intersect

vV v v.Vvyy

Troubleshooting temporary tablespaces

Introduction

In this chapter, we analyze some performance issues related to the most time-consuming
operation in the database—sort operations.

In the next few recipes, you will see that sorting is related not only to the order-by clause
in an SQL query, but also to other type of statements, such as group by and distinct, set
operations, ranking, certain kinds of joins and subqueries, as well as index creation.

In the first recipe, we will see the difference between in-memory and on-disk sort operations,
and the differences between optimal, one pass, and multi-pass sort operations.

The second recipe is about sorting and indexing. In this recipe, observe how an index can
change the execution plan of a query, hence improving the performance by reducing or
avoiding sort operations altogether.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In the third recipe, we will investigate what happens when we perform the top n queries,
queries which return the first n elements of a sorted set—and how to tune such statements.

In the fourth recipe, we will see the use of aggregate functions—with or without the group-by
clause, and some tips on improving them.

The fifth recipe is about set operations and their equivalent join and anti-join queries. The
last recipe is about troubleshooting temporary tablespace performance issues.

Sorting—in-memory and on-disk

In this recipe, we will see how to diagnose in-memory and on-disk sort, and the differences
between optimal, one-pass, and multi-pass sort.

Getting ready

We will use a SQL script from SQL*Plus environment to test in-memory and on-disk sort
(without displaying tons of data on the screen).

Open a text editor (for example, vi on UNIX systems or notepad for Windows) and save the
following script as 2602_05_TestSort.sqgl in a directory of your choice (the home directory,
for example):

CONNECT sh@TESTDB/sh

SET LINESIZE 120

SELECT * FROM v$sysstat WHERE name like "%sorts®%”;
-- Setting small sort area

ALTER SESSION SET WORKAREA _SIZE_POLICY = "MANUAL";
ALTER SESSION SET SORT_AREA_SIZE = 1000;

ALTER SESSION SET SORT_AREA_RETAINED_SIZE = 1000;
SET TERMOUT OFF

SPOOL /dev/null

SELECT prod_id, cust_id, time_id FROM sales ORDER BY amount_sold desc;
SPOOL OFF

SET TERMOUT ON

SELECT * FROM v$sysstat WHERE name like "%sorts®%”;
-- Automatic sort area

ALTER SESSION SET WORKAREA _SIZE_POLICY = "AUTO";
SET TERMOUT OFF

SPOOL /dev/null

SELECT prod_id, cust_id, time_id FROM sales ORDER BY amount_sold desc;
SPOOL OFF

SET TERMOUT ON

SELECT * FROM v$sysstat WHERE name like "%sorts®%”;

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

How to do it...

Let's start by opening a SQL*Plus session and executing the following commands:

1.

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Query a dynamic performance view to know the kind of sorts executed from
instance start-up:

SELECT * FROM v$sysstat WHERE name like "%sorts%";

Read the memory required for a sort operation in a query:

SET AUTOT TRACE EXP

SELECT prod_id, cust_id, time_id FROM sales ORDER BY time_id;
SET AUTOT OFF

Connect as SYSDBA and reset the dynamic performance views by restarting
the database instance:

CONNECT / AS SYSDBA
SHUTDOWN IMMEDIATE
STARTUP OPEN

Launch the script prepared before (prefix the filename with the folder in which
the script is located):

®2602_05_TestSort.sql

Show optimal, one-pass, and multi-pass sorts:
SELECT
(low_optimal_size / 1024) as Low_KB,
((high_optimal_size + 1) / 1024) as High_KB,
(optimal_executions * 100 / total_executions)
as Pct_Optimal,
(onepass_executions * 100 / total_executions)
as Pct_OnePass,
(multipasses_executions * 100 / total_executions)
as Pct_MultiPasses
FROM v$sgl_workarea_histogram
WHERE total_executions <> 0
order by 1;

209

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

7. Investigate the optimal PGA size:

SELECT

round(PGA_TARGET_FOR_ESTIMATE / 1024 / 1024)
AS PGA_Target_MB,

ESTD_PGA_CACHE_HIT_PERCENTAGE,
ESTD_OVERALLOC_COUNT

FROM V$PGA_TARGET_ADVICE

ORDER BY 1;

Let's explain the steps of this recipe.

The query in step 2 shows the statistics collected in the database after sorting. You can
see an example of the output in the following screenshot:

-
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY | =RACN X

The output is divided between in-memory (the first row) and on-disk (the second row) sorts,
while the number of rows sorted is displayed in the last row. To obtain better performance,
we need to perform sorts in memory and not on disk.

In step 3, the execution plan of a simple query—involving an ORDER BY clause—is elaborated,
and the output can be seen in the following screenshot:

210

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlihj

%

We can use this method to estimate memory requirements to execute the sort in the memory.
The value in the TempSpc column of our example is 24 MB, which is the memory required to
execute the sort in memory.

In step 4, we restart the database to reset the values collected in dynamic performance views;
we can perform this operation because we are in a test environment and we want to compare
the statistic values generated by two different executions in a fast way for the sake of brevity.

In step 5, the script is shorter; in this script the same query on dynamic performance view as
in step 2 is executed, before and after a query on the SALES table with an order by clause.

The same group of queries is executed using the AUTOMAT I C policy for memory management
and using a MANUAL policy, which allocates some space for the work, so it's executed on-disk.

We can use the recommended parameter PGA_AGGREGATE_TARGET
. tosetthe PGA memory available to all server processes attached to the
% instance. This parameter can be set to a value expressed in KB, MB, or
s GB, and when this value is nonzero, the WORKAREA_SI1ZE_POLICY
is automatically set to AUTO. Setting PGA_AGGREGATE_TARGET to O
automatically sets WORKAREA _SIZE_POLICY to MANUAL.

211

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The output can be seen in the following screenshot:

We can see that before the first execution we have 2220 sorts in-memory and 0 sorts on-disk.

We then set a MANUAL policy, reserving the size of 1000 database blocks of memory for
sorting, with the following statements:

ALTER SESSION SET WORKAREA_SIZE_POLICY = "MANUAL";

ALTER SESSION SET SORT_AREA_SIZE = 1000;

ALTER SESSION SET SORT_AREA_RETAINED_SIZE = 1000;

After this change in the session configuration, observe that the number of on-disk sorts
changes from zero to one, because the sort cannot execute in-memory.

212

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In fact, the DB_BLOCK_SI1ZE for our database is 8 KB, which reserves 8192 KB of memory
for sort operations, but actually needs 24 MB of memory to complete the sort in-memory.
When we restore the WORKAREA_S1ZE_POLICY to AUTO, the sorts occur in memory and
not on-disk.

The query in step 6 indicates the percentage of optimal, single-pass, and multi-pass sorts
depending on the memory used for the WORKAREA. The output of this operation is as shown
in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i-J

The first two columns show the range in KB that is used to evaluate the optimal WORKAREA
size. The last three columns show the percentage of optimal executions (that is the sort
operations occurred totally in memory), the percentage of one-pass sorts (that is the sort
operations with a final merge completely in memory), and the percentage of multi-pass sorts
respectively, when the merge operation is executed using more steps with partial results
stored on-disk.

In the last step, we execute a query which returns three columns: PGA Target, Estimated
PGA Cache Hit Percentage, and Estimated Overal location Count.

213

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The output of this query is as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

With the help of this query we can find the optimal size for the PGA, because for multiple PGA
Target sizes (in MB) there is an estimated over-allocation (which we want to avoid, so we'll
consider only those rows with a value of zero in this field) and an estimated percentage of
cache hit for PGA. We will choose the last value after which the increase in the value of the
second field is very small. In our example, values of more than 236 MB are useless, because
there is no increase in the ESTD_PGA_CACHE_HIT_PERCENTAGE field even if we increase
the PGA size (we have already reached 100 percent, so using more memory won't get a
further performance increase).

In our example, a value of 59 MB is the optimal value, because there is more than 85 percent
in cache hit (exactly 87 percent), and to increase this percentage we need to multiply the
memory usage by 4 up to 236 MB to obtain an increase of 13 percent in the cache hit value.

There's more...

For a better understanding of the concepts introduced in this recipe, let's see how the
database manages sort operations. We will also look at some concepts of database
memory architecture.

The sort operation can be done in memory if there is enough space in the sort area, which
is a part of the User Global Area; in this case we have an optimal sort.

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

If we are using a dedicated server connection, the User Global Area is located inside the
Program Global Area (PGA). If we use an Oracle Shared Server Connection, the User Global
Area is not inside the PGA, but it's in the Shared Pool. Hence, an application which often
performs sorting should not use Oracle Shared Server Connections.

If the space needed for sorting is greater than the space reserved for the sort area, the data
to be sorted is split into smaller pieces, called sort runs. The sort occurs on every single byte,
which is stored in temporary segments on-disk.

The data of sort runs are finally merged together to obtain the final result. If there is enough
space for this merge operation in the sort area, we have a single-pass (on-disk) sort,
otherwise the merge operation is executed in more steps, merging two subsets of sort runs
in each step; in this case, we have a multi-pass (on-disk) sort.

When the 1/0 operation from and to disk is involved, an optimal sort cannot take place, so it
is better to have a single-pass sort than the multi-pass.

The initialization parameter STATISTICS_LEVEL should be set
to TYPICAL (the default value) or ALL; setting this parameter to
BASIC turns off the generation of PGA advice performance views.
The data in these views is reset at instance start-up or when the
value of the PGA_AGGREGATE_TARGET parameter is altered.
% Please note that the PGA_AGGREGATE_TARGET parameter value
s can change automatically over time, starting with Oracle Database
11g as part of the Automatic Memory Management enhancements
available at 118. For more details check the note 443746.1 at the
following URL:
https://support.oracle.com/CSP/main/article?
cmd=showé&type=NOT&1d=443746.1

See also

» More information on memory management in Chapter 9, Tuning Memory in the
recipe Tuning the Program Global Area and the User Global Area

» In this chapter, the recipe Troubleshooting temporary tablespace gives more
information about temporary segments and temporary tablespaces

Sorting and indexing

We have seen various aspects of indexing in Chapter 3, Optimizing Storage Structures. In
this recipe, we will focus on how to use indexes to avoid sort operations.

215

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

How to do it...

The following steps will demonstrate how to use indexes and avoid sorts:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Execute an ORDER BY query:
SET AUTOT TRACE EXP STAT
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_CITY
FROM CUSTOMERS
ORDER BY CUST_CITY;

3. Execute a SELECT DISTINCT query:
SET AUTOT TRACE EXP STAT
SELECT DISTINCT CUST_CITY FROM CUSTOMERS;

4. Execute a GROUP BY query:
SET AUTOT TRACE EXP STAT
SELECT CUST_CITY, COUNT(*)
FROM CUSTOMERS
GROUP BY CUST_CITY;

5. Add an index on the CUSTOMERS table:
CREATE INDEX IX_CUST_CITY ON CUSTOMERS(
CUST_CITY, CUST_LAST_NAME, CUST_FIRST_NAME);

6. Execute an ORDER BY query (the same query as in step 2):
SET AUTOT TRACE EXP STAT
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_CITY
FROM CUSTOMERS
ORDER BY CUST_CITY;

7. Execute a SELECT DISTINCT query (the same query as in step 3):
SET AUTOT TRACE EXP STAT
SELECT DISTINCT CUST_CITY FROM CUSTOMERS;

216

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

8. Execute a GROUP BY query (the same query as in step 4):
SET AUTOT TRACE EXP STAT
SELECT CUST_CITY, COUNT(*)
FROM CUSTOMERS
GROUP BY CUST_CITY;

9. Drop the index:
SET AUTOT OFF
DROP INDEX IX_CUST_CITY;

In this recipe, we use the CUSTOMERS table of the SH schema to perform our experiments.

We execute three different queries on this table. The first query (in step 2) uses an ORDER BY
clause. We can see the execution plan of this query in the following screenshot; it requires a
SORT ORDER BY step to be evaluated:

ec2-46-51-176-114.

-
-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁ

CUST_LAST NAME, CUST_CITY

217

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The second query, in step 3, uses a SELECT DISTINCT statement, and the corresponding
execution plan is shown in the next screenshot. We can see that no sort operation occurs,
except for a single HASH UNIQUE step after a Full Table Scan operation.

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂ|ﬁ]

The last query, in step 4, executes a GROUP BY operation and an aggregate function
COUNT (*) to show the number of customers for each city.

218

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the next screenshot, you can see the execution plan for this query. Even in this case,
the operations required are a FULL TABLE SCAN and a HASH GROUP BY.

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ“]

In step 5, we create an index on the CUSTOMERS table on the columns CUST_CITY,
CUST_LAST_NAME, and CUST_FIRST_NAME.

219

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In the later steps, we execute the same queries as in step 2, step 3, and step 4 with the
index in place. The corresponding execution plan is as follows:

ec2-46-51-176-114.eu-west- l.compute.amazonaws.com - PuTTY |£Id—hj

CUST_CITY

In the first query, the presence of the index is very important, because the sort operation is
avoided. To obtain the results (in the same order of the index) a simple INDEX FULL SCAN
is required, because all the columns we select in the query are part of the index, so the
optimizer goes for index full scan.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The second query, in step 7, requires a FTS and a HASH UNIQUE operation. It uses the

index instead of the table, so the FTS is avoided in favor of an Index Fast Full Scan and
is faster (there are fewer blocks to read).

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =HEC] _.EE—I
LECT DISTINCT CUST CITY FROM CUSTC

221

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In the last query, in step 8, you can observe a similar behavior. The FTS operation is replaced
by an Index Fast Full Scan. The output is as follows:

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁ

UST_CITY, COUNT(*) FROM CUS

There's more...

If we add an ORDER BY clause in the DISTINCT and GROUP BY queries, there is a change
in the execution plans. The queries will change as follows:

SELECT

DISTINCT CUST_CITY
FROM CUSTOMERS
ORDER BY CUST_CITY;

SELECT CUST_CITY, COUNT(*)
FROM CUSTOMERS

GROUP BY CUST_CITY

ORDER BY CUST_CITY;

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

With this change in the query, the execution plan uses a SORT operation. This can be
observed in the following screenshot:

ec2-46-51-176-114 eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ"‘]

223

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

We can see that the SORT UNIQUE and SORT GROUP BY operations are performed in both
situations against the corresponding HASH UNIQUE and HASH GROUP BY. The previous
operations don't return the rows ordered, so a subsequent SORT pass would be required,
using SORT UNIQUE and SORT GROUP BY. The SORT operation is executed to obtain the
unique and group-by functions, so the rows are already ordered.

Here, we can also see that the index IX_CUST_CITY will be used to avoid the full table
scan operation on the table, but it won't be useful in avoiding the sort operation.

\ Some developers overuse the DISTINCT keyword to ensure
~ a unique set of results. We can avoid this situation by using
Q the correct JOINS operations and FOREIGN KEY constraints,
resulting in an optimal execution plan.

See also

» See Chapter 3, Optimizing Storage Structures for recipes on indexing

» Full Table Scan operation was explained in Chapter 4, Optimizing SQL Code in the
Avoiding Full Table Scans recipe

Writing top n queries and ranking

One common problem when developing database applications is to show the first n rows of a
set, ordering the data in a specific manner. For example, if we want to see the last 10 articles
submitted in a web application.

In this recipe, we will see how to obtain this scope and how to obtain it faster.

How to do it...

The following steps will demonstrate how to get the top n queries and their ranking;:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Select the first 10 customers, ordered by their age, from youngest to oldest:

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH

FROM CUSTOMERS
WHERE ROWNUM < 11
ORDER BY CUST_YEAR_OF_BIRTH DESC;

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The correct way to express the previously selected statement is:
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH

FROM CUSTOMERS
ORDER BY CUST_YEAR_OF_BIRTH DESC

)
WHERE ROWNUM < 11;

Using the RANK() function may lead to different results:
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST_ NAME,
CUST_YEAR_OF BIRTH,

RANK() OVER (ORDER BY CUST_YEAR_OF_BIRTH DESC) AS RANKING
FROM CUSTOMERS

)
WHERE RANKING < 11;

The DENSE_RANK() function is different (again):
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH,

DENSE_RANK() OVER (ORDER BY CUST_YEAR_OF_BIRTH DESC) AS RANKING
FROM CUSTOMERS

)
WHERE RANKING < 11;

Activate the explain plan option:
SET AUTOT TRACE EXP STAT

Execute the query in step 3:
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH

FROM CUSTOMERS
ORDER BY CUST_YEAR_OF_BIRTH DESC

)
WHERE ROWNUM < 11;

225

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

8. Execute the query in step 4:
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH,

RANK() OVER (ORDER BY CUST YEAR_OF BIRTH DESC) AS RANKING
FROM CUSTOMERS

)

WHERE RANKING < 11;

9. Execute the query in step 5:
SELECT * FROM (

SELECT CUST_ID, CUST_FIRST NAME, CUST_LAST NAME,
CUST_YEAR_OF BIRTH,

DENSE_RANK() OVER (ORDER BY CUST_YEAR_OF_BIRTH DESC) AS RANKING
FROM CUSTOMERS

)
WHERE RANKING < 11;

We want to retrieve the 10 youngest customers in our CUSTOMERS table.

The query in step 2 is wrong, because the filter—the WHERE condition—is evaluated before
the ORDER BY clause. The output displayed in this case shows the first 10 rows in the
CUSTOMERS table (retrieved without any particular ordering) ordered in descending order
by the CUST_YEAR_OF_BIRTH field.

You can see the results of this query in the next screenshot:

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |L@|éj

226

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The query in step 3 is the right one for our goal, and you can see the correct results in the
next screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ']

In step 4, we use another query to obtain the same result, using the RANK() analytical
function. In the following screenshot, you can see the output (an excerpt) of this query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂli_J

As we can see, in this case 31 rows are returned. The RANK() function assigns the same
rank to each row with the same value in the field of the ORDER BY ranking clause. To obtain
the same result as earlier, we have to change the WHERE condition to the following:

WHERE ROWNUM < 11

227

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

We can also use the DENSE_RANK() function, as in step 5. You can see the output
(an excerpt) in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In this case, it returns 3853 rows that satisfy the WHERE condition. This example is useful
to understand the difference between the RANK() and DENSE_RANK() functions. Both

the functions assign a ranking to each row based on the ORDER BY clause; they assign the
same rank if the rows have the same value—in our example on the CUST_YEAR_OF_BIRTH
field. But when doing so, the DENSE_RANK() function doesn't increment the counter used
to assign the rank. So after 100 rows with the same rank, the next rank assigned will be the
previous rank + 1, while the RANK() function will assign—under the same conditions—the
previous rank + 100.

In step 7, step 8, and step 9, we execute the same queries, as mentioned earlier, to view
the execution plan.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the following screenshot, you can see the execution plan of the query after executing step 7:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂli-J

We can see a FULL TABLE ACCESS on the CUSTOMERS table, followed by a SORT ORDER BY
STOPKEY. The next step is to execute COUNT STOPKEY over the VIEW created in the previous
steps, so we have a SORT operation inside the subquery.

229

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

When we use the RANK() function, in step 8, the execution plan changes, as shown in the
following screenshot:

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We also have a SORT operation, namely WINDOW SORT PUSHED RANK, in this query, after
the full table scan of the CUSTOMERS table.

If we use the DENSE_RANK() function, the execution plan is the same, as when we have
used the RANK() function, the only difference is that the FILTER predicate is applied.

There's more...

Please note that execution time for the last two queries—those using analytical functions—is
longer than the time required to execute the query in step 3 and step 7. This is not noticed in
the example because the CUSTOMERS table is very small.

If we execute the following script on the SALES table (about 1 million rows), you will observe
that the second query executes in about 175 percent of the time needed by the first query:
SET TIMING ON
SELECT * FROM (

SELECT * FROM sh.SALES ORDER BY AMOUNT_SOLD DESC
) WHERE ROWNUM < 11;

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

SELECT * FROM (
SELECT S.*,
DENSE_RANK() OVER (ORDER BY AMOUNT_SOLD DESC) AS RANKING
FROM sh.SALES S
) WHERE ROWNUM < 11;
SET TIMING OFF

The output is as follows:

-
ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|i-J

[re QT Rt - BT R Y]

See also

» There's more on subqueries in Chapter 4, Optimizing SQL Code in the Using
subqueries recipe

231

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

Using count, min/max, and group-by

In this recipe, we will see how to count rows, compute min/max aggregates, and use filters
in group-by queries.

How to do it...

The following steps will demonstrate the use of count, min/max, and group-by:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Show the execution plan for a MIN/MAX query:
SET AUTOT TRACE EXP
SELECT MAX(CUST_CREDIT_LIMIT) FROM CUSTOMERS;
SELECT MIN(CUST_CREDIT_LIMIT) FROM CUSTOMERS;

3. Show the execution plan for a query which returns the MIN and the MAX:
SELECT MAX(CUST_CREDIT_LIMIT), MIN(CUST_CREDIT_LIMIT)
FROM CUSTOMERS;

4. Create an index on CUSTOMERS in the column in which we need to aggregate:
CREATE INDEX IX_CUST_CREDIT_LIMIT
ON CUSTOMERS (CUST_CREDIT_LIMIT);

5. Execute the query in step 2:
SET AUTOT TRACE EXP STAT
SELECT MAX(CUST_CREDIT_LIMIT) FROM CUSTOMERS;
SELECT MIN(CUST_CREDIT_LIMIT) FROM CUSTOMERS;

6. Execute the query in step 3:
SELECT MAX(CUST_CREDIT_LIMIT), MIN(CUST_CREDIT_LIMIT)
FROM CUSTOMERS;

7. Use different ways to count the rows in a table:
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(1) FROM CUSTOMERS;

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

8. Execute a group-by query with a filter (using the HAVING clause):
SELECT CUST_CREDIT_LIMIT, MAX(CUST_YEAR_OF_BIRTH) AS DATAMAX
FROM CUSTOMERS
GROUP BY CUST_CREDIT_LIMIT
HAVING CUST_CREDIT_LIMIT > 10000
ORDER BY CUST_CREDIT_LIMIT;

9. Execute a group-by query with the same filter above applied in the WHERE clause:
SELECT CUST_CREDIT_LIMIT, MAX(CUST_YEAR_OF_BIRTH) AS DATAMAX
FROM CUSTOMERS
WHERE CUST_CREDIT_LIMIT > 10000
GROUP BY CUST_CREDIT_LIMIT
ORDER BY CUST_CREDIT_LIMIT;

10. Drop the index created in step 4:
SET AUTOT OFF
DROP INDEX IX_CUST_CREDIT_LIMIT;

After connecting to the SH schema, we execute two queries to retrieve the MIN and MAX value
in the CUST_CREDIT_LIMIT field of the CUSTOMERS table. The execution plan for these two
queries is the same, and is as shown in the following screenshot:

-
ec2-46-51-176-114.au-west-1.compute.amazonaws.com - PuTTY | =HACA X

We can see that there is a Full Table Scan of the CUSTOMERS table followed by a SORT
AGGREGATE to retrieve the MIN (or MAX) value as requested.

233

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The same execution plan is used by the database if we execute a query that retrieves
both the MIN and MAX values for the CUST_CREDIT_LIMIT field in step 3, as shown in
the next screenshot:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |ﬂlﬁj

LIMIT), MIN LIMIT} FROM

In step 4, we create an index on the field (CUST_CREDIT_LIMIT) where we execute the
aggregate function. This allows us to use the index instead of the full table scan operation,
resulting in a very fast execution of the query. The corresponding execution plan is as shown
in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

IT_LIMIT) FE

234

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We can see that there are only two consistent gets to answer the query, with reduced 1/0
operations. If we ask for both the MIN and MAX values of the field, as in the query in step 6,
the execution plan will be as follows:

£c2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |£Ii-]

T_LIMIT) FROM

You can see that the index is not used and we return to the full table scan of the CUSTOMERS
table, with 1459 consistent gets (and more 1/0).

If we want both the values, it's better to split the query into two separate queries, as in the
following statement:
SELECT
MIN(CUST_CREDIT_LIMIT) AS MIN_VALUE,
0 AS MAX_VALUE
FROM CUSTOMERS
UNION ALL
SELECT
0,
MAX(CUST_CREDIT_LIMIT)
FROM CUSTOMERS;

235

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

You can see the corresponding execution plan in the following screenshot:

ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂlﬁ

We can see that only four consistent gets are required to answer this query.

In step 7, we execute two different queries to count the number of rows in the CUSTOMERS table,
using * and 1 respectively, as the argument of the COUNT () function. We have used these
values because it is a common practice, and there is a myth about which performs better.

Let's observe the execution plan in the next screenshot.

When counting using COUNT (*), we have only seven consistent gets, because the optimizer
chooses to use the bitmap index CUSTOMERS_GENDER_B1X on the CUST_GENDER field to count
rows. In the BITMAP CONVERSI0ON COUNT step, the engine computes the number of rows in the
table by counting the used bit in the bitmap, as we can see in the following screenshot:

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

.
ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |£Iﬁj

When we execute the query using the SELECT COUNT (1) statement, we obtain the same
execution plan—there is no difference in execution plans, as the database does the same
work to answer both queries. Hence, they are equivalent—the myth SELECT (1) is faster
than SELECT (*) is wrong—they are the same query.

In step 8, we execute a query to retrieve, for each distinct credit limit value, the maximum
year of birth of the corresponding customers; we want to retrieve only customers with a
credit limit of more than 10000.

237

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The execution plan of this query is shown in the following screenshot:

ec?-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

We can see that there is a SORT GROUP BY operation after the full table scan of the
CUSTOMERS table.

The query in step 9 executes the same request, but this time the predicate is in the WHERE
condition and not in the HAVING clause. This is correct, because we want to filter the values
before grouping. The HAVING clause is used when we want to impose a condition on the
aggregated values.

If the HAVING clause is misused, the database engine has to elaborate the GROUP BY
operation on a wider data set. We have seen that a SORT GROUP BY operation is required,
and the less the data is elaborated by the sort the better the performance will be.

In the following screenshot, we can see the execution plan for this query, which endorses
this reasoning—we have only 32 consistent gets (instead of 1459) and we can use the
bitmap index instead of a full table scan of the CUSTOMERS table.

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

-
ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Iﬁj

[=]

4
5

¥
0
a
M
)
=1

=
There's more...

In this recipe, we have seen different problems related to aggregate functions and sorting.

See also

» The Using Bitmap Indexes recipe in Chapter 3, Optimizing Storage Structures
» Avoiding Full Table Scans recipe in Chapter 4, Optimizing SQL Code

239

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

Avoiding sorting in set operations: union,

minus, and intersect

In this recipe, we will investigate performance-related issues when using set operations,
such as UNION, INTERSECT, and MINUS.

Getting ready

We will use the SH schema and a copy of the EMPLOYEES table from the HR schema to do our
test. To create the MY_EMPLOYEES table in the SH schema, we will use the following script:

CONNECT / AS SYSDBA
CREATE TABLE sh_MY_EMPLOYEES AS SELECT * FROM hr._EMPLOYEES;

How to do it...

The following steps will demonstrate how to avoid sorting:

1. Connect to the SH schema and enable tracing:
CONNECT sh@TESTDB/sh
SET AUTOT TRACE EXP STAT

2. Execute a query using the UNION operator to show the customers with a credit
limit higher than 13000 and the employees with a salary greater than 10000:

SELECT

CUST_LAST_NAME AS LastName, CUST_FIRST_NAME AS FirstName
FROM sh._CUSTOMERS

WHERE CUST_CREDIT_LIMIT > 13000
UNION

SELECT

LAST_NAME, FIRST_NAME
FROM sh._MY_EMPLOYEES
WHERE SALARY > 10000;

240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Execute the same query, as mentioned earlier, using the UNTON ALL operator:
SELECT

CUST_LAST_NAME AS LastName, CUST_FIRST_NAME AS FirstName
FROM sh.CUSTOMERS

WHERE CUST_CREDIT_LIMIT > 13000
UNION ALL
SELECT

LAST_NAME, FIRST_NAME
FROM sh_MY_EMPLOYEES
WHERE SALARY > 10000;

Use the INTERSECT operator to retrieve the last names in common between
customers and employees:

SELECT CUST_LAST_NAME AS LastName FROM sh.CUSTOMERS
INTERSECT
SELECT LAST_NAME FROM sh._MY_EMPLOYEES;

Write a query which returns the same results of the previous query using
a JOIN instead of the INTERSECT operator:

SELECT DISTINCT
C.CUST_LAST _NAME AS LastName
FROM sh.CUSTOMERS C
INNER JOIN sh_MY_EMPLOYEES E
ON C.CUST_LAST_NAME = E.LAST_NAME;

Use the MINUS operator to retrieve the last name of the customers that are
not present in the EMPLOYEES table:

SELECT C.CUST_LAST_NAME AS LastName FROM sh.CUSTOMERS C
MINUS
SELECT E.LAST_NAME FROM sh._MY_EMPLOYEES E;

Write a query that returns the same result of the previous query using an
ANTI-JOIN instead of the MINUS operator:

SELECT DISTINCT
C.CUST_LAST_NAME AS LastName
FROM sh._CUSTOMERS C
WHERE C.CUST_LAST_NAME NOT IN (
SELECT E.LAST_NAME FROM sh._MY_EMPLOYEES E);

241

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In step 2, we execute a query using the UNION operator, which retrieves the distinct rows
that are returned by one or both the queries. The execution plan for this query is as shown
in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We can see that there is a full table access of both tables and a UNION-ALL operation
followed by a SORT UNIQUE operation.

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In step 3, we execute the same query mentioned earlier, but using the UNION ALL operator,
resulting in the following execution plan:

ec2-46-51-176-114.eu-west- Leompute.amazonaws.com - PuTTY |ﬂ|ﬁj

We can see that if we use UNION ALL instead of the UNION operator, the SORT UNIQUE
operation is not required. Remember that the two operations are similar, but the UNTON ALL
returns duplicate records, and the UNION operator doesn't. When we don't have to worry
about the duplicates (or they are not required by the design), it's better to use the UNTON ALL
operator to improve performance.

243

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In step 4, we use the INTERSECT operator to retrieve the last names which are in both
CUSTOMERS and MY_EMPLOYEES tables. The corresponding execution plan is shown in
the following screenshot:

ec2-46-31-176-114.eu-west-1L.compute.amazonaws.com - PuTTY |ﬂlﬁj

We can see that there are two full table scans of the CUSTOMERS and the MY _EMPLOYEES
tables, followed by two SORT UNIQUE operations required to compute the INTERSECT ION
between the two tables.

The same query can be expressed using a JOIN, as in step 5, using a SELECT DISTINCT
to mimic the behavior of the INTERSECT operator, and this removes duplicates.

244

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the following screenshot, we can see the execution plan and statistics for this query:

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

Using a JOIN, we have avoided the two SORT operations required in the previous query (but
the Full Table Scans are always there), obtaining better performance for the same query.

In step 6, we execute a query using the MINUS operator to retrieve all the last names of the
CUSTOMERS except the last names that are also in the MY_EMPLOYEES table.

245

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

The execution plan also shows that in this case two full table scans and two SORT UNIQUE
operations are required. The execution plan and statistics for this query are shown in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

However, in this case, we can translate the MINUS operation in a different query using the
ANTI-JOIN (the NOT IN clause) and SELECT DISTINCT statements, obtaining the query
in step 7. The execution plan and statistics for this are shown in the following screenshot:

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

We can see that there is only one sort operation (instead of the two required earlier). In
Chapter 4, Optimizing SQL Code the Using subqueries recipe, we have seen the performance
improvements related to the HASH JOIN RIGHT ANT1 operation, so we can use this modified
query instead of the original one using the MINUS operator.

There's more...

Set operators are very intuitive, because they are related to the Set Theory. However, it's
better to substitute the queries which use MINUS and INTERSECT with their corresponding
counterparts as we have seen in this recipe (ANTI-JOIN and SELECT DISTINCT
statements, respectively), because the optimizer can execute them better, in terms of sort
operations required.

247

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In the examples provided in this recipe, we are not demonstrating indexes, but even if some
useful indexes were used, the execution plans (SORT operations) wouldn't change. The only
difference would be that the FTS operation is replaced by another data access operation
using the indexes.

o Many developers use UNION instead of UNION ALL without
~ understanding the difference in execution time. An additional
Q condition to the WHERE clauses can often avoid the use of the
costly UNITON operation.

See also

» In Chapter 4, Optimizing SQL Code the Using Subqueries and Optimizing joins recipes

Troubleshooting temporary tablespaces

At the beginning of this chapter, we saw that sorts may occur in memory or on disk, and that
in-memory sorts are faster than on-disk ones because fewer |/0 operations are involved.

However, system memory is finite and cannot expand the sort area above the limits of the
physical memory available. If sorts exceed the sort area, it's better to use on-disk sort than
over allocating memory—ending in very slow pagination (swap to disk managed by the host
Operating System).

On-disk sort operations require space to save sort runs, which cannot be stored in memory.
Oracle uses sort segments to store this type of information on disk.

In this recipe, we will see how to configure temporary tablespaces to speed up on-disk sort
operations and some diagnostic queries to be used when we want to retrieve information
about them.

How to do it...

The following steps will demonstrate how to configure temporary tablespaces:

1. Connect as SYSDBA to the database:
CONNECT / AS SYSDBA

2. Examine the number of sorts in the system (from instance startup):
SELECT NAME, VALUE FROM V$SYSSTAT WHERE NAME LIKE "%sorts%”;

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Examine statistics about temporary tablespace blocks:

COL TABLESPACE_NAME FOR A16

SELECT
TABLESPACE_NAME, CURRENT_USERS,
TOTAL_BLOCKS, USED_BLOCKS, FREE_BLOCKS,
MAX_BLOCKS, MAX_USED_BLOCKS, MAX_SORT_BLOCKS

FROM V$SORT_SEGMENT

ORDER BY TABLESPACE_NAME;

Examine statistics about temporary tablespace extents:

SELECT
TABLESPACE_NAME, CURRENT_USERS, EXTENT_SIZE,
TOTAL_EXTENTS, USED_EXTENTS, FREE_EXTENTS,
EXTENT_HITS

FROM V$SORT_SEGMENT

ORDER BY TABLESPACE_NAME;

Execute a query to retrieve the temporary files:
COL NAME FOR A32
SELECT
NAME, STATUS, ENABLED,
BYTES, BLOCKS, BLOCK_SIZE
FROM V$TEMPFILE;

Create a temporary tablespace TEMP_TEST:

CREATE TEMPORARY TABLESPACE TEMP_TEST
TEMPFILE "/u0l/oradata/TESTDB/temp_test.dbf" SIZE 160M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

Assign a temporary tablespace TEMP_TEST to a user:
ALTER USER sh TEMPORARY TABLESPACE TEMP_TEST;

Drop temporary tablespace TEMP_TEST and clean up the database:
ALTER USER sh TEMPORARY TABLESPACE TEMP;
DROP TABLESPACE TEMP_TEST INCLUDING CONTENTS AND DATAFILES;

249

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

In step 2, we retrieve information about the sorts executed on the database from
instance startup, from the dynamic performance views. The results are differentiated
between in-memory and on-disk sorts. An example of the execution of this query is
shown in the next screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

In step 3, we retrieve information on temporary tablespaces, showing used and free
database blocks, while in step 4 we retrieve the same information expressed in extents
instead of database blocks. In the next screenshot, we can see the results for both:

ec2-46-51-176-114 eu-west-L.compute.amazonaws.com - PuTTY |£Ii-J

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In step 5, we retrieve information about temporary datafiles; the results of this query are
shown in the next screenshot:

-
ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY | =NA=N X

In step 6, we create a temporary tablespace, which we assign to the user SH in step 7.
We create it with the extent management local to obtain better performance than using
the dictionary managed tablespaces. Locally managed tablespaces keep track of the free
extents in a bitmap stored in the header of the first datafile of the tablespace, where
each bit is mapped to a free block in the tablespace.

The results of these operations are as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NACE X

In the last step, restore the TEMP tablespace as the default temporary tablespace for the
user SH and drop the temporary tablespace created in step 6.

There's more...

For each user of the database, there is a default temporary tablespace to be used to sort
the data when required. If we haven't defined a default temporary tablespace for a user, the
SYSTEM tablespace is used to store SORT SEGMENTS.

This situation is very critical, because the space in SORT SEGMENTS is frequently allocated
and deallocated. When doing so, the operations become serialized as space management
autoallocates new extents when needed.

251

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Sort Operations

If we define the default temporary tablespace for a user, this pre-allocates a SORT SEGMENT,
which is never deallocated. When there is the need for a sort operation, no sequential space
management actions (allocations) are executed to satisfy the request, resulting in a great
improvement in performance.

In fact, temporary space segments are created when the first sort occurs. They are extended
when there is a need for a greater sort area in memory, and they shrink to leave enough place
for other sort operations when these operations occur.

Optimal storage parameters for temporary tablespaces

We can use INITIAL and NEXT values as integer multiples of SORT_AREA_SIZE
parameter and PCTINCREASE set to zero to obtain optimal performance when not
using locally managed tablespaces. However, Oracle recommends (http://download.
oracle.com/docs/cd/B28359 01/server.111/b28274/memory.htm) we use the
PGA_AGGREGATE_TARGET parameter and to set WORKAREA_SIZE_POLICY to AUTO in
order to obtain the best performance.

The PCTINCREASE parameter cannot be specified when we use the AUTOALLOCATE option
for the tablespace. We can have different tablespaces for each database user and we can
query the dynamic performance view VSSORT_USAGE to retrieve the details about the active
disk sorts occurring in the instance.

We can obtain better performance by striping the temporary tablespace using multiple disks.
Please note that—due to their nature—temporary tablespaces are not affected by backup and
restore operations.

See also

» There's more information on Dynamic Performance Views in Appendix A, Dynamic
Performance Views and in Chapter 9, Tuning Memory the Tuning the Program Global
Area and the User Global Area recipe

252

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing
PL/SQL Code

In this chapter, we will cover:

» Using bind variables and parsing

» Array processing and bulk-collect

» Passing values with NOCOPY (or not)

» Using short-circuit IF statements

» Avoiding recursion

» Using native compilation

» Taking advantage of the function result cache
» Inlining PL/SQL code

» Using triggers and virtual columns

Introduction

In this chapter, we will focus on PL/SQL code, such as stored procedures, functions,
and triggers.

The topics explained in this chapter are easier to apply than those in Chapter 4, Optimizing
SQL Code because you can make changes to PL/SQL code without having to rebuild the entire
application—and they can be just as easily reversed if something doesn't work as expected.

It is relatively easy to obtain great performance improvements by tuning PL/SQL code with
very little effort. As always, we have to measure the results before and after our changes,
using the process introduced in Chapter 1, Starting with Performance Tuning in the recipe
The performance tuning process.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

Using bind variables and parsing

We have already discussed bind variables and parsing in the Using bind variables recipe
in Chapter 4, Optimizing SQL Code. In this recipe, we will see another example, using the
same principles applied to a PL/SQL procedure.

How to do it...

The following steps will demonstrate the bind variables using PL/SQL:

1. Connect to the database as user SH:
CONNECT sh@TESTDB/sh

2. Create a function to calculate the maximum length of data stored in an arbitrary
field with a variable condition on another field:

CREATE FUNCTION CONDITIONAL_COLUMN_LEN(TABLE_NAME IN VARCHAR2,
COLUMN_NAME IN VARCHAR2, COND_FIELD IN VARCHAR2,
COND_VALUE IN VARCHAR2) RETURN NUMBER
IS

L_RESULT NUMBER := O;
L_STMT VARCHAR2(2000);
BEGIN
L_STMT := "SELECT MAX(LENGTH(" || COLUMN_NAME |]
")) FROM " || TABLE_NAME |]
* WHERE " || COND_FIELD || " = " || COND_VALUE;
EXECUTE IMMEDIATE L_STMT INTO L_RESULT;
RETURN L_RESULT;
END;
/

3. Calculate using the function created in the previous step for the records in the
table CUSTOMERS with an ID between 1 and 10000:

SET TIMING ON
DECLARE X NUMBER := O;
BEGIN
FOR J IN 1..10000 LOOP
X := X + CONDITIONAL_COLUMN_LEN (*CUSTOMERS®,
*CUST_FIRST_NAME", *CUST_ID", J);

254

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

END LOOP;
END;
/
SET TIMING OFF

Create a function that acts as the one in step 2, making use of bind variables:
CREATE FUNCTION CONDITIONAL_COLUMN_LEN_BIND(
TABLE_NAME IN VARCHAR2, COLUMN_NAME IN VARCHARZ2,
COND_FIELD IN VARCHAR2, COND_VALUE IN VARCHAR2) RETURN NUMBER
1S
L_RESULT NUMBER := O;
L_STMT VARCHAR2(2000);
BEGIN
L_STMT := "SELECT MAX(LENGTH(®]| COLUMN_NAME ||
")) FROM " || TABLE_NAME || " WHERE * || COND_FIELD |]
" = COND_VALUE";
EXECUTE IMMEDIATE L_STMT INTO L_RESULT USING COND_VALUE;
RETURN L_RESULT;
END;
/

Recalculate the same values as in step 3 to compare the results:
SET TIMING ON
DECLARE X NUMBER := 0;
BEGIN
FOR J IN 1..10000 LOOP
:= X + CONDITIONAL_COLUMN_LEN_BIND ("CUSTOMERS",
"CUST_FIRST_NAME®, *"CUST_ID", J);
END LOOP;
END;
/
SET TIMING OFF

Clear the functions created:
DROP FUNCTION CONDITIONAL_COLUMN_LEN;
DROP FUNCTION CONDITIONAL_COLUMN_LEN BIND;

255

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

In step 2, we created a function CONDITIONAL_COLUMN_LEN, that calculates the maximum
length of data contained in the COLUMN_NAME field of TABLE_NAME, when the COND_FIELD
is equal to COND_VALUE.

In step 3, the function is tested by calculating the maximum length of the data contained in
the CUST_FIRST_NAME field of the CUSTOMERS table for the records that have a CUST_ID
between 1 and 10000.

In the following screenshot, you can see the execution output and the execution time:

-
ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|ﬁ‘]

In step 4, we have created the function CONDITIONAL_COLUMN_LEN_BIND, which is
equivalent to the one in step 3—except for the use of binding variables. In step 5, we have
executed this function using the same benchmark of step 3, obtaining the following output:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i-J

Hence, there is a huge performance improvement in our function when we use bind variables.

256

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There's more...

In PL/SQL procedures and functions, the use of bind variables is automatic—we can use the
variables declared in the function/procedure directly in the SQL code, without worrying about
assigning values to the placeholders, as in JDBC (Java DataBase Coectivity) programming.

The only exception to this behavior is when we use dynamic SQL statements, as in the
function used in this recipe. We have seen that in such situations bind variables can be
adopted with the USING clause of the EXECUTE statement.

In our example function, we cannot use bind variables
. for TABLE_NAME, COLUMN_NAME, and COND_FIELD
% parameters, because they are not parameters of our
i query. Field and table names in a query cannot be passed
as bind parameters, because the parser needs to know all
the objects involved in the query before the binding phase.

See also

» We have discussed bind variables in depth in Chapter 4, Optimizing SQL Code in
the recipe Using bind variables

Array processing and bulk-collect

In this recipe, we will see how to use the BULK COLLECT and FORALL statements to speed
up the processing of huge amounts of data in a single statement.

We will also see how to limit the amount of memory used for these statements, to avoid
a decrease in performance due to reduced available memory for other processes.

How to do it...

The following steps will demonstrate array processing:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create a MY_CUSTOMERS table to store the 1D and FIRST_NAME of the customers:
CREATE TABLE sh.MY_CUSTOMERS (
CUST_ID NUMBER,
CUST_FIRST_NAME VARCHAR2(20)):;

257

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

3. Populate the MY_CUSTOMERS table using an INSERT statement inside a FOR loop:
SET TIMING ON
BEGIN
FOR aRow IN (SELECT CUST_ID, CUST_FIRST_NAME FROM CUSTOMERS)
LOOP
INSERT INTO sh._MY_CUSTOMERS (CUST_ID, CUST_FIRST_NAME)
VALUES (aRow.CUST_ID, aRow.CUST_FIRST_NAME);
END LOOP;
END;
/
SET TIMING OFF

4. Truncate the MY_CUSTOMERS table to empty it:
TRUNCATE TABLE sh_MY_CUSTOMERS;

5. Create a custom datatype T_ID to store a table of numbers:
CREATE OR REPLACE TYPE sh.T_ID AS TABLE OF NUMBER;

6. Create a custom datatype T_NAME to store a table of varchars:
CREATE OR REPLACE TYPE sh.T_NAME AS TABLE OF VARCHAR2(20);

7. Populate the MY_CUSTOMERS table by retrieving the data from the CUSTOMERS
table with a BULK COLLECT statement and using a FORALL statement to insert
the records as a whole:

SET TIMING ON

DECLARE
TAB_ID T_ID;
TAB_NAME T_NAME;

BEGIN
SELECT CUST_ID, CUST_FIRST NAME
BULK COLLECT INTO TAB_ID, TAB_NAME
FROM CUSTOMERS;

FORALL J IN TAB_ID.FIRST..TAB_ID.LAST
INSERT INTO sh.MY_CUSTOMERS (CUST_ID, CUST_FIRST NAME)
VALUES (TAB_ID(J), TAB_NAME(J));
END;
/
SET TIMING OFF

258

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

10.

Truncate the MY_CUSTOMERS table to empty it:
TRUNCATE TABLE sh_MY_CUSTOMERS;

Populate the MY_CUSTOMERS table by retrieving the data from the CUSTOMERS
table with a BULK COLLECT statement and using a FORALL statement to insert
the records in batches of 200:

SET TIMING ON
DECLARE
TAB_ID T_ID;
TAB_NAME T_NAME;

CURSOR MY_CURSOR 1S SELECT CUST_ID, CUST_FIRST_NAME FROM
CUSTOMERS ;

BEGIN
OPEN MY_CURSOR;
LOOP
FETCH MY_CURSOR BULK COLLECT INTO TAB_ID, TAB_NAME LIMIT 200;
EXIT WHEN TAB_ID.COUNT = O;

FORALL J IN TAB_ID.FIRST..TAB_ID.LAST
INSERT INTO sh.MY_CUSTOMERS (CUST_ID, CUST_FIRST NAME)
VALUES (TAB_ID(J), TAB_NAME(J));

END LOOP;

CLOSE MY_CURSOR;
END;
/
SET TIMING OFF

Clean the schema by dropping the objects used in this recipe:

DROP TABLE sh._MY_CUSTOMERS;
DROP TYPE sh.T_ID;
DROP TYPE sh.T_NAME;

In this recipe, we have used three methods to insert records (huge amounts of data) in the
MY_CUSTOMERS table, by selecting rows from the CUSTOMERS table.

In step 3, we have used a simple FOR loop that reads records from CUSTOMERS and inserts
them in MY_CUSTOMERS, one row at a time.

259

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

The timed result of this execution can be seen in the following screenshot:

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£|i‘]

In step 5 and step 6, we created two custom datatypes to store the CUST_ID and
CUST_FIRST_NAME. In step 7, we used these datatypes to define two corresponding
variables, TAB_ID and TAB_NAME, used to retrieve all the required values from the
CUSTOMERS TABLE, using the BULK COLLECT statement.

We can then use TAB_ID and TAB_NAME in a FORALL loop to insert the values in the
MY_CUSTOMERS table in a single statement execution.

The output of this execution is as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ]

260

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In step 9, we use a slightly modified version of the script, thanks to the LIMIT CLAUSE of the
BULK COLLECT statement. We divide the job in batches of 200 records each; for every batch
of records we use the same BULK COLLECT and FORALL statements used in step 7.

In the following screenshot, we can see the output of this execution:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NACIA X

E_ID, TRB NAME LIMIT 200;

In step 10, we drop the table and custom datatypes used for this recipe.

There's more...

We are aware that BULK COLLECT and FORALL statements complete the process faster
than the one row at a time approach of the FOR statement in step 3.

Using the LIMIT clause, we can see a slight decline in performance, so why use it?

The reason is to conserve memory—when we BULK COLLECT a large amount of data in
our user-defined datatype arrays, it is storing them in memory, using a resource that is
also being used for other purposes (sorts, joins, buffers, and so on). Limiting the number
of rows retrieved in every single batch execution, allows us to see a performance benefit
using array processing, without impacting the need for memory for other processes.

261

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

Beginning with Oracle Database 10g, automatic array fetching is
applied by default, with a limit of 1200 rows for each loop iteration.
Find out more details here:

~\‘Q http://www.oracle.com/technetwork/

database/focus-areas/performance/designing-
applications-for-performa-131870.pdf

Also, refer to the following link for more information on this:

http://www.oracle.com/technetwork/issue-
archive/2011/11-may/o3lasktom-354139._html

The FORALL statements allow us to use array processing for INSERT operations also. Despite
the appearance suggesting an iterative way of executing the statements inside the FORALL loop,
the operation is not really a loop, and it's executed once for all the values in the arrays used.

There is no automatic application of
i FORALL for insert-loop statements.
See also

» See the Introducing array and bulk operations recipe in Chapter 4,
Optimizing SQL Code

Passing values with NOCOPY (or not)

In programming languages, we can pass parameters by reference and by value to a
function. In this recipe, we will see how to make out this difference in PL/SQL functions
and procedures.

How to do it...

The following steps will demonstrate passing parameters to functions:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create the type TAB_NUMBERS, which is a table of numbers:
CREATE OR REPLACE TYPE sh.TAB_NUMBERS AS TABLE OF NUMBER;

262

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

3. Create a function called MY_VALUE, which returns an element of an array:
CREATE OR REPLACE FUNCTION MY_VALUE(ATABLE IN OUT TAB_NUMBERS,
AIND IN NUMBER) RETURN NUMBER
1S
L_VALUE NUMBER := 0;
BEGIN
L_VALUE := ATABLE(AIND);
RETURN L_VALUE;
END;
/

4. Create the function MY_VALUE_NOCOPY, which acts as the previous one, but
the array parameter is defined as NOCOPY:

CREATE OR REPLACE FUNCTION MY_VALUE_NOCOPY(
ATABLE IN OUT NOCOPY TAB_NUMBERS,
AIND IN NUMBER) RETURN NUMBER
IS
L_VALUE NUMBER := 0;
BEGIN
L_VALUE := ATABLE(AIND);
RETURN L_VALUE;
END;
/

5. Compare the performance of the solutions:
SET SERVEROUTPUT ON
DECLARE
MY_IDS TAB_NUMBERS := TAB_NUMBERS(NULL);
L_VALUE NUMBER := 0;
tl NUMBER;
t2 NUMBER;

PROCEDURE get_time (t OUT NUMBER) IS
BEGIN

t = DBMS_UTILITY.get_time;
END;

263

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

BEGIN
SELECT CUST_ID INTO MY_IDS(1) FROM CUSTOMERS
WHERE ROWNUM < 2;
MY_IDS.EXTEND(9999999, 1);

get_time(tl);
FOR J IN 1..9999999 LOOP
L_VALUE := L_VALUE + MY_VALUE(MY_IDS, J);
END LOOP;
get_time(t2);
DBMS_OUTPUT.PUT_LINE("RESULT " || TO_CHAR(L_VALUE));
DBMS_OUTPUT.PUT_LINE("TIME (CALL BY VALUE): " || (2 - t1));

L_VALUE := 0;
get_time(tl);
FOR J IN 1..9999999 LOOP
L_VALUE := L_VALUE + MY_VALUE_NOCOPY(MY_IDS, J);
END LOOP;
get_time(t2);
DBMS_OUTPUT.PUT_LINE("RESULT " || TO_CHAR(L_VALUE));
DBMS_OUTPUT.PUT_LINE("TIME (NOCOPY - CALL BY REF): " ||
(2 - t1));
END;
/
SET SERVEROUTPUT OFF

6. Clean the database:
DROP TYPE TAB_NUMBERS;
DROP FUNCTION MY_VALUE;
DROP FUNCTION MY_VALUE_NOCOPY;

In step 3, we have created a simple function that accepts an array as the first parameter with
the IN OUT clause. This parameter is then passed by value to the function. When a parameter
is passed by value, the actual value of the parameter is copied in memory before launching
the function, and this copy is used by the function during execution.

264

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In step 4, the same function as in the previous step is created, declaring the array parameter
with the IN OUT NOCOPY clause. The parameter is then passed by reference—a pointer to the
actual data is passed to the function—so the function directly manipulates the original array
and its copy.

In step 5, we populate an array with 10 million records, and we loop through these elements
to calculate their sum—using the functions in step 3 and step 4—measuring the time required
to perform the operations. The output is as follows:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |£Iéj

Finally, in step 6, we drop the objects created in this recipe.

In this recipe, we have used the DBMS_OUTPUT package to
send messages from our stored procedure, using the PUT_L INE
% procedure. You can find more on this package in the documentation:
S

http://download.oracle.com/docs/cd/E14072_01/
appdev.112/e10577/d_output_htm

265

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

There's more...

Many DBAs recommend the use of NOCOPY when passing large objects to functions/
procedures, to obtain a performance gain, when there is no need to copy the value in and out
from the function. In our test, the results indicated a small dip in performance (13ms after 10
million executions, the number of loop iterations), and executing the same script many times
leads to an average value that tends to zero (so there are no improvements nor worsening).

Even the example used in the Oracle documentation, about the use of NOCOPY, shows the
same timing with or without the use of NOCOPY.

The reason is that NOCOPY is a hint to the PL/SQL engine, that "suggests" the use of the
call by-reference for the parameter. This can lead to a theoretical performance gain, but not
in all situations.

There are two issues associated with the use of NOCOPY:

» When we pass a parameter by reference, if we make changes to the value of the
parameter inside the function, the changes are made to the copy only, leading to
possible side-effects.

We say that a function has side-effects when some state—for example, a
variable—external to the function is changed by the function itself; the
behavior of the function in these cases depends on history, so the order
of evaluation matters.

» The other issue is related to exceptions. If the function fails, the value of the original
parameter can be in an inconsistent state, as the function was interrupted but the
changes already made to the parameter would not be reverted.

Due to these considerations, the NOCOPY hint should be used with extreme care after
analyzing if there would be performance gain for each particular situation.

Using short-circuit IF statements

In this recipe, we will see how the order in which we evaluate a compound IF statement of
more than one condition, may affect performance.

How to do it...

The following steps will demonstrate compound I F statements:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

266

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Retrieve the records in the SALES table and loop through them to count the number
of sales that took place before June 28, 1998 with a quantity greater than 1:

SET TIMING ON
DECLARE
TAB_QTY DBMS_SQL.NUMBER_TABLE;
TAB_TIME DBMS_SQL.DATE_TABLE;
CNT NUMBER := O0;
BEGIN
SELECT AMOUNT_SOLD, TIME_ID
BULK COLLECT INTO TAB_QTY, TAB_TIME FROM SALES;
FOR J IN TAB_QTY.FIRST..TAB_QTY.LAST LOOP
IF TAB_QTY(J) > 1 AND TAB_TIME(J) < "27-JUN-98" THEN
CNT := CNT + 1;
END IF;
END LOOP;
END;
/
SET TIMING OFF

In the previous script, we change the order in which the two conditions are
expressed in the 1F statement:

SET TIMING ON
DECLARE
TAB_QTY DBMS_SQL_.NUMBER_TABLE;
TAB_TIME DBMS_SQL.DATE_TABLE;
CNT NUMBER := O0;
BEGIN
SELECT AMOUNT_SOLD, TIME_ID
BULK COLLECT INTO TAB_QTY, TAB_TIME FROM SALES;
FOR J IN TAB_QTY.FIRST..TAB_QTY.LAST LOOP
IF TAB_TIME(J) < "27-JUN-98" AND TAB_QTY(J) > 1 THEN
CNT := CNT + 1;
END IF;
END LOOP;
END;
/
SET TIMING OFF

267

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

In step 2, we collect the quantity sold and the date from the SALES table in two arrays and
then we loop through this array to count the records that satisfy these two conditions:

1. The quantity is greater than 1.
2. The sale took place before June 28, 1998.

We test these two conditions in the same order, obtaining the following output:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i‘]

(ST - IR T BT

v completed.

In step 3, the only difference in our script is the order in which the conditions are tested
using the IF statement, which is reversed as follows:

IF TAB_TIME(J) < "27-JUN-98" AND TAB_QTY(J) > 1 THEN

When we test the changed script again, we obtain the following output:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|i‘]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There's more...

The performance gain obtained in the example is huge, as we are testing against a condition
that is true for all records in the table. The quantity sold is always greater than 1; this can be
verified with a simple command:

SELECT COUNT(*) FROM SALES WHERE AMOUNT_SOLD > 1

In this situation, it's better to first test the condition which is true less often. If this
condition is false (and the conditions are related with a logical AND to each other), the
whole predicate (compound by adding more conditions) is false, hence, the remaining
conditions are not checked.

This behavior is called short-circuit IF, because the execution flow takes the shortest route
to the destination. A similar behavior also occurs in logical ORed conditions, but in this case,
the short circuit shows when the first condition is true and hence the predicate.

Avoiding recursion

In this recipe, we will investigate the use of recursive PL/SQL functions and their impact
on performance.

How to do it...

The following steps demonstrate recursive functions:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create the FACTORIAL_RECURSIVE function to calculate the factorial of a given
number (which is the product of all positive integers less than or equal to the given
number) using the well-known recursive algorithm, as follows:

CREATE OR REPLACE FUNCTION FACTORIAL_RECURSIVE (ANUM NUMBER)
RETURN NUMBER 1S

AVALUE NUMBER;
BEGIN
IF ANUM <= 1 THEN
AVALUE :== 1;

ELSE
AVALUE := ANUM * FACTORIAL_RECURSIVE(ANUM - 1);
END 1F;
RETURN AVALUE;
END;

269

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code
3.

Create the function FACTORIAL_ITERATIVE to calculate the factorial of a given
number using an iterative algorithm:

CREATE OR REPLACE FUNCTION FACTORIAL_ITERATIVE (ANUM NUMBER)
RETURN NUMBER 1S

AVALUE NUMBER := 1;
BEGIN
FOR J IN 2..ANUM LOOP
AVALUE := AVALUE * J;
END LOOP;
RETURN AVALUE;
END;

Compare the execution speed of the functions, while calculating the factorial of a
big number:

SET TIMING ON

SELECT FACTORIAL_RECURSIVE(1000000) FROM DUAL;
SELECT FACTORIAL_ITERATIVE(1000000) FROM DUAL;
SET TIMING OFF

Drop the functions created in this recipe:
DROP FUNCTION FACTORIAL_RECURSIVE;
DROP FUNCTION FACTORIAL_ITERATIVE;

In step 2, we created a function to calculate the factorial of a number—denoted by n! in
mathematics—using a recursive function, that is, a function that calls itself to calculate
the result.

In step 3, we implement the same function, using an iterative algorithm to calculate the
same value.

In step 4, we execute these two functions with the same number to verify the speed of the
two implementations. The result of the execution is as follows:

270

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

ec2-46-51-176-114.eu-west-Loompute.amazonaws.com - PuT.. | =ARC X
0) LL; <

In step 5, we finally drop the functions created to clean the database.

There's more...

We have seen how using iterative functions led to better performance, even if the recursive
form of the algorithms is always more elegant and often less complicated.

We need to avoid recursive PL/SQL functions for one more reason—invoking recursive
functions consumes more memory in the PGA than its iterative counterpart. This is because
for each recursion, the state of the function (the copy of each parameter and variable and
the pointer to the current instruction) has to be stored in memory, and retrieved when the
execution flow returns to that recursion.

See also

» The Tuning the Program Global Area and the User Global Area recipe in Chapter 9,
Tuning Memory

Using native compilation

In this recipe, we will see how to instruct the database to compile our stored procedures
in native form—rather than interpreted—to speed up the execution time.

271

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

Getting ready

To be sure that our database is not using native compilation by default, we can execute
the following command from a SQL*Plus Session:

SHOW PARAMETER PLSQL_CODE_TYPE

If the result is NATIVE, we can execute the following statement to return to the original
default value:

ALTER SYSTEM SET PLSQL_CODE_TYPE = INTERPRETED;

How to do it...

The following steps will demonstrate how to use native compilation:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create the function C_N_K, which calculates the number of k-combinations in
a set of n elements:

CREATE OR REPLACE FUNCTION C_N_K (N IN NUMBER, K IN NUMBER)
RETURN NUMBER
IS
N_FAT NUMBER :
K_FAT NUMBER :
N_K_FAT NUMBER := 1;
BEGIN
FOR J IN 1..N LOOP
N_FAT := N_FAT * J;
END LOOP;
FOR J IN 1..K LOOP
K_FAT := K_FAT * J;
END LOOP;
FOR J IN 1..(N - K) LOOP
N_K_FAT := N_K_FAT * J;
END LOOP;
RETURN (N_FAT /7 (N_K_FAT * K_FAT));
END;
/

1
1

272

www.it-ebooks.info

http://www.it-ebooks.info/

Create a procedure by the name STRESS to test the function in a loop:

CREATE OR REPLACE PROCEDURE STRESS(ANUM NUMBER)
IS

AVAL NUMBER;
BEGIN

FOR J IN 1..ANUM LOOP

AVAL := C_N_K (50,10);

END LOOP;
END;
/

Execute the STRESS procedure measuring the time needed:
SET TIMING ON
BEGIN
STRESS(100000);
END;
/
SET TIMING OFF

Alter the session to enable native compilation as the default:
ALTER SESSION SET PLSQL_CODE_TYPE = NATIVE;

Re-create the function C_N_K:

CREATE OR REPLACE FUNCTION C_N_K (N IN NUMBER, K IN NUMBER)

RETURN NUMBER
IS
N_FAT NUMBER :
K_FAT NUMBER := 1;
N_K_FAT NUMBER := 1;
BEGIN
FOR J IN 1..N LOOP
N_FAT := N_FAT * J;
END LOOP;
FOR J IN 1..K LOOP
K_FAT := K_FAT * J;
END LOOP;
FOR J IN 1..(N - K) LOOP
N_K_FAT := N_K_FAT * J;
END LOOP;
RETURN (N_FAT 7/ (N_K_FAT * K_FAT));
END;
/

1
1

Chapter 6

273

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

7. Re-create the STRESS procedure:

CREATE OR REPLACE PROCEDURE STRESS(ANUM NUMBER)
IS

AVAL NUMBER;
BEGIN

FOR J IN 1..ANUM LOOP

AVAL := C_N_K (50,10);

END LOOP;
END;
/

8. Execute the STRESS procedure measuring the time needed:
SET TIMING ON
BEGIN
STRESS(100000) ;
END;
/
SET TIMING OFF

9. Reset the parameter and clean the database:
ALTER SESSION SET PLSQL_CODE_TYPE = INTERPRETED;
DROP FUNCTION C_N_K;
DROP PROCEDURE STRESS;

In step 2, we create a function C_N_K to calculate the number of k-combinations in a set
of n elements—the binomial coefficient n choose k. We use the iterative form to calculate
the factorial values required.

In step 3, we create a procedure STRESS, which calculates the C_N_K function for 50
choose 10, the number of times equal to its parameter ANUM.

274

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In step 4, we execute the STRESS procedure with a value of 200000 for its ANUM parameter,
obtaining the results shown in the following screenshot:

-
west-1.compute.amazonaws.com - PuTTY | =HAC] _ﬁ-]

ec2-46-51-176-114.¢

v completed.

In step 5, we change a parameter in the current session—the same statement can be
executed, with the necessary grants, to change the parameter in the whole system—to
enable the native compilation of PL/SQL.

In step 6, we create the function C_N_K again—with the native compilation enabled—and
in step 7 we create the procedure STRESS.

In step 8, we execute the STRESS procedure as in step 4, obtaining the following result:

ec2-46-51-176-114.eu-west-1.compute.amazona... | =S -"ﬁ'-J

1ly completed.

In step 9, we alter our session parameter PLSQL_CODE_TYPE again to reset the default
behavior and drop the C_N_K function and STRESS procedure.

275

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

There's more...

In this recipe, we have seen that the PLSQL_CODE_TYPE parameter controls the compilation
of the PL/SQL code. It can assume two values—INTERPRETED (the default) and NATIVE.

When a native compilation occurs, the source code (PL/SQL in our
+ examples) is translated to a binary form that can be directly executed
% by the CPU. If there is no native compile phase, the source code
e is interpreted (translated in a binary form as mentioned earlier) at
runtime when the code needs to be executed.

After changing the parameter to NATIVE, we have created a function and a procedure,
obtaining a significant performance gain.

If we use mathematical functions, such as SQRT, SIN, and so on, in
our compiled procedure, NAT IVE, then the performance gain is less
~ evident, because those functions are already native-compiled in the
Q Oracle libraries. The best performance gain is obtained by compiling
user-defined PL/SQL functions.

Performance of SQL statements is not affected by native compilation.

See also

» See the Taking advantage of function result cache, Avoiding recursion, and In-lining
PL/SQL code recipes in this chapter

Taking advantage of function result cache

In this recipe, we will see how to use the function result cache feature, available from Oracle
11g upwards, to enhance our function's performance.

How to do it...

The following steps will demonstrate the use of the functions result cache:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

276

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Create the function C_N_K, which calculates the number of k-combinations in a
set of n elements:

CREATE OR REPLACE FUNCTION C_N_K (N IN NUMBER, K IN NUMBER)
RETURN NUMBER
IS
N_FAT NUMBER := 1;
K_FAT NUMBER := 1;
N_K_FAT NUMBER := 1;
BEGIN
FOR J IN 1..N LOOP
N_FAT := N_FAT * J;
END LOOP;
FOR J IN 1..K LOOP
K_FAT := K_FAT * J;
END LOOP;
FOR J IN 1..(N - K) LOOP
N_K_FAT := N_K_FAT * J;
END LOOP;
RETURN (N_FAT / (N_K_FAT * K_FAT));
END;
/

Create a procedure with the name STRESS to test the function in a loop:
CREATE OR REPLACE PROCEDURE STRESS(ANUM NUMBER)
1S

AVAL NUMBER;
BEGIN

FOR J IN 1._ANUM LOOP

AVAL := C_N_K (50,10);

END LOOP;
END;
/

277

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

4. Create the function C_N_K_CACHE with the RESULT_CACHE option:
CREATE OR REPLACE FUNCTION C_N_K CACHE (N IN NUMBER,
K IN NUMBER) RETURN NUMBER RESULT_CACHE
1S
N_FAT NUMBER :
K_FAT NUMBER :
N_K_FAT NUMBER := 1;
BEGIN
FOR J IN 1..N LOOP
N_FAT := N_FAT * J;
END LOOP;
FOR J IN 1..K LOOP
K_FAT := K_FAT * J;
END LOOP;
FOR J IN 1..(N - K) LOOP
N_K_FAT := N_K_FAT * J;
END LOOP;
RETURN (N_FAT / (N_K_FAT * K_FAT));
END;
/

1
1

5. Create the STRESS_CACHE procedure to test the C_N_K_CACHE function:

CREATE OR REPLACE PROCEDURE STRESS_CACHE(ANUM NUMBER)
1S

AVAL NUMBER;
BEGIN

FOR J IN 1._ANUM LOOP

AVAL := C_N_K_CACHE (50,10);

END LOOP;
END;
/

278

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

6. Execute the STRESS procedure measuring the time needed:
SET TIMING ON
BEGIN
STRESS(100000) ;
END;
/

7. Execute the STRESS_CACHE procedure measuring the time needed:
BEGIN
STRESS_CACHE(100000) ;
END;
/

8. Clean the database:
SET TIMING OFF
DROP FUNCTION C_N_K;
DROP PROCEDURE STRESS;
DROP FUNCTION C_N_K_ CACHE;
DROP PROCEDURE STRESS_CACHE;

In step 2 and step 3, we create the function C_N_K and the procedure STRESS
as in the Using native compilation recipe in this chapter.

In step 4, we create a function C_N_K_CACHE, equivalent to the function C_N_K
except for the RESULT_CACHE option in its heading:

CREATE OR REPLACE FUNCTION C_N_K_CACHE (N IN NUMBER,
K IN NUMBER) RETURN NUMBER
RESULT_CACHE

In step 5, we create the procedure STRESS_CACHE, which is the same as STRESS
but invokes the C_N_K_CACHE function instead of the original C_N_K function.

279

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

In step 6 and step 7 we execute the STRESS and STRESS_CACHE procedures, obtaining
an output as shown in the following screenshot:

ec2-46-531-176-114.eu-west-1.compute.amazenaws.com - PuTTY |ﬂlﬁj

4 [

In step 8, we clean the database by dropping the procedures and functions created in
this recipe.

We can see a large performance improvement by executing the function defined with
the RESULT_CACHE option enabled.

There's more...

Using the result cache can lead to a huge performance gain when we have a deterministic
function—a function which always returns the same result for the same parameters—often
invoked with the same parameters.

The introduction of this change in our PL/SQL code doesn't require a lot of work; it's just
a matter of adding a parameter in the function definition, and there aren't warnings in the
use of this feature.

The result cache can also be used for functions with a result based on the contents of
infrequently updated tables. In this case, when we define a function we add the RELIES
ON clause to indicate the table to which the function is related, as in the following example,
where the function FOO relies on the table EMPLOYEES:
CREATE OR REPLACE FUNCTION FOO (APARAMETER NUMBER, ..)

RETURN NUMBER RESULT_CACHE

RELIES ON (EMPLOYEES)
IS..

280

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

See also

See the Using native compilation, Avoiding recursion, and Inlining PL/SQL code recipes
in this chapter

Inlining PL/SQL code

In this recipe, we will see the benefits of inlining the PL/SQL code in our functions
and procedures.

How to do it...

The following steps will demonstrate how to make PL/SQL functions inline:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create a SIMPLE_FUNCTION function, which returns the area of a triangle given
the length of the base and the height:
CREATE OR REPLACE FUNCTION SIMPLE_FUNCTION (N IN NUMBER,
K IN NUMBER) RETURN NUMBER
1S
BEGIN
RETURN (N * K / 2);
END;
/

3. Create a STRESS procedure, which calculates the area for a number of triangles
using the SIMPLE_FUNCTION function created in step 2:
CREATE OR REPLACE PROCEDURE STRESS(ANUM NUMBER)
1S

AVAL NUMBER;
T1 NUMBER;
BEGIN
T1 := DBMS_UTILITY.get_time;
FOR J IN 1..ANUM LOOP
AVAL := SIMPLE_FUNCTION (50,ANUM);
END LOOP;
DBMS_OUTPUT.PUT_LINE("TIME: = ||
(DBMS_UTILITY.get_time - T1));
END;
/

281

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

4. Create the same procedure as in the previous step, inlining the SIMPLE_FUNCT 10N
by adding a PRAGMA INLINE statement, naming it STRESS_INLINING:

CREATE OR REPLACE PROCEDURE STRESS_INLINING(ANUM NUMBER)
IS
AVAL NUMBER;
T1 NUMBER;
BEGIN
T1 := DBMS_UTILITY.get time;
FOR J IN 1..ANUM LOOP
PRAGMA INLINE (SIMPLE_FUNCTION, "YES");
AVAL := SIMPLE_FUNCTION (50,ANUM);
END LOOP;
DBMS_OUTPUT.PUT_LINE("TIME (INLINE): " ||
(DBMS_UTILITY.get_time - T1));
END;
/

5. Execute the STRESS procedure:
SET SERVEROUTPUT ON
BEGIN

STRESS(9999999) ;
END;
/

6. Execute the STRESS INLINING procedure:
SET SERVEROUTPUT ON
BEGIN
STRESS_INLINING(9999999) ;
END;
/

7. Clean the database:
SET SERVEROUTPUT OFF
DROP PROCEDURE STRESS_INLINING;
DROP PROCEDURE STRESS;
DROP FUNCTION SIMPLE_FUNCTION;

282

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the next screenshot, we can see the output obtained after the execution of step 5
and step 6:

.
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

0T ON -

4 |[m

In the previous example, we are using a function many times. Every time we call SIMPLE_
FUNCTION, there is an overhead due to subprogram calling, which can be significant when
the called procedure is small and is called many times, so the procedure execution time is
negligible compared to the subprogram calling overhead.

The function inlining technique is very common in compilers—together with loop unrolling and
other tricks—and its implementation is very simple. The compiler inserts the body (the entire
source code) of the called subprogram into the caller body instead of the calling code (the
function call) avoiding the subprogram calls and their overhead, at the expense of longer code.

Starting from Oracle Database 11g, there is a new feature that allows us to make our
procedures and functions inline—PRAGMA INL INE. With this simple statement, we
have instructed the database to inline (the parameter YES) the SIMPLE_FUNCT ION
implementation inside our STRESS _INLINING procedure. The statement is as follows:

PRAGMA INLINE (SIMPLE_FUNCTION, "YES®");

Using this feature, we can see a performance improvement in terms of our code execution
time, without losing the modularity and isolation of the code.

There's more...

In this recipe, we have used manual inlining, because we have written the PRAGMA INLINE
directive by ourselves to inform the database about the function call that has to be inlined.

283

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

There is another option to avoid manual inlining, which works without changing our code. We
can set the parameter PLSQL_OPTIMIZE_LEVEL to the value 3, with the following statement:

ALTER SYSTEM SET PLSQL_OPTIMIZE_LEVEL = 3;

Even if we change the value of this parameter, we can still use the PRAGMA INL INE
directive. This parameter lets the database choose if it's a good idea to inline function
calls at compile time, while with the PRAGMA INL INE directive, we ask the database to
use inlining (it's not a hint).

M We can also use ALTER SESSION to modify the PLSQL_OPTIMIZE_
Q LEVEL only in the current user session. The default value for the
PLSQL_OPTIMIZE_LEVEL parameter is 2 in Oracle Database 11g.

Please note that the use of value 3 for PLSQL_OPTIMIZE_LEVEL can increase compile time,
and also affects other optimizations.

See also

» Other recipes related to functions and procedures in this chapter are Avoiding
recursion, Using native compilation, and Taking advantage of function result cache

Using triggers and virtual columns

In this recipe, we will see how to use virtual columns, a new feature in Oracle Database 11g,
to avoid the use of DML triggers, resulting in a performance gain in our applications.

be partitioned by them, and statistics can be gathered on them.

How to do it...

The following steps will demonstrate the use of virtual columns:

[Virtual columns can also be used in referential integrity, tables can]
s

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

284

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

2. Create a table and call it LOANS:

CREATE TABLE sh._LOANS (
LOAN_ID INT NOT NULL,
PAYMENT NUMBER,
NUMBER_PAYMENTS NUMBER,
GROSS_CAPITAL NUMBER);

3. Create a trigger on the LOANS table to calculate the GROSS_CAPITAL field,
giving the number of payments and the amount of every single payment:

CREATE OR REPLACE TRIGGER TR_LOANS_INS
BEFORE UPDATE OR INSERT ON sh.LOANS
FOR EACH ROW
BEGIN
:new.GROSS_CAPITAL := :-new.PAYMENT * :=new.NUMBER_PAYMENTS;
END;
/

4. Insert several rows in the LOANS table and query against it, measuring the
execution time:

SET TIMING ON
INSERT INTO sh._LOANS (LOAN_ID, PAYMENT, NUMBER_PAYMENTS)
SELECT
ROWNUM, AMOUNT_SOLD, QUANTITY_SOLD
FROM SALES;
SELECT COUNT(*)
FROM sh._LOANS
WHERE GROSS_CAPITAL < 10000;
SET TIMING OFF

5. Create a table LOANS_VC with a virtual column for the GROSS_CAPITAL:
CREATE TABLE sh.LOANS_VC (
LOAN_ID INT NOT NULL,
PAYMENT NUMBER,
NUMBER_PAYMENTS NUMBER,
GROSS_CAPITAL AS (PAYMENT * NUMBER_PAYMENTS));

285

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

6. Insert several rows in the LOANS_VC table and query against it, measuring the
execution time:

SET TIMING ON
INSERT INTO sh._LOANS_VC (LOAN_ID, PAYMENT, NUMBER_PAYMENTS)
SELECT
ROWNUM, AMOUNT_SOLD, QUANTITY_SOLD
FROM SALES;
SELECT COUNT(*)
FROM sh_LOANS_VC
WHERE GROSS_CAPITAL < 10000;
SET TIMING OFF

7. Clean the database:
DROP TABLE sh.LOANS;
DROP TABLE sh.LOANS VC;

In step 2, we create a table to store loan data; the GROSS_CAPITAL field can be computed
as PAYMENT * NUMBER_PAYMENTS. In step 3, we create a trigger to calculate this value for
each insert/update on the LOANS table.

In step 4, we insert about 1 million rows into the LOANS table, using dummy data from the
SALES table, and we obtain the timing in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | | S

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In step 5, we create a similar table, named LOANS_VC, to store loan data. In this table, the
GROSS_CAPITAL field is not stored in the table, but it's a virtual column, for which we provide
the expression to calculate.

By executing the tests that we executed in step 4 on the LOANS table, on the table LOANS_VC
in step 6 we obtain the results shown in the following screenshot:

PP ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | | [-

In step 7, we drop the tables created in this recipe to clean up the database.

There's more...

In this recipe, we have seen virtual columns in action, a feature useful in many situations,
which allows us to have calculated fields whose values aren't stored in the database.

Our test has shown that using virtual columns leads to performance gain over a solution
based on a regular field populated with a trigger.

Also, there are some other considerations for triggers that relate to performance improvement.

Using WHEN and OF in trigger definition
We have defined our trigger using the following definition:

CREATE OR REPLACE TRIGGER TR_LOANS_INS
BEFORE UPDATE OR INSERT ON sh.LOANS
FOR EACH ROW

287

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing PL/SQL Code

When we define a trigger, it is better to avoid execution when not needed. In our example,
the trigger has to be executed only when the fields PAYMENT and NUMBER_PAYMENTS are
updated. So, we can define the trigger using an OF clause to identify the updated columns,
which fire the trigger execution, as shown in the following code:
CREATE OR REPLACE TRIGGER TR_LOANS_INS

BEFORE UPDATE OR INSERT

OF PAYMENT, NUMBER_PAYMENTS

ON sh.LOANS

FOR EACH ROW

Using the highlighted OF clause, we have declared that the trigger needs to be executed
only if the fields PAYMENT and NUMBER_PAYMENTS are updated, avoiding unnecessary
code execution when updating other fields (in our LOANS table, there are few fields to
provide a simple test environment; in real world scenarios a similar table would contain
a lot more information).

Another improvement in this direction is the use of the WHEN clause, which limits the
execution of the trigger only when certain conditions are met. For example, we can write
a trigger as follows:
CREATE OR REPLACE TRIGGER TR_LOANS_INS

BEFORE UPDATE OR INSERT

OF PAYMENT, NUMBER_PAYMENTS

ON sh.LOANS

FOR EACH ROW

WHEN ((new_PAYMENT > 0) AND (new.NUMBER_PAYMENTS > 0))

In the WHEN clause (the last line in the previous code excerpt), we have defined two
conditions to be met to fire the trigger, namely, the new values for the fields PAYMENT
and NUMBER_PAYMENTS have to be greater than zero.

M If we use the WHEN clause in trigger declaration, the specified
Q conditions are tested for each row and the trigger body is
executed only for the rows that match these conditions.

288

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Avoid FOR EACH ROW in triggers, when possible
Our trigger is declared with the clause FOR EACH ROW, because it has to be executed once
for each row inserted or updated in the LOANS table.

There are situations where it's enough to execute the trigger once for each insert or
update operation, regardless of the rows affected.

In such situations, it's better to declare the trigger without the FOR EACH ROW clause,
avoiding unnecessary execution of the trigger for each row interested in the operation,
reducing the execution time.

See also

» See the recipe Reducing the number of requests to the database using
materialized views in Chapter 2, Optimizing Application Design

289

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the
Oracle Optimizer

In this chapter, we will cover:

» Exploring optimizer hints

» Collecting statistics

» Using histograms

» Managing stored outlines

» Introducing Adaptive Cursor Sharing for bind variable peeking
» Creating SQL Tuning Sets

» Using the SQL Tuning Advisor

» Configuring and using SQL Baselines

Introduction

In this chapter, we discuss the query optimizer, which is a built-in component of the Oracle
database. The optimizer chooses the most efficient way to execute a SQL statement, using
three steps:

1. Query transformation.
2. Estimation.

3. Plan generation.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

The query transformation step accepts the parsed statement, divides it into query blocks (for
example, identifying a subquery), and determines if it's better to transform the query blocks
into a different SQL statement—semantically equivalent—that can be processed in a more
efficient way.

The estimator determines the overall cost of an execution plan, based on selectivity,
cardinality, and the cost of each operation involved in the plan. If statistics are available, the
estimator uses them for computation, improving the accuracy of the result.

The plan generator explores various plans for each query block, due to various factors:
different access paths, joins, and/or join order. We can follow many paths to answer a query;
the plan generator chooses the plan with the minimal cost.

Even though the Oracle optimizer does a great job without user intervention, in this chapter,
we will see how to tweak the query optimizer to obtain the best performance from each query.
We will suggest to the optimizer the best strategy to obtain the answer to our queries, use
statistics and histograms to provide more information about our data to the estimator, create
stored outlines for plan stability, and use some tools to tune our queries.

Exploring optimizer hints

In this recipe, we will see how to suggest (to the optimizer) the strategy to adopt for choosing
the best execution plan, using optimizer hints.

The use of optimizer hints is a trick and should be considered
only when no solution seems to work. The query optimizer is

designed to choose the best execution plan, based on many
’ different considerations, so it's very important to keep updated

statistics to help the query optimizer in doing its work.

How to do it...

The following steps will explore optimizer hints:

1. Connect the database to the SH schema:
CONNECT sh@TESTDB/sh

2. Set the auto-trace functionality in SQL*Plus to see only the execution plan without
executing the queries:

SET AUTOT TRACE EXP

292

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

3. Select some records from the CUSTOMERS table (say, all customers born in 1949):
SELECT
C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh._CUSTOMERS C
WHERE C.CUST_YEAR_OF _BIRTH = 1949;

4. Execute the same query suggesting that it's better to full-scan the CUSTOMERS table
in order to answer the same query we just saw:

SELECT /*+ FULL(C) */
C.CUST_FIRST_NAME, C.CUST_LAST_NAME

FROM sh.CUSTOMERS C

WHERE C.CUST_YEAR OF BIRTH = 1949;

5. Inform the optimizer that we are only interested in the first 10 rows of the result:
SELECT /*+ FIRST_ROWS(10) */
C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh.CUSTOMERS C
WHERE C.CUST_YEAR_OF_BIRTH = 1949;

6. Tell the optimizer to use indexes on the CUSTOMERS table:
SELECT /*+ INDEX(C) */
C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh._CUSTOMERS C
WHERE C.CUST_YEAR_OF_BIRTH = 1949;

7. Disable the auto-trace functionality:
SET AUTOT OFF

In this recipe, there is a query to extract the customers who were born in 1949; we want to
retrieve their first and last names.

293

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 3, we execute a simple query in order to satisfy our requirements, obtaining the
following execution plan:

ec2-46-51-176-114.eu-west-Lcompute.amazonaws.com - PuTTY |ﬂlﬁ]

We can see that the optimizer has chosen to use the CUSTOMERS_YOB_BI1X bitmap index
(on field CUST_YEAR_OF_BIRTH) to access the data in the CUSTOMERS table.

In step 4, we execute the same query, adding a hint to the optimizer, suggesting the use of
a full table scan operation, resulting in the following execution plan:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|i‘]

294

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We can see that, using the /*+ FULL(C) */ hint in our query, the execution plan changes,
and the access to the CUSTOMERS table is made through a full table scan instead of using
indexes, as before.

In step 5, we changed our hint, informing the optimizer that we are not interested in the
complete dataset, but only in the first 10 rows, using the hint /*+ FIRST_ROWS (10) */.
The execution plan changes again; we can see the result in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

We can see that the optimizer has chosen to use the CUSTOMERS_YOB_BI1X index to answer
our query, as in step 3.

295

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 6, we change the hint again, asking the optimizer to use indexes to access data on
the CUSTOMERS table, with the /*+ INDEX(C) */ hint. The corresponding execution plan is
shown in the following screenshot. We can see that the optimizer has chosen the primary key
index CUSTOMERS_ PK to answer our query, instead of the bitmap index used before.

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In step 7, we disable the auto-trace functionality of SQL*Plus.

There's more...

We have seen how simple it is to hint the optimizer by inserting our hint in a comment starting
with a plus sign /*+ our_hint */.

Hints are used because we may know information about data that is unknown to the Oracle
optimizer. With the hint mechanism, we can provide this information to achieve a better
execution plan.

There are many different hints we can use, and here is a list of the ones most commonly used:

>

>

296

ALL_ROWS: Informs the optimizer that we want to retrieve all the rows of the query

FIRST_ROWS (n): Informs the optimizer that we are interested only in the first n
rows of the query

FULL (table_name): Asks for full table access to the table table_name

CLUSTER (table_name): Instructs the optimizer to use a cluster scan when
accessing the specified table

HASH (table_name): Allows access to a table in the hash cluster using a hash scan

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

INDEX (table_name index_name): Specifies to access the table_name using an
index (using index_name if specified)

NO_INDEX (table_name index_name): Specifies not to use an index (a specific
index, if index_name specified, otherwise any index) when accessing table_name

LEADING (table_namel table_name?2 ..): Asks the optimizer to join
table_namel and table_name2 in the given order

ORDERED: Asks the optimizer to join the tables in the order in which they appear in
the FROM clause

USE_NL (table_namel table_name?2 ..): Instructs the optimizer to use nested
loops join when joining table_namel (and table_name2) to another row source

USE_MERGE (table_namel table_name2 ..): Instructs the optimizer to use a sort-
merge join when joining table_namel (and table_name?2) to another row source

USE_HASH (table_namel table_name2 ..): Instructs the optimizer to use a hash
join when joining table_namel (and table_name2) to another row source

PARALLEL (DEFAULT | AUTO | MANUAL | n): Instructs the optimizer to use the
specified number of concurrent servers for a parallel operation

STAR_TRANSFORMAT ION: The optimizer will chose the best execution plan obtained
through a star transformation

REWRITE (materialized_view): Instructs the optimizer to rewrite the query using
materialized views (if materialized_view is specified); the optimizer won't take
care of the costs involved in using the materialized view

APPEND: Instructs the optimizer to use direct-path INSERT (data is appended to the
end of the table, regardless of whether there is free space in blocks below the high
watermark)

CACHE (table_name): Instructs the optimizer to place the blocks retrieved from
table_name at the top of the least recently-used list in the buffer cache when a full
table scan is performed; this hint is useful with a small lookup table

When specifying a hint related to a table (for example, the FULL hint used in step 4), if we
have used an alias in our query, we must use the alias in the hint too. This rule doesn't
apply to the schema. Even if we have specified the schema in our query, for example,
SH.CUSTOMERS, we must use only the table name (or the alias) in the hint. In the preceding
example, we used only CUSTOMERS.

The hint is, in effect, a suggestion, so if the optimizer is able to follow the suggestion, it will
generate a plan that follows the suggestion, even if performance is poor!

M There are certain hints—such as, LEAD ING and ORDERER—that
Q the optimizer will always follow. The optimizer will ignore a hint
when there is a typo or when an incorrect hint is supplied.

297

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

Errors in hints

If there are errors in our hints, the optimizer will simply treat them as remarks. After adding
a hint, always compare the execution plans to check for the expected change, because there
will be no errors or exceptions to inform us of this situation.

Common errors, in addition to typos, are missing the plus sign or using the table name instead
of the table alias, when the latter was used in the query.

See also

» The Managing stored outlines recipe in this chapter

Collecting statistics

To work well, the optimizer relies on information about both—the data structures involved in
the query and the data contained in them; the latter information is provided by statistics.

In this recipe, we will see how to collect statistics on database objects and see its effects on
the optimizer's performance.

How to do it...

The following steps will show how to collect statistics on database objects:

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Collect statistics on the CUSTOMERS table:
EXEC DBMS_STATS.GATHER_TABLE_STATS (OWNNAME => *"SH", -
TABNAME => *"CUSTOMERS®, -
ESTIMATE_PERCENT => 20, BLOCK_SAMPLE => TRUE, -
CASCADE => TRUE, DEGREE => 4);

3. Query for some statistic data collected in the previous step:

SET PAGESIZE 100

SET LINESIZE 90

SELECT
NUM_ROWS, BLOCKS, EMPTY_BLOCKS, AVG_SPACE, CHAIN_CNT,
AVG_ROW_LEN, AVG_SPACE_FREELIST_BLOCKS, NUM_FREELIST_ BLOCKS,
SAMPLE_SI1ZE, GLOBAL_STATS, USER_STATS, LAST_ANALYZED

FROM DBA_TABLES

WHERE TABLE_NAME = *"CUSTOMERS®" AND OWNER = "SH";

298

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

11.

Create a regular table (MYSTATS) to store the statistics:
EXEC DBMS_STATS.CREATE_STAT_TABLE (OWNNAME => "SH", -
STATTAB => "MYSTATS", TBLSPACE => "EXAMPLE®");

Export the statistics collected in the data dictionary about SH schema to the
MYSTATS table created in the previous step:

EXEC DBMS_STATS.EXPORT_SCHEMA_STATS (OWNNAME => "SH", -
STATTAB => "MYSTATS");

Inspect the execution plan for a simple query (with the statistics in place):
SET AUTOT TRACE EXP
SELECT
C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh._CUSTOMERS C
WHERE C.CUST_YEAR_OF _BIRTH = 1949;

Delete the statistics on SH schema:
EXEC DBMS_STATS.DELETE_SCHEMA_STATS (OWNNAME => "SH");

Execute the query in step 6, again (without the statistics in place):
SELECT
C.CUST_FIRST_NAME, C.CUST_LAST_NAME
FROM sh._CUSTOMERS C
WHERE C.CUST_YEAR_OF_BIRTH = 1949;

Import the statistics from the MYSTATS table:

EXEC DBMS_STATS. IMPORT_SCHEMA_STATS (OWNNAME => "SH", -
STATTAB => "MYSTATS");

Execute the query in step 6, again (with the statistics again in place):

SELECT
C.CUST_FIRST_NAME, C.CUST_LAST_NAME

FROM sh._CUSTOMERS C

WHERE C.CUST_YEAR_OF_BIRTH = 1949;

Drop the MYSTATS table:
SET AUTOT OFF
EXEC DBMS_STATS.DROP_STAT_TABLE ("SH","MYSTATS");

299

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

12. Set up automatic statistics gathering for schema SH:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS (OWNNAME => "SH", -
OPTIONS => "GATHER AUTO");
13. Use automatic sampling size when collecting statistics:
EXEC DBMS_STATS.GATHER_SCHEMA_STATS (OWNNAME => "SH", -

ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE, -
METHOD_OPT => "FOR ALL COLUMNS SIZE AUTO");

In step 2, we collect statistics over the CUSTOMERS table, using the GATHER_TABLE_STATS
procedure of the DBMS_STATS package, identifying the table to collect statistics over and
other parameters for this operation.

In step 3, we query the DBA_TABLES dictionary view to see some results of the previous
operation. Observe some parameters of the table—such as, number of rows, blocks, and
average row length—and some information about the previous statistics collection phase—such
as, the sample size used and the last analyzed timestamp—if we have global or user stats.

We can see these operations in the following screenshot:

-
compute.amazonaws.com - PuTTY | e[S e -

EP ec2-46-51-176-114.eu-\

In step 4, we create a table MYSTATS on the tablespace EXAMPLE, to store statistics data
in a regular table. In step 5, we copy SH schema statistics from the data dictionary to the
MYSTATS table. This operation is useful when we want to transfer statistics among different
databases, to avoid recollecting them, which can be a time consuming task.

300

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the following screenshot, observe the output of these operations, using the DBMS_STATS
package and the CREATE_STAT_TABLE and EXPORT_SCHEMA_STATS procedures:

ec2-46-51-176-114.eu-west- Leompute.amazonaws.com - PuTTY |ﬂ|ﬁj

We are now ready to test how statistics affect the execution plan of the queries. Let's create a
baseline, executing a simple query on the CUSTOMERS table, as in step 6. The execution plan
of this query is as follows:

-
ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂld—hj

“UST_LAST NAME

We can see that, to answer our query, the optimizer choice is to use the CUSTOMERS_YOB_BIX
bitmap index to access the required data.

In step 7, we execute the DELETE_SCHEMA_STATS procedure of the DBMS_STATS package,
to delete statistics from the SH schema. We execute the same query again in step 8, and then
we can see the effects of working without statistics. The execution plan can change, but in
our example—thanks to dynamic sampling, a feature we will discuss in the next section—the
execution plan remains the same.

301

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In the following screenshot, we can see the result of these operations, and we can see in the
NOTE section that dynamic sampling was used for this statement:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

5 (OWHNNAME => '5H'):

In step 9, we use the DBMS_STATS. IMPORT_SCHEMA_STATS procedure to import the
statistics data from the MYSTATS table in the data dictionary. This operation can be carried
out when we transfer statistics among different databases—export them from one database,
as in step 4 and step 5, and then we can use the export utility to transfer the MYSTATS table
to the other database and IMPORT it. After these operations, we execute the procedure in this
step to populate the data dictionary tables with our statistics.

In step 10, we execute the same query again. In the following screenshot, you can observe
that we have the same execution plan as in step 6, without the use of dynamic sampling as
in step 8:

302

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In step 11, we drop the MYSTATS table using the proper stored procedure of the
DBMS_STATS package.

In step 12, we instruct the database to automatically collect statistics on schema SH. This
option is turned on by default in Oracle databases from 10g onward, thanks to the job
GATHER_STATS_JOB.

Statistics computation on a large table is a long job and requires both a scan and a sort on
the tables. To reduce the execution time, we can gather statistics using only some of the
data. We can decide the amount of data to be processed by setting the ESTIMATE_PERCENT
parameter in the DBMS_STATS.GATHER_SCHEMA_STATS procedure.

From Oracle Database 9i onward, we can assign a DBMS_STATS.AUTO_SAMPLE_SI1ZE
value to this parameter. By doing so, the database decides the value to be used to balance
performance and statistics accuracy, as in step 13.

303

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

There's more...

Oracle optimizer needs up-to-date statistics to choose the best execution plan for our queries.

From Oracle Database 9iR2 onward, Dynamic Sampling was introduced. But, from 11gR2,
the optimizer automatically detects whether dynamic sampling should be used and
determines the appropriate sampling level. This allows us to have a better execution plan
than in previous database releases, even if we don't have statistics on the objects interested
in our query, as in our example.

However, relying on Dynamic Sampling in production databases is not a good idea. We can
use Dynamic Sampling when we have out-of-date statistics, and we can also use a hint to
inform the optimizer that we want to use this feature, as follows:

SELECT /*+ DYNAMIC_SAMPLING (CUSTOMERS 8) */ ..

In this example, we have asked the optimizer to use Dynamic Sampling on the CUSTOMERS
table, using a parameter of 8—the scale ranges from O (don't use) to 10 (use "aggressive"
sampling).

W The greatest drawback to using Dynamic Sampling is that it
~ is only an estimate of the table contents based on a random
Q selected sample block of rows; computed statistics are much
more precise, resulting in an optimal execution plan.

The default level for Dynamic Sampling is set by the OPTIMIZER_DYNAMIC_SAMPLING
parameter, which defaults to 2, as we can see in the screenshot for step 8 in the Note section
(level = 2). With this level, the optimizer will use Dynamic Sampling to analyze a small
number of blocks, only for tables without statistics.

Lock table statistics for load or highly volatile tables

We have seen that, with Oracle Database 10g, the automatic statistics gathering feature was
introduced; however, we may prefer not to collect statistics on some tables, due to the highly
volatile data stored in them, or because they are load tables. For example, in a table used to
load data, we could collect statistics when the table is almost empty or when only one specific
kind of data is present in the table.

In such situations, we can inform the database to lock statistics on the table, using the
following DMBS_STATS procedure to lock the TABLE_NAME table of schema SH:

DBMS_STATS.LOCK_TABLE_STATS("SH", “TABLE_NAME®);

304

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Other procedures in DBMS_STATS

In this recipe, we have used some stored procedures of the DBMS_STATS package. The
following are some other useful procedures, to collect statistics at database, schema, table,
or index level:

EXEC DBMS_STATS.GATHER_DATABASE_STATS;

EXEC DBMS_STATS.GATHER_SCHEMA_STATS;

EXEC DBMS_STATS.GATHER_TABLE_STATS("SH", “CUSTOMERS");

EXEC DBMS_STATS.GATHER_INDEX_STATS("SH", "CUSTOMERS_YOB_BIX");

We can also use the corresponding procedures when we want to delete the statistics:

EXEC DBMS_STATS.DELETE_DATABASE_STATS;

EXEC DBMS_STATS.DELETE_SCHEMA_STATS;

EXEC DBMS_STATS.DELETE_TABLE_STATS("SH®, "CUSTOMERS®);

EXEC DBMS_STATS.DELETE_INDEX_STATS("SH®", "CUSTOMERS_YOB_BIX");

From Oracle 10g onward, old versions of statistics are automatically saved, and we can
use the DBA_OPTSTAT_OPERAT IONS dictionary view to explore the history of statistics
operations performed at the schema and database level. The DBMS_STATS.RESTORE
procedure lets us restore the statistics as they were at the timestamp used as a parameter
when invoking the procedure.

1
‘Q Older versions of statistics are not automatically saved when

we use the (old) ANALYZE statement to collect statistics.

See also

» See Chapter 3, Optimizing Storage Structures, the Avoiding row chaining and
Avoiding row migration recipes

» The Exploring the optimizer hints, Using histogram, and Managing stored outlines
recipes in this chapter

Using histograms

In this recipe, we will see how to use histograms on tables to provide a detailed estimate of
value distribution inside a column.

305

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

How to do it...

The following steps will show how to represent our data in the form of histograms:

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Create the table TEST_HIST with some data from ALL_OBJECTS:
CREATE TABLE sh.TEST_HIST AS

SELECT
ROWNUM AS 1D,
OBJECT_NAME AS NAME,
MOD(ROWNUM, 10) AS FIELD1,
TRUNC(MOD(ROWNUM, 10)/9) AS FIELD2

FROM ALL_OBJECTS;

3. Queryfor FIELD1 and FIELD2 values grouped to see the data distribution:
SELECT FIELD1, COUNT(*)
FROM TEST_HIST
GROUP BY FIELD1 ORDER BY 1;

SELECT FIELD2, COUNT(*)
FROM TEST_HIST
GROUP BY FIELD2 ORDER BY 1;

4. Create histograms for column FIELD1 of the table TEST_HIST:
EXEC DBMS_STATS.GATHER_TABLE_STATS (OWNNAME => ®"SH", -
TABNAME => "TEST_HIST", -
METHOD_OPT => *"FOR COLUMNS SIZE 10 FIELD1%);

5. Query USER_TAB_HISTOGRAMS to see the values stored in the histogram
for FIELD1:

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE

FROM USER_TAB_HISTOGRAMS

WHERE TABLE_NAME = "TEST_HIST" AND COLUMN_NAME = “"FIELD1*
ORDER BY 2;

306

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

6. Create histograms for column FIELD2 of the table TEST_HIST:
EXEC DBMS_STATS.GATHER_TABLE_STATS (OWNNAME => ®"SH", -
TABNAME => "TEST_HIST", -
METHOD_OPT => "FOR COLUMNS SIZE 10 FIELD2%);
7. Query USER_TAB_HISTOGRAMS to see the values stored in the histogram for
FI1ELD2:
SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_TAB_HISTOGRAMS
WHERE TABLE_NAME = *"TEST_HIST" AND COLUMN_NAME = "FIELD2*
ORDER BY 2;

8. Drop the table TEST_HIST:
DROP TABLE TEST_HIST;

In step 2, we created the table TEST_HIST, in which FIELD1 is populated with values
ranging from O to 9 and FIELD2 contains only the values O and 1, with a 9:1 ratio.

We confirm the data distribution we just saw with the queries in step 3. The output can
be seen in the following screenshot:

ec2-46-51-176-114.eu-west-L.compute.... | =NECE X

307

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

A histogram is an object in which values from a column are put in a limited number of
buckets, 75 by default, with a distribution based on ranges—the column values within the
same range are put in the same bucket.

Using the data in histograms, the optimizer can estimate the data distribution better in a
column, so it can choose a better execution plan, due to a greater knowledge of the data.

In step 4, we create a histogram for FIELD1, using a size of 10 as the number of buckets
used for the histogram. In our example, this is equivalent to the different values stored in
FIELD1, so in every bucket there is only one distinct value, as shown by the query in step 5.
In the following screenshot, we can see the results of this query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂli_J

4
)
6
g

The ENDPOINT_VALUE shows us the value stored for each bucket, while the meaning of
ENDPOINT_NUMBER changes due to the kind of histogram. In this example, we have the
number of buckets equal to the number of distinct values, so ENDPOINT_NUMBER represents
the cumulative frequency (in the first bucket, the value O appears 538 times, in the second
1094-538 = 556 times, and so on).

In step 6, we create a histogram on FIELD2, and the query on this histogram gives the
following output:

308

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY | =HACN X

In this case, the number of buckets (10) is more than the number of distinct values (2) in
the FIELD2 column, and ENDPOINT_NUMBER represents the cumulative frequency as
shown earlier.

There's more...

In this recipe, we have seen how to create histograms to represent our data to help the
optimizer choose the right execution plan for our queries.

We might think that having histograms on all the columns of all the tables is a better solution,
to help the optimizer in choosing the best execution plan, but that's not the case.

Histograms are useful only on indexed columns containing skewed values, because they
help the optimizer to choose whether to use the index or not to access values. Obviously, if
the frequency for a specific value is very high, using the index won't be the best choice. If a
column with these characteristics is also used often in the WHERE clause, it's a very good
candidate for a histogram.

Don't use histograms in situations where:

» The column is not used in the WHERE clauses of queries
» The data in the column is uniformly distributed (like FIELD1, in our example)

» Bind variables are used when comparing against the column (we will see more
on this in the Introducing Adaptive Cursor Sharing for bind variable peeking recipe,
later in this chapter)

Another issue with using histograms is that they need to be updated manually to reflect
changes in column data, using the statements presented in this recipe.

309

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

Height-based and value-based (frequency) histograms
There are two types of histograms—height-based and value-based:

» In height-based histograms, the same number of values are placed in each bucket
approximately, so we can have multiple buckets ending at the same ENDPOINT_
VALUE. In this situation the ENDPOINT_NUMBER represents the cumulative number
of rows.

» Invalue-based histograms, also known as frequency histograms, we have a number
of buckets greater than or equal to the number of distinct value in the field, as in our
previous example.

R According to Oracle documentation, the histogram will be created
~ as value-based—also known as frequency histograms— by default,
Q when the number of distinct values is less than or equal to the
number of histogram buckets specified.

See also

» The Introducing Adaptive Cursor Sharing for bind variables peeking recipe in this
chapter, for a more detailed description of possible problems related to the use of
bind variables

» The Collecting statistics recipe in this chapter, to see how to collect and transport
statistics between different databases

Managing stored outlines

In production environments, there is a very simple golden rule about database performance—it's
better to have a database that always performs quite well than a database that performs even
10 times faster but not always; that is, a database whose performance sometimes dips.

Execution plan stability is a must for ensuring performance that persists over time; in
production environments, we need an optimal and predictable performance.

In this recipe, we will see how to create stored outlines to achieve execution plan stability and
how to manage these stored outlines.

Getting ready

To create stored outlines, we need an appropriate grant. Connect to the database as SYSDBA,
and grant the user SH permission to create stored outlines:

CONNECT / AS SYSDBA
GRANT CREATE ANY OUTLINE TO sh;

310

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

How to do it...

The following steps will demonstrate stored outlines, their creation, and management:

1.

Connect to SH schema:
CONNECT sh@TESTDB/sh

Execute a query on the CUSTOMERS and COUNTRIES tables, analyzing the
execution plan:

SET AUTOT TRACE EXP

SELECT C.CUST_ID, C.CUST_FIRST NAME, C.CUST_LAST_NAME,
C.CUST_STREET_ADDRESS, C.CUST_POSTAL_CODE, C.CUST_CITY,
C.CUST_STATE_PROVINCE, CN.COUNTRY_NAME

FROM sh.CUSTOMERS C, sh.COUNTRIES CN

WHERE C.COUNTRY_ID = CN.COUNTRY_ID;

Execute the same query using the primary key index COUNTRIES_PK to analyze the
execution plan:

SELECT /*+ INDEX (CN COUNTRIES_PK) */
C.CUST_ID, C.CUST_FIRST NAME, C.CUST_LAST_NAME,
C.CUST_STREET_ADDRESS, C.CUST_POSTAL_CODE, C.CUST_CITY,
C.CUST_STATE_PROVINCE, CN.COUNTRY_NAME

FROM sh.CUSTOMERS C, sh.COUNTRIES CN

WHERE C.COUNTRY_ID = CN.COUNTRY_ID;

SET AUTOT OFF

Create an outline, named CUST_LIST_OUTLINE, to store the execution plan,
obtained in step 3, in the APP_LISTS category:

CREATE OR REPLACE OUTLINE CUST_LIST_OUTLINE FOR CATEGORY
APP_LISTS ON

SELECT /*+ INDEX (CN COUNTRIES_PK) */
C.CUST_ID, C.CUST_FIRST NAME, C.CUST_LAST_NAME,
C.CUST_STREET_ADDRESS, C.CUST_POSTAL_CODE, C.CUST_CITY,
C.CUST_STATE_PROVINCE, CN.COUNTRY_NAME

FROM sh.CUSTOMERS C, sh.COUNTRIES CN

WHERE C.COUNTRY_ID = CN.COUNTRY_ID;

Alter the session to use the stored outlines of the APP_LISTS category:
ALTER SESSION SET USE_STORED_OUTLINES = APP_LISTS;

311

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

6.

Execute the query in step 3 again:

SET AUTOT TRACE EXP

SELECT /*+ INDEX (CN COUNTRIES_PK) */
C.CUST_ID, C.CUST_FIRST_NAME, C.CUST_LAST_NAME,
C.CUST_STREET_ADDRESS, C.CUST_POSTAL_CODE, C.CUST_CITY,
C.CUST_STATE_PROVINCE, CN.COUNTRY_NAME

FROM sh.CUSTOMERS C, sh.COUNTRIES CN

WHERE C.COUNTRY_ID = CN.COUNTRY_ID;

SET AUTOT OFF

Clean the session state, drop the outline, and revoke the grant:
ALTER SESSION SET USE_STORED_OUTLINES = FALSE;

CONNECT / AS SYSDBA
DROP OUTLINE CUST_LIST_OUTLINE;
REVOKE CREATE ANY OUTLINE FROM sh;

The execution plan for the same statement may change due to different reasons, such
as changes to the schema objects, different parameters, changes in data, accuracy of
statistics, presence of histograms, and so on. Another big issue can be the upgrade to a
newer database release.

Over time, different techniques were used to manage SQL Plan's
stability in the Oracle database. In Oracle 108, SQL Profiles and
SQL Tuning Sets were launched, and, starting with Oracle 11g,
s Oracle SQL Plan Management was introduced.

We can migrate stored outlines to SQL Plan Management using

the DBMS_SPM.MIGRATE_STORED_OUTL INE procedure.

If we want to avoid changes to the execution plans, we can store them in stored outlines—the
plans in the stored outlines don't change, and the optimizer uses them to generate equivalent
execution plans.

In step 2, we execute a query, and the corresponding execution plan provides the full table
scan of the CUSTOMERS and COUNTRIES tables. We can see the execution plan generated
by the optimizer in the following screenshot:

312

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We decide to add an index hint to the query in step 3, so that the optimizer changes the
execution plan and uses the primary key, as suggested. The corresponding execution plan
is as follows:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ']

[T T

o

313

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

We are now satisfied with the execution plan obtained, and we want it to be the access path
for this query from now onwards. For this, we create a stored outline in step 4. Stored outlines
can be grouped together in categories, so we define CUST_LIST_OUTLINE to be part of the
APP_LISTS category, where we will store all the outlines related to lists in our application.
There is no need to create a category before creating the outline—the category APP_LISTS
doesn't already exist in our database, so it's created along with the stored outline, with a
single statement.

In step 5, we instruct the optimizer to use, for our session, the stored outlines of the APP_LISTS
category. We can carry out the same operation also at a database level, affecting all the users
connected to the database instance. In the following screenshot, you can see the execution of
these statements:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NAC X

In step 6, we execute the same query as in step 3, obtaining the same execution plan. The
execution plan will be the same even if we alter database parameters and/or the schema, for
example, adding an index. Our aim of plan stability is reached, as we can see in the following
screenshot (in the Note section):

314

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

£c2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

In step 7, we clean the database of our test objects, dropping the stored outline and revoking
the grant from SH user.

There's more...

The most important thing to keep in mind about stored outlines is that they are used only if
the statement executed exactly matches the one stored in the outline (case sensitive and
included blanks). This is not an issue when the SQL statements come from an application
where the statement is stored in a fixed form, but it's inapplicable when the statements are
the result of user input.

315

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

We have also seen that we can create stored outlines for a single statement. We can also
collect outlines for all the statements executed, using the following statement:

ALTER SYSTEM SET CREATE_STORED_OUTLINES = our_category_name;

Hereafter, we collect the outlines for all the executed statements in our_category_name.
The outlines will have system-generated names, of course, and we can stop collecting
outlines with the following statement:

ALTER SYSTEM SET CREATE_STORED_OUTLINES = FALSE;

We can use the ALTER OUTLINE statement to rename stored outlines, to change their
category, or to change the corresponding SQL statement and execution plan. The OUTLN_PKG
package helps us in massive operations, such as:

» Drop outlines of a specified category, using the DROP_BY_CAT procedure
» Drop outlines that will never be used, using the DROP_UNUSED procedure

» Changing the category of outlines to a new category, using the
UPDATE_BY_CAT procedure

R If we are using the FOO category in the session, and if
~ there is no matching outline for our statement, but there
Q is one in the DEFAULT category, the outline from the
DEFAULT category will be used.

Private and public stored outlines

We can have private and public stored outlines; in this recipe, we have seen how to create
public stored outlines and how to use them.

When we have a public stored outline in place, we may want to test another stored outline for
the same query, without affecting the performance of other users who are using the same
statement.

In this situation, we can create a private stored outline, test it, and—if the results are
satisfactory—publish the outline to let other users access it.

To do so, we need to:

1. Create the outline tables in our schema:
EXEC DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES;

2. Copy a public stored outline in our schema tables:
CREATE PRIVATE OUTLINE PVT_CUST_LIST_OUTLINE
FROM CUST_LIST_OUTLINE;

316

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

3. Edit the private outline and update it:
EXEC DBMS_OUTLN_EDIT.REFRESH_PRIVATE_OUTLINE(
"PVT_CUST_LIST_OUTLINE"®);
4. Use the private outline and test it:
ALTER SESSION SET USE_PRIVATE_OUTLINES = TRUE;

5. Publish the modified outline back to the public stored outlines:
CREATE OR REPLACE OUTLINE CUST_LIST_OUTLINE
FROM PRIVATE PVT_CUST_LIST_OUTLINE;

o

Disable private outlines and drop the corresponding tables:
ALTER SESSION SET USE_PRIVATE_OUTLINES = FALSE;
EXEC DBMS_OUTLN_EDIT.DROP_EDIT_TABLES;

See also

» The Exploring the optimizer hints and Configuring and using SQL Baselines
recipes in this chapter

Introducing Adaptive Cursor Sharing for

bind variable peeking

In the previous chapter, we have explored the (recommended) use of bind variables.

In this recipe, we will see how using bind variables can be disadvantageous in certain
situations and learn about a feature of Oracle Database 11¢ that helps us with this.

How to do it...

The following steps will demonstrate Adaptive Cursor Sharing:

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Create a table for testing with a field 1D that equals 1:
CREATE TABLE sh.MY_TEST AS SELECT
OBJECT_NAME AS NAME, 1 AS ID
FROM ALL_OBJECTS NOLOGGING;

317

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

3.

318

Insert eight records with different values for the 1D field:
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (2, "ONLY THIS RECORD HAS 1D=2");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (3, "ONLY THIS RECORD HAS 1D=3");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (4, "ONLY THIS RECORD HAS 1D=4%");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (5, "ONLY THIS RECORD HAS ID=5");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (6, "ONLY THIS RECORD HAS 1D=6");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (7, "ONLY THIS RECORD HAS ID=7");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (8, "ONLY THIS RECORD HAS 1D=8");
INSERT INTO sh_MY_TEST (ID, NAME)

VALUES (9, "ONLY THIS RECORD HAS 1D=9");
COMMIT;

Create an index on the ID field:
CREATE INDEX X1_MY_TEST ON MY_TEST (ID);

Query the MY_TEST table, to see the skewed data in the 1D field:
SELECT 1D, COUNT(*)

FROM sh._MY_TEST

GROUP BY 1D ORDER BY 1;

Collect statistics and histograms on the MY_TEST table and the ID field:
EXEC DBMS_STATS.GATHER_TABLE_STATS (OWNNAME => ®"SH", -
TABNAME => "MY_TEST", -
ESTIMATE_PERCENT => 100, -
METHOD_OPT => "FOR COLUMNS SIZE 10 ID%");

Query the histogram values to confirm that they reflect data distribution:
SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE

FROM USER_TAB_HISTOGRAMS

WHERE TABLE_NAME = *"MY_TEST® AND COLUMN_NAME = *"ID*
ORDER BY 2;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

11.

12.

13.

14.

15.

16.

17.

18.

Set the auto-trace feature and define a variable for binding:
SET AUTOT TRACE EXP

var aid number;

Query for records in MY_TEST where the value for 1D equals 2, using bind variables:
exec :taid := 2;

SELECT * FROM sh_MY_TEST WHERE ID = :aid;

Query for records in MY_TEST where the value for 1D equals 1, using bind variables:
exec :taid := 1;

SELECT * FROM sh_MY_TEST WHERE ID = :aid;

Query for records in MY_TEST where the value for 1D equals 2, without
bind variables:

SELECT * FROM sh.MY_TEST WHERE ID = 2;

Query for records in MY_TEST where the value for 1D equals 1, without
bind variables:

SELECT * FROM sh.MY_TEST WHERE ID = 1;

Stop the auto-trace:
SET AUTOT OFF

Connect as SYSDBA:
CONNECT / AS SYSDBA

Prepare the session for tracing:

ALTER SYSTEM SET TIMED_STATISTICS = TRUE;
ALTER SYSTEM SET MAX_DUMP_FILE_SIZE="100M";
ALTER SESSION SET SQL_TRACE=TRUE;

Execute the query in step 9:

var aid number;

exec :aid := 2;

SELECT * FROM sh_MY_TEST WHERE ID = :aid;
Execute the query in step 10:

exec :aid := 1;

SELECT * FROM sh_MY_TEST WHERE ID = :aid;

Stop tracing:
ALTER SESSION SET SQL_TRACE=FALSE;

319

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

19. Query for SPID to identify the generated trace file:
SELECT s.sid, s.serial#, s.process, p-spid
FROM v$session s, v$process p
WHERE s.audsid = userenv("sessionid®)

AND s._.paddr = p.addr;

20. Use TKPROF to format the trace file generated earlier in a text file:
HOST
cd /u0l/app/diag/rdbms/testdb/TESTDB/trace/
tkprof TESTDB_ora_2324.trc 2324 ._txt

21. Show the TKPROF report:
vi 2324 _txt

22. Clean the database:
DROP TABLE sh_MY_TEST;

In this recipe, from step 1 to step 3, we create a MY_TEST table containing more than 50000
rows. The values in the 1D field are skewed, and the query executed in step 5 confirms this
situation. The results are shown in the following screenshot:

ec2-46-51- 176-114.cu-west-1... |10 e

I TT (*) -

m

In step 4, we create an index on the ID field, and in step 6, we collect statistics for the
MY_TEST table, generating histograms for the ID field with 10 buckets (more than the
distinct values in the 1D field). We compute the statistics on all the rows, as specified by
the parameter ESTIMATE_PERCENT, set to 100.

320

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In step 7, we get the histogram values from the data dictionary, as shown in the following
screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

W =] otnob Wk |

In the steps that follow, we execute the same query over the MY_TEST table, verifying the
execution plan when we change the 1D value, for which we are querying, from 2 (only one
record present in the table) to 1 (more than 50000 records).

In step 8, we define a bind variable, and in step 9, we set its value to 2. The corresponding
execution plan, shown in the following screenshot, uses the index on the 1D field, resulting
in a quicker execution time:

ec2-46-51-176-114 eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

~ompleted.

=h.MY TEST W

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 10, we change the parameter value to 1 and execute the same query again. In the
following screenshot, we can see the output of this query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We can see that the execution plan hasn't changed, so we are accessing the table using the
X1_MY_TEST index. This is not the fastest execution plan for this query, because we know
that there are more than 50000 rows in the table (more than 99.99 percent of the total rows)
that satisfy the query predicate; a full table scan is more efficient in such situations.

In step 11 and step 12, we execute the same queries as in step 9 and step 10, but without

using the bind variable. When we query for value 2, we obtain the following execution plan
that uses the same index as before:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Instead, when we execute the query in step 12 (for records where the value for the 1D field
equals 1, without the use of bind variables), we obtain the following results:

-
ec2-46-51-176-114.eu-west-1.compute. amazonaws.com - PuTTY |ﬂlﬁj

4 [

What happened? Without bind variables, we obtain a better execution plan, because the
optimizer—thanks to statistics and histograms—knows that almost all records in the MY_TEST
table have a value of 1 in the ID field, and therefore, that accessing the table with an index
lookup would be a waste of time.

In previous recipes, we have repeatedly stated that not using bind variables is evil; in this
situation, we have seen that not using bind variables gives us better performance.

To clarify the situation, let's examine the final part of the recipe. For a better understanding
of what happens, we trace the execution of the queries. Therefore, in step 14, we connect as
SYSDBA to the database, and in step 15, we prepare our session to generate a trace file.

In step 16, we execute the same query as in step 9, using bind variables; in step 17, we
execute the query as in step 10. In step 18, we stop tracing.

323

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 19, we query the data dictionary to know the SPID value of our session, to identify the
trace file generated. In step 20, we call tkprof to format, in a human-readable text file, the
result of the generated trace file. In our example, SPID has a value of 2324, as shown in the
following screenshot, when we also invoke tkprof:

-
ec2-46-51-176-114 eu-west-1L.compute.amazonaws.com - PuTTY |ﬂlﬁ]

324

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the following screenshot, we can see an excerpt from the TKPROF output, which shows the
execution plan for the query in step 16 (ID = 2):

ec2-46-31-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Iﬁj

325

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In the following screenshot, we can see an excerpt from the TKPROF output related to the
query in step 17 (ID = 1):

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂléj

We can see that, regardless of the auto-trace results obtained earlier, TKPROF shows us the
correct result. The optimizer has also chosen a different execution plan, when using bind
variables, to obtain better performance using the index, when querying for an infrequent
value. When the predicate discards only a few records of the table, a full table scan is used.

There's more...

Pre Oracle Database 10g, bind variables and histograms could not be used together. To

use the histograms, the optimizer was required to know the actual value of the predicate
and choose the appropriate execution plan for that particular value of the filter. To extend
this feature in situations where both bind variables and histograms are used, the optimizer
"peeks" the value used for bind variables the first time a statement is parsed—as if the user
had used literals instead of bind variables—and the execution plan obtained is then used for
subsequent executions of the same query.

However, this feature, called Bind Variable Peeking, can be disruptive in situations like the
one in our example. When the statement was parsed, the actual value of the bind variable
was 2, and for that particular case, the best choice was an index scan. Unfortunately, for the
most part of the table, this isn't the best choice.

326

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To avoid such a situation, where the execution plan depends upon the first value provided
to bind variables, another feature was introduced in Oracle Database 11g, called Adaptive
Cursor Sharing. This feature allows the optimizer to identify how an SQL statement can be
satisfied by a different execution plan when different values for bind variables are used, as
in our example.

Adaptive Cursor Sharing is enabled by default. In OnLine Transaction
Processing (OLTP) databases, there is often only one optimal
execution plan, regardless of the actual value of binding variables. In
this kind of database, we probably want to disable the Adaptive Cursor

~\l Sharing feature to eliminate the related overhead. To disable it, you
need to set the CURSOR_SHARING initialization parameter to EXACT
and the hidden _OPTIMIZER_EXTENDED_CURSOR_SHARING_REL
initialization parameter to NONE, as follows:

ALTER SYSTEM SET CURSOR_SHARING = EXACT SCOPE =BOTH;

ALTER SYSTEM SET _OPTIMIZER_EXTENDED_CURSOR_
SHARING_REL = NONE SCOPE = BOTH;

With Adaptive Cursor Sharing multiple execution plans can be stored for a single SQL
statement, resulting in the best plan for every value provided.

Please note that the SQL*Plus auto-trace feature is not aware of this situation, so the
execution plan returned was the same. TKPROF, on the other hand, is more detailed and
should be used whenever we want to seriously tune a statement or investigate what really
happens under the hood.

See also

» For bind variables, see the Using Bind Variables recipe in Chapter 4, Optimizing SQL
Code, and the Using Bind Variables and Parsing recipe in Chapter 6, Optimizing PL/
SOL Code

» For detailed information on the use of statistics to help the optimizer, see the
Collecting statistics and Using histograms recipes in this chapter

» For details about using TKPROF, see the Tracing SQL Activity recipe in Chapter 4,
Optimizing SQL Code

Creating SQL Tuning Sets

In this recipe, we will see how we can store a group of SQL statements along with their
execution context and statistics, obtaining a so-called SQL Tuning Set.

327

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

Getting ready

To create a SQL Tuning Set, we need the ADMINISTER SQL TUNING SET privilege, so
we grant this privilege to SH user, which will be used in this recipe.

CONNECT / AS SYSDBA
GRANT ADMINISTER SQL TUNING SET TO sh;

How to do it...

The following steps will demonstrate how to create and use SQL Tuning Sets:

1. Connect to SH schema:
CONNECT sh@TESTDB/sh

2. Execute some queries to populate the cursor cache:
SELECT CUST_FIRST_NAME, CUST_LAST NAME, CUST_CITY
FROM CUSTOMERS
ORDER BY CUST_CITY;

SELECT * FROM (
SELECT
CUST_ID, CUST_FIRST_NAME,
CUST_LAST_NAME, CUST_YEAR_OF_BIRTH
FROM CUSTOMERS
ORDER BY CUST_YEAR_OF BIRTH DESC

)
WHERE ROWNUM < 11;

SELECT C.CUST_FIRST_NAME, C.CUST_LAST_NAME, N.COUNTRY_NAME
FROM CUSTOMERS C, COUNTRIES N
WHERE N.COUNTRY_ID BETWEEN C.COUNTRY_ID
AND C.COUNTRY_ID + 10;

SELECT AMOUNT_SOLD FROM sh.SALES S WHERE S.CUST_ID IN (
SELECT C.CUST_ID FROM sh.CUSTOMERS C
WHERE C.CUST_CREDIT_LIMIT IN (10000, 11000, 15000));

SELECT prod_id, cust_id, time_id
FROM sh.SALES
ORDER BY amount_sold desc;

328

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Create a tuning set named TEST_TUNING_SET:
BEGIN
DBMS_SQLTUNE.CREATE_SQLSET(
sqlset_name => "test_tuning_set",
description => "Demo tuning set");
END;
/

Load the TEST_TUNING_SET with the first five statements in cursor cache,
ordered by elapsed time:

DECLARE

sql_curs DBMS_SQLTUNE.SQLSET_CURSOR;

BEGIN

OPEN sqgl_curs FOR

SELECT VALUE(p)
FROM TABLE (DBMS_SQLTUNE.SELECT_CURSOR_CACHE(

RANKING_MEASURE1 => “elapsed_time",
RESULT_LIMIT => 5)) p;

DBMS_SQLTUNE .LOAD_SQLSET(
sqlset_name => "test_tuning_set",
populate_cursor => sql_curs);

END;
/

View the contents of the tuning set:
SELECT *
FROM TABLE(
DBMS_SQLTUNE.SELECT_SQLSET("test_tuning_set", ""));
Clean the database—-drop the tuning set and revoke privileges:
BEGIN
DBMS_SQLTUNE .DROP_SQLSET(sqlset_name => "test_tuning_set");
END;
/

CONNECT / AS SYSDBA
REVOKE ADMINISTER SQL TUNING SET FROM sh;

329

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 2, we simply execute some queries to populate the cursor cache (in this case we are
in a single-user test environment).

In step 3, we create an SQL Tuning Set, by calling test_tuning_set and assigning a
description to it. Then, in step 4, we populate the just-created tuning set, using the first
five statements in the cursor cache, ordered by elapsed time. We can see the output in
the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =HAEN X

In step 5, we execute a query to view the statements that comprise our SQL Tuning Set, while
in step 6, we drop the tuning set to clean the database, revoking the grant from the user SH.

There's more...

In this recipe, we have seen how to create an SQL Tuning Set, which can be used along with
the SQL Tuning Advisor to tune a group of queries instead of a single query, or to create an
SQL baseline.

We can load an SQL Tuning Set also from another tuning set, or from the Advanced Workload
Repository. The SQL Tuning Set can be transported between different databases.

330

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Defining the SQL Tuning Set helps in monitoring database performance after changes in

configuration, for example, or to test in a separate database—transporting the tuning set
to a different database—the effects of a change to a well-defined set of queries extracted
from the typical workload.

See also

» The Using the SQL Tuning Advisor and Configuring and using SQL Baselines
recipe in this chapter.

Using the SQL Tuning Advisor

In this recipe, we will see how to use the SQL Tuning Advisor to tune our queries.

Getting ready

To use the SQL Tuning Advisor, we need a special privilege; connect as SYSDBA and grant
ADVISOR privilege to user SH:

CONNECT / AS SYSDBA

GRANT ADVISOR TO SH;

How to do it...

The following steps will demonstrate the SQL Tuning Advisor:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Define an SQL Tuning Task for a single query:
DECLARE
I_task VARCHAR2(30);
1_sql CLOB;
BEGIN
1 _sql := "SELECT AMOUNT_SOLD FROM sh.SALES S " ||
"WHERE S.CUST_ID IN ("I
"SELECT C.CUST_ID FROM sh_CUSTOMERS C * ||
"WHERE C.CUST_CREDIT_LIMIT IN (:z11, :12, :13))";

331

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

I_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
sql_text => 1_sql,
bind_list => sql_binds(anydata.ConvertNumber(10000),
anydata.ConvertNumber(11000),
anydata.ConvertNumber(15000)),
user_name => "SH",
scope => "COMPREHENSIVE®",
time_limit => 120,
task_name => "test_tuning_task",
description => "Specific SQL tuning®);
END;
/

3. Execute the SQL Tuning Task just defined:
BEGIN
DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task _name => "test_tuning_task");
END;
/

4. View the results of the tuning process:
SET LINESIZE 120
SET LONG 1000
SET LONGCHUNKSIZE 1000
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK("test_tuning_task")
FROM DUAL;

5. Drop the SQL Tuning Task and revoke grants from user SH:
EXEC DBMS_SQLTUNE.DROP_TUNING_TASK("test_tuning task®);
CONNECT / AS SYSDBA
REVOKE ADVISOR FROM SH;

332

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In step 2, we create an SQL Tuning Task, based on the following query:

SELECT AMOUNT_SOLD FROM sh.SALES S

WHERE S.CUST_ID IN (

SELECT C.CUST_ID FROM sh.CUSTOMERS C

WHERE C.CUST_CREDIT_LIMIT IN (:11, =12, :13)
)

We use the CREATE_TUNING_TASK procedure of the DBMS_SQLTUNE package,

indicating—among other parameters—the SQL statement, the values for bind variables, and
the task name and description.

In step 3, we execute the SQL Tuning Task just created, test_tuning_task, obtaining the
following results:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In step 4, we use the REPORT_TUNING_TASK function of the DBMS_SQLTUNE package to
obtain the results of the tuning task execution.

333

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In the following screenshot, we can see the report obtained in step 4, on a test environment,
informing us that the optimizer statistics on the SALES_CUST_BIX bitmap index are stale. So,
they need to be updated, in order to be sure that the execution plan of our query is optimal.

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

ECT DEMS SQLTUNE. ORT_TT ASK('test_tu task') FRCM DUAL: =

m

In step 5, we clean the database by dropping the tuning task and revoking grants from
the user SH.

There's more...

In this recipe, we have seen how to use SQL Tuning Advisor with a single SQL statement. The
same tool can be executed over a single statement providing the sql_id, from the Automatic
Workload Repository, or from an SQL Tuning Set. In the previous situation, we can use the
following syntax to execute the SQL Tuning Advisor over the test_tuning_set SQL Tuning Set:

BEGIN
DBMS_SQLTUNE .CREATE_TUNING_TASK(-
sqlset_name => "test_tuning_set", -
rankl => "BUFFER_GETS", -
time_limit => 3600, -
description => "Tuning a SQL Tuning Set");
END;

334

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

test_tuning_set is tuned ordered by buffer gets in the previous example.

We can query the view USER_ADVISOR_TASK to check the status of the task while it's
running, or the view VSADV ISOR_PROGRESS to inspect the execution progress.

We can also interrupt a tuning task using the following procedure:

DBMS_SQLTUNE. INTERRUPT_TUNING_TASK(-
task_name => "test_tuning_set");
To resume an interrupted task, we have the following corresponding procedure:

DBMS_SQLTUNE .RESUME_TUNING_TASK(-
task_name => "test_tuning_set",
basic_filter => NULL);

See also

» The Creating SQL Tuning Sets recipe in this chapter

Configuring and using SQL Baselines

We have seen the importance of execution plan stability in Managing stored outlines.

The disadvantage (by design) of using stored outlines is in the rigidity—we are sure that

our execution plans don't change—so the performance doesn't deteriorate. However, due
to schema or data changes, there could be a better execution plan. We are bound to our
execution plan that is stored in the outlines, and we cannot benefit from the improvements.

SQL Plan Management with SQL Plan Baselines, a feature new to Oracle Database 11g, helps
us in obtaining planning stability without losing the opportunity for performance improvements.

Getting ready

To create SQL Baselines we need the ADMINISTER SQL MANAGEMENT OBJECT privilege.
Connect as SYSDBA and grant permission to the user SH:

CONNECT / AS SYSDBA
GRANT ADMINISTER SQL MANAGEMENT OBJECT TO SH;

335

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

How to do it...

The following steps will show how to configure and use SQL Baselines:

1.

336

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Create a table MY_CUSTOMERS with some test data:
CREATE TABLE sh.MY_CUSTOMERS AS
SELECT * FROM sh.CUSTOMERS NOLOGGING;

Obtain a column CUST_VALID containing skewed values (about 1 percent of rows
contain value "1 *, others containing value *A*:

UPDATE sh._.MY_CUSTOMERS SET CUST_VALID = *1*
WHERE CUST_VALID = "A" AND MOD(CUST_ID,100) <> O;
COMMIT;

Execute the query over the MY_CUSTOMERS data for which we want plan stability:
SELECT /* TEST */ COUNT(*) FROM sh.MY_CUSTOMERS
WHERE CUST_VALID = "I17;
Capture a baseline from the cursor cache for the previous query:
DECLARE
I_sqlid VARCHAR2(13);
I_plan PLS_INTEGER;
BEGIN
SELECT SQL_ID INTO I _sqlid FROM V$SQL
WHERE SQL_TEXT LIKE “SELECT /* TEST */%";

1_plan := dbms_spm.load_plans_from_cursor_cache(
sql_id => 1_sqlid);

END;

/

Create an index on the CUST_VALID field:
CREATE INDEX MY_CUSTOMERS_1X1 ON sh.MY_CUSTOMERS (CUST_VALID);

Execute the same query in step 4:
SELECT /* TEST */ COUNT(*) FROM sh.MY_CUSTOMERS
WHERE CUST_VALID = "I17;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

7. Query the data dictionary to see if there are execution plans that are not
yet accepted:

SELECT
SQL_HANDLE, PLAN_NAME, ENABLED, ACCEPTED, FIXED
FROM DBA_SQL_PLAN_BASELINES;
Evolve the baseline with the new execution plan:
SET SERVEROUTPUT ON
SET LONG 10000
DECLARE
1_report CLOB;
BEGIN
I_report := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE(
sql_handle => "SYS_SQL_e6bd1707937cb2ca*);
DBMS_OUTPUT.PUT_LINE(I_report);
END;
/

8. Clean the database:

DECLARE
1_plan pls_integer;

BEGIN
I_plan := DBMS_SPM.DROP_SQL_PLAN BASELINE(-
sql_handle => "SYS_SQL_e6bd1707937cb2ca");

END;

/

DROP TABLE sh._MY_CUSTOMERS;

CONNECT / AS SYSDBA
REVOKE ADMINISTER SQL MANAGEMENT OBJECT FROM SH;

From step 1 to step 3, we create a table MY_CUSTOMERS to test SQL Baselines.

In step 4, we execute a query on the table to retrieve the invalid customers. We inserted
a comment inside the query to easily identify it later.

337

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

In step 5, we retrieve the SQL__ID of the query executed in the preceding step and create a SQL
Baseline using the procedure LOAD_PLANS_FROM_CURSOR_CACHE of the package DBMS_SPM,
using SQL_ID. We can see the results of this operation in the following screenshot:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂli-J

:= dbms_ spm.load plans from cuz

In step 6, we create an index over the CUST_VALID field, so accessing the MY _CUSTOMERS
table using this index may be faster than a full table scan.

In step 7, we execute the same query as in step 4. The optimizer uses the execution plan
stored in the SQL Baseline but elaborates a new execution plan and stores it in a NOT
ACCEPTED state, as we can see when executing the query in step 8.

In step 9, we decide to evolve our SQL Baseline, executing the procedure EVOLVE_SQL
PLAN_BASEL INE of the DBMS_SPM package, as we can see in the following screenshot:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY | [e S

le, plan _name, enabled, accepted, fixed

PLAN NAME

338

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The EVOLVE_SQL_PLAN_BASEL INE procedure returns a report, from which we can see if
the newly-generated execution plan passes the performance criterion. In other words, if it

performs better (comparing the compound improvement ratio) than the previous baseline,
it can be accepted.

The results of this operation can be seen in the following screenshot, which presents the
results obtained evolving our baseline. As we can see, the results with the new execution
plan are better than the previous baseline, so the execution plan is accepted:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |ﬂlﬁj

In step 10, we drop the baseline, accessing by SQL_HANDLE, then drop the MY_CUSTOMERS
table and revoke the grant from user SH.

339

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Oracle Optimizer

There's more...

We can also create a baseline using the snapshots taken from Automatic Workload Repository
or using an SQL Tuning Set. In this case, we execute the following statement, to create a
baseline from test_tuning_set (as created in the Creating SQL Tuning Sets recipe):
DECLARE

1_plan pls_integer;
BEGIN

I_plan := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(

sqlset_name => "test_tuning_set");

END;
/

To control the SQL Plan Management there are two parameters:

» OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES: If set to TRUE, automatic capturing
of SQL Plans is enabled; the default value is FALSE

» OPTIMIZER_USE_SQL_PLAN_BASELINES: If set to TRUE, SQL Plan Management is
enabled; this parameter is enabled by default

When we manually capture SQL Plans, the resulting plan is marked as accepted. However,
when the plans are automatically captured, we need to perform the evolving SQL Plan
baseline process, using the DBMS_SPM.evolve_sqgl_plan_baseline function.

By launching this function (it needs only one parameter, the sql_handle of the statement,
which we can get from the DBA_SQL_PLAN_BASELINES view), the optimizer will determine
if non-accepted plans in the baseline should be accepted. The function returns a CLOB
containing a complete report of the results.

See also

» The Managing stored outlines, Creating SQL Tuning Sets, and Using Tuning
Advisor recipes in this chapter

340

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

In this chapter, we will cover:

» Caching results with the client-side result cache
» Enabling parallel SQL

» Direct path inserting

» Using create table as select

» Inspecting indexes and triggers overhead

» Loading data with SQL*Loader and Data Pump

Introduction

In this chapter we will look at optimizations related to both queries and DML operations.

The first two recipes will show some features that can speed up a query; the following
four recipes are focused on different techniques useful to load data in the database,
from external sources and from other tables inside the database.

We will also focus on the overhead introduced by indexes and triggers. We have seen in
past recipes that using indexes can speed up our queries, resulting in faster execution.

However, in the recipes of this chapter, we will see how over-indexing a table can lead to
poor DML performance.

About loading data, we will see how to use the SQL Loader and Data Pump to load our data
faster. Direct path inserting and creating table using select will help us to populate some
tables using data already available in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

Caching results with the client-side

result cache

In this recipe we will see how to enable and use the client-side result cache to reach
significant improvement in repeatedly executing complex queries.

Getting ready

To enable the client result cache feature in a database, we need to alter the CLIENT_
RESULT_CACHE_SIZE parameter and set a size for caching larger than zero (the default
value). This parameter specifies the size in bytes used by all the client processes as the
maximum size of the client per-process result set cache.

To do so we need to execute the following commands, querying for the actual value of the
parameter:

CONNNECT / AS SYSDBA

SHOW PARAMETER CLIENT_RESULT_CACHE_SIZE

If we need to alter the size, because it is set to zero, or if we want to change the actual
size—we can use the following commands. Once we set the size for the client result cache
to 5 MB, we restart the instance to enable the modifications:

ALTER SYSTEM SET CLIENT_RESULT_CACHE_SI1ZE=5M SCOPE=SPFILE;

SHUTDOWN IMMEDIATE

STARTUP OPEN

We are now ready to experiment with the client side result cache.

How to do it...

The following steps will demonstrate the client-side result cache:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Enable the automatic explain plan and execute a query that joins CUSTOMERS
and COUNTRIES tables:

SET AUTOT TRACE EXP
SELECT COUNTRY_NAME, CUST_LAST_NAME, COUNT(*)
FROM CUSTOMERS C, COUNTRIES CT
WHERE C.COUNTRY_ID = CT.COUNTRY_ID
GROUP BY COUNTRY_NAME, CUST_LAST_NAME;
342

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

3. Enable the use of the result cache using a hint and execute the same query
as in the previous step:
SELECT /*+ result_cache */
COUNTRY_NAME, CUST_LAST_NAME, COUNT(*)
FROM CUSTOMERS C, COUNTRIES CT
WHERE C.COUNTRY_ID = CT.COUNTRY_ID
GROUP BY COUNTRY_NAME, CUST_LAST_NAME;
SET AUTOT OFF

In step 2 we have executed a simple join query. The execution plan is represented in the
following screenshot:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In step 3, we have used a specific hint result_cache to use the result cache (both client-side
and server-side).

343

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

We can see in the next screenshot, the change in the execution plan for the same query
mentioned above. However, to enable this behavior we have defined a size (greater than zero)
for the CLIENT_RESULT_CACHE_SIZE parameter. In the next section we will see how to obtain
the same behavior in a different way than just using hints in our queries.

ec?-46-51-176-114.eu-west-1.compute.amazoenaws.com - PuTTY |ﬂlﬁj

There's more...

We can enable client-side result cache in three different ways:

1. Using hints as in step 3 of our recipe.
2. Enabling the result cache at a session (or system) level:
ALTER SESSION SET RESULT_CACHE_MODE = FORCE;

3. With table annotation, we can instruct the database to use the result cache for
the queries against specific tables, using the following statement:

ALTER TABLE CUSTOMERS RESULT_CACHE (MODE FORCE);

344

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

_ There are also two initialization parameters to take care of:
% RESULT_CACHE_MAX_SIZE, set to zero to disable the server-side
2 cache and CLIENT_RESULT_CACHE_SIZE, set to a value greater
than or equal to 32K to enable the client-side cache.

In the above statements, we have used the FORCE mode, which always enables the client-side
result cache, except when the no_result_cache hint is specified in the query.

Please note that table annotation takes precedence over session
s or system-wide settings.

The client-side result cache enables applications that use the Oracle Call Interface (OCI) to
connect to the database to cache result sets on the client side. Memory will probably be less
expensive on the client side than on the server side and it assures more locality by reusing
the same query. This is more likely to happen on the same client with the same application.
So caching on the client side results in a higher probability to find the data we need already
in memory than when caching on the server side. Round-trips to the server are also avoided
when the query can be answered using the client result cache.

Client-side result cache is always kept consistent with server data and metadata, eliminating
the need for each application that uses OCI to implement its own custom caching mechanism.

M The client-side result cache is different from the server result
Q cache. It's available from version 11.1 upward of OClI client
libraries, connected to an Oracle database 118R1 or above.

Configuring the client-side result cache
An important parameter in setting the client-side result cache is CLIENT_RESULT_CACHE_LAG.

This parameter allow us to define the number of milliseconds elapsed before flushing the
cache. For example, if we set this parameter to 10000, as follows:

ALTER SYSTEM SET CLIENT_RESULT_CACHE_LAG=10000 SCOPE=SPFILE;

The client result cache can lag 10 seconds behind any changes in the database that affect
its result sets.

Due to its static nature, this parameter needs to be set in the SPFILE and will be effective
after the instance restarts.

See also

» The Taking advantage of function result cache recipe in Chapter 6, Optimizing PL/
SQL Code, to see the result cache applied in enhancing functions performance

345

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

Enabling parallel SQL

In the recent past, we have seen the passage from the megahertz era to the multi-core era
in microprocessor design. Even laptops and small devices have multi-core CPUs available
that can take advantage of applications accomplishing work in parallel.

In this recipe we will see how to enable parallel execution of queries to speed them up.

Getting ready

To observe a performance gain in this recipe, we obviously need a machine with a
minimum of two cores. A single-core machine, using parallel SQL execution leads to
a dip in performance when compared to using normal sequential execution.

How to do it...

In this recipe, we will use a query that returns about 1 million records. To avoid displaying this
huge amount of data in our terminal, we will need to copy the code in a SQL script file, naming
it TEST.SQL, for example, and then execute it using the @ operator from SQL*Plus:

@TEST.SQL
For clarity, the content of the script is split into the following steps:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Empty the buffers from previous executions to be sure no data is already cached in
memory:

ALTER SYSTEM FLUSH BUFFER_CACHE;

3. Display the current date/time:
SELECT TO_CHAR(SYSDATE, "YYYYMMDD_HH24MISS*") TIMECOL FROM DUAL;

4. Disable the output to terminal and spool on the NULL device:
SET TERMOUT OFF
SPOOL /DEV/NULL

5. Execute a long query:
SELECT
S_PROD_ID, S.CUST_ID, S.TIME_ID
FROM SH.SALES S
ORDER BY S.AMOUNT_SOLD DESC;

346

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

10.

11.

12.

13.

Disable spooling:
SPOOL OFF
SET TERMOUT ON

Display the current date/time:
SELECT TO_CHAR(SYSDATE, "YYYYMMDD_HH24MISS*") TIMECOL FROM DUAL;

Empty the buffers from previous executions to be sure no data is already cached
in memory:

ALTER SYSTEM FLUSH BUFFER_CACHE;

Display the current date/time:
SELECT TO_CHAR(SYSDATE, "YYYYMMDD_HH24MISS*") TIMECOL FROM DUAL;

Disable output to terminal and spool on the NULL device:
SET TERMOUT OFF
SPOOL /DEV/NULL

Execute the same query in step 5 using a hint to use parallel SQL execution:
SELECT /*+ PARALLEL (S, 2) */
S_PROD_ID, S.CUST_ID, S.TIME_ID
FROM SH.SALES S
ORDER BY S.AMOUNT_SOLD DESC;

Disable spooling:
SPOOL OFF
SET TERMOUT ON

Display the current date/time:
SELECT TO_CHAR(SYSDATE, "YYYYMMDD_HH24MISS*") TIMECOL FROM DUAL;

The script used in this recipe is made of two identical parts. In each part we initially flush
the buffer cache to be sure that there are no data blocks in memory cached from previous
executions of the same query.

We then enable the spool to a NULL device and we disable the terminal output to avoid
viewing the rows returned from our query.

We need to focus on steps 5 and 11. In step 5 we execute the query in normal sequential steps,
while in step 11 we add the /*+ PARALLEL (S, 2) */ hint. This hint requests parallel execution,
using 2 processes/threads, on table S (the alias used for the SALES table in our query).

347

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

In the following screenshot we can see the results of this script executed in a single CPU
core environment:

ec2—45—51—1?5—].14.3u—'.'xest—l.compute.amazon...|_ =RAEN X

We can see, from the timestamp shown, that the execution time was about 17 seconds
without the parallel hint and about 19 when using the parallel hint.

In the following screenshot we can see the results obtained executing the same script on
a machine with a dual-core CPU:

348

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

ec2-46-137-3-43.eu-west-1.compute.a... | o | E "'ES"'J

The execution time was about 29 seconds with the original query in step 5 and about 12
seconds using the parallel hint with the query in step 11.

Please note that the results obtained in the previous screenshots
“ on the single core and dual core machines cannot be used as a
A) . .
benchmark because they were obtained on two different machines.

349

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

There's more...

In the example there is a huge improvement in performance when using parallel queries on a
machine with more than one CPU/core.

The hint in step 11 query suggests, to the database engine, the use of degree of parallelism
of two. There will be two parallel processing streams, but the number of processes (or
threads) involved will be probably more than two. This is because more steps are involved in
answering the query (fetching data, sorting, returning results to the client).

To answer parallel requests there is a pool of parallel processes, which can range between
PARALLEL_MIN_SERVERS and PARALLEL_MAX_SERVERS parameters.

If a request for a query (with a degree of parallelism that exceeds the number of parallel
processes available in the pool) arrives, the request may be executed with a lower degree of
parallelism—or even serially. From Oracle Database 11gR2, the request may be delayed until
a sufficient number of parallel processes will be available.

Starting Oracle Database 118, when setting the parameter PARALLEL_DEGREE_POLICY
to AUTO, the degree of parallelism is automatically determined by the database, depending
on the size of the objects involved in the query and the available resources. Setting this
parameter is recommended only in data warehouse environments.

Parallel query and /O

We have seen how simple it is to request the parallel execution of a query. However,

the benefits of parallel SQL execution can be observed only when there is sufficient I/0
throughput and a reduced contention on 1/0 devices. For some systems it also depends on
network bandwidth. If we have a 16 core CPU and only one disk, and we use a degree of
parallelism of 16, then we expect a dip in performance due to contention on disk segments.
In such situations it's important that the accessed segments are spread on multiple disks to
obtain maximum performance from parallel SQL execution.

When to use parallel SQL

Using a parallel SQL isn't always a good idea. In OLTP environments parallel executions cause
too many locks and consume more resources—Ilimiting the scalability of the application.
Moreover, these systems are often very well used because there are many concurrent
sessions working, so the parallelism is in use by multiple concurrent transactions.

As a rule of thumb, it's better to use parallel SQL for long running queries (batch working,
reporting). For short-lived ones, the overhead needed to coordinate the parallel slave
processes frustrates the performance gain obtained from parallel execution.

350

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

See also

>

The Disk Tuning and Strategies to distribute Oracle files and Object striping recipes in
Chapter 10, Tuning I/0, analyze useful techniques to avoid |I/0 bottlenecks and to get
maximum advantage from parallel SQL execution

Direct path inserting

In this recipe we will see how to insert many rows in a table using a particular INSERT
statement to boost performance.

How to do it...

The following steps demonstrates multiple row insertions in the same INSERT statement:

1.

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Create an empty table MY_SALES with the SALES table structure:
CREATE TABLE MY_SALES AS SELECT * FROM SALES WHERE ROWNUM < 1;

Insert all the rows from SALES table in the newly-created table:
SET TIMING ON

INSERT INTO MY_SALES SELECT * FROM SALES;

COMMIT;

SET TIMING OFF

Empty the MY_SALES table:
TRUNCATE TABLE MY_SALES;

Insert all of the rows from the SALES table in the newly-created table using direct
path inserting:

SET TIMING ON

INSERT /*+ APPEND */ INTO MY_SALES SELECT * FROM SALES;
COMMIT;

SET TIMING OFF

351

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

6. Show the execution plan for classical INSERT statement:
EXPLAIN PLAN FOR INSERT INTO MY_SALES SELECT * FROM SALES;
SELECT * FROM TABLE(
DBMS_XPLAN_DISPLAY(null,null,*TYPICAL -BYTES"));

7. Show the execution plan for direct path insert statement:
EXPLAIN PLAN FOR INSERT /*+ APPEND */ INTO MY_SALES
SELECT * FROM SALES;
SELECT * FROM TABLE(
DBMS_XPLAN_DISPLAY(null ,null,*TYPICAL -BYTES"));

8. Clean the database:
DROP TABLE MY_SALES;

In step 2 we create a table MY_SALES with the same structure as the SALES table in the SH
schema. In step 3 we execute an INSERT into the MY_SALES table, populating it with all of
the rows in the SALES table (about 1 million rows). In the following screenshot we can see the
results obtained:

.
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NAEN X

* FROM SALES WH

In step 4 we truncate the MY_SALES table, and then execute the same INSERT statement
as above, using the /*+ APPEND */ hint, forcing the database to use direct path insertion to
execute the statement.

352

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the following screenshot we can see the results obtained:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | SRRCIE X

We can see that the execution time for the INSERT statement is 2.46 seconds instead of
5.30 as in step 3.

Let's observe the difference in the execution plans. The following screenshot shows the plan
from step 6, related to the classical insert statement:

E
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

We can see that the statement uses LOAD TABLE CONVENT IONAL step to fill the MY_SALES
table with data obtained from a FULL TABLE ACCESS of SALES table.

353

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

The following screenshot, instead, represents the execution plan for the INSERT in step 5,
obtained with the statement in step 7:

-
est-1.compute.amazonaws.com - PuTTY | =NACE X

T * FROM SALES: o

ec2-

-176-114.2u-,

m

We can see the change in the execution plan as a result of using the LOAD AS SELECT step to
populate the data in the MY_SALES table; this is responsible for the speed-up measured above.

In step 8 we drop the MY_SALES table to clean the database schema.

There's more...

Direct path loading can be easily integrated in our INSERT statement using a simple hint.
Let's see the magic behind this hint, which gave us an improvement in performance of about
50 percent.

The main difference between conventional and direct path loading is in the way the statement
is executed. Conventional path loading uses the standard transactional SQL engine, so the
rows are inserted in database blocks with free space in the buffer cache and the block is then
asynchronously written to the disk by the database writer process. The available blocks below
the High-Water Mark are used, using the space available in the table free-lists.

Direct path loading completely bypasses the transactional SQL engine. Data is composed in
database blocks, which are directly written on the disk above the High-Water Mark. Free-lists
and buffer cache are not used, and the transaction isn't recoverable, because only minimal
redo log entries are generated.

However, there are some issues in using direct path loading; the table isn't accessible by other
SQL within the same transaction. Other sessions can access the table on which an exclusive
lock is held—DML activities are queued during the execution of the direct path loading.

354

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Another issue can arise when using direct path insert—remember that conventional load
inserts data in memory—and only the redo log is written to the disk on commit. The database
writer works asynchronously and the direct path insert writes directly to the disk blocks.
Hence, if 1/0 is a bottleneck in the database, direct path inserts could be slower than the
conventional load counterpart.

See also

» The Using create table as select and Loading data with SQL*Loader and Data Pump
recipes in this chapter

Using create table as select

In this recipe we will see how to create a table as the result of a selection from other tables or
views in the database.

How to do it...

The following steps demonstrate how to use use selection to create a table:

1. Connect to the SH schema:
CONNECT sh@TESTDB/sh

2. Create the empty table MY_SALES, and copy the SALES table structure:
CREATE TABLE MY_SALES AS SELECT * FROM SALES WHERE ROWNUM < 1;

4. Insert all the rows from the SALES table into MY_SALES using direct path inserting :
SET TIMING ON
INSERT /*+ APPEND */ INTO MY_SALES SELECT * FROM SALES;
SET TIMING OFF

5. Drop the MY_SALES table:
DROP TABLE MY_SALES;

6. Create table MY_SALES as a selection from SALES table:
SET TIMING ON
CREATE TABLE MY_SALES AS SELECT * FROM SALES;
SET TIMING OFF

355

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

7. Inspect the execution plan for the INSERT statement in step 3:
EXPLAIN PLAN FOR
INSERT /*+ APPEND */ INTO MY_SALES
SELECT * FROM SALES;
SELECT * FROM TABLE(
DBMS_XPLAN._DISPLAY(null ,null,"TYPICAL -BYTES"));

8. Drop the MY_SALES table:
DROP TABLE MY_SALES;

9. Inspect the execution plan for the CREATE TABLE AS SELECT statement in step 5:
EXPLAIN PLAN FOR
CREATE TABLE MY_SALES AS SELECT * FROM SALES;
SELECT * FROM TABLE(
DBMS_XPLAN._DISPLAY(null ,null,"TYPICAL -BYTES"));

In step 2 we create an empty table with the same structure as the SALES table and in step 3
we populate the newly-created MY_SALES table with all the rows of the SALES table.

We can see the results of this operation in the following screenshot:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NEC X

356

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In step 4 we drop the MY_SALES table and recreate and populate it from the SALES table at
the same time, using a CREATE TABLE AS SELECT statement in step 5.

In the following screenshot we can see the corresponding results:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - P... |ﬂ|ﬁj

We can see that the elapsed time is less in the CREATE TABLE when using the select
statement rather than in the direct path loading insert.

In step 6 we inquire about the execution plan for the direct path insert statement in step 3.
In the following screenshot you can see this execution plan:

-
ec2-46-51-176-114.eu-west- Lcompute.amazonaws.com - PuTTY |ﬂlﬁj
LATHN PLAN FO f

LAN.DISPLAY (

357

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

In step 8 we retrieve the execution plan for the CREATE TABLE AS SELECT statement, and
the corresponding result can be seen in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£@i-J

We can see that the execution plans related to both operations are identical in what concerns
the load statement—they access the same rows in the same way. They differ only in the first
part—the INSERT statement in the first case, the CREATE TABLE in the latter.

There's more...

We can use the CREATE TABLE AS SELECT statement to obtain a copy of a table, eventually
filtering out some records that we don't want to keep in the table.

To further increase the performance of the CREATE TABLE AS SELECT statement, we can
use the NOLOGGING and/or PARALLEL clause. The NOLOGGING clause doesn't write redo log
entries for the operation, which is unrecoverable due to this behavior. The PARALLEL clause
enables the database to use multiple parallel slave processes to execute the statement.

. Please note that using NOLOGG ING can break other processes
like Streams, Physical StandBy Databases, and GoldenGate
i among others. You need to consider all these implications
when planning to use this clause in a production environment.
A typical use of this query is consolidating historic data or deleting them. If we want to delete
a large amount of data from a table, it's better to create a new table by selecting the relevant

record to keep in the table, truncating the old table, and then renaming the new table as the
old one.

358

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

See also

>

The Direct path inserting and Enabling parallel SQL recipes earlier in this chapter

Inspecting indexes and triggers overhead

In this recipe we will see the overhead introduced by indexes and triggers on DML operations.
We will explore alternative ways to implement calculated fields using virtual columns instead
of triggers.

How to do it...

The following steps will demonstrate the index and trigger overheads:

1.

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Create an empty table MY_CUSTOMERS, copying the CUSTOMERS table structure:
CREATE TABLE MY_CUSTOMERS AS
SELECT * FROM CUSTOMERS WHERE ROWNUM < 1;

Insert all of the records from CUSTOMERS to MY_CUSTOMERS, measuring time:
SET TIMING ON

INSERT INTO MY_CUSTOMERS SELECT * FROM CUSTOMERS;

SET TIMING OFF

Truncate the MY_CUSTOMERS table:
TRUNCATE TABLE MY_CUSTOMERS;

Add a unique index and three B-tree indexes on the MY_CUSTOMERS table:

CREATE UNIQUE INDEX 1X1_MY_CUSTOMERS

ON MY_CUSTOMERS (CUST_ID);

CREATE INDEX 1X2_MY_CUSTOMERS

ON MY_CUSTOMERS (CUST_LAST_NAME, CUST_FIRST_NAME);

CREATE INDEX 1X3_MY_CUSTOMERS

ON MY_CUSTOMERS (COUNTRY_ID);

CREATE INDEX 1X4_MY_CUSTOMERS

ON MY_CUSTOMERS (CUST_STREET_ADDRESS, CUST_POSTAL_CODE,
CUST_CITY, CUST_STATE_PROVINCE);

359

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

6. Execute the same insert statement as in step 3 with the indexes in place, measuring
elapsed time:

SET TIMING ON
INSERT INTO MY_CUSTOMERS SELECT * FROM CUSTOMERS;
SET TIMING OFF

7. Truncate the MY_CUSTOMERS table and drop indexes:
TRUNCATE TABLE MY_CUSTOMERS;
DROP INDEX 1X1_MY_CUSTOMERS;
DROP INDEX 1X2_MY_CUSTOMERS;
DROP INDEX 1X3_MY_CUSTOMERS;
DROP INDEX 1X4_MY_CUSTOMERS;

8. Add a MAX_CREDIT field to the MY_CUSTOMERS table:
ALTER TABLE MY_CUSTOMERS ADD MAX_CREDIT NUMBER;

9. Create a trigger on the MY_CUSTOMERS table to calculate the MAX_CREDIT value
when inserting and updating records on MY_CUSTOMERS:

CREATE OR REPLACE TRIGGER TR_MY_CUSTOMERS_BINS
BEFORE INSERT OR UPDATE ON MY_CUSTOMERS
FOR EACH ROW
BEGIN
IF ((:NEW.CUST_GENDER = "M")
AND (:NEW.CUST_YEAR_OF BIRTH > 1975)) THEN
:NEW.MAX_CREDIT := :NEW.CUST_CREDIT_LIMIT * 0.95;
ELSE
*NEW.MAX_CREDIT :
END IF;
END;
/

NEW.CUST_CREDIT_LIMIT * 1.05;

10. Insert records in the MY_CUSTOMERS table, measuring elapsed time:
SET TIMING ON
INSERT INTO MY_CUSTOMERS (
CUST_ID, CUST_FIRST_NAME, CUST_LAST_NAME,
CUST_GENDER, CUST_YEAR_OF_BIRTH, CUST_MARITAL_STATUS,
CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST_CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE, CUST_STATE_PROVINCE_ID,

360

www.it-ebooks.info

http://www.it-ebooks.info/

11.

12.

13.

Chapter 8

COUNTRY_ID, CUST_MAIN_PHONE_NUMBER, CUST_INCOME_LEVEL,
CUST_CREDIT_LIMIT, CUST_EMAIL, CUST_TOTAL, CUST_TOTAL_ID,
CUST_SRC_ID, CUST_EFF_FROM, CUST EFF_TO, CUST_VALID)
SELECT CUST_ID, CUST_FIRST_NAME, CUST_LAST_ NAME,
CUST_GENDER, CUST_YEAR_OF BIRTH, CUST_MARITAL_STATUS,
CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE, CUST_STATE_PROVINCE_ID,
COUNTRY_ID, CUST_MAIN_PHONE_NUMBER, CUST_INCOME_LEVEL,
CUST_CREDIT_LIMIT, CUST_EMAIL, CUST_TOTAL, CUST_TOTAL_ID,
CUST_SRC_ID, CUST_EFF_FROM, CUST_EFF_TO, CUST VALID

FROM CUSTOMERS;

SET TIMING OFF

Drop the trigger and the MAX_CREDIT column from the MY_CUSTOMERS table and
truncate the table to empty data:

TRUNCATE TABLE MY_CUSTOMERS;
DROP TRIGGER TR_MY_CUSTOMERS_BINS;
ALTER TABLE MY_CUSTOMERS DROP COLUMN MAX_CREDIT;

Recreate the MAX_CREDIT field as a virtual column, reproducing the same effect
as the previous trigger:

ALTER TABLE MY_CUSTOMERS ADD MAX_CREDIT AS (CASE
WHEN CUST_GENDER = "M" AND CUST_YEAR_OF BIRTH > 1975 THEN
CUST_CREDIT_LIMIT * 0.95
ELSE CUST_CREDIT_LIMIT * 1.05
END) ;

Execute the same insert as in step 10, measuring elapsed time:

SET TIMING ON

INSERT INTO MY_CUSTOMERS (

CUST_ID, CUST_FIRST_NAME, CUST_LAST_ NAME,

CUST_GENDER, CUST_YEAR _OF BIRTH, CUST_MARITAL_STATUS,
CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST_CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE, CUST_STATE_PROVINCE_ID,
COUNTRY_ID, CUST_MAIN_PHONE_NUMBER, CUST_INCOME_LEVEL,
CUST_CREDIT_LIMIT, CUST_EMAIL, CUST_TOTAL, CUST _TOTAL_ID,
CUST_SRC_ID, CUST_EFF_FROM, CUST_EFF_TO, CUST_VALID)

361

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

SELECT CUST_ID, CUST_FIRST_NAME, CUST_LAST_ NAME,
CUST_GENDER, CUST_YEAR_OF BIRTH, CUST_MARITAL_STATUS,
CUST_STREET_ADDRESS, CUST_POSTAL_CODE, CUST CITY,
CUST_CITY_ID, CUST_STATE_PROVINCE, CUST_STATE_PROVINCE_ID,
COUNTRY_ID, CUST_MAIN_PHONE_NUMBER, CUST_INCOME_LEVEL,
CUST_CREDIT_LIMIT, CUST_EMAIL, CUST_TOTAL, CUST_TOTAL_ID,
CUST_SRC_ID, CUST_EFF_FROM, CUST_EFF_TO, CUST_ VALID

FROM CUSTOMERS;

SET TIMING OFF

14. Clear the database schema:
DROP TABLE MY_CUSTOMERS;

This recipe can be divided into two parts:

» The first from step 1 to step 7, which experiments with the overhead introduced in
DML operations by indexes

» The second part from step 8 to step 14, where virtual columns are used to avoid
the use of triggers to calculate field values

In step 2 we create a MY_CUSTOMERS table with the same structure of the CUSTOMERS table
in the SH schema. In step 3 we load data from the CUSTOMERS table to the MY_CUSTOMERS
table, using a conventional path insert, obtaining the following results:

-
ec2-46-51-176-114.eu-west- L.compute. amazonaws.com - PuTTY | =HAEN X

In step 4 we wipe the data from the MY_CUSTOMERS table, and in step 5 we create four
indexes on the same table.

In step 6 we execute the INSERT statement, as in step 3, and obtain the following result:

362

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁ

We can see that by executing the same INSERT statement with four indexes in place, the
executing time has increased from less than 1 second to more than 6 seconds. There is a
considerable dip in performance, due to the overhead involved in updating the indexes when
inserting records.

In step 7 we empty the table and drop the indexes, returning to the initial state with the
MY_CUSTOMERS table empty and without any index.

In step 8 we add a field MAX_CREDIT to the MY_CUSTOMERS table. We define a trigger, which
fires before the insert or update on the MY_CUSTOMERS table to set the MAX_CREDIT field
according to a business rule in step 9.

In step 10 we insert records in the MY_CUSTOMERS table, obtaining the following results:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Iﬁj

363

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

In step 11 we drop the MAX_CREDIT column and the trigger used to set its value, and in step
12 we re-create the MAX_CREDIT field, defining it as a virtual column. Here, we specify the
formula evaluated to implement the same fanciful business rule as implemented earlier in
the trigger.

In step 13 we execute the same insert statement as in step 10. In the following screenshot
the output of this operation can be observed. Then in step 14 we drop the MY_CUSTOMERS
table to clear the SH database schema.

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂlﬁ

In this example you can see that the insert statement with the virtual column needs half the
time required by the insert on the same table, when the MAX_CREDIT field value is calculated
using a trigger. The benefit in performance will vary due to the different amount of work
needed in the trigger execution.

There's more...

In previous recipes we have encouraged the use of indexes to increase the execution speed
of our queries.

364

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In this recipe, instead, we are warned about over-indexing. In the first part of this recipe,
you must have seen that when there are indexes on a table, insert (updating and deleting)
operations on the table take long to execute.

When designing the database schema, it's important to balance the query speed obtained
using indexes and the bottleneck in DML operations caused by the same indexes.

We have seen regular B-tree indexes in our example, but the same behavior applies to other
types of indexes, especially when using bitmap indexes.

In the second part of the recipe there is a business rule that applies in our application.
We decided to implement it in a trigger, which calculates the value for the maximum credit
awarded to the customer based on his credit limit, age, and gender.

When we insert data in the table, the trigger fires and its body is executed, resulting in a
slightly slower execution. Triggers are useful in many situations, but from Oracle 118 we
have another tool to use, which can help us use fewer triggers to apply business rules when
designing our application.

This new feature is called virtual columns. It allows us to define one or more columns in a
table, whose value is the result of an expression. The actual value of the field is not stored
on-disk, but is calculated when requested.

Using virtual columns we obtained an important gain in insert performance. As seen earlier,
when we talked about using indexes—free lunch is over—there is a drawback when using
virtual columns. The counterpart to the performance gain introduced in insert and update
statement is a slightly slower query, when we ask for the virtual column value, which needs to
be calculated on the fly.

Result caching can be used also with tables
s containing virtual columns.

For the same reason, it's mandatory to avoid the use of SELECT * statements on tables that
contain virtual columns, to avoid the useless calculation of values not required.

As always, in performance tuning there isn't a silver bullet, but a complex mix of pros and cons
in every solution, which needs to be calibrated based on the application's requirements.

See also

» The Reducing the number of requests to the database using materialized views
recipe in Chapter 2, Optimizing Application Design

» The Indexing the correct way, Using bitmap indexes, and Migrating to index
organized tables recipes in Chapter 3, Optimizing Storage Structures

365

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

Loading data with SQL*Loader and

Data Pump

In this recipe we will see how to load data from text files in the Oracle database using two
different tools—SQL*Loader and External Tables. We will also see how to use the Data Pump
to transfer data between different Oracle databases.

Getting ready

In order to test the functionalities provided by the SQL*Loader, we need some text files
containing data. The text used in these recipes has the United States census participation
rates data freely available at the following site:

http://2010.census.gov/cgi-bin/staterates.cgi
The direct link to the file used in the recipe is at:

http://2010.census.gov/2010census/takelOmap/downloads/
participationrates2010.txt

To test the recipe, download the file from the above link and save it to a directory
accessible from the database server. In the recipe code we will use Zoracle/home/
as the path for the file.

In the same directory, create a text file, using your preferred text editor, naming it
loaddata. ldr, and copy the following text in this file:

LOAD DATA
INTO TABLE MY_IMPORT DATA
FIELDS TERMINATED BY " ||"
(

GEO_ID,

PLACE_NAME,

TYPE,

PCT_2000,

PCT_2010

)

We will execute SQL*Plus from the Zoracle/home/ directory, to avoid specifying the complete
path in our command line for loaddata. Idr and participationrates2010.txt files.

366

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

How to do it...

The following steps will demonstrate how to load data:

1.

Connect to the SH schema:
CONNECT sh@TESTDB/sh

Create the table MY__IMPORT_DATA to store the data loaded from the text file:
CREATE TABLE MY_IMPORT_DATA (

GEO_1D VARCHAR2(12),

PLACE_NAME VARCHAR2(255),

TYPE VARCHAR2(255),

PCT_2000 NUMBER,

PCT_2010 NUMBER);

Use SQL*Loader to import data from the participationrates2010. txt file
to the MY__IMPORT_DATA table:

Isqlldr userid=sh@TESTDB/sh control=loaddata.ldr
data=participationrates2010.txt SILENT=ALL errors=10

Inspect the log file generated by the previous operation:
1tail loaddata.log

Empty the table MY_IMPORT_DATA:
TRUNCATE TABLE MY_IMPORT_DATA;

Use SQL*Loader to import data from the participationrates2010. txt file
to the MY__IMPORT_DATA table using direct path load:

Isqlldr userid=sh@TESTDB/sh DIRECT=TRUE control=loaddata.ldr
data=participationrates2010.txt errors=10 SILENT=ALL

Inspect the log file generated by the previous operation:
1tail loaddata.log

Drop the table MY_ IMPORT_DATA:
DROP TABLE MY_IMPORT_DATA;

367

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

9. Create the directory TEST_DATA_DIR to point to the folder containing the
participationrates2010. txt file:

CREATE OR REPLACE DIRECTORY TEST_DATA DIR AS "/home/oracle/";

10. Create the external table MY_IMPORT_DATA:
CREATE TABLE MY_IMPORT_DATA (
GEO_ID VARCHAR2(12),
PLACE_NAME VARCHAR2(255),
TYPE VARCHAR2(255),
PCT_2000 NUMBER,
PCT_2010 NUMBER)
ORGANIZATION EXTERNAL(
TYPE ORACLE_LOADER
DEFAULT DIRECTORY TEST_DATA_DIR
ACCESS PARAMETERS
(FIELDS TERMINATED BY " |]|")
LOCATION ("participationrates2010.txt")
)
11. Test the data in the external table:
SELECT COUNT(*) FROM MY_IMPORT_DATA;

12. Drop the external table MY__IMPORT_DATA:
DROP TABLE MY_IMPORT_DATA;

13. Export the CUSTOMERS and COUNTRIES tables using the Export Data Pump utility:
Texpdp sh/sh DIRECTORY=TEST_DATA_DIR DUMPFILE=test_exp.dmp
TABLES=customers,countries

14. Import the CUSTOMERS and COUNTRIES tables using the Import Data Pump utility:
Timpdp sh/sh DIRECTORY=TEST_DATA_DIR DUMPFILE=test_exp.dmp

15. Connect as SYSDBA and drop the directory TEST_DATA _DIR created in the
previous step:

CONNECT / AS SYSDBA
DROP DIRECTORY TEST_DATA_DIR;

368

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We have a text file, participationrates2010. txt, located in the /home/oracle/
folder, and we want to load the data contained within it to a table in our Oracle database.

A small excerpt from the file is as follows:

06003 ||JAlpine County, CA ||County |]0.71]]0.22
06091 ||Sierra County, CA ||County |]0.50]]0.45
06027 |]|]Inyo County, CA ||County |]0.79 |]0.78
06049 | |Modoc County, CA ||County]]0.62 |]0.57
06043 | [Mariposa County, CA |]|County |]0.62 |]0.57
06011]|Colusa County, CA ||County |]0.72]]0.71
06105 ||Trinity County, CA ||County |]0.58 |]0.48
06021 |]|Glenn County, CA ||County]]0.73 |]0.76
06015 ||Del Norte County, CA ||County]]0.71 |]0.74
06035 ||]Lassen County, CA ||]County |]0.55 |]|0.67
06051 | |Mono County, CA ||County |]0.32 |]0.27
06063 ||Plumas County, CA ||County]]0.52]]0.54
06069 ||San Benito County, CA ||County |]0.74]]0.75
06005 ||]Amador County, CA ||County |]0.72]]0.71
06093 ||Siskiyou County, CA |]|County |]0.72 |]0.72

In this text file, fields are delimited by a space followed by double pipes, containing both
alphanumeric and numeric data.

The first step to load the data in the database is to create the destination table, as in step 2.

We also need to define the so-called control file, in order to instruct SQL*Loader on the file
format and eventually, on filtering. In the Getting ready section of this recipe we defined the
loaddata. Idr control file, in which we indicated the type of operation (load data into table
MY__IMPORT_DATA), the file type (fields separated by), and the order of the fields in the file.

This is a very simple version of the control file. We will not investigate more details about
different options available for filtering, formatting, and other more advanced features of
SQL*Loader, which can be easily examined in the Oracle documentation.

In step 3, run the sql 1dr executable, passing the credentials to log into the database, the
name of the control file to use (the control parameter), the file containing data (parameter
data), while suppressing on-screen messages. The parameter ERRORS=10 will block the load
process if 10 errors occur during the load process.

369

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

In step 4 we observe the last lines of the generated log file. The following screenshot shows
the output of this procedure:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

The log states that 115273 rows from the text file were loaded without errors in 3.20 seconds.

In step 5 we truncate the MY_IMPORT_DATA table, and in step 6 we execute another
SQL*Loader session, using the same control file and data file, but adding the parameter
DIRECT=TRUE. The loading process will use direct path loading—the data is loaded using a
mechanism similar to direct path inserting—resulting in the following log, obtained from step 7:

ec2-46-51-176-114.eu-west-l.compute.amazonaws.com - PuTTY |ﬂlﬁj

370

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

There were no errors while loading the file, and that there was a huge performance gain,
resulting in a total elapsed time of 1.13 seconds, about half the time elapsed in step 3.

In step 8 we drop MY__IMPORT_DATA table and in step 9 we create a directory object in the
database, which points to the /home/oracle/ file-system folder. We need a directory object
to create, in step 10, an external table. This object points to data outside the database,

that is data not stored inside Oracle database datafiles—providing the same interface to
manipulate the data, as if it was a regular database table.

When we create MY__IMPORT_DATA in step 10, we define the structure of the table—as it will
be seen from the database and depending on how the data is structured in the external file.
We specify the name of the data file to use and the directory object required to find the data
file in the file-system.

After creating the external table, in step 11, we query against it to test whether we can easily
access the data in the file as it was available in a regular database table.

We can see the result obtained from this operation in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

Y TEST_DATA DIR AS '

In step 11 we drop the MY__IMPORT_DATA table and in step 14 we drop the directory object
TEST_DATA DIR.

In step 12 we use the command line utility Export Data Pump (expdp) to export the data and
metadata related to the CUSTOMERS and COUNTRIES tables in the test_exp.dmp file.

371

www.it-ebooks.info

http://www.it-ebooks.info/

Other Optimizations

The Export and Import Data Pump utilities allow us to easily transport data between Oracle
databases, even on different platforms. In our example we have exported two tables in a file,
but we can export a schema or the whole database.

In step 13 we use the command line utility Import Data Pump (impdp) to import the data and
metadata exported above in the database.

If you are not the schema owner, the EXP_FULL_DATABASE
L privilege is needed.

In the following screenshot we can observe the output of the export process:

ec2-46-51-176-114.eu-west-l.compute.amazonaws.com - PuTTY | =NACN X

There's more...

SQL*Loader is a powerful command-line utility to load data into the database. However, the
external table solution gives us more freedom and a very easy way to access our flat file data
to load them in the database. Don't use external tables for purposes other than loading data
in the database, which is the reason why they were designed.

372

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

With external tables we can also use a pre-processor program—which can range from
shell-scripts to the user-generated binaries—to pre-process input data. The limit to the
type of loadable formats relies on the user's ability to transform the original dataset.

Export and Import Data Pump utilities allow easy data and metadata transfer
between databases.

Data Pump is a new feature in Oracle Database 10g, and in Enterprise Edition it also
allows us to load or unload parallel multiple streams of data from the database.

There is also a network mode that allows remote export and import over the network. We
can export data from a database directly to our local disks, or import data from a database
to another database directly, without using any dump-file. The data is written directly from
one database to another database using the network.

You can find more on Data Pump in the Oracle Documentation:
http://download.oracle.com/docs/cd/E14072_01/
server.112/e10701/part_dp.htm.

See also

» The Direct path inserting recipe in this chapter

373

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In this chapter, we will cover:

» Tuning memory to avoid Operating System paging

» Tuning the Library Cache

v

Tuning the Shared Pool

v

Tuning the Program Global Area and the User Global Area
» Tuning the Buffer Cache

Introduction

So far we have introduced various aspects of Oracle database performance tuning, mostly
related to the application code and storage structures.

The last three chapters of this book, starting with this one, will focus on the tuning aspects
related to the hardware environment and to the internal structure of the Oracle database,
starting with memory tuning in this chapter.

We will see which structures are stored in the memory by the database and how to configure
them to use the physical memory available optimally, and achieve the best performance from
our hardware.

The first recipe covers some aspects related to the Operating System hosting our database.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

Tuning memory to avoid Operating System

paging

Tuning memory is a task common to both the database administrators and the system
administrators. However, the DBA's task is to optimize the use of the memory available to the
database instance, while the system administrator will focus on the overall memory available
to the system and on how to divide it among the required applications and users.

It's common best practice to have a dedicated system to manage the database, not sharing
it with other applications. The system administrator and DBA tasks are very similar, so this is
often the same person.

In this recipe, we will see how to configure the total memory size of our database instance to
avoid problems related to the use of virtual memory and pagination.

How to do it...

The following steps will demonstrate how to tune memory to avoid Operating System paging:

1. Connect to the database as SYSDBA using SQL*Plus:
CONNECT / AS SYSDBA

2. Show the allocated memory to the System Global Area (SGA):
SHOW SGA

3. Query the V$SGA view to obtain the same information as mentioned earlier:
SELECT * FROM V$SGA;
4. Query the V$SGAINFO dynamic performance view to show more details about

memory usage:
SELECT * FROM V$SGAINFO;

5. Connect to Oracle Enterprise Manager as SYSDBA and go to Advisor Central.

Choose Memory Advisors to verify if Automatic Memory Management (AMM)
is enabled, the total (and maximum) memory size configured, and the allocation
history graph.

7. Click on the Advice button to see the Memory Size Advice graph, which helps us
choose the right value for total memory size.

376

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

8. In SQL*Plus, verify if the SGA is locked querying the parameter LOCK_SGA:
SHOW PARAMETER LOCK_SGA

9. Query the V$PROCESS dynamic performance view to obtain a list of
database processes:

SELECT PID, SPID, SERIAL#, PNAME FROM V$PROCESS;

In this recipe, we explore the interactions between the Oracle database and the hosting
Operating System, related to memory and processes. To do so, we use two tools: SQL*Plus
command line interface and Oracle Enterprise Manager web interface. We

use a SYSDBA account to log in using both the tools.

The first operation after logging in, in step 2, allows us to know the size of the SGA. The SGA
represents the most important memory structure in the Oracle database, and it consists of
different parts. The Shared Pool, the Buffer Cache, and the Redo Log Buffer are the most
important ones. The SGA is shared among all the users of the database.

In the following screenshot, we can see the results of the command in step 2 and the query
in step 3:

ec2—46—51-1?6—114.eu—west-l.compute.am...|_ =ANEN X

4 [m

If you want to know more details about the size of the different SGA components, execute
the query in step 4; you will obtain a more comprehensive view of the memory used by
the database.

377

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In the following screenshot, we can see the results of the query in step 4:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - Pu... | =N X

The last column queried, RESIZEABLE, indicates whether the element is resizable without
a database restart or not.

We can also obtain this information using Oracle Enterprise Manager. Log in as SYSDBA,
and navigate to Advisor Central, as shown in the following screenshot:

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Database
Database Instance: TESTDB > Logged in As

Advisor Central
Advisors Checkers

View Data Real Time: 16 Second Refresh ~

Advisors
ADDM Automatic Undo Management Data Recovery Advisor
Advisors MTTR Advisor S A

SQL Performance Analyzer Streams Performance Advisor

Advisor Tasks

378

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Choose Memory Advisors from the links in the Advisors. This will take you to the next screen,
where you can see the AMM feature enabled and the memory space reserved for the Oracle
Database. A graph shows the history of memory allocation. In the next screenshot, you can

see this element in the Oracle Enterprise Manager:

Preferences Help Logout

ORACLE Enterprise Manager 11¢ Setup
Database

Database Control

Database Instance: TESTDB > Advisor Central =
Memory Advisors

Logged in As SYS

Page Refreshed March 12, 2011 12:09:14 PM EST (Refresh

(Show 50L) | Rewert) | Apply)

When Automatic Memory Management is enabled, the database will automatically set the optimal distribution of memary.
The distribution of memory will change from time to time to accomodate changes in the workload.

Automatic Memory Management Enabled "pisape)
Total Memory Size 680 MB ~ " Adice)

Maximum Memory Size 680 ME -~

The database must be restarted before any changes to this value take effect.

Allocation History
This chart shows the history of the components of the Memary.

FEO

&00
g 450
2300
wi

150

4]
11:24 11:40 11:4% 11:50 1155 12 PM
Mar 12, 2011

Clicking on the Advice button next to the Total Memory Size, you can see a graph showing

the possible improvement in DB time for various sizes of Total Memory— this helps us choose
the right memory size to get the best performance. As we can see in the following screenshot,
over a certain threshold we cannot get a great improvement in DB time when we increase the

memory further.

www.it-ebooks.info

379

http://www.it-ebooks.info/

Tuning Memory

In the next screenshot, there is almost no difference between using 680 or 850 megabytes
of memory:

@ Cracle Enterprise Manager - Total Memory Size Advice - M... l =HECE &q
! GMhttps:.-",-l‘ecZ—élG-Sl-1?6-114.eu—west-1.compute.amazun ‘,le i

Memory Size Advice
i

il

Improvement in DB Time &5

-35

400 500 &00 700 300 800 1000 11001200 13001400 1500

Total Memory Size (MB)
= Percentage improvement in DB Time for various sizes of Total Mem
® Total Memaory Size
= Mazimum. Memear: size
Total Memory Size (MB) 656

“ou can click en the curve in the graph to set a new value. Total Memory Size cannot be
greater than the Maximum Memory Size. First modify the Maximum Memory size (from the
parent page) and then select a value of Total Memory up to the Maximum Memory size.

([Cancel] (0K
https://ec2-46-51-176-114 eu-west-1.compute.amazo... [. 5<[3

When we enable the Automatic Memory Management in the Advisor Central, we are asked
to provide the Total Memory Size, as shown in the following screenshot:

ORACLE Enterprise Manager 11g Setup Preferences Help Logout
Datahase Control
Database Instance: TESTDB > Advisor Central > Memory Advisors = Logged in As SYS
Enable Automatic Memory Management

When Automatic Memory Management is enabled, the database will automatically set the optimal ([Cancel) (OK)

distribution of memory. The distribution of memory will change from time to time to accomodate changes in
the workload. The Maximum Memory Size specifies the maximum memory that the database may allocate
and must be set in order to use Automatic Memory Management.

Current Memory Usage (PGA+SGA) (MB) 680
Maximum Memoary Size 680 MB -

Changing the maximum memory size requires a restart of the database.

Total Memory Size for Automatic Memory Management 680 MB -

[Cancel] (OK)
Database | Setup | Preferences | Help | Logout

380

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

As suggested, to change the maximum memory size, we need to restart the database.

Please note that Automatic Memory Management may not be
% optimal for every application; it should not be used on Linux
g systems with hugepages and with Oracle MultiThreaded Server.

When setting this parameter, using Oracle Enterprise Manager or the ALTER SYSTEM
command, never exceed the limit of available physical memory, to avoid paging and swapping
at the Operating System level.

Paging occurs when a process needs a block of memory (a page) that is not available in real
memory but in virtual memory (on disk). The OS needs to read the requested page from disk
to memory, writing the replaced memory page to virtual memory on disk.

Swapping is a process similar to paging, which involves all the memory of a process. Swapping
arises when there are too many processes running in memory.

Both paging and swapping should be avoided to achieve best performance. On the same
operating system, we can lock the allocation of SGA in real memory, avoiding the paging of
SGA memory blocks to disk. In step 8, we verify whether our SGA is locked in the memory by
querying the LOCK _SGA parameter, as shown in the following screenshot:

<
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY | oo Sl e S

Don't set the LOCK_SGA parameter to TRUE on Solaris platform in

. the server parameter file; it will not allow Oracle 11¢g database to
%\ function. See the documentation at the following site:
Yo

http://download.oracle.com/docs/cd/E18283 01/
server.112/e10839/appe_sol _htm

381

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In step 9, we query the V$PROCESS dynamic performance view to collect information about the
running processes. An excerpt of the results of the query is shown in the following screenshot:

L#, PNAME

We see the PMON (Process MONitor) process, the DBWO (DB Writer) process, and so on,
running on the Windows systems. However, there is only one active ORACLE . EXE process,
and each of the database processes mentioned earlier is implemented in a separate
thread of the ORACLE . EXE process, as we can see using the task monitor and in the
following screenshot:

382

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

788 Gestione attivita Windows =Nl X
Eile Opzioni Visualizza 2
| Applicazioni | Processi | servizi | prestazioni | Rete | Utent |
-

Mome immagine PID MNome utente =
conhost.exe 1916 SYSTEM
mDMNSResponder.exe *32 1963 SYSTEM
mdm.exe *32 2020 SYSTEM
sglwriter.exe 2092 SYSTEM
Pen_Tablet.exe 2168 SYSTEM
IAANTmon.exe *32 2216 SYSTEM
MVVSYC.Exe 2512 SYSTEM
wisptis.exe 2675 SYSTEM
Pen_Tablet.exe 3616 SYSTEM
SearchIndexer, exe 3676 SYSTEM
TMSLSNR.EXE 3820 SYSTEM 3
iPodService.exe 4236 SYSTEM | -
orade.exe 4432, SYSTEM 17
svchost.exe 4760 SYSTEM -

Mostra i processi di tutti gli utenti

Processi: 85 Utilizzo CPU: 1% Memoria fisica: 60%

There's more...

To obtain maximum performance from Oracle database, a better option is to keep all the
required memory structures in the physical memory, if enough memory is available. In order
to do this, it is advisable to keep the SGA limit below the available physical memory. On
Solaris systems, we can use Intimate Shared Memory (ISM), a feature that allows multiple
0S processes accessing the shared memory to use the same Translation Lookaside Buffers,
saving a lot of kernel memory space.

On the Linux Platform, we can use hugepages to obtain a page size of 2 MB instead of the
older 4 KB. The memory space used by hugepages is locked and cannot be paged out.

1
‘\Q For more details on using hugepages there is a good

article on Metalink 361323.1.

See also

» Other optimizations at OS level—regarding |/O—are discussed in Disk tuning
and strategies to distribute Oracle files and Using Asynchronous I/0 in Chapter 10,
Tuning I/0

383

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

Tuning the Library Cache

The Library Cache is part of the Shared Pool, inside the System Global Area. In this recipe,
we will see how to inspect the use of the Library Cache, and how to tune it to obtain the best
performance from our database.

How to do it...

The following steps will demonstrate how to tune the Library Cache:

1. Connect to the database as SYSDBA using SQL*Plus:
CONNECT / AS SYSDBA

2. Query the VSLIBRARYCACHE dynamic performance view:
COL NAMESPACE FOR A20
SELECT NAMESPACE, GETS, GETHITRATIO, PINS, PINHITRATIO,
RELOADS, INVALIDATIONS
FROM VS$LIBRARYCACHE;
CLEAR COL

3. Calculate the library cache hit ratio:
SELECT SUM(PINS - RELOADS)*100/SUM(PINS) AS "Hit Ratio"
FROM VS$LIBRARYCACHE;

4. Execute a sample query:
SELECT /* TEST */ COUNT(*)
FROM SH.CUSTOMERS
WHERE CUST_YEAR_OF_BIRTH = 1975;

5. Inspect the execution details of a query:
SELECT SUBSTR(SQL_TEXT,1,30), USERS_EXECUTING,
EXECUTIONS, LOADS, HASH_VALUE
FROM V$SQLAREA
WHERE SQL_TEXT like "SELECT /* TEST */ %";

6. Inspect cached execution plans:
SELECT OPERATION, OBJECT_OWNER, OBJECT_NAME
FROM V$SQL_PLAN
WHERE HASH_VALUE = 3323436660;

384

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In step 1, we connect to the database as SYSDBA. In step 2, we query the VSLIBRARYCACHE
dynamic performance view to obtain details about the current use of Library Cache. You can
observe the output in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|i‘]

In step 3, we calculate the Library Cache Hit Ratio, an important parameter to evaluate
the use of Library Cache—the result should be around 99.9 percent, as can be seen in
the following screenshot:

-
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |£Iéj

385

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

Is it good to use ratios?

Throughout this chapter, we calculate and use various ratios as a simple way
to see if there is a problem in a database which we can investigate further
using other tools or reports.

~\l The values suggested (as the 99.9 percent for the Library Cache hit ratio,
see http://raj_oracle90.tripod.com/sitebuildercontent/
Q sitebuilderfiles/whya99percentbuffercacheratioisnot
ok-carymil Isap.pdf) have to be seen as optimal values to reach, but
we can experience systems running slow even when we reach these ratios—or
systems running very well with ratios far from the provided values.

Using ratios for a first estimate of problems is a fast and good way, but you
should base your decisions also on more sophisticated reports and tools.

We can obtain the same information by executing a statspack report. In the following
screenshot, you can see an excerpt from the report:

-
BR Amministratore: Prompt dei comandi - more |£Iﬁ]

Library Cache Activity DBrsInzt: TESTDBr/testdb Snaps: 13-14 -
—>"Pct Mizses” should bhe very low

Get
Mameszpace Reqguests

In this report, the PctMiss percentage values should be very low, because they identify
how often the requested objects are not found in Library Cache.

In step 4, we execute a sample query to illustrate how to find the executions of a specific
query using the V$SQLAREA dynamic performance view in step 5.

Using the results collected earlier, we query the V$SQL_PLAN dynamic performance view,
in step 6, to see the cached execution plan.

386

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the following screenshot, we can see the results of the last three steps:

ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY | = | B S

There's more...

The library cache stores parsed SQL statements, execution plans, PL/SQL blocks, and Java
classes, ready to be executed. The application code shared in the Library Cache can be easily
reused by different database sessions.

The reuse of a piece of code, already in the cache, is called a Library Cache Hit. A Library
Cache Miss occurs when the execution of a piece of code can't find the already parsed code
in the library cache.

The Library Cache Hit is also called soft parse, while
s the Library Cache Miss is called hard parse.

The main reasons to tune the Library Cache are to minimize misses (reparsing) and avoid
invalidations. They last occur when there are cached statements in the Library Cache that
reference a database object which is modified, for example, a table altered to add a field.

The reload is executed when the corresponding parsed statement is not found in the
Library Cache, due to invalidation or aging of the statement. The LRU (least recently used)
algorithm determines which statements in the cache should be aged out to make room
for newly-executed statements.

387

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

The result obtained in step 2 is now clear. We were presented with the number of GETS,
PINS, RELOADS, and INVALIDATIONS, grouped according to the type of statement (the
NAMESPACE column). The GETHITRATIO and PINHITRATIO0 are the parameters to inspect
when checking the use of the Library Cache.

The query in step 3 summarized all the ratios mentioned earlier in a single parameter—the
Library Cache Hit Ratio that is used to determine the average wealth of the Library Cache
immediately.

Even after using bind variables, shared SQLs, and so on,
M we still see heavy reloads, so how what do we do? You
Q need to increase the size of the Library Cache. There is not
a parameter to size the Library Cache, but we can increase
the size of the SHARED_POOL_SIZE parameter.

How to minimize misses

To minimize misses in Library Cache (or reparsing, it's the same), we need to modify the
applications, as shown in previous chapters, to make sure the statements are shared;
for example, using bind variables and composing dynamic SQL statements in the same
way. If we cannot modify our application, we can try the CURSOR_SHARING parameter,
to determine when SQL statements are considered as identical, hence sharing the
corresponding execution plan in the Library Cache.

See also

» The Improving performance sharing reusable code recipe in Chapter 2,
Optimizing Application Design

» Using bind variables in Chapter 4, Optimizing SQL Code
» Minimizing latches using bind variables in Chapter 11, Tuning Contention

Tuning the Shared Pool

In the previous recipe, we have seen how to inspect and tune the Library Cache, which
is a part of the Shared Pool. In this recipe, we will see the memory structures in the
Shared Pool and how we can tune it by keeping PL/SQL blocks in it.

388

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

How to do it...

The following steps will demonstrate tuning of the Shared Pool:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Inspect which objects can be shared by querying the V$DB_0BJECT CACHE
dynamic performance view:

COL OWNER FOR A20

COL NAME FOR A30

COL TYPE FOR A20

SELECT OWNER, NAME, TYPE, SHARABLE_MEM

FROM V$DB_OBJECT CACHE

WHERE TYPE IN ("PACKAGE", "PACKAGE BODY", "PROCEDURE",
"FUNCTION", "TRIGGER")

AND KEPT = "NO"

ORDER BY SHARABLE_MEM;

3. Force a package to be kept in the shared pool:
EXEC SYS.DBMS_SHARED_POOL.KEEP("SYS.DBMS_SCHEDULER®);

4. Show the objects in the shared pool with a certain size:
SET SERVEROUTPUT ON
EXEC SYS.DBMS_SHARED_POOL.SIZES(500);

5. Inspect the shared pool reserved memory:
SELECT * FROM V$SHARED_POOL_RESERVED;

6. Inspect data dictionary cache statistics:
COL PARAMETER FOR A20
SELECT PARAMETER, GETS, GETMISSES,
(GETS-GETMISSES)*100/GETS AS "Hit Ratio",
MODIFICATIONS, FLUSHES
FROM V$ROWCACHE WHERE GETS > O;

389

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

7. Keep PL/SQL anonymous blocks in the shared pool:
DECLARE 1 NUMBER;

BEGIN
/* BLOCK_TO_KEEP */
1 = 26;

END;

/

SELECT ADDRESS, HASH_VALUE

FROM V$SQLAREA

WHERE SQL_TEXT LIKE "%BLOCK_TO_KEEP%"
AND COMMAND_TYPE = 47;

EXEC SYS.DBMS_SHARED_POOL .KEEP ("3F0A8A14,1609869453) ;

In the Shared Pool, it is possible to have fragmentation, because loading large objects requires
more free space, so we need to unload many small objects to free the required space. The
freed space may be not contiguous, leading to fragmentation. To avoid this situation, we can
reserve some space for large objects and keep them in this reserved space.

\ We can also "pin" some objects in the Shared Pool using the
~ DBMS_SHARED_POOL .KEEP procedure. The pinned objects
@ are removed from the Least Recently Used list, so they are
never aged out and removed from the Shared Pool.

You can experience ORA-4031 error (unable to allocate "x"
bytes of shared memory) if there is no free block with the
. required memory in the shared pool, due to fragmentation.
% You can find a good place to start investigating ORA-4031
g error on Oracle Blogs at the following site:
http://blogs.oracle.com/db/entry/ora-4031_
- troubleshooting -

390

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In step 2, we query the V$DB_OBJECT_CACHE dynamic performance view, in order to inspect
what database objects are actually cached in the Shared Pool. The output of this query is
shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

This query can help us decide what objects to keep in memory, based on the memory
requirement (the SHARABLE_MEM column). We can also query the EXECUTIONS column
to see objects that are used most often.

In step 3, we use the DBMS_SHARED_POOL package to keep the SYS_.DBMS_SCHEDULER
package in the Shared Pool. There is no public synonym to this package, so you have to
reference it with the SYS schema. The pinned package has to be fully qualified—as in our
example SYS.DBMS_SCHEDULER.

M If the DBMS_SHARED_POOL was not created during the

Q installation, the $ORACLE_HOME/ rdbms/admin/dbmspool .
sql script—executed as SYSDBA—will create it.

391

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In step 4, we have used the SIZES procedure of DBMS_SHARED_POOL to show objects that
are larger than the size given in the shared pool, as shown in the following screenshot:

ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

B

completed.

In step 5, querying the VE$SHARED_POOL_RESERVED dynamic performance view, we inspect
the statistics about the use of reserved space in the Shared Pool. Our goal is to minimize the
REQUEST_MISSES and REQUEST_FAILURES, similar to the Library Cache. If the number of
failed requests is increasing, we need to expand the Reserved Pool (and probably also the
Shared Pool).

M To size the Reserved Pool, we use the SHARED_POOL_RESERVED_SIZE
Q initialization parameter. The value of this parameter cannot exceed 50
percent of the SHARED_POOL_SIZE parameter.

392

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the following screenshot, you can observe the results obtained on our test database:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

In step 6, we query the VBROWCACHE dynamic performance view to obtain Dictionary Cache
statistics, also calculating the Hit Ratio.

In the following screenshot, you can observe the output:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂﬁj

-4444444

504

393

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In step 7, we execute a (simple) anonymous PL/SQL block and then query VSSQLAREA to
identify the ADDRESS and HASH_VALUE of the statement. We then use these values as
parameters for the KEEP procedure of DBMS_SHARED_POOL package to pin the anonymous
block in the Shared Pool.

The complete execution of the steps mentioned earlier is represented in the following
screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY | =ARC X

m

There's more...

Due to the LRU algorithm, blocks of code can be aged out of the shared pool. When a
large block is aged out to make room for a small piece of code, and is needed again, then
the large block is reloaded. There can be fragmentation in the Shared Pool, which causes
performance degradation.

To avoid fragmentation, we can separate the memory required to store frequently used
large blocks of code from other blocks, using the Shared Pool Reserved Space.

We need to set the SHARED _POOL_RESERVED_SIZE initialization parameter. Querying
the V$SHARED_POOL_RESERVED dynamic performance view, we can inspect the Reserved
Pool statistics.

In this view, we need to lower the value for REQUEST_MISSES and REQUEST_FAILURES.
Using the V$DB_OBJECT_CACHE, we can inquire for large objects that are not kept in the
Shared Pool and decide to keep them in the reserved pool using the KEEP procedure of the
DBMS_SHARED_POOL package. Doing so also prevents flushing of the pinned object when
executing the ALTER SYSTEM FLUSH SHARED_POOL command.

394

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The SI1ZES procedure of the same package allows us to identify the objects that exceed the
defined size in the Shared Pool.

A problem may arise when there are large PL/SQL anonymous blocks. In these situations,

we have two alternatives—the first, as explained in the recipe, is to keep the anonymous block
in the Reserved Pool, using the ADDRESS and HASH_VALUE to identify the statement to keep;
these values are obtained from the V$SQLAREA dynamic performance view.

The second alternative, to improve performance when we have large PL/SQL anonymous
blocks, is to divide large blocks into smaller blocks that execute stored procedures.

We can use the V$SHARED_POOL_ADV ICE dynamic performance

view to obtain information about estimated parse time in the shared
N\‘ pool for different shared pool sizes, with a range from 10 percent to
Q 200 percent of the current shared pool size, in equal intervals.

The column ESTD_LC_TIME_SAVED indicate the estimated elapsed
parse time saved in seconds, while the ESTD_LC_LOAD_TIME
- column contains estimated elapsed time in seconds for parsing.

Tuning the Dictionary Cache

Another task to tune the Shared Pool is to tune the Dictionary Cache. This is the memory
structure, where the statements related to the Data Dictionary, the logical structures stored
in the database, are cached. The Data Dictionary is queried often, for example, to retrieve
information about the database objects involved in a query, grants to the user, this data
should be accessed very fast.

The VSROWCACHE dynamic performance view enables us to query for updated statistics

on the Dictionary Cache. The data in this view is cumulative since instance start-up. The
PARAMETER column identifies the data dictionary item, the total number of requests,
GETMISSES identifies the number of requests not satisfied by the cache, MODIFICATIONS
identifies the number of times the data (related to the item) was updated, and FLUSHES
identifies the number of times the item was flushed to the disk.

An instance and a database are two different items. The database
_ s acollection of physical files or disks, while an instance is a set
% of Oracle background processes/threads and a shared memory
L area. An instance can mount and open only a single database; a
database may be mounted and opened by one or more instances
at a time (as in Oracle Real Application Cluster).

In this recipe, we also calculate the Hit Ratio for each item. We can also calculate a
cumulative Hit Ratio for the Dictionary Cache, as done for the Library Cache:

SELECT SUM(GETS—GETMISSES) / SUM(GETS) AS "Hit Ratio"
FROM V$ROWCACHE;

395

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

We need to keep this value above 85 percent.

Please note that the first time objects need to be loaded into the
Vi cache, so there can never be a 100 percent value for the Hit Ratio.

To improve the Dictionary Cache, we can reduce DDL activities and, if we use sequences,
use the CACHE option to avoid a get for each NEXTVAL call to the sequence.

The size of the Dictionary Cache cannot be changed; it's a part of the Shared Pool and is
automatically maintained by the database. The database uses an algorithm that prefers to
keep dictionary data than library cache data in the shared pool, because the performance
benefits achieved by using the former approach are more significant. We can only size the
Shared Pool using the SHARED_POOL_SIZE initialization parameter.

See also

» The Tuning the Library Cache recipe in this chapter

» The Reducing the number of requests to the database using sequences recipe
in Chapter 2, Optimizing Application Design, for more details on sequences

Tuning the Program Global Area and the

User Global Area

In this recipe, we will see the Program Global Area (PGA) and the User Global Area (UGA)
and how to tune them for maximum performance.

The PGA is used to store real values of bind variables, sort areas, and cursor state
information. In a dedicated server environment this area is in private user memory.
Only in a shared-server environment the session stack space remains in the PGA,
while session data and cursor state are moved into the shared pool.

396

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

How to do it...

The following steps will demonstrate tuning the PGA and UGA:

1.

ok 0N

Connect to Oracle Enterprise Manager as SYSDBA.

Go to Advisor Central.

Choose Memory Advisors.

Choose the PGA palette to show or change the size of PGA.

Connect to SQL*Plus as SYSDBA:
CONNECT / AS SYSDBA

Show the parameters related to cursors:
SHOW PARAMETER CURSOR

Query for the total session memory:

SELECT SUM(VALUE) AS "session uga memory"

FROM V$MYSTAT, V$STATNAME

WHERE V$STATNAME.NAME = "session uga memory*
AND V$MYSTAT.STATISTIC# = VSSTATNAME.STATISTIC#;

Query for the session UGA memory:

SELECT SUM(VALUE) AS "session uga memory max"
FROM V$SESSTAT, V$STATNAME

WHERE V$STATNAME.NAME = "session uga memory max”
AND VSSESSTAT.STATISTIC# = VSSTATNAME.STATISTIC#;

Private information about the user session, such as private data and cursor state are stored
in the UGA. The UGA is located in the PGA when using dedicated server environments, and
inside the Shared Pool when using shared servers.

397

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

We can size the PGA using Oracle Enterprise Manager, following steps 1 through 4, where
we get the following page, allowing us to size the PGA:

ORACLE Enterprise Manager 11¢g Setup Preferences Help Logout
Database
Database Instance: TESTDB > Advisor Central = Logged in As SYS

Memory Advisors
Page Refreshed March 12, 2011 I3:D?:3I_3 PM EST A Refresh
| Show SOL | | Rewert) | Apply |

When Automatic Memory Management is enabled, the database will automatically set the optimal distribution of memory.
The distribution of memory will change from time to time to accomodate changes in the workload.

Automatic Memory Management Disabled (_Enable |

SGA PGA

The Program Global Area (PGA) is a memary buffer that contains data and control information for a server process. A PGA is
created by Oracle when a server process is started.

Aggregate PGA Target 236 MB = [Advice)

Current PGA Allocated (KB) 93605
Maximum PGA Allocated (KB) 116914
(since startup

Cache Hit Percentage (%) 100
| PGA Memaory Usage Details |

@ TIP The sum of PGA and SGA should be less than the tatal system memaory minus memory required by the operating
system and other applications

SGA PGA

Apply changes to SPFILE only. Otherwise the changes are made to both the SPFILE and the running instance which

As for System Global Area (SGA), we have the ADVICE button to see the performance
improvement that could be obtained by varying the PGA size.

In step 5, we query for the parameters related to cursors. The results are shown in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | = | B |t

In step 6 and step 7, we query the statistics to see the space used by the current session
and the maximum UGA space used by all users, respectively.

398

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The following is an output of these queries:

There's more...

In step 5, we have seen the parameters related to cursor management. Let's explain their
use. OPEN_CURSORS defines the number of concurrent cursors that a user process can use
to reference private SQL areas. Increasing the value associated to this parameter allows the
user to use more cursors simultaneously, but the memory consumption will be greater.

SESSION_CACHED_CURSORS allows defining the number of session cursors cached. Setting
this parameter to a value greater than zero results in a performance gain, where there are
repeated parse calls to the same SQL statements. Closed cursors will be cached within the
session, ready to be reused.

The last parameter, CURSOR_SHARING, allows us to define whether the cursors are shared
only when they match exactly (using EXACT) or also in other situations (using FORCE
and SIMILAR).

See also

» More details on CURSOR_SHARING parameter and on parsing in PL/SQL code can be
found in the Using bind variables and parsing recipe in Chapter 6, Optimizing PL/SQL
Code, and in the Improving performance sharing reusable code recipe in Chapter 2,
Optimizing Application Design.

399

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

Tuning the Buffer Cache

In this recipe, we will see how to tune the use of Buffer Cache to obtain the best performance.

How to do it...

The following steps will demonstrate how to tune the Buffer Cache:

1. Connect to the database as SYSDBA using SQL*Plus:
CONNECT / AS SYSDBA

2. Show the size of the Buffer Cache:
SHOW PARAMETER CACHE_SIZE

3. Change the buffer cache size for 16K DB blocks to 24 MB:
ALTER SYSTEM SET DB_16K_CACHE_SIZE = 24M;

4. Query the statistics related to the Buffer Cache:
SELECT NAME, VALUE FROM V$SYSSTAT WHERE NAME LIKE “%buffer%”;

5. Verify if the parameter DB_CACHE__is enabled:
SHOW PARAMETER DB_CACHE_ADVICE

6. Estimate the performance with various sizes for the Buffer Cache and different
database block sizes:

SELECT BLOCK_SIZE, SIZE_FOR_ESTIMATE,
BUFFERS_FOR_ESTIMATE, ESTD_PHYSICAL_READS

FROM V$DB_CACHE_ADVICE

ORDER BY BLOCK_SIZE, SIZE_FOR_ESTIMATE;

7. Evaluate the Buffer Cache Hit Ratio from statistics:

SELECT
PR.VALUE AS "phy. reads",
PRD.VALUE AS "phy. reads direct",
PRDL.VALUE AS "phy. reads direct (lob)",
SLR_.VALUE AS "session logical reads",
1 - (PR.VALUE - PRD.VALUE - PRDL.VALUE) / SLR.VALUE

AS "hit ratio”

FROM V$SYSSTAT PR, V$SYSSTAT PRD,

V$SYSSTAT PRDL, V$SYSSTAT SLR

400

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

10.

11.

12.

13.

WHERE PR.NAME "physical reads”

AND PRD.NAME = "physical reads direct”
AND PRDL .NAME
AND SLR.NAME = "session logical reads”;

"physical reads direct (lob)*

Enable the KEEP and RECYCLE Buffer Cache:

SHOW PARAMETER DB_KEEP_CACHE_SIZE

SHOW PARAMETER DB_RECYCLE_CACHE_SIZE

ALTER SYSTEM SET DB_KEEP_CACHE_SIZE=16M;
ALTER SYSTEM SET DB_RECYCLE_CACHE_SIZE=16M;

Evaluate the size of the CUSTOMERS table in the SH schema:
SELECT TABLE_NAME, BLOCKS FROM DBA_TABLES
WHERE OWNER = *"SH®" AND TABLE_NAME = “CUSTOMERS®;

Evaluate the size of two indexes in the SH schema:

SELECT INDEX_NAME, LEAF_BLOCKS FROM DBA_INDEXES

WHERE OWNER = *SH*

AND INDEX_NAME IN ("CUSTOMERS_YOB BIX", "CUSTOMERS_PK®);

Move a table and two indexes to the KEEP Buffer Cache:

ALTER TABLE SH.CUSTOMERS STORAGE (BUFFER_POOL KEEP);

ALTER INDEX SH.CUSTOMERS_YOB_BIX STORAGE (BUFFER_POOL KEEP);
ALTER INDEX SH.CUSTOMERS_PK STORAGE (BUFFER_POOL KEEP);

Evaluate the statistics and Hit Ratio for various Buffer Pools:
SELECT
NAME,
PHYSICAL_READS AS "physical reads",
DB_BLOCK_GETS AS "DB block gets",
CONSISTENT_GETS AS "'consistent gets",
1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))
AS "hit ratio”
FROM V$BUFFER_POOL_STATISTICS
WHERE DB_BLOCK_GETS + CONSISTENT_GETS > O;

Query the objects in the Buffer Cache:
COL OBJECT_NAME FOR A30
COL OBJECT_TYPE FOR A20

401

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

SELECT OBJECT_NAME, OBJECT_TYPE, COUNT(*) AS "buffers"
FROM SYS._X$BH XBH, SYS.DBA_OBJECTS 0OBJ

WHERE XBH.OBJ = OBJ.OBJECT_ID

AND OWNER = "SH*®

GROUP BY OBJECT_TYPE, OBJECT_NAME

ORDER BY OBJECT_TYPE, OBJECT_NAME;

CLEAR COL

14. Clean the database, moving the altered objects in the SH schema to the default
Buffer Cache:

ALTER TABLE SH.CUSTOMERS STORAGE (BUFFER_POOL DEFAULT);
ALTER INDEX SH.CUSTOMERS_YOB_BIX STORAGE

(BUFFER_POOL DEFAULT);
ALTER INDEX SH.CUSTOMERS_PK STORAGE (BUFFER_POOL DEFAULT);

In step 2, we show the parameters related to the Buffer Cache. In our database, we
have defined only a Buffer Cache for a 16K database block size, as can be seen in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | | (]

402

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In step 3, we alter this size to 24M, as shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute. amazonaw.., |ﬂ|ﬁ]

In step 4, we query for detailed statistics on how the buffer is used. In the following
screenshot, you can see the result of this query:

ec2-46-51-176-114.eu-west-1l.compute.amazenaws.com - PuTTY |ﬂlﬁj

In step 5, we verify that the parameter DB_CACHE_ADVICE is set. The output is as follows:

ec2-46-51-176-114.eu-west- Leompute.amazenaws.com - PuTTY |£Iﬁj

SHOW LME b AD b

403

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

The parameter DB_CACHE_ADVICE set to ON allows us to obtain, in step 6, an estimate of
performance varying the Buffer Cache size for 8K and 16K database block sizes. We can see

the results obtained in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY

Observing the ESTD_PHYSICAL_READS column, increasing the Buffer Cache for 8K database
blocks over 112 Megabytes doesn't enhance the performance of the system, so we can use
this value to set the appropriate size for the Buffer Cache.

404

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In step 7, we calculate the Buffer Cache Hit Ratio, using statistics, to see how many reads
are resolved in the Buffer Cache. The results are shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ‘]

the Buffer Cache is performing. To obtain more accurate information, we

M We can use the previous query to obtain a simple representation of how
Q can check the value for buffer gets in the AWR report.

We can also use other two Buffer Pools, other than the default one, named KEEP and
RECYCLE. The former allows us to keep the buffers in the pool as long as possible, while the
latter can be used to store segments that are not allowed to interfere with other segments in
the Buffer Cache; this is used when they are only temporarily required.

405

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In step 8, we query and alter the size of the KEEP and RECYCLE buffer pools, setting them
both to 16 Megabytes. The following screenshot shows the corresponding output:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂl-'§:_§-J

In step 9 and step 10, we query the size, expressed in database blocks, of the CUSTOMERS
table in the SH schema and of two indexes, CUSTOMERS_YOB_BIX and CUSTOMERS_PK, to
be sure that they can be stored inside the KEEP Buffer Cache.

In step 11, we move the objects queried earlier to the KEEP Buffer Cache. In the following
screenshot, we can see the output of these executions:

406

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY | == -'ES'-]
5 SELECT T E NAME, BLOCES M B TA

In step 12, we calculate a Buffer Cache hit ratio for each different Buffer Pool, as shown in
the following screenshot (only the DEFAULT and RECYCLE pool have been used at that time):

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |£Iﬁj

407

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Memory

In step 13, we investigate the objects of the SH schema present in the Buffer Cache, obtaining
the following output:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NACH X

6
5
9

There's more...

To understand the operations discussed in this recipe, we need to provide more details about
the Buffer Cache operations.

Buffer Cache is used to store the data read from disk onto the database blocks. Due to the
1/0 operation, which is slower on-disk than on-memory, it's obviously preferable that the
database makes a few I/0 operations on-disk. This result is achievable when most of the
requests are satisfied by the data already in the Buffer Cache.

The Buffer Cache operates using an LRU list in order to keep track of the database blocks
most often used and a dirty list. The dirty list stores the modified blocks that are required to
be written to the disks.

The main use of the LRU list is to add blocks to the LRU end using a full table scan, while the
normal operations add blocks to the MRU end of the list, and hence they are quickly replaced
by the blocks required for subsequent operations.

408

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In this recipe, we have seen various statistics of the on-buffer Cache. We can also obtain this
data and the Buffer Cache Hit Ratio from STATSPACK reports, as shown in the excerpt in the

following screenshot:

Buffer Pool Statistics DB/Inst: TESTDB/testdb Snaps: 13-14
—-> Standard block size Pools D: default, EK: keep, BR: recycle
—> Default Pools for other block sizes: 2k, 4k, 8k, 16k, 32k

—> Buffers: the number of buffers. Units of K, M, G are divided
Free

Fool Buffer Physical Physical Buffer

P Buffers Hit% Gets Reads Writes Waits
D 51K 98 3,006 64 1} 1}

by 1000

Writ
Comp
Wait

To obtain optimal performance, we can configure multiple Buffer Pools for different segment

usage needs, as we have seen with the KEEP and RECYCLE pools.

The KEEP pool is specifically designed for situations where we want to store some data

in the Buffer Cache because it is used very often. We can also store small tables, typically
subject to full table scans in the KEEP pool. We will use the RECYCLE pool, instead, to store
segments rarely accessed or (almost) never reused, so they don't contribute to the age out of

other segments in the Buffer Pool.

See also

» The Avoiding Full Table Scans recipe in Chapter 4, Optimizing SQL Code

www.it-ebooks.info

409

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Tuning 1/O

In this chapter, we will cover:

>

Tuning at the disk level and strategies to distribute Oracle files
Striping objects across multiple disks

Choosing different RAID levels for different Oracle files

Using asynchronous I/0

Tuning checkpoints

Tuning redo logs

Introduction

In the previous chapter, we have seen some methods to tune the memory used by Oracle
processes to obtain best performance from our hardware.

The database is made up of datafiles on disks; typically, I/0 time from disk is slower by
one order of magnitude than 1/0 from memory. So, tuning the disk /0 subsystem can
gain significant performance improvements for the database.

In this chapter, we will see the different types of files used by the Oracle database and
the available options to tune each of them. Due to their specific use, we can see that
there is a different solution to be implemented to optimize the I/0.

At the end of this chapter, you will also see how to tune checkpoints and redo logs to
optimize according to their related disk activities.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

Tuning at the disk level and strategies to

distribute Oracle files

There are many Oracle background and foreground processes involved in a database
instance; each of them specializes in a certain operation. In this recipe we will see what
operations are executed by each process and what type of interaction takes place between
files. On this basis, we will establish a strategy to distribute the Oracle files on different disks
to help improve performance.

In Chapter 9, Tuning Memory, we have seen that the Oracle
\ database uses different O/S processes on *nix machines,
~ and different threads inside the same process on Windows
Q machines, to obtain the same functionalities. In this chapter,
when we refer to processes, we are talking about either *nix
0O/S processes or Windows threads.

Getting ready

To monitor and diagnose I/0 performance issues, we need to enable timed statistics in the
database, by setting the appropriate initialization parameter:

ALTER SYSTEM SET TIMED_STATISTICS = TRUE;

Without enabling this parameter we will not be able to see, in the statistics, the time required
to complete an I/0 operation; this value is needed to tune the I/0 subsystem.

[An appropriate Oracle Tuning Management Pack license is required.]
How to do it...

The following steps will show how to destribute Oravle files to increase performance:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

412

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Read the statistics about I/0 on data files querying VSFILESTAT dynamic
performance view:

COL FILE_NAME FOR A40

SELECT DF.FILE_NAME, FS_PHYRDS,
FS.PHYWRTS, FS_READTIM, FS_WRITETIM

FROM V$FILESTAT FS, DBA_DATA_FILES DF

WHERE FS.FILE# = DF.FILE_ID;

Read the statistics about |/0 on temporary files querying VSTEMPSTAT dynamic
performance view:

SELECT DF.FILE_NAME, FS_PHYRDS,

FS.PHYWRTS, FS_READTIM, FS_WRITETIM
FROM V$TEMPSTAT FS, DBA_DATA_FILES DF
WHERE FS.FILE# = DF.FILE_ID;

Identify the log files by querying VSLOGF ILE dynamic performance view:
COL MEMBER FOR A40

SELECT * FROM VS$LOGFILE;

CLEAR COL

Put redo log files on disk without other activities; to move log files perform the
following steps, otherwise go to step 10. Shut down the database:

SHUTDOWN IMMEDIATE

Move the log files using the O/S commands:
Imv /uOl/oradata/TESTDB/redo01. log
/u0l/oradata/TESTDB2/redoO1. log
Imv /uOl/oradata/TESTDB/redo02. log
/u0l/oradata/TESTDB2/redo02. log
Imv /uOl/oradata/TESTDB/redo03. log
/u0l/oradata/TESTDB2/redo03. log

Mount the database:
STARTUP MOUNT

413

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

8.

10.

11.

12.

13.

14.

15.

16.

414

Alter the location of the log files:

ALTER DATABASE RENAME FILE "/uOl/oradata/TESTDB/redoOl.log"
TO "/uOl/oradata/TESTDB2/redo01.l1og";

ALTER DATABASE RENAME FILE "/uOl/oradata/TESTDB/redo02.log"
TO "/uOl/oradata/TESTDB2/redo02.1og";

ALTER DATABASE RENAME FILE "/uOl/oradata/TESTDB/redo03.log"
TO "/uOl/oradata/TESTDB2/redo03.1og";

Open the database:
ALTER DATABASE OPEN;

Separate redo log files and archived redo logs, placing them on separate disks. To
change the destination of archived redo logs, execute the following steps; otherwise,
go to step 14. Shut down the database:

SHUTDOWN IMMEDIATE

Mount the database:
STARTUP MOUNT

Alter the parameter for archived redo log locations:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1 =
"LOCATION=/uOl1/oradata/diskl/archive”;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 =
"LOCATION=/uOl1l/oradata/disk2/archive”;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_3 =
"LOCATION=/uOl1/oradata/disk3/archive”;

Open the database:
ALTER DATABASE OPEN;

Move heavily-accessed files to a separate disk. If you want to move the EXAMPLE
tablespace to another disk, perform steps similar to step 5 through step 9. Take the
tablespace offline:

ALTER TABLESPACE EXAMPLE OFFLINE;

Move the data files using the O/S commands:
Imv /uOl/oradata/TESTDB/exampleOl.dbf
/u0l/oradata/TESTDB2/exampleOl.dbf

Alter the location of the data files:
ALTER DATABASE RENAME FILE "/uOl/oradata/TESTDB/exampleOl.dbf*
TO "/uOl/oradata/TESTDB2/exampleOl.dbf";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

17. Take the tablespace online:
ALTER TABLESPACE EXAMPLE ONLINE;

18. Remember to keep on separate disks data that is not related to the database.

The last step may seem obvious, but, in many installations, the same disks are shared
with other applications, such as web or application servers. The disks used by the database
should not be shared among other applications to ensure optimal performance.

In step 2, we query the I/0 statistics on data files, obtaining the result shown in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂlﬁj

For each file, we can see the number of physical reads and writes performed and the
time spent (in milliseconds) for these operations. By observing this, we can identify
heavily-accessed data files.

In step 3, we execute a query similar to the one previously mentioned (regarding
temporary files), obtaining the results shown in the following screenshot:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |£Iﬁ]

415

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

For good performance we need to distribute the online redo log files on different disks, on
which little or no other 1/0 is performed. To do so, in step 4, we retrieve their current position,
as shown in the following screenshot:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY |£Iﬁj

In step 5 through step 9, we moved the online redo log files to another disk, mounted in /
uOl/oradata/TESTDB2. We need to stop the database by executing a SHUTDOWN command
and then use the mv command to physically move the redo log files identified in step 4.

In step 7, we mounted the database and, before opening it, informed the system of the new
redo log file positions, by executing the ALTER statements in step 8.

In the following screenshot, we can see the result of all these operations:

ec2-46-51-176-114.eu-west-1.compute. amazonaws.com - PuTTY |ﬂ|i']

416

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

When we execute the database in ARCHIVELOG mode (the norm for a production
environment), we need to separate the disks in which online redo logs and archived redo
logs are stored. If we want to change the location of our archived redo logs, we can follow
step 10 through step 13.

Also, in this situation, we need to shut down the database and open and mount it, as in step
10 and step 11. In step 12, we set three different locations for our archived redo logs, storing
them on three different disks. In step 13 we open the database and start using the new
destinations for archived redo log.

Please note that when we change the archived redo log file
locations, we need to change backup procedures accordingly,

to reflect the changes made to the locations. We could

k obtain a RMAN-06207 error, and to fix it we can execute the
CROSSCHECK COPY command in the RMAN prompt.

You can see the output of the preceding operations in the following screenshot:

X
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ‘]

In step 14 through step 17, we have seen how to move data files to different disks. When we
heavily access data files and we know which file is executing the query against the statistics
(shown in step 2 and step 3), we can gain in performance by separating the heavily-accessed
data files on different disks.

417

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

In production environments, we usually check the disk controller-level
M information to see if the same disk controller is handling both the
Q file systems. We distribute the data files based on disk controller
allocation—distributing them on different mount points managed by
the same disk controller brings no performance improvement.

The operations to be performed are similar to those executed when moving the online redo
log files, but, this time, we don't need to shut down the database. We can take the tablespace
offline, and move the desired data files to the new locations using O/S commands—we used
mv in the example, inform the database about the new data file locations, as in step 17, and
then bring the tablespace back online.

By executing the all the steps until now, you can see the following output:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =RACE X

4 [m

In step 19, there is a final tip about distributing Oracle files on machines where the Oracle
database shares resources with other applications. We need to keep separate disks for the
database to avoid possible issues and slowing down of simultaneous access to the disk by
other applications.

There's more...

When we discuss different disks, we obviously refer to different physical disks, possibly using
different controllers. It's important to know which process uses which type of database file.

Data files are written mostly by DBWn processes; the CKPT process reads and writes only data
file headers. Server processes read data from data files.

Redo log files are sequentially written by the LGWR process and read by ARCn processes, when
the database is in ARCHIVELOG mode. Archived redo logs are only written by ARCn processes,
under the same conditions.

The CKPT, LGWR, and ARCn processes can only read and write control files.

418

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

LGWR writes online redo logs sequentially, using a RAID 5 on the
~ disks, where online redo logs are stored. This can lead to poor

Q performance due to the slower write times that characterize this
type of disk array—using RAID O+1 is preferable.

See also

» The Choosing different RAID levels for different Oracle files recipe in this chapter

Striping objects across multiple disks

In the previous recipe, we have seen how to distribute Oracle files on different disks to
obtain better performance. In this recipe, we will see how to stripe objects using different
tablespaces or data files, to improve performance.

How to do it...

The following steps will demonstrate how to stripe objects across multiple disks:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Create a new tablespace, EXAMPLE2, on a different disk:
CREATE TABLESPACE EXAMPLE2
DATAFILE "/uOl/oradata/TESTDB2/example2.dbf" SIZE 100M;

3. Move the CUSTOMERS table of the SH schema to the newly-created tablespace:
ALTER TABLE SH.CUSTOMERS MOVE TABLESPACE EXAMPLE2 NOLOGGING;

4. |dentify the indexes that need to be rebuilt:
SELECT INDEX_NAME, STATUS FROM ALL_INDEXES
WHERE TABLE_OWNER = "SH®" AND TABLE_NAME = “CUSTOMERS";

5. Rebuild the indexes:
ALTER INDEX SH.CUSTOMERS_PK REBUILD;
ALTER INDEX SH.CUSTOMERS_GENDER_BIX REBUILD;
ALTER INDEX SH.CUSTOMERS_MARITAL_BIX REBUILD;
ALTER INDEX SH.CUSTOMERS_YOB_BIX REBUILD;

419

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

6. Add a data file to the EXAMPLE tablespace on a different disk:
ALTER TABLESPACE EXAMPLE ADD
DATAFILE "/uOl/oradata/TESTDB2/example_DISK2.dbf" SIZE 100M;

7. Allocate an extent for the COUNTRIES table of the SH schema on the newly-created
data file:

ALTER TABLE SH.COUNTRIES ALLOCATE EXTENT
(DATAFILE */uOl/oradata/TESTDB2/example_DISK2.dbf" SIZE 1M);

We want to spread our objects to different disks, to obtain better performance. To do so,

we can use multiple tablespaces, allocating them to different disks and distributing objects
among different tablespaces, or we can add multiple data files—spread among different
disks—to the same tablespace and allocate extents for our objects to these data files. In this
recipe, we have followed both the methods.

‘\‘Q We can use the DBA_HIST_SEG_STAT view to identify

the most-accessed segments from instance startup.

In step 2, we created a new tablespace, named EXAMPLEZ2, made by a single data file on
a disk mounted under the /ZuO01/oradata/TESTDB2/ path.

In step 3, we moved the CUSTOMERS table of the SH schema from tablespace EXAMPLE to
tablespace EXAMPLE2. We have used the NOLOGG ING option to avoid logging all the data
movements—only the change in a data dictionary is logged.

We can see the results of these operations in the following screenshot:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY | =NRCE X

420

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

As always, be careful when executing NOLOGG ING]

[operations. To avoid possible data loss, plan this

operation with the database backup administrators.

In step 4, we have queried the status of indexes on the moved table. As seen in the following
screenshot, all the indexes on the CUSTOMERS table are showing the UNUSABLE status, so
they need to be rebuilt:

In step 5, we rebuild the indexes, obtaining the following output:

-
ec2-46-51-176-114.eu-west-Lcompute.amazonaws.com - |ﬂli_1

4 [m

From step 6 onwards, we follow a different strategy—adding a data file to an existing
tablespace and storing it on a different disk. In step 6, we add the new data file to the
EXAMPLE tablespace.

In step 7, we allocate an extent for the COUNTRIES table of the SH schema, on the newly
created data file. From now onwards, the data in the COUNTRIES table will be stored on a
different disk.

421

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

The results of these operations can be seen in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | = | B |

| . I
There's more...

In the latter steps of the recipe, we have manually striped the objects. But if we have many
objects in our database, manual striping can be a nightmare. In such situations, consider
moving objects to different tablespaces or using partitions.

We can also distribute tables and related indexes on different disks, to obtain performance
gain in both read and write operations. If we have tables and indexes on the same disk, we
need to read and write in two different places on the same disk. By dividing the work between
two disks, we can perform an index range scan faster than when the index and the table are
on the same disk.

See also

» The Using partitioning recipe in Chapter 3, Optimizing Storage Structures

Choosing different RAID levels for different

Oracle files

In this recipe, we will see the characteristics of different RAID levels available in the market
and learn what to choose for each different Oracle file type.

RAID is the acronym for Redundant Arrays of Inexpensive Disks, a common configuration
in a storage subsystem. It is used to obtain low-cost, fault-tolerant configurations for high
performance in the non-mainframe market, by using multiple "inexpensive" disks in different
configurations.

422

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Getting ready

Despite the "I" in RAID, we need a minimum of two or three drives, depending on the RAID
level we want to implement.

Every RAID level has different requirements and offers different performance and data
integrity levels. In this recipe, we will illustrate these requirements for each RAID level.

There is a common requirement, that is, the RAID controller; it can be software-based
at the operating system, firmware level, or hardware-based. The latter offers guaranteed
performance and no overhead on the CPU.

How to do it...

The following steps will demonstrate the various RAID levels; you can chose the right RAID
level by considering the following:

1. RAID 0+1 is preferable for your Oracle database installations.

2. RAID 5 has significant write penalty, so don't use it for storing write-intensive data files
(if RAID 0+1 is available), redo log files, archived redo log files, and undo segments.
You can use it for control files and for data files with a moderate write activity.

This recipe has only two steps, which are simple tips to choose the right hardware to obtain
better performance. More than a buy list it's a no-buy list:

1. Starting with step 1, in terms of performance the best RAID level for an Oracle
database is RAID 0+1, also known as RAID 10. The drawback of this option is
the cost of the solution, because it is twice the cost of storage due to mirroring.
Additionally, it uses more complex procedures and hardware to manage the striping.

2. Instep 2, we warn against RAID 5. There is a significant write penalty when using
this RAID level, so storing frequently-updated data is not a good choice. Also, redo
log files and archived redo logs don't fit well in this environment, because, on OLTP
databases, there is an intense write activity on these files, and also because undo
segments experience heavy load.

There's more...

To understand different RAID levels better, we will cover the differences between the most
common RAID configurations, highlighting performance considerations related to storing
Oracle database files.

423

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

RAID level O

This is the simplest RAID level, and it's not recommended to use it in any production
environment by Oracle itself.

In this RAID level only non-redundant striping is implemented, that is, the data is striped across
multiple disks to obtain better read/write performance. However, this is a non-redundant
solution, so any disk failure causes the outage of the entire array and hence data loss. It's very
cheap because it doesn't need more storage capacity than the actual space required.

RAID level 1

RAID level 1 implements a disk mirroring strategy. For each disk drive there is at least one
identical disk drive on which an exact copy of the data is maintained. There can be n-1
outages, where n is the number of drives on which the data is simultaneously stored, without
any data loss. If hot-swappable drives are used there could be no application outage even
after n-1 outages in different disks.

The main defect of this implementation is the cost per megabyte, because for each megabyte
of data stored we need n megabytes of storage to ensure the design redundancy.

Performance, as compared to the performance of a single drive, is slightly better in read times if
the controller can choose the disk from which to read the data considering the least I/0 cost.

We can use RAID level 1 to store control files, system tablespace, flashback recovery area,
undo segments, and data files. It's not a good idea to store redo logs and temporary segments
on RAID level 1 configurations, because redo logs should be multiplexed on different disks,
and there is no need to protect temporary segments from failures.

RAID level 5
RAID level 5 introduces the concepts of Block-interleave and distributed parity.

In a RAID 3 array, there is one disk dedicated to the storage of parity data for the other disks
in the array, and data is striped using a strip of 1 bit. RAID 5 introduces two variations of

the schema—stripes size is configurable and parity data is not stored on a single drive but is
distributed among all disks of the array.

The reason to choose RAID level 5 is to obtain a redundant storage solution, cheaper than
RAID level 1. Due to storage of parity data, however, write operation performance suffers. This
is because, when writing some data, we need to read the old data and parity value, and write
the new data and parity value, resulting in four I/0 operations.

Read performance is excellent when the data fits in a single striping segment, allowing a
heavy concurrency on data. Except undo segments and intensive-write data files, all other
Oracle files can be stored in a RAID level 5 array—when you cannot use RAID level 0+1,
especially with read-only data files.

424

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

RAID level 0+1

RAID level 0+1 is also known as RAID level 10; it's the result of RAID level O and RAID level 1
arrays being used together. So, we have a striping and mirroring solution that allows excellent
performance in read operations and very good performance in write operations, due to the
additional write operation required by mirroring. RAID level 0+1 ensures optimal protection
against failures, thanks to mirroring,.

The only defect of RAID level O+1 subsystems is the cost of this solution, but it can be used to
store every type of Oracle database file with optimal performance.

See also

» The Tuning memory to avoid Operating System paging recipe in Chapter 9,
Tuning Memory

Using asynchronous 1/0O

In this recipe we will see how to use asynchronous I/0 to obtain better performance from our
1/0 subsystem.

How to do it...

The following steps will describe the use of asynchronous 1/0:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Verify whether asynchronous I/0 is enabled:
SHOW PARAMETER FILESYSTEMIO_OPTIONS

3. Enable asynchronous I/0, if it is not enabled:
ALTER SYSTEM SET FILESYSTEMIO_OPTIONS=SETALL SCOPE=SPFILE;

4. Shut down the database instance:
SHUTDOWN IMMEDIATE

5. Start and open the database:
STARTUP OPEN

6. Verify the change in system configuration:
SHOW PARAMETER FILESYSTEMIO_OPTIONS

425

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

The Oracle database may use synchronous or asynchronous |/0 calls. With synchronous I/0,
when an 1/0 request is submitted to the Operating System, the write process will block until
the operation is completed.

Using asynchronous I/0, while the I/0 request is still executing, the calling process continues
its work without blocking. This is the reason why asynchronous 1/0 can lead to performance
gain in processing writes to Oracle database files.

M There is an important downside to keep in mind while using asynchronous
Q writes—the blocks may not get written immediately to the file system, and
this behavior may lead to missing data, or corruption, in case of a failure.

In step 2, we verify if the asynchronous |/0 option is enabled in our database instance. In
step 3, we set the value to SETALL, enabling both asynchronous and direct I/0 on system
files. Using direct I/0 allows the process to bypass the Operating System cache. The Oracle
database already uses the database buffer cache, so we can access database files directly,
without consuming resources required by the OS cache.

In steps 4 and 5, we restart the database to set the new parameters, and, in step 6, we verify
the new value for the FILESYSTEMIO_OPT IONS parameter.

In the following screenshot, we can see the output for the previous operations:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NACN X

426

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

There's more...

Other options for the FILESYSTEMIO_OPT IONS parameter include:

» NONE: this disables both asynchronous I/0 and direct I/0
» ASYNCH: this enables asynchronous operations
» DIRECTIO: this enables only the direct I/0 option, thus bypassing the O/S cache

On Windows systems the OS cache is never used, so every request will bypass the Operating
System cache and go directly to the disk.

On Windows systems, starting from Oracle 10g, asynchronous |/0 is supported for all files on
Windows Server 2003 x64 bit upward.

On *nix systems we need to pay attention to certain operations that don't use database buffer
cache. Using direct I/0 option may lead to a performance dip. Those operations include 1/0 on
the temporary tablespace, using NOCACHE LOBs, and parallel query slaves reading data.

Asynchronous I/0 is important for DBWn and LGWR processes, because it allows DBWn
to use the available hardware bandwidth completely. The LGWR writes to multiple log
file members and can overlap multiple writes due to rapidly subsequent committed
transactions occurring simultaneously.

Using asynchronous I/0 on redo log files and temp files eliminates some contention related
to the file system read/write locks, resulting in increased performance. Using asynchronous
1/0 on data files instead doesn't affect performance but scalability, that is, the database

can handle more requests at a time. The DBWn processes, responsible for writing to the data
files, work asynchronously, so the performance of user processes is not affected by the use
of asynchronous I/0. However, using asynchronous |/0 allows DBWn processes to use all the
available bandwidth, and use it in a more efficient way, so higher workloads can be managed
by the system when asynchronous I/0 is enabled.

On platforms that don't support asynchronous 1I/0, we can enable multiple database writer
slave processes. A single DBWR process will use multiple slave processes to write data on disks,
simulating something similar to asynchronous |/0. Please note that multiple DBWn processes
and multiple DBWR slaves cannot be run together, and the last option takes precedence.

To enable multiple database writer slave processes, you need to
set the initialization parameter DBWR_10_SLAVES to a non-zero
’ value, setting the number of slave processes to use.

See also

» Refer to the Tuning the buffer cache recipe in Chapter 9, Tuning Memory

427

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

Tuning checkpoints

A checkpoint is used to ensure consistency in the database; during this operation, all data
files are synchronized with the data blocks in memory.

The process responsible for signaling a checkpoint is the CKPT process, which signals the
DBWn processes to write the dirty (modified) buffers from database buffer cache in memory
to the data files.

During this operation data, file headers and control files are updated to store the last System
Change Number (SCN), to ensure data block consistency.

In this recipe, we will see how to tune checkpoints in an Oracle database, to optimize all these
write operations involved in checkpoints, balancing the trade-off between the redo log size
and recovery time, in case of instance failure.

How to do it...

The following steps will demonstrate checkpoints in an Oracle database:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Verify the value for the LOG_CHECKPOINTS_TO_ALERT parameter:
SHOW PARAMETER LOG_CHECKPOINTS_TO_ALERT

3. Alter the LOG_CHECKPOINTS_TO_ALERT parameter to trace checkpoints to
the alert log:

ALTER SYSTEM SET LOG_CHECKPOINTS_TO_ALERT=TRUE SCOPE=SPFILE;

4. Switch the log file to force a checkpoint to occur:
ALTER SYSTEM SWITCH LOGFILE;

5. Verify the checkpoint event has been traced in the alert log:
Itail /u0l/app/diag/rdbms/testdb/TESTDB/trace/alert_TESTDB. log

6. Query the VSSYSSTAT dynamic performance view to monitor checkpoint
process activity:

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME LIKE "background check%";

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME LIKE “DBWR check%";

428

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

7. Verify other parameters involved in the checkpoint:
SHOW PARAMETER LOG_CHECKPOINT

8. List parameters related to Fast-Start checkpointing:
SHOW PARAMETER FAST_START

9. Querythe VSINSTANCE_RECOVERY dynamic performance view to obtain
estimations on recovery time:

SELECT
RECOVERY_ESTIMATED_10S,
ESTIMATED_MTTR,
TARGET_MTTR,
LOG_FILE_SIZE_REDO_BLKS,
LOG_CHKPT_INTERVAL_REDO_BLKS,
LOG_CHKPT_TIMEOUT_REDO_BLKS
FROM V$INSTANCE_RECOVERY;

In step 2, we verify the value for the LOG_CHECKPOINTS_TO_ALERT parameter, and in
step 3 we set it to TRUE, to record checkpoint information to the alert log. In step 4, we
force a checkpoint to occur by switching log files.

In the following screenshot, you can see the output of the previous operations:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | = | B |

In step 5, we verify the content of the alert log to be sure that the checkpoint information
is being stored in it.

429

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

In the following screenshot, you can see that the checkpoint information was written to the
alert log:

-
ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NEC X

In step 6, we query VESYSSTAT to monitor some statistics related to the redo log files and
checkpoint. The result of the query is shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute. amazonaws.com - PuTTY |ﬂlﬁj

If the number of started checkpoints is greater than the value of completed checkpoints

by more than one, in the first query, you need to enlarge redo log file size. In this situation,
checkpoints are not completed between log file switches, because the log file switches occur
too often, as log files are very small. Increasing redo log file size will limit the number of log
switches required, allowing checkpoints to complete between them.

u A redo log switch should occur every 15 to 30 minutes (as

~ a rule of thumb); switching too often leads to performance

Q issues, whilst switching not often enough often may cause
a recovery operation to take longer.

430

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The second query shows the number of data blocks written by DBWR and the number of
checkpoints. This is useful for monitoring the number of blocks written by DBWR during
checkpoints.

In step 7, we view the actual value of parameters, that influence checkpoints, obtaining
the following output:

We have seen the use of the LOG_CHECKPOINTS_TO_ALERT parameter in step 2 and step 3.

You can set LOG_CHECKPOINT_INTERVAL to the maximum number of redo log
blocks—equivalent to the size of O/S file blocks. It will be left in the redo log before

a checkpoint occurs. This value cannot exceed 90 percent of the number of redo blocks
that can be stored in the smallest redo log file, to ensure that there won't be log switch
between checkpoints.

The LOG_CHECKPOINT_TIMEOUT is used to set the maximum number of seconds for
which a dirty block can stay in the memory before it's written to disk. The default value
is 1800 seconds. In step 8, we show other initialization parameters related to Fast-Start
checkpointing. The output of this operation is shown in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

rameter

Fast-Start checkpointing is configured to assure that the instance recovery time is acceptable;
this target can be achieved by setting one of the parameters, as shown in the previous image.

We can set the FAST_START_MTTR_TARGET parameter to the expected Mean Time To
Recover, that is, the number of seconds required to recover the instance after a crash.

When you set FAST_START_MTTR_TARGET, you cannot use the parameters
LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT, shown earlier.

431

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

In step 9, we query the VEINSTANCE_RECOVERY view to obtain an estimate of recovery time,
collecting data required to choose the correct values for the parameters shown earlier. In the
following screenshot, you can observe the output of this query:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NRSN X

4 [m

M You can find the description for each field in
Q V$INSTANCE_RECOVERY view in Appendix A,
Dynamic Performance Views.

There's more...

In this recipe, we have seen how different parameters can influence the checkpoint behavior.

The checkpoint queue is a list of dirty buffers (that is, blocks in the buffer cache modified and
not already written to the disk) waiting to be written to the disk by the DBWR processes.

There is a trade-off between a short checkpoint queue that ensures faster recovery times in
case of instance crash, and a long checkpoint queue which avoids frequent DBWR writes that
can affect performance.

As always, we need to evaluate the ideal configuration to satisfy our Service Level
Agreements. If we assure the maximum recovery time, we will shorten the checkpoint queue,
resulting in some more DBWR writes.

432

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The last query of this recipe helps us to obtain RECOVERY_ESTIMATED_I0S. This is an
estimate of the number of data blocks to be processed during recovery. ESTIMATED_MTTR
indicates the estimated recovery time, based on the current system load. TARGET_MTTR

is based on the value of the FAST_START_MTTR_TARGET parameter and on the system
performance and limitations. LOG_FILE_SIZE_REDO_BLKS is the number of redo blocks
required to make sure that a log switch doesn't occur before the checkpoint completes.

The value for LOG_CHKPT_INTERVAL_REDO_BLKS and LOG_CHKPT_TIMEOUT_REDO_BLKS
indicates the number of redo blocks that will be processed during recovery to satisfy the
LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT parameters, respectively.

See also

» The Tuning redo logs recipe that follows

Tuning redo logs

In this recipe, we will see how to monitor redo logs.

How to do it...

The following steps will demonstrate monitoring of redo logs:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Verify possible problems by inspecting the VESYSTEM_EVENT dynamic
performance view:

SELECT EVENT, TOTAL_WAITS, TIME_WAITED FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "log File%";

3. Query the data dictionary about the redo log files:
COL MEMBER FOR A40
SELECT * FROM VS$LOGFILE;
CLEAR COL

4. Query the data dictionary about redo log details:
SELECT * FROM V$LOG;

5. Query the historical log switch data:
SELECT * FROM V$LOG_HISTORY ORDER BY RECID;

433

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

In step 2, we query the V8SYSTEM_EVENT dynamic performance view to inspect
problems related to redo logs. In the following screenshot, we can see the results
obtained on a test database:

.
ec2-46-51-176-114.eu-west- L.compute.amazenaws.com - PuTTY |ﬂlﬁj

TIME WAITED FRO

The important events to be observed are log file sync and log file parallel write. Often, a
high value for the latter statistic is not evidence of a problem. It indicates a wait in LGWR
activity, but doesn't specify whether waits affect user processes or not.

The log file sync statistic is more reliable. The symptoms of 1/0 issues, related to slow
disks on which redo log files are written, are highlighted by a high value for log file sync
statistic. Often a high value for the log file parallel write is confirmed by a high value for
this parameter. In these situations, you need to solve the issue—the high waits—related
to redo log file writes.

In step 3, we query the VSLOGFILE to know the redo log files in our database and some
information on their status. We can see the results obtained in the following screenshot:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂlﬁj

We can see that there are three redo log groups in the database, with only one member
each. In a production database, you need at least two members for each group, and,
according to the transaction load on the database, more redo log groups could be required.

434

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In step 4, we query the VSLOG dynamic performance view, in which we can find more details
regarding redo logs, as in the following screenshot:

ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂ|i']

In the excerpt shown in the previous screenshot, you can see the redo log group (GROUP#),
the sequence number (the first SCN, System Change Number) in each group (SEQUENCE#),
the size of each group's members (BYTES), the status (STATUS), and whether the log is
archived or not (ARC).

In step 5, finally, we query the V$LOG_HISTORY dynamic performance view, obtaining a row
for each log switch. This view is useful to verify the log switch frequency, and indicates the first
and last change numbers in the log file.

This information is stored in the control file; the MAXLOGHISTORY clause, specified when the
control file was created, indicates the length of time for which the information is retained in
the control file itself.

In the following screenshot, you can see an excerpt of the results obtained by the query
executed in step 5:

-
ec2-46-51-176-114.eu-west-L.compute.amazonaws.com - PuTTY |ﬂlﬁj

435

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning I/0

There's more...

We can also execute a statspack report and search for the File 10 Stats section or for
log file parallel write wait events in the Event section.

See also

» The Tuning checkpoints recipe in this chapter

» The Analyzing data using Statspack report recipe in Chapter 1, Starting
with Performance Tuning

436

www.it-ebooks.info

http://www.it-ebooks.info/

11

Tuning Contention

In this chapter, we will cover:

» Detecting and preventing lock contention

» Investigating transactions and concurrency

» Tuning latches

» Tuning resources to minimize latch contention

» Minimizing latches using bind variables

Introduction

In this chapter we will focus on preventing, detecting, and tuning contention-related issues.

In a database, as in any information system, there is a limited amount of resources to be
shared among many users. When more than one user asks for a resource—which can be a file,
a row in a table, a block in the buffer cache—there is a need for a synchronization mechanism
to avoid the contemporary use of the resource itself by more than one user at a time.

In this chapter we will investigate two different synchronization mechanisms used in Oracle
databases: locks and latches.

Locks are used to regulate access to a shared resource, such as a row or a table, while latches
protect shared data structures and shared memory allocations in the System Global Area.

The main difference between locks and latches is that latches are held for a short time, while
the purpose of locks is to protect resources for a relatively long time. Another difference is
that locks involve a queuing mechanism and prioritization, whereas latches don't.

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

Detecting and preventing lock contention

If databases were used by a single user there would be no need for locks, because other
users are not accessing the same data at the same time. In this recipe we will see how two
concurrent sessions experience wait time due to locks, and how to diagnose them and what
to do to resolve and avoid these situations.

Getting ready

In this recipe we use three concurrent SQL*Plus sessions to simulate two concurrent users in
the first two sessions, while querying dynamic performance views in a third session. We will
use the TESTDB database in the rest of this book.

How to do it...

The following steps will show how to detect and prevent lock contention:

1. Connect SESSION1 as user SH:
-- SESSION 1
CONNECT sh@TESTDB/sh

2. Update a row in SESS10N1, not completing the transaction with a COMMIT or
ROLLBACK statement:

UPDATE CUSTOMERS SET
CUST_FIRST_NAME = "TEST1-
WHERE CUST_ID = 26;

3. Connect SESSION2 as user SH:
-- SESSION 2
CONNECT sh@TESTDB/sh

4. Update the same row SESSION2 as in SESSION1:

UPDATE CUSTOMERS SET
CUST_FIRST_NAME = "TEST2"
WHERE CUST_ID = 26;

5. Connect SESSION3 as SYSDBA:
-- SESSION 3
CONNECT / AS SYSDBA

438

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

10.

11.

12.

Inspect the active locks:

SELECT SID, 1D1, ID2, BLOCK, TYPE, LMODE, REQUEST, CTIME
FROM V$LOCK

MINUS

SELECT SID, 1D1, ID2, BLOCK, TYPE, LMODE, REQUEST, CTIME
FROM V$ENQUEUE_LOCK;

Verify the object on which the lock is held:
SELECT OWNER, OBJECT_NAME, OBJECT_TYPE
FROM ALL_OBJECTS

WHERE OBJECT_ID = 74136;

Query the VSLOCKED_OBJECT dynamic performance view:
SELECT * FROM V$LOCKED_OBJECT;

Query DBA_WAITERS to see which sessions are waiting due to a lock held by another
session:

SELECT * FROM DBA_WAITERS;

Query DBA_BLOCKERS to see which sessions are holding a lock that is blocking
another session:

SELECT * FROM DBA_BLOCKERS;

Execute the utllockt.sql script to view a tree representation of the current state
of the locks:

@$ORACLE_HOME/rdbms/admin/utllockt.sql

View the object, file, block, and row locked:

SELECT
SUBSTR(F.NAME, 1, 40) AS FILE_NAME,
O.OWNER, O.OBJECT_NAME, O.OBJECT_TYPE,
S_ROW_WAIT_BLOCK#, S_.ROW_WAIT_ROW#

FROM V$SESSION S, V$DATAFILE F, ALL_OBJECTS O

WHERE S.SID = 17

AND S_.ROW_WAIT_FILE# = F_FILE#

AND S.ROW_WAIT_OBJ# (+)= 0.OBJECT_ID;

439

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

13. Acquire the SERIAL# and SID of the locked session (SESS10N2):
SELECT SERIAL# FROM V$SESSION WHERE SID = 17;

14. Kill the locked session:
ALTER SYSTEM KILL SESSION "17, 15°%;

15. Complete the transaction in SESSION1 to avoid other locking:
-- SESSION 1
ROLLBACK;

We use two sessions of SQL*Plus connected as user SH to simulate the concurrent use of
the same table/row by different users. In step 1 we connect the first session.

In step 2 the user updates one record in the CUSTOMERS table, not committing the
transaction that is left open. In this situation a lock is held by the user in session 1 on the
updated row until the transaction ends.

In step 3 we connect the second session as user SH and in step 4 we try to update the same
record in step 2. By doing so, our session gets locked, waiting for the transaction in session 1
to be committed or rolled-back. We can see this situation in the following screenshot, where
the terminal on the left is for session 1 and the terminal on the right is for session 2:

P ec2-46-51-176-114.cu-west.. | = | B | & || 8 o2 46.51-176-114.e0-west.. | = B | T

4 [m

In the previous screenshot we can see that session 2 on the right is waiting.

In step 5 we connect another session to the database as SYSDBA, and in step 6 we execute
a query to see the locks in the database, obtaining the following output:

440

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

-
ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂ|&]

In the previous screenshot we can see the SID, identifying the session, and which session is
locking (BLOCK=1) other sessions. In our example, session 31 (our SESSION 1) is blocking
session 17 (our SESSION 2).

The TYPE field indicates that two different types of locks are held by session 31: a TM, or Table
Level Lock. This prevents DDL operations on the object with ID 74136, and a TX, or Row Level
Lock, which ensures that at the same time no two transactions modify the same row.

In the previous screenshot we can also see the result for the query in step 7, which tells us
that the object on which the TM lock is held is the SH.CUSTOMERS table.

In step 8 we query the VSLOCKED _OBJECT dynamic performance view, obtaining the
following results:

ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY |£Iﬁj

Using this view we can see the undo segment number (XIDUSN), the slot number (XIDSLOT),
and the sequence number (XIDSQN) by the session specified. The view also shows the object
ID, the username (SH in our example), and other information about the locks acquired in

the system.

441

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

* The XIDUSN, XIDSLOT, and XIDSQN values can be used to
identify a transaction, for example when using LogMiner
to query online and archived redo log files.

In step 9 we query the DBA_WAITERS dynamic performance view, which is useful to correlate
the blocked transactions to the blocking one, as we can see in the following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

In the above screenshot observe that session 17 is blocked by session 31, the type of lock,
and IDs of the objects involved.

The DBA_BLOCKERS dynamic performance view queried in step 10 is very simple, because
there is only one column returned with the session IDs of the sessions holding locks, in our
example session 31, as shown in the following screenshot:

.
£c2-46-51-176-114.2u-west-1.compu.. =] 1 e o

In step 11 we execute the script utllockt.sql, located in the /rdbms/admin subfolder
of our ORACLE_HOME; this returns a tree representation of the data we have queried in the
dynamic performance views above, merged together. In the next screenshot you can see the
results obtained by the script in this situation:

-
ec2-46-51-176-114.eu-west- L.compute.amazonaws.com - PuTTY ‘ﬂ‘i‘]

442

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

We can acquire data on locking from the V$SESSI10N dynamic performance view also, as in
step 12. Here we join the VSDATAFILE and ALL_OBJECTS views to see the data files and
objects responsible for the lock. In the following screenshot we can see the results obtained
by executing this query:

ec2-46-31-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂ|i"]

4 [m

When we are in situations like the one analyzed in this recipe we can solve the issue by killing
the blocked or the blocking session. To do so we need to know the SID and the Serial# of
the session to kill, so in step 13 we query for this data from V$SESSI0ON and in step 14 we
Kill the blocked session (SESSION 2). We can see the results of these operations in the next
screenshot, where on the left side you will see the session in which we are connected as
SYSDBA and on the right side you can see the output of the killed session:

ec2—46-51—1?6—ll4.eu-'.'.rest—1.compute.amazonaws.co... = & B9 ec2—46—51-1?6—].14.eu-'.'rest... = B £

In the above screenshot you can see that, in the killed session, an error message informs
us about what happened.

Another way to solve this issue is to terminate the blocking transactions by executing a
COMMIT or a ROLLBACK. In step 15 we execute the ROLLBACK of the update, terminating
the transaction and leaving the data in the table unchanged.

443

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

There's more...

In this recipe we have seen how to detect a lock in the system and retrieve more information
about the locks.

There are many possible causes of contention. We have seen what happens when we have
uncommitted changes like in our example. The same behavior can happen when there are
long-running transactions, such as long batch jobs, or unnecessary high level locking.

The Oracle database automatically ensures the appropriate level of locking for DML and DDL
operations, ensuring maximum availability and scalability. However, there are many products
on the market that were not specifically designed for the Oracle database. They can require
unnecessary high locking level; sometimes this behavior is also found in frameworks or APIs
used in a multilayer application, which the developer is unaware of, causing locking problems.

As a rule of thumb, in developing applications for Oracle databases, always write code that
acquires locks in the same order and don't use excessive locking for operations such as
UPDATE and SELECT FOR UPDATE. Long-running batch jobs in OLTP environments should
be scheduled in off-peak hours to avoid issues.

See also

See Investigating transactions and concurrency in this chapter.

Investigating transactions and concurrency

In this recipe we will see more details on locking and, specifically, on deadlocks.

Getting ready

In this recipe we will use two SQL*Plus sessions, to simulate two users concurrently
accessing the database.

How to do it...

This recipe deals wits transactions and concurrency. Follow these steps:

1. Connect SESSION 1 to the database as SH user:
-- SESSION 1
CONNECT sh@TESTDB/sh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Update a row on the CUSTOMERS table in SESSION 1:
UPDATE CUSTOMERS SET

CUST_FIRST_NAME = "TEST1-1°

WHERE CUST_ID = 26;

Connect SESSION 2 to the database as SH user:
-- SESSION 2
CONNECT sh@TESTDB/sh

Update a row on the CUSTOMERS table in SESSION 2, different from the one
updated in step 2 by SESSION 1:

UPDATE CUSTOMERS SET
CUST_FIRST_NAME = "TEST2-1°
WHERE CUST_ID = 30;

Try to update, in SESSION 1, the same row updated in step 4 by SESSION 2:
-- SESSION 1
UPDATE CUSTOMERS SET

CUST_FIRST_NAME = "TEST1-2*

WHERE CUST_ID = 30;

Try to update, in SESSION 2, the same row updated in step 2 by SESSION 1:
-- SESSION 2
UPDATE CUSTOMERS SET
CUST_FIRST_NAME = "TEST2-2*
WHERE CUST_ID = 26;
Rollback transaction in SESSION 1:
-- SESSION 1
ROLLBACK;

Rollback transaction in SESSION 2:
-- SESSION 2
ROLLBACK;

Connect to the database as SYSDBA:
-- SESSION 3
CONNECT / AS SYSDBA

445

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

10. Show the parameter USER_DUMP_DEST:
SHOW PARAMETER USER_DUMP_DEST

11. Use OS commands to see the trace file and the alert log in which the deadlock
is recorded:
HOST
cd /u0l/app/diag/rdbms/testdb/TESTDB/trace/
Is -1tr TESTDB_ora*.trc
more < TESTDB_ora_5997.trc
tail alert_TESTDB. log
exit

In steps 2 and 4 we update two different rows in the CUSTOMERS table from two different
sessions. As we can see in the following screenshots, the transactions are not locked due
to this operation:

EB ec2-46-51-176-114 eu-west-Leo.. = & | EP ec2-46-51-176-114.eu-west-Leo., = | B | &

In step 5 we try to update, in SESSION 1, the same row updated above in SESSION 2. The
transaction in SESSION 2 is still active, so the SESSION 1 will wait until the SESSION 2
transaction ends, as shown in the following screenshot:

€C2-46-51-176-114.cu-west-Lco... o] e

446

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

In step 6 we try to update, in SESSION 2, the first row that was updated earlier in SESSION 1.
The transaction in SESSION 1 is still active, so SESSION 2 should wait until the SESSION 1
transaction ends, as shown in the following screenshots:

ec2-46-51-176-114 eu-west-1co. = B | 2 €c2-46-51-176-114.cu-west-Lco... L] 0 [

4 [m

In this situation, the transaction in SESSION 1 is waiting for a resource (the row in the
CUSTOMERS table with CUST_ID = 30) locked by SESSION 2 which, in turn, is waiting for a
resource (the row in CUSTOMERS table with CUST_ID = 26) locked by SESSION 1. This is a
deadlock, and due to its cyclic nature there is no chance for the transactions involved to end
regularly because they are blocking each other.

When the Oracle database detects a deadlock it automatically rolls back the statement
causing the deadlock. You can see this in the following screenshot, where we have SESSI0ON
1 on the left and SESSION 2 on the right:

EP ec2-46-51-176-114.eu-west-Leo.. = | B % EP ec2-46-51-176-114.eu-west-Leo. = B | &

447

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

It is the user's responsibility to rollback the whole transaction involved in the deadlock, as we
doin step 7. The output is as follows:

EP ec2-46-51-176-114eu-west-1co.. = B | & EP ec2-46-51-176-114.eu-west-1co.. = B &

detected

4 [m

In step 8 we also rollback the transaction in SESSION 2, to leave the data unchanged (but this
is not mandatory; as we can see in the previous screenshot, the transaction in SESSION 2 is
not locked and no errors are signaled, so we can continue our work).

In step 9 we connect a third session to the database and in step 10 we query the parameter
USER_DUMP_DEST, which shows us the path in which trace files and the alert log are written. In
our example database the location is /u01/app/diag/rdbms/testdb/TESTDB/trace/.

In step 11 we move to that directory using OS commands and list the trace files contained,
sorted by date in reverse order. The result of this operation is shown in the next screenshot:

ec2-46-51-176-114.eu-west-1l.compute.amazonaws.com - PuTTY |ﬂ|i"]

448

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

We identify the TESTDB_ora5997 . trc as the trace file containing the trace regarding the
detected deadlock, so we use the more OS command to inspect the contents of the trace
file. The first excerpt can be seen in the following screenshot, which displays the DEADLOCK
DETECTED ORA-00060 error at the end of the page:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂ|ﬁ]

449

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

On the next page of the trace file that is reported in the following screenshot, you can see the
processes and resources that caused the deadlock, along with information on the rows that
caused the deadlock. This can help us to identify the possible causes:

ec2-46-31-176-114.eu-west- L.compute.amazenaws.com - PuTTY |ﬂ‘ﬁ

450

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The information provided by the trace file also contains the session, the process, and the SQL
statement that caused the deadlock for each process involved. In the following screenshot
you can observe the UPDATE statement executed in SESSION 2 and the UPDATE statement
executed in SESSION 1, for our example:

ec2-46-31-176-114.eu-west- Leompute.amazonaws.com - PuTTY | = | (5

These details are useful in identifying the statements that caused the issue, and you can
change the application accordingly.

When a deadlock occurs it is also logged in the database alert log. In the next screenshot
you can see the line in the alert log that identifies the trace file in which the details about
the issue are saved, in our example TESTDB_ora_6424_trc:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY |ﬂﬁ

451

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

There's more...

A deadlock is a situation where two or more transactions are waiting for data locked by each
other and none of these transactions can acquire the locks.

The database automatically detects the deadlocks and rolls back the statement causing it
in a transaction when a deadlock is detected. It is the user's responsibility to rollback the
remainder of the transaction.

Deadlocks are caused by excessive locking used by applications—which means that explicit
locking was requested, overriding the default database behavior—or by statements that
update data using different orders, as we have done in our example.

To avoid the latter cause of deadlocks, use shared code in your application to accomplish
the same task. This way you can be sure that operations will always be executed in the same
order, limiting the possibility of a deadlock.

See also

See Detecting and preventing lock contention in this chapter.

Tuning latches

In this recipe we will see what latches are, and how (and if) we can tune latches. We will discover
that we don't tune latches, but we tune resources that can cause issues related to latches.

How to do it...

The following steps will demonstrate how to tune latches:

1. Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

2. Investigate system events related to latches:
SELECT
EVENT, TIME_WAITED, TOTAL_WAITS
FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "%latch%";3

452

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

3. Query information about willing-to-wait latch requests:
COL NAME FOR A20
SELECT * FROM (
SELECT
NAME, GETS, MISSES, SLEEPS, SPIN_GETS, WAIT_TIME
FROM V$LATCH
ORDER BY GETS DESC

)
WHERE ROWNUM < 11;

4. Query information about immediate latch requests:
COL NAME FOR A40
SELECT * FROM (
SELECT
NAME, IMMEDIATE_GETS, IMMEDIATE_MISSES
FROM V$LATCH
ORDER BY IMMEDIATE_GETS DESC

)
WHERE ROWNUM < 11;

In step 2 we query the V$SYSTEM_EVENT dynamic performance view to see if latch
contention causes high waits on the system. Inspecting the value for the TIME_WAITED
column, expressed in hundredths of a second, we obtain the following results:

ec2-46-51-176-114.eu-west-1.compute.amazonaws.com - PuTTY | =NECE X

453

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

If we have experienced a high value for the latch free event—we know that the value is high
if we encounter a latch free event in the top timed events in a statspack or AWR report—we
need to investigate the causes for latch contention in our database.

We can do this by querying the VSLATCH dynamic performance view. In step 3 we
query for information about willing-to-wait latches, obtaining the results shown in the
following screenshot:

ec2-46-51-176-114.eu-west-1.compute.amazenaws.com - PuTTY |ﬂlﬁj

5, WAIT TIME

In the example results, we can see that there is a high wait time (and some misses and
sleeps) for shared pool latches, so we can identify the area of the database that needs
to be tuned.

In step 4 we query the same dynamic performance view as above, this time investigating
immediate latch requests.

454

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

We can see the results of the query in the following screenshot:

ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY | = | B |

Obviously, we can obtain the same results in a single query; here we preferred to split the
results into two queries for graphical reasons.

There's more...

Latches are lightweight synchronization mechanisms that implement serialization in an
efficient and low-level way. They don't support queuing, so when a latch request is not
satisfied, the request fails and the process can only retry to acquire the busy latch, by polling.

The internal implementation of latches is related to the OS and platform. Often it's
implemented using a single memory location and a single atomic instruction to test and set
the latch. Busy latches are usually identified by a non-zero value.

When more latches are needed to access a specific data structure, for example the library
cache, there is a parent-child latch relationship, so the database needs to acquire the parent
latch to access the child latch.

In single processor machines (are there any more?), when a latch was busy the process
requesting the latch would release the CPU and sleep for a brief time, to allow other
processes to acquire the CPU. This event was logged as a latch free wait event.

455

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

Single processor machines are being replaced by multi-core
machines. However, when using Instance Caging, we can
% have single processor/core assigned to a database instance.
’ In these situations, the considerations made for single
processor machine are still valid.

On multiprocessor/multicore systems, another mechanism is in place. The requesting process
can "spin", which means it holds the CPU and counts to a specific number, consuming CPU
cycles but not releasing the CPU, avoiding a costly context switch. This behavior allows
processes executed on other machine cores to proceed and eventually release the required
latch. Obviously, a high number of "spins" affects performance, and the maximum number

of spins a process can execute when waiting for a latch before releasing the CPU is platform
and OS specific. In single core/processor systems, spinning makes no sense (when a process
"spins" no other processes are executed, which results only in wasting CPU time).

We have referred to two different types of latches: willing-to-wait latch requests and immediate
latch requests. The difference is in the behavior of the process when the latch is in use. In
willing-to-wait requests the process sleeps and then acquires the latch again, when it becomes
available. In immediate requests, the process not acquiring the latch will eventually release the
latches already acquired—to avoid deadlocks—and releases the CPU before trying to acquire
the latches again.

The query used in this recipe investigates the top 10 requested latches, showing the misses
for both willing-to-wait and immediate (also referred as no-wait) latch requests.

The answer to the question titling this recipe is "NO", we don't tune latches; we investigate
possible latch contentions using the statement in this recipe and then we tune the resources
causing latch contention.

See also

» Tuning resources to minimize latch contention in this chapter

» Minimizing latches using bind variables in this chapter

456

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Tuning resources to minimize latch

contention

In this recipe we will see how to identify the resources that need to be tuned to minimize
latch contention.

Getting ready

In this recipe we will present how to diagnose a latch contention problem using a Statspack
report, obtained with the procedures used in Chapter 1.

How to do it...

To identify the resources to be tuned to avoid latch contention we need to:

1. Execute a Statspack report.

2. See in the Instance Efficiency Indicators section the value for Latch Hit %.
3. See in the Top 5 Timed Events section if there is a latch free wait event.
4

Verify the Latch Activity section to identify the kind of latches that are eventually
experiencing misses (and sleeps for willing-to-wait requests).

5. Verify the Latch Sleep breakdown section to identify the type of latches with the
highest misses.

6. Verify the Latch Miss Sources section to identify, among the latch requests
experiencing sleeps, where the latch misses occur.

After executing a statspack report, we can go to the Instance Efficiency Indicators section
to see the value for the Latch Hit %, to see the Hit percentage of latches, as in step 2. The
following screenshot shows the report for a database with small Latch Misses (the value for
Latch Hit % is 100.00):

Instance Efficiency Indicators

Buffer Nowait % 100.00 Redo NoWait % 100.00

Buffer Hit % 69.81 oOptimal W/R Exec %: 100.00

Library Hit %: 91.42 Soft Parse %: 2.92

Execute to Parse %: 0.50 Latch Hit %: 100.00

Parse CPU to Parse Elapsd %: 97.34 % Non-Parse CPU: .42

457

www.it-ebooks.info

http://www.it-ebooks.info/

Tuning Contention

In step 3 we investigate the section Top 5 Timed Events, in which a latch-related Latch Free

wait event can indicate an issue in latch contention. In the next screenshot we can see the
result for our test database, resulting in latch-related problems:

Top 5 Timed Events Avg %$Total
~~~~~~~~~~~~~~~~~~ wait Call
Event Waits (ms) Time
CPU time 98.5
latch free 16 24 .5
direct path write 462 1 .4
db file sequential read 32 5 .2
direct path read 8 9 .1

In step 4 we verify the Latch Activity section of the report, an excerpt of which is represented

in the next screenshot, where we can find values on sleeps and misses from willing-to-wait

and no-wait latches:

Latch Actiwvity DB/Inst: TESTDB/testdb Snaps: 2-3
->"Get Reguests™, "Pct Get Miss"™ and "Rvg Slps/Miss" are statistics for
willing-to-wait latch get reguests
->"NoWait Reguests™, "Pct NoWait Miss" are for no-wait latch get regquests
->"Pct Misses" for both should be wvery close to 0.0
Pct Bvg Wait
Get Get Slps Time NoWait
Latch Reqguests Miss /Miss (s) Reqguests
active checkpoint gueue 491 0.0 0 0
active service list 677 0.0 0 454
20 deg hash table latch 1 0.0 0 0
ASM db client latch 245 0.0 0 0
LSM map operation hash t 1 0.0 0 0
ASM network state latch 5 0.0 0 0
buffer pool 3 0.0 0 0
business card 1 0.0 0 0
cache buffer handles 278 0.0 0 0
cache buffers chains 31,361 0.0 0 6,472
cache buffers lru chain 4,531 0.0 0.0 0 6,175

In this section, for each type of latch, we have the statistics for willing-to-wait latch get
requests (Pct Get Miss and Avg Slps/Miss) and for no-wait latch get requests (NoWait
Requests and Pct NoWait Miss). For both types of latches the Pct Misses should be very

close to 0.0, as stated in the heading of this section.

458

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 11

In steps 5 and 6 we observe the Latch Sleep breakdown and Latch Miss Sources to get
information on the events with the highest misses and the related source, as shown in the

next screenshot:

Latch Sleep breakdown DB/Inst: TESTDB/testdb Snaps: 3-4
-> ordered by misses desc

Get
Latch Name Requests Misses Sleeps
shared pool 4,410,310 341 26
row cache objects 31,315,577 149 2
engueues 59,984 1 1
amn task gueue latch 12 1 1
Latch Miss Sources DB/Inst: TESTDB/testdb Snaps: 3-4
-> only latches with sleeps are shown
-» ordered by name, sleeps desc

NoWait

Latch Name Where Misses Sleeps
enqueuess ksggel: create endueue 0 1
amn task gueue latch kwomnmvtsks: delay to read 0 1
row cache objects kgrpre: find obj 0 1
row cache objects kagread 0 1
shared pool kghalo 0 43
shared pool kghuprl 0 9
shared pool kghalp 0 4

Using this section of the statspack report we can identify the events that are causing the
highest misses. In the above example, there were 341 misses (and 56 sleeps) on requests
involving latches on the shared pool, and 149 misses (and 2 sleeps) on requests for latches
on row cache objects.

There's more...

There are several types of latches on which we may experience contention. The most
common are the shared pool latches, identifying a problem related to the application.
Maybe the cursor cache is too small or we are explicitly closing cursors too soon—for
example after each execution.

459

www.it-ebooks.info


http://www.it-ebooks.info/

Tuning Contention

The library cache latches are used when finding SQL statements in the library cache. High
wait time values for this type of latch requests are caused by unnecessary parses and not
using bind variables, as we will see in the next recipe.

Cache buffers (LRU) chain latches are used to protect data blocks and LRU lists in the buffer
cache. When we experience contention on these latches, we probably need to tune large full
table or index scans in our application to minimize them. Increasing the buffer cache size or
the number of DBWn processes may help if there is too much buffer cache activity. Contention
also indicates that a data block is heavily accessed. This can be identified by the following
query, where "X" is the address of the child latch; we can get this from the VSLATCH_
CHILDREN dynamic performance view:

SELECT * FROM X$BH
WHERE HLADDR = *"X*

We can then join the DBA_EXTENTS view to identify the segment, to which the heavily
accessed data block belongs.

The redo copy and redo allocation latches are used to write into the redo log buffer.
Experiencing contention on this latch, requests can be avoided from executing, when possible,
statements using the NOLOGGING option or increasing the LOG_BUFFER parameter.

See also

» The Analyzing data using Statspack report recipe in Chapter 1
» Tuning latches in this chapter
» Minimizing latches using bind variables in this chapter

Minimizing latches using bind variables

In this recipe we will see how not using bind variables leads to latch contentions.

Getting ready

We will use the same package used in Chapter 4, where we have discussed using bind
variables in our application code, to compare the execution with and without the use of
bind variables.

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

How to do it...

The following steps will show how we can minimize latches by using bind variables:

1.

Connect to the database as SYSDBA:
CONNECT / AS SYSDBA

Query the V$SYSTEM_EVENT dynamic performance view to monitor
latch-related events:

COL EVENT FOR A37

SELECT EVENT, TOTAL_WAITS, TIME_WAITED, AVERAGE_WAIT,
TOTAL_TIMEOUTS

FROM V$SYSTEM_EVENT WHERE EVENT LIKE "latch:%" ORDER BY EVENT;

Connect to the SH schema and create the package CHAPTER4 containing a
test workload:

-— FROM CHAPTER 4 EXAMPLE. ..

CONNECT sh@TESTDB/sh

CREATE OR REPLACE PACKAGE sh.CHAPTER4 AS
PROCEDURE WORKLOAD_NOBIND;

PROCEDURE WORKLOAD_BIND;
PROCEDURE WORKLOAD_BIND_STATIC;
PROCEDURE TEST_INJECTION(
NAME IN sh.customers.cust_last_name%TYPE);
PROCEDURE TEST_INJECTION2(
NAME IN sh.customers.cust_last_name%TYPE);

END;

/

CREATE OR REPLACE PACKAGE BODY sh.CHAPTER4 AS
PROCEDURE TEST_NOBIND(CUSTID IN sh.customers.cust_id%TYPE) IS
BEGIN

DECLARE aRow sh.customers%ROWTYPE;

I_stmt VARCHAR2(2000);

BEGIN
I_stmt :=
"SELECT * FROM sh.customers s WHERE s.cust_id = " ||
TO_CHAR (CUSTID);

EXECUTE IMMEDIATE 1_stmt INTO aRow;

END;

461

www.it-ebooks.info


http://www.it-ebooks.info/

Tuning Contention

END TEST_NOBIND;

PROCEDURE TEST_BIND(CUSTID IN sh.customers.cust_id%TYPE) IS
BEGIN

DECLARE aRow sh.customers%ROWTYPE;

I_stmt VARCHAR2(2000);

BEGIN
I_stmt := "SELECT * FROM sh.customers s WHERE s.cust_id =
p_cust_id";
EXECUTE IMMEDIATE 1_stmt INTO aRow USING CUSTID;
END;

END TEST_BIND;

PROCEDURE TEST_BIND_STATIC(
CUSTID IN sh.customers.cust_id%TYPE) IS
BEGIN
DECLARE aRow sh.customers%ROWTYPE;
BEGIN
SELECT * INTO aROW FROM sh.customers s
WHERE s.cust_id = CUSTID;
EXCEPTION
WHEN NO_DATA_FOUND THEN
NULL;
END;
END TEST_BIND_STATIC;

PROCEDURE WORKLOAD_NOBIND IS

BEGIN
FOR i IN 1..50000
LOOP
TEST_NOBIND(i);
END LOOP;

END WORKLOAD_NOBIND;

PROCEDURE WORKLOAD_BIND 1S
BEGIN
FOR i IN 1..50000

462

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

LOOP
TEST_BIND(i);
END LOOP;

END WORKLOAD_BIND;

PROCEDURE WORKLOAD_BIND_STATIC 1S

BEGIN
FOR i IN 1..50000
LOOP
TEST_BIND_STATIC(i);
END LOOP;

END WORKLOAD_BIND_STATIC;

PROCEDURE TEST_INJECTION(
NAME IN sh.customers.cust_last_name%TYPE) 1S
BEGIN
DECLARE 1_stmt VARCHAR2(2000); res NUMBER;
BEGIN
I_stmt := "SELECT COUNT(*) FROM sh.customers s WHERE
s.cust_last_name = """ || NAME || """";
EXECUTE IMMEDIATE 1_stmt INTO res;
DBMS_OUTPUT.PUT_LINE("Count: " || TO_CHAR(res));
END;
END TEST_INJECTION;

PROCEDURE TEST_INJECTION2(
NAME IN sh.customers.cust_last_name%TYPE) 1S
BEGIN
DECLARE 1_stmt VARCHAR2(2000);
BEGIN
I_stmt := "BEGIN DBMS_OUTPUT.PUT_LINE (""You passed " ||
NAME |] """); END;";
EXECUTE IMMEDIATE 1_stmt;
END;
END TEST_INJECTION2;
END;
/

463

www.it-ebooks.info


http://www.it-ebooks.info/

Tuning Contention

4.

464

Connect as SYSDBA and execute the WORKLOAD_NOBIND procedure, executing the
query in step 2 before and after the procedure execution to monitor latch contention:

CONNECT / AS SYSDBA
ALTER SYSTEM FLUSH SHARED_POOL;

SELECT

EVENT, TOTAL_WAITS,

TIME_WAITED, AVERAGE_WAIT, TOTAL_TIMEOUTS
FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "latch:%" ORDER BY EVENT;

exec sh.CHAPTER4_WORKLOAD_NOBIND;

SELECT

EVENT, TOTAL_WAITS,

TIME_WAITED, AVERAGE_WAIT, TOTAL_TIMEOUTS
FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "latch:%" ORDER BY EVENT;

Execute the WORKLOAD_BIND procedure as in step 2 and compare the results
obtained with the ones in step 4:

ALTER SYSTEM FLUSH SHARED_POOL;

SELECT

EVENT, TOTAL_WAITS,

TIME_WAITED, AVERAGE_WAIT, TOTAL_TIMEOUTS
FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "latch:%" ORDER BY EVENT;

exec sh.CHAPTER4_WORKLOAD_BIND;

SELECT

EVENT, TOTAL_WAITS,

TIME_WAITED, AVERAGE_WAIT, TOTAL_TIMEOUTS
FROM V$SYSTEM_EVENT
WHERE EVENT LIKE "latch:%" ORDER BY EVENT;

Drop the package CHAPTERA4:
DROP PACKAGE sh.CHAPTER4;

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

In step 2 we query the VESYSTEM_EVENT dynamic performance view for events related to
latches, and we obtain the following results:

-
ec2-46-51-176-114.eu-west- 1.compute.amazonaws.com - PuTTY | = | B ||

oo o oo oo | oW

4 [m

We can see 29 waits on shared pool latches and a TIME_WAITED of 100.

In step 3 we create a test package and in step 4 we execute a workload procedure that
does not use bind variables. Before and after the execution we query the view as in step 2,
to compare the results obtained.

465

www.it-ebooks.info


http://www.it-ebooks.info/

Tuning Contention

In the following screenshot we can see that there is an increase in shared pool latch waits
from 29 to 58, and a TIME_WAITED value raised from 100 to 135:

-
ec2-46-51-176-114.eu-west-Leompute.amazonaws.com - PuTTY |ﬂlﬁj

[5

[=]

=]

[=]

o oo

TOTAL WAITS TIME AIT TOTRL TIMEOUTS

466

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

In step 5 we execute an analogous workload as in step 4, this time using bind variables.

As in the previous step, we query the VESYSTEM_EVENT immediately before and after the
execution of the package procedure, obtaining the results shown in the following screenshot.
No additional shared pool latch waits have been added, to those already reported:

-
ec2-46-51-176-114.eu-west-1L.compute.amazonaws.com - PuTTY |ﬂ|ﬁj

0O oo ooo |

[=]

[=]

In step 6 we drop the package created in step 3.

467

www.it-ebooks.info


http://www.it-ebooks.info/

Tuning Contention

There's more...

In previous recipes we have seen that not using bind variables led to performance and
scalability problems, not sharing SQL statements.

In this recipe we have also seen that when we don't use bind variables, there are latch
contentions on the library cache. We can see this behavior by inspecting the VSSYSTEM _EVENT
dynamic performance view.

As stated in previous recipes, we don't tune latch contention, but the presence of these
types of issues in the database is an alert signal that something else is wrong and it needs
to be tuned.

See also

» Chapter 4, Using bind variables
» Tuning latches in this chapter
» Tuning resources to minimize latch contention in this chapter

468

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance
Views

In this book, we have been presented with many dynamic performance views, used to access
a wide spread of details about an Oracle database, regarding different aspects from the
sessions to the SQL statement executed.

In this appendix, we present a summary of these views, in alphabetical order, which can be
used as a reference. For each view, there is a brief description and a list of the most useful
fields of the view.

ALL_OBJECTS

This view lists all the database objects the current user can access. As for many ALL__ views,
there are similar DBA_OBJECTS and USER_OBJECTS views; they have the same fields

but DBA_OBJECTS shows all the objects in the database, while USER_OBJECTS shows
information only on the objects of the current user.

This view is often joined to other dynamic performance views, for example, VSLOCKED_OBJECT,
by OBJECT _ID to obtain the object name and owner.

The most relevant view fields are as follows:

» OWNER: The owner of the object
» OBJECT_NAME: The name of the object
» OBJECT_ID: The unique ID associated to the object in the data dictionary

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

» OBJECT_TYPE: The object type, such as TABLE, INDEX, and so on
» CREATED: The timestamp for the creation of the object
» STATUS: The status of the object, such as VALID, INVALID, or N/A

DBA_BLOCKERS

This view returns the session IDs of the sessions holding locks.

Fields

There is only one field in this view, namely, HOLDING_SESSI10ON.

See also

» The DBA_WAITERS and V$SESSION sections in this appendix

DBA_DATA_FILES

This view returns all datafiles. It's often joined with other views by the FILE_ID field,
sometimes named as FILE# in other views.

Fields

The most relevant view fields are as follows:

» FILE_ID: A unique ID associated with the file

» FILE_NAME: The name of the database file

TABLESPACE_NAME: The name of the tablespace to which the file belongs
» BYTES: The size in bytes

» BLOCKS: The size in database blocks

» STATUS: The status of the file, related to its availability; can be AVAILABLE
or INVALID (for example, a file in a dropped tablespace)

» ONLINE_STATUS: The online status of the file, can be SYSOFF, SYSTEM,
OFFLINE, ONLINE, or RECOVER

v

See also

» The DBA_EXTENTS, FILES, V$DATAFILE, VSLOGFILE, DBA_TEMP_FILES, and
V$SCONTROLFILE sections in this appendix

470

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

DBA_EXTENTS

This view returns the extents which build the database files. No extent information is showed
for offline datafiles in locally managed tablespaces.

The most relevant view fields are as follows:

» SEGMENT_TYPE: The type of the segment, such as INDEX (PARTITION),
or TABLE (PARTITION)

» OWNER: The owner of the associated segment

» SEGMENT_NAME: The name of the associated segment

» TABLESPACE_NAME: The name of the tablespace containing the extent
» BYTES: The size in bytes

» BLOCKS: The size in database blocks

» FILE_ID: The file identifier of the file containing the extent

» EXTENT_ID: The extent number in the segment

See also

» The DBA_DATA_FILES section in this appendix

DBA_INDEXES

In this view are listed all the indexes in the database. There are the corresponding
ALL_ INDEXES and USER_ INDEXES, showing, respectively, the indexes which the
current user can access and the indexes the current user owns.

The most relevant view fields are as follows:

» OWNER: The owner of the index

» INDEX_NAME: The name of the index

» TABLE_OWNER: The owner of the table on which the index is built

» TABLE_NAME: The name of the table on which the index is built

» TABLESPACE_NAME: The name of the tablespace in which the index is stored
» STATUS: This can be VALID or UNUSABLE

471

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

» INDEX_TYPE: The type of the index; can be NORMAL, BITMAP, FUNCT ION-BASED
NORMAL, FUNCT ION-BASED BI1TMAP, or DOMAIN

» TABLE_TYPE: The type of the indexed object (TABLE or CLUSTER)
» UNIQUENESS: Whether the index is UNIQUE or NONUNIQUE

» COMPRESSION: If the index is compressed then the value is ENABLED, else
DISABLED

» PREFIX_LENGTH: The number of columns in the compressed prefix of the key
» LEAF_BLOCKS: The number of leaf blocks in the index

DBA_SQL PLAN_BASELINES

Displays information about the SQL Plan baselines created for a specific SQL statement.

The most relevant view fields are as follows:

» SQL_HANDLE: A unique identifier

» SQL_TEXT: The un-normalized SQL text

» PLAN_NAME: A unique plan identifier

» ENABLED: This indicates whether the plan baseline is enabled (YES/NO)

» ACCEPTED: This indicates if the plan baseline is accepted (YES/NO)

» FIXED: This indicates if the plan baseline is fixed (YES/NO)

» EXECUTIONS: The number of executions at the time the plan baseline was created

DBA_TABLES

This view lists all the tables in the database. There are the corresponding ALL_TABLES and
USER_TABLES, showing, respectively, the tables which the current user can access and the
tables the current user owns.

The most relevant view fields are as follows:

» OWNER: The owner of the table

» TABLE_NAME: The name of the table

» TABLESPACE_NAME: The name of the tablespace in which the table is stored
» STATUS: This can be VALID or UNUSABLE

www.it-ebooks.info


http://www.it-ebooks.info/

>

Appendix A

LOGGING: This indicates whether changes to the table are logged or not (YES/NO)
NUM_ROWS: The number of rows in the table

BLOCKS: The number of used database blocks in the table

EMPTY_BLOCKS: The number of empty database blocks in the table

AVG_SPACE: The average free space in bytes for allocated data blocks
CHAIN_CNT: The number of chained rows in the table

AVG_ROW_LEN: The average length of a row in the table

AVG_SPACE_FREELIST_BLOCKS: The average free space of all blocks
on a freelist

NUM_FREELIST_BLOCKS: The number of blocks in a freelist
SAMPLE_SIZE: The sample size used when analyzing the table

GLOBAL_STATS: For partitioned tables, this indicates whether the statistics
were made on all the partitions (YES) or estimated (NO)

USER_STATS: This indicates whether the statistics were entered
by the user (YES/NO)

LAST_ANALYZED: The date on which the table was last analyzed

DBA_TEMP_FILES

This view shows all temporary files in the database.

Fields

The most relevant view fields are as follows:

>

FILE_ID: A unique ID associated to the file

FILE_NAME: The name of the temporary file

TABLESPACE_NAME: The name of the tablespace to which the file belongs
BYTES: The size in bytes

BLOCKS: The size in database blocks

See also

>

The DBA_EXTENTS, FILES$, VSDATAFILE, VSLOGFILE, DBA_DATA_FILES,
and VSCONTROLFILE sections in this appendix

473

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

DBA_VIEWS

This view shows all the views in the database. There are the corresponding ALL_VIEWS and
USER_VIEWS, that show, respectively, the views which the current user can access and the
views the current user owns.

Fields

The most relevant view fields are as follows:

» OWNER: The owner of the view
» VIEW_NAME: The name of the view
» TEXT: The text of the view

DBA_WAITERS

This view shows all the sessions waiting for a lock. It correlates a blocked transaction to
the blocking one.

The most relevant view fields are as follows:

» WAITING_SESSION: The ID of the waiting session

» HOLDING_SESSION: The ID of the session holding the lock
» LOCK_TYPE: The type of lock

» MODE_HELD: The locking mode held

» MODE_REQUESTED: The locking mode requested

See also

» The DBA_BLOCKERS, V$LOCK, and VSLOCKED_OBJECT sections in this appendix

INDEX_STATS

This view collects information from index statistics (after an ANALYZE INDEX).

474

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

The most relevant view fields are as follows:

>

>

NAME: The name of the index

HEIGHT: The height of the B-tree index

BLOCKS: The number of allocated database blocks
BTREE_SPACE: The total space allocated

USED_SPACE: The total space used

DISTINCT_KEYS: The number of distinct keys in the index
OPT_CMPR_COUNT: The optimal key compression length

OPT_CMPR_PCTSAVE: Space saving corresponding to the adoption
of the optimal key compression length

See also

>

The DBA_INDEXES section in this appendix

DBA_SEQUENCES

This lists all the user sequences. It's a synonym for USER_SEQUENCES.

The most relevant view fields are as follows:

v

v

SEQUENCE_OWNER: The owner of the sequence
SEQUENCE_NAME: The name of the sequence

MIN_VALUE: The minimum value of the sequence

MAX_VALUE: The maximum value of the sequence

INCREMENT _BY: The value by which the sequence is incremented

CYCLE_FLAG: This indicates whether the sequence numbering restarts after
it has reached the upper limit

ORDER_FLAG: This indicates whether the sequence is ordered (numbers
generated in order) or not; this is useful in an RAC environment

CACHE_SIZE: The number of sequence numbers to cache

LAST_NUMBER: The last number written to disk; if caching is enabled, it is
the last number placed in the sequence cache

475

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

DBA_TABLESPACES

This is a dynamic performance view equivalent to the SYS.TS$ table containing
information on all tablespaces; the only difference is that DBA_TABLESPACES doesn't
list dropped tablespaces.

The most relevant view fields are as follows:

» TABLESPACE_NAME: The name of the tablespace

» BLOCK_SIZE: The database block size used in the tablespace
» STATUS: This can be ONLINE, OFFLINE, or READ ONLY

» CONTENTS: This can be UNDO, PERMANENT, or TEMPORARY

» LOGGING: This can be LOGGING or NOLOGGING

» EXTENT_MANAGEMENT: This can be DICTIONARY for dictionary managed or
LOCAL for locally managed tablespaces

» ALLOCATION_TYPE: This can be SYSTEM, USER, or UNIFORM

DBA_TAB_HISTOGRAMS

This view describes histograms on all the tables and views generated when collecting statistics
using the ANALYZE statement or DBMS_STATS package. There are the equivalent views
ALL_TAB_HISTOGRAMS and USER_TAB_HISTOGRAMS; the first contains information on all the
objects accessible by the current user, the last on the current user objects in the database.

The most relevant view fields are as follows:

» OWNER: The owner of the table

» TABLE_NAME: The name of the table

» COLUMN_NAME: The name of the column

» ENDPOINT_NUMBER: The histogram bucket number

» ENDPOINT_VALUE: The normalized endpoint value for the bucket

» ENDPOINT_ACTUAL_VALUE: The actual endpoint value (not normalized)
for the bucket

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

VSADVISOR_PROGRESS

This view inspects the execution progress of a SQL Tuning Advisor set.

The most relevant view fields are as follows:

» SID: The session ID

» SERIAL#: The session serial number

» USERNAME: The Oracle username

» OPNAME: The operation name

» ADVISOR_NAME: The advisor name

» TASK ID: The task ID

» SOFAR: The amount of work done so far

» TOTALWORK: The total work to be done

» TIME_REMAINING: The estimated remaining time in seconds

VSBUFFER_POOL_STATISTICS

This displays statistics about buffer pools in the database instance.

The most relevant view fields are as follows:

» ID: The buffer pool identifier

» NAME: The name of the buffer pool

» FREE_BUFFER_WAIT: The free buffer wait statistic

» WRITE_COMPLETE_WAIT: The write complete wait statistic

» BUFFER_BUSY_WAIT: The buffer busy wait statistic

» DB_BLOCK_GETS: The number of database blocks gotten statistic
» CONSISTENT_GETS: The number of consistent gets statistic

» PHYSICAL_READS: The number of physical reads statistic

» PHYSICAL_WRITES: The number of physical writes statistic

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

See also

» The V$DB_CACHE_ADVICE section to get advice in sizing the buffer pools

VSCONTROLFILE

This lists the names of the control files.

The most relevant view fields are as follows:

» STATUS: This is null if the name can be determined, INVALID otherwise
» NAME: The control filename

» IS _RECOVERY_DEST_FILE: This indicates whether the control file was
created in the fast recovery area (YES) or not (NO)

» BLOCK_SIZE: The control file block size
» FILE_SIZE_BLKS: The control file size in blocks

See also

» The V$DATAFILE, DBA TEMP_FILES, VSFILESTAT, VSLOGFILE, and VSTEMPFILE
sections in this appendix

VSDATAFILE

This lists datafile information taken from the control file.

The most relevant view fields are as follows:

» FILE#: The file identification number

» NAME: The filename

» CREATION_TIME: The timestamp of file creation
» TS#: The tablespace identification number

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A
» STATUS: The datafile status; can be OFFLINE, ONLINE, SYSTEM,
RECOVER, or SYSOFF

» ENABLED: This describes if the file is accessible; the possible values are DISABLED,
READ ONLY, READ WRITE, or UNKNOWN

» BYTES: The datafile size in bytes
» BLOCKS: The datafile size in database blocks

See also

» The VSFILESTAT, VSLOGFILE, and VSTEMPFILE sections in this appendix

V$DB_CACHE_ADVICE

This view contains predictions on the number of physical reads obtained when varying
the cache size.

The most relevant view fields are as follows:

» ID: The buffer pool identifier

» NAME: The buffer pool name

» BLOCK_SIZE: The size of the database block for this pool
SI1ZE_FOR_ESTIMATE: The cache size for prediction in megabytes
BUFFERS_FOR_ESTIMATE: The cache size for prediction in number of buffers

» ESTD_PHYSICAL_READS: The estimated number of physical reads for the cache
size evaluated

ESTD_PHYSICAL_READ_FACTOR: The estimated physical read factor for the cache
size evaluated, a ratio to the number of reads in the cache

See also

» The V$BUFFER_POOL_STATISTICS and V$DB_OBJECT_CACHE sections in
this appendix

v

v

v

479

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

V$DB_OBJECT_CACHE

This view lists objects currently cached in the library cache.

The most relevant view fields are as follows:

» OWNER: The owner of the object
» NAME: The object name

» TYPE: The object type, for example, INDEX, TABLE, VIEW, CLUSTER, SEQUENCE,
PROCEDURE, FUNCT 10N, PACKAGE, TRIGGER, or CLASS

» SHARABLE_MEM: The amount of memory in the shared pool used by the object

» KEPT: If the object was pinned in the library cache using the DBMS_SHARED_POOL .
KEEP procedure, the value is YES, otherwise NO

» LOADS: The number of times the object was loaded
» LOCKS: The number of users locking the object
» PINS: The number of users pinning the object

» INVALIDATIONS: The number of times the object was marked invalid because
a dependent object was modified

See also

» The ALL_OBJECTS section in this appendix

VSENQUEUE_LOCK

This view shows the locks owned by enqueue state objects.

The most relevant view fields are as follows:

» ADDR: The address of the lock state object

» KADDR: The address of the lock

» SID: The identifier for the session holding or acquiring the lock
» TYPE: The type of lock

» ID1: Lock identifier #1 (depends on TYPE)

480

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

» ID2: Lock identifier #2 (depends on TYPE)

» LMODE: A lock mode in which the session holds the lock; values can be:
U NONE

NULL (NULL)

ROW-S (SS)

ROW-X

SHARE (S)

S/ROW-X (SSX)

Q EXCLUSIVE (X)

0000 Do

» REQUEST: A lock mode in which the process request locks; values are the same
as for LMODE fields

» CTIME: The time since the current mode was grant
» BLOCK: Whether this lock is blocking another lock

See also

» The V$LOCK, VSLOCKED_OBJECT, DBA_WAITERS, and DBA_BLOCKERS
sections in this appendix

VSFILESTAT

This view displays statistics about I/0 operations on files.

The most relevant view fields are as follows:

» FILE#: The file identification number
» PHYRDS: The number of physical reads done
» PHYWRTS: The number of physical writes done

v

READT IM: The time spent doing reads (in hundredths of a second)
» WRITETIM: The time spent doing writes (in hundredths of a second)

See also

» The VSDATAFILE section in this appendix

481

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

VSFIXED_TABLE

This view lists all V$ and X$ Dynamic Performance Views.

The most relevant view fields are as follows:

» NAME: The object name

» OBJECT_ID: The object identification number

» TYPE: The object type; can be TABLE or VIEW

» TABLE_NUM: If the type is TABLE, it identifies the dynamic performance table

VSINSTANCE_RECOVERY

This view monitors the mechanisms available to the user/DBA to limit the I/0 needed
for recovery.

The most relevant view fields are as follows:

» RECOVERY_ESTIMATED_I0S: The estimated number of data blocks to process
during recovery

» ESTIMATED_MTTR: The estimated time recovery based on the current system load
» TARGET_MTTR: The Mean Time To Recover (MTTR) target value in seconds

» LOG_FILE_SIZE_REDO_BLKS: The number of redo blocks required to be sure that
a log switch won't occur before the checkpoint completes

» LOG_CHKPT_INTERVAL_REDO_BLKS: The number of redo blocks that will be
processed during recovery to satisfy the LOG_CHECKPOINT_INTERVAL parameter

» LOG_CHKPT_TIMEOUT_REDO_BLKS: The number of redo blocks that will be
processed during recovery to satisfy the LOG_CHECKPOINT_TIMEOUT parameter

» ACTUAL_REDO_BLKS: The current number of redo blocks needed to recover

» TARGET_REDO_BLKS: The current target number of redo blocks that must be
processed for recovery

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

VSLATCH

This view displays aggregate latch statistics.

The most relevant view fields are as follows:

>

>

>

LATCH#: The latch number
NAME: The latch name
GETS: The number of times the latch is requested in the willing-to-wait mode

MISSES: The number of times the latch is requested in willing-to-wait mode and
the requestor had to wait

SLEEPS: The number of times a willing-to-wait latch request resulted in a session
sleeping

SPIN_GETS: The number of times a willing-to-wait latch request was satisfied only
after a spin

WAIT_TIME: The elapsed time spent waiting for the latch in microseconds
IMMEDIATE_GETS: The number of times the latch is requested in no-wait mode
IMMEDIATE_MISSES: The number of times a no-wait latch request was unsatisfied

See also

>

The VSLATCH_CHILDREN recipe in this appendix

VSLATCH_CHILDREN

This view displays statistics about child latches.

The most relevant view fields are:

>

>

>

CHILD#: The child latch number
LATCH#: The parent latch number
NAME: The latch name

GETS: The number of times the latch is requested in willing-to-wait mode

483

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

» MISSES: The number of times the latch is requested in willing-to-wait mode,
and the requestor had to wait

» SLEEPS: The number of times a willing-to-wait latch request resulted in a
session sleeping

» SPIN_GETS: The number of times a willing-to-wait latch request was satisfied
only after a spin

» WAIT_TIME: The elapsed time spent waiting for the latch in microseconds
» IMMEDIATE_GETS: The number of times the latch is requested in no-wait mode

» IMMEDIATE_MISSES: The number of times a no-wait latch request was unsatisfied

See also

» The V$LATCH section in this appendix

VSLIBRAR CHE

Displays statistics on library cache activity.

The most relevant view fields are:

» NAMESPACE: The library cache namespace

» GETS: The number of times a lock was requested for objects in the namespace

» GETHITRATIO: The number of times the object's handle was found in memory

» PINS: The number of times a PIN was requested for objects in the namespace

» PINHITRATIO: The number of times the object's metadata were found in memory

» RELOADS: Any PIN of the object, following the first after object creation, which
requires loading the object from disk

» INVALIDATIONS: The number of times objects in the namespace were marked
invalid due to dependent object modifications

484

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

This view lists the locks held by the database.

The most relevant view fields are:

» SID: An identifier for the session holding or acquiring the lock
» ID1: Lock identifier #1 (depends on TYPE)
» ID2: Lock identifier #2 (depends on TYPE)

» TYPE: The type of lock; user locks can be TM (DML enqueue), TX (transaction
enqueue), or UL (user supplied)

» LMODE: A lock mode in which the session holds the lock; values can be:

a

0000 Do

a

NONE
NULL (NULL)
ROW-S (SS)
ROW-X

SHARE (S)
S/ROW-X (SSX)
EXCLUSIVE (X)

» REQUEST: A lock mode in which the process request locks; values are the same as
for the LMODE field

» CTIME: The time since current mode was granted

» BLOCK: If the lock is blocking another lock the value is 1, otherwise the value is O

See also

» The DBA_BLOCKERS, DBA_WAITERS, V$ENQUEUE_LOCK, and V$SLOCKED_OBJECT
sections in this appendix

485

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

VSLOCKED_OBJECT

This view shows which sessions are holding DML locks and on what objects.

The most relevant view fields are:

>

>

v

XIDUSN: The undo segment number

XIDSLOT: The slot number

XIDSQN: The sequence number

OBJECT _ID: The object ID being locked
SESSION_ ID: The session identifier number
ORACLE_USERNAME: The Oracle username
0S_USER: The operating system user

PROCESS: The operating system process identifier
LOCKED_MODE: The lock mode

See also

>

The DBA_BLOCKERS, DBA_WAITERS, VSENQUEUE_LOCK, and V$LOCK sections
in this appendix

This view displays information on log files from the control file.

The most relevant view fields are:

>

>

>

486

GROUP#: The log group number
THREAD#: The log thread number
SEQUENCE#: The log sequence number
BYTES: The size of the log in bytes
BLOCKSI1ZE: The block size of the log file

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

» MEMBERS: The number of members in the log group
ARCHIVED: The archive status (YES or NO)

STATUS: The log status; it can be UNUSED, CURRENT, ACTIVE, CLEARING,
CLEARING_CURRENT, or INACTIVE

FIRST_CHANGE#: The lowest system change number stored in the log

v

v

v

v

FIRST_TIME: The time of the first system change number in the log

See also

» The VSLOG_HISTORY and VSLOGFILE sections in this appendix

VSLOG_HISTORY

This view shows the log history from the control file.

The most relevant view fields are:

» RECID: The control file record ID

» STAMP: The control file record stamp

THREAD#: The thread number of the archived log

SEQUENCE#: The sequence number of the archived log
FIRST_CHANGE#: The lowest system change number in the log
FIRST_TIME: The time of the first entry in the log

» NEXT_CHANGE#: The highest system change number in the log

RESETLOGS_CHANGE#: The resetlogs change number of the database
when the log was written

» RESETLOGS_TIME: The resetlogs time of the database when the log was written

See also

» The V$LOG and V$LOGFILE sections in this appendix

v

v

v

v

v

487

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

This view contains information about redo log files.

Fields

The most relevant view fields are as follows:

» GROUP#: The redo log group identification number

» STATUS: The status of the log member; it can be INVALID, STALE, DELETED,
or NULL when the file is in use

» TYPE: The type of the log file, it can be ONL INE or STANDBY
» MEMBER: The redo log member name

» IS_RECOVERY_DEST_FILE: This indicates whether the file was created in
the fast recovery area (YES) or not (NO)

See also

» The V$LOG and V$SLOG_HISTORY recipes in this appendix

VSMYSTAT

This view contains statistics on the current session.

The most relevant view fields are as follows:

» SID: The session identifier for the current session
» STATISTIC#: The number of the STATISTIC
» VALUE: The value of the STATISTIC

See also

» The V$STATNAME, VSSESSTAT, and VSSYSSTAT sections in this appendix

488

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

VSPROCESS

This view displays information about the currently active processes.

The most relevant view fields are as follows:

» PID: An Oracle process identifier

» SPID: The operating system process identifier

» ADDR: The address of the process state object

» SERIAL#: The process serial number

» PNAME: The name of the process

» USERNAME: The operating system process username
» TERMINAL: The operating system terminal identifier

v

PROGRAM: The program currently in progress

See also

» The V$SESSION section in this appendix

VSROLLSTAT

This view contains rollback segments statistics.

The most relevant view fields are as follows:

» USN: The rollback segment number

» LATCH: The latch for the rollback segment

» EXTENTS: The number of extents in the rollback segment
» RSSIZE: The size of the rollback segment in bytes

489

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

» WRITES: The number of bytes written to the rollback segment

» XACTS: The number of active transactions
» GETS The number of header gets
» WAITS: The number of header waits

» STATUS: The rollback segment status, it can be ONLINE, OFFLINE, PENDING
OFFLINE, or FULL

VSROWCACHE

This view displays statistics about the data dictionary activity.

The most relevant view fields are as follows:

» PARAMETER: The name of the initialization parameter that determines
the number of entries in the data dictionary cache

» GETS: The total number of requests for information on the data object
» GETMISSES: The number of data requests resulting in cache misses
» MODIFICATIONS: The number of inserts, updates, and deletions

» FLUSHES: The number of times flushed to disk

This view displays information on each current session.

The most relevant view fields are as follows:

» SID: The session identifier

» SADDR: The session address

» SERIAL#: The session serial number

» PROCESS: The operating system client process ID

» PADDR: The address of the process that owns this session
» AUDSID: The auditing session ID

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

EVENT: The resource or event for which the session is waiting

P1, P2, P3: Wait event parameters

WAIT_TIME: This is set to:

-2 if TIMED_STATISTICS is set to false

-1 if the last wait duration was less than a hundredth of a second

0 if the session is currently waiting

000D,

A value greater than zero, which is the duration of the last wait in
hundredths of a second

LAST_CALL_ET: The elapsed time in seconds since the session has become
active/inactive

SQL_ID: The identifier of the currently executed SQL statement
PREV_SQL__1D: The identifier of the last SQL statement executed

ROW_WAIT_BLOCK#: The identifier for the block containing the row specified in
ROW_WAIT_ROW#

ROW_WAIT_ROW#: The current row being locked

ROW_WAIT_FILE#: The file identifier for the datafile containing the row specified
in ROW_WAIT_ROW#

ROW_WAIT_OBJ#: The object ID for the table containing the row specified in
ROW_WAIT_ROW#

See also

>

The V$SESSION_EVENT and VSSESSTAT sections in this appendix

VSSESSION_EVENT

This view displays information on waits for an event by a session.

The most relevant view fields are as follows:

>

>

>

SID: The session identifier

EVENT: The name of the wait event

TOTAL_WAITS: The total number of waits for the event in the session
TOTAL_TIMEOUTS: The total number of timeouts for the event in the session

491

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views
» TIME_WAITED: The total amount of time waited, in hundredths of a second
for the event in the session

» AVERAGE_WAIT: The average amount of time waited, in hundredths of a
second for the event in the session

» MAX_WAIT: The maximum time waited, in hundredths of a second for the
event in the session

» EVENT_ID: The wait event identifier

See also

» The V$SESSION and V$SESSTAT sections in this appendix

VSSESSTAT

This view displays statistics on the sessions.

The most relevant view fields are as follows:

» SID: The session identifier
» STATISTIC#: The statistic number
» VALUE: The statistic value

See also

» The V$STATNAME section in this appendix

This view displays summary information about the System Global Area (SGA).

Fields

The most relevant view fields are as follows:

» NAME: The SGA component group
» VALUE: The memory size of the SGA component group in bytes

492

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

See also

» The V$SGAINFO section in this appendix

V$SGAINFO

This view displays detailed information about the SGA components.

The most relevant view fields are as follows:

» NAME: The name of the SGA component
» BYTES: The size in bytes
» RESIZEABLE: This indicates whether the component is resizable (YES) or not (NO)

See also

The V$SGA section in this appendix

V$SSHARED_POOL_RESERVED

This view displays statistics useful in tuning the shared pool.

Fields

The most relevant view fields are as follows:

» FREE_SPACE: The amount of free space on the reserved list
» USED_SPACE: The amount of used memory on the reserved list

» REQUESTS: The number of times that the reserved list was searched
for a free piece of memory

» REQUEST_MISSES: The number of times the reserved list did not have a free piece
of memory to satisfy the request, and started flushing objects from the LRU list

» REQUEST_FAILURES: The number of times that no memory was found to satisfy
a request

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

VSSORT_SEGMENT

This view displays information about every sort segment in a given instance.

The most relevant view fields are as follows:

>

>

TABLESPACE_NAME: The name of the tablespace

CURRENT_USERS: The active users of the segment

TOTAL_BLOCKS: The total number of blocks in the segment

USED_BLOCKS: The number of blocks in the segment allocated to active sorts
FREE_BLOCKS: The number of blocks in the segment not allocated to any sort
MAX_BLOCKS: The maximum number of blocks ever used
MAX_USED_BLOCKS: The maximum number of blocks used by all sorts
MAX_SORT_BLOCKS: The maximum number of blocks used by an individual sort
EXTENT_SIZE: The extent size

TOTAL_EXTENTS: The total number of extents in the segment
USED_EXTENTS: The extents allocated to active sorts

FREE_EXTENTS: The extents not allocated to any sort

EXTENT_HITS: The number of times an unused extent was found in the pool

This view lists statistics on shared SQL areas.

The most relevant view fields are as follows:

>

>

>

494

SQL_ID: The identifier of the parent cursor in the library cache
SQL_TEXT: The first thousand characters of the SQL text
SQL_FULLTEXT: The full text of the SQL statement

EXECUTIONS: The number of executions that took place on this object since
it was brought into the library cache

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

» INVALIDATIONS: The number of times this child cursor has been invalidated
PARSE_CALLS: The number of parse calls for this child cursor

IS_BIND_SENSITIVE: This indicates whether the cursor is bind sensitive (Y) or not
(N). A query is considered bind-sensitive if the optimizer peeked at one of its bind
variable values when computing predicate selectivity and where a change in a bind
variable value may cause the optimizer to generate a different plan

» IS_BIND_AWARE: This indicates whether the cursor is bind aware (Y) or not (N); a
query is considered bind-aware if it has been marked to use extended cursor sharing

» IS_SHAREABLE: This indicates whether the cursor can be shared (Y) or not (N)

See also

» The V$SESSION, V$SQL_PLAN, and V$SQLAREA sections in this appendix

V$SQL_PLAN

This view contains information on execution plans for each child cursor loaded in the
library cache.

The most relevant view fields are as follows:

v

v

» OPERATION: The name of the internal operation performed in the step

» OBJECT_OWNER: The owner of the object (table or index)

» OBJECT_NAME: The name of the object (table or index)

» HASH_VALUE: The hash value of the parent statement in the library cache
» SQL_ID: The SQL identifier of the parent cursor in the library cache

» PLAN_HASH_VALUE: The hash value representing the SQL plan for the cursor,
useful to compare two plans

See also

The V$SQL and V$SQLAREA sections in this appendix

495

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

This view displays statistics on shared SQL areas, containing one row per SQL string.

The most relevant view fields are as follows:

» SQL_ID: The identifier of the parent cursor in the library cache
SQL_TEXT: The first thousand characters of the SQL text
SQL_FULLTEXT: The full text of the SQL statement

» USERS_EXECUTING: The total number of users executing the statement

v

v

v

LOADS: The number of times the object was loaded or reloaded

» HASH_VALUE: The hash value for the parent statement in the library cache
» ADDRESS: The address of the handle for the parent cursor
COMMAND_TYPE: The Oracle command type definition

» EXECUTIONS: The number of executions that took place on this object since it
was brought into the library cache

INVALIDATIONS: The number of times this child cursor has been invalidated
» PARSE_CALLS: The number of parse calls for this child cursor

» IS _BIND_SENSITIVE: This indicates whether the cursor is bind sensitive (Y) or
not (N). A query is considered bind-sensitive if the optimizer peeked at one of its
bind variable values when computing predicate selectivity and where a change in
a bind variable value may cause the optimizer to generate a different plan

IS_BIND_AWARE: This indicates whether the cursor is bind aware (Y) or not (N); a
query is considered bind-aware if it has been marked to use extended cursor sharing

v

v

v

See also

» The V$SQL and V$SQL_PLAN recipes in this appendix

VSSTATNAME

This view is used to decode a statistic identifier to its description.

496

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

The most relevant view fields are as follows:

>

>

>

>

STATISTIC#: The statistic number (may change across different database versions)
NAME: The statistic name

CLASS: A number representing one or more STATISTIC classes ORed together;
this can be:

O 1:User

2: Redo

4: Enqueue

8: Cache

16: 0S

32: Real Application Clusters
64: SQL

O 128: Debug

O0O00DO

STAT_ID: The identifier of the STATISTIC

See also

>

The VSMYSTAT, VSSESSTAT, and VESYSSTAT sections in this appendix

VSSYSSTAT

This view displays system statistics.

The most relevant view fields are as follows:

>

>

>

STATISTIC#: The statistic number
NAME: The statistic name

CLASS: A number representing one or more statistic classes ORed together;
the values are same as those mentioned in the previous section

VALUE: The statistic value
STAT _ID: The identifier of the statistic

497

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

See also

» The VSMYSTAT, VSSESSTAT, and VSSTATNAME sections in this appendix

VSSYSTEM_EVENT

This view displays information on total waits for an event.

The most relevant view fields are as follows:

» EVENT: The name of the wait event
» EVENT_ID: The identifier of the wait event
» TOTAL_WAITS: The total number of waits for the event

» TIME_WAITED: The total amount of time waited in hundredths of a second
for the event

» AVERAGE_WAIT: The average amount of time waited in hundredths of a second
for the event

» TOTAL_TIMEOUTS: The total number of timeouts for the event

VSTEMPFILE

This view displays temporary file information.

The most relevant view fields are as follows:

» FILE#: The file identifier number

» NAME: The filename

» STATUS: The file status; it can be ONLINE or OFFLINE
» ENABLED: This is enabled for read and/or write

» BYTES: The size of the file in bytes

» BLOCKS: The size of the file in blocks

» BLOCK_SIZE: The block size for the file

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix A

VSTEMPSTAT

This view displays statistics about |/0 operations on temporary files.

Fields

The most relevant view fields are as follows:

» FILE#: The file identification number

» PHYRDS: The number of physical reads performed

» PHYWRTS: The number of physical writes performed

» READTIM: The time spent doing reads in hundredths of a second
» WRITETIM: The time spent doing writes in hundredths of a second

See also

» The V$TEMPFILE section in this appendix

VSWAITSTAT

This view displays block contention statistics.

Fields

The most relevant view fields are as follows:

» CLASS: The class of the block
» COUNT: The number of waits for this CLASS of block
» TIME: The sum of all wait times for this CLASS of block

See also

» The V$SESSION and VSSESSION_EVENT sections in this appendix

www.it-ebooks.info


http://www.it-ebooks.info/

Dynamic Performance Views

This view displays the status and number of pings for every buffer in the SGA.

The most relevant view fields are as follows:

» OBJ: The object identifier

» HLADDR: The address of the child latch

» TS#: The tablespace identifier number

» FILE#: The file identifier number

» BLOCK#: The database block identifier number

500

www.it-ebooks.info


http://www.it-ebooks.info/

A Summary of Oracle
Packages Used for
Performance Tuning

In this book we have used various Oracle tools and packages to investigate and solve
performance issues.

_ There are also many tools in the market, made by third-party
& software vendors, which can help DBAs and developers in
= many fields, from coding PL/SQL packages and procedures
to analyzing data warehouses or tuning the database 1/0.

In this appendix we present a brief summary of these packages, providing a small reference
from which we can start when we want to solve a performance problem. The packages are
presented in alphabetical order.

DBMS_ADDM

This package provides procedures to manage Oracle Automatic Database Diagnostic Monitor.

www.it-ebooks.info


http://www.it-ebooks.info/

A Summary of Oracle Packages Used for Performance Tuning

Procedures

The most relevant procedures are:

» ANALYZE_DB: creates an ADDM task to analyze the database and execute it

» ANALYZE_INST: creates an ADDM task for analyzing in instance analysis mode
and executes it

» GET_REPORT: retrieves the default text report of an executed ADDM task

DBMS_ADVISOR

This package helps in managing the Advisors, a set of expert systems that identify and
help resolve performance problems related to various database server components.

Procedures

The most relevant procedures are:

» SET_DEFAULT_TASK PARAMETER: sets the default values for task parameters
» QUICK_TUNE: performs an analysis on a single SQL statement
» EXECUTE_TASK: executes the specified task

DBMS_JOB

Schedules and manages jobs in the database job queue.

[ Oracle recommends using the DBMS_SCHEDULER package. ]
Procedures

The most relevant procedures are:

» SUBMIT: submits a new job to the job queue

» RUN: forces a specified job to run

» NEXT_DATE: alters the next execution time for a specified job
» BROKEN: deletes a job execution

» REMOVE: removes the specified job from the job queue

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix B

DBMS_LOB

This package provides procedures to work with BLOBs, CLOBs, NCLOBs, BFILEs, and
temporary LOBs.

Procedures

The most relevant procedures are:

» GET_LENGTH: gets the length of the LOB value

» FILEOPEN: opens a file

» LOADFROMFILE: loads LOB data from a file

» APPEND: appends the contents of a source LOB to a destination LOB
» OPEN: opens an LOB

» READ: reads data from the LOB starting at the specified offset

» WRITE: writes data to the LOB from a specified offset

» CLOSE: closes a previously opened LOB

This package helps the management of Materialized Views, refreshes them and helps
understanding the capabilities for materialized views and potential materialized views.

Procedures

The most relevant procedures are:

» EXPLAIN_MVIEW: explains what is possible with a materialized view or potential
materialized view

» EXPLAIN_REWRITE: explains why a query failed to rewrite or why the optimizer
chose to rewrite a query with a particular materialized view(s)

» REFRESH: refreshes one or more materialized views
» REFRESH_ALL_MVIEWS: refreshes all the materialized views

DBMS_OUTLN

This package contains the functional interface to manage stored outlines.

To use this package the EXECUTE_CATALOG_ROLE role is needed. There is also a public
synonym OUTLN_PKG.

503

www.it-ebooks.info


http://www.it-ebooks.info/

A Summary of Oracle Packages Used for Performance Tuning

Procedures

The most relevant procedures are:

» CLEAR_USED: clears the outline "used" flag

» DROP_BY_CAT: drops outlines which belong to a specific category

» UPDATE_BY_CAT: updates the category of outlines to a new category

» DROP_UNUSED: drops outlines never applied in the compilation of a SQL statement

DBMS_OUTLN_EDIT

This package contains the functional interface to manage stored outlines.

The public role has execute privileges on DBMS_OUTLN_EDIT, which is defined with
invoker's rights.

Procedures

The most relevant procedures are:

» CREATE_EDIT_TABLES: creates outline editing tables in calling a user's schema;
beginning from Oracle 10g, you will not need to use this procedure because the
outline editing tables are part—as temporary tables—of the SYSTEM schema

» REFRESH_PRIVATE_OUTLINE: refreshes the in-memory copy of the outline,
synchronizing its data with the edits made to the outline hints

» DROP_EDIT_TABLES: drops the outline editing tables from the calling user's schema

DBMS_SHARED POOL

This package allows access to information about sizes of the objects stored in the shared
pool and marks them for keeping or not-keeping.

Procedures

The most relevant procedures are:

» KEEP: keeps an object in the shared pool, so it isn't subject to aging

» UNKEEP: unkeeps an object from the shared pool

» PURGE: purges the object

» SIZES: shows objects in the shared pool larger than the specified size

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix B

DBMS_SPACE

This package enables the analysis of segment growth and space requirements.

Procedures

The most relevant procedures are:

>

CREATE_TABLE_COST: determines the size of a table
CREATE_ INDEX_COST: determines the size of an index
FREE_BLOCKS: returns information about free blocks in an object

SPACE_USAGE: returns information about free blocks in a segment
managed by automatic space management

DBMS_SPM

This package provides an interface to manipulate plan history and SQL plan baselines.

Procedures

The most relevant procedures are:

>

LOAD_PLANS_FROM_CURSOR_CACHE: loads one or more plans from
the cursor cache for a SQL statement

LOAD_PLANS_FROM_SQLSET: loads plans stored in a SQL tuning set into
SQL plan baselines

EVOLVE_SQL_PLAN_BASELINE: evolves SQL plan baselines associated with
one or more SQL statements, changing them to accepted if they are found to be
better than the SQL plan baseline performance and if the user asks such action

DROP_SQL_PLAN_BASELINE: drops a single plan or all the plans associated
with a SQL statement

DBMS_SQL

This package provides an interface to use dynamic SQL to parse both DML and DDL
statements using PL/SQL.

505

www.it-ebooks.info


http://www.it-ebooks.info/

A Summary of Oracle Packages Used for Performance Tuning

Procedures

The most relevant procedures are:

>

>

>

>

>

EXECUTE: executes a cursor

OPEN_CURSOR: returns the cursor ID number of the new cursor
PARSE: parses the given statement

BIND_VARIABLE: binds a given value to a given variable
CLOSE_CURSOR: closes a given cursor and frees associated memory

DBMS_SQLTUNE

This package provides an interface to tune SQL statements.

Procedures

The most relevant procedures related to the SQL tuning set are:

>

>

>

>

>

CREATE_SQLSET: creates a SQL tuning set object in the database

DROP_SQLSET: drops a SQL tuning set if not active

SELECT_SQLSET: collects SQL statements from an existing SQL tuning set
LOAD_SQLSET: populates the SQL tuning set with a set of selected SQL statements
SELECT_CURSOR_CACHE: collects SQL statements from the cursor cache

The most relevant procedures to manage SQL tuning tasks are:

CREATE_TUNING_TASK: creates a tuning of a single statement or tuning set
EXECUTE_TUNING_TASK: executes a previously created tuning task
REPORT_TUNING_TASK: displays the results of a tuning task
INTERRUPT_TUNING_TASK: interrupts the currently executing tuning task
RESUME_TUNING_TASK: resumes a previously interrupted tuning task

DBMS_STATS

This package allows you to view and modify optimizer statistics.

506

www.it-ebooks.info


http://www.it-ebooks.info/

Appendix B

Procedures

The most relevant procedures are:

» GATHER_SCHEMA_STATS: gathers optimizer statistics for a schema class

» GATHER_DATABASE_STATS: gathers optimizer statistics for a database class
» GATHER_TABLE_STATS: gathers table statistics

» GATHER_INDEX_ STATS: gathers index statistics

» CREATE_STAT_TABLE: creates the user statistics table

» DROP_STAT_TABLE: drops the user statistics table

» EXPORT_SCHEMA STATS: exports schema statistics to a user statistics table

» IMPORT_SCHEMA_STATS: import schema statistics from a user statistics table

DBMS_UTILITY

This package provides various utility subprograms.

Procedures

The most relevant procedures are:

» ANALYZE_ SCHEMA: analyzes all the tables, indexes, and clusters in a schema
» ANALYZE_ DATABASE: analyzes all the tables, indexes, and clusters in a database
» GET_TIME: returns the current time in hundredths of a second

DBMS_WORKLOAD_REPOSITORY

This package allows management of Workload Repository.

Procedures

The most relevant procedures are:

» CREATE_SNAPSHOT: creates a manual snapshot
» MODIFY_SNAPSHOT_SETTINGS: modifies the snapshot settings
» CREATE_BASELINE: creates a single baseline

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Symbols
SROWCACHE view 490

A

adaptive cursor sharing
about 327
for bind variable peeking 317, 320-327
ADDM
about 15, 32
running, in database mode 32
running, in partial mode 33
used, for analyzing data 32-36
ADMINISTER SQL MANAGEMENT OBJECT
privilege 335
Advice button 376
alert log
used, for diagnosing performance
issues 28, 29
ALL_OBIJECTS view 469
ALL_ROWS 296
ALTER INDEX REBUILD command 130
ALTER OUTLINE statement 316
ALTER SYSTEM FLUSH SHARED_POOL
command 394
ANALYZE command 21
ANALYZE_DATABASE procedure 507
ANALYZE_DB procedure 502
ANALYZE_INST procedure 502
ANALYZE_SCHEMA procedure 507
anti-join query 195
APPEND 297
APPEND procedure 503

Index

array processing
about 257
demonstrating 257, 258
working 259-262
arrays
about 181
direct path load, using 185, 186
used for inserting data, in tables 181-185
asynchronous I/0
about 425
FILESYSTEMIO_OPTIONS parameter 427
using 425-427
working 426
AUTOALLOCATE option 252
Automatic Database Diagnostic Monitor.
See ADDM
Automatic Memory Management (AMM) 376
Automatic Memory Management
enhancement 215
AUTOMATIC policy 211
Automatic Segment Space Management
(ASSM) 172
Automatic Workload Repository. See AWR
AWR
used, for analyzing data 29-31

batch processing 47
BEFORE INSERT trigger 134
BIG_ROWS table 87
bind variable peeking

adaptive cursor sharing 317, 320-327
BIND_VARIABLE procedure 506

www.it-ebooks.info


http://www.it-ebooks.info/

bind variables
about 254, 255
security 161
testing 157
used, for minimizing latches 460, 464-468
using 154
working 158, 159, 256, 257
bitmap indexes
bitmap join index 140
CUST_GENDER column 139
FULL TABLE SCAN operation 139
using 136-138
working 138, 139
bitmap join index 140
BLOB field 101
BROKEN procedure 502
B-Tree Index
about 119
index entries 120
leaf nodes 120
Buffer Cache hit ratio 407
buffer cacher
Buffer Cache hit ratio 407
KEEP buffer cache 406
KEEP pool 409
RECYCLE pool 409
tuning 400
tuning, steps 400, 402
working 402-405
bulk-collect
about 257
working 259-262

C

Cache buffers (LRU) chain latches 460
CACHE (table_name) 297
c_file BLOB field 101
checkpoint

about 428

checkpoint queue 432, 433

tuning 428

working 429-432
checkpoint queue 432
CHUNK parameter 101
CL_DEPARTMENTS table 111

CLEAR_USED procedure 504
CL_EMPLOYEES table 111
CLIENT_RESULT_CACHE_LAG 345
CLIENT_RESULT_CACHE_SIZE
parameter 342-345
client-side result cache
configuring 345
used, for caching results 342-345
CLOSE_CURSOR procedure 506
CLOSE procedure 503
cluster
about 103, 192
and truncating 108
index 108
size 108
CLUSTER (table_name) 296
composite partitioning 150, 151
COMPRESS parameter 130
COND_FIELD parameters 257
configuration, temporary
tablespaces 248, 249
connection management
dedicated server versus shared server 46
optimizing 42
optimizing, steps 42-45
working 45
control file 369
control parameter 369
COUNT(*) function 218
COUNTRY_ID attribute 106
CREATE_BASELINE procedure 507
CREATE CLUSTER statement 112
CREATE_EDIT_TABLES procedure 504
CREATE INDEX command 130
CREATE_INDEX_COST procedure 505
CREATE_SNAPSHOT procedure 507
CREATE_SQLSET procedure 506
CREATE_STAT_TABLE procedure 301, 507
create table
using, as select 355-358
CREATE TABLE AS SELECT statement 357
CREATE_TABLE_COST procedure 505
CREATE_TUNING_TASK procedure 333, 506
CROSSCHECK COPY command 417
cursor management, performance
issues 8-10

510

www.it-ebooks.info


http://www.it-ebooks.info/

CURSOR_SHARING parameter 388, 399
CUSTOMERS table 293
CUSTOMERS_YOB_BIX bitmap

index 294, 301

D

data

acquiring, data dictionary used 20-23

analyzing, ADDM used 32-36

analyzing, AWR used 29-31

analyzing, Statspack report used 23-25

collecting 26

loading, data pump used 366-373

loading, SQL*Loader used 366-373
database

sort operations, managing 214
database memory architecture 214
database request

reducing, materialized views used 65-68

reducing, sequences used 59-65

reducing, stored procedures used 54-59
data compression 102
data dictionary

used, for acquiring data 20-23
datafile parameter 23
Data Manipulation Language (DML) 153
data pump

URL 373

used, for loading data 366, 369-373
DBA_BLOCKERS dynamic performance

view 442
DBA_BLOCKERS view 470
DBA_DATA_FILES view 470
DBA_EXTENTS view 471
DBA_INDEXES view 471
DBA_SEQUENCES view 475
DBA_SQL_PLAN_BASELINES view 472
DBA_TAB_HISTOGRAMS view 476
DBA_TABLES dictionary view 300
DBA_TABLESPACES view 476
DBA_TABLES view 472,473
DBA_TEMP_FILES view 473
DBA_VIEWS view 474
DBA_WAITERS dynamic
performance view 442

DBA_WATERS view 474
DBMS_ADDM package
about 501
ANALYZE_DB procedure 502
ANALYZE_INST procedure 502
GET_REPORT procedure 502
procedures 502
DBMS_ADVISOR package
EXECUTE_TASK procedure 502
procedures 502
QUICK_TUNE procedure 502
SET_DEFAULT_TASK_PARAMETER
procedure 502
DBMS_JOB package
BROKEN procedure 502
NEXT_DATE procedure 502
procedures 502
REMOVE procedure 502
RUN procedure 502
SUBMIT procedure 502
DBMS_LOB package
APPEND procedure 503
CLOSE procedure 503
FILEOPEN procedure 503
GET_LENGTH procedure 503
LOADFROMFILE procedure 503
OPEN procedure 503
procedures 503
READ procedure 503
WRITE procedure 503

DBMS_MVIEW package

EXPLAIN_MVIEW procedure 503
EXPLAIN_REWRITE procedure 503
procedures 503
REFRESH_ALL_MVIEWS procedure 503
REFRESH procedure 503

DBMS_OUTLN_EDIT package

CREATE_EDIT_TABLES procedure 504
DROP_EDIT_TABLES procedure 504
procedures 504
REFRESH_PRIVATE_OUTLINE procedure 504

DBMS_OUTLN package

CLEAR_USED procedure 504
DROP_BY_CAT procedure 504
DROP_UNUSED procedure 504
procedures 504
UPDATE_BY_CAT procedure 504

511

www.it-ebooks.info


http://www.it-ebooks.info/

DBMS_SHARED_POOL package
about 391
KEEP procedure 504
procedures 504
PURGE procedure 504
SIZES procedure 504
UNKEEP procedure 504
DBMS_SPACE package
about 95
CREATE_INDEX_COST procedure 505
CREATE_TABLE_COST procedure 505
FREE_BLOCKS procedure 505
procedures 505
SPACE_USAGE procedure 505
DBMS_SPM.MIGRATE_STORED_OUTLINE
procedure 312
DBMS_SPM package
DROP_SQL_PLAN_BASELINE procedure 505
EVOLVE_SQL_PLAN_BASELINE
procedure 505
LOAD_PLANS_FROM_CURSOR_CACHE
procedure 505
LOAD_PLANS_FROM_SQLSET procedure 505
procedures 505
DBMS_SQL package
BIND_VARIABLE procedure 506
CLOSE_CURSOR procedure 506
EXECUTE procedure 506
OPEN_CURSOR procedure 506
PARSE procedure 506
procedures 506
DBMS_SQLTUNE package
about 333
CREATE_SQLSET procedure 506
CREATE_TUNING_TASK procedure 506
DROP_SQLSET procedure 506
EXECUTE_TUNING_TASK procedure 506
INTERRUPT_TUNING_TASK procedure 506
LOAD_SQLSET procedure 506
procedures 506
REPORT_TUNING_TASK procedure 506
RESUME_TUNING_TASK procedure 506
SELECT_CURSOR_CACHE procedure 506
SELECT_SQLSET procedure 506
DBMS_STATS.GATHER_SCHEMA_STATS
procedure 303

512

DBMS_STATS.IMPORT_SCHEMA_STATS
procedure 302
DBMS_STATS package
about 300, 305
CREATE_STAT_TABLE procedure 507
DROP_STAT_TABLE procedure 507
EXPORT_SCHEMA_STATS procedure 507
GATHER_DATABASE_STATS procedure 507
GATHER_INDEX_STATS procedure 507
GATHER_SCHEMA_STATS procedure 507
GATHER_TABLE_STATS procedure 507
IMPORT_SCHEMA_STATS procedure 507
procedures 305, 507
DBMS_UTILITY function 21
DBMS_UTILITY package
ANALYZE_DATABASE procedure 507
ANALYZE_SCHEMA procedure 507
GET_TIME procedure 507
procedures 507
DBMS_WORKLOAD_REPOSITORY package
CREATE_BASELINE procedure 507
CREATE_SNAPSHOT procedure 507
MODIFY_SNAPSHOT_SETTINGS
procedure 507
procedures 507
DBWO (DB Writer) process 382
deadlocks
about 444-452
UPDATE statement 451
dedicated server versus shared server 46
DELETE operation 127
DELETE_SCHEMA_STATS procedure 301
denormalization 192
DENSE_RANK() function 225, 228
dictionary cache
tuning 395, 396
V$ROWCACHE dynamic performance 395
direct 1/0 426
direct path inserting 351-354
DISTINCT keyword 224
DMBS_STATS procedure 304
DROP_BY_CAT procedure 316, 504
DROP_EDIT_TABLES procedure 504
DROP_SQL_PLAN_BASELINE procedure 505
DROP_SQLSET procedure 506
DROP_STAT_TABLE procedure 507

www.it-ebooks.info


http://www.it-ebooks.info/

DROP_UNUSED procedure 316, 504

dynamic performance views
about 20-23
ALL_OBJECTS 469
DBA_BLOCKERS 470
DBA_DATA_FILES 470
DBA_EXTENTS 471
DBA_INDEXES 471, 472
DBA_SEQUENCES 475
DBA_SQL_PLAN_BASELINES 472
DBA_TAB_HISTOGRAMS 476
DBA_TABLES 472
DBA_TABLESPACES 476
DBA_TEMP_FILES 473
DBA_VIEWS 474
DBA_WAITERS 474
INDEX_STATS 474
V$ADVISOR_PROGRESS 477
V$BUFFER_POOL_STATISTICS 477
V$CONTROLFILE 478
V$DATAFILE 478
V$DB_CACHE_ADVICE 479
V$DB_OBJECT_CACHE 480
V$ENQUEUE_LOCK 480
V$FILESTAT 481
V$FIXED_TABLE 482
V$INSTANCE_RECOVERY 482
V$LATCH 483
V$LATCH_CHILDREN 483
V$LIBRARYCACHE 484
V$LOCK 485
V$LOCKED_OBJECT 486
V$LOG 486
V$LOGFILE 488
V$LOG_HISTORY 487
V$MYSTAT 488
V$PROCESS 489
V$ROLLSTAT 489
V$ROWCACHE 490
V$SESSION 490
V$SESSION 491
V$SESSION_EVENT 491, 492
V$SESSTAT 492
V$SGA 492
V$SGAINFO 493
V$SHARED_POOL_RESERVED 493

V$SORT_SEGMENT 494
V$SQL 494
V$SQLAREA 496
V$SQL_PLAN 495
V$STATNAME 496
V$SYSSTAT 497
V$SYSTEM_EVENT 498
V$TEMPFILE 498
V$TEMPSTAT 499
VSWAITSTAT 499
X$BH 500
dynamic sampling 304
dynamic SQL
avoiding 79
avoiding, steps 79-82

EMP_DEPARTMENT_IX index 111
EMP_DEPT_CLUSTER cluster 111
ENDPOINT_VALUE 308
ESTIMATE_PERCENT parameter 303
estimator 292
EVOLVE_SQL_PLAN_BASELINE
procedure 339, 505
example database
exploring 17
preparing, steps 17-19
working 19
EXECUTE procedure 506
EXECUTE_TASK procedure 502
EXECUTE_TUNING_TASK procedure 506
EXPLAIN_MVIEW procedure 503
EXPLAIN_REWRITE procedure 503
EXPORT_SCHEMA_STATS procedure 301,
507
external table 371

F

Fast-Start checkpointing 431
FAST_START_MTTR_TARGET parameter 431
FILEOPEN procedure 503
FILESYSTEMIO_OPTIONS parameter 427
filters

using, in group-by queries 232-238
FIRST_ROWS (n) 296

513

www.it-ebooks.info


http://www.it-ebooks.info/

FORALL statement 184
FORCE mode 345
FOR EACH ROW

avoiding, in triggers 289
FREE_BLOCKS procedure 505
FTS. See full table scan
FULL (table_name) 296
full table scan

avoiding 164, 165

working 166-168
FULL TABLE SCAN operation 139
function-based index 119
function inlining technique 283
function result cache

about 276

using 276-279

working 279, 280

G

GATHER_DATABASE_STATS procedure 507
GATHER_INDEX_STATS procedure 507
GATHER_SCHEMA_STATS procedure 507
GATHER_TABLE_STATS procedure 507
GET_LENGTH procedure 503
GET_REPORT procedure 502
GET_TIME procedure 507
group-by queries

filters, using in 232-238
GROUP BY query 216

H

hash clusters
about 109
CL_DEPARTMENTS table 111
CL_EMPLOYEES table 111
CREATE CLUSTER statement 112
custom hash function 112
EMP_DEPARTMENT_IX index 111
EMP_DEPT_CLUSTER cluster 111
HASHKEYS parameters 111
single-table 112
sorted 111
TABLE ACCESS HASH operation 111
using 109, 110
working 111

HASH GROUP BY operation 224
HASHKEYS parameters 111
hash partitioning 149, 150
HASH (table_name) 296
HASH UNIQUE operation 224
HAVING clause 233, 238
height-based histograms 310
High-Water Mark (HWM)
about 171
resetting 172
High-Water Mark (HWM), resetting
ALTER TABLE MOVE 172
EXPORT + DROP + IMPORT 172
TRUNCATE 172
histograms
about 305
ENDPOINT_VALUE 308
height-based histograms 310
skewed values 309
value-based histograms 310
working 307, 308
home directory 208
hugepages 383

ID field 321
ID value 321
immediate latch requests 456
IMPORT_SCHEMA_STATS procedure 507
INCLUDING option 145
index clusters
COUNTRY_ID attribute 106
Multi-Table Index Cluster Tables 107
using 103, 105
index entries 120
indexes
about 113
ALTER INDEX REBUILD command 130
B-Tree Index 119
compressing 128
compressing, steps 128-130
COMPRESS parameter 130
CREATE INDEX command 130
DELETE operation 127
function-based index 119
INDEX FAST FULL SCAN 121

514

www.it-ebooks.info


http://www.it-ebooks.info/

INSERT operation 127
inspecting 359-365
ONLINE options 127
PARALLEL option 127
prefix length 130
rebuild and statistics 127
rebuilding 123-126
rebuilding in offline mode, drawbacks 126
reverse key indexes, using 130-134
UPPER function 119
used, for avoiding sort operations 215-222
using 113-117
where condition 121
working 118
index lookup
example 173
exploring 173
function, using 177
NULL values, searching for 177
steps 173, 174
working 174-176
Index Organized Table. See 10T
index range-scan
and index skip-scan, differences 177-181
Index Range Scan operation 176
index skip-scan
and index range-scan, differences 177-181
INDEX_STATS view 474
INDEX (table_name index_name) 297
INDEX UNIQUE SCAN operation 135
in-memory sort operation
versus on-disk sort operation 208-214
INSERT operation 127
INSERT statement 181, 351
Instance Efficiency Indicators section 457
INTERRUPT_TUNING_TASK procedure 506
INTERSECT operator 241, 244
Intimate Shared Memory (ISM) 383
1/0 performance issues
monitoring 412-414
working 415-418
10T
about 142-144
INCLUDING option 145
Logical ROWID 146
PCTTHRESHOLD parameter 145, 146
USER tablespace 145

J

Java DataBase Connectivity. See JDBC
JDBC 257
JOIN operator 245
joins
optimizing 187
types 187
working 188-191

K

k-combinations 272
KEEP buffer cache 406
KEEP pool 409

KEEP procedure 504

L

Large OBjects. See LOBs
Latch Activity section 458
latch contention
minimizing, by tuning resources 457-459
latches
about 455
Cache buffers (LRU) chain latches 460
immediate latch requests 456
Instance Efficiency Indicators section 457
Latch Activity section 458
latch free event 454
latch free wait event 455
library cache latches 460
minimizing, bind variables
used 460, 464-468
redo allocation latches 460
redo copy latches 460
shared pool latches 459
TIME_WAITED column 453
tuning 452
V$LATCH_CHILDREN dynamic
performance view 460
V$LATCH dynamic performance view 454
V$SYSTEM_EVENT dynamic
performance view 453, 465, 468
willing-to-wait latch requests 456
WORKLOAD_BIND procedure 464
WORKLOAD_NOBIND procedure 464

515

www.it-ebooks.info


http://www.it-ebooks.info/

latch free event 454
latch free wait event 455
LEADING (table_namel table_name2 ) 297
leaf nodes 120
library cache
CURSOR_SHARING parameter 388
misses, minimizing 388
tuning 384
tuning, steps 384
working 385-388
library cache latches 460
list partitioning 148, 149
LOADFROMFILE procedure 503
LOAD_PLANS_FROM_CURSOR_CACHE
procedure 505
LOAD_PLANS_FROM_SQLSET procedure 505
LOAD_SQLSET procedure 506
LOBs
BLOB data, encryption 103
BLOB field 101
c_file BLOB field 101
CHUNK parameter 101
data compression 102
NOLOGGING parameters 103
SecureFile (s) 102
using 96-100
working 100, 101
lock contention
DBA_BLOCKERS 439
DBA_BLOCKERS dynamic
performance view 442
DBA_WAITERS 439
DBA_WAITERS dynamic
performance view 442
detecting 438-443
preventing 438-443
Row Level Lock 441
Table Level Lock 441
V$LOCKED_OBJECT dynamic
performance view 439, 441
V$SESSION dynamic performance view 443
LOCK_SGA parameter 381
log file sync statistic 434
Logical ROWID 146

MANUAL policy 211,212
materialized views 192

used, for reducing database requests 65-69
MAX_CREDIT column 364
MAX_CREDIT field 364
MAX_CREDIT field value 364
memory

tuning, to avoid operating system

paging 376-383

min/max aggregates

computing 232-238
MIN/MAX query 232
MINUS operator 241
MODIFY_SNAPSHOT_SETTINGS

procedure 507

multi-pass sort 213, 215
multiple block sizes

advantages 88
multiple database writer slave processes 427
multiple disks

objects, stripping 419, 420
Multi-Table Index Cluster Tables 107
Multi-Threaded Server (MTS) 46
MY_SALES table 184
MYSTATS table 299

native compilation
about 271
using 272-274
working 274-276
NEXT_DATE procedure 502
NOCOPY
parameters, passing to functions 262-264
using, issues 266
working 264-266
NO_INDEX (table_name index_name) 297
NOLOGGING clause 358
NOLOGGING parameters 103
no_result_cache 345
NULL device 347

516

www.it-ebooks.info


http://www.it-ebooks.info/

0

objects
stripping, across multiple disks 420-422
OF
using 287, 288
on-disk sort operation
versus in-memory sort operation 208-214
ONLINE options 127
OnLine Transaction Processing (OLTP) 47, 327
OPEN_CURSOR procedure 506
OPEN procedure 503
operating system paging
avoiding, by tuning memory 376-383
optimal sort 213, 214
optimal storage parameters, temporary
tablespaces 252
OPTIMIZER_DYNAMIC_SAMPLING
parameter 304
Oracle
packages 501
Oracle Call Interface (OCl) 345
Oracle database
features 15
Oracle Database Configuration Assistant
(DBCA) 17
Oracle Enterprise Manager (OEM) 16
Oracle Real Application Cluster (RAC) 25
ORDER BY clause 210
ORDER BY query 216
ORDERED 297
OTHER_SALES partition 149
OUTLN_PKG package 316

P

package, Oracle
DBMS_ADDM package 501
DBMS_ADVISOR package 502
DBMS_JOB package 502
DBMS_LOB package 503
DBMS_MVIEW package 503
DBMS_OUTLN_EDIT package 504
DBMS_OUTLN package 503
DBMS_SHARED_POOL package 504

DBMS_SPACE package 505
DBMS_SPM package 505
DBMS_SQL package 505
DBMS_SQLTUNE package 506
DBMS_STATS package 506
DBMS_UTILITY package 507
DBMS_WORKLOAD_REPOSITORY
package 507
PARALLEL clause 358
PARALLEL (DEFAULT | AUTO |
MANUAL | n) 297
PARALLEL option 127
parallel SQL
degree of parallelism of two 350
enabling 346
need for 350
parallel query and I/0 350
working 347-349
PARAMETER column 395
PARSE procedure 506
parsing
about 254, 255
working 256, 257
partitioning
composite partitioning 150, 151
hash partitioning 149, 150
list partitioning 148, 149
OTHER_SALES partition 149
PARTITION KEY 147
partition pruning 148
TIME_ID field 147
using 146, 147
PARTITION KEY 147
partition pruning 148
PCTFREE parameter
about 94, 172
CREATE_TABLE_COST package 95
DBMS_SPACE package 95
table size, estimating 95, 96
PCTINCREASE parameter 252
PCTTHRESHOLD parameter 145, 146
PCTUSED parameter 172
performance issues diagnosing, alert log used
about 28, 29
steps 28

517

www.it-ebooks.info


http://www.it-ebooks.info/

performance issues, Oracle database
about 7,8
cursor management, issues 8-10
poor session management 8
relational design, issues 11
storage structures, improper usage 11
performance, optimizing
schema denormalization used 71-79
performance sharing
improving, reusable code used 48, 50
PL/SQL and parsing 52
working 50, 51
performance tuning
about 7
database, creating for examples 17-19
process, reviewing 12, 13
performance tuning, example
about 36
demonstrating, SH schema used 36-40
performance tuning, process
issues, solving 12
reviewing 12
working 13-16
PGA
about 46, 215
tuning 396-399
PGA_AGGREGATE_TARGET
parameter 211, 215
PGA size 210
plan generator
about 292
hints, issues 298
PL/SQL code
about 281
function inlining technique 283
inlining 281, 282
working 283
PMON (Process MONitor) proces 382
prefix length 130
private stored outlines 316, 317
Program Global Area. See PGA
public stored outlines 316, 317
PURGE procedure 504

518

Q

query optimizer

about 291

hints, exploring 292-297
query transformation 292
QUICK_TUNE procedure 502

RAID level 0+1 425
RAID level 5 424
RAID levels
choosing, for different Oracle files 422, 423
RAID level O 424
RAID level 0+1 425
RAID level 1 424
RAID level 5 424
working 423
RANK() function 225, 227
READ procedure 503
recursive functions
about 269
avoiding 269-271
working 270, 271
RECYCLE pool 409
redo allocation latches 460
redo copy latches 460
redo logs
monitoring 433
working 434, 435
redo log switch 430
Redundant Arrays of Inexpensive Disks. See
RAID levels
REFRESH_ALL_MVIEWS procedure 503
REFRESH_PRIVATE_OUTLINE procedure 504
REFRESH procedure 503
relational design, performance issues 11
REMOVE procedure 502
REPORT_TUNING_TASK function 333
REPORT_TUNING_TASK procedure 506
resources
tuning, to minimize latch contention 457-459
RESULT_CACHE_MAX_SIZE parameter 345

www.it-ebooks.info


http://www.it-ebooks.info/

RESULT_CACHE option 280
results
caching, client-side result
cache used 342-345
RESUME_TUNING_TASK procedure 506
reusable code
used, for improving performance
sharing 48-52
reverse key B-Tree index 134
reverse key indexes
BEFORE INSERT trigger 134
INDEX UNIQUE SCAN operation 135
reverse key B-Tree index 134
REVERSE keyword 134
TABLE ACCESS BY INDEX ROWID
operation 135
using 130-134
REVERSE keyword 134
REWRITE (materialized_view) 297
row
BIG_ROWS table 87
changing, avoiding 84-86
counting 232-238
migration, avoiding 89-94
multiple block sizes, advantages 88
PCTFREE parameter 94
working 87
Row Level Lock 441
RUN procedure 502

S

schema denormalization

used, for optimizing performance 71-79
select

create table, using 355-358
SELECT_CURSOR_CACHE procedure 506
SELECT DISTINCT query 216
SELECT_SQLSET procedure 506
SESSION_CACHED_CURSORS 399
session management, performance issues 8
SET_DEFAULT_TASK_PARAMETER

procedure 502

set operations

sort, avoiding in 240-247

set operators 247
set theory 247
SGA 398
shared pool
ALTER SYSTEM FLUSH SHARED_POOL
command 394
DBMS_SHARED_POOL.KEEP
procedure 390
DBMS_SHARED_POOL package 391
SHARED_POOL_RESERVED_SIZE
initialization parameter 394
SHARED_POOL_SIZE parameter 392
SIZES procedure 395
tuning 388
tuning, steps 389
V$ROWCACHE dynamic performance 393
V$SHARED_POOL_ADVICE dynamic
performance 395
working 390-394
shared pool latches 459
SHARED_POOL_RESERVED_SIZE
initialization parameter 394
SHARED_POOL_SIZE parameter 392
short-circuit IF statements
about 266
using, steps 266, 267
working 268, 269
SH schema 36, 209
SIMPLE_FUNCTION function 281
single-pass sort 213, 215
SIZES procedure 395, 504
skewed values 309
SORT_AREA_SIZE parameter 252
SORT GROUP BY operation 224, 238
sorting
about 207
avoiding, in set operations 240-247
sort operations
about 223
avoiding, indexes used 215-222
managing 214
SORT UNIQUE operation 224, 242, 243
SPACE_USAGE procedure 505
spcreate.sql script 24
SQL Access Advisor 15

519

www.it-ebooks.info


http://www.it-ebooks.info/

SQL activity
tracing, with SQL trace 201-205
tracing, with TKPROF 201-205
SQL baselines
configuring 336, 337
creating 335
working 337-339
SQL*Loader
used, for loading data 366, 369-373
SQL*Plus environment 208
SQL script 208
SQL Trace
used, for tracing SQL activity 201-205
SQL Tuning Advisor
about 15
using 331
working 333, 334
SQL tuning sets
about 327
creating 328-330
STAR_TRANSFORMATION 297
statistics
collecting 298-302
computation 303
table statistics, locking for highly volatile
tables 304
Statspack report
data, collecting 26

report on specific SQL, producing 26, 27

snapshot generation, automating 27
Statspack, maintenance 27
used, for analyzing data 23-25
storage structures, performance issues
improper usage 11
stored outlines
managing 310-316
private stored outlines 316, 317
public stored outlines 316, 317
stored procedures
used, for reducing database
requests 54-62
SUBMIT procedure 502
subqueries
using 192, 193
working 193-198
System Change Number (SCN) 428
System Global Area. See SGA

520

T

table
data inserting, arrays used 181-185
TABLE ACCESS BY INDEX ROWID operation
135
TABLE ACCESS HASH operation 111
Table Level Lock 441
temporary tablespaces
configuring 248, 249
optimal storage parameters 252
troubleshooting 248-251
TEST_TUNING_SET 329
TIMED_STATISTICS parameter 20
TIME_ID field 147
TIME_WAITED column 453
TKPROF
used, for tracing SQL activity 201-205
top n queries
ranking, demonstrating 224-230
retrieving 224-230
triggers
about 284
FOR EACH ROW, avoiding 289
OF, using 287, 288
WHEN, using 287, 288
triggers overhead
inspecting 359-365

U

UGA
tuning 396-399
UNION ALL operation 243
UNION-ALL operation 242
UNION operator 240, 242
UNKEEP procedure 504
UPDATE_BY_CAT procedure 316, 504
UPDATE statement 451
UPPER function 119
USE_HASH (table_namel table_name2 ) 297
USE_MERGE (table_namel table_name2 )
297
USE_NL (table_namel table_name2 ) 297
User Global Area. See UGA
User Global Area (UGA) 215
USER_TAB_HISTOGRAMS 307
USER tablespace 145

www.it-ebooks.info


http://www.it-ebooks.info/

'}

VSADVISOR_PROGRESS view 477
VSBUFFER_POOL_STATISTICS view 477
VSCONTROLFILE view 478
VSDATAFILE view 478
VSDB_CACHE_ADVICE view 479
VSDB_OBJECT_CACHE view 480
VSENQUEUE_LOCK view 480
VSFILESTAT view 481
VSFIXED_TABLE view 482
VSINSTANCE_RECOVERY view 482
VSLATCH_CHILDREN dynamic
performance view 460
VSLATCH_CHILDREN view 483, 484
VSLATCH dynamic performance view 454
VSLATCH view 483
VSLIBRARYCACHE view 484
VSLOCKED_OBJECT dynamic
performance view 439, 441
VSLOCKED_OBJECT view 486
VSLOCK view 485, 486
VSLOGFILE view 488
VSLOG_HISTORY view 487
VSLOG view 486
VSMYSTAT view 488
VSPROCESS dynamic performance view 382
VSPROCESS view 489
VSROLLSTAT view 489
VSROWCACHE dynamic performance 393,
395
VSSESSION dynamic performance view 443
VSSESSION_EVENT view 491, 492
VSSESSION view 490, 491
VSSESSTAT view 492
V$SGAINFO dynamic performance view 376
VSSGAINFO view 493
VSSGA view 492

VSSHARED_POOL_ADVICE
dynamic performance 395
VSSHARED_POOL_RESERVED view 493
V$SORT_SEGMENT view 494
VSSQLAREA view 496
VS$SQL_PLAN view 495
VSSQL view 494, 495
VSSTATNAME view 496
VSSYSSTAT view 497
V$SYSTEM_EVENT dynamic
performance view 453, 465, 468

VSSYSTEM_EVENT view 498
VSTEMPFILE view 498
VSTEMPSTAT view 499
VSWAITSTAT view 499
value-based histograms 310
virtual columns

about 284, 365

using 284, 286

working 286, 287

w

web application 46, 47
WHEN

using 287
WHERE clause 233
where condition 121
willing-to-wait latch requests 456
WORKLOAD_BIND procedure 464
WORKLOAD_NOBIND procedure 158, 464
WRITE procedure 503

X

XS$BH view 500
X1_MY_TEST index 322

521

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

enterprise &

professional expertise distilled

PUBLISHING
Thank you for buying
Oracle Database 11gR2 Performance Tuning Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info


http://www.it-ebooks.info/

enterprise 8

professional expertise distiled

"PUBLISHING

Oracle 11g R1/R2 Real Application
Clusters Essentials

Ben Prusinski
Syed Jatter Hussain

Oracle 11g R1/R2 Real
Application Clusters Essentials
ISBN: 978-1-84968-266-4 Paperback: 552 pages

Design, implement, and support complex Oracle 11g
RAC environments for real world deployments

1. Understand sophisticated components that make up
your Oracle RAC environment such as the role of High
Availability, the RAC architecture required, the RAC
installation and upgrade process, and much more!

2. Get hold of new Oracle RAC components such
as the new features of Automatic Storage
Management (ASM), performance tuning, and
troubleshooting.

3. Packed with practical, real-world examples,
expert tips and troubleshooting advice on how to
administer a complex Oracle 11g RAC environment.

Frofessional Expartise Dintillag

OCA Oracle Database 11g: SQL
Fundamentals I: A Real-World
Certification Guide

Steve Ries [Pacy !gﬂ_gg_a_r‘gm

OCA Oracle Database 11g:
SQL Fundamentals I: A Real
World Certification Guide

ISBN: 978-1-84968-364-7 Paperback: 500 pages

Ace the 1Z0-051 SQL Fundamentals | exam and become
a successful DBA by learning how SQL concepts work in
the real world

1. Successfully clear the first stepping stone
towards attaining the Oracle Certified Associate
Certification on Oracle Database 11¢.

2. This book uses a real world example-driven
approach that is easy to understand and
makes engagin.

3. Complete coverage of the prescribed syllabus.

4. Learn from a range of self-test questions to fully
equip you with the knowledge to pass this exam.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

enterprise 8

professional expertise distilled

PUBLISHING

Oracle Database 11g—Underground
Advice for Database Administrators

Beyond the

Oracle Database

11g - Underground Advice
for Database Administrators
ISBN: 978-1-849680-00-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g database
implementation

1. A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers.

2. Real-world reflections from an experienced
DBA—what novice DBAs should really know.

3. Implement Oracle's Maximum Availability
Architecture with expert guidance.

4. Extensive information on providing high availability
for Grid Control.

EJB 3.0 Database Persistence with
Oracle Fusion Middleware 11g

Despak Vahra

EJB 3.0 Database
Persistence with Oracle
Fusion Middleware 11g

ISBN: 978-1-849681-56-8 Paperback: 448 pages

A complete guide to building EJB 3.0 database persistent
applications with Oracle Fusion Middleware 118

1. Integrate EJB 3.0 database persistence with
Oracle Fusion Middleware tools: WebLogic Server,
JDeveloper, and Enterprise Pack for Eclipse.

2. Automatically create EJB 3.0 entity beans from
database tables.

3. Learn to wrap entity beans with session beans
and create EJB 3.0 relationships.

4. Apply JSF and ADF Faces user interfaces (Uls) to
EJB 3.0 database persistence.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with Performance Tuning
	Introduction
	Reviewing the performance tuning process
	Exploring the example database
	Acquiring data using a data dictionary and dynamic performance views
	Analyzing data using Statspack reports
	Diagnosing performance issues using the alert log
	Analyzing data using Automatic Workload Repository (AWR)
	Analyzing data using Automatic Database Diagnostic Monitor (ADDM)
	A working example

	Chapter 2: Optimizing Application Design
	Introduction
	Optimizing connection management
	Improving performance sharing 
reusable code
	Reducing the number of requests to the 
database using stored procedures
	Reducing the number of requests to the 
database using sequences
	Reducing the number of requests to the 
database using materialized views
	Optimizing performance with schema denormalization
	Avoiding dynamic SQL

	Chapter 3: Optimizing Storage Structures
	Introduction
	Avoiding row chaining
	Avoiding row migration
	Using LOBs
	Using index clusters
	Using hash clusters
	Indexing the correct way
	Rebuilding index
	Compressing indexes
	Using reverse key indexes
	Using bitmap indexes
	Migrating to index organized tables
	Using partitioning

	Chapter 4: Optimizing SQL Code
	Introduction
	Using bind variables
	Avoiding full table scans
	Exploring index lookup
	Exploring index skip-scan and index 
range-scan
	Introducing arrays and bulk operations
	Optimizing joins
	Using subqueries
	Tracing SQL activity with SQL Trace 
and TKPROF

	Chapter 5: Optimizing Sort Operations
	Introduction
	Sorting—in-memory and on-disk
	Sorting and indexing
	Writing top n queries and ranking
	Using count, min/max, and group-by
	Avoiding sorting in set operations: union, 
minus, and intersect
	Troubleshooting temporary tablespaces

	Chapter 6: Optimizing 
PL/SQL Code
	Introduction
	Using bind variables and parsing
	Array processing and bulk-collect
	Passing values with NOCOPY (or not)
	Using short-circuit IF statements
	Avoiding recursion
	Using native compilation
	Taking advantage of function result cache
	Inlining PL/SQL code
	Using triggers and virtual columns

	Chapter 7: Improving the 
Oracle Optimizer
	Introduction
	Exploring optimizer hints
	Collecting statistics
	Using histograms
	Managing stored outlines
	Introducing Adaptive Cursor Sharing for 
bind variable peeking
	Creating SQL Tuning Sets
	Using the SQL Tuning Advisor
	Configuring and using SQL Baselines

	Chapter 8: Other Optimizations
	Introduction
	Caching results with the client-side 
result cache
	Enabling parallel SQL
	Direct path inserting
	Using create table as select
	Inspecting indexes and triggers overhead
	Loading data with SQL*Loader and 
Data Pump

	Chapter 9: Tuning Memory
	Introduction
	Tuning memory to avoid Operating System paging
	Tuning the Library Cache
	Tuning the Shared Pool
	Tuning the Program Global Area and the User Global Area
	Tuning the Buffer Cache

	Chapter 10: Tuning I/O
	Introduction
	Tuning at the disk level and strategies to distribute Oracle files
	Striping objects across multiple disks
	Choosing different RAID levels for different Oracle files
	Using asynchronous I/O
	Tuning checkpoints
	Tuning redo logs

	Chapter 11: Tuning Contention
	Introduction
	Detecting and preventing lock contention
	Investigating transactions and concurrency
	Tuning latches
	Tuning resources to minimize latch 
contention
	Minimizing latches using bind variables

	Appendix A: Dynamic Performance Views
	ALL_OBJECTS
	DBA_BLOCKERS
	DBA_DATA_FILES
	DBA_EXTENTS
	DBA_INDEXES
	DBA_SQL_PLAN_BASELINES
	DBA_TABLES
	DBA_TEMP_FILES
	DBA_VIEWS
	DBA_WAITERS
	INDEX_STATS
	DBA_SEQUENCES
	DBA_TABLESPACES
	DBA_TAB_HISTOGRAMS
	V$ADVISOR_PROGRESS
	V$BUFFER_POOL_STATISTICS
	V$CONTROLFILE
	V$DATAFILE
	V$DB_CACHE_ADVICE
	V$DB_OBJECT_CACHE
	V$ENQUEUE_LOCK
	V$FILESTAT
	V$FIXED_TABLE
	V$INSTANCE_RECOVERY
	V$LATCH
	V$LATCH_CHILDREN
	V$LIBRARYCACHE
	V$LOCK
	V$LOCKED_OBJECT
	V$LOG
	V$LOG_HISTORY
	V$LOGFILE
	V$MYSTAT
	V$PROCESS
	V$ROLLSTAT
	V$ROWCACHE
	V$SESSION
	V$SESSION_EVENT
	V$SESSTAT
	V$SGA
	V$SGAINFO
	V$SHARED_POOL_RESERVED
	V$SORT_SEGMENT
	V$SQL
	V$SQL_PLAN
	V$SQLAREA
	V$STATNAME
	V$SYSSTAT
	V$SYSTEM_EVENT
	V$TEMPFILE
	V$TEMPSTAT
	V$WAITSTAT
	X$BH

	Appendix B: A Summary of Oracle Packages Used for Performance Tuning
	DBMS_ADDM
	DBMS_ADVISOR
	DBMS_JOB
	DBMS_LOB
	DBMS_MVIEW
	DBMS_OUTLN
	DBMS_OUTLN_EDIT
	DBMS_SHARED_POOL
	DBMS_SPACE
	DBMS_SPM
	DBMS_SQL
	DBMS_SQLTUNE
	DBMS_STATS
	DBMS_UTILITY
	DBMS_WORKLOAD_REPOSITORY

	Index



