Programming Arduino
with LabVIEW

Build interactive and fun learning projects with
Arduino using LabVIEW

PACKT


http://www.it-ebooks.info/

Programming Arduino with
LabVIEW

Build interactive and fun learning projects with Arduino
using LabVIEW

Marco Schwartz

Oliver Manickum

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info


http://www.it-ebooks.info/

Programming Arduino with LabVIEW

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1210115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-822-1

www . packtpub.com

www.it-ebooks.info


www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Marco Schwartz

Oliver Manickum

Reviewers
Adith Jagadish Boloor

Aaron Srivastava

Fangzhou Xia

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Harsha Bharwani

Content Development Editor
Rikshith Shetty

Technical Editor
Bharat Patil

Copy Editor
Karuna Narayanan

Project Coordinator
Sanchita Mandal

Proofreaders
Ameesha Green

Sandra Hopper

Indexer
Rekha Nair

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info


http://epic.packtpub.com/index.php?module=Users&action=DetailView&record=812d6fdd-d71e-93bc-fc4c-50a0902af141
http://epic.packtpub.com/index.php?module=Users&action=DetailView&record=3d4ba1a5-4802-1458-545e-538320595778
http://www.it-ebooks.info/

About the Authors

Marco Schwartz is an electrical engineer, entrepreneur, and blogger. He has a
master's degree in electrical engineering and computer science from SUPELEC in
France and a master's degree in micro engineering from the EPFL in Switzerland.

He has more than 5 years of experience working in the domain of electrical
engineering. His interests gravitate around electronics, home automation,
the Arduino and Raspberry Pi platforms, open source hardware projects,
and 3D printing.

He also runs several websites on Arduino, including the http://www.
openhomeautomation.net/ website, which is dedicated to building home
automation systems using open source hardware.

He has written another book called Arduino Home Automation Projects, Packt
Publishing, on home automation and Arduino and also published a book called
Internet of Things with the Arduino, on how to build Internet-of-Things projects
with Arduino.

Oliver Manickum has been working in the embedded development scene for
almost 20 years. His favorite development platform is Arduino. He has delivered
thousands of projects and is a big fan of ATMEL and the Arduino platform.

He currently writes high-performance games on mobile platforms; however,
developing prototypes with Arduino is his main hobby.

He has also reviewed Netduino Home Automation Projects, Matt Cavanagh.

I would like to thank my wife, Nazia Osman, for her patience while I
was building devices that would sometimes burn down parts of our
house, over and over again.

www.it-ebooks.info


http://www.openhomeautomation.net/
http://www.openhomeautomation.net/
http://www.it-ebooks.info/

About the Reviewers

Adith Jagadish Boloor is an undergraduate student at the School of Mechanical
Engineering at Purdue University, West Lafayette. He was born and brought up in
the beautiful coastal city of Mangalore, India. Having lived there for 18 years, he
came to the United States of America to pursue his higher education, with the desire
to acquire new skills pertaining to the latest technological developments, and with
this knowledge, he hopes to revolutionize the robotics sector.

Having built a couple of robots in his high-school days, his primary interest lies in
the field of robotics. However, he occasionally occupies himself in areas that are
still at their infancy, such as 3D Printing and Speech Recognition. More recently, he
has begun his exploration in home automation, wireless networking, the Internet of
Things, and smart security systems.

His passion for kindling the benefits of technology is what drives him towards open
source and to create a smarter planet.

Aaron Srivastava is a biomedical engineer from North Carolina State University.
He is currently working on a neurosurgery project to aid patients undergoing spinal
cord stimulation treatments. His main interests are in entrepreneurship, business
development, and programming languages. Aaron also does web designing, on the
side, as a hobby.

Fangzhou Xia is a dual-degree senior student at University of Michigan, with a
background in both mechanical engineering and electrical engineering. His areas
of interest in mechanical engineering are system control, product design, and
manufacturing automation. His areas of interest in electrical engineering are web
application development, embedded system implementation, and data acquisition
system setup.

www.it-ebooks.info


http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

*  On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info


http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Welcome to LabVIEW and Arduino 5
What makes Arduino ideal for LabVIEW 6
Significance of using LabVIEW 6
Skills required to use LabVIEW and Arduino 6
Downloading LabVIEW 7
Downloading the Arduino IDE 8
Summary 10
Chapter 2: Getting Started with the LabVIEW Interface
for Arduino 11
Hardware and software requirements 11
Setting up LabVIEW and LINX 14
Testing the installation 17
Summary 22
Chapter 3: Controlling a Motor from LabVIEW 23
Hardware and software requirements 23
Hardware configuration 24
Writing the LabVIEW program 25
Upgrading the interface 31
Summary 33
Chapter 4: A Simple Weather Station with Arduino and LabVIEW 35
Hardware and software requirements 35
Hardware configuration 36
Writing the LabVIEW program 38
Upgrading the interface 41
Summary 44

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Chapter 5: Making an XBee Smart Power Switch 45
Hardware and software requirements 46
Configuring the hardware 48
Controlling the relay 50
Measuring the current 53
Controlling the project via XBee 58
Summary 59
Chapter 6: A Wireless Alarm System with LabVIEW 61
Hardware and software requirements 61
Hardware configuration 63
Interfacing one motion sensor 64
Connecting more motion sensors 67
Making the project wireless with XBee 68
Summary 71
Chapter 7: A Remotely Controlled Mobile Robot 73
Hardware and software requirements 73
Hardware configuration 74
Moving the robot around 77
Measuring the front distance 81
Controlling the robot wirelessly 83
Summary 85
Index 87

Lii]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Arduino is a powerful electronics prototyping platform used by millions of people
around the world to build amazing projects. Using Arduino, it is possible to easily
connect sensors and physical objects to a microcontroller, without being an expert
in electronics.

However, using Arduino still requires us to know how to write code in C/C++,
which is not easy for everyone. This is where LabVIEW comes into play. LabVIEW is
software used by many professionals and universities around the world, mainly to
automate measurements without having to write a single line of code.

Thanks to a module called LINX, it is actually very easy to interface Arduino and
LabVIEW. This means that we will be able to control Arduino projects without
having to type a single line of code. The possibilities are endless, and in this book,

we will focus on several exciting projects in order for you to discover the key features
of the LabVIEW Arduino interface.

What this book covers

Chapter 1, Welcome to LabVIEW and Arduino, introduces you to the Arduino platform
and the LabVIEW software.

Chapter 2, Getting Started with the LabVIEW Interface for Arduino, shows you how to
install and use the LabVIEW interface for Arduino via the LINX module.

Chapter 3, Controlling a Motor from LabVIEW, explains how to make your first real
project with Arduino and LabVIEW by controlling a DC motor from LabVIEW.

Chapter 4, A Simple Weather Station with Arduino and LabVIEW, talks about how
to automate measurements from several sensors that are connected to the
Arduino platform.

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Chapter 5, Making an XBee Smart Power Switch, shows you how to make our own
do-it-yourself (DIY) version of a smart wireless power switch. We will make a device
that can control electrical devices, measure their current consumption, and control
the whole power switch from LabVIEW.

Chapter 6, A Wireless Alarm System with LabVIEW, helps you connect motion sensors
to an Arduino board and monitor their state remotely via LabVIEW to create a
simple alarm system.

Chapter 7, A Remotely Controlled Mobile Robot, teaches you how to use everything you
learned so far to control a small mobile robot from LabVIEW. You will be able to
wirelessly move the robot and also continuously measure the distance in front of
the robot.

What you need for this book

For this book, you will mainly need the LabVIEW software that is available for all
major operating systems. You can either buy it or download an evaluation version
for free.

You will also need the LINX module to interface LabVIEW and Arduino, which we
will see how to set up and use in Chapter 2, Getting Started with the LabVIEW Interface
for Arduino of the book.

Who this book is for

This book is for people who already have some experience with the LabVIEW
software and who want to use the Arduino platform. For example, if you want to
automate measurements from sensors and control physical objects with Arduino,
but without writing Arduino code, this book is for you.

It is also for people who already have some knowledge of the Arduino platform and
who want to learn another way to control their Arduino projects, using LabVIEW
instead of coding.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

[2]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

[31]

www.it-ebooks.info


www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams

used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http: //www.packtpub.com/sites/

default/files/downloads/82210T ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

www.it-ebooks.info


http://www.packtpub.com/sites/default/files/downloads/8221OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/8221OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Welcome to LabVIEW
and Arduino

National Instruments Corporation, NI, is a world leader when it comes to automated
test equipment and virtual instrumentation software. LabVIEW is a product that
they have developed, and it is being used in many labs throughout the world.
LabVIEW, which stands for Laboratory Virtual Instrument Engineering Workbench,
is programmed with a graphical language known as G; this is a dataflow
programming language. LabVIEW is supported by Visual Package Manager
(VIPM). VIPM contains all the tools and kits to enhance the LabVIEW product.

Arduino is a single-board microcontroller. The hardware consists of an open
source hardware board that is designed around the Atmel AVR Microcontroller.
The intention of Arduino was to make the application of interactive components
or environments more accessible. Arduinos are programmed via an integrated
development environment (IDE) and run on any platform that supports Java.
An Arduino program is written in either C or C++ and is programmed using its
own IDE.

Welcome to programming Arduino with LabVIEW. During the course of this book,
we will take you through working with Arduino through NI's LabVIEW product.
The following are what you will need:

* A Windows or Mac-based machine

* Arduino (Uno preferred)

* LabVIEW 13 for students (or any other LabVIEW 13 distribution)

We will work with Servos, LEDs, and Potentiometers in both analog and
digital configurations.

www.it-ebooks.info


http://www.it-ebooks.info/

Welcome to LabVIEW and Arduino

What makes Arduino ideal for LabVIEW

The Arduino community is extremely vast with thousands and even hundreds of
thousands of projects that can be found using simple searches on Google. Integrating
LabVIEW with Arduino makes prototyping even simpler using the GUI environment
of LabVIEW with the Arduino platform.

Officially, LabVIEW will work with the Uno and Mega 2560; however, you should
be able to run it on other Arduino platforms such as the Nano. Building your own
Uno board is just as simple as linking up the Arduino to LabVIEW. For detailed
instructions on how to build your own Arduino Uno, check out the following URL:
http://www.instructables.com/id/Build-Your-Own-Arduino/.

Significance of using LabVIEW

LabVIEW is a graphical programming language built for engineers and scientists.
With over 20 years of development behind it, it is a mature development tool that
makes automation a pleasure.

The graphical system design takes out the complexity of learning C or C++,
which is the native language of Arduino, and lets the user focus on getting the
prototype complete.

LabVIEW significantly reduces the learning curve of development, because graphical
representations are more intuitive design notations than text-based code. Tools can be
accessed easily through interactive palettes, dialogs, menus, and many function blocks
known as virtual instruments (VIs). You can drag-and-drop these VIs onto the Block
Diagram to define the behavior of your application. This point-and-click approach
shortens the time it takes to get from the initial setup to a final solution.

Skills required to use LabVIEW and Arduino

With LabVIEW primarily being designed for and targeted at scientists and engineers,
it has not excluded itself from being used by hobbyists. Users who have zero
programming skills have been able to take entire projects to completion by just
following the intuitive process of dragging controls onto the diagram and setting it
up to automate.

We have designed this book to be completely intuitive, using parts that can be easily
found at your local electronic store.

a1

~ To get additional support when using LabVIEW with Arduino, have a
look at their forum at https://decibel .ni.com/content.

[6]

www.it-ebooks.info


http://www.instructables.com/id/Build-Your-Own-Arduino/
https://decibel.ni.com/content
http://www.it-ebooks.info/

Chapter 1

Downloading LabVIEW

To download or purchase LabVIEW, head out to http://www.ni.com/trylabview/.
LabVIEW can also be purchased with an Arduino Uno bundle from SparkFun. At the
time of writing this book, the URL for this bundle is https://www. sparkfun.com/
products/11225.

a1

~ If you did not download LabVIEW, do so now. To try LabVIEW without
purchasing it, click on Launch LabVIEW.

To install the product, click on all the default options. Note that the Arduino plugin
is not found in the initial install of LabVIEW.

Once LabVIEW is installed, launch the Visual Package Manager.

The VIPM will now launch. The VIPM application will look like this:

JKI VI Package Manager - =

; %]

VIPM Legend =

The package listed is not compatible with the
:ﬁ selected LabVIEW version or operating system.

The package installed is missing dependencies

{E or there is a dependency conflict.

Eﬁ The package installed is not the latest. There is
a newer version available,

m The package listed is installed in the current
LabVIEW version,

Downloading http: ffftp.ni.com/evaluation labview lvin fvipm/packages/ims_lib_hsl_toolsfims_lib_hs|_tools-1.0.0.6.5pec .. | no—

[71

www.it-ebooks.info


http://www.ni.com/trylabview/
https://www.sparkfun.com/products/11225
https://www.sparkfun.com/products/11225
http://www.it-ebooks.info/

Welcome to LabVIEW and Arduino

The VIPM will start downloading references to the package bundles into its
repository. The status bar is located at the bottom of the application; when the
references are downloaded, the status bar will switch to Ready.

Ready ...

Downloading the Arduino IDE

To download the Arduino IDE, go to http://arduino.cc/en/main/software.
This book covers the Windows versions of LabVIEW and Arduino; however,
the Mac versions will work just as well.

Click on Windows Installer to download the Windows version of the Arduino IDE.

\
‘\Q At the time of writing this book, the current version of Arduino

IDE is 1.5.8.

To install the product, click on all the default options.

Once the Arduino IDE is installed, click on the shortcut shown here to launch
the application:

©.0)

[8]

www.it-ebooks.info


http://arduino.cc/en/main/software
http://www.it-ebooks.info/

Chapter 1

The Arduino IDE will launch with the following screen:

sketch_jan05a | Arduino 1.5.5 = &

File Edit Sketch Tools Help

sketeh_janisa

void setup() {
J/ put your setup code here, to run once

void loopi) {
/4 put your main code here, to run repesatedly

Arduine Uno on COR1

Now that the default settings for each of the applications are set up and launched,
we are ready to start programming in each application.

[o]

www.it-ebooks.info


http://www.it-ebooks.info/

Welcome to LabVIEW and Arduino

Summary

In this chapter, you learned more about LabVIEW and Arduino. We also installed all
the software that we need to get LabVIEW and the Arduino IDE up and running. In
the next chapter, we will get the Arduino package for LabVIEW installed and upload
a basic sketch to the Arduino board.

[10]

www.it-ebooks.info


http://www.it-ebooks.info/

Getting Started with the
LabVIEW Interface
for Arduino

In this second chapter of the book, we will see how to hook up LabVIEW and
Arduino. We will connect an Arduino board to our computer, install a special
package for LabVIEW, and then control the Arduino board directly from LabVIEW.
As an example, we will simply light up the on-board LED of the Arduino Uno board
from the LabVIEW interface.

This chapter will really be the foundation for all the projects found in this book,
so make sure you follow all the instructions carefully.

Hardware and software requirements

On the hardware side, you will not need a lot for this first project of the book. The
only thing you will need is an Arduino Uno board (https://www.adafruit.com/
products/50). This is the same board that we will use in the rest of the book.

You can use other boards as well, such as the Arduino Due or the Arduino Pro.
However, I recommend that you stick with the Uno board for the whole book.

On the software side, you will need LabVIEW installed on your computer. For this
book, I used LabVIEW 2014 for Windows. Of course, you can use LabVIEW on other
platforms such as OS X or Linux. You can also use older versions, as the Arduino
package that we will use is compatible with LabVIEW 2011 and above. If you don't
have LabVIEW yet, you can find all the information at the following link:

http://www.ni.com/labview/

www.it-ebooks.info


https://www.adafruit.com/products/50
https://www.adafruit.com/products/50
http://www.ni.com/labview/
http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

After that, you will need the VIPM. This is free software that interfaces nicely with
LabVIEW and allows you to automatically install new packages for LabVIEW.

You can download it from the following link:
http://jki.net/vipm/download

If you encounter an error during the installation that says a version of the software is
already installed, make sure that you uninstall the old version first and then retry.

Finally, you will need to install the LINX package, which is a new package replacing
the old LabVIEW Interface for Arduino (LIFA).

You can get it at the following URL:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/212478

On this page, you will find a link to download the package.

LINX - LVH

Interface With Common Embedded Platforms
E-mail this Page | Print | PDF | Rich Text

« Interface with chipKIT, Arduino, and other
embedded platforms

« Access peripherals such as DIO, AlO, PWM, SPI,
and 12C from LabVIEW

« Take advantage of support for many common
sensors

« Communicate over USB, serial, Ethernet, and
wireless

« Easily deploy LINX code to NI myRIO and access
[+] Enlarge Picture 110

+ Quickly add a GUI to an embedded project

Download

[12]

www.it-ebooks.info


http://jki.net/vipm/download
http://sine.ni.com/nips/cds/view/p/lang/en/nid/212478
http://www.it-ebooks.info/

Chapter 2

Follow this link, and you will be taken to another page with the direct link for

the VI package manager.
installation process:

Click on the Download Toolkit button to start the

| 2 )Step Two: Download LINX - LVH

Download and install the toolkit after installing VIPM.

The VI package manager should open automatically and install the LINX package.

JKI VI Package Manager - olEl|
File Edit View Package Tools Window Help
3, = 3 =
" E (2 @B = 0| W 52004 [Y[Hn -] [

Name [\ Version Repaository Company A

jki_lib_rcf_wire_error_case_structure 1,2,1-1 JKI Package Network JKI Labs

jki_lib_state_machine 2.0.0-1 IKI Package Network KL

jki_rsc_toolkits_palette 1.1-1 JKI Package Network JKI Software

jki_tool_right_dick_framework 1.0.2,208-1 JKI Package Network JKI Labs

jki_tool_tortoisesvn 2.2.0.186-1 NI LabVIEW Tools Network IKI

Kawasaki Robotics Library 0.2.0.59 NI LabVIEW Tools Network ImagingLab

Kinesthesia Toolkt for Microsoft Kinec 1.0.0,5 NI LabVIEW Tools Metwark University of Leeds

Kuka Robotics Library 2.1.0.9 NI LabVIEW Tools Metwork Imaginglab

Kuka Robotics Library KR C4 3.0.2.11 NI LabVIEW Tools Network DigiMetrix

LabbitMQ 2.0.0.8 NI LabVIEW Tools Metwark Distria

LabJack Utilities 2.1.1.7 NI LabVIEW Tools Network Interface Innovations

LabSocket-Basic 2.8.3.55 NI LabVIEW Tools Network Bergmans Mechatronics LLC

LabVIEW Interface for Amazon 53 1.0.0.19 NI LabVIEW Tools Metwork National Instruments

LabVIEW Interface for Arduino 2.2.0.79 NI LabVIEW Tools Network National Instruments

LabVIEW Taskbar Progress bar API ~ 2.1.0.9 NI LabVIEW Tools Network NI

LAVA Palette 1.0.0.1 NI LabVIEW Tools Metwork LAVA

LTK Localization Toolkit for LabVIEW ~ 2.7.0.62 NI LabVIEW Tools Network SEA

LVH - Adept 1.0.0.496 NI LabVIEW Tools Network LVH
I L F N Labiic o
{; LVH - Toolbox 1.0.0.24 NI LabVIEW Tools Network LVH

LVH Leap 1.0.0.52 NI LabVIEW Tools Network LVH

LVH-Mest 1.0.0.9 NI LabVIEW Tools Metwork LVH

Mat File Toolkit 1.0.1.13 NI LabVIEW Tools Network EvaluMation, LLC

Maxon EPOS2 1.1.0.15 NI LabVIEW Tools Metwork Maxon Motor

MDI Tookit 10,121 NI LabVIEW Tools Metwork Lvs-Tools.co.uk

MGI 1D Array 1.0.0.28 NI LabVIEW Tools Network MGL

MGI 2D Array 1.0.0.15 NI LabVIEW Tools Network MGL

MGI Application Control 1.0.2.45 NI LabVIEW Tools Metwark MGL

MGI Bezier 1.0.0.13 NI LabVIEW Tools Network MGL

MET Brnlazn 1nnia RIT | hATEW! Tl Mahsinrle nacr h
Ready ...

[13]

www.it-ebooks.info


http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

If this does not work and you get an error, it may be linked to the download
servers, which may have an issue. In this case, simply retry the procedure,
and it should work.

Setting up LabVIEW and LINX

We will now set up LabVIEW and the LINX package so that all the projects of this
book can work correctly. Perform the following steps:

1. First, start LabVIEW. Don't create any project, but click on Tools and then
on Options.

) LabVIEW -8
File Operate Help

Measurement & Automation Explorer...
m Instrumentation »
L Merge »
Security »
User Name...

Convert Build Script...

Source Contrel 13

Recent
LLE Manager...

Import »

.
Shared Variable 3 \@ Open Existing
Distributed Systern Manager

Blank V|

Find Vls on Disk...

Prepare Example Vs for NI Example Finder...
Remote Panel Connection Manager..

Web Publishing Teol...

Actor Framework Message Maker...

Control and Simulation 13
» Create Data Link.. »| Community and Support »/| Welcome to LabVIEW

| Find LabVIEW Add-ons... Participate ;;v thaldlscusmun forums or Leam to use LabVIEW and upgrade
request technical suppart. i 5 versions
| T 5 q D rom previous version:

VI Package Manager...

y) LabVIEW  Advanced b |ore

1’

[14]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

2. You will be taken to the Options window of LabVIEW, where you can set all
your preferences. Right now, we have to go to the VI server menu.

B Options = B

Front Panel

Block Diagram ~
Controls/Functions Palettes Protocols

Environment

Search TCR/IP

Paths Port

Source Control

:g Printing

Menu Shortcuts Service name

Revision History Main Application Instance/Vl Server Use default
Security

Shared Variable Engine [] Activex

MNote: The VI Server options on this page only apply to the selected application instance. Refer

Web Server to the LabVIEW Help for mere information about VI Server options.

VI Scripting
[]Show VI Scripting functions, properties and methods
Display additional V| Scripting information in Context Help window

Accessible Server Resources
WVl calls
[W] VI properties and methods
Application properties and methods

Control properties and methods

oK || Cancel || Help

T

3. You can see that there are some options that you can change here.
Change all the options so that they match the options shown in the
preceding screenshot.

[15]

www.it-ebooks.info


http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

4. After that, we have to do the same on the VI Package Manager so that both
LabVIEW and the Package Manager can talk to each other. On systems like
Windows, it was automatically done, but it was not the case on OS X, for
example. To do so, simply open the Package Manager, go to the Tools |
Options menu, and then click on the LabVIEW icon.

JKI VIPM - Options

P =28 %28 8 &

VI Package VI Package Repository
General Metwork LabVIEW Configuration Builder Manager

LabVIEW

Advanced

In order for YIPM to function with vour version of LabVIEW it must have a checkmark next to the version name below:

Version Port Connection Verified

LabVIEW 2014 EENE

Global Connection Timeout

120 sec

B v Verify

Help CK Cancel
9 X

5. In this menu, make sure that the Port value next to your LabVIEW
installation is the same as the one you defined inside LabVIEW.
Correct it here if it is not the case, and confirm.

[16]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Testing the installation

We are now ready to test our LabVIEW/LINX installation and start testing our
LabVIEW interface for Arduino.

The first thing that you need to do is go to the main LabVIEW window; then, click on
Tools and then on LabVIEW Hacker, which is the link to access the LINX interface.
Then, click on LINX, and finally, click on LINX Firmware Wizard.

o LabVIEW -
File Operate Help

Measurement & Automation Explorer...

m Instrumentation »

L Merge »
Security »
User Name...

Convert Build Script...

Source Control »
LLE Manager...
Import »

Y
Shared Variable 3 L@ Open Existing
Distributed System Manager

Blank V!

Find Vls on Disk...

Prepare Example Vis for NI Example Finder...
Remote Panel Connection Manager...

Web Publishing Tool...

Actor Framework Message Maker...

Control and Simulation »
*  Create DataLink.. »/) Community and Support »/) Welcome to LabVIEW

| Find LabVIEW Add-cns... B fa,"‘?‘ﬁ?’ﬁif tﬁ?lc!isfgﬁon forums or Leam to use LabVIEW and upgrade

1 LabVIEW Hacker T LN Firmware Wizard... from previous versions.

VI Package Manager... Toolbox b myRIO Support...

-

| y) LabVIEW  Advanced [ew Blog Series

‘ Options...

This will take you to the LINX graphical interface that we will use to configure our
Arduino board for the project. Note that this step has to be done only one time; once
the right software is loaded into the Arduino board, you won't have to touch it again.

[17]

www.it-ebooks.info


http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

The wizard starts by asking us which board we are going to use. Configure this first
page by selecting the same settings as shown in the following screenshot:

B LINX Firmware Wizard = =

LINX

Firmware Wizard

Device Family

1]

Arduino |

Device Type

1]

Uno

Firmware Program Interface
.

1]

Serial / USB |

p— o - — . . -
‘ Q Help . 't.?.. Settings | | B Nedt | | B cancel J

After that, you will be prompted to select the Serial Port on which you want the
interface to communicate. As I only had one Arduino board connected at that time,
I could only select the port that Windows calls COM4. Of course, this will entirely
depend on your operating system.

A very simple way to find the COM or Serial Port that corresponds to your Arduino
board is to look at the list of proposed Serial ports. Then, disconnect your board and
see which Serial Port disappeared; this is the one that corresponds to your board.

[18]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Finally, confirm your choice of Serial Port, and start uploading the firmware on the
Arduino board.

= LINX Firmware Wizard =

LINX

Firmware Wizard

Uploading Device Firmware

— ]

Congratulations! You are now ready to use the LINX interface to control your
Arduino board.

If you had an issue at this step, you might have to install the NI-VISA package,
which you can download from this link:

http://www.ni.com/download/ni-visa-4.3/988/en/

[19]

www.it-ebooks.info


http://www.ni.com/download/ni-visa-4.3/988/en/
http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

At the end of this setup, LINX will offer to open an example program. Accept this
offer, and you will be taken to a new VL

B2 LVH-LINX.Ivlib:LINX - Blink (Simple).vi Front Panel * = =
File Edit Wiew Project Operate Teools Window Help %.
[ @] [0t Apprston Pt |- | | [ 2| - Tsewc A7)

~

Manual Blink Example
This example demonstrates how to blink an LED on a LINX device by clicking on an LED control in LabVIEW.

Instructions

1. Select the Serial Port associated with the LINX Device.

2. 5elect the Digital Qutput Channel connected to the LED.
3. Click the Run Arrow.

Circuit Schematic LINX Device Settings LED Control
Digital Outpul
LED Serial Port
" com4 (=]
R1 Digital Output Channel .
2200 = B ] A% Click Here »4
— GCND
i -
I . Stop
L v
c >

This is called the Front Panel of this example project from which you can control the
project. As you can see, this VI is really simple, as you can just control the value of a
digital pin of the Arduino by clicking on the green button on the right-hand side.

There are two things you need to modify here before you can start the VI. First, you
need to set the correct Serial Port in the Serial Port box. Just start by typing the name
of your port, and it will autocomplete what you are writing.

Then, you need to set which pin you want to control. I simply used pin number 13
here, as it is already connected to the on-board LED on the Arduino Uno board. If
you choose any other pin, you will be able to build a simple circuit on your board,
as shown in the illustration on the left-hand side of the preceding screenshot.

[20]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Let's now use the VI. To do so, simply click on the small arrow on the toolbar. Then,
wait for a while. Indeed, the VI will now try to initialize the communication with the
Arduino board. If you click on something immediately, it can produce an error. You
will know that the initialization process is complete when the Arduino board Serial
Port LEDs (TX & RX) are both turned on. Then, click on the green button; you will
see that the on-board LED on the Arduino board is immediately turning on or off.

Let's go a bit further and see what is behind that sketch. The details are beyond the
scope of this chapter, but it can be interesting to see what is going on at this stage.
To do so, go to Window and then click on Show Block Diagram. Note that you can
also use the Ctrl + E shortcut to switch between Front Panel and Block Diagram.
This will open the following window:

Digital Output Channel [[U5§

Serial Port

Digital Write _
1 Chan

Stop Button

1. Open a connection to the LINX device.

3. Write the value to the specified DO channel.
4. Close the connection to the LINX device.

5. Handle Errors

This is the Block Diagram window for this project, which is basically what is going
on behind the scenes. Some of the components are linked to elements of Front Panel,
such as the Serial Port value. You can see that the core of the project is this Digital
Write module that we use to send commands to the Arduino board.

For now, we really just wanted to have an overview of what is done in this diagram.
In the following chapters of the book, you will see how to build such block diagrams
from scratch to build your own projects.

[21]

www.it-ebooks.info


http://www.it-ebooks.info/

Getting Started with the LabVIEW Interface for Arduino

Summary

Let's summarize what we saw in this chapter. You learned how to install the
software components that are required for the whole book, such as the VI package
manager and the LINX interface for Arduino. This way, you will be able to control
Arduino boards from LabVIEW.

We also saw a basic example of a VI used to control an Arduino board, and as an
application, we controlled the on-board LED on the Arduino Uno board.

At this stage, it is really important that you perform every step of this chapter
correctly, as we will build all the projects in the book based on these steps. If you
want to go a little further, you can play with the Block Diagram window of this
chapter and modify it a bit. You can also play with the examples that come with
the LINX package, which are located in the examples folder of your LabVIEW
installation folder.

In Chapter 3, Controlling a Motor from LabVIEW, you will use what you have learned
so far to create your first useful application using LabVIEW and Arduino.

[22]

www.it-ebooks.info


http://www.it-ebooks.info/

Controlling a Motor
from LabVIEW

In this chapter, we will write our first VI (LabVIEW program) from scratch. As an
example, we will control a DC motor that is connected to the Arduino board. We will
build the VI from scratch and then control the direction and speed directly from the
LabVIEW graphical interface.

Hardware and software requirements

On the hardware side, you will first need an Arduino Uno board.

For the motor, I chose a small 5V DC motor from Amazon. You can choose any
brand that you want for the motor; the important thing is that it has to be rated to
work at 5V so that it can be powered directly from Arduino. You can also get a motor
that uses higher voltages or currents, but you will need to modify the hardware
configuration slightly.

You will also need the L293D motor driver to control the motor from Arduino. This
is a dedicated chip that we will use to easily control the motor from LabVIEW. You
can also use an alternative to this chip; for example, you can use an Arduino shield
that already integrates similar chips on the board. This is, for example, the case of the
official Arduino motor shield, which integrates the L298D chip. However, you would
need to modify the code slightly if you are using a shield instead of the chip alone.

Finally, you will need a breadboard and jumper wires to make all the connections.

www.it-ebooks.info


http://www.it-ebooks.info/

Controlling a Motor from LabVIEW

This is a list of all the components required for this chapter, along with the links to
find them on the Web:

* Arduino Uno (https://www.adafruit.com/products/50)

* L[293D (https://www.adafruit.com/product/807)

* DC motor (http://www.amazon.com/Motor-5V-80mA-200mA-torque/dp/
BOO1DAYVAG)

* Jumper wires (https://www.adafruit.com/products/1957)
* Breadboard (https://www.adafruit.com/products/64)
On the software side, you will need to have LabVIEW and the LINX package

installed. If this is not done yet, refer to Chapter 2, Getting Started with the LabVIEW
Interface for Arduino, to follow all the required steps.

Hardware configuration

Let's now see how to assemble the different components of the project.
This schematic will help you visualize the connections between the
different components:

" e LR )

98 7
DIGITAL |,

™ : :
= fx Arduino i

Made with D Fritzing.org

To assemble the components follow the steps:

1. First, put the L293D chip in the middle of the breadboard.

2. Then, take care of the power supply; connect the upper-left pin and the
lower-right pin of the L293D chip to the Arduino 5V pin.

3. Then, connect one of the pins at the lower center of the chip to the
Arduino GND pin.

[24]

www.it-ebooks.info


https://www.adafruit.com/products/50
https://www.adafruit.com/product/807
http://www.amazon.com/Motor-5V-80mA-200mA-torque/dp/B001DAYVA6
http://www.amazon.com/Motor-5V-80mA-200mA-torque/dp/B001DAYVA6
https://www.adafruit.com/products/1957
https://www.adafruit.com/products/64
http://www.it-ebooks.info/

Chapter 3

4. After that, connect the command signals coming from the Arduino, which
will be on pins 4, 5, and 6, and the Arduino Uno board.

5. Finally, connect the DC motor to the L293D chip, as shown in the schematic.
To help you out, here is a link to the pins' configuration of the L293D chip:
http://users.ece.utexas.edu/~valvano/Datasheets/L293d.pdf

This is what it should look like at the end:

When this is done, you can move to the next step; building the VI in LabVIEW to
control the DC motor.

Writing the LabVIEW program

We will now write a new LabVIEW program from scratch so that you can see how
the LINX interface for Arduino is working. To start the process, open LabVIEW and
create a new blank VI.

[25]

www.it-ebooks.info


http://users.ece.utexas.edu/~valvano/Datasheets/L293d.pdf
http://www.it-ebooks.info/

Controlling a Motor from LabVIEW

We already saw in the previous chapter that there are two main views in LabVIEW:
Front Panel and Block Diagram. In your new blank VI, these two views will be
empty. We will first take care of Block Diagram, where we will add the elements to
control the Arduino board.

Note that we will directly learn about LabVIEW and Arduino by building our
first project.

If you want to learn more about the LabVIEW software first, you can visit this link:
http://www.ni.com/getting-started/labview-basics/

To learn the basics of Arduino first, the best option is to explore the official
Arduino website:

http://arduino.cc

The first thing we will place on the blank VI is a While Loop that you can just
drag-and-drop from the Functions menu (which you can call at any moment with
a right-click). The While Loop can be found in the Structures submenu. This loop is
required for any Arduino board you want to control via LINX, and all the Arduino
commands will need to be placed inside this loop.

This is how it will look on your VI:

[26]

www.it-ebooks.info


http://www.ni.com/getting-started/labview-basics/
http://arduino.cc
http://www.it-ebooks.info/

Chapter 3

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

After that, we will place our first elements from the LINX package. The first elements
we need to place are the LINX initialize and stop elements, which are necessary to
tell the software where to start and where to stop. You can find both boxes in the
functions panel by going to the LabVIEW Hacker submenu.

From the same submenu, place two Digital Write blocks (which will be used to
control the motor direction) and one PWM block (which will be used to control the
motor speed). Note that you can find these blocks under the Peripherals menu. This
is the result:

LINK LINg LINK

n.ré# o
e

Digital Write Digital Write _ Set Duty Cycle
1Chan 1 Chan 1 Chan M

We need a PWM block here to control the speed of the motor. PWM stands for
Pulse Width Modulation and is used to control the motor's speed or to fade LEDs,
for example. On the Arduino board, it is an output of the board that can be set
from 0 to 255 on some pins of the Uno board.

To learn more about PWM, you can visit the following link:
http://en.wikipedia.org/wiki/Pulse-width modulation

Now, we need some way to tell LabVIEW in which order we want the sketch to be
executed. This is where the error and LINX resource come into play. Simply start
from the initialize block on the left-hand side and find the error pin on the block.

[27]

www.it-ebooks.info


http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Controlling a Motor from LabVIEW

Then, connect the error-out pin of this block to the error-in pin of the first digital
block and so on till the end block. After that, do the same with the LINX resource
pins. I also added a simple error handler at the end of the VI, just after the stop
block. This handler can be found under the Dialog & User Interface menu.

Litz o

ey
e
2
L»?'E

i

5] T . 4
Digital Write _ Digital Write _ Set Duty Cycle A m ...........
1 Chan 1 Chan 1Chan

=1 F

Now that we have the backbone of our project, we will feed the blocks with some
inputs. First, add a serial port to the initialize block by going to the serial port pin of
the block and right-clicking on it.

Then, go to Create | Control to automatically add a serial port input. You will
note that the corresponding control is automatically added to Front Panel as well.
Rename this control to serial Port so that we can identify it in Front Panel.

We will also create the same kind of controls for the pins of the blocks we placed
earlier. For each block, simply add inputs by right-clicking on the pin's input and
then going to Create | Control. Also, rename all of these controls so that we know
what they mean later in Front Panel.

Motor Direction Pin 1 Motor Direction Pin 2 PWM Channel

Serial Port

0¥ Yz
Digital Write Digital Write
1 Chan 1 Chan

[28]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

We also need to add an end condition for the While Loop. To do so, we need to
connect the little red circle that is located in the bottom-right corner of the While
Loop. In this chapter, we will simply connect the error wire directly to this red circle.
To do so, just select the input pin of the red circle and connect it to the bottom error
wire inside the VI.

Metor Direction Pin 1 Motor Direction Pin 2 PWM Channel

Serial Port

Set Duty Cycle _ 4 m ,,,,,,,,,,,
1 Chan

iy Y
Digital Write Digital Write _
1 Chan 1 Chan

We will now feed the values of the different blocks that we will change from Front
Panel to control the motor. At this stage, we will keep it simple: we will have some
on/ off control for the direction and a simple text box for the speed of the motor.

First, let's set the direction that we need to feed on the two first LINX blocks in our
VI. The L293D chip requires to be fed with opposite signals on the two direction pins
for the motor to rotate in a given direction. For example, when the first Digital Write
block is on, we want the second one to be off and vice versa.

To do so, we will first create a control block on the first Digital Write block, again by
right-clicking on the input pin and then going to Create | Control. Then, we will go
to the Functions menu, in Booleans, choose a Not element, and use it to connect our
control to the second Digital Write channel. This way, we are sure that these two
will always be in opposite states.

[29]

www.it-ebooks.info


http://www.it-ebooks.info/

Controlling a Motor from LabVIEW

Finally, also do the same for the PWM block by creating a control for the PWM
value. This one will simply be displayed as a text input inside Front Panel. We will
also rename this pin as Motor Speed so that we know what it means in Front Panel.

Maotor Direction Pin 1 Motor Direction Pin 2 PWM Channel

Serial Port

Digital Write Digital Write Set Duty Cycle
1 Chan 1 Chan 1 Chan M

Motor Direction

Motor Speeq

=
v

You can now go back to Front Panel and have a look at all the elements that were
automatically added for you. Organize them a little bit so that it is easier to control
the motor.

I simply arranged the Front Panel so that all the static controls, such as the serial port
and pins, are on the left-hand side (we will modify them only once) and the dynamic
controls for the motor are on the right-hand side:

Serial Port Moter Direction
L CoMa e -j'
Metor Direction Pin 1 Motor Speed

=[a =[100
Motor Direction Pin 2
Bls

PWM Channel

6 |

[30]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

It's now time to test the VI. First, set all the correct pins and your Serial Port,

as shown in the preceding image. Then, click on the little arrow in the toolbar
to start the VI.

You can now enter a value between 0 and 255 in the Motor Speed input; you will see
that the motor starts to rotate immediately. Note that we have to use a value between
0 and 255, as the Arduino Uno PWM output value is coded in 8 bits, so it has 256
values. You can also use the green button to change the direction of the motor.

Upgrading the interface

We now have a basic control for our DC motor, but we can do better. Indeed, it is not
so convenient to type in the speed of the motor into Front Panel every time you want
to modify something. This is why we will introduce another kind of control called a
Knob control.

To add such a control, start from Front Panel and right-click to open the Controls
panel. Then, go to Numeric and select the Knob control from the menu.

<1 Centrols Q, Search|
Maodern 4
I 2 e
L25] 21 Murneric
Mumeric
[ATE] * :
[214] = . e :
S wo o

Array, Matrix... Mumeric Co... Numeric Indi... Time Stamp ... Time Stamp ...

] 10-' 1n-’ E E
= 5- 5-
HEnum I - n_.

Ring & Enum | Vertical Fill 5I... Vertical Poin... Vertical Prog.. Vertical Grad...

‘D'D> - - —

oo
L 1} o5 0

i

!

Yariant & Cl...| Horizontal Fi... Horizontal P... Horizontal Pr... Horizontal G...

Sibver o o e . 7

,.i | ,.i_ | vy R
System & L z
e Knob Dial Meter Gauge

10 100~ =
Express sﬁ m-i SEN n
NET & ActiveX - =
i v

Tank Thermometer Horizontal 5. Vertical Scrol...

Select a Contro .

Framed Colo...

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Controlling a Motor from LabVIEW

Now, the knob is inserted in Front Panel; you can go back to Block Diagram where
you can remove the old text control from the PWM block and connect the new one
instead. You can rename it to Motor Speed as well.

Motor Direction Pin 1 Motor Direction Pin 2 PWIM Channel

Serial Port

Digital Write _ H Digital Write Set Duty Cycle
1 Chan 1 Chan 1 Chan i
Motor Direction Motor 5

eed

|

Now, we also need to set the knob so that its output value matches the accepted
input of the PWM block. Remember that the PWM block of LINX accepts values
between 0 and 255.

To do so, simply right-click on the Knob block and click on Properties. In this menu,
click on Scale and change the minimum and maximum values, as shown in the
following screenshot:

= Knob Properties: Motor Speed “

F Appearance | Data Type | DataEntry | 5cale | Display Format | Text Label ¢ » =

Scale Style
;:: - Major tick color [ Inverted
s0- . Minor tick color O Logarithmic
. Marker text color [ Show color ramp

¥| Interpolate color

Scale Range
Minimum
0
Maximum
235 n

Cancel Help

[32]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

You can now go back to Front Panel. You will see that the knob is now displaying
the correct values, going from 0 to 255. You can also resize the knob at this point so
that it is easier to use.

Serial Port Motor Direction
- o :

1 56 COMa [ ! .I.
A —— A - -../.-'

=] |4—| | Motor Speed
L= 120 140

—— 1‘}? oL 160
Sﬂ + r

Muotor Direction Pin 2 i ,1‘%
bl i b
|5 J 200
A Feul

~270
PWH Channel . =t
"IT: - ] 1 4 ﬁE&ﬂ]
S 0 255

It is now time to test the modified interface. As you did earlier, click on the little
arrow inside the toolbar. You can now simply turn the knob to instantly change
the rotation speed of the motor.

Summary

Let's summarize what we did in this chapter. We connected a DC motor to Arduino
via a dedicated chip to control DC motors. Then, we built an interface in LabVIEW so
that we could easily control the direction and speed of this motor. This will be very
useful in Chapter 7, A Remotely Controlled Mobile Robot, of this book, especially when
we will build a robot controlled via LabVIEW.

To go further with what you learned in this chapter, there are some things you can
do. You can add more motors to the projects and command them all from a single
VIin LabVIEW. You can also use what you learned in this chapter to control simpler
components such as LEDs.

This chapter was all about controlling outputs. In the next chapter, we will see how
to get data from the inputs of the Arduino board and automate measurements using
LabVIEW.

[33]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station
with Arduino and LabVIEW

In this chapter, we will build a simple weather-measurement station based on
Arduino, which will be monitored from LabVIEW.

We will connect a temperature sensor to the Arduino board as well as a
light-level sensor. We will connect both of these sensors to the LabVIEW

interface so that we can get the measurements from them in real time. Finally,

we will use the indicators available in LabVIEW to build a nice graphical interface
for the weather-measurement station.

Hardware and software requirements

On the hardware side, you will first need an Arduino Uno board.

We will also use two kinds of sensors for this project: a temperature sensor and
light-level sensor. For temperature, we will use a TMP36 sensor, which is an analog
temperature sensor that returns a signal depending on the ambient temperature. We
will see that there is a block existing in LabVIEW that can automatically convert this
output voltage to the ambient temperature.

To measure the ambient light level, we will use a photocell, which is a resistor
whose resistance changes with the ambient light. Along with this photocell, we will
also need a 10K Ohm resistor. This resistor will be used along with the photocell to
convert the ambient light level to an output voltage that will go from 0V to 5V. This
voltage will then be converted to a usable variable using the Arduino analog-to-
digital converter.

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station with Arduino and LabVIEW

Finally, we will also use a breadboard and some jumper wires to make all the
connections between the components.

This is the list of all the components you will need for this project:

* Arduino Uno (https://www.adafruit.com/products/50)
e TMP36 (https://www.adafruit.com/products/165)

* Photocell and a 10K Ohm resistor (https://www.adafruit.com/
products/161)

* Jumper wires (https://www.adafruit.com/products/1957)
* Breadboard (https://www.adafruit.com/products/64)

On the software side, you will need to have LabVIEW and the LINX package
installed. If this is not done yet, refer to Chapter 2, Getting Started with the LabVIEW
Interface for Arduino, to follow all the required steps.

Hardware configuration

Let's now see how to assemble the different components of the project.
This schematic will help you visualize the connections between the
different components:

T . :
gxmm Arduino

To configure the Arduino Uno follow the steps given:

1. Place the TMP36 sensor and the photocell on the breadboard.

2. Then, connect the power supply from the Arduino board to the breadboard;
5V of the Arduino board goes to the red power rail, and GND goes to the
blue power rail.

[36]

www.it-ebooks.info


https://www.adafruit.com/products/50
https://www.adafruit.com/products/165
https://www.adafruit.com/products/161
https://www.adafruit.com/products/161
https://www.adafruit.com/products/1957
https://www.adafruit.com/products/64
http://www.it-ebooks.info/

Chapter 4

3. For the TMP36 sensor, there are three pins to connect: VCC, GND, and the
output. The output signal is in the middle of the sensor; connect it directly to
the analog pin Al of the Arduino board.

4. Then, looking at the flat part of the sensor, as shown in the schematic,
connect the right pin to the blue power rail and the left pin to the red
power rail.

For the photocell, connect the 10K Ohm resistor in series with the photocell.

Then, connect the other pin of the resistor to the blue power rail and the
other pin of the photocell to the red power rail of the breadboard.

7. Finally, connect the common pin between the photocell and resistor to the
analog pin AQ of the Arduino board.

This is how it should look at the end:

Finally, connect the board to your computer via USB. We are now ready to write the
LabVIEW software for our project.

[37]

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station with Arduino and LabVIEW

Writing the LabVIEW program

Follow these steps for starting your LabVIEW program:

1.

2.

4.

The first thing you need to do here is create a brand new VI in LabVIEW.
Then, just as you did in the previous chapter, you need to create a While
Loop that will contain all the elements that we will use to interact with
the board.

As you did in the previous chapter, add an initialize element before the
While Loop and a stop element after the While Loop. Also, add a simple
error-handling element after the While Loop.

We will need two elements inside the While Loop: one to read data from the
TMP36 sensor and one to read data from the photocell. Luckily, for us, there
is already an element for the TMP36 sensor in the LINX toolbox; this element
will automatically calculate the temperature based on the measured data
from the sensor.

You will find this element in the Sensors submenu inside the LINX functions.

For the photocell, simply place an Analog Read box inside the While Loop.
You will also find this box inside the LINX functions; you can access it by
navigating to Peripherals | Analog | Read.

LINK LINY
=
1 Chan

6.

Then, we need to connect the different blocks together. To do this, perform
these steps:

1. First, connect the error inputs and outputs together, starting from
the left with the initialize element; connect the error output from this
element to the input of the next element and so on. After that, do
the same with the LINX resource pins, which is the top wire in the
following screenshot:

[38]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

T 57

%

Analog Read - TMP36 *
1 Chan

The next step is to create the controls to set the parameters of the
elements. For the initialize element, you need to create a serial port
control to set the correct serial port corresponding to your Arduino
board. To do so, simply right-click on the serial port input pin and
then go to Create | Control.

Then, do the same to create controls for the pins of the TMP36
element and the Analog Read element. Also, name these controls
so that you know to which element they are connected.

Finally, connect the While Loop end condition (the red circle in the

bottom-right corner) to the yellow error wire.

Serial Port

YISA
Ll

Photocell Pin Temperature Sensor Pin

iz
[I]:]

Analog Read _ TMP36 ~
1 Chan Q

[39]

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station with Arduino and LabVIEW

7. We can now create the output of the two central elements in our program.
In order to do so, right-click on each element output pin and then go to
Create | Indicator. Also, name each of the outputs so that we know which

measurement is displayed by each indicator.

Photocell Pin Temperature Sensor Pin

Serial Port

ISA
NS

[~ —i';:"! HIL
Analog Read -TMP36 M
1 Chan #

Light Level

Temperature

We are done with Block Diagram at this point. We can now test the program by
going back to Front Panel. You will see that you have several elements already on
Front Panel that correspond to the controls and indicators we created earlier.

You can organize the elements in two categories: the controls on the left-hand side,

and the indicators on the right-hand side.

Serial Port
| F N/A [~]
Photocell Pin

B ]
Temperature Sensor Pin

Light Level

(]

Temperature
.

()

Now, set the controls so that they match our project. To do so follow the steps given:

1.

First, select the desired serial port from the Serial Port combobox

corresponding to your Arduino board; this should be automatically
proposed by the LabVIEW software. In my case, it was COM4.

[40]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 4

2. Also, set the analog pin to which the photocell is connected (0) and do the
same for the TMP36 sensor (1).

3. Then, you can run the program by clicking on the small arrow on the toolbar.
You will see that the measurements appear immediately on Front Panel:

Serial Port Light Level

5 COM4 (-] 3.22266

Photocell Pin Temnperature
[0 20.8008

Temnperature Sensor Pin
p .

El.

-
i

As you can see in the preceding screenshot, the Temperature measurement
immediately makes sense: 20.8 degrees Celsius. However, we can ask about the
value returned by the Light Level sensor.

It simply corresponds to the voltage measured on the analog pin on the Arduino
board. Indeed, if you play with your hand on top of the sensor, you will see that
the value of the light level goes from 0 (complete darkness) to 5 (bright light on the
sensor). If the value varies with the ambient light level, it means that the sensor is
working correctly.

Upgrading the interface

At this stage, we know that we have our two sensors working and that they were
interfaced correctly with the LabVIEW interface. However, we can do better; for
now, we simply have a text display of the measurements, which is not elegant

to read.

Also, the light-level measurement goes from 0 to 5, which doesn't mean anything for
somebody who will look at the interface for the first time.

Therefore, we will modify the interface slightly. We will add a temperature gauge to

display the data coming from the temperature sensor, and we will modify the output
of the reading from the photocell to display the measurement from 0 (no light) to 100
percent (maximum brightness).

[41]

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station with Arduino and LabVIEW

We first need to place the different display elements. To do this, perform the
following steps:

1. Start with Front Panel. You can use a temperature gauge for the temperature
and a simple slider indicator for Light Level. You will find both in the
Indicators submenu of LabVIEW. After that, simply place them on the right-
hand side of the interface and delete the other indicators we used earlier.

2. Also, name the new indicators accordingly so that we can know to which
element we have to connect them later.

Serial Port
| [ come =]
L Temperature
100-
Phetocell Pin Light Level a0-=
B ma—— o
40-
Temperature Senser Pin 20_:
A R L e R 0=

b ]
1ray

2iF |
| PO —

Then, it is time to go back to Block Diagram to connect the new elements we just
added in Front Panel. For the temperature element, it is easy: you can simply
connect the temperature gauge to the TMP36 output pin.

Photocell Pin Temperature Sensor Pin

Serial Port

el : L
S S i Analog Read TMP26E
1Chan Tveze -]

Light Level

=

|

For the light level, we will make slightly more complicated changes. We will divide
the measured value beside the Analog Read element by 5, thus obtaining an output
value between 0 and 1. Then, we will multiply this value by 100, to end up with a
value going from 0 to 100 percent of the ambient light level.

[42]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

To do so perform the following steps:

1. The first step is to place two elements corresponding to the two mathematical

operations we want to do: a divide operator and a multiply operator.

You can find both of them in the Functions panel of LabVIEW. Simply

place them close to the Analog Read element in your program.

Serial Port

Photocell Pin

Temperature Sensor Pin

=

i F
LG

Analog Read _ TMP36 ~
1 Chan [& IMp36 -]
|> Light Level

[}

2. After that, right-click on one of the inputs of each operator element, and go to
Create | Constant to create a constant input for each block. Add a value of 5

for the division block, and add a value of 100 for the multiply block.

Finally, connect the output of the Analog Read element to the input of

the division block, the output of this block to the input of the multiply
block, and the output of the multiply block to the input of the Light

Level indicator.

Serial Port

Photocell Pin

Temperature Sensor Pin

] — Tl

Analog Read _ TMP26 |
1 Chan #
Light Level

[43]

www.it-ebooks.info


http://www.it-ebooks.info/

A Simple Weather Station with Arduino and LabVIEW

You can now go back to Front Panel to see the new interface in action. You can run
the program again by clicking on the little arrow on the toolbar.

Serial Port
% Com4 (-]
L Temperature
100-
E’hntucell Pin . Light Level 90
(=110 —— 60
~ E
Temperature Sensor Pin 20—5
- < 0=

ST

You should immediately see that Temperature is now indicated by the gauge on the
right and Light Level is immediately changing on the slider, depending on how you
cover the sensor with your hand.

Summary

Let's summarize what we did in this chapter. We connected a temperature sensor
and a light-level sensor to Arduino and built a simple LabVIEW program to read
data from these sensors. Then, we built a nice graphical interface to visualize the
data coming from these sensors.

There are many ways you can build other projects based on what you learned in

this chapter. You can, for example, connect higher temperatures and/or more
light-level sensors to the Arduino board and display these measurements in

the interface. You can also connect other kinds of sensors that are supported by
LabVIEW, for example, other analog sensors. For example, you can add a barometric
pressure sensor or a humidity sensor to the project to build an even more complete
weather-measurement station.

One other interesting extension of this chapter will be to use the storage and plotting
capabilities of LabVIEW to dynamically plot the history of the measured data inside
the LabVIEW interface.

In the next chapter, we will build a smart wireless power switch based on Arduino
and LabVIEW so that you can control a device remotely and measure its power
consumption from LabVIEW.

[44]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart
Power Switch

In this chapter, we will build a remotely controlled smart power switch. This switch
will be a do-it-yourself version of the power switches that you can find in many
stores. We will be able to switch a device on and off and also measure the current
consumption of the connected device. As the LabVIEW LINX interface for Arduino
only supports serial-based communication at the time of writing this book, we will
use XBee to communicate wirelessly with the project.

We will first connect the required components to our Arduino board: a relay module,
a current sensor, and an XBee shield. Then, we will write a LabVIEW program to
control the relay module and measure the current consumption of the connected
device. Finally, we will see how to enable XBee communication between your
computer and the project.

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

Hardware and software requirements

Let's first see what we need for this project. Apart from the usual Arduino Uno
board, you will need XBee modules, both for Arduino and your computer. Here is
the Arduino board with an XBee shield mounted on it, along with one XBee module:

00000000000

As your computer doesn't come with built-in XBee, you will also need a module on
your computer to communicate with the Arduino project via XBee. To do so, I used
an USB XBee explorer module from SparkFun, along with an XBee module mounted
on it:

[46]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

To control an electrical device remotely, you will also need a relay module. For this
module, I simply used a 5V relay module from Pololu:

For the current sensor, I used a board from ITead Studios, based on the ACS712 chip.
Of course, you can use any board based on this chip.

To actually connect an electrical device (I used a 30W desk lamp for this project) to
your project, you will need some power cables. You will need two of them: one male
power plug that you will use to connect the project to the mains electricity and one
female power plug to connect the electrical device to the project. You will also need
some electrical wires to make the different connections and some screw terminals to
connect the cables together. Here are the two power cables I used for this project:

[47]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

Note that, of course, though you can create the entire project without the power part,
which can be done later, the principles remain exactly the same.

This is the list of all the components you will need for this project:

* Arduino Uno (https://www.adafruit.com/products/50)
* Relay module (http://www.pololu.com/product/2480)

* ACS712 current sensor (http://imall.iteadstudio.com/im120710011.
html)

* XBee Arduino shield (https://www.sparkfun.com/products/12847)

*  XBee module x2 (https://www.sparkfun.com/products/11215)

* XBee explorer module (https://www.sparkfun.com/products/11812)
* Jumper wires (https://www.adafruit.com/products/1957)

* Breadboard (https://www.adafruit.com/products/64)

On the software side, you will need to have LabVIEW and the LINX package
installed. If this is not done yet, refer to Chapter 2, Getting Started with the LabVIEW
Interface for Arduino, to follow all the required steps.

Configuring the hardware

Let's now see how to assemble the different components of the project.

1. Plug the XBee module on the XBee shield and then the XBee shield on the
Arduino board. Also, connect the power supply of the Arduino board to the
breadboard: connect the 5V pin to the red power rail on the breadboard and
the GND pin of the Arduino board to the blue power rail.

2. Then, we will take care of the relay module. The relay module has three pins:
VCC, GND, and SIG. First, connect the VCC pin of the relay to the red power
rail on the breadboard, the GND pin on the blue power rail, and the SIG pin
to the Arduino pin 7.

3. For the current sensor, it is actually quite similar. The current sensor module
has three pins as well: VCC, GND, and OUT. First, connect the VCC pin of
the current sensor module to the red power rail on the breadboard, the GND
pin on the blue power rail, and the OUT pin to the Arduino analog pin AO.

[48]

www.it-ebooks.info


https://www.adafruit.com/products/50
http://www.pololu.com/product/2480
http://imall.iteadstudio.com/im120710011.html
http://imall.iteadstudio.com/im120710011.html
https://www.sparkfun.com/products/12847
https://www.sparkfun.com/products/11215
https://www.sparkfun.com/products/11812
https://www.adafruit.com/products/1957
https://www.adafruit.com/products/64
http://www.it-ebooks.info/

Chapter 5

This is what the project looks like without the power cable:

We will now take care of the power part of the project. Using the mains
directly is dangerous, and you should ensure that you have all the
M electrical connections done as described here before plugging the project
Q to the mains. Of course, you can skip this part and come back to it later.
Also, never touch the project while it is in use and plugged to the mains;
always disconnect the socket from the mains first before changing
anything in the project.

[49]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

Here are the electrical connections that you need to do for this part:

com Male Power Plug
p—
Relay NC e
NO
Female Power Plug
Current + Lamp
Sensor

Note that as we are using AC voltages here, you do not need to care about the
polarity of the cables. I used a standard 30W desk lamp, but you can use any device
of your choice as long as you respect the maximum current/power rating of the relay
module you choose. Also, note that the current sensor we are using here is rated at
10A maximum.

Finally, also make sure that you connected the XBee explorer board to your
computer via an USB cable.

Controlling the relay

We will now build the first part of our LabVIEW program to control the relay. We
basically just want an on/ off button to control the relay remotely. For now, connect
your Arduino board directly to your computer via USB; we will use XBee later. Also,
make sure that the switch on the XBee shield is set to DLINE.

[50]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

As usual, create a new blank VI, place a While Loop, and place one Init block from
the LINX interface before the loop and one end block after the While Loop. Also,
place a simple error box at the end.

Then, place a Digital Write function near the beginning of the loop; we will use
this to control the relay. Also, link the LINX resources pins and the error in/out
pins together.

n.rg

i

Digital Write _
1 Chan

[51]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

After that, we will create the standard inputs and outputs to make the program
work. Start by creating an input for the serial port on the Init block just before the
loop. You can create this input by always right-clicking in a blank space of the
window and then going to Create | Control. Then, create a control for the Arduino
pin input of the Digital Write block and one control for the input of this block (to
control the relay). Finally, don't forget to connect the end condition (the little red
circle) of the While Loop to the bottom error wire inside the loop.

Relay Pin
Serial Port

%
Digital Write
1 Chan

Relay Contral

l

We are now ready to test this very basic program to control the relay. Save the
program and go to Front Panel. I simply organized the elements as usual: the inputs
on the left-hand side and the controls and indicators on the right-hand side.

Seri;l Porj ] Relay Control
| i nin [ S
Relay Pin

B |

[52]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Set the correct Serial Port (it should appear in the list) and the correct Relay Pin (7),
and you are ready to test the program by clicking on the small arrow in the toolbar.
Note that it takes 1-2 seconds for the board to be ready, which you can see when both
the serial LEDs are activated on the board. After that, you can use the green button.
You should hear the relay switch on and off and also see that the device connected to
the project is switched on and off accordingly.

If it is not working at this point, there are several things you can check. First, make
sure that the LINX interface sketch is still loaded onto your board, and repeat the
procedure from Chapter 2, Getting Started with the LabVIEW Interface for Arduino, if
needed. Also, make sure that the relay is connected correctly to the Arduino board,
as we saw in the previous section.

Measuring the current

We will now upgrade the LabVIEW program by inserting all the functions required
to measure the current consumption of the project. We will first keep things at a basic
level; we will just read data from the analog input on which the current sensor is
connected and print this data in Front Panel.

It starts by inserting an Analog Read function (also found in the LINX functions box)
just after the Digital Write block.

Relay Pin
Serial Port

.| 1 Fo
Digital Write _ Analog Read |
1 Chan 1 Chan

Relay Contral

]

[53]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

After that, you need to create the relevant input and output for this function; we
need to send the pin as an input and get the readout from the Arduino board as

an output. As usual, to create an input or output, right-click on the pin and use the
Create menu. Also. give relevant names to the input and output to know what they
correspond to in Front Panel.

Relay Pin Current Sensor Pin

Serial Port

Digital Write Anzlog Read
1 Chan 1 Chan

Relay Central Current Sensor Qut

57 =
7
) {2

You can now go back to Front Panel and organize the elements by adding the
Current Sensor Pin box on the left-hand side and the Analog Read output on the
right-hand side. You can now already test the program by clicking on the little arrow
in the toolbar. You will see that the readout we added is displaying a value that
changes whether the relay is activated or not. This value is directly the output of the
Analog Read function, so it is between 0 and 5 (as the Arduino is operating between
0 and 5 volts):

Serial Port Relay Control
% coma 8 —
Relay Pin

Current Sensor Out

Current Sensor Pin | 119141

0

However, this is not very useful yet. For example, if the current flowing through the
relay is null, we want 0 to be displayed inside the box. To do so, we will first take

a measurement when the program starts and then subtract this value from the live
readout coming from the sensor.

[54]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 5

This is done by adding another Analog Read box before the While Loop and then
subtracting the value from this first measurement to the measurement done inside
the While Loop.

Current Sensor Pin

Relay Pin

,,,,, = R

Analog Read
1 Chan

1 Chan 1 Chan

‘Digital Write v”

Analog Read _” (N~ J —

Relay Contrdl Current Sensor O t

You can now test the program again. This time, the value read by the sensor should
oscillate around 0.

Serial Port Relay Control

% COM4 m] A

&

Relay Pin

[ ]

=1k
AI—] Current Sensor Out
Current Sensor Pin 2

=0

However, this is not perfect yet; we simply have an indication about the current
flowing through our switch, but what we would really like to know is how much
current is flowing through the switch. We will, therefore, calculate the effective
current flowing through our device, using a formula given by the manufacturer:

Effective_current = analog_measurement /185 * 1000000 / 1.414

[55]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

This formula can be easily translated into LabVIEW by a set of mathematical functions:

Current Sensor Pin

Relay Pin
—JE e
e
; ; 1 [l R

: : { s |
Analog Read | . [Digital Write Analog Read
1 Chan 1Chan 1 Chan

Relay Cnntrcil

At this point, you can test the program again. However, you will see that the
readings are fluctuating a lot. This is due to the analog nature of the sensor that
we are using to measure the current.

Therefore, we need to add an additional functionality to our program; we need to
make several measurements from the Arduino board, average them, and then use
these values to calculate the current consumption of the device. This can be done
easily in LabVIEW by using a combination of two elements: one For Loop and
second the Mean function.

First, put the Analog Read function in the middle of your program inside a For Loop
which you can find in the same menu as the While Loop we used earlier. Also, create
a constant in front of the little N to indicate how many iterations we want to do. I
used 100 in this example; this provides a good averaging of readings coming from
the board.

Then, search inside the function menu for Mean and look for the same Mean
function as shown in the screenshot:

[56]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Current Sensor Pin

o]

Relay Pin

Serial Port

Lin

N el d

""""" w 5]

............................

T.r
L1

Digital Write _
1 Chan

nalog Read
1Chan

Relay Control

Then, simply place this function after For Loop and connect the input of this function
to the output of For Loop and the output of the Mean function (the averaged reading
from the Arduino board) to the subtract operator.

You also need to do the same for the first measurement that we are doing before the
big While Loop, as shown in the following screenshot:

Current Sensor Pin

Relay Pin
Serial Port

N ] ] U8

0 ] P 74—

Digital Write _
1 Chan

Relay Control

o

5

Analog Read
m 1 Chan

You can now test the project again. This time, you should see that we greatly reduced
the fluctuations of the output of the current reading. If this works, congratulations!
You just built a smart electrical power switch that you can control from LabVIEW!

[57]

www.it-ebooks.info


http://www.it-ebooks.info/

Making an XBee Smart Power Switch

Controlling the project via XBee

Finally, we will see how to use the XBee connection on our project to control it
remotely from LabVIEW. Luckily, for us, LINX makes it totally transparent to
control the project via XBee.

There are just a few things we need to change. First, most of the XBee devices you
can buy are set to work at a serial speed of 9600 bauds. Therefore, you will need to
change this into the Init function of LINX (the first box we put on the program, just
before the While Loop). Double-click on this box, go to Block Diagram of this VI,
and then add a constant set to 9600 in the INIT DEVICE block to override the default
serial speed.

fo[ "LINX", Default =

| it
| DEVICE

[Initialize LINX Device|

Once this is done, you can go back to Front Panel of our Main.vi. Here, you will
need to change the Serial port to use the XBee explorer board, and not the serial port
from your Arduino board. Simply choose the other serial port and not the one you
used earlier.

Before it can work, there is one last step you have to perform: set the little switch on
the XBee Arduino shield to UART so that the shield can now send data directly to
your Arduino board serial port.

[58]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

You can now test the sketch again. This time, you will see that the LEDs on both the
XBee explorer board and on your XBee shield are blinking; this means that all the
communication is now done via XBee.

Serial Port Relay Control

" COM4 mJ

Relay Pin

ng Current

0.93324¢
Current Sensor Pin

Br_]

Of course, at this point, you can disconnect the project from your computer, install it
wherever you want in your home, and simply power it using the DC power plug on
the Arduino board.

Summary

Let's summarize what we did in this chapter. We built a wireless power switch
based on Arduino; we controlled this switch using LabVIEW. We connected a relay
module, a current sensor, and an XBee shield to an Arduino board to build the
hardware part of our project. Then, we built a program from scratch to control the
project via LabVIEW.

There are, of course, several ways to improve this project. You can, for example, add
more relays and current sensors to the project in order to control two or more devices
at the same time. From here, it is really easy to modify the interface to incorporate
these news elements.

In the next chapter, we will continue to use XBee, but this time, for a different
application: an application to monitor several motion sensors in order to create
a simple alarm system.

[59]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

A Wireless Alarm System
with LabVIEW

In this chapter, we will use Arduino and LabVIEW to create a simple alarm system
that will monitor several motion sensors via XBee. We will connect the motion
sensors to an Arduino board, along with an XBee Arduino shield.

Then, we will write a basic LabVIEW program to monitor these motion sensors from
LabVIEW. We will start with one sensor only and then extend this to several sensors.
Finally, you will see how to use a motion sensor via XBee so that you can place the

project wherever you want in your home.

Hardware and software requirements

Let's first see what we need for this project. Apart from the usual Arduino Uno
board, you will need XBee modules, both for Arduino and your computer. Here is
the Arduino board with an XBee shield mounted on it, along with one XBee module:

000

.
-
o

.0
o

-]
o

L3

0000000000
%00000000000
00000000000

s

Q0000
00000000
00000000000
00000000000

www.it-ebooks.info


http://www.it-ebooks.info/

A Wireless Alarm System with LabVIEW

As your computer doesn't come with built-in XBee, you will need a module on
your computer to communicate with the Arduino project via XBee. To do so,

I used an USB XBee explorer module from SparkFun, along with an XBee module
mounted on it:

(@)
5
e
~
=
F .
>
<
o
m
m

Note that for this chapter, you can also use a Bluetooth module to interface your
Arduino board with your computer, without any major change in the code.

Finally, you will also need one or many motion sensors. I used a simple PIR motion
sensor for this project; you can find this sensor on many resellers' websites. The most
important point here is that the sensor should be compatible with the Arduino Uno
voltage levels, that is, the sensor should have a maximum voltage output of 5V.

This is the list of all the components you will need for this project:

Arduino Uno (https://www.adafruit.com/products/50)

Motion sensor (http://www.adafruit.com/products/189)
*  XBee Arduino shield (https://www.sparkfun.com/products/12847)
XBee module x2 (https://www.sparkfun.com/products/11215)

XBee explorer module (https://www.sparkfun.com/products/11812)

Jumper wires (https://www.adafruit.com/products/1957)

[62]

www.it-ebooks.info


https://www.adafruit.com/products/50
http://www.adafruit.com/products/189
https://www.sparkfun.com/products/12847
https://www.sparkfun.com/products/11215
https://www.sparkfun.com/products/11812
https://www.adafruit.com/products/1957
http://www.it-ebooks.info/

Chapter 6

On the software side, you will need to have LabVIEW and the LINX package

installed. If this is not done yet, refer to Chapter 2, Getting Started with the LabVIEW
Interface for Arduino, to follow all the required steps.

Hardware configuration

We will now assemble the different components of the project by performing the
following steps:

1. Plug the XBee module on the XBee shield and then the XBee shield on the
Arduino board.

2. Then, connect a motion sensor. Of course, you will need to repeat the
operation if you want to connect several motion sensors to the board.

3. A motion sensor has three pins: VCC, GND, and OUT (or SIG). First, connect
the VCC pin to the Arduino 5V and the GND pin to the Arduino GND pin.

4.

Connect the OUT pin of the motion sensor to pin number 8 on the
Arduino board.

This is how the fully assembled project looks, with one motion sensor connected:

00000000%

00000000

------

3
00000000000

[63]

www.it-ebooks.info


http://www.it-ebooks.info/

A Wireless Alarm System with LabVIEW

Finally, also make sure that you connected the XBee explorer board to your
computer via a USB cable.

Interfacing one motion sensor

Now that the hardware part of the project is configured, we will write a basic
LabVIEW program to handle a one motion sensor and display its state in the
LabVIEW interface. The steps are as follows:

1. Start by creating a new blank VI and add the required components for
any LINX program: one LINX Init function, one LINX stop function,
and one simple error box at the end. Also, add a While Loop in the middle
of the VI; here, we will add the functions to read the data that comes from
the motion sensor.

2. The motion sensor we are using for this project simply returns a logic level of
0 if no motion is detected; otherwise, it returns a logic level of 1. To read data
from the motion sensor, we need a Digital Read function. As usual, you can
find this function inside the LINX submenu when placing a function from
LabVIEW. Place this function in the middle of the While Loop:

[64]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 6

LINE

AT
Digital Read _ m
1 Chan

Connect the LINX resource pins together (the top wires of the screenshot),
and also connect the error inputs/outputs together (the bottom wires). Also,
connect the While Loop end condition (the little circle in the bottom-right
corner) directly to the wire of the error link, which is the wire at the bottom
of this screenshot:

J'II!!
k)

Digital Read
1 Chan

@

We can now add some inputs and outputs to our program. We need two
inputs: one to set the serial port of the Arduino board and one to set the pin
on which the motion sensor is connected.

To do so, right-click on the desired pin and then go to Create | Control to
create a new input. Also, give relevant names to these inputs so that we can
easily identify them from the front panel.

[65]

www.it-ebooks.info


http://www.it-ebooks.info/

A Wireless Alarm System with LabVIEW

We also need to create one output for the motion sensor. To do so, right-click
on the output of the Digital Read block and go to Create | Indicator.

Also, give a name to this indicator to show that it is the output of the

motion sensor.

Motion Sensor Pin
I |J'|.|§
£
Digital Read _
1 Chan

Serial Port

WISA
LT

Motion Sensor

L

4. We are now ready to test the program we just wrote. Go to the Front Panel
and organize the elements as usual: controls on the left and indicators on the
right, just as shown in the following screenshot:

Serial Port

.

Motion Sensor

5 COM4 |f71] i

i

Mation Senzor Pin

.

&

Of course, you need to set the correct Serial Port by selecting it from the list and also
set the Motion Sensor Pin to the pin we used earlier, that is, 7.

You can now start the program by clicking on the little arrow on the toolbar. Give it
1-2 seconds to initialize, and then, pass your hand in front of the motion sensor.
You will see that the indicator turns green immediately. After a while, if no motion
is detected anymore, it will return to normal.

[66]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Connecting more motion sensors

Now that we have one motion sensor working, we will interface more of them with
our Arduino board and LabVIEW.

First, make sure that you have more than one sensor connected to your Arduino
board. If necessary, repeat the hardware configuration procedure again. For example,
in the following screenshot, I used two motion sensors: one connected to pin number
7, as we did earlier, and one connected to pin number 8.

We will now modify the LabVIEW program to accommodate two sensors. Of course,
if you have more of them connected, you could simply connect the sensor as you did
before for each additional sensor you have.

To add another sensor, you need to repeat the procedure we did earlier. First, create
a new Digital Read function and connect the LINX resource wires (the top wires)
and the error input/output wires to the new box so that it looks like this screenshot:

Serial Port Motion Sensor 1 Pin Motion Sensor 2 Pin
T e fesg]
L0

Digital Read _||. Digite) Read
1Chan 7|} U |

i Motion Sensor 1

Motion Sensor 2

L ) — o)

Also, add a new input for this new box (to set the pin of this new motion sensor) and
one indicator as an output. Make sure that you give relevant names to these new
inputs and outputs as well, as we now have two motion sensors in the Front Panel.

[67]

www.it-ebooks.info


http://www.it-ebooks.info/

A Wireless Alarm System with LabVIEW

You can now go back to the Front Panel to see the result. As you can see, we now
have one additional input and one additional output; this is the state of the new
motion sensor:

Serial Port

L COM3 "J

Motion Senszor 1

i

Motion Sensor 1 Pin
o F
Motion Sensor 2 Pin

rfi 3 ﬂ

As usual, I recommend that you organize the Front Panel with all the inputs on one
side and all the indicators on the other side.

Now, we can test the program again. Make sure that the serial port is still correctly
set and that you correctly set the motion sensors' pins. Then, click on the little arrow
on the toolbar to run the program.

You will see that now, both motion sensors are reacting independently, depending
on which motion sensor is in the detection mode.

Making the project wireless with XBee

In this final section of the chapter, we will use the XBee shield that we connected to
the project earlier in order to control a wireless alarm system from LabVIEW.

[68]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

The first step to use XBee, instead of the USB connection, is to set the little switch
on the XBee Arduino shield to the UART position. Earlier, it was on DLINE, just
s shown in the image:

Then, we need to specify again that we are using a serial speed of 9600 bauds for the
XBee module, just as we did in the previous chapter. Indeed, we need to do this as
the XBee modules are configured to use a speed of 9600 bauds by default. To know
more about UART communications, you can visit the following resource http://
en.wikipedia.org/wiki/Universal asynchronous receiver/transmitter.

To change this, simply double-click on the Init function that we placed just before
the While Loop in the diagram. This will open the VL.

[69]

www.it-ebooks.info


http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://www.it-ebooks.info/

A Wireless Alarm System with LabVIEW

Once this is done, go to the Block Diagram of this VI and look for a function called
INIT DEVICE. Once you find it, create a constant for the pin called Override Serial
Speed and enter a value of 9600, just as shown in the following screenshot:

UM LINK", Default @™

| T
| DEVICE

[Initialize LINX Device|

You can now save this VI and close it. You can also return to the VI that contains the
program for the two motion sensors. You now simply need to select the serial port
that corresponds to your XBee USB explorer board. To know which serial port you
need to select, simply take the one you did not use earlier when working with the
project via the USB port.

You can now start the program again by clicking on the little arrow on the top
toolbar. You will notice that the serial LEDs on your XBee shield and on the explorer
board are now constantly blinking; this means that communication was established
via XBee.

At this point, pass your hand again in front of one sensor; you will see that the
corresponding indicator immediately changes on the Front Panel.

[70]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Summary

We created a simple alarm system based on Arduino and controlled it via LabVIEW.
We interfaced motion sensors to our Arduino board and monitored the state of
these sensors via LabVIEW. We also used XBee modules to monitor our alarm
system wirelessly.

There are, of course, several ways to go further with this project. You can add even
more motion sensors to the projects. However, at the time of writing this book, it
was not possible to include several XBee modules and have several distant Arduino
projects communicating with a central LabVIEW interface. However, we can also
make the project more visual, for example, by connecting an LED to one pin of the
Arduino board and making this LED blink every time motion is detected on one
motion sensor.

In the next and final chapter of the book, you will use everything you learned so far
to build an Arduino-based mobile robot that you will control using LabVIEW.

[71]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

A Remotely Controlled
Mobile Robot

In the final chapter of this book, you will take everything you have learned so far
about Arduino and LabVIEW to build a remotely controlled mobile robot. We will
build a robot using a kit that is already made, add some Arduino boards and a
wireless module, and finally, control everything from LabVIEW.

Hardware and software requirements

Let's take a look at the components required for this robot. The first thing that we
will need is the robot chassis itself. You have several options for this part, but I
recommend the DFRobot MiniQ 2 wheels chassis. It is a tiny robot with two motors
and two wheels and is compatible with most Arduino boards. I chose this robot

for its low price point and because it is really easy to use with Arduino. However,
you can choose any robot chassis that has two wheels and that is compatible with
Arduino boards.

You will then require several Arduino boards to interface with the robot. The first
board is the usual Arduino Uno board, which will serve as the brain of the robot.
You will also need a DFRobot motor shield to control the two wheels of the robot
from Arduino. Finally, you will need an Arduino XBee shield in order to mount an
XBee Series 1 module. This will be used to control the robot remotely.

After that, you will need an URM37 Ultrasonic Sensor to measure the distance in
front of the robot. To get more information on this sensor, you can visit the following
link to the manual http://www.dfrobot .com/wiki/index.php?title=URM37

V3.2 Ultrasonic_Sensor_ (SKU:SEN0001)

www.it-ebooks.info


http://www.dfrobot.com/wiki/index.php?title=URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001
http://www.dfrobot.com/wiki/index.php?title=URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001
http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

You will also need a LiPo battery to power up the robot. For this purpose, we will
utilize a 7.2V LiPo battery.

We will also use an XBee USB controller with another XBee Series 1 module to
control the robot from the computer.

The following list shows all the components required for this project:

* Arduino Uno (https://www.adafruit.com/products/50)
* DFRobot MiniQ robot chassis (http://www.dfrobot .com/index.

php?route=product/product&search=minig&description=true&produ
ct_id=367)

* DFRobot motor shield (http://www.dfrobot .com/index.
php?route=product /producté&product id=59&search=motor+shield&des
cription=true)

e URMB3Y7 ultrasonic sensor (http://www.dfrobot .com/index.
php?route=product/product&product id=53&search=ultrasonic&descr
iption=true)

* 7.4V LiPo battery (http://www.dfrobot .com/index.php?route=product/
producté&product id=4 89&search:battery&description:true)

* Arduino XBee shield (https://www.sparkfun.com/products/12847)
*  XBee module x2 (https://www.sparkfun.com/products/11215)
* XBee explorer module (https://www.sparkfun.com/products/11812)
* Jumper wires (https://www.adafruit.com/products/1957)
On the software side, you will need to have LabVIEW and the LINX package

installed. If this is not done yet, refer to Chapter 2, Getting Started with the LabVIEW
Interface for Arduino, to follow all the required steps.

Hardware configuration

We will now assemble the different components of the project by performing the
following steps:

1. Assemble the robot chassis using the instructions given by the manufacturer
of the chassis. Then, assemble the metal spacers to mount the Arduino Uno
board and other boards later. Finally, mount the ultrasonic sensor in front of
the robot, as shown in the image:

[74]

www.it-ebooks.info


https://www.adafruit.com/products/50
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&search=miniq&description=true&product_id=367
http://www.dfrobot.com/index.php?route=product/product&product_id=59&search=motor+shield&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=59&search=motor+shield&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=59&search=motor+shield&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=53&search=ultrasonic&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=53&search=ultrasonic&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=53&search=ultrasonic&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=489&search=battery&description=true
http://www.dfrobot.com/index.php?route=product/product&product_id=489&search=battery&description=true
https://www.sparkfun.com/products/12847
https://www.sparkfun.com/products/11215
https://www.sparkfun.com/products/11812
https://www.adafruit.com/products/1957
http://www.it-ebooks.info/

Chapter 7

The next step is to assemble the Arduino Uno board on the robot. Mount the
Arduino Uno board on top of the spacers. Then, screw it to the spacers with
at least two screws for a better hold so that it is held firmly in place.

[75]

www.it-ebooks.info


http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

3. We can now mount the motor shield. Put it on top of the Arduino Uno
board that we assembled earlier. Then, connect it to the motors via the screw
terminals. Make sure that you are using the same polarity for each motor. For
example, if you have connected the red wire from motor 2 to the M2+ header,
connect the red wire from motor 1 to the M1+ header.

4. We will now mount the ArduinoXBee shield on the robot and the XBee
module on top of the shield:

o

e A

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

5. Let's now interface the ultrasonic sensor with the robot. There are three
pins we need to connect for this sensor: VCC, GND, and the pulse output
from the sensor. If we look at the sensor from the pins' side and starting
from the left-hand side, the first pin is the VCC pin, the second pin is the
GND pin, and the fourth pin corresponds to the pulse output. Connect VCC
to the Arduino 5V pin, GND to Arduino GND, and finally, the pulse output
of the sensor to Arduino pin 3.

6. Before using the robot with LabVIEW, connect the battery to the DC jack
input of the Arduino Uno board.

7. Finally, plug the XBee USB explorer module with an XBee Series 1 module on
it to your computer.

Moving the robot around

We will now build a simple LabVIEW sketch to control the wheels of the robot.
You will be able to set the speed of the robot and change the direction of each wheel.

1. It starts as usual with an empty While Loop where we will add all our blocks
to control the robot. We can also place the usual Init and stop blocks, and a
simple error box at the end:

[77]

www.it-ebooks.info


http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

2. We will place four functions inside the main While Loop, two per wheel of
the robot. Indeed, for each wheel, we need two functions per wheel / motor:
one Digital Write function to set the direction of the motor and one Set Duty
Cycle function to set the speed the motor. Place these blocks inside the loop,
and connect the usual LINX resource wires and error links so that it looks
like the following screenshot:

Direction Motor 1 Pin

m
Dig ..
1 Chan

Direction Motor 1

------ i

mily
Set Duty Cycle _
1 Chan

3. Inthe preceding screenshot, we already created some control blocks for the
first Digital Write function, and we connected the end condition of the While
Loop to the error wire. Also, we already created a Serial Port control for the
corresponding input of the Init block.

4. You can now create more control for each input of the functions we just
added in the While Loop by right-clicking on each input. Note that for each
function, you need to create two controls: one for the value of the input itself
and one for the pin. Also, make sure that you give relevant names to each
control you place at this step, as it will be useful when placing the different
elements on Front Panel.

We can now go back to Front Panel. As usual, I have added all the controls of
the pins on the left-hand side and the control of the value of the functions on the
right-hand side.

[78]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Serial Port

W M/A fTI]

Direction Motor 1 Pin
| -f. ¥ ] Direction Motor 1 S'_F_:_'EE__'#__ME'E?"_J

mmAEmm. B ]
Speed Motor 1 Pin " (LS J
B

Speed Motor 2

. Direction Motor 2
Speed Motor 2 Pin .. E. 0 J
6|

Direction Motor 2 Pin

-

It is now time to try our robot interface for the first time. First, choose the correct
serial port from the list and make sure that the little switch is set to DLINE on your
ArduinoXBee shield.

Then, you have to set the correct pins for the motor shield; you can find out about

these pins in the DFRobot motor shield documentation at this link http: //www.
dfrobot.com/wiki/index.php?title=Arduino Motor Shield (L293)_ (SKU:_
DRI0OO001)

We can now test the robot. Make sure that the battery is connected to the Arduino
Uno board, and click on the little arrow on the toolbar to start the program. Also,
make sure that the robot has the wheels in the air, because it is still attached via the
USB cable to your computer.

[79]

www.it-ebooks.info


http://www.dfrobot.com/wiki/index.php?title=Arduino_Motor_Shield_(L293)_(SKU:_DRI0001)
http://www.dfrobot.com/wiki/index.php?title=Arduino_Motor_Shield_(L293)_(SKU:_DRI0001)
http://www.dfrobot.com/wiki/index.php?title=Arduino_Motor_Shield_(L293)_(SKU:_DRI0001)
http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

Then, you can try to enter values in the speed controls (between 0 and 255), and
you should see that the wheel immediately starts to rotate. You can also change
the direction of a given wheel by clicking on one of the green buttons shown here:

Serlal Port

L COMS [+]

El 7 Direction Motor 1 3peed Motor 1
b el =1

i R =1 100
Speed Motor 1 Pin ' |

IEle
= irecti Speed Motor 2

Direction Motor 2 h
Speed Mator 2 Pin ‘. E:

Dlrectmn Motor 2 Pin

-

We will now improve this interface a little bit. Indeed, it is not convenient to change
the speed of the robot by writing down the speed. Instead, we will use sliders to
control the robot with just our mouse.

Still on the Front Panel, remove the two text inputs for speed and add two sliders
with pointers instead. Name these new controls, and open their Properties panels
to change the maximum value of the sliders to 255.

Serial Port
% COMS [~]

Direction Motor 1 Pin

-

Direction Motor 1 S il

-

Speed Mater 1 Pin 0 100 200 255

[E[e
. Direction Motor 2 Speed Motor 2
Speed Motor 2 Pin a "\-..I .
=1 '-. __.a’l gooot

[ |
0 100 200255

j

=1

D|rect|or| Motor 2 Pin

Sl

i

[80]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Of course, you will then have to go back to Block Diagram to connect the new
controls to the Set Duty Cycle boxes.

Direction Motor 1 Pin Direction Moter 2 Pin

Digital Write _|
1 Chan

o

Serial Port
Direction Motor 1

77777777777777777777777777777777777

Speed M

Speed Motor |

Speed Motor 2

R e
]

You can now go back to the Front Panel and test the new controls; you will now be
able to control the speed of the robot just by dragging the cursors of the sliders.

Measuring the front distance

We will now upgrade the program we just wrote to include the front ultrasonic
sensor. We will simply display the value measured by the sensor in the Front Panel
of our program.

The first step is to make the appropriate modifications to the Block Diagram.

To measure the distance in front of the sensor, we will use a pulseln block that
you can find in the LINX toolbox. Basically, the sensor will return a pulse whose
length is proportional to the distance in front of the sensor.

Place the pulselIn() function in the remaining space inside the While Loop, and
then, reconnect the LINX resource wire and the error wire so that they integrate with
this new function. Also, create controls for the pin of the pulseIn() function, and set
the function's upper-left pin to Active Low by creating a new control.

[81]

www.it-ebooks.info


http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

For the output, we first need to divide the output of the box by 50 to get a reading in
centimeters. Use a simple divide function for this. After this divide function, create
a simple text output to display the measured value in centimeters. The following
screenshot summarizes all the changes made at this point:

Direction Motor 1 Pin Direction Motar 2 Pin

[ - -

Digital Write _|
1 Chan

Serial Port
Direction Motor 1

ffffffffffffffffffffffffffffffffffff

Speed M

iz

i i
Speed Motor 2 Pin - :

Set Duty Cycle | Set Duty Cycle _
1Chan ﬁ 1Chan
Speed Motor

Speed Motor 2
b
J
;

[

To help you out, this screenshot is a zoom-in view of the new functions we added to
integrate the ultrasonic distance sensor:

{0 Active Low vl Frent Distance (cm)

DE

Ultrasonic Sensof Pin

=
&

[82]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 7

We can now go back to the Front Panel. The first step here is to arrange the different
controls again and add the output text from the sensor on the far right part of the
panel. Also, set the pin of the pulseIn() function to the correct value (3).

We can now test the program again. Simply run it and watch the distance measured
by the sensor; it will be updated in real time, as you move your hand in front of it.

Serial Port
% COM3 (=]
Direction Maotor 1 Pin

f: 7 Direction Motor 1 Speed Motor 1

) ) \,....,....,... Front Distance (cm)
Speed Motor 1 Pin b 4 0 100 200255 i |
— , — 63.66
=6 \
Direction Moter 2 Speed Motor 2
Speed Moter 2 Pin r A . S

— N— T
=lE — 0 00 200255
Direction Motor 2 Pin

=]

)

4

53

Ultrasonic Sensor Pin
- -

=

|-

)

Controlling the robot wirelessly

We now have a functional robot, as we interfaced all the motors and sensors with
LabVIEW. However, we are still stuck with the USB cable to send data to the robot,
so it makes it impractical to move the robot around. In this last part of the chapter,
we will quickly see how to use the XBee module that we installed on top of the robot
to control it remotely.

You can already disconnect the USB cable from the robot and make sure that the
battery is still connected. Also, make sure that the XBee USB explorer board is
connected to your computer.

[83]

www.it-ebooks.info


http://www.it-ebooks.info/

A Remotely Controlled Mobile Robot

Then, go inside the Init box of the program and open its Block Diagram. Make sure
that the serial speed is set to 9600 bauds, just as shown in the following screenshot:

| T
| DEMICE

[Initialize LINX Device|

Now, go back to the Front Panel of our main program and change the serial port so
that it matches the serial port of the XBee explorer board. Finally, also make sure that
the switch on the ArduinoXBee shield is set to UART.

Direction Motor 1

Direction Motor 2

Speed Motor 2 Pin

B v

Direction Motor 2 Pin

-

Eom)

4

Ultrasonic Sensor Pin

Speed Motor 1
+ S

LR
0 1 20025

Speed Motor 2
v e

g
0 i 20025

Front Distance {cm)

.

0 |

S

You can now run the program again. You will see that the LEDs on the ArduinoXBee
shield and explorer board are blinking continuously; this means that communication
has been established between both. You can now control your mobile robot without

any wires!

[84]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Summary

You learned how to build an Arduino-powered robot, which can be controlled
remotely via XBee. We also interfaced this robot with LabVIEW, first to move it
around and then, to measure the distance in front of the robot via an ultrasonic sensor.

There are, of course, several ways to improve this project. The first one will be to
add more sophisticated controls for the robot. For example, you can use the basic
command blocks we defined for the robot to create controls that make the robot
move forward, backward, turn left, and so on. You can also create automated
commands inside the program, for example, to make the robot go backward
when it detects an obstacle in front of the sensor.

I hope that this book gave you a good overview of what is possible using LabVIEW
along with Arduino. The possibilities are endless, and you can create really exciting
projects using LabVIEW to control your Arduino projects, and all this without
writing one line of code! At the time of writing this book, the LINX toolbox is still
limited to the basics, but as it improves in the future; it will allow us to build even
more amazing projects using the combination of LabVIEW and Arduino.

[85]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Symbol

7.4V LiPo battery
URL 74

A

ACS712 current sensor
URL 48

Arduino
about 5
features, for LabVIEW 6
skill requisites 6
URL 26

Arduino IDE
downloading 8, 9
URL 8

Arduino Uno
configuring 36, 37
URL 24

Arduino XBee shield
URL 74

B

Breadboard
URL 24

C

configuration, Arduino Uno 36, 37

D

DC motor
controlling, from LabVIEW 23

Index

hardware and software requisites 23, 24
URL 24
DFRobot MiniQ robot chassis
URL 74
DFRobot motor shield
URL 74,79

H

hardware and software requisites, DC motor
hardware configuration 24, 25
interface, upgrading 31-33
LabVIEW program, writing 25-31
hardware and software requisites,
remotely controlled mobile robot
about 73
front distance, measuring 81-83
hardware configuration 74-77
robot, controlling wirelessly 83, 84
robot, moving 77-81
hardware and software requisites, weather
station
hardware configuration 36, 37
interface, upgrading 41-44
LabVIEW program, writing 38-41
hardware and software requisites,
wireless alarm system
hardware configuration 63, 64
motion sensor, interfacing 64-66
motion sensors, connecting 67, 68
project wireless, making with XBee 68-70
hardware and software requisites,
XBee Smart Power Switch
about 46, 47
current, measuring 53-57

www.it-ebooks.info


http://www.it-ebooks.info/

hardware, configuring 48-50 N
project, controlling 58, 59

relay, controlling 50-53 NI-VISA package

URL 19

I

P
integrated development
environment (IDE) 5 photocell

URL 36

J project
controlling, via XBee 58, 59

Jumper wires Pulse Width Modulation (PWM)
URL 24 reference link 27

L R

L293D Relay module
URL 24 URL 48
URL, for configuration 25 remotely controlled mobile robot

LabVIEW hardware and software requisites 73
Arduino, features 6
DC motor, controlling 23 T
downloading 7, 8
features 6 TMP36
installation, testing 17-21 URL 36
setting up 14-16
skill requisites 6 U
software, reference link 26 L
URL 7,11 UART communications
using, with Arduino 6 URL 69 .

LabVIEW Interface for Arduino (LIFA) URMS7 Ultrasonic sensor
hardware requisites 11-13 URL 73,74
software requisites 11-14
URL 12 \

LI,NX . . virtual instruments (VIs) 6
1nst.allat10n, testing 17-21 Visual Package Manager (VIPM)
setting up 14-16 about 5

M URL 12

Motion sensor
URL 62

[88]

www.it-ebooks.info


http://www.it-ebooks.info/

W XBee explorer module
URL 48, 62,74

weather station XBee module x2
building 35 URL 48
hardware and software requisites 35, 36 XBee Smart Power Switch
wireless alarm system, LabVIEW hardware and software requisites 46-48

hardware and software requisites 61, 62

X

XBee

project, controlling via 58, 59
XBee Arduino shield

URL 48, 62

[89]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Thank you for buying
rusLisning T Programming Arduino
with LabVIEW

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub . com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info


http://www.it-ebooks.info/

PUBLISHING

Arduino Home Automation
Projects
ISBN: 978-1-78398-606-4 Paperback: 132 pages

Automate your home using the powerful
Arduino platform

1. Interface home automation components
with Arduino.

Arduino Home 2. Automate your projects to communicate
Automation Projects wirelessly using XBee, Bluetooth and WiFi.

3. Build seven exciting, instruction-based home
automation projects with Arduino in no time.

Arduino Android Blueprints
ISBN: 978-1-78439-038-9 Paperback: 250 pages

Get the best out of Arduino by interfacing it with
Android to create engaging interactive projects

1. Learn how to interface with and control
Arduino using Android devices.

2. Discover how you can utilize the combined
Arduino Android power of Android and Arduino for your
Blueprints own projects.
i - - 3. Practical, step-by-step examples to help you
unleash the power of Arduino with Android.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

PUBLISHING

Arduino Robotic Projects
ISBN: 978-1-78398-982-9 Paperback: 240 pages

Build awesome and complex robots with the power
of Arduino

1. Develop a series of exciting robots that can sail,
go under water, and fly.

2. Simple, easy-to-understand instructions to
program Arduino.

Arduino Robotic Projects

3.  Effectively control the movements of all types
of motors using Arduino.

C Programming for Arduino
ISBN: 978-1-84951-758-4 Paperback: 512 pages
Learn how to program and use Arduino boards with

a series of engaging examples, illustrating each
core concept

1. Use Arduino boards in your own electronic
hardware and software projects.

2. Sense the world by using several sensory
components with your Arduino boards.

3. Create tangible and reactive interfaces with
your computer.

4. Discover a world of creative wiring and
coding fun!

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to LabVIEW 
and Arduino
	What makes Arduino ideal for LabVIEW
	Significance of using LabVIEW
	Skills required to use LabVIEW and Arduino

	Downloading LabVIEW
	Downloading the Arduino IDE

	Summary

	Chapter 2: Getting Started with the LabVIEW Interface 
for Arduino
	Hardware and software requirements
	Setting up LabVIEW and LINX
	Testing the installation

	Summary

	Chapter 3: Controlling a Motor 
from LabVIEW
	Hardware and software requirements
	Hardware configuration
	Writing the LabVIEW program
	Upgrading the interface

	Summary

	Chapter 4: A Simple Weather Station with Arduino and LabVIEW
	Hardware and software requirements
	Hardware configuration
	Writing the LabVIEW program
	Upgrading the interface

	Summary

	Chapter 5: Making an XBee Smart Power Switch
	Hardware and software requirements
	Configuring the hardware
	Controlling the relay
	Measuring the current
	Controlling the project via XBee

	Summary

	Chapter 6: A Wireless Alarm System with LabVIEW
	Hardware and software requirements
	Hardware configuration
	Interfacing one motion sensor
	Connecting more motion sensors
	Making the project wireless with XBee

	Summary

	Chapter 7: A Remotely Controlled 
Mobile Robot
	Hardware and software requirements
	Hardware configuration
	Moving the robot around
	Measuring the front distance
	Controlling the robot wirelessly

	Summary

	Index



