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Preface

The recent advances in smartphone technologies have culminated in a surge in
smart applications and use cases for these applications across the spectrum from
government to gaming industry. This has placed a significant burden on the
computation and other related resources (like memory) on the mobile devices. In
order to serve nextgen application in this resource-constrained environment, it has
become necessary to judiciously offload some of the necessary computation to the
edge, fog, and cloud resources, optimally trading off all relevant parameters.

This book presents a new solution called spectrum-aware cognitive mobile
computing, which uses dynamic spectrum access and management concepts from
wireless networking to offer overall optimized computation offloading and schedul-
ing solutions that achieve optimal trade-offs between the mobile device and wireless
resources. This solution uses the latest developments in radio access technologies to
achieve this goal.

This book shows that it is essential to consider mobile offloading holistically,
from end to end, and use the power of multi-radio access technologies that have
been recently developed. The future of mobile computing lies in a holistic approach
to spectrum management and cloud offloading. Technologies covered in this book
have applications to mobile computing, edge computing, fog computing, vehicular
communications, mobile healthcare, and mobile application developments such as
augmented reality and virtual reality.

This book can serve as a supplementary reading resource for graduate students,
researchers, and practitioners interested in mobile computing and offloading.

New York, NY, USA Seyed Eman Mahmoodi
Hoboken, NJ, USA Koduvayur Subbalakshmi
Durham, NC, USA R. N. Uma
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Chapter 1
Introduction

Advances in mobile networks, web technologies, and popularity of smartphones
have led to the unprecedented growth of wireless data traffic. In the year 2012
alone mobile web traffic increased by 70% and is expected to grow up to 13
times by 2017. Computationally heavy applications which also produce large data,
like real-time visual information reporting, video-intensive games, and computer
vision-based applications, are now available on resource-constrained mobile devices
[11]. For example, user-generated photographs and videos as well as geo-location
enabled applications are being developed to increase the efficiency and speed of
relief efforts in natural and man-made disasters. After the Boston bombings, Reddit
had a section dedicated to helping the investigation by soliciting videos and images
and USTREAM saw more than 130 K people listening to the Boston police scanner
simultaneously at one point on their mobile devices.

This uptick in sophisticated mobile applications has not only increased the
computational demand on the end device itself, but has also created an increasing
load on the carrier’s core networks. Add this to the projected growth in mobile
customers due to the advent of fifth generation (5G) mobile communications with
its promises of lower battery consumption, reduced traffic latency (unlike LTE),
enhanced reliability (like software-defined services) as well as perfect coverage and
the ability to support bandwidth hungry applications such as HD video streaming,
and the pressure on the core networks will be enormous. Further demands on the
core networks and the radio spectrum, in general, will be placed as the Internet of
Things (IoT) matures. Gartner Inc. estimates that a total of about 8.4B “things”
will be connected worldwide by the end of 2017.1 To compound matters even
further, the current mobile development trends indicate a shift towards cheaper
phones with fully functional OSes and applications. This implies that mobile devices

1http://www.gartner.com/newsroom/id/3598917.

© Springer Nature Switzerland AG 2019
S. E. Mahmoodi et al., Spectrum-Aware Mobile Computing,
Signals and Communication Technology,
https://doi.org/10.1007/978-3-030-02411-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02411-6_1&domain=pdf
http://www.gartner.com/newsroom/id/3598917
https://doi.org/10.1007/978-3-030-02411-6_1


2 1 Introduction

will be expected to “do more with less” in terms of delivering highly sophisticated
applications under more stringent battery power constraints as well as runtime
deadlines.

One of the solutions to deal with the resource crunch at the mobile device is to
offload heavier computation to resource rich clouds [16]. Services like the Amazon
web services (AWS)2 have made the power of cloud computing accessible to the
average user. The need for smarter computations with low latency has also fed the
growth of mobile edge computing (MEC), which brings the power of resource rich
computation closer to the user [43].

This book makes a distinction between computation offloading [10, 12, 21, 32]
and data offloading [6, 13, 25, 26]. Computation offloading refers to actually
completing part of the computation on a remote resource rich server and transferring
the data related to these computations between entities as needed.

Although offloading to a remote cloud can address the resource crunch at
the end device, it can also add to the aforementioned burden on the wireless
backbone [24]. In order to develop workable solutions, it is essential to consider
both problems simultaneously. The network level problem can be addressed by
using multiple radio interface technology (multi-RAT) which is now becoming a
mainstay of 5G wireless systems. The heterogeneous network (HetNets) paradigm,
enabling multi-RATs is expected to become a mainstay of future wireless networks.
Simultaneous access to multiple RATs can be implemented at the transport layer,
network layer, or PHY/MAC layer of wireless devices. The growth of mobile
virtual network operators (MVNO) will also facilitate such multi-RAT opportunistic
spectrum access. Google’s recent deal with Sprint and T-Mobile is an example in
this direction; LTE-WiFi aggregation is another. Under the circumstances, spectrum
aware mobile computation offloading will fare better than solutions that merely
focus on traditional performance metrics like energy, bandwidth (within a single
network).

1.1 Factors Affecting Computation Offloading

Several factors affect computation offloading, the most obvious one being the local
resources in the mobile device like battery power, CPU cycles, and memory usage.

Although intuitively, offloading all of the computations to a resource rich cloud,
a distributed cloud or a smart access point, may sound like the most cost-effective
solution in terms of conserving resources, several studies have shown that partial
offloading is better in terms of a net utility function that not only minimizes local
resource consumption such as energy, memory, and CPU cycles, but trades-off inter-
component communication costs arising from executing some components locally
and some remotely [34].

2http://aws.amazon.com/workspaces/.

http://aws.amazon.com/workspaces/
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Fig. 1.1 Variation in Uplink/Downlink delay of WiFi and LTE interfaces in indoor and outdoor
wireless environments versus average size of data transferred between HTC smartphone and the
NSFCloud server in order to run the mobile video navigation application

The second factor affecting cloud offloading is the delay and difference in delay
between the available RATs. Several experiments were conducted to measure the
end-to-end quality and availability of T-Mobile LTE in Hoboken, New Jersey, and
Stevens campus WiFi network to measure delay parameters in indoor and outdoor
environments. The experimental setup consisted of a client HTC Vivid smartphone
with a 1.2 GHz dual-core processor accessing NSFCloud3 as a remote server.
Experiments were conducted by running a video navigation multi-component
application (14 components) on the smartphone in a client configuration. The
NSFCloud server was set up in a server configuration for all the experiments. Uplink
and downlink traffic were captured at the client side using the Android SFTP tool4

for experiments.
Figure 1.1 shows the variations in the observed uplink and downlink delay values

in indoor and outdoor environments for WiFi and LTE wireless radios for a range

3www.chameleoncloud.org/nsf-cloud-workshop/.
4http://www.lysesoft.com/.

www.chameleoncloud.org/nsf-cloud-workshop/
http://www.lysesoft.com/
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of data size from 10 KB to 105 MB of data. As can be seen from Fig. 1.1, delay in
outdoor wireless can be smaller than delay in indoor wireless environment for some
ranges although indoor wireless delays are lower on an average. Such high random
delays are unacceptable for computation offloading.

The third factor that will affect offloading decisions is the amount of data
that must be transferred to and from the mobile devices, between the elements
of the computations at runtime. Consider a video navigation application with
several components. These will typically include: video capture at the camera,
preview processing, graphical tasks, color detection, feature extraction, Canny edge
detection, face recognition, and clustering.

Clearly the data input and output to each of these components can be significant.
For example, output data size of four different application components showed the
following values for output data: 12 MBs for text to speech recognition with runtime
of 120 s; 104 MBs for augmented reality (AR) with runtime of 25 s; 309 MBs for
3D flipping with runtime of 40 s; and 598 MBs for face detection with runtime of
60 s. Examples of such applications include 3D interactive mobile video gaming
[5], augmented reality like SpyGlass project with the provision of a visualization
framework for wireless sensor networks (WSNs) [4, 17], and the applications related
to disaster preparedness and recovery supported by federal agencies including
FEMA.5

Since cost of offloading different data rates will be different and will also affect
the total application runtime because of communication delays, data rates also must
be factored when computing the optimal offloading policy.

Therefore, in order to meet the constraints on the mobile devices, the wireless
spectrum/backbone, and the application demands, it is essential to think about
mobile cloud offloading holistically, in a way that includes all of these factors. We
coin the phrase “spectrum aware mobile computational offloading” to describe
this category of ideas.

In this book we will first discuss the existing mobile cloud computing paradigms
and then present a vision for the future that will effectively use the power of 5G
cognitive radio networking to assist in mobile cloud computing.

1.2 Organization of the Book

The rest of this book is organized as follows. Chapter 2 discusses the related work on
cloud offloading mechanisms and sets the new paradigm of spectrum aware mobile
computing in context of this evolution.

In Chap. 3, we look at applications with arbitrary dependency graphs and discuss
joint scheduling–offloading schemes for single radio enabled mobile devices that
optimally maximize a net utility function. The net utility function trades-off the

5Federal Emergency Management Agency.
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energy saved at the resource-constrained device with the time and energy costs
involved in offloading while meeting the precedence constraints and execution dead-
line of the application. This approach targets joint scheduling–offloading for mobile
applications. By optimizing the scheduling of the individual components along with
cloud offloading decisions, taking into account the wireless parameters, allows for
an overall better solution compared to optimizing only the offloading decisions
using a pre-determined compiler-generated schedule order of execution for the
individual components. Besides, using the general dependency graphs (without
imposing a sequential ordering for processing) and an optimal joint scheduling–
offloading scheme can potentially allow for parallel scheduling of components in
the mobile and cloud at the same time, thus reducing time to completion for the
application.

While computation offloading to a resource strong cloud seems like the natural
solution to the resource crunch at the mobile device level, it is essential to take into
account the associated data transfer that must take place between the components
that are executed in the cloud and their counterparts in the mobile device. Given the
already increasing demands on the wireless backbone caused by the promise of 5G
networking, this means that computation offloading must be viewed in the context
of the already increasing mobile traffic. Hence it would be prudent to optimally use
all of the radio interfaces (like WiFi, 3G, HSPA, and LTE), as appropriate, that are
available in the multi-radio equipped mobile devices of today.

In Chap. 4, we address a solution that optimally decides which components of an
application to offload and which to execute locally, while simultaneously optimizing
the percentage of data (associated with this offloading) to be sent via each radio
interface. Given recent advances in technologies that enable bandwidth aggregation
in wireless devices [18, 20] this solution is implementable in practice. Other works
that fall under general umbrella of the radio-aware computation offloading include
[19], where the best of the available wireless interfaces is chosen (only one of the
wireless interfaces) for data transfer, rather than a solution that considers using
all of the radio interfaces simultaneously. In [2] a cloud offloading scheduling
mechanism is proposed for queue stability, but this work only deals with multi-
channel systems, not multi-radio networks. Etime [45] is an “everything on the
cloud” offloading strategy, which adapts to the condition of the wireless link,
but this work does not consider multiple interfaces. In this chapter, we address a
comprehensive model for the energy consumed by the mobile device, including
energy expended in communicating relevant data between the cloud and the device.
The computation offloading problem is set up as a joint optimization to minimize
the energy consumed on the device while at the same time maximizing the radio
resources available to the device, under two constraints: (1) the total runtime
deadline of the application and (2) the maximum flow rate constraint on the radio
resources. Since this optimization problem is non-linear and hence computationally
intense, we also propose an iterative algorithm that converges to a local optimum.

Chapter 5 addresses a general approach for optimal cognitive scheduling and
cloud offloading using multiple radios. In this chapter, we move to a more realistic
extension of the problem, in three ways: (1) we consider natural scheduling order for
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more general dependencies between the components of the application (see Sect. 2.2
for more on component dependency graphs), (2) a cognitive cloud offloader is used
where all multiple radio interfaces are used for cloud offloading, (3) we note a time
adaptive approach that varies with the changes in the wireless network conditions
over time.

In Chap. 6, more practical heuristic time adaptive schemes are introduced to
schedule the components for offloading, while simultaneously optimizing the
percentage of data to be sent by the mobile and the cloud via each wireless interface.
A comprehensive model for the utility function is described that trades-off resources
saved by remote execution (such as energy, memory, and CPU consumption by
the mobile device) with the cost of communication required for offloading (such
as energy consumed by offloading and the data queue length at the multiple radio
interfaces). The solution can be implemented in two ways: (1) a two-stage algorithm
where some of the components are eliminated as unsuitable for offloading at the
outset, maximizing the instantaneous utility values at time t0 (offline stage). The
actual components to be offloaded will be selected online using the appropriate
scheduling constraints in the second stage; and (2) a single-stage algorithm where
all the components are considered for offloading and the offload decisions are
made online, based on some scheduling constraints. The offloading strategies for
transmission at the mobile and cloud end use past wireless interface data, queue
status, and the current data flow to update the current queue status.

Chapter 7 discusses the performance of all schemes described in this book. The
performance of the algorithms is compared with different approaches including (1)
local execution (no offloading); (2) complete offloading (all components remotely
executed); (3) the non-time adaptive dynamic offloading algorithm proposed in [19]
extended to applications with sequential dependency graphs; and (4) the approach
where offloading takes place only via the best link at each instant of time.

Finally, Chap. 8 discusses the future of cognitive scheduling and cloud offloading
in 5G networks.



Chapter 2
Classification of Mobile Cloud Offloading

Work on mobile computing fall within two broad categories: (1) those that offer
platforms for implementing mobile cloud offloading solutions and (2) those that
concern themselves only with devising optimal scheduling methods that will provide
the best trade-offs of some of the resources involved. Offloading mechanisms can
also be seen from four perspectives: (1) extent of offloading; (2) application element
interdependency awareness; (3) wireless network awareness; (4) use (or not) of
multiple radio access technologies [27]. A bird’s eye view of the classification of
mobile computation offloading based on these four mechanisms is shown in Fig. 2.1.

These categories are explained in detail in the following subsections.

2.1 Extent of Offloading

Computational offloading methods can be classified broadly into three categories:
(1) those that either offload the entire application or execute it entirely locally (all-
or-nothing offloading) [50]; (2) those that offload everything to the cloud (wholesale
offloading) [8, 16, 42, 45], and (3) those that split the application into smaller parts
and make a decision to keep or offload each part [2].

In wholesale offloading, data migration can be implemented using distributed
application processing. For wholesale offloading, where the entire application is
offloaded, the main problem becomes identifying good network opportunities to
complete the offloading. For example, eTime explores the energy-delay trade-
off in scheduling the required data transmissions for offloading. If a greedy
approach is adopted, where the data transmissions are deferred until perfect network
conditions are favorable (to ensure aggressive energy savings), the queue backlog
of all applications will increase unboundedly [14], consequently leading to large
unacceptable delays and poor user experiences. eTime proposes an optimization
framework to deal with this trade-off.

© Springer Nature Switzerland AG 2019
S. E. Mahmoodi et al., Spectrum-Aware Mobile Computing,
Signals and Communication Technology,
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Fig. 2.1 Classification of mobile cloud offloading

In all-or-nothing offloading, the quality of wireless connectivity is the determin-
ing factor. In [50], the decision of whether to offload the application or not is based
on wireless connectivity, using a threshold. In particular, for a given application
profile A(L, T ), where L is the data size for the entire application and T is the
runtime requirement, the minimum computation energy for mobile execution and
the minimum transmission energy for cloud execution are computed. The optimal
application execution policy is to choose whichever costs less energy for the mobile
device.

Partial offloading is more efficient in limited spectrum resource wireless net-
works in terms of delay, communication energy, and data queue backlog [2, 10,
21, 22, 35, 44, 51]. Within the partial offloading strategies, some approaches have
proposed coarse level partitioning of the applications where the code is pre-
partitioned into components [2, 19, 22, 44]. An Android specific services-based
mobile cloud computing middleware called mobile augmentation cloud services
(MACS) [22] allows for seamless offloading of the application to the cloud. The
decision for partitioning is cast as an optimization problem using cloud and device
parameters, such as CPU load, available memory, remaining battery power on
devices, and bandwidth of the network(s). The approaches can be either static,
where the offloading strategy is decided before executing the application, or
dynamic where the offloading strategy is made during the application execution,
thus adapting to the changing wireless rates. A more fine-grained offloading can be
achieved by using method-level partitioning as is done in ThinkAir [21]. ThinkAir
also provides method-level, semi-automatic offloading of code, but focuses more on
scalability issues and parallel execution of offloaded tasks. CloneCloud [8] provides
a flexible code partitioner that enables unmodified mobile applications running in
an application-level virtual machine to seamlessly offload parts of their execution
from mobile devices to device clones. This allows for an automated, fine-grained
offloading mechanism at the thread level. Remote processing by weblets is another
type in this category. Here the execution destination for the weblet is determined
dynamically at execution time.
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Fig. 2.2 Topologies of component dependency graphs. (a) Sequential. (b) Parallel. (c) General

2.2 Processing Order

As mentioned in the previous section, applications can be split in different ways.
One of these is to split the application into components [2, 19, 22, 44, 52]. These
components interact with each other in terms of order of execution as well as
necessary data transfer between these components. This dependency is captured
by the so-called component dependency graph (CDG). Figure 2.2 shows different
topologies for CDGs of an N -component application. Component i is dependent
on component j , if the output data from j is required to execute i. Component
dependencies could be: (1) sequential; (2) parallel where all components depend
on only the first component, and the last component depends on all the rest; or (3)
series-parallel (general dependency).

The majority of scheduling mechanisms are based on either a pre-determined,
sequential schedule order of the tasks. Example of wholesale offloading of compo-
nents in a compiler generated CDG can be found in [1]. However, a wireless aware
scheduling order, that is cognizant of the structure of the component dependency
graph, provides more degrees of freedom in the solution and consequently can do
significantly better in terms of reducing overall cost metrics [34, 36]. A scheduling
strategy for partially offloading the sequence of fine-grained tasks with serial CDG
is also proposed in [52].

2.3 Time Adaptivity

It is also possible to classify offloading mechanisms according to whether offload
decisions are made in a time-adaptive manner (time-adaptive strategies), thereby
tracking the current wireless conditions or as a single shot solution computed just
before the application must be executed (non-time adaptive). A partial non-time
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adaptive (offline) offloading policy for component level offloading, for the special
case when the order of execution of components is pre-determined, appears in [52].

Time-adaptive computation offloading allows the offloader to make decisions
based on instantaneous variations of the rates, delay values, and communication
power for all of the radio interfaces. A partial computation offloading for frame-
based real-time tasks with response time guarantees from the cloud servers is
studied in [47] where the server estimates the response time for remote execution
of each task based on total bandwidth server model, and the tasks are scheduled for
offloading with “earliest deadline first” algorithm.

2.4 Radio Access Technology (RAT)

Early mobile devices were equipped with only one radio interface and hence offload-
ing was restricted to that one interface. Current mobile devices come equipped with
multiple of radio access technology (RAT) interfaces, like WiFi and cellular. One of
the key developments in wireless networking is the introduction of multiple radio
access technologies (multi-RAT) [25, 29, 31, 46], which enable mobile devices to
access multiple radio networks (LTE, WiFi) simultaneously to increase network
throughput. Incorporating this technology should increase the performance of the
offloading protocol. We can classify the existing offload mechanisms as (1) single-
RAT offloaders [21, 22], where the schedulers assume that there is only one RAT
in the mobile device; (2) On/Off multi-RAT offloader, where although there are
multiple RATs, the scheduler only picks one of the interfaces, the “best” interface,
for offloading based on current conditions of the individual interfaces [19], and (3)
cognitive [54] multi-RAT offloaders, where all available RAT interfaces are used
with appropriately allocated percentage of data traffic through each of these radio
interfaces to optimize all relevant parameters such as energy consumption, delay,
and execution time [34].

Several methods have been developed for optimal offloading over single-RAT
devices. In [2], a model for the partial offline offloading in single-RAT enabled
mobile devices is studied that meets queue stability constraints in multi-channel
scenario. Note, however, that this method schedules offloading over multiple
channels within the same band and not over multiple wireless networks (or multi-
RATs). As pointed out by examples in Chap. 1, wireless networks (e.g., WiFi and
LTE) differ significantly in their characteristics from one another and therefore the
techniques associated with multi-RAT scheduling are different than those used in
multi-channel scheduling.



2.4 Radio Access Technology (RAT) 11

Fig. 2.3 Venn diagram
depicting various categories
of spectrum aware mobile
cloud computing schemes.
Here (a) refers to works
presented in
[2, 10, 21, 22, 44, 51]; (b)
refers to [28]; (c) refers to [6];
(d) refers to [12]; (e) refers to
[36]; (f) refers to [19, 35]; (g)
refers to [34, 37], and (h)
refers to [45]

The relationship between the aforementioned perspectives for cloud offloading
strategies is schematically shown in Fig. 2.3. In this Venn diagram, each bubble
shows a perspective of computational cloud offloading. Specific schemes are
illustrated mapped with the corresponding bubbles while there might be approaches
that address more than one perspective in cloud offloading (like the categories in
[e,f,g,h]). Finally the works in spectrum-aware cognitive mobile cloud computing
cover all the four perspectives.



Chapter 3
Joint Scheduling and Cloud Offloading
Using Single Radio

We now explore the effects of doing away with a compiler pre-determined schedul-
ing order on the overall optimality of the offloading solutions. To this end, this
chapter introduces the concept of wireless aware joint scheduling and computation
offloading (JSCO) for multi-component applications. The problem is to find an
optimal decision on which components need to be offloaded and in what scheduling
order. We do not presume a sequential pre-determined order of scheduling for these
components. Hence the method discussed in this chapter falls under the category [e]
shown in Venn diagram of Fig. 2.3. The JSCO approach allows for more degrees of
freedom in the solution by moving away from a compiler pre-determined scheduling
order for the components towards a more wireless aware scheduling order. For
some component dependency graph structure, this method can shorten execution
times by parallel processing appropriate components in the mobile and cloud.
A net utility is defined that trades-off the energy saved by the mobile, subject
to constraints on the communication delay, overall application execution time,
and component precedence ordering. The linear optimization problem is solved
using real data measurements obtained from running multi-component applications
on an HTC smartphone and the Amazon EC2, using WiFi for cloud offloading.
The performance is further analyzed using various component dependency graph
topologies and sizes.

3.1 Scheduling Model for Mobile Cloud Offloading

When consideringmobile cloud offloading model, the mobile device has access to
a cloud server for computation offloading, and the cloud server is equipped with
parallel processing capabilities. We have the following assumptions: (1) the multi-
component mobile application is also installed on the cloud server; and (2) mobile
broadband connectivity does not change during the application processing time (T )
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(a)

(b)

Fig. 3.1 Scheduling model for cloud offloading in a 14-component mobile application with a
general CDG. (a) CDG of the application. (b) Scheduling–offloading model
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while the wireless interface may provide different rate and delay values. Single-RAT
only optimizations are sufficient where the application processing times are not very
large. Examples of such solutions for different cases can be found in [2, 10, 19, 21,
22, 39]. Following these assumptions, a mobile cloud offloading model example of
a 14-component application is shown in Fig. 3.1b.

3.2 Multi-Component Application Example for
Scheduling–Offloading Model

Consider a video navigation application involving graphics (http://www.opengl.
org/, March 2014), face detection (http://www.developer.com/ws/android/
programming/face-detection-with-android-apis.html, July 2014), camera preview,
and video processing (http://opencv.org/, April 2014), running on an HTC Vivid
smartphone. Figure 3.1a shows the dependency graph of this 14-component
application. The unidirectional edge from component i to j shows that the output
data from component i is required as input by component j , and dij represents the
required data size for transferring from i to j . This dependency could be either
sequential (like the dependencies between components 1-2-3-5-14) or parallel (like
the conditions of component dependencies between 1-11-14, 1-12-14, and 1-13-14).
As per definitions of CDGs in Chap. 2, this is a series-parallel CDG of the most
general CDG (like Fig. 2.2c).

In Fig. 3.1b, an example of joint scheduling–offloading of the components based
on time, place of processing, and dependency among the components is illustrated.
If a component is scheduled for offloading to the cloud, the energy consumption for
processing will be saved by remote execution. In addition, the time for processing
the component decreases significantly by remote execution (compare the time taken
to process components by the mobile device and the cloud in Fig. 3.1b). Moreover,
some components can be processed in parallel by the cloud (components 2, 6 and
components 3, 10). However, the cost of cloud offloading should also be considered
in the scheduling–offloading decisions: (1) the costs of delay and energy consumed
by offloading as a function of data size for transferring (e.g., component 11 has very
large data for transferring so it takes a longer time for communication); and (2) the
cost of the idle state as the mobile waits to receive the required output data from the
cloud (between components 4 and 7).

Thus a smart scheduling strategy for mobile offloading based on energy-time
trade-off is required (Table 3.1).

http://www.opengl.org/
http://www.opengl.org/
http://www.developer.com/ws/android/programming/face-detection-with-android-apis.html
http://www.developer.com/ws/android/programming/face-detection-with-android-apis.html
http://opencv.org/
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Table 3.1 Parameter definitions for the JSCO problem

Parameters Definitions

N Number of components in the application

T Number of time periods to complete processing the application

t Time index for period (t-1,t]

mj Mobile execution indicator for component j

cj Cloud execution indicator for component j

xpjt A binary indicator which equals to 1 if component j completes processing at
time t on processing system p and otherwise equals to 0

μij Dependency indicator: 1 if component i must be processed before j and 0
otherwise

zij Component transferring indicator, which equals to micj

dij Size of data required by component j from component i

qm
j (qc

j ) Time to process component j in the mobile (cloud)

τmc
ij Time required to transmit data from component i executing in the mobile to

component j executing in the cloud

τ cm
ij Time required to receive data from component i executing in the cloud to

component j executing in the mobile

νk Time to process component k either on mobile or cloud

Ecom The total energy consumed by the mobile device for communication

Pac Active power of the mobile while processing a component

PTx (PRx) Power consumption of the mobile to transmit (receive) required data

Ru (Rd) Average uplink (downlink) rate of the wireless radio interface

3.3 Optimal Joint Scheduling and Computation Offloading
Scheme (JSCO)

In this section, the formulation of the optimization problem is presented as an integer
linear program. For each time period (t − 1, t] denoted by t , decision variable,
xpjt , indicates whether component j completes processing at time t on the mobile
(p = 0) or on the cloud (p = 1). This decision variable captures the multi-objective
requirement of mobile communication applications to provide “anywhere, anything,
anytime” service. The processing indicators in the mobile and cloud are respectively
given by

mj =
T∑

t=1

x0j t ∀j (3.1)

cj =
T∑

t=1

x1j t ∀j. (3.2)
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Also τ cm
ij denotes the time to transfer data from component i to j when i ≺ j , and j

is processed on the mobile and i is processed on the cloud. τ cm
ij includes the product

mjci where i is processed on the cloud and j is processed on the mobile. In order
to make the optimization problem linear, this quadratic term of decision variables is
replaced by a new variable zji where zji must satisfy the following four constraints
(Rubin, http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-
terms.html, Sept 2014):

zji ≤ mj ∀j, i (3.3)

zji ≥ 0 ∀j, i (3.4)

zji ≤ ci ∀j, i (3.5)

zji ≥ ci − (1 − mj) ∀j, i. (3.6)

Thus, the quadratic term of two decision variables is converted to a new decision
variable so that the optimization problem still remains linear. Similarly, τmc

ij denotes
the time to transfer data from i to j when i is processed on the mobile device and
j is processed on the cloud and includes micj which is denoted by the variable
zij . Now the times for transferring from mobile to cloud and cloud to mobile are
respectively given as

τ cm
ij = μij zji

dij

Rd
∀i, j (3.7)

τmc
ij = μij zij

dij

Ru
∀i, j. (3.8)

Note that τ cm
ij , τmc

ij will be zero if i = j , or if i does not precede j , or if i and j are
both processed on the cloud, or both processed on the mobile device. In addition,
the energy consumed for communication due to cloud offloading the components is
modeled by

Ecom = PTx

N∑

i=1

N∑

j=1

τmc
ij + PRx

N∑

i=1

N∑

j=1

τ cm
ij . (3.9)

The objective function in the optimization problem over decision variables (xpjt ,
zij , p ∈ {0, 1}, i, j = 1, . . . , N , t = 1, . . . , T ) for the mobile cloud offloading
scheme is mathematically formulated as

max

⎧
⎨

⎩

N∑

j=1

Paccj q
m
j − Ecom

⎫
⎬

⎭ . (3.10)

http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
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Equation (3.10) shows the maximization of the energy saved through remote exe-
cution. This energy saved is essentially the energy cost if the offloaded components
had been executed locally minus the cost of communication energy.

Besides constraints in (3.3)–(3.8) the following constraints should be satisfied in
the optimization problem with the objective function given by Eq. (3.10):

Runtime Deadline Constraint The multi-component application has a time deadline
(T ), which should be satisfied. This constraint is given by

0 <

T∑

t=1

tx0Nt ≤ T ∀t, (3.11)

where
∑T

t=1 t · x0Nt denotes the completion time of processing the last component
(N ) on the mobile (p = 0). This time should be equal or less than the runtime
deadline of the application.

Each Component be Processed Only Once Each component is processed either in
the mobile or cloud, which can be written as

mj + cj = 1 ∀j. (3.12)

Precedence Constraint This constraint shows that component k is required to begin
processing no earlier than the completion time of component j where j ≺ k. The
constraint is expressed as

1∑

p=0

t+νk+τ cm
jk +τmc

jk∑

s=1

xpks ≤
1∑

p=0

t∑

s=1

xpjs,

if j ≺ k, t = νj , . . . , T − νk − τ cm
jk − τmc

jk ,

(3.13)

where νk is the time to process component k either on the mobile or cloud, and is
given by

νk = mkq
m
k + ckq

c
k . (3.14)

Based on Eq. (3.12), νk will include either the cloud processing time for com-
ponent k or the mobile processing time for component k, but not both. Here in
constraint (3.13), in order for k to be completed after the time t plus the time for
possible data transferring from j to k (τ cm

jk + τmc
jk ), plus the time for processing

component k (νk), component j must be completed by time t , ∀t .



3.4 Comparison with the State of the Art 19

Serial Computation at the Mobile Device The processed components in the mobile
are required to be executed in serial. Thus, for each time interval [t − 1, t) we can
have at most one component for processing in the mobile, which can be written as

N∑

j=1

min{t+νj −1,T }∑

s=t

x0js ≤ 1 ∀t. (3.15)

Completion Deadline Each component k must be completed only after the comple-
tion of each of its precedent components like j , plus the time to process component
k itself, and the time to transfer required data to the execution site of k if j is not on
that same site. This constraint is given by

1∑

p=0

T∑

t=1

txpjt + τ cm
jk + τmc

jk + νk

≤
1∑

p=0

T∑

t=1

txpkt , if j ≺ k, k = 1, . . . , N.

(3.16)

Also, decision variables should be 0 − 1,

xpjt ∈ {0, 1} p ∈ {0, 1},∀j, t, (3.17)

and get zero values while the coordinated component has not been processed yet,
which is written as

xpjt = 0 p ∈ {0, 1},∀j, t = 1, . . . , νj − 1. (3.18)

3.4 Comparison with the State of the Art

The linear optimization problem is solved using real data measurements obtained
from running multi-component applications on an HTC smartphone and the Ama-
zon EC2, using WiFi for cloud offloading. The performance is further analyzed
using various component dependency graph topologies and sizes. Results show that
the energy saved increases with longer application runtime deadline, higher wireless
rates, and smaller offload data sizes. Note that the evaluation setup and the other
simulations related to this chapter are elaborated in Sect. 7.2.

JSCO is compared to (1) no offload (local) execution where all the components
are executed locally; (2) all offload (remote) execution where all the components
are offloaded to the cloud; (3) the dynamic offloading algorithm (DOA) in [19],
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which uses an energy efficient partial offloading strategy; (4) HELVM algorithm
from [40], which provides runtime offloading services; and (5) a heuristic algorithm
that is the revised HEFT [48] for joint scheduling (RHJS) tasks on multiple cores
used in [28]. In the simulations for this subsection, a face recognition application
with ten sequential components was utilized (http://darnok.org/programming/face-
recognition/). The wireless network parameters in http://www.3gpp.org/ftp/tsg-ran/
wg4-radio/ are used such that exactly the same parameters used for the simulation
of DOA in [19] were used for all the other schemes.

In Fig. 3.2, the total energy consumption of the JSCO scheme is compared with
the five schemes. This comparison is normalized to the scheme with local execution
of all the components. It is observed that JSCO consumes 54%, 37%, 16%, 30%,
and 11% less energy in comparison to the schemes using local execution, remote
execution, DOA, HELVM, and RHJS, respectively.

Figure 3.3 shows the time to run the application (http://darnok.org/programming/
face-recognition/) for the six schemes. This comparison is also normalized to the
scheme with local execution of all the components. By using the optimal JSCO
scheme, the application will be executed 25%, 49%, 32%, 19%, and 5% faster in
comparison to the schemes using local execution, remote execution, DOA, HELVM,
and RHJS, respectively. Thus, JSCO is a joint energy and time efficient scheme in
comparison to the other five schemes.

Fig. 3.2 Total energy consumed by the mobile device for different schemes, normalized to the
energy consumed by local execution (using the face recognition application in http://darnok.org/
programming/face-recognition/)

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://www.3gpp.org/ftp/tsg-ran/wg4-radio/
http://www.3gpp.org/ftp/tsg-ran/wg4-radio/
http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
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Fig. 3.3 Total execution time of the application for different schemes, normalized to the execution
time by local execution (using the face recognition application in http://darnok.org/programming/
face-recognition/)

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/


Chapter 4
Cognitive Cloud Offloading Using
Multiple Radios

There are two ways in which multiple RATs can be used in offloading: one is
to use the best interface at any given time for all computation offloading related
data transfers and the other is to use all viable interfaces. We refer to the latter
as “cognitive cloud offloading.” In the Venn diagram shown in Fig. 2.3, both ways
of using multiple RATs are covered by category [f]. We now explore the effects
of using cognitive cloud offloading using multiple RATs simultaneously (wherever
possible) on the overall cloud offload optimization. When all available RATs are
used for data transfers and there are differences in the qualities of these RATs, the
solution must now accommodate for this fact by determining the appropriate amount
of data that can be transferred via each of these RAT interfaces.

We define the term “cognitive cloud offloading” in multi-RAT enabled mobile
devices as mobile computation transfers to a cloud with simultaneous access to all
available radio interfaces of the device. In some applications, there is no capability
for adapting the scheduled order of compilers based on wireless parameters, and
cloud offloading must be considered based on the forced (sequential) processing
order of task components. However, there are still ways to improve the system
efficiency of the cloud offloader. This chapter explores this concept where there
is no way to keep the flexibility in the scheduling order, but there is flexibility to use
all the multiple RATs simultaneously. Simulations illustrate that this cognitive cloud
offloader is more efficient than a system which uses the best radio interface. Also in
the next chapters, this cognitive cloud offloader is used for the systems where there
is the flexibility of using wireless aware scheduling order of component tasks.

© Springer Nature Switzerland AG 2019
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4.1 System Model

Consider a mobile device with K radio interfaces, running computationally intense
applications with N components (see Fig. 4.1, with an example where K = 2 and
N = 6).

Any given component may require data from the other components to complete
execution. In this example, the optimal offloading strategy stipulates that Com-
ponents 1, 2, 4, and 6 be executed in the mobile device, and Components 3 and
5 be offloaded to the cloud. In Fig. 4.1, Component 3 requires d23 units of data
from Component 2 to complete execution. In this example, 60% (α2,1 = 0.6) of
this data is sent through the radio interface 1 (WiFi, say), and 40% (α2,2 = 0.4)
through interface 2 (LTE) to give us the most performance efficient offloading
strategy. Once Components 3 and 5 have finished execution, the data needed by
Component 6 from Component 5 (d56) must be sent to the mobile device via one
of the radio interfaces (for example, in Fig. 4.1 is WiFi). We assume that only one

radio interface is used for data reception
(∑K

k=1 βi,k = 1
)

, leaving the optimization

of radio resource allocation for the downlink as future work. Also, we assume that
the energy consumption and the time required to transfer data within components
that are executing in the same entity (whether cloud or mobile) is negligible in
comparison to when the data must be transferred between entities. We also assume
that the components of the application are executed in a pre-determined manner

Fig. 4.1 An example of application offloading to the cloud. In this figure, the dots represent
components of the application. There are six components in this application. Components 1, 2,
4, and 6 run on the device, whereas Components 3 and 5 are executed in the cloud. Two radio links
are available to the mobile device for offloading components to the cloud and the diagram shows
the ratio of data that is sent via each radio interface. The term active (idle) components refers to
the components that are executed (or not) in that particular entity, mobile device, or the cloud



4.1 System Model 25

[10, 19]. These solutions are useful when the compilers pre-determined scheduling
order cannot be overwritten.

4.1.1 Mathematical Modeling of the Parameters

The parameters needed to set up the optimization are described in Table 4.1.
The energy consumed by the mobile device is modeled in running application
component i, as Ei = E

(m)
i + E

(c)
i + E

(com)
i , where E

(m)
i , E

(c)
i , and E

(com)
i are

all defined in Table 4.1. The energy consumed to execute component i locally, in
the mobile device, is expressed as E

(m)
i = (1 − Ii)P

(m)
ac (i)q

(m)
i . If the component is

executed remotely, then the mobile will only spend the idle power for the duration
of this execution. Hence, the energy consumed by the mobile when component i

Table 4.1 Parameter definitions for cognitive cloud offloading problem

Parameters Definitions

N Number of components in the application

K Number of radio interfaces in the system model

P
(m)
ac (i) Power consumed by the mobile device when it is actively processing

component i

P
(m)
id Power consumed by the mobile in the idle mode

P
(Tx)
k (P

(Rx)
k ) Transmit (received) power consumed by the mobile device at radio interface k

q
(m)
i (q

(c)
i ) Time to process component i in mobile (cloud)

τ
(mc)
ij,k (τ

(cm)
ij,k ) Time to transfer data required by component j to mobile (cloud) from

component i in the cloud (mobile), using radio interface k

T
(com)
i Time to transfer necessary data between the cloud and mobile, to execute

component i

μij Component dependency indicator: 1 if component i must be processed before
j, 0 otherwise

Ii Processing place indicator: 1 if component i is processed on cloud, 0 if
processed on mobile

αi,k Percentage of data upload using radio interface k, for execution of component
i in the cloud

βi,k Radio receiving indicator: 1 if transferred data of component i is received at
radio k, 0 otherwise

dij Data size required by component j from i

R
(d)
k (R(u)

k ) Downlink (Uplink) service rate for radio k

rk Demand rate for radio interface k

Ei Total energy consumed by the mobile device to run component i

E
(m)
i (E(c)

i ) Energy consumed by the mobile device to run component i in the mobile
(cloud)

E
(com)
i Energy consumed by the mobile for data transfer of component i between

cloud and mobile
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is being remotely executed is given by E
(c)
i = IiPidq

(c)
i . E

(com)
i comes into play

when either the component immediately preceding the component i, or immediately
succeeding component i is executed in the other entity. E

(com)
i can be written as

E
(com)
i = ∑N

j=1
∑K

k=1 (μij εij,k + μjiεji,k), where εij,k (or εji,k) is the energy
consumed in transferring data from component i (j ) to component j (i) using radio
interface k, when component i (j ) is executed immediately before component j (i).
They can be written as follows:

εij,k = Ii(1 − Ij )βj,kPidτ
(cm)
ij,k + (1 − Ii)Ijαi,kP

(Tx)
k τ

(mc)
ij,k , (4.1)

εji,k = Ii(1 − Ij )αj,kPidτ
(mc)
j i,k + (1 − Ii)Ijβi,kP

(Rx)
k τ

(cm)
j i,k . (4.2)

The first terms on the RHS of Eqs. (4.1) and (4.2) represent the idle powers
consumed when the relevant component is being executed in the cloud, and second
terms represent the energy consumed in transmitting or receiving the relevant
data. The time needed to transfer data in the downlink communication (cloud to
mobile) and uplink communication (mobile to cloud) is given by τ

(cm)
ij,k = dij

R
(d)
k

and

τ
(mc)
ij,k = dji

R
(u)
k

respectively, where R
(d)
k and R

(u)
k are the downlink and uplink rates,

respectively, on radio interface k. dij is the size of the data that must be transferred
from component i to j .

4.2 Optimization Problem Formulation

In this section, the formulation of cognitive cloud offloading problem is presented
as an integer linear programming (LP) problem. The goal is to minimize the total
energy consumed by the mobile user in executing a given application under total
execution time constraints. The solution to this problem must determine which
components should be executed where (in the device or cloud) and what percentage
of data should be allocated to each radio link for necessary uplink data transfer. The
decision variables are: (1) Ii , which is the processing place indicator and gets 1 if
component i is processed on cloud and 0 if processed on mobile; and (2) αij which
is the component dependency indicator and gets 1 if component i must be processed
before j , and 0 otherwise. This optimization is subject to the following constraints:
deadline on the execution time of the application; flow rate control on each radio link
used for computation offloading; and the total value of data percentage allocated to
the radio interfaces for each offloaded component.

The optimization problem is mathematically formulated as

min
α,I

E
�=

N∑

i=1

Ei, (4.3)
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where the constraint on the total application execution time is given by

N∑

i=1

Ti ≤ Treq, (4.4)

where Treq is the execution time deadline of the application, and Ti = T
(m)
i +T

(c)
i +

T
(com)
i ,∀i. T

(m)
i represents the time taken for component i to execute in the mobile

device, and is given by T
(m)
i = (1 − Ii)q

(m)
i . Similarly, T

(c)
i = Iiq

(c)
i is the time

taken to execute component i in the cloud. T
(com)
i is the time taken to complete the

necessary data transfer for execution of component i, and is given by

T
(com)
i =

M∑

j=1

K∑

k=1

Ii(1 − Ij )(αjiνj,kτ
(mc)
j i,k + αij γj,kτ

(cm)
j i,k )

+ (1 − Ii)Ij (αij νi,kτ
(mc)
ij,k + αjiγi,kτ

(cm)
ij,k ).

(4.5)

This constraint allows us to take into consideration the potential time delays in
sending and receiving the data related to each component via radio links (T (com)

i ,∀i)
and trading it off optimally for energy consumption on the device.

In order for the system to be stable, the transmit data rate on the radio interfaces
must be less than the service rate of each radio interface. This is represented by the
second constraint:

N∑

i=1

N∑

j=1
j �=i

μij (1 − Ii)Ijαi,krk < R
(u)
k ,∀k. (4.6)

The final constraint ensures that for each component, the total data allocations to the
radio interfaces sum up to the total data that needs to be transferred, and is expressed
as

N∑

j=1
j �=i

μij

K∑

k=1

αi,k ≤ 1, ∀i. (4.7)

4.2.1 Offloading Solution

The objective function of the optimization problem is represented in Eq. (4.3)
with the constraints in Eqs. (4.4), (4.6), and (4.7). The objective function and the
constraint in Eq. (4.6) involve product terms of two non-negative variables, thereby
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forming a non-linear convex function. Thus, the problem can be solved using MIP
(mixed integer programming) using Lagrangian multipliers: κ, ζk, φi , ∀i, k. The
Lagrangian, L = L(α, I , κ, ζ, φ), is expressed as

L =
N∑

i=1

Ei(αi,k, Ii) + κ

N∑

i=1

(Ti(Ii, αi,k) − Treq)

+
K∑

k=1

ζk

⎛

⎜⎜⎝
N∑

i=1

N∑

j=1
j �=i

μij ((1 − Ii)Ijαi,krk − R
(u)
k )

⎞

⎟⎟⎠

+
N∑

i=1

φi

⎛

⎜⎜⎝
N∑

j=1
j �=i

μij

K∑

k=1

αi,k − 1

⎞

⎟⎟⎠. (4.8)

Minimizing L will involve finding the best set of values for the parameters αi,k ,
and Ii , ∀i, k. To obtain the best offloading policy (values of Ii), Li is written as a
function of Ii and a constant term (c1) that does not depend on Ii . That is, Li =
�iIi + c1, where

�i = �i +
N∑

j=1
j �=i

(1 − Ij )

(c)
i,j −

N∑

j=1
j �=i

Ij

(m)
i,j , (4.9)

and �i is independent of αi,k , and can be written as

�i = Pidq
(c)
i − P (m)

ac (i)q
(m)
i + κ(q

(c)
i − q

(m)
i ), (4.10)

and



(c)
i,j = (Pid + κ)

K∑

k=1

(μjiαj,kτ
(mc)
j i,k + μijβj,kτ

(cm)
j i,k ), (4.11)

and



(m)
i,j =

K∑

k=1

(αij νi,kP
(Tx)
k τ

(mc)
ij,k + αjiγi,kP

(Rx)
k τ

(cm)
ij,k

+κ(αij νi,kτ
(mc)
ij,k + αjiγi,kτ

(cm)
ij,k ) + ζkαij νi,krk). (4.12)

In this algorithm, an iterative algorithm is presented to find the optimal values of
αi,k and Ii for each component. The algorithm is initialized with values for the
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Lagrange multipliers (κ, ζk, φi , ∀i, k) as well as an initial allocation of where the
given component i will be executed (values of Ii). For initial conditions, the iteration
index r=initial is set to 0, and the initial value of I

(r)
i is given by:

I
(initial)
i =

{
1 �i < 0,

0 �i ≥ 0.
(4.13)

This initial schedule of components implies that the component i will be scheduled
to run in the cloud if the trade-off between energy consumption and execution time
for running it on the cloud is favorable to running it on the mobile. To obtain
optimum αi,ks, L for component i and radio interface k is rewritten as: Li,k =
αi,k�i,k+c2, where �i,k =

N∑
j=1

{μij (1 − Ii)Ij [τ (mc)
ij,k (P

(Tx)
k + κ) + ζkrk] + φi}, and

c2 is a constant w.r.t αi,k . The optimal value of αi,k , α∗
i,k for a given value of Ii is

calculated as

α∗
i,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 − Ii)

⎛

⎜⎝1 − �i,k

N∑
i=1

K∑
k=1

�i,k

⎞

⎟⎠
N∑

j=1
j �=i

μij �= 0

0
N∑

j=1
j �=i

μij = 0

(4.14)

Now by using the value of α∗
i,k by using (4.14), Ii can be updated by

I
(r)
i =

{
1 �i < 0,

0 �i ≥ 0.
(4.15)

The iterations continue until Eq. (4.8) is minimized. The algorithm converges,
when the Lagrange parameters have converged. The details are given in
Algorithm 4.1.

4.2.2 Convergence and Complexity of the Algorithm

In line 1, Ii and αi,k are initialized. In a nested loop, these two variable parameters
are modified such that the Lagrangian formulation in Eq. (4.8) is minimized.
The strategy of lines 3–17 of the algorithm has been discussed in the previous
subsection. The variables Ii and αi,k are opportunistically updated using Eqs. (4.15)
and (4.14), respectively, so that the objective function is minimized (lines 12,13
of the algorithm). The outer loop updates the Lagrangian multipliers using the
subgradient method. Using the logic in [3], we see that the updated multipliers (κ ,
ζk , and φi , ∀i, k) will converge to the optimum values of Ii and αi,k , ∀i, k.
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Algorithm 4.1 Radio aware offloading schedule
1: initialization:
2: Set r ← 0, modification index, s ← 1
3: Set I

(0)
i using Eq. (4.13)

4: Set �(0) using Eq. (4.10)
5: Set α

(0)
i,k using Eq. (4.14)

6: Set initial values for parameters κ(s), ζ
(s)
k , φ

(s)
i

7: Set Xr = Xs ←False
8: repeat:
9: if �

(r)
i < 0, ∀i then

10: while Xr=False do
11: calculate �

(r+1)
i = �i |Ii=I

(r)
i ,αi,k=α

(r)
i,k

by (4.9)

12: calculate I
(r+1)
i by Eq. (4.15)

13: calculate α
(r+1)
i,k by Eq. (4.14)

14: if ∃i : �
(r+1)
i �

(r)
i < 0 then

15: Find min
ĩ

(�
(r+1)
i ; ∀i)

16: I
ĩ
→ 1 − I

ĩ
,

17: end if

18: if
N∑

i=1
L

(r+1)
i ≥

N∑
i=1

L
(r)
i then

19: Xr=True,
20: end if
21: r → r + 1,
22: end while
23: end if

24: κ(s+1) = κ(s) − εκ (Treq −
N∑

i=1
Ti)

25: ζ
(s+1)
k = ζ

(s)
k − εζ ×

26: (R
(u)
k −

N∑
i=1

N∑
j=1
j �=i

|Ii − Ij |(1 − Ii )μij αi,krk),∀k

27: φ
(s+1)
i = φ

(s)
i − εφ(1 −

N∑
j=1
j �=i

μij

K∑
k=1

αi,k),∀i

28: if |κ(s+1)−κ(s)|
κ(s+1) < εκ &

|ζ (s+1)
k −ζ

(s)
k |

ζ
(s+1)
k

< εζ &

29:
|φ(s+1)

i −φ
(s)
i |

φ
(s+1)
i

< εφ,∀i, k then

30: Xs = True,
31: end if
32: s → s + 1
33: until any constraint in Eqs. (4.4), (4.6), (4.7) is not satisfied: (Xs=False).
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Complexity of the modification loop (lines 9–23) of the algorithm is O(rmaxN ),
where rmax is the maximum number of iterations required to find the optimum
vector I . Note that we assume N > K . Overall, the complexity of the algorithm
is O(smaxrmaxN ), where smax is the maximum required number of iterations to
satisfy all the constraints in the optimization problem. The value of smax depends
on the initial values in line 6 and ε values in lines 28, 29 of the algorithm. In
the simulations, the mean values of smax and rmax are 3 and 2, respectively. The
complexity of the exhaustive search method is O(2N × k), which is prohibitively
high.

4.3 Comparison with the State of the Art

Simulations on an HTC phone, running a 14-component application and using the
Amazon EC2 as the cloud, show that the solution obtained through the iterative
algorithm consumes only 3% more energy than the optimal solution (obtained via
exhaustive search). Please note that the system setup for evaluation is elaborated in
Chap. 7.

Four scenarios are compared in this section. In the first scenario all components
are executed locally in the mobile. The energy consumed in this case is used to
normalize all energy values. In the second scenario the entire application is executed
on the cloud (other than the first and the last components, since the mobile initiates
the application). In this scenario, all data must be uploaded to the cloud. The
third scenario is a brute force exhaustive search for the best values of Ii for each
component. That is, we manually schedule components i = 2 through 13 to run on
either the cloud or the mobile and calculate the associated energy and time. Note
that since the first and last component must run on the mobile, we are left with
2(14−2) combinations of possible values for the Ii’s. For each combination of I, the
problem turns out to be a linear optimization over the variable set α. Thus, the radio
allocation percentages are calculated using linear programming. The sets of Ii and
αi,k , ∀i, k, values which minimize the energy consumption give the overall optimal
solution. The approach in this scenario is called “Exhaustive search.” Finally, the
fourth set of results is obtained using the iterative algorithm.

Figure 4.2 shows the average energy consumption for four different approaches
while the application execution time equals 3.54 s. The approaches (exhaustive
search and the iterative algorithm) result in lower energy consumptions in com-
parison to the others. Note that 3.54 s is the minimum execution time to execute
the application locally, so that the execution time deadline is satisfied in all of the
approaches. On an average, the iterative algorithm consumes 3% more energy in
comparison to the optimal solution (exhaustive search approach) for Treq = 580 ms.
This is a fairly good trade-off for the reduced complexity of the iterative algorithm.
Figure 4.3 presents the execution time of different approaches in different scenarios.
While local and remote execution approaches require longer application execution
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Fig. 4.2 Average energy consumption of the four approaches, while execution time equals 3.54 s

Fig. 4.3 Execution time of different approaches
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time, the scheme gives us 29% and 27% faster execution time in comparison to these
approaches respectively with the same amount of energy consumption to the remote
execution approach. If we desire to save 9% of energy, then we have still 9% and
6% faster execution time in comparison to local and remote execution, respectively.
On the other hand, if only fast execution of the application is important for us, then
by expending 11% more energy than remote execution, we can achieve 50% and
48% faster runs compared to local and remote execution.



Chapter 5
Optimal Cognitive Scheduling and Cloud
Offloading Using Multi-Radios

We now put together both strategies to formulate a problem that will have the
maximum number of degrees of freedom in the solution. We will consider the
situation where the mobile device is able to use all available (and viable) RAT
interfaces as well as be unconstrained in the choice of scheduling order for all of
its components. The solution to this problem can be considered the upper bound
for the problem of optimal spectrum aware mobile offloading. We refer to this
method as cognitive scheduling and cloud offloading (CSCO). This strategy is the
benchmark for all the other approaches considered in this book. We will explore the
modeling, problem formulation, solution space, and the complexity of the solution
in this chapter. The next chapter will introduce a suboptimal and more practical
approach for CSCO. CSCO is right in the center of all the four bubbles in the Venn
diagram of Fig. 2.3.

The CSCO strategy discussed in this chapter can be managed in the cloud with
the decision feedback on offloading the components sent to the mobile device. The
mobile device informs the cloud of the uplink parameters from the mobile device
(such as the delay for transmission, rate, queue size, and communication power)
via proper control signaling before the implementation of strategy. Also, we assume
that the cloud and the mobile clocks are synchronized. The feedback of decisions
on offloading the components will be sent to the mobile device. The mobile device
informs the cloud of the corresponding parameters via proper control signaling
before cognitive cloud offloading. Note that the delay due to this control signaling
feedback is negligible in comparison with the computation offloading costs which
may require transferring MegaBytes of data [38, 45].

A comprehensive optimization problem is formulated with several constraints
and relaxed to integer linear programming formulations. The solution is the upper-
bound for time-adaptive (wireless adaptive) cloud offloading in multi-RAT devices.
The objective function (net utility) is a measure of the mobile resources conserved
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due to cloud offloading. This includes the energy, available memory, and CPU load
minus the costs of offloading. These costs include the transmission and reception
energy costs, delay due to offloading, and the data queue backlog for buffers of
mobile and cloud transmitters, using all wireless interfaces. The constraints of
total net utility maximization are: (1) overall execution time of the application; (2)
precedence of the application components; (3) percentages of data associated with
each wireless interface for mobile transmission and cloud transmission at each time
slot; (4) serial computation of the components in the mobile; and (5) completion
deadline of component tasks.

The CSCO scheme is applicable to a very large category of sophisticated mobile
applications with arbitrary (natural) schedule order. Moreover, all the viable radio
interface will be efficiently used for cognitive cloud offloading to provide the
maximum available throughput.

5.1 Upper-Bound for Joint Scheduling and Cognitive Cloud
Offloading

Consider a K-interface multi-radio mobile (multi-RAT) device running an N -
component mobile application. Let the percentages of data (associated with offload-
ing) uploaded to the cloud via the kth radio interface at time t be aijk(t). The
information from all the multi-RAT interfaces are aggregated by the cloud offload
scheduler as shown in Fig. 5.1. Similarly, let the percentages of data allotted for
downloading from the cloud, via the radio interface k, at time t be bijk(t). Note
that,

∑K
k=1 aijk(t) = 1,

∑K
k=1 bijk(t) = 1.

The parameters used in this chapter are given in Table 5.1. Consider a K-
interface multi-radio mobile (multi-RAT) device running an N -component mobile
application. Let the percentages of data (associated with offloading) uploaded to the
cloud via the kth radio interface at time t be aijk(t). Similarly, let the percentages
of data allotted for downloading from the cloud, via the radio interface k, at time
t be bijk(t). Note that,

∑K
k=1 aijk(t) = 1,

∑K
k=1 bijk(t) = 1. For each time slot

denoted by t , we define decision variable xpit , which indicates whether component
i completes processing at time t on the mobile (p = 0) or on the cloud (p = 1)
(as shown in Fig. 2.2). The local and remote execution indicators are formulated
respectively as mi = ∑T

t=1 x0it , ∀i, and cj = ∑T
t=1 x1j t , ∀j . The information

from all the multi-RATs (K radio interfaces) are aggregated by the cloud offload
scheduler as shown in Fig. 5.1. This figure shows that the decision maker for
cognitive scheduling and cloud offloading is on the mobile side. Figure 5.1a
plots the mobile to cloud transferring the required components for offloading and
Fig. 5.1b illustrates the cloud to mobile transmission side for receiving the required
computations by the mobile device. Here zijk(t) and yijk(t) are the component
transferring indicators at time slot t in uplink and downlink scenarios, respectively.
More clearly in Fig. 5.2a, zijk(t) represents the percentage of data transferred from
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Fig. 5.1 Cognitive cloud offloading for a mobile device via multi-RATs in one time slot t for
uplink and downlink scenarios (zijk(t) shows the component transferring indicator from the mobile
to cloud at time slot t ; and yijk(t) is the component transferring indicator from the cloud to mobile
at time slot t). (a) Uplink scenario. (b) Downlink scenario

the mobile (where component i is executed) to the cloud (where component j will be
executed) via wireless radio interface k transmitting at time slot t (0 ≤ zijk(t) ≤ 1).
It is written as

zijk(t) = μij

t∑

h=1

x0ihcj aijk(t), (5.1)

where μij is the dependency indicator, and is “1” if execution of component j is
dependent on the output data from component i, and

∑t
h=1 x0ih = 1 after the time

that component i has been processed at the mobile device and the output data of this
component is ready to be offloaded. In Fig. 5.2b, yijk(t) is the percentage of data
transferred from the cloud (where component j is executed) to the mobile (where
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Table 5.1 Parameter definitions for CSCO problem

Parameters Definitions

xpit A binary indicator which equals to 1 if job i completes processing at time
t on processing system p and otherwise equals to 0

aijk(t) Percentage of allocated mobile transmission rate using radio interface k

for transferring output data from component i to j at time slot t

bijk(t) Percentage of allocated cloud transmission rate using radio interface k for
transferring output data form component j to i at time slot t

zijk(t) Component transferring indicator from the mobile to cloud at t

yijk(t) Component transferring indicator from the cloud to mobile at t

mi (ci ) Mobile (cloud) execution indicator for component i

N Number of the application components

K Number of radio interfaces

T Number of time periods to complete processing the application

t Time index for period (t-1,t]

Mi Memory consumed by the mobile to launch component i

codei Code size that is used for component i

ε Mapping factor for the relationship between code size and the CPU
instructions which is taken to be 10 [41]

wx Weight factor of function x

Pac Power consumed by the mobile device when it is actively processing

P tx
k (t) (P rx

k (t)) Transmit (received) power consumed by the mobile device at radio
interface k in time slot t

qm
i (qc

i ) Time to process component i in the mobile (cloud)

Amc
k (t)(Acm

k (t)) Data transmitted from the mobile (cloud) to the cloud (mobile) through
radio interface k at time slot t

Qk(t) (Sk(t)) The transmission (reception) queue of data for wireless interface k at time
slot t

μij Dependency indicator: 1 if component i must be processed before j and 0
otherwise

Etx
com(t) (Erx

com(t)) Transmission (reception) energy consumed by the mobile device for data
transferring by all possible wireless interfaces between the cloud and
mobile

τmc
ik (t) Mobile to cloud delay that takes to transmit the output data from

component i in the mobile to the cloud at wireless interface k starting by
time slot t

τ cm
ik (t) Cloud to mobile delay that takes to receive the output data from

component i in cloud to the mobile at wireless interface k starting by t

U Utility function for saving resources in the mobile

C(t) The communication cost for offloading at time t

�mc(t) (�cm(t)) The objective function to minimize in a time-adaptive strategy for mobile
(cloud) transmission communication at time slot t

Vmc (Vcm) Control parameter in mobile (cloud) transmission for Lyapunov
optimization [38]
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Fig. 5.2 Illustration of directed links for transferring indicators. (a) Directed link of zijk(t). (b)
Directed link of yijk(t)

component i will be executed) via wireless radio interface k receiving at time slot t

(0 ≤ yijk(t) ≤ 1), and is expressed as

yijk(t) = μji

t∑

h=0

x1jhmibijk(t), (5.2)

where
∑t

h=1 x1jh = 1, and is defined similar to
∑t

h=1 x0ih, but for the component
j processed in the cloud.

5.2 Optimal Cognitive Scheduling and Cloud Offloading

In this section, the formulation of cognitive scheduling and cloud offloading (CSCO)
problem is presented as an integer linear programming (LP) problem. The objective
of this problem is to maximize the overall utility function of the mobile device by
cloud offloading. The main decision variables are: (1) xpit (which indicates whether
component i completes processing at time slot t in place p), (2) aijk(t), and bijk(t)

(which indicate the percentage of allocated uplink and downlink transmission rate
using radio interface k for transferring output data from component i to j at time
slot t through radio interface k). The utility function trades-off the energy saved due
to offloading with the cost of associated communication and can be written as:

OP : max

(
U − wcom

T∑

t=1

C(t)

)
(5.3)
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where U and C(t) are the saved utility on the mobile device by remote execution
and the cost of offloading at time slot t , respectively. The cost function has the
weighting factor wcom (0 ≤ wcom ≤ 1) which trades-off the two parameters in the
cost function. U is calculated as follows:

U = wsavedEsaved + wmemoryMsaved + wCPUCPUsaved (5.4)

where the energy saved Esaved is given by, Esaved = ∑N
i=1 ciPacq

m
i . Pacq

m
i is

the energy consumed by the mobile device (local energy consumption) to execute
component i, and ci is the cloud execution indicator for component i (a list of
all parameters used in this chapter is given in the table). Thus, ciPacq

m
i indicates

the energy saved in the mobile device by offloading component i. Also, the
memory saved by offloading [22] is given as: Msaved = ∑N

i=1 ciMi , and the
CPU cycles saved in the mobile device by offloading are given by CPUsaved =∑N

i=1 ci(ε × codei ), where codei is the code size of component i and ε maps
the relationship between code size and the CPU instructions [41]. The relation
between weighting factors is expressed as wsaved + wcom + wmemory + wCPU = 1.
These weights indicate the priorities for different objectives such as maximizing
the energy saved by remote execution, memory saved, CPU saved, or minimizing
the communication costs. The summation constraints for weights show the priority
of each function in comparison to the others. By setting weights, the solution is
pre-biased more towards the favored side for different applications based on these
criteria. By adjusting the weights between “stay in the mobile” or “offload to the
cloud,” an extra control knob is added that lets us weight one or the other more.

Monetary costs of using cloud services could be significant in weighting [53],
and we might want to favor offloading to the cloud server slightly less. The cost
function is written as

C(t) = Cmc(t) + Ccm(t), (5.5)

where Cmc(t) and Ccm(t) denote the mobile and cloud transmission costs at time
slot t , respectively.

Mobile to cloud transfer costs include the energy consumed for transmission
from the mobile to the cloud (Etx

com(t)) plus the time averaged, aggregate radio
interface queue (Q). Etx

com(t) is expressed as:

Etx
com(t) =

N∑

i=1

N∑

j=1

K∑

k=1

zijk(t)P
tx
k (t)τmc

ik (t). (5.6)

where P tx
k (t) shows the transmission power level consumed by the mobile device

at radio interface k in time slot t , and τmc
ik (t) represents the mobile to cloud delay

to transmit the output data from component i in the mobile to the cloud at wireless
interface k starting by time slot t .
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The objective is to minimize the overall communications cost, subject to a
constraint on the average, aggregated queue length. That is, min

∑T
t=1 Etx

com(t), s.t.
Q = limT →∞ sup 1

T

∑T
t=1

∑K
k=1 E{|Qk(t)|} < ∞, where Qk(t) is the transmission

queue of data for wireless interface k at time slot t . Using standard Lyapunov
optimization formulation [38], this optimization problem is written as:

min Cmc(t) = Etx
com(t)

−Vmc

K∑

k=1

N∑

i=1

N∑

j=1

zijk(t)Qk(t)A
mc
k (t). (5.7)

The decision variable for this cost function is zijk(t) ∀p, i, j, k, t (which is formed
based on aijk(t) and xpit ). The parameter Vmc serves as a control knob [45] by
adjusting the trade-off between minimization of the cost (ETx

com) and satisfaction
of the queue stability constraint for all the radio interfaces. Amc

k (t) is the data
transmitted from the mobile to the cloud through radio interface k at time slot t . The
RHS of Eq. (5.7) is the representative of averaged aggregated queue length (Q).
The control parameter Vmc > 0 represents the trade-off between communication
energy and averaged aggregated queue length, i.e., how much we shall emphasize
the uplink communication energy minimization compared to averaged aggregated
queue length. When Vmc decreases, then it emphasizes the effect of Etx

com(t).
The cloud to mobile communication costs, Erx

com(t), can be written similar to
the energy costs for mobile to cloud communications shown in Eq. (5.6). Hence,
Erx

com(t) is formulated as:

Erx
com(t) =

N∑

i=1

N∑

j=1

K∑

k=1

yijk(t)P
rx
k (t)τ cm

jk (t), (5.8)

where all parameters are as defined in the table.
The overall cloud to mobile communication costs must be minimized w.r.t

constraints on the reception queue. Hence, min
∑T

t=1 Erx
com(t) s.t.

S = limT →∞ sup 1
T

∑T
t=1

∑K
k=1 E{|Sk(t)|} < ∞. Sk(t) is the reception

queue for wireless interface k at time slot t . Just as in the transmitter,
the conditional optimization can be rewritten as min Ccm(t) = Erx

com(t) −
Vcm

∑K
k=1

∑N
i=1

∑N
j=1 yijk(t)Sk(t)A

cm
k (t), with parameters as defined in Table 5.1.

Vcm is the control parameter for the cloud transmission queue that trades-off the
receiver energy costs and the satisfaction constraint of averaged aggregated queue
length (S).

Overall Execution Time for the Application Since most applications also come with
execution deadlines, the following condition is imposed:

0 <

T∑

t=1

tx0Nt ≤ T t = 1, . . . , T (5.9)



42 5 Optimal Cognitive Scheduling and Cloud Offloading Using Multi-Radios

where
∑T

t=1 t · x0Nt denotes the completion time of the last component (N ) on the
mobile (p = 0) and T is the application deadline.

In order to make sure that the solution only allows for processing each component
exactly once, we note that mi + ci = 1, ∀i.

Precedence Constraint As mentioned earlier, some components will depend on the
execution of other components. In order to ensure that this precedence constraints
are met, the following constraint is added:

μij

1∑

p=0

t+νj (t)∑

s=1

xpjs ≤ μij

1∑

p=0

t∑

s=1

xpis,

if i ≺ j, t = miq
m
i + ciq

c
i , . . . , T − νj ,

(5.10)

where i ≺ j implies that component i must complete execution before j can begin
execution, and

νj (t) =mjq
m
j + cj q

c
j +

K∑

k=1

(yjik(t)τ
cm
jk (t) + zijk(t)τ

mc
ik (t)). (5.11)

Completion Deadline Each component j can complete execution only after all
of its precedent components have completed execution, plus the time to process
component j itself, and the time to transfer required data to the execution site of j

if i is not on that same site. This constraint is given as:

1∑

p=0

t∑

h=1

hxpih +
K∑

k=1

(zijk(t)τ
mc
ik (t) + yjik(t)τ

cm
jk (t))

+
t∑

h=1

x0jhq
m
j +

t∑

h=1

x1jhq
c
j ≤

1∑

p=0

T∑

s=1

sxpjs, i ≺ j,∀i, j, t.

(5.12)

∑1
p=0

∑t
h=1 hxpih is the number of time slots that component i takes to complete

execution, within time period [0, t).
∑K

k=1 (zijk(t)τ
mc
ik (t) + yjik(t)τ

cm
ik (t)) repre-

sents the time to transfer the output data related to component i either from mobile to
cloud or cloud to mobile by time slot t . Also, the time to process component j itself
(either in the mobile or cloud) by time slot t is set to

∑t
h=1 x0jhq

m
j +∑t

h=1 x1jhq
c
j .

Summation of all these values should be less than the time to complete processing

of component j

(∑1
p=0

∑T
t=1 txpjt

)
.
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Serial Execution in Mobile The components processing in the mobile must execute
serially. Thus, for each time interval [t − 1, t), we can have at most one component
for processing in the mobile, which can be written as

N∑

i=1

min{t+miq
m
i +ciq

c
i −1,T }∑

s=t

x0is ≤ 1 t = 1, . . . , T (5.13)

Recently, the new smartphones have the capability of parallel processing. However,
a wireless-based scheduler is required in the operating system of device, which
increases the cost of system complexity in the mobile devices and may not be
practical in the real-world scenarios.

Data Rate Constraints The fraction of uplink data transfer between two com-
ponents, say i and j , through all the radio interfaces should sum to 1, at most.
Therefore, the overall constraint for uplink transfer can be written as:

T∑

t=1

K∑

k=1

zijk(t) ≤ 1 ∀i, j. (5.14)

Considering the definition of zijk(t) as given in Eqs. (5.1) and (5.14) must be equal
to 1 if i ≺ j (μij = 1), and also component i is executed in the mobile and
component j is executed in the cloud. Otherwise it gets zero. It also needs to
guarantee all the data will be offloaded through the available radio interfaces, which
means:

∑T
t=1

∑K
k=1 aijk(t) = 1,∀i ≺ j , and aijk(t) ≥ 0, ∀i, j, k, t . Moreover,

moving data from execution of component in cloud happens only at one time after
component i has been processed, that is

∑T
t=1

∑K
k=1 fijkt ≤ 1,

Similarly for the downlink scenario, the fraction of downlink data transfer
between two components through all the radio interfaces must be at most 1, which
can be written as:

∑T
t=1

∑K
k=1 yijk(t) ≤ 1, ∀i, j . Also, the other constraints in

downlink transfer are given as:
∑T

t=1
∑K

k=1 bijk(t) = 1, ∀j ≺ i, and bijk(t) ≥ 0,
∀i, j, k, t,, and

∑T
t=1

∑K
k=1 gijk(t) ≤ 1,

In the raw formulation, we have indicator variables zijk(t) and yijk(t) (see
Eqs. (5.1) and (5.2)) that are cubic terms thereby violating the linearity of the
constraints.

We now state and prove a mathematical lemma and corollary that shows that a
cubic constraint can be linearized in a special case, which is valid for this problem.

5.2.1 Linearizing the Optimization Problem

The following lemma states that a quadratic constraint can be linearized in special
cases.
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Lemma 5.1 In a linear program, there exists a method to linearize a quadratic
term, XY , when at least one of the variables is a 0 − 1 binary variable and
the other is bounded (Rubin, http://orinanobworld.blogspot.de/2010/10/binary-
variables-and-quadratic-terms.html, Sept 2014).

Proof without loss of generality assume X is the binary variable and Y is the
bounded variable such that σ ≤ Y ≤ ρ (σ and ρ are known). Note that when
X = 0, Z = 0 and when X = 1, Z = Y .

Add the following four linear constraints:

Z ≤ ρX (5.15)

Z ≥ σX (5.16)

Z ≤ Y − σ(1 − X) (5.17)

Z ≥ Y − ρ(1 − X) (5.18)

When X = 0, the first pair of inequalities above forces 0 ≤ Z ≤ 0 which implies
Z = 0. The second pair of inequalities results in Y − ρ ≤ Z ≤ Y − σ which is
satisfied by Z = 0.

When X = 1, the second pair of inequalities above forces Y ≤ Z ≤ Y which
implies Z = Y . The first pair of inequalities results in σ ≤ Z ≤ ρ which is satisfied
by Z = Y .

Therefore, by letting Z = XY and adding the above four constraints, the
quadratic term XY is linearized by replacing it with the bounded variable Z. �
Corollary 5.1 A product of n variables, where one variable is bounded and the
remaining n − 1 are 0 − 1 binary variables, can be linearized by successively
applying Lemma 5.1.

Proof Let Z = X1X2X3X4 · · · Xn where X1 is bounded and X2, . . . , Xn are 0 − 1
variables. Applying Lemma 5.1, X1X2 can be replaced by a bounded variable Z2.
Now Z = Z2X3X4 · · · Xn. Again applying Lemma 5.1, Z2X3 can be replaced by a
bounded variable Z3 resulting in Z = Z3X4 · · ·Xn. After n−3 more such iterations,
we will have Z = Zn where Zn is a bounded variable with all linear constraints and
no non-linear terms. �

In the formulation zijk(t) (and yijk(t)) is expressed as a cubic term where two
factors in the cubic term are 0 − 1 variables and the other one is bounded: 0 ≤
aijk(t) ≤ 1 (0 ≤ bijk(t) ≤ 1). By Corollary 5.1, each can be linearized resulting in
zijk (and yijk(t)) being expressed as a linear term.

In the uplink transfer of this chapter, we define fijkt = ∑t
h=0 x0ih × aijk(t) as

a new mathematical parameter, and hence zijkt = fijkt × (μij cj ). Now we apply
Lemma 5.1 to obtain the following constraints: zijk(t) ≤ fijkt , zijk(t) ≤ μij cj ,
zijk(t) ≥ 0, zijk(t) ≥ μij cj − (1 − fijkt ), ∀i, j, k, t .

http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
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We need to apply the Lemma 5.1 once again for the quadratic term of fijkt as:
fijkt ≤ ∑t

h=0 x0ih, fijkt ≤ aijk(t), fijkt ≥ aijk(t) − (1 − ∑t
h=0 x0ih), fijkt ≥ 0,

∀i, j, k, t . Thus, the cubic term of three decision variables is converted to a new
linear decision variable.

Similarly in the downlink transfer, for yijk(t) = μji

∑t
h=0 x1jhmibijk(t), we can

write: yijk(t) ≤ gijkt , yijk(t) ≤ μjimi , yijk(t) ≥ μjimi − (1 − gijkt ), yijk(t) ≥ 0,
∀i, j, k, t , where gijkt = ∑t

h=0 x1jh × bijk(t). We apply Lemma 5.1 for gijkt as
gijkt ≤ ∑t

h=0 x1jh, gijkt ≤ bijk(t), gijkt ≥ bijk(t) − (1 − ∑t
h=0 x1jh), gijkt ≥ 0,

∀i, j, k, t .

System Complexity Since we have an integer linear problem (ILP), the number of
constraints determines the scheduling overhead and affects memory usage more
than the number of variables (http://www-01.ibm.com/support/docview.wss?uid=
swg21399933). In this chapter, the upper bound for number of constraints is
9T N2 + N2 + 2T , which is a function of application runtime and number of
components (order of complexity is O(T N2)). Also, the number of variables is
6KT N2 (order of complexity is O(T N2). However, we do not experience schedule
overhead in the offloading scenario because the strategy will be executed in the
cloud server where the RAM is high enough.

5.3 Comparison with the State of Art

The performance of the CSCO is evaluated using real data from an HTC smartphone
(mobile device) and NSFCloud (remote server) using two radios WiFi and LTE
(the evaluation setup is detailed in Chap. 7). Data was gathered from indoor as
well as outdoor wireless environments. Evaluations show that CSCO lowers energy
consumption by 23–68% and reduces latency by 28–66% in comparison to the best-
interface protocol, offline schemes, and mobile-only and cloud-only executions. We
compare the optimal CSCO scheme with several variants of the CSCO scheme in
both the indoor and outdoor environments as well as current state of the art in this
field. The CSCO scheme will be compared with several other schemes including:
(1) mobile-only execution where all the application components are processed in
the mobile device (extreme case for mobile execution); (2) On-Off remote cloud
offloading (On-Off RCO) where all components must be offloaded and at each
time epoch, the offload is scheduled on the best available wireless interface (On-
Off) (extreme case for cloud execution); (3) the dynamic offloading algorithm
(DOA) proposed in [19], 14], a partial offline strategy which uses On-Off multi-
RAT strategy; (4) HELVM proposed in [40], where a dynamic scheduler for partial
offloading is studied; (5) the revised HEFT algorithm [48] for joint scheduling tasks
(RHJS) on multiple cores that is proposed in [28], and (6) several variants of the
CSCO work, described below:

http://www-01.ibm.com/support/docview.wss?uid=swg21399933
http://www-01.ibm.com/support/docview.wss?uid=swg21399933
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Fig. 5.3 Total energy consumed by the mobile device (normalized to the energy consumed by
mobile-only execution) for all the schemes using the face recognition application in http://darnok.
org/programming/face-recognition/

• Cognitive scheduling and cloud offloading (CSCO): This is the optimal scheme
for cognitive joint scheduling and offloading.

• On-Off scheduling and cloud offloading (On-Off SCO): In this variant, we use the
joint scheduling–offloading strategy, with an additional constraint of using only
the best radio interface at every time slot. This is done to enable a fair comparison
with CSCO, where only the best radio interface is used at any time slot.

• Cognitive remote cloud offloading (CRCO) where all components must be
offloaded and at each time epoch, the cognitive offload is scheduled on the multi-
RAT networking.

For Figs. 5.3 and 5.4, a face recognition application with 10 components
(http://darnok.org/programming/face-recognition/) was used along with the same
wireless network parameters in http://www.3gpp.org/ftp/tsg-ran/wg4-radio/ in order
to compare our results with the results in the state of the art.

Figure 5.3 shows the comparison of normalized (normalized w.r.t. the energy
consumed by mobile-only execution) energy consumed by the mobile device for
eight schemes. We observe that CSCO consumes 68%, 51%, 42%, 23%, 14%, 44%,
and 24% less energy in comparison to the schemes using local execution, On-Off
RCO, CRCO, DOA, On-Off SCO, HELVM, and RHJS, respectively.

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://www.3gpp.org/ftp/tsg-ran/wg4-radio/
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Fig. 5.4 Total application runtime (normalized to application runtime in the mobile) for all the
schemes using the face recognition application in http://darnok.org/programming/face-recognition/

In Fig. 5.4, runtime values of the application (http://darnok.org/programming/
face-recognition/) (normalized to the scheme with local execution) for the eight
schemes are compared. The CSCO enables the application to be processed 41%,
66%, 49%, 46%, 17%, 38%, and 28% faster compared to the schemes using
local execution, On-Off RCO, CRCO, DOA, On-Off SCO, HELVM, and RHJS,
respectively. Therefore, CSCO is joint energy and time efficient in comparison to
the other schemes.

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/


Chapter 6
Time-Adaptive and Cognitive Cloud
Offloading Using Multiple Radios

The solution developed in Chap. 5 can be computationally heavy, especially for
very complex applications. It is therefore useful to develop practical heuristics
that can achieve near optimal performances. This chapter introduces a practical
time-adaptive and wireless aware heuristic for CSCO that will achieve two goals
simultaneously: (1) assign the schedule order of application’s components; and
(2) determine the offloading strategy while optimally allocating the percentage
of data to be sent by the mobile and the cloud via each wireless interface.
This chapter investigates a suboptimal but more practical approach for cognitive
scheduling and cloud offloading. The schemes introduced in this chapter (like the
one introduced in Chap. 5) are also included in the center of the Venn diagram shown
in Fig. 2.3. This means that this approach covers all the four desired characteristics
of offloading. This scheme maximizes the net utility, including the mobile device
resources (battery, CPU, and memory) saved by cloud offloading with the penalty
of communication costs such as latency, energy consumed for offloading, and queue
instability of radio interfaces imposed by cognitive cloud offloading.

The heuristic cognitive cloud offloading uses a fast and low-complex strategy for
multi-RAT-aware computation offloading of multi-component mobile applications
in a time-adaptive scenario. This allows this algorithm to adapt quickly to the
changing wireless and network parameters of all the available wireless interfaces
such as rates, delay, and power. For optimal offloading decisions, the percentages
of data to be sent by the mobile and the cloud via each wireless interface are
updated at each time slot. A comprehensive model for the net utility saved by
offloading components to be maximized based on the new scenario of time-adaptive
multi-RAT networking was provided. Satisfying the constraints for schedule order
of applications with arbitrary CDGs, the strategy for either offloading or locally
executing the components is provided in each time slot using the updated knowledge
of wireless parameters. Note that since using multiple wireless interfaces has been
considered at the same time, queue stability of the mobile and cloud transmission
buffers for aggregated interfaces is guaranteed in the offloading strategy.
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6.1 Network and Application Model

As before, let us consider a mobile device with K radio interfaces in a wireless
network, running an N -component mobile application. The goal of the algorithm is
to find a time-adaptive scheduling–offloading policy for all components as well as
the optimal wireless resource allocation between the multi-RAT interfaces for data
transfers of both the mobile to cloud and the cloud to mobile.

The system can be explained using the system model shown in Fig. 6.1. In this
figure, at time slot t ∀t , αk(t)% of the required data for offloading is sent by the
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mobile device through radio interface k ∀k. Similarly, βk(t)% of the data is sent
by the cloud end using radio interface k ∀k. Both αk(t) and βk(t) are computed to
achieve optimum net utility.

6.1.1 Example Component Dependency Graph for a Practical
Application

We will use the same example video navigation application introduced in Chap. 3
with N = 14 components to explain the salient points of the heuristics developed in
this chapter. The component dependency graph of these applications was first shown
in Fig. 3.1a and is repeated in Fig. 6.2a for ease of reference. The time-adaptive
cognitive cloud offloading strategy will schedule each component to process either
in the cloud or in the mobile, while keeping these dependencies in mind, along
with other constraints. The decision to offload or locally execute a component will
be made adaptive to current wireless conditions. Since most applications are user
initiated, the first (potentially involving some input from the human user) and last
(potentially involving some displayed output) components are typically scheduled
on the mobile device. Figure 6.2b shows an example of the stages of processing for
the application with the CDG shown in Fig. 6.2a at the first 5 time slots. More details
of the algorithm are described in Sect. 6.2. Some components (e.g., components 2,
6, and 11 in the cloud and 4 in the mobile for this example) can be scheduled for
parallel execution.

Fig. 6.2 Time-adaptive scheduling–offloading for an example of 14-component mobile applica-
tion. (a) CDG of the application. (b) Scheduling strategy
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A smart cognitive cloud offloading algorithm will trade-off the benefits of
wireless offloading, namely energy and time savings (when components can be
parallelly scheduled in the cloud and the mobile) with the costs of offloading,
namely the energy and delay costs involved in the associated data transfer, while
simultaneously deciding on the optimal percentage of the data to send from the
mobile and the cloud via each of the available wireless network interfaces. We
assume that the energy consumption and the time required to transfer data between
components that are executed in the same entity (whether cloud or mobile) is
negligible in comparison to when the data must be transferred between entities.
Also, we assume that the cloud and the mobile clocks are synchronized [7, 30].
The time-adaptive scheduling–offloading heuristic is managed in the cloud, and the
feedback of decisions on offloading the components will be sent to the mobile device
(Fig. 6.1). In the online stage for offloading at each time slot, two sub-strategies are
studied for cloud offloading: (1) mobile to cloud transmission strategy that trades-off
the energy consumption by the mobile for transmission, the delay for transferring
the required data from mobile to the cloud, and queue stability of the mobile Tx
buffer for all the radio interfaces; and (2) cloud to mobile transmission strategy
that trades-off the energy consumption by the mobile for reception, the delay for
transferring the required data from cloud to the mobile, and queue stability of the
cloud Tx buffer for all the radio interfaces, which reflects the connectivity with the
mobile receiver.

6.1.2 Net Utility Function

To determine the best strategy for joint scheduling–offloading, we need to redefine
an appropriate net utility function for this scenario. The notations used for these
terms and the other parameters in this chapter are defined in Table 6.1. To determine
the scheduling–offloading strategy for component i, two decision variables are
defined for a time slot t as follows:

Ii(t) ≡
{

1
0

component i starts offloading at t ,
otherwise,

Xi(t) ≡
{

1
0

component i starts executing locally at t ,
otherwise.

The net utility is calculated as a weighted sum of the energy, memory, and CPU
cycles saved for the mobile device minus the inter-component communication cost
arising from executing some components locally and some remotely. This can be
written as:

U(t) = wsavedEsaved(t) + wmemoryMsaved(t)

+ wCPUCPUsaved(t) − wcomCcom(t).
(6.1)
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Table 6.1 Parameter definitions for the heuristic problem

Parameters Definitions

U(t) Net utility function at time t

T Number of time slots to complete processing the application

x Span of each time slot

Mi Memory consumed by the mobile device to launch component i

codei Code size to launch component i

ε Mapping factor to relate code size and the CPU instructions [41]

wx Weight factor of function x

P ac
i Active power consumed by the mobile to process component i

P Tx
k (t) (P Rx

k (t)) Transmit (received) power consumed by the mobile device through radio
interface k at time slot t

qm
i (qc

i ) Number of time slots to process component i in the mobile (cloud)

γ Weight factor (to adjust the wait time for offloading)

Amc
k (t)(Acl

k (t)) Data rate transmitted from the mobile (cloud) to the cloud (mobile)
through radio interface k at time slot t

Bmc
i (t) (Bcm

i (t)) Arrival data rate at the mobile (cloud), including the ambient traffic as
well as the data generated by offloaded component i

μij Dependency indicator: 1 if component i processed before j and 0
otherwise

Qk(t) (Sk(t)) The transmission queue of data from the mobile (cloud) side for wireless
interface k at time slot t

Ii (t) Offloading indicator: 1 if the mobile starts to offload component i at t

ci (t) Indicator function that takes on a value of 1, if the component i has
started execution in the cloud at any time between 1 and t

Xi(t) Local execution indicator: 1 if the mobile starts to execute component i

locally at time slot t

mi(t) Indicator function that takes on a value of 1, if the component i has
started local execution at any time slot between 1 and t

zij (t) Indicator for communication requirement: 1 if component i is executed
in the mobile and j is offloaded to the cloud by time t

αk(t) Percentage of allocated uplink (mobile to cloud) rate using radio
interface k for communication at t

βk(t) Percentage of allocated downlink (cloud to mobile) rate using radio
interface k for communication at t

ETx
com(t) (ERx

com(t)) Energy consumed for the mobile transmission (reception)

τmc
i,k (t) (τ cm

i,k (t)) Delay (# slots) to transmit the output data from component i in the
mobile (cloud) to the cloud (mobile) at interface k starting by t

T Tx
th (T Rx

th ) Threshold number of time slots for transmission from mobile (cloud) to
cloud (mobile)

lj i (t) The time slots to process the preceding component j , and transfer the
output data from component j to i by t

�mc(t) (�cm(t)) The objective function for mobile (cloud) transmission at time t

Vmc (Vcm) Control parameter in mobile (cloud) transmission
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The weights for the individual costs and benefits are chosen such that wsaved =
1 − wcom, and wCPU = 1 − wmemory.

At any given time t , the total energy saved by executing the components in the
cloud can be computed as the energy cost for running it locally (P ac

i qm
i ), which is

given by:

Esaved(t) =
N∑

i=1

ci(t)P
ac
i qm

i , (6.2)

where ci(t) =
t∑

s=1
Ii(s) and s = 1 corresponds to the first time slot, when

component i begins to execute. Likewise, mi(t) =
t∑

s=1
Xi(s) where s runs from

the first time slot to the time slot corresponding to the current time t .
The memory saved in the mobile device by offloading the components to the

cloud can be expressed as:

Msaved(t) =
N∑

i=1

ci(t)Mi, (6.3)

where Mi is the memory consumed by the mobile device to launch component i.
The objective function for CPU cycles saved is given by:

CPUsaved(t) =
N∑

i=1

ci(t)(εcodei), (6.4)

where codei is the size of the code for instructions that is used for executing
component i and ε is the mapping between code size and the CPU instructions. The
communication cost at time slot t (Ccom(t)) will be discussed in the next section.

6.2 Cognitive Offloading and Scheduling Heuristic

In this section, a heuristic approach is studied to find a time-adaptive cognitive
scheduling–offloading strategy for the computations of mobile applications. The
objective of the strategy is to specify the components that are selected for compu-
tation offloading, the time that each component should be scheduled for execution
either locally or remotely, and the radio interface allocation for offloading at each
time slot for both the mobile and cloud data transmission. The complete algorithm
is depicted in Algorithm 6.1. A detailed description of the algorithm follows.
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6.2.1 Optional Offline Stage

The offloading problem can be formulated as a two-stage or single-stage algorithm.
This section discusses the first stage of the two-stage algorithm. In this stage,
some of the components are eliminated as unsuitable for offloading at the outset,
maximizing the instantaneous utility values at time t0 (e.g., components 5 and
7 in Fig. 6.2b). Thus, this stage provides a suboptimal solution for the heuristic
algorithm. This stage can be omitted, and all the components can be considered
for potential offloading in case a single-stage version of the algorithm is preferred.
Note that the single-stage algorithm adds more time complexity to the online stage
of the algorithm as compared to the two-stage algorithm, but is closer to the optimal
solution.

In the offline stage, the components that contribute the most to an increase in
the net utility are identified if scheduled in the mobile device and then eliminated
from being considered for offloading. First an approximate value is obtained for
the optimal solution based on the information available at time t0. To do this the
instantaneous net utility given by Eq. (6.1) is maximized using an approximation
for the energy cost of offloading corresponding to time t0 (Ccom(t0)) assuming that
the interface with the lowest communication power levels is used for data transfer.
Mathematically,

Ĉcom(t0) = wcom

{ N∑

i=1

N∑

j=1

μijmi(t0)cj (t0) min
k

(P Tx
k (t0)τ

mc
th )

+ μij ci(t0)mj (t0) min
k

(P Rx
k (t0)τ

cm
th )

}
,

(6.5)

where μij represents the dependency indicator (1 if component i must be processed
before j , and 0 otherwise), and τmc

th and τ cm
th are threshold values for the transmission

at the mobile and cloud ends for each component, respectively. To obtain the
approximation given by Eq. (6.5) , we assume that the Tx and Rx power levels
(P Tx

k (t0) and P Rx
k (t0)) are fixed when computing these values for the offline stage.

By selecting the wireless interface with the lowest Tx and Rx energy levels, the
minimum energy consumed for communication over the wireless interfaces (∀k =
1, 2, . . . , K) is obtained in Eq. (6.5) with the initial information in the offline stage
(i.e., in the transmission, we have: min

k
(P Tx

k (t0)τ
mc
th )). The optimization problem in

the offline stage can be written as:

OPoff: max
c

wsavedEsaved(t0) + wmemoryMsaved(t0)

+ wCPUCPUsaved(t0) − Ĉcom(t0),

(6.6)
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s.t.

N∑

i=1

mi(t0)q
m
i +

N∑

i=1

ci(t0)q
c
i

+
N∑

i=1

N∑

j=1

μij (mi(t0)cj (t0)τ
mc
th + ci(t0)mj (t0)τ

cm
th ) ≤ T ,

(6.7)

where c is the offload indicator vector (c = [c1(t0) c2(t0) . . . cN (t0)]), and T is
the number of time slots to complete processing the application. Since the energy
consumed by local execution (P ac

i qm
i ), local memory consumption (Mi), and local

CPU consumption (εcodei) are constant parameters, calculating the lower bound of
the communication cost in Eq. (6.5) at initial time slot t0 by Ĉcom(t0) gives the upper
bound of the net utility approximation considering all the potential components for
offloading in the online stage.

By solving this optimization problem, c∗
i (t0) ∀i is obtained which specifies if the

component i must be offloaded (ci(t0) = 1) or not. If ci(t0) = 1 (equivalently,
mi(t0) = 1 − ci(t0) = 0), then component i will be processed in the online
stage (components 2, 3, 4, 6, 8, 9, 10, 11, and 12 in Fig. 6.2b). Otherwise, it will
be scheduled for local execution based on the precedence constraints dictated by the
component dependency graph for the application.

In OPoff, we have the terms mi(t0)cj (t0) ∀i, j in the cost function (Ĉcom(t0)),
which makes the optimization problem non-linear. To convert this to a linear
optimization problem, the terms mi(t0)cj (t0), ∀i, j , are replaced with a new variable
zij (t0) and new constraints are added to make the new optimization problem equiv-
alent to the original one (Rubin, http://orinanobworld.blogspot.de/2010/10/binary-
variables-and-quadratic-terms.html, Sept 2014). These constraints are as follows:

zij (t0) ≤ mi(t0), (6.8)

zij (t0) ≥ 0, (6.9)

zij (t0) ≤ cj (t0), (6.10)

zij (t0) ≥ cj (t0) − (1 − mi(t0)), (6.11)

where zij (t0) is the indicator specified at time t0. This indicator is one if component
i will be executed in the mobile device and component j will be executed in the
cloud; otherwise, it is 0. The following subsections describe the online stage of the
heuristic.

6.2.2 Online Stage

In the online stage of the algorithm (starting from t1 in Fig. 6.2b), the following
precedence constraints must be checked to see if a component is eligible for
execution at the current time slot t :

http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html
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1. Each component must be processed only once, either in the mobile or in the
cloud. This constraint is mathematically written as:

mi(t − 1) + ci(t − 1) < 1, ∀i. (6.12)

This equation shows that component i has not started execution (either locally or
remotely) by time slot t .

2. All the components on which component i depends should have completed
execution before starting the offload process or local execution of component
i. That is j precedence symbol i, for all components j that must be completed
before component i. This should be checked from the start of the application
runtime until (t − 1)th time slot. Therefore, the precedence constraints are:

mi(t − lj i(t − 1)) + ci(t − lj i(t − 1)) ≤
mj(t − 1) + cj (t − 1),

∀j ≺ i, mj (t − 1) + cj (t − 1) = 1,

t = lj i(t − 1) + 1 . . . T ,

(6.13)

where lj i(t) is the number of time slots to process the preceding component j ,
either locally or remotely, and transfer the output data from component j to i

by time slot t . Note that this time duration lj i(t) is a function of t , because the
time taken to execute a component and to communicate relevant data is time
dependent (because of varying mobile device resource availability and wireless
data rates). The duration lj i(t) is expressed as:

lj i(t) = mj(t)q
m
j + cj (t)q

c
j

+
t∑

s=1

K∑

k=1

(
zjiαk(s)τ

mc
j,k (s) + zijβk(s)τ

cm
j,k (s)

)
,

(6.14)

where αk(s) and βk(s) are the percentages of allocated rates for the mobile
to the cloud and the cloud to the mobile, respectively, using radio interface
k for offloading at time slot s. The first two terms on the RHS of Eq. (6.14)
are the execution time slots for component j in the mobile device and cloud,
respectively, weighted by the respective indicator functions (mj(t) and cj (t)).
The third term represents the relevant data-offload time between components
j and i. If zjiαk(s) is non-zero, then αk(s)τ

mc
j,k (s) represents the time slots to

transmit the allocated output data of component j in the mobile device using
radio interface k, to the cloud where component i will be executed at time slot
s. If zijβk(s) is non-zero, then βk(s)τ

cm
j,k (s) represents the time slots to send the

part of the output data from component j in the cloud via radio interface k to the
mobile device where component i will be executed at time slot s.
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If these two constraints are satisfied for component i, then it is safe to execute it.
Otherwise, component i is not ready for execution at this current time slot, and Xi(t)

and Ii(t) are set to 0. Also note that it is possible to calculate lj i(t − 1), because we
have access to all the decision variables, such as αk(s), βk(s), Xi(s), and Ii(s), for
the previous time slots for s ∈ {1, 2, . . . , t − 1}.

Mobile Transmission Strategy

Once a component has been identified for offloading, then radio allocation for the
transmission from the mobile to cloud must be computed. Since the cognitive cloud
offloader works with multiple wireless interfaces at the same time, the stability of
the data transmission buffers should be monitored to ensure no buffer overflows.
Mathematically, this can be written as follows:

Q = lim
T →∞ sup

1

T

T∑

t=1

K∑

k=1

E{|Qk(t)|} < ∞, (6.15)

where Qk(t) is the transmission queue of wireless interface k at time slot t from the
mobile side. The above problem is cast as a Lyapunov optimization [38] problem.

The Lyapunov function is defined as L(Q(t)) = 1
2

K∑
k=1

Q2
k(t) where Q(t)=[Q1(t)

Q2(t) . . . QK(t)]. While the queue of mobile transmission (which includes all data
that must be transferred from the mobile device to the cloud) is updated with time,

the Lyapunov drift will be �mc(Q(t))
�= E{L(Q(t + 1)) − L(Q(t))|Q(t)}. The

Lyapunov drift is opportunistically minimized, taking into account the cost of the
energy consumed for mobile transmission: �mc(Q(t))+VmcE{ETx

com(t)|Q(t)} [15],
where Vmc is the control parameter for the queuing of the mobile transmission,
considering the balance between the Lyapunov drift and the cost of energy
consumed for transmission (ETx

com(t)), and

ETx
com(t) =

K∑

k=1

P Tx
k (t)

N∑

i=1

Ii(t)αk(t)τ
mc
i,k (t), (6.16)

where all the components i, prepared for offloading at time slot t , have Ii(t) set to
one.
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Lemma 6.1 As proved in [38], the upper bound of the Lyapunov drift is obtained
by:

�mc(Q(t)) + VmcE[ETx
com(t)|Q(t)] ≤ (Amc

max)
2

2

+ VmcE{ETx
com(t)|Q(t)}

+
K∑

k=1

E

{
Qk(t)

(
N∑

i=1

Bmc
i (t) − Amc

k (t)

)
|Q(t)

}
.

(6.17)

where Amc
k (t) represents data rate transmitted from the mobile device to the cloud

through radio interface k at time slot t , Bmc
i (t) is the arrival data rate in the mobile

transmission buffer at time slot t . Note that Bmc
i (t) will include both the data that

the application needs to transfer due to offload operations of component i and other
ambient data that the mobile generates and which is unrelated to the offloading.
Also, Amc

max is the maximum transmitted data rate.

Following the Lyapunov optimization framework, the upper bound of the
objective function in Eq. (6.17) must be minimized. This can be done by simplifying
the RHS of Eq. (6.17) as follows:

OPTx: min
α

�mc(t) = VmcE
Tx
com −

K∑

k=1

(
Qk(t)A

mc
k (t)

)
, (6.18)

s.t.

K∑

k=1

αk(t)

N∑

i=1

Ii(t)τ
mc
i,k (t) ≤ T Tx

th , (6.19)

K∑

k=1

αk(t) = 1, αk(t) ≥ 0,∀k, (6.20)

where α = [α1(t) α2(t) . . . αK(t)]. Constraints (6.19) and (6.20) respectively
ensure that the transmission time lies below a certain threshold, T Tx

th , and that the
required data is transferred through multi-RATs, but the summation of weights for
radio interface allocation should be one.

The performance bounds of the transmission strategy based on the Lyapunov
optimization [38] for the transmission queue stability and energy consumed for
transmission, respectively, are expressed as:

lim
T →∞

1

T

T∑

t=1

K∑

k=1

Qi(t) ≤
(Amc

max)
2

2 + VmcE
∗Tx
com

εmax
, (6.21)
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lim
T →∞

1

T

T∑

t=1

E
Tx
com(t) ≤ (Amc

max)
2

2Vmc
+ E∗Tx

com, (6.22)

where a represents the mean value for parameter a, and E∗Tx
com is the optimal value

of ETx
com obtained from solving the optimization problem in Eq. (6.18).

The offloading strategy (from the mobile to the cloud) in the online stage is as
follows. For every component i, qualified for processing from the previous step, if
the optimization problem OPTx has a solution for the variable parameter set α in the
feasible region, then component i is offloaded starting at time slot t (Ii(t) = 1) via
K wireless interfaces at the optimal percentage values α∗

k (t) ∀ k (e.g., component 2
at time t2, components 6 and 11 at t3 in the example of Fig. 6.2b). If the optimization
problem does not have a feasible solution, then there are two options: (1) wait for the
next time slot (e.g., components 6 and 11 wait at time t2 in Fig. 6.2b); (2) execute the
component locally. The difference between the current time slot t and the time slot
t
req
i that requested for processing component i should be much lower than the local

execution time. This constraint is given by |t − t
req
i | < γqm

i , where γ is the weight
factor. If the wait time does not exceed the local execution time for component i,
then Ii(t) is set to 0 and the component i is set aside to await its turn for execution.
However, if |t − t

req
i | ≥ γ qm

i , the component is flagged for local execution in the
next time slot, and will not be considered for offloading again (ci(T ) = 0).

In addition to updating the rates and latency values for each wireless interface in
the time slots, the transmission queue for the next time slot for radio interface k (∀k)
needs to be updated as follows:

Qk(t + 1) = max[Qk(t) − Amc
k (t), 0] + αk(t)

N∑

i=1

Bmc
i (t), (6.23)

where the first term on the RHS of Eq. (6.23) represents the data remaining in
the queue for interface k, and the second term represents the data arrival at radio
interface k in time slot t . Also note that if component i originally scheduled for
remote execution is not offloaded at time slot t due to not finding a feasible solution
for OPTx (meaning that energy and time constraints of offloading are not satisfied),
then the delay values for transmission of the output data from component i in the
mobile to the cloud via wireless interface k will be updated to: τmc

i,k (t + 1) + 1. This
means that, after each time slot, if the scheduled component for remote execution is
not offloaded, the delay cost will be updated by the delay value at the next time slot,
plus one.

Cloud Transmission Strategy

Just as in the case of the transmission strategy from the mobile, there is also a need
to optimize the cloud transmission strategy taking into account delays and energy
consumed by the mobile device for receiving this data. The percentage of data that
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needs to be allocated to each wireless interface to send the necessary information
from the cloud to the mobile is optimally chosen.

To ensure that no cloud Tx buffer overflows, the time-averaged summation of
buffer occupancies must remain finite:

S = lim
T →∞ sup

1

T

T∑

t=1

K∑

k=1

E{|Sk(t)|} < ∞, (6.24)

where Sk(t) is the transmission queue via the cloud for wireless interface k at
time slot t . The Lyapunov function for the cloud transmission strategy, which
also reflects the receiver strategy for the mobile, can be written as L(S(t)) =

1
2

K∑
k=1

S2
k (t), where S(t) = [S1(t)S2(t) . . . SK(t)]. The Lyapunov drift in the data

transfer from the cloud to the mobile is expressed as �cm(S(t))
�= E{L(S(t + 1))−

L(S(t))|S(t)}. This Lyapunov drift is opportunistically minimized, considering
the penalty of energy consumed for downlink mobile reception as �cm(S(t)) +
VcmE{ERx

com(t)|S(t)}, where Vcm is the control parameter in data transfer from
the cloud to the mobile, while the trade-off between the Lyapunov drift of the
cloud transmission queue and the penalty of energy consumed for mobile reception
(ERx

com(t)) is applied, and

ERx
com(t) =

K∑

k=1

P Rx
k (t)

N∑

i=1

βk(t)τ
cm
i,k (t), (6.25)

Following Lemma 6.1, the upper bound of the objective function for the Lyapunov
drift of data transfer from the cloud to the mobile is obtained by:

�cm(S(t)) + VcmE[ERx
com(t)|S(t)] ≤ (Acm

max)
2

2

+ VcmE{ERx
com(t)|S(t)}

+
K∑

k=1

E{Sk(t)(

N∑

i=1

Bcm
i (t) − Acm

k (t))|S(t)},

(6.26)

where Acm
k (t) represents the data rate transmitted from the cloud to the mobile

device through radio interface k at time slot t , Bcm
i (t) is the arrival data rate in

the cloud transmission buffer at time slot t . Bcm
i (t) will include both the data that

the cloud transfers due to offload operations of component i and other ambient data.
Also, Acm

max is the maximum data rate from the cloud. After simplifying the upper
bound on the RHS of Eq. (6.26), the objective functionof the optimization problem
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for the cloud transmission strategy, which reflects the mobile reception status, is
obtained. The optimal strategy can be written as the solution to the following
optimization problem considering the delay constraint from the cloud to the mobile:

OPRx: min
β

�cm(t) = VcmERx
com −

K∑

k=1

(
Sk(t)A

cm
k (t)

)
, (6.27)

s.t.

K∑

k=1

βk(t)

N∑

i=1

τ cm
i,k (t) ≤ T Rx

th , (6.28)

K∑

k=1

βk(t) = 1, βk(t) ≥ 0,∀k, (6.29)

where β = [β1(t) β2(t) . . . βK(t)]. Constraints (6.28) and (6.29), respectively,
ensure that the latency from the cloud to the mobile lies below a certain threshold,
T Rx

th , and that the required data is optimally transmitted from the cloud via multiple
interfaces and that the weights sum to unity. Also, the performance bounds for the
cloud transmission queue and energy consumed by the mobile receiver, respectively,
are given as:

lim
T →∞

1

T

T∑

t=1

K∑

k=1

Si(t) ≤
(Acm

max)
2

2 + VcmE∗Rx
com

εmax
, (6.30)

lim
T →∞

1

T

T∑

t=1

E
Rx
com(t) ≤ (Acm

max)
2

2Vcm
+ E∗Rx

com. (6.31)

The offloading strategy (cloud transmission) in the online stage is as follows. For
every component i from which data must be received at the mobile device, if the
optimization problem OPRx has a solution for the variable parameter set β in the
feasible region, then component i is transmitted by the cloud, at time slot, t , via
K wireless interfaces at the optimal percentage values β∗

k (t) ∀ k (e.g., component
3 at time slots t3 in the example of Fig. 6.2b). If the optimization problem OPRx
does not have a feasible solution, then transmission from the cloud is scheduled for
the next time slot. Note that if component i scheduled for remote execution is not
transmitted by the cloud to mobile at time slot t , then the delay values of the output
data from cloud to mobile for component i via wireless interface k will be updated
to: τ cm

i,k (t + 1) + 1. At the end of current time slot t , the data queues in Tx buffer for
the cloud at the next time slot for radio interface k (∀k) are updated as follows:
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Algorithm 6.1 Cognitive offloading and scheduling heuristic
1: Offline stage at t0 (optional):
2: Solve OPoff to calculate which components can be offloaded
3: otherwise all components are analyzed for offloading (except 1, N )
4: Online stage:
5: repeat t → t + 1
6: Check scheduling constraints given by Eqs. (6.12) and (6.13)
7: For offloadable components:
8: Solve OPTx
9: if OPTx has feasible solution then

10: offload related components with the corresponding values for αk(t) ∀k obtained by
OPTx

11: else if |t − t
req
i | < γqm

i then
12: wait for the next time slot to check offloading
13: else
14: component i will be scheduled for local execution
15: end if
16: Solve OPRx
17: if OPRx has feasible solutions then
18: Send output data from the cloud with corresponding values for βk(t) ∀k obtained by

OPRx
19: else
20: Do not send data from cloud and wait for the next slot
21: end if
22: For the components scheduled for local execution:
23: if local execution constraint given by Eq. (6.33) is satisfied then
24: Execute component i locally at time slot t

25: end if
26: Update Qk(t + 1) ∀k using Eq. (6.23)
27: Update Sk(t + 1) ∀k using Eq. (6.32)
28: Add delay (τmc

i,k (t + 1) ∀k) for waiting components in the mobile
29: Add delay (τ cm

i,k (t + 1) ∀k) for waiting components in the cloud
30: until t = T .

Sk(t + 1) = max[Sk(t) − Acm
k (t), 0] + βk(t)

N∑

i=1

Bcm
i (t). (6.32)

Local Execution

As mentioned earlier, some components are selected for local execution (e.g.,
components 1, 4, and 5 at time slots t1, t2, and t4, respectively, in the example
of Fig. 6.2b). Although the cloud can execute several components in parallel, we
assume that the mobile device processes components serially. In order to schedule
component i on the mobile device, at the current time slot, t , there is a need to
ensure that no other application’s component is currently running on the mobile.
This is expressed as:
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N∑

i=1

t−1∑

s=t−1−qm
i

Xi(s) < 1. (6.33)

6.3 Comparison with the State of the Art

Simulations have been performed using the real data measurements from an HTC
phone running multi-component applications, using Amazon EC2 as the cloud and
two radio interfaces, LTE and WiFi, for cognitive offloading. Results show that the
cognitive approach provides 7% higher net utility in comparison to a simple use of
multiple radio interfaces due to selection of the best interface to the use for data
transfer. The scalability of the heuristic approach is further analyzed using various
real delay values, communication power levels, sizes of component dependency
graphs, and energy-delay trade-off factors. More details of the simulation results
are elaborated in Chap. 6 while in this section a gist of comparison analysis with the
state of the art is discussed.

In Fig. 6.3, the total energy consumption of the CSCO approach is compared
with three other schemes: (1) the scheme where all the components are executed
locally; (2) the scheme where all the components are offloaded for remote execution;
and (3) the dynamic offloading algorithm (DOA) proposed in [19], which uses
ON-OFF multi-RAT strategy. Moreover, the variants of the introduced approach
are considered as: (1) exhaustive search, where the optimization problem is solved
using brute force. This gives an upper bound of performance for all algorithms; (2)
heuristic with no offline stage (H-1Stage), where this strategy eliminates the offline
stage and proceeds with the rest of the heuristic algorithm where all components
are eligible for offloading; (3) two-stage heuristic algorithm (H-2Stage), where
the preprocessing stage is used to eliminate some of the components from being
considered for offloading; (4) single stage heuristic under On-Off model for the
wireless interfaces (H-1S-OnOff), where the single stage heuristic algorithm is
used, and all components are considered for offloading at the online stage, but
the components are offloaded using only one best wireless interface; (5) two-stage
heuristics with ON/OFF wireless interfaces (H-2S-OnOff), where the two-stage
algorithm is used for offloading, but the one best wireless interface policy is used
for offloading. Please note that these variants of the heuristic algorithms are more
elaborated in Chap. 7 as well.

In the simulations for Fig. 6.3, a face recognition application with 10 sequential
components was utilized (http://darnok.org/programming/face-recognition/). Con-
sidering radio interfaces WiFi and 3G for this bar graph, the wireless network
parameters in http://www.3gpp.org/ftp/tsg-ran/wg4-radio/ are used such that exactly
the same parameters used for the simulation of DOA in [19] were repeated for
all the other seven schemes. This comparison is normalized to the scheme with
local execution of all the components. It is observed that H-1Stage consumes
73%, 51%, 28%, and 3% less energy in comparison to the schemes using local

http://darnok.org/programming/face-recognition/
http://www.3gpp.org/ftp/tsg-ran/wg4-radio/
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Fig. 6.3 Total energy consumed by the mobile device for the heuristic and classical schemes,
normalized to the energy consumed by local execution (using the face recognition application in
http://darnok.org/programming/face-recognition/)

execution, remote execution, DOA, and H-1S-OnOff, respectively. Also, H-1Stage
consumes 8% more energy in comparison to the best case scenario that is obtained
by the exhaustive search. We can also compare the performances of the schemes
that use offline stage (H-2Stage, H-1S-OnOff, and DOA) in one category. H-
2Stage consumes 2.5% and 6% less energy in comparison to H-1S-OnOff and
DOA, respectively. H-2Stage outperforms H-2S-OnOff because it takes advantage
of cognitive networking. Although the initial non-time adaptive solution is applied
in all the three schemes, the strategy can be modified in the online stage for H-
2Stage and H-2S-OnOff. Therefore, using either of these schemes consumes less
energy than using DOA.

http://darnok.org/programming/face-recognition/


Chapter 7
Evaluation of Cloud Offloading
and Scheduling Mechanisms in Different
Scenarios

To understand the impact of the schemes introduced in the previous chapters
various evaluations and comparisons with classic approaches were done. While
in each chapter a summary of the performance of the scheme described in that
chapter was given, in this chapter we go into further details. We can think of the
scheduling and computation offloading schemes in the following scenarios: (1)
joint scheduling and cloud offloading for single-radio enabled mobile devices; (2)
cognitive offloading using multiple radios; (3) optimal cognitive offloading and
scheduling using multiple radios; and (4) time-adaptive cognitive offloading and
scheduling using multiple radios.

The first and second scenarios imply two different dimensions of computational
cloud offloading for mobile applications. In Sect. 7.2, the proposed scheme in
scenario (1) (joint scheduling and cloud offloading (JSCO)) using only one radio
is compared to five recent classic schemes. Scenario (2) is discussed in Chap. 3
and Sects. 7.4 and 7.5 show that these schemes outperform the classic schemes as
well. Section 7.4 compares all the schemes with one another. It is seen that the
mobile device consumes least energy when using the optimal scheme discussed in
Chap. 5, the next most efficient scheme was the heuristic cognitive cloud offloader
strategy discussed in Chap. 6, followed by the JSCO method using the best of the
multiple RATs discussed in Chap. 4. The least efficient performance was observed
when using the classic remote offloading scheme using the best RAT at any given
time.

7.1 Evaluation Setup

An HTC Vivid smartphone with a 1.2 GHz dual-core processor was used to gather
real data. This phone is equipped with two radio interfaces (k = 2): WiFi and
LTE (note that in single-radio scenario, only WiFi is activated). Moreover, we

© Springer Nature Switzerland AG 2019
S. E. Mahmoodi et al., Spectrum-Aware Mobile Computing,
Signals and Communication Technology,
https://doi.org/10.1007/978-3-030-02411-6_7

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02411-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-02411-6_7


68 7 Evaluation of Cloud Offloading and Scheduling Mechanisms in Different Scenarios

assume that whereas LTE is always available, the WiFi interface can sometimes
be unavailable (as is common in real life scenarios). A multi-component video
navigation application was used where video processing, face detection, graphics,
and clustering were the main features. In all, 14 components were used, four of
which are related to the graphics feature, three are for the face detection feature,
six are for video processing, and one is for clustering. Note that the first and
last components are executed locally so that the input–output of the application is
accessed by the mobile user. In addition, graphics library tools from the OpenGL
mobile Android applications were used (http://www.opengl.org/, March 2014);
face detection was taken from http://www.developer.com/ws/android/programming/
face-detection-with-android-apis.html, July 2014; and all the video processing
features were obtained from http://opencv.org/, April 2014. The CDG of this
application is illustrated in Fig. 3.1a. The execution times of the components in the
HTC phone and the cloud, uplink and downlink rates, delay at the WiFi interface
were measured. The Amazon elastic compute cloud (Amazon EC2) was used as
the cloud computing server (http://aws.amazon.com/ec2/. July 2014). The average
transmission and reception power levels of the mobile device for WiFi service were
257.83 and 123.74 mW, respectively. The active and idle power levels of the phone
were 644.9 and 22 mW, respectively. The power consumption of the last component
in the mobile device was 55 mW. These power measurements were obtained
using the “CurrentWidget: Battery monitor” application (http://code.google.com/
p/currentwidget/. July 2014). The average wireless service rates for WiFi were
0.80 Mbps for the uplink transmission and 1.76 Mbps for the downlink transmission,
respectively. The wireless service delays and data rates in both uplink and downlink
through WiFi and LTE (indoor and outdoor environments) were obtained by using
the Android secure FTP tool (http://www.lysesoft.com/). Figure 7.12 shows the
uplink and downlink delay values in indoor and outdoor environments for WiFi
and LTE wireless radios for a range of data size from 10 kB to 105 MB of data.
As can be seen from Fig. 7.12, delay in outdoor wireless is even lower than indoor
wireless environment for some ranges while indoor wireless delay on average is
lower. The local execution time for the 14 components was measured as [30, 340,
345, 125, 30, 80, 70, 30, 185, 125, 650, 571, 904, 56] ms. Because processing of
the components in the mobile device is performed in serial, application runtime in
the local execution equals the sum of the processing times for the 14 components
(3541 ms).

7.2 Joint Scheduling and Cloud Offloading for Single-Radio
Enabled Mobile Devices

In this section, first the performance of joint scheduling and cloud offloading
schemes is discussed for single-radio enabled devices based on real data measure-
ments from the 14-component application whose CDG was presented in Fig. 3.1a.

http://www.opengl.org/
http://www.developer.com/ws/android/programming/face-detection-with-android-apis.html
http://www.developer.com/ws/android/programming/face-detection-with-android-apis.html
http://opencv.org/
http://aws.amazon.com/ec2/
http://code.google.com/p/currentwidget/
http://code.google.com/p/currentwidget/
http://www.lysesoft.com/
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To further understanding of the model’s adaptability and scalability, some randomly
generated CDGs are considered whose layered structure and Fan-in/Fan-out ratio
could be controlled.

7.2.1 Simulations for the Video Navigation Mobile Application

The performance of the strategy is tested on the real 14-component application with
arbitrary dependencies (Fig. 3.1) against a 14-component application with fully par-
allel dependencies (Fig. 2.2b) and a 14-component application with fully sequential
dependencies (Fig. 2.2a). Since the parallel and sequential dependency graphs show,
respectively, the lowest and highest dependencies between components, lower and
upper bounds for the cost of offloading could be obtained for the applied CDG.

Rate Plots

Figure 7.1 shows the total energy values for several uplink and downlink rates of
the WiFi interface provided for cloud offloading. Figure 7.1a presents the total
energy saved through remote execution (the objective function in Eq. (3.10)) versus
wireless rates. We see that while rates increase, more energy is saved by the
mobile device with cloud offloading. This is expected, because with higher rates,
data communication is no longer a bottleneck and it is more energy efficient
to offload as many components as possible to the cloud. More energy is saved
in the parallel dependency graph, while less energy is saved in the sequential
dependency graph. We observe that in the sequential dependency graph, no energy
can be saved by cloud offloading for lower ranges of rates, and the application
cannot be processed with these low rates in 3 s (the time for local execution is
3541 ms). However, in the higher ranges of rates (uplink (downlink) rate= 9200
(20,240 kbps)), most of the components are offloaded to the cloud for computations
in all three CDGs. Thus, the performances of these three are closer to each other
when the wireless rates increase. In Fig. 7.1b, the total energy consumed by the
mobile device (summation of active energy while the mobile device is executing
components locally, communication energy, and idle energy while the mobile’s
processor is not executing any component) is plotted. We see that less total energy
is consumed by the mobile device when WiFi rates increase. Moreover, Fig. 7.1c
illustrates the energy consumed by communication, Ecom (given in Eq. (3.9)), versus
wireless rates. It is observed that the energy consumed by communication decreases
with an increase in rates for the sequential and parallel dependency graphs. Although
this is true for the applied CDG in higher rate ranges, more energy is consumed
by offloading while rates increase in the lower ranges. The reason is that more
computations are offloaded when rates increase so more energy is required for
offloading, while in the higher ranges of rates, the time to offload decreases thereby
decreasing the communication energy. Note that the application with sequential
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Fig. 7.1 Total energy for the
14-component application
versus uplink and downlink
rates in WiFi while T = 3 s,
PTx = 257.83 mW,
PRx = 123.74 mW. (a) Total
energy saved. (b) Total
energy consumption. (c) Total
communication energy

(a)

(b)

(c)
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Fig. 7.2 Time consumed for offloading versus rates of the WiFi link while T = 3 s,
PTx = 257.83 mW, PRx = 123.74 mW

dependency cannot be executed until rates reach 1440/3168 kbps. In the lower rate
ranges, wireless delay is high, and offloading is not preferred. On the other hand,
local execution takes 3541 ms when the application deadline, T , is set to 3000 ms in
the simulations for this figure. Therefore, the scheme using sequential dependency
graph is not plotted at lower rates because the application cannot be executed in
T = 3000 ms.

Figure 7.2 depicts the time span for communication versus uplink and downlink
rates for the applied CDG. More components for offloading lead to the consumption
of more energy and time for offloading, as shown in Figs. 7.1c and 7.2, respectively.

Time Plots

Figure 7.3a, b, c respectively plots the total energy saved, total energy consumption,
and the energy consumed by communication versus execution time of the applica-
tion (T ) for the three different CDGs considered—sequential, applied, and parallel.
When more time is allotted for the execution of the application, cloud offloading is
preferred and leads to a decrease in energy expenditure by the mobile device.

Figures 7.1 and 7.3 show that using the JSCO scheme (the scenario where the
applied CDG is used) works better than using an optimal offloading scheme that uses
a compiler pre-determined sequential traversal of an arbitrary CDG (the scenario
where the sequential dependency is used). Examples of sequential traversals of
arbitrary CDGs include [10, 23, 49]. Specifically, we see from Fig. 7.3 that the
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Fig. 7.3 Total energy versus
execution time (T ) while
Ru = 0.8 Mbps and
Rd = 1.76 Mbps. (a) Total
energy saved. (b) Total
energy consumption. (c) Total
communication energy

(a)

(b)

(c)
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Fig. 7.4 Total energy versus size of data transferred, when T = 3 s, Ru = 0.8 Mbps and Rd =
1.76 Mbps using the applied CDG

processing of an application with sequential traversal CDG can be completed in
no less than 3300 ms, while the application with applied CDG can be processed in
2400 ms and the application with parallel CDG can be processed in 2000 ms (rates
are set to 800/1760 kbps). In addition, the application with sequential dependency
cannot be executed until rates reach 1440/3168 kbps, whereas the applied CDG is
processed at much lower rates, 640/1408 kbps, while T is set to 3000 ms (Fig. 7.1).

The Data Plot

We next look at the impact on energy consumption and savings when the amount
of data to be transferred increases. Here the required data transfer for face detection
components is increased from 21.4 kB to 2.2 MB to consider the performance of
total energy as a function of the data size required for transition. In Fig. 7.15, we
see that, as expected, while the size of the transferred data increases, more energy is
consumed for communication, less energy is saved, and more energy is consumed
by the mobile device (Fig.7.4).
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7.2.2 Simulations for Variety of Component Dependencies

So far, the system performance was analyzed based on the fixed CDG from the
14-component video navigation application shown in Fig. 3.1, as well as the two
extreme cases of fully sequential CDG and fully parallel CDG. In this section, the
performance of the system is analyzed based on two different categories of random
CDGs: (1) Layer-by-Layer, and (2) Fan-in/Fan-out.

In Layer-by-Layer CDGs, a random number of nodes are generated for each
of the layers and edges are added with a probability p going from a node in an
earlier layer to a node in one of the successive layers. In Fan-in/Fan-out CDGs,
the Fan-in/Fan-out ratio of each node is constrained to the given threshold. Since
usually mobile-initiated applications must start on the mobile device and have an
output display on the mobile device, the first and last components are processed in
the mobile device. Note that the parallel and sequential dependency graphs show
the lowest and highest dependencies between components respectively and can be
used to obtain the lower and upper ranges for the cost of offloading on applications
exhibiting these extremes of CDGs. Since random CDGs are used in this subsection,
the simulations for each data point are run over three CDGs and the average of
these three values is plotted. Each CDG generated is constrained to have only 14
components for comparison purposes.

Figures 7.5 and 7.6 show the performance of the JSCO scheme for randomly
generated Layer-by-Layer CDGs. In Fig. 7.5, the average total energy saved through
remote execution, the average total energy consumed by the mobile, and the average
total energy for communication are plotted against the size of data transferred.
These bar graphs are compared as a function of the probability of edge connections
(p). When this probability increases, more components are dependent on each
other, and the density of the CDG increases. Therefore, the energy consumed
by cloud offloading increases (Fig. 7.5c), and the energy saved through remote
execution decreases (Fig. 7.5a). Moreover, it can be observed that when data size
for transferring the components increases, the total energy consumed by the mobile
device and the energy consumed for communication increase (Fig. 7.5b, c), and the
energy saved through remote execution decreases (Fig. 7.5a). Also note that for high
values of p and size of data transfer, the energy costs of offloading are so high
that the energy saved through remote execution gets closer to zero (as shown in
Fig. 7.5a).

In Fig. 7.6, the average total energy saved through remote execution, the average
total energy consumed by the mobile, and the average total energy for commu-
nication are plotted against uplink and downlink rates. These bar graphs are also
compared as a function of the probability of edge connections. We can observe
that while the wireless rates increase, the energy consumed by offloading increases
(Fig. 7.6b), the energy saved through cloud offloading decreases (Fig. 7.6a), and the
total energy consumption decreases (Fig. 7.6b). Moreover, we see that while the
probability and rates increase, the energy saved through remote execution decreases.

Figures 7.7 and 7.8 show the performance of the JSCO scheme for randomly
generated Fan-in/Fan-out CDGs. In Fig. 7.7, energy saved, energy consumed by the
mobile, and energy consumed for communication are respectively plotted versus
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Fig. 7.5 Average total
energy versus required data
size for transferring each
component in the apps with
Layer-by-Layer CDG (s = 5)
and 14 components while
T = 3 s, PTx = 257.83 mW,
PRx = 123.74 mW. (a)
Average total energy saved.
(b) Average total energy
consumption. (c) Average
total communication energy

(a)

(b)

(c)

the average data size for each transfer. Our results indicate that the performance
of the JSCO scheme is independent of the Fan-in/Fan-out ratio of these graphs
but dependent on the total Fan-in plus Fan-out degrees. When the in+out degree
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Fig. 7.6 Average total
energy versus uplink and
downlink rates in WiFi for the
apps with Layer-by-Layer
CDG (s = 5) and 14
components while T = 3 s,
PTx = 257.83 mW,
PRx = 123.74 mW. (a)
Average total energy saved.
(b) Average total energy
consumption. (c) Average
total communication energy

(a)

(b)

(c)
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Fig. 7.7 Average total
energy versus required data
size for transferring each
component in the apps with
Fan-in/Fan-out CDGs and 14
components while T = 3 s,
PTx = 257.83 mW,
PRx = 123.74 mW. (a)
Average total energy saved.
(b) Average total energy
consumption. (c) Average
total communication energy

(a)

(b)

(c)
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Fig. 7.8 Average total
energy versus uplink and
downlink rates in WiFi for the
apps with Fan-in/Fan-out
CDGs and 14 components
while T = 3 s,
PTx = 257.83 mW,
PRx = 123.74 mW. (a)
Average total energy saved.
(b) Average total energy
consumption. (c) Average
total communication energy

(a)

(b)

(c)
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increases, the dependency and offloading costs increase such that the energy saved
through cloud offloading decreases and the energy consumed by the mobile device
increases (Fig. 7.7a, b). Also when the data size for transferring increases, the
energy consumed by the mobile increases (Fig. 7.7c). Figure 7.8 presents the energy
as a function of the uplink/downlink rates. While rates increase and the in+out
degree decreases, the energy consumed for communication decreases (Fig. 7.8c).
Therefore, the energy saved through remote execution increases (Fig. 7.8a), and the
energy consumed by the mobile decreases (Fig. 7.8c).

7.2.3 Scalability of the JSCO Scheme

In this subsection, the scalability of the JSCO scheme is discussed. Specifically,
we want to address the largest application that the JSCO scheme can handle in
terms of the number of components and total execution time. In the discussions
so far, only a 14-component application (either real or randomly generated) is used.
In order to maintain the same probability distribution of the measurements when
scaling up the application, the histogram of the current real data measurements
(qm

k , qc
k , Pac ∀k) is calculated from the 14-component video navigation application.

Using the obtained distribution, the new data is generated for applications with a
greater number of components (25, 45, 65, 85, and 105 components). Increasing the
number of components requires a corresponding increase in the runtime deadline
(T ); for example, for a 25-component application T = 6500 ms; for N = 45,
T = 12,000 ms; for N = 65, T = 15,000 ms; for N = 85, T = 30,000 ms;
and for N = 105, T = 100,000 ms.

Three scenarios are considered in this part: (A) the scenario where the average
data size to transfer is fixed at 1220 kB and the uplink/downlink rate is fixed at
1.28/2.816 Mbps; (B) the scenario where the average data size to transfer is fixed at
1220 kB (the same as A) and the uplink/downlink rate is fixed at 4.96/10.912 Mbps
(more than A); and (C) the scenario where the average data size to transfer is fixed
at 2196 kB (more than A) and the uplink/downlink rate is fixed at 1.28/2.816 Mbps
(the same as A).

Table 7.1 shows the program runtimes using the discussed scheme for the two
types of randomly generated CDGs—Layer-by-Layer and Fan-in/Fan-out. In this

Table 7.1 Program runtimes of the CPLEX optimizer for the discussed LP using Layer-by-Layer
and Fan-in/Fan-out CDGs

N

Mobile-only
execution time
[ms] T [ms]

Runtime for
Layer-by-Layer [s]

Runtime for
Fan-in/Fan-out [s]

25 7714 6500 561 439

45 16,230 13,500 924 834

65 17,412 14,250 1764 1649

85 27,877 17,100 2862 2700

105 28,098 21,000 7654 8647
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Fig. 7.9 Total energy versus
the number of application
components with
Layer-by-Layer CDG
(p = 0.2 and s = 5),
presented in scenarios A, B,
and C. (a) Total energy saved.
(b) Total energy
consumption. (c) Total
communication energy

(a)

(b)

(c)
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table, the total execution time is considered in accordance with the number of
components (N ). We see that while the number of components and total execution
time increase, the runtime of the JSCO scheme increases. The JSCO scheme is
capable of handling over 100 components with a mobile-only execution time of 28 s.
The simulations were done on a single server machine with an Intel Xeon(R) E7340
processor @ 2.5 GHz CPU and 60 GB of RAM. Although the runtime to solve the
associated integer linear program increases with the number of components to over
2 h, this time can be reduced through parallel implementation using more powerful
processors.

In Fig. 7.9, the Layer-by-Layer CDG with a larger number of components is
considered. In this figure, the energy saved, total energy consumed, and energy
consumed for communication are respectively shown as a function of the number of
application components for the three scenarios, A, B, C. Note that here, p = 0.2
and s = 5 (which is the number of layers). When the number of application
components increases, the edges between components increase and therefore the
costs of offloading increase. Thus, all the energy values increase. We can see that
while the rates increase in Scenario B in comparison to Scenario A, the energy saved
through remote execution increases, energy consumed for offloading decreases, and
the total energy consumed by the mobile device decreases. On the other hand, while
the data size increases in Scenario C in comparison to Scenario A, the energy saved
decreases, communication energy increases, and the total energy consumed by the
mobile device also increases, which is all as expected.

7.3 Cognitive Offloading Using Multiple Radios

This section investigates the performance of cognitive cloud offloading while there
is a forced sequential ordering for multi-radio enabled devices based on real data
measurements from the 14-component application.

Figure 7.10 plots the energy-execution time trade-off in the scheme in compar-
ison to the local and remote execution, while the scheme takes advantage of three
scenarios for radio resources: (1) WiFi and LTE are used jointly; (2) only WiFi is
used for offloading; and (3) only LTE is used for offloading. The four points in the
plot show local and remote executions by using only LTE, only WiFi, or both. We
see that although remote execution by using LTE consumes much more energy in
comparison to the others, the execution time for this scenario would be less than
the others. Thus, there is a trade-off between energy consumption and execution
time of the application which is relied on the delay of offloading. On the other hand
by using the offloading scheme lesser energy is consumed with reasonable value
for execution time. When the execution time deadlines are longer, there is more
flexibility in offloading jobs to the cloud and hence energy consumptions for the
mobile device reduced. Also, it is clear that joint use of radio resources gives less
energy consumption and requires less execution time.
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Figure 7.11 plots the percentage of data stream to the cloud through WiFi (radio
interface 1) versus RTT of the WiFi and LTE in the mentioned scheme. We observe
that by increase of RTT in WiFi for the range of 40–160 ms, less data stream is
allocated to WiFi and more data stream is allocated through LTE for computation
offloading. On the other hand, when RTT of LTE increases in the range of 50–
200 ms, more data stream is allocated to WiFi and less data is allocated to LTE.

7.4 Optimal Cognitive Offloading and Scheduling Using
Multi-Radios

In this section, several versions of the CSCO are introduced, evaluated, and
compared with five schemes, in both indoor and outdoor wireless environments.
NSFCloud (https://www.chameleoncloud.org/nsf-cloud-workshop/) was used as the
cloud computing server where remote execution of sophisticated multi-component
applications is processed. This platform supports both experiments involving cloud
computing architectures and experiments involving mobile cloud applications
(http://www.nsf.gov/pubs/2013/nsf13602/nsf13602.htm). Although the analysis is
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Fig. 7.10 Average energy consumption versus execution time of the application. Jointly, it shows
the trade-off between the cost of energy consumption and execution time in the scheme. We observe
that the application can be executed in half of the time (0.52) it takes to be executed in the cloud
with the cost of 12% more energy consumption, and also the application can be executed with 20%
more energy saving in comparison to the remote execution with the cost of 42% execution time
extension in comparison to remote execution

https://www.chameleoncloud.org/nsf-cloud-workshop/
http://www.nsf.gov/pubs/2013/nsf13602/nsf13602.htm
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developed for a general, K , radio interfaces, the experiments in this section were
conducted using LTE and WiFi (K = 2) in both indoor and outdoor environments.
For Figs. 7.12, 7.13, 7.14, 7.15, 7.16, and 7.17, the 14-component video navigation
mobile application (N = 14) discussed in earlier chapters was used. To recap,
four components of this application involved graphic feature processing, three
involved face detection and recognition, six involved video processing, and the last
component involved clustering the video points and output functions. Figure 2.2c
shows the series-parallel CDG for this real application.

For Figs. 7.18 and 7.19, simulations were conducted with the same mobile
application using varieties of CDG topologies including sequential, parallel,
series-parallel (CDG shown in Fig. 2.2c), random Layer-by-Layer, and random
Fan-in/Fan-out (the structure of two random CDGs is discussed in [9]). Finally
in Figs. 5.3 and 5.4, the 10-face recognition application in http://darnok.org/
programming/face-recognition/ was used.

The wireless service delays and data rates in both uplink and downlink through
WiFi and LTE (indoor and outdoor environments) were obtained by using the
Android secure FTP tool (http://www.lysesoft.com/). Please note that the secure
FTP is used for only data transferring of components for computations between
the mobile device and the cloud. Figure 7.12 shows the uplink and downlink delay
values in indoor and outdoor environments for WiFi and LTE wireless radios for a
range of data size from 10 kB to 105 MB of data. This range of data size presents
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the average size of data transferred relied on each other for running the video
application. As can be seen from Fig. 7.12, delay in outdoor wireless is even lower
than indoor wireless environment for some ranges while indoor wireless delay on
average is lower. This figure shows the dynamics of wireless networks for LTE and
WiFi in both indoor and outdoor scenarios where the strategies are tested in the
figures of this section.

A Poisson distributed background arrival data is added in the mobile device
transmission buffer to simulate included ambient traffic besides the mobile appli-
cation [45]. The average transmission and reception power of the mobile device for
WiFi and LTE are respectively 257.83 ( 1

T

∑T
t=1 P tx

k (t) using WiFi radio (k = 1)),

123.74 mW ( 1
T

∑T
t=1 P rx

k (t) using WiFi radio (k = 1)), 356.1 ( 1
T

∑T
t=1 P tx

k (t)

using LTE (k = 2)) and 197.1 mW ( 1
T

∑T
t=1 P rx

k (t) using LTE (k = 2)). The
active power (Pac) and idle power (Pidle) of the mobile device are respectively
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Fig. 7.12 Uplink/Downlink delay of WiFi and LTE radio interfaces in indoor/outdoor wireless
environment versus average data size required for transferring data related to the mobile video
navigation applications between HTC smartphone and the NSFCloud server. The average data size
for transferring between components shows the average of required data size for each individual
transfer of component tasks between the mobile device and the cloud
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Fig. 7.13 Illustration of time-adaptivity of the CSCO strategy. (a) Uplink indoor WiFi delay
versus time. (b) Percentage of radio allocation versus time using CSCO scheme

644.9 and 22 mW. The power measurements were obtained using “Current Widget:
Battery monitor” tool (http://opencv.org/, April 2014). The time period (t − 1, t],
∀t , is set to 100 ms. The simulations are averages of 100 independent runs. The
proposed scheme is solved using measured real data using the LP in Sect. 5.2. The
IBM CPLEX optimizer (http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/. Sept 2014) is used to solve the integer linear problem, which is
known to be NP hard.

http://opencv.org/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Fig. 7.14 Total net utility percentage (normalized to the ideal net utility) and total application
runtime (normalized to application runtime in the mobile) versus average transferred data size
between components for N = 14, wcom = 0.5, and CDG is series-parallel

If monetary constraints are important to the end user, then the weights as control
knobs to the individual interfaces can be addressed to reflect the concerns. In some
cases the solution can be weighted accordingly. Example of the other types of
scenarios includes business clients who normally travel with their full subscription
LTE connections. In tactical and emergency response conditions, the most important
consideration is to get the job done, rather than minimizing the monetary costs. The
proposed solution can work for all these use cases.

7.4.1 Results and Discussion

In this subsection, we address the results of proposed strategies based on latencies
for offloading, overall performance (net utility), application runtime, and energy
consumption. Also we investigate the behavioral conditions and effects of discussed
strategies.

Figure 7.13 shows the time-adaptiveness of CSCO strategy in indoor scenario.
Figure 7.13a plots the uplink delay at WiFi radio interface for the 1300 ms during
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Fig. 7.15 Total energy consumption of the application by the mobile device (normalized to the
energy consumed by mobile-only execution) for eight scenarios versus average data size required
for transferring between components while N = 14, wcom = 0.5, and CDG is series-parallel

which the 14-component application is running. We can see that the delay varies
widely during this time period. The proposed strategy relies on many wireless
parameters in all the radio interfaces for both uplink and downlink scenarios such
as communication power, delay, queue backlogs of mobile transmission buffers
and cloud transmission buffers. Here an average of 100 simulations is taken
using current measurements for delay parameters in Fig. 7.13a while other wireless
parameters change at each run, and so we can see the effect of changes of WiFi
delay in the final decision.

Figure 7.13b illustrates the percentage of radio allocation using CSCO (cognitive
cloud offloader) in uplink scenario (ak(t), k = 1: WiFi, k = 2: LTE) for running
the 14-component (video navigation) application in 1300 ms. We observe that
after 245 ms running the application, offloading is done using 24% of WiFi for
communication while 76% is allocated to LTE. Looking at Fig. 7.13a, we observe
that at this time, the range of WiFi delay is between 80 and 100 ms. However, the
percentage of WiFi allocation at the next step is 91% after 490 ms running of the
application. At this time slot we can seen in Fig. 7.13a that the range of WiFi delay
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is at lowest point (between 30 and 50 ms). Also we observe that the percentage of
WiFi allocation decreases to 76% when the WiFi delay has increased (between 50
and 65 ms).

Figure 7.14 illustrates the total net utility as given in Eq. (5.3) (normalized
to the ideal net utility) and total application runtime (normalized to the runtime
of application using mobile-only execution) versus average transferred data size
between components in both indoor and outdoor environments for the CSCO
scheme. We define the ideal net utility as the utility obtained in an “ideal world”
where there is no cost associated with offloading (wcom = 0) and hence all
components can be offloaded to the cloud. This would be an upper bound on the
utility. From Fig. 7.14, we see that as average data size increases, the normalized
net utility decreases (please note that the absolute value for net utility increases) and
the normalized application runtime increases. Result shows that, when the average
data size for transferring between components increases to 105 MB, the application
runtime using CSCO strategy is 48% faster than the application runtime in the local
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Fig. 7.17 Total net utility (normalized to the ideal net utility) for eight scenarios versus weight
factor for energy saved in the mobile device while N = 14, average data size for transferring is
11.28 MB, and CDG is series-parallel

Fig. 7.18 Total net utility (normalized to the ideal net utility) for seven applications with different
CDGs while average data size for transferring is 11.28 MB, application runtime is 285 s, wcom =
0.5, and N = 14
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Fig. 7.19 Total energy consumption of the application by the mobile device (normalized to the
energy consumed by mobile-only execution) for seven applications with different CDGs while
average data size for transferring is 11.28 MB, application runtime is 285 s, wcom = 0.5, and
N = 14

scenario while the cost of offloading using CSCO strategy is also still 6% lower than
the net utility saved by remote execution, so it is totally worth it to use the CSCO
strategy. We also see that the normalized net utility is higher for indoor environments
than outdoor, as expected. This figure shows only two scenarios to more concentrate
on the rates of changes in net utility and application runtime at the same time while
the average data size for transferring increases. The performance comparison of
eight scenarios will be done in the next figures.

Figure 7.15 plots the total normalized (w.r.t energy consumed to run the
application fully on the mobile) versus the average offload data size for various
schemes: CSCO, On-Off SCO, CRCO, and On-Off RCO in indoor and outdoor
environments. Please note that CSCO is the optimal proposed scheme for cognitive
joint scheduling and offloading; On-Off scheduling and cloud offloading (On-Off
SCO) shows the joint scheduling–offloading (JSCO) strategy, with an additional
constraint of using only the best radio interface at every time slot; and cognitive
remote cloud offloading (CRCO) is the scheme where all components must be
offloaded and at each time epoch, the cognitive offload is scheduled on the multi-
RAT networking.

As expected, the energy consumed increases with data size, for all schemes and
environments. In all the schemes, mobile device consumes less energy in the indoor
environment in comparison to the outdoor. The proposed CSCO outperforms all the
other schemes. Note that, the CSCO in the outdoor environment performs better
than the On-Off SCO in the indoor environment. Moreover, we can see that the
schemes using cloud-only execution (CRCO and On-Off RCO) consume higher
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energy even in comparison to the mobile-only execution in higher ranges of data
sizes. This happens for data sizes exceeding 10 MB.

Figure 7.16 shows the total net utility (normalized to the ideal net utility) for 8
scenarios versus weight factor of communication costs. Note that higher wcom leads
to overall lower net utility, but can be more representative of practical scenarios,
communication costs could be more important, than costs to access cloud service.
Figure 7.16 also shows that the proposed CSCO performance is better than On-Off
SCO.

Figure 7.17 plots the total net utility (normalized to the ideal net utility) for eight
scenarios versus weight factor of energy saved in the mobile device. Higher battery
power leads to higher overall net utility because of more battery saving.

In Figs. 7.18 and 7.19, normalized net utility and normalized energy consumed
by the mobile device are compared for different CDG topologies. Parallel and
sequential dependency graphs show the lowest and highest dependencies between
components, respectively. Therefore, lower and upper bounds for the cost of
offloading could be obtained by using these CDGs. Parallel-series CDG, which is
the real CDG applied for the video navigation application given in Fig. 2.2c, gives
net utilities and energy values between the two bounds. Also, two randomly gener-
ated CDGs of Layer-by-Layer and Fan-in/Fan-out (with parallel-series topologies)
methods [9] are compared in these bar graphs. In the Layer-by-Layer method, the
number of layers is 5. While p (probability of edge connection) increases from 0.2
to 0.5, more components are dependent on each other, and the density of the CDG
increases. Therefore, the total net utility decreases, and more energy is consumed.
The results show that when the in+out degree increases from 2 to 6, the dependency
and offloading costs increase such that the energy saved through cloud offloading
decreases and the energy consumed by the mobile device increases.

7.5 Time-Adaptive Cognitive Offloading and Scheduling
Using Multi-Radios

Here in the simulations of Fig. 7.22, synthetic applications with arbitrary CDGs
were used in order to test the heuristic scheme for large number of components as
well as different types of CDG structures [9]. Also in Fig. 6.3, the face recogni-
tion application in http://darnok.org/programming/face-recognition/ was used. The
wireless parameters such as uplink and downlink rates in each time slot, packet
latencies, and the power consumed for transmission and receiving in each time slot
were measured. Also, a Poisson distributed background arrival data in the mobile
device is added at each time slot [45] to simulate ambient traffic not related to this
particular application.

http://darnok.org/programming/face-recognition/
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7.5.1 Versions of the Heuristics

This work is compared to several other scenarios (1) no offload (mobile-only) exe-
cution, (2) all offload (cloud-only) execution, (3) the dynamic offloading algorithm
(DOA) in [19], and several variants of offload strategies that are shown below:

• Exhaustive Search: In this scheme, the optimization problem is solved using
brute force—by evaluating all possibilities and picking the best value. This
gives an upper bound of performance for all algorithms. There is no offline
stage to select the preferred components for offloading, and all components can
potentially be offloaded in the online stage (except components 1 and N ). Also
the optimal offloading strategy in the heuristic for multi-RATs is obtained by
searching exhaustively over all possible transmission strategies to guarantee the
maximum net utility rather than using OPTx, OPRx for multi-RATs. Note that
this exhaustive search also includes the local execution of components. Also, this
method is computationally prohibitive for large and complex applications. This
is provided here only to give an idea of the performance of the heuristics vis-a-vis
the optimal solution.

• Heuristic with No Offline Stage (H-1Stage): This strategy essentially elimi-
nates the offline stage and proceeds with the rest of the heuristic algorithm where
all components are eligible for offloading. Hence, this strategy constantly checks
all the components for offloading in the online stage (except the first and last
ones).

• Two-Stage Heuristic Algorithm (H-2Stage): This is the algorithm in which
the preprocessing stage (described in Sect. 6.2.1) is used to eliminate some of
the components from being considered for offloading. While this reduces the
time complexity because fewer components are processed in the heuristic, it
may eliminate some eligible components from being considered for offloading in
the online stage, thereby sacrificing the net utility. The assignment of preferred
components for offloading is performed using the optimizing strategy (OPoff)
mentioned in Sect. 6.2. Note that since the offline optimization problem (OPoff)
is considered with incomplete online information, this scheme will be suboptimal
in comparison to H-1Stage. However, there are fewer components for offloading,
so system complexity is lower and the algorithm is faster. Also, the joint multi-
RAT allocation is considered for offloading strategy in this scheme.

• Single Stage Heuristic under On-Off model for the Wireless Interfaces (H-
1S-OnOff): In this scheme, the single stage heuristic algorithm is used, where all
components are considered for offloading at the online stage, but the components
are offloaded using only one of the wireless interfaces. The wireless interface
with the best characteristics for that time slot is selected. Although [19] and
[45] also use On-Off model for the wireless interface, they are different from
this heuristic variant. In [45], the entire application is offloaded and only the
cloud strategy is optimized; moreover, it is not a joint scheduling–offloading
scheme in that, it does not determine an optimal/suboptimal scheduling order
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Fig. 7.20 Average net utility versus average round trip time (execution deadline of the applica-
tion =1330 ms, time threshold for offloading = 550 ms)

for the components but rather uses a pre-determined, serial execution order for
the components. Also, [19] is not a time-adaptive strategy.

• Two-Stage Heuristics with ON/OFF Wireless Interfaces (H-2S-OnOff): In
this scheme, the two-stage algorithm is used for offloading, but the wireless
interface with the best characteristics for data transfers of both the mobile to
cloud and the cloud to mobile is used for offloading.

7.5.2 Results and Discussion

In Fig. 7.20, the average net utility (Eq. (6.1)) is illustrated as a function of the
average round trip time (RTT). This RTT is calculated on mean values of delays
(in units of time slot) in WiFi (τmc

i,1 (t), τ cm
i,1 (t), ∀i, t) and LTE (τmc

i,2 (t), τ cm
i,2 (t),

∀i, t) radio interfaces. The execution deadline of the application (x × T ) and the
maximum acceptable delay for offloading (x × Tth) are set to 1330 ms and 550 ms,
respectively. It is observed that while delay increases, the energy and time costs for
cloud offloading increase, and therefore the average net utility decreases in all five
schemes. We can see that again the heuristic schemes with cognitive networking
outperform in comparison to the schemes with ON-OFF link strategy. Note that
although H-2Stage uses offline stage to decrease the system complexity, it gives
higher net utility in comparison to H-1S-OnOff in the upper ranges of latencies.
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Fig. 7.21 Average energy consumed for communication versus average round trip time (execution
deadline of the application = 1330 ms, time threshold for offloading = 550 ms)

This means that cognitive networking strategy covers the low performance caused
by the offline stage. Also in Fig. 7.21, the five schemes are plotted for comparison
of average energy consumed for offloading versus the average RTT. We can see that
while latency increases, more energy is consumed for communication.

So far, we have observed the results for specific mobile applications with 10
and 14 components. We need to investigate the scalability of the heuristic by the
larger multi-component applications. Figure 7.22 plots the average net utility as
a function of the number of application’s components. This experiment is also
tested for random applications with [10, 25, 40, 55, 70, 85, 100, 115, 130, 145]
components, while the corresponding CDGs were obtained based on a random
graph generation of Fan-in/Fan-out with average input degree and output degree of
one [9]. The maximum acceptable delay for offloading and RTT is set to 550 ms
and 100 ms, respectively. In order to maintain the same probability distribution
of the measurements when scaling up the application, the histogram values of
the current real data measurements (qm

i , qc
i , P m

i , ∀i) are calculated from the 14-
component video navigation application. Using the obtained distribution, the new
data is generated for applications with a greater number of components. We see that
while the number of components increases, the complexity of the application (more
execution times and more component dependencies) increases so that higher net
utility is saved. Note that as the number of application’s components increases, the
heuristic is considered for a larger space of components such that the performance
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Fig. 7.22 Average net utility versus number of application’s components where CDGs are based
on a random graph of Fan-in/Fan-out (execution deadline of the application = 1330 ms)
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Fig. 7.23 Percentage of radio interface allocation versus time average power consumption for
WiFi transmission by the mobile device
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Fig. 7.24 Percentage of radio interface allocation versus time average power consumption for LTE
transmission by the mobile device
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Fig. 7.25 The impact of energy-delay trade-off factor on the average values of transmission queue
backlog and energy consumed for transmitting the offloaded data (the maximum acceptable delay
for offloading = 550 ms, execution deadline of the application = 1330 ms)

distance of best case scenario (exhaustive search) and the scheme (H-1Stage)
increase.

Figures 7.23 and 7.24 show the percentages of radio interface allocation for both
WiFi and LTE versus the time-averaged transmission power levels of WiFi and
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Fig. 7.26 The impact of energy-delay trade-off factor on the average values of cloud transmission
queue backlog and energy consumed for receiving the offloaded data (maximum acceptable delay
for offloading = 550 ms, execution deadline of the application = 1330 ms)

LTE interfaces, respectively. Execution deadline of the application, the maximum
acceptable delay for offloading, and RTT are set to 1330 ms, 550 ms, and 100 ms,
respectively. In Fig. 7.23, results show that when the transmission power level of
WiFi increases, the percentage of WiFi allocation decreases and percentage of LTE
interface allocation increases. We can see that in the very low ranges of transmission
power by WiFi, much higher percentages of WiFi are allocated for offloading in
the H-1Stage in comparison to those of H-2Stage. On the other hand, in upper
ranges of the transmission power level at WiFi, we observe that the performance
of both schemes is close to each other. In Fig. 7.24, we observe that when the rate of
transmission power at LTE interface increases, the percentage of interface allocation
for LTE decreases and percentage of interface allocation by WiFi increases.

In Figs. 7.25 and 7.26, queue backlogs of mobile transmission buffers and cloud
transmission buffers are presented respectively as functions of the trade-off control
factors of energy and delay (V = Vul = Vcm) where the H-1Stage scheme is applied.
Application deadline, the maximum acceptable delay, and RTT are set to 1330 ms,
550 ms, and 100 ms, respectively. In the same plots, the energy values consumed by
the mobile device to transmit and receive offloaded data are presented. We observe
that when the Lyapunov control parameter of V increases, more time-averaged
queue backlog is provided by the scheme and less energy is consumed by the mobile
device for offloading. Note that the scales in energy consumption and queue backlog
in the mobile transmission part are both higher than the cloud transmission part to
the mobile. Thus, the transmission strategy affects more in the resource management
of the whole system.

Finally, Fig. 7.27 shows the time-averaged net utility as a function of the weight
factor to adjust the wait time for offloading (γ ) in the five schemes. Execution
deadline of the application, the maximum acceptable delay, and RTT are set to
1330 ms, 550 ms, and 100 ms, respectively. When the weight factor increases, the
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Fig. 7.27 Average net utility versus weight factor for offloading, γ (the maximum acceptable
delay for offloading = 550 ms, execution deadline of the application = 1330 ms)

time to wait for offloading the components, rather than local execution, increases.
In H-1Stage and H-1S-OnOff, where all the components are checked for offloading,
there is a maximum point that gives the highest net utility (at γ = 0.2). These
maximum points for H-2Stage and H-2S-OnOff are obtained at γ = 0.3 and
γ = 0.6. Thus, each of these schemes has a γ that gives the highest net utility
for the application. However, we observe that the net utility changes by less than
1.25% in the exhaustive search scheme, while γ changes.

7.6 Summary of Performance Evaluation

This chapter included a case study for performance evaluation of scheduling and
computation offloading schemes in the following scenarios: (1) joint scheduling and
cloud offloading for single-radio enabled mobile devices; (2) cognitive offloading
using multiple radios; (3) time-adaptive cognitive offloading and scheduling using
multiple radios; and (4) optimal cognitive offloading and scheduling using multiple
radios. In the first scenario, the results illustrated that the energy saved increases
with longer application runtime deadline, higher rates of wireless radio interface,
and smaller offload data size. In the second scenario, the algorithm for one-shot
offloading solution consumes within 4% of the optimal solution (obtained via
brute force search) and also offers 31% less energy consumption in comparison to
offloading the entire application to the cloud. Also, the performance of the heuristic
strategy was analyzed in the third scenario. The computations were offloaded



7.6 Summary of Performance Evaluation 99

via two wireless interfaces of WiFi and LTE to the Amazon EC2 cloud. Several
versions of the heuristic strategy were compared with the optimal scheme (which
has been provided by exhaustive search method), a recent strategy in dynamic
computation offloading [19], and the classical strategies where all the components
are executed locally and remotely. Finally, the results for a holistic approach for
cognitive offloading and scheduling using multi-radios were analyzed. The results
from collected real data measurements illustrated that the energy consumed by the
mobile device using CSCO is respectively 51%, 23%, 68%, and 42% lower in
comparison to the best-interface protocol, non-time adaptive schemes, mobile-only
and cloud-only executions. The experiments were run in both outdoor and indoor
wireless environments.



Chapter 8
The Future: Spectrum Aware Cloud
Offloading

As articulated in the previous chapters, the future of mobile computing will become
application and RAT aware. Looking further into the future, it is possible to imagine
that the spectrum aware cloud offloader will become spectrum-opportunistic, in the
sense that the cognitive cloud offload manager will not only respond to known
available wireless networks, but will also actively seek spectrum opportunities at
runtime to distribute the load more effectively. This will be enabled by the immense
amount of work done in the cognitive radio networking and dynamic spectrum
access networking.

Furthermore, it will be possible not only to manage computation offloading, but
also to integrate it with spectrum and traffic management. We envisage a future
as depicted in Fig. 8.1. This figure shows multiple mobile users running various
sophisticated apps (augmented reality (AR), computer vision, face recognition,
social media, etc.) on devices that can simultaneously take advantage of multi-
RAT technology to not only access multiple wireless networks but also dynamically
manage spectrum access. There are multiple wireless networks in the architecture
such as WiFi, LTE, 4.9 GHz, and TV white space (TVWS) channels. TVWS chan-
nels refer to the unused TV channels among the active broadcasters while unused
spectrum bands can provide reliable spectrum access. The dynamic variations in
spectrum use are observed for the wireless networks (TVWS, WiFi, and LTE) over a
period of time. Using the right dynamic spectrum management strategies will allow
an overall best decision for spectrum access in conjunction with computation to be
made.

This architecture will be an integrated dynamic cloud offloader–spectrum man-
ager (DCSM) comprising of two parts: (a) the dynamic computation offloader
(DCO) that determines optimal/near optimal energy and radio spectrum aware
schedulers for components of mobile applications and (b) the dynamic spectrum
manager (DSM) that will provide related spectrum management decisions taking
into account the end-to-end network parameters. This entity will provide end-to-
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Fig. 8.1 The future: dynamic spectrum aware cloud offloading. The future of mobile computing
will be able to use cognitive radio technologies to sense for spectrum opportunities when offloading
components to the cloud while also being able to aggregate bandwidths from appropriate wireless
backhaul networks such as Verizon and AT&T

end dynamic spectrum management architecture and offloading solutions that take
into account real-time measurement of multiple spectrum bands as well as the
parameters of the associated core networks (e.g., Comcast, Verizon LTE core).

The first forays into this area [33] has shown significant promise while working
with components and CDGs as noted in the earlier chapters of this book. Further
research is needed to integrate these approaches to more fine-grained partitioning
of the code. This should provide a finer control of the solutions space and give
the practitioner a broader set of choices for operating regions. As measurements
are being made and models constructed for the “newer” network types including
millimeter wave technologies, it would be interesting to expand the modeling and
optimization frameworks for these other networks as well. Significant measurement
and simulation work will be needed to understand the trade-offs that will be brought
about by the widely varying parameters of these networks. Mobility models can be
incorporated to further enhance the understanding of these trade-offs in a mobile
multi-network environment. In short this concept offers a plethora of new research
topics that will result in more resource aware, faster applications that can satisfy the
promise of 5G technologies.
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