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Preface

This book has been written to meet the needs of two different groups of readers. On
one hand, it is suitable for practicing engineers in industry who need a better under-
standing or a practical review of probability and statistics. On the other hand, this
book is eminently suitable as a textbook on statistics and probability for engineering
students.

Areas of practical knowledge based on the fundamentals of probability and
statistics are developed using a logical and understandable approach which appeals to
the reader’s experience and previous knowledge rather than to rigorous mathematical
development. The only prerequisites for this book are a good knowledge of algebra
and a first course in calculus. The book includes many solved problems showing
applications in all branches of engineering, and the reader should pay close attention
to them in each section. The book can be used profitably either for private study or in
a class.

Some material in earlier chapters is needed when the reader comes to some of the
later sections of this book. Chapter 1 is a brief introduction to probability and
statistics and their treatment in this work. Sections 2.1 and 2.2 of Chapter 2 on Basic
Probability present topics that provide a foundation for later development, and so do
sections 3.1 and 3.2 of Chapter 3 on Descriptive Statistics. Section 4.4, which
discusses representing data for a continuous variable in the form of grouped fre-
quency tables and their graphical equivalents, is used frequently in later chapters.
Mathematical expectation and the variance of a random variable are introduced in
section 5.2. The normal distribution is discussed in Chapter 7 and used extensively in
later discussions. The standard error of the mean and the Central Limit Theorem of
Chapter 8 are important topics for later chapters. Chapter 9 develops the very useful
ideas of statistical inference, and these are applied further in the rest of the book. A
short statement of prerequisites is given at the beginning of each chapter, and the
reader is advised to make sure that he or she is familiar with the prerequisite material.

This book contains more than enough material for a one-semester or one-quarter
course for engineering students, so an instructor can choose which topics to include.
Sections on use of the computer can be left for later individual study or class study if
so desired, but readers will find these sections using Excel very useful. In my opinion
a course on probability and statistics for undergraduate engineering students should
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include at least the following topics: introduction (Chapter 1), basic probability
(sections 2.1 and 2.2), descriptive statistics (sections 3.1 and 3.2), grouped frequency
(section 4.4), basics of random variables (sections 5.1 and 5.2), the binomial distribu-
tion (section 5.3) (not absolutely essential), the normal distribution (sections 7.1, 7.2,
7.3), variance of sample means and the Central Limit Theorem (from Chapter 8),
statistical inferences for the mean (Chapter 9), and regression and correlation (from
Chapter 14). A number of other topics are very desirable, but the instructor or reader
can choose among them.

It is a pleasure to thank a number of people who have made contributions to this
book in one way or another. The book grew out of teaching a section of a general
engineering course at the University of Saskatchewan in Saskatoon, and my approach
was affected by discussions with the other instructors. Many of the examples and the
problems for readers to solve were first suggested by colleagues, including Roy
Billinton, Bill Stolte, Richard Burton, Don Norum, Ernie Barber, Madan Gupta,
George Sofko, Dennis O’ Shaughnessy, Mo Sachdev, Joe Mathews, Victor Pollak,
A.B. Bhattacharya, and D.R. Budney. Discussions with Dennis O’ Shaughnessy have
been helpful in clarifying my ideas concerning the paired t-test and blocking.
Example 7.11 is based on measurements done by Richard Evitts. Colleagues were
very generous in reading and commenting on drafts of various chapters of the book;
these include Bill Stolte, Don Norum, Shehab Sokhansanj, and particularly Richard
Burton. Bill Stolte has provided useful comments after using preliminary versions of
the book in class. Karen Burlock typed the first version of Chapter 7. I thank all of
these for their contributions. Whatever errors remain in the book are, of course, my
own responsibility.

I am grateful to my editor, Carol S. Lewis, for all her contributions in preparing
this book for publication. Thank you, Carol!

W.J. DeCoursey

Department of Chemical Engineering
College of Engineering

University of Saskatchewan
Saskatoon, SK, Canada

S7N 5A9
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What's on the CD-ROM?

Included on the accompanying CD-ROM:

a fully searchable eBook version of the text in Adobe pdf form

data sets to accompany the examples in the text

in the “Extras” folder, useful statistical software tools developed by the
Statistical Engineering Division, National Institute of Science and
Technology (NIST). Once again, you are cautioned not to apply any tech-
nique blindly without first understanding its assumptions, limitations, and
area of application.

Refer to the Read-Me file on the CD-ROM for more detailed information on
these files and applications.
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CHAPTER

Introduction:
Probability and Statistics

Probability and statistics are concerned with events which occur by chance. Examples
include occurrence of accidents, errors of measurements, production of defective and
nondefective items from a production line, and various games of chance, such as
drawing a card from a well-mixed deck, flipping a coin, or throwing a symmetrical
six-sided die. In each case we may have some knowledge of the likelihood of various
possible results, but we cannot predict with any certainty the outcome of any particu-
lar trial. Probability and statistics are used throughout engineering. In electrical
engineering, signals and noise are analyzed by means of probability theory. Civil,
mechanical, and industrial engineers use statistics and probability to test and account
for variations in materials and goods. Chemical engineers use probability and statis-
tics to assess experimental data and control and improve chemical processes. It is
essential for today’s engineer to master these tools.

1.1 Some Important Terms

(a) Probability is an area of study which involves predicting the relative likeli-
hood of various outcomes. It is a mathematical area which has developed
over the past three or four centuries. One of the early uses was to calculate
the odds of various gambling games. Its usefulness for describing errors of
scientific and engineering measurements was soon realized. Engineers study
probability for its many practical uses, ranging from quality control and
quality assurance to communication theory in electrical engineering. Engi-
neering measurements are often analyzed using statistics, as we shall see
later in this book, and a good knowledge of probability is needed in order to
understand statistics.

(b) Statistics is a word with a variety of meanings. To the man in the street it most
often means simply a collection of numbers, such as the number of people
living in a country or city, a stock exchange index, or the rate of inflation.
These all come under the heading of descriptive statistics, in which items are
counted or measured and the results are combined in various ways to give
useful results. That type of statistics certainly has its uses in engineering, and
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we will deal with it later, but another type of statistics will engage our
attention in this book to a much greater extent. That is inferential statistics or
statistical inference. For example, it is often not practical to measure all the
items produced by a process. Instead, we very frequently take a sample and
measure the relevant quantity on each member of the sample. We infer
something about all the items of interest from our knowledge of the sample.
A particular characteristic of all the items we are interested in constitutes a
population. Measurements of the diameter of all possible bolts as they come
off a production process would make up a particular population. A sample is
a chosen part of the population in question, say the measured diameters of
twelve bolts chosen to be representative of all the bolts made under certain
conditions. We need to know how reliable is the information inferred about
the population on the basis of our measurements of the sample. Perhaps we
can say that “nineteen times out of twenty” the error will be less than a
certain stated limit.

(c) Chance is a necessary part of any process to be described by probability
or statistics. Sometimes that element of chance is due partly or even perhaps
entirely to our lack of knowledge of the details of the process. For example,
if we had complete knowledge of the composition of every part of the raw
materials used to make bolts, and of the physical processes and conditions in
their manufacture, in principle we could predict the diameter of each bolt.
But in practice we generally lack that complete knowledge, so the diameter
of the next bolt to be produced is an unknown quantity described by a
random variation. Under these conditions the distribution of diameters can be
described by probability and statistics. If we want to improve the quality of
those bolts and to make them more uniform, we will have to look into the
causes of the variation and make changes in the raw materials or the produc-
tion process. But even after that, there will very likely be a random variation
in diameter that can be described statistically.

Relations which involve chance are called probabilistic or stochastic rela-
tions. These are contrasted with deterministic relations, in which there is no
element of chance. For example, Ohm’s Law and Newton’s Second Law
involve no element of chance, so they are deterministic. However, measure-
ments based on either of these laws do involve elements of chance, so
relations between the measured quantities are probabilistic.

(d) Another term which requires some discussion is randomness. A random
action cannot be predicted and so is due to chance. A random sample is one
in which every member of the population has an equal likelihood of appear-
ing. Just which items appear in the sample is determined completely by
chance. If some items are more likely to appear in the sample than others,
then the sample is not random.
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1.2 What does this book contain?

We will start with the basics of probability and then cover descriptive statistics. Then
various probability distributions will be investigated. The second half of the book
will be concerned mostly with statistical inference, including relations between two
or more variables, and there will be introductory chapters on design and analysis of
experiments. Solved problem examples and problems for the reader to solve will be
important throughout the book. The great majority of the problems are directly
applied to engineering, involving many different branches of engineering. They show
how statistics and probability can be applied by professional engineers.

Some books on probability and statistics use rigorous definitions and many deriva-
tions. Experience of teaching probability and statistics to engineering students has led
the writer of this book to the opinion that a rigorous approach is not the best plan.
Therefore, this book approaches probability and statistics without great mathematical
rigor. Each new concept is described clearly but briefly in an introductory section. In a
number of cases a new concept can be made more understandable by relating it to
previous topics. Then the focus shifts to examples. The reader is presented with care-
fully chosen examples to deepen his or her understanding, both of the basic ideas and
of how they are used. In a few cases mathematical derivations are presented. This is
done where, in the opinion of the author, the derivations help the reader to understand
the concepts or their limits of usefulness. In some other cases relationships are verified
by numerical examples. In still others there are no derivations or verifications, but the
reader’s confidence is built by comparisons with other relationships or with everyday
experience. The aim of this book is to help develop in the reader’s mind a clear under-
standing of the ideas of probability and statistics and of the ways in which they are
used in practice. The reader must keep the assumptions of each calculation clearly in
mind as he or she works through the problems. As in many other areas of engineering,
it is essential for the reader to do many problems and to understand them thoroughly.

This book includes a number of computer examples and computer exercises
which can be done using Microsoft Excel®. Computer exercises are included be-
cause statistical calculations from experimental data usually require many repetitive
calculations. The digital computer is well suited to this situation. Therefore a book
on probability and statistics would be incomplete nowadays if it did not include
exercises to be done using a computer. The use of computers for statistical calcula-
tions is introduced in sections 3.4 and 4.5.

There is a danger, however, that the reader may obtain only an incomplete
understanding of probability and statistics if the fundamentals are neglected in favor
of extensive computer exercises. The reader should certainly perform several of the
more basic problems in each section before doing the ones which are marked as
computer problems. Of course, even the more basic problems can be performed using
a spreadsheet rather than a pocket calculator, and that is often desirable. Even if a
spreadsheet is used, some of the simpler problems which do not require repetitive
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calculations should be done first. The computer problems are intended to help the
reader apply the fundamental ideas in conjunction with the computer: they are not
“black-box” problems for which the computer (really that means the original pro-
grammer) does the thinking. The strong advice of many generations of engineering
instructors applies here: always show your work!

Microsoft Excel has been chosen as the software to be used with this book for two
reasons. First, Excel is used as a general spreadsheet by many engineers and engi-
neering students. Thus, many readers of this book will already be familiar with Excel,
so very little further time will be required for them to learn to apply Excel to prob-
ability and statistics. On the other hand, the reader who is not already familiar with
Excel will find that the modest investment of time required to become reasonably
adept at Excel will pay dividends in other areas of engineering. Excel is a very
useful tool.

The second reason for choosing to use Excel in this book is that current versions
of Excel include a good number of special functions for probability and statistics.
Version 4.0 and later versions give at least fifty functions in the Statistical category,
and we will find many of them useful in connection with this book. Some of these
functions give probabilities for various situations, while others help to summarize
masses of data, and still others take the place of statistical tables. The reader is
warned, however, that some of these special functions fall in the category of “black-
box” solutions and so are not useful until the reader understands the fundamentals
thoroughly.

Although the various versions of Excel all contain tools for performing calcula-
tions for probability and statistics, some of the detailed procedures have been
modified from one version to the next. The detailed procedures in this book are
generally compatible with Excel 2000. Thus, if a reader is using a different version,
some modifications will likely be needed. However, those modifications will not
usually be very difficult.

Some sections of the book have been labelled as Extensions. These are very brief
sections which introduce related topics not covered in detail in the present volume. For
example, the binomial distribution of section 5.3 is covered in detail, but subsection
5.3(1) is a brief extension to the multinomial distribution.

The book includes a large number of engineering applications among the solved
problems and problems for the reader to solve. Thus, Chapter 5 contains applications
of the binomial distribution to some sampling schemes for quality control, and
Chapters 7 and 9 contain applications of the normal distribution to such continuous
variables as burning time for electric lamps before failure, strength of steel bars, and
pH of solutions in chemical processes. Chapter 14 includes examples touching on the
relationship between the shear resistance of soils and normal stress.
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The general plan of the book is as follows. We will start with the basics of
probability and then descriptive statistics. Then various probability distributions will
be investigated. The second half of the book will be concerned mostly with statistical
inference, including relations between two or more variables, and there will be
introductory chapters on design and analysis of experiments. Solved problem ex-
amples and problems for the reader to solve will be important throughout the book.

A preliminary version of this book appeared in 1997 and has been used in
second- and third-year courses for students in several branches of engineering at the
University of Saskatchewan for five years. Some revisions and corrections were made
each year in the light of comments from instructors and the results of a questionnaire
for students. More complete revisions of the text, including upgrading the references
for Excel to Excel 2000, were performed in 2000-2001 and 2002.



CHAPTER 2

Basic Probability

Prerequisite: A good knowledge of algebra.

In this chapter we examine the basic ideas and approaches to probability and its
calculation. We look at calculating the probabilities of combined events. Under some
circumstances probabilities can be found by using counting theory involving permu-
tations and combinations. The same ideas can be applied to somewhat more complex

situations, some of which will be examined in this chapter.

2.1 Fundamental Concepts

(a) Probability as a specific term is a measure of the likelihood that a particular
event will occur. Just how likely is it that the outcome of a trial will meet a
particular requirement? If we are certain that an event will occur, its probability
is 1 or 100%. If it certainly will not occur, its probability is zero. The first
situation corresponds to an event which occurs in every trial, whereas the second
corresponds to an event which never occurs. At this point we might be tempted to
say that probability is given by relative frequency, the fraction of all the trials in a
particular experiment that give an outcome meeting the stated requirements. But
in general that would not be right. Why? Because the outcome of each trial is
determined by chance. Say we toss a fair coin, one which is just as likely to give
heads as tails. It is entirely possible that six tosses of the coin would give six
heads or six tails, or anything in between, so the relative frequency of heads
would vary from zero to one. If it is just as likely that an event will occur as that
it will not occur, its true probability is 0.5 or 50%. But the experiment might
well result in relative frequencies all the way from zero to one. Then the relative
frequency from a small number of trials gives a very unreliable indication of
probability. In section 5.3 we will see how to make more quantitative calcula-
tions concerning the probabilities of various outcomes when coins are tossed
randomly or similar trials are made. If we were able to make an infinite number
of trials, then probability would indeed be given by the relative frequency of the
event.
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(b)

As an illustration, suppose the weather man on TV says that for a particular
region the probability of precipitation tomorrow is 40%. Let us consider 100
days which have the same set of relevant conditions as prevailed at the time of
the forecast. According to the prediction, precipitation the next day would occur
at any point in the region in about 40 of the 100 trials. (This is what the weather
man predicts, but we all know that the weather man is not always right!)

Although we cannot make an infinite number of trials, in practice we can make a
moderate number of trials, and that will give some useful information. The
relative frequency of a particular event, or the proportion of trials giving out-
comes which meet certain requirements, will give an estimate of the probability
of that event. The larger the number of trials, the more reliable that estimate will
be. This is the empirical or frequency approach to probability. (Remember that
“empirical” means based on observation or experience.)

Example 2.1

260 bolts are examined as they are produced. Five of them are found to be defective.
On the basis of this information, estimate the probability that a bolt will be defective.

Answer: The probability of a defective bolt is approximately equal to the relative
frequency, which is 5 /260 = 0.019.

(©

(d)

Another type of probability is the subjective estimate, based on a person’s
experience. To illustrate this, say a geological engineer examines extensive
geological information on a particular property. He chooses the best site to drill
an oil well, and he states that on the basis of his previous experience he estimates
that the probability the well will be successful is 30%. (Another experienced
geological engineer using the same information might well come to a different
estimate.) This, then, is a subjective estimate of probability. The executives of the
company can use this estimate to decide whether to drill the well.

A third approach is possible in certain cases. This includes various gambling
games, such as tossing an unbiased coin; drawing a colored ball from a number
of balls, identical except for color, which are put into a bag and thoroughly
mixed; throwing an unbiased die; or drawing a card from a well-shuffled deck of
cards. In each of these cases we can say before the trial that a number of possible
results are equally likely. This is the classical or “a priori” approach. The phrase
“a priori” comes from Latin words meaning coming from what was known
before. This approach is often simple to visualize, so giving a better understand-
ing of probability. In some cases it can be applied directly in engineering.
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Example 2.2

Three nuts with metric threads have been accidentally mixed with twelve nuts with
U.S. threads. To a person taking nuts from a bucket, all fifteen nuts seem to be the
same. One nut is chosen randomly. What is the probability that it will be metric?

Answer: There are fifteen ways of choosing one nut, and they are equally likely.
Three of these equally likely outcomes give a metric nut. Then the probability of

choosing a metric nut must be 3 / 15, or 20%.

Example 2.3
Two fair coins are tossed. What is the probability of getting one heads and one tails?

Answer: For a fair or unbiased coin, for each toss of each coin

1
Pr [heads] = Pr [tails] = 5

This assumes that all other possibilities are excluded: if a coin is lost that toss will be
eliminated. The possibility that a coin will stand on edge after tossing can be neglected.

There are two possible results of tossing the first coin. These are heads (H) and
tails (T), and they are equally likely. Whether the result of tossing the first coin is
heads or tails, there are two possible results of tossing the second coin. Again, these
are heads (H) and tails (T), and they are equally likely. The possible outcomes of
tossing the two coins are HH, HT, TH, and TT. Since the results H and T for the first
coin are equally likely, and the results H and T for the second coin are equally likely,
the four outcomes of tossing the two coins must be equally likely. These relation-
ships are conveniently summarized in the following tree diagram, Figure 2.1, in
which each branch point (or node) represents a point of decision where two or more
results are possible.

Outcome

Pr [H]= 172 Ho HH
H
PrTl=1/2
HT
T

T
Pr[Tl=1/2

Figure 2.1: \
Simple Tree Diagram Pr[Tl= 172 T

First Coin Second Coin

Pr[H]=1/2

1Ll
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Since there are four equally likely outcomes, the probability of each is i . Both

HT and TH correspond to getting one heads and one tails, so two of the four equally
likely outcomes give this result. Then the probability of getting one heads and one

. 2 1
tails must be 7501 0.5.

In the study of probability an event is a set of possible outcomes which meets
stated requirements. If a six-sided cube (called a die) is tossed, we define the out-
come as the number of dots on the face which is upward when the die comes to rest.
The possible outcomes are 1,2,3,4,5, and 6. We might call each of these outcomes a
separate event—for example, the number of dots on the upturned face is 5. On the
other hand, we might choose an event as those outcomes which are even, or those
evenly divisible by three. In Example 2.3 the event of interest is getting one heads
and one tails from the toss of two fair coins.

(e) Remember that the probability of an event which is certain is 1, and the probabil-
ity of an impossible event is 0. Then no probability can be more than 1 or less
than 0. If we calculate a probability and obtain a result less than O or greater than
1, we know we must have made a mistake. If we can write down probabilities for
all possible results, the sum of all these probabilities must be 1, and this should
be used as a check whenever possible.

Sometimes some basic requirements for probability are called the axioms of
probability. These are that a probability must be between 0 and 1, and the simple
addition rule which we will see in part (a) of section 2.2.1. These axioms are
then used to derive theoretical relations for probability.

(f) An alternative quantity, which gives the same information as the probability, is
called the fair odds. This originated in betting on gambling games. If the game is
to be fair (in the sense that no player has any advantage in the long run), each
player should expect that he or she will neither win nor lose any money if the
game continues for a very large number of trials. Then if the probabilities of
various outcomes are not equal, the amounts bet on them should compensate.
The fair odds in favor of a result represent the ratio of the amount which should
be bet against that particular result to the amount which should be bet for that
result, in order to give fairness as described above. Say the probability of success
in a particular situation is 3/5, so the probability of failure is 1 — 3/5 = 2/5. Then
to make the game fair, for every two dollars bet on success, three dollars should
be bet against it. Then we say that the odds in favor of success are 3 to 2, and the
odds against success are 2 to 3. To reason in the other direction, take another
example in which the fair odds in favor of success are 4 to 3, so the fair odds
against success are 3 to 4. Then

Pr [success] = —— == =0.571.

4
4+3

AN N
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In general, if Pr [success] = p, Pr [failure] = 1 — p, then the fair odds in favor of

success are to 1, and the fair odds against success are P to 1. These are

1-p p
the relations which we use to relate probabilities to the fair odds.

Note for Calculation: How many figures?

How many figures should be quoted in the answer to a problem? That
depends on how precise the initial data were and how precise the method of
calculation is, as well as how the results will be used subsequently. It is impor-
tant to quote enough figures so that no useful information is lost. On the other
hand, quoting too many figures will give a false impression of the precision, and
there is no point in quoting digits which do not provide useful information.

Calculations involving probability usually are not very precise: there are
often approximations. In this book probabilities as answers should be given to
not more than three significant figures—i.e., three figures other than a zero
that indicates or emphasizes the location of a decimal point. Thus, “0.019"
contains two significant figures, while “0.571" contains three significant
figures. In some cases, as in Example 2.1, fewer figures should be quoted
because of imprecise initial data or approximations inherent in the calculation.

It is important not to round off figures before the final calculation. That
would introduce extra error unnecessarily. Carry more figures in intermediate
calculations, and then at the end reduce the number of figures in the answer to
a reasonable number.

Problems

1. A bag contains 6 red balls, 5 yellow balls and 3 green balls. A ball is drawn at
random. What is the probability that the ball is: (a) green, (b) not yellow, (c) red

or yellow?
2. A pilot plant has produced metallurgical batches which are summarized as
follows:
Low strength High strength
Low in impurities 2 27
High in impurities 12 4

If these results are representative of full-scale production, find estimated
probabilities that a production batch will be:

i) low in impurities

ii) high strength

1ii) both high in impurities and high strength

iv) both high in impurities and low strength

10
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If the numbers of dots on the upward faces of two standard six-sided dice give
the score for that throw, what is the probability of making a score of 7 in one
throw of a pair of fair dice?

In each of the following cases determine a decimal value for the probability of
the event:

a) the fair odds against a successful oil well are 10-to-1.

b) the fair odds that a bid will succeed are 1-to-6.

Two nuts having U.S. coarse threads and three nuts having U.S. fine threads are

mixed accidentally with four nuts having metric threads. The nuts are otherwise

identical. A nut is chosen at random.

a) What is the probability it has U.S. coarse threads?

b) What is the probability that its threads are not metric?

c) If the first nut has U.S. coarse threads, what is the probability that a second
nut chosen at random has metric threads?

d) If you are repairing a car engine and accidentally replace one type of nut with
another when you put the engine back together, very briefly, what may be the
consequences?

(a) How many different positive three-digit whole numbers can be formed from
the four digits 2, 6, 7, and 9 if any digit can be repeated?

(b) How many different positive whole numbers less than 1000 can be formed
from 2, 6, 7, 9 if any digit can be repeated?

(c) How many numbers in part (b) are less than 680 (i.e. up to 679)?

(d) What is the probability that a positive whole number less than 1000, chosen
at random from 2, 6, 7, 9 and allowing any digit to be repeated, will be less
than 6807

Answer question 7 again for the case where the digits 2, 6, 7, 9 can not be repeated.

For each of the following, determine (i) the probability of each event, (ii) the fair

odds against each event, and (iii) the fair odds in favour of each event:

(a) afive appears in the toss of a fair six-sided die.

(b) ared jack appears in draw of a single card from a well-shuffled 52-card
bridge deck.

2.2 Basic Rules of Combining Probabilities

The basic rules or laws of combining probabilities must be consistent with the
fundamental concepts.

2.2.1 Addition Rule

This can be divided into two parts, depending upon whether there is overlap between
the events being combined.

(a) If the events are mutually exclusive, there is no overlap: if one event occurs,
other events can not occur. In that case the probability of occurrence of one

11
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or another of more than one event is the sum of the probabilities of the
separate events. For example, if I throw a fair six-sided die the probability
of any one face coming up is the same as the probability of any other face,
or one-sixth. There is no overlap among these six possibilities. Then Pr [6] =

1/6, Pr [4] = 1/6, so Pr [6 or 4] is é +—é = —; . This, then, is the probability

of obtaining a six or a four on throwing one die. Notice that it is consistent
with the classical approach to probability: of six equally likely results, two
give the result which was specified. The Addition Rule corresponds to a
logical or and gives a sum of separate probabilities.

Often we can divide all possible outcomes into two groups without overlap. If
one group of outcomes is event A, the other group is called the complement of A and
is written A or A”. Since A and A together include all possible results, the sum of
Pr [A] and Pr [_A] must be 1. If Pr [_A] is more easily calculated than Pr [A], the best
approach to calculating Pr [A] may be by first calculating Pr [ A].

Example 2.4

A sample of four electronic components is taken from the output of a production
line. The probabilities of the various outcomes are calculated to be: Pr [0 defectives]
=0.6561, Pr [1 defective] = 0.2916, Pr [2 defectives] = 0.0486, Pr [3 defectives] =
0.0036, Pr [4 defectives] = 0.0001. What is the probability of at least one defective?

Answer: It would be perfectly correct to calculate as follows:

Pr [at least one defective] = Pr [1 defective] + Pr [2 defectives] +
Pr [3 defectives] + Pr [4 defectives]
=0.2916 + 0.0486 + 0.0036 + 0.0001 = 0.3439.
but it is easier to calculate instead:
Pr [at least one defective] = 1 — Pr [0 defectives]
=1-0.6561
=0.3439 or 0.344.

(b) If the events are not mutually exclusive, there can be overlap between them.
This can be visualized using a Venn diagram. The probability of overlap
must be subtracted from the sum of probabilities of the separate events (i.e.,
we must not count the same area on the Venn Diagram twice).

The circle marked A represents the probability
(or frequency) of event A, the circle marked B
represents the probability (or frequency) of event B,
and the whole rectangle represents all possibilities,
so a probability of one or the total frequency. The set
consisting of all possible outcomes of a particular
experiment is called the sample space of that experi-
ment. Thus, the rectangle on the Venn diagram Figure 2.2: Venn Diagram

A B

12
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corresponds to the sample space. An event, such as A or B, is any subset of a sample
space. In solving a problem we must be very clear just what total group of events we
are concerned with—that is, just what is the relevant sample space.

Set notation is useful:

Pr [A u B) = Pr [occurrence of A or B or both], the union of the two events
A and B.

Pr [A n B) = Pr [occurrence of both A and B], the infersection of events
A and B.

Then in Figure 2.2, the intersection A n B represents the overlap between events
A and B.

Figure 2.3 shows Venn diagrams representing intersection, union, and comple-
ment. The cross-hatched area of Figure 2.3(a) represents event A. The cross-hatched
area on Figure 2.3(b) shows the intersection of events A and B. The union of events
A and B is shown on part (c) of the diagram. The cross-hatched area of part (d)
represents the complement of event A.

B
A@ A

(a) Event A (b) Intersection
A B A
(c) Union (d) Complement

Figure 2.3: Set Relations on Venn Diagrams

If the events being considered are not mutually exclusive, and so there may be
overlap between them, the Addition Rule becomes

Pr[A U B)=Pr[A] + Pr[B] - Pr[A n B] 2.1)

In words, the probability of A or B or both is the sum of the probabilities of A and of
B, less the probability of the overlap between A and B. The overlap is the intersec-
tion between A and B.

13
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Example 2.5

If one card is drawn from a well-shuffled bridge deck of 52 playing cards (13 of each
suit), what is the probability that the card is a queen or a heart? Notice that a card can
be both a queen and a heart. Then a queen of hearts (or queennheart) overlaps the
two categories.

Answer: Pr [queen] = 4/52.
Pr [heart] = 13/52.
Pr [queen heart] = 1/52.

These quantities are shown on the Venn diagram of Figure 2.4:

Ueen Figure 2.4:
9 ‘ Venn Diagram for Queen of Hearts

\ intersection

or overlap

Then Pr [queenuheart] = Pr [queen] + Pr [heart] — Pr [queen heart]

_4 B 116
52 52 52 52

The simple addition law, sometimes equation 2.1, and the definitions of intersec-
tions and unions can be used with Venn diagrams to solve problems involving three
events with both single and double overlaps. This usually requires us to apply some
form of the addition law several times. Often an appropriate approach is to find the
frequency or probability corresponding to a series of simple areas on the diagram,
each one representing either a part of only one event without overlap (such as
AN B NC) or only a clearly defined overlap (suchas ANBNC).

Example 2.6
The class registrations of 120 students are analyzed. It is found that:

30 of the students do not take any of Applied Mechanics, Chemistry,
or Computers.

15 of them take only Applied Mechanics.
25 of them take Chemistry and Computers but not Applied Mechanics.
20 of them take Applied Mechanics and Computers but not Chemistry.

14
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10 of them take all three of Applied Mechanics, Chemistry, and Computers.
A total of 45 of them take Chemistry.

5 of them take only Chemistry.

a) How many of the students take Applied Mechanics and Chemistry but not
Computers?

b) How many of the students take only Computers?

¢) What is the total number of students taking Computers?

d) If a student is chosen at random from those who take neither Chemistry nor
Computers, what is the probability that he or she does not take Applied
Mechanics either?

e) If one of the students who take at least two of the three courses is chosen at
random, what is the probability that he or she takes all three courses?

Answer: Let’s abbreviate the courses as AM, Chem, and Comp.

The number of items in the sample space, which is the total number of items
under consideration, is often marked just above the upper right-hand corner of
the rectangle. In this example that number is 120. Then the Venn diagram incor-
porating the given information for this problem is shown below. Two of the
simple areas on the diagram correspond to unknown numbers. One of these is
(AM N Chemn Comp ), which is taken by x students. The other is
(AM NChemn Comp ), so only Computers but not the other courses, and that is
taken by y students.

In terms of quantities corresponding to simple areas on the Venn diagram, the given
information that a total of 45 of the students take Chemistry requires that

x+10+25+5=45
Then x =5.

120

&

Figure 2.5:
Venn Diagram for Class

Registrations
30

15
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Let n(...) be the number of students who take a specified course or combination
of courses. Then from the total number of students and the number who do not take
any of the three courses we have

n(AMu Chemu Comp) = 120 — 30 =90
But from the Venn diagram and the knowledge of the total taking Chemistry we have

n(AMu Chemu Comp) = n(Chem) + n(AMﬁ Chem N Comp ) +n(AM N Chem N Comp)
+n(AM N Chem N Comp)

=45+15+20+y
=80+y

Then y =90 — 80 = 10.
Now we can answer the specific questions.

a) The number of students who take Applied Mechanics and Chemistry but not
Computers is 5.

b) The number of students who take only Computers is 10.

¢) The total number of students taking Computers is 10 + 20 + 10 + 25 = 65.

d) The number of students taking neither Chemistry nor Computers is 15 + 30
= 45. Of these, the number who do not take Applied Mechanics is 30. Then
if a student is chosen randomly from those who take neither Chemistry nor

Computers, the probability that he or she does not take Applied Mechanics
either is % =% .
e) The number of students who take at least two of the three courses is
n(AM~Chemn Co_rnp) + n(AMn Chem ~Comp) + n(AM ~Chem~Comp) +

n(AMn Chemn Comp)

=54+20+25+10
=60

Of these, the number who take all three courses is 10. If a student taking at least two

courses is chosen randomly, the probability that he or she takes all three
. 10 1

courses is ="

2.2.2 Multiplication Rule

(a) The basic idea for calculating the number of choices can be described as

follows: Say there are n, possible results from one operation. For each one of
these, there are n, possible results from a second operation. Then there are (1,
X n,) possible outcomes of the two operations together. In general, the
numbers of possible results are given by products of the number of choices at
each step. Probabilities can be found by taking ratios of possible results.

16
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Example 2.7

In one case a byte is defined as a sequence of 8 bits. Each bit can be either zero or
one. How many different bytes are possible?

Answer: We have 2 choices for each bit and a sequence of 8 bits. Then the number of
possible results is (2)% = 256.

(b) The simplest form of the Multiplication Rule for probabilities is as follows: If the
events are independent, then the occurrence of one event does not affect the
probability of occurrence of another event. In that case the probability of occur-
rence of more than one event together is the product of the probabilities of the
separate events. (This is consistent with the basic idea of counting stated above.)
If A and B are two separate events that are independent of one another, the
probability of occurrence of both A and B together is given by:

Pr[A n B]=Pr[A] x Pr [B] (2.2)

Example 2.8

If a player throws two fair dice, the probability of a double one (one on the first die
and one on the second die) is (1/6)(1/6) = 1/36. These events are independent because
the result from one die has no effect at all on the result from the other die. (Note that
“die” is the singular word, and “dice” is plural.)

(c) If the events are not independent, one event affects the probability for the other
event. In this case conditional probability must be used. The conditional probabil-
ity of B given that A occurs, or on condition that A occurs, is written Pr [B | A].
This is read as the probability of B given A, or the probability of B on condition
that A occurs. Conditional probability can be found by considering only those
events which meet the condition, which in this case is that A occurs. Among
these events, the probability that B occurs is given by the conditional probability,
Pr [B | A]. In the reduced sample space consisting of outcomes for which A
occurs, the probability of event B is Pr [B | A]. The probabilities calculated in
parts (d) and (e) of Example 2.6 were conditional probabilities.

The multiplication rule for the occurrence of both A and B together when they
are not independent is the product of the probability of one event and the conditional
probability of the other:

Pr[A n B]=Pr[A] x Pr[B|A] =Pr[B] x Pr [A | B] (2.3)
This implies that conditional probability can be obtained by
Pr[AN B]
Pr[B|A]= W 2.4)
o Pr[AB]
Pr[A|B] = W (2.5)

These relations are often very useful.

17
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Example 2.9

Four of the light bulbs in a box of ten bulbs are burnt out or otherwise defective. If
two bulbs are selected at random without replacement and tested, (i) what is the
probability that exactly one defective bulb is found? (ii) What is the probability that
exactly two defective bulbs are found?

Answer: A tree diagram is very useful in problems involving the multiplication rule.
Let us use the symbols D, for a defective first bulb, D, for a defective second bulb,
G, for a good first bulb, and G, for a good second bulb.

D, At the beginning the box contains four bulbs which
are defective and six which are good. Then the probabil-
ity that the first bulb will be defective is 4/10 and the
probability that it will be good is 6/10. This is shown in
the partial tree diagram at left.

Pr[D4] =4/10

PriGs]=6/10 G Probabilities for the
. . second bulb vary, depend- Pr[D2| D1l =3/9 D,
Figure 2.6: First Bulb ing on what was the result
for the first bulb, and so are given by conditional D,
probabilities. These relations for the second bulb are
shown at right in Figure 2.7. Pr{Gy|D1l=6/9 = G2

If the first bulb was defective, the box will then PriDz2|Gil=4/9_p,

contain three defective bulbs and six good ones, so the
conditional probability of obtaining a defective bulbon ~ G1

3
the second draw is 3, and the conditional probability G
PriGy|Gql=5/9 2

Figure 2.7: Second Bulb

of obtaining a good bulb is g

If the first bulb was good the box will contain four
defective bulbs and five good ones, so the conditional 4
probability of obtaining a defective bulb on the second draw is 7,
probability of obtaining a good bulb is 3. Notice that these arguments hold only

and the conditional

when the bulbs are selected “without replacement”, if the chosen bulbs had been
replaced in the box and mixed well before another bulb was chosen, the relevant
probabilities would be different.

Now let us combine the separate probabilities.

3

4
The probability of getting two defective bulbs must be (10 )(‘9

of getting a defective bulb on the first draw and a good bulb on the second draw is

) 90" the probability

4\6) 24
(B )(g) 9% the probability of getting a good bulb on the first draw and a defective

6 )4) 24
bulb on the second draw is (1 0 )(9) 90" and the probability of getting two good

18
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(LY 2) 30 :
bulbs is (10 )(9)— e In symbols we have:

—_
8]

Pr [D,ND,] = Pr [D,] x Pr [D,D,] =

~ N\
ol olw
1]

\_/\T/;/
slw 8l

|~ =|=

=)
— N —

N O

Pr [D,NG,] = Pr [D,] x Pr [G,|D,] = (1

N

N O

6 \4 4
Pr [G,nD,] = Pr [G,] x Pr [D,|G,] = (1—0 (5 -
6 \5 30
Pr [GlmGz] =Pr [Gl] x Pr [G2|G1] = (1—0)(5):%

Notice that both D, G, and G,nD, correspond to obtaining 1 good bulb and 1
defective bulb.

The complete tree diagram is shown in Figure 2.8.

Event Probability
Pr[D2|D1] =3/9 D, 2 defective bulbs 19—%)

D1

Pr [D1] = 4/10

Pr[Gz|D1]=6/9 Gy 1good, 1 defective 24

20
. 24
Pr[Dz | G1]l =4/9 D2 1good, 1 defective 35
Pr[Gq] = 6/10
G1
Pr{G2|G1]=5/9 ™G, 2good bulbs 3—8

First Bulb Second Bulb

Figure 2.8: Complete Tree Diagram

Notice that all the probabilities of events add up to one, as they must:
12+24+24+30

90
Now we have to answer the specific questions which were asked:

1

i) Pr [exactly one defective bulb is found] = Pr [D,nG,] + Pr [G,nD,]

24+24 48
=50 =§)=0.533.

The first term corresponds to getting first a defective bulb and then a good bulb, and
the second term corresponds to getting first a good bulb and then a defective bulb.
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12
ii) Pr [exactly two defective bulbs are found] = Pr [D,nD,] = % " 0.133. There is
only one path which will give this result.

Notice that testing could continue until either all 4 defective bulbs or all 6 good
bulbs are found.

Example 2.10

A fair six-sided die is tossed twice. What is the probability that a five will
occur at least once?

Answer: Note that this problem includes the possibility of obtaining

o .1
two fives. On any one toss, the probability of a five is g and the

probability of no fives is % . This problem will be solved in several ways.

Pr[a5]=1/6 .
Figure 2.9:

Tree Diagram for Two Tosses
Prla5l=16_—"°
Pr [no 5] = 5/6 No 5
Pr[a 5]1=1/6

Pr[no5]=5/6 ~Nob5

Pr [no 5] = 5/6 No 5

First Toss Second Toss

First solution (considering all possibilities using a tree diagram):

Pr [5 on the first toss n 5 on the second toss] =
Pr [5 on the first toss N no 5 on the second toss] =

Pr [no 5 on the first toss n 5 on the second toss] =

ol anln |~ |~
— e e
—

ANl = Nl =

Pr [no 5 on the first toss N no 5 on the second toss] =

Total of all probabilities (as a check) = 1

5 5 11

. 1
Then Pr [at least one five in two tosses] = 26 36 36 = 36
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Second solution (using conditional probability):

The probability of at least one five is given by:
Pr [5 on the first toss] x Pr [at least one 5 in two tosses | 5 on the first toss]

+ Pr [no 5 on the first toss] x Pr [at least one 5 in two tosses | no 5 on the first toss].

But Pr [5 on the first toss] = Pr [5 on any one toss] = %
and Pr [at least one 5 in two tosses | 5 on the first toss] = 1 (a dead certainty!)
Also Pr [no 5 on the first toss] = Pr [no 5 on any toss] = I
and Pr [at least one 5 in two tosses | no 5 on the first toss] = Pr [5 on the second toss] =% .
Then Pr [at least one 5 in two tosses] = (%)(I)J”(g )(—é ): %
Third solution (using the addition rule, eq. 2.1):
Pr [at least one 5 in two tosses]

= Pr [(5 on the first toss) u (5 on the second toss)]

= Pr [5 on the first toss] + Pr [5 on the second toss]

— Pr [(5 on the first toss) N (5 on the second toss)]
_L.1 _(1)(_1)_£+£ S
6 6 \6)\l6) 36 36 36 36

Fourth solution: Look at the sample space (i.e., consider all possible outcomes).
Let’s use a matrix notation where each entry gives first the result of the first toss and
then the result of the second toss, as follows:

1,1 1,2 1,3 1.4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 34 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
51 52 53 54 55 5,6
6,1 6,2 6,3 6,4 6,5 6,6

Figure 2.10: Sample Space of Two Tosses

In the fifth row the result of the first toss is a 5, and in the fifth column the result of
the second toss is a 5. This row and this column have been shaded and represent the
part of the sample space which meets the requirements of the problem. This area
contains 11 entries, whereas the whole sample space contains 36 entries,

. 11
so Pr [at least one 5 in two tosses] = R
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Fifth solution (and the fastest): The probability of no fives in two tosses is

HE

Because the only alternative to no fives is at least one five,

25 11
i =1-===
Pr [at least one 5 in two tosses] 36 36
Before we start to calculate we should consider whether another method may
give a faster correct result!

Example 2.11

A class of engineering students consists of 45 people. What is the probability that no
two students have birthdays on the same day, not considering the year of birth? To
simplify the calculation, assume that there are 365 days in the year and that births are
equally likely on all of them. Then what is the probability that some members of the
class have birthdays on the same day?

Answer: The first person in the class states his birthday. The probability that the

364
second person has a different birthday is 365 ° and the probability that the third

. . . . 363 ) .
person has a different birthday than either of them is 365" We can continue this

calculation until the birthdays of all 45 people have been considered. Then the
probability that no two students in the class have the same birthday is

364\ 363 ) 362 365-i+1 365-45+1
(1)(%)(%){%)( 36;+ )( 365 * ):0.059. (The multiplication was

done using a spreadsheet.) Then the probability that at least one pair of students have
birthdays on the same day is 1 — 0.059 = 0.941.

In fact, some days of the year have higher frequencies of births than others, so the
probability that at least one pair of students would have birthdays on the same day is
somewhat larger than 0.941.

The following example is a little more complex, but it involves the same approach.
Because this case uses the multiplication rule, tree diagrams are very helpful.

Example 2.12

An oil company is bidding for the rights to drill a well in field A and a well in field
B. The probability it will drill a well in field A is 40%. If it does, the probability the
well will be successful is 45%. The probability it will drill a well in field B is 30%.
If it does, the probability the well will be successful is 55%. Calculate each of the
following probabilities:

a) probability of a successful well in field A,

b) probability of a successful well in field B,

c) probability of both a successful well in field A and a successful well in field B,
d) probability of at least one successful well in the two fields together,

22



Basic Probability

e) probability of no successful well in field A,
f) probability of no successful well in field B,

g) probability of no successful well in the two fields together (calculate by two

methods),

h) probability of exactly one successful well in the two fields together.
Show a check involving the probability calculated in part h.

Answer:

For Field A:

Result
Pr [success] = 0.45 _gyccess

Pr [well] = 0.40 well

Pr [failure] = 0.55 _ failure
no well

Pr [no well] = 0.60 "° Well

Total

Probability
(0.40)(0.45) = 0.18

(0.40)(0.55) = 0.22

Figure 2.11: Tree Diagram for Field A

a) Then Pr [a successful well in field A] = Pr [a well in A] x Pr [success | well

inA]j
= (0.40)(0.45)
=0.18  (using equation 2.3)

For Field B:

Result
Pr [success] = 0.55 sy ccess

Pr [well] = 0.30 well

Pr [failure] = 0.45 _ failure

Pr [no well] =0.70 no well

Total

Probability
(0.30)(0.55) = 0.165

(0.30)(0.45) = 0.135

Figure 2.12: Tree Diagram for Field B

b) Then Pr [a successful well in field B] = Pr [a well in B] x Pr [success | well

in B]
= (0.30)(0.55)
=0.165 (using equation 2.3)
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c)

d)

2

h)

Pr [both a successful well in field A and a successful well in field B]
= Pr [a successful well in field A] x Pr [a successful well in field B]
=(0.18)(0.165)
=0.0297 (using equation 2.2, since probability of success in

one field is not affected by results in the other field)
Pr [at least one successful well in the two fields]
= Pr [(successful well in field A)u (successful well in field B)]
= Pr [successful well in field A] + Pr [successful well in field B]

— Pr [both successful]

=0.18 + 0.165 - 0.0297
=0.3153 or 0.315 (using equation 2.1)
Pr [no successful well in field A]
= Pr [no well in field A] + Pr [unsuccessful well in field A]
= Pr [no well in field A] + Pr [well in field A] x Pr [failure | well in A]
=0.60 + (0.40)(0.55)
=0.60 + 0.22
=0.82 (using equation 2.3 and the simple addition rule)
Pr [no successful well in field B]
= Pr [no well in field B] + Pr [unsuccessful well in field B]
= Pr [no well in field B] + Pr [well in field B] x Pr [failure | well in B]
=0.70 + (0.30)(0.45)
=0.70 + 0.135
= 0.835 (using equation 2.3 and the simple addition rule)
Pr [no successful well in the two fields] can be calculated in two ways. One
method uses the requirement that probabilities of all possible results must
add up to 1. This gives:
Pr [no successful well in the two fields] = 1 — Pr [at least one successful well
in the two fields]
=1-0.3153
=0.6847 or 0.685
The second method uses equation 2.2:
Pr [no successful well in the two fields]
= Pr [no successful well in field A] x Pr [no successful well in field B]
=(0.82)(0.835)
=0.6847 or 0.685
Pr [exactly one successful well in the two fields]
= Pr [(successful well in A) N (no successful well in B)]

+ Pr [(no successful well in A) n (successful well in B)]
=(0.18)(0.835) + (0.82)(0.165)
=0.1503 + 0.1353
= 0.2856 or 0.286 (using equation 2.2 and the simple addition rule)
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Check: For the two fields together,
Pr [two successful wells] = 0.0297 (from part c)
Pr [exactly one successful well] = 0.2856 (from part h)
Pr [no successful wells] = 0.6847 (from part g)
Total (check) = 1.0000

Problems

1.

Past records show that 4 of 135 parts are defective in length, 3 of 141 are defec-

tive in width, and 2 of 347 are defective in both. Use these figures to estimate

probabilities of the individual events assuming that defects occur independently

in length and width.

a) What is the probability that a part produced under the same conditions will
be defective in length or width or both?

b) What is the probability that a part will have neither defect?

¢) What are the fair odds against a defect (in length or width or both)?

In a group of 72 students, 14 take neither English nor chemistry, 42 take English
and 38 take chemistry. What is the probability that a student chosen at random
from this group takes:

a) both English and chemistry?

b) chemistry but not English?

A random sample of 250 students entering the university included 120 females,

of whom 20 belonged to a minority group, 65 had averages over 80%, and 10 fit

both categories. Among the 250 students, a total of 105 people in the sample had

averages over 80%, and a total of 40 belonged to the minority group. Fifteen

males in the minority group had averages over 80%.

i) How many of those not in the minority group had averages over 80%?

ii) Given a person was a male from the minority group, what is the probability
he had an average over 80%?

ii1) What is the probability that a person selected at random was male, did not
come from the minority group, and had an average less than 80%?

Two hundred students were sampled in the College of Arts and Science. It was
found that: 137 take math, 50 take history, 124 take English, 33 take math and
history, 29 take history and English, 92 take math and English, 18 take math,
history and English. Find the probability that a student selected at random out of
the 200 takes neither math nor history nor English.

Among a group of 60 engineering students, 24 take math and 29 take physics.

Also 10 take both physics and statistics, 13 take both math and physics, 11 take

math and statistics, and 8 take all three subjects, while 7 take none of the three.

a) How many students take statistics?

b) What is the probability that a student selected at random takes all three,
given he takes statistics?
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6.

10.

11.

12.

Of 65 students, 10 take neither math nor physics, 50 take math, and 40 take
physics. What are the fair odds that a student chosen at random from this group
of 65 takes (i) both math and physics? (ii) math but not physics?

16 parts are examined for defects. It is found that 10 are good, 4 have minor
defects, and 2 have major defects. Two parts are chosen at random from the 16
without replacement, that is, the first part chosen is not returned to the mix
before the second part is chosen. Notice, then, that there will be only 15 possible
choices for the second part.

a) What is the probability that both are good?

b) What is the probability that exactly one part has a major defect?

There are two roads between towns A and B. There are three roads between
towns B and C. John goes from town A to town C. How many different routes
can he travel?

A hiker leaves point A shown in Figure 2.13 below, choosing at random one path

from AB, AC, AD, and AE. At each subsequent junction she chooses another

path at random, but she does not immediately return on the path she has just

taken.

a) What are the odds that she arrives at point X?

b) You meet the hiker at point X. What is the probability that the hiker came via
point C or E?

A

Figure 2.13: Paths for Hiker

The probability that a certain type of missile will hit the target on any one firing
is 0.80. How many missiles should be fired so that there is at least 98% probabil-
ity of hitting the target at lest once?

To win a daily double at a horse race you must pick the winning horses in the
first two races. If the horses you pick have fair odds against of 3:2 and 5:1, what
are the fair odds in favor of your winning the daily double?

A hockey team wins with a probability of 0.6 and loses with a probability of 0.3.
The team plays three games over the weekend. Find the probability that the team:
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13.

14.

15.

16.

17.

18.

19.

a) wins all three games.
b) wins at least twice and doesn’t lose.
c) wins one game, loses one, and ties one (in any order).

To encourage his son’s promising tennis career, a father offers the son a prize if
he wins (at least) two tennis sets in a row in a three-set series. The series is to be
played with the father and the club champion alternately, so in the order father-
champion-father or champion-father-champion. The champion is a better player
than the father. Which series should the son choose if Pr [son beating the cham-
pion] = 0.4, and Pr [son beating his father] = 0.8? What is the probability of the
son winning a prize for each of the two alternatives?

Three balls are drawn one after the other from a bag containing 6 red balls, 5
yellow balls and 3 green balls. What is the probability that all three balls are
yellow if:

a) the ball is replaced after each draw and the contents are well mixed?

b) the ball is not replaced after each draw?

When buying a dozen eggs, Mrs. Murphy always inspects 3 eggs for cracks; if
one or more of these eggs has a crack, she does not buy the carton. Assuming
that each subset of 3 eggs has an equal probability of being selected, what is
the probability that Mrs. Murphy will buy a carton which has 5 eggs with
cracks?

Of 20 light bulbs, 3 are defective. Five bulbs are chosen at random. (a) Use the
rules of probability to find the probability that none are defective. (b) What is the
probability that at least one is defective?

Of flights from Saskatoon to Winnipeg, 89.5% leave on time and arrive on time,
3.5% leave on time and arrive late, 1.5% leave late and arrive on time, and 5.5%
leave late and arrive late. What is the probability that, given a flight leaves on
time, it will arrive late? What is the probability that, given a flight leaves late, it
will arrive on time?

Eight engineering students are studying together. What is the probability that at
least two students of this group have the same birthday, not considering the year
of birth? Simplify the calculations by assuming that there are 365 days in the
year and that all are equally likely to be birthdays.

The probabilities of the monthly snowfall exceeding 10 cm at a particular loca-

tion in the months of December, January, and February are 0.2, 0.4, and 0.6,

respectively. For a particular winter:

a) What is the probability that snowfall will be less than 10 cm in all three of
the months of December, January and February?

b) What is the probability of receiving at least 10 cm snowfall in at least 2 of
the 3 months?

¢) Given that the snowfall exceeded 10 cm in each of only two months, what is
the probability that the two months were consecutive?
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20.

21.

22.

23.

A circuit consists of two components, A and B, connected as shown below.
O
Input—p» Output

»(8) e

Figure 2.14: Circuit Diagram

Each component can fail (i) to an open circuit mode or
(i1) to a short circuit mode.
The probabilities of the components’ failing to these modes in a year are:

Probability of failing to
Open Circuit  Short Circuit

Component Mode Mode
A 0.100 0.150
B 0.200 0.100

The circuit fails to perform its intended function if (i) the component in at least
one branch fails to the short circuit mode, or if (ii) both components fail to the
open circuit mode.

Calculate the probability that the circuit will function adequately at the end of a
two-year period.

Ten married couples are in a room.

a) If two people are chosen at random find the probability that (i) one is male
and one is female, (ii) they are married to each other.

b) If 4 people are chosen at random, find the probability that 2 married couples
are chosen.

c) If the 20 people are randomly divided into ten pairs, find the probability that
each pair is a married couple.

A box contains three coins, two of them fair and one two-headed. A coin is
selected at random and tossed. If heads appears the coin is tossed again; if tails
appears then another coin is selected from the two remaining coins and tossed.
a) Find the probability that heads appears twice.

b) Find the probability that tails appears twice.

The probability of precipitation tomorrow is 0.30, and the probability of precipi-

tation the next day is 0.40.

a) Use these figures to find the probability there will be no precipitation during
the two days. State any assumption. What is the probability there will be
some precipitation in the next two days?
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b) Why is this calculation not strictly correct? If figures were available, how
could the probability of no precipitation during the next two days be calcu-
lated more accurately? Show this calculation in symbols.

2.3 Permutations and Combinations

Permutations and combinations give us quick, algebraic methods of counting. They
are used in probability problems for two purposes: to count the number of equally
likely possible results for the classical approach to probability, and to count the
number of different arrangements of the same items to give a multiplying factor.

(a) Each separate arrangement of all or part of a set of items is called a permutation. The
number of permutations is the number of different arrangements in which items can
be placed. Notice that if the order of the items is changed, the arrangement is differ-
ent, so we have a different permutation. Say we have a total of # items to be arranged,
and we can choose r of those items at a time, where r < n. The number of permuta-
tions of n items chosen r at a time is written ,P,. For permutations we consider both
the identity of the items and their order.

Let us think for a minute about the number of choices we have at each step
along the way. If there are n distinguishable items, we have n choices for the first
item. Having made that choice, we have (n—1) choices for the second item, then
(n —2) choices for the third item, and so on until we come to the r th item, for
which we have (n — r + 1) choices. Then the total number of choices is given by
the product (n)(n — 1)(n — 2)(n — 3)...(n — r + 1). But remember that we have a
short-hand notation for a related product, (n)(n — 1)(n — 2)(n — 3)...3)(2)(1) = n!,
which is called n factorial or factorial n. Similarly, r! = (r)(r — 1)(r — 2)(r — 3)...
B))M),and(n-r!'=m-r(n—-r-1) ((n-r—-2)...3)(2)(1). Then the total
number of choices, which is called the number of permutations of n items taken
rat a time, 18

nt n(n=1)(n=2)...(2)(1)
(n—r)! (n—r)(n—r—l)...(3)(2)(l)
By definition, 0! = 1. Then the number of choices of n items taken # at a time is
P, =nl

I‘LPI‘ =

(2.6)

n

Example 2.13

An engineer in technical sales must visit plants in Vancouver, Toronto, and
Winnipeg. How many different sequences or orders of visiting these three plants
are possible?

Answer: The number of different sequences is equal to ;P; = 3! = 6 different
permutations. This can be verified by the following tree diagram:
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First Second Third Route
T—mMMW VTW
v <
w T VWT
Vv W TVW
T <
w \ TWV
T \Y WTV
W<
V——T  WVT

Figure 2.15: Tree Diagram for Visits to Plants

(b) The calculation of permutations is modified if some of the items cannot be
distinguished from one another. We speak of this as calculation of the
number of permutations into classes. We have already seen that if n items are
all different, the number of permutations taken n at a time is n!. However, if
some of them are indistinguishable from one another, the number of possible
permutations is reduced. If n, items are the same, and the remaining (n-n,)
items are the same of a different class, the number of permutations can be

shown to be . The numerator, n!, would be the number of permutations

n!
n, ! (n -n )!
of n distinguishable items taken n at a time. But 7, of these items are
e . ) 1
indistinguishable, so reducing the number of permutations by a factor P
!

and another (n — n,) items are not distinguishable from one another, so reducing

the number of permutations by another factor If we have a total of

(n—n)!"
n items, of which n, are the same of one class, n, are the same of a second class,

and n, are the same of a third class, such that n, + n,+ n,= 1, the number
!

of permutations is PRTRINE This could be extended to further classes.

) A
Example 2.14
A machinist produces 22 items during a shift. Three of the 22 items are defective and
the rest are not defective. In how many different orders can the 22 items be arranged

if all the defective items are considered identical and all the nondefective items are
identical of a different class?

Answer: The number of ways of arranging 3 defective items and

22)(21)(20
19 nondefective items is 22! =( )( )( )=1540.

(39 (3)(2)()

30



Basic Probability

Another modification of calculation of permutations gives circular permutations.
If n items are arranged in a circle, the arrangement doesn’t change if every item is
moved by one place to the left or to the right. Therefore in this situation one item can
be placed at random, and all the other items are placed in relation to the first item.
Thus, the number of permutations of n distinct items arranged in a circle is (n — 1)!.

The principal use of permutations in probability is as a multiplying factor that
gives the number of ways in which a given set of items can be arranged.

(c) Combinations are similar to permutations, but with the important difference
that combinations take no account of order. Thus, AB and BA are different
permutations but the same combination of letters. Then the number of
permutations must be larger than the number of combinations, and the ratio
between them must be the number of ways the chosen items can be arranged.
Say on an examination we have to do any eight questions out of ten. The

. . !
number of permutations of questions would be ,,P;= %. Remember
that the number of ways in which eight items can be arranged is 8!, so the

number of combinations must be reduced by the factor L Then the number

of combinations of 10 distinguishable items taken 8 at a t.ime is (&' )( ! ) In

21 st
general, the number of combinations of » items taken r at a time is
P n!
C=rr—_ "
oot (=)l 2.7)
.C, gives the number of equally likely ways of choosing r items from a group of
n distinguishable items. That can be used with the classical approach to probabil-

ity.
Example 2.15

Four card players cut for the deal. That is, each player removes from the top of a
well-shuffled 52-card deck as many cards as he or she chooses. He then turns them
over to expose the bottom card of his “cut.” He or she retains the cut card. The
highest card will win, with the ace high. If the first player draws a nine, what is then
his probability of winning without a recut for tie?

Answer: For the first player to win, each of the other players must draw an eight or
lower. Then Pr [win] = Pr [other three players all get eight or lower].

There are (4)(7) = 28 cards left in the deck below nine after the first player’s
draw, and there are 52 — 1 = 51 cards left in total. The number of combinations of
three cards from 51 cards is 5,C,, all of which are equally likely. Of these, the number
of combinations which will result in a win for the first player is the number of
combinations of three items from 28 items, which is ,3C.

31



Chapter 2

The probability that the first player will win is
28! (48N@BH|  [@8)27)(26)|| 3)(2)A) | [(28)(27)(26)
@snEhl 51 1 3)@)A) | (51)(50)(49)

(561)(50)(49)
Like many other problems, this one can be done in more than one way. A solu-
tion by the multiplication rule using conditional probability is as follows:

19,656
124,950

28C3 —

51 CS

0.157

28
Pr [player #2 gets eight or lower | player #1 drew a nine] = 51
If that happens, Pr [player #3 gets eight or lower]

= Pr [third player gets eight or lower | first player drew a nine and second player
drew eight or lower]
27
=50
If that happens, Pr [player #4 gets eight or lower]

= Pr [fourth player gets eight or lower | first player drew a nine and both second
and third players drew eight or lower]
26
~49
The probability that the first player will win is

28Y27y 26 =0.157.
51 | 50 49

Problems

1. A bench can seat 4 people. How many seating arrangements can be made from a
group of 10 people?

2. How many distinct permutations can be formed from all the letters of each of the
following words: (a) them, (b) unusual?

3. A student is to answer 7 out of 9 questions on a midterm test.
i) How many examination selections has he?
ii) How many if the first 3 questions are compulsory?
iii) How many if he must answer at least 4 of the first 5 questions?

4. Four light bulbs are selected at random without replacement from 16 bulbs, of
which 7 are defective. Find the probability that
a) none are defective.
b) exactly one is defective.
c) atleast one is defective.

5. Of 20 light bulbs, 3 are defective. Five bulbs are chosen at random.
a) Use permutations or combinations to find the probability that none are
defective.
b) What is the probability that at least one is defective?

(This is a modification of problem 15 of the previous set.)
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10.

11.
12.

13.

14.

15.

A box contains 18 light bulbs. Of these, four are defective. Five bulbs are chosen

at random.

a) Use permutations or combinations to find the probability that none are
defective.

b) What is the probability that exactly one of the chosen bulbs is defective?

c) What is the probability that at least one of the chosen bulbs is defective?

How many different sums of money can be obtained by choosing two coins from
a box containing a nickel, a dime, a quarter, a fifty-cent piece, and a dollar coin?
Is this a problem in permutations or in combinations?

If three balls are drawn at random from a bag containing 6 red balls, 4 white
balls, and 8 blue balls, what is the probability that all three are red? Use permuta-
tions or combinations.

In a poker hand consisting of five cards, what is the probability of holding:

a) two aces and two kings?
b) five spades?
¢) A, K, Q,]J, 10 of the same suit?

In how many ways can a group of 7 persons arrange themselves

a) 1in arow,

b) around a circular table?

In how many ways can a committee of 3 people be selected from 8 people?

In playing poker, five cards are dealt to a player. What is the probability of being

dealt (i) four-of-a-kind? (ii) a full house (three-of-a-kind and a pair)?

A hockey club has 7 forwards, 5 defensemen, and 3 goalies. Each can play only

in his designated subgroup. A coach chooses a team of 3 forwards, 2 defense,

and 1 goalie.

a) How many different hockey teams can the coach assemble if position within
the subgroup is not considered?

b) Players A, B and C prefer to play left forward, center, and right defense, respec-
tively. What is the probability that these three players will play on the same team
in their preferred positions if the coach assembles the team at random?

A shipment of 17 radios includes 5 radios that are defective. The receiver
samples 6 radios at random. What is the probability that exactly 3 of the radios
selected are defective? Solve the problem

a) using a probability tree diagram

b) using permutations and combinations.

Three married couples have purchased theater tickets and are seated in a row
consisting of just six seats. If they take their seats in a completely random
fashion, what is the probability that

a) Jim and Paula (husband and wife) sit in the two seats on the far left?

b) Jim and Paula end up sitting next to one another.
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2.4 More Complex Problems: Bayes’ Rule

More complex problems can be treated in much the same manner. You must read the
question very carefully. If the problem involves the multiplication rule, a tree diagram
is almost always very strongly recommended.

Example 2.16
A company produces machine components which pass through an automatic testing
machine. 5% of the components entering the testing machine are defective. However,
the machine is not entirely reliable. If a component is defective there is 4% probabil-
ity that it will not be rejected. If a component is not defective there is 7% probability
that it will be rejected.

a) What fraction of all the components are rejected?

b) What fraction of the components rejected are actually not defective?

¢) What fraction of those not rejected are defective?

Answer: Let D represent a defective component, and G a good component.
Let R represent a rejected component, and A an accepted component.
Part (a) can be answered directly using a tree diagram.

Pr[R|D]=0. R .
r[R|DI=0.96 Figure 2.16:
Testing Sequences

Pr [D] = 0.05

Pr[A|D]=0.04 ~A

Pr[R|G]=0.07—R

Pr [G] =0.95

Pr[A|G]=0.93

Now we can calculate the probabilities of the various combined events:

Pr[D nR]= Pr [D] x Pr [R | D] = (0.05)(0.96) = 0.0480 Rejected
Pr[DnA]= Pr[D] x Pr[A|D] = (0.05)(0.04) = 0.0020 Accepted
Pri[GnR]= Pr[G] xPr[R|G] = (0.95)(0.07) = 0.0665 Rejected
Pr(GnA]= Pr [G] x Pr [A | Gl= (0.95)(0.93) = 0.8835 Accepted
Total = 1.0000 (Check)
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Because all possibilities have been considered and there is no overlap among
them, we see that the “rejected” area is composed of only two possibilities, so the
probability of rejection is the sum of the probabilities of two intersections. The same
can be said of the “accepted” area.

Then Pr[R]= Pr[DM R] + Pr[Gn R]
and Pr[A]l= Pr[DN A] + Pr(Gn A]

0.0480 + 0.0665 = 0.1145
0.0020 + 0.8835 = 0.8855

a) The answer to part (a) is that “in the long run” the fraction rejected will be the
probability of rejection, 0.1145 or (with rounding) 0.114 or 11.4 %.

Now we can calculate the required quantities to answer parts (b) and (c) using
conditional probabilities in the opposite order, so in a sense applying them
backwards.

b) Fraction of components rejected which are not defective

= probability that a component is good, given that it was rejected

Pr[GAR] _ 0.0665

¢) Fraction of components passed which are actually defective
= probability that a component is defective, given that it was passed

Pr[DNA] _ 0.0020
PA] 08855 = 0.0023 or 023 %.

(Note that Pr [G | R] #Pr [R | G], and Pr [D | A] # Pr [A | D].)

Thus the fraction of defective components in the stream which is passed seems to
be acceptably small, but the fraction of non-defective components in the stream
which is rejected is unacceptably large. In practice, something would have to be done
about that.

Using equation 2.4, this is Pr [D | A] =

Note two points here about the calculation. First, to obtain answers to parts (b)
and (c) of this problem we have applied conditional probability in two directions,
first forward in the tree diagram, then backward. Both are legitimate applications of
Equation 2.3 or 2.4. Second, we can go from the idea of the sample space, consisting
of all possible results, to the reduced sample space, consisting of those outcomes
which meet a particular condition. Here for Pr [D | A] the reduced sample space
consists of all outcomes for which the component is not rejected. The conditional
probability is the probability that an item in the reduced sample space will satisfy the
requirement that the component is defective, or the long-run fraction of the items in
the reduced sample space that satisfy the new requirement.

Bayes’ Theorem or Rule is the name given to the use of conditional probabilities
in both directions, with combination of all the intersections involving a particular
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event to give the probability of that event. The Bayesian approach can be summarized
as follows:

*  First, apply the multiplication rule with conditional probability forward
along the tree diagram:

Pr [A N B] =Pr [A] x Pr [B|A] (2.3 a)

*  Second, apply the addition rule to reconstruct the probability of a particular
event as a reduced sample space:

Pr [B] = Pr [A N B] + Pr [A nB] (2.8)
where A represents “not A”, the absence of A or complement of A.

» Third, apply the relation for conditional probability, in the opposite direction
on the tree diagram from the first step, using this reduced sample space:
Pr[ANB]
Pr[B]

Bayes’ Rule should always be used with a tree diagram. Thus, for Example 2.16
we have:

Pr[A|B]= (2.5)

Pr[R|D] =096 ~ R

Pr [D] = 0.05

Pr[A|D]=0.04 —A

Pr[R|G]=0.07— R

Figure 2.17:

Pr[G] =0.95 Tree Diagram for Bayes’ Rule

PriA|G] =093~ A

The steps corresponding to the reasoning behind Bayes’ Rule for this tree dia-
gram are:

First, Pr [D N R] = Pr [D] x Pr [R | D], and so on, corresponding to equation 2.3 a.
Then, Pr [R] = Pr [D N R] + Pr [G n R], and similarly for Pr [A], corresponding to
equation 2.8.

Pr|GNR

Then, Pr [G|R] = %

[R] and similarly for Pr [D | A], corresponding to equa-

tion 2.5.

An important use of Bayes’ Rule is in modifying earlier estimates of probability
with later observed data.
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Here is another example of the use of Bayes’ Rule:

Example 2.17

A man has three identical jewelry boxes, each with two identical drawers. In the first
box both drawers contain gold watches. In the second box both drawers contain silver
watches. In the third box one drawer contains a gold watch, and the other drawer
contains a silver watch. The man wants to wear a gold watch. If he selects a box at
random, opens a drawer at random, and finds a silver watch, what is the probability
that the other drawer in that box contains a gold watch?

Answer: (It is interesting at this point to guess what the right answer will be! Try it.)

If G stands for a gold watch and S stands for a silver watch, the three boxes and their
contents can be shown as follows:

1 2 3
G S G
G S S

Figure 2.18: Jewelry Boxes

If the selected box contains both a silver watch and a gold watch, it must be Box 3.

Then we need to calculate the probability that the man chose Box 3 on condition
that he found a silver watch, Pr [B;|S], where B, stands for Box 3 and similar
notations apply for other boxes. We start with a tree diagram and apply conditional
probabilities along the tree.

Pr[S|B1]=0

Figure 2.19:

Tree Diagram for Jewelry Boxes Box |
OoX

Pr[B4]=1/3 S .
PriS|B2]l=1 S

Pr[By] = 1/3 Box 2
Pr(G|B2]=0 G
Pr[B3]=1/3 PriS|B3l=1/2_-5S

Box 3
Pr[G|B3]l=12 =G
Using equation 2.5, Pr [SNB;] = Pr [B,] x Pr [S | B,], and similarly Pr [GNB;] =

Pr[B;] x Pr [G | B;], so we have:
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i,Box No.

Pr [SNB,]

(o

Pr [GNB,]

(o -

Bt Qo
I 6N 315) -3
Total % %

Then Pr [S] = D, PrlSN B]= 04 4=~
i=1

3 1 1

and Pr[G]= 2 PrlGn Bl=-+0+—
i=1

Total =

—_ N =

( check)

Pr[B;nS] 1/6 1
Then we have Pr [B;[S] = W = w = 3

1
Then the probability that the other drawer contains a gold watch is 3

Other relatively complex problems will be encountered when the concepts of
basic probability are combined with other ideas or distributions in later chapters.

Problems

1.

Three different machines M1, M2, and M3 are used to produce similar electronic
components. Machines Ml, M2, and M3 produce 20%, 30% and 50% of the
components respectively. It is known that the probabilities that the machines
produce defective components are 1% for M1, 2% for M2, and 3% for M3. If a
component is selected randomly from a large batch, and that component is
defective, find the probability that it was produced: (a) by M2, and (b) by M3.

A flood forecaster issues a flood warning under two conditions only: (i) if fall

rainfall exceeds 10 cm and winter snowfall is between 15 and 20 cm, or (ii) if

winter snowfall exceeds 20 cm regardless of fall rainfall. The probability of fall

rainfall exceeding 10 cm is 0.10, while the probabilities of winter snowfall

exceeding 15 and 20 cm are 0.15 and 0.05 respectively.

a) What is the probability that he will issue a warning any given spring?

b) Given that he issues a warning, what is the probability that fall rainfall was
greater than 10 cm?
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A certain company has two car assembly plants, A and B. Plant A produces twice

as many cars as plant B. Plant A uses engines and transmissions from a subsid-

iary plant which produces 10% defective engines and 2% defective

transmissions. Plant B uses engines and transmissions from another source where

8% of the engines and 4% of the transmissions are defective. Car transmissions

and engines at each plant are installed independently.

a) What is the probability that a car chosen at random will have a good engine?

b) What is the probability that a car from plant A has a defective engine, or a
defective transmission, or both?

¢) What is the probability that a car which has a good transmission and a
defective engine was assembled at plant B?

It is known that of the articles produced by a factory, 20% come from Machine

A, 30% from Machine B, and 50% from Machine C. The percentages of satisfac-

tory articles among those produced are 95% for A, 85% for B and 90% for C. An

article is chosen at random.

a) What is the probability that it is satisfactory?

b) Assuming that the article is satisfactory, what is the probability that it was
produced by Machine A?

Of the feed material for a manufacturing plant, 85% is satisfactory, and the rest is
not. If it is satisfactory, the probability it will pass Test A is 92%. If it is not
satisfactory, the probability it will pass Test A is 9.5%. If it passes Test A it goes
on to Test B; 99% will pass Test B if the material is satisfactory, and 16% will
pass Test B if the material is not satisfactory. If it fails Test A it goes on to Test
C; 82% will pass Test C if the material is satisfactory, but only 3% will pass Test
C if the material is not satisfactory. Material is accepted if it passes both Test A
and Test B. Material is rejected if it fails both Test A and Test C. Material is
reprocessed if it fails Test B or passes Test C.

a) What percentage of the feed material is accepted?

b) What percentage of the feed material is reprocessed?

¢) What percentage of the material which is reprocessed was satisfactory?

In a small isolated town in Northern Saskatchewan, 90% of the Cola consumed

by the townspeople is purchased from the General Store, while the rest is pur-

chased from other vendors. Records show 60% of all the bottles sold are

returned. According to a special study, a bottle purchased at the General Store is

four times as likely to be returned as a bottle purchased elsewhere.

a) Calculate the probability that a person buying a bottle of Cola from the
General Store will return the empty bottle.

b) If a Cola bottle is found lying in the street, what is the probability that it was
not purchased at the General Store?

Three road construction firms, X, Y and Z, bid for a certain contract. From past
experience, it is estimated that the probability that X will be awarded the contract
is 0.40, while for Y and Z the probabilities are 0.35 and 0.25. If X does receive
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the contract, the probability that the work will be satisfactorily completed on

time is 0.75. For Y and Z these probabilities are 0.80 and 0.70.

a) What is the probability that Y will be awarded the contract and complete the
work satisfactorily?

b) What is the probability that the work will be completed satisfactorily?

c) It turns out that the work was done satisfactorily. What is the probability that
Y was awarded the contract?

8. Two service stations compete with one another. The odds are 3 to 1 that a motor-
ist will go to station A rather than station B. Given that a motorist goes to station
B, the probability that he will be asked whether he wants his oil checked is 0.76.
A survey indicates that of the motorists who are asked whether they want the oil
checked, 79% went to station A. Given that a motorist goes to station A, what is
the probability that he will be asked whether he wants his oil checked?

9. A machining process produces 98.6% good components. The rest are defective.
Each component passes through a pneumatic gauging system. 96% of the defec-
tive components are rejected by the gauging system, but 5% of the good
components are rejected also. All components rejected by the gauging system
pass through a tester. The tester accepts 98% of the good components and 12% of
the defective components which reach it. The components which are accepted by
the tester go a second time through the gauging system, which now accepts 92%
of the good components and 6% of the defective components which pass through
it. The total reject stream consists of components rejected by the tester and
components rejected by the second pass through the gauging system. The total
accepted stream consists of components accepted by the gauging system in either
pass.

a) What percentage of all the components are rejected?
b) What percentage of the total reject stream was accepted by the tester?
c) What percentage of the total reject stream are not defective?
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Descriptive Statistics: Summary Numbers

Prerequisite: A good knowledge of algebra.

The purpose of descriptive statistics is to present a mass of data in a more under-
standable form. We may summarize the data in numbers as (a) some form of average,
or in some cases a proportion, (b) some measure of variability or spread, and (c)
quantities such as quartiles or percentiles, which divide the data so that certain
percentages of the data are above or below these marks. Furthermore, we may choose
to describe the data by various graphical displays or by the bar graphs called histo-
grams, which show the distribution of data among various intervals of the varying
quantity. It is often necessary or desirable to consider the data in groups and deter-
mine the frequency for each group. This chapter will be concerned with various
summary numbers, and the next chapter will consider grouped frequency and graphi-
cal descriptions.

Use of a computer can make treatment of massive sets of data much easier, so
computer calculations in this area will be considered in detail. However, it is neces-
sary to have the fundamentals of descriptive statistics clearly in mind when using the
computer, so the ideas and relations of descriptive statistics will be developed first for
pencil-and-paper calculations with a pocket calculator. Then computer methods will
be introduced and illustrated with examples.

First, consider describing a set of data by summary numbers. These will include
measures of a central location, such as the arithmetic mean, markers such as quartiles
or percentiles, and measures of variability or spread, such as the standard deviation.

3.1 Central Location

Various “averages” are used to indicate a central value of a set of data. Some of these
are referred to as means.

(a) Arithmetic Mean

Of these “averages,” the most common and familiar is the arithmetic mean, defined by

_ 1
xoru=N2x, 3.1)
i=1
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If we refer to a quantity as a “mean” without any specific modifier, the arithmetic
mean is implied. In equation 3.1 X is the mean of a sample, and [ is the mean of a
population, but both means are calculated in the same way.

The arithmetic mean is affected by all of the data, not just any selection of it.
This is a good characteristic in most cases, but it is undesirable if some of the data
are grossly in error, such as “outliers” that are appreciably larger or smaller than they
should be. The arithmetic mean is simple to calculate. It is usually the best single
average to use, especially if the distribution is approximately symmetrical and
contains no outliers.

If some results occur more than once, it is convenient to take frequencies into
account. If f; stands for the frequency of result x;, equation 3.1 becomes

>,
ST (3.2)

This is in exactly the same form as the expression for the x-coordinate of the center
of mass of a system of N particles:

_ me

X
CofM — Zmi 3.3)

Just as the mass of particle i, m,, is used as the weighting factor in equation 3.3,
the frequency, f,, is used as the weighting factor in equation 3.2.

Xoru=

Notice that from equation 3.1

Nx — Zx—
SO ZX—X

In words, the sum of all the deviations from the mean is equal to zero.

We can also write equation 3.2 as

rorp= Zx Zf (3.2a)

all i

The quantity [ in this expression is the mean of a population. The quantity —— is
21

the relative frequency of x;. =l
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To illustrate, suppose we toss two coins 15 times. The possible number of heads
on each toss is 0, 1, or 2. Suppose we find no heads 3 times, one head 7 times, and
two heads 5 times. Then the mean number of heads per trial using equation 3.2 is

ORI 1
3+7+5 15

The same result can be obtained using equation 3.2a.

(b) Other Means

We must not think that the arithmetic mean is the only important mean. The geomet-
ric mean, logarithmic mean, and harmonic mean are all important in some areas of
engineering. The geometric mean is defined as the nth root of the product of n
observations:

: _n
geometric mean = "\/x,x,x;... X, (3.4)

or, in terms of frequencies,
. S
geometric mean = X \/ (x1 )f' (x2 )f2 (x3 )f} .--(X,l, ) '

Now taking logarithms of both sides,

Zfl logx;
log (geometric mean) = T 3.5

The logarithmic mean of two numbers is given by the difference of the natural
logarithms of the two numbers, divided by the difference between the numbers, or
Inx, —1Inx,
« _x - Itisused particularly in heat transfer and mass transfer.

2 1

The harmonic mean involves inverses—i.e., one divided by each of the quanti-
ties. The harmonic mean is the inverse of the arithmetic mean of all the inverses, so

1
1 1
— .
X X

In this book we will not be concerned further with logarithmic or harmonic
means.

(¢) Median

Another representative quantity, quite different from a mean, is the median. If all the
items with which we are concerned are sorted in order of increasing magnitude (size),
from the smallest to the largest, then the median is the middle item. Consider the five
items: 12, 13, 21, 27, 31. Then 21 is the median. If the number of items is even, the
median is given by the arithmetic mean of the two middle items. Consider the six
items: 12, 13, 21, 27, 31, 33. The median is (21 + 27) / 2 = 24. If we interpret an

43



Chapter 3

item that is right at the median as being half above and half below, then in all cases
the median is the value exceeded by 50% of the observations.

One desirable property of the median is that it is not much affected by outliers. If
the first numerical example in the previous paragraph is modified by replacing 31 by
131, the median is unchanged, whereas the arithmetic mean is changed appreciably.
But along with this advantage goes the disadvantage that changing the size of any
item without changing its position in the order of magnitude often has no effect on
the median, so some information is lost. If a distribution of items is very asymmetri-
cal so that there are many more items larger than the arithmetic mean than smaller
(or vice-versa), the median may be a more useful representative quantity than the
arithmetic mean. Consider the seven items: 1, 1, 2, 3, 4, 9, 10. The median is 3, with
as many items smaller than it as larger. The mean is 4.29, with five items smaller
than it, but only two items larger.

(d) Mode

If the frequency varies from one item to another, the mode is the value which appears
most frequently. As some of you may know, the word “mode” means “fashion” in
French. Then we might think of the mode as the most “fashionable” item. In the case
of continuous variables the frequency depends upon how many digits are quoted, so
the mode is more usefully considered as the midpoint of the class with the largest
frequency (see the grouped frequency approach
in section 4.4). Using that interpretation, the
mode is affected somewhat by the class width,

.. . Group A:
but this influence is usually not very great.
. X X X X
3.2 Variability or Spread
Of the Data I T T T T T T T T T T T 1
o1 2 3 4 5 6 7 8 9 1 11 12
The following groups all have the same mean,
4.25: Group B:
Group A: 2,3,4,8
X X X X
Group B: 1, 2,4, 10
Group C' 0’ 1’ 5’ 11 I T T T T T T T T T T T 1
These data are shown graphically in Figure 012345 67 8 90
3.1.
Group C:
It is clear that Group B is more variable
(shows a larger spread in the numbers) than X X X X
Group A, and Group C is more variable than
Group B. But we need a quantitative measure r—T T T T T T T T T T T
o1 2 3 4 5 6 7 8 9 10 11 12

of this variability.

Figure 3.1: Comparison of Groups
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(a) Sample Range

One simple measure of variability is the sample range, the difference between the
smallest item and the largest item in each sample. For Group A the sample range is 6,
for Group B it is 9, and for Group C it is 11. For small samples all of the same size,
the sample range is a useful quantity. However, it is not a good indicator if the
sample size varies, because the sample range tends to increase with increasing
sample size. Its other major drawback is that it depends on only two items in each
sample, the smallest and the largest, so it does not make use of all the data. This
disadvantage becomes more serious as the sample size increases. Because of its
simplicity, the sample range is used frequently in quality control when the sample
size is constant; simplicity is particularly desirable in this case so that people do not
need much education to apply the test.

(b) Interquartile Range

The interquartile range is the difference between the upper quartile and the lower
quartile, which will be described in section 3.3. It is used fairly frequently as a
measure of variability, particularly in the Box Plot, which will be described in the
next chapter. It is used less than some alternatives because it is not related to any of
the important theoretical distributions.

(¢) Mean Deviation from the Mean

N
The mean deviation from the mean, defined as Z(xi —X)/N, where

i=1
X= Zx,. /' N | is useless because it is always zero. This follows from the

discussion of the sum of deviations from the mean in section 3.1 (a).

(d) Mean Absolute Deviation from the Mean

However, the mean absolute deviation from the mean,

N
defined as 2|x1~ _37|/N
i=1
is used frequently by engineers to show the variability of their data, although it is
usually not the best choice. Its advantage is that it is simpler to calculate than the
main alternative, the standard deviation, which will be discussed below. For Groups
A, B, and C the mean absolute deviation is as follows:
Group A: (2.25 + 1.25 + 0.25 + 3.75)/4 = 7.5/4 = 1.875.
Group B: (3.25 + 2.25 + 0.25 + 5.75)/4 = 11.5/4 = 2.875.
Group C: (4.25 + 3.25 + 0.75 + 6.75)/4 = 15/4 = 3.75.
Its disadvantage is that it is not simply related to the parameters of theoretical
distributions. For that reason its routine use is not recommended.
(e) Variance

The variance is one of the most important descriptions of variability for engineers. It
is defined as
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ul 2

2 (x—n)
s 5 (3.6)

N

In words it is the mean of the squares of the deviations of each measurement from the
mean of the population. Since squares of both positive and negative real numbers are
always positive, the variance is always positive. The symbol p stands for the mean of
the entire population, and 6 stands for the variance of the population. (Remember
that in Chapter 1 we defined the population as a particular characteristic of all the
items in which we are interested, such as the diameters of all the bolts produced
under normal operating conditions.) Notice that variance is defined in terms of the
population mean, .. When we calculate the results from a sample (i.e., a part of the
population) we do not usually know the population mean, so we must find a way to
use the sample mean, which we can calculate. Notice also that the variance has units
of the quantity squared, for example m?or s? if the original quantity was measured in
meters or seconds, respectively. We will find later that the variance is an important
parameter in probability distributions used widely in practice.

(f) Standard Deviation

The standard deviation is extremely important. It is defined as the square root of the
variance:

3.7

Thus, it has the same units as the original data and is a representative of the devia-
tions from the mean. Because of the squaring, it gives more weight to larger
deviations than to smaller ones. Since the variance is the mean square of the devia-
tions from the population mean, the standard deviation is the root-mean-square
deviation from the population mean. Root-mean-square quantities are also important
in describing the alternating current of electricity. An analogy can be drawn between
the standard deviation and the radius of gyration encountered in applied mechanics.

(g) Estimation of Variance and Standard Deviation from a Sample

The definitions of equations 3.6 and 3.7 can be applied directly if we have data for
the complete population. But usually we have data for only a sample taken from the
population. We want to infer from the data for the sample the parameters for the
population. It can be shown that the sample mean, x, is an unbiased estimate of the
population mean, L. This means that if very large random samples were taken from
the population, the sample mean would be a good approximation of the population
mean, with no systematic error but with a random error which tends to become
smaller as the sample size increases.
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However, if we simply substitute x for 1 in equations 3.6 and 3.7, there will be a
systematic error or bias. This procedure would underestimate the variance and
standard deviation of the population. This is because the sum of squares of deviations
from the sample mean, X, is smaller than the sum of squares of deviations from any
other constant value, including | X is an unbiased estimate of L, but in general
X # L, so just substituting x for 1 in equations 3.6 and 3.7 would tend to give
estimates of variance and standard deviation that are too small. To illustrate this,
consider the four numbers 11, 13, 10, and 14 as a sample. Their sample mean is 12.
They might well come from a population of mean 13. Then the sum of squares of

deviations from the population mean, D (x; —1) = (11 =132+ (13 - 132+ (10 -
13)24 (14 — 13)2 = 224+ 0+ 324+ 12 = 14, whereas Y (x,-%) = (11 — 127+ (13 -

i 2
Z(xi -X)
122+ (10 - 12>+ (14 - 12)* =12+ 124+ 2?+22=10.Thus, i would
underestimate the variance. N

The estimate of variance obtained using the sample mean in place of the population

mean can be made unbiased by multiplying by the factor . This is called

N-1
Bessel’s correction. The estimate of 62 is given the symbol s* and is called the
variance estimated from a sample, or more briefly the sample variance. Sometimes
this estimate will be high, sometimes it will be low, but in the long run it will show
no bias if samples are taken randomly. The result of Bessel’s correction is that we
have
N
D (x-% )2
i=1

2 _ (3.8)

N-1

The standard deviation is always the square root of the corresponding variance,
so s is called the sample standard deviation. 1t is the estimate from a sample of the
standard deviation of the population from which the sample came. The sample
standard deviation is given by

(3.9

Equations 3.8 and 3.9 (or their equivalents) should be used to calculate the
variance and standard deviation from a sample unless the population mean is known.
If the population mean is known, as when we know all the members of the popula-
tion, we should use equations 3.6 and 3.7 directly. Notice that when N is very large,
Bessel’s correction becomes approximately 1, so then it might be neglected. How-
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ever, to avoid error we should always use equations 3.8 and 3.9 (or their equivalents)
unless the population mean is known accurately.

(h) Method for Faster Calculation

A modification of equations 3.6 to 3.9 makes calculation of variance and standard
deviation faster. In most cases in this book we have omitted derivations, but this case
is an exception because the algebra is simple and may be helpful.

Equations 3.8 and 3.9 include the expression

2 x —x Zx —2x2x + Nx*
in
N

But by definition X =

Then we have

Zx—x Zx_(Z) (Zx)
Z (Zx)

(3.10)

Notice that inz means we should square all the x’s and then add them up. On the
other hand, (z X )2 means we should add up all the x’s and square the result. They
are not the same.

An alternative to equation 3.10 is

S -x)=Yx" - (3.10a)

Then we have

N i‘xl N
2 ZX ~N(x) (3.11)

Nl N-1

It is often convenient to use equation 3.11 in the form for frequencies:

SN —((zzfﬁle)) (21) (3.12)
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N
2
Equations 3.6 and 3.7 include Z(x,- —H) , where for a complete population
i=1
1 N
n= NZX,' . Then similar expressions to equations 3.10 to 3.12 (but dividing by N
i=1
instead of (N — 1)) apply for cases where the complete population is known.

The modified equations such as equation 3.11 or 3.12 should be used for calcula-
tion of variance (and the square root of one of them should be used for calculation of
standard deviation) by hand or using a good pocket calculator because it involves
fewer arithmetic operations and so is faster. However, some thought is required if a
digital computer is used. That is because some computers carry relatively few

N
2
significant figures in the calculation. Since in equation 3.11 the quantities zxi and

i=1

N 2

in —\2 .. . . . .
[ i=1 ] or N (x) are of similar magnitudes, the differences in equation 3.11 may

N

involve catastrophic loss of significance because of rounding of figures in the compu-
tation. Most present-day computers and calculators, however, carry enough
significant figures so that this “loss of significance” is not usually a serious problem,
but the possibility of such a difficulty should be considered. It can often be avoided
by subtracting a constant quantity from each number, an operation which does not
change the variance or standard deviation. For example, the variance of 3617.8,
3629.6, and 3624.9 is exactly the same as the variance of 17.8, 29.6, and 24.9.
However, the number of figures in the squared terms is much smaller in the second
case, so the possibility of loss of significance is greatly reduced. Then in general,
fewer figures are required to calculate variance by subtracting the mean from each of
the values, then squaring, adding, and dividing by the number of items (i.e., using
equation 3.8 directly), but this adds to the number of arithmetic operations and so
requires more time for calculations. If the calculating device carries enough signifi-
cant figures to allow 3.11 or 3.12 to be used, that is the preferred method.

Microsoft Excel carries a precision of about 15 decimal digits in each numerical
quantity. Statistical calculations seldom require greater precision in any final answer
than four or five decimal digits, so “loss of significance” is very seldom a problem if
Excel is being used. A comparison to verify that statement in a particular case will be
included in Example 4.4.

(i) Illustration of Calculation

Now let us return to an example of calculations using the groups of numbers listed at
the beginning of section 3.2.

Example 3.1
The numbers were as follows:

49



Chapter 3

Group A: 2,3,4,8
Group B: 1,2,4, 10
Group C: 0,1,5, 11

Find the sample variance and the sample standard deviation of each group of num-
bers. Use both equation 3.8 and equation 3.11 to check that they give the same result.

Answer: Since the mean of Group A (and also of the other groups) is 4.25, the
sample variance of Group A using the basic definition, equation 3.8, is

[(2-4.2572+ (3 -4.25)+ (4 -4.25)*+(8-4.25)?2]1/(4-1)
=[5.0625 + 1.5625 + 0.0625 + 14.0625] /3 =20.75/3=6.917,
so the sample standard deviation is J6.917 =2.630.
The variance of Group A calculated by equation 3.11 is

[22+ 32+ 42+ 82— (4)(4.25)]/ (4-1)=[4+9+ 16 + 64 —72.25] /3 =6917
(again). We can see that the advantage of equation 3.11 is greater when the mean is
not a simple integer.

Using equation 3.11 on Group B gives
[12+ 22+ 4+ 10°— (4)(4.250]/ 4-1)=[1+4+ 16+ 100-72.25] / 3=48.75/3 =16.25
for the sample variance, so the sample standard deviation is 4.031.

Using equation 3.11 on Group C gives
[P+ 1P+ 52+ 112— (4)(4.25)]/ (4-1)=[0+ 1 +25+ 121 -72.25]/3="74.75/3 =24917
for the variance, so the standard deviation is 4.992.

(j) Coefficient of Variation

A dimensionless quantity, the coefficient of variation is the ratio between the stan-
dard deviation and the mean for the same set of data, expressed as a percentage. This
can be either (6 / 1) or (s /x ), whichever is appropriate, multiplied by 100%.

(k) Illustration: An Anecdote

A brief story may help the reader to see why variability is often important. Some
years ago a company was producing nickel powder, which varied considerably in
particle size. A metallurgical engineer in technical sales was given the task of devel-
oping new customers in the alloy steel industry for the powder. Some potential
buyers said they would pay a premium price for a product that was more closely
sized. After some discussion with the management of the plant, specifications for
three new products were developed: fine powder, medium powder, and coarse pow-
der. An order was obtained for fine powder. Although the specifications for this fine
powder were within the size range of powder which had been produced in the past,
the engineers in the plant found that very little of the powder produced at their best
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guess of the optimum conditions would satisfy the specifications. Thus, the mean
size of the specification was satisfactory, but the specified variability was not
satisfactory from the point of view of production. To make production of fine powder
more practical, it was necessary to change the specifications for “fine powder” to
correspond to a larger standard deviation. When this was done, the plant could
produce fine powder much more easily (but the customer was not willing to pay such
a large premium for it!).

3.3 Quartiles, Deciles, Percentiles, and Quantiles

Quartiles, deciles, and percentiles divide a frequency distribution into a number of
parts containing equal frequencies. The items are first put into order of increasing
magnitude. Quartiles divide the range of values into four parts, each containing one
quarter of the values. Again, if an item comes exactly on a dividing line, half of it is
counted in the group above and half is counted below. Similarly, deciles divide into
ten parts, each containing one tenth of the total frequency, and percentiles divide into
a hundred parts, each containing one hundredth of the total frequency. If we think
again about the median, it is the second or middle quartile, the fifth decile, and the
fiftieth percentile. If a quartile, decile, or percentile falls between two items in order
of size, for our purposes the value halfway between the two items will be used. Other
conventions are also common, but the effect of different choices is usually not
important. Remember that we are dealing with a quantity which varies randomly, so
another sample would likely show a different quartile or decile or percentile.

For example, if the items after being put in order are 1, 2,2, 3,5,6,6,7, 8, a
total of nine items, the first or lower quartile is (2 + 2)/2 = 2, the median is 5, and the
upper or third quartile is (6 + 7)/2 = 6.5.

Example 3.2

To start a program to improve the quality of production in a factory, all the products
coming off a production line, under what we have reason to believe are normal
operating conditions, are examined and classified as “good” products or “defective”
products. The number of defective products in each successive group of six is
counted. The results for 60 groups, so for 360 products, are shown in Table 3.1. Find
the mean, median, mode, first quartile, third quartile, eighth decile, ninth decile,
proportion defective in the sample, first estimate of probability that an item will be
defective, sample variance, sample standard deviation, and coefficient of variation.

Table 3.1: Numbers of Defectives in Groups of Six Items
1 0 0 O 0 0 0 O 0 0

- o O O
SN = = O
SO NN OO

0 0
0 0
0 0
0 0

- o O O

0 0
0 0
0 1
0 0

- o O O

1
0
1
0

S O OO

0
1
0
0
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Answer: The data in Table 3.1 can be summarized in terms of frequencies. If x;
represents the number of defectives in a group of six products and f; represents the
frequency of that occurrence, Table 3.2 is a summary of Table 3.1.

Table 3.2: Frequencies for Numbers of Defectives

Number of defectives, x; Frequency, f;
0 48
1 10
2 2
>2 0

Then the mean number of defectives in a group of six products is
(48)(0)+(10)(1)+(2)(2) _ 14
=—=0.233
48+10+2
Notice that the mean is not necessarily a possible member of the set: in this case the
mean is a fraction, whereas each number of defectives must be a whole number.

Among a total of 60 products, the median is the value between the 30th and 31st
products in order of increasing magnitude, so (0 + 0) /2 =0.

The mode is the most frequent value, so 0.

The lower or first quartile is the value between the 15th and 16th products in
order of size, thus between 0 and 0, so 0. The upper or third quartile is the value
between the 45th and 46th products in order of size, thus between 0 and 0, so again
0. The eighth decile is the value larger than the 48th item and smaller than the 49th
item, so between 0 and 1, or 0.5. The ninth decile is the value between the 54th and
the 55th products, so between 1 and 1, so 1.

We have 14 defective products in a sample of 360 items, so the proportion
defective in this sample is 14 / 360 = 0.0389 or 0.039. As we have seen from section
2.1, proportion or relative frequency gives an estimate of probability. Then we can
estimate the probability that an item, chosen randomly from the population from
which the sample came, will be defective. For this sample that first estimate of the
probability that a randomly chosen item in the population will be defective is 0.039.
This estimate is not very precise, but it would get better if the size of the sample were
increased.

Now let us calculate the sample variance and standard deviation using equation 3.12:
2 fx? = (48)(0)*+ (10)(1)*+ (2)(2)* = 18
2 fxi = (48)(0) + (10)(1) + ()(2) = 14
2fi=48+10+2=60

g () ()

Then from equation 3.12, s> = )

Xr-1)
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18-((14)'/60)

which gives s* = =0.2497,
60-1
so s = 0.4997 or 0.500.
s 0.4997
The coefficient of variation is | = (100%) = (100%) =214%.
X 0.2333

The general term for a parameter which divides a frequency distribution into parts
containing stated proportions of a distribution is a quantile. The symbol Q(f) is used
for the quantile, which is larger than a fraction f of a distribution. Then a lower
quartile is Q(0.25) or Q(1/4), and an upper quartile is Q(0.75).

In fact, if items are sorted in order of increasing magnitude, from the smallest to
the largest, each item can be considered some sort of quantile, on a dividing line so
that half of the item is above the line and half below. Then the ith item of a total of n

i—0.5
items is a quantile larger than (i — 0.5) items of the n, so the (T] quantile or
i—0.5
Q(

of each one as being exactly on a dividing line, so half above and half below the line.
Then the second item, 4, is larger than one-and-a half items of the seven, so we can

. Say the sorted items are 1, 4, 5, 6, 7, 8, 9, a total of seven items. Think

L.5
call it the e quantile or Q(0.21). Similarly, 5 is larger than two-and-a-half items of
the seven, so it is the 7 quantile or Q(0.36). For purposes of illustration we are

using small sets of numbers, but quantiles are useful in practice principally to charac-
terize large sets of data.

Since proportion from a set of data gives an estimate of the corresponding
i—0.5

probability, the quantile @ gives an estimate of the probability that a

variable is smaller than the ith item in order of increasing magnitude. If an item is
repeated, we have two separate estimates of this probability.

We can also use the general relation to find various quantiles. If we have a total
i—0.5
of n items, then Q(T) will be given by the ith item, even if i is not an integer.

1
Consider again the seven items which are 1,4,5,6,7,8,9. The median, 0 (—], would

2
i-05 1 . 1 . .
=580 i= (7) > +0.5=4: that is, the fourth item,
which is 6. That agrees with the definition given in section 3.1. Now, what is the first
or lower quartile? This would be a value larger than one quarter of the items, or
i-05_1 . 1 . . .
S =es0is (7) " +0.5=2.25. Since this is a fraction, the

be the item for which

0(0.25). Then

53



Chapter 3

first quartile would be between the second and third items in order of magnitude, so

between 4 and 5. Then by our convention we would take the first quartile as 4.5.

705 _3 575 and th
7 4> =575, and the

third quartile is between the 5th and 6th items in order of magnitude (7 and 8) and so
is takenas (7+8)/2="7.5.

Similarly, for the third quartile, Q(0.75), so we have

Example 3.3

Consider the sample consisting of the following nine results :
2.3,72,3.7,4.6,5.0,7.0,3.7,4.9, 4.2.

a) Find the median of this set of results by two different methods.

b) Find the lower quartile.

¢) Find the upper quartile.

d) Estimate the probability that an item, from the population from which this
sample came, would be less than 4.9.

e) Estimate the probability that an item from that population would be less than 3.7.

Answer: The first step is to sort the data in order of increasing magnitude, giving

the following table:

i 1 2 3 4 5 6 7 8 9
x(7) 2.3 3.7 3.7 4.2 4.6 4.9 5 7 7.2

a) The basic definition of the median as the middle item after sorting in order of
i—05

increasing magnitude gives x(5) = 4.6. Putting

(9)(0.5) + 0.5 = 5, so again the median is x(5) = 4.6.

=0.5givesi =

9
i =(9)(0.25) + 0.5 = 2.75. Since this is a fraction, the lower quartile is

x(2)+x(3) 37+37
2 2
¢) The upper quartile is obtained by putting

b) The lower quartile is obtained by putting = 0.25, which gives

3.7.

=0.75, which gives i =

(9)(0.75) + 0.5 = 7.25. Since this is again a fraction, the upper quartile is

x(7)+x(8) 5+7
2 2

d) Probabilities of values smaller than the various items can be estimated as the
corresponding fractions. 4.9 is the 6th item of the 9 items in order of increasing

6.

magnitude, and = 0.61. Then the probability that an item, from the

population from which this sample came, would be less than 4.9 is estimated to
be 0.61.
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e) 3.7 is the item of order both 2 and 3, so we have two estimates of the probability

that an item from the same population would be less than 3.7. These are

——~ or0.17 and 0.28.

9

and

3.4 Using a Computer to Calculate Summary Numbers

A personal computer, either a PC or a Mac, is very frequently used with a spreadsheet
to calculate the summary numbers we have been discussing. One of the spreadsheets
used most frequently by engineers is Microsoft® Excel, which includes a good
number of statistical functions. Excel will be used in the computer methods dis-
cussed in this book.

Using a computer can certainly reduce the labor of characterizing a large set of
data. In this section we will illustrate using a computer to calculate useful summary
numbers from sets of data which might come from engineering experiments or
measurements. The instructions will assume the reader is already reasonably familiar
with Microsoft Excel; if not, he or she should refer to a reference book on Excel; a
number are available at most bookstores. Some of the main techniques useful in
statistical calculations and recommended for use during the learning process are
discussed briefly in Appendix B. Calculations involving formulas, functions, sorting,
and summing are among the computer techniques most useful during both the
learning process and subsequent applications, so they and simple techniques for
producing graphs are discussed in that appendix. Furthermore, in Appendix C there is
a brief listing of methods which are useful in practice for Excel once the concepts are
thoroughly understood, but they should not be used during the learning process.

The Help feature on Excel is very useful and convenient. Access to it can be
obtained in various ways, depending on the version of Excel which is being used.
There is usually a Help menu, and sometimes there is a Help tool (marked by an
arrow and a question mark, or just a question mark).

Further discussion and examples of the use of computers in statistical calcula-
tions will be found in section 4.5, Chapter 4. Some probability functions which can
be evaluated using Excel will be discussed in later chapters.

Example 3.4

The numbers given at the beginning of section 3.2 were as follows:
Group A: 2,3,4,8
Group B: 1,2,4, 10
Group C: 0,1,5,11
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Find the sample variance and the sample standard deviation of each group of numbers.
Use both equation 3.8 and equation 3.11 to check that they give the same result. This

example is mostly the same as Example 3.1, but now it will be done using Excel.

Answer:
Table 3.3: Excel Worksheet for Example 3.4
A B C D E

1 Group A Group B Group C
2 | Entries 2 1 0
3 3 2 1
4 4 4 5
5 8 10 11
6 |Sum 17 17 17
7 | Arith. Mean C6/4=, etc. 4.25 4.25 4.25
8 | Deviations C2-$C$7=, etc. -2.25 -3.25 —4.25
9 C3-$C$7=, etc. -1.25 -2.25 -3.25
10 C4-$C$7=, etc. -0.25 -0.25 0.75
11 C5-$C$7=, etc. 3.75 5.75 6.75
12

13 | Deviations Sqd C8"2=,etc 5.0625 10.5625 18.0625
14 1.5625 5.0625 10.5625
15 0.0625 0.0625 0.5625
16 14.0625 33.0625 45.5625
17 | Sum Devn Sqd Sums 20.75 48.75 74.75
18 | Variance C17/3=, etc. 6.917 16.25 24.92
19

20 | Entries Sqd C2/2=, etc. 4 1 0
21 9 4 1
22 16 16 25
23 64 100 121
24 | Sum Entries Sqd | Sums 93 121 147
25 | Correction 4*CTN2=, etc. 72.25 72.25 72.25
26 | Corrected Sum C24-C25=, etc. 20.75 48.75 74.75
27 | Variance C26/3=, etc. 6.917 16.25 24.92
28 | Std Dev, s SQRT(C27)=, etc. 2.630 4.031 4.992
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The worksheet is shown in Table 3.3. The letters A, B, C, etc. across the top are
the column references, and the numbers 1, 2, 3, etc. on the left-hand side are the row
references. The headings for Groups A, B, and C were placed in columns C, D, and E
of row 1. Names of quantities were placed in column A. Statements of formulas are
given in column B. The individual entries or values were placed in cells C2:ES5, that
is, rows 2 to 5 of columns C to E. Cell C6 was selected, and the AutoSum tool (see
section (d) of Appendix B) was used to find the sum of the entries in Group A. The
sums of the entries in the other two groups were found similarly. Note that the
AutoSum tool may not choose the right set of cells to be summed in cell E6. Cell C7
was selected, and the formula =C6/4 was typed into it and entered, giving the result
4.25. Then the formula in cell C7 was copied, then pasted into cell D7 (to appear as
=D6/4 because relative references were used) and entered; the same content was

pasted into cell E7 as =E7/4 and entered. Again both results were 4.25.
N

2 (x—x )2
According to equation 3.8 the sample variance is given by s* =-=! N1

Deviations from the arithmetic means were calculated in rows 8 to 11. Cell C8 was
selected, and the formula =C2-$C$7 was typed into it and entered, giving the result
—2.25. Notice that now, although the reference C2 is relative, the reference $C$7 is
absolute. Then when the formula in cell C8 was copied, then pasted into cell C9, the
formula became = C3 — $C$7; the formula was entered, giving the result —1.25.
Pasting the formula into cells C10 and C11 and entering gave the results —0.25 and
(+)3.75. Similarly, the formula = D2 — $D$7 was entered in cell D8 and copied to
cells D9, D10, D11 and entered in each case. A similar formula was entered in cell
ES8, copied separately to cells E9, E10, E11, and entered in each.

Deviations were squared in rows 13 to 16. The formula = C872 in cell C13 was
copied to cells D13 and E13, and similar operations were carried out in cells
C14:E14, C15:E15, and C16:E16. Deviations were summed using the AutoSum tool
in cells C17:E17, but we have to be careful again with the sum in cell E17. Then
variances are the quantities in cells C17:E17 divided in each case by 4 — 1 = 3.
Therefore the formula C17/3 was entered in cell C18, then copied to cell D18 and
modified to D17/3 before being entered, and similarly for cell E18. As the quantities
in cells C18:E18 were answers to specific questions, they were put in bold type by
choosing the Bold tool (marked with B) on the standard tool bar. Furthermore, they
were put in a format with three decimal places by choosing the Format menu, the
Number format, Number, then writing in the code 0.000 before choosing OK or
Return. This gave the answers according to equation 3.8.

According to equation 3.11 the sample variance is given by §* =-=
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Squares of entries were placed in cells C20:E23 by entering =C22 in cell C20,
copying, then pasting in cells D20 and E20, and repeating with modifications in
C21:E21, C22:E22, and C23:E23. The squares of entries were summed using the
AutoSum tool in cells C24, D24, and E24. Four times the squares of the arithmetic
means, 4*C772, 4*D7/2, and 4*E7/2, were entered in cells C25, D25, and E25
respectively. These quantities were subtracted from the sums of squares of entries by
entering =C24-C25 in cell C26, and corresponding quantities in cells D26 and E26.
Then values of variance according to equation 3.11 were found in cells C27, D27,
and E27. These also were put in bold type and formatted for three decimal places.
Finally, standard deviations were found in cells C28, D28, and E28 by taking the
square roots of the variances in cells C27, D27, and E27. As answers, these also were
put in bold type and formatted for three decimals.

The results verify that equations 3.8 and 3.11 give the same results, but equation
3.11 generally involves fewer arithmetic operations.

Using Excel on a computer can save a good deal of time if the data set is large,
but if as here the data set is small, hand calculations are probably quicker. Results of
experimental studies often give very big data sets, so computer calculations are very
often advantageous.

Example 3.5

To start a program to improve the quality of production in a factory, all the items
coming off a production line, under what we have reason to believe are normal
operating conditions, are examined and classified as “good” items or “defective”
items. The number of defective items in each successive group of six is counted. The
results for 60 groups, 360 items, are shown in Table 3.4. Find the mean, median,
mode, first quartile, third quartile, eighth decile, ninth decile, proportion defective in
the sample, first estimate of probability that an item will be defective, sample vari-
ance, sample standard deviation, and coefficient of variation.

Table 3.4: Numbers of Defectives in Groups of Six Items

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 2 0 0
0 0 0 0 2 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 0

This is the same as Example 3.2, but now we will use Excel.

Answer: The data of Table 3.4 were entered in column A of an Excel work sheet;
extracts are shown in Table 3.5. These data were copied to column B, then sorted in
ascending order as described in section (c) of Appendix B. The order numbers were
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obtained in column C using the AutoFill feature with the fill handle, as also de-

scribed in that section of Appendix B. Rows 3 to 62 show part of the discrete data of

Example 3.2 after sorting and numbering on Microsoft Excel.

(7 B N S R

50
51
52

60
61
62

64
65
66

67
68
69
70
71
72
73
74
75

Table 3.5: Extracts of Work Sheet for Example 3.5

A B C D E
Numbers of Defective Items
Unsorted Sorted Order No.
1 0 1
0 0 2
0 0 3
1 0 47
0 0 48
1 1 49
0 1 50
0 1 58
0 2 59
0 2 60
Number Frequency
xi fi xi*fi xi2*fi
A6T*B67=, etc. | A67"2*B67=,
etc.
0 48 0 0
1 10 10 10
2 2 4 8
Total=SUM 60 14 18
xbar= C70/B70= 0.233
sN2= (D70-(C7072/B70))/(B70-1)= 0.250
s= SQRT(E73)= 0.500
Coeff. of var.= | E74/E72= 214 %
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With the sorted data in column B of Table 3.7 and the order numbers in column
C, it is easy to pick off the frequencies of various numbers of defectives. Thus, the
number of groups containing zero defectives is 48, the number containing one
defective is 58 — 48 = 10, and the number containing two defectives is 60 — 58 = 2.
The resulting numbers of defectives and the frequency of each were marked in cells
A64:B69. The mode is the number of defectives with the largest frequency, so it is 0
in this example. Products x;*f; and x*f; were found in cells C65:D69. The formulas
were entered in the form for relative references in cells C67 and D67, so copying
them one and two lines below gave appropriate products. Then the Autosum tool
(marked X) on the standard toolbar was used to sum the columns for each of f;, xf,,
and x7f; and enter the results in row 70. The sum of the calculated frequencies should
check with the total number of groups, which is 60 in this case. Then from

equation 3.2, x = M = E =0.233 in cell E72. From equation 3.12,

Y f 60

2
o2t () 1S _18-(14) /60
Y fi-1 60—1
standard deviation, s, is found in cell E74, with a result of 0.500. The coefficient of
variation is given in cell E75 as 214%. Of course, all quantities must be clearly
labeled on the spreadsheet. Labels are shown in rows 1, 2, 64, 65, 70, and 72 to 75,
and explanations are given in rows 66 and 72 to 75.

=0.250 in cell E73, and the sample

Problems

1. The same dimension was measured on each of six successive parts as they came
off a production line. The results were 21.14 mm, 21.87 mm, 21.53 mm, 21.37
mm, 21.61 mm and 21.93 mm. Calculate the mean and median.

2. For the measurements given in problem 1 above, find the variance, standard
deviation, and coefficient of variation
a) considering this set of values as a complete population, and
b) considering this set of values as a sample of all possible measurements of
this dimension.

3. Four items in a sequence were measured as 50, 160, 100, and 400 mm. Find their
arithmetic mean, geometric mean, and median.

4. The temperature in a chemical reactor was measured every half hour under the
same conditions. The results were 78.1°C, 79.2°C, 78.9°C, 80.2°C, 78.3°C,
78.8°C, 79.4°C. Calculate the mean, median, lower quartile, and upper quartile.

5. For the temperatures of problem 4, calculate the variance, standard deviation, and
coefficient of variation
a) considering this set of values as a complete population, and
b) considering this set of values as a sample of all possible measurements of the
temperature under these conditions.
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The times to perform a particular step in a production process were measured
repeatedly. The times were 20.3 s, 19.2's,21.5s5,20.7s,22.15,19.95s,21.2 s,
20.6 s. Calculate the arithmetic mean, geometric mean, median, lower quartile,
and upper quartile.

For the times of problem 6, calculate the variance, standard deviation, and

coefficient of variation

a) considering this set of values as a complete population, and

b) considering this set of values as a sample of all possible measurements of the
times for this step in the process.

The numbers of defective items in successive groups of fifteen items were
counted as they came off a production line. The results can be summarized as
follows:

No. of Defectives Frequency
0 57
1 57
2 18
3 5
4 3
>4 0

a) Calculate the mean number of defectives in a group of fifteen items.

b) Calculate the variance and standard deviation of the number of defectives in
a group. Take the given data as a sample.

¢) Find the median, lower quartile, upper quartile, ninth decile, and 95th
percentile.

d) On the basis of these data estimate the probability that the next item pro-
duced will be defective.

Electrical components were examined as they came off a production line. The
number of defective items in each group of eighteen components was recorded.
The results can be summarized as follows:

No. of Defectives Frequency
0 94
1 52
2 19
3 3
>3 0

a) Calculate the mean number of defectives in a group of 18 components.

b) Taking the given data as a sample, calculate the variance and standard
deviation of the number of defectives in a group.

¢) Find the median, lower quartile, upper quartile, and 95th percentile.

e) On the basis of these data, estimate the probability that the next component
produced will be defective.
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Computer Problems
Use MS Excel in solving the following problems:

C10. The numbers of defective items in successive groups of fifteen items were
counted as they came off a production line. The results can be summarized as follows:

No. of Defectives Frequency
0 57
1 57
2 18
3 5
4 3
>4 0

a) Calculate the mean number of defectives in a group of fifteen items.

b) Calculate the variance and standard deviation of the number of defectives in
a group. Take the given data as a sample.

¢) Find the median, lower quartile, upper quartile, ninth decile, and 95th
percentile.

d) On the basis of these data estimate the probability that the next item pro-
duced will be defective.

This is the same as Problem 8, but now it is to be solved using Excel.
C11. Electrical components were examined as they came off a production line. The

number of defective items in each group of eighteen components was recorded. The
results can be summarized as follows:

No. of Defectives Frequency
0 94
1 52
2 19
3 3
>3 0

a) Calculate the mean number of defectives in a group of 18 components.

b) Taking the given data as a sample, calculate the variance and standard
deviation of the number of defectives in a group.

¢) Find the median, lower quartile, upper quartile, and 95th percentile.

e) On the basis of these data, estimate the probability that the next component
produced will be defective.

This is the same as Problem 9, but now it is to be solved using Excel.

62



CHAPTER 4

Grouped Frequencies and
Graphical Descriptions

Prerequisite: A good knowledge of algebra.

Like Chapter 3, this chapter considers some aspects of descriptive statistics. In this
chapter we will be concerned with stem-and-leaf displays, box plots, graphs for
simple sets of discrete data, grouped frequency distributions, and histograms and
cumulative distribution diagrams.

4.1 Stem-and-Leaf Displays

These simple displays are particularly suitable for exploratory analysis of fairly small
sets of data. The basic ideas will be developed with an example.

Example 4.1

Data have been obtained on the lives of batteries of a particular type in an industrial app-
lication. Table 4.1 shows the lives of 36 batteries recorded to the nearest tenth of a year.

Table 4.1: Battery Lives, years

4.1 5.2 2.8 4.9 5.6 4.0 4.1 4.3 54
4.5 6.1 3.7 23 4.5 4.9 5.6 4.3 39
32 5.0 4.8 3.7 4.6 5.5 1.8 5.1 4.2
6.3 33 5.8 4.4 4.8 3.0 4.3 4.7 5.1

For these data we choose “‘stems” which are the main magnitudes. In this case the
digit before the decimal point is a reasonable choice: 1,2,3,4,5,6. Now we go through the
data and put each “leaf,” in this case the digit after the decimal point, on its corresponding
stem. The decimal point is not usually shown. The result can be seen in Table 4.2. The
number of stems on each leaf can be counted and shown under the heading of Frequency.

Table 4.2: Stem-and-Leaf Display

Stem Leaf Frequency
1 8 1
2 83 2
3 792730 6
4 1901355938624837 16
5 264605181 9
6 13 2
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From the list of leaves on each stem we have an immediate visual indication of
the relative numbers. We can see whether or not the distribution is approximately
symmetrical, and we may get a preliminary indication of whether any particular
theoretical distribution may fit the data. We will see some theoretical distributions
later in this book, and we will find that some of the distributions we encounter in this
chapter can be represented well by theoretical distributions.

We may want to sort the leaves on each stem in order of magnitude to give more
detail and facilitate finding parameters which depend on the order. The result of
sorting by magnitude is shown in Table 4.3.

Table 4.3: Sorted Stem-and-Leaf Display

Stem Leaf Frequency
1 8 1
2 38 2
3 023779 6
4 0112333455678899 16
5 011245668 9
6 13 2

Another possibility is to double the number of stems (or multiply them further),
especially if the number of data is large in relation to the initial number of stems.
Stem “a” might have leaves from O to 4, and stem “b” might have leaves from 5 to 9.
The result without sorting is shown in Table 4.4.

Table 4.4: Stem-and-Leaf Plot with Double Leaf

Stem Leaf Frequency
1b 8 1
2a 3 1
2b 8 1
3a 230 3
3b 797 3
4a 10133243 8
4b 95598687 8
Sa 24011 5
5b 6658 4
6a 13 2

Of course, we might both double the number of stems and sort the leaves on each
stem. In other cases it might be more appropriate to show two significant figures on
each leaf, with appropriate separation between leaves. There are many possible
variations.
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4.2 Box Plots

A box plot, or box-and-whisker plot, is a graphical device for displaying certain
characteristics of a frequency distribution. A narrow box extends from the lower
quartile to the upper quartile. Thus the length of the box represents the interquartile
range, a measure of variability. The median is marked by a line extending across the
box. The smallest value in the distribution and the largest value are marked, and each
is joined to the box by a straight line, the whisker. Thus, the whiskers represent the

full range of the data.
Figure 4.1 is a box plot for the data of Table 4.1 on the life of batteries under

industrial conditions. The labels, “smallest”, “largest”, “median”, and “quartiles”, are
usually omitted.

Median
Smallest | Largest

' P

\

Quartiles

T
0 2 4 6 8

Battery Life,years

Figure 4.1: Box Plot for Life of Battery

Box plots are particularly suitable for comparing sets of data, such as before and
after modifications were made in the production process. Figure 4.2 shows a com-
parison of the box plot of Figure 4.1 with a box plot for similar data under modified
production conditions, both for the same sample size. Although the median has not
changed very much, we can see that the sample range and the interquartile range for
modified conditions are considerably smaller.

Modified conditions

S g T
—4 [ §—

Initial conditions

T T T T 1
0 2 4 6 8

Battery Life,years

Figure 4.2: Comparison of Box Plots
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4.3 Frequency Graphs of Discrete Data

Example 3.2 concerned the number of defective items in successive samples of six
items each. The data were summarized in Table 3.2, which is reproduced below.

Table 3.2: Frequencies for Numbers of Defectives

Number of defectives, x; Frequency, f;
0 48
1 10
2 2
>2 0

These data can be shown graphically in a very simple form because they involve
discrete data, as opposed to continuous data, and only a few different values. The
variate is discrete in the sense that only certain values are possible: in this case the
number of defective items in a group of six must be an integer rather than a fraction.
The number of defective items in each group of this example is only O, 1, or 2. The
frequencies of these numbers are shown above. The corresponding frequency graph is
shown in Figure 4.3. The isolated spikes correspond to the discrete character of the
variate.

Number of Defectives in Six Items

50 -
Figure 4.3:
Distribution of Numbers of 40
Defectives in Groups of Six Items
& 30
C
(]
5
(on
E 20
10

0 I
0 1

N T8

No. of Defectives

If the number of different values is very large, it may be desirable to use the
grouped frequency approach, as discussed below for continuous data.

4.4 Continuous Data: Grouped Frequency

If the variate is continuous, any value at all in an appropriate range is possible.
Between any two possible values, there are an infinite number of other possible
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values, although measuring devices are not able to distinguish some of them from
one another. Measurements will be recorded to only a certain number of significant
figures. Even to this number of figures, there will usually be a large number of
possible values. If the number of possible values of the variate is large, too many
occur on a table or graph for easy comprehension. We can make the data easier to
comprehend by dividing the variate into intervals or classes and counting the fre-
quency of occurrence for each class. This is called the grouped frequency approach.

Thus, frequency grouping is used to make the distribution more easily under-
stood. The width of each class (the difference between its lower boundary and its
upper boundary) should be constant from one class to another (there are exceptions to
this statement, but we will omit them from this book). The number of classes should
be from seven to twenty, depending chiefly on the size of the population or sample
being represented. If the number of classes is too large, the result is too detailed and
it is hard to see an underlying pattern. If the number of classes is too small, there is
appreciable loss of information, and the pattern may be obscured. An empirical
relation which gives an approximate value of the appropriate number of classes is
Sturges’ Rule:

number of class intervals = 1 + 3.3 log,, N 4.1)
where N is the total number of observations in the sample or population.

The procedure is to start with the range, the difference between the largest and
the smallest items in the set of observations. Then the constant class width is given
approximately by dividing the range by the approximate number of class intervals
from equation 4.1. Round off the class width to a convenient number (remember that
there is nothing sacred or exact about Sturges’ Rule!).

The class boundaries must be clear with no gaps and no overlaps. For problems
in this book choose the class boundaries halfway between possible magnitudes. This
gives a definite and fair boundary. For example, if the observations are recorded to
one decimal place, the boundaries should end in five in the second decimal place. If
2.4 and 2.5 are possible observations, a class boundary might be chosen as 2.45. The
smallest class boundary should be chosen at a convenient value a little smaller than
the smallest item in the set of observations.

Each class midpoint is halfway between the corresponding class boundaries.

Then the number of items in each class should be tallied and shown as class
frequency in a table called a grouped frequency table. The relative frequency is the
class frequency divided by the total of all the class frequencies, which should agree
with the total number of items in the set of observations. The cumulative frequency is
the total of all class frequencies smaller than a class boundary. The class boundary
rather than class midpoint must be used for finding cumulative frequency because we
can see from the table how many items are smaller than a class boundary, but we
cannot know how many items are smaller than a class midpoint unless we go back to
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the original data. The relative cumulative frequency is the fraction (or percentage) of
the total number of items smaller than the corresponding upper class boundary.

Let us consider an example.

Example 4.2

The thickness of a particular metal part of an optical instrument was measured on
121 successive items as they came off a production line under what was believed to
be normal conditions. The results are shown in Table 4.5.

Table 4.5: Thicknesses of Metal Parts, mm

340 3.21 3.26 3.37 3.40 3.35 3.40 3.48 3.30 3.38 3.27
3.35 3.28 3.39 3.44 329 338 3.38 3.40 3.38 3.44 3.29
337 3.41 345 3.44 335 3.35 346 3.31 3.33 347 3.33
3.37 331 3.51 3.36 3.32 3.33 343 3.39 339 3.28 3.33
3.25 3.28 3.30 3.41 3.39 3.33 3.27 3.34 3.33 342 3.35
3.34 332 342 331 3.38 3.44 3.37 3.35 3.57 341 3.28
349 326 3.44 3.46 3.32 336 3.41 3.39 3.38 3.26 3.37
3.28 3.35 3.36 3.34 342 3.38 3.39 3.51 3.44 3.39 3.36
3.35 3.42 334 336 3.42 3.38 3.46 3.34 3.37 3.39 342
3.37 3.33 339 330 3.35 3.38 3.38 3.27 3.31 3.32 345
349 3.45 3.38 3.41 3.35 3.39 3.24 3.35 3.34 3.37 3.37

Thickness is a continuous variable, since any number at all in the appropriate
range is a possible value. The data in Table 4.5 are given to two decimal places, but it
would be possible to measure to greater or lesser precision. The number of possible
results is infinite. The mass of numbers in Table 4.5 is very difficult to comprehend.
Let us apply the methods of this section to this set of data.

407.59

121
3.3685 or 3.369 mm. (We will see later that the mean of a large group of numbers is
considerably more precise than the individual numbers, so quoting the mean to more
significant figures is justified.) Since the data constitute a sample of all the thick-
nesses of parts coming off the production line under the same conditions, this is a
sample mean, so X = 3.369 mm. Then the appropriate relation to calculate the
variance is equation 3.8:

Applying equation 3.1 to the numbers in Table 4.5 gives a mean of
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_ 1373.4471-(407.59) /121

2

’ 120
_ 1373.4471-1372.971968
120
_ 0475132 0.003959 mm’
120
and the sample standard deviation is +0.003959 = 0.0629 mm. The coefficient of
variation is (é )(100%): (0.0629/3.369)(100%) = 1.87%.
X

Note for Calculation: Avoiding Loss of Significance

Whenever calculations involve taking the difference of two quantities of
similar magnitude, we must remember to make sure that enough significant
figures are carried to give the desired accuracy in the result. In Example 4.2
above, the calculation of variance by equation 3.11 requires us to subtract
1372.971968 from 1373.4471, giving 0.475132. If the numbers being sub-
tracted had been rounded to four figures as 1373.0 from 1373.4, the
calculated result would have been 0.4. This would have been 16% in error.

To avoid such loss of significance, carry as many significant figures as
possible in intermediate results. Do not round the numbers to a reasonable
number of figures until a final result has been obtained. If a calculator is being
used, leave intermediate results in the memory of the calculator. Similarly, if a
spreadsheet is being used, do not reduce the number of figures, except perhaps
for purposes of displaying a reasonable number of figures in a final result.

If the calculating device being used does not provide enough significant
figures, it is often possible to reduce the number of required figures by sub-
tracting a constant value from each figure. For instance, in Example 4.2 we
could subtract 3 from each of the numbers in Table 4.5. This would not affect
the final variance or standard deviation, but it would make the largest number
0.57 instead of 3.57, giving a square of 0.3249 instead of 12.7449, so requiring
four figures instead of six at this point. The required number of figures in other
guantities would be reduced similarly. However, most modern computing
devices can easily retain enough figures so that this step is not required.

The median of the 121 numbers in Table 4.5 is the 61st number in order of magni-
tude. This is 3.37 mm. The fifth percentile is between the 6th and 7th items in order
of magnitude, so (3.26 + 3.27) / 2 = 3.265 mm. The ninth decile is between the 108th
and 109th numbers in increasing order of magnitude, so (3.44 + 3.45) / 2 = 3.445 mm.
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Now let us apply the grouped frequency approach to the numbers in Table 4.5.
The largest item in the table is 3.57, and the smallest is 3.21, so the range is 0.36.
The number of class intervals according to Sturges’ Rule should be approximately
1 +(3.3) (log;,121) = 7.87. Then the class width should be approximately 0.36 / 7.87
= (.0457. Let us choose a convenient class width of 0.05. The thicknesses are stated
to two decimal places, so the class boundaries should end in five in the third decimal.
Let us choose the smallest class boundary, then, as 3.195. The resulting grouped
frequency table is shown in Table 4.6.

Table 4.6: Grouped Frequency Table for Thicknesses

Lower  Upper Class Tally Marks Class Relative Cumulative
Class Class Midpoint, Frequency Frequency Frequency
Boundary, Boundary, mm
mm mm
3.195 3.245 3.220 I 2 0.017 2
3.245 3.295 3.270 (I 14 0.116 16
3295 3345 3.320 ([FICNIENINT 24 0.198 40
3345 3395 3.370 (IFUICNCIG - 46 0.380 86
(NI
3.395 3.445 3.420 T TN 22 0.182 108
3.445 3.495 3.470 (M 10 0.083 118
3.495 3.545 3.520 I 2 0.017 120
3.545 3.595 3.570 | 1 0.008 121
Total 121 1.000

In this table the class frequency is obtained by counting the tally marks for each
class. This becomes easier if we divide the tally marks into groups of five as shown in
Table 4.6. The relative frequency is simply the class frequency divided by the total
number of items in the table, i.e. the total frequency, which is 121 in this case. The
cumulative frequency is obtained by adding together all the class frequencies for
classes with values smaller than the current upper class boundary. Thus, in the third line
of Table 4.6, the cumulative frequency of 40 is the sum of the class frequencies 2, 14

40
and 24. The corresponding relative cumulative frequency would be T 0.331, or

33.1%. The cumulative frequency in the last line must be equal to the total frequency.

From Table 4.6 the mode is given by the class midpoint of the class with the
largest class frequency, 3.370 mm. The mean, median and mode, 3.369, 3.37 and
3.370 mm, are in close agreement. This indicates that the distribution is approxi-
mately symmetrical.

Graphical representations of grouped frequency distributions are usually more
readily understood than the corresponding tables. Some of the main characteristics of
the data can be seen in histograms and cumulative frequency diagrams. A histogram is
a bar graph in which the class frequency or relative class frequency is plotted against
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values of the quantity being studied, so the height of the bar indicates the class fre-
quency or relative class frequency. Class midpoints are plotted along the horizontal axis.
In principle, a histogram for continuous data should have the bars touching one another,
and that should be done for problems in this book. However, the bars are often shown
separated, and some computer software does not allow the bars to touch one another.

The histogram for the data of Table 4.5 is shown in Figure 4.4 for a class width
of 0.05 mm as already calculated. Relative class frequency is shown on the right-
hand scale.
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Histograms for class widths of 0.03 mm and 0.10 mm are shown in Figures 4.5
and 4.6 for comparison.
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Of these three, the class width of 0.05 mm in Figure 4.4 seems most satisfactory
(in agreement with Sturges’ Rule).

Cumulative frequencies are shown in the last column of Table 4.6. A cumulative
frequency diagram is a plot of cumulative frequency vs. the upper class boundary,
with successive points joined by straight lines. A cumulative frequency diagram for
the thicknesses of Table 4.5 is shown in Figure 4.7.

Cumulative Frequency Diagram
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Figure 4.7:
Cumulative Frequency
Diagram for Thickness
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The cumulative frequency diagram of Figure 4.7 could be changed into a relative
cumulative frequency diagram by a change of scale for the ordinate.

Example 4.3

A sample of 120 electrical components was tested by operating each component
continuously until it failed. The time to the nearest hour at which each component
failed was recorded. The results are shown in Table 4.7.

Table 4.7: Times to Failure of Electrical Components, hours

1347 33 1544 1295 1541 14 2813 727 3385 2960
2075 215 346 153 735 1452 2422 1160 2297 594
2242 977 1096 965 315 209 1269 447 1550 317
3391 709 3416 151 2390 644 1585 3066 17 933
1945 844 1829 1279 1027 5 372 869 535 635
932 6l 3253 47 4732 120 523 174 2366 323
1296 755 28 305 710 1075 74 1765 1274 180
1104 248 863 1908 2052 1036 359 202 1459 3

916 2344 581 1913 2230 1126 22 1562 219 166
678 1977 167 573 186 804 6 637 316 159
983 1490 877 152 2096 185 53 39 3997 310
1878 1952 5312 4042 4825 639 1989 132 432 1413
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Once again, frequency grouping is needed to make sense of this mass of data.
When the data are sorted in order of increasing magnitude, the largest value is found to
be 5312 hours and the smallest is 3 hours. Then the range is 5312 — 3 = 5309 hours.
There are 120 data points. Then applying Sturges’ Rule, equation 4.1 indicates that the
number of class intervals should be approximately 1 + 3.3 log,,120 = 7.86. Then the
class width should be approximately 5309 / 7.86 = 675 hours. A more convenient class
width is 600 hours. Since times to failure are stated to the nearest hour, each class
boundary should be a number ending in 0.5. The smallest class boundary must be
somewhat less than the smallest value, 3. Then a convenient choice of the smallest
class boundary is 0.5 hours. The resulting grouped frequency table is shown in Table
4.8. The corresponding histogram is Figure 4.8, and the cumulative frequency diagram
(last column of Table 4.8 vs. upper class boundary) is Figure 4.9.

Table 4.8: Grouped Frequency Table for Failure Times

Lower  Upper Class Tally Marks Class Relative  Cumulative
Class Class Midpoint, Frequency Frequency Frequency
Boundary, Boundary, mm
mm mm
05 6005 3005 IHH HIH IIIII (IFHIEHE 46 0383 46

6005 12005 900.5 Il {HIT I A 28 0233 74
1200.5  1800.5 1500.5 T 16 0.133 90
1800.5  2400.5  2100.5 (T 17 0.142 107
2400.5 3000.5  2700.5 Il 3 0.025 110

3000.5 3600.5  3300.5 | 5 0042 115
3600.5  4200.5  3900.5 2 0017 117
42005  4800.5  4500.5 | 1 0.008 118
4800.5  5400.5 51005 | 2 0017 120
1

Total 20 1.000
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Cumulative Frequency Diagram
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Figures 4.4 and 4.8 are both histograms for continuous data, but their shapes are
quite different. Figure 4.4 is approximately symmetrical, whereas Figure 4.8 is
strongly skewed to the right (i.e., the tail to the right is very long, whereas no tail to
the left is evident in Figure 4.8). Correspondingly, the cumulative frequency diagram
of Figure 4.7 is s-shaped, with its slope first increasing and then decreasing, whereas
the cumulative frequency diagram of Figure 4.9 shows the slope generally decreasing
over its full length.

Now the mean, median and mode for the data of Table 4.7 (corresponding to
Figures 4.8 and 4.9) will be calculated and compared. The mean is Y. x,/ N = 140746/120
= 1173 hours. The median is the average of the two middle items in order of magni-
tude, 869 and 877, so 873 hours. The mode according to Table 4.8 is the midpoint of
the class with the largest frequency, 300.5 hours, but of course the value would vary a
little if the class width or starting class boundary were changed. Since Figure 4.8
shows that the distribution is very asymmetrical or skewed, it is not surprising that
the mean, median and mode are so widely different.

The variance is given by equation 3.11,

N 2
N zxi

2 i=1
2% =

2 i=1 I N
N-1
= (317,335,200 — (140,746)%/120) /119

= (317,335,200 — 165,078,637.7) / 119
= 1,279,467 h?
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and so the estimate of the standard deviation based on this sample is s = /1,279,467

. T S
= 1131 hours. The coefficient of variation is (: )(100%): 1131/ 1173 x 100% =
96.4%. o

4.5 Use of Computers

In this section the techniques illustrated in section 3.4 will be applied to further
examples. Further techniques, including production of graphs, will be shown. Once
again, the reader is referred to brief discussions of some Excel techniques for statisti-
cal data in Appendix B.

Example 4.4

The thickness of a particular metal part of an optical instrument was measured on

121 successive items as they came off a production line under what was believed to
be normal conditions. The results were shown in Table 4.5. Find the mean thickness,
sample variance, sample standard deviation, coefficient of variation, median, fifth
percentile, and ninth decile. Use Sturges’ Rule in choosing a suitable class width for
a grouped frequency distribution. Construct the resulting histogram and cumulative
frequency diagram. Use the Excel spreadsheet in solving this problem, and check that
rounding errors cause no appreciable loss of significance.

Answer: This is essentially the same problem as in Example 4.2, but now it will be
solved using Microsoft Excel.

First the thicknesses were transferred from Table 4.5 to column B of a new work
sheet. These data were sorted by increasing (ascending) thickness using the Sort
command on the Data menu for later use in finding quantiles. Extracts of the work
sheet are shown in Table 4.9. Notice again that each quantity must be clearly labeled.

Table 4.9: Extracts of Work Sheet for Example 4.4

A B C D E F
1 In column C Thickness, xi mm| dev=xi-xbar dev/2 xi*xi Order no.
2 deviation = 3.21 -0.158512397 | 0.02512618 10.3041 1
3 B2:B122-B124 3.24 -0.128512397 | 0.01651544 10.4976 2
4 3.25 -0.118512397 | 0.01404519 10.5625 3
5 3.26 -0.108512397 | 0.01177494 10.6276 4
119 3.49 0.121487603 | 0.01475924 12.1801 118
120 3.51 0.141487603 | 0.02001874 12.3201 119
121 3.51 0.141487603 | 0.02001874 12.3201 120
122 3.57 0.201487603 | 0.04059725 12.7449 121
123 Totals 407.59 | 6.66134E-14 | 0.47513223 1373.4471
124 |xbar, B123/121=| 3.368512397 sA2=| DI123/120= 0.003959
125 s"2=| (E123-B12372/121)/120= 0.003959
126 diff = | E124-E125=| 1.21E-15
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127 s=| SQRT(E125)= 0.062924

128 s/xbar=| DI127/B124= 1.87%

129

130

131 A B C D E F

132 Lower Class | Upper Class Class Class Relative |Cumulative
133 Boundary Boundary Midpoint Frequency Class Class
134 mm mm mm Frequency | Frequency
135 3.195 0 0

136 3.195 3.245 3.22 2 0.017 2

137 3.245 3.295 3.27 14 0.116 16

138 3.295 3.345 3.32 24 0.198 40

139 3.345 3.395 3.37 46 0.380 86

140 3.395 3.445 342 22 0.182 108

141 3.445 3.495 347 10 0.083 118

142 3.495 3.545 3.52 2 0.017 120

143 3.545 3.595 3.57 1 0.0083 121

144 3.595 3.645 3.62 0

145 Total 121

146 |In cells:

147 A137:A144 B136:B144 C136:C144 D136:D144 | E136:E144| F136:F144
148 |The corresponding explanations are (same column):

149 |A136:A143+0.05=| A136:A144+0.05=| (A136:A144+B136:B144)/2= D136:D144/D145=

150 Frequency(B1:B122,B136:B144)=

151 F135:F143+
152 D136:D144

Quantities in rows 2 to 122 were added using the Autosum tool; totals were
placed in row 123. This gave a total thickness of 407.59 mm in cell B123 for the 121
items. Then the mean thickness, X, was found in cell B124 to be 3.3685 mm. Next,
deviations from the mean, x; —X , were found in column C using an array formula
(which does a group of similar calculations together—see explanation in section (b)
of Appendix B). The deviations calculated in this way were squared by the array
formula =(C3:C123)"2, entered in cells D2:D122. (Remember that entering an array
formula requires us to press more than one key simultaneously. See Appendix B.)
Then the sample variance was found using equation 3.8 in cell E124 by dividing the
sum of squares of deviations by 120. This gave 0.003959 mm?. Notice that this
method of calculation of variance requires more arithmetic steps than the alternative
method, which will be used in the next paragraph. The first method is used in this
example to provide a comparison giving a check on round-off errors, but the other
method should be used unless such a comparison is required.

The squares of individual thicknesses, (x;)?, were found in cells E2:E122 by the
array formula =B2 *2. According to equation 3.11, the variance estimated from the
sample is s*= (Zx? — (Xx;)* / N) / (N — 1), where in this case N, the number of data
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points, is 121. Then in cell E125 the sample variance is calculated as 0.003959 mm?,
which agrees with the previous value. The sample standard deviation was found in
cell D127, taking the square root of the variance. This gave 0.0629 mm. The coeffi-
cient of variation (from cell D128) is 1.87%, which was formulated as a percentage
using the Format menu.

Now we can obtain some indications of error due to round-off in Microsoft
Excel. In cell C123 the sum of all 121 deviations from the sample mean is shown as
6.66E — 14, whereas it should be zero. This is consistent with the statement that
Excel stores values to a precision of about 15 decimal digits. The difference between
the value of the sample variance in cell E124 and the value of the same quantity in
cell E125 was calculated by the appropriate formula, =D125 — E125, and entered in
cell E126. It is 1.21E — 15, again consistent with the statement regarding the preci-
sion of numbers calculated and stored in Excel. As these errors are very small in
comparison to the quantities calculated, rounding errors are negligible.

The order numbers from 1 to 121 were entered in cells F3:F123. After the first
two numbers were entered, the fill handle was dragged to produce the series. From
the order numbers in cells F3:F123 and the thicknesses in cells B3:B123, numbers to
calculate the median (order number 61, so in cell B63), fifth percentile (between order
numbers 6 and 7, cells B8 and B9), and ninth decile (between order numbers 108 and
109, cells B110 and B111) were read. Then the median is 3.37 mm, the fifth percen-
tile is (3.26 + 3.27) / 2 = 3.265 mm, and the ninth decile is (3.44 + 3.45) / 2 = 3.445 mm.

For the class width and the smallest class boundary for the grouped frequency
table the reasoning is the same as in Example 4.3. The largest thickness, in cell
B123, is 3.57 mm, and the smallest thickness, in cell B3, is 3.21 mm, so the range is
3.57 —3.21 = 0.36 mm. Since there are 121 items, the number of class intervals
according to Sturges’ Rule should be approximately 1 + (3.3)(log,,121) = 7.87. This
calls for a class width of approximately 0.36 /7.87 = 0.0457 mm, and we choose a
convenient value of 0.05 mm. The smallest class boundary should be a little smaller
than the smallest thickness and halfway between possible values of the thickness,
which was measured to two decimal places. Then the smallest class boundary was
chosen as 3.195 mm.

Column headings for the grouped frequency table were entered in cells
A132:F134. The smallest class boundary, 3.195 mm, was entered in cell A136. To
obtain an extra class of zero frequency for the cumulative frequency distribution,
3.195 was entered also in cell B135, and zero was entered in cell D135. For a class
width of 0.05 mm the next lower class boundary of 3.245 was entered in cell A137,
and the fill handle was dragged to 3.595 in cell A144. Upper class boundaries were
entered in cells B136:B144 by the array function =A136:A144 + 0.05. Class mid-
points were entered in cells C136:C144 by the array function =(A136:A144 +
B136:B144)/2.
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A saving in time can be obtained at this point by using one of Excel’s built-in
functions (see section (e) of Appendix B). Class frequencies were entered in cells
D135:D144 by the array formula =FREQUENCY (B2:B122,B135:B143), where the
cells B2:B122 contain the data array (thickness in mm in this case) and the cells
B135:B143 contain the corresponding upper class boundaries. For further informa-
tion, from the Help menu select Microsoft Excel Help, and then the Frequency
worksheet function. Note that the number of cells in D135:D144 is nine, one more
than the number of cells in B135:B143. The last item in column D (cell D144) is 0
and represents the frequency above the largest effective upper class boundary, 3.595
mm. The class frequencies in cells D135:D144 agree with the values given in Table
4.6. The total frequency was found in cell D145 using the Autosum tool. It is 121, as
before. Relative class frequencies in cells E136:E143 were found using the array
formula =D136:D143/121. Again the results agree with previous results. The first
cumulative frequency in cell F135 is the same as the corresponding class frequency,
so it is given by =D135. Cumulative class frequencies in cells F136:F143 were found
by the array formula =F135:F142+D136:D143. They can be checked by comparison
with the largest order numbers in the upper part of Table 4.9 corresponding to a
thickness less than an upper class boundary. For example, the largest order number
corresponding to a thickness less than the upper class boundary 3.495 is 118. Minor
changes, such as centering, were made in formatting cells A132:F145. Instead of the
function Frequency, the function Histogram can be used if it is available.

To produce the histogram, the class midpoints (cells D133:D141) and the class
frequencies (cells E133:E141) were selected; from the Insert menu, Chart was
selected. The “Chart Wizard” guided choices for the chart. A simple column chart
was chosen with data series in columns, x-axis titled “Thickness, mm”, y-axis titled
“Class frequency”, and no legend. The chart was opened as a new sheet titled “Ex-
ample 4.4.”

The chart was modified by selecting it and opening the Chart menu. One modifi-
cation was of the font size for the titles of axes. The x-axis title was chosen, and from
the Format menu the Selected Axis Title was chosen, then the font size was changed
from 10 point to 12 point. The y-axis title was modified similarly. To make the bars
of the histogram touch one another without gaps, a bar was clicked and from the
Format menu the Selected Data Series was chosen; the Option tab was clicked, and
then the gap width was reduced to zero. This left the histogram in solid black. To
remedy this, the bars were double-clicked: the screen for Format Data Point appeared
with the Patterns tab, and the Fill Effects bar was clicked. A suitable diagonal pattern
was selected for the fill of each bar, with the diagonals sloping in different directions
on adjacent bars. The final histogram is very similar to Figure 4.4, differing from it
mainly as a result of using different software, CA-Cricket Graph III vs. Excel.
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To obtain the cumulative frequency diagram, first the upper class boundaries,
cells B135:B144, were selected. Then the corresponding cumulative class frequen-
cies, cells F135:F144, were selected while holding down Crtl in Excel for Windows
or Command in Excel for the Macintosh, because this is a nonadjacent selection to
be added to the selection of class boundaries. Then from the Insert menu, Chart was
clicked. A simple line chart was chosen with horizontal grids. The data series are in
columns, the first column contains x-axis labels, and the first row gives the first data
point. A choice was made to have no legend. The chart title was chosen to be “Cumu-
lative Frequency Diagram.” The title for the x-axis was chosen to be “Thickness,
mm.” The title for the y-axis was chosen to be “Cumulative Frequency.” The result is
essentially the same as Figure 4.7.

Example 4.5

A sample of 120 electrical components was tested by operating each component
continuously until it failed. The time to the nearest hour at which each component
failed was recorded. The results were shown in Table 4.7. Calculate the mean,
median, mode, variance, standard deviation, and coefficient of variation for these
data. Prepare a grouped frequency table from which a histogram and cumulative

frequency diagram could be prepared. Calculate using Excel.

Answer: This is a repeat of most of Example 4.3, but using Excel.

The times to failure, t; hours, were entered in column B, rows 3 to 122, of a new
work sheet. They were sorted from the smallest to the largest using the Sort com-
mand on the Data menu. The work sheet must include headings, labels, and
explanations. Extracts of the work sheet are shown in Table 4.10. This is similar to

the work sheet of Example 4.4, which was shown in Table 4.9.

Table 4.10: Extracts from Work Sheet, Example 4.5

A B C D E F
1 Time,ti h tin2 Order No.
2 (B3:B122)"2=
3 3 9 1
4 5 25 2
61 863 744769 59
62 869 755161 60
63 877 769129 61
64 916 839056 62
120 4732 22391824 118
121 4825 23280625 119
122 5312 28217344 120
123 Sums 140742 317324464
124 | Mean, thbar=
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125
126
127

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

B123/120= 1172.85 |
sN2= (C123-B123*B123/120)/(120-1)= 1.28E6
s= SQRT(E126)= | 1130
c.v.= s/xbar=| E127/B125= | | 96%
Lower Class | Upper Class Class Class Relative |Cumulative
Boundary Boundary Midpoint Frequency Class Class
h h h Frequency | Frequency
0.5 0 0
0.5 600.5 300.5 46 0.383333 46
600.5 1200.5 900.5 28 0.233333 74
1200.5 1800.5 1500.5 16 0.133333 90
1800.5 2400.5 2100.5 17 0.141667 107
2400.5 3000.5 2700.5 3 0.025 110
3000.5 3600.5 3300.5 5 0.041667 115
3600.5 4200.5 3900.5 2 0.016667 117
4200.5 4800.5 4500.5 1 0.008333 118
4800.5 5400.5 5100.5 2 0.016667 120
Total 120
In cells:
A136:A143 B135:B143 C135:C143 D134:D143 | E135:E143| F135:F143
the corresponding explanations are (same column):
Al35:A142+600= (A135:A143+B135:B143)/2= D134:D142+
D135:D143=

A135:A143+600=

| Frequency(B3:B122,B135:B143)=

In cells E135:E143 the explanation is D135:D143/D144.

Appendix C lists some functions which should not be used during the learning
process but are useful shortcuts once the reader has learned the fundamentals thor-
oughly.

Concluding Comment

In this chapter and the one before, we have seen several types of frequency distribu-
tions from numerical data. In the next few chapters we will encounter theoretical

probability distributions, and some of these will be found to represent satisfactorily
some of the frequency distributions of these chapters.

1. The daily emissions of sulfur dioxide from an industrial plant in tonnes/day were

Problems
as follows:
4.2 6.7
5.5 4.9

54
5.1

5.7
5.6

4.9
5.9
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a) Prepare a stem-and leaf display for these data.
b) Prepare a box plot for these data.

A semi-commercial test plant produced the following daily outputs in tonnes/
day:
1.3 2.5 1.8 1.4 3.2 1.9 1.3 2.8 1.1 1.7
1.4 3.0 1.6 1.2 23 2.9 1.1 1.7 2.0 1.4

a) Prepare a stem-and leaf display for these data.
b) Prepare a box plot for these data.

Over a period of 60 days the percentage relative humidity in a vegetable storage

building was measured. Mean daily values were recorded as shown below:
60 63 64 71 67 73 79 80 &3 81
86 90 96 98 98 99 89 80 77 78
71 79 74 84 85 82 90 78 79 79
78 80 82 83 86 81 80 76 66 74
81 86 84 72 79 72 84 79 76 79
74 66 84 78 91 81 64 76 78 82

a) Make a stem-and-leaf display with at least five stems for these data. Show
the leaves sorted in order of increasing magnitude on each stem.

b) Make a frequency table for the data, with a maximum bound of 100.5%
relative humidity (since no relative humidity can be more than 100%). Use
Sturges’ rule to approximate the number of classes.

¢) Draw a frequency histogram for these data.

d) Draw a relative cumulative frequency diagram.

e) Find the median, lower quartile, and upper quartile.

f) Find the arithmetic mean of these data.

g) Find the mode of these data from the grouped frequency distribution.

h) Draw a box plot for these data.

i) Estimate from these data the probability that the mean daily relative humid-
ity under these conditions is less than 85%.

A random sample was taken of the thickness of insulation in transformer wind-

ings, and the following thicknesses (in millimeters) were recorded:
18 21 22 29 25 31 37 38 41 39
44 48 54 56 56 57 47 38 35 36
29 37 32 42 43 40 48 36 37 37
36 38 40 41 44 39 38 34 24 32
39 44 42 30 37 30 42 37 34 37
32 24 42 36 49 39 23 34 36 40

a) Make a stem-and-leaf display for these data. Show at least five stems. Sort
the data on each stem in order of increasing magnitude.

b) Estimate from these data the percentage of all the windings that received
more than 30 mm of insulation but less than 50 mm.
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c)
d)
€)
f)
2
h)
i)

Find the median, lower quartile, and ninth decile of these data.
Make a frequency table for the data. Use Sturges’ rule.

Draw a frequency histogram.

Add and label an axis for relative frequency.

Draw a cumulative frequency graph.

Find the mode.

Show a box plot of these data.

5. The following scores represent the final examination grades for an elementary
statistics course:

23 60 79 32 57 74 52 70 82 36
80 77 81 95 41 65 92 &5 55 76
52 10 64 75 78 25 80 98 81 67
41 71 83 54 64 72 88 62 74 43
60 78 89 76 84 48 84 90 15 79
34 67 17 82 69 74 63 80 &5 61

Make a stem-and-leaf display for these data. Show at least five stems. Sort
the data on each stem in order of increasing magnitude.

Find the median, lower quartile, and upper quartile of these data.
What fraction of the class received scores which were less than 65?
Make a frequency table, starting the first class interval at a lower class
boundary of 9.5. Use Sturges’ Rule.

Draw a frequency histogram.

Draw a relative frequency histogram on the same x-axis.

Draw a cumulative frequency diagram.

Find the mode.

Show a box plot of these data.

Computer Problems
Use MS Excel in solving the following problems:

C6. For the data given in Problem 3:

a)
b)

c)
d)
€)

f)

Sort the given data and find the largest and smallest values.

Make a frequency table, starting the first class interval at a lower bound of
59.5% relative humidity. Use Sturges’ rule to approximate the number of
classes.

Find the median, lower quartile, eighth decile, and 95th percentile.

Find the arithmetic mean and the mode.

Find the variance and standard deviation of these data taken as a complete
population, using both a basic definition and a method for faster calculation.
From the calculations of part (e) check or verify in two ways the statement
that Excel stores numbers to a precision of about fifteen decimal places.
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C7. For the data given in Problem 4, perform the same calculations and determina-
tions as in Problem C6. Choose a reasonable lower boundary for the smallest class.

C8. For the data given in Problem 5:

a)
b)
c)

d)
e)

Sort the data and find the largest and smallest values.

Find the median, upper quartile, ninth decile, and 90th percentile.

Make a frequency table. Use Sturges’ rule to approximate the number of
classes.

Find the arithmetic mean and mode.

Find the variance of the data taken as a sample.
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CHAPTER

Probability Distributions of
Discrete Variables

For this chapter the reader should have a solid understanding
of sections 2.1, 2.2, 3.1, and 3.2.

We saw in Chapters 3 and 4 some frequency distributions for discrete and continuous
variates. Examples included frequencies of various numbers of defective items in
samples taken from production lines, and frequencies of various classes of thick-
nesses of items produced industrially.

Now we want to look at the probabilities of various possible results. If we know
enough about the probability distributions, we can calculate the probability of each
result. For instance, we can calculate the probability of each possible number of
defective items in a sample of fixed size. From that we might calculate the probabil-
ity of finding (for example) three or more defective items in a sample of 18 items.
That might be useful in assessing the implications for quality control of finding three
defectives in such a sample. Similarly, if we know enough about the probability
distribution we can calculate the probabilities of parts which are thicker than appro-
priate limits.

The number of defective items in a sample of 18 items is a real number express-
ing a result determined by chance. We can’t predict the number of defective items in
the next sample, but we may be able to calculate some probabilities. The probability
of any particular number of defective items would be a function of the parameters of
the problem. A quantity such as this is called a random variable.

The distinction between a discrete and a continuous random variable is the same
as the distinction between a discrete and a continuous frequency distribution: only
certain results are possible for a discrete random variable, but any of an infinite
number of results within a certain range are possible for a continuous random vari-
able. The random variable describing the number of defective items in a sample of 18
parts is discrete because the number of defective items in this case must be either
zero or a positive whole number no more than 18, and not any other number between
zero and 18. Another example of a discrete random variable is the number of failures
in an electronic device in its first five years of operation. On the other hand, the time
between successive failures of an electronic device is a continuous random variable
because there are an infinite number of possible results between any two possible
results that we may choose (even though practical measurement devices may not be
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able to distinguish some of them from one another because they report results to a
finite number of figures). Another example of a continuous random variable is a
measurement of the diameter of a part as it comes from a production line. We cannot
predict any particular value of the random variable but, with sufficient data of the
type discussed in Chapter 4, we may be able to find the probability of a result in a
particular interval.

This chapter is concerned with discrete variables, and the next chapter is
concerned with cases where the variable is continuous. Both types of variables are
fundamental to some of the applications discussed in later chapters. In this chapter
we will start with a general discussion of discrete random variables and their prob-
ability and distribution functions. Then we will look at the idea of mathematical
expectation, or the mean of a probability distribution, and the concept of the variance
of a probability distribution. After that, we will look in detail at two important
discrete probability distributions, the Binomial Distribution and the Poisson
Distribution.

5.1 Probability Functions and Distribution Functions
(a) Probability Functions

Say the possible values of a discrete random variable, X, are x, x,, x,, ... x;, and the
corresponding probabilities are p(x,), p(x,), p(x,) ... p(x,). Then for any choice of i,

k
p(x) =0, and 2 p(xi ) =1, where k is the maximum possible value of i. Then p(x;) is
i=0

a probability function, also called a probability mass function. An alternative nota-
tion is that the probability function of X is written Pr [X = x;]. In many cases p(x;) (or
Pr[X = x;]) and x; are related by an algebraic function, but in other cases the relation
is shown in the form of a table. The relation can be represented by isolated spikes on
a bar graph, as shown for example in

Figure 5.1. By convention the random 030
variable is represented by a capital o
letter (for example, X), and particular 0.25 §
values are represented by lower-case
letters (for example, x, % 0.20
X5 Xp)- = m
= [n]
= 0.15
QO
©
QO
© o0.104
o
Figure 5.1: Example of a 0.05
Probability Function for a T
Discrete Random Variable 0.00 +— | T = S B,
-1 1.2 3 4 6 7 8 9 10
Value,x
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(b) Cumulative Distribution Functions

Cumulative probabilities, Pr [X < x], where X still represents the random variable and
x now represents an upper limit, are found by adding individual probabilities.

Prix<x]= Y p(x) (5.1)
where p(x,) is an individual probability function. For example, if x; can be only zero
or a positive integer,

Pr[X <31 =p(0) +p(1) + p(2) + p(3)
The functional relationship between the cumulative probability and the upper

limit, x, is called the cumulative distribution function, or the probability distribution
function.

Note that since Pr [X < 2] = p(0) + p(1) + p(2),

we have p(B)=Pr[X<3]-Pr[X<2].
In general,
px)=Pr[X<x]-Pr[X<x,] (5.2)

As an illustration, consider the random variable that represents the number of
heads obtained on tossing five fair coins. The probability of obtaining heads on any

one coin is 2 The probability function and cumulative distribution are given by the

binomial distribution, which will be considered in detail in section 5.3. The probabil-
ity function of possible results is shown in Table 5.1 and Figure 5.2.

Table 5.1: Probability Function for Tossing Coins

r, no. of heads Probability, p(r)

0 a2
32

1 =2
32

2 10
32

3 10
32

4 S
32

5 a1
32

Total 1
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03 m m Figure 5.2:
' Probability Function for
o(n) Results of Tossing Five Fair Coins
0.2 4
1) 1]
0.1
L] !

0 1 2 3 4 5

Number of heads, r

The corresponding cumulative distribution function is shown in Figure 5.3. The
graph of the cumulative distribution function for a discrete random variable is a
stepped function because there can be no change in the cumulative probability
between possible values of the variable.

Using this cumulative distribution function with equation 5.2,

p(3) =Pr[R<3]-Pr[R<2]= ——— =0.3125.

0.9

Pr[R <r] 0.8

0.7

0.6

0.5
Figure 5.3: 047

Cumulative Distribution for 03
Tossing Five Fair Coins

0.2

0.1 -
0

1 T T T T T
0 1 2 3 4 5

r, number of heads
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5.2 Expectation and Variance

(a) Expectation of a Random Variable

The mathematical expectation or expected value of a random variable is an arithmetic
mean that we can expect to closely approximate the mean result from a very long
series of trials, if a particular probability function is followed. The expected value is
the mean of all possible results for an infinite number of trials. We must know the
complete probability function in order to calculate the expectation. The expectation
of a random variable X is denoted by E(X) or U, or lL. The last two symbols indicate
that the expectation or expected value is the mean value of the distribution of the
random variable.

Let us go back to the empirical approach to probability. The probability of a
particular result would be given to a good approximation by the relative frequency of
that result from an extremely large number of trials:

f(x)
Prix] =~~~ (5.3)
Zf (x)

all i

If the number of trials became infinite, this relation would become exact.

We also have from equation 3.2a that

Jj=1 . Zf(xl) (5.4)
The factor within square brackets in equation 5.4 is the relative frequency for factor j.
Then for an infinite number of trials we have, using equation 5.3, that

EX) =pe= Y, (x)Pr[x] (5.5)

all x;
In words, the expectation or the mean value of the random variable X is given by the
sum, for all possible outcomes, of the products given by multiplying each outcome
by its probability. If we repeated an experiment a very large number of times, the
arithmetic mean of the results would closely approximate the expected value if the
stated probability distribution was followed. These relations apply, as written, to
discrete random variables, but a similar relation will be found in section 6.2 for a
continuous random variable. Equation 5.5 will be used from this point on to calculate
expectation of a discrete random variable.

The relation for the expected value can be illustrated for the random variable, R,
which was shown in Figures 5.2 and 5.3. It is the number of heads obtained on
tossing five fair coins.

-r=of) ool of-of2)-of

=2.500
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Notice that, like the arithmetic mean, the expected value is not necessarily a possible
result from a single trial.

Example 5.1

The probability that a thirty-year-old man will survive a fixed length of time is 0.995.
The probability that he will die during this time is therefore 1—- 0.995 = 0.005. An
insurance company will sell him a $20,000 life insurance policy for this length of
time for a premium of $200.00. What is the expected gain for the insurance com-

pany?

Answer: If the man lives through the fixed length of time, the company’s gain will
be $200.00. The probability of this is 0.995. On the other hand, if the man dies
during this time, the company’s gain will be +$200.00 — $20,000.00 = — $19,800.00.
The probability of this is 0.005.

Using the working expression, equation 5.5, the expected gain for the company is
E(X) = ($200.00)(0.995) + (-$19,800.00)(0.005)
= $199.00 — $99.00 = $100.00

The idea of fair odds was introduced in section 2.1(f) as an alternative expression
giving the same information as probability. It is easy to show from expectation that
the relations given in that section are correct. If the probability of “success” in a
particular trial is p and the only possible results are “success” and “failure,” the
probability of “failure” must be 1 — p. If the process is completely fair, the expecta-
tion of gain for any individual must be zero. If the wager for “success” is $1, and the
wager against “success” is $A, the individual’s gain in the case of “success” is $A
and his gain in the case of “loss” is — $1. Then we must have

(P)($A) + (1 -p)(-$1) =0
(P)($4) = (1 - p)(SD)

SA_1-p
$1 p
The ratio of one wager to the other is called the odds. Then the fair odds against

I-p
“success” must be 7 to 1. Similarly, the fair odds for “success” must be p/(1 —p)

to 1.

(b) Variance of a Discrete Random Variable

The variance was defined for the frequency distribution of a population by
N

equation 3.6 as Z(x,. —u)z / N —that is, the mean value of (x,— p)?. Since the
i=1

quantity correspo_nding to the mean for a probability distribution is the expectation,
the variance of a discrete random variable must be
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GXZ :E(X_Mx)z
:Z(xi —HUy )2Pr[xi] (5:6)

An alternative form, like the one found in equation 3.10a, is faster to calculate. It
is obtained as follows:

E[(X—0)°] = E[X* = 2(u)(X) + 7]
= E[X*] -2 w E[X] + p 2
But E[X] = py. Then

oy =E[(X Wy ) ] E[X2] 2u,” +u,’

(5.7)

where

E[ X [=3xPr(x) (5.8)

all i

The standard deviation is always simply the square root of the corresponding
variance. Then

o, =E[(X-1,) ]
= JE(x*)-[E(X)]

Let us continue with the previous illustration for the random variable, R, given by
the number of heads obtained on tossing five fair coins.

E@® )= 2,1 Prlr]
S B RS RSN W
From the pr:e\7i§1(1);) calculation, E(R)=u, =2.500

Then 6, =E(R*)-p,’

=7.500—(2.500)"
=125

and 6, =+/1.25=1.118
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Example 5.2

A probability function is given by p(0) = 0.3164, p(1) = 0.4219, p(2) = 0.2109, p(3)
=0.0469, and p(4) = 0.0039. Find its mean and variance.

Answer: The mean or expected value is
(0)(0.3164) + (1)(0.4219) + (2)(0.2109) + (3)(0.0469) + (4)(0.0039) = 1.000.
The variance is

(0)%(0.3164) + (1)%(0.4219) + (2)*(0.2109) + (3)%(0.0469) + (4)*(0.0039) — (1.000)* =
1.750 - 1.000 = 0.750.

Problems

1.

The probabilities of various numbers of failures in a mechanical test are as
follows:

Pr[0 failures] = 0.21, Pr[l failure] = 0.43, Pr[2 failures] = 0.28, Pr[3 failures] =

0.08, Pr[more than 3 failures] = 0.

(a) Show this probability function as a graph.

(a) Sketch a graph of the corresponding cumulative distribution function.

(b) What is the expected number of failures—that is, the mathematical expecta-
tion of the number of failures?

Three items are selected at random without replacement from a box containing
ten items, of which four are defective. Calculate the probability distribution for
the number of defectives in the sample. What is the expected number of
defectives in the sample?

An experiment was conducted wherein three balls were drawn at random from a

barrel containing two blue balls, three red balls, and five green balls.

a) Find the mean and variance of the probability distribution of the number of
green balls chosen.

b) What is the probability that all the balls will have the same color?

A modified version of the game of Yahtzee has been developed and consists of
throwing three dice once. The points associated with the possible results are as
follows:

Result Points
Three of a kind 500
A pair 100
All different 50

a) Find the probability distribution of the number of points.
b) Find the expected value of the number of points.
¢) Find the standard deviation of the number of points.
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5. A discrete random variable, X, has three possible results with the following

probabilities:
PriX=1]=1/6
PrX=2]=1/3
PrX=3]=1/2

No other results can occur.

(a) Sketch a graph of the probability function.
(b) What is the mean or expected value of this random variable?
(c) What are the variance and standard deviation of this random variable?

i) Find the probability that, when 5 fair six-sided dice are rolled, the result is:
a) 5-of-a-kind (all 5 numbers the same);

b) 4-of-a-kind (4 numbers the same and 1 different);

¢) a “full house” (3 of one number, 2 of another number);

d) 3-of-a-kind (the other 2 numbers being different from one another);

e) asingle pair;

f) two pairs;

g) all 5 numbers different.

Check that all above probabilities add to 1.

ii) The players agree to take turns rolling the dice and to collect according to a
payout scheme. If the payouts are $1000 for 5-of-a-kind, $40 for 4-of-a-kind, $20
for a full house, $5 for 3-of-a-kind, $2 for a pair and $4 for two pair, what is the
expected value on a single roll of 5 dice?

A local body shop is run by four employees. However, with such a small staff,
absenteeism creates many difficulties financially. If only one employee is absent,
the day’s total income is reduced by 50%, and if more than one is absent, the
shop is closed for that day. When all four are working, an income of $1000 per
day can be realized. The shop’s expenses are $600 per day when opened and
$400 per day when closed. If, on the average, one particular employee misses ten
of 100 days and the remaining three miss five of 100 days each, what is the
expected daily profit for the company? Assume all absences are independent.

A factory produces 3 diesel-generator sets per week. At the end of each week, the
sets are tested. If the sets are acceptable, they are shipped to purchasers. The
probability that a set proves to be acceptable is 0.70. The second possibility is
that minor adjustments can be made so that a set will become acceptable for
shipping; this has a probability of 0.20. The third possible outcome is that the set
has to go to the diagnostic shop for major adjustment and be shipped at a later
date; this has a probability of 0.10. Outcomes for different sets are independent
of one another.
(a) Find the probability of each possible number of sets, for one week’s produc-
tion, which are acceptable without any adjustment.
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(b) What is the expected number of sets which are tested and found to be accept-
able without adjustment?

(c) What is the cumulative probability distribution for the number of sets which
are tested and found to be acceptable without adjustment? Sketch the
corresponding graph.

O—0-

Figure 5.4: Series-Parallel System

Probabilities:

Input Output

Probabilities:

A system consists of two branches in parallel, each branch having two compo-
nents. The probabilities of successful operation of components A, B, C, and D
are 0.9, 0.8, 0.7, and 0.6, as shown above. If a component fails, the output from
its branch is zero. If only one branch operates, the output is 50%. Of course, if
both branches operate, the output is 100%.

a) Find the probability of zero output.

b) Find the expected percentage output.

10. For constant rate of input, the rate of output of a system is determined by
whether A, B, and C operate, as shown below.

(s
Input Output
—()

Figure 5.5: Parallel Components, then Series

The probabilities that components A, B, and C operate are as follows:
Pr [A] = 0.70, Pr [B] = 0.60, Pr [C] = 0.90.
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If all of A, B, and C operate, the system output is 100. If both A and C operate
but not B, or both B and C but not A, the system output is 80. If both A and B
fail, the system output is 0. If C fails, the system output is O.

a) Find the probability of each possible output.

b) Find the expected output.

(c) More Complex Problems

Now let us look at two more complex examples. To solve them we will need to use
our knowledge of basic probability as well as knowledge of expected values. We will
have to read each problem very carefully. In the great majority of cases, a tree
diagram will be very desirable.

Example 5.3

A manufacturer has two expansion options available to him. The profits of the
expansions depend on the cost of energy. The fair odds are 3:2 in favor of energy
costs being greater than 8¢/kwh. The manufacturer is twice as likely to choose option
1 as option 2, regardless of circumstances.

If the cost of energy is less than 8¢/kwh, then expansion option 1 will yield returns
of +$150,000, $0, and —$50,000 with probabilities of 60%, 20%, and 20%, respec-
tively. Under those conditions, expansion option 2 will yield returns of +$100,000,
+$20,000, and —$20,000 with probabilities of 70%, 10%, and 20%, respectively.

If the cost of energy is greater than 8¢/kwh, then option 1 will yield returns of
+$100,000, $0, and —$50,000 with probabilities of 60%, 20%, and 20%, respectively,
while option 2 will yield returns of +$80,000, $0, and —$50,000 with probabilities of
70%, 10%, and 20%, respectively.

a) What is the probability that option 2 will be pursued and that energy prices
will exceed 8¢/kwh?

b) What is the manufacturer’s expected return from expansion?

c) Given that several years later the expansion yielded a return greater than
zero, what is the probability that option 2 was chosen?

Answer: The first step will be to draw a tree diagram. (See Figure 5.6.)
a) Pr [(option 2) M (energy > 8¢ / kwh)] =
= (Pr [energy > 8¢ / kwh]) x (Pr [(option 2) | (energy > 8¢ / kwh)])

3Y1

1
= g g)—g or 0.200.

b) Expected return = 2 (return for each possibility) x (Pr[that return])

all possibilities

=[(0.16)(150) + (0.05333)(0) + (0.05333)(-50) + (0.09333)(+100) +
+(0.01333)(+20) + (0.02667)(-20) + (0.24)(+100) + (0.08)(0) +
+ (0.08)(=50) + (0.14)(+80) + (0.02)(0) + (0.04)(—50)] thousand dollars
= 59.6 thousand dollars
= $59,600.
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Probabilities for Energy Costs 0.4 0.6
Energy < $0.08/kwh Energy > $0.08/kwh
Probabilities for options 0.667 0.333 0.667 0.333
Option 1 Option 2 Option 1 Option 2
Probabilities for 0.6 /[\0.2 0.7/{\0.2
Returns ol on
Return +150 0 -50  +100 +20-20 +100 0 -50 +80 0 -50
(thousand dollars)
Combined probabilities: 0.16 0.0533 0.0133 0.24 0.08 0.02
0.0533 0.0933 0.0267 0.08 0.14 0.04

Check: Sum of probabilities = 1.

Figure 5.6: Expansion Options

Pr[(option 2) N (return > 0)]
Pr (return > 0)
B Pr[(option 2) N (return > 0)]
CPr [(option 2) N (return > O)] + Pr[(option 1) N (return > 0)]
B 0.0933+0.01333+0.14
(0.09333+0.01333+0.14) +(0.16 + 0.24)

02467
0.2467 + 0.4000
= 0.381 or 38.1%.

(Note that part (c) involves Bayesian probability.)

¢) Pr[option?2 | (return>0)] =

Example 5.4

A flood forecaster issues a flood warning under two conditions only:

i)  Winter snowfall exceeds 20 cm regardless of fall rainfall; or
11) Fall rainfall exceeds 10 cm and winter snowfall is between 15 and 20 cm.

The probability of winter snowfall exceeding 20 cm is 0.05. The probability of

winter snowfall between 15 and 20 cm is 0.10. The probability of fall rainfall exceed-
ing 10 cm is 0.10.
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a)
b)

c)

What is the probability that the forecaster will issue a warning any given
spring?

Given that he issues a warning, what is the probability that winter snow fall
was greater than 20 cm?

The probability of flooding is 0.75 for condition (i) above, 0.60 for condition
(i1) above, and 0.05 for conditions where no flooding is anticipated. If the
cost of a flood after a warning is $100,000, a flood with no warning is
$1,000,000, no flood after a warning is $200,000, and zero for no warning
and no flood, what is the expected cost in any given year?

Answer: Again, the first step is to draw a tree diagram using the given information.

Winter Snowfall
Probability = 0.85 0.10 0.05

Snowfall Snowfall Snowfall
<15cm between 15 cm and 20 cm >20cm

Rainfall Rainfall
<10 cm > 10 cm

v v
/ (Condition ii) (Condition i)

No Warning Flood Warning Flood Warning

Fall Rainfall
Probability =0.90 0.10

Probability= 09/\5 /\ 0.25 0.75

No Flood Flood NoFIood FIood No Flood  Flood
Result: v v
no warning, no warning, awarnlng awarnlng, a warning, a warning,
no flood a flood no flood a flood no flood a flood
Probability:
(0.85)(0.95) (0.85)(0.05) (0.10)(0.10)(0.40) (0.10)(0.10)(0.60) (0.05)(0.25) (0.05)(0.75)
+(0.1)(0.9)(0.95) +(0.1)(0.9)(0.05)
=0.893 =0.047 =0.004 =0.006 =0.0125 =0.0375
Cost:
$0 $1,000,000 $200,000 $100,000 $200,000 $100,000

Figure 5.7: Flood Probabilities
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If Pr [winter snowfall > 20 cm] = 0.05 and Pr [15 cm < winter snowfall < 20 cm] =
0.10, then Pr [winter snowfall < 15 cm] =1 -0.05-0.10 = 0.85.

If Pr [fall rainfall > 10 cm] = 0.10, then Pr [fall rainfall < 10 cm] = 1 — 0.10 = 0.90.

a) Using the tree diagram, Pr [warning] = 0.05 + (0.10)(0.10) = 0.05 + 0.01 =

0.06. Pr [(Winter snowfall > 20cm) N waming]

b) Pr [winter snowfall > 20 cm | warning] = Pr[warning] =

Pr[(winter snowfall = ZOcm)] 0.05
Pr[warning] 006

=0.83

(Notice that this calculation used Bayes’ Rule.)

¢) In order to calculate expected costs, we will need probabilities of each
combination of warning or no warning and flood or no flood. These are
shown in the second-last line of Figure 5.7. We should apply a check on
these calculations: do the probabilities add up to 1?
0.893 + 0.047 + 0.004 + 0.006 + 0.0125 + 0.0375 = 1.000 (check).

Now using equation 4.5, the expected cost in any given year is

($100,000)(0.0375) + ($200,000)(0.0125) + ($100,000)(0.006) +
($200,000)(0.04) + ($1,000,000)(0.047) + ($0)(0.893) = $61,850

Problems

1.

Every student in a certain program of studies takes all three of courses A, B, and
C. The average enrollment in the program is 50 students.

Past history shows that on the average:

(1) 5 students in course A receive marks of at least 75%.

(2) 7.5 students in course B receive marks of at least 75%.

(3) 6 students in course C receive marks of at least 75%.

(4) 80% of students who receive marks of at least 75% in course A also do so in
course B.

(5) 50% of students who receive marks of at least 75% in course B also do so in
course C.

(6) 60% of students who receive marks of at least 75% in course C also do so in
course A.

(7) 10 students receive marks of at least 75% in one or more of these classes.
A sponsor gives a scholarship of $500 to anyone who receives a mark of at
least 75% in all three courses. What can the sponsor expect to pay on aver-
age?
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2.

A box contains a fair coin and a two-headed coin. A coin is selected at random

and tossed. If heads appears, the other coin is tossed; if tails appears, the same

coin is tossed.

a) Find the probability that heads appears on the second toss.

b) Find the expected number of heads from the two tosses.

c) If heads appeared on the first toss, find the probability that it also appeared
on the second toss.

A box contains two red and two green balls. A contestant in a game show selects

a ball at random. If the ball is green, he receives no prize for the draw and puts

the ball on one side. If the ball is red, he receives $1000 and puts the ball back in

the box. The game is over when both green balls are drawn or after three draws,

whichever comes first.

a) What is the probability of the contestant receiving no prize at all?

b) What is the expected prize?

c) If the game lasts for three draws, what is the probability that a green ball was
selected on the first draw?

The probabilities of the monthly snowfall exceeding 10 cm at a particular loca-

tion in the months of December, January and February are 0.20, 0.40 and 0.60,

respectively. For a particular winter:

a) What is the probability of not receiving 10 cm of snowfall in any of the
months of December, January and February in a particular winter?

b) What is the probability of receiving at least 10 cm snowfall in a month, in at
least two of the three months of that winter?

¢) Given that the snowfall exceeded 10 cm in each of only two months, what is
the probability that the two months were consecutive?

d) Find the expected number of months in which monthly snowfall does not
exceed 10 cm.

The probability that Jim will hit a target on a certain range is 25% for any one

shot, regardless of what happened on the previous shot or shots. He fires four

shots.

a) What is the probability that Jim will hit the target exactly twice?

b) What is the probability that he will hit the target at least once?

¢) Find the expected number of hits on the target.

d) If five persons who are equally good marksmen as Jim shoot at five targets,
what is the probability that exactly two targets are hit at least once?

Three boxes containing red, white and blue balls are used in an experiment. Box
#1 contains two red, three white and five blue balls; Box #2 contains one red and
three white balls; and Box #3 contains three red, one white and three blue balls.
The experiment consists of drawing a ball at random from Box #1 and placing it
with the other balls in Box #2, then drawing a ball at random from Box #2 and
placing it in Box #3.
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a) Draw the probability distribution of the number of red balls in Box #3 at the
end of the experiment.

b) What is the expected number of red balls in Box #3 at the end of the experiment?

c) Given that at the end of the experiment there are three red balls in Box #3,
what is the probability that a white ball was picked from Box #1?

d) After the experiment is completed, a ball is drawn from Box #3. What is the
probability that the ball is white?

Two octahedral dice with faces marked 1 through 8 are constructed to be out of

balance so that the 8 is 1.5 times as probable as the 2 through 7, and the sum of

the probabilities of the 1 and the 8 equals that of the other pairs on opposing

faces, i.e. the 2 and 7, the 3 and 6, and the 4 and 5.

a) Find the probability distribution and the mean and variance of the number
that can show up on one roll of the two dice.

b) Find the probabilities of getting between 5 and 9 (inclusive) on at least 3 out
of 10 rolls of the two dice.

¢) Find the probability of getting one occurrence of between 2 and 4, five
occurrences of between 5 and 9, and four occurrences of between 9 and 16,
in 10 rolls of the two dice.

All ranges of numbers are inclusive.

A panel of people is assembled to test the ability to correctly distinguish an

“improved” product from an older product. The panelists are chosen from a

population consisting of 20% rural and 80% urban people. Two-thirds of the

population are younger than 30 years of age, while one-third are older. The

probability that the urban panelists under 30 years of age will correctly identify

the improved product is 12%, while for older urban panelists, the probability

increases to 45%. Regardless of age, rural panelists are twice as likely as urban

panelists to correctly identify the improved product.

a) What is the probability that any one panelist chosen at random from this
population will correctly identify the improved product?

b) For a panel of 10 persons, what is the expected number of panelists who will
correctly identify the improved product?

c) If a panelist has correctly identified the improved product, what is the
probability that the panelist is under 30 years of age?

d) If a panelist is under 30 years of age, what is the probability that the panelist
will correctly identify the improved product?

Certain devices are received at an assembly plant in batches of 50. The sampling
scheme used to test all batches has been set up in the following way. One of the
50 devices is chosen randomly and tested. If it is defective, all the remaining 49
items in that batch are returned to the supplier for individual testing; if the tested
device is not defective, another device is chosen randomly and tested. If the
second item is not defective, the complete batch is accepted without any more
testing; if the second device is defective, a third device is chosen randomly and
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10.

11.

tested. If the third device is not defective, the complete batch is accepted without
any more testing, but the one defective device is replaced by the supplier. If the
third device is defective, all remaining 47 items in that batch are returned to the
supplier for individual testing.

The receiver pays for all initial single-item tests. However, whenever the
remaining devices in a batch are returned to the supplier for individual tests, the
costs of this extra testing are paid by the supplier. If a batch is returned to the
supplier, the superintendent must ensure that the receiver is sent 50 items which
have been tested and shown to be good. Assume that the superintendent accepts
the results of the receiver’s tests. Each device is worth $60.00 and the cost of
testing is $10.00 per device.

Consider a batch which contains 12 defective items and 38 good items.

a) What is the probability that the batch will be accepted?

b) What is the expected cost to the supplier of the testing and of replacing
defectives?

c) Of the 12 defective items in the batch, find the expected number which will
be accepted.

An oil refinery has a problem with air pollution. In any one year the probability
of escape of SO, is 23%, and probability of escape of a sticky oil is 16%. Escape
of SO, and escape of the oil will not occur at the same time. If the wind direction
is right, the SO, or oil will blow away from the city and no damage will result.
The probability of this is 55%. Otherwise, an escape of SO, will result in damage
claims of $80,000, an escape of oil will result in damage claims of $45,000, and
there will be possibility of a fine. If the pollutant is SO,, under these conditions
there is 90% probability of a fine, which will be $150,000. If the pollutant is oil,
the probability of a fine depends on whether the oil affects a prominent
politician’s house or not. If oil causes damage, the probability it will affect his
house is 5%. If it affects his house, the probability of a fine is 96%. If it does not
affect his house, the probability of a fine is 65%. If there is a fine for pollution by
oil, it is $175,000. Answer the following questions for the next year.

a) What is the probability there will be damage claims for escape of SO,?

b) What is the probability there will be damage claims for escape of 0il?

¢) What is the probability of a $150,000 fine?

d) What is the expected cost for damages and fines?

A mining company is planning strategy with respect to its operations. It has the
option of developing 3 properties, but only in a given sequence of A, B, and C.
The probability of A being successful and yielding a net profit of $1.5 million is
0.7, and the probability of its failing and causing a loss of $0.5 million is 0.3. If
A is successful, B has 0.6 probability of being successful and producing a gain of
$1.2 million, and 0.4 probability of being a failure and causing a loss of $.75
million. If A is a failure, B has 0.4 probability of being a success with a gain of
$1 million, and 0.6 probability of being a failure with a loss of $1.8 million. If
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both A and B are failures, then the company will not proceed with C. If both A
and B are successes, C will be a success with probability of 0.9 and a gain of
$2.5 million, or a failure with probability of 0.1 and a loss of $1.5 million. If
either A or B is a failure (but not both) then C is attempted. In that case, the
probability of success of C would be 0.3 but a gain of $5 million would result;
failure of C, probability 0.7, would result in a loss of $0.8 million. The company
decides to proceed with this strategy.
a) What is the expected gain or loss?
b) Given that A is a failure, what is the expected total gain from projects B and C?
c) Given that there is a net loss for all three (or two) projects taken together,
what is the probability that B was a failure?

5.3 Binomial Distribution

This important distribution applies in some cases to repeated trials where there are
only two possible outcomes: heads or tails, success or failure, defective item or good
item, or many other possible pairs. The probability of each outcome can be calcu-
lated using the multiplication rule, perhaps with a tree diagram, but it is usually
much faster and more convenient to use a general formula.

The requirements for using the binomial distribution are as follows:

* The outcome is determined completely by chance.

* There are only two possible outcomes.

* All trials have the same probability for a particular outcome in a single trial.
That is, the probability in a subsequent trial is independent of the outcome of
a previous trial. Let this constant probability for a single trial be p.

*  The number of trials, n, must be fixed, regardless of the outcome of each trial.

(a) Illustration of the Binomial Distribution

All items from a production line are tested as they are produced. Each item is classi-
fied as either defective (D) or good (G). There are no other possible outcomes. Pr[D]
=0.100, Pr[G] = 1 — Pr[D] = 0.900. Let us consider all the possible results for a
sample consisting of three items, calculating their probabilities from basic principles
using the multiplication rule of section 2.2.2.

Outcome Probability of that Outcome

GGG (0.900)* =0.729
DGG (0.100)(0.900) =0.081
GDG (0.900)(0.100)(0.900) = 0.081
GGD (0.900)*(0.100) =0.081
DDG (0.100)%(0.900) =0.009
GDD (0.900)(0.100)> = 0.009
DGD (0.100)(0.900)(0.100) = 0.009
DDD (0.100)* =0.001

Total = 1.000 (Check)
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Notice that the outcome containing three good items appeared once, and so did
the outcome containing three defective items. The outcome containing two good
items and one defective appeared three times, which is the number of permutations of
two items of one class and one item of another class. The outcome containing one
good item and two defectives also appears three times (as D D G, G D D, and D G D);
again, this is the number of permutations of one item of one class and two items of
another class.

(b) Generalization of Results

Now we’ll develop more general results. Let the probability that an item is defective
be p. Let the probability that an item is good be g, such that g = 1 — p. Notice that the
definitions of p and g can be interchanged, and other terms such as “success” and
“failure” can be used instead (and often are). Let the fixed number of trials be n. The
probability that all n items are defective is p". The probability that exactly r items are
defective and (n—r) items are good, in any one sequence, is p”¢“". But r defective
items and (n—r) good items can be arranged in various ways. How many different
orders are possible? This is the number of permutations into two classes, consisting
of r defective items and (n—r) good items,'respectively. From section 2.2.3 this

n!

number of permutations is given by r!(n _ r)! . But this is exactly the expression for

the number of combinations of n items taken r at a time, ,C,. Then the general
expression for the probability of exactly r defective items (or successes, heads, etc.)
in any order in n trials must be p” ¢ multiplied by ,C,, or

PrR=r]=,Cpq"” (5.9)

The lefthand side of this equation should be read as the probability that exactly r
items are defective (or successes, heads, etc.).

The name given to this discrete probability distribution is the binomial distribu-
tion. This name arises because the expression for probability in equation 5.9 is the
same as the (n+1)th term in the binomial expansion of (g+p)".

Tables of cumulative binomial probabilities are found in many reference books.
Individual binomial probabilities, like those given in equation 5.9, are found from
cumulative binomial probabilities by subtraction using equation 5.2. Both individual
and cumulative probabilities can be calculated also using computer software such as
Excel. That will be discussed briefly in section 5.3(f).

(c) Application of the Binomial Distribution

The binomial distribution is often used in quality control of items manufactured by a
production line when each item is classified as either defective or nondefective. To
meet the requirements of the binomial distribution the probability that an item is
defective must be constant. This condition is not met by sampling without replace-
ment from a small batch because, as we have seen from Example 2.7, in that case the
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probability that the second item drawn will be defective depends on whether the first
item drawn was defective or not, and so on. The condition of constant probability is
met to an acceptable approximation if the total number of trials is much less than the
batch size, so for a sufficiently small sample from a large enough batch. Then the
probability of a defect (or “success” etc.) on a single trial will be approximately constant.

The condition is met for sampling item by item from continuous production
under constant conditions. It is also met for sampling from a small batch if each item
which is removed as a specimen is returned to the batch and mixed thoroughly with
the other items, once it has been examined and classified as defective or good. This,
however, is not often a practical procedure: if we know that an item is defective, we
should not mix it with other items of production. Indeed, sometimes we can’t,
because the test procedure may destroy the sample.

Example 5.5

On the basis of past experience, the probability that a certain electrical component
will be satisfactory is 0.98. The components are sampled item by item from continu-
ous production. In a sample of five components, what are the probabilities of finding
(a) zero, (b) exactly one, (c) exactly two, (d) two or more defectives?

Answer: The requirements of the binomial distribution are met.

n=35,p=0.98, g =0.02, where p is taken to be the probability that an item will be
satisfactory, and so ¢ is the probability that an item will be defective.

(a) Pr [0 defectives] = (0.98)° = 0.9039 or 0.904.
(b) Pr[1 defective] =sC, (0.98)*(0.02)!

= (5) (0.98)*0.02)' = 0.0922 or 0.092.
(¢) Pr[2 defectives] = sC, (0.98)3(0.02)>

(5)(4)

= (0.98)*(0.02)* = 0.0038.

(d) Pr[2 or more defectives] = 1 — Pr [0 def.] — Pr [1 def.]
=1-0.9039 - 0.0922
= 0.0038.

Example 5.6

A company is considering drilling four oil wells. The probability of success for each
well is 0.40, independent of the results for any other well. The cost of each well is
$200,000. Each well that is successful will be worth $600,000.

a) What is the probability that one or more wells will be successful?

b) What is the expected number of successes?

¢) What is the expected gain?

d) What will be the gain if only one well is successful?

e) Considering all possible results, what is the probability of a loss rather than a gain?
f) What is the standard deviation of the number of successes?
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Answer: The binomial distribution applies. Let us start by calculating the probability
of each possible result. We use n =4, p = 0.40, g = 0.60.

No. of Successes Probability
0 (1) (0.40)°(0.60)* =0.1296
1 (4) (0.40)'(0.60)* =0.3456
(4)3) 20 e _
2 2 (0.40)%(0.60) =0.3456
3 (4) (0.40)*(0.60)! =0.1536
4 (1) (0.40)%0.60)° = 0.0256

Total = 1.000 (check)
(Notice that ,C, = ,C,,_,)

Now we can answer the specific questions.

a) Pr [one or more successful wells] = 1—- Pr [no successful wells]
=1-0.1296
= 0.8704 or 0.870.
b) Expected number of successes = (1)(0.3456) + (2)(0.3456) + (3)(0.1536) + 4)(0.0256)
= 1.600.
¢) Expected gain = (1.6)($600,000) — (4)($200,000) = $160,000.
d) If only one well is successful, gain = (1)($600,000) — (4)($200,000)
=-%$200,000 (so a loss).
e) There will be a loss if 0 or 1 well is successful, so the probability of a loss is
(0.1296 + 0.3456) = 0.4752 or 0.475.
f) Using equation 4.3, 6> = E(X?) — W2
where E(X?) = (0.3456)(1) + (0.3456)(2)* + (0.1536)(3)* +(0.0256)(4)* = 3.5200,
$0 62 = 3.5200 — (1.600)> = 0.9600.
The standard deviation of the number of successes is +/0.9600 = 0.980 .

(d) Shape of the Binomial Distribution

(a) p=0.05 (b) p=0.5 (c) p=0.95
08— 0.4 0.8 5
_ 0.6 0.3 | 0.6
; i ;
& 0.4 & 0.2 & 044
0.2 T 0.1 0.2 T
0.0 T ? - 0.0 T T T T 0.0 —p—7— ? T
012345 012345 012345

Figure 5.8: Effect of Varying Probability of Success in a Single Trial
when the Number of Trials is 5
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Figure 5.8 compares the shapes of the distributions for p equal to 0.05, 0.50, and
0.95, all for n equal to 5. When p is close to zero or one, the distribution is very
skewed, and the distribution for p equal to p, is the mirror image of the distribution
for p equal to (1-p,). When p is equal to 0.500, the distribution is symmetrical.

(a) n=10 (b) n=20
03 0.20
[n]
0.2 o ql
i 0.15
= 0.2 =
g £
€ 0.1 & 0.10
0.1
0.05-
" T T T
0.0 P o ool 0.00-04-1 ALEREPRSE
01234546 7 8 91011 0 2 46 8 10121416 18 20

r r

Figure 5.9: Effect of Varying Number of Trials when the Probability of Success Is 0.35

Figure 5.9 compares the shape of the distributions for n equal to 10 and 20, both
for p equal to 0.35. At this intermediate value of p, the distribution is rather skewed
for small numbers of trials, but it becomes more symmetrical and bell-shaped as n
increases.

(e) Expected Mean and Standard Deviation

For any discrete random variable, equation 5.5 gives that the expected mean is
E(R)=u(orp,)=X (number of “successes”)(probability of that number of “suc-
cesses”) for all possible results.

For the binomial distribution, from equation 5.9 the probability of r “successes”
in n trials is given by
Pr[R=r]=,C.(1-p)~'p’
Then

M:g(r)pr[ze=r]=i<r><nc,><1—p>("”zf

r=0
If the algebra is followed through, the result is

w=np (5.10)

Thus, the mean value of the binomial distribution is the product of the number of
trials and the probability of “success” in a single trial. This seems to be intuitively
correct.

From equation 5.6, for any discrete probability distribution,
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o’ =E(r—},t)2 :i(r—u)z Pr[R=r]

r=0

Substituting for the probability for the binomial distribution and following through
the algebra gives

6’ =np(l -p)
or
G’ =npq (5.11)

The standard deviation is always given by the square root of the corresponding
variance, so the standard deviation for the binomial distribution is

G =./npq (5.12)

Example 5.7

Calculate the expected number of successes and the standard deviation of the number
of successes for Example 5.6 and compare with the results of parts b and f of that
example.

Answer: Binomial distribution with n =4, p = 0.4, g = 0.6.

Then the expected number of successes from equation 5.6 is np = (4)(0.400) =
1.60. This agrees with the results of part b of Example 5.6.

The standard deviation of the number of successes from equation 5.8 is
\/(4)(0.400)(0.600) =+/0.960 = 0.980. This agrees with the results of part f of
Example 5.6.

Example 5.8

Twelve doughnuts sampled from a manufacturing process are weighed each day. The
probability that a sample will have no doughnuts weighing less than the design
weight is 6.872%.

a) What is the probability that a sample of twelve doughnuts contains exactly
three doughnuts weighing less than the design weight?

b) What is the probability that the sample contains more than three doughnuts
weighing less than the design weight?

¢) In asample of twelve doughnuts, what is the expected number of doughnuts
weighing less than the design weight?

Answer: In 12 doughnuts Pr [0 doughnuts < design weight] = 0.06872.

Assuming that Pr [a single doughnut < design weight] is the same for all doughnuts
and that weights of doughnuts vary randomly, the binomial distribution will apply.
Let this probability that a single doughnut will weigh less than the design weight be p.
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Then (1 — p)2 = 0.06872.
1 - p = 0.8000

Then Pr [ a doughnut < design weight ] = 1 — 0.8000 = 0.2000. Then p = 0.2, and
n=12.

a) Pr [exactly 3 doughnuts in 12 are below design weight] = ,C5(1 — p)°p?

_(12)(1)(10) ) .
=50 (0.8000)’ (0.2000)

=0.2362 or 23.6%.

b) Number less than design weight Probability
0 (0.8)"2 = 0.0687
1 12C1(0.8)11(0.2)! = 0.2062
2 1,C5(0.8)1°(0.2)? = 0.2835
3 12C5(0.8)°(0.2)° = 0.2362
Sum 0.7946

Therefore, Pr [more than three doughnuts are below design weight] =
=1-FPr[R=0]+Pr[R=1]+Pr[R=2]+Pr[R=3])
=1-0.7946
=0.2054 or 0.205 = 20.5%.

c) Expected number of doughnuts below the design weight is (n)(p) =
(12)(0.200) = 2.4.

(f) Use of Computers

If a computer with suitable software is available, calculations for the binomial
distribution can be done easily. If Excel is available, the function BINOMDIST will
be found to be very useful. There is not usually a great advantage to use of a com-
puter if only individual terms of the distribution are required, as equation 5.9 is
convenient for that purpose. But if cumulative expressions are required, such as the
probability of six or fewer occurrences, the computer can greatly reduce the amount
of labor required.

The parameters required by the Excel function BINOMDIST are r, n, p, and an
indication of whether a cumulative expression or an individual term is required. As in
the earlier part of this section, r is the number of “successes” in a total of » trials, and
p is the probability of “success” in each trial. The fourth parameter should be entered
as TRUE if the cumulative distribution function is required, giving the probability of
at most r “successes’; the fourth parameter should be entered as FALSE if the
required quantity is the individual probability, the probability of exactly r “suc-
cesses.” For example, if we want the probability of six or fewer “successes” in a total
of 12 trials when the probability of “success” in a single trial is 0.245, the parameters
for Excel in the function BINOMDIST are 6, 12, 0.245, TRUE. The function returns
the corresponding probability, which is 0.9873.
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(g) Relation of Proportion to the Binomial Distribution

Assuming that the only alternative to a rejected item is an accepted item, the sample
size is fixed and independent of the results, and the probability of rejection is con-
stant and independent of other factors such as previous results, we have seen that the
number of rejects in a sample of size n is governed by the binomial distribution. If
the probability that an item will be rejected is p, the probability that there will be
exactly x rejects in the sample is ,C, p* (1 — p)®~. The mean number of rejects will
be np, and the variance of the number of rejects will be np(1 — p).

We can look at the sample from a somewhat different viewpoint, focusing on the
X
proportion of rejects rather than their number. The ratio — is an unbiased estimate
n

of p, the proportion of rejects in the population, and we use the symbol p for this
estimate. The probability that the estimate of proportion from the sample will be p

X
= — is the same as the probability that there will be exactly x rejected items in a
n

sample of size n, and that is ,C, p* (1 — p)". If we associate the number 1 with each
rejected item and the number O with each item which is not rejected, then x, the
number of rejected items, can be interpreted as the sum of the zeros and ones for a

. ~ X . . .
sample of size n. Then p = — is a sample mean. Since # is a constant, in the whole
n

population the mean proportion rejected is
A X)) mp
u,=E(P)=E ;)=7=p (5.13)

This seems reasonable.

Similarly, using the relations for variance of a variable multiplied or divided by a
constant that will be discussed in section 8.2, we find that the variance of the propor-
tion rejected is

2 1- 1-
ol =0, =%=np(n2 P)_ - P) (5.14)

Example 5.9

The true proportion of defective items in a continuous stream is 0.0100. A random
sample of size 400 is taken.

(a) Calculate the probabilities that the sample will give sample estimates of the

proportion defective of o 2 3 4 and i, respectively.

400° 4007400 400°400° 100
(b) Calculate the standard deviation of the proportion defective.
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Answer:

(@) p=0.01,n=400
Pr [ p=0] = Pr [0 defective items] = ,,C, (0.01)°(0.99)*®

= (1)(1)(0.01795) =0.0180
Prip= 4—(1)0 = 0.00250] = ,,C, (0.01)'(0.99)*° =
= (400)(0.01)(0.01813) =0.0725

Pr{p Zﬁ = 0.00500] = ,,C, (0.01)2(0.99)*% =

(400)(399)
= # (0.01)%(0.99)*3 =0.1462
o _i — — 3 397
Prip=os = 0.00750] = 1 C, (0.01)1(0.99)"" =
(400)(399)(398)
= 0.01)3(0.99)*7 =0.1959
3)(2) (0.01)*(0.99)

Prp =4%:0 =0.01000] = ,,,C, (0.01)*(0.99)%% =

(400)(399)(398)(397)
- @6)2) (0.01)*(0.99)* = 0.1964

Prp =%= 0.01250] = ,,,Cs (0.01)3(0.99)%5 =
(400)(399)(398)(397)(396)

= (5)(4)(3)(2) (0.01)°(0.99)*5  =0.1571
Thus, the probability that the
sample will give an estimate of the 0.25
proportion defective that agrees exactly i/
with the true proportion (0.01) is less 02
than 20%, and the probability of getting il
any one of the three estimates, 0.0075 > o
or 0.01 or 0.0125, is less than 55%. Z 017 m
@©
Calculations of probabilities of ﬁ
sample estimates can be continued. o 017
The results are shown in Figure 5.10.
0.05
0 T i T f oo
Figure 5.10: Probabilities of Estimates 0 0005 001 0015 0.02 0.025 0.03 0.035
When True Proportion Is 0.0100 Estimated proportion defective
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We see that there can be a wide range of estimates from a sample, even when the
sample size is as large as 400.

(b) The standard deviation of the proportion defective is given, according to

1- 0.01)(0.99
(P)0=p) _ \/( JO9) _ 6 00497
n 400

The standard deviation is nearly half of the true proportion defective. Again, this
indicates that an estimate from a sample of this size will not be very reliable.
(h) Nested Binomial Distributions

These are situations in which one binomial distribution is enclosed within another
binomial distribution.

equation 5.14, by \/

Example 5.10

A boiler containing eight welds is manufactured in a small shop. When the boiler is
completed, each weld is checked by an inspector. If more than one weld is defective
on a single boiler, the person who made that boiler is reported to the foreman.

a) If9.0% of all welds made by Joe Smith are defective, what percentage of all
boilers made by him will have more than one defective weld?

b) Over a long period of time how many times will Joe Smith be reported to the
foreman for each 15 boilers he makes?

c) If Joe makes 15 boilers in a shift, what is the probability that he will be
reported for more than two of these 15 boilers?

Answer: a) The probabilities of various numbers of defective welds on a single
boiler are given by the binomial distribution with n = 8, p = 0.090, ¢ = 1 — 0.090 =
0.910.

The probability of exactly r defective welds on a boiler is given by
Pr [R = r] = 4C, (0.910)%(0.090)".

More than one defective weld corresponds to all results except zero defective welds
and one defective weld.

Pr[R=0]=(1) (0.910)® (0.090)° = 0.4703
Pr [R =1]=(8) (0.910)" (0.090)! = 0.3721

(Four figures are being carried in intermediate results, and final answers will be
shown to three figures.)

Pr [more than one defective weld in a single boiler] = 1 — 0.4703 — 0.3721 = 0.1577.
Then 15.8% of boilers made by Joe will have more than one defective weld.

b) Now the problem shifts to the outer Binomial problem for the number of times
Joe will be reported to the foreman for each 15 boilers he makes. Then n = 15,
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p = Pr [being reported for 1 boiler] = 0.1577, and g = 1 — p = 0.8423. (Notice that the
value of p, the probability of too many defects in a single boiler in the outer binomial
distribution, is given by the result of calculations for the inner binomial distribution.)

Under these conditions the expected number of times Joe will be reported to the
foreman is W = np = (15)(0.1577) = 2.37.

¢) Asin part 4 this corresponds to a binomial problem with n =15, p = 0.1577,
q =0.8423.

In general, Pr [R = r] = ;sC,(0.8423)"57(0.1577)
Then specifically, Pr [R = 0] = (1)(0.8423)"3(0.1577)° = 0.0762
Pr [R = 1] =(15)(0.8423)“(0.1577)! = 0.2141

(15)(14)
Pr[R=2]= Y (0.8423)3(0.1577)* = 0.2805
The probability that Joe will be reported to the foreman for more than two of the 15
boilers he makes in a shift is 1 — 0.0762 — 0.2141 — 0.2805 = 0.429 or 42.9%.

(i) Extension: Multinomial Distribution

The multinomial distribution is similar to the binomial distribution except that there
are more than two possible results from each trial. The details of the multinomial
distribution are given in various references, including the book by Walpole and
Myers (see the List of Selected References in section 15.2). For example, mechanical
components coming off a production line might be classified on the basis of a
particular dimension as undersize, acceptable, or oversize (three possible outcomes).
If the outcome of any one trial is determined completely by chance, all trials are
independent and have the same set of probabilities for the various possible outcomes,
and the number of trials is fixed, the multinomial distribution would apply.

Notice that if we consider separately just one result and lump together all other
results from each trial, the multinomial distribution becomes a binomial distribution.
Thus, in the example of mechanical components just cited, if undersized and over-
sized are lumped together as unacceptable, the distribution becomes binomial.

Problems

1. Under normal operating conditions 1.5% of the transistors produced in a factory
are defective. An inspector takes a random sample of forty transistors and finds
that two are defective.

a) What is the probability that exactly two transistors will be defective from a
random sample of forty under normal operating conditions?

b) What is the probability that more than two transistors will be defective from
a random sample of forty if conditions are normal?

2. A control system is set up so that when production conditions are normal, only
6% of items from the production line gives readings beyond a particular limit. If
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more than two of six successive items are beyond the limit, production is stopped
and all machine settings are examined. What is the probability that production
will be stopped in this way when production conditions are normal?

3. A company supplying transistors claims that they produce no more than 2%
defectives. A purchaser picks 50 at random from an order of 5000 and tests the
50. If he finds more than 1 defective, he rejects the order. If the supplier’s claim
is true and 2% of the transistors are defective, what is the probability that the
order will be rejected?

4. An experiment was conducted wherein three balls were drawn at random from a
barrel containing two blue balls, three red balls, and five green balls. We want to
find the mean and variance of the probability distribution of the number of green
balls chosen. Explain why this problem involving three colours can not be
handled using a binomial distribution. Suppose we consider both the blue balls
and the red balls together as not-green. Now find the required mean and variance.

5. A binomial distribution is known to have the following cumulative probability
distribution: Pr[X < 0] = 1/729, Pr[X <1] = 13/729, Pr[X < 2] = 73/729, Pr[X < 3]
=233/729, Pr[X < 4] = 473/729, Pr[X < 5] = 665/729, Pr[X < 6] = 1.0000.

a) What is n, the number of trials?

b) Find p and ¢, the probabilities of success and failure.

c) Verify that with these values of n, p and g the cumulative probabilities are as
stated.

d) What is the probability that the number of successes, r, lies within one
standard deviation of the mean?

e) What is the coefficient of variation?

6. Ten judges are asked to pick the best tasting orange juice from two samples
labeled A and B. If, in fact, A and B are the same orange juice, what is the
probability that eight or more of the judges will declare the same sample to be
the best? Assume that no judge says that they are equal.

7. A sample of eleven electric bulbs is drawn every day from those manufactured at
a plant. The eleven bulbs are tested before shipment to the customer. An analysis
of the test data collected over a number of years reveals that the probability of
finding no defective bulb in a sample of eleven bulbs is 0.5688. Probabilities of
defective bulbs are random and independent of previous results.

a) What is the probability of finding exactly three defective bulbs in a sample?
b) What is the probability of finding three or more defective bulbs in a sample?

8. There are ten multiple choice questions on an examination. If there are five
choices per question, what is the probability that a student will answer at least
five questions correctly just by picking one answer at random from the possibili-
ties for each question? State any assumptions.
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10.

11.

12.

Among a group of five people selected at random from a particular population it

is known that the probability that no one will be 30 or over is 0.01024.

a) What is the probability that exactly one person in the group is under 30?

b) Calculate the mean and variance of the probability distribution of the number
of persons over 30 and compare to the formula values for this type of distri-
bution.

¢) Given three such groups, what is the probability that two out of three groups
have no more than two persons 30 or over?

d) State any assumptions.

A fraction 0.014 of the output from a production line is defective. A sample of 95

items is taken. Assume defective items occur randomly and independently.

a) What is the standard deviation of the proportion defective in a sample of this
size?

b) What is the probability that the proportion of defective items in the sample
will be within two standard deviations of the fraction defective in the whole
population?

Surveys have indicated that in a given region 75% of car occupants use seat belts

regardless of where they sit in the car. Use of seat belts in the region is random

and shows no regular pattern. The surveys have shown also that in 40% of cars
the driver is the sole occupant, in 25% there are two occupants, in 20% three
occupants, in 10% four occupants, and in 5% five occupants.

a) What is the probability that a car picked at random will have exactly three
persons not using their seat belts? Remember to consider all possible
number of occupants.

b) What is the probability that of three cars chosen at random, exactly two have
all occupants wearing belts?

A small hotel has rooms on only four floors, with four smoke detectors on each

floor. Because of improper maintenance, the probability that any one detector is

functioning is only 0.55. The probabilities that smoke detectors are functioning
are randomly and independently distributed.

a) What is the probability that exactly one smoke detector is working on the top
floor?

b) What is the probability that there is exactly one detector working on each of
two floors and there are two detectors working on each of the other two
floors?

c) What is the probability that there will be no functioning smoke detectors on
one particular floor? What is the probability that there will be at least one
functioning smoke detector on that floor?

d) What is the probability that on at least one of the four floors there will be no
functioning smoke detectors?

e) What is the probability that there will be at least 15 functioning smoke
detectors in the hotel at any one time?
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13.

14.

15.

16.

17.

18.

The FIXIT company is to bring in seven new products in a sales line for which

the probability that each new product will be successful is 0.15. Probabilities of

success for the various products are random and independent. The cost of bring-

ing in a new product is $75,000. If each product is successful, the expected

revenue from sales for it will be $800,000 .

a) What is the expected net profit from the seven products?

b) What is the probability that the total net profit will be at least $1,000,000?

¢) What is the probability that none of the products will be successful?

d) If the number of successful products is three or more, the sales engineer will
be promoted. What is the probability that this will happen?

The probability that a certain type of IC chip will fail after installation is 0.06. A

memory board for a computer contains twelve such chips. The operation will be

satisfactory if ten or more of the chips on the board do not fail.

a) What is the probability that a memory board operates satisfactorily?

b) If there are five such memory boards in a given computer, what is the prob-
ability that at least four of them operate satisfactorily?

¢) State any assumptions.

5% of a large lot of electrical components are defective. Six batches of four

components each are drawn from this lot at random.

a) What is the probability that any one batch contains fewer than two
defectives?

b) What is the probability that at least five of the six batches contain fewer than
two defectives each?

c) State any assumptions.

20% of a large lot of mechanical components are found to be faulty. Five batches
of five components each are drawn from this lot. What is the probability that at least
four of these batches contain fewer than two defectives? State any assumptions.

A consultant collected data on bolt failures in an anchor assembly used in tower
construction. A large number of anchor assemblies, each containing the same
number of bolts, were examined and each bolt was graded either a success or a
failure. The probability distribution of the number of satisfactory bolts in an
assembly had a mean value of 3.5 and a variance of 1.05. Satisfactory and
unsatisfactory bolts occur randomly and independently. Calculate the probabili-
ties associated with the possible numbers of satisfactory bolts in an assembly. If
an assembly is considered to be adequate if there are three or fewer bolt failures,
what is the probability that an assembly chosen at random will be inadequate?

Each automobile leaving a certain motor company’s plant is equipped with five
tires of a particular brand. Tires are assigned to cars randomly and independently.
The tires on each of 100 such automobiles were examined for major defects with
the following results.
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No. of Tires with Defects 0 1 2 3 4 5
No. of Automobiles (occurrences) 75 18 4 2 0 1

19.

20.

21.

a)
b)
c)
d)

e)

Estimate the probability that a randomly selected tire from this manufacturer
will contain a major defect.

Suppose you buy an automobile of this make. From the results of (a) calcu-
late the probability that it will have at least one tire with a major defect.
What is the probability that, in a fleet purchase of six of these cars, at least
half the cars have no defective tires?

What is the expected number of defective tires in the fleet purchase of six
cars?

If the replacement cost of a defective tire is $120, what is the total expected
replacement cost for this fleet purchase?

Thirteen electronic components from a manufacturing process are tested every
day. Components for testing are chosen randomly and independently. It was
found over a long period of time that 51.33% of such samples have no defectives.

a)
b)

9

What is the probability of a sample containing exactly two defective compo-
nents?

What is the probability of finding three or more defective components in a
sample?

The assembly line has a weekly bonus system as follows: Each man receives
a bonus of $500 if none of the five daily samples that week contained a
defective. The bonus is $250 if only one sample out of the five contained a
defective, and none of the others contained any. What is the expected bonus
per man per week?

Truck tires are tested over rough terrain. 25% of the trucks fail to complete the
test run without a blowout. Of the next fifteen trucks through the test, find the
probability that:

a)
b)
c)
d)
e)
f)

g)

exactly three have one or more blowouts each;

fewer than four have blowouts;

more than two have blowouts.

What would be the expected number of trucks with blowouts of the next
fifteen tested?

What would be the standard deviation of the number of trucks with blowouts
of the next fifteen tested?

If fifteen trucks are tested on each of three days, what is the probability that
more than two trucks have blowouts on exactly two of the three days?

State any assumptions.

An elevator arrives empty at the main floor and picks up five passengers. It can
stop at any of seven floors on its way up. What is the probability that no two
passengers get off at the same floor? Assume that the passengers act indepen-
dently and that a passenger is equally likely to get off at any one of the floors.
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22. In a particular computer chip 8 bits form a byte, and the chip contains 112 bytes.
The probability of a bad bit, one which contains a defect, is 1.2 E-04.
a) What is the probability of a bad byte, i.e. a byte which contains a defect?
b) The chip is designed so that it will function satisfactorily if at least 108 of its
112 bytes are good. What is the probability that the chip will not function
satisfactorily?

23. In a particular computer chip 8 bits form a byte, and the chip contains 112 bytes.
The probability of a bad bit, one which contains a defect, is 2.7 E-04.
a) What is the probability of a bad byte, i.e. a byte which contains a defect?
b) The chip is designed so that it will function satisfactorily if at least 108 of its
112 bytes are good. What is the probability that the chip will not function
satisfactorily?

Computer Problems

C24. Under normal operating conditions the probability that a mechanical component
will be defective when it comes off the production line is 0.035. A sample of 40
components is taken. In one case, four of the components are found to be defective.
If the operating conditions are still correct, what is the probability that that many or
more components will be defective in a sample of size 40?

C25. A computer chip is organized into bits, bytes, and cells. Each byte contains 8
bits, and each cell contains 112 bytes. The probability that any one bit will be bad (or
corrupted) is 1.LE-11 (i.e. 107'").

a) What is the probability that any one byte will contain a bad bit and so will be
bad and give an error in a calculation? Note that you can neglect the prob-
ability that a byte will contain more than one bad bit.

b) What is the probability there will be no bad bytes in a cell?

c) What is the probability there will be exactly one bad byte in a cell?

d) What is the probability there will be exactly two bad bytes (and so also
exactly 110 good bytes) in a cell?

e) What is the probability there will be exactly three bad bytes (and so also
exactly 109 good bytes) in a cell?

f)  What is the probability there will be two or more bad bytes in a cell? Calcu-
late this in three ways: i) Use the results of some of parts (a) (b) (c).

ii) Use the results of parts (d) and (e).
ii1) Use a cumulative probability.
Do they give the same answer? If not, explain why not.

C26. In order to estimate the fraction defective among electrical components as they
are produced under normal conditions, a sample containing 1000 components is
taken and each component is classified as defective or non-defective. Nine compo-
nents are found to be defective in this sample.
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a) What is the best estimate from this sample of the proportion defective in the
population?

b) Assuming that that estimate is exactly correct, what is the standard deviation
of the proportion defective? Then what are the limits of the interval from the
best estimate minus two standard deviations to the best estimate plus two
standard deviations? What is the probability of a result outside this interval?

¢) Assuming the estimate in part (a) is exactly correct, what is the probability
that more than three defective components will be found in a sample of 100
components?

C27. A sample containing 400 items is taken from the output of a production line. A
fraction 0.016 of the items produced by the line are defective. Assume defective
items occur randomly and independently.

a) What is the probability that the proportion defective in the sample will be no
more than 0.0250?

b) What is the standard deviation of the proportion defective in a sample of this
size?

¢) What sample proportion defective would be two standard deviations less than
the proportion defective in the whole population?

5.4 Poisson Distribution

This is a discrete distribution that is used in two situations. It is used, when certain
conditions are met, as a probability distribution in its own right, and it is also used
as a convenient approximation to the binomial distribution in some circumstances.
The distribution is named for S.D. Poisson, a French mathematician of the nineteenth
century.

The Poisson distribution applies in its own right where the possible number of
discrete occurrences is much larger than the average number of occurrences in a
given interval of time or space. The number of possible occurrences is often not
known exactly. The outcomes must occur randomly, that is, completely by chance,
and the probability of occurrence must not be affected by whether or not the out-
comes occurred previously, so the occurrences are independent. In many cases,
although we can count the occurrences, such as of a thunderstorm, we cannot count
the corresponding nonoccurrences. (We can’t count “non-storms”! )

Examples of occurrences to which the Poisson distribution often applies include
counts from a Geiger counter, collisions of cars at a specific intersection under
specific conditions, flaws in a casting, and telephone calls to a particular telephone or
office under particular conditions. For the Poisson distribution to apply to these
outcomes, they must occur randomly.
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(a) Calculation of Poisson Probabilities

The probability of exactly r occurrences in a fixed interval of time or space under
particular conditions is given by
(M)r e™

PriR=r] = — (5.13)
r.

where f (in units of time, length, area or volume) is an interval of time or space in
which the events occur, and A is the mean rate of occurrence per unit time or space
(so that the product Az is dimensionless). As usual, e is the base of natural loga-
rithms, approximately 2.71828. Then the probability of no occurrences, r = 0, is e™,
the probability of exactly one occurrence, r = 1, is A7 e, the probability of exactly
At e
two occurrences, r = 2, 1S %, and so on. Once one of these probabilities is
calculated it is often more convenient to calculate other members of the sequence
from the following recurrence formula:

At

Pr[R=r+1]=(m]Pr[R=r] (5.14)

The basic relation for the Poisson distribution, equation 5.13, can be derived from
a differential equation or as a limiting expression from the binomial distribution.

Cumulative Poisson probabilities can be found in many reference books. Once
again, Poisson probabilities for single events can be found by subtraction using
equation 5.2: the probability of x; is just the difference between the cumulative
probability that X < x; and the cumulative probability that X < x, ;.

Example 5.11

From tables for the cumulative Poisson distribution to three decimal points, for

12 (eim )(M)k

A=105  PX<12]=), x is equal to 0.742,
e\ (M)
PriX <11] :ZLLO% is equal to 0.639, and
) ()
Pr[X < 10] = 2;0_0% is equal to 0.521.

Then for At = 10.5, we have Pr [R=12] = 0.742 — 0.639 = 0.103, compared with
0.1032 from equation 5.13, and
_ k
10 (e 7Lt)(M)

" (e’x’ )(M)k

Pr[R=11or12] :ZMT_ZMT = 0.742-0.521 = 0.221,
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(e7°7)(105)" . (e7°%)(10.5)"
11! 12!

compared with Pr [R=11] + Pr [R=12] =

=0.1180 + 0.1032 = 0.2212.

These figures check (to three decimal points).

The shape of the probability function for the Poisson distribution is usually
skewed, particularly for small values of (Ar). Figure 5.11 shows the probability
function for Ar = 0.5. Its mode is for zero occurrences, and probabilities decrease
very rapidly as

0.700
. 0.600
Figure 5.11:
Probability Function for 0.500
Poisson Distribution, At = 0.5
>
£ 0.400
=
3
2 0.300
j -
o
0.200 +
0.100 + T
0.000 ——
0 1 2 3 4 5 6 7
At

the number of occurrences becomes larger. For comparison, Figure 5.12 shows the
probability function for Az = 5.0. It is considerably more symmetrical.

0.2
[ ]
0.15 - o
2
2 01 :
Qo
o
a
0.05
Figure 5.12: 0F T | | T T Taag
Poisson Probability Function 01234567891011121314
for At =5.0 v
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Example 5.12

The number of meteors found by a radar system in any 30-second interval under
specified conditions averages 1.81. Assume the meteors appear randomly and inde-
pendently.

a) What is the probability that no meteors are found in a one-minute interval?
b) What is the probability of observing at least five but not more than eight
meteors in two minutes of observation?

Answer: a) A =(1.81) / (0.50 minute) = 3.62 / minute.
For a one-minute interval, L = A = 3.62.
Pr [none in one minute] = e™ = 3% = (0.0268.

b) For two minutes, iU = At = (3.62)(2) = 7.24.
}\,l‘ ro—h
Pr [R=r] = %
r!

(7.24) 7

Then Pr [R=5] = =0.1189.

At
From equation 5.14, Pr [R=r+1] = (m)Pr [R=r]

7.24
so Pr [R=6] = (T](0.1189) =0.1435,
7.24
Pr [R=T7] = (T](0.1435) =0.1484,

7.24
and Pr [R=8] = (T](O.1484) =0.1343.

Then Pr [at least five but not more than eight meteors in two minutes]

=Pr [5 or 6 or 7 or 8 meteors in two minutes]
= 0.1189+0.1435+0.1484+0.1343
=0.545

Example 5.13

The average number of collisions occurring in a week during the summer months at a
particular intersection is 2.00. Assume that the requirements of the Poisson distribu-
tion are satisfied.

a) What is the probability of no collisions in any particular week?

b) What is the probability that there will be exactly one collision in a week?
c) What is the probability of exactly two collisions in a week?

d) What is the probability of finding not more than two collisions in a week?
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e) What is the probability of finding more than two collisions in a week?
f) What is the probability of exactly two collisions in a particular two-week
interval?

Answer: A =2.00/week, t = 1 week, so At = 2.00.
a) Pri[R=0]=e™=¢2%=0.135
b) Pr [exactly one collision in a week]
=Pr [R = 1] = (M)e™=2.00e >
=0.271

¢) Pr[exactly two collisions in a week]
(M) e™  (2.00) &>

=Pr[R=2]= Y = o
=0.271

d) Pr [not more than two collisions in a week]
=Pr[R<2]

=Pr[R=0]+Pr[R=1]+Pr[R=2]
=0.135+0.271 + 0.271
=0.677
e) Pr[more than two collisions in a week]
=Pr[R>2]
=1-Pr[R<2]
=1-0.677
=0.323
f) Now we still have A = 2.00/week, but t = 2 weeks, so Af = 4.00
Then Pr [exactly two collisions in a two-week interval]

(M) e™  (4.00) ¢

2! 2!
=0.147

Example 5.14

The demand for a particular type of pump at an isolated mine is random and indepen-
dent of previous occurrences, but the average demand in a week (7 days) is for 2.8
pumps. Further supplies are ordered each Tuesday morning and arrive on the weekly
plane on Friday morning. Last Tuesday morning only one pump was in stock, so the
storesman ordered six more to come in Friday morning.

a) Find the probability that one pump will still be in stock on Friday morning
when new stock arrives.
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b) Find the probability that stock will be exhausted and there will be unsatisfied
demand for at least one pump by Friday morning.

c) Find the probability that one pump will still be in stock this Friday morning
and at least five will be in stock next Tuesday morning.

Answer: First we have to recognize that the Poisson distribution will apply.
2.8
= 7days

A = 0.4/ day.

a) From Tuesday morning to Friday morning is three days.
Then Az = (0.4 / day)(3 days) = 1.2.
Pr [no demand in three days] = e™ = ¢'> = 0.3012.

Then Pr [one pump will still be in stock Friday morning when new stock arrives]
=0.301.

b) Pr[demand for two or more pumps in three days] =
=1 — Pr [demand for zero or one pump in three days]
= 1 — Pr [demand for no pumps in three days] — Pr [demand for one pump in
three days]
=1-0.3012 -

= 0.3374.
Then Pr [unsatisfied demand for at least one pump by Friday morning] = 0.337.

(0.3012)(1.2) _ .
f (using equation 5.14)

¢) From part (a), Pr [one pump will still be in stock this Friday morning] =
0.3012.

From Friday morning to Tuesday morning is four days, so (Af) = (0.4 /day)(4
days) = 1.6.

After the new stock arrives we will have 1 + 6 =7 pumps in stock Friday morning.

If we have at least five in stock Tuesday morning, the demand in four days is < 2

pumps.
Pr [demand for O pumps in 4 days] = e*= 0.2019.
(¢4)(1.6)
Pr [demand for 1 pump in 4 days] =T = 0.3230.
-1.6 2
. (e7°)(1.6)
Pr [demand for 2 pumps in 4 days] = ———— = 0.2584.

2

Then Pr [demand for 2 or fewer pumps in 4 days] = 0.7834.

Then Pr [at least 5 will be in stock next Tuesday morning | one pump in stock
Friday morning] = 0.7834. Note that this is a conditional probability.

122



Probability Distributions of Discrete Variables

Then Pr [(one in stock Friday morning) M (at least five in stock on Tuesday
morning)] =
= Pr [one in stock Friday morning] x Pr[ at least 5 in stock Tuesday
AM. | one in stock Friday A.M.]
=(0.3012)(0.7834)
=0.236.

(b) Mean and Variance for the Poisson Distribution
Since the Poisson distribution is discrete, the mean and variance can be found from
the previous general relations. Equation 5.5 gives
u=E(R)=3(r)(Pr[R=r])
all r
When the probability function of equation 5.13 is substituted in this expression and

the algebra is worked through, the result is that the mean or expectation of the
number of occurrences according to the Poisson Probability Distribution is

n=At (5.15)
Therefore an alternative form of the probability function for the Poisson distribution is

r -
Pr[R=r]=E2
r!

(5.16)

Similarly, from equation 5.6,

o’ =E(r—},t)2 ZZ(F—M)Z (Pr[Rzr])

all r

Again, the probability function 5.13 can be substituted. The result of this derivation
for the Poisson Distribution is that

o’=M (5.17)
Thus, the variance of the number of occurrences for the Poisson distribution is equal
to the mean number of occurrences, | .
(c) Approximation to the Binomial Distribution

Let us compare the results from the binomial distribution for pL = 1.2, from various
combinations of values of n and p, with the results from the Poisson distribution for
U= At =1.2. In each case let us calculate Pr [R=0] and Pr [R=1]. The results are
shown in Table 5.1.

Table 5.1: Comparison of Binomial and Poisson Distributions
For the Binomial Distribution:

n P p Pr [R=0] Pr [R=1]

4 03 1.2 (1)(0.3)°0.7) =0.240 | (4)(0.3)1(0.7)} =0.412

8 0.15 1.2 (1)(0.15°0.85)® =0.272 | (8)(0.15)'(0.85)’ =0.385
20 0.06 1.2  (1)(0.06)°(0.94)* =0.290 | (20)(0.06)'(0.94)" =0.370
100 0.012 1.2 (1)(0.012)°(0.988)!% =0.299 | (100)(0.012)'(0.988)*° =0.363
200 0.006 1.2  (1)(0.006)°(0.994)*© =0.300 | (200)(0.006)'(0.994)*° = 0.362
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For the Poisson Distribution:
n p u Pr[R=0] | Pr [R=1]

— 12 (12 = 0.301 ‘(1.2)1((1-2): 0.361

In the part of Table 5.1 for the binomial distribution, n is gradually increased and
p is correspondingly decreased so that the product (np = W) stays constant. The
results are compared to the corresponding probabilities according to the Poisson
distribution for this value of [. At least in this instance we find that as # increases and
p decreases so that L stays constant, the resulting probabilities for the binomial
distribution approach the probabilities for the Poisson distribution. In fact, this
relationship between the binomial and Poisson distributions is general. One way of
deriving the Poisson distribution is to take the limit of the binomial distribution as n
increases and p decreases such that the product np (equal to 1) remains constant.

Thus the Poisson distribution is a good approximation to the binomial distribu-
tion if n is sufficiently large and p is sufficiently small. The usual rule of thumb (that
is, a somewhat arbitrary rule) is that if n > 20 and p < 0.05, the approximation is
reasonably good. That rule should be used for problems in this book. The error at the
limit of the approximation according to this rule depends on the parameters, but
some indication can be seen if we look at the case where L = 1.2, p = 0.05, and so n

1.2
=005 = 24. At this point Pr [R=0] by the Poisson distribution is 3.2% higher than

Pr [R = 0] by the binomial distribution, and Pr [R = 1] by the Poisson distribution is
2.0% lower than Pr [R=1] by the binomial distribution.

0.25
Mean
0.2 |
2
= 0.15
e DBinomiaI
©
Q . S
o . Poisson Approximation
a 0.1 4
p=0.042,n =120
0.05 +
[ e S N R R R
0 12 3 45 6 7 8 9 101112

Number of defective items

Figure 5.13: Poisson Approximation to Binomial Distribution
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Figure 5.13 shows a comparison of the binomial distribution and the correspond-
ing Poisson distribution, both for the same value of u = np. This might be for a case
of sampling items coming off a production line when the value of p, the probability
that any one item will be defective, is 0.042, and the value of n is the sample size,
120 items. As we can see, the agreement is good. This case meets the rule of thumb
quite easily, so we would expect good agreement.

The Poisson distribution has only one parameter, |, whereas the binomial distri-
bution has two parameters, n and p. Probabilities according to the Poisson
distribution are easier to calculate with a pocket calculator than for the binomial
distribution, especially for very large values of n and very small values of p. How-
ever, this advantage is less important now that computer spreadsheets are readily
available. We saw in section 5.3(f) of this chapter that the binomial distribution can
be calculated easily using MS Excel.

Example 5.15

5% of the tools produced by a certain process are defective. Find the probability that
in a sample of 40 tools chosen at random, exactly three will be defective. Calculate
a) using the binomial distribution, and b) using the Poisson distribution as an
approximation.

Answer: a) For the binomial distribution with n = 40, p = 0.05,
Pr [R = 3] = ,,C, (0.05)*(0.95)*"

(40)(39)(38)

= W (0.05)*(0.95)*"
=0.185

b) For the Poisson distribution, i = (n)(p) = (40)(0.05) = 2.00.

—— (2.00)" > )
r[R=3]= IOPE 0.180

(d) Use of Computers

Values of Poisson probabilities can be found with the Excel function POISSON with
parameters r, [L or Az, and an indication of whether or not a cumulative value is
required. If the third parameter is TRUE, the function returns the cumulative prob-
ability that the number of random events will be less than or equal to » when either 1
or its equivalent At has the specified value. If the third parameter is FALSE, the
function returns the probability that the number of events will be exactly r when L =
At has the value stated in the second parameter, For example, the cumulative prob-
ability of 12 or fewer random occurrences when i = Af = 10.5 is given by
POISSON(12,10.5,TRUE) as 0.742 (to three decimal points); the probability of
exactly 12 random occurrences is given by POISSON(12,10.5,FALSE) as 0.103
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(again to three decimal points). As for the binomial distribution, use of the computer
with Excel is especially labor-saving when cumulative probabilities are required.

Problems

1. The number of cars entering a small parking lot is a random variable having a
Poisson distribution with a mean of 1.5 per hour. The lot holds only 12 cars.
a) Find the probability that the lot fills up in the first hour (assuming that all
cars stay in the lot longer than one hour).
b) Find the probability that more than 3 cars arrive between 9 am and 11 am.

2. Customers arrive at a checkout counter at an average rate of 1.5 per minute. What
distribution will apply if reasonable assumptions are made? List those assump-
tions. Find the probabilities that
a) exactly two will arrive in any given minute;

b) at least three will arrive during an interval of two minutes;
¢) atmost 13 will arrive during an interval of six minutes.

3. Cumulative probability tables for the Poisson Distribution indicate that for
w=2.5,Pr[R<6]=0.986 and Pr [R <£4] = 0.891. Use these figures to calculate
Pr [R =5 or 6]. Check using basic relations.

4. Cumulative probability tables indicate that for a Poisson distribution with
w=>5.5,Pr[R<6]=0.686 and Pr [R <7] = 0.810. Use these figures to calculate
Pr [R = 7]. Check using a basic relation.

5. Records of an electrical distribution system in a particular area indicate that over

the past twenty years there have been just six years in which lightning has not hit

a transformer. Assume that the factors affecting lightning hits on transformers

have not changed over that time, and that hits occur at random and indepen-

dently.

a) Then what would be the best estimate of the average number of hits on
transformers per year?

b) In how many of the next ten years would we expect to have more than two
hits on transformers in a year?

6. A library employee shelves a large number of books every day. The average
number of books misshelved per day is estimated over a long period to be 2.5.
a) Calculate the probability that exactly three books are misshelved in a particu-
lar day.
b) Calculate the probability that fewer than two books on one day and more
than two books on the next day are misshelved.
¢) What assumptions have been made in these calculations?
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10.

11.

The numbers of lightning strikes on power poles in a particular district have been

recorded. Records show that in the past twenty-five years there have been seven

years in which no lightning strikes on poles have occurred. Assume that strikes

occur randomly and independently, and that the mean number of strikes per unit

time does not change.

a) What distribution applies?

b) What is the probability that more than one strike will occur next year?

¢) What is the probability that exactly one strike will occur in the next two
years?

d) What is the best estimate of the standard deviation of number of strikes in
one year?

The mean number of letters received each year by the university requesting

information about the programs offered by a particular department is 98.8.

Assume that letters are received randomly throughout a year which consists of 52

weeks.

a) What is the probability of receiving no letters in a particular week?

b) What is the probability of receiving two or more letters in a particular week?

¢) What is the probability of receiving no letters in any four-week period?

d) What is the probability of having two weeks in a specified four-week period
with no letters?

The number of grain elevator explosions due to spontaneous combustion has

been 10 in the past 25 years for Great West Grain, a company with over a thou-

sand grain elevators. Explosions occur randomly and independently.

a) From these data make an estimate of the mean rate of occurrence of explo-
sions in a year.

b) On the basis of this estimate, what is the probability that there will be no
explosions in the next five years?

c) If there is at least one explosion a year for three years in a row, the insurance
rates paid by the elevator company will double. What is the probability that
this will happen over the next three years? Use the estimate from part (a).

The average number of traffic accidents in a certain city in a seven-day period is

28. All traffic accidents are investigated on the day of their occurrence by a

police squad car. A maximum of three traffic accidents can be investigated by

one squad car in a day. Assume that accidents occur randomly and independently.

a) What is the probability that no accidents will have to be investigated on a
given day?

b) What is the probability that, on exactly two out of three successive days,
more than two squad cars will have to be assigned to investigate traffic
accidents?

Records for 13 summer weeks for each of the past 80 years in a particular district
show that 32 weeks in total were very wet. Assume that wet weeks occur at
random and independently and that the pattern does not change with time.
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12.

13.

14.

15.

a) What is the probability that no very wet weeks will occur in the next two
years?

b) What is the probability that at least two very wet weeks will occur in the next
two years?

¢) What is the probability that exactly two very wet weeks will occur in the
next two years?

In 104 days, 170 oil tankers arrive at a port for unloading. The tankers arrive
randomly and independently. Probabilities are the same for every day of the
week. A maximum of two oil tankers can be unloaded each day.

a) What is the probability that no oil tankers will arrive on Tuesday?

b) What is the probability that more than two will arrive on Friday? This will
mean that not all can be unloaded on Friday, even if no oil tankers were left
over from Thursday.

¢) Assuming that no oil tankers are left over from Tuesday, what is the prob-
ability that exactly one oil tanker will be left over from Wednesday and none
will be left over from Thursday?

d) What is the probability that more than three oil tankers will arrive in an
interval of two days?

The probability of no floods during a year along the South Saskatchewan River

has been estimated from considerable data to be 0.1353. Assume that floods

occur randomly and independently.

a) What is the expected number of floods during a year?

b) What is the probability of two or more floods during exactly two of the next
three years?

¢) What are the mean and standard deviation of the number of floods expected
in a five-year period?

The number of new categories added each year to a major engineering handbook

has been found to be a random variable, unaffected by the size of the handbook

and its recent history. The probability that no new categories will be added in the

annual update is 0.1353. This year’s edition of the handbook contains 97 categories.

a) How many categories is the next edition expected to contain?

b) What is the probability that the edition two years from now will contain
fewer than 100 categories?

In a plant manufacturing light bulbs, 1% of the production is known to be
defective under normal conditions. A sample of 30 bulbs is drawn at random.
Assume defective bulbs occur randomly and independently. What is the probabil-
ity that:

a) the sample contains no defective bulbs;

b) more than 3 defective bulbs are in the sample.

Do this problem both (1) using the binomial distribution, and (2) using the
Poisson distribution. Compare the conditions of this problem to the rule of
thumb stated in section 5.4(c).
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16. Fifteen percent of piglets raised in total confinement under certain conditions
will live less than three weeks after birth. Assume that deaths occur randomly
and independently. Consider a group of eight newborn piglets.

a)

b)
c)

d)

€)

f)

g)

What probability distribution applies without any approximation to the
number of piglets which will live less than three weeks?

What is the expected mean number of deaths?

What is the probability that exactly three piglets will die within three weeks
of birth? Use the binomial distribution.

Calculate the probability that exactly three piglets will die within three
weeks of birth, but now use the Poisson distribution.

Compare the conditions of this problem to the rule of thumb stated in section
5.4(c). Then would we expect the Poisson distribution to be a good approxi-
mation in this case?

Use the binomial distribution to calculate the probability that fewer than
three piglets will die within three weeks of birth.

Use the Poisson distribution to calculate the probabilities that exactly 0, 1,
and 2 piglets will die within three weeks of birth, and then that fewer than 3
piglets will die within three weeks of birth.

17. Tests on the brakes and steering gear of 200 cars indicate that the probability of
defective brakes is 0.17 and the probability of defective steering is 0.14.

a)

b)

c)

d)

If defective brakes and defective steering are independent of one another,
what is the probability of finding both on the same car?

Consider probability distributions which might apply to the occurrence of
both defective brakes and defective steering among the 200 cars. Assume
occurrences of both are random and independent of other occurrences. What
probability distribution would be expected fundamentally if the probability
of “success” is constant from trial to trial? What probability distribution
would be applicable as a more convenient approximation, and why? Give
the parameters of both distributions.

Apply the approximate distribution to find the probability that at least eleven
cars of 200 would have both defective brakes and defective steering if they
are independent of one another.

If in fact 11 of the 200 cars have both defective brakes and defective steering,
is it reasonable to conclude that defective brakes and defective steering are
independent of one another?

Computer Problems

C18. The number of cars entering a parking lot is a random variable having a Poisson
Distribution with a mean of four per hour. The lot holds only 12 cars.

a)

b)

Find the probability that the lot fills up in the first hour (assuming that all
cars stay in the lot longer than one hour).
Find the probability that fewer than 12 cars arrive during an eight-hour day.
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C19. Customers arrive at a checkout counter at an average rate of 1.5 per minute.
What distribution will apply if reasonable assumptions are made? List those assump-
tions. Find the probability that at most 13 customers will arrive during an interval of
six minutes.

C20. A library employee shelves a large number of books every day. The average
number of books misshelved per day is estimated over a long period to be 2.5.
Calculate the probability that between five and fifteen books (including both limits)
are misshelved in a four-day period.

C21. The average number of vehicles arriving at an intersection under certain condi-
tions is constant, but vehicles arrive independently and the actual number arriving in
any interval of time is determined by chance. The average rate at which vehicles
arrive at the intersection is 360 vehicles per hour. Traffic lights at this intersection go
through a complete cycle in 40 seconds. During the green light only seven vehicles
can pass through the intersection.

a) What is the probability that exactly seven vehicles arrive during one cycle?

b) What is the probability that fewer than seven vehicles arrive during one
cycle?

c) What is the probability that exactly eight vehicles arrive during one cycle, so
that one vehicle is held for the next cycle (assuming there were no hold-overs
from the previous cycle)?

d) What is the probability that one vehicle is held over from cycle 1 as in part
(c) and all the vehicles pass through on the following cycle?

C22. Grain loading facilities at a port have capacity to load five ships per day. Past
experience of many years indicates that on the average 28 ships come in to pick up
grain in a seven-day period. Ships arrive randomly and independently.

a) What is the probability that on a given day the capacity of the dock will be
exceeded by at least one ship, given that no ship was waiting at the beginning
of the day?

b) What is the probability that exactly four ships will show up at the port in a
two-day period?

¢) By how much should the capacity of the loading docks be expanded so that
the probability that a ship will not be able to dock on a given day will be less
than 1%?

C23. The ABC Auto Supply Depot orders stock at the middle of the month and
receives the goods at the first of the next month. The average number of requests for
fuel pump XY33 is four per month. If on April 15, two of these fuel pumps are in
stock and an additional five are ordered to be received by May 1, what is the probabil-
ity that the ABC Depot will not be able to supply all the requests for XY33 in the
month of May? Requests for pumps are random and independent of one another.
Requests are not carried over from one month to the next.
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C24. A manufacturer offers to sell a device for counting lightning flashes during
thunder storms. The device can record up to five distinct flashes per minute.

a) If the average flash intensity experienced during a thunder storm at a record-
ing location is nine flashes in six minutes, what is the probability that at
least one flash will not be recorded in a one-minute period? What assump-
tions are being made?

b) Given this intensity, what is the probability of experiencing six lightning
flashes in a two- minute period?

c¢) What is the highest average intensity in flashes per hour for which the
recorder can be used, if the probability of not recording all flashes in a
minute must be less than 10%?

C25. The probability of no floods during a year along the South Saskatchewan River
has been estimated from considerable data to be 0.1353. Assume that floods occur
randomly and independently. What is the probability of seven or fewer floods during
a five-year period?

C26. The cars passing a certain point as a function of time were counted during a
traffic study of a city road. It was found that there was 10% probability of observing
more than ten cars in an eight-minute interval.

a) Find the probability that exactly five cars will pass in a four-minute interval.
What assumptions are being made?

b) Find the probability that fewer than two cars will pass in each of three
consecutive intervals.

c) Find the probability that fewer than two cars will pass in exactly two of three
consecutive intervals.

d) How long an interval should be used so that the probability of observing
more than nine cars becomes 40%?

C27. Rainstorms around Saskatoon occur at the mean rate of six in four weeks
during the spring season. If one storm occurs in the week after spring snowmelt is
over, the probability of flooding is 0.30; if two storms occur that week, the probabil-
ity goes to 0.60. If more than two occur, the probability becomes 0.75. If no storms
occur, the probability is 0. Overall, if no flooding has occurred by the end of the first
week, the probability of flooding becomes 0.10 if one rainstorm occurs in the next
two weeks, and 0.15 if two or more rainstorms occur in the next two weeks. Assume
that rainstorms occur independently and randomly.

(a) What is the probability of at least four rainstorms in the first three weeks?
(b) What is the probability of flooding in those three weeks?
5.5 Extension: Other Discrete Distributions

Although the binomial distribution and the Poisson distribution are probably the
most common and useful discrete distributions, a number of others are found useful
in some engineering applications. Among them are the negative binomial distribution
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and the geometric distribution. Both these distributions are for the same conditions as
for the binomial distribution except that trials are repeated until a fixed number of
“successes” have occurred. The negative binomial distribution gives the probability
that the kth success occurs on the nth trial, where both k and n are fixed quantities.
The geometric distribution is a special case of the negative binomial distribution; it
gives the probability that the first “success” occurs on the nth trial. We have already
mentioned the multinomial distribution in part (i) of section 5.3. As discussed there,
it can be considered a generalization of the binomial distribution when there are
more than two possible outcomes for each trial. The negative binomial distribution,
the geometric distribution, and the multinomial distribution are described more fully
in the book by Walpole and Myers (see the List of Selected References in section
15.2 of this book).

The Bernoulli distribution is a special case of the binomial distribution when the
number of trials is one. Thus, the only possible outcomes for the Bernoulli distribu-
tion are zero and one. Pr [R=0]=(1 —p),and Pr [R=1] =p.

The hypergeometric probability distribution applies to a situation where there are
only two possible outcomes to each trial, but the probability of “success” varies from
one trial to another in accordance with sampling from a finite population without
replacement. The total number of trials and the size of the population are then both
parameters. This distribution is described in various references including the book by
Mendenhall, Wackerly and Scheaffer (again see section 15.2). The book by Barnes
(see that same section of this book) gives a guideline for approximating the hyper-
geometric distribution by the binomial distribution: the sample size should be less
than one tenth of the size of the finite set of items being sampled.

Use of Computers: When a person has become familiar with the fundamental
ideas of discrete random variables, it is often convenient to use a number of Excel’s
statistical functions, including the following:

HYPGEOMDIST( ) returns probabilities according to the hypergeometric
distribution.

NEGBINOMDIST( ) returns probabilities according to the negative binomial
distribution.

CRITBINOM( ) returns the limiting value of a parameter of the binomial distri-
bution to meet a requirement. This is useful in quality assurance.

In most cases the most convenient way to use functions on Excel, including
selection of arguments for the parameters, is probably to paste the required function
into the appropriate cell on a worksheet. The detailed procedure varies from one
version of Excel to another. On Excel 2000, for example, we click the cell where we
want to enter the function, then from the Insert menu we choose the function cat-
egory (for example, Statistical), then click the function (for example,
HYPOGEOMDIST). Further details are given in part (b) of Appendix B.
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These functions should not be used until the reader is familiar with the main
ideas of this chapter.

5.6 Relation Between Probability Distributions and
Frequency Distributions

This chapter has been concerned with probability distributions for discrete random
variables. Chapter 3 included descriptions and examples of frequency distributions
for discrete random variables. Probability distributions and frequency distributions
are similar, but of course there are important differences between them. The probabil-
ity distributions we have been considering are theoretical and depend on
assumptions, whereas frequency distributions are usually empirical, the result of
experiments. Probability distributions show predictable variations with the values of
the variable. Frequency distributions show additional random variations, that is,
variations which depend on chance.

In this section we will first look at comparisons of some probability distributions
with simulated frequency distributions for the same parameters. Then we will discuss
fitting binomial distributions and Poisson distributions to experimental frequency
distributions.

Random numbers can be used to simulate frequency distributions corresponding
to various discrete random variables. That is, random numbers can be combined with
the parameters of a probability distribution to produce a simulated frequency distri-
bution. The simulated frequency distributions discussed in this section were prepared
using Excel, but the detailed procedures are not relevant to the present discussion.

(a) Comparison of a Probability Distribution with Corresponding Simulated
Frequency Distributions

0.25

0.20

0.15 4

0.10

Probability, p(x)

0.05 +
Figure 5.14: Probability Distribution: T T g
Binomial with n = 10 and p = 0.26 0001 T
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Figure 5.14 shows a probability distribution for a binomial distribution with n =
10 and p = 0.26. Corresponding to this is Figure 5.15, which is for the same values
of n and p but shows two simulated relative frequency distributions. These are for
samples of size eight—that is, samples containing eight items each. As we have seen
before, relative frequencies are often used as estimates of probabilities. However,
with this small sample size the relative frequencies do not agree at all well with the
corresponding probabilities, and they do not agree with one another.

0.4 0.4
v 037 0D 03
25 25
&3 024 &2 0.2+
T)O' U g
x ¢ e §
T 0.1+ T T T 0.1—T T T
0 T T — T O T 11
0o 1 2 3 4 5 6 7

Values, r Values, r

Figure 5.15: Simulated Frequency Distributions for Eight Repetitions

If the sample size is increased, agreement becomes better. Figure 5.16 shows two
simulated relative frequency distributions for samples of size forty, still for a bino-
mial distribution with n = 10 and p = 0.26. The graphs of Figure 5.16 still differ from
one another because of random fluctuations, but they are much more similar to one
another in shape than the graphs of Figure 5.15. Comparison to Figure 5.14 shows
that the general shape of the probability distribution is beginning to come through.

0.4 0.4
> 034 > 0.3+
ge v
s 9 = o
&3 02 B 3 024
€9 g9
0.1 TT T 0.1
0 T T I I I I [ 0 T T T T T T P
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
r, Values

r, Values

Figure 5.16: Simulated Relative Frequency Distributions for Forty Repetitions

Thus, we can see that the relative frequency distributions are both more consis-
tent with one another and more similar to the corresponding probability distributions
when they represent forty repetitions rather than eight repetitions. This seems reason-
able. Huff points out that inadequate sample size often leads to incorrect or
misleading conclusions. He gives some dramatic examples of this in his book How fo

Lie with Statistics (see section 15.2 for reference).
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(b) Fitting a Binomial Distribution

We often want to compare a set of data from observations with a theoretical probability
distribution. Can the data be represented satisfactorily by a theoretical distribution?
If so, the data can be represented very succinctly by the parameters of the theoretical
distribution. Specifically, let us consider whether a set of data can be represented by a
binomial distribution.

The binomial distribution has two parameters, » and p. In any practical case we
will already know 7, the number of trials. How can we estimate p, the probability of
“success” in a single trial? An intuitive answer is that we can estimate p by the
fraction of all the trials which were “successes,” that is, the proportion or relative
frequency of “success.” It is possible to show mathematically that this intuitive
answer is correct, an unbiased estimate of the parameter p.

Example 5.16

In Example 3.2 we considered the number of defective items in groups of six items coming
off a production line in a factory. We found there were 14 defectives in sixty groups
giving a total sample of 360 items, so the proportion defective was 14/360 = 0.0389.

Let us try to fit the observed frequency distribution of Table 3.2 by a binomial
distribution. We have n = 6 and p is estimated (probably not very accurately) to be
0.0389. Then the probability of exactly r defective items in a sample of six items
according to the binomial distribution is given by equation 5.9 as

Pr [R=r]=,C, (0.0389)"(0.9611)¢™"

This prediction of probability by the binomial distribution should be compared with the
observed relative frequencies for various numbers of defectives. These can be obtained
simply by dividing the frequencies of Table 3.2 by the total frequency of 60. Since 60
groups is not a very large number we should not expect the agreement to be very close.

The results are shown in Table 5.2 and Figure 5.17: a theoretical binomial
probability of 0.788 can be compared with an observed relative frequency of 0.600,
and so on.

Table 5.2: Comparison of Binomial Probability with
Observed Relative Frequency

Number of Binomial Probability, = Observed Observed Relative

Defectives, r Pr[R =r] Frequency, f  Frequency, f/X.f
0 0.788 48 0.600
1 0.191 10 0.167
2 0.019 2 0.033
3 0.001 0 0
4 3x10° 0 0
5 5x 107 0 0
6 3x10° 0 0
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Figure 5.17: Comparison of Relative Frequencies with Binomial Probabilities

We can see that the comparison is reasonably good. In section 13.3 we will see a
more quantitative comparison.

(c) Fitting a Poisson Distribution

We may have a set of data which we suspect can be represented by a Poisson distri-
bution. If it is, we can describe it very compactly by the parameters of that
distribution. In addition, there may be some implication (for example, regarding
randomness) if the data can be represented by a Poisson distribution. Thus, we need
to know how to find a Poisson distribution that will fit a set of data.

The Poisson distribution has only one parameter, | or Af. As we have seen in
Chapter 3, the sample mean, X, is an unbiased estimate of the population mean, L.
Therefore, the first step in fitting a Poisson distribution to a set of data is to calculate
the mean of the data. Then the relation for the Poisson distribution is used to calcu-
late the probabilities of various numbers of occurrences if that distribution holds.
These probabilities can be compared to the relative frequencies found by dividing the
actual frequencies by the total frequency.

Example 5.17

The number of cars crossing a local bridge was counted for forty successive 6-minute
intervals from 1:00 to 5:00 A.M. The numbers can be summarized as follows:

x;, number of cars in 6-minute Interval [ frequency
0 2
1 7
2 10
3 8
4 6
5 3
6 3
7 1
>8 0

Fit a Poisson Distribution to these data.
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Answer: First, let us calculate the sample mean as an estimate of the population
mean, L.

X; fi xf;
0 2 0
1 7 7
2 10 20
3 8 24
4 6 24
5 3 15
6 3 18
7 1 7
>8 0 _0
Total 40 115
Then x = Zif;fi = % =2.875. Then take p = Az = 2.875 in 6 minutes.
Then A= ﬁ = % =0.479 cars / minute.
t

According to the Poisson Distribution, then, Pr [R=r] = (2.875)" 287/ r!. It was
mentioned previously that once one of the Poisson probabilities is calculated, others
can be calculated conveniently using the recurrence relation of equation 5.14,

At
Pr [R=r+1] = (m ]Pr [R=r].

Calculation of Poisson probabilities and relative frequencies gives the following
results:

r f: Pr [R=r] Relative Frequency
0 2 0.0564 0.0500
1 7 0.1622 0.1750
2 10 0.2332 0.2500
3 8 0.2234 0.2000
4 6 0.1606 0.1500
5 3 0.0923 0.0750
6 3 0.0442 0.0750
7 1 0.0182 0.0250
>8 0 0.0095 0

Total 40

The frequencies from the problem statement are compared with the calculated
expected frequencies in Figure 5.18. It can be seen that the agreement between
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recorded and fitted frequencies appears to be very good, in fact better than we might
expect.
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Figure 5.18: Comparison of Relative Frequencies with
Probabilities for the Poisson Distribution

In section 13.3 we will see how to make a quantitative evaluation of the goodness

of fit of two distributions. This example will be continued at that point.

Examples 5.16 and 5.17 have compared probabilities to relative frequencies. An

alternative procedure is to calculate expected frequencies by multiplying each prob-
ability by the total frequency. Then the expected frequencies are compared with the
observed frequencies. That procedure is logically equivalent to the comparison we
have made here.

Problems

1.

A sampling scheme for mechanical components from a production line calls for
random samples, each consisting of eight components. Each component is
classified as either good or defective. The results of 50 such samples are summa-
rized in the table below.

Number of Defectives Observed Frequency

0 30
1 17
2 3
>2 0

From these data estimate the probability that a single component will be
defective. Calculate the probabilities of various numbers of defectives in a
sample of eight components, and prepare a table to compare predicted probabili-
ties according to the binomial distribution with observed relative frequencies for
various numbers of defectives in a sample.
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2. Electrical components are produced on a production line, then inspected. Each
component is classified as good or defective. 360 successive components were
grouped into samples, each containing six components. The results are summa-
rized in the table below.

Number of Defectives Observed Frequency

0 34
1 24
2 2
>2 0

From these data estimate the probability that a single component will be
defective. Calculate the probabilities of various numbers of defectives in a
sample of six components, and prepare a table to compare predicted probabilities
according to the binomial distribution with observed relative frequencies for
various numbers of defectives in a sample.

3. A study of four blocks containing 52 one-hour parking spaces was carried out
and the results are given in the following table.

Number of vacant one-hour parking
spaces per observation period 0 1 2 3 4 5 =6

Observed frequency 31 45 20 15 7 3 0
Assuming that the data follow a Poisson distribution, determine:

a) the mean number of vacant parking spaces,

b) the standard deviation both (i) from the given data and (ii) from the theoreti-
cal distribution, and

c) the probability of finding one or more vacant one-hour parking spaces,
calculating from the theoretical distribution.

4. In analysis of the treated water from a sewage treatment process, liquid contain-
ing harmful cells was placed on a slide and examined systematically under a
microscope. One hundred counts of the number of harmful cells in 1 mm by 1
mm squares were made, with the following frequencies being obtained.

Count 0 1 2 3 4 5 6 7 8 9 1011 12
Frequency 1 3 8 14171914126 2 2 2 0

Fit a Poisson distribution to these data. Calculate expected Poisson frequencies to
compare with the observed frequencies. Is the fit reasonably good?

5. An air filter has been designed to remove particulate matter. A test calls for 40
specimens of air to be tested. Of 40 specimens, it was found that there were no
particles in 15 specimens, one particle in 10 specimens, two particles in 8
specimens, three particles in 5 specimens, and four particles in 2 specimens.

a) What type of distribution should the data follow? What are the necessary
assumptions?
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b) Estimate the mean and standard deviation of the frequency distribution from
the given data.

¢) What is the theoretical standard deviation for the probability distribution?

d) Using probabilities calculated from the theoretical distribution, what is the
probability that among ten specimens there would be eight or more with no
particles?

6. A section of an oil field has been divided into 48 equal sub-areas. Counting the
oil wells in the 48 sub-areas gives the following frequency distribution:

Number of 0 1 2 3 4 5 6 7
oil wells

Number of 5 10 11 10 6 4 0 2
sub-areas

Is there any evidence from these data that the oil wells are not distributed ran-
domly throughout the section of the oil field?

140



CHAPTER 6

Probability Distributions of
Continuous Variables

For this chapter the reader needs a good knowledge of integral calculus
and the material in sections 2.1, 2.2, 5.1, and 5.2.

If a variable is continuous, between any two possible values of the variable are an
infinite number of other possible values, even though we cannot distinguish some of
them from one another in practice. It is therefore not possible to count the number of
possible values of a continuous variable. In this situation calculus provides the
logical means of finding probabilities.

6.1 Probability from the Probability Density Function

(a) Basic Relationships

The probability that a continuous random variable will be between limits a and b is
given by an integral, or the area under a curve.

Prla<X <b]=|f(x)dx 6.1)

The function f{(x) in equation 5.1 is called a probability density function. The
probability that the continuous random variable, X, is between a and b corresponds to
the area under the curve representing the probability density function between the
limits a and b. This is the cross-hatched area in Figure 6.1. Compare this relation
with the relation
for the probability
that a discrete
random variable is

Area gives probability

Probz_ﬂbility between limits a
DenSIfcy and b, which is the
Function,

sum of the prob-
ability functions
for all values of
the variable X
between a and b,

a b ) 2 p(x;).

X asx;<b

f(x)

Figure 6.1: Probability for a Continuous Random Variable
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The cumulative distribution function for a continuous random variable is given
by the integral of the probability density function between x = —eo and x = x,, where
x, is a limiting value. This corresponds to the area under the curve from —eo to x,. The
cumulative distribution function is often represented by F(x,) or F(x).

Pr[X<x]=F(x)= [ f(x)ax (6.2)
This expression should be compared with the expression for the cumulative
distribution function for a discrete random variable, which is given by equation 5.1 to
be 2 p(X,-) . Thus, a summation of individual probabilities (for a discrete case)

x<x

corresponds to an integral of the probability density function with respect to the
variable (for a continuous case).

ie, 2p(x) ~  [f(x)dx (6.3)
(Discrete) (Continuous)

To include all conceivable values of the variable X, the limits in equation 6.2
become from x = —oo to x = +eo. The probability of a value is that interval must be 1.
Then we have

F(=)= | F(x)d=1 (6.4

In many cases only values of the variable in a certain interval are possible. Then
outside that interval, the probability density function is zero. Intervals in which the
probability density function is identically zero can be omitted in the integration.

Since any probability must be between 0 and 1, as we have seen previously, the
probability density function must always be positive or zero, but not negative.

f (x) =0 (6.5)
Example 6.1
A probability density function is given by:
fix)=0 forx <0 £(x)
fx) = %xz forO<x<?2
fix)=0 for x> 2

A graph of this density function is
shown in Figure 6.2.

1.5 4

0.5

Figure 6.2: A Simple Probability Density Function
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It is not hard to show that f{x) meets the requirements for a probability density
function. First, since x? is always positive for any real value of x, f(x) is always
greater than or equal to zero. Second, the integral of the probability density function
from —oo to +oo is equal to 1, as we can show by integration:

jf j dx+j—x dx+j

(b) A Simple Illustration: Waiting Time

A student arrives at a bus stop and waits for the bus. He knows that the bus comes
every 15 minutes (which we will assume is exact), but he doesn’t know when the
next bus will come. Let’s assume the bus is as likely to come in any one instant as in
any other within the next 15 minutes. Let the time the student has to wait for the bus
be x minutes. Let us first explore the probabilities intuitively, and then apply equa-
tions 6.1 and 6.2.

i)  What is the probability that the waiting time will be less than or equal to 15
minutes?

Since we know that the bus comes every 15 minutes, this probability must be 1.
i) What is the probability that the waiting time will be less than 5 minutes?

Since the bus is as likely to come in any one instant as in any other to a maxi-

mum of 15 minutes, the probability that the waiting time is less than 5 minutes

the =7
must be 5 3

Similarly, the probability that the waiting time is less than 10 minutes must be

573
iii) Then we can generalize the expression for probability. The probability that the

X
waiting time will be less than x minutes, where 0 < x < 15, must be E .

iv) What is the probability that the waiting time will be between 5 minutes and 10
minutes? This must be:

Pr5<x<10]=Pr[x<10] - Pr[x < 5]
10 5 5 1

15 15 15 3°
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Comparison to equation 6.1 with a = 5 and b = 10 indicates that:

h 10 5
Pr|5<X<10(= x)dx=——-——
[ | ! /() 15 15 B
What simple expression for f{x) will integrate with respect to x to give 5 ?
It must be —.

Then the probability density function must be given by:
fix)=0 forx<O (since waiting time can’t be negative).
fx) = % forO<x< 15
fix)=0 forx>15 (since waiting time can’t be more than 15 minutes)

Let’s check the integral of f{x) for x between 0 and 15, the only interval for which

21 15-0
f(x) is not equal to zero. We have _[de = T = 1 (as required), so the
0

constant value, E , 1S correct.

v) By comparison to equation 6.2 the probability that the waiting time will be less
than 5 minutes must be:

F(S):j; £(x)dx

0 51
:£04x+£de

=0+(%)(5)
3 il

This agrees with part ii.

vi) Using the expressions for the probability density function from part iv, the
general expression for the cumulative distribution function for this illustration

must be:
F(x1)=J.0dx=0 for x, <0
1 X
F(xl):0+0EdX=§ forO0<x, <15

15 X
F(x1)=0+J.%dx+J.0dx
0 15
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:O+E+O
15
Flx)) =1 for x, > 15

The probability density function and the cumulative distribution function are
shown graphically in Figure 6.3.

115

0 15

X, minutes

Figure 6.3 (a): Probability Density Function for Waiting Time for a Bus
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Figure 6.3 (b): Cumulative Distribution Function for Waiting Time for a Bus

(c) Example 6.2
A probability density function is given by:

fix)=0 for x<1
fxX)=blx? for 1<x<5
fix)=0 for x>5

a) What is the value of b?

b) From this obtain the probability that X is between 2 and 4.
¢) What is the probability that X is exactly 2?

d) Find the cumulative distribution function of X.

Answer:

a) To satisfy equation 6.4:

1 5 b oo
Jode+ [ dc+oar=1
—oo l'x 5
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Therefore jb xde=1
1
(6] =1

5
dp=1
5

b=125

3
(In Example 6.1 the constant 3 was obtained in the same way).

Then a graph of the density function for this example is shown below:

1.4

f(X) 1.2

1 -
0.8 -
0.6 -

0.4 -]

Figure 6.4: 0.2~
Graph of Function for Example 6.2 0

0 1 2 3

4
b) Pr[2<X<4]=[125x"dx
2

:[—1.25 X! z

:(-1.25)(5-%)

=0.3125

2
c) Pr [X =2 exactly] = J.1.25 x7 dx
2

= —1.25x*1]z
0
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Note: The result obtained here is important and applies to all continuous random
variables. The probability that any continuous random variable is exactly equal to a

single quantity is zero. We will see this again in Example 7.2.

d) Forx <I: F(x)=[0dx=0

Forl<x <5  F(x)=0+[125x"dx
1

=(-1.25)[x"]
:(-1.25)[%1-1]
= 1.25(1—%)

ForS<x <o F(y)= | f(x)ds

= jO dx+_5|‘1.25x’2dx+]l.0 dx
0 1 3

5

=0+(-125)[x"] +0

:(-1.25)&-1)

=1
Then to summarize, the cumulative distribution function of X is:

0 for x, < 1

1.25(1—i forO<x,<5
X
and 1 for x, > 5

Problems

1. A probability density function for x in radians is given by:
fix)=0 for x<-m/2
flx) = E COoS X for —m2<x<m/2
fix)=0 for x>m/2
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a) Find the probability that X is between 0 and /4.

b) Find an expression for the corresponding cumulative distribution function,
F(x), for —m/2 < x < /2.

c) If x=m/2, what is the value of f{x)? Explain why this is or is not a reason-
able result.

d) What is the probability that X is exactly ©/4? Explain why this is or is not a
reasonable result.

e) Repeat part (a) using F(x).

2. A probability density function is given by:

fix)=0 forx < -2

fix)=1/3 for-2<x<0
1 X

f(x)=§(1_§] for0<x<?2

fix)=0 forx>2

a) What is the probability that X is between 0 and +1?

b) Find the cumulative distribution function of X for each interval. Is the
cumulative distribution function for x > 2 reasonable? Why?

¢) Sketch the cumulative distribution function, showing scales.

d) Use the results of part b to find the probability that X is between O and 1.

f) Find the median of this probability distribution.

3. A radar telemetry tracking station requires a vast quantity of high-quality mag-
netic tape. It has been established that the distance X (in meters) between
tape-surface flaws has the following probability density functions:

f(x) = 0.005 ¢ 0:005x x>0

fix)=0 otherwise

a) Plot a graph of fx) versus x for 0 < x < 800.
b) Find the cumulative probability distribution function,

F(x;)= )jkf(x)abcforx1 >0.

¢) Suppose one flaw in the tape-surface has been identified. Calculate:
(i) the probability that an additional flaw will be found within the next 100 m
of tape.
(ii) the probability that an additional flaw will not be found for at least 200 m.
(iii) the probability that an additional flaw will be found between 100 and
200 m from the flaw already identified.

4. A continuous random variable X has the following probability density function:

fx) =k x? for 0<x<1
fx)=0 for x<Oand x> 1
a) Find k.
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b) Find the cumulative distribution function.
¢) Find the probability that 0.3 < X < 0.6.

6.2 Expected Value and Variance

We saw in Chapter 5 that the mathematical expectation or expected value of a
discrete random variable is a mean result for an infinitely large number of trials, so it
is a mean value that would be approximated by a large but finite number of trials.
This holds also for a continuous random variable. For a discrete random variable the
expected value is found by adding up the product of each possible outcome with its
probability, giving

qu(X)z Z('xi)Pr[xi]'
all x;
For a continuous random variable this becomes (using equation 6.3) the corre-
sponding integral involving the probability density function:
+oo

w=E(X)=[x f(x)dx (6.6)

—co

We saw in Chapter 5 also that the variance of a discrete random variable is the
expectation of (x; — )> This carries over to a continuous random variable and

becomes: -

2 2
o> =E|(x=n)'|= [ (x=n) f(x)ax 6.7)
The alternative form given b_; equation 5.7
o, =E(X*)-p (6.8)
still holds and is generally faster for calculations. For continuous random variables
E(X*)= [ 2 f(x)dx (6.9)
Example 6.3

The random variable of Example 6.1 has the probability density function given by:
fix)=0 forx<0
3
f()c)=§x2 forO<x<?2

fix)=0 forx>2

a) Find the probability that X is between 1 and 2.
b) Find the cumulative distribution function of X.
c) Find the expected value of X.

d) Find the variance and standard deviation of X.

149



Chapter 6

Answer:

If x, <0, F(x,)= [ (0)dx=0

0 X
If0<x <2, F(x)= j(o)dx+j§x2 dx
0

—oo

e

0 2 X
If x, >2, F(x,)= j(o)dx+j§x2dx+j(o)dx
0 2

ol

Then the cumulative distribution function is:
Fx)=0 for x, <0

1
F(x,) = gxf for0<x, <2

Fx)=1 for x, > 2
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c) px:E(X)szf(x)dx

=i(x)(0)dx+j(x)(§x2 )dx+z(x)(0)dx

94
40

Then o, =E(X*)-u

=24-(15)
=0.150

and ¢, =+0.150 =0.387
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Example 6.4

In the illustration of section 6.1(b) the probability density function for the waiting
time was given by

fix)=0 forx<0

1
f(x):E forO<x<15
fix)=0 for x> 15

a) Find the expected value of the waiting time, X minutes.
b) Find the variance and standard deviation of the waiting time.

¢) What is the probability that the waiting time is within two standard devia-
tions of its expected mean value?

Answer:

+

) E(X)= [ xf(x)de

i

{651
~m )
s

2
=75

Then the expected value of the waiting time, or the mean, 1., of the probability
distribution, is 7.5 minutes. This seems reasonable, as it is halfway between the
minimum waiting time, O minutes, and the maximum waiting time, 15 minutes.

b) E(Xz):Ixzf(x)dx
=lf(x2 (%de
)5

_ 1 3
NGO

=75
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S,

=E(X*)-1;

=75-(75)
=18.75

Then the variance of the waiting time is 18.75 minute?, and the standard devia-

tion is

V18.75 =4.33 minutes.

¢) The interval which is within two standard deviations of the expected value is
(W, — 26,) to (U, + 20,), or from 7.5-(2)(4.33)=-1.16

to 7.5 + (2)(4.33) = 16.16 minutes.

Then we have:

Prl(u, —20,)<X<(n, +20,)]|=Pr[-1.16 < X <16.16]

0 151 16.16
=L_[60dx+£de+ 1[ 0 dx

=0+1+0
=1

The probability that the waiting time for this particular probability distribution is
within two standard deviations of its expected mean value is 1 or 100%. We will find
that other distributions often give different results. For example, a different result is
obtained for the normal distribution, as we will see in the next chapter.

Problems
1. Given fx)=blx? for l<x<3

a)
b)

c)
d)

e)

fix)=0 for x<landx>3

Determine the value of b that will make f{x) a probability density function.
Find the cumulative probability distribution function and use it to determine
the probability that X is greater than 2 but less than 3.

Find the probability that X is exactly equal to 2.

Find the mean of this probability distribution.

Find the standard deviation of this probability distribution.

2. An electrical voltage is determined by the probability density function

1
f(x)=g for0<x <2m

fix)=0 for all other values of x

(This is a uniform distribution.)

a)
b)
c)

Find its cumulative distribution function for all values of x.
Find the mean of this probability distribution.
Find its standard deviation.
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d) What is the probability that the voltage is within two standard deviations of
its mean?

3. An electrical voltage is determined by the probability density function

fix) =1 for 1I<x<2
fix)=0 for all other values of x

(This is a uniform distribution.)

a) Find its cumulative distribution function for all values of x.

b) Find the mean of this probability distribution.

¢) Find its standard deviation.

d) What is the probability that the voltage is within one standard deviation of its
mean?

4. The time between arrivals of trucks at a warehouse is a continuous random
variable. The probability of time between arrivals is given by the probability
density function for which

f(H=4e* for >0
fin=0 for t<0

where ¢ is time in hours. (This is an exponential distribution. See section 6.3)

a) What is the probability that the time between arrivals of the first and second
trucks is less than 5 minutes?

b) Find the mean time between arrivals of trucks,u hours.

¢) Find the standard deviation of time between arrivals of trucks,o hours.

d) What is the probability that the waiting time between arrivals of trucks will
be between (UL — 6) hours and (U + G) hours?

e) What is the probability that the time between arrivals of trucks at the ware-
house will be between (L — 26) hours and (U + 26) hours?

5. The probability of failure of a mechanical device as a function of time is given by

the following probability density function:
flH=3e* for >0
fin=0 for t< 0

where 7 is time in months. (This is an exponential distribution. See section 6.3)

a) Find the mean of the probability distribution. This is the mean lifetime of the
device.

b) Find the standard deviation of the probability distribution.

¢) What is the probability that the device will fail within one standard deviation
of its mean lifetime?

d) What is the probability that the device will fail within two standard devia-
tions of its mean lifetime?
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6.3 Extension: Useful Continuous Distributions

The normal distribution is the continuous distribution which is by far the most used
by engineers; it will be considered in Chapter 7. However, a number of others are
also used very widely. Some are based on the normal distribution, and the corre-
sponding tests assume that the underlying population is at least approximately
normally distributed. We will encounter some of these continuous distributions in
Chapters 9, 10 and 13 because they correspond to statistical tests used very fre-
quently. These are the #-distribution, the F-distribution, and the chi-squared
distribution.

The other continuous distributions which should be mentioned here are the
uniform distribution, the exponential distribution, the Weibull distribution, the beta
distribution, and the gamma distribution. Others are important in various specialized
applications.

The uniform distribution is very simple. Its probability density function is a
constant in a particular interval (say for a < X < b) and zero outside that interval. We
have already seen an example of it in the waiting time for a bus, used as a simple
illustration of a continuous distribution in section 6.1, and it has appeared in some of
the problems. It is sometimes used to model errors in electrical communication with
pulse code modulation. Electrical noise on the other hand, is often modeled by a
normal distribution.

The exponential distribution has the following probability density function:

flxy=he™ forx=0
fix)=0 forx<0 (6.10)

where A is a constant closely related to the mean and standard deviation.

For x > 0 the cumulative distribution function for the exponential distribution is
found easily by integration:

F(x,)=Pr[0<X<ux]

b
‘!7‘6 dx (6.11)

e

The exponential distribution is related to the Poisson distribution, although the
exponential distribution is continuous whereas the Poisson distribution is discrete.
The Poisson distribution gives the probabilities of various numbers of random events
in a given interval of time or space when the possible number of discrete events is
much larger than the average number of events in the given interval. If the variable is
time, the exponential distribution gives the probability distribution of the time
between successive random events for the same conditions as apply to the Poisson
distribution.
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The following expression can be found in tables of integrals:

J.xne—axdx — n!af(nﬂ) (612)
0
Use of it greatly reduces the labor of finding expected values and variances for
the exponential distribution.

The exponential distribution is used for studies of reliability, which will be
discussed very briefly in section 6.4, and of queuing theory. Queuing theory gives
probability as a function of waiting time in a queue for service. An example might
be: what is the probability that the time between arrival of one customer and of the
next at a service counter will be more than a stated time, such as three minutes?

The Weibull distribution, the beta distribution, and the gamma distribution are
more complicated, mainly because each has two independent parameters. Both the
Weibull distribution and the gamma distribution give the exponential distribution
with particular choices of one of their two parameters. These distributions are dis-
cussed more fully in the books by Miller, Freund, and Johnson and by Ross (see List
of Selected References, section 15.2), and all but the gamma distribution are dis-
cussed in the book by Vardeman.

6.4 Extension: Reliability

What is the probability that an engineering device will function as specified for a
particular length of time under specified conditions? How will this probability be
modified if we put further components in series or in parallel with one another?
These are the sorts of questions which are addressed in the study of engineering
reliability.

Reliability is applied in many areas of engineering, including design of mechani-
cal devices, electronic equipment, and power transmission systems. Although failures
of supply of electricity to factories, offices, and residences were once frequent, they
have become much less frequent as engineers have devoted more attention to reliabil-
ity. The concepts of reliability have been exceedingly important to manned flights in
space.

The study of reliability makes use of the exponential distribution, the gamma
distribution, and the Weibull distribution. Theory has been developed for many
applications.

A general reference book on the use of reliability in engineering is by Billinton
and Allan (see List of Selected References in section 15.2).
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CHAPTER 7

The Normal Distribution

This chapter requires a good knowledge of the material covered in sections
2.1,2.2,3.1,3.2, and 4.4. Chapter 6 is also helpful as background.

The normal distribution is the most important of all probability distributions. It is
applied directly to many practical problems, and several very useful distributions are
based on it. We will encounter these other distributions later in this book.

7.1 Characteristics

Many empirical frequency distributions have the following characteristics:

1. They are approximately symmetrical, and the mode is close to the centre of the
distribution.

The mean, median, and mode are close together.

3. The shape of the distribution can be approximated by a bell: nearly flat on top,
then decreasing more quickly, then decreasing more slowly toward the tails of the
distribution. This implies that values close to the mean are relatively frequent,
and values farther from the mean tend to occur less frequently. Remember that
we are dealing with a random variable, so a frequency distribution will not fit
this pattern exactly. There will be random variations from this general pattern.

Remember also that many frequency distributions do not conform to this pattern.
We have alyeady seen a yarlety of Thickness of Part
frequency distributions in Chapter 4, 50 0.413

and many other types of distribution ¢ —
. . £
occur in practice. i 40- Los 2
g ()
Example 4.2 showed data on the 2 3>
. . o [
thickness of a particular metal part 5. 307 - 0.248
of an optical instrument as items §T§’ 8
. . [}
came off a production line. A Sy 201 - 0.165
. . . . E&® g
histogram for 121 items is shown in O =
Figure 4.4, reproduced here. G g 10+ 0083 @
. . 0 T T T T T T T T 0
Figure 4.4: Histogram of 3.220 3.270 3.320 3.370 3.420 3.470 3.520 3.570
Thickness of Metal Part Thickness, mm
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We can see that the characteristics stated above are present, at least approxi-
mately, in Figure 4.4. Random variation (and the arbitrary division into classes for
the histogram) could reasonably be responsible for deviation from a smooth bell
shape.

A theoretical distribution that has the stated characteristics and can be used to
approximate many empirical distributions was devised more than two hundred years
ago. It is called the “normal probability distribution,” or the normal distribution. 1t is
sometimes called the Gaussian distribution, but other mathematicians developed it
earlier than Gauss did. It was soon found to approximate the distribution of many
errors of measurement.

7.2 Probability from the Probability Density Function

The probability density function for the normal distribution is given by:
;o tw
f(x)= e (7.1)

oV2Tm
where L is the mean of the theoretical distribution, G is the standard deviation, and

7t =3.14159 ... This density function extends from —oo to +oo. Its shape is shown in
x —_—

K , and the scale

Figure 7.1 below. The first scale on Figure 7.1 gives values of

below it gives corresponding values of x. Thus, TR 0 corresponds to x = U, and

x-u

= -3 corresponds to x = U — 30.

-4 -3 -2 -1 0 1 2 3 4
(x-w/c

u-3c u-20 u-c n u+c u+20 u+3c
X

Figure 7.1: Shape of the Normal Distribution

158



The Normal Distribution

Because the normal probability density function is symmetrical, the mean,
median and mode coincide at x = [L. Thus, the value of 1 determines the location of
the center of the distribution, and the value of ¢ determines its spread.

We have seen that probabilities for a continuous random variable are given by
integration of the probability density function. Then normal probabilities are given
by integration of the function shown in equation 7.1, or the areas under the corre-
sponding curve.

The probability that a variable, X, is between x, and x, according to the normal
distribution is given by:

1 _(amn)

2

e > dx (7.2)

Pr[x1<X<x2]:I

as shown in Figure 7.2.

Figure 7.2: Probability of X Between x, and x,

X1 X 2
X
A corresponding cumulative probability is given by:

(x-n)?

Pr[—oo<X<x]=F(x)=j 1 ¢ 20

—oo

dx 7.3
o\2m 73)

However, the integral of equations 7.2 and 7.3 cannot be evaluated analytically in
closed form. It is evaluated to any required precision numerically and shown in tables

or given by computer software. The constant, o2n’ in equations 7.2 and 7.3 is
determined by the requirement that F(e) = 1 (see equation 6.4).

Equations 7.1, 7.2 and 7.3 represent an infinite number of normal distributions
with various values of the parameters L and 6. A simpler form in a single curve is
obtained by a change of variable.

x —_—
Let z= = (7.4)
o

Then z is a ratio between (x — 1) and ©. It represents the number of standard devia-
tions between any point and the mean. Since x, |1, and ¢ all have the same units in
any particular case, z is dimensionless.
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Since [ and © are constants for any particular distribution, differentiation of
equation 7.4 gives:

dz:ldx
© (7.5)
dx=0dz

Substitution of equations 7.4 and 7.5 in equation 7.2 gives:

2

2 1 _
Pr[x1<X<x2]=J e?ods
5 OV2n
= (7.6)
= J ! e 2 dz
L V21
. . X —U X, —H
where, according to equation 7.4, z, = and z, = —G .

Figure 7.3 shows the normal distribution in
terms of z, the number of standard deviations
from the mean. It can be seen that almost all the
area under the curve is between z = -3 and
z = +3. Therefore, the practical width of the
normal distribution is about six standard
deviations.

Figure 7.3: Normal Distribution as a Function of z

The standard normal cumulative distribution function, ®(z), as a function of z,
is defined as follows:

®@(z,)=Pr[-<Z<z]|=Pr[Z<z]

:]' ' 7 g (7.7)

2n

It corresponds to the area under the curve in Figure 7.4. o(2)

Figure 7.4: Standard Cumulative Distribution Function “4-3-2-101 234
for the Normal Probability Distribution z
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If the change of variable shown in equation 7.4 is applied and the curve shown in
Figure 7.1 is integrated according to equation 7.3 to obtain a cumulative normal
distribution, the result is an s-shaped curve, as shown in Figure 7.5.

1

Figure 7.5:
Cumulative Normal Probability
? 0.75
.J__:
@©
Qo
o
a
o 0.5
2
&
S
€
>
U 0.25

7.3 Using Tables for the Normal Distribution

Table A1l in Appendix A gives values of the cumulative normal probability as a
function of z, the number of standard deviations from the mean. Part of Table Al is
shown below.

Part of Table A1
Cumulative Normal Probability

T 1 17 T T T T1T°
-4 -3-2-10 12 3 4
V4

D(z) =Pr[Z<z]

Az=  -0.09 -0.07 -0.06 -0.05 . -0.01 -0.00

Zy Zy
=3.7 | 0.0001 . 0.0001 0.0001 0.0001 . 0.0001 0.0001 | =3.7
-0.8 | 0.1867 . 0.1922 0.1949 0.1977 . 0.2090 0.2119 | -0.8
—0.7 | 0.2148 . 0.2206 | 0.2236| 0.2266 . 0.2389 0.2420 | -0.7
-0.6 | 0.2451 . 0.2514 0.2546 0.2578 . 0.2709 0.2743 | -0.6
-0.0 | 0.4641 . 0.4721 0.4761 0.4801 . 0.4960 0.5000 | -0.0
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Table Al gives values of z, (-3.7, -3.6, ... -0.1,-0.0; 0.0, 0.1, ... 3.7, 3.8)
along the lefthand side and righthand side of the table over two pages. The numbers
along the top of the table give smaller increments, Az =-0.09, -0.08, ..., =0.01, 0.00
on the first page, and on the second page 0.00, 0.01, ..., 0.08, 0.09. The value of z
for a particular row and column is the sum of the value of z, for that row (along the
sides) plus the increment, Az, for that column (along the top of the table).

2=2,+Az (7.8)

To illustrate, see the part of Table A1 shown above. Say we want ®(-0.76): we look
for the row labeled z, = —0.7 along the sides and the column labeled Az = —0.06 along
the top (since —0.76 = (-0.7) + (-0.06)) and read ®(-0.76) = 0.2236.

The diagram at the top of the table towards the right indicates that ®(z) corre-
sponds to the area under the curve to the left of a particular value of z (here
z=-0.76).

Suppose that instead we want ®(+0.76). This is given on the second page of
Table A1 in Appendix A. As before, we look for the applicable row, labeled z, = 0.7
along the sides, and the column labeled Az = 0.06 (since 0.76 = 0.7 + 0.06). For this
value of z we read from the table that ®(0.76) = 0.7764.

Because the distribution is symmetrical, there must be a simple relation between
®(-0.76) and D(+0.76), or in general between ®(—z) and D(+z). That relation is:

D(-z)=1-D(+z) (7.9)

or in this case ®(-0.76) = 1 — ®(+0.76) = 1 — 0.7764 = 0.2236. Of course that means
that ®(-0.00) = ®(+0.00) = 0.5000, so half of the total area under the curve is to the
left of z = 0, the mean and median and mode of the distribution. If you think about it,
that makes sense.

Example 7.1

a) What is the probability that Z for a normal
probability distribution is between
—0.76 and +0.76?

b) What is the probability that Z for a normal
probability distribution is smaller than —0.76 or
larger than +0.76?

Answer:

Area for part (b)

Area for
part (a)

A sketch such as that shown in Figure 7.6 is very 432t 23
helpful in visualizing the required integral and

finding appropriate values from the table. Figure 7.6:
Probabilities for Example 7.1
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a) Pr[-0.76 < Z < +0.76] corresponds to the middle area cross-hatched in Figure 7.6.
The calculation of probabilities is as follows:
Pr [-0.76 < Z < +0.76] = Pr[Z > 0.76] — Pr [Z > - 0.76]
= ®(0.76) — ©(-0.76)
=0.7764 — 0.2236 (from before)
=0.5528

b) Pr[(Z<-0.76) U (Z>+0.76)] corresponds to the outer areas in the sketch
above.

Pr[(Z<-0.76) U (Z>+0.76)] = [®(-0.76)] + [1 — ®(+0.76)]
=0.2236 + [1 — 0.7664]
=0.4472

Check: Between them, parts (a) and (b) cover all possible results:

Then Pr{[-0.76 < Z < +0.76] + [(Z < -0.76) N (Z > + 0.76]} = 0.5528 + 0.4472
=1.0000 (check)
Because the normal distribution is used so frequently, it is important to become
familiar with Table A1.

The reader should note that other forms of tables for the normal distribution are
also in common use. One form gives the probability of a result in one tail of the
distribution, that is Pr [Z > z,] for z, 2 0, or Pr [Z < z,] for z, £ 0. A variation gives
the probability corresponding to both tails together. Another type gives the probabil-
ity of a result between the mean and z, standard deviations from the mean, that is
Pr[Z < z,] for z, 2 0, or Pr [Z > z,] for z, < 0. These different forms of tables must
not be confused. Confusion is reduced because a small graph at the top of a table
almost always indicates which area corresponds to the values given.

Study the following examples carefully.

Example 7.2

A city installs 2000 electric lamps for street lighting. These lamps have a mean
burning life of 1000 hours with a standard deviation of 200 hours. The normal
distribution is a close approximation to this case.

a) What is the probability that a lamp will fail in the first 700 burning hours?
7= X =M 700 —1000
o 200
From Table A1 for z; =-1.50 = (-1.5) + (-0.00),
Pr [X <700] = Pr [Z < -1.50]
= ®(-1.50)
= 0.0668

=-1.50
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Then Pr [burning life < 700 hours] = 0.0668 RAequifed
or 0.067.

b) What is the probability that a lamp will fail

between 900 and 1300 burning hours? Aq‘

700 1000 x hours
. _x—u_900-1000 no 0 z
: o 200 Figure 7.7:
=-0.50=(-0.5)+(~0.00) Probabilities for

Example 7.2(a)

X, —p _1300-1000 _
c 200
=+1.50 = (+1.5)+(0.00)

Z2=

From Table A1, ®(z,) = ®(-0.50) = 0.3085 :
and ®(z,) = O©(1.50) = 0.9332 900 1000 300 x hours

Then Pr [900 hours < burning life < 1300 hours] A
Figure 7.8:
=d(z,) - D 9
@) @) Probabilities for
=0.9332 - 0.3085 Example 7.2(b)

=0.6247 or 0.625.

¢) How many lamps are expected to fail between 900 and 1300 burning hours?

This is a continuation of part (b). The expected number of failures is given by the
total number of lamps multiplied by the probability of failure in that interval.
Then the expected number of failures = (2000) (0.6247) = 1249.4 or 1250 lamps.
Because the burning life of each lamp is a random variable, the actual number of
failures between 900 and 1300 burning hours would be only approximately 1250.
d) What is the probability that a lamp will burn for exactly 900 hours?
Since the burning life is a continuous random variable, the probability of a life of
exactly 900 burning hours (not 900.1 hours or 900.01 hours or 900.001 hours,
etc.) is zero. Another way of looking at it is that there are an infinite number of
possible lifetimes between 899 and 901 hours, so the probability of any one of
them is one divided by infinity, so zero. We saw this before in Example 6.2.
e) What is the probability that a lamp will burn between 899 hours and 901 hours
before it fails?
Since this is an interval rather than a single exact value, the probability of failure
in this interval is not infinitesimal (although in this instance the probability is
small).
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_x, -1 899-1000

3= =-0.505
o 200
1-1
Z, = 201-1000 =-0.495
200
899 901 1000 x hours
We could apply linear interpolation between the values z oz, 0 oz
given in Table A1l. However, considering that in practice Figure 7.9:
the parameters are not known exactly and the real distribu- Probabilities for
tion may not be exactly a normal distribution, the extra Example 7.2(e)

precision is not worthwhile.
Pr [899 hours < burning life < 901 hours]
= ® (-0.49) — ® (-0.50)
=® (-0.4 -0.09) - ® (-0.5 - 0.00)
=0.3121 - 0.3085
=0.0036 or 0.4%

(0.3% would also be a reasonable approximation).

f)  After how many burning hours would we expect 10% of the lamps to be left?
This corresponds to the time at which
Pr [burning life > x, hours] = 0.10,
so Pr [burning life < x, hours] =1 — 0.10 = 0.90.
Thus, Pr [Z < z,] =0.90

1000 x;, xhours

or d(z,) =0.90 o oz 2
From Table Al, ]
Figure 7.10:
®(1.2 +0.08) = 0.8997 Probabilities for
and d(1.2 +0.09) = 0.9015 Example 7.2(f)

Once again, we could apply linear interpolation but the accuracy of the
calculation probably does not justify it.

Since (0.90 — 0.8997) << (0.9015 — 0.90), let us take z, = 1.28. Then we have

Z =%:1.28
=100 _ oo
200

x, = (200)(1.28)+1000 = 1256
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Then after 1256 hours of burning, we would expect 10% of the lamps to be
left. And again, because the burning time is a random variable, performing the
experiment would give a result which would be close to 1256 hours but probably
not exactly that, even if the normal distribution with the given values of the mean
and standard deviation applied exactly.

g) After how many burning hours would we expect 90% of the lamps to be left?

We won’t draw another diagram, but imagine looking at Figure 7.10 from the
back.

Pr [Z < z,] =0.10 or ¢(z,) = 0.10. From Table A1 we find
0(-1.2 - 0.08) = 0.1003
0(-1.2 - 0.09) = 0.0985

so z, = —1.28. (Do you see any resemblance to the answer to part (f)? Look again
at equation 7.9.)

X, —W _x,—1000

7, = = =-1.28
c 200

x, —1000 =-256

x, =744

After 744 hours we would expect 90% of the lamps to be left.

Example 7.3

In another city 2500 electric lamps are installed for street lighting. The lamps come
from a different manufacturer and have a mean burning life of 1050 hours. We know
from past experience that the distribution of burning lives approximates a normal
distribution. The 250th lamp fails after 819 hours. Approximately what is the stan-
dard deviation of burning lives for this set of lamps?

Answer:

250
=29 0100
(2)=2500

From Table A1, ®(-1.2 — 0.09) = 0.0985
and ®(-1.2 -0.08) =0.1003

Then z=2""=_128

o 819 1050 x hours

Z4 0 z
819_1050:—1.28 .
o Figure 7.11:
-231 Probabilities for
:m=180 Example 7.3
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Then the standard deviation of burning hours is approximately 180 hours. (As well as
random variation, the term “approximately” covers a “correction for continuity”
which we will encounter a little later.)

Example 7.4

The strengths of individual bars made by a certain manufacturing process are ap-
proximately normally distributed with mean 28.4 and standard deviation 2.95 (in
appropriate units). To ensure safety, a customer requires at least 95% of the bars to be
stronger than 24.0.

a) Do the bars meet the specification?

b) By improved manufacturing techniques the manufacturer can make the bars more
uniform (that is, decrease the standard deviation). What value of the standard
deviation will just meet the specification if the mean stays the same?

Answer:
a) Zl = M
o
_ 24.0-28.4 — 149
295 24.0 284 Strength, x
z4 0 z
®(-1.49) = ®d(-1.4 -0.09) = 0.0681
(from Table A1) Figure 7.12:

Probabilities for

The probability that the bars will be stronger than 24.0 Example 7.4(a)

1s 1 —0.0681 = 0.9319 or 93.2%. Since this is less than
95%, the bars do not meet the specification.

b) For this part,c is the unknown.
From Table A1 we look for a value of z for which ®(z,) = 0.05. We find

D(-1.65) = 0.0495 and O(-1.64) = 0.0505. Then z,

must be between —1.65 and —1.64. Since in this case the
desired value of ®(z,) is halfway between ®(-1.65) and
®(-1.64), interpolation is very easy, giving z, = —1.645.

Then 7, = M ) 24.0 28.4 Strenth,x
(0 z, 0 z
—1.645=M Figure 7.13:
Y Probabilities for
o= —4.4 —067 Example 7.4(b)
—1.645

If the standard deviation can be reduced to 2.67 while keeping the mean constant, the
specification will just be met.
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Example 7.5

An engineer decides to buy four new snow tires for his car. He finds that Retailer A is
offering a special cash rebate, which depends on how much snow falls during the first
winter. If this snowfall is less than 50% of the mean annual snowfall for his city, his
rebate will be 50% of the list price. If the snowfall that winter is more than 50% but
less than 75% of the mean annual snowfall, his rebate will be 25% of the list price. If
the snowfall is more than 75% of the mean annual snowfall, he will receive no
rebate. The engineer finds from a reference book that the annual snowfall for his city
has a mean of 80 cm and standard deviation of 20 cm and approximates a normal
distribution. The list price for the brand and size of tires he wants is $80.00 per tire.

The engineer checks other retailers and finds that Retailer B sells the same brand and
size of tires with the same warranty for the same list price but offers a discount of 5%
of the list price regardless of snowfall that year.

a) Compare the expected costs of the two deals. Which expected cost is less?

b) How much is the difference for four new snow tires? Neglect the relative advan-
tages of a cash rebate as compared to a discount.

Answer: a) For Retailer A: =80 cm, 6 =20 cm.

50% of W is 40 cm, and 75% of W is 60 cm

@(z;)

40 80 Snowfall, cm 60 80 Snowfall, cm
z; 0 z z, 0 z

Figure 7.14: Probabilities for Example 7.5(a)

x,—u_40-80
6 20
Pr [snowfall < 50% of u] = Pr [Z < -2.00]

= ®(-2.00)

=0.0228 (from Table A1)

5= =-2.00

x,—u _ 60-80
Z2 ==
c 20
Pr [snowfall < 75% of u] = Pr [Z < -1.00]

=-1.00

= ®(-1.00)
=0.1587 (from Table A1)
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Then Pr[50% of u < snowfall < 75% of pu] = ®(-1.00) — ®(-2.00)
=0.1587 - 0.0228
=0.1359

Then expected rebate from Retailer A is:

(50%) (Pr [snowfall < 50% of 1] ) + (25%) (Pr [50% of 1 < snowfall < 75% of u])
= (50%) (0.0228) + (25%) (0.1359)
=(1.14 + 3.40)%
=4.54% of list price
Discount from Retailer B is 5% of list price, so the discount from Retailer B is
larger than the expected rebate from Retailer A. Therefore, the expected cost of
buying from Retailer B is a little less than the expected cost of buying from Retailer A.
b) Cost of four new snow tires is as follows.
List price: (4) ($80.00) = $320.00
After rebate from Retailer A, expected cost = (1-0.0454) ($320.00) = $305.48
After discount from Retailer B, cost = (1 — 0.05) ($320.00) = $304.00

Then the difference in expected cost for four new snow tires is $1.48.

Some Quantitative Relationships
We can also use Table Al to make more quantitative comments concerning probabilities
of results inside or outside chosen intervals on Figure 7.4.
Since Pr[-2<Z <+ 2] =®(+ 2.0 + 0.00) — &(-2.0 — 0.00)
=0.9772 - 0.0228
=0.9544
[Check: ®(-z,) =1 - ®(+z,) (fromeq. 7.9)
0.0228 = 1 -0.9772 V]

Thus, 95.4% of all values are expected to be within two standard deviations from
the mean of a normal distribution. By subtraction from 100%, 4.6% of all values are
expected to be outside that interval.

Similarly, Pr[-3 <Z <+ 3] = ®(+ 3.0 + 0.00) — ®(- 3.0 — 0.00)

=0.9987 - 0.0013)
=0.9974

S0 99.7% of all values are expected to be within three standard deviations from
the mean. Only 0.3% of all values are expected to be farther from the mean than

three standard deviations. Then, although the normal distribution extends in principle
from —eo to +oo, the practical width is about six standard deviations. If there is some
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practical limit on a variable (most commonly, that the variable never becomes
negative), it will have little effect if the limiting value is at least three standard
deviations from the mean.

Problems

(The following problems can be solved either with a pocket calculator and tables, or
using a computer, as will be discussed in section 7.4.)

1.

Diameters of bolts produced by a particular machine are normally distributed
with mean 0.760 cm and standard deviation 0.012 cm. Specifications call for
diameters from 0.720 cm to 0.780 cm.

a) What percentage of bolts will meet these specifications?

b) What percentage of bolts will be smaller than 0.730 cm?

The annual snowfall in Saskatoon is a normally distributed variable with a mean

of 80 cm and a standard deviation of 20 cm.

a) What is the probability that the snowfall in any year will exceed 30 cm?

b) What is the probability that the snowfall in any year will be between 55 and
90 cm?

The diameters of screws in a batch are normally distributed with mean equal to

2.10 cm and standard deviation equal to 0.15 cm.

a) What proportion of screws are expected to have diameters greater than 2.50 cm?

b) A specification calls for screw diameters between 1.75 cm and 2.50 cm.
What proportion of screws will meet the specification?

Diameters of ball bearings produced by a company follow a normal distribution.
If the mean diameter is 0.400 cm and the standard deviation is 0.001 cm, what
percentage of the bearings can be used on a machine specifying a size of 0.399
10.0015 cm? What is the upper bound of the size range that has a lower bound of
0.398 cm and includes 80% of the bearings?

An engineer working for a manufacturer of electronic components takes a large
number of measurements of a particular dimension of components from the
production line. She finds that the distribution of dimensions is normal, with a
mean of 2.340 cm and a coefficient of variation of 2.4%.

a) What percentage of measurements will be less than 2.45 cm?

b) What percentage of dimensions will be between 2.25 cm and 2.45 cm?

d) What value of the dimension will be exceeded by 98% of the components?

The probability that a river flow exceeds 2,000 cubic meters per second is 15%.
The coefficient of variation of these flows is 20%. Assuming a normal distribu-
tion, calculate

a) the mean of the flow.

b) the standard deviation of the flow.

c) the probability that the flow will be between 1300 and 1900 m?/s.
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10.

11.

12.

13.

Bags of fertilizer are weighed as they come off a production line. The weights are
normally distributed, and the coefficient of variation is 0.085%. It is found that
2% of the bags are under 50.00 kg.

a) What is the mean weight of a bag of fertilizer?

b) What percentage of the bags weigh more than 50.020 kg?

¢) What is the upper quartile of the weights?

The variation of copper content in a particular ore body follows a normal distri-
bution. The coefficient of variation is 18%. The probability that the copper
content exceeds 18.2 is 0.240.

a) What is the mean copper content?

b) What is the standard deviation of the copper content?

c) What is the probability that the copper content will be less than 11.27

30% of the soil samples obtained from a proposed construction site gave test

results for compressive strength of more than 3.5 tons per square foot. The

coefficient of variation of the strengths is known to be 20%. Calculate:

a) the mean soil strength,

b) the standard deviation of soil strengths,

c) the probability of soil strengths falling between 2.7 and 4.0 tons per square
foot. State any assumptions made.

For a certain type of fluorescent light in a large building, the cost per bulb of

replacing bulbs all at once is much less than if they are replaced individually as

they burn out. It is known that the lifetime of these bulbs is normally distributed,

and that 60% last longer than 2500 hours, while 30% last longer than 3000

hours.

a) What are the approximate mean and standard deviation of the lifetimes of the
bulbs?

b) If the light bulbs are completely replaced when more than 20% have burned
out, what is the time between complete replacements?

It is known that 10% of concrete samples have compressive strength less than
30.0 MN/m? and 20% have compressive strength greater than 36.0 MN/m?. If the
minimum acceptable strength is specified to be 28.0 MN/m?, what is the prob-
ability that a sample will have a strength less than the specified minimum?

What assumption is being made?

Of the Type A electrical resistors produced by a factory, 85.0% have resistance
greater than 41 ohms, and 3.7% of them have resistance greater than 45 ohms.
The resistances follow a normal distribution. What percentage of these resistors
have resistance greater than 44 ohms?

A manufactured product has a length that is normally distributed with a mean of

12 cm. The product will be unusable if the length is 11¥2 cm or less.

a) If the probability of this has to be less than 0.01, what is the maximum
allowable standard deviation?
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14.

15.

16.

17.

18.

b) Assuming this standard deviation, what is the probability that the product’s
length will be between 11.75 and 12.35 cm?

The probability of a river flow exceeding 2,000 cubic meters per second is 15%
and the coefficient of variation of these flows is 20%. Assuming a normal
distribution calculate

(a) the mean of the flow,

(b) the standard deviation of the flow,

(c) the probability that the flow will be between 1300 and 1900 meters? /sec.

A water quality parameter monitored in a lake is normally distributed with a

mean of 24.3. It is also known that there is 70% probability that the parameter

will exceed 17.6.

a) Find the standard deviation of the parameter.

b) If the parameter exceeds the 95th percentile, an investigation of a local
industry begins. What is this critical value?

The time of snowpack formation is the time of the first snowfall which stays for
the winter. In one Canadian city the mean time of snowpack formation is mid-
night of November 24, the 329th day of the year, and this time is approximately
normally distributed. The standard deviation of the time of snowpack formation
is 16.0 days. What is the probability that snowpack formation will occur before
midnight October 20, the 294th day of the year, for two years in a row?

In a university scholarship program, anyone with a grade point average over 7.5
receives a $1,000 scholarship, anyone with an average between 7.0 and 7.5
receives $500, anyone with an average between 6.5 and 7.0 receives $100, and all
others receive nothing. A particular class of 500 students has an overall average
of 4.8 with a standard deviation of 1.2. Calculate the cost to the university of
supplying scholarships for this class. State any assumption.

Steel used for water pipelines is sometimes coated on the inside with cement

mortar to prevent corrosion. In a study of the mortar coatings of a pipeline used

in a water transmission project, the mortar thicknesses were measured for a very

large number of specimens. The mean and the standard deviation were found to

be 0.62 inch and 0.13 inch, respectively, and the thickness was found to be

normally distributed.

a) In what percentage of the pipelines is the thickness of mortar less than 0.5
inch?

b) If four pipes are selected at random, what is the probability that two or more
have mortar thickness less than 0.5 inch?

¢) 100 pipes are taken and their mortar thicknesses are measured individually. If
the mortar thickness of a pipe is found to be less than 0.5 inch, 10% less is
paid to the manufacturer for that pipe. If the normal price of a pipe is
S125.00, what is the expected cost of 100 pipes?
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19.

20.

21.

On a particular farm, profit depends on rainfall. The rainfall is normally distrib-
uted with a mean of 31 cm and a standard deviation of 9 cm. Farm profits are:
a) $100,000 if rainfall is over 44 cm,

b) $150,000 if rainfall is between 29 and 44 cm,

¢) $130,000 if rainfall is between 22 and 29 cm,

d) $ 65,000 if rainfall is between 15 and 22 cm, and

e) —$ 80,000 if rainfall is less than 15 cm

Find the expected farm profit.

The time a student takes to arrive at a solution for a statistics problem depends

upon whether he or she recognizes certain simplifying comments in the problem

statement. The probability of this recognition is 0.7. If the student recognizes the

comments, the solution time is normally distributed with a mean time of 20

minutes and standard deviation of 4.3 minutes. If the student does not recognize

the simplifying comments, the solution time is normally distributed with a mean

time of 43 minutes with a standard deviation of 10.2 minutes.

a) What is the expected solution time in a large class of students?

b) What is the probability that a student chosen at random will require more
than 28.2 minutes?

¢) What is the probability that he or she will require more than 43 minutes?

An irrigation pump is located on a reservoir whose mean water level is 550 m with
a standard deviation of 10 m. The water level affects the output of the pump. If the
level is below 538 m, then the expected pump output is 250 L / min with a stan-
dard deviation of 45 L / min; if the level is between 538 and 555 m, then the
expected pump output is 325 L / min with a standard deviation of 52 L. / min; and
if the level is greater than 555 m, then the expected pump output is 375 L / min
with a standard deviation of 48 L / min. The variation in the output at any given
water level is due to variations in the electrical power supply and wave action on
the reservoir. All variables are normally distributed.
a) What are the probabilities of the levels being
i. less than 538 m?
ii. between 538 m and 555 m?
iii. greater than 555 m?
b) What is the expected pumping rate?
c¢) If the cost of pumping is $25 / hr when the flow rate is less than 350 L / min,
and $35 / hr when the flow rate exceeds 350 L / min, calculate the average
cost of pumping.

7.4 Using the Computer

Instead of using tables such as Table A1, cumulative normal probabilities can be
obtained from computer software such as Excel. Standard cumulative normal prob-
abilities, @(z), can be obtained by the Excel function =NORMSDIST(z), where
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is the standard normal variable. The inverse function is also available on

Excel. If we know a value of the cumulative normal probability, ®(z), and want to
find the value of z to which it applies, we can use the function

=NORMSINV (cumulative probability). In both function names the letter “s” stands
for the standard form—that is, a relation between ® and z rather than between ® and
x. Both function names can be pasted into the required cell choosing the statistical
category and then the required function, as discussed in section 5.5. Alternatively,
they can be typed.

These Excel functions can be used to solve Examples 7.1 to 7.5 and the Problems

following section 7.3. To illustrate, here is an alternative solution of Example 7.4.
Sketches of the probability relations shown in Figures 7.11 and 7.12 are still needed
to check that the calculated probabilities are reasonable.

Example 7.4 (Solution Using Excel)

The strengths of individual bars made by a certain manufacturing process are ap-
proximately normally distributed with mean 28.4 and standard deviation 2.95 (in
appropriate units). To ensure safety, a customer requires at least 95% of the bars to be
stronger than 24.0.

a)
b)

Do the bars meet the specification?

By improved manufacturing techniques, the manufacturer can make the bars
more uniform (i.e., decrease the standard deviation). What value of the standard
deviation will just meet the specification if the mean stays the same?

X —
Answer: a) z, = ITH with i =28.4, 6 = 2.95, and x, = 24. Then the function

(b)

=(24-28.4)/2.95 was entered in cell C2 with the label z, in cell A2. Explanations
are in column B. Since ®(z,) is given by NORMSDIST(z,), the function
=NORMSDIST(C2) was entered in cell C3, and the label Phi(z1) was entered in
cell A3. The percentage probability that the bars will be stronger than 24.0 is
given by the function =(1-C2)*100%, which was entered in cell C4, and the
corresponding label Pr%(stronger) was entered in cell A4. The result of the
calculation was 93.2 (formatted to 1 decimal place using the Format menu). The
answer to part (a) of the problem was placed in row 5.

Now we require ®(z,) = 1 — 0.95. Therefore the label Phi(z2) was entered in cell
A7, and the function =1 — 0.95 was entered in cell C7. The label z2 was entered in
cell A8, and the function, =NORMSINV(C7), was entered in cell C8. The result

x —
was —1.645. Since z,= . —H , the function =(24.0-28.4)/C8 was entered in cell

C9, and the label Reqd SD was entered in cell A9. The result was 2.675 (format-
ted to 3 decimal places using the Format menu). The answer to part (b) was
placed in rows 10 and 11.
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The Excel work sheet is shown below in Table 7.1. Answers to the specific
questions are in rows 5, 10 and 11.

Table 7.1: Work Sheet for Example 7.4

A B C
1 Ex 7.4 (a)
2 |zl (24-28.4)/2.95= | —-1.4915254
3 Phi(z1) NORMSDIST(C1)=| 0.06791183
4 Pr%(stronger) | (1-C2)*100%= 93.2
5 > Since 93.2% < 95%, the bars do not meet the specification.
6 (b)
7 Phi(z2) 1-0.95= 0.05
8 z2 NORMSINV(C7)= | —1.644853
9  Reqd SD (24-28.4)/C8= 2.675
10 > If std dev can be reduced to 2.675 and the mean

11 stays the same, the specification will just be met.

7.5 Fitting the Normal Distribution to Frequency Data

We will find great advantages in fitting a normal distribution to a set of frequency
data if the two distributions agree reasonably well. We can summarize the data very
compactly in that case by giving the mean and standard deviation. Powerful statisti-
cal tests that assume that the underlying distribution is normal become available for
our use.

In this section we will examine fitting a normal distribution to grouped frequency
data and to discrete frequency data. This approach will be extended in section 7.6 to
approximating another distribution (specifically a binomial distribution for certain
circumstances) by a normal distribution. Then in section 7.7 we will look at fitting a
normal distribution to cumulative frequency data.

Since a normal distribution is described completely by two parameters, its mean
and standard deviation, usually the first step in fitting the normal distribution is to
calculate the mean and standard deviation for the other distribution. Then we use
these parameters to obtain a normal distribution comparable to the other distribution.

(a) Fitting to a Continuous Frequency Distribution

First, then, we need to estimate the parameters of the normal distribution that will fit
the frequency distribution in which we are interested. We have seen in Chapter 3 how
to estimate the mean and standard deviation of the population from which a sample
came. Then we can compare the normal distribution having those parameters to the
corresponding grouped frequency data.
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Example 7.6

Example 4.2 gave measurements of the thickness of a particular metal part of an
optical instrument on 121 successive items from a production line. Taking these data
as a sample, calculations shown in Example 4.2 gave the estimate of the mean of the
population to be x = 3.369 mm, and the estimate of the standard deviation of the
population to be s = 0.0629 mm.

We saw in section 7.1 that the shape of the histogram for these data seems to be at
least approximately consistent with a normal distribution. Therefore we will compare
the class frequencies found in Example 4.2 with the expected frequencies for a
normal distribution with mean and standard deviation as stated above. The first step
in this comparison is to calculate cumulative normal probabilities, ¢(z), at the class
boundaries using Table A1 or the equivalent Excel function.

Class Boundary,

o o

X mm z= S D(2)

3.195 -2.71 0.0028

3.245 -1.97 0.0244

3.295 -1.18 0.1190

3.345 -0.38 0.3520

3.395 +0.41 0.6591

3.445 +1.21 0.8869

3.495 +2.00 0.9772

3.545 +2.80 0.9974

3.595 +3.59 0.9998

According to the normal distribution:

Pr [X < 3.195] = 0.0028
Pr [3.195 < X < 3.245] = 0.0244 - 0.0028 = 0.0216
Pr [3.245 < X < 3.295] = 0.1190 - 0.0244 = 0.0946
Pr [3.295 < X < 3.345] = 0.3520 - 0.1190 = 0.2330
Pr[3.345 < X < 3.395] = 0.6591 - 0.3520 = 0.3071
Pr[3.395 < X < 3.445] = 0.8869 — 0.6591 = 0.2278
Pr [3.445 < X < 3.495] = 0.9772 - 0.8869 = 0.0903
Pr [3.495 < X < 3.545] = 0.9974 - 0.9772 = 0.0202
Pr [3.545 < X < 3.595] = 0.9998 - 0.9974 = 0.0024
Pr [X > 3.595] = 1 -0.9998 = 0.0002
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The expected frequency for each interval is obtained by multiplying the corre-
sponding probability by the total frequency, 121. The results are:

Lower Upper Class  Probability Expected Observed

Boundary Boundary Frequency Frequency
— 3.195 0.0028 0.3 0
3.195 3.245 0.0216 2.6 2
3.245 3.295 0.0946 11.4 14
3.295 3.345 0.2330 28.2 24
3.345 3.395 0.3071 37.2 46
3.395 3.445 0.2278 27.6 22
3.445 3.495 0.0903 10.9 10
3.495 3.545 0.0202 2.4 2
3.545 3.595 0.0024 0.3
3.595 — 0.0002 0.0 0

Expected and observed frequencies are compared in Figure 7.15.

Thickness, mm

> 3.595
3.545-3.595
3.495-3.545

3.445-3.495

3395-3.045 —
3305339 [

3.295-3.345

3.245-3.295

3.195-3.245

<3.195
I T T T T
0 10 20 30 40 50
Frequency

O Expected
B observed

Figure 7.15: Comparison of Observed Frequencies with
Expected Frequencies according to Fitted Normal Distribution

We can see in Figure 7.5 that actual frequencies are sometimes above and some-
times below the theoretical expected frequencies according to the normal distribution.
The differences might well be explained by random variations, so we can conclude
that the frequency distribution seems to be consistent with a normal distribution.
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(b) Fitting to a Discrete Frequency Distribution

If the distribution to which we compare a normal distribution is discrete, because the
normal distribution is continuous we need a correction for continuity. The correction
for continuity will be examined in the next section, in which the discrete binomial
distribution is approximated by a normal distribution.

7.6 Normal Approximation to a Binomial Distribution

It is often desirable to use the normal distribution in place of another probability
distribution. In particular, it is convenient to replace the binomial distribution with
the normal when certain conditions are met. Remember, though, that the binomial
distribution is discrete, whereas the normal distribution is continuous.

The shape of the binomial distribution varies considerably according to its
parameters, n and p. If the parameter p, the probability of “success” (or a defective
item or a failure, etc.) in a single trial, is sufficiently small (or if ¢ = 1 — p is suffi-
ciently small), the distribution is usually unsymmetrical. If p or g is sufficiently small
and if the number of trials, n, is large enough, a binomial distribution can be approxi-
mated by a Poisson distribution. This was discussed in section 5.4 (c).

On the other hand, if p is sufficiently close to 0.5 and n is sufficiently large, the
binomial distribution can be approximated by a normal distribution. Under these
conditions the binomial distribution is approximately symmetrical and tends toward a
bell shape. A larger value of n allows greater departure of p from 0.5; a binomial
distribution with very small p (or p very close to 1) can be approximated by a normal
distribution if # is very large. If n is large enough, sometimes both the Poisson
approximation and the normal approximation are applicable. In that case, use of the
normal approximation is usually preferable because the normal distribution allows
easy calculation of cumulative probabilities using tables or computer software.
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Figure 7.16: Comparison of a Binomial Distribution
with a Normal Distribution Fitted to It
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Figure 7.16 compares a binomial distribution with a normal distribution. The
parameters of the binomial distribution are p = 0.4 and n = 20 (for instance, we might
take samples of 20 items from a production line when the probability that any one
item will require further processing is 0.4). To fit a normal distribution we need to
know the mean and the standard deviation. Remember that the mean of a binomial
distribution is [l = np, and that the standard deviation for that distribution is

o =4/np(1-p) . To fit a normal distribution to this binomial distribution, we must

have = np = (20)(0.4) = 8, and 6= /np(1- p) =,/(20)(0.4)(0.6) =2.191. In
Figure 7.6 the continuous curve passing through small circles represents the density
function for the fitted normal distribution, while the vertical lines topped by small
crosses represent binomial probabilities. The agreement appears to be very good.

But we have a difficulty to deal with. That is, the normal distribution is continuous,
whereas the binomial distribution is discrete. Probabilities according to the binomial
distribution are different from zero only when the number of defectives is a whole
number, not when the number is between the whole numbers. On the other hand, if
we integrate the normal distribution only for limits infinitesimally apart around the
whole numbers, the area under the curve will be infinitesimally small. Then the
corresponding probability will be zero.

The common-sense solution is to integrate for wider steps, which together cover
the whole range. We set limits for integration of the normal distribution halfway
between possible values of the discrete variable. This modification is called the
correction for continuity. In Figure 7.6 the limits for integration of the normal
distribution would be from 5.5 to 6.5 to compare with a binomial probability at 6
defects. For comparison with the binomial value at 7, the limits would be from 6.5 to
7.5, and so on.

The numerical comparison of probabilities using the correction for continuity is
shown in Example 7.7. Approximating binomial probabilities in this way is called
the normal approximation to a binomial distribution.

Example 7.7

Corresponding to the case shown in Figure 7.6, let’s calculate probabilities according
to the binomial distribution and for the normal distribution which fits it approxi-
mately. In a sample of 20 items when the probability that any one item requires
further processing is 0.4, the binomial distribution gives probabilities that various
numbers of items will require more processing. This is then a binomial distribution
with n =20 and p = 0.4.

Answer: Sample calculations will be shown for the probability of six items requir-
ing further processing in a sample of 20, and then all the results will be compared.
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By the binomial distribution,
(20)(19)(18)(17)(16)(15)
Pr [R = 6] = 20C6 (0.4)6 (0.6)14 = (6)(5)(4)(3)(2) (0.4)6 (0.6)14
=0.124

By the normal approximation,

Pr[R=6]=Pr[5.5<X<6.5]= @(_6‘5_8)_(1)(5-5_8)

2.191 2.191
= O(-0.68) — O(-1.14)
=0.121

The values for the normal approximation shown above were read from tables
with z evaluated to two decimal places. Evaluating z to three decimal places and
using linear interpolation, or using computer software such as the function
NORMSDIST from Excel, would give 0.2468 — 0.1269 = 0.120 for the probability
of six defectives. In Table 7.2 the normal approximations have been calculated with
z evaluated to three decimal places and with linear interpolation to give a more
accurate error of approximation, but interpolation is not ordinarily required.

Table 7.2: Comparison of Binomial Distribution and Normal Approximation

Number for Binomial Normal Error of
Further Probability =~ Approximation Approximation

Processing
0 0.00004 0.00026 -0.0002
1 0.0005 0.0012 —0.0007
2 0.0031 0.0045 -0.0014
3 0.012 0.014 -0.0016
4 0.035 0.035 —0.0001
5 0.075 0.072 +0.003
6 0.124 0.120 +0.005
7 0.166 0.163 +0.003
8 0.180 0.180 -0.001
9 0.160 0.163 -0.003
10 0.117 0.120 -0.003
11 0.071 0.072 -0.0009
12 0.035 0.035 +0.0004
13 0.015 0.014 +0.0006
14 0.0049 0.0045 +0.0003
15 0.0013 0.0012 +0.0001
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16 0.0003 0.0003 +0.0000
17 0.00004 0.00005 —-0.0000
18 5x10° 0.00001 —0.0000
19 3x107 <10°
20 1x10°8 <10°

The largest error in Table 7.2 is 0.005, 0.124 vs. 0.120 for six defectives.

As a rough rule, the normal approximation to the binomial distribution is usually
reasonably good if both np and (n)(1-p) are greater than 5. In Example 7.7, np is
equal to (20)(0.4) = 8 and (n)(1 — p) is equal to (20)(0.6) = 12, so the rough rule is
satisfied with some to spare. The rough rule should be used in solving problems in
this book.

The rule is only a rough guide because the two parameters, n and p, affect the
agreement separately. For the same value of the product np, the normal approxima-
tion to the binomial distribution is better when p is closer to 0.5. We can illustrate
that by comparing the binomial distribution with the corresponding normal approxi-
mation just at np = 5, the limit given by the rough rule, at three combinations of n
and p. Figure 7.17 shows these comparisons.
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Figure 7.17(a): Comparison at n = 10 and p = 0.5
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Figure 7.17(b): Comparison at n = 25 and p = 0.2
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Figure 7.17(c): Comparison at n = 250 and p = 0.02

We can see from Figure 7.17 that the discrepancies are smallest at n = 10 and
p = 0.5, intermediate at n = 25 and p = 0.2, and largest at n = 250 and p = 0.02, even
though all are at np =5 and n(1 —p) > 5. At n = 10 and p = 0.5 the largest absolute
discrepancy is 0.002; at n = 25 and p = 0.2 the largest absolute discrepancy is 0.011;
and at n = 250 and p = 0.02 the largest absolute discrepancy is 0.071.

Example 7.8

A coin is biased. We are told that the probability of heads on any one toss is 40% and
the corresponding probability of tails is 60%. The coin is tossed 120 times, giving 56
heads and 64 tails. From what we were told about the bias, we expect (120)(0.40) =
48 heads. If the given information is correct, what is the probability of getting either
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56 or more heads, or 40 or fewer heads (i.e., a result as far from the expected result
as 56 heads or farther in either direction)? Is the result so unlikely that we should
doubt that the probability of heads on a single toss is only 40%?

Answer: This problem could be solved using the binomial distribution directly:

Pr [R = 56] = |,,Cs¢ (0.4)% (0.6)%, and similarly for R =57, 58, ... 120 and R = 0, 1,
2, ..., 39, 40, then adding up probabilities. However, these calculations are very
laborious. It would be less work to calculate the sum of Pr [R = 41], Pr [R =42], ...
Pr[R = 54], Pr [R = 55] and subtract that sum from 1, but that would still be a lot of
labor. It is much easier to apply the normal approximation, and results should be very
little different. In this case np = (120)(0.4) = 48 and (n)(1 — p) = (120)(0.6) =72, so
the rough rule is very easily satisfied. For the normal approximation L = np =

(120)(0.4) = 48 and 6 =/(n)(p)(1- p) =4/(120)(0.4)(0.6) =5.367.

Using the correction for continuity, Pr [R = 56] corresponds to the area under the
normal probability curve between 55.5 and 56.5. So, Pr [R > 55] corresponds to the
area under the curve beyond 55.5. Similarly, Pr [R < 41] corresponds to the area
X, —W_ 555-48

5.367

under the curve for X <40.5. If x, =55.5, z, = =1.397

40.5-48

Similarly, if x, =40.5,z, =——=-1.397
5.367 Req'd areas
Then Pr [R > 55, Binomial] = Pr [Z > 1.397] AL
=1- (I)(1397) 40.5 48 555 x, , of heads
z, 0 z,
=1 - ®(1.40) Figure 7.18:
=1-0.9192 =0.081. Probabilities for
Example 7.8

Then Pr [more than 55 heads] = 8.1%.

Similarly, Pr [fewer than 41 heads] = 8.1%. The probability of a result as far from
the mean as 56 heads or farther in either direction, given that p = 0.400, is (2)(8.1%)
= 16.2%. This would happen by chance about one time in six, so it is not very
unlikely. Then the result of tossing the coin gives us no evidence that p is not equal
to 0.400.

Approximations such as the normal approximation to the binomial distribution
are not as important as they used to be because nearly exact values can be obtained
using computer software. As we saw in section 5.5(b), both single and cumulative
values for the binomial distribution can be obtained from Microsoft Excel. However,
even when these nearly exact values are available, it may be desirable to use a
convenient approximation.
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7.7 Fitting the Normal Distribution to Cumulative
Frequency Data
(a) Cumulative Normal Probability and Normal Probability Paper

Instead of comparing a frequency distribution or probability distribution to a normal
probability distribution using a histogram or the equivalent, often a better alternative
is to compare graphically using cumulative probabilities. This has the advantage of
giving an overall picture, showing the sum of deviations to any particular point.
However, Figure 7.3 shows that the cumulative normal probability plotted against z
gives an S-shaped curve. That would also be true plotted against x. It is not conve-
nient to make graphica