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Preface 

This book has been written to meet the needs of two different groups of readers. On 
one hand, it is suitable for practicing engineers in industry who need a better under
standing or a practical review of probability and statistics. On the other hand, this 
book is eminently suitable as a textbook on statistics and probability for engineering 
students. 

Areas of practical knowledge based on the fundamentals of probability and 
statistics are developed using a logical and understandable approach which appeals to 
the reader’s experience and previous knowledge rather than to rigorous mathematical 
development. The only prerequisites for this book are a good knowledge of algebra 
and a first course in calculus. The book includes many solved problems showing 
applications in all branches of engineering, and the reader should pay close attention 
to them in each section. The book can be used profitably either for private study or in 
a class. 

Some material in earlier chapters is needed when the reader comes to some of the 
later sections of this book. Chapter 1 is a brief introduction to probability and 
statistics and their treatment in this work. Sections 2.1 and 2.2 of Chapter 2 on Basic 
Probability present topics that provide a foundation for later development, and so do 
sections 3.1 and 3.2 of Chapter 3 on Descriptive Statistics. Section 4.4, which 
discusses representing data for a continuous variable in the form of grouped fre
quency tables and their graphical equivalents, is used frequently in later chapters. 
Mathematical expectation and the variance of a random variable are introduced in 
section 5.2. The normal distribution is discussed in Chapter 7 and used extensively in 
later discussions. The standard error of the mean and the Central Limit Theorem of 
Chapter 8 are important topics for later chapters. Chapter 9 develops the very useful 
ideas of statistical inference, and these are applied further in the rest of the book. A 
short statement of prerequisites is given at the beginning of each chapter, and the 
reader is advised to make sure that he or she is familiar with the prerequisite material. 

This book contains more than enough material for a one-semester or one-quarter 
course for engineering students, so an instructor can choose which topics to include. 
Sections on use of the computer can be left for later individual study or class study if 
so desired, but readers will find these sections using Excel very useful. In my opinion 
a course on probability and statistics for undergraduate engineering students should 
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include at least the following topics: introduction (Chapter 1), basic probability 
(sections 2.1 and 2.2), descriptive statistics (sections 3.1 and 3.2), grouped frequency 
(section 4.4), basics of random variables (sections 5.1 and 5.2), the binomial distribu
tion (section 5.3) (not absolutely essential), the normal distribution (sections 7.1, 7.2, 
7.3), variance of sample means and the Central Limit Theorem (from Chapter 8), 
statistical inferences for the mean (Chapter 9), and regression and correlation (from 
Chapter 14). A number of other topics are very desirable, but the instructor or reader 
can choose among them. 

It is a pleasure to thank a number of people who have made contributions to this 
book in one way or another. The book grew out of teaching a section of a general 
engineering course at the University of Saskatchewan in Saskatoon, and my approach 
was affected by discussions with the other instructors. Many of the examples and the 
problems for readers to solve were first suggested by colleagues, including Roy 
Billinton, Bill Stolte, Richard Burton, Don Norum, Ernie Barber, Madan Gupta, 
George Sofko, Dennis O’Shaughnessy, Mo Sachdev, Joe Mathews, Victor Pollak, 
A.B. Bhattacharya, and D.R. Budney. Discussions with Dennis O’Shaughnessy have 
been helpful in clarifying my ideas concerning the paired t-test and blocking. 
Example 7.11 is based on measurements done by Richard Evitts. Colleagues were 
very generous in reading and commenting on drafts of various chapters of the book; 
these include Bill Stolte, Don Norum, Shehab Sokhansanj, and particularly Richard 
Burton. Bill Stolte has provided useful comments after using preliminary versions of 
the book in class. Karen Burlock typed the first version of Chapter 7. I thank all of 
these for their contributions. Whatever errors remain in the book are, of course, my 
own responsibility. 

I am grateful to my editor, Carol S. Lewis, for all her contributions in preparing 
this book for publication. Thank you, Carol! 

W.J. DeCoursey 
Department of Chemical Engineering 

College of Engineering 
University of Saskatchewan 

Saskatoon, SK, Canada 
S7N 5A9 
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What’s on the CD-ROM? 

Included on the accompanying CD-ROM: 

•	 a fully searchable eBook version of the text in Adobe pdf form 
•	 data sets to accompany the examples in the text 
•	 in the “Extras” folder, useful statistical software tools developed by the 

Statistical Engineering Division, National Institute of Science and 
Technology (NIST). Once again, you are cautioned not to apply any tech
nique blindly without first understanding its assumptions, limitations, and 
area of application. 

Refer to the Read-Me file on the CD-ROM for more detailed information on 
these files and applications. 
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C H A P T E R  1 
Introduction: 

Probability and Statistics 

Probability and statistics are concerned with events which occur by chance. Examples 
include occurrence of accidents, errors of measurements, production of defective and 
nondefective items from a production line, and various games of chance, such as 
drawing a card from a well-mixed deck, flipping a coin, or throwing a symmetrical 
six-sided die. In each case we may have some knowledge of the likelihood of various 
possible results, but we cannot predict with any certainty the outcome of any particu
lar trial. Probability and statistics are used throughout engineering. In electrical 
engineering, signals and noise are analyzed by means of probability theory. Civil, 
mechanical, and industrial engineers use statistics and probability to test and account 
for variations in materials and goods. Chemical engineers use probability and statis
tics to assess experimental data and control and improve chemical processes. It is 
essential for today’s engineer to master these tools. 

1.1 Some Important Terms 
(a)	 Probability is an area of study which involves predicting the relative likeli

hood of various outcomes. It is a mathematical area which has developed 
over the past three or four centuries. One of the early uses was to calculate 
the odds of various gambling games. Its usefulness for describing errors of 
scientific and engineering measurements was soon realized. Engineers study 
probability for its many practical uses, ranging from quality control and 
quality assurance to communication theory in electrical engineering. Engi
neering measurements are often analyzed using statistics, as we shall see 
later in this book, and a good knowledge of probability is needed in order to 
understand statistics. 

(b)	 Statistics is a word with a variety of meanings. To the man in the street it most 
often means simply a collection of numbers, such as the number of people 
living in a country or city, a stock exchange index, or the rate of inflation. 
These all come under the heading of descriptive statistics, in which items are 
counted or measured and the results are combined in various ways to give 
useful results. That type of statistics certainly has its uses in engineering, and 
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we will deal with it later, but another type of statistics will engage our 
attention in this book to a much greater extent. That is inferential statistics or 
statistical inference. For example, it is often not practical to measure all the 
items produced by a process. Instead, we very frequently take a sample and 
measure the relevant quantity on each member of the sample. We infer 
something about all the items of interest from our knowledge of the sample. 
A particular characteristic of all the items we are interested in constitutes a 
population. Measurements of the diameter of all possible bolts as they come 
off a production process would make up a particular population. A sample is 
a chosen part of the population in question, say the measured diameters of 
twelve bolts chosen to be representative of all the bolts made under certain 
conditions. We need to know how reliable is the information inferred about 
the population on the basis of our measurements of the sample. Perhaps we 
can say that “nineteen times out of twenty” the error will be less than a 
certain stated limit. 

(c) Chance is a necessary part of any process to be described by probability 
or statistics. Sometimes that element of chance is due partly or even perhaps 
entirely to our lack of knowledge of the details of the process. For example, 
if we had complete knowledge of the composition of every part of the raw 
materials used to make bolts, and of the physical processes and conditions in 
their manufacture, in principle we could predict the diameter of each bolt. 
But in practice we generally lack that complete knowledge, so the diameter 
of the next bolt to be produced is an unknown quantity described by a 
random variation. Under these conditions the distribution of diameters can be 
described by probability and statistics. If we want to improve the quality of 
those bolts and to make them more uniform, we will have to look into the 
causes of the variation and make changes in the raw materials or the produc
tion process. But even after that, there will very likely be a random variation 
in diameter that can be described statistically. 

Relations which involve chance are called probabilistic or stochastic rela
tions. These are contrasted with deterministic relations, in which there is no 
element of chance. For example, Ohm’s Law and Newton’s Second Law 
involve no element of chance, so they are deterministic. However, measure
ments based on either of these laws do involve elements of chance, so 
relations between the measured quantities are probabilistic. 

(d) Another term which requires some discussion is randomness. A random 
action cannot be predicted and so is due to chance. A random sample is one 
in which every member of the population has an equal likelihood of appear
ing. Just which items appear in the sample is determined completely by 
chance. If some items are more likely to appear in the sample than others, 
then the sample is not random. 
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Introduction: Probability and Statistics 

1.2 What does this book contain? 
We will start with the basics of probability and then cover descriptive statistics. Then 
various probability distributions will be investigated. The second half of the book 
will be concerned mostly with statistical inference, including relations between two 
or more variables, and there will be introductory chapters on design and analysis of 
experiments. Solved problem examples and problems for the reader to solve will be 
important throughout the book. The great majority of the problems are directly 
applied to engineering, involving many different branches of engineering. They show 
how statistics and probability can be applied by professional engineers. 

Some books on probability and statistics use rigorous definitions and many deriva
tions. Experience of teaching probability and statistics to engineering students has led 
the writer of this book to the opinion that a rigorous approach is not the best plan. 
Therefore, this book approaches probability and statistics without great mathematical 
rigor. Each new concept is described clearly but briefly in an introductory section. In a 
number of cases a new concept can be made more understandable by relating it to 
previous topics. Then the focus shifts to examples. The reader is presented with care
fully chosen examples to deepen his or her understanding, both of the basic ideas and 
of how they are used. In a few cases mathematical derivations are presented. This is 
done where, in the opinion of the author, the derivations help the reader to understand 
the concepts or their limits of usefulness. In some other cases relationships are verified 
by numerical examples. In still others there are no derivations or verifications, but the 
reader’s confidence is built by comparisons with other relationships or with everyday 
experience. The aim of this book is to help develop in the reader’s mind a clear under
standing of the ideas of probability and statistics and of the ways in which they are 
used in practice. The reader must keep the assumptions of each calculation clearly in 
mind as he or she works through the problems. As in many other areas of engineering, 
it is essential for the reader to do many problems and to understand them thoroughly. 

This book includes a number of computer examples and computer exercises 
which can be done using Microsoft Excel®. Computer exercises are included be
cause statistical calculations from experimental data usually require many repetitive 
calculations. The digital computer is well suited to this situation. Therefore a book 
on probability and statistics would be incomplete nowadays if it did not include 
exercises to be done using a computer. The use of computers for statistical calcula
tions is introduced in sections 3.4 and 4.5. 

There is a danger, however, that the reader may obtain only an incomplete 
understanding of probability and statistics if the fundamentals are neglected in favor 
of extensive computer exercises. The reader should certainly perform several of the 
more basic problems in each section before doing the ones which are marked as 
computer problems. Of course, even the more basic problems can be performed using 
a spreadsheet rather than a pocket calculator, and that is often desirable.  Even if a 
spreadsheet is used, some of the simpler problems which do not require repetitive 
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calculations should be done first. The computer problems are intended to help the 
reader apply the fundamental ideas in conjunction with the computer: they are not 
“black-box” problems for which the computer (really that means the original pro
grammer) does the thinking. The strong advice of many generations of engineering 
instructors applies here: always show your work! 

Microsoft Excel has been chosen as the software to be used with this book for two 
reasons. First, Excel is used as a general spreadsheet by many engineers and engi
neering students. Thus, many readers of this book will already be familiar with Excel, 
so very little further time will be required for them to learn to apply Excel to prob
ability and statistics. On the other hand, the reader who is not already familiar with 
Excel will find that the modest investment of time required to become reasonably 
adept at Excel will pay dividends in other areas of engineering.  Excel is a very 
useful tool. 

The second reason for choosing to use Excel in this book is that current versions 
of Excel include a good number of special functions for probability and statistics. 
Version 4.0 and later versions give at least fifty functions in the Statistical category, 
and we will find many of them useful in connection with this book. Some of these 
functions give probabilities for various situations, while others help to summarize 
masses of data, and still others take the place of statistical tables. The reader is 
warned, however, that some of these special functions fall in the category of “black
box” solutions and so are not useful until the reader understands the fundamentals 
thoroughly. 

Although the various versions of Excel all contain tools for performing calcula
tions for probability and statistics, some of the detailed procedures have been 
modified from one version to the next. The detailed procedures in this book are 
generally compatible with Excel 2000. Thus, if a reader is using a different version, 
some modifications will likely be needed. However, those modifications will not 
usually be very difficult. 

Some sections of the book have been labelled as Extensions. These are very brief 
sections which introduce related topics not covered in detail in the present volume. For 
example, the binomial distribution of section 5.3 is covered in detail, but subsection 
5.3(i) is a brief extension to the multinomial distribution. 

The book includes a large number of engineering applications among the solved 
problems and problems for the reader to solve. Thus, Chapter 5 contains applications 
of the binomial distribution to some sampling schemes for quality control, and 
Chapters 7 and 9 contain applications of the normal distribution to such continuous 
variables as burning time for electric lamps before failure, strength of steel bars, and 
pH of solutions in chemical processes. Chapter 14 includes examples touching on the 
relationship between the shear resistance of soils and normal stress. 
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Introduction: Probability and Statistics 

The general plan of the book is as follows. We will start with the basics of 
probability and then descriptive statistics. Then various probability distributions will 
be investigated. The second half of the book will be concerned mostly with statistical 
inference, including relations between two or more variables, and there will be 
introductory chapters on design and analysis of experiments. Solved problem ex
amples and problems for the reader to solve will be important throughout the book. 

A preliminary version of this book appeared in 1997 and has been used in 
second- and third-year courses for students in several branches of engineering at the 
University of Saskatchewan for five years. Some revisions and corrections were made 
each year in the light of comments from instructors and the results of a questionnaire 
for students. More complete revisions of the text, including upgrading the references 
for Excel to Excel 2000, were performed in 2000-2001 and 2002. 
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C H A P T E R  2 
Basic Probability 

Prerequisite: A good knowledge of algebra. 

In this chapter we examine the basic ideas and approaches to probability and its 
calculation. We look at calculating the probabilities of combined events. Under some 
circumstances probabilities can be found by using counting theory involving permu
tations and combinations. The same ideas can be applied to somewhat more complex 
situations, some of which will be examined in this chapter. 

2.1 Fundamental Concepts 
(a)	 Probability as a specific term is a measure of the likelihood that a particular 

event will occur. Just how likely is it that the outcome of a trial will meet a 
particular requirement? If we are certain that an event will occur, its probability 
is 1 or 100%. If it certainly will not occur, its probability is zero. The first 
situation corresponds to an event which occurs in every trial, whereas the second 
corresponds to an event which never occurs. At this point we might be tempted to 
say that probability is given by relative frequency, the fraction of all the trials in a 
particular experiment that give an outcome meeting the stated requirements. But 
in general that would not be right. Why? Because the outcome of each trial is 
determined by chance. Say we toss a fair coin, one which is just as likely to give 
heads as tails. It is entirely possible that six tosses of the coin would give six 
heads or six tails, or anything in between, so the relative frequency of heads 
would vary from zero to one. If it is just as likely that an event will occur as that 
it will not occur, its true probability is 0.5 or 50%. But the experiment might 
well result in relative frequencies all the way from zero to one. Then the relative 
frequency from a small number of trials gives a very unreliable indication of 
probability. In section 5.3 we will see how to make more quantitative calcula
tions concerning the probabilities of various outcomes when coins are tossed 
randomly or similar trials are made. If we were able to make an infinite number 
of trials, then probability would indeed be given by the relative frequency of the 
event. 
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Basic Probability 

As an illustration, suppose the weather man on TV says that for a particular 
region the probability of precipitation tomorrow is 40%. Let us consider 100 
days which have the same set of relevant conditions as prevailed at the time of 
the forecast. According to the prediction, precipitation the next day would occur 
at any point in the region in about 40 of the 100 trials. (This is what the weather 
man predicts, but we all know that the weather man is not always right!) 

(b) Although we cannot make an infinite number of trials, in practice we can make a 
moderate number of trials, and that will give some useful information. The 
relative frequency of a particular event, or the proportion of trials giving out
comes which meet certain requirements, will give an estimate of the probability 
of that event. The larger the number of trials, the more reliable that estimate will 
be. This is the empirical or frequency approach to probability. (Remember that 
“empirical” means based on observation or experience.) 

Example 2.1 

260 bolts are examined as they are produced. Five of them are found to be defective. 
On the basis of this information, estimate the probability that a bolt will be defective. 

Answer: The probability of a defective bolt is approximately equal to the relative 
frequency, which is 5 / 260 = 0.019. 

(c) Another type of probability is the subjective estimate, based on a person’s 
experience. To illustrate this, say a geological engineer examines extensive 
geological information on a particular property. He chooses the best site to drill 
an oil well, and he states that on the basis of his previous experience he estimates 
that the probability the well will be successful is 30%. (Another experienced 
geological engineer using the same information might well come to a different 
estimate.) This, then, is a subjective estimate of probability. The executives of the 
company can use this estimate to decide whether to drill the well. 

(d) A third approach is possible in certain cases. This includes various gambling 
games, such as tossing an unbiased coin; drawing a colored ball from a number 
of balls, identical except for color, which are put into a bag and thoroughly 
mixed; throwing an unbiased die; or drawing a card from a well-shuffled deck of 
cards. In each of these cases we can say before the trial that a number of possible 
results are equally likely. This is the classical or “a priori” approach. The phrase 
“a priori” comes from Latin words meaning coming from what was known 
before. This approach is often simple to visualize, so giving a better understand
ing of probability. In some cases it can be applied directly in engineering. 

7
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Example 2.2 

Three nuts with metric threads have been accidentally mixed with twelve nuts with 
U.S. threads. To a person taking nuts from a bucket, all fifteen nuts seem to be the 
same. One nut is chosen randomly. What is the probability that it will be metric? 

Answer: There are fifteen ways of choosing one nut, and they are equally likely. 
Three of these equally likely outcomes give a metric nut. Then the probability of 
choosing a metric nut must be 3 / 15, or 20%. 

Example 2.3 

Two fair coins are tossed. What is the probability of getting one heads and one tails? 

Answer: For a fair or unbiased coin, for each toss of each coin
1 

Pr [heads] = Pr [tails] = 
2 

This assumes that all other possibilities are excluded: if a coin is lost that toss will be 
eliminated. The possibility that a coin will stand on edge after tossing can be neglected. 

There are two possible results of tossing the first coin. These are heads (H) and 
tails (T), and they are equally likely. Whether the result of tossing the first coin is 
heads or tails, there are two possible results of tossing the second coin. Again, these 
are heads (H) and tails (T), and they are equally likely. The possible outcomes of 
tossing the two coins are HH, HT, TH, and TT. Since the results H and T for the first 
coin are equally likely, and the results H and T for the second coin are equally likely, 
the four outcomes of tossing the two coins must be equally likely. These relation
ships are conveniently summarized in the following tree diagram, Figure 2.1, in 
which each branch point (or node) represents a point of decision where two or more 
results are possible. 

Outcome 

H 

H/2 

T HT 

H 

T 

T TT 

HH  
Pr [H] = 1/2 

Pr [H] = 1

Pr [T] = 1/2 

TH  Pr [H] = 1/2 

Pr [T] = 1/2 

Pr [T] = 1/2 
Figure 2.1: 

Simple Tree Diagram 

First Coin Second Coin 

8 
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Since there are four equally likely outcomes, the probability of each is 1 . Both 
4 

HT and TH correspond to getting one heads and one tails, so two of the four equally 
likely outcomes give this result. Then the probability of getting one heads and one 

2	 1
tails must be = or 0.5.

4	 2

In the study of probability an event is a set of possible outcomes which meets 
stated requirements. If a six-sided cube (called a die) is tossed, we define the out
come as the number of dots on the face which is upward when the die comes to rest. 
The possible outcomes are 1,2,3,4,5, and 6. We might call each of these outcomes a 
separate event—for example, the number of dots on the upturned face is 5. On the 
other hand, we might choose an event as those outcomes which are even, or those 
evenly divisible by three. In Example 2.3 the event of interest is getting one heads 
and one tails from the toss of two fair coins. 

(e) Remember that the probability of an event which is certain is 1, and the probabil
ity of an impossible event is 0. Then no probability can be more than 1 or less 
than 0. If we calculate a probability and obtain a result less than 0 or greater than 
1, we know we must have made a mistake. If we can write down probabilities for 
all possible results, the sum of all these probabilities must be 1, and this should 
be used as a check whenever possible. 

Sometimes some basic requirements for probability are called the axioms of 
probability. These are that a probability must be between 0 and 1, and the simple 
addition rule which we will see in part (a) of section 2.2.1. These axioms are 
then used to derive theoretical relations for probability. 

(f)	 An alternative quantity, which gives the same information as the probability, is 
called the fair odds. This originated in betting on gambling games. If the game is 
to be fair (in the sense that no player has any advantage in the long run), each 
player should expect that he or she will neither win nor lose any money if the 
game continues for a very large number of trials. Then if the probabilities of 
various outcomes are not equal, the amounts bet on them should compensate. 
The fair odds in favor of a result represent the ratio of the amount which should 
be bet against that particular result to the amount which should be bet for that 
result, in order to give fairness as described above. Say the probability of success 
in a particular situation is 3/5, so the probability of failure is 1 – 3/5 = 2/5. Then 
to make the game fair, for every two dollars bet on success, three dollars should 
be bet against it. Then we say that the odds in favor of success are 3 to 2, and the 
odds against success are 2 to 3. To reason in the other direction, take another 
example in which the fair odds in favor of success are 4 to 3, so the fair odds 
against success are 3 to 4. Then 

4 4 
Pr [success] = = = 0.571.

4 + 3 7

9




Chapter 2 

In general, if Pr [success] = p, Pr [failure] = 1 – p, then the fair odds in favor of 
p 1 − p 

success are  to 1, and the fair odds against success are  to 1. These are
1 − p p


 the relations which we use to relate probabilities to the fair odds.


Note for Calculation: How many figures? 

How many figures should be quoted in the answer to a problem? That 
depends on how precise the initial data were and how precise the method of 
calculation is, as well as how the results will be used subsequently. It is impor
tant to quote enough figures so that no useful information is lost. On the other 
hand, quoting too many figures will give a false impression of the precision, and 
there is no point in quoting digits which do not provide useful information. 

Calculations involving probability usually are not very precise: there are 
often approximations. In this book probabilities as answers should be given to 
not more than three significant figures—i.e., three figures other than a zero 
that indicates or emphasizes the location of a decimal point. Thus, “0.019” 
contains two significant figures, while “0.571” contains three significant 
figures. In some cases, as in Example 2.1, fewer figures should be quoted 
because of imprecise initial data or approximations inherent in the calculation. 

It is important not to round off figures before the final calculation. That 
would introduce extra error unnecessarily. Carry more figures in intermediate 
calculations, and then at the end reduce the number of figures in the answer to 
a reasonable number. 

Problems 
1.	 A bag contains 6 red balls, 5 yellow balls and 3 green balls. A ball is drawn at 

random. What is the probability that the ball is: (a) green, (b) not yellow, (c) red 
or yellow? 

2.	 A pilot plant has produced metallurgical batches which are summarized as 
follows: 

Low strength High strength 

Low in impurities  2  27

High in impurities  12  4


If these results are representative of full-scale production, find estimated 
probabilities that a production batch will be:


i) low in impurities

 ii) high strength

iii) both high in impurities and high strength


 iv) both high in impurities and low strength
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3.	 If the numbers of dots on the upward faces of two standard six-sided dice give 
the score for that throw, what is the probability of making a score of 7 in one 
throw of a pair of fair dice? 

4.	 In each of the following cases determine a decimal value for the probability of 
the event:

a) the fair odds against a successful oil well are 10-to-1.

 b) the fair odds that a bid will succeed are 1-to-6.


5.	 Two nuts having U.S. coarse threads and three nuts having U.S. fine threads are 
mixed accidentally with four nuts having metric threads. The nuts are otherwise 
identical. A nut is chosen at random. 
a) What is the probability it has U.S. coarse threads? 
b) What is the probability that its threads are not metric? 
c) If the first nut has U.S. coarse threads, what is the probability that a second 

nut chosen at random has metric threads? 
d)	 If you are repairing a car engine and accidentally replace one type of nut with 

another when you put the engine back together, very briefly, what may be the 
consequences? 

6.	 (a) How many different positive three-digit whole numbers can be formed from 
the four digits 2, 6, 7, and 9 if any digit can be repeated? 

(b) How many different positive whole numbers less than 1000 can be formed 
from 2, 6, 7, 9 if any digit can be repeated? 

(c) How many numbers in part (b) are less than 680 (i.e. up to 679)? 
(d) What is the probability that a positive whole number less than 1000, chosen 

at random from 2, 6, 7, 9 and allowing any digit to be repeated, will be less 
than 680? 

7.	 Answer question 7 again for the case where the digits 2, 6, 7, 9 can not be repeated. 

8.	 For each of the following, determine (i) the probability of each event, (ii) the fair 
odds against each event, and (iii) the fair odds in favour of each event: 
(a) a five appears in the toss of a fair six-sided die. 
(b) a red jack appears in draw of a single card from a well-shuffled 52-card 

bridge deck. 

2.2 Basic Rules of Combining Probabilities 
The basic rules or laws of combining probabilities must be consistent with the 
fundamental concepts. 

2.2.1 Addition Rule 
This can be divided into two parts, depending upon whether there is overlap between 
the events being combined. 

(a) If the events are mutually exclusive, there is no overlap: if one event occurs, 
other events can not occur. In that case the probability of occurrence of one 
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or another of more than one event is the sum of the probabilities of the 
separate events. For example, if I throw a fair six-sided die the probability 
of any one face coming up is the same as the probability of any other face, 
or one-sixth. There is no overlap among these six possibilities. Then Pr [6] =

1 1 1
1/6, Pr [4] = 1/6, so Pr [6 or 4] is + = . This, then, is the probability 

6 6 3 
of obtaining a six or a four on throwing one die. Notice that it is consistent 
with the classical approach to probability: of six equally likely results, two 
give the result which was specified. The Addition Rule corresponds to a 
logical or and gives a sum of separate probabilities. 

Often we can divide all possible outcomes into two groups without overlap. If 
one group of outcomes is event A, the other group is called the complement of A and 
is written A or A′ . Since A and A together include all possible results, the sum of 
Pr [A] and Pr [ A ] must be 1. If Pr [ A ] is more easily calculated than Pr [A], the best 
approach to calculating Pr [A] may be by first calculating Pr [ A ]. 

Example 2.4 

A sample of four electronic components is taken from the output of a production 
line. The probabilities of the various outcomes are calculated to be: Pr [0 defectives] 
= 0.6561, Pr [1 defective] = 0.2916, Pr [2 defectives] = 0.0486, Pr [3 defectives] = 
0.0036, Pr [4 defectives] = 0.0001. What is the probability of at least one defective? 

Answer: It would be perfectly correct to calculate as follows: 

Pr [at least one defective] = Pr [1 defective] + Pr [2 defectives] + 
Pr [3 defectives] + Pr [4 defectives] 

= 0.2916 + 0.0486 + 0.0036 + 0.0001 = 0.3439. 
but it is easier to calculate instead: 
Pr [at least one defective] = 1 – Pr [0 defectives]

 = 1 – 0.6561

 = 0.3439 or 0.344.


(b) If the events are not mutually exclusive, there can be overlap between them. 
This can be visualized using a Venn diagram. The probability of overlap 
must be subtracted from the sum of probabilities of the separate events (i.e., 
we must not count the same area on the Venn Diagram twice). 

The circle marked A represents the probability 
(or frequency) of event A, the circle marked B 
represents the probability (or frequency) of event B, 
and the whole rectangle represents all possibilities, 
so a probability of one or the total frequency. The set 
consisting of all possible outcomes of a particular 
experiment is called the sample space of that experi
ment. Thus, the rectangle on the Venn diagram Figure 2.2: Venn Diagram 

A ∩ B 

A B 
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corresponds to the sample space. An event, such as A or B, is any subset of a sample 
space. In solving a problem we must be very clear just what total group of events we 
are concerned with—that is, just what is the relevant sample space. 

Set notation is useful: 

Pr [A ∪  B) = Pr [occurrence of A or B or both], the union of the two events 
A and B. 

Pr [A ∩  B) = Pr [occurrence of both A and B], the intersection of events 
A and B. 

Then in Figure 2.2, the intersection A ∩  B represents the overlap between events 
A and B. 

Figure 2.3 shows Venn diagrams representing intersection, union, and comple
ment. The cross-hatched area of Figure 2.3(a) represents event A. The cross-hatched 
area on Figure 2.3(b) shows the intersection of events A and B. The union of events 
A and B is shown on part (c) of the diagram. The cross-hatched area of part (d) 
represents the complement of event A. 

A A 
B 

(a) Event A (b) Intersection 

A B 

A 

A' 

(c) Union (d) Complement 

Figure 2.3: Set Relations on Venn Diagrams 

If the events being considered are not mutually exclusive, and so there may be 
overlap between them, the Addition Rule becomes 

Pr [A ∪  B) = Pr [A] + Pr [B] – Pr [A ∩  B] (2.1) 

In words, the probability of A or B or both is the sum of the probabilities of A and of 
B, less the probability of the overlap between A and B. The overlap is the intersec
tion between A and B. 
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Example 2.5 

If one card is drawn from a well-shuffled bridge deck of 52 playing cards (13 of each 
suit), what is the probability that the card is a queen or a heart? Notice that a card can 
be both a queen and a heart. Then a queen of hearts (or queen ∩ heart) overlaps the 
two categories. 

Answer: Pr [queen] = 4/52. 
Pr [heart] = 13/52. 
Pr [queen ∩ heart] = 1/52. 

These quantities are shown on the Venn diagram of Figure 2.4: 

heart 

intersection 

queen 
Figure 2.4:


Venn Diagram for Queen of Hearts


or overlap 

Then Pr [queen ∪ heart] = Pr [queen] + Pr [heart] – Pr [queen ∩ heart] 

4  13 1 16  = + − = 
52 52 52 52 

The simple addition law, sometimes equation 2.1, and the definitions of intersec
tions and unions can be used with Venn diagrams to solve problems involving three 
events with both single and double overlaps. This usually requires us to apply some 
form of the addition law several times. Often an appropriate approach is to find the 
frequency or probability corresponding to a series of simple areas on the diagram, 
each one representing either a part of only one event without overlap (such as 
A ∩ B ∩ C ) or only a clearly defined overlap (such as A ∩ B ∩ C ). 

Example 2.6 

The class registrations of 120 students are analyzed. It is found that:


30 of the students do not take any of Applied Mechanics, Chemistry,

or Computers.


15 of them take only Applied Mechanics.


25 of them take Chemistry and Computers but not Applied Mechanics.


20 of them take Applied Mechanics and Computers but not Chemistry.
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10 of them take all three of Applied Mechanics, Chemistry, and Computers.


A total of 45 of them take Chemistry.


5 of them take only Chemistry.

a) How many of the students take Applied Mechanics and Chemistry but not 

Computers? 
b) How many of the students take only Computers? 
c) What is the total number of students taking Computers? 
d) If a student is chosen at random from those who take neither Chemistry nor 

Computers, what is the probability that he or she does not take Applied 
Mechanics either? 

e) If one of the students who take at least two of the three courses is chosen at 
random, what is the probability that he or she takes all three courses? 

Answer: Let’s abbreviate the courses as AM, Chem, and Comp. 

The number of items in the sample space, which is the total number of items 
under consideration, is often marked just above the upper right-hand corner of 
the rectangle. In this example that number is 120. Then the Venn diagram incor
porating the given information for this problem is shown below. Two of the 
simple areas on the diagram correspond to unknown numbers. One of these is 
(AM ∩ Chem ∩ Comp ), which is taken by x students. The other is 
(AM ∩Chem ∩ Comp ), so only Computers but not the other courses, and that is 
taken by y students. 

In terms of quantities corresponding to simple areas on the Venn diagram, the given 
information that a total of 45 of the students take Chemistry requires that 

x + 10 + 25 + 5 = 45 

Then x = 5. 

Figure 2.5:

Venn Diagram for Class


Registrations


AM 
Chem 

Comp 

15 

5 

20 

10 
25 

30 

x 

y 

15


120 



Chapter 2 

Let n(...) be the number of students who take a specified course or combination 
of courses. Then from the total number of students and the number who do not take 
any of the three courses we have 

n(AM ∪ Chem ∪ Comp) = 120 – 30 = 90 

But from the Venn diagram and the knowledge of the total taking Chemistry we have 

n(AM∪ Chem∪ Comp) = n(Chem) + n(AM∩ Chem ∩ Comp) +n(AM∩ Chem ∩ Comp)
 +n(AM ∩ Chem ∩ Comp)

 = 45 + 15 + 20 + y

           = 80 + y 

Then y = 90 – 80 = 10. 

Now we can answer the specific questions. 

a) The number of students who take Applied Mechanics and Chemistry but not 
Computers is 5. 

b) The number of students who take only Computers is 10. 
c) The total number of students taking Computers is 10 + 20 + 10 + 25 = 65. 
d) The number of students taking neither Chemistry nor Computers is 15 + 30 

= 45. Of these, the number who do not take Applied Mechanics is 30. Then 
if a student is chosen randomly from those who take neither Chemistry nor 
Computers, the probability that he or she does not take Applied Mechanics 

either is 
30 

45 
= 

2 

3 
. 

e) The number of students who take at least two of the three courses is 

n(AM ∩ Chem ∩ Comp ) + n(AM ∩ Chem ∩ Comp) + n(AM ∩ Chem ∩ Comp) + 
n(AM ∩ Chem ∩ Comp) 

= 5 + 20 + 25 + 10 
= 60 

Of these, the number who take all three courses is 10. If a student taking at least two 
courses is chosen randomly, the probability that he or she takes all three 

10	 1
courses is 

60 
= 

6
. 

2.2.2 Multiplication Rule
(a)	 The basic idea for calculating the number of choices can be described as 

follows: Say there are n1 possible results from one operation. For each one of 
these, there are n2 possible results from a second operation. Then there are (n1 

× n2) possible outcomes of the two operations together. In general, the 
numbers of possible results are given by products of the number of choices at 
each step. Probabilities can be found by taking ratios of possible results. 

16




Basic Probability 

Example 2.7 

In one case a byte is defined as a sequence of 8 bits. Each bit can be either zero or 
one. How many different bytes are possible? 

Answer: We have 2 choices for each bit and a sequence of 8 bits. Then the number of 
possible results is (2)8 = 256. 

(b) The simplest form of the Multiplication Rule for probabilities is as follows: If the 
events are independent, then the occurrence of one event does not affect the 
probability of occurrence of another event. In that case the probability of occur
rence of more than one event together is the product of the probabilities of the 
separate events. (This is consistent with the basic idea of counting stated above.) 
If A and B are two separate events that are independent of one another, the 
probability of occurrence of both A and B together is given by: 

Pr [A ∩ B] = Pr [A] × Pr [B] (2.2) 

Example 2.8 

If a player throws two fair dice, the probability of a double one (one on the first die 
and one on the second die) is (1/6)(1/6) = 1/36. These events are independent because 
the result from one die has no effect at all on the result from the other die. (Note that 
“die” is the singular word, and “dice” is plural.) 

(c) If the events are not independent, one event affects the probability for the other 
event. In this case conditional probability must be used. The conditional probabil
ity of B given that A occurs, or on condition that A occurs, is written Pr [B | A]. 
This is read as the probability of B given A, or the probability of B on condition 
that A occurs. Conditional probability can be found by considering only those 
events which meet the condition, which in this case is that A occurs. Among 
these events, the probability that B occurs is given by the conditional probability, 
Pr [B | A]. In the reduced sample space consisting of outcomes for which A 
occurs, the probability of event B is Pr [B | A]. The probabilities calculated in 
parts (d) and (e) of Example 2.6 were conditional probabilities. 

The multiplication rule for the occurrence of both A and B together when they 
are not independent is the product of the probability of one event and the conditional 
probability of the other: 

Pr [A ∩  B] = Pr [A] × Pr [B | A] = Pr [B] × Pr [A | B] (2.3) 

This implies that conditional probability can be obtained by 
Pr [A B]∩ 

Pr [B | A] = Pr [ ]  (2.4)A 
or 

Pr [A B]∩ 
Pr [A | B] = Pr [ ]  (2.5)B 

These relations are often very useful. 
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Example 2.9 

Four of the light bulbs in a box of ten bulbs are burnt out or otherwise defective. If 
two bulbs are selected at random without replacement and tested, (i) what is the 
probability that exactly one defective bulb is found? (ii) What is the probability that 
exactly two defective bulbs are found? 

Answer: A tree diagram is very useful in problems involving the multiplication rule. 
Let us use the symbols D1 for a defective first bulb, D2 for a defective second bulb, 
G1 for a good first bulb, and G2 for a good second bulb. 

D1 At the beginning the box contains four bulbs which 
Pr [D1] = 4/10 

are defective and six which are good. Then the probabil
ity that the first bulb will be defective is 4/10 and the 
probability that it will be good is 6/10. This is shown in 
the partial tree diagram at left. 

Pr [G1] = 6/10 
G1 Probabilities for the


second bulb vary, depend- Pr [D2 | D1] = 3/9
 D2
Figure 2.6: First Bulb ing on what was the result 

for the first bulb, and so are given by conditional D1 

probabilities. These relations for the second bulb are 
shown at right in Figure 2.7. Pr [G2 | D1] = 6/9 G2 

If the first bulb was defective, the box will then Pr [D2 | G1] = 4/9 D2 

contain three defective bulbs and six good ones, so the 
conditional probability of obtaining a defective bulb on G1 

3
the second draw is 9 , and the conditional probability 

6 Pr [G2 | G1] = 5/9 G2 
of obtaining a good bulb is 9 . 

If the first bulb was good the box will contain four Figure 2.7: Second Bulb 

defective bulbs and five good ones, so the conditional 
4

probability of obtaining a defective bulb on the second draw is 9 , and the conditional 
5

probability of obtaining a good bulb is 9 . Notice that these arguments hold only 

when the bulbs are selected “without replacement”; if the chosen bulbs had been 
replaced in the box and mixed well before another bulb was chosen, the relevant 
probabilities would be different. 

Now let us combine the separate probabilities.

 4   3  12


The probability of getting two defective bulbs must be 
 
10   9 


 = 

90 , the probability 

of getting a defective bulb on the first draw and a good bulb on the second draw is 
 4   6  24    = 

90 
, the probability of getting a good bulb on the first draw and a defective  10   9  

 6   4  24 
bulb on the second draw is 

 
10   9  = 

90 , and the probability of getting two good 
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 6   5  30bulbs is  10   9 

 = 

90 
. In symbols we have: 

 4   3  = 
12 

Pr [D1 ∩ D2] = Pr [D1] × Pr [D2|D1] = 
 
10   9  90 

 4   6  = 
24

Pr [D1 ∩ G2] = Pr [D1] × Pr [G2|D1] = 
 
10   9  90 

 6   4  = 
24

Pr [G1 ∩ D2] = Pr [G1] × Pr [D2|G1] = 
 
10   9  90 

 6   5  = 
30 

Pr [G1 ∩ G2] = Pr [G1] × Pr [G2|G1] = 
 
10   9  90 

Notice that both D1 ∩ G2 and G1 ∩ D2 correspond to obtaining 1 good bulb and 1 
defective bulb. 

The complete tree diagram is shown in Figure 2.8. 

Event Probability 

D2 2 defective bulbs 12 
90 

G2 1 good, 1 defective 24 
90 

D2 1 good, 1 defective 24 
90 

Pr [D2 | D1] = 3/9

Pr [G2 | D1] = 6/9

Pr [D2 | G1] = 4/9

D1
Pr [D1] = 4/10

Pr [G1] = 6/10 
G1

Pr [G2 |G1] = 5/9 G2 2 good bulbs	 30 
90 

First Bulb Second Bulb 

Figure 2.8: Complete Tree Diagram 

Notice that all the probabilities of events add up to one, as they must:

12 + 24 + 24 + 30


= 1 
90 

Now we have to answer the specific questions which were asked: 

i) Pr [exactly one defective bulb is found] = Pr [D1 ∩ G2] + Pr [G1 ∩ D2]
24 + 24 48 

= = = 0.533.
90 90

The first term corresponds to getting first a defective bulb and then a good bulb, and 
the second term corresponds to getting first a good bulb and then a defective bulb. 
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12
ii) Pr [exactly two defective bulbs are found] = Pr [D1 ∩ D2] = 	  = 0.133. There is 

90
only one path which will give this result. 

Notice that testing could continue until either all 4 defective bulbs or all 6 good 
bulbs are found. 

Example 2.10 

A fair six-sided die is tossed twice. What is the probability that a five will 
occur at least once? 

Answer:  Note that this problem includes the possibility of obtaining 
1

two fives. On any one toss, the probability of a five is 
6 

, and the 
5

probability of no fives is 
6 

. This problem will be solved in several ways. 

5 

No 5 

Pr [a 5] = 1/6 

Pr [no 5] = 5/6 

Pr [a 5] = 1/6 

Pr [a 5] = 1/6 

Pr [no 5] = 5/6 

Pr [no 5] = 5/6 

5 

Figure 2.9: 
Tree Diagram for Two Tosses 

No 5 
5 

No 5 

First Toss Second Toss 

First solution (considering all possibilities using a tree diagram): 
 1   1  = 

1
Pr [5 on the first toss ∩  5 on the second toss] =	 

 6 

 

 6  36 

 1   5  = 
5 

Pr [5 on the first toss ∩  no 5 on the second toss] =	 
 6 


 

 6  36 

 5   1  = 
5

Pr [no 5 on the first toss ∩  5 on the second toss] =	 
 6 


 

 6  36 

 5   5  = 
25

Pr [no 5 on the first toss ∩  no 5 on the second toss] =	 
 6 


 

 6  36 

Total of all probabilities (as a check) =  1 
1 5 5 11

Then Pr [at least one five in two tosses] = + + = 
36 36 36 36 
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Second solution (using conditional probability): 

The probability of at least one five is given by: 

Pr [5 on the first toss] × Pr [at least one 5 in two tosses | 5 on the first toss]

 + Pr [no 5 on the first toss] × Pr [at least one 5 in two tosses | no 5 on the first toss]. 
1

But Pr [5 on the first toss] = Pr [5 on any one toss] = 
6 

and Pr [at least one 5 in two tosses | 5 on the first toss] = 1 (a dead certainty!) 
5

Also Pr [no 5 on the first toss] = Pr [no 5 on any toss] = 
6 

, 
1

and Pr [at least one 5 in two tosses | no 5 on the first toss] = Pr [5 on the second toss]  = 
6 

. 

 1
 5   1  11Then Pr [at least one 5 in two tosses] = 

 
 

6

1 
 
 ( )+ 

 
6 



 

6 
 = 

36 

Third solution (using the addition rule, eq. 2.1): 

Pr [at least one 5 in two tosses] 

= Pr [(5 on the first toss) ∪  (5 on the second toss)] 

= Pr [5 on the first toss] + Pr [5 on the second toss] 

– Pr [(5 on the first toss) ∩  (5 on the second toss)] 

=
1 

+ 
1 

−  1   1  = 
6 

+ 
6 

− 
1 

= 
11


6 6  6   6  36 36 36 36


Fourth solution: Look at the sample space (i.e., consider all possible outcomes). 
Let’s use a matrix notation where each entry gives first the result of the first toss and 
then the result of the second toss, as follows: 

1,1 1,2 1,3 1,4 1,5 1,6 
2,1 2,2 2,3 2,4 2,5 2,6 
3,1 3,2 3,3 3,4 3,5 3,6 
4,1 4,2 4,3 4,4 4,5 4,6 
5,1 5,2 5,3 5,4 5,5 5,6 
6,1 6,2 6,3 6,4 6,5 6,6 

Figure 2.10: Sample Space of Two Tosses 

In the fifth row the result of the first toss is a 5, and in the fifth column the result of 
the second toss is a 5. This row and this column have been shaded and represent the 
part of the sample space which meets the requirements of the problem. This area 
contains 11 entries, whereas the whole sample space contains 36 entries, 

11
so Pr [at least one 5 in two tosses] = 

36 
. 
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Fifth solution (and the fastest): The probability of no fives in two tosses is 
 5   5  = 

25  
 6   6  36 

Because the only alternative to no fives is at least one five, 
25 11

Pr [at least one 5 in two tosses] = 1 − 
36 

= 
36 

Before we start to calculate we should consider whether another method may 
give a faster correct result! 

Example 2.11 

A class of engineering students consists of 45 people. What is the probability that no 
two students have birthdays on the same day, not considering the year of birth? To 
simplify the calculation, assume that there are 365 days in the year and that births are 
equally likely on all of them. Then what is the probability that some members of the 
class have birthdays on the same day? 

Answer: The first person in the class states his birthday. The probability that the 
364

second person has a different birthday is 
365 

, and the probability that the third 
363

person has a different birthday than either of them is . We can continue this 
365 

calculation until the birthdays of all 45 people have been considered. Then the 
probability that no two students in the class have the same birthday is 

 364   363   362   365 − i + 1  365 − 45 + 1     .. .   .. .   = 0.059. (The multiplication was (1)
 

365   365   365   365   365  

done using a spreadsheet.) Then the probability that at least one pair of students have 
birthdays on the same day is 1 – 0.059 = 0.941. 

In fact, some days of the year have higher frequencies of births than others, so the 
probability that at least one pair of students would have birthdays on the same day is 
somewhat larger than 0.941. 

The following example is a little more complex, but it involves the same approach. 
Because this case uses the multiplication rule, tree diagrams are very helpful. 

Example 2.12 

An oil company is bidding for the rights to drill a well in field A and a well in field 
B. The probability it will drill a well in field A is 40%. If it does, the probability the 
well will be successful is 45%. The probability it will drill a well in field B is 30%. 
If it does, the probability the well will be successful is 55%. Calculate each of the 
following probabilities: 

a) probability of a successful well in field A,

b) probability of a successful well in field B,

c) probability of both a successful well in field A and a successful well in field B,

d) probability of at least one successful well in the two fields together,
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e) probability of no successful well in field A,

f) probability of no successful well in field B,

g) probability of no successful well in the two fields together (calculate by two


methods),

h) probability of exactly one successful well in the two fields together.

Show a check involving the probability calculated in part h.


Answer: 

For Field A: 

Result Probability 
Pr [success] = 0.45 success (0.40)(0.45) = 0.18 

Pr [well] = 0.40 well 

(0.40)(0.55) = 0.22Pr [failure] = 0.55 failure 

no well no well
Pr [no well] = 0.60 0.60 

Total 1.00 

Figure 2.11: Tree Diagram for Field A 

a)	 Then Pr [a successful well in field A]  = Pr [a well in A] × Pr [success | well 
in A]


= (0.40)(0.45)

= 0.18 (using equation 2.3)


For Field B: 

Result Probability 
Pr [success] = 0.55 success (0.30)(0.55) = 0.165 

Pr [well] = 0.30 well 

(0.30)(0.45) = 0.135Pr [failure] = 0.45 failure 

no well
Pr [no well] = 0.70 0.70 

Total 1.00 

Figure 2.12: Tree Diagram for Field B 

b)	 Then Pr [a successful well in field B] = Pr [a well in B] × Pr [success | well 
in B] 
= (0.30)(0.55) 
= 0.165 (using equation 2.3) 
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c) Pr [both a successful well in field A and a successful well in field B] 
= Pr [a successful well in field A] × Pr [a successful well in field B] 
= (0.18)(0.165) 
= 0.0297 (using equation 2.2, since probability of success in
     one field is not affected by results in the other field) 

d) Pr [at least one successful well in the two fields] 
= Pr [(successful well in field A)∪ (successful well in field B)] 
= Pr [successful well in field A] + Pr [successful well in field B]

 – Pr [both successful] 
= 0.18 + 0.165 – 0.0297 
= 0.3153 or 0.315 (using equation 2.1) 

e) Pr [no successful well in field A] 
= Pr [no well in field A] + Pr [unsuccessful well in field A] 
= Pr [no well in field A] + Pr [well in field A] × Pr [failure | well in A] 
= 0.60 + (0.40)(0.55) 
= 0.60 + 0.22 
= 0.82 (using equation 2.3 and the simple addition rule) 

f) Pr [no successful well in field B] 
= Pr [no well in field B] + Pr [unsuccessful well in field B] 
= Pr [no well in field B] + Pr [well in field B] × Pr [failure | well in B] 
= 0.70 + (0.30)(0.45) 
= 0.70 + 0.135 
= 0.835 (using equation 2.3 and the simple addition rule) 

g) Pr [no successful well in the two fields] can be calculated in two ways. One 
method uses the requirement that probabilities of all possible results must 
add up to 1. This gives: 
Pr [no successful well in the two fields] = 1 – Pr [at least one successful well 
in the two fields] 
= 1 – 0.3153 
= 0.6847 or 0.685 
The second method uses equation 2.2: 
Pr [no successful well in the two fields] 
= Pr [no successful well in field A] × Pr [no successful well in field B] 
= (0.82)(0.835) 
= 0.6847 or 0.685 

h) Pr [exactly one successful well in the two fields] 
= Pr [(successful well in A) ∩  (no successful well in B)]
     + Pr [(no successful well in A) ∩  (successful well in B)] 
= (0.18)(0.835) + (0.82)(0.165) 
= 0.1503 + 0.1353 
= 0.2856 or 0.286 (using equation 2.2 and the simple addition rule) 
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Check: For the two fields together,

Pr [two successful wells] = 0.0297 (from part c)

Pr [exactly one successful well] = 0.2856 (from part h)

Pr [no successful wells] = 0.6847 (from part g)


Total (check) = 1.0000 

Problems 
1.	 Past records show that 4 of 135 parts are defective in length, 3 of 141 are defec

tive in width, and 2 of 347 are defective in both. Use these figures to estimate 
probabilities of the individual events assuming that defects occur independently 
in length and width. 
a) What is the probability that a part produced under the same conditions will 

be defective in length or width or both?

b) What is the probability that a part will have neither defect?

c) What are the fair odds against a defect (in length or width or both)?


2.	 In a group of 72 students, 14 take neither English nor chemistry, 42 take English 
and 38 take chemistry. What is the probability that a student chosen at random 
from this group takes: 
a) both English and chemistry? 
b) chemistry but not English? 

3.	 A random sample of 250 students entering the university included 120 females, 
of whom 20 belonged to a minority group, 65 had averages over 80%, and 10 fit 
both categories. Among the 250 students, a total of 105 people in the sample had 
averages over 80%, and a total of 40 belonged to the minority group. Fifteen 
males in the minority group had averages over 80%. 
i) How many of those not in the minority group had averages over 80%? 
ii) Given a person was a male from the minority group, what is the probability 

he had an average over 80%? 
iii) What is the probability that a person selected at random was male, did not 

come from the minority group, and had an average less than 80%? 

4.	 Two hundred students were sampled in the College of Arts and Science. It was 
found that: 137 take math, 50 take history, 124 take English, 33 take math and 
history, 29 take history and English, 92 take math and English, 18 take math, 
history and English. Find the probability that a student selected at random out of 
the 200 takes neither math nor history nor English. 

5.	 Among a group of 60 engineering students, 24 take math and 29 take physics. 
Also 10 take both physics and statistics, 13 take both math and physics, 11 take 
math and statistics, and 8 take all three subjects, while 7 take none of the three. 
a) How many students take statistics? 
b) What is the probability that a student selected at random takes all three, 

given he takes statistics? 
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6.	  Of 65 students, 10 take neither math nor physics, 50 take math, and 40 take 
physics. What are the fair odds that a student chosen at random from this group 
of 65 takes (i) both math and physics? (ii) math but not physics? 

7.	 16 parts are examined for defects. It is found that 10 are good, 4 have minor 
defects, and 2 have major defects. Two parts are chosen at random from the 16 
without replacement, that is, the first part chosen is not returned to the mix 
before the second part is chosen. Notice, then, that there will be only 15 possible 
choices for the second part. 
a) What is the probability that both are good? 
b) What is the probability that exactly one part has a major defect? 

8.	 There are two roads between towns A and B. There are three roads between 
towns B and C. John goes from town A to town C. How many different routes 
can he travel? 

9.	 A hiker leaves point A shown in Figure 2.13 below, choosing at random one path 
from AB, AC, AD, and AE. At each subsequent junction she chooses another 
path at random, but she does not immediately return on the path she has just 
taken. 
a) What are the odds that she arrives at point X? 
b) You meet the hiker at point X. What is the probability that the hiker came via 

point C or E? 
A 

B C D E 

Y Z X W V U 

F 

G 

Figure 2.13: Paths for Hiker 

10. The probability that a certain type of missile will hit the target on any one firing 
is 0.80. How many missiles should be fired so that there is at least 98% probabil
ity of hitting the target at lest once? 

11. To win a daily double at a horse race you must pick the winning horses in the 
first two races. If the horses you pick have fair odds against of 3:2 and 5:1, what 
are the fair odds in favor of your winning the daily double? 

12. A hockey team wins with a probability of 0.6 and loses with a probability of 0.3. 
The team plays three games over the weekend. Find the probability that the team: 
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a) wins all three games.

b) wins at least twice and doesn’t lose.

c) wins one game, loses one, and ties one (in any order).


13. To encourage his son’s promising tennis career, a father offers the son a prize if 
he wins (at least) two tennis sets in a row in a three-set series. The series is to be 
played with the father and the club champion alternately, so in the order father-
champion-father or champion-father-champion. The champion is a better player 
than the father. Which series should the son choose if Pr [son beating the cham
pion] = 0.4, and Pr [son beating his father] = 0.8? What is the probability of the 
son winning a prize for each of the two alternatives? 

14. Three balls are drawn one after the other from a bag containing 6 red balls, 5 
yellow balls and 3 green balls. What is the probability that all three balls are 
yellow if: 
a) the ball is replaced after each draw and the contents are well mixed? 
b) the ball is not replaced after each draw? 

15. When buying a dozen eggs, Mrs. Murphy always inspects 3 eggs for cracks; if 
one or more of these eggs has a crack, she does not buy the carton. Assuming 
that each subset of 3 eggs has an equal probability of being selected, what is 
the probability that Mrs. Murphy will buy a carton which has 5 eggs with 
cracks? 

16. Of 20 light bulbs, 3 are defective. Five bulbs are chosen at random. (a) Use the 
rules of probability to find the probability that none are defective. (b) What is the 
probability that at least one is defective? 

17. Of flights from Saskatoon to Winnipeg, 89.5% leave on time and arrive on time, 
3.5% leave on time and arrive late, 1.5% leave late and arrive on time, and 5.5% 
leave late and arrive late. What is the probability that, given a flight leaves on 
time, it will arrive late? What is the probability that, given a flight leaves late, it 
will arrive on time? 

18. Eight engineering students are studying together. What is the probability that at 
least two students of this group have the same birthday, not considering the year 
of birth? Simplify the calculations by assuming that there are 365 days in the 
year and that all are equally likely to be birthdays. 

19. The probabilities of the monthly snowfall exceeding 10 cm at a particular loca
tion in the months of December, January, and February are 0.2, 0.4, and 0.6, 
respectively. For a particular winter: 
a) What is the probability that snowfall will be less than 10 cm in all three of 

the months of December, January and February? 
b) What is the probability of receiving at least 10 cm snowfall in at least 2 of 

the 3 months? 
c) Given that the snowfall exceeded 10 cm in each of only two months, what is 

the probability that the two months were consecutive? 
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20. A circuit consists of two components, A and B, connected as shown below. 

Input Output 

A 

B 

Figure 2.14: Circuit Diagram 

Each component can fail (i) to an open circuit mode or

 (ii) to a short circuit mode.

The probabilities of the components’ failing to these modes in a year are:

    Probability of failing to 
Open Circuit Short Circuit 

Component  Mode  Mode 
A  0.100  0.150
 B  0.200  0.100 

The circuit fails to perform its intended function if (i) the component in at least 
one branch fails to the short circuit mode, or if (ii) both components fail to the 
open circuit mode. 

Calculate the probability that the circuit will function adequately at the end of a 
two-year period. 

21. Ten married couples are in a room. 
a) If two people are chosen at random find the probability that (i) one is male 

and one is female, (ii) they are married to each other. 
b) If 4 people are chosen at random, find the probability that 2 married couples 

are chosen. 
c)	 If the 20 people are randomly divided into ten pairs, find the probability that 

each pair is a married couple. 

22. A box contains three coins, two of them fair and one two-headed. A coin is 
selected at random and tossed. If heads appears the coin is tossed again; if tails 
appears then another coin is selected from the two remaining coins and tossed. 
a) Find the probability that heads appears twice. 
b) Find the probability that tails appears twice. 

23. The probability of precipitation tomorrow is 0.30, and the probability of precipi
tation the next day is 0.40. 
a) Use these figures to find the probability there will be no precipitation during 

the two days. State any assumption. What is the probability there will be 
some precipitation in the next two days? 
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b)	 Why is this calculation not strictly correct? If figures were available, how 
could the probability of no precipitation during the next two days be calcu
lated more accurately? Show this calculation in symbols. 

2.3 Permutations and Combinations 
Permutations and combinations give us quick, algebraic methods of counting. They 
are used in probability problems for two purposes: to count the number of equally 
likely possible results for the classical approach to probability, and to count the 
number of different arrangements of the same items to give a multiplying factor. 

(a) Each separate arrangement of all or part of a set of items is called a permutation. The 
number of permutations is the number of different arrangements in which items can 
be placed. Notice that if the order of the items is changed, the arrangement is differ
ent, so we have a different permutation. Say we have a total of n items to be arranged, 
and we can choose r of those items at a time, where r ≤ n. The number of permuta
tions of n items chosen r at a time is written nPr. For permutations we consider both 
the identity of the items and their order. 

Let us think for a minute about the number of choices we have at each step 
along the way. If there are n distinguishable items, we have n choices for the first 
item. Having made that choice, we have (n–1) choices for the second item, then 
(n – 2) choices for the third item, and so on until we come to the r th item, for 
which we have (n – r + 1) choices. Then the total number of choices is given by 
the product (n)(n – 1)(n – 2)(n – 3)...(n – r + 1). But remember that we have a 
short-hand notation for a related product, (n)(n – 1)(n – 2)(n – 3)...(3)(2)(1) = n!, 
which is called n factorial or factorial n. Similarly, r! = (r)(r – 1)(r – 2)(r – 3)... 
(3)(2)(1), and (n – r)! = (n – r)(n – r – 1) ((n – r – 2)...(3)(2)(1). Then the total 
number of choices, which is called the number of permutations of n items taken 
r at a time, is 

n! n n  − 1)(n − 2)…(2)(1)(
P = = n r  − −(n − r )! (n r  )(n r  − 1)…(3)(2)(1)	 (2.6) 

By definition, 0! = 1. Then the number of choices of n items taken n at a time is 
nPn = n!. 

Example 2.13 

An engineer in technical sales must visit plants in Vancouver, Toronto, and 
Winnipeg. How many different sequences or orders of visiting these three plants 
are possible? 

Answer: The number of different sequences is equal to 3P3 = 3! = 6 different 
permutations. This can be verified by the following tree diagram: 
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First Second Third Route 

V 

T 

W 

T W VTW 

W T VWT 
V W TVW 

W V TWV 
T V WTV 

V T WVT 

Figure 2.15: Tree Diagram for Visits to Plants 

(b) The calculation of permutations is modified if some of the items cannot be 
distinguished from one another. We speak of this as calculation of the 
number of permutations into classes. We have already seen that if n items are 
all different, the number of permutations taken n at a time is n!. However, if 
some of them are indistinguishable from one another, the number of possible 
permutations is reduced. If n1 items are the same, and the remaining (n–n1) 
items are the same of a different class, the number of permutations can be 

n !
shown to be 

n1!(n − n1)!
. The numerator, n!, would be the number of permutations 

of n distinguishable items taken n at a time. But n1 of these items are

1


indistinguishable, so reducing the number of permutations by a factor 
n1! 

, 

and another (n – n1) items are not distinguishable from one another, so reducing 
1

the number of permutations by another factor 
(n − n1)!

. If we have a total of 

n items, of which n1 are the same of one class, n2 are the same of a second class, 
and n3 are the same of a third class, such that n1 + n2 + n3 = 1, the number 

n ! 
of permutations is 

n1! n2 ! n3 ! 
. This could be extended to further classes. 

Example 2.14 

A machinist produces 22 items during a shift. Three of the 22 items are defective and 
the rest are not defective. In how many different orders can the 22 items be arranged 
if all the defective items are considered identical and all the nondefective items are 
identical of a different class? 

Answer: The number of ways of arranging 3 defective items and 

22! 22 20 
19 nondefective items is =

( )(21)( )
= 1540. 

!( )(  3  2  1  )3 19  !) ( )( )(
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Another modification of calculation of permutations gives circular permutations. 
If n items are arranged in a circle, the arrangement doesn’t change if every item is 
moved by one place to the left or to the right. Therefore in this situation one item can 
be placed at random, and all the other items are placed in relation to the first item. 
Thus, the number of permutations of n distinct items arranged in a circle is (n – 1)!. 

The principal use of permutations in probability is as a multiplying factor that 
gives the number of ways in which a given set of items can be arranged. 

(c)	 Combinations are similar to permutations, but with the important difference 
that combinations take no account of order. Thus, AB and BA are different 
permutations but the same combination of letters. Then the number of 
permutations must be larger than the number of combinations, and the ratio 
between them must be the number of ways the chosen items can be arranged. 
Say on an examination we have to do any eight questions out of ten. The 

number of permutations of questions would be 10P8 = 10 ! . Remember 
2!  

that the number of ways in which eight items can be arranged is 8!, so the 

number of combinations must be reduced by the factor 1 . Then the number 
8! 

of combinations of 10 distinguishable items taken 8 at a time is  10 !   1  . In 2!    8! 
general, the number of combinations of n items taken r at a time is 

P n!n rC = = n r r! (n − r )!  ! 	
(2.7)

r 
Cr gives the number of equally likely ways of choosing r items from a group of 

n distinguishable items. That can be used with the classical approach to probabil
ity. 

n

Example 2.15 

Four card players cut for the deal. That is, each player removes from the top of a 
well-shuffled 52-card deck as many cards as he or she chooses. He then turns them 
over to expose the bottom card of his “cut.” He or she retains the cut card. The 
highest card will win, with the ace high. If the first player draws a nine, what is then 
his probability of winning without a recut for tie? 

Answer: For the first player to win, each of the other players must draw an eight or 
lower. Then Pr [win] = Pr [other three players all get eight or lower]. 

There are (4)(7) = 28 cards left in the deck below nine after the first player’s 
draw, and there are 52 – 1 = 51 cards left in total. The number of combinations of 
three cards from 51 cards is 51C3, all of which are equally likely. Of these, the number 
of combinations which will result in a win for the first player is the number of 
combinations of three items from 28 items, which is 28C3. 
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The probability that the first player will win is 

Like many other problems, this one can be done in more than one way. A solu
tion by the multiplication rule using conditional probability is as follows: 

28
Pr [player #2 gets eight or lower | player #1 drew a nine] = 

51 

If that happens, Pr [player #3 gets eight or lower] 

= Pr [third player gets eight or lower | first player drew a nine and second player 
drew eight or lower] 

27 
= 

50 

If that happens, Pr [player #4 gets eight or lower] 

= Pr [fourth player gets eight or lower | first player drew a nine and both second 
and third players drew eight or lower] 

26 
= 

49 

The probability that the first player will win is 

 28   27   26  
. 	     = 0 157  . 

 51   50   49  

Problems 
1.	 A bench can seat 4 people. How many seating arrangements can be made from a 

group of 10 people? 

2.	 How many distinct permutations can be formed from all the letters of each of the 
following words: (a) them, (b) unusual? 

3.	 A student is to answer 7 out of 9 questions on a midterm test. 
i) How many examination selections has he? 
ii) How many if the first 3 questions are compulsory? 
iii) How many if he must answer at least 4 of the first 5 questions? 

4.	 Four light bulbs are selected at random without replacement from 16 bulbs, of 
which 7 are defective. Find the probability that 
a) none are defective. 
b) exactly one is defective. 
c) at least one is defective. 

5.	 Of 20 light bulbs, 3 are defective. Five bulbs are chosen at random. 
a) Use permutations or combinations to find the probability that none are 

defective. 
b) What is the probability that at least one is defective?


(This is a modification of problem 15 of the previous set.)


32




Basic Probability 

6.	 A box contains 18 light bulbs. Of these, four are defective. Five bulbs are chosen 
at random. 
a) Use permutations or combinations to find the probability that none are 

defective.
 b) What is the probability that exactly one of the chosen bulbs is defective? 
c) What is the probability that at least one of the chosen bulbs is defective? 

7.	 How many different sums of money can be obtained by choosing two coins from 
a box containing a nickel, a dime, a quarter, a fifty-cent piece, and a dollar coin? 
Is this a problem in permutations or in combinations? 

8.	 If three balls are drawn at random from a bag containing 6 red balls, 4 white 
balls, and 8 blue balls, what is the probability that all three are red? Use permuta
tions or combinations. 

9.	 In a poker hand consisting of five cards, what is the probability of holding: 

a) two aces and two kings? 
b) five spades?

c) A, K, Q, J, 10 of the same suit?


10. In how many ways can a group of 7 persons arrange themselves 
a) in a row, 
b) around a circular table? 

11. In how many ways can a committee of 3 people be selected from 8 people? 

12. In playing poker, five cards are dealt to a player. What is the probability of being 
dealt (i) four-of-a-kind? (ii) a full house (three-of-a-kind and a pair)? 

13. A hockey club has 7 forwards, 5 defensemen, and 3 goalies. Each can play only 
in his designated subgroup. A coach chooses a team of 3 forwards, 2 defense, 
and 1 goalie. 
a) How many different hockey teams can the coach assemble if position within 

the subgroup is not considered? 
b)	 Players A, B and C prefer to play left forward, center, and right defense, respec

tively. What is the probability that these three players will play on the same team 
in their preferred positions if the coach assembles the team at random? 

14. A shipment of 17 radios includes 5 radios that are defective. The receiver 
samples 6 radios at random. What is the probability that exactly 3 of the radios 
selected are defective? Solve the problem 
a) using a probability tree diagram 
b) using permutations and combinations. 

15. Three married couples have purchased theater tickets and are seated in a row 
consisting of just six seats. If they take their seats in a completely random 
fashion, what is the probability that 
a) Jim and Paula (husband and wife) sit in the two seats on the far left? 
b) Jim and Paula end up sitting next to one another. 
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2.4 More Complex Problems: Bayes’ Rule 
More complex problems can be treated in much the same manner. You must read the 
question very carefully. If the problem involves the multiplication rule, a tree diagram 
is almost always very strongly recommended. 

Example 2.16 

A company produces machine components which pass through an automatic testing 
machine. 5% of the components entering the testing machine are defective. However, 
the machine is not entirely reliable. If a component is defective there is 4% probabil
ity that it will not be rejected. If a component is not defective there is 7% probability 
that it will be rejected. 

a) What fraction of all the components are rejected? 
b) What fraction of the components rejected are actually not defective? 
c) What fraction of those not rejected are defective? 

Answer:   Let D represent a defective component, and G a good component. 

Let R represent a rejected component, and A an accepted component. 

Part (a) can be answered directly using a tree diagram. 

R 
Figure 2.16: 

Testing Sequences 

A 

R 

D

G

Pr [D] = 0.05 

Pr [G] = 0.95 

Pr [R | D] = 0.96

Pr [R | G] = 0.07

Pr [A | D] = 0.04

Pr [A | G] = 0.93 A 

Now we can calculate the probabilities of the various combined events: 

Pr [D ∩  R] = Pr [D] × Pr [R | D] =	 (0.05)(0.96) = 0.0480 Rejected 

Pr [D ∩ A] = Pr [D] × Pr [A | D] =	 (0.05)(0.04) = 0.0020 Accepted 

Pr [G ∩  R] = Pr [G] × Pr [R | G] =	 (0.95)(0.07) = 0.0665 Rejected 

Pr [G ∩ A] = Pr [G] × Pr [A | G] =	 (0.95)(0.93) = 0.8835 Accepted 
Total  = 1.0000 (Check) 
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Because all possibilities have been considered and there is no overlap among 
them, we see that the “rejected” area is composed of only two possibilities, so the 
probability of rejection is the sum of the probabilities of two intersections. The same 
can be said of the “accepted” area. 

Then Pr [R] = Pr [D ∩ R] + Pr [G ∩ R] = 0.0480 + 0.0665 = 0.1145 

and Pr [A] = Pr [D ∩ A] + Pr [G ∩ A] = 0.0020 + 0.8835 = 0.8855 

a) The answer to part (a) is that “in the long run” the fraction rejected will be the 
probability of rejection, 0.1145 or (with rounding) 0.114 or 11.4 %. 

Now we can calculate the required quantities to answer parts (b) and (c) using 
conditional probabilities in the opposite order, so in a sense applying them 
backwards. 

b) Fraction of components rejected which are not defective 

= probability that a component is good, given that it was rejected 

Pr G ∩ R] 0 0665 [ . 
= Pr [G | R] = Pr R 

= 
0 1145 = 0.58 or 58 %.[ ]  . 

c) Fraction of components passed which are actually defective 

= probability that a component is defective, given that it was passed 

Pr D ∩ A] 0 0020 [ . 
Using equation 2.4, this is Pr [D | A] = Pr A 

=
0 8855 = 0.0023 or 0.23 %.[ ]  . 

(Note that Pr [G | R] ≠ Pr [R | G], and Pr [D | A] ≠ Pr [A | D].) 

Thus the fraction of defective components in the stream which is passed seems to 
be acceptably small, but the fraction of non-defective components in the stream 
which is rejected is unacceptably large. In practice, something would have to be done 
about that. 

Note two points here about the calculation. First, to obtain answers to parts (b) 
and (c) of this problem we have applied conditional probability in two directions, 
first forward in the tree diagram, then backward. Both are legitimate applications of 
Equation 2.3 or 2.4. Second, we can go from the idea of the sample space, consisting 
of all possible results, to the reduced sample space, consisting of those outcomes 
which meet a particular condition. Here for Pr [D | A] the reduced sample space 
consists of all outcomes for which the component is not rejected. The conditional 
probability is the probability that an item in the reduced sample space will satisfy the 
requirement that the component is defective, or the long-run fraction of the items in 
the reduced sample space that satisfy the new requirement. 

Bayes’ Theorem or Rule is the name given to the use of conditional probabilities 
in both directions, with combination of all the intersections involving a particular 
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event to give the probability of that event. The Bayesian approach can be summarized 
as follows: 

• First, apply the multiplication rule with conditional probability forward 
along the tree diagram:


Pr [A ∩ B] = Pr [A] × Pr [B|A] (2.3 a)


• Second, apply the addition rule to reconstruct the probability of a particular 
event as a reduced sample space:


Pr [B] = Pr [A ∩ B] + Pr [ A ∩B] (2.8)


where A represents “not A”, the absence of A or complement of A. 

•	 Third, apply the relation for conditional probability, in the opposite direction 
on the tree diagram from the first step, using this reduced sample space: 

Pr A ∩ B]
Pr [A | B] = Pr B (2.5)

[ 
[ ]  

Bayes’ Rule should always be used with a tree diagram. Thus, for Example 2.16 
we have: 

R 

A 

R 

Figure 2.17: 
Tree Diagram for Bayes’ Rule 

D

G

Pr [D] = 0.05 

Pr [G] = 0.95 

Pr [R | D] = 0.96

Pr [R | G] = 0.07

Pr [A | D] = 0.04

Pr [A | G] = 0.93 A 

The steps corresponding to the reasoning behind Bayes’ Rule for this tree dia
gram are: 

First, Pr [D ∩ R] = Pr [D] × Pr [R | D], and so on, corresponding to equation 2.3 a. 

Then, Pr [R] = Pr [D ∩ R] + Pr [G ∩ R], and similarly for Pr [A], corresponding to 
equation 2.8. 

Pr G ∩ R]
Then, Pr [G | R] = Pr R , and similarly for Pr [D | A], corresponding to equa

[ 
[ ]  

tion 2.5. 

An important use of Bayes’ Rule is in modifying earlier estimates of probability 
with later observed data. 
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Here is another example of the use of Bayes’ Rule: 

Example 2.17 

A man has three identical jewelry boxes, each with two identical drawers. In the first 
box both drawers contain gold watches. In the second box both drawers contain silver 
watches. In the third box one drawer contains a gold watch, and the other drawer 
contains a silver watch. The man wants to wear a gold watch. If he selects a box at 
random, opens a drawer at random, and finds a silver watch, what is the probability 
that the other drawer in that box contains a gold watch? 

Answer:  (It is interesting at this point to guess what the right answer will be! Try it.) 

If G stands for a gold watch and S stands for a silver watch, the three boxes and their 
contents can be shown as follows: 

1  2  3
 G  S  G
 G  S  S 

Figure 2.18: Jewelry Boxes

If the selected box contains both a silver watch and a gold watch, it must be Box 3. 

Then we need to calculate the probability that the man chose Box 3 on condition 
that he found a silver watch, Pr [B3|S] , where B3 stands for Box 3 and similar 
notations apply for other boxes. We start with a tree diagram and apply conditional 
probabilities along the tree. 

Pr [S | B1] = 0 S 

Box 1 

Pr [B1] = 1/3 
Pr [G | B1] = 1 G 

S 

Pr [B2] = 1/3 

Pr [S | B2] = 1 

Box 2 

Pr [G | B2] = 0 G 
Pr [S | B3] = 1/2 SPr [B3] = 1/3 

Box 3 

Pr [G | B3] = 1/2 G 

Figure 2.19: 
Tree Diagram for Jewelry Boxes 

Using equation 2.5, Pr [S ∩ Bi] = Pr [Bi] × Pr [S | Bi], and similarly Pr [G ∩ Bi] = 
Pr[Bi] × Pr [G | Bi], so we have: 
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i,Box No. Pr [S∩∩∩∩∩Bi] Pr [G∩∩∩∩∩Bi]

 1

1


 1 ( ) = 0 
 ( )  =

1 
 3 	0  3 1

3

1

2


 1 ( ) =  1 ( ) = 0 3 	1  3 0
3 

1    1   1  1  =  1  1  =3  3  2  6  3  2  6 

1	 1 
Total 

2	 2 
3 1 1 

Then Pr [S] = ∑ Pr[S ∩ Bi ] = 0 + 
1 

+	 = 
3	 6 2i =1 

3 1 1 
and Pr [G] = ∑ Pr[G ∩ Bi ] = 

1 
+ 0 + = 

3 6 2 

Total = 1 ( check) 
i =1 

Pr [B ∩ S] 1 6  13 = =Then we have Pr [B3|S] = Pr [ ]S 1 2  3  
1 

Then the probability that the other drawer contains a gold watch is 
3 

. 

Other relatively complex problems will be encountered when the concepts of 
basic probability are combined with other ideas or distributions in later chapters. 

Problems 
1.	 Three different machines Ml, M2, and M3 are used to produce similar electronic 

components. Machines Ml, M2, and M3 produce 20%, 30% and 50% of the 
components respectively. It is known that the probabilities that the machines 
produce defective components are 1% for M1, 2% for M2, and 3% for M3. If a 
component is selected randomly from a large batch, and that component is 
defective, find the probability that it was produced: (a) by M2, and (b) by M3. 

2.	 A flood forecaster issues a flood warning under two conditions only: (i) if fall 
rainfall exceeds 10 cm and winter snowfall is between 15 and 20 cm, or (ii) if 
winter snowfall exceeds 20 cm regardless of fall rainfall. The probability of fall 
rainfall exceeding 10 cm is 0.10, while the probabilities of winter snowfall 
exceeding 15 and 20 cm are 0.15 and 0.05 respectively. 
a) What is the probability that he will issue a warning any given spring? 
b) Given that he issues a warning, what is the probability that fall rainfall was 

greater than 10 cm? 
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3.	 A certain company has two car assembly plants, A and B. Plant A produces twice 
as many cars as plant B. Plant A uses engines and transmissions from a subsid
iary plant which produces 10% defective engines and 2% defective 
transmissions. Plant B uses engines and transmissions from another source where 
8% of the engines and 4% of the transmissions are defective. Car transmissions 
and engines at each plant are installed independently. 
a) What is the probability that a car chosen at random will have a good engine? 
b) What is the probability that a car from plant A has a defective engine, or a 

defective transmission, or both? 
c) What is the probability that a car which has a good transmission and a 

defective engine was assembled at plant B? 

4.	 It is known that of the articles produced by a factory, 20% come from Machine 
A, 30% from Machine B, and 50% from Machine C. The percentages of satisfac
tory articles among those produced are 95% for A, 85% for B and 90% for C. An 
article is chosen at random. 
a) What is the probability that it is satisfactory? 
b) Assuming that the article is satisfactory, what is the probability that it was 

produced by Machine A? 

5.	 Of the feed material for a manufacturing plant, 85% is satisfactory, and the rest is 
not. If it is satisfactory, the probability it will pass Test A is 92%. If it is not 
satisfactory, the probability it will pass Test A is 9.5%. If it passes Test A it goes 
on to Test B; 99% will pass Test B if the material is satisfactory, and 16% will 
pass Test B if the material is not satisfactory. If it fails Test A it goes on to Test 
C; 82% will pass Test C if the material is satisfactory, but only 3% will pass Test 
C if the material is not satisfactory. Material is accepted if it passes both Test A 
and Test B. Material is rejected if it fails both Test A and Test C. Material is 
reprocessed if it fails Test B or passes Test C. 
a) What percentage of the feed material is accepted? 
b) What percentage of the feed material is reprocessed? 
c) What percentage of the material which is reprocessed was satisfactory? 

6.	 In a small isolated town in Northern Saskatchewan, 90% of the Cola consumed 
by the townspeople is purchased from the General Store, while the rest is pur
chased from other vendors. Records show 60% of all the bottles sold are 
returned. According to a special study, a bottle purchased at the General Store is 
four times as likely to be returned as a bottle purchased elsewhere. 
a) Calculate the probability that a person buying a bottle of Cola from the 

General Store will return the empty bottle. 
b) If a Cola bottle is found lying in the street, what is the probability that it was 

not purchased at the General Store? 

7.	 Three road construction firms, X, Y and Z, bid for a certain contract. From past 
experience, it is estimated that the probability that X will be awarded the contract 
is 0.40, while for Y and Z the probabilities are 0.35 and 0.25. If X does receive 
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the contract, the probability that the work will be satisfactorily completed on

time is 0.75. For Y and Z these probabilities are 0.80 and 0.70.

a) What is the probability that Y will be awarded the contract and complete the


work satisfactorily? 
b) What is the probability that the work will be completed satisfactorily? 
c) It turns out that the work was done satisfactorily. What is the probability that 

Y was awarded the contract? 

8.	 Two service stations compete with one another. The odds are 3 to 1 that a motor
ist will go to station A rather than station B. Given that a motorist goes to station 
B, the probability that he will be asked whether he wants his oil checked is 0.76. 
A survey indicates that of the motorists who are asked whether they want the oil 
checked, 79% went to station A. Given that a motorist goes to station A, what is 
the probability that he will be asked whether he wants his oil checked? 

9.	 A machining process produces 98.6% good components. The rest are defective. 
Each component passes through a pneumatic gauging system. 96% of the defec
tive components are rejected by the gauging system, but 5% of the good 
components are rejected also. All components rejected by the gauging system 
pass through a tester. The tester accepts 98% of the good components and 12% of 
the defective components which reach it. The components which are accepted by 
the tester go a second time through the gauging system, which now accepts 92% 
of the good components and 6% of the defective components which pass through 
it. The total reject stream consists of components rejected by the tester and 
components rejected by the second pass through the gauging system. The total 
accepted stream consists of components accepted by the gauging system in either 
pass. 
a) What percentage of all the components are rejected? 
b) What percentage of the total reject stream was accepted by the tester? 
c) What percentage of the total reject stream are not defective? 
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C H A P T E R  3 
Descriptive Statistics: Summary Numbers 

Prerequisite: A good knowledge of algebra. 

The purpose of descriptive statistics is to present a mass of data in a more under
standable form. We may summarize the data in numbers as (a) some form of average, 
or in some cases a proportion, (b) some measure of variability or spread, and (c) 
quantities such as quartiles or percentiles, which divide the data so that certain 
percentages of the data are above or below these marks. Furthermore, we may choose 
to describe the data by various graphical displays or by the bar graphs called histo
grams, which show the distribution of data among various intervals of the varying 
quantity. It is often necessary or desirable to consider the data in groups and deter
mine the frequency for each group. This chapter will be concerned with various 
summary numbers, and the next chapter will consider grouped frequency and graphi
cal descriptions. 

Use of a computer can make treatment of massive sets of data much easier, so 
computer calculations in this area will be considered in detail. However, it is neces
sary to have the fundamentals of descriptive statistics clearly in mind when using the 
computer, so the ideas and relations of descriptive statistics will be developed first for 
pencil-and-paper calculations with a pocket calculator. Then computer methods will 
be introduced and illustrated with examples. 

First, consider describing a set of data by summary numbers. These will include 
measures of a central location, such as the arithmetic mean, markers such as quartiles 
or percentiles, and measures of variability or spread, such as the standard deviation. 

3.1 Central Location 
Various “averages” are used to indicate a central value of a set of data. Some of these 
are referred to as means. 

(a) Arithmetic Mean 

Of these “averages,” the most common and familiar is the arithmetic mean, defined by 

N1 
x or µ =  ∑ xi (3.1)

N i=1 
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If we refer to a quantity as a “mean” without any specific modifier, the arithmetic 
mean is implied. In equation 3.1 x  is the mean of a sample, and µ is the mean of a 
population, but both means are calculated in the same way. 

The arithmetic mean is affected by all of the data, not just any selection of it. 
This is a good characteristic in most cases, but it is undesirable if some of the data 
are grossly in error, such as “outliers” that are appreciably larger or smaller than they 
should be. The arithmetic mean is simple to calculate. It is usually the best single 
average to use, especially if the distribution is approximately symmetrical and 
contains no outliers. 

If some results occur more than once, it is convenient to take frequencies into 
account. If fi stands for the frequency of result xi, equation 3.1 becomes 

∑ x fi i  x or µ =
∑ fi 

(3.2) 

This is in exactly the same form as the expression for the x-coordinate of the center 
of mass of a system of N particles: 

∑ x mii xC of  M  = ∑mi 
(3.3) 

Just as the mass of particle i, mi, is used as the weighting factor in equation 3.3, 
the frequency, fi, is used as the weighting factor in equation 3.2. 

Notice that from equation 3.1 
N 

Nx − ∑ xi = 0 
i=1 

N 

so ∑(xi − x ) = 0 
i=1 

In words, the sum of all the deviations from the mean is equal to zero. 

We can also write equation 3.2 as 

  
N f j  

x or µ = ∑ xj 

 




j=1 ∑ fi 
 (3.2a) 

 all i  

f jThe quantity µ in this expression is the mean of a population. The quantity is 
n 

∑ fi 

the relative frequency of xi. i=1 
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To illustrate, suppose we toss two coins 15 times. The possible number of heads 
on each toss is 0, 1, or 2. Suppose we find no heads 3 times, one head 7 times, and 
two heads 5 times. Then the mean number of heads per trial using equation 3.2 is 

)( 7 + 2(0 3) + (1)( ) ( )(5) 17 
x = = = 1.13 

3 7+ + 5  15  

The same result can be obtained using equation 3.2a. 

(b) Other Means 

We must not think that the arithmetic mean is the only important mean. The geomet
ric mean, logarithmic mean, and harmonic mean are all important in some areas of 
engineering. The geometric mean is defined as the nth root of the product of n 
observations: 

ngeometric mean = x x  x  3 …x (3.4)1 2  n 

or, in terms of frequencies, 
f1 f2 f3 

fn1geometric mean = ∑ fi ( ) (x2 ) (x3 ) …( )x1 xn1 

Now taking logarithms of both sides, 

∑ fi log xi 

log (geometric mean) = ∑ fi 
(3.5) 

The logarithmic mean of two numbers is given by the difference of the natural 
logarithms of the two numbers, divided by the difference between the numbers, or 

1n x2 −1n x1 

x2 − x1 
. It is used particularly in heat transfer and mass transfer. 

The harmonic mean  involves inverses—i.e., one divided by each of the quanti
ties. The harmonic mean is the inverse of the arithmetic mean of all the inverses, so 

1

1 1
+ +… 

x2x1 

In this book we will not be concerned further with logarithmic or harmonic 
means. 

(c) Median 

Another representative quantity, quite different from a mean, is the median. If all the 
items with which we are concerned are sorted in order of increasing magnitude (size), 
from the smallest to the largest, then the median is the middle item. Consider the five 
items: 12, 13, 21, 27, 31. Then 21 is the median. If the number of items is even, the 
median is given by the arithmetic mean of the two middle items. Consider the six 
items: 12, 13, 21, 27, 31, 33. The median is (21 + 27) / 2 = 24. If we interpret an 
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item that is right at the median as being half above and half below, then in all cases 
the median is the value exceeded by 50% of the observations. 

One desirable property of the median is that it is not much affected by outliers. If 
the first numerical example in the previous paragraph is modified by replacing 31 by 
131, the median is unchanged, whereas the arithmetic mean is changed appreciably. 
But along with this advantage goes the disadvantage that changing the size of any 
item without changing its position in the order of magnitude often has no effect on 
the median, so some information is lost. If a distribution of items is very asymmetri
cal so that there are many more items larger than the arithmetic mean than smaller 
(or vice-versa), the median may be a more useful representative quantity than the 
arithmetic mean. Consider the seven items:  1, 1, 2, 3, 4, 9, 10. The median is 3, with 
as many items smaller than it as larger. The mean is 4.29, with five items smaller 
than it, but only two items larger. 

(d) Mode 

If the frequency varies from one item to another, the mode is the value which appears 
most frequently. As some of you may know, the word “mode” means “fashion” in 
French. Then we might think of the mode as the most “fashionable” item. In the case 
of continuous variables the frequency depends upon how many digits are quoted, so 
the mode is more usefully considered as the midpoint of the class with the largest 
frequency (see the grouped frequency approach 
in section 4.4). Using that interpretation, the 
mode is affected somewhat by the class width, Group A:
but this influence is usually not very great. 

3.2 Variability or Spread 
of the Data 

0 1  2 	3  4  5 6  7 8  9 10 11 12  
The following groups all have the same mean, 
4.25:	 Group B: 

Group A: 2, 3, 4, 8 

Group B: 1, 2, 4, 10 

Group C: 0, 1, 5, 11 

These data are shown graphically in Figure 0 1  2  3 4  5  6 7  8  9 10 11 12  

3.1. 
Group C: 

It is clear that Group B is more variable 
(shows a larger spread in the numbers) than 
Group A, and Group C is more variable than 
Group B. But we need a quantitative measure 
of this variability.	 0 1  2  3 4  5  6 7  8  9 10 11 12  

Figure 3.1: Comparison of Groups 
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(a) Sample Range 

One simple measure of variability is the sample range, the difference between the 
smallest item and the largest item in each sample. For Group A the sample range is 6, 
for Group B it is 9, and for Group C it is 11. For small samples all of the same size, 
the sample range is a useful quantity. However, it is not a good indicator if the 
sample size varies, because the sample range tends to increase with increasing 
sample size. Its other major drawback is that it depends on only two items in each 
sample, the smallest and the largest, so it does not make use of all the data. This 
disadvantage becomes more serious as the sample size increases. Because of its 
simplicity, the sample range is used frequently in quality control when the sample 
size is constant; simplicity is particularly desirable in this case so that people do not 
need much education to apply the test. 

(b) Interquartile Range 

The interquartile range is the difference between the upper quartile and the lower 
quartile, which will be described in section 3.3. It is used fairly frequently as a 
measure of variability, particularly in the Box Plot, which will be described in the 
next chapter. It is used less than some alternatives because it is not related to any of 
the important theoretical distributions. 

(c) Mean Deviation from the Mean 
N 

The mean deviation from the mean, defined as ∑(xi − x ) / N , where 
i=1 

x = ∑ xi / N , is useless because it is always zero. This follows from the 

discussion of the sum of deviations from the mean in section 3.1 (a). 

(d) Mean Absolute Deviation from the Mean 

However, the mean absolute deviation from the mean, 
N 

xi − x / Ndefined as      ∑ 
i=1 

is used frequently by engineers to show the variability of their data, although it is 
usually not the best choice. Its advantage is that it is simpler to calculate than the 
main alternative, the standard deviation, which will be discussed below. For Groups 
A, B, and C the mean absolute deviation is as follows: 

Group A: (2.25 + 1.25 + 0.25 + 3.75)/4 = 7.5/4 = 1.875. 

Group B: (3.25 + 2.25 + 0.25 + 5.75)/4 = 11.5/4 = 2.875. 

Group C: (4.25 + 3.25 + 0.75 + 6.75)/4 = 15/4 = 3.75. 

Its disadvantage is that it is not simply related to the parameters of theoretical 
distributions. For that reason its routine use is not recommended. 

(e) Variance 

The variance is one of the most important descriptions of variability for engineers. It 
is defined as 
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N 
2∑(xi − µ)

2 i=1 (3.6)σ =  
N 

In words it is the mean of the squares of the deviations of each measurement from the 
mean of the population. Since squares of both positive and negative real numbers are 
always positive, the variance is always positive. The symbol µ stands for the mean of 
the entire population, and σ2 stands for the variance of the population. (Remember 
that in Chapter 1 we defined the population as a particular characteristic of all the 
items in which we are interested, such as the diameters of all the bolts produced 
under normal operating conditions.) Notice that variance is defined in terms of the 
population mean, µ. When we calculate the results from a sample (i.e., a part of the 
population) we do not usually know the population mean, so we must find a way to 
use the sample mean, which we can calculate. Notice also that the variance has units 
of the quantity squared, for example m2 or s2 if the original quantity was measured in 
meters or seconds, respectively. We will find later that the variance is an important 
parameter in probability distributions used widely in practice. 

(f) Standard Deviation 

The standard deviation is extremely important. It is defined as the square root of the 
variance: 

N 
2∑(xi − µ)

i=1 (3.7)σ =  
N 

Thus, it has the same units as the original data and is a representative of the devia
tions from the mean. Because of the squaring, it gives more weight to larger 
deviations than to smaller ones. Since the variance is the mean square of the devia
tions from the population mean, the standard deviation is the root-mean-square 
deviation from the population mean. Root-mean-square quantities are also important 
in describing the alternating current of electricity. An analogy can be drawn between 
the standard deviation and the radius of gyration encountered in applied mechanics. 

(g) Estimation of Variance and Standard Deviation from a Sample 

The definitions of equations 3.6 and 3.7 can be applied directly if we have data for 
the complete population. But usually we have data for only a sample taken from the 
population. We want to infer from the data for the sample the parameters for the 
population. It can be shown that the sample mean, x , is an unbiased estimate of the 
population mean, µ. This means that if very large random samples were taken from 
the population, the sample mean would be a good approximation of the population 
mean, with no systematic error but with a random error which tends to become 
smaller as the sample size increases. 
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However, if we simply substitute x  for µ in equations 3.6 and 3.7, there will be a 
systematic error or bias. This procedure would underestimate the variance and 
standard deviation of the population. This is because the sum of squares of deviations 
from the sample mean, x , is smaller than the sum of squares of deviations from any 
other constant value, including µ. x  is an unbiased estimate of µ, but in general 
x ≠ µ , so just substituting x  for µ in equations 3.6 and 3.7 would tend to give 
estimates of variance and standard deviation that are too small. To illustrate this, 
consider the four numbers 11, 13, 10, and 14 as a sample. Their sample mean is 12. 
They might well come from a population of mean 13. Then the sum of squares of 

2 
deviations from the population mean, ∑(xi − µ)  = (11 – 13)2 + (13 – 13)2 + (10 – 

i 
2

13)2 + (14 – 13)2 = 22 + 02 + 32 + 12 = 14, whereas ∑(xi − x )  = (11 – 12)2 + (13 – 
i 2∑(xi − x )

12)2 + (10 – 12)2 + (14 – 12)2 = 12 + 12 + 22 + 22 = 10. Thus, i  would 
underestimate the variance. N 

The estimate of variance obtained using the sample mean in place of the population 
 N  

mean can be made unbiased by multiplying by the factor 
 N −1 

. This is called 

Bessel’s correction. The estimate of σ2 is given the symbol s2 and is called the 
variance estimated from a sample, or more briefly the sample variance. Sometimes 
this estimate will be high, sometimes it will be low, but in the long run it will show 
no bias if samples are taken randomly. The result of Bessel’s correction is that we 
have 

N 
2∑(xi − x )

s2 = i=1 (3.8) 
N −1 

The standard deviation is always the square root of the corresponding variance, 
so s is called the sample standard deviation. It is the estimate from a sample of the 
standard deviation of the population from which the sample came. The sample 
standard deviation is given by 

N 
2∑(xi − x )

s2 = i=1 (3.9) 
N −1 

Equations 3.8 and 3.9 (or their equivalents) should be used to calculate the 
variance and standard deviation from a sample unless the population mean is known. 
If the population mean is known, as when we know all the members of the popula
tion, we should use equations 3.6 and 3.7 directly. Notice that when N is very large, 
Bessel’s correction becomes approximately 1, so then it might be neglected. How
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ever, to avoid error we should always use equations 3.8 and 3.9 (or their equivalents) 
unless the population mean is known accurately. 

(h) Method for Faster Calculation 

A modification of equations 3.6 to 3.9 makes calculation of variance and standard 
deviation faster. In most cases in this book we have omitted derivations, but this case 
is an exception because the algebra is simple and may be helpful. 

Equations 3.8 and 3.9 include the expression 

2 2 2∑(xi − x ) = ∑ xi − 2x∑ x + Nx  i 

∑ xiBut by definition x = 
N 

Then we have 

2 2 

2 2 N (∑ xi )∑(xi − x ) = ∑ xi − 
2(∑ xi ) + 

N 2N 
2(∑ xi )2 = ∑ xi − 

N (3.10) 
2

Notice that ∑ xi  means we should square all the x’s and then add them up. On the 
2

other hand, (∑ xi )  means we should add up all the x’s and square the result. They 

are not the same. 

An alternative to equation 3.10 is 

2 2 2∑(xi − x ) = ∑ xi − N ( )  (3.10a)x 

Then we have 

N 
2


∑ xi 
N N 
2 2∑ x 2 −  i=1  ∑ xi − N ( )i 

s2 = i=1 N = i=1 

x (3.11) 

N −1 N −1 

It is often convenient to use equation 3.11 in the form for frequencies: 

2 2∑ f x  −(∑ f  x  i i  ) / (∑ fi )
s = (∑ fi −1) (3.12)

2 i i  
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N 
2 

Equations 3.6 and 3.7 include ∑(xi − µ) , where for a complete population 
i=1 

N1 
xµ =  ∑ i . Then similar expressions to equations 3.10 to 3.12 (but dividing by N

N i=1 

instead of (N – 1)) apply for cases where the complete population is known. 

The modified equations such as equation 3.11 or 3.12 should be used for calcula
tion of variance (and the square root of one of them should be used for calculation of 
standard deviation) by hand or using a good pocket calculator because it involves 
fewer arithmetic operations and so is faster. However, some thought is required if a 
digital computer is used. That is because some computers carry relatively few 

N 
2 

significant figures in the calculation. Since in equation 3.11 the quantities ∑ xi and 
i=1


N
 
2 

∑ xi 
 i=1  or N x

2  are of similar magnitudes, the differences in equation 3.11 may 
N 

( )

involve catastrophic loss of significance because of rounding of figures in the compu
tation. Most present-day computers and calculators, however, carry enough 
significant figures so that this “loss of significance” is not usually a serious problem, 
but the possibility of such a difficulty should be considered. It can often be avoided 
by subtracting a constant quantity from each number, an operation which does not 
change the variance or standard deviation. For example, the variance of 3617.8, 
3629.6, and 3624.9 is exactly the same as the variance of 17.8, 29.6, and 24.9. 
However, the number of figures in the squared terms  is much smaller in the second 
case, so the possibility of loss of significance is greatly reduced. Then in general, 
fewer figures are required to calculate variance by subtracting the mean from each of 
the values, then squaring, adding, and dividing by the number of items (i.e., using 
equation 3.8 directly), but this adds to the number of arithmetic operations and so 
requires more time for calculations. If the calculating device carries enough signifi
cant figures to allow 3.11 or 3.12 to be used, that is the preferred method. 

Microsoft Excel carries a precision of about 15 decimal digits in each numerical 
quantity. Statistical calculations seldom require greater precision in any final answer 
than four or five decimal digits, so “loss of significance” is very seldom a problem if 
Excel is being used. A comparison to verify that statement in a particular case will be 
included in Example 4.4. 

(i) Illustration of Calculation 

Now let us return to an example of calculations using the groups of numbers listed at 
the beginning of section 3.2. 

Example 3.1 

The numbers were as follows: 
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Group A:  2, 3, 4, 8 
Group B: 1, 2, 4, 10 
Group C: 0, 1, 5, 11 

Find the sample variance and the sample standard deviation of each group of num
bers. Use both equation 3.8 and equation 3.11 to check that they give the same result. 

Answer:  Since the mean of Group A (and also of the other groups) is 4.25, the 
sample variance of Group A using the basic definition, equation 3.8, is 

[(2 – 4.25)2 + (3 – 4.25)2 + (4 – 4.25)2 + (8 – 4.25)2 ] / (4 – 1) 

= [5.0625 + 1.5625 + 0.0625 + 14.0625] / 3 = 20.75 / 3 = 6.917 , 

so the sample standard deviation is 6.917 = 2.630. 

The variance of Group A calculated by equation 3.11 is 

[22 + 32 + 42 + 82 – (4)(4.25)2] / (4 – 1) = [4 + 9 + 16 + 64 – 72.25] / 3 = 6.917 
(again). We can see that the advantage of equation 3.11 is greater when the mean is 
not a simple integer. 

Using equation 3.11 on Group B gives 

[12 + 22 + 42 + 102 – (4)(4.25)2] / (4 – 1) = [1 + 4 + 16 + 100 – 72.25] / 3 = 48.75 / 3 = 16.25 

for the sample variance, so the sample standard deviation is 4.031. 

Using equation 3.11 on Group C gives 

[02 + 12 + 52 + 112 – (4)(4.25)2] / (4 – 1) = [0 + 1 + 25 + 121 – 72.25] / 3 = 74.75 / 3 = 24.917 

for the variance, so the standard deviation is 4.992. 

(j) Coefficient of Variation 

A dimensionless quantity, the coefficient of variation is the ratio between the stan
dard deviation and the mean for the same set of data, expressed as a percentage. This 
can be either (σ / µ) or (s / x ), whichever is appropriate, multiplied by 100%. 

(k) Illustration: An Anecdote 

A brief story may help the reader to see why variability is often important. Some 
years ago a company was producing nickel powder, which varied considerably in 
particle size. A metallurgical engineer in technical sales was given the task of devel
oping new customers in the alloy steel industry for the powder. Some potential 
buyers said they would pay a premium price for a product that was more closely 
sized. After some discussion with the management of the plant, specifications for 
three new products were developed: fine powder, medium powder, and coarse pow
der. An order was obtained for fine powder. Although the specifications for this fine 
powder were within the size range of powder which had been produced in the past, 
the engineers in the plant found that very little of the powder produced at their best 
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guess of the optimum conditions would satisfy the specifications. Thus, the mean 
size of the specification was satisfactory, but the specified variability  was not 
satisfactory from the point of view of production. To make production of fine powder 
more practical, it was necessary to change the specifications for “fine powder” to 
correspond to a larger standard deviation. When this was done, the plant could 
produce fine powder much more easily (but the customer was not willing to pay such 
a large premium for it!). 

3.3 Quartiles, Deciles, Percentiles, and Quantiles 
Quartiles, deciles, and percentiles divide a frequency distribution into a number of 
parts containing equal frequencies. The items are first put into order of increasing 
magnitude. Quartiles divide the range of values into four parts, each containing one 
quarter of the values. Again, if an item comes exactly on a dividing line, half of it is 
counted in the group above and half is counted below. Similarly, deciles divide into 
ten parts, each containing one tenth of the total frequency, and percentiles divide into 
a hundred parts, each containing one hundredth of the total frequency. If we think 
again about the median, it is the second or middle quartile, the fifth decile, and the 
fiftieth percentile. If a quartile, decile, or percentile falls between two items in order 
of size, for our purposes the value halfway between the two items will be used. Other 
conventions are also common, but the effect of different choices is usually not 
important. Remember that we are dealing with a quantity which varies randomly, so 
another sample would likely show a different quartile or decile or percentile. 

For example, if the items after being put in order are 1, 2, 2, 3, 5, 6, 6, 7, 8, a 
total of nine items, the first or lower quartile is (2 + 2)/2 = 2, the median is 5, and the 
upper or third quartile is (6 + 7)/2 = 6.5. 

Example 3.2 

To start a program to improve the quality of production in a factory, all the products 
coming off a production line, under what we have reason to believe are normal 
operating conditions, are examined and classified as “good” products or “defective” 
products. The number of defective products  in each successive group of six is 
counted. The results for 60 groups, so for 360 products, are shown in Table 3.1. Find 
the mean, median, mode, first quartile, third quartile, eighth decile, ninth decile, 
proportion defective in the sample, first estimate of probability that an item will be 
defective, sample variance, sample standard deviation, and coefficient of variation. 

Table 3.1: Numbers of Defectives in Groups of Six Items 

1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 0 0 1 0  
0 1 0 0 1 0 0 0 0 2 0 0  
0 0 0 0 2 0 0 1 0 0 1 0  
1 0 0 0 0 1 0 0 1 0 0 0  
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Answer: The data in Table 3.1 can be summarized in terms of frequencies. If xi 

represents the number of defectives in a group of six products and fi represents the 
frequency of that occurrence, Table 3.2 is a summary of Table 3.1. 

Table 3.2: Frequencies for Numbers of Defectives 

Number of defectives, xi   Frequency, fi

 0          48
 1          10
 2  2

    >2  0 

Then the mean number of defectives in a group of six products  is

(48)(0) + (10 )(1) + ( )( )  14
2 2 

= = 0.233 
48 + 10 + 2 60 

Notice that the mean is not necessarily a possible member of the set: in this case the 
mean is a fraction, whereas each number of defectives must be a whole number. 

Among a total of 60 products, the median is the value between the 30th and 31st 
products in order of increasing magnitude, so (0 + 0) / 2 = 0. 

The mode is the most frequent value, so 0. 

The lower or first quartile is the value between the 15th and 16th products in 
order of size, thus between 0 and 0, so 0. The upper or third quartile is the value 
between the 45th and 46th products in order of size, thus between 0 and 0, so again 
0. The eighth decile is the value larger than the 48th item and smaller than the 49th 
item, so between 0 and 1, or 0.5. The ninth decile is the value between the 54th and 
the 55th products, so between 1 and 1, so 1. 

We have 14 defective products in a sample of 360 items, so the proportion 
defective in this sample is 14 / 360 = 0.0389 or 0.039. As we have seen from section 
2.1, proportion or relative frequency gives an estimate of probability. Then we can 
estimate the probability that an item, chosen randomly from the population from 
which the sample came, will be defective. For this sample that first estimate of the 
probability that a randomly chosen item in the population will be defective is 0.039. 
This estimate is not very precise, but it would get better if the size of the sample were 
increased. 

Now let us calculate the sample variance and standard deviation using equation 3.12: 

∑ fixi 
2 = (48)(0)2 + (10)(1)2 + (2)(2)2 = 18 

∑ fixi = (48)(0) + (10)(1) + (2)(2) = 14 
∑ fi = 48 + 10 + 2 = 60 

2 2∑ f x  −(∑ f xi ) / (∑ fi )iThen from equation 3.12, s2 = i i  

(∑ fi −1) , 
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2
18 − (( ) / 60 )14


which gives s2 = = 0.2497 ,

60 −1 

so s = 0.4997 or 0.500.

s
   

 (100% ) = 
 

0.4997 

(100% ) = 214%. The coefficient of variation is 

    0.2333 x 
The general term for a parameter which divides a frequency distribution into parts 

containing stated proportions of a distribution is a quantile. The symbol Q(f) is used 
for the quantile, which is larger than a fraction f of a distribution. Then a lower 
quartile is Q(0.25) or Q(1/4), and an upper quartile is Q(0.75). 

In fact, if items are sorted in order of increasing magnitude, from the smallest to 
the largest, each item can be considered some sort of quantile, on a dividing line so 
that half of the item is above the line and half below. Then the ith item of a total of n 

 i − 0.5  
items is a quantile larger than (i – 0.5) items of the n, so the  

quantile or
 n 

 i − 0.5 
Q   . Say the sorted items are 1, 4, 5, 6, 7, 8, 9, a total of seven items. Think 

 n 
of each one as being exactly on a dividing line, so half above and half below the line. 
Then the second item, 4, is larger than one-and-a half items of the seven, so we can 

1.5 
call it the quantile or Q(0.21). Similarly, 5 is larger than two-and-a-half items of 

7 2.5 
the seven, so it is the quantile or Q(0.36). For purposes of illustration we are 

7
using small sets of numbers, but quantiles are useful in practice principally to charac
terize large sets of data. 

Since proportion from a set of data gives an estimate of the corresponding 
 i − 0.5  

probability, the quantile Q    gives an estimate of the probability that a 
 n 

variable is smaller than the ith item in order of increasing magnitude. If an item is 
repeated, we have two separate estimates of this probability. 

We can also use the general relation to find various quantiles. If we have a total 
 i − 0.5  

of n items, then Q    will be given by the ith item, even if i is not an integer. 
 n   1 

Consider again the seven items which are 1,4,5,6,7,8,9. The median, Q   , would 
2 

i − 0.5 1  1
7be the item for which = , so i = ( )  + 0.5 = 4 ; that is, the fourth item,

7 2  2 
which is 6. That agrees with the definition given in section 3.1. Now, what is the first 
or lower quartile?  This would be a value larger than one quarter of the items, or 

i − 0.5 1  1
7Q(0.25). Then = , so i = ( )  + 0.5 = 2.25. Since this is a fraction, the

7 4  4 
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first quartile would be between the second and third items in order of magnitude, so 
between 4 and 5. Then by our convention we would take the first quartile as 4.5. 

i − 0.5 3 
Similarly, for the third quartile, Q(0.75), so we have = , i = 5.75, and the

7 4 
third quartile is between the 5th and 6th items in order of magnitude (7 and 8) and so 
is taken as (7 + 8) / 2 = 7.5. 

Example 3.3 

Consider the sample consisting of the following nine results : 

2.3, 7.2, 3.7, 4.6, 5.0, 7.0, 3.7, 4.9, 4.2. 

a) Find the median of this set of results by two different methods.


b) Find the lower quartile.


c) Find the upper quartile.


d) Estimate the probability that an item, from the population from which this

sample came, would be less than 4.9. 

e) Estimate the probability that an item from that population would be less than 3.7. 

Answer: The first step is to sort the data in order of increasing magnitude, giving 
the following table: 

i 1 2 3 4 5 6 7 8 9 
x(i) 2.3 3.7 3.7 4.2 4.6 4.9 5 7 7.2 

a) The basic definition of the median as the middle item after sorting in order of
i − 0.5 

 increasing magnitude gives x(5) =  4.6. Putting  = 0.5 gives i  = 
9


(9)(0.5) + 0.5 = 5, so again the median is x(5) = 4.6.


i − 0.5

b) The lower quartile is obtained by putting  = 0.25, which gives 

9

i  = (9)(0.25) + 0.5 = 2.75. Since this is a fraction, the lower quartile is


2
x ( ) + x (3) 3.7 + 3.7 = 3.7 .= 
2 2 

i − 0.5 
c) The upper quartile is obtained by putting  = 0.75, which gives i  = 

9

(9)(0.75) + 0.5 = 7.25. Since this is again a fraction, the upper quartile is


7 +
x ( ) + x (8) 5 7  = 6 .= 
2 2 

d) Probabilities of values smaller than the various items can be estimated as the 
corresponding fractions. 4.9 is the 6th item of the 9 items in order of increasing 

6 0.5  −
magnitude, and  = 0.61. Then the probability that an item, from the 

9 
population from which this sample came, would be less than 4.9 is estimated to 
be 0.61. 
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e) 3.7 is the item of order both 2 and 3, so we have two estimates of the probability 
2 0.5  − 

that an item from the same population would be less than 3.7. These are 
− 93 0.5  

and , or 0.17 and 0.28.
9 

3.4 Using a Computer to Calculate Summary Numbers 
A personal computer, either a PC or a Mac, is very frequently used with a spreadsheet 
to calculate the summary numbers we have been discussing. One of the spreadsheets 
used most frequently by engineers is Microsoft® Excel, which includes a good 
number of statistical functions. Excel will be used in the computer methods dis
cussed in this book. 

Using a computer can certainly reduce the labor of characterizing a large set of 
data. In this section we will illustrate using a computer to calculate useful summary 
numbers from sets of data which might come from engineering experiments or 
measurements. The instructions will assume the reader is already reasonably familiar 
with Microsoft Excel; if not, he or she should refer to a reference book on Excel; a 
number are available at most bookstores. Some of the main techniques useful in 
statistical calculations and recommended for use during the learning process are 
discussed briefly in Appendix B. Calculations involving formulas, functions, sorting, 
and summing are among the computer techniques most useful during both the 
learning process and subsequent applications, so they and simple techniques for 
producing graphs are discussed in that appendix. Furthermore, in Appendix C there is 
a brief listing of methods which are useful in practice for Excel once the concepts are 
thoroughly understood, but they should not be used during the learning process. 

The Help feature on Excel is very useful and convenient. Access to it can be 
obtained in various ways, depending on the version of Excel which is being used. 
There is usually a Help menu, and sometimes there is a Help tool (marked by an 
arrow and a question mark, or just a question mark). 

Further discussion and examples of the use of computers in statistical calcula
tions will be found in section 4.5, Chapter 4. Some probability functions which can 
be evaluated using Excel will be discussed in later chapters. 

Example 3.4 

The numbers given at the beginning of section 3.2 were as follows: 

Group A: 

Group B: 

Group C: 

2, 3, 4, 8


1, 2, 4, 10


0, 1, 5, 11
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Find the sample variance and the sample standard deviation of each group of numbers. 
Use both equation 3.8 and equation 3.11 to check that they give the same result. This 
example is mostly the same as Example 3.1, but now it will be done using Excel. 

Answer: 

Table 3.3: Excel Worksheet for Example 3.4 

A B C D E 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

Group A Group B Group C 

Entries 2 1 0 

3 2 1 

4 4 5 

8  10  11  

Sum 17 17 17 

Arith. Mean C6/4=, etc. 4.25 4.25 4.25 

Deviations C2-$C$7=, etc. –2.25 –3.25 –4.25 

C3-$C$7=, etc. –1.25 –2.25 –3.25 

C4-$C$7=, etc. –0.25 –0.25 0.75 

C5-$C$7=, etc. 3.75 5.75 6.75 

Deviations Sqd C8^2=,etc 5.0625 10.5625 18.0625 

1.5625 5.0625 10.5625 

0.0625 0.0625 0.5625 

14.0625 33.0625 45.5625 

Sum Devn Sqd Sums 20.75 48.75 74.75 

Variance C17/3=, etc. 6.917 16.25 24.92 

Entries Sqd C2^2=, etc. 4 1 0 

9 4 1 

16 16 25 

64 100 121 

Sum Entries Sqd Sums 93 121 147 

Correction 4*C7^2=, etc. 72.25 72.25 72.25 

Corrected Sum C24-C25=, etc. 20.75 48.75 74.75 

Variance C26/3=, etc. 6.917 16.25 24.92 

Std Dev, s SQRT(C27)=, etc. 2.630 4.031 4.992 
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The worksheet is shown in Table 3.3. The letters A, B, C, etc. across the top are 
the column references, and the numbers 1, 2, 3, etc. on the left-hand side are the row 
references. The headings for Groups A, B, and C were placed in columns C, D, and E 
of row 1. Names of quantities were placed in column A. Statements of formulas are 
given in column B. The individual entries or values were placed in cells C2:E5, that 
is, rows 2 to 5 of columns C to E. Cell C6 was selected, and the AutoSum tool (see 
section (d) of Appendix B) was used to find the sum of the entries in Group A. The 
sums of the entries in the other two groups were found similarly. Note that the 
AutoSum tool may not choose the right set of cells to be summed in cell E6. Cell C7 
was selected, and the formula =C6/4 was typed into it and entered, giving the result 
4.25. Then the formula in cell C7 was copied, then pasted into cell D7 (to appear as 
=D6/4 because relative references were used) and entered; the same content was 
pasted into cell E7 as =E7/4 and entered. Again both results were 4.25. 

N 
2∑(xi − x )

2 i=1According to equation 3.8 the sample variance is given by s = . 
N −1 

Deviations from the arithmetic means were calculated in rows 8 to 11. Cell C8 was 
selected, and the formula =C2–$C$7 was typed into it and entered, giving the result 
–2.25. Notice that now, although the reference C2 is relative, the reference $C$7 is 
absolute. Then when the formula in cell C8 was copied, then pasted into cell C9, the 
formula became = C3 – $C$7; the formula was entered, giving the result –1.25. 
Pasting the formula into cells C10 and C11 and entering gave the results –0.25 and 
(+)3.75. Similarly, the formula = D2 – $D$7 was entered in cell D8 and copied to 
cells D9, D10, D11 and entered in each case. A similar formula was entered in cell 
E8, copied separately to cells E9, E10, E11, and entered in each. 

Deviations were squared in rows 13 to 16. The formula = C8^2 in cell C13 was 
copied to cells D13 and E13, and similar operations were carried out in cells 
C14:E14, C15:E15, and C16:E16. Deviations were summed using the AutoSum tool 
in cells C17:E17, but we have to be careful again with the sum in cell E17. Then 
variances are the quantities in cells C17:E17 divided in each case by 4 – 1 = 3. 
Therefore the formula C17/3 was entered in cell C18, then copied to cell D18 and 
modified to D17/3 before being entered, and similarly for cell E18. As the quantities 
in cells C18:E18 were answers to specific questions, they were put in bold type by 
choosing the Bold tool (marked with B) on the standard tool bar. Furthermore, they 
were put in a format with three decimal places by choosing the Format menu, the 
Number format, Number, then writing in the code 0.000 before choosing OK or 
Return. This gave the answers according to equation 3.8. 

N 
2 2∑ xi − N ( )x 

2 i=1According to equation 3.11 the sample variance is given by s = . 
N −1 
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Squares of entries were placed in cells C20:E23 by entering =C2^2 in cell C20, 
copying, then pasting in cells D20 and E20, and repeating with modifications in 
C21:E21, C22:E22, and C23:E23. The squares of entries were summed using the 
AutoSum tool in cells C24, D24, and E24. Four times the squares of the arithmetic 
means, 4*C7^2, 4*D7^2, and 4*E7^2, were entered in cells C25, D25, and E25 
respectively. These quantities were subtracted from the sums of squares of entries by 
entering =C24-C25 in cell C26, and corresponding quantities in cells D26 and E26. 
Then values of variance according to equation 3.11 were found in cells C27, D27, 
and E27. These also were put in bold type and formatted for three decimal places. 
Finally, standard deviations were found in cells C28, D28, and E28 by taking the 
square roots of the variances in cells C27, D27, and E27. As answers, these also were 
put in bold type and formatted for three decimals. 

The results verify that equations 3.8 and 3.11 give the same results, but equation 
3.11 generally involves fewer arithmetic operations. 

Using Excel on a computer can save a good deal of time if the data set is large, 
but if as here the data set is small, hand calculations are probably quicker. Results of 
experimental studies often give very big data sets, so computer calculations are very 
often advantageous. 

Example 3.5 

To start a program to improve the quality of production in a factory, all the items 
coming off a production line, under what we have reason to believe are normal 
operating conditions, are examined and classified as “good” items or “defective” 
items. The number of defective items in each successive group of six is counted. The 
results for 60 groups, 360 items, are shown in Table 3.4. Find the mean, median, 
mode, first quartile, third quartile, eighth decile, ninth decile, proportion defective in 
the sample, first estimate of probability that an item will be defective, sample vari
ance, sample standard deviation, and coefficient of variation. 

Table 3.4: Numbers of Defectives in Groups of Six Items 

1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 1 0 
0 1 0 0 1 0 0 0 0 2 0 0 
0 0 0 0 2 0 0 1 0 0 1 0 
1 0 0 0 0 1 0 0 1 0 0 0 

This is the same as Example 3.2, but now we will use Excel. 

Answer: The data of Table 3.4 were entered in column A of an Excel work sheet; 
extracts are shown in Table 3.5. These data were copied to column B, then sorted in 
ascending order as described in section (c) of Appendix B. The order numbers were 
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obtained in column C using the AutoFill feature with the fill handle, as also de
scribed in that section of Appendix B. Rows 3 to 62 show part of the discrete data of 
Example 3.2 after sorting and numbering on Microsoft Excel. 

Table 3.5: Extracts of Work Sheet for Example 3.5 

A B C D E 

1 

2 

3 

4 

5 

Numbers of Defective Items 

Unsorted Sorted Order No. 

1 0 1 

0 0 2 

0 0 3 

.. .. .. .. ..


49 

50 

51 

52 

1  0  47  

0  0  48  

1  1  49  

0  1  50  

.. .. .. .. ..


60


61


62


0  1  58  

0  2  59  

0  2  60  

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

Number Frequency 

xi fi xi*fi xi^2*fi 

A67*B67=, etc. A67^2*B67=, 
etc. 

0  48  0  0  

1  10  10  10  

2 2 4 8 

Total=SUM 60 14 18 

xbar= C70/B70= 0.233 

s^2= (D70-(C70^2/B70))/(B70-1)= 0.250 

s= SQRT(E73)= 0.500 

Coeff. of var.= E74/E72= 214% 
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With the sorted data in column B of Table 3.7 and the order numbers in column 
C, it is easy to pick off the frequencies of various numbers of defectives. Thus, the 
number of groups containing zero defectives is 48, the number containing one 
defective is 58 – 48 = 10, and the number containing two defectives is 60 – 58 = 2. 
The resulting numbers of defectives and the frequency of each were marked in cells 
A64:B69. The mode is the number of defectives with the largest frequency, so it is 0 
in this example. Products xi *fi and xi 

2*fi were found in cells C65:D69. The formulas 
were entered in the form for relative references in cells C67 and D67, so copying 
them one and two lines below gave appropriate products. Then the Autosum tool 
(marked Σ) on the standard toolbar was used to sum the columns for each of fi, xifi, 
and xi 

2fi and enter the results in row 70. The sum of the calculated frequencies should 
check with the total number of groups, which is 60 in this case. Then from 

∑ f xi i  14
equation 3.2, x =

∑ fi 

= = 0.233 in cell E72. From equation 3.12,
60 

2 2 2∑ f x  − (∑ f xi ) / ∑ fi 18 − ( ) / 60 i 
s2 = i i  

∑ fi −1 
= 

14 
= 0.250 in cell E73, and the sample

60  −1 

standard deviation, s, is found in cell E74, with a result of 0.500. The coefficient of 
variation is given in cell E75 as 214%. Of course, all quantities must be clearly 
labeled on the spreadsheet. Labels are shown in rows 1, 2, 64, 65, 70, and 72 to 75, 
and explanations are given in rows 66 and 72 to 75. 

Problems 
1.	 The same dimension was measured on each of six successive parts as they came 

off a production line. The results were 21.14 mm, 21.87 mm, 21.53 mm, 21.37 
mm, 21.61 mm and 21.93 mm. Calculate the mean and median. 

2.	 For the measurements given in problem 1 above, find the variance, standard 
deviation, and coefficient of variation 
a) considering this set of values as a complete population, and 
b) considering this set of values as a sample of all possible measurements of 

this dimension. 

3.	 Four items in a sequence were measured as 50, 160, 100, and 400 mm. Find their 
arithmetic mean, geometric mean, and median. 

4.	 The temperature in a chemical reactor was measured every half hour under the 
same conditions. The results were 78.1°C, 79.2°C, 78.9°C, 80.2°C, 78.3°C, 
78.8°C, 79.4°C. Calculate the mean, median, lower quartile, and upper quartile. 

5.	 For the temperatures of problem 4, calculate the variance, standard deviation, and 
coefficient of variation 
a) considering this set of values as a complete population, and 
b) considering this set of values as a sample of all possible measurements of the 

temperature under these conditions. 
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6.	 The times to perform a particular step in a production process were measured 
repeatedly. The times were 20.3 s, 19.2 s, 21.5 s, 20.7 s, 22.1 s, 19.9 s, 21.2 s, 
20.6 s. Calculate the arithmetic mean, geometric mean, median, lower quartile, 
and upper quartile. 

7.	 For the times of problem 6, calculate the variance, standard deviation, and 
coefficient of variation 
a) considering this set of values as a complete population, and 
b) considering this set of values as a sample of all possible measurements of the 

times for this step in the process. 

8.	 The numbers of defective items in successive groups of fifteen items were 
counted as they came off a production line. The results can be summarized as 
follows: 

No. of Defectives Frequency 

0       57 
1       57 
2       18 
3  5 
4  3 
>4  0 

a) Calculate the mean number of defectives in a group of fifteen items. 
b) Calculate the variance and standard deviation of the number of defectives in 

a group. Take the given data as a sample. 
c) Find the median, lower quartile, upper quartile, ninth decile, and 95th 

percentile. 
d) On the basis of these data estimate the probability that the next item pro

duced will be defective. 

9.	 Electrical components were examined as they came off a production line. The 
number of defective items in each group of eighteen components was recorded. 
The results can be summarized as follows: 

No. of Defectives Frequency 
0       94 
1       52 
2       19 
3  3 
>3  0 

a) Calculate the mean number of defectives in a group of 18 components. 
b) Taking the given data as a sample, calculate the variance and standard 

deviation of the number of defectives in a group. 
c) Find the median, lower quartile, upper quartile, and 95th percentile. 
e) On the basis of these data, estimate the probability that the next component 

produced will be defective. 
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Computer Problems 
Use MS Excel in solving the following problems: 

C10. The numbers of defective items in successive groups of fifteen items were 
counted as they came off a production line. The results can be summarized as follows: 

No. of Defectives Frequency 

0       57 
1       57 
2       18 
3  5 
4  3 
>4  0 

a) Calculate the mean number of defectives in a group of fifteen items. 
b) Calculate the variance and standard deviation of the number of defectives in 

a group. Take the given data as a sample. 
c) Find the median, lower quartile, upper quartile, ninth decile, and 95th 

percentile. 
d) On the basis of these data estimate the probability that the next item pro

duced will be defective. 

This is the same as Problem 8, but now it is to be solved using Excel. 

C11. Electrical components were examined as they came off a production line. The 
number of defective items in each group of eighteen components was recorded. The 
results can be summarized as follows: 

No. of Defectives Frequency 

0       94 
1       52 
2       19 
3  3 
>3  0 

a) Calculate the mean number of defectives in a group of 18 components. 
b) Taking the given data as a sample, calculate the variance and standard 

deviation of the number of defectives in a group. 
c) Find the median, lower quartile, upper quartile, and 95th percentile. 
e) On the basis of these data, estimate the probability that the next component 

produced will be defective.


This is the same as Problem 9, but now it is to be solved using Excel.


62




C H A P T E R  4 
Grouped Frequencies and 

Graphical Descriptions 
Prerequisite: A good knowledge of algebra. 

Like Chapter 3, this chapter considers some aspects of descriptive statistics. In this 
chapter we will be concerned with stem-and-leaf displays, box plots, graphs for 
simple sets of discrete data, grouped frequency distributions, and histograms and 
cumulative distribution diagrams. 

4.1 Stem-and-Leaf Displays 
These simple displays are particularly suitable for exploratory analysis of fairly small 
sets of data. The basic ideas will be developed with an example. 

Example 4.1 

Data have been obtained on the lives of batteries of a particular type in an industrial app
lication. Table 4.1 shows the lives of 36 batteries recorded to the nearest tenth of a year. 

Table 4.1: Battery Lives, years 

4.1 5.2 2.8 4.9 5.6 4.0 4.1 4.3 5.4 
4.5 6.1 3.7 2.3 4.5 4.9 5.6 4.3 3.9 
3.2 5.0 4.8 3.7 4.6 5.5 1.8 5.1 4.2 
6.3 3.3 5.8 4.4 4.8 3.0 4.3 4.7 5.1 

For these data we choose “stems” which are the main magnitudes. In this case the 
digit before the decimal point is a reasonable choice: 1,2,3,4,5,6. Now we go through the 
data and put each “leaf,” in this case the digit after the decimal point, on its corresponding 
stem. The decimal point is not usually shown. The result can be seen in Table 4.2. The 
number of stems on each leaf can be counted and shown under the heading of Frequency. 

Table 4.2: Stem-and-Leaf Display 

Stem Leaf Frequency

 1 8  1
 2 8 3  2
 3 7 9 2 7 3 0  6
 4 1 9 0 1 3 5 5 9 3 8 6 2 4 8 3 7  16
 5 2 6 4 6 0 5 1 8 1  9
 6 1 3  2 
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From the list of leaves on each stem we have an immediate visual indication of 
the relative numbers. We can see whether or not the distribution is approximately 
symmetrical, and we may get a preliminary indication of whether any particular 
theoretical distribution may fit the data. We will see some theoretical distributions 
later in this book, and we will find that some of the distributions we encounter in this 
chapter can be represented well by theoretical distributions. 

We may want to sort the leaves on each stem in order of magnitude to give more 
detail and facilitate finding parameters which depend on the order. The result of 
sorting by magnitude is shown in Table 4.3. 

Table 4.3: Sorted Stem-and-Leaf Display 

Stem Leaf Frequency

 1 8  1
 2 3 8  2
 3 0 2 3 7 7 9  6
 4 0 1 1 2 3 3 3 4 5 5 6 7 8 8 9 9  16
 5 0 1 1 2 4 5 6 6 8  9
 6 1 3  2 

Another possibility is to double the number of stems (or multiply them further), 
especially if the number of data is large in relation to the initial number of stems. 
Stem “a” might have leaves from 0 to 4, and stem “b” might have leaves from 5 to 9. 
The result without sorting is shown in Table 4.4. 

Table 4.4: Stem-and-Leaf Plot with Double Leaf 

Stem Leaf Frequency 

1b 8  1 
2a 3  1 
2b 8  1 
3a 2 3 0  3 
3b 7 9 7  3 
4a 1 0 1 3 3 2 4 3  8 
4b 9 5 5 9 8 6 8 7  8 
5a 2 4 0 1 1  5 
5b 6 6 5 8  4 
6a 1 3  2 

Of course, we might both double the number of stems and sort the leaves on each 
stem. In other cases it might be more appropriate to show two significant figures on 
each leaf, with appropriate separation between leaves. There are many possible 
variations. 
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4.2 Box Plots 
A box plot, or box-and-whisker plot, is a graphical device for displaying certain 
characteristics of a frequency distribution. A narrow box extends from the lower 
quartile to the upper quartile. Thus the length of the box represents the interquartile 
range, a measure of variability. The median is marked by a line extending across the 
box. The smallest value in the distribution and the largest value are marked, and each 
is joined to the box by a straight line, the whisker. Thus, the whiskers represent the 
full range of the data. 

Figure 4.1 is a box plot for the data of Table 4.1 on the life of batteries under 
industrial conditions. The labels, “smallest”, “largest”, “median”, and “quartiles”, are 
usually omitted. 

Median 

Smallest Largest 

Quartiles 

0 2 4 6 8 

Battery Life,years 

Figure 4.1: Box Plot for Life of Battery 

Box plots are particularly suitable for comparing sets of data, such as before and 
after modifications were made in the production process. Figure 4.2 shows a com
parison of the box plot of Figure 4.1 with a box plot for similar data under modified 
production conditions, both for the same sample size. Although the median has not 
changed very much, we can see that the sample range and the interquartile range for 
modified conditions are considerably smaller. 

Modified conditions 

Initial conditions 

0 2 4 6 8 

Battery Life,years 

Figure 4.2: Comparison of Box Plots 

65 



Chapter 4 

4.3 Frequency Graphs of Discrete Data 
Example 3.2 concerned the number of defective items in successive samples of six 
items each. The data were summarized in Table 3.2, which is reproduced below. 

Table 3.2: Frequencies for Numbers of Defectives 

Number of defectives, xi     Frequency, fi

 0 48
 1 10
 2 2

     >2 0 

These data can be shown graphically in a very simple form  because they involve 
discrete data, as opposed to continuous data, and only a few different values. The 
variate is discrete in the sense that only certain values are possible: in this case the 
number of defective items in a group of six must be an integer rather than a fraction. 
The number of defective items in each group of this example is only 0, 1, or  2. The 
frequencies of these numbers are shown above. The corresponding frequency graph is 
shown in Figure 4.3. The isolated spikes correspond to the discrete character of the 
variate. 

Number of Defectives in Six Items 
50 

Figure 4.3:

Distribution of Numbers of 40


Defectives in Groups of Six Items


30 

20 

10 

0 
0 1 2 

No. of Defectives 

If the number of different values is very large, it may be desirable to use the 
grouped frequency approach, as discussed below for continuous data. 

4.4 Continuous Data: Grouped Frequency 
If the variate is continuous, any value at all in an appropriate range is possible. 
Between any two possible values, there are an infinite number of other possible 
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values, although measuring devices are not able to distinguish some of them from 
one another. Measurements will be recorded to only a certain number of significant 
figures. Even to this number of figures, there will usually be a large number of 
possible values. If the number of possible values of the variate is large,  too many 
occur on a table or graph for easy comprehension. We can make the data easier to 
comprehend by dividing the variate into intervals or classes and counting the fre
quency of occurrence for each class. This is called the grouped frequency approach. 

Thus, frequency grouping is used to make the distribution more easily under
stood. The width of each class (the difference between its lower boundary and its 
upper boundary) should be constant from one class to another (there are exceptions to 
this statement, but we will omit them from this book). The number of classes should 
be from seven to twenty, depending chiefly on the size of the population or sample 
being represented. If the number of classes is too large, the result is too detailed and 
it is hard to see an underlying pattern. If the number of classes is too small, there is 
appreciable loss of information, and the pattern may be obscured. An empirical 
relation which gives an approximate value of the appropriate number of classes is 
Sturges’ Rule: 

number of class intervals ≈ 1 + 3.3 log10 N (4.1) 

where N is the total number of observations in the sample or population. 

The procedure is to start with the range, the difference between the largest and 
the smallest items in the set of observations. Then the constant class width is given 
approximately by dividing the range by the approximate number of class intervals 
from equation 4.1. Round off the class width to a convenient number (remember that 
there is nothing sacred or exact about Sturges’ Rule!). 

The class boundaries must be clear with no gaps and no overlaps. For problems 
in this book choose the class boundaries halfway between possible magnitudes. This 
gives a definite and fair boundary. For example, if the observations are recorded to 
one decimal place, the boundaries should end in five in the second decimal place. If 
2.4 and 2.5 are possible observations, a class boundary might be chosen as 2.45. The 
smallest class boundary should be chosen at a convenient value a little smaller than 
the smallest item in the set of observations. 

Each class midpoint is halfway between the corresponding class boundaries. 

Then the number of items in each class should be tallied and shown as class 
frequency in a table called a grouped frequency table. The relative frequency is the 
class frequency divided by the total of all the class frequencies, which should agree 
with the total number of items in the set of observations. The cumulative frequency is 
the total of all class frequencies smaller than a class boundary. The class boundary 
rather than class midpoint must be used for finding cumulative frequency because we 
can see from the table how many items are smaller than a class boundary, but we 
cannot know how many items are smaller than a class midpoint unless we go back to 
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the original data. The relative cumulative frequency is the fraction (or percentage) of 
the total number of items smaller than the corresponding upper class boundary. 

Let us consider an example. 

Example 4.2 

The thickness of a particular metal part of an optical instrument was measured on 
121 successive items as they came off a production line under what was believed to 
be normal conditions. The results are shown in Table 4.5. 

Table 4.5:  Thicknesses of Metal Parts, mm 

3.40 3.21 3.26 3.37 3.40 3.35 3.40 3.48 3.30 3.38 3.27 
3.35 3.28 3.39 3.44 3.29 3.38 3.38 3.40 3.38 3.44 3.29 
3.37 3.41 3.45 3.44 3.35 3.35 3.46 3.31 3.33 3.47 3.33 
3.37 3.31 3.51 3.36 3.32 3.33 3.43 3.39 3.39 3.28 3.33 
3.25 3.28 3.30 3.41 3.39 3.33 3.27 3.34 3.33 3.42 3.35 
3.34 3.32 3.42 3.31 3.38 3.44 3.37 3.35 3.57 3.41 3.28 
3.49 3.26 3.44 3.46 3.32 3.36 3.41 3.39 3.38 3.26 3.37 
3.28 3.35 3.36 3.34 3.42 3.38 3.39 3.51 3.44 3.39 3.36 
3.35 3.42 3.34 3.36 3.42 3.38 3.46 3.34 3.37 3.39 3.42 
3.37 3.33 3.39 3.30 3.35 3.38 3.38 3.27 3.31 3.32 3.45 
3.49 3.45 3.38 3.41 3.35 3.39 3.24 3.35 3.34 3.37 3.37 

Thickness is a continuous variable, since any number at all in the appropriate 
range is a possible value. The data in Table 4.5 are given to two decimal places, but it 
would be possible to measure to greater or lesser precision. The number of possible 
results is infinite. The mass of numbers in Table 4.5 is very difficult to comprehend. 
Let us apply the methods of this section to this set of data. 

407.59 
Applying equation 3.1 to the numbers in Table 4.5 gives a mean of = 

121
3.3685 or 3.369 mm. (We will see later that the mean of a large group of numbers is 
considerably more precise than the individual numbers, so quoting the mean to more 
significant figures is justified.)  Since the data constitute a sample of all the thick
nesses of parts coming off the production line under the same conditions, this is a 
sample mean, so x  = 3.369 mm. Then the appropriate relation to calculate the 
variance is equation  3.8: 

N 
2 

∑ xi N 
2 −  i=1 ∑ xi 

s2 = i=1 N

N − 1
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2
1373.4471 − (407.59 ) /121 2s = 

120

1373.4471 −1372.971968
= 

120 

= 0.475132 = 0.003959 mm2 

120 

and the sample standard deviation is 0.003959  = 0.0629 mm. The coefficient of 
s variation is  (100% )= (0.0629/3.369)(100%) = 1.87%. 
x   

Note for Calculation: Avoiding Loss of Significance 

Whenever calculations involve taking the difference of two quantities of 
similar magnitude, we must remember to make sure that enough significant 
figures are carried to give the desired accuracy in the result. In Example 4.2 
above, the calculation of variance by equation 3.11 requires us to subtract 
1372.971968 from 1373.4471, giving 0.475132. If the numbers being sub
tracted had been rounded to four figures as 1373.0 from 1373.4, the 
calculated result would have been 0.4. This would have been 16% in error. 

To avoid such loss of significance, carry as many significant figures as 
possible in intermediate results. Do not round the numbers to a reasonable 
number of figures until a final result has been obtained. If a calculator is being 
used, leave intermediate results in the memory of the calculator. Similarly, if a 
spreadsheet is being used, do not reduce the number of figures, except perhaps 
for purposes of displaying a reasonable number of figures in a final result. 

If the calculating device being used does not provide enough significant 
figures, it is often possible to reduce the number of required figures by sub
tracting a constant value from each figure. For instance, in Example 4.2 we 
could subtract 3 from each of the numbers in Table 4.5. This would not affect 
the final variance or standard deviation, but it would make the largest number 
0.57 instead of 3.57, giving a square of 0.3249 instead of 12.7449, so requiring 
four figures instead of six at this point. The required number of figures in other 
quantities would be reduced similarly. However, most modern computing 
devices can easily retain enough figures so that this step is not required. 

The median of the 121 numbers in Table 4.5 is the 61st number in order of magni
tude. This is 3.37 mm. The fifth percentile is between the 6th and 7th items in order 
of magnitude, so (3.26 + 3.27) / 2 = 3.265 mm. The ninth decile is between the 108th 
and 109th numbers in increasing order of magnitude, so (3.44 + 3.45) / 2 = 3.445 mm. 
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Now let us apply the grouped frequency approach to the numbers in Table 4.5. 
The largest item in the table is 3.57, and the smallest is 3.21, so the range is 0.36. 
The number of class intervals according to Sturges’ Rule should be approximately 
1 + (3.3) (log10121) = 7.87. Then the class width should be approximately 0.36 / 7.87 
= 0.0457. Let us choose a convenient class width of 0.05. The thicknesses are stated 
to two decimal places, so the class boundaries should end in five in the third decimal. 
Let us choose the smallest class boundary, then, as 3.195. The resulting grouped 
frequency table is shown in Table 4.6. 

Table 4.6: Grouped Frequency Table for Thicknesses 

Lower Upper Class Tally Marks Class Relative Cumulative 
Class Class Midpoint, Frequency Frequency Frequency 
Boundary, Boundary, mm 
mm mm 
3.195 3.245 3.220 || 2 0.017 2 
3.245 3.295 3.270 ||||| ||||| |||| 14 0.116 16 
3.295 3.345 3.320 ||||| ||||| ||||| ||||| |||| 24 0.198 40 
3.345 3.395 3.370 ||||| ||||| ||||| ||||| ||||| 46 0.380 86 

||||| ||||| ||||| ||||| | 
3.395 3.445 3.420 ||||| ||||| ||||| ||||| || 22 0.182 108 
3.445 3.495 3.470 ||||| ||||| 10 0.083 118 
3.495 3.545 3.520 || 2 0.017 120 
3.545 3.595 3.570 | 1 0.008 121 

Total 121 1.000 

In this table the class frequency is obtained by counting the tally marks for each 
class. This becomes easier if we divide the tally marks into groups of five as shown in 
Table 4.6. The relative frequency is simply the class frequency divided by the total 
number of items in the table, i.e. the total frequency, which is 121 in this case. The 
cumulative frequency is obtained by adding together all the class frequencies for 
classes with values smaller than the current upper class boundary. Thus, in the third line 
of Table 4.6, the cumulative frequency of 40 is the sum of the class frequencies 2, 14 

40 
and 24. The corresponding relative cumulative frequency would be = 0.331, or

121 
33.1%. The cumulative frequency in the last line must be equal to the total frequency. 

From Table 4.6 the mode is given by the class midpoint of the class with the 
largest class frequency, 3.370 mm. The mean, median  and mode, 3.369, 3.37 and 
3.370 mm, are in close agreement. This indicates that the distribution is approxi
mately symmetrical. 

Graphical representations of grouped frequency distributions are usually more 
readily understood than the corresponding tables. Some of the main characteristics of 
the data can be seen in histograms and cumulative frequency diagrams. A histogram is 
a bar graph in which the class frequency or relative class frequency is plotted against 
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values of the quantity being studied, so the height of the bar indicates the class fre
quency or relative class frequency. Class midpoints are plotted along the horizontal axis. 
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and that should be done for problems in this book. However, the bars are often shown 
separated, and some computer software does not allow the bars to touch one another. 

The histogram for the data of Table 4.5 is shown in Figure 4.4 for a class width 
of 0.05 mm as already calculated. Relative class frequency is shown on the right-
hand scale. 
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Figure 4.4: 
Histogram for0.248 

Class Width of 0.05 mm 

0.165 
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Thickness, mm 

Histograms for class widths of 0.03 mm and 0.10 mm are shown in Figures 4.5 
and 4.6 for comparison. 
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Of these three, the class width of 0.05 mm in Figure 4.4 seems most satisfactory 
(in agreement with Sturges’ Rule). 

Cumulative frequencies are shown in the last column of Table 4.6. A cumulative 
frequency diagram is a plot of cumulative frequency vs. the upper class boundary, 
with successive points joined by straight lines. A cumulative frequency diagram for 
the thicknesses of Table 4.5 is shown in Figure 4.7. 

Cumulative Frequency Diagram 
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Figure 4.7: 
Cumulative Frequency 
Diagram for Thickness 
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Thickness, mm


The cumulative frequency diagram of Figure 4.7 could be changed into a relative 
cumulative frequency diagram by a change of scale for the ordinate. 

Example 4.3 

A sample of 120 electrical components was tested by operating each component 
continuously until it failed. The time to the nearest hour at which each component 
failed was recorded. The results are shown in Table 4.7. 

Table 4.7: Times to Failure of Electrical Components, hours 

1347 33 1544 1295 1541 14 2813 727 3385 2960 
2075 215 346 153 735 1452 2422 1160 2297 594 
2242 977 1096 965 315 209 1269 447 1550 317 
3391 709 3416 151 2390 644 1585 3066 17 933 
1945 844 1829 1279 1027 5 372 869 535 635 
932 61 3253 47 4732 120 523 174 2366 323 
1296 755 28 305 710 1075 74 1765 1274 180 
1104 248 863 1908 2052 1036 359 202 1459 3 
916 2344 581 1913 2230 1126 22 1562 219 166 
678 1977 167 573 186 804 6 637 316 159 
983 1490 877 152 2096 185 53 39 3997 310 
1878 1952 5312 4042 4825 639 1989 132 432 1413 
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Once again, frequency grouping is needed to make sense of this mass of data. 
When the data are sorted in order of increasing magnitude, the largest value is found to 
be 5312 hours and the smallest is 3 hours. Then the range is 5312 – 3 = 5309 hours. 
There are 120 data points. Then applying Sturges’ Rule, equation 4.1 indicates that the 
number of class intervals should be approximately 1 + 3.3 log10120 = 7.86. Then the 
class width should be approximately 5309 / 7.86 = 675 hours. A more convenient class 
width is 600 hours. Since times to failure are stated to the nearest hour, each class 
boundary should be a number ending in 0.5. The smallest class boundary must be 
somewhat less than the smallest value, 3. Then a convenient choice of the smallest 
class boundary is 0.5 hours. The resulting grouped frequency table is shown in Table 
4.8. The corresponding histogram is Figure 4.8, and the cumulative frequency diagram 
(last column of Table 4.8 vs. upper class boundary) is Figure 4.9. 

Table 4.8: Grouped Frequency Table for Failure Times 

Lower Upper Class Tally Marks Class Relative Cumulative 
Class Class Midpoint, Frequency Frequency Frequency 
Boundary, Boundary, mm 
mm mm

 0.5 600.5 300.5 ||||| ||||| ||||| ||||| ||||| ||||| ||||| 46 0.383 46 
||||| ||||| |

 600.5 1200.5 900.5 ||||| ||||| ||||| ||||| ||||| ||| 28 0.233 74 
1200.5 1800.5 1500.5 ||||| ||||| ||||| | 16 0.133 90 
1800.5 2400.5 2100.5 ||||| ||||| ||||| || 17 0.142 107 
2400.5 3000.5 2700.5 ||| 3 0.025 110 
3000.5 3600.5 3300.5 ||||| 5 0.042 115 
3600.5 4200.5 3900.5 || 2 0.017 117 
4200.5 4800.5 4500.5 | 1 0.008 118 
4800.5 5400.5 5100.5 || 2 0.017 120 

Total 120 1.000 

Failure Times of Components 

C
la

ss
 F

re
q

u
en

cy
p

er
 C

la
ss

 W
id

th
 o

f6
00

h
 

50 

40 

30 

20 

10 

0 

Figure 4.8:

Histogram of Times to


Failure for Electrical Components


300.5900.5
1500.5

2100.5
2700.5

3300.5
3900.5

4500.5
5100.5 

Times to Failure,h 

73 



Chapter 4 

Cumulative Frequency Diagram 
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Figures 4.4 and 4.8 are both histograms for continuous data, but their shapes are 
quite different. Figure 4.4 is approximately symmetrical, whereas Figure 4.8 is 
strongly skewed to the right  (i.e., the tail to the right is very long, whereas no tail to 
the left is evident in Figure 4.8). Correspondingly, the cumulative frequency diagram 
of Figure 4.7 is s-shaped, with its slope first increasing and then decreasing, whereas 
the cumulative frequency diagram of Figure 4.9 shows the slope generally decreasing 
over its full length. 

Now the mean, median and mode for the data of Table 4.7 (corresponding to 
Figures 4.8 and 4.9) will be calculated and compared. The mean is ∑ xi / N = 140746/120 
= 1173 hours. The median is the average of the two middle items in order of magni
tude, 869 and 877, so 873 hours. The mode according to Table 4.8 is the midpoint of 
the class with the largest frequency, 300.5 hours, but of course the value would vary a 
little if the class width or starting class boundary were changed. Since Figure 4.8 
shows that the distribution is very asymmetrical or skewed, it is not surprising that 
the mean, median and mode are so widely different. 

The variance is given by equation 3.11, 

N 
2 

∑ xi N 
2 −  i=1	 ∑ xi 

s2 = i=1 N

N − 1


= (317,335,200 – (140,746)2/120) /119

= (317,335,200 – 165,078,637.7) / 119

= 1,279,467 h2
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and so the estimate of the standard deviation based on this sample is s = 1, 279, 467 
s   

= 1131 hours. The coefficient of variation is  (100% ) = 1131 / 1173 × 100% = 
x96.4%.    

4.5 Use of Computers 
In this section the techniques illustrated in section 3.4 will be applied to further 
examples. Further techniques, including production of graphs, will be shown. Once 
again, the reader is referred to brief discussions of some Excel techniques for statisti
cal data in Appendix B. 

Example 4.4 

The thickness of a particular metal part of an optical instrument was measured on 
121 successive items as they came off a production line under what was believed to 
be normal conditions. The results were shown in Table 4.5. Find the mean thickness, 
sample variance, sample standard deviation, coefficient of variation, median, fifth 
percentile, and ninth decile. Use Sturges’ Rule in choosing a suitable class width for 
a grouped frequency distribution. Construct the resulting histogram and cumulative 
frequency diagram. Use the Excel spreadsheet in solving this problem, and check that 
rounding errors cause no appreciable loss of significance. 

Answer: This is essentially the same problem as in Example 4.2, but now it will be 
solved using Microsoft Excel. 

First the thicknesses were transferred from Table 4.5 to column B of a new work 
sheet. These data were sorted by increasing (ascending) thickness using the Sort 
command on the Data menu for later use in finding quantiles. Extracts of the work 
sheet are shown in Table 4.9. Notice again that each quantity must be clearly labeled. 

Table 4.9: Extracts of Work Sheet for Example 4.4 

A B C D E F 
1 
2
3
4 
5 

In column C Thickness, xi mm dev=xi-xbar dev^2 xi*xi Order no. 
 deviation = 3.21 -0.158512397 0.02512618 10.3041 1 
B2:B122-B124 3.24 -0.128512397 0.01651544 10.4976 2 

3.25 -0.118512397 0.01404519 10.5625 3 
3.26 -0.108512397 0.01177494 10.6276 4 

.. .. .. .. .. .. 
119 
120 
121 
122 
123
124 
125 
126 

3.49 0.121487603 0.01475924 12.1801 118 
3.51 0.141487603 0.02001874 12.3201 119 
3.51 0.141487603 0.02001874 12.3201 120 
3.57 0.201487603 0.04059725 12.7449 121 

 Totals 407.59 6.66134E-14 0.47513223 1373.4471 
xbar, B123/121= 3.368512397  s^2= D123/120= 0.003959 

s^2= (E123-B123^2/121)/120= 0.003959 
diff = E124-E125= 1.21E-15 
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127 
128 

s=   SQRT(E125)= 0.062924 
s/xbar=  D127/B124= 1.87% 

129 
130 
131 A B C D E F 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150
151
152

Lower Class Upper Class Class Class Relative Cumulative 
Boundary Boundary Midpoint Frequency Class Class 

mm mm mm Frequency Frequency 
3.195 0 0 

3.195 3.245 3.22 2 0.017 2 
3.245 3.295 3.27 14 0.116 16 
3.295 3.345 3.32 24 0.198 40 
3.345 3.395 3.37 46 0.380 86 
3.395 3.445 3.42 22 0.182 108 
3.445 3.495 3.47 10 0.083 118 
3.495 3.545 3.52 2 0.017 120 
3.545 3.595 3.57 1 0.0083 121 
3.595 3.645 3.62 0 

Total 121 
In cells: 

A137:A144 B136:B144 C136:C144 D136:D144 E136:E144 F136:F144 
The corresponding explanations are (same column): 
A136:A143+0.05= A136:A144+0.05= (A136:A144+B136:B144)/2= D136:D144/D145= 

              Frequency(B1:B122,B136:B144)= 
F135:F143+ 
D136:D144 

Quantities in rows 2 to 122 were added using the Autosum tool; totals were 
placed in row 123. This gave a total thickness of 407.59 mm in cell B123 for the 121 
items. Then the mean thickness, x , was found in cell B124 to be 3.3685 mm. Next, 
deviations from the mean, xi – x , were found in column C using an array formula 
(which does a group of similar calculations together—see explanation in section (b) 
of Appendix B). The deviations calculated in this way were squared by the array 
formula =(C3:C123)^2, entered in cells D2:D122. (Remember that entering an array 
formula requires us to press more than one key simultaneously. See Appendix B.) 
Then the sample variance was found using equation 3.8 in cell E124 by dividing the 
sum of squares of deviations by 120. This gave 0.003959 mm2. Notice that this 
method of calculation of variance requires more arithmetic steps than the alternative 
method, which will be used in the next paragraph. The first method is used in this 
example to provide a comparison giving a check on round-off errors, but the other 
method should be used unless such a comparison is required. 

The squares of individual thicknesses, (xi)2, were found in cells E2:E122 by the 
array formula =B2 ^2. According to equation 3.11, the variance estimated from the 
sample is s2 = (Σxi 

2 – (Σxi)2 / N) / (N – 1), where in this case N, the number of data 
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points, is 121. Then in cell E125 the sample variance is calculated as 0.003959 mm2, 
which agrees with the previous value. The sample standard deviation was found in 
cell D127, taking the square root of the variance. This gave 0.0629 mm. The coeffi
cient of variation (from cell D128) is 1.87%, which was formulated as a percentage 
using the Format menu. 

Now we can obtain some indications of error due to round-off in Microsoft 
Excel. In cell C123 the sum of all 121 deviations from the sample mean is shown as 
6.66E – 14, whereas it should be zero. This is consistent with the statement that 
Excel stores values to a precision of about 15 decimal digits. The difference between 
the value of the sample variance in cell E124 and the value of the same quantity in 
cell E125 was calculated by the appropriate formula, =D125 – E125, and entered in 
cell E126. It is 1.21E – 15, again consistent with the statement regarding the preci
sion of numbers calculated and stored in Excel. As these errors are very small in 
comparison to the quantities calculated, rounding errors are negligible. 

The order numbers from 1 to 121 were entered in cells F3:F123. After the first 
two numbers were entered, the fill handle was dragged to produce the series. From 
the order numbers in cells F3:F123 and the thicknesses in cells B3:B123, numbers to 
calculate the median (order number 61, so in cell B63), fifth percentile (between order 
numbers 6 and 7, cells B8 and B9), and ninth decile (between order numbers 108 and 
109, cells B110 and B111) were read. Then the median is 3.37 mm, the fifth percen
tile is (3.26 + 3.27) / 2 = 3.265 mm, and the ninth decile is (3.44 + 3.45) / 2 = 3.445 mm. 

For the class width and the smallest class boundary  for the grouped frequency 
table the reasoning is the same as in Example 4.3. The largest thickness, in cell 
B123, is 3.57 mm, and the smallest thickness, in cell B3, is 3.21 mm, so the range is 
3.57 – 3.21 = 0.36 mm. Since there are 121 items, the number of class intervals 
according to Sturges’ Rule should be approximately 1 + (3.3)(log10121) = 7.87. This 
calls for a class width of approximately 0.36 / 7.87 = 0.0457 mm, and we choose a 
convenient value of 0.05 mm. The smallest class boundary should be a little smaller 
than the smallest thickness and halfway between possible values of the thickness, 
which was measured to two decimal places. Then the smallest class boundary was 
chosen as 3.195 mm. 

Column headings for the grouped frequency table were entered in cells 
A132:F134. The smallest class boundary, 3.195 mm, was entered in cell A136. To 
obtain an extra class of zero frequency for the cumulative frequency distribution, 
3.195 was entered also in cell B135, and zero was entered in cell D135. For a class 
width of 0.05 mm the next lower class boundary of 3.245 was entered in cell A137, 
and the fill handle was dragged to 3.595 in cell A144. Upper class boundaries were 
entered in cells B136:B144 by the array function =A136:A144 + 0.05. Class mid
points were entered in cells C136:C144 by the array function =(A136:A144 + 
B136:B144)/2. 
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A saving in time can be obtained at this point by using one of Excel’s built-in 
functions (see section (e) of Appendix B). Class frequencies were entered in cells 
D135:D144 by the array formula =FREQUENCY(B2:B122,B135:B143), where the 
cells B2:B122 contain the data array (thickness in mm in this case) and the cells 
B135:B143 contain the corresponding upper class boundaries. For further informa
tion, from the Help menu select Microsoft Excel Help, and then the Frequency 
worksheet function. Note that the number of cells in D135:D144 is nine, one more 
than the number of cells in B135:B143. The last item in column D (cell D144) is 0 
and represents the frequency above the largest effective upper class boundary, 3.595 
mm. The class frequencies in cells D135:D144 agree with the values given in Table 
4.6. The total frequency was found in cell D145 using the Autosum tool. It is 121, as 
before. Relative class frequencies in cells E136:E143 were found using the array 
formula =D136:D143/121. Again the results agree with previous results. The first 
cumulative  frequency in cell F135 is the same as the corresponding class frequency, 
so it is given by =D135. Cumulative class frequencies in cells F136:F143 were found 
by the array formula =F135:F142+D136:D143. They can be checked by comparison 
with the largest order numbers in the upper part of Table 4.9 corresponding to a 
thickness less than an upper class boundary. For example, the largest order number 
corresponding to a thickness less than the upper class boundary 3.495 is 118. Minor 
changes, such as centering, were made in formatting cells A132:F145. Instead of the 
function Frequency, the function Histogram can be used if it is available. 

To produce the histogram, the class midpoints (cells D133:D141) and the class 
frequencies (cells E133:E141) were selected; from the Insert menu, Chart was 
selected. The “Chart Wizard” guided choices for the chart. A simple column chart 
was chosen with data series in columns, x-axis titled “Thickness, mm”, y-axis titled 
“Class frequency”, and no legend. The chart was opened as a new sheet titled “Ex
ample 4.4.” 

The chart was modified by selecting it and opening the Chart menu. One modifi
cation was of the font size for the titles of axes. The x-axis title was chosen, and from 
the Format menu the Selected Axis Title was chosen, then the font size was changed 
from 10 point to 12 point. The y-axis title was modified similarly. To make the bars 
of the histogram touch one another without gaps, a bar was clicked and from the 
Format menu the Selected Data Series was chosen; the Option tab was clicked, and 
then the gap width was reduced to zero. This left the histogram in solid black. To 
remedy this, the bars were double-clicked: the screen for Format Data Point appeared 
with the Patterns tab, and the Fill Effects bar was clicked. A suitable diagonal pattern 
was selected for the fill of each bar, with the diagonals sloping in different directions 
on adjacent bars. The final histogram is very similar to Figure 4.4, differing from it 
mainly as a result of using different software, CA-Cricket Graph III vs. Excel. 
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To obtain the cumulative frequency diagram, first the upper class boundaries, 
cells B135:B144, were selected. Then the corresponding cumulative class frequen
cies, cells F135:F144, were selected while holding down Crtl in Excel for Windows 
or Command in Excel for the Macintosh, because this is a nonadjacent selection to 
be added to the selection of class boundaries. Then from the Insert menu, Chart was 
clicked. A simple line chart was chosen with horizontal grids. The data series are in 
columns, the first column contains x-axis labels, and the first row gives the first data 
point. A choice was made to have no legend. The chart title was chosen to be “Cumu
lative Frequency Diagram.” The title for the x-axis was chosen to be “Thickness, 
mm.” The title for the y-axis was chosen to be “Cumulative Frequency.” The result is 
essentially the same as Figure 4.7. 

Example 4.5 

A sample of 120 electrical components was tested by operating each component 
continuously until it failed. The time to the nearest hour at which each component 
failed was recorded. The results were shown in Table 4.7. Calculate the mean, 
median, mode, variance, standard deviation, and coefficient of variation for these 
data. Prepare a grouped frequency table from which a histogram and cumulative 
frequency diagram could be prepared. Calculate using Excel. 

Answer: This is a repeat of most of Example 4.3, but using Excel. 

The times to failure, ti hours, were entered in column B, rows 3 to 122, of a new 
work sheet. They were sorted from the smallest to the largest using the Sort com
mand on the Data menu. The work sheet must include headings, labels, and 
explanations. Extracts of the work sheet are shown in Table 4.10. This is similar to 
the work sheet of Example 4.4, which was shown in Table 4.9. 

Table 4.10: Extracts from Work Sheet, Example 4.5 

A B C D E F 
1 
2 
3 
4 
.. 
61 
62 
63 
64 
.. 
120 
121 
122 
123 
124 

Time,ti h ti^2 Order No. 
(B3:B122)^2= 

3 9 1 
5  25  2  

.. .. .. .. 
863 744769 59 
869 755161 60 
877 769129 61 
916 839056 62 

.. .. .. .. 
4732 22391824 118 
4825 23280625 119 
5312 28217344 120 

Sums 140742 317324464 
Mean, tbar= 
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125 B123/120= 1172.85 
126 s^2= (C123-B123*B123/120)/(120-1)= 1.28E6 
127 1130 

E127/B125= 96% 
129 

s= SQRT(E126)= 

128 c.v.= s/xbar= 

130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 

149 

Lower Class 
Boundary 

Upper Class 
Boundary 

Class 
Midpoint 

Class 
Frequency 

Relative 
Class 

Cumulative 
Class 

h h h Frequency Frequency 

0.5 0 0 
0.5 600.5 300.5 46 0.383333 46 

600.5 1200.5 900.5 28 0.233333 74 
1200.5 1800.5 1500.5 16 0.133333 90 
1800.5 2400.5 2100.5 17 0.141667 107 
2400.5 3000.5 2700.5 3 0.025 110 
3000.5 3600.5 3300.5 5 0.041667 115 
3600.5 4200.5 3900.5 2 0.016667 117 
4200.5 4800.5 4500.5 1 0.008333 118 
4800.5 5400.5 5100.5 2 0.016667 120 

Total 120 
In cells: 

A136:A143 B135:B143 C135:C143 D134:D143 E135:E143 F135:F143 
the corresponding explanations are (same column): 
A135:A142+600= (A135:A143+B135:B143)/2= D134:D142+ 

D135:D143= 
A135:A143+600= Frequency(B3:B122,B135:B143)=

             In cells E135:E143 the explanation is D135:D143/D144. 

Appendix C lists some functions which should not be used during the learning 
process but are useful shortcuts once the reader has learned the fundamentals thor
oughly. 

Concluding Comment 

In this chapter and the one before, we have seen several types of frequency distribu
tions from numerical data. In the next few chapters we will encounter theoretical 
probability distributions, and some of these will be found to represent satisfactorily 
some of the frequency distributions of these chapters. 

Problems 
1.	 The daily emissions of sulfur dioxide from an industrial plant in tonnes/day were 

as follows: 
4.2 6.7 5.4 5.7 4.9 4.6 5.8 5.2 4.1 6.2 
5.5 4.9 5.1 5.6 5.9 6.8 5.8 4.8 5.3 5.7 
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a) Prepare a stem-and leaf display for these data.

b) Prepare a box plot for these data.


2.	 A semi-commercial test plant produced the following daily outputs in tonnes/ 
day: 

1.3 2.5 1.8 1.4 3.2 1.9 1.3 2.8 1.1 1.7 
1.4 3.0 1.6 1.2 2.3 2.9 1.1 1.7 2.0 1.4 

a) Prepare a stem-and leaf display for these data.

b) Prepare a box plot for these data.


3.	 Over a period of 60 days the percentage relative humidity in a vegetable storage 
building was measured. Mean daily values were recorded as shown below: 

60 63 64 71 67 73 79 80 83 81 
86 90 96 98 98 99 89 80 77 78 
71 79 74 84 85 82 90 78 79 79 
78 80 82 83 86 81 80 76 66 74 
81 86 84 72 79 72 84 79 76 79 
74 66 84 78 91 81 64 76 78 82 

a)	 Make a stem-and-leaf display with at least five stems for these data. Show 
the leaves sorted in order of increasing magnitude on each stem. 

b)	 Make a frequency table for the data, with a maximum bound of 100.5% 
relative humidity (since no relative humidity can be more than 100%). Use 
Sturges’ rule to approximate the number of classes. 

c) Draw a frequency histogram for these data.

d) Draw a relative cumulative frequency diagram.

e) Find the median, lower quartile, and upper quartile.

f) Find the arithmetic mean of these data.

g) Find the mode of these data from the grouped frequency distribution.

h) Draw a box plot for these data.

i) Estimate from these data the probability that the mean daily relative humid


ity under these conditions is less than 85%. 

4.	 A random sample was taken of the thickness of insulation in transformer wind
ings, and the following thicknesses (in millimeters) were recorded: 

18 21 22 29 25 31 37 38 41 39 
44 48 54 56 56 57 47 38 35 36 
29 37 32 42 43 40 48 36 37 37 
36 38 40 41 44 39 38 34 24 32 
39 44 42 30 37 30 42 37 34 37 
32 24 42 36 49 39 23 34 36 40 

a)	 Make a stem-and-leaf display for these data. Show at least five stems. Sort 
the data on each stem in order of increasing magnitude. 

b) Estimate from these data the percentage of all the windings that received 
more than 30 mm of insulation but less than 50 mm. 
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c) Find the median, lower quartile, and ninth decile of these data.

d) Make a frequency table for the data. Use Sturges’ rule.

e) Draw a frequency histogram.

f) Add and label an axis for relative frequency.

g) Draw a cumulative frequency graph.

h) Find the mode.

i) Show a box plot of these data.


5.	 The following scores represent the final examination grades for an elementary 
statistics course: 

23 60 79 32 57 74 52 70 82 36 
80 77 81 95 41 65 92 85 55 76 
52 10 64 75 78 25 80 98 81 67 
41 71 83 54 64 72 88 62 74 43 
60 78 89 76 84 48 84 90 15 79 
34 67 17 82 69 74 63 80 85 61 

a) Make a stem-and-leaf display for these data. Show at least five stems. Sort 
the data on each stem in order of increasing magnitude. 

b) Find the median, lower quartile, and upper quartile of these data. 
c) What fraction of the class received scores which were less than 65? 
d) Make a frequency table, starting the first class interval at a lower class 

boundary of 9.5. Use Sturges’ Rule.

e) Draw a frequency histogram.

f) Draw a relative frequency histogram on the same x-axis.

g) Draw a cumulative frequency diagram.

h) Find the mode.

i) Show a box plot of these data.


Computer Problems 
Use MS Excel in solving the following problems: 

C6. For the data given in Problem 3: 

a) Sort the given data and find the largest and smallest values. 
b) Make a frequency table, starting the first class interval at a lower bound of 

59.5% relative humidity. Use Sturges’ rule to approximate the number of 
classes. 

c) Find the median, lower quartile, eighth decile, and 95th percentile. 
d) Find the arithmetic mean and the mode. 
e) Find the variance and standard deviation of these data taken as a complete 

population, using both a basic definition and a method for faster calculation. 
f) From the calculations of part (e) check or verify in two ways the statement 

that Excel stores numbers to a precision of about fifteen decimal places. 
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C7. For the data given in Problem 4, perform the same calculations and determina
tions as in Problem C6. Choose a reasonable lower boundary for the smallest class. 

C8. For the data given in Problem 5: 

a) Sort the data and find the largest and smallest values. 
b) Find the median, upper quartile, ninth decile, and 90th percentile. 
c) Make a frequency table. Use Sturges’ rule to approximate the number of 

classes. 
d) Find the arithmetic mean and mode. 
e) Find the variance of the data taken as a sample. 
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C H A P T E R  5 
Probability Distributions of 

Discrete Variables 
For this chapter the reader should have a solid understanding 

of sections 2.1, 2.2, 3.1, and 3.2. 

We saw in Chapters 3 and 4 some frequency distributions for discrete and continuous 
variates. Examples included frequencies of various numbers of defective items in 
samples taken from production lines, and frequencies of various classes of thick
nesses of items produced industrially. 

Now we want to look at the probabilities of various possible results. If we know 
enough about the probability distributions, we can calculate the probability of each 
result. For instance, we can calculate the probability of each possible number of 
defective items in a sample of fixed size. From that we might calculate the probabil
ity of finding (for example) three or more defective items in a sample of 18 items. 
That might be useful in assessing the implications for quality control of finding three 
defectives in such a sample. Similarly, if we know enough about the probability 
distribution we can calculate the probabilities of parts which are thicker than appro
priate limits. 

The number of defective items in a sample of 18 items is a real number express
ing a result determined by chance. We can’t predict the number of defective items in 
the next sample, but we may be able to calculate some probabilities. The probability 
of any particular number of defective items would be a function of the parameters of 
the problem. A quantity such as this is called a random variable. 

The distinction between a discrete and a continuous random variable is the same 
as the distinction between a discrete and a continuous frequency distribution: only 
certain results are possible for a discrete random variable, but any of an infinite 
number of results within a certain range are possible for a continuous random vari
able. The random variable describing the number of defective items in a sample of 18 
parts is discrete because the number of defective items in this case must be either 
zero or a positive whole number no more than 18, and not any other number between 
zero and 18. Another example of a discrete random variable is the number of failures 
in an electronic device in its first five years of operation. On the other hand, the time 
between successive failures of an electronic device is a continuous random variable 
because there are an infinite number of possible results between any two possible 
results that we may choose (even though practical measurement devices may not be 
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able to distinguish some of them from one another because they report results to a 
finite number of figures). Another example of a continuous random variable is a 
measurement of the diameter of a part as it comes from a production line. We cannot 
predict any particular value of the random variable but, with sufficient data of the 
type discussed in Chapter 4, we may be able to find the probability of a result in a 
particular interval. 

This chapter is concerned with discrete variables, and the next chapter is 
concerned with cases where the variable is continuous. Both types of variables are 
fundamental to some of the applications discussed in later chapters. In this chapter 
we will start with a general discussion of discrete random variables and their prob
ability and distribution functions. Then we will look at the idea of mathematical 
expectation, or the mean of a probability distribution, and the concept of the variance 
of a probability distribution. After that, we will look in detail at two important 
discrete probability distributions, the Binomial Distribution and the Poisson 
Distribution. 

5.1 Probability Functions and Distribution Functions 
(a) Probability Functions 

Say the possible values of a discrete random variable, X, are x0, x1, x2, ... xk, and the 
corresponding probabilities are p(x0), p(x1), p(x2) ... p(xk). Then for any choice of i, 

k 

( ) = 1, where k is the maximum possible value of i. Then p(xi) isp(xi) ≥ 0, and ∑ p xi

i=0


a probability function, also called a probability mass function. An  alternative nota
tion is that the probability function of X is written Pr [X = xi]. In many cases p(xi) (or 
Pr[X = xi]) and xi are related by an algebraic function, but in other cases the relation 
is shown in the form of a table. The relation can be represented by isolated spikes on 
a bar graph, as shown for example in 
Figure 5.1. By convention the random 0.30 

variable is represented by a capital 
letter (for example, X), and particular 0.25 

values are represented by lower-case 

Figure 5.1: Example of a 0.05 
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(b) Cumulative Distribution Functions 

Cumulative probabilities, Pr [X ≤ x], where X still represents the random variable and 
x now represents an upper limit, are found by adding individual probabilities. 

( )  (5.1)Pr [X ≤ x] = ∑ p xi 
x x≤i 

where p(xi) is an individual probability function. For example, if xi can be only zero 
or a positive integer, 

Pr [X ≤ 3] = p(0) + p(1) + p(2) + p(3) 

The functional relationship between the cumulative probability and the upper 
limit, x, is called the cumulative distribution function, or the probability distribution 
function. 

Note that since Pr [X ≤ 2] = p(0) + p(1) + p(2), 

we have p(3) = Pr [X ≤ 3] – Pr [X ≤ 2]. 

In general, 

p(xi) = Pr [X ≤ xi] – Pr [X ≤ xi–1] (5.2) 

As an illustration, consider the random variable that represents the number of 
heads obtained on tossing five fair coins. The probability of obtaining heads on any 

1 
one coin is 

2 
. The probability function and cumulative distribution are given by the 

binomial distribution, which will be considered in detail in section 5.3. The probabil
ity function of possible results is shown in Table 5.1 and Figure 5.2. 

Table 5.1: Probability Function for Tossing Coins 

r, no. of heads Probability, p(r) 

0 1 

32 

1 5 

32 

2 10 

32 

3 10 

32 

4 5 

32 

5 1 

32

 Total 1 
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Figure 5.2: 
0.3 

Probability Function for 
Results of Tossing Five Fair Coins p(r) 

0.2 

0.1 

0

0 1 2 3 4 5


Number of heads, r 

The corresponding cumulative distribution function is shown in Figure 5.3. The 
graph of the cumulative distribution function for a discrete random variable is a 
stepped function because there can be no change in the cumulative probability 
between possible values of the variable. 

Using this cumulative distribution function with equation 5.2, 

26 16 10 
p(3) = Pr [R ≤ 3] – Pr [R ≤ 2] = − =  = 0.3125.

32 32 32 

1 

0.9 
Pr R ≤ r][ 

0.8 

0.7 

0.6 

0.5


Figure 5.3: 0.4


Cumulative Distribution for	 0.3


Tossing Five Fair Coins
 0.2 

0.1 

0 
0 1 2 3 4 5 

r, number of heads 
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5.2 Expectation and Variance 
(a) Expectation of a Random Variable 

The mathematical expectation or expected value of a random variable is an arithmetic 
mean that we can expect to closely approximate the mean result from a very long 
series of trials, if a particular probability function is followed. The expected value is 
the mean of all possible results for an infinite number of trials. We must know the 
complete probability function in order to calculate the expectation. The expectation 
of a random variable X is denoted by E(X) or µ or µ. The last two symbols indicate 
that the expectation or expected value is the mean value of the distribution of the 
random variable. 

x

Let us go back to the empirical approach to probability. The probability of a 
particular result would be given to a good approximation by the relative frequency of 
that result from an extremely large number of trials: 

f xi
Pr [xi] ≈ ( )  (5.3)

( )  
∑ f xi 
all i 

If the number of trials became infinite, this relation would become exact. 

We also have from equation 3.2a that 
 

N f x j

x = ∑ x 


∑

( ) 



j ( )	 (5.4)
j=1	  f xi 
 all i 


The factor within square brackets in equation 5.4 is the relative frequency for factor j. 
Then for an infinite number of trials we have, using equation 5.3, that 

X xiE(X) = µ = ∑( )Pr [ ] 	 (5.5)xi 
all xi 

In words, the expectation or the mean value of the random variable X is given by the 
sum, for all possible outcomes, of the products given by multiplying  each outcome 
by its probability. If we repeated an experiment a very large number of times, the 
arithmetic mean of the results would closely approximate  the expected value if the 
stated probability distribution was followed. These relations apply, as written, to 
discrete random variables, but a similar relation will be found in section 6.2 for a 
continuous random variable. Equation 5.5 will be used from this point on to calculate 
expectation of a discrete random variable. 

The relation for the expected value can be illustrated for the random variable, R, 
which was shown in Figures 5.2 and 5.3. It is the number of heads obtained on 
tossing five fair coins.

 = 2.500 
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Notice that, like the arithmetic mean, the expected value is not necessarily a possible 
result from a single trial. 

Example 5.1 

The probability that a thirty-year-old man will survive a fixed length of time is 0.995. 
The probability that he will die during this time is therefore 1– 0.995 = 0.005. An 
insurance company will sell him a $20,000 life insurance policy for this length of 
time for a premium of $200.00. What is the expected gain for the insurance com
pany? 

Answer:  If the man lives through the fixed length of time, the company’s gain will 
be $200.00. The probability of this is 0.995. On the other hand, if the man dies 
during this time, the company’s gain will be +$200.00 – $20,000.00 = – $19,800.00. 
The probability of this is 0.005. 

Using the working expression, equation 5.5, the expected gain for the company is 

E(X) = ($200.00)(0.995) + (–$19,800.00)(0.005)

 = $199.00 – $99.00 = $100.00 

The idea of fair odds was introduced in section 2.1(f) as an alternative expression 
giving the same information as probability. It is easy to show from expectation that 
the relations given in that section are correct. If the probability of “success” in a 
particular trial is p and the only possible results are “success” and “failure,” the 
probability of “failure” must be 1 – p. If the process is completely fair, the expecta
tion of gain for any individual must be zero. If the wager for “success” is $1, and the 
wager against “success” is $A, the individual’s gain in the case of “success” is $A 
and his gain in the case of “loss” is  – $1. Then we must have 

(p)($A) + (1 – p)( – $1) = 0 

(p)($A) = (1 – p)($1) 

$A 1 − p= 
$1 p 

The ratio of one wager to the other is called the odds. Then the fair odds against 

“success” must be 
1 p 

p 

−
 to 1. Similarly, the fair odds for “success” must be p/(1 – p) 

to 1. 

(b) Variance of a Discrete Random Variable 

The variance was defined for the frequency distribution of a population by 
N 

2
equation 3.6 as ∑( x − µ) / N —that is, the mean value of (xi – µ)2. Since thei


i= 1


quantity corresponding to the mean for a probability distribution is the expectation, 
the variance of a discrete random variable must be 
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2 2σ = E x  − µx )X ( 
2 = ∑(xi − µX ) Pr [ ]  (5.6)xi 

i 

An alternative form, like the one found in equation 3.10a, is faster to calculate. It 
is obtained as follows: 

E[(X–µX)2] =  E[X2 – 2(µX)(X) + µx 
2] 

2= E[X2] – 2 µx E[X] + µx 

But E[X] = µX. Then 

2 2σ = E X  − µX )2  = E    − 2µ 2 + µX2 
X 


(      X X 

or (5.7) 
2σ =    − 2E X2 

X    µX 

where 
2E X2   = x Pr  ( )   ∑ i xi (5.8)

all i 

The standard deviation is always simply the square root of the corresponding 
variance. Then 

( ) 

( )  ( )  

2 

22 

x XE X  

E X  

 σ =  − µ  

 = −  E  X  

Let us continue with the previous illustration for the random variable, R, given by 
the number of heads obtained on tossing five fair coins. 

From the previous calculation, E R( ) = µ =  2.500 R 

2Then σ = E R2 
R 

2( ) − µR 

2 = 7.500 − (2.500 )

= 1.25


and σ =  1.25 = 1.118 R
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Example 5.2 

A probability function is given by p(0) = 0.3164, p(1) = 0.4219, p(2) = 0.2109, p(3)

= 0.0469, and p(4) = 0.0039. Find its mean and variance.


Answer: The mean or expected value is


(0)(0.3164) + (1)(0.4219) + (2)(0.2109) + (3)(0.0469) + (4)(0.0039) = 1.000.


The variance is


(0)2(0.3164) + (1)2(0.4219) + (2)2(0.2109) + (3)2(0.0469) + (4)2(0.0039) – (1.000)2 =

1.750 – 1.000 = 0.750.


Problems 
1.	 The probabilities of various numbers of failures in a mechanical test are as 

follows:


Pr[0 failures] = 0.21, Pr[l failure] = 0.43, Pr[2 failures] = 0.28, Pr[3 failures] =

0.08, Pr[more than 3 failures] = 0.

(a) Show this probability function as a graph.

(a) Sketch a graph of the corresponding cumulative distribution function.

(b) What is the expected number of failures—that is, the mathematical expecta

tion of the number of failures? 

2.	 Three items are selected at random without replacement from a box containing 
ten items, of which four are defective. Calculate the probability distribution for 
the number of defectives in the sample. What is the expected number of 
defectives in the sample? 

3.	 An experiment was conducted wherein three balls were drawn at random from a 
barrel containing two blue balls, three red balls, and five green balls. 
a) Find the mean and variance of the probability distribution of the number of 

green balls chosen.

b) What is the probability that all the balls will have the same color?


4.	 A modified version of the game of Yahtzee has been developed and consists of 
throwing three dice once. The points associated with the possible results are as 
follows: 

Result	 Points 
Three of a kind 500

A pair 100

All different 50


a) Find the probability distribution of the number of points.

b) Find the expected value of the number of points.

c) Find the standard deviation of the number of points.


91




Chapter 5 

5.	 A discrete random variable, X, has three possible results with the following 
probabilities:


Pr [X = 1] = 1/6

Pr [X = 2] = 1/3

Pr [X = 3] = 1/2


No other results can occur. 

(a) Sketch a graph of the probability function. 
(b) What is the mean or expected value of this random variable? 
(c) What are the variance and standard deviation of this random variable? 

6.	 i) Find the probability that, when 5 fair six-sided dice are rolled, the result is: 
a) 5-of-a-kind (all 5 numbers the same); 
b) 4-of-a-kind (4 numbers the same and 1 different); 
c) a “full house” (3 of one number, 2 of another number); 
d) 3-of-a-kind (the other 2 numbers being different from one another); 
e) a single pair; 
f) two pairs; 
g) all 5 numbers different. 

Check that all above probabilities add to 1. 

ii) The players agree to take turns rolling the dice and to collect according to a 
payout scheme. If the payouts are $1000 for 5-of-a-kind, $40 for 4-of-a-kind, $20 
for a full house, $5 for 3-of-a-kind, $2 for a pair and $4 for two pair, what is the 
expected value on a single roll of 5 dice? 

7.	 A local body shop is run by four employees. However, with such a small staff, 
absenteeism creates many difficulties financially. If only one employee is absent, 
the day’s total income is reduced by 50%, and if more than one is absent, the 
shop is closed for that day. When all four are working, an income of $1000 per 
day can be realized. The shop’s expenses are $600 per day when opened and 
$400 per day when closed. If, on the average, one particular employee misses ten 
of 100 days and the remaining three miss five of 100 days each, what is the 
expected daily profit for the company?  Assume all absences are independent. 

8.	 A factory produces 3 diesel-generator sets per week. At the end of each week, the 
sets are tested. If the sets are acceptable, they are shipped to purchasers. The 
probability that a set proves to be acceptable is 0.70. The second possibility is 
that minor adjustments can be made so that a set will become acceptable for 
shipping; this has a probability of 0.20. The third possible outcome is that the set 
has to go to the diagnostic shop for major adjustment and be shipped at a later 
date; this has a probability of 0.10. Outcomes for different sets are independent 
of one another. 
(a) Find the probability of each possible number of sets, for one week’s produc

tion, which are acceptable without any adjustment. 
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(b) What is the expected number of sets which are tested and found to be accept
able without adjustment? 

(c) What is the cumulative probability distribution for the number of sets which 
are tested and found to be acceptable without adjustment? Sketch the 
corresponding graph. 

9. 

Probabilities:  0.9  0.8 

A B 

C D 

Input Output 

Probabilities:  0.7  0.6 

Figure 5.4: Series-Parallel System 

A system consists of two branches in parallel, each branch having two compo
nents. The probabilities of successful operation of components A, B, C, and D 
are 0.9, 0.8, 0.7, and 0.6, as shown above. If a component fails, the output from 
its branch is zero. If only one branch operates, the output is 50%. Of course, if 
both branches operate, the output is 100%. 
a) Find the probability of zero output. 
b) Find the expected percentage output. 

10. For constant rate of input, the rate of output of a system is determined by 
whether A, B, and C operate, as shown below. 

Input Output 

A 

B 

C 

Figure 5.5: Parallel Components, then Series 

The probabilities that components A, B, and C operate are as follows: 

Pr [A] = 0.70, Pr [B] = 0.60, Pr [C] = 0.90. 
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If all of A, B, and C operate, the system output is 100. If both A and C operate

but not B, or both B and C but not A, the system output is 80. If both A and B

fail, the system output is 0. If C fails, the system output is 0.

a) Find the probability of each possible output.

b) Find the expected output.


(c) More Complex Problems 

Now let us look at two more complex examples. To solve them we will need to use 
our knowledge of basic probability as well as knowledge of expected values. We will 
have to read each problem very carefully. In the great majority of cases, a tree 
diagram will be very desirable. 

Example 5.3 

A manufacturer has two expansion options available to him. The profits of the 
expansions depend on the cost of energy. The fair odds are 3:2 in favor of energy 
costs being greater than 8¢/kwh. The manufacturer is twice as likely to choose option 
1 as option 2, regardless of circumstances. 

If the cost of energy is less than 8¢/kwh, then expansion option 1 will yield returns 
of +$150,000, $0, and –$50,000 with probabilities of 60%, 20%, and 20%, respec
tively. Under those conditions, expansion option 2 will yield returns of +$100,000, 
+$20,000, and –$20,000 with probabilities of 70%, 10%, and 20%, respectively. 

If the cost of energy is greater than 8¢/kwh, then option 1 will yield returns of 
+$100,000, $0, and –$50,000 with probabilities of 60%, 20%, and 20%, respectively, 
while option 2 will yield returns of +$80,000, $0, and –$50,000 with probabilities of 
70%, 10%, and 20%, respectively. 

a) What is the probability that option 2 will be pursued and that energy prices 
will exceed 8¢/kwh? 

b) What is the manufacturer’s expected return from expansion? 
c) Given that several years later the expansion yielded a return greater than 

zero, what is the probability that option 2 was chosen? 

Answer: The first step will be to draw a tree diagram. (See Figure 5.6.) 

a) Pr [(option 2) ∩ (energy > 8¢ / kwh)] = 
= (Pr [energy > 8¢ / kwh])  × (Pr [(option 2) | (energy > 8¢ / kwh)]) 

3 1   1   =     = or 0.200.
5 3   5   

b) Expected return = ∑ (return for each possibility) × (Pr[that return]) 
all possibilities 

= [(0.16)(150) + (0.05333)(0) + (0.05333)(–50) + (0.09333)(+100) + 
+ (0.01333)(+20) + (0.02667)(–20) + (0.24)(+100) + (0.08)(0) + 
+ (0.08)(–50) + (0.14)(+80) + (0.02)(0) + (0.04)(–50)] thousand dollars 

= 59.6 thousand dollars 
= $59,600. 
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Probabilities for Energy Costs  0.4  0.6 

Energy < $0.08/kwh Energy > $0.08/kwh 

Probabilities for options 0.667 0.333  0.667  0.333 

Option 1  Option 2  Option 1  Option 2 

Probabilities for
 Returns 

0.6 0.2  0.7  0.2  0.6 0.2 0.7 0.2 

0.2  0.1  0.2  0.1 

Return  +150  0 -50 +100 +20 -20  +100 0 -50 +80 0 -50 
(thousand dollars) 

Combined probabilities: 0.16  0.0533  0.0133  0.24  0.08  0.02
 0.0533  0.0933 0.0267 0.08  0.14 0.04 

Check: Sum of probabilities = 1. 

Figure 5.6: Expansion Options 

Pr (option 2 )∩ (return > 0 )  
c) Pr [ option 2 | (return > 0 )] = Pr (return > 0 ) 

Pr (option 2 )∩ (return > 0) = 
Pr (option 2 )∩ (return > 0) + Pr (option 1 )∩ (return > 0)    

0.0933 + 0.01333 + 0.14 = (0.09333 + 0.01333 + 0.14 ) + (0.16 + 0.24 )

0.2467
= 

0.2467 + 0.4000

= 0.381 or 38.1%.


(Note that part (c) involves Bayesian probability.)


Example 5.4 

A flood forecaster issues a flood warning under two conditions only: 

i) Winter snowfall exceeds 20 cm regardless of fall rainfall; or

ii) Fall rainfall exceeds 10 cm and winter snowfall is between 15 and 20 cm.


The probability of winter snowfall exceeding 20 cm is 0.05. The probability of

winter snowfall between 15 and 20 cm is 0.10. The probability of fall rainfall exceed
ing 10 cm is 0.10. 
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a)	 What is the probability that the forecaster will issue a warning any given 
spring? 

b)	 Given that he issues a warning, what is the probability that winter snow fall 
was greater than 20 cm? 

c) The probability of flooding is 0.75 for condition (i) above, 0.60 for condition 
(ii) above, and 0.05 for conditions where no flooding is anticipated. If the 
cost of a flood after a warning is $100,000, a flood with no warning is 
$1,000,000, no flood after a warning is $200,000, and zero for no warning 
and no flood, what is the expected cost in any given year? 

Answer: Again, the first step is to draw a tree diagram using the given information. 

Winter Snowfall 

Probability = 0.85  0.10  0.05 

Snowfall Snowfall Snowfall 
< 15 cm between 15 cm and 20 cm  > 20 cm 

Fall Rainfall 
Probability = 0.90  0.10 

Rainfall  Rainfall 
< 10 cm  > 10 cm 

(Condition ii)  (Condition i)


No Warning Flood Warning Flood Warning


 Probability=0.95  0.05  0.40  0.60 0.25 0.75 

No Flood  Flood No Flood  Flood No Flood Flood 
Result:

 no warning,  no warning,  a warning,  a warning, a warning, a warning, 
no flood a flood  no flood a flood no flood a flood 

Probability: 
( 0.85) ( 0.95)  ( 0.85 ) ( 0.05 )   ( 0.1 0) ( 0.1 0) ( 0.4 0)  ( 0 .10) ( 0 .10) ( 0 .60)  ( 0.05 ) ( 0.25 )     ( 0.05) ( 0.75) 

+ ( 0 .1) ( 0.9) ( 0.9 5)   + ( 0.1) ( 0.9 ) ( 0.05 )
   = 0 .893     = 0.047 = 0.00 4    = 0 .006   = 0.012 5 = 0 .0375 

Cost: 
$0    $1, 000,00 0     $2 00,000 $100,0 00 $20 0,000 $10 0,000 

Figure 5.7: Flood Probabilities 
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If Pr [winter snowfall > 20 cm] = 0.05 and Pr [15 cm < winter snowfall < 20 cm] = 
0.10, then Pr [winter snowfall < 15 cm] = 1 – 0.05 – 0.10 = 0.85. 

If Pr [fall rainfall > 10 cm] = 0.10, then Pr [fall rainfall < 10 cm] = 1 – 0.10 = 0.90. 

a) Using the tree diagram, Pr [warning] =  0.05 + (0.10)(0.10) = 0.05 + 0.01 = 
0.06. Pr (winter snowfall � 20cm )∩ warning b) Pr [winter snowfall > 20 cm | warning] = 

Pr warning ] = [ 

= 
Pr (winter snowfall � 20cm ) = = [ 

0.05 

Pr warning ] 0.06 

= 0.83 

(Notice that this calculation used Bayes’ Rule.)

c) In order to calculate expected costs, we will need probabilities of each


combination of warning or no warning and flood or no flood. These are 
shown in the second-last line of Figure 5.7. We should apply a check on 
these calculations: do the probabilities add up to 1? 
0.893 + 0.047 + 0.004 + 0.006 + 0.0125 + 0.0375 = 1.000 (check). 

Now using equation 4.5, the expected cost in any given year is 

($100,000)(0.0375) + ($200,000)(0.0125) + ($100,000)(0.006) + 
($200,000)(0.04) + ($1,000,000)(0.047) + ($0)(0.893) = $61,850 

Problems 
1. Every student in a certain program of studies takes all three of courses A, B, and 

C. The average enrollment in the program is 50 students.


Past history shows that on the average:


(1) 5 students in course A receive marks of at least 75%. 
(2) 7.5 students in course B receive marks of at least 75%. 
(3) 6 students in course C receive marks of at least 75%. 
(4) 80% of students who receive marks of at least 75% in course A also do so in 

course B. 
(5) 50% of students who receive marks of at least 75% in course B also do so in 

course C. 
(6) 60% of students who receive marks of at least 75% in course C also do so in 

course A. 
(7) 10 students receive marks of at least 75% in one or more of these classes. 

A sponsor gives a scholarship of $500 to anyone who receives a mark of at 
least 75% in all three courses. What can the sponsor expect to pay on aver
age? 
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2.	 A box contains a fair coin and a two-headed coin. A coin is selected at random 
and tossed. If heads appears, the other coin is tossed; if tails appears, the same 
coin is tossed. 
a) Find the probability that heads appears on the second toss. 
b) Find the expected number of heads from the two tosses. 
c) If heads appeared on the first toss, find the probability that it also appeared 

on the second toss. 

3.	 A box contains two red and two green balls. A contestant in a game show selects 
a ball at random. If the ball is green, he receives no prize for the draw and puts 
the ball on one side. If the ball is red, he receives $1000 and puts the ball back in 
the box. The game is over when both green balls are drawn or after three draws, 
whichever comes first. 
a) What is the probability of the contestant receiving no prize at all? 
b) What is the expected prize? 
c) If the game lasts for three draws, what is the probability that a green ball was 

selected on the first draw? 

4.	 The probabilities of the monthly snowfall exceeding 10 cm at a particular loca
tion in the months of December, January and February are 0.20, 0.40 and 0.60, 
respectively. For a particular winter: 
a) What is the probability of not receiving 10 cm of snowfall in any of the 

months of December, January and February in a particular winter? 
b) What is the probability of receiving at least 10 cm snowfall in a month, in at 

least two of the three months of that winter? 
c) Given that the snowfall exceeded 10 cm in each of only two months, what is 

the probability that the two months were consecutive? 
d) Find the expected number of months in which monthly snowfall does not 

exceed 10 cm. 

5.	 The probability that Jim will hit a target on a certain range is 25% for any one 
shot, regardless of what happened on the previous shot or shots. He fires four 
shots. 
a) What is the probability that Jim will hit the target exactly twice? 
b) What is the probability that he will hit the target at least once? 
c) Find the expected number of hits on the target. 
d) If five persons who are equally good marksmen as Jim shoot at five targets, 

what is the probability that exactly two targets are hit at least once? 

6.	 Three boxes containing red, white and blue balls are used in an experiment. Box 
#1 contains two red, three white and five blue balls; Box #2 contains one red and 
three white balls; and Box #3 contains three red, one white and three blue balls. 
The experiment consists of drawing a ball at random from Box #1 and placing it 
with the other balls in Box #2, then drawing a ball at random from Box #2 and 
placing it in Box #3. 
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a)	 Draw the probability distribution of the number of red balls in Box #3 at the 
end of the experiment. 

b)	 What is the expected number of red balls in Box #3 at the end of the experiment? 
c)	 Given that at the end of the experiment there are three red balls in Box #3, 

what is the probability that a white ball was picked from Box #l? 
d)	 After the experiment is completed, a ball is drawn from Box #3. What is the 

probability that the ball is white? 

7.	 Two octahedral dice with faces marked 1 through 8 are constructed to be out of 
balance so that the 8 is 1.5 times as probable as the 2 through 7, and the sum of 
the probabilities of the l and the 8 equals that of the other pairs on opposing 
faces, i.e. the 2 and 7, the 3 and 6, and the 4 and 5. 
a) Find the probability distribution and the mean and variance of the number 

that can show up on one roll of the two dice. 
b)	 Find the probabilities of getting between 5 and 9 (inclusive) on at least 3 out 

of 10 rolls of the two dice. 
c)	 Find the probability of getting one occurrence of between 2 and 4, five 

occurrences of between 5 and 9, and four occurrences of between 9 and 16, 
in 10 rolls of the two dice. 

All ranges of numbers are inclusive. 

8.	 A panel of people is assembled to test the ability to correctly distinguish an 
“improved” product from an older product. The panelists are chosen from a 
population consisting of 20% rural and 80% urban people. Two-thirds of the 
population are younger than 30 years of age, while one-third are older. The 
probability that the urban panelists under 30 years of age will correctly identify 
the improved product is 12%, while for older urban panelists, the probability 
increases to 45%. Regardless of age, rural panelists are twice as likely as urban 
panelists to correctly identify the improved product. 
a) What is the probability that any one panelist chosen at random from this 

population will correctly identify the improved product? 
b) For a panel of 10 persons, what is the expected number of panelists who will 

correctly identify the improved product? 
c) If a panelist has correctly identified the improved product, what is the 

probability that the panelist is under 30 years of age? 
d) If a panelist is under 30 years of age, what is the probability that the panelist 

will correctly identify the improved product? 

9.	 Certain devices are received at an assembly plant in batches of 50. The sampling 
scheme used to test all batches has been set up in the following way. One of the 
50 devices is chosen randomly and tested. If it is defective, all the remaining 49 
items in that batch are returned to the supplier for individual testing; if the tested 
device is not defective, another device is chosen randomly and tested. If the 
second item is not defective, the complete batch is accepted without any more 
testing; if the second device is defective, a third device is chosen randomly and 
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tested. If the third device is not defective, the complete batch is accepted without 
any more testing, but the one defective device is replaced by the supplier. If the 
third device is defective, all remaining 47 items in that batch are returned to the 
supplier for individual testing. 

The receiver pays for all initial single-item tests. However, whenever the 
remaining devices in a batch are returned to the supplier for individual tests, the 
costs of this extra testing are paid by the supplier. If a batch is returned to the 
supplier, the superintendent must ensure that the receiver is sent 50 items which 
have been tested and shown to be good. Assume that the superintendent accepts 
the results of the receiver’s tests. Each device is worth $60.00 and the cost of 
testing is $10.00 per device. 

Consider a batch which contains 12 defective items and 38 good items. 

a) What is the probability that the batch will be accepted? 
b) What is the expected cost to the supplier of the testing and of replacing 

defectives? 
c) Of the 12 defective items in the batch, find the expected number which will 

be accepted. 

10. An oil refinery has a problem with air pollution. In any one year the probability 
of escape of SO2 is 23%, and probability of escape of a sticky oil is 16%. Escape 
of SO2 and escape of the oil will not occur at the same time. If the wind direction 
is right, the SO2 or oil will blow away from the city and no damage will result. 
The probability of this is 55%. Otherwise, an escape of SO2 will result in damage 
claims of $80,000, an escape of oil will result in damage claims of $45,000, and 
there will be possibility of a fine. If the pollutant is SO2, under these conditions 
there is 90% probability of a fine, which will be $150,000. If the pollutant is oil, 
the probability of a fine depends on whether the oil affects a prominent 
politician’s house or not. If oil causes damage, the probability it will affect his 
house is 5%. If it affects his house, the probability of a fine is 96%. If it does not 
affect his house, the probability of a fine is 65%. If there is a fine for pollution by 
oil, it is $175,000. Answer the following questions for the next year. 
a) What is the probability there will be damage claims for escape of SO2? 
b) What is the probability there will be damage claims for escape of oil? 
c) What is the probability of a $150,000 fine? 
d) What is the expected cost for damages and fines? 

11. A mining company is planning strategy with respect to its operations. It has the 
option of developing 3 properties, but only in a given sequence of A, B, and C. 
The probability of A being successful and yielding a net profit of $1.5 million is 
0.7, and the probability of its failing and causing a loss of $0.5 million is 0.3. If 
A is successful, B has 0.6 probability of being successful and producing a gain of 
$1.2 million, and 0.4 probability of being a failure and causing a loss of $.75 
million. If A is a failure, B has 0.4 probability of being a success with a gain of 
$1 million, and 0.6 probability of being a failure with a loss of $1.8 million. If 
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both A and B are failures, then the company will not proceed with C. If both A 
and B are successes, C will be a success with probability of 0.9 and a gain of 
$2.5 million, or a failure with probability of 0.1 and a loss of $1.5 million. If 
either A or B is a failure (but not both) then C is attempted. In that case, the 
probability of success of C would be 0.3 but a gain of $5 million would result; 
failure of C, probability 0.7, would result in a loss of $0.8 million. The company 
decides to proceed with this strategy. 
a) What is the expected gain or loss? 
b) Given that A is a failure, what is the expected total gain from projects B and C? 
c) Given that there is a net loss for all three (or two) projects taken together, 

what is the probability that B was a failure? 

5.3 Binomial Distribution 
This important distribution applies in some cases to repeated trials where there are 
only two possible outcomes: heads or tails, success or failure, defective item or good 
item, or many other possible pairs. The probability of each outcome can be calcu
lated using the multiplication rule, perhaps with a tree diagram, but it is usually 
much faster and more convenient  to use a general formula. 

The requirements for using the binomial distribution are as follows: 

•	 The outcome is determined completely by chance. 
•	 There are only two possible outcomes. 
•	 All trials have the same probability for a particular outcome in a single trial. 

That is, the probability in a subsequent trial is independent of the outcome of 
a previous trial. Let this constant probability for a single trial be p. 

•	 The number of trials, n, must be fixed, regardless of the outcome of each trial. 

(a) Illustration of the Binomial Distribution 

All items from a production line are tested as they are produced. Each item is classi
fied as either defective (D) or good (G). There are no other possible outcomes. Pr[D] 
= 0.100, Pr[G] = 1 – Pr[D] = 0.900. Let us consider all the possible results for a 
sample consisting of three items, calculating their probabilities from basic principles 
using the multiplication rule of section 2.2.2. 

Outcome Probability of that Outcome 

G G G (0.900)3 = 0.729

D G G (0.100)(0.900) = 0.081

G D G (0.900)(0.100)(0.900) = 0.081

G G D (0.900)2(0.100) = 0.081

D D G (0.100)2(0.900) = 0.009

G D D (0.900)(0.100)2 = 0.009

D G D (0.100)(0.900)(0.100) = 0.009

D D D (0.100)3 = 0.001


Total	 = 1.000 (Check) 
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Notice that the outcome containing three good items appeared once, and so did 
the outcome containing three defective items. The outcome containing two good 
items and one defective appeared three times, which is the number of permutations of 
two items of one class and one item of another class. The outcome containing one 
good item and two defectives also appears three times (as D D G, G D D, and D G D); 
again, this is the number of permutations of one item of one class and two items of 
another class. 

(b) Generalization of Results 

Now we’ll develop more general results. Let the probability that an item is defective 
be p. Let the probability that an item is good be q, such that q = 1 – p. Notice that the 
definitions of p and q can be interchanged, and other terms such as “success” and 
“failure” can be used instead (and often are). Let the fixed number of trials be n. The 
probability that all n items are defective is pn. The probability that exactly r items are 
defective and (n–r) items are good, in any one sequence, is pr q(n–r). But r defective 
items and (n–r) good items can be arranged in various ways. How many different 
orders are possible? This is the number of permutations into two classes, consisting 
of r defective items and (n–r) good items, respectively. From section 2.2.3 this 

n! 
number of permutations is given by r n  − r )! . But this is exactly the expression for !( 
the number of combinations of n items taken r at a time, nCr. Then the general 
expression for the probability of exactly r defective items (or successes, heads, etc.) 
in any order in n trials must be pr q(n–r) multiplied by nCr, or 

r pr q(n–r)Pr [R = r] = nC (5.9) 

The lefthand side of this equation should be read as the probability that exactly r 
items are defective (or successes, heads, etc.). 

The name given to this discrete probability distribution is the binomial distribu
tion. This name arises because the expression for probability in equation 5.9 is the 
same as the (n+1)th term in the binomial expansion of (q+p)n . 

Tables of cumulative binomial probabilities are found in many reference books. 
Individual binomial probabilities, like those given in equation 5.9, are found from 
cumulative binomial probabilities by subtraction using equation 5.2. Both individual 
and cumulative probabilities can be calculated also using computer software such as 
Excel. That will be discussed briefly in section 5.3(f). 

(c) Application of the Binomial Distribution 

The binomial distribution is often used in quality control of items manufactured by a 
production line when each item is classified as either defective or nondefective. To 
meet the requirements of the binomial distribution the probability that an item is 
defective must be constant. This condition is not met by sampling without replace
ment from a small batch because, as we have seen from Example 2.7, in that case the 
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probability that the second item drawn will be defective depends on whether the first 
item drawn was defective or not, and so on. The condition of constant probability is 
met to an acceptable approximation if the total number of trials is much less than the 
batch size, so for a sufficiently small sample from a large enough batch. Then the 
probability of a defect (or “success” etc.) on a single trial will be approximately constant. 

The condition is met for sampling item by item from continuous production 
under constant conditions. It is also met for sampling from a small batch if each item 
which is removed as a specimen is returned to the batch and mixed thoroughly with 
the other items, once it has been examined and classified as defective or good. This, 
however, is not often a practical procedure: if we know that an item is defective, we 
should not mix it with other items of production. Indeed, sometimes we can’t, 
because the test procedure may destroy the sample. 

Example 5.5 

On the basis of past experience, the probability that a certain electrical component 
will be satisfactory is 0.98. The components are sampled item by item from continu
ous production. In a sample of five components, what are the probabilities of finding 
(a) zero, (b) exactly one, (c) exactly two, (d) two or more defectives?


Answer: The requirements of the binomial distribution are met.


n = 5, p = 0.98, q = 0.02, where p is taken to be the probability that an item will be

satisfactory, and so q is the probability that an item will be defective. 

(a) Pr [0 defectives] = (0.98)5 = 0.9039 or 0.904. 
(b) Pr [1 defective]	 = 5C1 (0.98)4 (0.02)1


= (5) (0.98)4(0.02)1 = 0.0922 or 0.092.

(c) Pr [2 defectives] = 5C2 (0.98)3(0.02)2


5 4)

= 

( )(
(0.98)3(0.02)2 = 0.0038. 

2 
(d) Pr [2 or more defectives] = 1 – Pr [0 def.] – Pr [1 def.]


=1 – 0.9039 – 0.0922

= 0.0038.


Example 5.6 

A company is considering drilling four oil wells. The probability of success for each 
well is 0.40, independent of the results for any other well. The cost of each well is 
$200,000. Each well that is successful will be worth $600,000. 

a) What is the probability that one or more wells will be successful? 
b) What is the expected number of successes? 
c) What is the expected gain? 
d) What will be the gain if only one well is successful? 
e) Considering all possible results, what is the probability of a loss rather than a gain? 
f) What is the standard deviation of the number of successes? 
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Answer: The binomial distribution applies. Let us start by calculating the probability 
of each possible result. We use n = 4, p = 0.40, q = 0.60. 

No. of Successes     Probability 

0 (1) (0.40)0(0.60)4 = 0.1296 
1 (4) (0.40)1(0.60)3 = 0.3456 

4 3)
2 

( )(
 (0.40)2(0.60)2 = 0.3456 

2
3 (4) (0.40)3(0.60)1 = 0.1536 
4 (1) (0.40)4(0.60)0 = 0.0256 

Total = 1.000 (check) 

(Notice that nC  = nC(n–r))r

Now we can answer the specific questions. 

a) Pr [one or more successful wells] = 1– Pr [no successful wells] 
= 1 – 0.1296 
= 0.8704 or 0.870. 

b) Expected number of successes = (1)(0.3456) + (2)(0.3456) + (3)(0.1536) + 4)(0.0256) 
= 1.600. 

c) Expected gain = (1.6)($600,000) – (4)($200,000) = $160,000. 
d) If only one well is successful, gain = (1)($600,000) – (4)($200,000) 

= –$200,000 (so a loss). 
e) There will be a loss if 0 or 1 well is successful, so the probability of a loss is 

(0.1296 + 0.3456) = 0.4752 or 0.475. 
2f) Using equation 4.3, σ 2 = E(X2) – µ ,x x 

where E(X2) = (0.3456)(1)2 + (0.3456)(2)2 + (0.1536)(3)2 +(0.0256)(4)2 = 3.5200, 
so σ2 = 3.5200 – (1.600)2 = 0.9600. 

0.9600 The standard deviation of the number of successes is = 0.980 . 
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R
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R
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(d) Shape of the Binomial Distribution 

(a) p=0.05 (b) p=0.5 (c) p=0.95 
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r r rFigure 5.8: Effect of Varying Probability of Success in a Single Trial 
when the Number of Trials is 5 

104 



Probability Distributions of Discrete Variables 

Figure 5.8 compares the shapes of the distributions for p equal to 0.05, 0.50, and 
0.95, all for n equal to 5. When p is close to zero or one, the distribution is very 
skewed, and the distribution for p equal to p1 is the mirror image of the distribution 
for p equal to (1–p1). When p is equal to 0.500, the distribution is symmetrical. 

(a) n=10 (b) n=20 
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0.2 
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r r 

Figure 5.9: Effect of Varying Number of Trials when the Probability of Success Is 0.35 

Figure 5.9 compares the shape of the distributions for n equal to 10 and 20, both 
for p equal to 0.35. At this intermediate value of p, the distribution is rather skewed 
for small numbers of trials, but it becomes more symmetrical and bell-shaped as n 
increases. 

(e) Expected Mean and Standard Deviation 

For any discrete random variable, equation 5.5 gives that the expected mean is 
E R  R( ) = µ(or  µ ) = Σ  (number of “successes”)(probability of that number of “suc
cesses”) for all possible results. 

For the binomial distribution, from equation 5.9 the probability of r “successes” 
in n trials is given by 

Pr [R = r] = nCr (1–p)n–r pr 

Then 
n n (n r  )− rµ = ∑( )Pr [R = r ] = ∑( )( C )(1 − p) pr r n r


r =0 r =0


If the algebra is followed through, the result is 

µ = np (5.10) 

Thus, the mean value of the binomial distribution is the product of the number of 
trials and the probability of “success” in a single trial. This seems to be intuitively 
correct. 

From equation 5.6, for any discrete probability distribution, 

105




Chapter 5 

n
2 2σ = E r  − µ) = ∑(r − µ) Pr [R = r ]2 ( 

r =0 

Substituting for the probability for the binomial distribution and following through 
the algebra gives 

σ2 = np(1 – p) 

or 

σ2 = npq (5.11) 

The standard deviation is always given by the square root of the corresponding 
variance, so the standard deviation for the binomial distribution is 

σ =  npq (5.12) 

Example 5.7 

Calculate the expected number of successes and the standard deviation of the number 
of successes for Example 5.6 and compare with the results of parts b and f of that 
example. 

Answer: Binomial distribution with n = 4, p = 0.4, q = 0.6. 

Then the expected number of successes from equation 5.6 is np = (4)(0.400) = 
1.60. This agrees with the results of part b of Example 5.6. 

The standard deviation of the number of successes from equation 5.8 is 

(4)(0.400 )(0.600 ) = 0.960 = 0.980. This agrees with the results of part f of 

Example 5.6. 

Example 5.8 

Twelve doughnuts sampled from a manufacturing process are weighed each day. The 
probability that a sample will have no doughnuts weighing less than the design 
weight is 6.872%. 

a) What is the probability that a sample of twelve doughnuts contains exactly 
three doughnuts weighing less than the design weight? 

b) What is the probability that the sample contains more than three doughnuts 
weighing less than the design weight? 

c) In a sample of twelve doughnuts, what is the expected number of doughnuts 
weighing less than the design weight? 

Answer:  In 12 doughnuts Pr [0 doughnuts < design weight] = 0.06872. 

Assuming that Pr [a single doughnut < design weight] is the same for all doughnuts 
and that weights of doughnuts vary randomly, the binomial distribution will apply. 
Let this probability that a single doughnut will weigh less than the design weight be p. 
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Then (1 – p)12 = 0.06872.


1 – p = 0.8000


Then Pr [ a doughnut < design weight ] = 1 – 0.8000 = 0.2000. Then p = 0.2, and

n = 12. 

a) Pr [exactly 3 doughnuts in 12 are below design weight] = 12C3(1 – p)9p3 

( )(11)( )12 10 

( )( )3 2  
= (0.8000 

9) (0.2000 
3) 

= 0.2362 or 23.6%. 

b) Number less than design weight      Probability 
0  (0.8)12 = 0.0687 
1 12C1(0.8)11(0.2)1 = 0.2062 
2   12C2(0.8)10(0.2)2 = 0.2835 
3     12C3(0.8)9(0.2)3 = 0.2362 
Sum 0.7946 

Therefore, Pr [more than three doughnuts are below design weight] = 
= 1 – (Pr [R = 0] + Pr [R = 1] + Pr [R = 2] + Pr [R = 3]) 
= 1 – 0.7946 
= 0.2054 or 0.205 = 20.5%.


c) Expected number of doughnuts below the design weight is (n)(p) =

(12)(0.200) = 2.4.


(f) Use of Computers 

If a computer with suitable software is available, calculations for the binomial 
distribution can be done easily. If Excel is available, the function BINOMDIST will 
be found to be very useful. There is not usually a great advantage to use of a com
puter if only individual terms of the distribution are required, as equation 5.9 is 
convenient for that purpose. But if cumulative expressions are required, such as the 
probability of six or fewer occurrences, the computer can greatly reduce the amount 
of labor required. 

The parameters required by the Excel function BINOMDIST are r, n, p, and an 
indication of whether a cumulative expression or an individual term is required. As in 
the earlier part of this section, r is the number of “successes” in a total of n trials, and 
p is the probability of “success” in each trial. The fourth parameter should be entered 
as TRUE if the cumulative distribution function is required, giving the probability of 
at most r “successes”; the fourth parameter should be entered as FALSE if the 
required quantity is the individual probability, the probability of exactly r “suc
cesses.” For example, if we want the probability of six or fewer “successes” in a total 
of 12 trials when the probability of “success” in a single trial is 0.245, the parameters 
for Excel in the function BINOMDIST are 6, 12, 0.245, TRUE. The function returns 
the corresponding probability, which is 0.9873. 
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(g) Relation of Proportion to the Binomial Distribution 

Assuming that the only alternative to a rejected item is an accepted item, the sample 
size is fixed and independent of the results, and the probability of rejection is con
stant and independent of other factors such as previous results, we have seen that the 
number of rejects in a sample of size n is governed by the binomial distribution. If 
the probability that an item will be rejected is p, the probability that there will be 
exactly x rejects in the sample is nCx px (1 – p)(n–x). The mean number of rejects will 
be np, and the variance of the number of rejects will be np(1 – p). 

We can look at the sample from a somewhat different viewpoint, focusing on the 
x 

proportion of rejects rather than their number. The ratio is an unbiased estimate 
n

of p, the proportion of rejects in the population, and we use the symbol p̂  for this 
estimate. The probability  that the estimate of proportion from the sample will be p̂

=  is the same as the probability that there will be exactly x rejected items in a
n

sample of size n, and that is nCx px (1 – p)(n–x). If we associate the number 1 with each 
rejected item and the number 0 with each item which is not rejected, then x, the 
number of rejected items, can be interpreted as the sum of the zeros and ones for a 

x 
sample of size n. Then p̂  = is a sample mean. Since n is a constant, in the whole 

n
population the mean proportion rejected is 

X( ) = E   = = pµ p̂ = E P̂    np  
(5.13)

n   n 
This seems reasonable. 

Similarly, using the relations for variance of a variable multiplied or divided by a 
constant that will be discussed in section 8.2, we find that the variance of the propor
tion rejected is 

/
ˆ 

2 2 
X n  

p 
σ = σ  =  

2 

2 

X 

n 

σ = 
( 

2 

1np 

n 

− )p 
= 

(1p 

n 

− )p 
(5.14) 

Example 5.9 

The true proportion of defective items in a continuous stream is 0.0100. A random 
sample of size 400 is taken. 

(a) Calculate the probabilities that the sample will give sample estimates of the 
0 1 2 3 4 5proportion defective of ,  ,  ,  ,  ,  and  ,   respectively. 

400 400 400 400 400 100
(b) Calculate the standard deviation of the proportion defective. 
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Answer: 

(a)	 p = 0.01, n = 400 

Pr [ p 
� = 0 ] = Pr [0 defective items] = 400C0 (0.01)0(0.99)400 

= (1)(1)(0.01795) = 0.0180 

Pr [ p 
� = 1 

= 0.00250] = 400C1 (0.01)1(0.99)399 = 
400 

= (400)(0.01)(0.01813) = 0.0725 

�
2

Pr [ p = = 0.00500] = 400C2 (0.01)2(0.99)398 = 
400


(400 )(399 )

= (0.01)2(0.99)398	 = 0.1462 

2

�

3

Pr [ p = = 0.00750] = 400C3 (0.01)3(0.99)397 = 

400 

(400 )(399 )(398 ) 
= 3 2) (0.01)3(0.99)397 = 0.1959( )(

Pr [ p 
� = 4 

= 0.01000] = 400C4 (0.01)4(0.99)396 = 
400 

(400 )(399 )(398)(397) 
= 4 3)(2) (0.01)4(0.99)396 = 0.1964( )(

� 5
Pr [ p = = 0.01250] = 400C5 (0.01)5(0.99)395 = 

100 
(400 )(399 )(398 )(397 )(396) 

= 5 4)(3)(2) (0.01)5(0.99)395 = 0.1571( )(

Thus, the probability that the 
sample will give an estimate of the 0.25 

proportion defective that agrees exactly 
with the true proportion (0.01) is less 

0.2 
than 20%, and the probability of getting 

0.05 

Figure 5.10: Probabilities of Estimates 
When True Proportion Is 0.0100 

0 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 

Estimated proportion defective 
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We see that there can be a wide range of estimates from a sample, even when the 
sample size is as large as 400. 

(b) The standard deviation of the proportion defective is given, according to 

equation 5.14, by 
( )(  )  ( )( )1 

400 

p p 

n 

− 
= = 

0.01 0.99 
0.004975. 

The standard deviation is nearly half of the true proportion defective. Again, this 
indicates that an estimate from a sample of this size will not be very reliable. 

(h) Nested Binomial Distributions 

These are situations in which one binomial distribution is enclosed within another 
binomial distribution. 

Example 5.10 

A boiler containing eight welds is manufactured in a small shop. When the boiler is 
completed, each weld is checked by an inspector. If more than one weld is defective 
on a single boiler, the person who made that boiler is reported to the foreman. 

a) If 9.0% of all welds made by Joe Smith are defective, what percentage of all 
boilers made by him will have more than one defective weld? 

b) Over a long period of time how many times will Joe Smith be reported to the 
foreman for each 15 boilers he makes? 

c) If Joe makes 15 boilers in a shift, what is the probability that he will be 
reported for more than two of these 15 boilers? 

Answer:  a) The probabilities of various numbers of defective welds on a single 
boiler are given by the binomial distribution with n = 8, p = 0.090, q = 1 – 0.090 = 
0.910. 

The probability of exactly r defective welds on a boiler is given by

Pr [R = r] = 8Cr (0.910)(8–r)(0.090)r .


More than one defective weld corresponds to all results except zero defective welds 
and one defective weld. 

Pr [R = 0] = (1) (0.910)8 (0.090)0 = 0.4703 
Pr [R = 1] = (8) (0.910)7 (0.090)1 = 0.3721 

(Four figures are being carried in intermediate results, and final answers will be 
shown to three figures.) 

Pr [more than one defective weld in a single boiler] = 1 – 0.4703 – 0.3721 = 0.1577. 
Then 15.8% of boilers made by Joe will have more than one defective weld. 

b)	 Now the problem shifts to the outer Binomial problem for the number of times 
Joe will be reported to the foreman for each 15 boilers he makes. Then n = 15, 
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p = Pr [being reported for 1 boiler] = 0.1577, and q = 1 – p = 0.8423. (Notice that the 
value of p, the probability of too many defects in a single boiler in the outer binomial 
distribution, is given by the result of calculations for the inner binomial distribution.) 

Under these conditions the expected number of times Joe will be reported to the 
foreman is µ = np = (15)(0.1577) = 2.37. 

c)	 As in part b, this corresponds to a binomial problem with n = 15, p = 0.1577, 
q = 0.8423. 

In general, Pr [R = r] = 15Cr (0.8423)(15–r)(0.1577)r 

Then specifically, Pr [R = 0] = (1)(0.8423)15(0.1577)0 = 0.0762 

Pr [R = 1] = (15)(0.8423)14(0.1577)1 = 0.2141 
15 

Pr [R = 2] = 
( )(14)

(0.8423)13(0.1577)2 = 0.2805 
2 

The probability that Joe will be reported to the foreman for more than two of the 15 
boilers he makes in a shift is 1 – 0.0762 – 0.2141 – 0.2805 = 0.429 or 42.9%. 

(i)	 Extension: Multinomial Distribution 

The multinomial distribution is similar to the binomial distribution except that there 
are more than two possible results from each trial. The details of the multinomial 
distribution are given in various references, including the book by Walpole and 
Myers (see the List of Selected References in section 15.2). For example, mechanical 
components coming off a production line might be classified on the basis of a 
particular dimension as undersize, acceptable, or oversize (three possible outcomes). 
If the outcome of any one trial is determined completely by chance, all trials are 
independent and have the same set of probabilities for the various possible outcomes, 
and the number of trials is fixed, the multinomial distribution would apply. 

Notice that if we consider separately just one result and lump together all other 
results from each trial, the multinomial distribution becomes a binomial distribution. 
Thus, in the example of mechanical components just cited, if undersized and over
sized are lumped together as unacceptable, the distribution becomes binomial. 

Problems 
1.	 Under normal operating conditions 1.5% of the transistors produced in a factory 

are defective. An inspector takes a random sample of forty transistors and finds 
that two are defective. 
a) What is the probability that exactly two transistors will be defective from a 

random sample of forty under normal operating conditions? 
b) What is the probability that more than two transistors will be defective from 

a random sample of forty if conditions are normal? 

2.	 A control system is set up so that when production conditions are normal, only 
6% of items from the production line gives readings beyond a particular limit. If 

111




Chapter 5 

more than two of six successive items are beyond the limit, production is stopped 
and all machine settings are examined. What is the probability that production 
will be stopped in this way when production conditions are normal? 

3.	 A company supplying transistors claims that they produce no more than 2% 
defectives. A purchaser picks 50 at random from an order of 5000 and tests the 
50. If he finds more than 1 defective, he rejects the order. If the supplier’s claim 
is true and 2% of the transistors are defective, what is the probability that the 
order will be rejected? 

4.	 An experiment was conducted wherein three balls were drawn at random from a 
barrel containing two blue balls, three red balls, and five green balls. We want to 
find the mean and variance of the probability distribution of the number of green 
balls chosen. Explain why this problem involving three colours can not be 
handled using a binomial distribution. Suppose we consider both the blue balls 
and the red balls together as not-green. Now find the required mean and variance. 

5.	 A binomial distribution is known to have the following cumulative probability 
distribution: Pr[X ≤ 0] = 1/729, Pr[X ≤ l] = 13/729, Pr[X ≤ 2] = 73/729, Pr[X ≤ 3] 
= 233/729, Pr[X ≤ 4] = 473/729, Pr[X ≤ 5] = 665/729, Pr[X ≤ 6] = 1.0000. 
a) What is n, the number of trials? 
b) Find p and q, the probabilities of success and failure. 
c) Verify that with these values of n, p and q the cumulative probabilities are as 

stated. 
d) What is the probability that the number of successes, r, lies within one 

standard deviation of the mean? 
e) What is the coefficient of variation? 

6.	 Ten judges are asked to pick the best tasting orange juice from two samples 
labeled A and B. If, in fact, A and B are the same orange juice, what is the 
probability that eight or more of the judges will declare the same sample to be 
the best? Assume that no judge says that they are equal. 

7.	 A sample of eleven electric bulbs is drawn every day from those manufactured at 
a plant. The eleven bulbs are tested before shipment to the customer. An analysis 
of the test data collected over a number of years reveals that the probability of 
finding no defective bulb in a sample of eleven bulbs is 0.5688. Probabilities of 
defective bulbs are random and independent of previous results. 
a) What is the probability of finding exactly three defective bulbs in a sample? 
b) What is the probability of finding three or more defective bulbs in a sample? 

8.	 There are ten multiple choice questions on an examination. If there are five 
choices per question, what is the probability that a student will answer at least 
five questions correctly just by picking one answer at random from the possibili
ties for each question? State any assumptions. 
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9.	 Among a group of five people selected at random from a particular population it 
is known that the probability that no one will be 30 or over is 0.01024. 
a) What is the probability that exactly one person in the group is under 30? 
b) Calculate the mean and variance of the probability distribution of the number 

of persons over 30 and compare to the formula values for this type of distri
bution. 

c) Given three such groups, what is the probability that two out of three groups 
have no more than two persons 30 or over? 

d) State any assumptions. 

10. A fraction 0.014 of the output from a production line is defective. A sample of 95 
items is taken. Assume defective items occur randomly and independently. 
a) What is the standard deviation of the proportion defective in a sample of this 

size? 
b)	 What is the probability that the proportion of defective items in the sample 

will be within two standard deviations of the fraction defective in the whole 
population? 

11. Surveys have indicated that in a given region 75% of car occupants use seat belts 
regardless of where they sit in the car. Use of seat belts in the region is random 
and shows no regular pattern. The surveys have shown also that in 40% of cars 
the driver is the sole occupant, in 25% there are two occupants, in 20% three 
occupants, in 10% four occupants, and in 5% five occupants. 
a) What is the probability that a car picked at random will have exactly three 

persons not using their seat belts? Remember to consider all possible 
number of occupants. 

b) What is the probability that of three cars chosen at random, exactly two have 
all occupants wearing belts? 

12. A small hotel has rooms on only four floors, with four smoke detectors on each 
floor. Because of improper maintenance, the probability that any one detector is 
functioning is only 0.55. The probabilities that smoke detectors are functioning 
are randomly and independently distributed. 
a) What is the probability that exactly one smoke detector is working on the top 

floor? 
b)	 What is the probability that there is exactly one detector working on each of 

two floors and there are two detectors working on each of the other two 
floors? 

c)	 What is the probability that there will be no functioning smoke detectors on 
one particular floor? What is the probability that there will be at least one 
functioning smoke detector on that floor? 

d)	 What is the probability that on at least one of the four floors there will be no 
functioning smoke detectors? 

e) What is the probability that there will be at least 15 functioning smoke 
detectors in the hotel at any one time? 
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13. The FIXIT company is to bring in seven new products in a sales line for which 
the probability that each new product will be successful is 0.15. Probabilities of 
success for the various products are random and independent. The cost of bring
ing in a new product is $75,000. If each product is successful, the expected 
revenue from sales for it will be $800,000 . 
a) What is the expected net profit from the seven products? 
b) What is the probability that the total net profit will be at least $1,000,000? 
c) What is the probability that none of the products will be successful? 
d) If the number of successful products is three or more, the sales engineer will 

be promoted. What is the probability that this will happen? 

14. The probability that a certain type of IC chip will fail after installation is 0.06. A 
memory board for a computer contains twelve such chips. The operation will be 
satisfactory if ten or more of the chips on the board do not fail. 
a) What is the probability that a memory board operates satisfactorily? 
b) If there are five such memory boards in a given computer, what is the prob

ability that at least four of them operate satisfactorily?

c) State any assumptions.


15. 5% of a large lot of electrical components are defective. Six batches of four 
components each are drawn from this lot at random. 
a) What is the probability that any one batch contains fewer than two 

defectives? 
b) What is the probability that at least five of the six batches contain fewer than 

two defectives each? 
c) State any assumptions. 

16. 20% of a large lot of mechanical components are found to be faulty. Five batches 
of five components each are drawn from this lot. What is the probability that at least 
four of these batches contain fewer than two defectives?  State any assumptions. 

17. A consultant collected data on bolt failures in an anchor assembly used in tower 
construction. A large number of anchor assemblies, each containing the same 
number of bolts, were examined and each bolt was graded either a success or a 
failure. The probability distribution of the number of satisfactory bolts in an 
assembly had a mean value of 3.5 and a variance of 1.05. Satisfactory and 
unsatisfactory bolts occur randomly and independently. Calculate the probabili
ties associated with the possible numbers of satisfactory bolts in an assembly. If 
an assembly is considered to be adequate if there are three or fewer bolt failures, 
what is the probability that an assembly chosen at random will be inadequate? 

18. Each automobile leaving a certain motor company’s plant is equipped with five 
tires of a particular brand. Tires are assigned to cars randomly and independently. 
The tires on each of 100 such automobiles were examined for major defects with 
the following results. 
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No. of Tires with Defects 0 1 2 3 4 5 
No. of Automobiles (occurrences) 75 18 4 2 0 1 

a) Estimate the probability that a randomly selected tire from this manufacturer 
will contain a major defect. 

b) Suppose you buy an automobile of this make. From the results of (a) calcu
late the probability that it will have at least one tire with a major defect. 

c) What is the probability that, in a fleet purchase of six of these cars, at least 
half the cars have no defective tires? 

d) What is the expected number of defective tires in the fleet purchase of six 
cars? 

e) If the replacement cost of a defective tire is $120, what is the total expected 
replacement cost for this fleet purchase? 

19. Thirteen electronic components from a manufacturing process are tested every 
day. Components for testing are chosen randomly and independently. It was 
found over a long period of time that 51.33% of such samples have no defectives. 
a) What is the probability of a sample containing exactly two defective compo

nents? 
b) What is the probability of finding three or more defective components in a 

sample? 
c)	 The assembly line has a weekly bonus system as follows: Each man receives 

a bonus of $500 if none of the five daily samples that week contained a 
defective. The bonus is $250 if only one sample out of the five contained a 
defective, and none of the others contained any. What is the expected bonus 
per man per week? 

20. Truck tires are tested over rough terrain. 25% of the trucks fail to complete the 
test run without a blowout. Of the next fifteen trucks through the test, find the 
probability that: 
a) exactly three have one or more blowouts each; 
b) fewer than four have blowouts; 
c) more than two have blowouts. 
d) What would be the expected number of trucks with blowouts of the next 

fifteen tested? 
e) What would be the standard deviation of the number of trucks with blowouts 

of the next fifteen tested? 
f) If fifteen trucks are tested on each of three days, what is the probability that 

more than two trucks have blowouts on exactly two of the three days? 
g) State any assumptions. 

21. An elevator arrives empty at the main floor and picks up five passengers. It can 
stop at any of seven floors on its way up. What is the probability that no two 
passengers get off at the same floor?  Assume that the passengers act indepen
dently and that a passenger is equally likely to get off at any one of the floors. 
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22. In a particular computer chip 8 bits form a byte, and the chip contains 112 bytes. 
The probability of a bad bit, one which contains a defect, is 1.2 E-04. 
a) What is the probability of a bad byte, i.e. a byte which contains a defect? 
b) The chip is designed so that it will function satisfactorily if at least 108 of its 

112 bytes are good. What is the probability that the chip will not function 
satisfactorily? 

23. In a particular computer chip 8 bits form a byte, and the chip contains 112 bytes. 
The probability of a bad bit, one which contains a defect, is 2.7 E-04. 
a) What is the probability of a bad byte, i.e. a byte which contains a defect? 
b) The chip is designed so that it will function satisfactorily if at least 108 of its 

112 bytes are good. What is the probability that the chip will not function 
satisfactorily? 

Computer Problems 
C24. Under normal operating conditions the probability that a mechanical component 
will be defective when it comes off the production line is 0.035. A sample of 40 
components is taken. In one case, four of the components are found to be defective. 
If the operating conditions are still correct, what is the probability that that many or 
more components will be defective in a sample of size 40? 

C25. A computer chip is organized into bits, bytes, and cells. Each byte contains 8 
bits, and each cell contains 112 bytes. The probability that any one bit will be bad (or 
corrupted) is 1.E–11 (i.e. 10–11). 

a)	 What is the probability that any one byte will contain a bad bit and so will be 
bad and give an error in a calculation?  Note that you can neglect the prob
ability that a byte will contain more than one bad bit. 

b) What is the probability there will be no bad bytes in a cell? 
c) What is the probability there will be exactly one bad byte in a cell? 
d) What is the probability there will be exactly two bad bytes (and so also 

exactly 110 good bytes) in a cell? 
e) What is the probability there will be exactly three bad bytes (and so also 

exactly 109 good bytes) in a cell? 
f)	 What is the probability there will be two or more bad bytes in a cell?  Calcu

late this in three ways: i) Use the results of some of parts (a) (b) (c). 
ii) Use the results of parts (d) and (e). 
iii) Use a cumulative probability. 
Do they give the same answer?  If not, explain why not. 

C26. In order to estimate the fraction defective among electrical components as they 
are produced under normal conditions, a sample containing 1000 components is 
taken and each component is classified as defective or non-defective. Nine compo
nents are found to be defective in this sample. 
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a)	 What is the best estimate from this sample of the proportion defective in the 
population? 

b)	 Assuming that that estimate is exactly correct, what is the standard deviation 
of the proportion defective?  Then what are the limits of the interval from the 
best estimate minus two standard deviations to the best estimate plus two 
standard deviations? What is the probability of a result outside this interval? 

c)	 Assuming the estimate in part (a) is exactly correct, what is the probability 
that more than three defective components will be found in a sample of 100 
components? 

C27. A sample containing 400 items is taken from the output of  a production line. A 
fraction 0.016 of the items produced by the line are defective. Assume defective 
items occur randomly and independently. 

a) What is the probability that the proportion defective in the sample will be no 
more than 0.0250? 

b) What is the standard deviation of the proportion defective in a sample of this 
size? 

c) What sample proportion defective would be two standard deviations less than 
the proportion defective in the whole population? 

5.4 Poisson Distribution 
This is a discrete distribution that is used in two situations. It is used, when certain 
conditions are met, as a probability distribution in its own right,  and it is also used 
as a convenient approximation to the binomial distribution in some circumstances. 
The distribution is named for S.D. Poisson, a French mathematician of the nineteenth 
century. 

The Poisson distribution applies in its own right where the possible number of 
discrete occurrences is much larger than the average number of occurrences in a 
given interval of time or space. The number of possible occurrences is often not 
known exactly. The outcomes must occur randomly, that is, completely by chance, 
and the probability of occurrence must not be affected by whether or not the out
comes occurred previously, so the occurrences are independent. In many cases, 
although we can count the occurrences, such as of a thunderstorm, we cannot count 
the corresponding nonoccurrences. (We can’t count “non-storms”! ) 

Examples of occurrences to which the Poisson distribution often applies include 
counts from a Geiger counter, collisions of cars at a specific intersection under 
specific conditions, flaws in a casting, and telephone calls to a particular telephone or 
office under particular conditions. For the Poisson distribution to apply to these 
outcomes, they must occur randomly. 
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(a) Calculation of Poisson Probabilities 

The probability of exactly r occurrences in a fixed interval of time or space under 
particular conditions is given by 

rλt e−λt 

Pr [R = r] = 
( )  

(5.13) 
r! 

where t (in units of time, length, area or volume) is an interval of time or space in 
which the events occur, and λ is the mean rate of occurrence per unit time or space 
(so that the product λt is dimensionless). As usual, e is the base of natural loga-

–λtrithms, approximately 2.71828. Then the probability of no occurrences, r = 0, is e , 
the probability of exactly one occurrence, r = 1, is λt e–λt, the probability of exactly 

tt e−λλ 
two occurrences, r = 2, is 

( )2 

, and so on. Once one of these probabilities is
2! 

calculated it is often more convenient to calculate other members of the sequence 
from the following recurrence formula: 

 λt  
Pr [R = r + 1] = 

 r +1  Pr [R = r] (5.14) 

The basic relation for the Poisson distribution, equation 5.13, can be derived from 
a differential equation or as a limiting expression from the binomial distribution. 

Cumulative Poisson probabilities can be found in many reference books. Once 
again, Poisson probabilities for single events can be found by subtraction using 
equation 5.2: the probability of xi is just the difference between the cumulative 
probability that X ≤ xi and the cumulative probability that X ≤ xi-1. 

Example 5.11

      From tables for the cumulative Poisson distribution to three decimal points, for 
−λt )( )λt

k 

λt = 10.5, Pr[X ≤ 12] = 
12 (e 

is equal to 0.742,∑k =0 k! 
−λt )( )11 (e λt

k 

Pr[X ≤ 11] = is equal to 0.639, and∑k =0 k! 
−λt )( )10 (e λt

k 

Pr[X ≤ 10] = is equal to 0.521.∑k =0 k! 

Then for λt = 10.5, we have Pr [R=12] = 0.742 – 0.639 = 0.103, compared with 
0.1032 from equation 5.13, and 

−λt )( )  −λt )( )12 (e λt
k 

10 (e λt
k 

Pr [R = 11 or 12] = = 0.742 – 0.521 = 0.221,∑k =0 
− ∑k =0k! k! 
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12−10.5 11 −10.5(e )(10.5) (e )(10.5)
compared with Pr [R = 11] + Pr [R = 12] = + 

11! 12! 

= 0.1180 + 0.1032 = 0.2212. 

These figures check (to three decimal points). 

The shape of the probability function for the Poisson distribution is usually 
skewed, particularly for small values of (λt). Figure 5.11 shows the probability 
function for λt = 0.5. Its mode is for zero occurrences, and probabilities decrease 
very rapidly as 
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Example 5.12 

The number of meteors found by a radar system in any 30-second interval under 
specified conditions averages 1.81. Assume the meteors appear randomly and inde
pendently. 

a) What is the probability that no meteors are found in a one-minute interval? 
b) What is the probability of observing at least five but not more than eight 

meteors in two minutes of observation? 

Answer:  a) λ = (1.81) / (0.50 minute) = 3.62 / minute. 

For a one-minute interval, µ = λt = 3.62. 

Pr [none in one minute] = e–λt = e–3.62 = 0.0268. 

b) For two minutes, µ = λt = (3.62)(2) = 7.24. 
rλt e−λt 

Pr [R=r] = 
( )  

. 
r! 

5 −7.24(7.24 ) e
Then Pr [R=5] = = 0.1189. 

5! 

 λt  
From equation 5.14, Pr [R=r+1] = 

 r +1  Pr [R=r] 

 7.24  
so Pr [R=6] =   (0.1189) = 0.1435,

 6 

 7.24  
Pr [R=7] =   (0.1435) = 0.1484,

 7 

 7.24  
and Pr [R=8] =   (0.1484) = 0.1343.

 8 

Then Pr [at least five but not more than eight meteors in two minutes] 

= Pr [5 or 6 or 7 or 8 meteors in two minutes] 
= 0.1189+0.1435+0.1484+0.1343 
= 0.545 

Example 5.13 

The average number of collisions occurring in a week during the summer months at a 
particular intersection is 2.00. Assume that the requirements of the Poisson distribu
tion are satisfied. 

a) What is the probability of no collisions in any particular week?

b) What is the probability that there will be exactly one collision in a week?

c) What is the probability of exactly two collisions in a week?

d) What is the probability of finding not more than two collisions in a week?
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e) What is the probability of finding more than two collisions in a week? 
f) What is the probability of exactly two collisions in a particular two-week 

interval? 

Answer: λ = 2.00/week, t = 1 week, so λt = 2.00. 

a) Pr [R = 0] = e –λt = e–2.00 = 0.135 

b) Pr [exactly one collision in a week] 
–2.00= Pr [R = 1] = (λt)e –λt = 2.00e


= 0.271


c) Pr [exactly two collisions in a week]

2 2 −2.00 λt e−λt (2.00 ) e 

= Pr [R = 2] = 
( )  

= 
2! 2!


= 0.271


d) Pr [not more than two collisions in a week]


= Pr [R ≤ 2]


= Pr [R = 0] + Pr [R = 1] + Pr [R = 2]


= 0.135 + 0.271 + 0.271


= 0.677


e) Pr [more than two collisions in a week]


= Pr [R > 2]


= 1– Pr [R ≤ 2]


= 1 – 0.677


= 0.323


f) Now we still have λ = 2.00/week, but t = 2 weeks, so λt = 4.00


Then Pr [exactly two collisions in a two-week interval]


( )2 2 −4.00 λt e−λt (4.00 ) e 
= = 

2! 2!

= 0.147


Example 5.14 

The demand for a particular type of pump at an isolated mine is random and indepen
dent of previous occurrences, but  the average demand in a week (7 days) is for 2.8 
pumps. Further supplies are ordered each Tuesday morning and arrive on the weekly 
plane on Friday morning. Last Tuesday morning only one pump was in stock, so the 
storesman ordered six more to come in Friday morning. 

a)	 Find the probability that one pump will still be in stock on Friday morning 
when new stock arrives. 
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b) Find the probability that stock will be exhausted and there will be unsatisfied 
demand for at least one pump by Friday morning. 

c) Find the probability that one pump will still be in stock this Friday morning 
and at least five will be in stock next Tuesday morning. 

Answer: First we have to recognize that the Poisson distribution will apply. 

2.8

λ = 7 days  = 0.4 / day.


a) From Tuesday morning to Friday morning is three days.


Then λt = (0.4 / day)(3 days) = 1.2.


Pr [no demand in three days] = e –λt = e –1.2 = 0.3012. 

Then Pr [one pump will still be in stock Friday morning when new stock arrives] 
= 0.301. 

b) Pr [demand for two or more pumps in three days] = 

= 1 – Pr [demand for zero or one pump in three days]


= 1 – Pr [demand for no pumps in three days] – Pr [demand for one pump in

three days]


(0.3012 )(1.2 )
= 1 – 0.3012 – (using equation 5.14)

1
= 0.3374. 

Then Pr [unsatisfied demand for at least one pump by Friday morning] = 0.337. 

c) From part (a), Pr [one pump will still be in stock this Friday morning] = 
0.3012. 

From Friday morning to Tuesday morning is four days, so (λt) = (0.4 /day)(4 
days) = 1.6. 

After the new stock arrives we will have 1 + 6 = 7 pumps in stock Friday morning. 

If we have at least five in stock Tuesday morning, the demand in four days is ≤ 2 
pumps. 

Pr [demand for 0 pumps in 4 days] = e –1.6 = 0.2019. 

−1.6 )( )(e 1.6

Pr [demand for 1 pump in 4 days] = ( )  = 0.3230.


1 

−1.6 1.6 (e )( )2 

Pr [demand for 2 pumps in 4 days] = = 0.2584.

2


Then Pr [demand for 2 or fewer pumps in 4 days] = 0.7834. 

Then Pr [at least 5 will be in stock next Tuesday morning | one pump in stock 
Friday morning] = 0.7834. Note that this is a conditional probability. 
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Then Pr [(one in stock Friday morning) ∩ (at least five in stock on Tuesday 
morning)] = 

= Pr [one in stock Friday morning] × Pr[ at least 5 in stock Tuesday 
A.M. | one in stock Friday A.M.]


= (0.3012)(0.7834)

= 0.236.


(b) Mean and Variance for the Poisson Distribution 

Since the Poisson distribution is discrete, the mean and variance can be found from 
the previous general relations. Equation 5.5 gives 

( ) = ∑(r )(Pr [R  r  ])µ = E R  = 
all r 

When the probability function of equation 5.13 is substituted in this expression and 
the algebra is worked through, the result is that the mean or expectation of the 
number of occurrences according to the Poisson Probability Distribution is 

µ = λt (5.15) 

Therefore an alternative form of the probability function for the Poisson distribution is 

Pr [R r] µre−µ 

= =  (5.16) 
r! 

Similarly, from equation 5.6, 
2 2σ = E r − µ) = ∑(r − µ) (Pr [R  r  ])2 ( = 

all r 

Again, the probability function 5.13 can be substituted. The result of this derivation 
for the Poisson Distribution is that 

σ2 = λt (5.17) 

Thus, the variance of the number of occurrences for the Poisson distribution is equal 
to the mean number of occurrences, µ . 

(c) Approximation to the Binomial Distribution 

Let us compare the results from the binomial distribution for µ = 1.2, from various 
combinations of values of n and p, with the results from the Poisson distribution for 
µ = λt =1.2. In each case let us calculate Pr [R=0] and Pr [R=1]. The results are 
shown in Table 5.1. 

Table 5.1: Comparison of Binomial and Poisson Distributions 

For the Binomial Distribution: 

n p µ Pr [R=0] 

4 0.3 1.2 (1)(0.3)0(0.7)4 = 0.240 (4)(0.3)1(0.7)3 = 0.412 
8 0.15 1.2 (1)(0.15)0(0.85)8 = 0.272 (8)(0.15)1(0.85)7 = 0.385 

20 0.06 1.2 (1)(0.06)0(0.94)20 = 0.290 (20)(0.06)1(0.94)19 = 0.370 
100 0.012 1.2 (1)(0.012)0(0.988)100 = 0.299 (100)(0.012)1(0.988)99 = 0.363 
200 0.006 1.2 (1)(0.006)0(0.994)200 = 0.300 (200)(0.006)1(0.994)199 = 0.362 

Pr [R=1] 
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For the Poisson Distribution: 
n p µ Pr [R=0] Pr [R=1] 

— — 1.2 (1.2)0(e–1.2) = 0.301 (1.2)1(e–1.2) = 0.361 

In the part of Table 5.1 for the binomial distribution, n is gradually increased and 
p is correspondingly decreased so that the product (np = µ) stays constant. The 
results are compared to the corresponding probabilities according to the Poisson 
distribution for this value of µ. At least in this  instance we find that as n increases and 
p decreases so that µ stays constant, the resulting probabilities for the binomial 
distribution approach the probabilities for the Poisson distribution. In fact, this 
relationship between the binomial and Poisson distributions is general. One way of 
deriving the Poisson distribution is to take the limit of the binomial distribution as n 
increases and p decreases such that the product np (equal to µ) remains constant. 

Thus the Poisson distribution is a good approximation to the binomial distribu
tion if n is sufficiently large and p is sufficiently small. The usual rule of thumb (that 
is, a somewhat arbitrary rule) is that if n ≥ 20 and p ≤ 0.05, the approximation is 
reasonably good. That rule should be used for problems in this book. The error at the 
limit of the approximation according to this rule depends on the parameters, but 
some indication can be seen if we look at the case where µ = 1.2, p = 0.05, and so n 

1.2 
= 

0.05
 = 24. At this point Pr [R=0] by the Poisson distribution is 3.2% higher than 

Pr [R = 0] by the binomial distribution, and Pr [R = 1] by the Poisson distribution is 
2.0% lower than Pr [R=1] by the binomial distribution. 
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Figure 5.13: Poisson Approximation to Binomial Distribution 
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Figure 5.13 shows a comparison of the binomial distribution and the correspond
ing Poisson distribution, both for the same value of µ = np. This might be for a case 
of sampling items coming off a production line when the value of p, the probability 
that any one item will be defective, is 0.042, and the value of n is the sample size, 
120 items. As we can see, the agreement is good. This case meets the rule of thumb 
quite easily, so we would expect good agreement. 

The Poisson distribution has only one parameter, µ, whereas the binomial distri
bution has two parameters, n and p. Probabilities according to the Poisson 
distribution are easier to calculate with a pocket calculator than for the binomial 
distribution, especially for very large values of n and very small values of p. How
ever, this advantage is less important now that computer spreadsheets are readily 
available. We saw in section 5.3(f) of this chapter that the binomial distribution can 
be calculated easily using MS Excel. 

Example 5.15 

5% of the tools produced by a certain process are defective. Find the probability that 
in a sample of 40 tools chosen at random, exactly three will be defective. Calculate 
a) using the binomial distribution, and b) using the Poisson distribution as an 
approximation. 

Answer:  a) For the binomial distribution with n = 40, p = 0.05, 

Pr [R = 3] = 40C3 (0.05)3(0.95)37


(40 )( )( ) 
39 38

= 3 2)(1) (0.05)3(0.95)37


( )(
 = 0.185 

b) For the Poisson distribution, µ = (n)(p) = (40)(0.05) = 2.00. 
3 −2.00(2.00 ) e


Pr [R = 3] = 3 2)(1) = 0.180
( )(

(d) Use of Computers 

Values of Poisson probabilities can be found with the Excel function POISSON with 
parameters r, µ or λt, and an indication of whether or not a cumulative value is 
required. If the third parameter is TRUE, the function returns the cumulative prob
ability that the number of random events will be less than or equal to r when either µ 
or its equivalent λt has the specified value. If the third parameter is FALSE, the 
function returns the probability that the number of events will be exactly r when µ = 
λt has the value stated in the second parameter,  For example, the cumulative prob
ability of 12 or fewer random occurrences when µ = λt = 10.5 is given by 
POISSON(12,10.5,TRUE) as 0.742 (to three decimal points); the probability of 
exactly 12 random occurrences is given by POISSON(12,10.5,FALSE) as 0.103 
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(again to three decimal points). As for the binomial distribution, use of the computer 
with Excel is especially labor-saving when cumulative probabilities are required. 

Problems 
1.	 The number of cars entering a small parking lot is a random variable having a 

Poisson distribution with a mean of 1.5 per hour. The lot holds only 12 cars. 
a) Find the probability that the lot fills up in the first hour (assuming that all 

cars stay in the lot longer than one hour). 
b) Find the probability that more than 3 cars arrive between 9 am and 11 am. 

2.	 Customers arrive at a checkout counter at an average rate of 1.5 per minute. What 
distribution will apply if reasonable assumptions are made?  List those assump
tions. Find the probabilities that 
a) exactly two will arrive in any given minute; 
b) at least three will arrive during an interval of two minutes; 
c) at most 13 will arrive during an interval of six minutes. 

3.	 Cumulative probability tables for the Poisson Distribution indicate that for 
µ = 2.5, Pr [R ≤ 6] = 0.986 and Pr [R ≤ 4] = 0.891. Use these figures to calculate 
Pr [R = 5 or 6]. Check using basic relations. 

4.	 Cumulative probability tables indicate that for a Poisson distribution with 
µ = 5.5, Pr [R ≤ 6] = 0.686 and Pr [R ≤ 7] = 0.810. Use these figures to calculate 
Pr [R = 7]. Check using a basic relation. 

5.	 Records of an electrical distribution system in a particular area indicate that over 
the past twenty years there have been just six years in which lightning has not hit 
a transformer. Assume that the factors affecting lightning hits on transformers 
have not changed over that time, and that hits occur at random and indepen
dently. 
a) Then what would be the best estimate of the average number of hits on 

transformers per year? 
b) In how many of the next ten years would we expect to have more than two 

hits on transformers in a year? 

6.	 A library employee shelves a large number of books every day. The average 
number of books misshelved per day is estimated over a long period to be 2.5. 
a) Calculate the probability that exactly three books are misshelved in a particu

lar day. 
b) Calculate the probability that fewer than two books on one day and more 

than two books on the next day are misshelved. 
c) What assumptions have been made in these calculations? 
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7.	 The numbers of lightning strikes on power poles in a particular district have been 
recorded. Records show that in the past twenty-five years there have been seven 
years in which no lightning strikes on poles have occurred. Assume that strikes 
occur randomly and independently, and that the mean number of strikes per unit 
time does not change. 
a) What distribution applies? 
b) What is the probability that more than one strike will occur next year? 
c) What is the probability that exactly one strike will occur in the next two 

years? 
d) What is the best estimate of the standard deviation of number of strikes in 

one year? 

8.	 The mean number of letters received each year by the university requesting 
information about the programs offered by a particular department is 98.8. 
Assume that letters are received randomly throughout a year which consists of 52 
weeks. 
a) What is the probability of receiving no letters in a particular week? 
b) What is the probability of receiving two or more letters in a particular week? 
c) What is the probability of receiving no letters in any four-week period? 
d) What is the probability of having two weeks in a specified four-week period 

with no letters? 

9.	 The number of grain elevator explosions due to spontaneous combustion has 
been 10 in the past 25 years for Great West Grain, a company with over a thou
sand grain elevators. Explosions occur randomly and independently. 
a) From these data make an estimate of the mean rate of occurrence of explo

sions in a year. 
b)	 On the basis of this estimate, what is the probability that there will be no 

explosions in the next five years? 
c)	 If there is at least one explosion a year for three years in a row, the insurance 

rates paid by the elevator company will double. What is the probability that 
this will happen over the next three years?  Use the estimate from part (a). 

10. The average number of traffic accidents in a certain city in a seven-day period is 
28. All traffic accidents are investigated on the day of their occurrence by a 
police squad car. A maximum of three traffic accidents can be investigated by 
one squad car in a day. Assume that accidents occur randomly and independently. 
a) What is the probability that no accidents will have to be investigated on a 

given day? 
b)	 What is the probability that, on exactly two out of three successive days, 

more than two squad cars will have to be assigned to investigate traffic 
accidents? 

11. Records for 13 summer weeks for each of the past 80 years in a particular district 
show that 32 weeks in total were very wet. Assume that wet weeks occur at 
random and independently and that the pattern does not change with time. 
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a)	 What is the probability that no very wet weeks will occur in the next two 
years? 

b)	 What is the probability that at least two very wet weeks will occur in the next 
two years? 

c)	 What is the probability that exactly two very wet weeks will occur in the 
next two years? 

12. In 104 days, 170 oil tankers arrive at a port for unloading. The tankers arrive 
randomly and independently. Probabilities are the same for every day of the 
week. A maximum of two oil tankers can be unloaded each day. 
a) What is the probability that no oil tankers will arrive on Tuesday? 
b) What is the probability that more than two will arrive on Friday?  This will 

mean that not all can be unloaded on Friday, even if no oil tankers were left 
over from Thursday. 

c)	 Assuming that no oil tankers are left over from Tuesday, what is the prob
ability that exactly one oil tanker will be left over from Wednesday and none 
will be left over from Thursday? 

d)	 What is the probability that more than three oil tankers will arrive in an 
interval of two days? 

13. The probability of no floods during a year along the South Saskatchewan River 
has been estimated from considerable data to be 0.1353. Assume that floods 
occur randomly and independently.
 a) What is the expected number of floods during a year?
 b) What is the probability of two or more floods during exactly two of the next 

three years? 
c) What are the mean and standard deviation of the number of floods expected 

in a five-year period? 

14. The number of new categories added each year to a major engineering handbook 
has been found to be a random variable, unaffected by the size of the handbook 
and its recent history. The probability that no new categories will be added in the 
annual update is 0.1353. This year’s edition of the handbook contains 97 categories. 
a) How many categories is the next edition expected to contain? 
b) What is the probability that the edition two years from now will contain 

fewer than 100 categories? 

15. In a plant manufacturing light bulbs, 1% of the production is  	known to be 
defective under normal conditions. A sample of 30 bulbs is drawn at random. 
Assume defective bulbs occur randomly and independently. What is the probabil
ity that: 
a) the sample contains no defective bulbs; 
b) more than 3 defective bulbs are in the sample. 

Do this problem both (1) using the binomial distribution, and (2) using the 
Poisson distribution. Compare the conditions of this problem to the rule of 
thumb stated in section 5.4(c). 
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16. Fifteen percent of piglets raised in total confinement under certain conditions 
will live  less than three weeks after birth. Assume that deaths occur randomly 
and independently. Consider a group of eight newborn piglets. 
a) What probability distribution applies without any approximation to the 

number of piglets which will live less than three weeks? 
b) What is the expected mean number of deaths? 
c) What is the probability that exactly three piglets will die within three weeks 

of birth? Use the binomial distribution. 
d) Calculate the probability that exactly three piglets will die within three 

weeks of birth, but now use the Poisson distribution. 
e) Compare the conditions of this problem to the rule of thumb stated in section 

5.4(c). Then would we expect the Poisson distribution to be a good approxi
mation in this case? 

f) Use the binomial distribution to calculate the probability that fewer than 
three piglets will die within three weeks of birth. 

g)	 Use the Poisson distribution to calculate the probabilities that exactly 0, 1, 
and 2 piglets will die within three weeks of birth, and then that fewer than 3 
piglets will die within three weeks of birth. 

17. Tests on the brakes and steering gear of 200 cars indicate that the probability of 
defective brakes is 0.17 and the probability of defective steering is 0.14. 
a) If defective brakes and defective steering are independent of one another, 

what is the probability of finding both on the same car? 
b)	 Consider probability distributions which might apply to the occurrence of 

both defective brakes and defective steering among the 200 cars. Assume 
occurrences of both are random and independent of other occurrences. What 
probability distribution would be expected fundamentally if the probability 
of “success” is constant from trial to trial? What probability distribution 
would be applicable as a more convenient approximation, and why?  Give 
the parameters of both distributions. 

c)	 Apply the approximate distribution to find the probability that at least eleven 
cars of 200 would have both defective brakes and defective steering if they 
are independent of one another. 

d)	 If in fact 11 of the 200 cars have both defective brakes and defective steering, 
is it reasonable to conclude that defective brakes and defective steering are 
independent of one another? 

Computer Problems 
C18. The number of cars entering a parking lot is a random variable having a Poisson 
Distribution with a mean of four per hour. The lot holds only 12 cars. 

a) Find the probability that the lot fills up in the first hour (assuming that all 
cars stay in the lot longer than one hour). 

b) Find the probability that fewer than 12 cars arrive during an eight-hour day. 
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C19. Customers arrive at a checkout counter at an average rate of 1.5 per minute. 
What distribution will apply if reasonable assumptions are made?  List those assump
tions. Find the probability that at most 13 customers will arrive during an interval of 
six minutes. 

C20. A library employee shelves a large number of books every day. The average 
number of books misshelved per day is estimated over a long period to be 2.5. 
Calculate the probability that between five and fifteen  books (including both limits) 
are misshelved in a four-day period. 

C21. The average number of vehicles arriving at an intersection under certain condi
tions is constant, but vehicles arrive independently and the actual number arriving in 
any interval of time is determined by chance. The average rate at which vehicles 
arrive at the intersection is 360 vehicles per hour. Traffic lights at this intersection go 
through a complete cycle in 40 seconds. During the green light only seven vehicles 
can pass through the intersection. 

a) What is the probability that exactly seven vehicles arrive during one cycle? 
b) What is the probability that fewer than seven vehicles arrive during one 

cycle? 
c) What is the probability that exactly eight vehicles arrive during one cycle, so 

that one vehicle is held for the next cycle (assuming there were no hold-overs 
from the previous cycle)? 

d) What is the probability that one vehicle is held over from cycle 1 as in part 
(c) and all the vehicles pass through on the following cycle? 

C22. Grain loading facilities at a port have capacity to load five ships per day. Past 
experience of many years indicates that on the average 28 ships come in to pick up 
grain in a seven-day period. Ships arrive randomly and independently. 

a) What is the probability that on a given day the capacity of the dock will be 
exceeded by at least one ship, given that no ship was waiting at the beginning 
of the day? 

b) What is the probability that exactly four ships will show up at the port in a 
two-day period? 

c) By how much should the capacity of the loading docks be expanded so that 
the probability that a ship will not be able to dock on a given day will be less 
than 1%? 

C23. The ABC Auto Supply Depot orders stock at the middle of the month and 
receives the goods at the first of the next month. The average number of requests for 
fuel pump XY33 is four per month. If on April 15, two of these fuel pumps are in 
stock and an additional five are ordered to be received by May l, what is the probabil
ity that the ABC Depot will not be able to supply all the requests for XY33 in the 
month of May? Requests for pumps are random and independent of one another. 
Requests are not carried over from one month to the next. 
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C24. A manufacturer offers to sell a device for counting lightning flashes during 
thunder storms. The device can record up to five distinct flashes per minute. 

a)	 If the average flash intensity experienced during a thunder storm at a record
ing location is nine flashes in six minutes, what is the probability that at 
least one flash will not be recorded in a one-minute period? What assump
tions are being made? 

b)	 Given this intensity, what is the probability of experiencing six lightning 
flashes in a two- minute period? 

c)	 What is the highest average intensity in flashes per hour for which the 
recorder can be used, if the probability of not recording all flashes in a 
minute must be less than 10%? 

C25. The probability of no floods during a year along the South Saskatchewan River 
has been estimated from considerable data to be 0.1353. Assume that floods occur 
randomly and independently. What is the probability of seven or fewer floods during 
a five-year period? 

C26. The cars passing a certain point as a function of time were counted during a 
traffic study of a city road. It was found that there was  l0% probability of observing 
more than ten cars in an eight-minute interval. 

a) Find the probability that exactly five cars will pass in a four-minute interval. 
What assumptions are being made? 

b) Find the probability that fewer than two cars will pass in each of three 
consecutive intervals. 

c) Find the probability that fewer than two cars will pass in exactly two of three 
consecutive intervals. 

d) How long an interval should be used so that the probability of observing 
more than nine cars becomes 40%? 

C27. Rainstorms around Saskatoon occur at the mean rate of six in four weeks 
during the spring season. If one storm occurs in the week after spring snowmelt is 
over, the probability of flooding is 0.30; if two storms occur that week, the probabil
ity goes to 0.60. If more than two occur, the probability  becomes 0.75. If no storms 
occur, the probability is 0. Overall, if no flooding has occurred by the end of the first 
week, the probability of flooding becomes 0.10 if one rainstorm occurs in the next 
two weeks, and 0.15 if two or more rainstorms occur in the next two weeks. Assume 
that rainstorms occur independently and randomly. 

(a) What is the probability of at least four rainstorms in the first three weeks? 
(b) What is the probability of flooding in those three weeks? 

5.5 Extension: Other Discrete Distributions 
Although the binomial distribution and the Poisson distribution are probably the 
most common and useful discrete distributions, a number of others are found useful 
in some engineering applications. Among them are the negative binomial distribution 
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and the geometric distribution. Both these distributions are for the same conditions as 
for the binomial distribution except that trials are repeated until a fixed number of 
“successes” have occurred. The negative binomial distribution gives the probability 
that the kth success occurs on the nth trial, where both k and n are fixed quantities. 
The geometric distribution is a special case of the negative binomial distribution; it 
gives the probability that the first “success” occurs on the nth trial. We have already 
mentioned the multinomial distribution in part (i) of section 5.3. As discussed there, 
it can be considered a generalization of the binomial distribution when there are 
more than two possible outcomes for each trial. The negative binomial distribution, 
the geometric distribution, and the multinomial distribution are described more fully 
in the book by Walpole and Myers (see the List of Selected References in section 
15.2 of this book).

The Bernoulli distribution is a special case of the binomial distribution when the 
number of trials is one. Thus, the only possible outcomes for the Bernoulli distribu
tion are zero and one. Pr [R = 0] = (1 – p), and Pr [R = 1] = p. 

The hypergeometric probability distribution applies to a situation where there are 
only two possible outcomes to each trial, but the probability of “success” varies from 
one trial to another in accordance with sampling from a finite population without 
replacement. The total number of trials and the size of the population are then both 
parameters. This distribution is described in various references including the book by 
Mendenhall, Wackerly and Scheaffer (again see section 15.2). The book by Barnes 
(see that same section of this book) gives a guideline for approximating the hyper
geometric distribution by the binomial distribution: the sample size should be less 
than one tenth of the size of the finite set of items being sampled. 

Use of Computers: When a person has become familiar with the fundamental 
ideas of discrete random variables, it is often convenient to use a number of Excel’s 
statistical functions, including the following: 

HYPGEOMDIST( ) returns probabilities according to the hypergeometric 
distribution. 

NEGBINOMDIST( ) returns probabilities according to the negative binomial 
distribution. 

CRITBINOM( ) returns the limiting value of a parameter of the binomial distri
bution to meet a requirement. This is useful in quality assurance. 

In most cases the most convenient way to use functions on Excel, including 
selection of arguments for the parameters, is probably to paste the required function 
into the appropriate cell on a worksheet. The detailed procedure varies from one 
version of Excel to another. On Excel 2000, for example, we click the cell where we 
want to enter the function, then from the Insert menu we choose the function cat
egory (for example, Statistical), then click the function (for example, 
HYPOGEOMDIST). Further details are given in part (b) of Appendix B. 
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These functions should not be used until the reader is familiar with the main 
ideas of this chapter. 

5.6 Relation Between Probability Distributions and 
Frequency Distributions 

This chapter has been concerned with probability distributions for discrete random 
variables. Chapter 3 included descriptions and examples of frequency distributions 
for discrete random variables. Probability distributions and frequency distributions 
are similar, but of course there are important differences between them. The probabil
ity distributions we have been considering are theoretical and depend on 
assumptions, whereas frequency distributions are usually empirical, the result of 
experiments. Probability distributions show predictable variations with the values of 
the variable. Frequency distributions show additional random variations, that is, 
variations which depend on chance. 

In this section we will first look at comparisons of some probability distributions 
with simulated frequency distributions for the same parameters. Then we will discuss 
fitting binomial distributions and Poisson distributions to experimental frequency 
distributions. 

Random numbers can be used to simulate frequency distributions corresponding 
to various discrete random variables. That is, random numbers can be combined with 
the parameters of a probability distribution to produce a simulated frequency distri
bution. The simulated frequency distributions discussed in this section were prepared 
using Excel, but the detailed procedures are not relevant to the present discussion. 

(a) Comparison of a Probability Distribution with Corresponding Simulated 
Frequency Distributions 
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Figure 5.14 shows a probability distribution for a binomial distribution with n = 
10 and p = 0.26. Corresponding to this is Figure 5.15, which is for the same values 
of n and p but shows two simulated relative frequency distributions. These are for 
samples of size eight—that is, samples containing eight items each. As we have seen 
before, relative frequencies are often used as estimates of probabilities. However, 
with this small sample size the relative frequencies do not agree at all well with the 
corresponding probabilities, and they do not agree with one another. 
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Figure 5.15: Simulated Frequency Distributions for Eight Repetitions 

If the sample size is increased, agreement becomes better. Figure 5.16 shows two 
simulated relative frequency distributions for samples of size forty, still for a bino
mial distribution with n = 10 and p = 0.26. The graphs of Figure 5.16 still differ from 
one another because of random fluctuations, but they are much more similar to one 
another in shape than the graphs of Figure 5.15. Comparison to Figure 5.14 shows 
that the general shape of the probability distribution is beginning to come through. 

0.40.4 

Fr
eq

u
en

cy0.3 0.3

Fr
eq

u
en

cy

R
el

at
iv

e

R
el

at
iv

e

0.20.2 

0.1 0.1 

0.30.3

Fr
eq

u
en

cy

Fr
eq

u
en

cy

R
el

at
iv

e

0.20.2 

0.10.1 

0 0 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

r, Values r, Values 

Figure 5.16: Simulated Relative Frequency Distributions for Forty Repetitions 

Thus, we can see that the relative frequency distributions are both more consis
tent with one another and more similar to the corresponding probability distributions 
when they represent forty repetitions rather than eight repetitions. This seems reason
able. Huff points out that inadequate sample size often leads to incorrect or 
misleading conclusions. He gives some dramatic examples of this in his book How to 
Lie with Statistics (see section 15.2 for reference). 
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(b) Fitting a Binomial Distribution 

We often want to compare a set of data from observations with a theoretical probability 
distribution. Can the data be represented satisfactorily by a theoretical distribution? 
If so, the data can be represented very succinctly by the parameters of the theoretical 
distribution. Specifically, let us consider whether a set of data can be represented by a 
binomial distribution. 

The binomial distribution has two parameters, n and p. In any practical case we 
will already know n, the number of trials. How can we estimate p, the probability of 
“success” in a single trial? An intuitive answer is that we can estimate p by the 
fraction of all the trials which were “successes,” that is, the proportion or relative 
frequency of “success.” It is possible to show mathematically that this intuitive 
answer is correct, an unbiased estimate of the parameter p. 

Example 5.16 

In Example 3.2 we considered the number of defective items in groups of six items coming 
off a production line in a factory. We found there were 14 defectives in sixty groups 
giving a total sample of 360 items, so the proportion defective was 14/360 = 0.0389. 

Let us try to fit the observed frequency distribution of Table 3.2 by a binomial 
distribution. We have n = 6 and p is estimated (probably not very accurately) to be 
0.0389. Then the probability of exactly r defective items in a sample of six items 
according to the binomial distribution is given by equation 5.9 as 

Pr [R = r] = 6Cr (0.0389)r (0.9611)(6–r) 

This prediction of probability by the binomial distribution should be compared with the 
observed relative frequencies for various numbers of defectives. These can be obtained 
simply by dividing the frequencies of Table 3.2 by the total frequency of 60. Since 60 
groups is not a very large number we should not expect the agreement to be very close. 

The results are shown in Table 5.2 and Figure 5.17: a theoretical binomial 
probability of 0.788 can be compared with an observed relative frequency of 0.600, 
and so on. 

Table 5.2: Comparison of Binomial Probability with 
Observed Relative Frequency 

Number of Binomial Probability, Observed Observed Relative 
Defectives, r Pr [R = r] Frequency, f Frequency, f / ∑∑∑∑∑ f 

0 0.788 48 0.600 
1 0.191 10 0.167 
2 0.019 2 0.033 
3 0.001 0 0 
4 3 x 10-5 0 0 
5 5 x 10-7 0 0 
6 3 x 10-9 0 0 
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Figure 5.17: Comparison of Relative Frequencies with Binomial Probabilities 

We can see that the comparison is reasonably good. In section 13.3 we will see a 
more quantitative comparison. 

(c) Fitting a Poisson Distribution 

We may have a set of data which we suspect can be represented by a Poisson distri
bution. If it is, we can describe it very compactly by the parameters of that 
distribution. In addition, there may be some implication (for example, regarding 
randomness) if the data can be represented by a Poisson distribution. Thus, we need 
to know how to find a Poisson distribution that will fit a set of data. 

The Poisson distribution has only one parameter, µ or λt. As we have seen in 
Chapter 3, the sample mean, x , is an unbiased estimate of the population mean, µ. 
Therefore, the first step in fitting a Poisson distribution to a set of data is to calculate 
the mean of the data. Then the relation for the Poisson distribution is used to calcu
late the probabilities of various numbers of occurrences if that distribution holds. 
These probabilities can be compared to the relative frequencies found by dividing the 
actual frequencies by the total frequency. 

Example 5.17 

The number of cars crossing a local bridge was counted for forty successive 6-minute 
intervals from 1:00 to 5:00 A.M. The numbers can be summarized as follows: 

xi, number of cars in 6-minute Interval  fi, frequency 

0  2  
1  7  
2  10  
3  8  
4  6  
5  3  
6  3  
7  1  
>8 0 

Fit a Poisson Distribution to these data. 
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Answer:  First, let us calculate the sample mean as an estimate of the population 
mean, µ . 

xi  fi xifi 

0 2 0 
1 7 7 
2  10  20  
3  8  24  
4  6  24  
5  3  15  
6  3  18  
7  1  7  
>8  0  0 
Total 40 115 

Then x = i i  

i 

f x  

f 
∑ 
∑ 

115 

40 
= 2.875 = . Then take µ = λ t = 2.875 in 6 minutes. 

Then λ =  t 

t 

λ = 2.875 

6 
0.479 =  cars / minute. 

–2.875/According to the Poisson Distribution, then, Pr [R=r] = (2.875)r e r!. It was 
mentioned previously that once one of the Poisson probabilities is calculated, others 
can be calculated conveniently using the recurrence relation of equation 5.14, 

 λ t  
Pr [R=r+1] =   Pr [R=r].

 r + 1  

Calculation of Poisson probabilities and relative frequencies gives the following 
results: 

r fi Pr [R=r] Relative Frequency 

0 2 0.0564 0.0500

1 7 0.1622 0.1750

2 10 0.2332 0.2500

3 8 0.2234 0.2000

4 6 0.1606 0.1500

5 3 0.0923 0.0750

6 3 0.0442 0.0750

7 1 0.0182 0.0250

>8 0 0.0095 0

Total 40


The frequencies from the problem statement are compared with the calculated 
expected frequencies in Figure 5.18. It can be seen that the agreement between 
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recorded and fitted frequencies appears to be very good, in fact better than we might 
expect. 
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Figure 5.18: Comparison of Relative Frequencies with 
Probabilities for the Poisson Distribution 

In section 13.3 we will see how to make a quantitative evaluation of the goodness 
of fit of two distributions. This example will be continued at that point. 

Examples 5.16 and 5.17 have compared probabilities to relative frequencies. An 
alternative procedure is to calculate expected frequencies by multiplying each prob
ability by the total frequency. Then the expected frequencies are compared with the 
observed frequencies. That procedure is logically equivalent to the comparison we 
have made here. 

Problems 
1.	 A sampling scheme for mechanical components from a production line calls for 

random samples, each consisting of eight components. Each component is 
classified as either good or defective. The results of 50 such samples are summa
rized in the table below. 

Number of Defectives Observed Frequency
 0  30
 1  17
 2  3

  >2  0 

From these data estimate the probability that a single component will be 
defective. Calculate the probabilities of various numbers of defectives in a 
sample of eight components, and prepare a table to compare predicted probabili
ties according to the binomial distribution with observed relative frequencies for 
various numbers of defectives in a sample. 
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2.	 Electrical components are produced on a production line, then inspected. Each 
component is classified as good or defective. 360 successive components were 
grouped into samples, each containing six components. The results are summa
rized in the table below. 

Number of Defectives Observed Frequency
 0  34
 1  24
 2  2

  >2  0 

From these data estimate the probability that a single component will be 
defective. Calculate the probabilities of various numbers of defectives in a 
sample of six components, and prepare a table to compare predicted probabilities 
according to the binomial distribution with observed relative frequencies for 
various numbers of defectives in a sample. 

3.	 A study of four blocks containing 52 one-hour parking spaces was carried out 
and the results are given in the following table.


Number of vacant one-hour parking

spaces per observation period 0 1 2 3 4 5 ≥6


Observed frequency 31 45 20 15 7 3


Assuming that the data follow a Poisson distribution, determine:


a) the mean number of vacant parking spaces,

b)	 the standard deviation both (i) from the given data and (ii) from the theoreti

cal distribution, and 
c) the probability of finding one or more vacant one-hour parking spaces, 

calculating from the theoretical distribution. 

4.	 In analysis of the treated water from a sewage treatment process, liquid contain
ing harmful cells was placed on a slide and examined systematically under a 
microscope. One hundred counts of the number of harmful cells in 1 mm by 1 
mm squares were made, with the following frequencies being obtained. 

Count 0 1 2 3 4 5 6 7 8 9 10 11  12 

Frequency 1 3 8 14 17 19 14 12 6 2  2  2  0


Fit a Poisson distribution to these data. Calculate expected Poisson frequencies to 
compare with the observed frequencies. Is the fit reasonably good? 

5.	 An air filter has been designed to remove particulate matter. A test calls for 40 
specimens of air to be tested. Of 40 specimens, it was found that there were no 
particles in 15 specimens, one particle in 10 specimens, two particles in 8 
specimens, three particles in 5 specimens, and four particles in 2 specimens. 
a) What type of distribution should the data follow?  What are the necessary 

assumptions? 
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b) Estimate the mean and standard deviation of the frequency distribution from 
the given data. 

c) What is the theoretical standard deviation for the probability distribution? 
d) Using probabilities calculated from the theoretical distribution, what is the 

probability that among ten specimens there would be eight or more with no 
particles? 

6. A section of an oil field has been divided into 48 equal sub-areas. Counting the 
oil wells in the 48 sub-areas gives the following frequency distribution: 

Number of 0 1 2 3 4 5 6 7 
oil wells 
Number of 5 10 11 10 6 4 0 2 
sub-areas 

Is there any evidence from these data that the oil wells are not distributed ran
domly throughout the section of the oil field? 
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C H A P T E R  6 
Probability Distributions of 

Continuous Variables 
For this chapter the reader needs a good knowledge of integral calculus 

and the material in sections 2.1, 2.2, 5.1, and 5.2. 

If a variable is continuous, between any two possible values of the variable are an 
infinite number of other possible values, even though we cannot distinguish some of 
them from one another in practice. It is therefore not possible to count the number of 
possible values of a continuous variable. In this situation calculus provides the 
logical means of finding probabilities. 

6.1 Probability from the Probability Density Function 
(a) Basic Relationships 

The probability that a continuous random variable will be between limits a and b is 
given by an integral, or the area under a curve. 

b 

< <  xPr [a X b] = ∫ f ( )dx  (6.1) 
a 

The function f(x) in equation 5.1 is called a probability density function. The 
probability that the continuous random variable, X, is between a and b corresponds to 
the area under the curve representing the probability density function between the 
limits a and b. This is the cross-hatched area in Figure 6.1. Compare this relation 

with the relation 
for the probability 
that a discrete 

Area gives probability random variable is 
Probability between limits a 
Density and b, which is the
Function, sum of the prob

f(x) 
ability functions 
for all values of 
the variable X 
between a and b, 

∑ p xa b ( ) .i 
x a xi≤ ≤b 

Figure 6.1: Probability for a Continuous Random Variable 
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The cumulative distribution function for a continuous random variable is given 
by the integral of the probability density function between x = –∞ and x = x1, where 
x1 is a limiting value. This corresponds to the area under the curve from –∞ to x1. The 
cumulative distribution function is often represented by F(x1) or F(x). 

x1 

≤ 1 x1Pr [X x  ] = F ( ) = ∫ f (x )dx  (6.2) 
−∞ 

This expression should be compared with the expression for the cumulative 
distribution function for a discrete random variable, which is given by equation 5.1 to 

be ∑ p xi( ) . Thus, a summation of individual probabilities (for a discrete case) 
x x1≤ 

corresponds to an integral of the probability density function with respect to the 
variable (for a continuous case). 

( )  ∼ ∫ f (x )dx  (6.3)i.e., ∑ p xi

 (Discrete) (Continuous) 

To include all conceivable values of the variable X, the limits in equation 6.2 
become from x = –∞ to x = +∞. The probability of a value is that interval must be 1. 
Then we have 

+∞ 

∞ = ∫ f (x )dx  = 1 (6.4)F ( )  
−∞ 

In many cases only values of the variable in a certain interval are possible. Then 
outside that interval, the probability density function is zero. Intervals in which the 
probability density function is identically zero can be omitted in the integration. 

Since any probability must be between 0 and 1, as we have seen previously, the 
probability density function must always be positive or zero, but not negative. 

( ) ≥ 0 (6.5)f x  

Example 6.1 

A probability density function is given by: 

f(x) = 0 for x < 0 f(x) 
2 

3

f(x) = x2 for 0 < x < 2 1.5
8

f(x) = 0 for x > 2


1
A graph of this density function is 
shown in Figure 6.2. 

0.5 

0 
0 0.5 1 1.5 2 2.5 

x 
Figure 6.2: A Simple Probability Density Function 
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It is not hard to show that f(x) meets the requirements for a probability density 
function. First, since x2 is always positive for any real value of x, f(x) is always 
greater than or equal to zero. Second, the integral of the probability density function 
from –∞ to +∞ is equal to 1, as we can show by integration: 

+∞ 0 2

2
∞ = ∫ f (x )dx = ∫ (0)dx + ∫

3 
x dx + 

∞

∫( )dxF ( ) 	
8 2

0 
−∞ −∞ 0 

3 1 3 
2

 
0	 + 0= +   x 8  3 0 

3 1
0	

    
23 + 0= +   ( )

8	 3   

= 1


(b) A Simple Illustration: Waiting Time 

A student arrives at a bus stop and waits for the bus. He knows that the bus comes 
every 15 minutes (which we will assume is exact), but he doesn’t know when the 
next bus will come. Let’s assume the bus is as likely to come in any one instant as in 
any other within the next 15 minutes. Let the time the student has to wait for the bus 
be x minutes. Let us first explore the probabilities intuitively, and then apply equa
tions 6.1 and 6.2. 

i)	 What is the probability that the waiting time will be less than or equal to 15 
minutes? 

Since we know that the bus comes every 15 minutes, this probability must be 1. 

ii)	 What is the probability that the waiting time will be less than 5 minutes? 

Since the bus is as likely to come in any one instant as in any other to a maxi
mum of 15 minutes, the probability that the waiting time is less than 5 minutes 

5	 1 
must be = .

15 3 
Similarly, the probability that the waiting time is less than 10 minutes must be 
10 2 = .
15 3 

iii) Then we can generalize the expression for probability. The probability that the 
x 

waiting time will be less than x minutes, where 0 ≤ x ≤ 15, must be .
15 

iv) What is the probability that the waiting time will be between 5 minutes and 10 
minutes? This must be: 

Pr [5 < x < 10] = Pr [x < 10] – Pr [x < 5] 

10 5 5 1 = − = or .
15 15 15 3 
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Comparison to equation 6.1 with a = 5 and b = 10 indicates that: 
10


Pr 5 < < 10 ] = ∫ f ( )dx  = 10 −[ X x 
5


15 15 5
 x

What simple expression for f(x) will integrate with respect to x to give 

15 
?


1

It must be .

15

Then the probability density function must be given by:


f(x) = 0 for x < 0 (since waiting time can’t be negative).

1


f(x) = for 0 < x < 15

15


f(x) = 0 for x > 15 (since waiting time can’t be more than 15 minutes)


Let’s check the integral of f(x) for x between 0 and 15, the only interval for which 
15
 1  15  − 0 

f(x) is not equal to zero. We have dx = = 1 (as required), so the∫ 15 15
0
1 
constant value, , is correct.

15

v) By comparison to equation 6.2 the probability that the waiting time will be less


than 5 minutes must be:


5


5 ∫F ( ) = f (x )dx  
−∞ 

0 5 

= ∫ 0 dx + ∫
1


15 
dx 

−∞ 0 

1    
0 5
= +   ( )

15    
5 1
= or 

15 3


This agrees with part ii. 

vi) Using the expressions for the probability density function from part iv, the 
general expression for the cumulative distribution function for this illustration 
must be: 

x1


F x1
( ) = ∫ 0 dx  = 0 for x1 < 0 
−∞ 

x1


( ) = + ∫
1 

dx  =F x1 0 
x1 

for 0 < x1 < 15
15 15
0


15 1 
x1


F ( ) = + ∫ 15 
dx + 

15  
∫ 0 dxx1 0 

0 
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15

0= +  +  0 

15


The probability density function and the cumulative distribution function are

shown graphically in Figure 6.3.


F(x1) = 1 for x1 > 15

1/15 

0  15 


x, minutes 

Figure 6.3 (a): Probability Density Function for Waiting Time for a Bus 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

-10 -5 0 5 10 15 20 25


x, minutes


Figure 6.3 (b): Cumulative Distribution Function for Waiting Time for a Bus 

(c) Example 6.2 
A probability density function is given by:


f(x) = 0 for x < 1
f(x) = b / x2 for 1 < x < 5
f(x) = 0 for x > 5

a) What is the value of b?


b) From this obtain the probability that X is between 2 and 4.


c) What is the probability that X is exactly 2?


d) Find the cumulative distribution function of X.


Answer: 

a) To satisfy equation 6.4: 
1 5


∫ 0 dx + ∫ 
b 

dx + 
∞

∫ 0 dx = 1

2x
−∞ 1 5
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5 
−2Therefore ∫b x  dx  = 1 

1 

5 

 
−1 −	b x   1 

= 1 

 1 −b −1 = 1 
 5  

4 
b = 1 

5 
b = 1.25 

3 
(In Example 6.1 the constant 

8
 was obtained in the same way). 

Then a graph of the density function for this example is shown below: 

1.4 
f(x) 

1.2 

1 

0.8 

0.6 

0.4 

Figure 6.4: 0.2 

Graph of Function for Example 6.2 0 
0 1 2 3 4 5 6 

x 
4


−2
b) Pr 2 < < 4] = ∫1.25 x  dx  [ X 
2


4


 
−1 = −1.25 x  2


(  1 1  
= −1.25 ) − 
 4 2  

= 0.3125 

2

−2
c) Pr [X = 2 exactly ] = ∫1.25 x  dx  

2


2


 
−1 = −1.25 x  2


= 0
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Note: The result obtained here is important and applies to all continuous random 
variables. The probability that any continuous random variable is exactly equal to a 
single quantity is zero. We will see this again in Example 7.2. 

x1


d) For x1 < 1 (: F x  ) = ∫ 0 dx  = 01


−∞ 
x1


For 1 < x1 < 5 ( ) = + ∫1.25 x: F x1 0 − dx  2


1


= −1.25 )x
( 
−1 

 
x 

1

1


( 
= −1.25 )

 
1 −1 

 x1  
 1  

= 1.25 1  −  
 x1  

x1


For 5 < x1 < ∞: F x1
( ) = ∫ f (x )dx  
−∞ 

1 5 x1


0 dx +∫1.25  x−2 dx + 0 dx = ∫ ∫ 
0 1 3


5


 
−1 0 (= + −  1.25  )x  1 

+ 0 

( = −1.25 )
 

1 −1 5  
= 1


Then to summarize, the cumulative distribution function of X is: 

0 for x1 < 1
 1 


1.25 1 −  for 0 < x1 < 5
 x1 


and 1 for x1 > 5

Problems 
1. A probability density function for x in radians is given by: 

f(x) = 0 for x < –π/2

1


2

f(x) = cos x for –π/2 < x < π/2 

f(x) = 0 for x > π/2
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a) Find the probability that X is between 0 and π /4. 
b) Find an expression for the corresponding cumulative distribution function, 

F(x), for –π /2 ≤ x ≤ π /2. 
c) If x = π /2, what is the value of f(x)? Explain why this is or is not a reason

able result. 
d) What is the probability that X is exactly π /4? Explain why this is or is not a 

reasonable result.
 e) Repeat part (a) using F(x). 

2.	 A probability density function is given by: 

f(x) = 0 for x < –2 

f(x) = 1/3 for –2 < x < 0 
1  x


f(x) =  1 − 
 for 0 < x < 2


3  2  
f(x) = 0 for x > 2 

a) What is the probability that X is between 0 and +1? 
b) Find the cumulative distribution function of X for each interval. Is the 

cumulative distribution function for x > 2 reasonable? Why? 
c) Sketch the cumulative distribution function, showing scales. 
d) Use the results of part b to find the probabi1ity that X is between 0 and 1. 
f) Find the median of this probability distribution. 

3.	 A radar telemetry tracking station requires a vast quantity of high-quality mag
netic tape. It has been established that the distance X (in meters) between 
tape-surface flaws has the following probability density functions: 

f(x) = 0.005 e–0.005 x x ≥ 0 

f(x) = 0	 otherwise 

a)	 Plot a graph of f(x) versus x for 0 ≤ x ≤ 800. 
b)	 Find the cumulative probability distribution function, 

x1 

( ) = ∫	f ( x ) dx  for x > 0. F xi 1 

−∞ 
c)	 Suppose one flaw in the tape-surface has been identified. Calculate: 

(i)	 the probability that an additional flaw will be found within the next 100 m 
of tape. 

(ii) the probability that an additional flaw will not be found for at least 200 m. 
(iii) the probability that an additional flaw will be found between 100 and 

200 m from the flaw already identified. 

4.	 A continuous random variable X has the following probability density function: 

f(x) = k x1/3 for 0 < x < 1 
f(x) = 0 for x < 0 and x > 1


a) Find k.


148




Probability Distributions of Continuous Variables 

b) Find the cumulative distribution function. 
c) Find the probability that 0.3 < X < 0.6. 

6.2 Expected Value and Variance 
We saw in Chapter 5 that the mathematical expectation or expected value of a 
discrete random variable is a mean result for an infinitely large number of trials, so it 
is a mean value that would be approximated by a large but finite number of trials. 
This holds also for a continuous random variable. For a discrete random variable the 
expected value is found by adding up the product of each possible outcome with its 
probability, giving 

( ) = ∑(x )Pr [ ].µ = E X  i xi 
all xi 

For a continuous random variable this becomes (using equation 6.3) the corre
sponding integral involving the probability density function: 

+∞ 

µ = E X  ( )( ) = ∫ x f  x  dx  (6.6) 
−∞ 

We saw in Chapter 5 also that the variance of a discrete random variable is the 
expectation of (x – µ)2. This carries over to a continuous random variable and i

becomes: +∞ 
2 2 2σ = E x − µ)  = ∫ (x − µ) f  x  dx  (6.7)x 


( ( ) 

−∞ 
The alternative form given by equation 5.7 

2 2 2σ = E Xx ( ) − µx (6.8) 

still holds and is generally faster for calculations. For continuous random variables 
+∞ 

E X2 2 ( )( ) = ∫ x  f  x  dx  (6.9) 
−∞ 

Example 6.3 

The random variable of Example 6.1 has the probability density function given by: 

f(x) = 0 for x < 0

3


x2f(x) = for 0 < x < 2
8


f(x) = 0 for x > 2


a) Find the probability that X is between 1 and 2.

b) Find the cumulative distribution function of X.

c) Find the expected value of X.

d) Find the variance and standard deviation of X.
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Answer: 
2 

a) Pr 1 < < 2] = ∫ f x dx[ X ( )  
1 

2 

x dx= ∫
3 2 

81 

3 1 3 
2

   =    x 8  3 1 

1   3 3=  (2 −1 )
8   

7 = 
8 

x1 

b) Pr [x x ] = F x  1 ( )≤ 1 ( ) = ∫ f x dx  
−∞ 

x1 

If x1 < 0, F x  1( ) = ∫ (0) dx = 0 
−∞ 

0 x1 

If 0 <  <  2, F x  1 x dxx1 ( ) = ∫ (0 ) dx + ∫
3 2 

8−∞ 0 

3 1 3 
x1 

0= +    x 8  3 0 

1 3 = x18 
0 2 

If x1 > 2, F x 1 
2 0( ) = ∫ (0 ) dx + ∫ 8

3 
x dx + 

x 

∫ 
2

1 

( ) dx 
−∞ 0 

3 1 3 
2

 
0 + 0= +    x 8  3 0 

= 1 

Then the cumulative distribution function is: 

F(x1) = 0 for x1 < 0 

F(x1) = 
1 

x1
3 

for 0 < x1 < 2
8


F(x1) = 1 for x1 > 2
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+∞ 

c) µ = E X  ( )( ) = ∫ x f x dxx 

−∞ 

0 2 

x 0 x 0= ∫ ( )( ) dx + ∫(x)
 3 

x2 



dx + 
∞

∫( )( ) dx 
−∞ 0  8  2 

2 

x dx= ∫
3 3 

80 

3  1 4 
2 

=    x 8  4 0 

= 
 

3 
(16 − 0)


 32 

= 1.5 

+∞ 

( ) = ∫ x  f x dxd) E X2 2 ( )  
−∞ 

0 2 
2 2= ∫ ( )( ) dx + ∫( )  x 0x 0 x2  3 

x2  dx + ∫ 
8 

( )( ) dx 
−∞ 0  8  2 

2 

x dx= ∫
3 4 

80 

3 1 5 
2

   =    x 8  5 0


 3 

=  8 5) 

(32 − 0)
 ( )(
96 = = 2.4 
40 

2 22 ( ) − µThen σ = E Xx x 

2 = 2.4 − ( )1.5


= 0.150


and σ =  0.150 = 0.387 x

151 



Chapter 6 

Example 6.4 

In the illustration of section 6.1(b) the probability density function for the waiting 
time was given by 

f(x) = 0 for x < 0

1


f(x) = for 0 < x < 15
15


f(x) = 0 for x > 15


a) Find the expected value of the waiting time, X minutes.

b) Find the variance and standard deviation of the waiting time.

c) What is the probability that the waiting time is within two standard devia


tions of its expected mean value? 

Answer: 
+∞ 

( ) = ∫ x f x dxa) E X  ( ) 
−∞ 

15 

= ∫ ( )
 

1  
x  dx


0  15 


2 1  x 
15


=   

 15  2 0


1
= ( )(2) (225 − 0)
15


15
= 
2 

= 7.5 

Then the expected value of the waiting time, or the mean, µ , of the probabilityx

distribution, is 7.5 minutes. This seems reasonable, as it is halfway between the 
minimum waiting time, 0 minutes, and the maximum waiting time, 15 minutes. 

+∞ 

( ) = ∫ x  f x dxb) E X2 2 ( )  
−∞ 

15 
2  1  

x= ∫ ( )  dx

0  15 


3 1  x 
15


=   

 15  3 0 

3= ( )
1 

(3) (15 − 0)
15


= 75
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2 2 2σ = E X( ) − µx x 

2 = 75 − ( )7.5 

= 18.75 

Then the variance of the waiting time is 18.75 minute2, and the standard devia
tion is 18.75  = 4.33 minutes. 

c) The interval which is within two standard deviations of the expected value is 
(µ – 2σx) to (µ	 + 2σx), or from  7.5 – (2)(4.33) = –1.16x x

to 7.5 + (2)(4.33) = 16.16 minutes. 

Then we have: 

2	 XPr (µ − σ  <  < µ + σ  x ) = Pr [−1.16 <  <  16.16 ]x 2 x ) X ( x 

0 15 1 16.16 

= ∫ 0 dx + ∫ 15 
dx + 

15 
∫ 0 dx 

−1.16 0 

0 1= + +  0 

= 1 
The probability that the waiting time for this particular probability distribution is 

within two standard deviations of its expected mean value is 1 or 100%. We will find 
that other distributions often give different results. For example, a different result is 
obtained for the normal distribution, as we will see in the next chapter. 

Problems 
1.	 Given f(x) = b / x2 for 1 < x < 3 

f(x) = 0 for x < 1 and x > 3 

a) Determine the value of b that will make f(x) a probability density function. 
b) Find the cumulative probability distribution function and use it to determine 

the probability that X is greater than 2 but less than 3. 
c) Find the probability that X is exactly equal to 2. 
d) Find the mean of this probability distribution.

e) Find the standard deviation of this probability distribution.


2.	 An electrical voltage is determined by the probability density function 
1 

f(x) = 	 for 0 ≤ x ≤ 2π
2π


f(x) = 0 for all other values of x


(This is a uniform distribution.) 

a) Find its cumulative distribution function for all values of x.

b) Find the mean of this probability distribution.

c) Find its standard deviation.
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d)	 What is the probability that the voltage is within two standard deviations of 
its mean? 

3.	 An electrical voltage is determined by the probability density function 

f(x) = 1 for 1≤ x ≤ 2 
f(x) = 0 for all other values of x 

(This is a uniform distribution.) 

a) Find its cumulative distribution function for all values of x. 
b) Find the mean of this probability distribution. 
c) Find its standard deviation. 
d)	 What is the probability that the voltage is within one standard deviation of its 

mean? 

4.	 The time between arrivals of trucks at a warehouse is a continuous random 
variable. The probability of time between arrivals is given by the probability 
density function for which 

f(t) = 4 e–4t for t ≥ 0

f(t) = 0 for t < 0


where t is time in hours. (This is an exponential distribution. See section 6.3) 

a) What is the probability that the time between arrivals of the first and second 
trucks is less than 5 minutes? 

b)	 Find the mean time between arrivals of trucks, µ hours. 
c)	 Find the standard deviation of time between arrivals of trucks, σ hours. 
d) What is the probability that the waiting time between arrivals of trucks will 

be between (µ – σ) hours and (µ + σ) hours? 
e) What is the probability that the time between arrivals of trucks at the ware

house will be between (µ – 2σ) hours and (µ + 2σ) hours? 

5.	 The probability of failure of a mechanical device as a function of time is given by 
the following probability density function: 

f(t) = 3 e– 3t for t ≥ 0 

f(t) = 0 for t < 0 

where t is time in months. (This is an exponential distribution. See section 6.3) 

a) Find the mean of the probability distribution. This is the mean lifetime of the 
device. 

b)	 Find the standard deviation of the probability distribution. 
c)	 What is the probability that the device will fail within one standard deviation 

of its mean lifetime? 
d) What is the probability that the device will fail within two standard devia

tions of its mean lifetime? 
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6.3 Extension: Useful Continuous Distributions 
The normal distribution is the continuous distribution which is by far the most used 
by engineers; it will be considered in Chapter 7. However, a number of others are 
also used very widely. Some are based on the normal distribution, and the corre
sponding tests assume that the underlying population is at least approximately 
normally distributed. We will encounter some of these continuous distributions in 
Chapters 9, 10 and 13 because they correspond to  statistical tests used very fre
quently. These are the t-distribution, the F-distribution, and the chi-squared 
distribution. 

The other continuous distributions which should be mentioned here are the 
uniform distribution, the exponential distribution, the Weibull distribution, the beta 
distribution, and the gamma distribution. Others are important in various specialized 
applications. 

The uniform distribution is very simple. Its probability density function is a 
constant in a particular interval (say for a < X < b) and zero outside that interval. We 
have already seen an example of it in the waiting time for a bus, used as a simple 
illustration of a continuous distribution in section 6.1, and it has appeared in some of 
the problems. It is sometimes used to model errors in electrical communication with 
pulse code modulation. Electrical noise on the other hand, is often modeled by a 
normal distribution. 

The exponential distribution has the following probability density function: 

f(x) = λ e –λx for x ≥ 0 
f(x) = 0 for x < 0 (6.10) 

where λ is a constant closely related to the mean and standard deviation. 

For x > 0 the cumulative distribution function for the exponential distribution is 
found easily by integration: 

( ) = Pr 0 <  <  x1 ]F x1 [ X 
x1 

= λe−λx dx  ∫ (6.11) 

1 

0


−λx1
= − e 
The exponential distribution is related to the Poisson distribution, although the 

exponential distribution is continuous whereas the Poisson distribution is discrete. 
The Poisson distribution gives the probabilities of various numbers of random events 
in a given interval of time or space when the possible number of discrete events is 
much larger than the average number of events in the given interval. If the variable is 
time, the exponential distribution gives the probability distribution of the time 
between successive random events for the same conditions as apply to the Poisson 
distribution. 

155




Chapter 6 

The following expression can be found in tables of integrals: 
∞


n −ax 
 ! (n∫ x e  dx  = n  a  − +1)
(6.12) 

0 

Use of it greatly reduces the labor of finding expected values and variances for 
the exponential distribution. 

The exponential distribution is used for studies of reliability, which will be 
discussed very briefly in section 6.4, and of queuing theory. Queuing theory gives 
probability as a function of waiting time in a queue for service. An example might 
be: what is the probability that the time between arrival of one customer and of the 
next at a service counter will be more than a stated time, such as three minutes? 

The Weibull distribution, the beta distribution, and the gamma distribution are 
more complicated, mainly because each has two independent parameters. Both the 
Weibull distribution and the gamma distribution give the exponential distribution 
with particular choices of one of their two parameters. These distributions are dis
cussed more fully in the books by Miller, Freund, and Johnson and by Ross (see List 
of Selected References, section 15.2), and all but the gamma distribution are dis
cussed in the book by Vardeman. 

6.4 Extension: Reliability 
What is the probability that an engineering device will function as specified for a 
particular length of time under specified conditions?  How will this probability be 
modified if we put further components in series or in parallel with one another? 
These are the sorts of questions which are addressed in the study of engineering 
reliability. 

Reliability is applied in many areas of engineering, including design of mechani
cal devices, electronic equipment, and power transmission systems. Although failures 
of supply of electricity to factories, offices, and residences were once frequent, they 
have become much less frequent as engineers have devoted more attention to reliabil
ity. The concepts of reliability have been exceedingly important to manned flights in 
space. 

The study of reliability makes use of the exponential distribution, the gamma 
distribution, and the Weibull distribution. Theory has been developed for many 
applications. 

A general reference book on the use of reliability in engineering is by Billinton 
and Allan (see List of Selected References in section 15.2). 
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C H A P T E R  7 
The Normal Distribution 

This chapter requires a good knowledge of the material covered in sections 
2.1, 2.2, 3.1, 3.2, and 4.4. Chapter 6 is also helpful as background. 

The normal distribution is the most important of all probability distributions. It is 
applied directly to many practical problems, and several very useful distributions are 
based on it. We will encounter these other distributions later in this book. 

7.1 Characteristics 
Many empirical frequency distributions have the following characteristics: 

1.	 They are approximately symmetrical, and the mode is close to the centre of the 
distribution. 

2.	 The mean, median, and mode are close together. 

3.	 The shape of the distribution can be approximated by a bell: nearly flat on top, 
then decreasing more quickly, then decreasing more slowly toward the tails of the 
distribution. This implies that values close to the mean are relatively frequent, 
and values farther from the mean tend to occur less frequently. Remember that 
we are dealing with a random variable, so a frequency distribution will not fit 
this pattern exactly. There will be random variations from this general pattern. 

Remember also that many frequency distributions do not conform to this pattern. 
We have already seen a variety of Thickness of Part 
frequency distributions in Chapter 4, 50 0.413 

and many other types of distribution 
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Example 4.2 showed data on the 
thickness of a particular metal part 30 0.248 

of an optical instrument as items 
came off a production line. A 20 0.165 

histogram for 121 items is shown in 
Figure 4.4, reproduced here. 10 0.083 

0 0 
Figure 4.4: Histogram of 3.220 3.270 3.320 3.370 3.420 3.470 3.520 3.570 

Thickness of Metal Part	 Thickness, mm 
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We can see that the characteristics stated above are present, at least approxi
mately, in Figure 4.4. Random variation (and the arbitrary division into classes for 
the histogram) could reasonably be responsible for deviation from a smooth bell 
shape. 

A theoretical distribution that has the stated characteristics and can be used to 
approximate many empirical distributions was devised more than two hundred years 
ago. It is called the “normal probability distribution,” or the normal distribution. It is 
sometimes called the Gaussian distribution, but other mathematicians developed it 
earlier than Gauss did. It was soon found to approximate the distribution of many 
errors of measurement. 

7.2 Probability from the Probability Density Function 
The probability density function for the normal distribution is given by: 

2(x −µ)
− 

f x  2σ2( ) = 1 
e (7.1)

σ 2π 
where µ is the mean of the theoretical distribution, σ is the standard deviation, and 
π = 3.14159 ... This density function extends from  –∞  to +∞. Its shape is shown in 

x − µ
Figure 7.1 below. The first scale on Figure 7.1 gives values of , and the scale 

x − µ σ 
below it gives corresponding values of x. Thus, 

σ
 = 0 corresponds to x = µ, and 

x − µ 
= –3 corresponds to x = µ – 3σ.

σ

–4 –3 –2 –1 0 1 2 3 4 

(x – µ)/ σ 

µ–3σ µ–2σ µ–σ µ µ+σ µ+2σ µ+3σ 
x 

Figure 7.1: Shape of the Normal Distribution 
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Because the normal probability density function is symmetrical, the mean, 
median and mode coincide at x = µ. Thus, the value of µ determines the location of 
the center of the distribution, and the value of σ determines its spread. 

We have seen that probabilities for a continuous random variable are given by 
integration of the probability density function. Then normal probabilities are given 
by integration of the function shown in equation 7.1, or the areas under the corre
sponding curve. 

The probability that a variable, X, is between x1 and x2 according to the normal 
distribution is given by: 

[ 1Pr x X< <  ]2x = 
2 

1 

x 

x 
∫ σ 

1 

2π 

( )2 

22 

x 

e 
−µ

− 
σ dx  (7.2) 

as shown in Figure 7.2. 

Figure 7.2: Probability of X Between x  and x1 2 

x1 x2

x


A corresponding cumulative probability is given by: 
2(x −µ)x − 

Pr [−∞ < X x] = F ( ) = ∫ 
1 

e 2σ2 
dx  (7.3)< x


−∞ σ 2π


However, the integral of equations 7.2 and 7.3 cannot be evaluated analytically in 
closed form. It is evaluated to any required precision numerically and shown in tables 

1 
or given by computer software. The constant, σ 2π , in equations 7.2 and 7.3 is 

determined by the requirement that F(∞) = 1 (see equation 6.4). 

Equations 7.1, 7.2 and 7.3 represent an infinite number of normal distributions 
with various values of the parameters µ and σ. A simpler form in a single curve is 
obtained by a change of variable. 

x − µ
Let z = (7.4)

σ 
Then z is a ratio between (x – µ) and σ. It represents the number of standard devia
tions between any point and the mean. Since x, µ, and σ all have the same units in 
any particular case, z is dimensionless. 
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Since µ and σ are constants for any particular distribution, differentiation of 
equation 7.4 gives: 

1
dz = dx 

σ (7.5) 
dx = σ dz 

Substitution of equations 7.4 and 7.5 in equation 7.2 gives: 

2z2 

XPr [x1 < <  x2 ] = ∫ 
1 

e 
− z 

2 σ dz 

σ 2π
z1 

2z2 − z1	 (7.6) 
e 2 dz  = ∫ 2πz1 

x1 − µ x2 − µ
where, according to equation 7.4, z1 = 

σ
 and z2 = 

σ 
. 

terms of z
from the mean. It can be seen that almost all the 

z = –3 and 
z

Figure 7.3 shows the normal distribution in 
, the number of standard deviations 

area under the curve is between 
 = +3. Therefore, the practical width of the 

normal distribution is about six standard 
deviations. 

–4 –3 –2 –1 0 1 2	 3 4 

z 

Figure 7.3: Normal Distribution as a Function of z 

The standard normal cumulative distribution function, Φ(z), as a function of z, 
is defined as follows: 

Φ( ) = Pr [−∞  <  Z < z1 ] = Pr [Z < z1 ]z1 

2z1 − z 

e 2 dz 	 (7.7)= ∫ 
1 

2π 
It corresponds to the area under the curve in Figure 7.4. 

−∞ 

Φ(z) 

–4 –3 –2 –1 0 1 2 3 4Figure 7.4: Standard Cumulative Distribution Function 
for the Normal Probability Distribution z 
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The Normal Distribution 

If the change of variable shown in equation 7.4 is applied and the curve shown in 
Figure 7.1 is integrated according to equation 7.3 to obtain a cumulative normal 
distribution, the result is an s-shaped curve, as shown in Figure 7.5. 
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Figure 7.5: 
Cumulative Normal Probability 

0.75 

0.5 

0.25 

0 
–4 –2 0 2 4


z


7.3 Using Tables for the Normal Distribution 
Table A1 in Appendix A gives values of the cumulative normal probability as a 
function of z, the number of standard deviations from the mean. Part of Table A1 is 
shown below. 

Part of Table A1

Cumulative Normal Probability


ΦΦΦΦΦ(z) = Pr [Z < z] 
–4 –3 –2 –1 0 1 2 3 4 

z 

∆∆∆∆∆z= –0.09 –0.07 –0.06 –0.05 . –0.01 –0.00 

z0 z0 

–3.7 0.0001 . 0.0001 0.0001 0.0001 . 0.0001 0.0001 –3.7 

... ... . ... ... ... . ... ... ... 

–0.8 0.1867 . 0.1922 0.1949 0.1977 . 0.2090 0.2119 –0.8 

–0.7 0.2148 . 0.2206 0.2236 0.2266 . 0.2389 0.2420 –0.7 

–0.6 0.2451 . 0.2514 0.2546 0.2578 . 0.2709 0.2743 –0.6 

... ... . ... ... ... . ... ... ... 

–0.0 0.4641 . 0.4721 0.4761 0.4801 . 0.4960 0.5000 –0.0 
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Table A1 gives values of z0 (–3.7, –3.6, ... –0.1, –0.0 ; 0.0, 0.1, ... 3.7, 3.8) 
along the lefthand side and righthand side of the table over two pages. The numbers 
along the top of the table give smaller increments, ∆z = –0.09, –0.08, ..., –0.01, 0.00 
on the first page,  and on the second page 0.00, 0.01, ..., 0.08, 0.09. The value of z 
for a particular row and column is the sum of the value of z0 for that row (along the 
sides) plus the increment, ∆z, for that column (along the top of the table). 

z z0 + ∆  z (7.8)= 

To illustrate, see the part of Table A1 shown above. Say we want Φ(–0.76): we look 
for the row labeled z0 = –0.7 along the sides and the column labeled ∆z = –0.06 along 
the top (since –0.76 = (–0.7) + (–0.06)) and read Φ(–0.76) = 0.2236. 

The diagram at the top of the table towards the right indicates that Φ(z) corre
sponds to the area under the curve to the left of a particular value of z (here 
z = –0.76). 

Suppose that instead we want Φ(+0.76). This is given on the second page of 
Table A1 in Appendix A. As before, we look for the applicable row, labeled z0 = 0.7 
along the sides, and the column labeled ∆z = 0.06 (since 0.76 = 0.7 + 0.06). For this 
value of z we read from the table that Φ(0.76) = 0.7764. 

Because the distribution is symmetrical, there must be a simple relation between 
Φ(–0.76) and Φ(+0.76), or in general between Φ(–z) and Φ(+z). That relation is: 

( (Φ −z1 ) = 1 − Φ  +  z1 ) (7.9) 

or in this case Φ(–0.76) = 1 – Φ(+0.76) = 1 – 0.7764 = 0.2236. Of course that means 
that Φ(–0.00) = Φ(+0.00) = 0.5000, so half of the total area under the curve is to the 
left of z = 0, the mean and median and mode of the distribution. If you think about it, 
that makes sense. 

Example 7.1 

a) What is the probability that Z for a normal 
probability distribution is between 
–0.76 and +0.76? 

b) What is the probability that Z for a normal 
probability distribution is smaller than –0.76 or 
larger than +0.76? 

Area for part (b) 

Area for 
part (a)

Answer: 

A sketch such as that shown in Figure 7.6 is very –4 –3 –2 –1 0 1 2 3 4 

zhelpful in visualizing the required integral and 
finding appropriate values from the table. Figure 7.6: 

Probabilities for Example 7.1 
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a) Pr [–0.76 < Z < +0.76] corresponds to the middle area cross-hatched in Figure 7.6. 

The calculation of probabilities is as follows: 

Pr [–0.76 < Z < +0.76] = Pr[Z > 0.76] – Pr [Z > – 0.76]


= Φ(0.76) – Φ(–0.76)


= 0.7764 – 0.2236 (from before)


= 0.5528


b) Pr [(Z < –0.76) ∪  (Z > + 0.76)] corresponds to the outer areas in the sketch 
above. 

Pr [(Z < –0.76) ∪  (Z > + 0.76)] = [Φ(–0.76)] + [1 – Φ(+0.76)] 

= 0.2236 + [1 – 0.7664] 

= 0.4472 

Check: Between them, parts (a) and (b) cover all possible results: 

Then Pr{[–0.76 < Z < +0.76] + [(Z < –0.76) ∩ (Z > + 0.76]} = 0.5528 + 0.4472 

= 1.0000 (check) 

Because the normal distribution is used so frequently, it is important to become 
familiar with Table A1. 

The reader should note that other forms of tables for the normal distribution are 
also in common use. One form gives the probability of a result in one tail of the 
distribution, that is Pr [Z > z1] for z1 ≥ 0, or Pr [Z < z1] for z1 ≤ 0. A variation gives 
the probability corresponding to both tails together. Another type gives the probabil
ity of a result between the mean and z2 standard deviations from the mean, that is 
Pr [Z < z2] for z2 ≥ 0, or Pr [Z > z2] for z2 ≤ 0. These different forms of tables must 
not be confused. Confusion is reduced because a small graph at the top of a table 
almost always indicates which area corresponds to the values given. 

Study the following examples carefully. 

Example 7.2 

A city installs 2000 electric lamps for street lighting. These lamps have a mean 
burning life of 1000 hours with a standard deviation of 200 hours. The normal 
distribution is a close approximation to this case. 

a) What is the probability that a lamp will fail in the first 700 burning hours? 

z1 = x1 − µ = 700 −1000 = −  1.50 
σ 200 

From Table A1 for z1 = –1.50 = (–1.5) + (–0.00), 

Pr [X < 700] = Pr [Z < –1.50] 

= Φ(–1.50) 

= 0.0668 
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Then Pr [burning life < 700 hours] = 0.0668 

or 0.067. 

b) What is the probability that a lamp will fail 
between 900 and 1300 burning hours? 

Required 
Area 

700 1000 x hours
 z1  0 zx1 − µ 900 −1000 

z1 = = = 
σ 200 Figure 7.7: 

Probabilities for = −0.50 = (−0.5 ) +  −  0.00 )( 
Example 7.2(a) 

x2 − µ  1300 −1000 
z2 = = = 

σ 200

= +1.50 = (+1.5 ) + (0.00 )


From Table A1, Φ(z1) = Φ(–0.50) = 0.3085

 and Φ(z2) = Φ(1.50) = 0.9332 

Req'd 
Area 

900 1000 1300 x hours 

z2Then Pr [900 hours < burning life < 1300 hours] 
z1  0 z 

= Φ(z2) – Φ(z1)	
Figure 7.8: 

Probabilities for 
= 0.9332 – 0.3085 Example 7.2(b) 

= 0.6247 or 0.625. 

c) How many lamps are expected to fail between 900 and 1300 burning hours? 

This is a continuation of part (b). The expected number of failures is given by the 
total number of lamps multiplied by the probability of failure in that interval. 
Then the expected number of failures = (2000) (0.6247) = 1249.4 or 1250 lamps. 
Because the burning life of each lamp is a random variable, the actual number of 
failures between 900 and 1300 burning hours would be only approximately 1250. 

d) What is the probability that a lamp will burn for exactly 900 hours? 

Since the burning life is a continuous random variable, the probability of a life of 
exactly 900 burning hours (not 900.1 hours or 900.01 hours or 900.001 hours, 
etc.) is zero. Another way of looking at it is that there are an infinite number of 
possible lifetimes between 899 and 901 hours, so the probability of any one of 
them is one divided by infinity, so zero. We saw this before in Example 6.2. 

e)	 What is the probability that a lamp will burn between 899 hours and 901 hours 
before it fails? 

Since this is an interval rather than a single exact value, the probability of failure 
in this interval is not infinitesimal (although in this instance the probability is 
small). 
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z1 = x1 − µ = 899 −1000 = −  0.505 Area
Req'd 

σ 200

901 −1000


z2 =  = −  0.495 
200 

899 901 1000 x hours

We could apply linear interpolation between the values z1  z2  0 z 

given in Table A1. However, considering that in practice Figure 7.9: 
the parameters are not known exactly and the real distribu- Probabilities for 
tion may not be exactly a normal distribution, the extra Example 7.2(e) 
precision is not worthwhile. 

Pr [899 hours < burning life < 901 hours] 

≈ Φ (–0.49) – Φ (–0.50) 

= Φ (–0.4 – 0.09) – Φ (–0.5 – 0.00) 

= 0.3121 – 0.3085 

= 0.0036 or 0.4% 

(0.3% would also be a reasonable approximation). 

f)	 After how many burning hours would we expect 10% of the lamps to be left? 

This corresponds to the time at which 

Pr [burning life > x1 hours] = 0.10, 

so Pr [burning life < x1 hours] = 1 – 0.10 = 0.90. 

Thus, Pr [Z < z1] = 0.90 

10% 

or Φ(z1) = 0.90 
1000 x1  x hours

 0 z1  z 

From Table A1, 
Figure 7.10: 

Φ(1.2 + 0.08) = 0.8997 Probabilities for 
and Φ(1.2 + 0.09) = 0.9015 Example 7.2(f) 

Once again, we could apply linear interpolation but the accuracy of the 
calculation probably does not justify it. 

Since (0.90 – 0.8997) << (0.9015 – 0.90), let us take z1 = 1.28. Then we have 

x1 − µ
z1 = = 1.28 

σ

x1 −1000
= 1.28 

200

x1 = (200 )(1.28 ) +1000 = 1256
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Then after 1256 hours of burning, we would expect 10% of the lamps to be 
left. And again, because the burning time is a random variable, performing the 
experiment would give a result which would be close to 1256 hours but probably 
not exactly that, even if the normal distribution with the given values of the mean 
and standard deviation applied exactly. 

g) After how many burning hours would we expect 90% of the lamps to be left? 

We won’t draw another diagram, but imagine looking at Figure 7.10 from the 
back. 

Pr [Z < z2] = 0.10 or φ(z2) = 0.10. From Table A1 we find 

φ(–1.2 – 0.08) = 0.1003 

φ(–1.2 – 0.09) = 0.0985 

so z2 ≈ –1.28. (Do you see any resemblance to the answer to part (f)? Look again 
at equation 7.9.) 

z2 = x2 − µ  = x2 −1000 = −  1.28 
σ 200


x2 −1000 = −  256


x2 = 744 

After 744 hours we would expect 90% of the lamps to be left. 

Example 7.3 

In another city 2500 electric lamps are installed for street lighting. The lamps come 
from a different manufacturer and have a mean burning life of 1050 hours. We know 
from past experience that the distribution of burning lives approximates a normal 
distribution. The 250th lamp fails after 819 hours. Approximately what is the stan
dard deviation of burning lives for this set of lamps? 

Answer: 
250 Φ z1 = 0.100 ( ) = 
2500


From Table A1, Φ(–1.2 – 0.09) = 0.0985


and Φ(–1.2 – 0.08) = 0.1003 

Then z1 = x1 − µ ≅ −  1.28 

10% 

σ 819 1050 x hours

819 −1050 
z1  0 z 

= −1.28 
σ Figure 7.11: 

−231 Probabilities for 
σ =

−1.28 
= 180 Example 7.3 
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Then the standard deviation of burning hours is approximately 180 hours. (As well as 
random variation, the term “approximately” covers a “correction for continuity” 
which we will encounter a little later.) 

Example 7.4 

The strengths of individual bars made by a certain manufacturing process are ap
proximately normally distributed with mean 28.4 and standard deviation 2.95 (in 
appropriate units). To ensure safety, a customer requires at least 95% of the bars to be 
stronger than 24.0. 

a) Do the bars meet the specification? 

b) By improved manufacturing techniques the manufacturer can make the bars more 
uniform (that is, decrease the standard deviation). What value of the standard 
deviation will just meet the specification if the mean stays the same? 

Answer: 

x1 − µ
a)	 z1 = 

σ 
24.0 − 28.4 =  = −  1.49 

Req'd 
Area 

2.95 24.0	  28.4  Strength, x
 z 

Φ(–1.49) = Φ(–1.4 –0.09) = 0.0681
 z1 0

     (from Table A1)	 Figure 7.12: 
Probabilities for 

The probability that the bars will be stronger than 24.0 Example 7.4(a)
is 1 – 0.0681 = 0.9319 or 93.2%. Since this is less than 
95%, the bars do not meet the specification. 

b)	 For this part, σ is the unknown. 

From Table A1 we look for a value of z for which Φ(z2) = 0.05. We find 

Φ(–1.65) = 0.0495 and Φ(–1.64) = 0.0505. Then z2 

must be between –1.65 and –1.64. Since in this case the

desired value of Φ(z2) is halfway between Φ(–1.65) and

Φ(–1.64), interpolation is very easy, giving z2 = –1.645.


Then z2 = x2 − µ  

Φ(z2 ) 
95%

24.0 28.4 Strength, x

σ z2 0 z 

24.0 − 28.4 −1.645 = Figure 7.13: 
σ Probabilities for 

−4.4 Example 7.4(b)σ =  = 2.67 
−1.645 

If the standard deviation can be reduced to 2.67 while keeping the mean constant, the 
specification will just be met. 
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Example 7.5 

An engineer decides to buy four new snow tires for his car. He finds that Retailer A is 
offering a special cash rebate, which depends on how much snow falls during the first 
winter. If this snowfall is less than 50% of the mean annual snowfall for his city, his 
rebate will be 50% of the list price. If the snowfall that winter is more than 50% but 
less than 75% of the mean annual snowfall, his rebate will be 25% of the list price. If 
the snowfall is more than 75% of the mean annual snowfall, he will receive no 
rebate. The engineer finds from a reference book that the annual snowfall for his city 
has a mean of 80 cm and standard deviation of 20 cm and approximates a normal 
distribution. The list price for the brand and size of tires he wants is $80.00 per tire. 

The engineer checks other retailers and finds that Retailer B sells the same brand and 
size of tires with the same warranty for the same list price but offers a discount of 5% 
of the list price regardless of snowfall that year. 

a) Compare the expected costs of the two deals. Which expected cost is less? 

b) How much is the difference for four new snow tires?  Neglect the relative advan
tages of a cash rebate as compared to a discount. 

Answer: a) For Retailer A:  µ = 80 cm, σ = 20 cm. 

50% of µ is 40 cm, and 75% of µ is 60 cm 

Φ(z1 ) Φ(z2 )

40 80 Snowfall, cm  60 80 Snowfall, cm
 z1  0 z z2  0 z 

Figure 7.14: Probabilities for Example 7.5(a) 

1z = 1x − µ 
σ 

= 40 80 

20 

− 
2.00 = −  

Pr [snowfall < 50% of µ] =  Pr [Z < –2.00] 

= Φ(–2.00) 

= 0.0228 (from Table A1) 

2z = 2x − µ 
σ 

= 60 80 

20 

− 
1.00 = −  

Pr [snowfall < 75% of µ] = Pr [Z < –1.00] 

= Φ(–1.00) 

= 0.1587 (from Table A1) 
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Then Pr [50% of µ < snowfall < 75% of µ] = Φ(–1.00) – Φ(–2.00)

 = 0.1587 – 0.0228

 = 0.1359 

Then expected rebate from Retailer A is: 

(50%) (Pr [snowfall < 50% of µ] ) + (25%) (Pr [50% of µ < snowfall < 75% of µ]) 

= (50%) (0.0228) + (25%) (0.1359) 

= (1.14 + 3.40)% 

= 4.54% of list price 

Discount from Retailer B is 5% of list price, so the discount from Retailer B is 
larger than the expected rebate from Retailer A. Therefore, the expected cost of 
buying from Retailer B is a little less than the expected cost of buying from Retailer A. 

b) Cost of four new snow tires is as follows. 

List price: (4) ($80.00) = $320.00 

After rebate from Retailer A, expected cost = (1– 0.0454) ($320.00) = $305.48 

After discount from Retailer B, cost = (1 – 0.05) ($320.00) = $304.00 

Then the difference in expected cost for four new snow tires is $1.48. 

Some Quantitative Relationships 

We can also use Table A1 to make more quantitative comments concerning probabilities 
of results inside or outside chosen intervals on Figure 7.4. 

Since Pr [–2 < Z < + 2] = Φ(+ 2.0 + 0.00) – Φ(–2.0 – 0.00) 

= 0.9772 – 0.0228 

= 0.9544 

[Check: Φ(–z1) = 1 – Φ(+z1) (from eq. 7.9) 

0.0228 = 1 – 0.9772 √ ] 

Thus, 95.4% of all values are expected to be within two standard deviations from 
the mean of a normal distribution. By subtraction from 100%, 4.6% of all values are 
expected to be outside that interval. 

Similarly,  Pr [ –3 < Z < + 3] = Φ(+ 3.0 + 0.00) – Φ(– 3.0 – 0.00)


= 0.9987 – 0.0013)


= 0.9974


So 99.7% of all values are expected to be within three standard deviations from 
the mean. Only 0.3% of all values are expected to be farther from the mean than 
three standard deviations. Then, although the normal distribution extends in principle 
from –∞ to +∞, the practical width is about six standard deviations. If there is some 
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practical limit on a variable (most commonly, that the variable never becomes 
negative), it will have little effect if the limiting value is at least three standard 
deviations from the mean. 

Problems 
(The following problems can be solved either with a pocket calculator and tables, or 
using a computer, as will be discussed in section 7.4.) 

1.	 Diameters of bolts produced by a particular machine are normally distributed 
with mean 0.760 cm and standard deviation 0.012 cm. Specifications call for 
diameters from 0.720 cm to 0.780 cm. 
a) What percentage of bolts will meet these specifications? 
b) What percentage of bolts will be smaller than 0.730 cm? 

2.	 The annual snowfall in Saskatoon is a normally distributed variable with a mean 
of 80 cm and a standard deviation of 20 cm. 
a) What is the probability that the snowfall in any year will exceed 30 cm? 
b) What is the probability that the snowfall in any year will be between 55 and 

90 cm? 

3.	 The diameters of screws in a batch are normally distributed with mean equal to 
2.10 cm and standard deviation equal to 0.15 cm.

a) What proportion of screws are expected to have diameters greater than 2.50 cm?

b) A specification calls for screw diameters between 1.75 cm and 2.50 cm.


What proportion of screws will meet the specification? 

4.	 Diameters of ball bearings produced by a company follow a normal distribution. 
If the mean diameter is 0.400 cm and the standard deviation is 0.001 cm, what 
percentage of the bearings can be used on a machine specifying a size of 0.399 
±0.0015 cm? What is the upper bound of the size range that has a lower bound of 
0.398 cm and includes 80% of the bearings? 

5.	 An engineer working for a manufacturer of electronic components takes a large 
number of measurements of a particular dimension of components from the 
production line. She finds that the distribution of dimensions is normal, with a 
mean of 2.340 cm and a coefficient of variation of 2.4%. 
a) What percentage of measurements will be less than 2.45 cm? 
b) What percentage of dimensions will be between 2.25 cm and 2.45 cm? 
d) What value of the dimension will be exceeded by 98% of the components? 

6.	 The probability that a river flow exceeds 2,000 cubic meters per second is 15%. 
The coefficient of variation of these flows is 20%. Assuming a normal distribu
tion, calculate 
a) the mean of the flow. 
b) the standard deviation of the flow. 
c) the probability that the flow will be between 1300 and 1900 m3/s. 
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7.	 Bags of fertilizer are weighed as they come off a production line. The weights are 
normally distributed, and the coefficient of variation is 0.085%. It is found that 
2% of the bags are under 50.00 kg. 
a) What is the mean weight of a bag of fertilizer? 
b) What percentage of the bags weigh more than 50.020 kg? 
c) What is the upper quartile of the weights? 

8.	 The variation of copper content in a particular ore body follows a normal distri
bution. The coefficient of variation is 18%. The probability that the copper 
content exceeds 18.2 is 0.240. 
a) What is the mean copper content? 
b) What is the standard deviation of the copper content? 
c) What is the probability that the copper content will be less than 11.2? 

9.	 30% of the soil samples obtained from a proposed construction site gave test 
results for compressive strength of more than 3.5 tons per square foot. The 
coefficient of variation of the strengths is known to be 20%. Calculate: 
a) the mean soil strength, 
b) the standard deviation of soil strengths, 
c) the probability of soil strengths falling between 2.7 and 4.0 tons per square 

foot. State any assumptions made. 

10. For a certain type of fluorescent light in a large building, the cost per bulb of 
replacing bulbs all at once is much less than if they are replaced individually as 
they burn out. It is known that the lifetime of these bulbs is normally distributed, 
and that 60% last longer than 2500 hours, while 30% last longer than 3000 
hours. 
a) What are the approximate mean and standard deviation of the lifetimes of the 

bulbs? 
b) If the light bulbs are completely replaced when more than 20% have burned 

out, what is the time between complete replacements? 

l1. It is known that 10% of concrete samples have compressive strength less than 
30.0 MN/m2 and 20% have compressive strength greater than 36.0 MN/m2. If the 
minimum acceptable strength is specified to be 28.0 MN/m2, what is the prob
ability that a sample will have a strength less than the specified minimum? 
What assumption is being made? 

12. Of the Type A electrical resistors produced by a factory, 85.0% have resistance 
greater than 41 ohms, and 3.7% of them have resistance greater than 45 ohms. 
The resistances follow a normal distribution. What percentage of these resistors 
have resistance greater than 44 ohms? 

13.	 A manufactured product has a length that is normally distributed with a mean of 
12 cm. The product will be unusable if the length is 11½ cm or less. 
a) If the probability of this has to be less than 0.01, what is the maximum 

allowable standard deviation? 
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b)	 Assuming this standard deviation, what is the probability that the product’s 
length will be between 11.75 and 12.35 cm? 

14. The probability of a river flow exceeding 2,000 cubic meters per second is 15% 
and the coefficient of variation of these flows is 20%. Assuming a normal 
distribution calculate 
(a) the mean of the flow, 
(b) the standard deviation of the flow, 
(c) the probability that the flow will be between 1300 and 1900 meters3 /sec. 

15. A water quality parameter monitored in a lake is normally distributed with a 
mean of 24.3. It is also known that there is 70% probability that the parameter 
will exceed 17.6. 
a) Find the standard deviation of the parameter. 
b) If the parameter exceeds the 95th percentile, an investigation of a local 

industry begins. What is this critical value? 

16. The time of snowpack formation is the time of the first  	snowfall which stays for 
the winter. In one Canadian city the mean time of snowpack formation is mid
night of November 24, the 329th day of the year, and this time is approximately 
normally distributed. The standard deviation of the time of snowpack formation 
is 16.0 days. What is the probability that snowpack formation will occur before 
midnight October 20, the 294th day of the year, for two years in a row? 

17. In a university scholarship program, anyone with a grade point average over 7.5 
receives a $l,000 scholarship, anyone with an average between 7.0 and 7.5 
receives $500, anyone with an average between 6.5 and 7.0 receives $100, and all 
others receive nothing. A particular class of 500 students has an overall average 
of 4.8 with a standard deviation of 1.2. Calculate the cost to the university of 
supplying scholarships for this class. State any assumption. 

18. Steel used for water pipelines is sometimes coated on the inside with cement 
mortar to prevent corrosion. In a study of the mortar coatings of a pipeline used 
in a water transmission project, the mortar thicknesses were measured for a very 
large number of specimens. The mean and the standard deviation were found to 
be 0.62 inch and 0.13 inch, respectively, and the thickness was found to be 
normally distributed. 
a) In what percentage of the pipelines is the thickness of mortar less than 0.5 

inch? 
b) If four pipes are selected at random, what is the probability that two or more 

have mortar thickness less than 0.5 inch? 
c)	 100 pipes are taken and their mortar thicknesses are measured individually. If 

the mortar thickness of a pipe is found to be less than 0.5 inch, 10% less is 
paid to the manufacturer for that pipe. If the normal price of a pipe is 
S125.00, what is the expected cost of 100 pipes? 
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19. On a particular farm, profit depends on rainfall. The rainfall is normally distrib
uted with a mean of 31 cm and a standard deviation of 9 cm. Farm profits are: 
a) $100,000 if rainfall is over 44 cm, 
b) $150,000 if rainfall is between 29 and 44 cm, 
c) $130,000 if rainfall is between 22 and 29 cm, 
d) $ 65,000 if rainfall is between 15 and 22 cm, and 
e) –$ 80,000 if rainfall is less than 15 cm 

Find the expected farm profit. 

20. The time a student takes to arrive at a solution for a statistics problem depends 
upon whether he or she recognizes certain simplifying comments in the problem 
statement. The probability of this recognition is 0.7. If the student recognizes the 
comments, the solution time is normally distributed with a mean time of 20 
minutes and standard deviation of 4.3 minutes. If the student does not recognize 
the simplifying comments, the solution time is normally distributed with a mean 
time of 43 minutes with a standard deviation of 10.2 minutes. 
a) What is the expected solution time in a large class of students? 
b) What is the probability that a student chosen at random will require more 

than 28.2 minutes? 
c) What is the probability that he or she will require more than 43 minutes? 

21. An irrigation pump is located on a reservoir whose mean water level is 550 m with 
a standard deviation of 10 m. The water level affects the output of the pump. If the 
level is below 538 m, then the expected pump output is 250 L / min with a stan
dard deviation of 45 L / min; if the level is between 538 and 555 m, then the 
expected pump output is 325 L / min with a standard deviation of 52 L / min; and 
if the level is greater than 555 m, then the expected pump output is 375 L / min 
with a standard deviation of 48 L / min. The variation in the output at any given 
water level is due to variations in the electrical power supply and wave action on 
the reservoir. All variables are normally distributed. 
a) What are the probabilities of the levels being 

i. less than 538 m? 
ii. between 538 m and 555 m? 
iii. greater than 555 m? 

b) What is the expected pumping rate? 
c) If the cost of pumping is $25 / hr when the flow rate is less than 350 L / min, 

and $35 / hr when the flow rate exceeds 350 L / min, calculate the average 
cost of pumping. 

7.4 Using the Computer 
Instead of using tables such as Table A1, cumulative normal probabilities can be 
obtained from computer software such as Excel. Standard cumulative normal prob
abilities, Φ(z), can be obtained by the Excel function =NORMSDIST(z), where 
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x − µ
z =  is the standard normal variable. The inverse function is also available on 

σ
Excel. If we know a value of the cumulative normal probability, Φ(z), and want to 
find the value of z to which it applies, we can use the function 
=NORMSINV(cumulative probability). In both function names the letter “s” stands 
for the standard form—that is, a relation between Φ and z rather than between Φ and 
x. Both function names can be pasted into the required cell choosing the statistical
category and then the required function, as discussed in section 5.5. Alternatively, 
they can be typed. 

These Excel functions can be used to solve Examples 7.1 to 7.5 and the Problems 
following section 7.3. To illustrate, here is an alternative solution of Example 7.4. 
Sketches of the probability relations shown in Figures 7.11 and 7.12 are still needed 
to check that the calculated probabilities are reasonable. 

Example 7.4 (Solution Using Excel) 

The strengths of individual bars made by a certain manufacturing process are ap
proximately normally distributed with mean 28.4 and standard deviation 2.95 (in 
appropriate units). To ensure safety, a customer requires at least 95% of the bars to be 
stronger than 24.0. 

a) Do the bars meet the specification? 

b) By improved manufacturing techniques, the manufacturer can make the bars 
more uniform (i.e., decrease the standard deviation). What value of the standard 
deviation will just meet the specification if the mean stays the same? 

x1 − µ
Answer: a) z1 with µ = 28.4, σ = 2.95, and x1 = 24. Then the function = 

σ
=(24–28.4)/2.95 was entered in cell C2 with the label z1 in cell A2. Explanations 
are in column B. Since Φ(z1) is given by NORMSDIST(z1), the function 
=NORMSDIST(C2) was entered in cell C3, and the label Phi(z1) was entered in 
cell A3. The percentage probability that the bars will be stronger than 24.0 is 
given by the function =(1–C2)*100%, which was entered in cell C4, and the 
corresponding label Pr%(stronger) was entered in cell A4. The result of the 
calculation was 93.2 (formatted to 1 decimal place using the Format menu). The 
answer to part (a) of the problem was placed in row 5. 

(b) Now we require Φ(z2) = 1 – 0.95. Therefore the label Phi(z2) was entered in cell 
A7, and the function =1 – 0.95 was entered in cell C7. The label z2 was entered in 
cell A8, and the function, =NORMSINV(C7), was entered in cell C8. The result 

x2 − µ
was –1.645. Since z2 = , the function =(24.0–28.4)/C8 was entered in cell 

σ 
C9, and the label Reqd SD was entered in cell A9. The result was 2.675 (format
ted to 3 decimal places using the Format menu). The answer to part (b) was 
placed in rows 10 and 11. 
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The Excel work sheet is shown below in Table 7.1. Answers to the specific 
questions are in rows 5, 10 and 11. 

Table 7.1: Work Sheet for Example 7.4 

A B C


Ex 7.4 (a)


2


3


4


z1 (24–28.4)/2.95= –1.4915254 

Phi(z1) NORMSDIST(C1)= 0.06791183 

Pr%(stronger) (1–C2)*100%= 93.2 

5 > Since 93.2% < 95%, the bars do not meet the specification.


6          (b)


7


8


9


Phi(z2) 1–0.95= 0.05 

z2 NORMSINV(C7)= –1.644853 

Reqd SD (24–28.4)/C8= 2.675 

10 > If std dev can be reduced to 2.675 and the mean 

11 stays the same, the specification will just be met. 

7.5 Fitting the Normal Distribution to Frequency Data 
We will find great advantages in fitting a normal distribution to a set of frequency 
data if the two distributions agree reasonably well. We can summarize the data very 
compactly in that case by giving the mean and standard deviation. Powerful statisti
cal tests that assume that the underlying distribution is normal become available for 
our use. 

In this section we will examine fitting a normal distribution to grouped frequency 
data and to discrete frequency data. This approach will be extended in section 7.6 to 
approximating another distribution (specifically a binomial distribution for certain 
circumstances) by a normal distribution. Then in section 7.7 we will look at fitting a 
normal distribution to cumulative frequency data. 

Since a normal distribution is described completely by two parameters, its mean 
and standard deviation, usually the first step in fitting the normal distribution is to 
calculate the mean and standard deviation for the other distribution. Then we use 
these parameters to obtain a normal distribution comparable to the other distribution. 

(a) Fitting to a Continuous Frequency Distribution 

First, then, we need to estimate the parameters of the normal distribution that will fit 
the frequency distribution in which we are interested. We have seen in Chapter 3 how 
to estimate the mean and standard deviation of the population from which a sample 
came. Then we can compare the normal distribution having those parameters to the 
corresponding grouped frequency data. 
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Example 7.6 

Example 4.2 gave measurements of the thickness of a particular metal part of an 
optical instrument on 121 successive items from a production line. Taking these data 
as a sample, calculations shown in Example 4.2 gave the estimate of the mean of the 
population to be x  = 3.369 mm, and the estimate of the standard deviation of the 
population to be s = 0.0629 mm. 

We saw in section 7.1 that the shape of the histogram for these data seems to be at 
least approximately consistent with a normal distribution. Therefore we will compare 
the class frequencies found in Example 4.2 with the expected frequencies for a 
normal distribution with mean and standard deviation as stated above. The first step 
in this comparison is to calculate cumulative normal probabilities, φ(z), at the class 
boundaries using Table A1 or the equivalent Excel function. 

Class Boundary, x − µ 
x mm z = ΦΦΦΦΦ(z)

σ 
3.195 –2.77 0.0028 

3.245 –1.97 0.0244 

3.295 –1.18 0.1190 

3.345 –0.38 0.3520 

3.395 +0.41 0.6591 

3.445 +1.21 0.8869 

3.495 +2.00 0.9772 

3.545 +2.80 0.9974 

3.595 +3.59 0.9998 

According to the normal distribution: 

Pr [X < 3.195] = 0.0028 

Pr [3.195 < X < 3.245] = 0.0244 – 0.0028 = 0.0216 

Pr [3.245 < X < 3.295] = 0.1190 – 0.0244 = 0.0946 

Pr [3.295 < X < 3.345] = 0.3520 – 0.1190 = 0.2330 

Pr [3.345 < X < 3.395] = 0.6591 – 0.3520 = 0.3071 

Pr [3.395 < X < 3.445] = 0.8869 – 0.6591 = 0.2278 

Pr [3.445 < X < 3.495] = 0.9772 – 0.8869 = 0.0903 

Pr [3.495 < X < 3.545] = 0.9974 – 0.9772 = 0.0202 

Pr [3.545 < X < 3.595] = 0.9998 – 0.9974 = 0.0024 

Pr [X > 3.595] = 1  – 0.9998 = 0.0002 
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The expected frequency for each interval is obtained by multiplying the corre
sponding probability by the total frequency, 121. The results are: 

Lower Upper Class Probability Expected Observed 
Boundary Boundary Frequency Frequency 

— 3.195 0.0028 0.3 0 

3.195 3.245 0.0216 2.6 2 

3.245 3.295 0.0946 11.4 14 

3.295 3.345 0.2330 28.2 24 

3.345 3.395 0.3071 37.2 46 

3.395 3.445 0.2278 27.6 22 

3.445 3.495 0.0903 10.9 10 

3.495 3.545 0.0202 2.4 2 

3.545 3.595 0.0024 0.3 1 

3.595 — 0.0002 0.0 0 

Expected and observed frequencies are compared in Figure 7.15. 

< 3.195 

3.195-3.245 

3.245-3.295 

3.295-3.345 

3.345-3.395 

3.395-3.445 

3.445-3.495 

3.495-3.545 

3.545-3.595 

> 3.595 

Thickness, mm 

0  10  20  30  40  50  

Frequency 
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Figure 7.15: Comparison of Observed Frequencies with 
Expected Frequencies according to Fitted Normal Distribution 

We can see in Figure 7.5 that actual frequencies are sometimes above and some
times below the theoretical expected frequencies according to the normal distribution. 
The differences might well be explained by random variations, so we can conclude 
that the frequency distribution seems to be consistent with a normal distribution. 

177




Chapter 7 

(b) Fitting to a Discrete Frequency Distribution 

If the distribution to which we compare a normal distribution is discrete, because the 
normal distribution is continuous we need a correction for continuity. The correction 
for continuity will be examined in the next section, in which the discrete binomial 

Pr
o

b
ab

ili
ty

 d
en

si
ty

 o
r 

B
in

o
m

ia
l P

ro
b

ab
ili

ty
 

distribution is approximated by a normal distribution. 

7.6 Normal Approximation to a Binomial Distribution 
It is often desirable to use the normal distribution in place of another probability 
distribution. In particular, it is convenient to replace the binomial distribution with 
the normal when certain conditions are met. Remember, though, that the binomial 
distribution is discrete, whereas the normal distribution is continuous. 

The shape of the binomial distribution varies considerably according to its 
parameters, n and p. If the parameter p, the probability of “success” (or a defective 
item or a failure, etc.) in a single trial, is sufficiently small (or if q = 1 – p is suffi
ciently small), the distribution is usually unsymmetrical. If p or q is sufficiently small 
and if the number of trials, n, is large enough, a binomial distribution can be approxi
mated by a Poisson distribution. This was discussed in section 5.4 (c). 

On the other hand, if p is sufficiently close to 0.5 and n is sufficiently large, the 
binomial distribution can be approximated by a normal distribution. Under these 
conditions the binomial distribution is approximately symmetrical and tends toward a 
bell shape. A larger value of n allows greater departure of p from 0.5; a binomial 
distribution with very small p (or p very close to 1) can be approximated by a normal 
distribution if n is very large. If n is large enough, sometimes both the Poisson 
approximation and the normal approximation are applicable. In that case, use of the 
normal approximation is usually preferable because the normal distribution allows 
easy calculation of cumulative probabilities using tables or computer software. 

0.2 

0.15 

Normal Probability Density 
0.1 

Binomial Probability 

0.05 

0


0 5 10 15 20


Number of defectives 

Figure 7.16: Comparison of a Binomial Distribution 
with a Normal Distribution Fitted to It 
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Figure 7.16 compares a binomial distribution with a normal distribution. The 
parameters of the binomial distribution are p = 0.4 and n = 20 (for instance, we might 
take samples of 20 items from a production line when the probability that any one 
item will require further processing is 0.4). To fit a normal distribution we need to 
know the mean and the standard deviation. Remember that the mean of a binomial 
distribution is µ = np, and that the standard deviation for that distribution is 

σ =  np (1 − p) . To fit a normal distribution to this binomial distribution, we must 

have µ = np = (20)(0.4) = 8, and σ =  np (1 − p) = (20 )(0.4 )(0.6 ) = 2.191. In 
Figure 7.6 the continuous curve passing through small circles represents the density 
function for the fitted normal distribution, while the vertical lines topped by small 
crosses represent binomial probabilities. The agreement appears to be very good. 

But we have a difficulty to deal with. That is, the normal distribution is continuous, 
whereas the binomial distribution is discrete. Probabilities according to the binomial 
distribution are different from zero only when the number of defectives is a whole 
number, not when the number is between the whole numbers. On the other hand, if 
we integrate the normal distribution only for limits infinitesimally apart around the 
whole numbers, the area under the curve will be infinitesimally small. Then the 
corresponding probability will be zero. 

The common-sense solution is to integrate for wider steps, which together cover 
the whole range. We set limits for integration of the normal distribution halfway 
between possible values of the discrete variable. This modification is called the 
correction for continuity. In Figure 7.6 the limits for integration of the normal 
distribution would be from 5.5 to 6.5 to  compare with a binomial probability at 6 
defects. For comparison with the binomial value at 7, the limits would be from 6.5 to 
7.5, and so on. 

The numerical comparison of probabilities using the correction for continuity is 
shown in Example 7.7. Approximating binomial probabilities in this way is called 
the normal approximation to a binomial distribution. 

Example 7.7 

Corresponding to the case shown in Figure 7.6, let’s calculate probabilities according 
to the binomial distribution and for the normal distribution which fits it approxi
mately. In a sample of 20 items when the probability that any one item requires 
further processing is 0.4, the binomial distribution gives probabilities that various 
numbers of items will require more processing. This is then a binomial distribution 
with n = 20 and p = 0.4. 

Answer:  Sample calculations will be shown for the probability of six items requir
ing further processing in a sample of 20, and then all the results will be compared. 
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By the binomial distribution, 

Pr [R = 6] = 20C6 (0.4)6 (0.6)14 = 

= 0.124 

By the normal approximation, 

19 18 17 

6 5)(4 3)( )  (0.4)6 (0.6)14
(20)( )( )( )(16)(15) 

( )( )( 2

 5.5 − 8 Pr [R = 6] ≈ Pr [5.5 < X < 6.5] =  6.5 − 8 Φ  − Φ  2.191   2.191  
= Φ(–0.68) – Φ(–1.14) 

= 0.121 

The values for the normal approximation shown above were read from tables 
with z evaluated to two decimal places. Evaluating z to three decimal places and 
using linear interpolation, or using computer software such as the function 
NORMSDIST from Excel, would give 0.2468 – 0.1269 = 0.120 for the probability 
of six defectives. In Table 7.2 the normal approximations have been calculated with 
z evaluated to three decimal places and with linear interpolation to give a more 
accurate error of approximation, but interpolation is not ordinarily required. 

Table 7.2: Comparison of Binomial Distribution and Normal Approximation 

Number for Binomial Normal Error of 
Further Probability Approximation Approximation 

Processing 

0 0.00004 0.00026 –0.0002 

1 0.0005 0.0012 –0.0007 

2 0.0031 0.0045 –0.0014 

3 0.012 0.014 –0.0016 

4 0.035 0.035 –0.0001 

5 0.075 0.072 +0.003 

6 0.124 0.120 +0.005 

7 0.166 0.163 +0.003 

8 0.180 0.180 –0.001 

9 0.160 0.163 –0.003 

10 0.117 0.120 –0.003 

11 0.071 0.072 –0.0009 

12 0.035 0.035 +0.0004 

13 0.015 0.014 +0.0006 

14 0.0049 0.0045 +0.0003 

15 0.0013 0.0012 +0.0001 
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16 0.0003 0.0003 +0.0000 

17 0.00004 0.00005 –0.0000 

18 5x10–6 0.00001 –0.0000 

19 3x10–7 <10–6 

20 1x10–8 <10–6 

The largest error in Table 7.2 is 0.005, 0.124 vs. 0.120 for six defectives. 

As a rough rule, the normal approximation to the binomial distribution is usually 
reasonably good if both np and (n)(1–p) are greater than 5. In Example 7.7, np is 
equal to (20)(0.4) = 8 and (n)(1 – p) is equal to (20)(0.6) = 12, so the rough rule is 
satisfied with some to spare. The rough rule should be used in solving problems in 
this book. 

The rule is only a rough guide because the two parameters, n and p, affect the 
agreement separately. For the same value of the product np, the normal approxima
tion to the binomial distribution is better when p is closer to 0.5. We can illustrate 
that by comparing the binomial distribution with the corresponding normal approxi
mation just at np = 5, the limit given by the rough rule, at three combinations of n 
and p. Figure 7.17 shows these comparisons. 
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Figure 7.17(a): Comparison at n = 10 and p = 0.5 
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Figure 7.17(b): Comparison at n = 25 and p = 0.2 
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Figure 7.17(c): Comparison at n = 250 and p = 0.02 

We can see from Figure 7.17 that the discrepancies are smallest at n = 10 and 
p = 0.5, intermediate at n = 25 and p = 0.2, and largest at n = 250 and p = 0.02, even 
though all are at np = 5 and n(1 – p) > 5. At n = 10 and p = 0.5 the largest absolute 
discrepancy is 0.002; at n = 25 and p = 0.2 the largest absolute discrepancy is 0.011; 
and at n = 250 and p = 0.02 the largest absolute discrepancy is 0.071. 

Example 7.8 

A coin is biased. We are told that the probability of heads on any one toss is 40% and

the corresponding probability of tails is 60%. The coin is tossed 120 times, giving 56

heads and 64 tails. From what we were told about the bias, we expect (120)(0.40) =

48 heads. If the given information is correct, what is the probability of getting either
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56 or more heads, or 40 or fewer heads (i.e., a result as far from the expected result 
as 56 heads or farther in either direction)? Is the result so unlikely that we should 
doubt that the probability of heads on a single toss is only 40%? 

Answer: This problem could be solved using the binomial distribution directly: 

Pr [R = 56] = 120C56 (0.4)56 (0.6)64, and similarly for R = 57, 58, ... 120 and R = 0, 1, 
2, ..., 39, 40, then adding up probabilities. However, these calculations are very 
laborious. It would be less work to calculate the sum of Pr [R = 41], Pr [R = 42], ... 
Pr[R  = 54], Pr [R = 55] and subtract that sum from 1, but that would still be a lot of 
labor. It is much easier to apply the normal approximation, and results should be very 
little different. In this case np = (120)(0.4) = 48 and (n)(1 – p) = (120)(0.6) = 72, so 
the rough rule is very easily satisfied. For the normal approximation µ = np = 

(120)(0.4) = 48 and σ =  ( )(n p)(1 − p) = (120 )(0.4 )(0.6 ) = 5.367. 

Using the correction for continuity, Pr [R = 56] corresponds to the area under the 
normal probability curve between 55.5 and 56.5. So, Pr [R > 55] corresponds to the 
area under the curve beyond 55.5. Similarly, Pr [R < 41] corresponds to the area 

x1 − µ 55.5 − 48 
under the curve for X < 40.5. If x1 = 55.5, z1 = = = 1.397 

σ 5.367 

40.5 − 48
Similarly, if x2 = 40.5, z2 =  = −  1.397 

5.367 

Then Pr [R > 55, Binomial] ≈ Pr [Z > 1.397] 

Req'd areas 

40.5 48 55.5 x, no. of heads= 1 – Φ(1.397) 
z2 0 z1 

≈ 1 – Φ(1.40) Figure 7.18: 
= 1 – 0.9192 = 0.081. Probabilities for 

Example 7.8
Then Pr [more than 55 heads] ≈ 8.1%. 

Similarly, Pr [fewer than 41 heads] ≈ 8.1%. The probability of a result as far from 
the mean as 56 heads or farther in either direction, given that p = 0.400, is (2)(8.1%) 
= 16.2%. This would happen by chance about one time in six, so it is not very 
unlikely. Then the result of tossing the coin gives us no evidence that p is not equal 
to 0.400. 

Approximations such as the normal approximation to the binomial distribution 
are not as important as they used to be because nearly exact values can be obtained 
using computer software. As we saw in section 5.5(b), both single and cumulative 
values for the binomial distribution can be obtained from Microsoft Excel. However, 
even when these nearly exact values are available, it may be desirable to use a 
convenient approximation. 
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7.7 Fitting the Normal Distribution to Cumulative 
Frequency Data 

(a) Cumulative Normal Probability and Normal Probability Paper 

Instead of comparing a frequency distribution or probability distribution to a normal 
probability distribution using a histogram or the equivalent, often a better  alternative 
is to compare graphically using cumulative probabilities. This has the advantage of 
giving an overall picture, showing the sum of deviations to any particular  point. 
However, Figure 7.3 shows that the cumulative normal probability plotted against z 
gives an S-shaped curve. That would also be true plotted against x. It is not conve
nient to make graphical comparisons using an S-shaped curve. 

However, the scale can be modified (or distorted) to give a more convenient 
comparison. The scale is modified in such a way that cumulative probability plotted 
against x or z will give a straight line for a normal distribution. A frequency distribu
tion will still show random variations, but real departure from a normal distribution 
is much easier to spot. Thus, cumulative relative frequencies (on the modified scale) 
are plotted versus the variable, x, on a linear scale. If the data came from a normal 
distribution, this plot will give approximately a straight line. If the underlying 
distribution is appreciably different from a normal distribution, larger deviations and 
systematic variations will be present. 

Graph paper using such a modified or distorted scale for cumulative relative 
frequency, and a uniform scale for the measured variable, is called normal probability 
paper. This special type of commercial graph paper, like the special types for loga
rithmic and log-log scales, is available from many suppliers. Commercial normal 
probability paper comes with a distorted scale for relative cumulative frequency 
along one axis and corresponding unequally spaced grid lines. The other scale (with 
corresponding grid lines) is uniform. Points are plotted by hand on this paper with 
co-ordinates corresponding to relative cumulative frequency (on the distorted scale) 
versus the value of the variable (on the linear scale). In most cases we will use data 
from a grouped frequency distribution. Since normal probability paper uses cumula
tive frequency or probability, data from a grouped frequency distribution should be 
plotted versus class boundaries, not class midpoints. 

The points so plotted can be compared with the straight line representing a 
normal distribution fitted to the data and so having the same mean and standard 
deviation. Since the median of a normal distribution is equal to its mean, one point 
on this line should be at 50% relative cumulative frequency and x , the estimated 
mean. Another point should be at 97.7% relative cumulative frequency and ( x + 2s); 
a third should be at 2.3% relative cumulative frequency and ( x  – 2s). 
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Do the results show at the 1% level of significance that the new composition 
gives significantly less wear than the old composition? Interaction between the 
tire composition and the car can be neglected. 

11. Nine specimens of unalloyed steel were taken and each was halved, one half 
being sent for analysis to a laboratory at the University of Antarctica and the 
other half to a laboratory at the University of Arctica. The determinations of 
percentage carbon content were as follows: 

Specimen No. l 2 3 4 5 6 7 8 9 

University of Antarctica 0.22 0.ll 0.46 0.32 0.27 0.l9 0.08 0.l2 0.l8 

University of Arctica 0.20 0.l0 0.39 0.34 0.23 0.l4 0.l3 0.08 0.l6 

Test for a difference in determinations between the two laboratories at the 0.05 
level of significance. Neglect any possibility of interaction. 

12. Two flow meters, A and B, are used to measure the flow rate of brine in a potash 
processing plant. The two meters are identical in design and calibration and are 
mounted on two adjacent pipes, A on pipe 1 and B on pipe 2. On a certain day, 
the following flow rates (in m3/sec) were observed at 10-minute intervals from 
1:00 p.m. to 2:00 p.m.

Meter A Meter B


1:00 p.m. 1.7 2.0 

1:10 p.m. 1.6 1.8 

1:20 p.m. 1.5 1.6 

1:30 p.m. 1.4 1.3 

1:40 p.m. 1.5 1.6 

1:50 p.m. 1.6 1.7 

2:00 p.m, 1.7 1.9 

Is the flow in pipe 2 significantly different from the flow in pipe 1 at the 5% level 
of significance? 

13. The visibility of two traffic paints, A and B, was tested, each at 8 different 
locations. The measures of visibility were taken after exposure to weather and 
traffic during the period January l to July l. The results were as follows: 

Paint A Paint B 

Location Visibility Location Visibility 

lA 7 lB 8 

2A 7 2B l0 

3A 8 3B 8 

4A 5 4B 5 

5A 5 5B 3 
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6A 6 6B 9 

7A 6 7B 8 

8A 4 8B 5 

Test the hypothesis that the mean visibility of paint A is less than that of paint B 
at the 5% level of significance under the following conditions: 
a)	 if both paints were tested simultaneously under identical conditions, the 

signs in paint A and paint B being erected adjacent to one another. Neglect 
any possibility of interaction. 

b)	 if the A locations are on the west side and the B locations are on the east side 
of the city. 

14. A water quality lab tests for the bacterial count in drinking water in a certain 
northern city. 
a) A test is made of a claim in the literature that the time to equilibrium in 

bacterial growth is greater in northerly climates, the standard deviation 
remaining unaffected. The mean time in southerly cities has been found, 
from many measurements, to equal 24.1 hours with a standard deviation of 
2.3 hours . The northern lab tests 21 water specimens and finds the mean 
time to equilibrium bacterial growth is 25.4 hours, with an estimated stan
dard deviation of 2.2 hours, which is not significantly different from the 
standard deviation of 2.3 hours quoted above. Does this data bear out the 
claim in the literature about the increase in mean time to equilibrium, at the 
5% level of significance? 

b)	 Two salesmen turn up at the laboratory one week, each claiming that the 
additive he is selling will decrease the time to equilibrium bacterial growth, 
compared to the other salesman’s product. The laboratory decides to check 
out the claims and tests 6 specimens of water, half of each treated with each 
of the two products. You should neglect any possibility of interaction. What 
does the following data indicate as to the salesmen’s claims (at the 5% level 
of significance)? 

Time to Equilibrium, hours 

Water Sample no.	 Additive 1 Additive 2 

1 23.8 24.5 

2 34.1 34.4 

3 22.1 23.2 

4 15.3 16.7 

5 31.8 31.8 

6 22.5 22.9 

15. a)	 41 cars equipped with standard carburetors were tested for gas usage and 
yielded an average of 8.1 km/litre with a standard deviation of 1.2 km/l. 21 
of these cars were then chosen randomly, fitted with special carburetors and 
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tested, yielding an average of 8.8 km/l with a standard deviation of 0.9 km/l. 
At the 5 percent level of significance, does the new carburetor decrease gas 
usage? 

b)	 Does the following group of data bear out the same result? Neglect any 
possibility of interaction between the type of carburetor and other character
istics of the cars. 

Car No. Standard Carburetor New Carburetor 

1	 7.6 8.2 

2	 7.9 7.8 

3	 6.5 8.1 

4	 5.6 8.6 

5	 7.3 9.5 

Supplementary Problems 
Students may need practice in deciding whether a particular problem can be done 
using the normal distribution or requires the t-distribution. The following problem 
set contains both types. 

1.	 The lives of Glowbrite light bulbs made by Glownuff Inc. have a mean of 1000 
hours and standard deviation 160 hours. 
a) Assuming a normal distribution for the sample means, find the probability 

that 25 bulbs will have a mean life of less than 920 hours. 
b)	 The Consumers Association demands that the mean life of samples of 25 

bulbs be not below 920 hours with  99.9% confidence. What is the maximum 
permissible standard deviation (for µ = 1000 hours)? 

c)	 The manufacturer has instituted a sampling program to maintain quality 
control. He intends that there be no more than 5% probability that the true 
mean bulb life is more than 20 hours different from the sample mean. What 
sample size should he use, assuming the standard deviation is still 160 
hours? 

2.	 Electrical resistors made by a particular factory have a coefficient of variation of 
0.28% with a normal distribution of resistances. 
a) Find the 99% confidence interval for the mean of samples of size five if the 

population mean is 10.00 ohms. 
b) How many observations must a sample contain to give at least 99.5% prob

ability that the sample mean is within 0.30% of the population mean? 

3.	 Slaked lime is added to the furnace of an electric power station to reduce the 
production of SO2 (a major cause of acid rain). Extensive previous data showed 
that a standard method of adding slaked lime reduced SO2 emission by an 
average percentage of 31.0 with a standard deviation of 4.70. A test on a new 
method gives mean percentage removed of 33.5 based on a sample of size 15 
with no change in the standard deviation. Is there evidence at the 1% level of 
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significance that the new method gives higher removal of SO2 than the standard 
method? A normal distribution is followed. 

4.	 a) The manufacturer of the Energy-saver furnace claims a mean energy effi
ciency of at least 0.83. A sample of 21 Energy-saver furnaces gives a sample 
mean of 0.81 and sample standard deviation of 0.060. Data show approxi
mately a normal distribution. Test whether the manufacturer’s claim can be 
rejected at the 5% level of significance. 

b)	 It is known that the industry-standard furnace has a mean energy efficiency 
of 0.78 and a standard deviation of 0.055. Use the sample mean for 
Energy-saver furnaces to test whether these furnaces have a significantly 
higher efficiency than the industry standard at the 5% level of significance. 

5.	 The mean yield stress of a certain plastic is specified to be 30.0 psi. The standard 
deviation is known to be 1.20 psi. A normal distribution is followed. 
a) If the population mean is 30.0 psi, what is the 95% confidence interval for 

the mean yield stress of 9 specimens? 
b)	 A sample of 9 specimens shows a mean of 27.4 psi. Is this sample mean 

significantly different from the specified mean value? Use the 5% level of 
significance? 

c)	 Is the sample mean from part (b) significantly larger than 26.3 psi at 1% 
level of significance? 

6.	 The standard deviation of a particular dimension on a machine part is known to 
be 0.0053 inches. A normal distribution is followed. Four parts coming off the 
production line are measured, giving readings of 2.747 in, 2.739 in, 2.750 in, and 
2.749 in. Is the sample mean significantly larger than 2.740 inches at the l% level 
of significance? What is the probability of accepting the null hypothesis if the 
true mean is 2.752 in. and the standard deviation remains unchanged? (Notice 
that this would be a Type II error.) 

7.	 Specimens of soil were obtained from a site both before and after compaction. 
Tests on 10 pre-compaction specimens gave a mean porosity of 0.413 and a 
standard deviation of 0.0324. Tests on 20 post-compaction specimens gave a 
mean porosity of 0.340 and a standard deviation of 0.0469. These standard 
deviations are not significantly different. Porosity follows a normal distribution. 
a) At the 5% level of significance, did the compaction correspond to a signifi

cant reduction in mean porosity? 
b) At the 5% level of significance, is the reduction in mean porosity signifi

cantly less than the desired reduction of 0.1? 

8.	 Three machines are used to pack different colored crystals in a bath salt mixture. 
The machines are set for machines 1 and 2 to each add 500 grams of salts and 
machine 3 to add 750 grams. It has been found that the variation around the set 
point is normally distributed in each case with the following dispersions: 
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Machine Standard Deviation


 1 20 grams


 2 10 grams


 3 25 grams

a)	 What is the mean weight of a package of bath salts? 
b)	 If packages of bath salts with weight less than 1.65 kg have to be repacked, 

what percentage of the day’s output would fall into this category? 
c)	 It is decided to sample the final output to estimate the mean weight of the 

packages. How big a sample must be taken to estimate with 99% confidence 
that the true mean lies between 99% and 101% of the sample mean? 

9.	 Two different kinds of cereal designated A and B are combined to form a new 
product called Brand X. The cereal types are weighed independently and mixed 
automatically before being packed in a plastic bag which weighs 10 grams. The 
weighing machines are set so that µA = 1000 grams and µB = 500 grams. The 
weights are normally distributed, and the coefficient of variation in each case is 
10%. 
a) What is the mean total weight of a bag of Brand X? 
b) What is the probability that a bag of Brand X will contain less than 950 

grams of Cereal A and more than 450 grams of Cereal B? 
c) What is the probability that a bag of Brand X will contain exactly 1400 

grams? 
d) What is the probability that a bag of Brand X will contain less than 1400 

grams? 
e) How many bags must be weighed to ensure with 95% confidence that the 

true mean weight of a bag lies within 30 grams of the sample mean? 
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C H A P T E R  10 
Statistical Inferences for 
Variance and Proportion 

For this chapter the reader needs a good knowledge of Chapter 9.

For section 10.1 a solid understanding of sections 3.1 and 3.2 is needed,


while section 10.2 requires a good knowledge of section 5.3.


The general approach developed in Chapter 9 for tests of hypothesis and confidence 
intervals for means carries over to similar inferences for  variances and proportions. 
The concepts of null hypothesis, alternative hypothesis, level of significance, confi
dence levels and confidence intervals can be applied directly. 

10.1 Inferences for Variance 
Is a sample variance significantly larger than a population variance? Or is one sample 
variance significantly larger than another, indicating that one population is more 
variable than another? Those are the sorts of question we are trying to answer when 
we compare two variances. To obtain answers we will introduce two more probability 
distributions, the chi-squared distribution and the F-distribution. Mathematically, the 
F-distribution is related to the ratio of two chi-squared distributions. We will use the 
chi-squared distribution in section 10.1.1 to compare a sample variance with a 
population variance, and we will use the F-distribution in section 10.1.2 to compare 
two sample variances. We will see in part (d) of section 10.1.2 that the F-distribution 
can be used also to compare a sample variance with a population variance. Therefore, 
at this time the reader can omit section 10.1.1, and so the chi-squared probability 
distribution, if that seems desirable. We will need the chi-squared distribution later 
when we come to Chapter 13, where we will encounter the chi-squared test for 
frequency distributions. 

10.1.1 Comparing a Sample Variance with a Population Variance 
Say we are trying to make the production from a particular process less variable, so 
more uniform. To assess whether we have been successful we might take a sample 
from current production and compare its sample variance with the population vari
ance established under previous conditions. Is the new estimate of variance 
significantly smaller than the previous variance? If it is, we have an indication that 
the production has become less variable, so there is some evidence of success. 

We would test the trial assumption that the new sample variance and the previous 
population variance differ only because of chance. Specifically, the null hypothesis is 
that the new population variance is equal to the previous population variance. The 
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alternative hypothesis would be that the new population variance is smaller than the 
previous one, so we have a one-sided test. Is the new sample variance so much 
smaller than the previous population variance that the null hypothesis is very un
likely? The size of the sample would, of course, affect the answer. 

(a) Chi-squared Probability Distribution 

If the sample is from a normal distribution, the probability distribution which applies 
to the variances in this situation is the chi-squared distribution. The chi-squared 
distribution and the normal distribution are related mathematically. Chi is a Greek 
letter, χ, which is pronounced “kigh,” like high. A relationship can be derived among 

2 2χ , σ , s2, and the number of degrees of freedom on which s2 is based, (n – 1). This 
relationship is 

2(n −1)s2χ =  (10.1)2σ 
The density function of the χ2 distribution is unsymmetrical, and its shape 

depends on the number of degrees of freedom. Probability density functions for three 
different numbers of degrees of freedom are shown in Figure 10.1. As the number of 
degrees of freedom increases, the density function becomes more symmetrical as a 
function of χ2. For any particular number of degrees of freedom, the mean of the 
distribution is equal to the number of degrees of freedom. 

1 

pdf 

1 df 

4 df 

8 df

 Figure 10.1: Shapes of Probability 
0.75 

Density Functions for Some 
Chi-squared Distributions 
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0
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Chi squared 

Table A3 in Appendix A gives values of χ2 corresponding to some values of the 
upper-tail probability. 

If a computer with Excel or some alternatives is available, values can be found 
2from the computer instead of from tables. Probabilities corresponding to values of χ

can be found from the Excel function CHIDIST. The arguments to be used with this 
function are the value of χ2 and the number of degrees of freedom. The function then 
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returns the upper-tail probability. For example, for χ2 = 18.49 at 30 degrees of 
freedom, we type in a cell for a work sheet the formula CHIDIST(18.49,30), or else 
we can paste in the function, CHIDIST( , ), then type in the arguments and choose 

2the OK button. The result is 0.95005, the probability of obtaining a value of χ
greater than 18.49 completely by chance. 

If we have a value of the upper-tail probability and the number of degrees of 
freedom, we use the Excel function CHIINV to find the value of χ2. Again, the function 
can be chosen using the Formula menu or it can be typed into a cell. For an upper-tail 
probability of 0.95 and 30 degrees of freedom, CHIINV(0.95,30) gives 18.4927. 

We will use the χ2 distribution in this chapter to compare a sample variance with 
a population variance. In Chapter 13 we will use this same distribution for an entirely 
different purpose, to compare two or more frequency distributions. 

(b) Test of Significance for Variances 

Let us look at an example. 

Example 10.1 

The population standard deviation of strengths of steel bars produced by a large 
manufacturer is 2.95. In order to meet tighter specifications engineers are trying to 
reduce the variability of the process. A sample of 28 bars gives a sample standard 
deviation of 2.65. Assume that the strengths of steel bars are normally distributed. Is 
there evidence at the 5% level of significance that the standard deviation has de
creased? 

Answer: H0: σ2 = (2.95)2 = 8.70 

Ha: σ2 < 8.70 (one-tailed test) 
2(n −1)s2The test statistic will be χ =  

2
. 

σ 
2 is sufficiently small, then H0 is not likely to be true.If χcalculated 

2 2(n −1)s (28  −1)(2.65  )2 = =χcalculated 2 2 
= 20.98 

σ (2.95 ) 

Figure 10.2: 
5% probability 

Chi-squared Distribution 

16.1 21.0 Chi-squared 
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From Table A3, for 5% probability in the lower tail (the lefthand tail) and there
fore 95% probability in the upper tail, the one to the right, and with 28 – 1 = 27 

2 2degrees of freedom, we find 2 , so the calculatedχcritical = 16.15. Then χcalculated > χcritical 

value does not fall in the cross-hatched tail for 5% probability. The population 
variance is not significantly less than 8.70, so the population standard deviation is not 
significantly less than 2.95. We do not have evidence at the 5% level of significance 
that the standard deviation of strengths of the steel bars has decreased. 

An alternative method for solving this sort of problem using the F-distribution 
will be given in section 10.1.2(d). 

(c) Confidence Intervals for Population Variance or Standard Deviation 

If we have an estimate of the variance or standard deviation from a sample, we can 
determine a corresponding confidence interval for the variance or standard deviation 
for the population. Again, let’s examine an example. 

Example 10.2 

A sample of 15 concrete cylinders was taken randomly from the production of a 
plant. The strength of each specimen was determined, giving a sample standard 
deviation of 215 kN/m2. Find the 95% confidence interval (with equal probabilities in 
the two tails) for standard deviation of the strengths. Assume the strengths follow a 
normal distribution. 

Answer: s2 = (215)2 = 46,225 based on 15 – 1 = 14 degrees of freedom. 
2(n −1)s2The relevant statistic to be found from tables or Excel is χ =  

2
. 

σ 
2(n −1)s2Then the confidence limits will be found from σ =  

2  using values of χ2 at
χ

cumulative probabilities of 0.025 and 0.975 for 14 d.f. 

0.025The limiting values of χ2 can be found from 
either Table A3 or Excel. From Table A3 for 14 d.f. 0.025 
the limiting values of χ2 are 5.63 at a cumulative 
probability of 0.025 (so upper-tail area of 0.975) 
and 26.12 at a cumulative probability of 0.975 (so 

2upper-tail area of 0.025). The same numbers 5.63 26.12 χ

(expressed in more figures) are found from Figure 10.3: Confidence limits 
CHIINV(0.025,14) and CHIINV(0.975,14). Limit- for Chi-squared Distribution 
ing values are shown on Figure 10.3. The 

( )(46225 ) 14 (46225 )14 
corresponding limits on σ2 are = 115, 000 and 

( )
= 24,800. 

5.63 26.12 
The limits on σ are the square roots of these numbers, 339 and 157. Then, the 95% 
confidence interval for standard deviation is from 157 to 339 kN/m2. 
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10.1.2 Comparing Two Sample Variances 
Say we have two sample variances. Is one sample variance significantly different 
from (or else larger than) the other? Or, on the other hand, is it reasonable to say that 
both sample variances might have come from the same population? The appropriate 
test of hypothesis is the F-test or Variance-ratio test. We calculate the ratio of the 
two sample variances: 

2 

F = s1 
(10.2)

s2 
2 

where s1
2 is the estimate of population variance on the basis of sample 1, and s2

2 is 
the estimate of population variance on the basis of sample 2. In this book we will put 
the larger estimate of variance in the numerator and call it s1

2 so that the quantity F is 
larger than 1. 

(a) Probability Distribution for Variance Ratio 

A critical or limiting value of F is obtained from tables or Excel. These theoretical 
values must be related to the ratio of one χ2 function to another. In fact, the theoretical 
statistic F is defined as the ratio of two independent chi-squared random variables, 
each divided by its number of degrees of freedom, but we don’t need to go into the 
details here. Remember that we assumed that the sample came from a normal distri
bution in order to make the chi-squared distribution applicable to the  variances, and 
the same assumption is required to make the F-distribution applicable here. 

The shape of the F-distribution is always unsymmetrical, skewed to the right. The 
shape depends on the numbers of degrees of freedom in the sample variances in both 
the numerator and the denominator. 
Figure 10.4 shows the shapes of two 0.8 

F-distributions. 

pdfThe probability that F > f1 depends 0.6 

on the number of degrees of freedom 
in the numerator and the number of 
degrees of freedom in the denomina- 0.4 

tor, as well as the value of f1. To show 
all the combinations of parameters that 
might be needed in practical calcula- 0.2 

tions would require a very extensive 
table. The usual practice is to show in 

0a table only a limited selection of 

6,24 df 

4,10 df 

0 1 2 3
values. Table A4 in Appendix A is in 
two parts. For various combinations of f 

degrees of freedom for variance in the Figure 10.4: Shapes of Two F-distributions 
numerator, df1, and degrees of freedom with Various Degrees of Freedom in 
for variance in the denominator, df2, Numerator and Denominator 
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values of F which will give an upper-tail probability of 0.05 are shown on the first 
page of Table A4. For various combinations of df1 and df2, values of F which will 
give an upper-tail probability of 0.01 are shown on the second page of Table A4. If 
combinations of df1 and df2 that are not shown on Table A4 are needed, interpolation 
is required. 

If a computer is available with Excel or some alternative, it can be used to find 
probabilities corresponding to any applicable value of F, or else values of F corre
sponding to any applicable probability. These would both be for the required 
combination of degrees of freedom in the numerator and degrees of freedom in the 
denominator. The Excel function FDIST gives the probability distribution for F. The 
arguments to be used with this function are the value of F, the number of degrees of 
freedom for variance in the numerator, and the number of degrees of freedom for 
variance in the denominator. Then Excel will give the corresponding upper-tail 
probability, that is, Pr [F > f1]. Similarly, the Excel function FINV gives the value of 
F for stated upper-tail probability. If we enter FINV(upper-tail probability, degrees of 
freedom for variance in the numerator, degrees of freedom for variance in the de
nominator), Excel will give the corresponding value of F. 

(b) Test of Significance: the F-test or Variance-ratio Test 

Now we compare a calculated value of F to a chosen or critical value of F. Is the 
calculated value so large that it is very unlikely that it could have occurred by 
chance? The samples must have been chosen randomly and independently. 

We make the null hypothesis that the difference 
between the two estimates of variance is entirely 

2due to chance, so σ1  = σ2
2. The alternative hypoth-

Level of significance 

s

esis is either that σ1
2 ≠ σ2

2 for a two-sided test, or 
else that σ1

2 > σ2
2 for a one-sided test. Because we 

put the larger estimate of variance in the numerator, 
1
2 > s2

2, we have no reason to consider the possibil
2 fity that σ1

2 < σ2 . fcritical 

If the variance ratio, F, is too large, then there is Figure 10.5: 
little probability that the null hypothesis is true. Level of Significance 
Specifically, the probability of obtaining this large a for a one-sided F-test 
value of F or larger purely by chance, when the null 
hypothesis is true, is equal to the observed level of significance. Such a probability 
must also depend on the numbers of degrees of freedom on which each estimate of 
variance is based. These are df1 degrees of freedom for the larger estimate of variance 
and so for the numerator, and df2 degrees of freedom for the smaller estimate of 
variance and so for the denominator. 

For the 5% level of significance, the limiting value of F for a one-sided test must 
be such that Pr [F > fcritical] = 0.05, and similarly for other levels of significance. 
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f

For a two-sided F-test, but set up so that fcalculated > 1, the same values of fcritical 

apply for levels of significance twice as great to allow for both tails. For example, 
critical for a two-sided test at 2% level of significance is the same as fcritical for a one-

sided test at 1% level of significance. 

Example 10.3 

Two additives to Portland cement are being tested for their effect on the strength of 
concrete. 21 batches were made with Additive A, and their strengths showed standard 
deviation sA = 41.3. 16 batches were made with the same percentage of Additive B, 
and their strengths showed standard deviation sB = 26.2. Assume that the strengths of 
concrete follow a normal distribution. Is there evidence at the 1% level of signifi
cance that the concrete made with Additive A is more variable than concrete made 
with Additive B? 

2 2Answer: H0: σA = σB 

2Ha: σA 
2 > σB (one-tailed test) 

2 sA 
The test statistic will be F = 2 . Large values of fcalculated will indicate that the null 

sB 

hypothesis is not likely to be true. 
2 sA 41.32 

fcalculated = 
2 

= 
26.22 

= 2.485based on 20 degrees of freedom for the numerator and 
sB 

15 degrees of freedom for the denominator. 

From the second part of Table A4, for 1% level of significance with df1 = 20 and 
df 2 = 15, fcritical = 3.37. Alternatively, from the function FINV in Excel, 
FINV(0.01,20,15) gives fcritical = 3.37189476. 

Since fcalculated < fcritical, the difference is not significant at the 1% level of significance. 
Then at this level of significance there is not sufficient evidence to say that the 
strength of concrete made with Additive A is more variable than the strength of 
concrete made with Additive B. 

Example 10.4 

Using the same figures as in Example 10.3, is there evidence at the 10% level of 
significance that concrete made with Additive A and concrete made with Additive B 
have different variabilities? Again, assume that the strengths of concrete follow a 
normal distribution. 

2 2Answer: H0: σA = σB 

2Ha: σB 
2 ≠ σB (two-tailed test) 

254 



Statistical Inferences for Variance and Proportion 

2 sA 
The test statistic will be F = 2 . Large values of fcalculated will indicate that H0 is 

2 

unlikely to be true. As before, 

sB

f = sA 
2 

= 41.32 

= 2.485  based on 20 degrees of calculated 
sB 

26.22 

freedom for the numerator and 15 degrees of freedom for the denominator. 

From the first part of Table A4, for 5% upper-tail area, corresponding to 10 % level 
of significance for a two-tailed test, with df1 = 20 and df2 = 15, flimit = 2.33. Alterna
tively, from the function FINV in Excel, FINV(0.01,20,15) gives 2.32753194. 

Since fcalculated > flimit, there is evidence at the 10% level of significance that concrete 
made with Additive A and concrete made with Additive B have different variabilities. 

Besides comparisons in which the major objective is to see whether one set of data is 
significantly more variable or has different variability than another set, the F-test is 
used for two main purposes: 

1.	 To see whether two estimates of variance can be combined or pooled to compare 
means by an unpaired t-test. In this case the F-test would be two-tailed. Usually, 
if the variances are not significantly different at (let us say) the 10% level of 
significance, they can be combined to give a better estimate of variance to use in 
the t-test. 

2.	 To compare two estimates of variance from different types of data as part of the 
analysis of variance, which will be considered more fully in Chapter 12. In some 
cases the total variation of data from an experiment can be broken down into two 
estimated variances, say the variance within groups and the variance between 
groups. The variance within groups comes from 
repeated measurements at the same condition and so 
gives an estimate of the variance due to experimental 
error. The variance between groups arises from 

1% probability
different treatments or different conditions as well as

from experimental error. The question to be answered

is, is the variance between groups significantly larger

than the variance within groups? If so, that is an flimit  f


 4.60 	 6.53
indication that the variation of treatments or condi

tions has an effect on the results. A critical level of Figure 10.6:

significance must be stated. This is a one-tailed F-test. Test of Significance


Example 10.5 

In the results from an experiment the estimated variance within groups (WG) , based 
on 27 degrees of freedom, is 233, while the estimated variance between the groups 
(BG), based on 3 degrees of freedom, is 1521. Is there evidence at the 1% level of 
significance that the difference in conditions between the groups has an effect on the 
results? The data have been plotted on normal probability paper, showing reasonable 
agreement with normal distributions. 
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2Answer: H0: σWG
2 = σBG 

2Ha: σBG
2 > σWG (one-tailed test) 

s 2 
BG 

2 

s 
The test statistic will be F = 2 , in that order because sBG

2 > sWG . 
WG 

If fcalculated is sufficiently large, H0 will not be plausible. 
2 

fcalculated = 
sBG 

2 
= 1521 = 6.53. Another name for fcritical is flimit. For 1% level of signifi-

sWG 
233 

cance in a one-tailed test, with 3 degrees of freedom in the numerator and 27 degrees 
of freedom in the denominator, the second part of Table A4 gives flimit = 4.60. Alterna
tively, from the function FINV in Excel, FINV(0.01,3,27) gives 4.60090632. 

Since fcalculated > flimit, there is evidence at the 1% level of significance that the differ
ence in conditions between the groups has an effect on the results. 

(c) Confidence Interval for Ratio of Sample Variances 

A point estimate of the ratio of two population variances is given by the corresponding 
2 s1 

ratio of two sample variances, 2 . It is quite feasible to derive a confidence interval 
s2 σ1

2 

for the ratio of the population variances, σ2
2 , as long as the samples were taken 

randomly from normal distributions. However, practical applications of this tech
nique by engineers are hard to find, so these confidence intervals will not be 
discussed further here. If they should be needed, the reader is referred to books by 
Walpole and Myers and by Vardeman (references in section 15.2). On the other hand, 
confidence intervals for population variances (rather than their ratios) are very useful 
and have been discussed in section 10.1.1(c). 

(d) Using the Variance Ratio to Compare a Sample Variance with a 
Population Variance 

In section 10.1.1 we saw that the chi-squared distribution can be used to compare a 
sample variance with a population variance. An alternative method of making this 
comparison uses the F-distribution. If one of the variances is a population variance, 
its number of degrees of freedom will be infinite. In this section Example 10.1 will 
be solved by this alternative method. 

Example 10.1 (Alternative solution) 

The population standard deviation of strengths of steel bars produced by a large 
manufacturer is 2.95. In order to meet tighter specifications engineers are trying to 
reduce the variability of the process. A sample of 28 bars gives a sample standard 
deviation of 2.65. Assume that the strengths of steel bars are normally distributed. Is 
there evidence at the 5% level of significance that the standard deviation has decreased? 
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Answer:	 H0: σ2 = (2.95)2 = 8.70 

Ha: σ2 < 8.70 (one-sided test) 

2 2s1 σ =The test statistic will be F = 2 2 . If Fcalculated is sufficiently large, then H0 is not ss2likely to be true. 
22σ (2.95 )

= = = 1.24 Fcalculated 	 2 2 

F

s (2.65 ) 
From Table A4 for 5% upper-tail probability, ∞ degrees of freedom in the numerator 
(df1) and 28 – 1 = 27 degrees of freedom in the denominator (df2), Flimit = 1.67. Then 

calculated < Flimit , so the calculated value is not significant at the 5% level of signifi
cance. Therefore, we do not have evidence at the 5% level of significance that the 
standard deviation has decreased. 

Problems 
1.	 A testing laboratory is trying to make its results more consistent by standardizing 

certain procedures. From a sample of size 28 the sample standard deviation by 
the revised procedure is found to be 1.74 units. Plotting concentrations on 
normal probability paper did not show any marked departure from a normal 
distribution. Is there evidence at the 5% level of significance that the sample 
standard deviation is significantly less than the former population standard 
deviation of 2.92 units? 

2.	 It is known from long experience that, for a particular chemical compound, 
determinations made with a mass spectrometer have a variance of 0.24. An 
analyst who is new to the job makes a series of 28 determinations with the 
spectrometer and they give an unbiased estimate of variance of 0.32. Plotting the 
results on normal probability paper indicates that the data do not vary signifi
cantly from a normal distribution. Is the sample estimate of variance significantly 
larger than the variance based on long experience? Use a 5% level of significance. 

3.	 Yield stresses for shear were measured in a random sample consisting of 28 soil 
specimens. Plotting the data on normal probability paper showed no apparent 
departure from normal distribution. The sample standard deviation was found to 
be 285 kN/m2. Find the two-sided confidence limits  (with equal probabilities in 
the two tails) for the standard deviation of the yield stress. 

4.	 A sample consists of 21 specimens, each taken by a standard procedure from a 
different filter cake on an industrial filter. Moisture contents of the specimens 
were measured. Plotting the data on normal probability paper indicated negli
gible departure from normal distribution. The sample standard deviation of 
percentage moisture contents was found to be 3.21. Find the two-sided 90% 
confidence limits (with equal probabilities in the two tails) for the standard 
deviation of percentage moisture contents. 
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5.	 The coefficients of thermal expansion of two alloys, A and B, are compared. Six 
random measurements are made for each alloy. For alloy A, the coefficients 
(×106) are 12.95, 14.05, 12.75, 12.10, 13.50 and 13.00. Coefficients (×106) for 
alloy B are 14.05, 15.35, 14.35, 15.15, 13 85 and 14.25. Assume the values for 
each alloy are normally distributed. Is the variance of coefficients for alloy A 
significantly different from the variance of coefficients for alloy B? Use the 10% 
level of significance. 

6.	 The carbon dioxide concentration in the air within an energy-efficient house was 
measured once each month over an entire year. The measurements (in ppm) for 
January to December, respectively, were 650, 625, 480, 400, 325, 305, 310, 305, 
490, 540, 695, and 600. Assume that these measurements follow a normal 
distribution. The concentration of carbon dioxide in an older house also was 
measured each month in the same year, but on a different day of the month than 
for the energy efficient house. The data for this house for January to December, 
respectively, were 505, 530, 430, 400, 300, 300, 305, 310, 320, 410, 520, and 
540. At the 10% level of significance, is there a difference in the variability of 
carbon dioxide concentration between the two houses? 

7.	 The standard way of measuring water suction in soil is by a tensiometer. A new 
instrument for measuring this parameter is an electrical resistivity probe. A 
purchaser is interested in the variability of the readings given by the new instru
ment. The purchaser put both instruments into a large tank of soil at ten different 
locations, both instruments side by side at each location, and obtained the 
following results. 

Suction (in cm) Measured by 
Tensiometer Electrical Resistivity Probe 

355 365 
305 300 
360 375 
330 360 
345 340 
315 320 
375 385 
350 380 
330 330 

350 390 
a) Choose an appropriate level of significance and test for a significant differ

ence in the variance of the two instruments. 
b)	 It is known from extensive measurements that the variance of the tensiometer 

readings in a tank of soil like this should be 350 cm2. Choose an appropriate 
level of significance and test whether the electrical resistivity probe gives a 
higher variability than expected. 
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8.	 A general contractor is considering purchasing lumber from one of two different 
suppliers. A sample of 12 boards is obtained from each supplier and the length of 
each board is measured. The estimated standard deviations from the samples  are 
s1 = 0.13 inch and s2 = 0.17 inch, respectively. Assume the lengths follow a 
normal distribution. Does this data indicate the lengths of one supplier’s boards 
are subject to less variability than those from the other supplier? Test using a 
level of significance equal to 0.02. 

9.	 Wire of a certain type is supplied to an electrical retailer by each of two manufac
turers, A and B. Users of the wire suggest that there is more variability (from 
specimen to specimen) in the resistance of the wire supplied by Company A than 
in that supplied by Company B. Random samples of wire from spools of the wire 
supplied by the two companies were taken. The resistances were measured with 
the following results: 

Company A B 

Number of Samples 13 21 

Sum of Resistances 96.8 201.4 

Sum of Squares of Resistances 732.30 1936.90 

Assume the resistances were normally distributed. Use the results of these 
samples to determine at the 5% level of significance whether or not there is 
evidence to support the  suggestion of the users. 

10. A study of wave action downstream of a dam spillway was carried out before and 
after a modification was made to the structure. The modification was intended to 
reduce wave action, which is indicated by variability in the depth of water. 
Depths of water were measured in meters. Before modification 41 measurements 
gave a sample standard deviation of 2.80. After modification 51 measurements 
gave a sample standard deviation of 1.49. 
a) Choosing an appropriate level of significance, determine if there is a signifi

cant reduction in variability in the water depth—i.e., a significant reduction 
in wave action. 

b) Is the pre-modification wave action at this site any different from that at 
another site where 51 measurements gave a sample variance of the depth of 
2.65 m2? Choose an appropriate level of significance. 

11. In a random survey of gasoline stations in Saskatchewan and Alberta, the average 
prices per liter of unleaded regular gasoline and the corresponding standard 
deviations were as follows: 

Province	 Sample Size Mean Standard deviation 
(Cents/liter) (Cents/liter) 

Alberta 14 68.8 1.1 

Saskatchewan 9 70.7 0.8 
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a) Using the 10% level of significance, test the claim that the price per liter of 
gasoline is equally variable in the two provinces. 

b) At what level of significance can you conclude that the average gasoline 
price in Alberta is less than in Saskatchewan? 

12. It was claimed by a sand filter salesman that the mean concentrations of solids 
after filtering are normally distributed  and have an average value of .025 percent 
solids, and that 95% of recorded concentrations will not exceed .030 percent 
solids. In order to check the validity of this claim a sample of 21 measurements 
of solids concentration after filtering was taken. A mean value of .0265 percent 
solids and a sample standard deviation of 0.0042 percent solids were found. 
a) Is there reason at the 5% level of significance to suspect that the output is 

more variable than the salesman claims? 
b) Assuming the answer to part a) is no, is there reason to suspect that the filter 

is less efficient than the salesman claims at the 5% level of significance? 

13. Six random determinations of sulfur content in steel at a particular point in a 
process gave the values 3.07, 3.11, 3.14, 3.24, 3.16, and 3.08. Assume the values 
are normally distributed. A previous study based on a sample of 21 random 
observations gave an estimate of variance of 1.51 × 10–3. Is the variance signifi
cantly higher now? Use the 5% level of significance. 

14. The following are the values, in millimeters, obtained by two engineers in ten 
successive measurements of the same dimension. 

Engineer A l0.06 l0.00 9.94 10.l0 9.90 l0.04 9.98 l0.02 9.96 l0.00 

Engineer B l0.04 9.94 9.84 9.96 9.92 9.98 9.90 9.94 9.92 9.96 
a) At l0% level of significance, is one engineer more consistent in his measur

ing than the other? 
b) At 5% level of significance, is there a difference in the mean values obtained 

by the two engineers? 

15. From a set of experimental results the sample estimate of the variance within 
groups, based on 40 degrees of freedom, is 312, and the sample estimate of the 
variance between groups, based on 5 degrees of freedom, is 987. At the 5% level 
of significance, can we say that the difference in conditions between groups has a 
significant effect? The data have been plotted on normal probability paper, 
showing reasonable agreement with a normal distribution. 

16. Analysis of a set of experiments gives an estimated variance within groups, based 
on 20 degrees of freedom, of 4.55, and an estimated variance between groups, 
based on 4 degrees of freedom, of 21.3. Is there evidence to say at the 5% level 
of significance that the difference between groups is significant? When data are 
plotted on normal probability paper they show reasonable agreement with a 
normal distribution. 
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10.2 Inferences for Proportion 
Let us consider a typical engineering problem involving inference for proportion, 
most often a problem from the area of quality control or quality assurance. Engineers 
in industry often need to find the proportion of rejected items among the units 
produced by a production line. We would attack such a problem by taking a random 
sample. We would examine a certain number of units, say n units, as they are pro
duced. We would determine for that sample the number of rejected units, say x of 
them. Then the ratio of x to n gives an indication of the proportion of rejects in all the 
items produced under those conditions. In fact, this turns out to be an unbiased 
estimate of the proportion of rejects in that population, although it may be a very 
preliminary estimate. We will still need some indication of how precise the estimate 
is, and by taking a large enough sample we can make the estimate as precise as 
desired. Then we might find confidence limits for the proportion of rejects in the 
population. 

If we later take a sample of a suitable size and find that the proportion of rejects 
in the sample is so large that the difference from the previous result is significant at a 
particular level of significance, that would be an indication that the proportion of 
rejects in the population has changed. As another possibility, we may make some 
modification of operating conditions and take a sample of suitable size. Analysis 
would indicate whether there is statistically significant evidence that the modification 
has reduced the proportion of rejects in the population. 

The methods we used in Chapter 9 to find answers to similar questions for the 
mean (and in section 10.1 for the variance) can be applied to questions involving 
proportion without much modification, but now the binomial distribution will be 
appropriate instead of the normal distribution or t-distribution or F-distribution. 

10.2.1 Proportion and the Binomial Distribution 
We have seen in section 5.3(g) that if certain reasonable assumptions are satisfied, the 
proportion of rejects in a sample is governed by a form of the binomial distribution. 
If a random sample of size n is found to contain x rejects, then on the basis of that 
sample we would estimate the proportion of rejects in the relevant population to be 

p̂ = x 
. According to equation 5.13 the mathematical expectation of the sample 

n 
proportion rejected is µ p̂ = p, where p is the true proportion of rejects in the popula
tion. According to equation 5.14, the variance of the proportion rejected in a random 

p(1 − p)
sample of that size is . 

n 
10.2.2 Test of Hypothesis for Proportion 
If the number of defective items in a sample is too large, we have an indication that 
the proportion of defective items in the population has become unacceptable. 
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(a) Direct Calculation from the Binomial Distribution 

If the sample size and number of defective items in the sample are fairly small, we 
can calculate using the binomial distribution directly. 

Example 10.7 

Mechanical components are produced continuously in large numbers on a production 
line. When the machines are correctly adjusted, extensive data show that the propor
tion of defective components is 0.027. If the proportion of defectives in a sample of 
size 50 is so large that the result is significant at the 5% level, the production line 
will be stopped for adjustment. 

a) What probability distribution applies? 

b) What is the smallest proportion of defective items in a sample of 50 that will stop 
the production line? 

Answer:  (a) The binomial distribution applies because there are only two possible 
results, the probability of defective items is assumed constant, each result is 
independent of every other result, and the number of trials is fixed. 

(b) The production line will be stopped if the proportion of rejected items in a 
sample of 50 is so large that the observed level of significance is 5% or less. 

Null hypothesis, H0: p = 0.027 

Alternative hypothesis, Ha: p > 0.027 (one-tailed test) 

The binomial distribution applies with n = 50 and p = 0.027, so 

Pr [X = x] = 50Cx  (0.027)x (0.973)(50–x) 

Let the limiting proportion of defective items to stop the production line be 
xlim xlim= . Then the cumulative probability of a proportion defective up to and 

x
n 50


lim
including  must be no more than 5% when the true proportion defective is 0.027. 
50 

That is, we choose the smallest value of p̂  which will satisfy the requirement that 


Pr  p̂ ≥ xlim  

≺ 0.05  on condition that the true proportion defective is p = 0.027. 50  
The probability that the sample will contain no rejects is 

Pr [ p̂  = 0] = Pr [X = 0] = (0.973)50 = 0.254 

Similarly, Pr [ p̂  = 0.02] = Pr [X = 1] = (50) (0.027)1 (0.973)49 = 0.353 

50 
Pr [ p̂  = 0.04] = Pr [X = 2] = 

( )(49 )
(0.027)2 (0.973)48 = 0.240 

2 
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50

Pr [ p̂  = 0.06] = Pr [X = 3] = 3 2) (0.027)3 (0.973)47 = 0.107


( )(49)(48) 
( )(

(50)( )( )( )49 48 47 
Pr [ p̂  = 0.08] = Pr [X = 4] = 4 3)(2) (0.027)4 (0.973)46 = 0.035( )(

(50)( )( )( )(46)49 48 47 
Pr [ p̂  = 0.10] = Pr [X = 5] = 5 4)(3)(2) (0.027)5 (0.973)45 = 0.009( )(

Probabilities are decreasing rapidly, and the total probability to this point is 0.998 (to 
three figures), so the critical number of rejected items at the 5% level of significance 
has been reached or exceeded. To see just where the boundary for that level of 
significance is located, we calculate successive cumulative probabilities: 

Pr [ p̂ ≥ 0.02] = 1 – Pr [ p̂  = 0] = 1– 0.254 = 0.746. 

Pr [ p̂ ≥ 0.04] = 1 – Pr [ p̂  = 0] – Pr [ p̂ = 0.02] 

= 1 – 0.254 – 0.353 = 0.392 

Pr [ p̂ ≥ 0.06] = 1 – Pr [ p̂  = 0] – Pr [ p̂ = 0.02] – Pr [ p̂ = 0.04] 

= 1 – 0.254 – 0.353 – 0.240 = 0.152 

Pr [ p̂ ≥ 0.08] = 1 – Pr [ p̂ = 0] – Pr [ p̂ = 0.02] – Pr [ p̂ = 0.04] – Pr [ p̂ = 0.06] 

= 1 – 0.254 – 0.353 – 0.240 – 0.107 = 0.046 

Since this last result is less than 0.05, and Pr [ p̂ ≥ 0.08] corresponds to Pr [X ≥ 4], 4 
or more defective items in a sample of 50 will be significant at the 5% level of 
significance. Then the smallest proportion of defective items in a sample of 50 items 
which will stop the production line will be 0.08. 

Example 10.8 

This is a continuation of Example 10.7. Now the true probability that any one 
component is defective has increased to 0.045. What is the probability of a Type II 
error? 

Answer: Remember that a Type II error is accepting a null hypothesis when in fact 
the null hypothesis is incorrect. 

Then Pr [Type II error] = Pr [observed level of significance > 5% | H0 is not true] 

In this specific case Pr [Type II error | p = 0.045] = 

Pr [fewer than 4 defective items in a sample of 50 | p = 0.045] 

The binomial distribution still applies, but now 

Pr [X = x] = 50Cx (0.045)x (0.955)(50 – x) 

Then Pr [X = 0] = (0.955)50 = 0.100 

Pr [X = 1] = (50) (0.045)1 (0.955)49 = 0.236 
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50 
Pr [X = 2] = 

( )(49 )
(0.045)2 (0.955)48 = 0.272 

2

49 48 
Pr [X = 3] = 3 2) (0.045)3 (0.955)47 = 0.205

(50 )( )( )  
( )(

Then Pr [Type II error | p = 0.045] = Pr [X ≤ 3 | p = 0.045]

 = 0.100 + 0.236 + 0.272 + 0.205

 = 0.813 

Thus, if the probability of a defective item has increased to 0.045, the probability 
that the production line will not be stopped for adjustment is 0.813, so the fair odds 
are more than 4 to 1 that the increased likelihood of defectives will not be detected 
by any one sample. In almost all practical cases we would require a larger probability 
of detecting such a large increase in the likelihood of a defective item, so we would 
probably need to increase the sample size. 

As the sample size increases, calculations using the binomial distribution directly 
become time-consuming, so an alternative method of calculation becomes very 
desirable. The normal approximation to the binomial distribution can be used if the 
probability of a defective item or an item of another specific class is close enough to 
0.5 and the sample size is large enough. (See the discussion of the rough rule in 
section 7.6.) Remember that if p, the probability that any single item comes within a 
particular class, is close to 0 or 1, a larger value of np or n(1 – p) will be required. 
Engineers often need confidence intervals for quality control problems in which p, 
the probability of a defective item, is small in relation to 1. In that case very large 
samples are required before the normal approximation provides satisfactory results. 
See Example 7.8. 

(b) Calculation Using Excel 

If a computer with Excel or alternative software is available, another possibility is to 
use computer calculations. The use of the function BINOMDIST has been discussed 
in section 5.3(f). It can be used to calculate the individual terms or the cumulative 
distribution function of the binomial distribution. It requires four parameters: the 
number of “successes” in a fixed number of trials, the number of trials, the probabil
ity of “success” on each trial, and either TRUE to direct the program to calculate 
cumulative probabilities or FALSE to direct the program to calculate individual 
probabilities according to the binomial distribution. 

Example 10.9 

Electrical components are manufactured continuously on a production line. Extensive 
data show that when all machines are correctly adjusted, a fraction 0.026 of the 
components are defective. However, some settings tend to vary as production contin
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ues, so the fraction of defective components may increase. A sample of 420 compo
nents is taken at regular intervals, and the number of defective components in the 
sample is counted. If there are more than 16 defective components in the sample of 
420, the production line will be stopped and adjustments will be made. 

(a) State the null hypothesis and alternative hypothesis in terms of p. 

(b) What is the observed level of significance if the number of defective components 
is just large enough to stop the production line? 

(c) Suppose the probability that a component will be defective has increased to 
0.040. Then what is the probability of a Type II error? 

Answer:   a) H0: p = 0.026 

Ha: p > 0.026 (one-tailed test) 

The binomial distribution applies with n = 420 and p = 0.026. 

b)	 The production line will be stopped if a sample of 420 components contains 
more than 16 defective items. Then the observed level of significance will be the 
probability of finding more than 16 defective items in a sample of size 420. 

MS Excel can be used to find the observed level of significance. It will be 1 
minus the cumulative probability of finding 16 or fewer defective components in 
a sample of size 420 if the null hypothesis is correct. That will be given by Excel 
if we enter the expression =1 – BINOMDIST (16,420,0.026,TRUE), where 
BINOMDIST is an Excel function giving probabilities for the binomial distribu
tion, 16 is the number of defective items, 420 is the sample size, 0.026 is the 
probability that any one component will be defective, and “TRUE” indicates that 
we want a cumulative probability. That gives an observed level of significance of 
0.0507 or 0.051 or 5.1%. 

This is a more accurate result than an answer obtained using the normal approxi
mation to the binomial distribution. 

c)	 Now we want to find the probability of a Type II error when the probability of a 
defective component on any one trial has increased to 0.040. If we obtain 16 or 
fewer defective components in a sample consisting of 420 components, we will 
have no reason to stop the production line. 

Pr [16 or fewer defective components in a sample of size 420 | p = 0.040] will be 
given by entering the expression =BINOMDIST(16,420,0.040,TRUE) in Excel. 
We find that the probability of a Type II error is 0.486 or 48.6%. The probability 
of detecting an increase in the proportion defective from 0.026 to 0.040 by this 
scheme of sampling is not much more than 50%. That situation is almost cer
tainly unacceptable. We can reduce the probability of a Type II error by making 
the sample larger. 
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10.2.3 Confidence Interval for Proportion 
Unless the sample size is very small, it is not practical to find confidence intervals for 
proportion by calculations of individual probabilities directly from the binomial 
distribution. We need to use either a normal approximation or a computer solution. 

A computer solution with Excel (except for rather small sample sizes) involves 
using the function BINOMDIST to obtain cumulative probabilities. Then the goal-
seeking algorithm can be used to find the upper limit or the lower limit of the 
appropriate confidence interval for the proportion p, say the probability that any one 
item will be defective. 

Example 10.10 

Mechanical components are being produced continuously. A quality control program 
for the mechanical components requires a close estimate of the proportion defective 
in production when all settings are correct. 1020 components are examined under 
these conditions, and 27 of the 1020 items are found to be defective. 

(a) Find a point estimate of the proportion defective. 

(b) Find a 95% two-sided confidence interval. 

(c) Find an upper limit giving 95% level of confidence that the true proportion 
defective is less than this limiting value. 

Use Excel in parts (b) and (c). 
27 

Answer:  a) The point estimate of the proportion defective is just =  0.0265.
1020 

b)	 If the probability distribution is not symmetrical, various two-sided confidence 
intervals can be defined. We will use the confidence interval with equal tails, that 
is, one in which the probability of a value above the upper limit is equal to the 
probability of a value below the lower limit. For this problem that would mean 
2.5% probability that the proportion defective is above the upper boundary of the 
confidence interval and 2.5% probability that it is below the lower limit. 

These limits can be found using the goal-seeking method on the Formula menu 
or Tools menu of Excel. At the upper limit we seek a proportion pupper (or p_u) 
such that the probability of finding 27 or fewer defective items in a sample of 
size 1020 is 2.5%. In the work sheet shown in Table 10.1 the function 
=BINOMDIST(27,1020,p_u,true) was entered in cell $B$10. The cell $B$9 was 
selected and named p_u using “Define Name” on the Formula menu. Then cell 
$B$10 was selected, and from the Formula or Tools menu “Goal Seek” was 
chosen. In the “Set Cell” box, the reference $B$10 appeared. In the “To Value” 
box the quantity 0.025 was entered. In the “By Changing Cell” box the name p_u 
was entered, referring to cell $B$9. Then the OK button was chosen. Then Excel 
began a numerical algorithm to change the value of p_u in such a way that the 
goal, 0.025, was approached by the content of the cell $B$10. The goal can not 
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0.06be attained exactly: the process is 
terminated by the algorithm when the 

0.05 

was entered in cells B22:B25. In 

Limit 

Cumulative Probability
 0.025 

this case the value 0.0383 was found 
to be correct to four decimal places, 

18 21 24 27 30 33 36 

Number Rejected, x 

Figure 10.7: 
or three significant figures. The Binomial Distribution at Upper Limit of
binomial distribution for this 95% Confidence Interval, pupper = 0.0383 
situation is shown in Figure 10.7. 

Similarly, at the lower confidence limit we seek a proportion p_l  such that the 
probability of finding 27 or more defective items in a sample of size 1020 is 2.5.%. 
But the available function finds a cumulative probability that the number of defective 
items will be less than, or equal to, a limiting number. That limiting number must 
now be 26 rather than 27 because the binomial distribution is discrete; Pr [R ≥ 27] = 
1 – Pr [R ≤ 26]. The binomial distribution for this relationship is shown in Figure 10.8. 
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0.04present example the final content of 
cell $B$10 was 0.0244 when the 

0.03value of p_u was 0.0383. The 
accuracy of the upper confidence 

0.02
limit was checked by entering values 
close to the given quantity in cells 

0.01
A22:A25. The array function 
=BINOMDIST(26,1020,A22:A25,true) 
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BINOMDIST(26,1020,p_l,true) was 
entered in cell $B$15. The cell $B$14 
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was defined as p_l. Then “Goal Seek” 0.075 

was chosen. The reference $B$15 was 
placed in the “Set Cell” box, and the 
quantity 0.975 was entered in the “To 0.05 

Value” box. The name p_l, which refers 
then to cell $B$14, was entered in the 

0.025“By Changing Cell” box. The OK 
button was chosen to start the algorithm 
of changing the content of cell $B$14 
so that the content of cell $B$15 0 

18 21 24 27 30 33 36 
approached the goal of 0.975. The final 
content of cell $B$15 was 0.9749 when Number Rejected ,x 

the content of cell $B$14 was 0.0175. Figure 10.8: 
Checking indicated that this gave a Binomial Distribution at Lower Limit of 
correct answer to four decimal places. 95% Confidence Interval, plower = 0.0175 
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Then the 95% two-sided confidence interval is from 0.0175 to 0.0383. 

The work sheet is shown in Table 10.1. 

Table 10.1: Work Sheet for Example 10.10 

A B C D 

1 

2 

3 

4 

5 

6 

7 

Confidence Interval for Proportion   Formula Menu: Goal Seek 

Sample Size = n 1020 

Number rejected = x 27 

Point Estimate, p_hat = x/n 0.02647059 

1 – p_hat = 0.97352941 

8 

9 

10 

11

12 

13 

14 

15 

16

17 

18 

19

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Pr[R<=27 | p=p_u] -> 0.025            Set cell B10 to value 0.025 by changing B9 

Upper boundary of interval, p_u = 0.0383459 

Pr[R<=27 | p=p_u] 0.02440541 

[Binomdist(27,1020,p_u,true)=] 

Pr[R>=27 | p=p_l] ->0.025 or Pr[R<=26 | p=p_l] -> 0.975 Set cell B15 by 

Lower boundary of interval, p_l = 0.01752218  changing B14 

Pr[R<=26 | p=p_l] 0.97489228 

[Binomdist(26,1020,p_l,true)=] 

Then 95% confidence interval seems to be 

from 0.0175  to 0.0383 

Check Upper Confidence Limit: CumProb 

0.038 0.02771796 Binomdist(27,1020,A22:A25,true) 

0.039 0.01908482 

0.0382 0.02575748 

0.0383 0.02482385 

Check Lower Confidence Limit: CumProb 

0.017 0.98196003 Binomdist(26,1020,A27:A30,true) 

0.018 0.96669979 

0.0176 0.97367698 
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30


31


32


0.0175 0.97523058 

Then the true limits are from 0.0175 to 0.0383. 

c) A one-sided confidence interval corresponding to Pr [0 < P ≤ pupper,2] can be 
found in the same way as the upper limit for part (b) was found. That gives a 
95% one-sided confidence interval of 0 to 0.0363. 

10.2.4 Extension 
(a) Comparison of Two Sample Proportions 

In discussing hypothesis testing for proportion in section 10.2.2 we have assumed 
that we know without appreciable error the proportion of the defective components 
when all machines are correctly adjusted. This would require a very large sample, 
which is often not available. In many cases we must take into account both the 
variance when all adjustments are correct and the variance in the case being tested. 
The variance of the sample mean proportion at correct adjustment must be added to 
the variance of the sample mean proportion being tested, giving the variance of the 
difference. The only simple calculation available in such a case involves a normal 
approximation to the binomial distribution. 

(b) Sample Size for Required Level of Confidence 

Similar to the way sample sizes to reduce standard errors of the mean to required 
values were found in Examples 7.3 and 7.4, we can find at least approximately the 
sample size needed to give a required level of confidence that a proportion is within 
stated limits. This can be found either by “goal-seeking” with Excel or by using a 
normal approximation to the binomial distribution. For these we need an assumed 
value of p, the probability of “success,” so satisfactory results require a close estimate 
of p. That estimate is often obtained from a preliminary sample of the population. 

Closing Comment 

To make confidence intervals for proportion reasonably small often requires large 
sample sizes, particularly for small proportions such as proportion defective. If the 
property that makes the items defective can be measured fairly precisely, it will 
usually be more satisfactory to base quality control on that measurement rather than 
on the proportion defective. 

On the other hand, proportion defective is often quoted as some indication of quality. 
If that is done, there should be some indication of the confidence limits for propor
tion to see how reliable this indication is. 
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Problems 
1.	 A production line is producing electrical components. Under normal conditions 

2.4% of the components are defective. To monitor production, a sample of 18 
components is taken each hour. If the number of defectives becomes too high, the 
production line is stopped and adjustments are made. What distribution applies to 
the number of defectives in a sample? Write down specifically the null hypothesis 
and the alternative hypothesis. For 1% level of significance, what is the smallest 
number of defectives in the sample which should shut down the production line? 

2.	 In problem 1 the probability that any one component will be defective has 
increased to 6.3%. Now what is the probability of a Type II error? 

3.	 When a production line is properly adjusted, it is found that 4% of the mechani
cal components produced are defective. Occasionally settings go out of 
adjustment, and more defectives are produced. A sample of 12 components is 
examined and the number of defectives is counted. What distribution applies to 
the number of defectives? What are the null hypothesis and the alternative 
hypothesis? If the level of significance is set at l%, how many defectives can be 
allowed in the sample before any action is taken? 

4.	 In problem 3 adjustments have gone badly wrong so that 7.5% of the compo
nents are defective. Now what is the probability of a Type II error? 

5.	 A continuous production line is producing electrical components. When all 
adjustments are correct, 3.2% of the components from the line are defective. A 
sample of 480 components is taken every few hours, and the number of 
defectives is counted. If there are more than 21 defectives in the sample, exten
sive adjustments will be made. Use the normal approximation to the binomial 
distribution, remembering the correction for continuity. 
a) State the null hypothesis and alternative hypothesis. 
b) What is the observed level of significance if there are just more than 21 

defectives in the sample? 
c) If the probability that a component will be defective has increased to 6.0%, 

what is the probability of a Type II error? 

6.	 Mechanical components are being produced continuously. When all adjustments 
are correct, 3.0% of the components from the production line are defective. A 
sample of 500 components is taken at regular intervals, and the number of 
defectives is counted. If the number of defectives is large enough to be signifi
cant at the 5% level of significance, the production line will be shut down for 
adjustment. Use the normal approximation to the binomial distribution. 
a) State the null hypothesis and Alternative Hypothesis. 
b) What is the minimum number of defectives in a sample which will result in a 

shut-down? 
c) If the probability that a component will be defective has increased to 0.060, 

what is the probability of a Type II error? 
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Computer Problems 
C7. A continuous production line is producing electrical components. When all 
adjustments are correct, 3.2% of the components from the line are defective. A 
sample of 480 components is taken every four hours, and the number of defectives is 
counted. If there are more than 21 defectives in the sample, extensive adjustments 
will be made. 

Use Excel. This is the same problem as number 5, except that that problem was done 
using a normal approximation. 

a) State the null hypothesis and alternative hypothesis. 

b) What is the observed level of significance if there are 22 defectives in the 
sample? 

c) If the probability that a component will be defective has increased to 6.0%, what 
is the probability of a Type II error? 

C8. Mechanical components are being produced continuously. When all adjustments 
are correct, 3.0% of the components from the production line are defective. A sample 
of 500 components is taken at regular intervals, and the number of defectives is 
counted. If the number of defectives is large enough to be significant at the 5% level 
of significance, the production line will be shut down for adjustment. 

Use Excel. This is the same problem as number 6, except that that problem was done 
using the normal approximation to the binomial distribution. 

a) State the null hypothesis and alternative hypothesis. 

b) What is the minimum number of defectives in a sample which will result in a 
shut-down? 

c) If the probability that a component will be defective has increased to 0.060, what 
is the probability of a Type II error? 

C9. Mechanical components are being produced continuously. When all settings are 
correct and checked frequently, a sample of 1800 components contains 44 items 
which are rejected. 

a) Find a point estimate of the proportion of the components which are rejected. 

b) Find the two-sided 90% confidence interval with equal probability in the two 
tails. 

271




C H A P T E R  11 
Introduction to Design 

of Experiments 
This chapter is largely independent of previous chapters, 

although some previous vocabulary is used here. 

Professional engineers in industry or in research positions are very frequently respon
sible for devising experiments to answer practical problems. There are many pitfalls 
in the design of experiments, and on the other hand there are well-tried methods 
which can be used to plan experiments that will give the engineer the maximum 
information and often more reliable information for a particular amount of effort. 
Thus, we need to consider some of the more important factors involved in the design 
of experiments. Complete discussion of design of experiments will be beyond the 
scope of this book, so the contents of this chapter will be introductory in nature. 

We have seen in section 9.2.4 that more information can be gained in some cases 
by designing experiments to use the paired t-test rather than the unpaired t-test. In 
many other cases there is a similar advantage in designing experiments carefully. 

There are complications in many experiments in industry (and also in many 
research programs) that are not found in most undergraduate engineering laborato
ries. First, several different factors may be present and may affect the results of the 
experiments but are not readily controlled. It may be that some factors affect the 
results but are not of prime interest: they are interfering factors, or lurking factors. 
Often these interfering factors can not be controlled at all, or perhaps they can be 
controlled only at considerable expense. Very frequently, not all the factors act 
independently of one another. That is, some of the factors interact in the sense that a 
higher value of one factor makes the results either more or less sensitive to another 
factor. We have to consider these complicating factors in planning the set of experi
ments. 

There are several expressions that are key to understanding the design of experi
ments. Among the most important are: 

Factorial Design 
Interaction 
Replication 
Randomization 
Blocking 
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We will see the meaning of these key words and begin to see how to use them in later 
sections. 

11.1 Experimentation vs. Use of Routine Operating Data 
Rather than design a special experiment to answer questions concerning the effects of 
varying operating conditions, some engineers choose to change operating conditions 
entirely on the basis of routine data recorded during normal operations. Routine 
production data often provide useful clues to desirable changes in operating condi
tions, but those clues are usually ambiguous. That is because in normal operation 
often more than one governing factor is changing, and not in any planned pattern. 
Often some changes in operating conditions are needed to adjust for changes in 
inputs or conditions beyond the operator’s control. Some factors may change uncon
trollably. The operator may or may not know how they are changing. If he or she 
knows what factors have changed, it may be extremely desirable to make compensat
ing changes in other variables. For example, the composition of material fed to a unit 
may change because of modifications in operations in upstream units or because of 
changes in the feed to the entire plant. The composition of crude oil to a refinery 
often changes, for instance, with increase or decrease of rates of flow from the 
individual fields or wells, which give petroleum of different compositions. In some 
cases considerable time is required before steady, reliable data are obtained after any 
change in operating conditions, so another change may be made, consciously or 
unconsciously, before the full effects of the first change are felt. 

If more than one factor changes during routine operation, it becomes very diffi
cult to say whether the changes in results are due to one factor or to another, or 
perhaps to some combination of the two. Two or more factors may change in such a 
way as to reinforce one another or cancel one another out. The results become 
ambiguous. In general, it is much better to use planned experiments in which changes 
are chosen carefully. 

An exception to this statement is when all the factors affecting a result and the 
mathematical form of the function are well known without question, the mathemati
cal forms of the different factors are different from one another, but the values of the 
coefficients of the relations are not known. In that case, data from routine operations 
can give satisfactory results. 

11.2 Scale of Experimentation 
Experiments should be done on as small a scale as will give the desired information. 
Managers in charge of full-scale industrial production units are frequently reluctant 
to allow any experimentation with the operating conditions in their units. This is 
because experiments might result in production of off-specification products, or the 
rate of production might be reduced. Either of these might result in very appreciable 
financial penalties. Production managers will probably be more willing to perform 
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274

experiments if conditions are changed only moderately, especially if experiments can
be done when the plant is not operating at full capacity. A technique of making a
series of small planned changes in operating conditions is known as evolutionary
operation, or EVOP. The changes at each step can be made small enough so that
serious consequences are very unlikely. After each step, results to that point are
evaluated in order to decide the most logical next step. For further information see
the book by Box, Hunter, and Hunter, shown in the List of Selected References in
section 15.2.

Sometimes experiments to give the desired information can be done on a labora-
tory scale at very moderate cost. In other cases the information can be gained from a
pilot plant which is much smaller than full industrial scale, but with characteristics
very similar to full-scale operation. In still other cases, there is no substitute for
experiments at full scale, and the costs are justified by the improved technique of
operation.

11.3 One-factor-at-a-time vs. Factorial Design
What sort of experimental design should be adopted? One approach is to set up
standard operating conditions for all factors and then to vary conditions from the
standard set, one factor at a time. An optimum value of one factor might be found by
trying the effects of several values of that factor. Then attention would shift to a
different factor. This is a plan that has been used frequently, but in general it is not a
good choice at all.

It would be a reasonable plan if all the factors operated independently of one
another, although even then it would not be an efficient method for obtaining infor-
mation. If the factors operated independently, the results of changing two factors

Figure 11.1:
Profiles without Interaction

Figure 11.2:
Profiles with Interaction
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together would be just the sum of the effects of changing each factor separately. 
Figure 11.1 shows profiles for such a situation. Each profile represents the variation 
of the response, z, as a function of one factor, x, at a constant value of the other 
factor, y. If the factors are completely independent and so have no interaction, the 
profiles of the response variable all have the same shape. The profiles for different 
values of y differ from one another only by a constant quantity, as can be seen in 
Figure 11.1. In that case it would be reasonable to perform measurements of the 
response at various values of x with a constant value of y, and then at various values 
of y with a constant value of x. If we knew that x and y affected the response indepen
dently of one another, that set of measurements would give a complete description of 
the response over the ranges of x and y used. But that is a very uncommon situation 
in practice. 

Very frequently some of the factors interact. That is, changing factor A makes the 
process more or less sensitive to change in factor B. This is shown in Figure 11.2, 
where an interaction term is added to the variables shown in Figure 11.1. Now the 
profiles do not have the same shape, so measurements are required for various 
combinations of the variables. 

For example, the effect of increasing temperature may be greater at higher 
pressure than at lower pressure. If there were no interaction the simplest mathemati
cal model of the relation would be 

Ri = K0 + K1P + K2T + εi (11.1) 

where Ri is the response (the dependent variable) for test i, 

K0 is a constant, 

P is pressure, 

K1 is the constant coefficient of pressure, 

T is temperature, 

K2 is the constant coefficient of temperature, 

and εi is the error for test i. 

This is similar to the profiles of Figure 11.1, except that Figure 11.1 does not include 
errors of measurement. 

When interaction is present the simplest corresponding mathematical model 
would be 

Ri = K0 + K1P + K2T + K3PT + εi (11.2) 

where K3 is the constant coefficient of the product of temperature and pressure. Then 
the term K3PT represents the interaction. In this case the interaction is second-order 
because it involves two independent variables, temperature and pressure. If it in
volved three independent variables it would be a third-order interaction, and so on. 
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Second-order interactions are very common, third-order interactions are less com
mon, and fourth order (and higher order) interactions are much less common. 

Consider an example from fluid mechanics. The drag force on a solid cylinder 
moving through a fluid such as air or water varies with the factors in a complex way. 
Under certain conditions the drag force is found to be proportional to the product of 
the density of the fluid and the square of the relative velocity between the cylinder 
and the fluid far from the cylinder, say Fd = Kρu2, omitting the effect of errors of 
measurement. This does not correspond to equation 11.1. If a density increase of 
1 kg m–3 at a relative velocity of 0.1 m s–1 increased the drag force by 1 N, the same 
density increase at a relative velocity of 0.2 m s–1 would increase the drag force by 
4 N. Then in such a case density and relative velocity interact. In this case the 
interacting relationship could be changed to a non-interacting relationship by a 
change of variables, taking logarithms of the measurements, but there are other 
relationships involving interaction which can not be simplified by any change of 
variable. 

Interaction is found very frequently, and its possibility must always be consid
ered. However, the one-factor-at-a-time design would not give us any precise 
information about the interaction, and results from that plan of experimentation 
might be extremely misleading. In order to determine the effects of interaction, we 
must compare the effects of increasing one variable at different values of a second 
variable. 

What is an alternative to changing one factor at a time? Often the best alternative 
is to conduct tests at all possible combinations of the operating factors. Let’s say we 
decide to do tests at three different values (levels) of the first factor and two different 
levels of the second factor. Then measurements at each of the three levels of the first 
factor would be done at each level of the second factor, so at (3)(2) = 6 different 
combinations of levels of the two factors. This is called a factorial design. Then 
suitable algebraic manipulation of the data can be used to separate the results of 
changes in the various factors from one another. The techniques of analysis of 
variance (which will be introduced in chapter 12) and multilinear regression (which 
will be introduced in Chapter 14) are often used to analyze the data. 

Now let us look at an example of factorial design. 

Example 11.1 

Figure 11.3 shows a case where three factors are important: temperature, pressure, 
and flow rate. We choose to operate each one at two different levels, a low level and a 
high level. That will require 23 = 8 different experiments for a complete factorial 
design. If the number of factors increases, the required number of runs goes up 
exponentially. 
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Figure 11.3: Factorial Design 
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For the three factors, each at two levels, measurements would be taken at the 
following conditions: 

Pressure Temperature Flow Rate 

1. 1 atm 20° C 0.05 m3s–1 

2. 1 atm 20° C 0.1 m3s–1 

3. 1 atm 30° C 0.05 m3s–1 

4. 1 atm 30° C 0.1 m3s–1 

5. 2 atm 20° C 0.05 m3s–1 

6. 2 atm 20° C 0.1 m3s–1 

7. 2 atm 30° C 0.05 m3s–1 

8. 2 atm 30° C 0.1 m3s–1


Each of these conditions is marked by an asterisk in Figure 11.3.


A possible set of results (for one flow rate) is illustrated in Figure 11.4. The 
interaction between temperature and pressure is shown by the result that increasing 
pressure increases the response considerably more at the higher temperature than at 
the lower temperature. 

Interaction 

Flow Rate 
200 =0.05 cu.m / s 

150 

Response 100


50


1 atm

2 atm
0 

20 C Pressure 
30 C 

Temperature 

Figure 11.4: An Illustration of Interaction 
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In the early stages of industrial experimentation it is usually best to choose only 
two levels for each factor varied in the factorial design. On the basis of results from 
the first set of experiments, further experiments can be designed logically and may 
well involve more than two levels for some factors. If a complete factorial design is 
used, experiments would be done at every possible combination of the chosen levels 
for each factor. 

In general we should not try to lay out the whole program of experiments at the 
very beginning. The knowledge gained in early trials should be used in designing 
later trials. At the beginning we may not know the ranges of variables that will be of 
chief interest. Furthermore, before we can decide logically how many repetitions or 
replications of a measurement are needed, we require some information about the 
variance corresponding to errors of measurement, and that will often not be available 
until data are obtained from preliminary experiments. Early objectives of the study 
may be modified in the light of later results. In summary, the experimental design 
should usually be sequential or evolutionary in nature. 

In some cases the number of experiments required for a complete factorial design 
may not be practical or desirable. Then some other design, such as a fractional 
factorial design (to be discussed briefly in section 11.6), may be a good choice. 
These alternative designs do not give as much information as the corresponding full 
factorial design, so care is required in considering the relative advantages and disad
vantages. For example, the results of a particular alternative design may indicate 
either that certain factors of the experiment have important effects on the results, or 
else that certain interactions among the factors are of major importance. Which 
explanation applies may not be at all clear. In some instances one of the possible 
explanations is very unlikely, so the other explanation is the only reasonable one. 
Then the alternative design would be a logical choice. But assumptions always need 
to be recognized and analyzed. Never adopt an alternative experimental design 
without examining the assumptions on which it is based. 

Everything we know about a process or the theory behind it should be used, both 
in planning the experiment and in evaluating the results. The results of previous 
experiments, whether at bench scale, pilot scale, or industrial scale, should be 
carefully considered. Theoretical knowledge and previous experience must be taken 
into account. At the same time, the possibility of effects that have not been encoun
tered or considered before must not be neglected. 

These are some of the basic considerations, but several other factors must be kept 
in mind, particularly replication of trials and strategies to prevent bias due to interfer
ing factors. 
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11.4 Replication 
Replication means doing each trial more than once at the same set of conditions. In 
some preliminary exploratory experiments each experiment is done just twice (two 
replications). This gives only a very rough indication of how reproducible the results 
are for each set of conditions, but it allows a large number of factors to be investi
gated fairly quickly and economically. We will see later that in some cases no 
replication is used, particularly in some types of preliminary experiments. 

Usually some (perhaps many) of the factors studied in preliminary experiments 
will have negligible effect and so can be eliminated from further tests. As we zoom in 
on the factors of greatest importance, larger numbers of replications are often used. 
Besides giving better estimates of reproducibility, further replication reduces the 
standard error of the mean and tends to make the distribution of means closer to the 
normal distribution. We have already seen in section 8.3 that the mean of repeated 
results for the same condition has a standard deviation that becomes smaller as the 
sample size (or number of replications) increases. Thus, larger numbers of replica
tions give more reliable results. Furthermore, we have seen in section 8.4 that as the 
sample size increases, the distribution of sample means comes closer to the normal 
distribution. This stems from the Central Limit Theorem, and it justifies use of such 
tests as the t-test and the F-test. 

11.5 Bias Due to Interfering Factors 
Very frequently in industrial experiments an interfering factor is present that will bias 
the results, giving systematic error unless we take suitable precautions. Such interfer
ing factors are sometimes called “lurking variables” because they can suddenly 
assault the conclusions of the unwary experimenter. We are often unaware of interfer
ing factors, and they are present more often than we may suspect. 

(a) Some Examples of Interfering Factors 

We will consider several examples. First, the temperature of the surrounding air may 
affect the temperature of a measurement, and so the results of that measurement. This 
is particularly so if measurements are performed outdoors. Variations of air tempera
ture between summer and winter are so great that they are unlikely to be neglected, 
but temperature variations from day to day or from hour to hour may be overlooked. 
Atmospheric temperature has some tendency to persist: if the outside air temperature 
is above average today, the air temperature tomorrow is also likely to be above 
average. But at some point the weather pattern changes, so air temperature may be 
higher than average today and tomorrow, but below average a week from today. Thus, 
taking some measurements today and others of the same type a week later could bias 
the results. If we do experiments with one set of conditions today and similar experi
ments with a different set of conditions a week later, the differences in results may in 
fact be due to the change in air temperature rather than to the intended difference in 
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conditions. Shorter-term variations in air temperature could also cause bias, since the 
temperature of outside air varies during the day. There may be a systematic difference 
between results taken at 9 A.M. and results taken at 1:30 P.M. We have used tempera
ture variation as an example of an interfering factor, but of course this factor can be 
taken into account by suitable temperature measurements. Other interfering factors 
are not so easily measured or controlled. 

An unknown trace contaminant may affect the results of an experiment. If the 
feed to the experimental equipment comes from a large surge tank with continual 
flow in and out and good mixing, higher than average concentration of a contaminant 
is likely to persist over an interval of time. This might mean that high results today 
are likely to be associated with high results tomorrow, and low results today are 
likely to be associated with low results tomorrow, but the situation might be quite 
different a week later. Thus, tests today may show a systematic difference, or bias, 
from tests a week from today. 

Another instance involves tests on a machine that is subject to wear. Wear on the 
machine occurs slowly and gradually, so the effect of wear may be much the same 
today as tomorrow, but it may be quite different in a month’s time (or a week’s time, 
depending on the rate of wear). Thus, wear might be an uncontrolled variable that 
introduces bias. 

(b) Preventing Bias by Randomization 

One remedy for systematic error in measurements is to make random choices of the 
assignment of material to different experiments and of the order in which experi
ments are done. This ensures that the interfering factors affecting the results are, to a 
good approximation, independent of the intended changes in experimental condi
tions. We may say that the interfering factors are “averaged out.” Then, the biases are 
minimized and usually become negligible. The random choices might be made by 
flipping a coin, but more often they are made using tables of random numbers or 
using random numbers generated by computer software. Random numbers can be 
obtained on Excel from the function RAND, and that procedure will be discussed 
briefly in section 11.5(c). 

Very often we don’t know enough about the factors affecting a measurement to be 
sure that there is no correlation of results with time. Therefore, if we don’t take 
precautions, some of the intentional changes in operating factors may by chance 
coincide with (and become confused with) some accidental changes in other operat
ing factors over which we may have no control. Only by randomizing can we ensure 
that the factors affecting the results are statistically independent of one another. 
Randomization should always be used if interfering factors may be present. 

However, in some cases randomization may not be practical because of difficul
ties in adjusting conditions over a wide range in a reasonable time. Then some 
alternative scheme may be required; at the very least the possibility of bias should be 
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recognized clearly and some scheme should be developed to minimize the effects of 
interfering factors. Wherever possible, randomization must be used to deal with 
possible interfering factors. 

Example 11.1 (continued) 

Now let’s add randomization to the experimental design begun in Example 11.1. Let 
each test be done twice in random order. The order of performing the experiments 
has been randomized using random numbers from computer software with the 
following results: 

Order Conditions 

1 1 atm 30°C 0.05 m3 s–1 

2 2 atm 20°C 0.05 m3 s–1 

3 1 atm 20°C 0.05 m3 s–1 

4 1 atm 20°C 0.1 m3 s–1 

5 2 atm 30°C 0.05 m3 s–1 

6 1 atm 30°C 0.1 m3 s–1 

7 2 atm 20°C 0.1 m3 s–1 

8 2 atm 30°C 0.1 m3 s–1 

9 1 atm 20°C 0.05 m3 s–1 

10 2 atm 20°C 0.05 m3 s–1 

11 1 atm 30°C 0.05 m3 s–1 

12 1 atm 20°C 0.1 m3 s–1 

13 2 atm 30°C 0.05 m3 s–1 

14 1 atm 30°C 0.1 m3 s–1 

15 2 atm 20°C 0.1 m3 s–1 

16 2 atm 30°C 0.1 m3 s–1 

Example 11.2 

A stirred liquid-phase reactor produces a polymer used (in small concentrations) to

increase rates of filtration. A pilot plant has been built to investigate this process. The

factors being studied are temperature, concentration of reactant A, concentration of

reactant B, and stirring rate. Each factor will be studied at two levels in a factorial

design, and each combination of conditions will be repeated to give two replications.


a) How many tests will be required?


b) List all tests.


c) What order of tests should be used?
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Answer: 

a) Number of tests = (2)(24) = 32. 

b) The tests are shown in Table 11.1 below: 

Table 11.1: List of Tests for Example 11.2 

Temperature Concentration of A Concentration of B Stirring Rate Number of Tests 

Low Low Low Low 2


High Low Low Low 2


Low High Low Low 2


Low Low High Low 2


Low Low Low High 2


High High Low Low 2


High Low High Low 2


High Low Low High 2


Low High High Low 2


Low High Low High 2


Low Low High High 2


High High High Low 2


Low High High High 2


High Low High High 2


High High Low High 2


High High High High 2


Total: 32 

c)	 The order in which tests are performed should be determined using random 
numbers from a table or computer software. 

Example 11.3 

A mechanical engineer has decided to test a novel heat exchanger in an oil refinery.

The major result will be the amount of heating produced in a petroleum stream which

varies in composition. Tests will be done at two compositions and three flow rates.

To get sufficient precision each combination of composition and flow rate will be

tested five times. A factorial design will be used.


a) How many tests will be required?


b) List all tests.


c) How will the order of testing be determined?
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Answer: 

a) (2)(3)(5) = 30 tests will be required. 

b) The tests will be: 
Composition Flow Rate Number of Tests 

Low Low 5 
Low Middle 5 
Low High 5 
High Low 5 
High Middle 5 
High High 5 

Total 30 

c)	 Order of testing will be determined by random numbers from a table or from 
computer software. 

Example 11.4 

Previous studies in a pilot plant have been used to set the operating conditions

(temperature and pressure) in an industrial reactor. However, some of the conditions

in the full-scale industrial equipment are not quite the same, so the plant engineer has

decided to perform tests in the industrial plant. The plant manager is afraid that

changes in operating conditions may produce off-specification product, so only small

changes in conditions will be allowed at each stage of experimentation. If results

from the first stage appear encouraging, further stages of experimentation can be

done. (This is a form of evolutionary operation, or EVOP.) A simple factorial pattern

will be used: temperature settings will be increased and decreased from normal by

2°C, and pressure will be increased and decreased from normal by 0.05 atm. The

plant engineer has calculated that to get sufficient precision with these small changes,

eight tests will be required at each set of conditions. The normal temperature is 125°

C, and normal pressure is 1.80 atm.


a) How many tests will be required in the first stage of experimentation?

b) List the tests.

c) How will the order of testing be determined?


Answer: 

a) (8)(2)(2) = 32 tests will be required. 

b) The tests will be as follows: 

Temperature Pressure Number 0f Tests 
123°C 1.75 atm 8 
123°C 1.85 atm 8 
127°C 1.75 atm 8 
127°C 1.85 atm 8 

Total 32 
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c)	 Order of testing will be determined by random numbers from a table or from 
computer software. 

(c) Obtaining Random Numbers Using Excel 

Excel can be used to generate random numbers to randomize experimental designs. 
The function = RAND( ) will return a random number greater than or equal to zero 
and less than one. We obtain a new number every time the function is entered or the 
work sheet is recalculated. If we want a random number between 0 and 10, we 
multiply RAND( ) by 10. But that will often give a number with a fraction. 

If we want an integer, we can apply the function = INT(number), which rounds 
the number down, not up, to the nearest integer; e.g., INT(7.8) equals 7. We can nest 
the functions inside one another, so INT( RAND( )*10 ) will give a random integer 
in the inclusive interval from 0 to 9. If we want a random integer in the inclusive 
interval from 1 to 10 , we can use INT( RAND( )*10) + 1. Similarly, if we want a 
random integer in the inclusive interval from 1 to 8, that will be given by the function 
INT( RAND( )*8) +1, and so on for other choices. If we want a whole sequence of 
random numbers we can use an array function. 

Example 11.5 

To obtain a sequence of thirty random integers in the inclusive interval from 1 to 6, 
cells A1 to A30 were selected, and the formula =INT( RAND( ) *6) + 1 was entered 
as an array formula. The results were as follows in row form: 

2  1 5 6 2 1 2 3 3 2 2 5 6  6 3  

1  2 5 1 1 2 2 3 5 5 2 1 2  2 1  

(Notice that this could be considered a numerical simulation of a discrete random 
variable in which the integers from 1 to 6 inclusive are equally likely.) 

Now suppose we assign the numbers 1 to 6 to six different engineering measure
ments. We want a random order of these six measurements. The result of Example 
11.5 would give us that random order if we use each digit the first time it appears and 
discard all repetitions. If by chance the thirty random digits do not contain at least 
five of the six digits from 1 to 6, we can repeat the whole operation. But the prob
ability of that is small. 

A complication is that changing other parts of the work sheet causes the random 
number generator to re-calculate, giving a new set of random integers. To avoid that, 
we can convert the contents of cells A1 to A30 to constant values. (See references or 
the Help function on Excel to see how to do that.) 

Example 11.5 (continued) 

Every time a cell in column A contained a repetition of one of the integers from 1 to 
6, an x was placed in the corresponding row of column B until all the integers in the 
required interval had appeared or the list of integers was exhausted. Then the 
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unrepeated integers (in order) were entered into column C. The results (as a row 
instead of a column) were as follows: 

2 1 5 6 3 [4] 

Notice that, as it happened, 4 did not appear among the thirty integers. However, 
since 4 is the only missing integer, it must be the last of the six. 

This, then, would give a random order of performing the six engineering mea
surements. 

(d) Preventing Bias by Blocking 

Blocking means dividing the complete experiment into groups or blocks in which the 
various interfering factors (especially uncontrolled factors) can be assumed to be 
more homogeneous. Comparisons are made using the various factors involved in 
each block. Blocking is used to increase the precision of an experiment by reducing 
the effect of interfering factors. Results from “block” experiments are applicable to a 
wider range of conditions than if experiments were limited to a single uniform set of 
conditions. For example, technicians may perform tests in somewhat different ways, 
so we might want to remove the differences due to different technicians in exploring 
the effect of using raw material from different sources. 

A paired t-test is an example of an experimental design using blocking. In section 
9.2.4 we examined the comparison of samples using paired data. Two different 
treatments (evaporator pans) were investigated over several days. Then the day was 
the blocking factor. The randomization was of the relative positions of the pans. The 
measured evaporation was the response. The difference between daily amounts of 
evaporation from the paired pans was taken as the variate in order to eliminate the 
effects of day-to-day variation in atmospheric conditions. Example 9.10 illustrated 
this procedure. 

The paired t-test involved two factors or treatments, but blocking can be extended 
to include more than two treatments. Randomization is used to protect us from 
unknown sources of bias by performing treatments in random order within each 
block. (Notice that randomization is still required within the block.) 

A block design does not give as much information as a complete factorial design, 
but it generally requires fewer tests, and the extra information from the factorial 
design may not be desired. Fewer tests are required because we do not usually repeat 
tests within blocks for the same experimental conditions. Error is estimated from 
variations which are left after variance between blocks and variance between experi
mental treatments have been removed. This assumes that the average effect of 
different treatments is the same in all the blocks. In other words, we assume there is 
no interaction between the effects of treatments and blocks. Caution: if there is any 
reason to think that treatments and blocks may not be independent and so may 
interact, we should include adequate replication so that that interaction can be 
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checked. If interaction between treatment and block is present but not determined, 
the randomized blocking design will result in an inflation of the error estimate, so the 
test for significant effects becomes less sensitive. 

Blocking should be used when we wish to eliminate the distortion caused by an 
interfering variable but are not very interested in determining the effects of that 
variable. If two factors are of comparable interest, a design blocking out one of the 
two factors should not be used. In that case, we should go to a complete factorial 
design. 

Why is blocking required if randomization is used? If some factor is having an 
effect even though we may not know it, randomizing will tend to prevent us from 
coming to incorrect conclusions. However, the interfering effect will still increase the 
standard deviation or variance due to error. That is, the variance due to experimental 
error will be inflated by the variance due to the interfering factor; in other words, the 
randomized interference will add to the random “noise” of the measurements. If the 
error variance is larger, we are less likely to conclude that the effect of an experimen
tal variable is statistically significant. In that case, we are less likely to be able to 
come to a definite conclusion. (This is essentially the same as the effect of a larger 
standard deviation in the t-test: if the standard deviation is larger, t will be smaller, so 
the difference is not so likely to be significant. See the comparison of Examples 9.9 
and 9.10 in sections 9.2.3 and 9.2.4.) If we use blocking, we can both avoid incorrect 
conclusions and increase the probability of coming to results that are statistically 
significant. Therefore, the priority is to block all the interfering factors we can (so 
long as interaction is not appreciable), then to randomize in order to minimize the 
effects of factors we can’t block. 

Example 11.6 

Example 9.10 was for a paired t-test. The evaporation from two types of evaporation 
pans placed side-by-side was compared over ten days. Any difference due to relative 
position was “averaged out” by randomizing the placement of the pans. 

Now we wish to compare three evaporator pans: A, B, and C. The pans are placed 
side-by-side again, and their relative positions are decided randomly using random 
numbers. We know that evaporation from the pans will vary from one day to another 
with changing weather conditions, but that variation is not of prime interest in the 
current test. The day becomes the blocking variable. The resulting order is shown in 
terms of A, B, and C for the relative positions of the evaporator pans, and 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10 for the day. Then the order in which tests are done might be 1:BCA, 
2:BAC, 3:CBA,4: ACB, 5:CAB,6: ABC,7: CBA, 8:ACB,9: ABC, 10:CAB. 

Example 11.7 

Let us modify Example 11.1 by adding blocking for effects associated with time. The 
principal factors are still temperature, pressure, and flow, but we suspect that some 
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interfering factors may vary from one day to another but are very unlikely to interact 
appreciably with the principal factors. After considering the possible interfering 
factors and their time scales, we decide that variations within an eight-hour shift are 
likely to be negligible, but variations between Tuesday and Friday may well be 
appreciable. We can do eight trials on day shift each day. Then the eight trials on 
Tuesday will be one block, and the eight trials on Friday will be another block. The 
order of performing tests on each day will be randomized, again using random 
numbers from computer software. 

Answer: 

The orders of trials for Tuesday and for Wednesday are shown below. 

Order for Tuesday Conditions 

1 1 atm 30°C 0.1 m3 s–1 

2 2 atm 30°C 0.1 m3 s–1 

3 1 atm 30°C 0.05 m3 s–1 

4 1 atm 20°C 0.05 m3 s–1 

5 2 atm 20°C 0.05 m3 s–1 

6 2 atm 30°C 0.05 m3 s–1 

7 2 atm 20°C 0.1 m3 s–1 

8 1 atm 20°C 0.1 m3 s-1 

Order for Friday Conditions 

1 1 atm 30°C 0.1 m3 s–1 

2 1 atm 30°C 0.05 m3 s–1 

3 1 atm 20°C 0.1 m3 s–1 

4 1 atm 20°C 0.05 m3 s–1 

5 2 atm 30°C 0.1 m3 s–1 

6 2 atm 20°C 0.05 m3 s–1 

7 2 atm 30°C 0.05 m3 s–1 

8 2 atm 20°C 0.1 m3 s–1 

We should note two points. First, there is no replication, so error is estimated 
from residuals left after the effects of temperature, pressure, and flow rate (and their 
interactions), and differences between blocks, have been accounted for. (If there is 
any interaction between the main effects (temperature, pressure, flow) and the 
blocking variable (time of run), that will inflate the error estimate.) Second, if a 
complete four-factor experimental design had been used with two replications, the 
required number of tests would have been (2)(24) = 32, whereas the block design 
requires 16 tests. 
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Variations of blocking are used for specific situations. If the number of factors 
being examined is too large, not all of them can be included in each block. Then a 
plan called a balanced incomplete block design would be used. If more than one 
interfering factor needs to be blocked, then plans called Latin squares and Graeco-
Latin squares would be considered. 

The design of experiments that include blocking is discussed in more detail in 
books by Box, Hunter, and Hunter and by Montgomery (for references see section 
15.2). There are considerations and pitfalls not discussed here. 

Example 11.8 

A civil engineer is planning an experiment to compare the levels of biological

oxygen demand (B.O.D.) at three different points in a river. These are just upstream

of a sewage plant, five kilometers downstream, and ten kilometers downstream.

Assume that in each case samples will be taken in the middle of the stream (in

practice samples would likely be taken at several positions across the stream and

averaged). One set of samples will be taken at 6 a.m., another will be taken at 2 p.m.,

and a third will be taken at 10 p.m. The design will block the effect of time of day, as

some interfering factors may be different at different times. However, the interaction

of these interfering factors with location is expected to be negligible.


a) If there is no replication aside from blocking, how many tests are required?


b) List all tests.


c) Specify which set of tests constitute each block.


d) How should the order of tests be determined?


Answer: 

a) Number of tests = (3)(3) = 9. 

b) The tests are: 

6 a.m.: just upstream, 5 kilometers downstream, and 10 kilometers downstream. 

2 p.m.: just upstream, 5 kilometers downstream, and 10 kilometers downstream. 

10 p.m.: just upstream, 5 kilometers downstream, and 10 kilometers downstream. 

c) The 6 a.m. tests make up one block, the 2 p.m. tests make up another block, and 
the 10 p.m. tests will make up a third block. 

d) The order in which tests are performed should be determined using random 
numbers from a table or computer software. 

11.6 Fractional Factorial Designs 
As the number of different factors increases, the number of experiments required for 
a full factorial design increases exponentially. Even if we test each factor at only two 
levels, with only one measurement for each combination of conditions, a complete 
factorial design for n factors requires 2n separate measurements. If there are five 
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factors, that comes to thirty-two separate measurements. If there are six factors, 
sixty-four separate measurements are required. 

In many cases nearly as much useful information can be obtained by doing only 
half or perhaps a quarter of the full factorial design. Certainly, somewhat less infor
mation is obtained, but by careful design of the experiment the omitted information 
is not likely to be important. This is referred to as a fractional factorial design or a 
fractional replication. 

Fractional design will be illustrated for the simple case of three factors, each at 
only two levels, with no replication of measurements. In Example 11.1 we saw the 
complete factorial design for this set of conditions. The asterisk (*) marked in Figure 
11.3 each of the 23 = 8 combinations of conditions for the full factorial design. In 
Figure 11.5, on the other hand, only half of the 23 combinations of conditions are 
marked by asterisks, and only these measurements would be made for the fractional 
factorial design. 

Figure 11.5:

Fractional Factorial Design
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Thus, measurements would be made at the following conditions: 

1. 1 atm 20° C  0.1 m3 s-1 

2. 2 atm 20° C 0.05 m3 s-1 

3. 1 atm 30° C 0.05 m3 s-1 

4. 2 atm 30° C  0.1 m3 s-1 

Notice that in the first three sets of conditions two factors are at the lower value 
and one is at the higher value, but in the last set all three factors are at the higher 
value. Then half of the sets show each factor at its lower value, and half show each 
factor at its higher value. The order of performing the experiments would be randomized. 

1 
This half-fraction, three-factor design involving 

2 
(23) = 4 combinations of 

conditions is not really practical because it does not allow us to separate a main-
factor effect from the second-order interaction of the other two effects. For example, 
the effect of pressure is confused (or confounded, as the statisticians say) with the 
interaction between temperature and flow rate, and these quantities cannot be sepa
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rated. Since second-order interactions are found frequently, this is not a satisfactory 
situation. 

The half-fraction design is more useful when the number of factors is larger. 
Consider the case where five factors are being investigated, so the full factorial 
design at two levels with no replication would require 25 = 32 runs. A half-fraction 

1 
factorial design would require 

2 
(25) = 16 runs. It will give essentially the same 

information as the full factorial design if either of two conditions is met: either (1) at 
least one factor has negligible effect on any of the results, so that its main effect and 
all its interactions with other variables are negligible; or else (2) all the three-factor 
and four-factor interactions are negligible, so that only the main effects and second-
order interactions are appreciable. In exploratory studies we wish to see which factors 
are important, so we will often find that one or more factors have no appreciable 
effect. In that situation the first condition will be satisfied. Furthermore, the effects of 
three-factor and higher order interactions are usually negligible, so that the second 
condition would frequently be satisfied. There are some cases in which third-order 
interactions produce appreciable effects, but these cases are not common. Then if 
analysis of the half-factor factorial design indicates that we cannot neglect any of the 
factors, further investigation should be done. 

Remember that the half-fraction design requires measurements at half of the 
combinations of conditions needed for a full factorial design. Then if the results of 
the half-fraction experimental designs are ambiguous, often the other half of a 
complete factorial design can be run later. The two halves are together equivalent to a 
full factorial, run in two blocks at different times. Then analyzing the two blocks 
together gives nearly as much information as a complete factorial design, provided 
that interfering factors do not change too much in the intervening time. 

Problems 
1.	 A mechanical engineer has designed a new electronic fuel injector. He is devel

oping a plan for testing it. He will use a factorial design to investigate the effects 
of high, medium and low fuel flow, and high, medium and low fuel temperature. 
Four tests will be done at each combination of conditions. 
a) How many tests will be required? 
b) List them. 

2.	 A civil engineer is performing tests on a screening device to remove coarser 
solids from storm overflow of untreated sewage. A stream is directed at a rotating 
collar screen, 7.5 feet in diameter, made of stainless steel mesh. The engineer 
intends to try three mesh sizes (150 mesh, 200 mesh and 230 mesh), two rota
tional speeds (30 and 60 R.P.M.), three flow rates (550 gpm, 900 gpm and 1450 
gpm), and three time intervals between back washes (20, 40 and 60 seconds). 
a) How many tests will be required for a complete factorial design without 

replication? 
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b) List them.

c) How will the order of tests be determined?


3.	 A pilot plant investigation is concerned with three variables. These are tempera
ture (160° C and 170° C), concentration of reactant (1.0 mol / L and 1.5 mol / L), 
and catalyst (Catalyst A and Catalyst B). The response variable is the percentage 
yield of the desired product. A factorial design will be used. 
a) If each combination of variables is tested twice (two replications), how many 

tests will be required?

b) List them.

c) How will the order of tests be determined?


4.	 A metal alloy was modified by adding small amounts of nickel and / or manga
nese. The breaking strength of each resulting alloy was measured. Tests were 
performed in the following order: 

1. 1.5% Ni, 0% Mn 
2. 3% Ni, 2% Mn 
3. 1.5% Ni, 1% Mn 
4. 1.5% Ni, 0% Mn 
5. 0% Ni, 1% Mn 
6. 3% Ni, 1% Mn 
7. 0% Ni, 2% Mn 
8. 1.5% Ni, 1% Mn 
9. 0% Ni, 0% Mn 
10. 3% Ni, 0% Mn 
11. 0% Ni, 1% Mn 
12. 1.5% Ni, 2% Mn 
13. 3% Ni, 1% Mn 
14. 1.5% Ni, 2% Mn 
15. 0% Ni, 0% Mn 
16. 3% Ni, 2% Mn 
17. 3% Ni, 0% Mn 
18. 0% Ni, 2% Mn 

a)	 How many factors are there? How many levels have been used for each 
factor? How many replications have been used (remember that this can be a 
fraction)? 

b)	 Then summarize the experimental design: factorial design or alternatives, 
characteristics. 

c) Verify that these characteristics would result in the number of test runs 
shown. 

5.	 Four different methods of determining the concentration of a pollutant in parts 
per million are being compared. We suspect that two technicians obtain some
what different results, so a randomized block design will be used. Each 
technician will run all four methods on different samples. Unknown to the 
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technicians, all samples will be taken from the same well stirred container. All

determinations will be run in the same morning.

a) How many determinations are required?

b) List them.

c) How will the order of determinations be decided?


6.	 Tests are carried out to determine the effects of various factors on the percentage 
of a particular reactant which is reacted in a pilot-scale chemical reactor. The 
effects of feed rate, agitation rate, temperature, and concentrations of two reac
tants are determined. Test runs were performed in the following order: 

Feed Rate Agitation Rate Temperature Conc. of A Conc. of B 

L/m RPM °C mol/L mol/L 

1. 15 120 150 0.5 1.0 

2. 10 100 150 1.0 0.5 

3. 15 100 150 1.0 1.0 

4. 10 120 150 0.5 0.5 

5. 15 120 160 0.5 0.5 

6. 10 120 150 1.0 1.0 

7. 15 100 160 1.0 0.5 

8. 15 120 160 1.0 1.0 

9. 10 100 150 0.5 1.0 

10. 15 100 160 0.5 1.0 

11. 15 100 150 0.5 0.5 

12. 10 100 160 0.5 0.5 

13. 10 100 160 1.0 1.0 

14. 15 120 150 1.0 0.5 

15. 10 120 160 0.5 1.0 

16. 10 120 160 1.0 0.5 

a)	 How many factors are there? How many levels have been used for each 
factor? How many replications have been used (remember that this can be a 
fraction)? 

b)	 Then summarize the experimental design: factorial design or alternatives, 
characteristics. 

c) Verify that these characteristics would result in the number of test runs 
shown. 

292




Introduction to Design of Experiments 

Computer Problems 
C7. A program of testing the effects of temperature and pressure on a piece of 
equipment involves a total of eight runs, two at each of four combinations of tem
perature and pressure. Let us call these four combinations of conditions numbers 1, 
2, 3, and 4. Use random numbers from Excel to find two random orders of four tests 
each in which the tests of conditions 1, 2, 3, and 4 might be conducted. 

C8. An engineer is planning tests on a heat exchanger. Six different combinations of 
flow rates and fluid compositions will be used, and the engineer labels them as 1, 2, 
3, 4, 5, 6. She will test each combination of conditions twice. Use random numbers 
from Excel to find a random order of performing the twelve tests. 

C9. Simulate two samples of size ten from a binomial distribution with n = 5 and 
p = 0.12. Use the Analysis Tools command on Excel. Produce an output table with 
ten columns and two rows. Use the Frequency function to prepare a frequency table, 
which must be labeled clearly. 

C10. Use the Analysis Tools command on Excel to simulate the results of a sampling 
scheme. The probability of a defect on any one item is 0.07, and each sample con
tains 12 items. Simulate the results of three samples. Use the Frequency function to 
prepare a frequency table, and label it clearly. 
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C H A P T E R  12 
Introduction to Analysis 

of Variance 
This chapter requires an understanding of the material in 

sections 3.1, 3.2, 3.4, and 10.1.2. 

In Chapter 11 we have looked briefly at some of the principal ideas and techniques of 
designing experiments to solve industrial problems. Once the data have been ob
tained, how can we analyze them? 

The analysis of data from designed experiments is based on the methods devel
oped previously in this book. The data are summarized as means and variances, and 
graphical presentations are used, especially to check the assumptions of the methods. 
Confidence intervals and tests of hypothesis are used to infer results. But some 
techniques beyond those described previously are usually needed to complete the 
analysis. 

The two main techniques used in analysis of data from factorial experiments, 
with and without blocking, are the analysis of variance and multiple linear regression. 
Analysis of variance will be introduced here. Multiple linear regression will be 
introduced in section 14.6. 

Analysis of variance, or ANOVA, is used with both quantitative data and qualita
tive data, such as data categorizing products as good or defective, light or heavy, and 
so on. With both quantitative and qualitative data, the function of analysis of variance 
is to find whether each input has a significant effect on the system’s response. Thus, 
analysis of variance is often used at an early stage in the analysis of quantitative data. 
Multiple linear regression is often used to obtain a quantitative relation between the 
inputs and the responses. But analysis of variance often has another function, which 
is to test the results of multiple linear regression for significance. 

We saw in Chapter 8 that one of the most desirable properties of variance is that 
independent estimates of variance can be added together. This idea can be extended 
to separating the quantities leading to variance into various logical components. One 
component can be ascribed to differences resulting from various main effects such as 
varying pressure or temperature. Another component may be due to interactions 
between main effects. A third component may come from blocking, which has been 
discussed in section 11.5 (d). A final component may correspond to experimental 
error. 
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We have seen in section 9.2 that an estimate of variance is found by dividing the 
sum of squares of deviations from a mean by the number of degrees of freedom. We 
can partition both the total sum of squares and the total number of degrees of free
dom into components corresponding to main effects, interactions, perhaps blocking, 
and experimental error. Then, for each of these components the sum of squares is 
divided by the corresponding number of degrees of freedom to give an estimate of 
the variance. Estimates of variance are often called “mean squares.” 

Then the F-test, which was discussed in section 10.1.2, is used to examine the 
various ratios of variances to see which ratios are statistically significant. Is a ratio of 
variances consistent with the hypothesis that the two population variances are equal, 
so that differences between them are due only to random chance variations? More 
specifically, the null hypothesis to be tested is usually that various factors make no 
difference to population means from different treatments or different levels of treat
ment. The F-test is used to see whether the null hypothesis can be accepted at a stated 
level of significance. 

We will find that calculations for the analysis of variance using a calculator involve 
considerable labor, especially if the number of components investigated is fairly large. 
Almost always in practice, therefore, computer software is used to do the calculations 
more easily. The problems in this chapter can be solved using a calculator. If the reader 
chooses, he or she can use a computer spreadsheet with formulas involving basic 
operations. In some problems that will save considerable time. However, more com
plex, pre-programmed computer packages such as SAS or SPSS should not be used 
until the reader has the basic ideas firmly in mind. This is because these use “black
box” functions which require little thinking from someone who is learning. 

12.1 One-way Analysis of Variance 
Let us consider the simplest case, analyzing a randomized experiment in which only 
one factor is being investigated. Two or more replicates are used for each separate 
treatment or level of treatment, and there will be three or more treatments or levels. 
The null hypothesis will be that all treatments produce equal results, so that all 
population means for the various treatments are equal. The alternative hypothesis will 
be that at least two of the treatment means are not equal. 

(a) Basic Relations 

Say there are m different treatments or levels of treatment, and for each of these there 
are r different observations, so r replicates of each treatment. Let yik be the kth 
observation from the i th treatment. Let the mean observation for treatment i be yi , 
and let the mean of all N observations be y , where N = (m)(r). Then 

r 

∑ yik 

y = k =1 (12.1) 
i r 
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and 
m r 

∑ y m∑ y 
y = 

i ik 
i=1 = k =1 (12.2) 
m N 

The total sum of squares of the deviations from the mean of all the observations, 
abbreviated as SST, is 

m r 2 
SST = ∑∑(yik − y) (12.3) 

i=1 k =1 

The treatment sum of squares of the deviations of the treatment means from the 
mean of all the observations, abbreviated as SSA, is 

m 2 
SSA = r ∑(y − y)i (12.4) 

i=1 

The within-treatment or residual sum of squares of the deviations from the means 
within treatments is 

m r 
2

SSR = ∑∑(yik − yi ) (12.5) 
i=1 k=1 

This residual sum of squares can give an estimate of the error. 

It can be shown algebraically that 
m r 2 m 2 m ri 2∑∑(y − y) = r∑(y − y) + ∑∑(y − yi ) (12.6)ik i ik


i=1 k=1 i=1 i=1 k=1


or 

SST = SSA + SSR (12.7) 

Thus, the total sum of squares is partitioned into two parts. 

The degrees of freedom are partitioned similarly. The total number of degrees of 
freedom is (N – 1). The number of degrees of freedom between treatment means is 
the number of treatments minus one, or (m – 1). By subtraction, the residual number 
of degrees of freedom is (N – 1) – (m – 1) = (N – m). This must be the number of 
degrees of freedom within treatments. 

Then the estimate of the variance within treatments is 

2 SSR 
sR = (12.8)

N m− 
This is often called the “within treatments” mean square. It is an estimate of error, 
giving an indication of the precision of the measurements. 

The estimate of the variance obtained from differences of the treatment means (so 
between treatments) is 

2 SSA 
sA = (12.9) 

m −1 
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This is often called the “between treatments” mean square. 

Now the question becomes: are these two estimates of variance (or mean square 
deviations) compatible with one another? The specific null hypothesis is that the 
population means for different treatments or levels are equal. If that null hypothesis 
is true, the variability of the sample means will reflect the intrinsic variability of the 
individual measurements. (Of course the variance of the sample means is different 
from the variance of individual measurements, as we have seen in connection with 
the standard error of the mean, but that has already been taken into account.) If the 
population means are not equal, the true population variance between treatments will 
be larger than the true population variance within treatments. Is sA 

2, the estimate of 
the variance between means, significantly larger than sR 

2, the estimate of the variance 
within means? (Note that this is a one-tailed test.) But before the question can be 
addressed properly, we need to check that the necessary assumptions have been met. 

(b) Assumptions 

The first assumption is the mathematical model of the relationship we are investigat
ing. Usually for a start the analysis of variance is based on the simplest mathematical 
model for each situation. In this section we are considering a single factor at various 
levels and with some replication. The simplest model for this case is 

y = µ + α  + ε  (12.10)ik i ik 

where yik is the kth observation from the the ith treatment (as before), 

µ is the true overall mean (for the numbers of treatments and replicates used in 
this experiment), 

αi is the incremental effect of treatment i, such that α  = µ  – µ,i i

µi is the true population mean for treatment i, and 

εik is the error for the kth observation from the ith treatment. 

This mathematical model is the simplest for this situation, but if we find that it is not 
consistent with the data, we will have to modify it. For example, if we turn up 
evidence of some interfering factor or “lurking variable,” a more elaborate model will 
be required; or, if the data do not fit the linear relation of equation 12.10, changes 
may be required to get a better fit. 

Other important assumptions are that the observations for each treatment are at 
least approximately normally distributed, and that observations for all the treatments 
have the same population variance, σ2, but the treatment means do not have to be the 
same. More specifically, the errors εik must (to a reasonable approximation) be 
independently and identically distributed according to a normal distribution with 
mean zero and unknown but fixed variance σ2. However, according to Box et al. (see 
section 15.2 for references) the analysis of variance as discussed in this chapter is not 
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sensitive to moderate departures from a normal distribution or from equal population 
variances. In this sense the ANOVA method is said, like the t-test, to be robust. 

If there are any biasing interfering factors, randomizing the order of taking and 
testing the sample will usually make the normal distribution approximately appropri
ate. However, there will still be an inflation of the error variance if biasing factors are 
present. Notice that if randomization has not been done properly in the situation 
where biases are present, the assumption of a normal distribution will not be appro
priate. Any outliers, points with very large errors, may cause serious problems. 

(c) Diagnostic Plots 

The assumptions should be checked by various diagnostic plots of the residuals, 
which are the differences between the observations, yik, and ŷik , the best estimates of 
the true values according to the mathematical model. Thus, the residuals are (yik – ŷik ). 
In the case of one-way analysis of variance, where only one factor is an input, the 
best estimates would be yi . The plots are meant to diagnose any major discrepancies 
between the assumptions and reality in the situation being studied. If there are any 
unexplained systematic variations of the residuals, the assumptions must be ques
tioned skeptically. 

The following plots should be examined carefully: 

(1) a stem-and-leaf display (or equivalent, such as a dot diagram or normal 
probability plot) of all the residuals. Is this consistent with a normal distribu
tion of mean zero and constant variance? Are there any outliers? If we have 
sufficient data, a similar plot should be shown for each treatment or level. 

(2) a plot of residuals against estimated values ( ŷik , which is equal to yi in this 
case). Is there any indication that variance becomes larger or smaller as ŷik

increases? 

(3) a plot of residuals against time sequence of measurement (and also time 
sequence of sampling if that is different). Is there any indication that errors 
are changing with time? 

(4) a plot of residuals against any variable, such as laboratory temperature, 
which might conceivably affect the results (if such a plot seems useful). Are 
there any trends? 

These plots are similar to those recommended in the books by Box, Hunter, and 
Hunter and by Montgomery (see references in section 15.2). 

Each plot should be considered carefully. If plot (1) is not reasonably symmetri
cal and consistent with a normal distribution, some change of variable should be 
considered. If plot (1) shows one or more outliers, the corresponding numbers should 
be checked to see if some obvious mistake (such as an error of recording an observa
tion) is present. However, in the absence of any obvious error the outlier should not 
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be discarded, although the assumption of an underlying normal distribution should be 
questioned. Careful examination of remaining outliers will often give useful informa
tion, clues to desirable changes to the assumed relationship. 

If plot (2) indicates that variance is not constant with varying magnitude of 
estimated values, then the assumption of constant variance is apparently not satisfied. 
Then the mathematical model needs to be adjusted. For example, if the residuals tend 
to increase as ŷik  increases, the percentage error may be approximately constant. This 
would imply that the mathematical model might be improved by replacing yik by 
log(yik) in equation 12.10. 

If plot (3) shows a systematic trend, there is some interfering factor which is a 
function of time. It might be a temperature variation, or possibly improvement in 
experimental technique as the experimenter learns to make measurements more 
exactly. If the order of testing has been properly randomized, the assumption of a 
normal distribution of errors will be approximately satisfied, but the estimated error 
will be inflated by any systematic interfering factor. 

Any trends in plot (4) will require modification of the whole analysis. 

Let us begin an example by calculating means for the various treatments and 
examining the diagnostic plots. 

Example 12.1 

Four specimens of soil were taken from each of three different locations in the same 
locality, and their shear strengths were measured. Data are shown below. Does the 
location affect the shear strength significantly? Use the 5% level of significance. 

Sequence Location Shear strength 
of testing number N/m2 

1 2 2940 

2 2 2940 

3 2 2940 

4 3  3482.5 

5 1 4000 

6 1 4000 

7 1 4000 

8 3  3482.5 

9 2 2940 

10 3  3482.5 

11 1 4000 

12 3  3482.5 
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Answer: 

The simplest mathematical model for this case is given by equation 12.10: 

y = µ + α  + ε  ik i ik 

The best estimates of the shear strength, ŷik , are given by the means for the various 
locations. 

First, we need to arrange the data by location (which is the “treatment” in this 
case) and calculate the treatment means and the overall mean. Then the residuals are 
calculated in lines 15 to 28 of the spreadsheet of Table 12.1 with results in lines 31 to 43. 

Calculations of sums of squares are shown in lines 44 to 50, and estimates of 
variances or “mean squares” are shown in lines 51 and 52. Now the degrees of 
freedom should be partitioned. The total number of degrees of freedom is (N – 1) = 
(3)(4) – 1 = 11. Between treatment means we have (m – 1) = 3 – 1 = 2 degrees of 
freedom. The number of degrees of freedom within treatments by difference is then 
(N – m) = 12 – 3 = 9. An observed variance ratio is shown in line 53. Calculations 
can be done using either a pocket calculator or a spreadsheet: Table 12.1 shows a 
spreadsheet. 

Table 12.1: Spreadsheet for Example 12.1, One-way Analysis of Variance 

A B C D E F 

15 Sorted Data: y ik 

16 Location,i Shear Strength Sequence Observ. no., kLocation Means, y i(bar) 

17 1 4010 5 1 

18 1 3550 6 2 

19 1 4350 7 3  SUM(B17:B20)/4= 

20 1 4090 11 4 4000 

21 2 2970 1 1 

22 2 2320 2 2 

23 2 2910 3 3  SUM(B21:B24)/4= 

24 2 3560 9 4 2940 

25 3 3650 4 1 

26 3 3470 8 2 

27 3 3650 10 3  SUM(B25:B28)/4= 

28 3 3160 12 4 3482.5

 29 Overall Mean, y(barbar) = (E20+E24+E28)/3 = 3474.16667

 30 Residuals: y ik - y i(bar) 
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31 Location,i Residual 

32 1 B17:B20-E20 10  (Array formulas: 

33 -450              see Appendix B) 

34 350 

35 90 

36 2 B21:B24-E24 30 

37 -620 

38 -30 

39 620 

40 3 B25:B28-E28 167.5 

41 -12.5 

42 167.5 

43 -322.5 

44 SSA, eqn 12.4:


45 4 *SUM(y i(bar)-y(bar bar))^2=


46  =4*((E20-E29)^2 +(E24-E29)^2+(E28-E29)^2= 2247616.67 SSA


47 SSR, eqn 12.5 :


48 SUMi(SUMk(y ik -y i(bar))^2=


49  =(10^2+450^2+350^2+90^2) +


50 +(167.5^2+12.5^2+167.5^2+322.5^2)= 1264075 SSR


51 (s A)^2= SSA/(m-1)= E46/(3-1)= 1123808.33


52 (s R)^2= SSR/(N-m)= E50/(12-3) 140452.778


53 f obs =(sA)^2/(s R)^2 = D51/D52= 8.00132508


Now we check the residuals. A stem-and-leaf display of all the residuals is shown 
in Table 12.2. The stem is the digit corresponding to hundreds, from –6 to +6. 

Table 12.2: Stem-and-leaf display of residuals 

Stem Leaf Frequency 
–6 2 1 
–5 0 
–4 5 1 
–3 2 1 
–2 0 
–1 0 
–0 3 1 2 
+0 1 3 9 3 
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1  6 6  2  
2 0 
3 5 1 
4 0 
5 0 
6 2 1 

Considering the small number of data, Table 12.2 is consistent with a normal 
distribution of mean zero and constant variance. There is no indication of any outliers. 

Plots of residuals against treatment means, ŷik , and against time sequence of 
measurement are shown in Figure 12.1. 

1000 1000 

500 500 

Residual 0 
Residual 0 

–500 -500 

–1000 –1000 
2700 3000 3300 3600 3900 4200 0  5  10  15  

Treatment Mean Time Sequence 

(a) Residual vs. Treatment Mean (b) Residual vs. Time Sequence 

Figure 12.1: Plots of Residuals 

Neither plot of Figure 12.1 shows any significant pattern, so the assumptions 
appear to be satisfied. If calculations were being done with a calculator, the residuals 
would be checked before proceeding with calculations of sums of squares. 

(d) Table for Analysis of Variance 

Now we are ready to proceed to the analysis of variance, which we will discuss in 
general first, then apply it to Example 12.1. A table should be constructed like the 
one shown in general in Table 12.3 below. 

Table 12.3: Table of One-way Analysis of Variance 

Sources of Variation Sums of Degrees of Mean Variance Ratios 

Between treatments 

Squares 

SSA 

Freedom 

(m – 1) 

Squares 

sA 
2 fobserved = 

2 

2 
A 

R 

s 

s 

Within treatments SSR (N – m) sR 
2 

Total (about the
 grand mean, y ) SST (N – 1) 
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The null hypothesis and the alternative hypothesis must be stated: 

H0: αi = 0 for all values of i (or µ1 = µ2 = µ3 = ... ). 

Ha : αi > 0 for at least one treatment. 

2If the null hypothesis is true, then σA = σR 
2, so the departure of fobserved from 1 is due 

only to random fluctuations. If the null hypothesis is not true, the variance between 
treatments, σA 

2, will be larger than the variance within treatments, σR 
2, because at 

least one of the true treatment means will be different from the others. 
2 sA

The calculated variance ratio, fobserved = 2 , should be compared with critical
sR 

values of the F-distribution for (m – 1) and (N – m) degrees of freedom. This is the 
same comparison as was done in section 10.1.2. If fobserved > fcritical at a particular level 
of significance, the test results are significant at that level. 

Notice that this analysis of variance tests the null hypothesis that the means of all 
the treatment populations are equal. If we have only two treatments, this is equivalent 
to the t-test with the null hypothesis that the two population means are equal. This 
has been described in section 9.2.3. If we have more than two treatments, by the 
analysis of variance we examine all the treatment means together and so avoid 
problems of perhaps selecting subjectively the pairs of treatment means which are 
most favorable to a particular conclusion. 

The table of analysis of variance for Example 12.1 is shown below in Table 12.4. 
This table summarizes the results of lines 44 to 53 in Table 12.1. 

Example 12.1 (continued) 

Table 12.4: Table of One-way Analysis of Variance for Soil Strengths 

Sources of Variation	 Sums of Degrees of Mean Variance Ratios 
Squares Freedom Squares 

Between treatments 2,247,616.7 2 1,123,808.3 fobserved = 
1,123,808.3 

Within treatments 1,264,075 9 140,452.78  = 140, 452.78 
Total 3,511,691.7 11	 = 8.001 

The null hypothesis and alternative hypothesis are as follows: 

H0: µLocation 1 = µLocation 2 = µLocation 3 = µLocation 4 

Ha: At least one of the population means for a location is not equal to the others. 

The observed value of f is compared to the limiting value of f for the correspond
ing degrees of freedom at the 5% level of significance from tables or software. We 
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find flimit or fcritical = 4.26, whereas fobserved from Table 12.4 is 8.001. Since fobserved > flimit, 
the variance ratio is significant at the 5% level of significance. 

Therefore we reject the null hypothesis and so accept the alternative hypothesis. 
Thus, at the 5% level of significance the location does affect the shear strength. 

12.2	 Two-way Analysis of Variance 
Now the effects of more than one factor are considered in a factorial design. The 
possibility of interaction must be taken into account. This corresponds to the experi
mental designs used in Examples 11.2, 11.3, and 11.4, and, with modification, to the 
fractional factorial designs discussed briefly in section 11.6. 

Let’s consider the relations for a factorial design involving two separate factors. 
Later we can extend the analysis for larger numbers of factors. 

Say there are m different treatments or levels for factor A, and n different treat
ments or levels for factor B. All possible combinations of the treatments of factor A 
and factor B will be investigated. Let us perform r replications of each combination 
of treatments (the number of replications could vary from one factor to another, but 
we will simplify a little here). 

For this case the observations y must have three subscripts instead of two: i , j, 
and k for the ith treatment of factor A, the jth treatment of factor B, and the kth 
replication of that combination. Then an individual observation is represented by yijk. 
yij will be the mean observation for the (ij)th combination or cell, the mean of all the 
observations for the ith treatment of factor A and the jth treatment for factor B. yi 

will be the mean observation for the ith treatment of factor A (at all levels of factor 
B). y j  will be the mean observation for the jth observation of factor B (at all levels 
of factor A). Then we have 

r 

y 
∑ yijk 

ij = k=1 (12.11) 
r 

Averaging all the observations for the ith treatment of factor A gives 

n	 r n 

∑ yij	 ∑∑  yijk

k=1 j=1
y = j=1 

n 
= 

( )(n)	
(12.12)

i r 

Similarly, averaging all the observations for the jth treatment of factor B gives 

m	 r m 

∑ yij	 ∑∑  yijk

k=1 i=1
y j = i=1 

m 
= ( )(m) 

(12.13) 
r 
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≡The grand average, y , is given by 
m n m n r 

≡ ∑ yi ∑ y j ∑∑∑  yijk 

y = i=1 = j=1 = i=1 j=1 k=1 (12.14) 
m  n  mnr  

The total sum of squares of the deviations of individual observations from the 
mean of all the observations is 

m n r ≡
SST = ∑∑∑ (yijk – y )2 (12.15) 

i=1 j=1 k=1 

For factor A the treatment sum of squares of the deviations of the treatment means 
from the mean of all the observations is 

m ≡SSA = nr ∑ ( y i – y )2 (12.16) 
i=1 

Similarly for factor B the treatment sum of squares is 

n ≡
SSB = mr ∑ ( y j – y )2 (12.17) 

j=1 

But we have also the interaction between factors A and B. The interaction sum of 
squares for these two factors is 

m n ≡ 
SS (AB ) = r ∑∑ ( y ij – y i – y j – y )2 (12.18) 

i=1 j=1 

The residual sum of squares, from which an estimate of error can be calculated, is 

m n r 

SSR = ∑∑∑ (yijk – y ij )2 (12.19) 
i=1 j=1 k=1 

It can be shown algebraically that 

SST = SSA + SSB + SS(AB) + SSR (12.20) 

The total number of degrees of freedom, N – 1 = (m)(n)(r) – 1, is partitioned into 
the degrees of freedom for factor A, (m – 1); the degrees of freedom for factor B, 
(n – 1); the degrees of freedom for interaction, (m – 1)(n – 1). The degrees of freedom 
within cells available for estimating error is the remaining number, (m)(n)(r – 1). 

Then the estimate of the variance obtained from the variability within cells is 

2 SSR 
sR = 

m n)(r −1) (12.21)( )(  
This is often called the residual mean square or sometimes the error mean square. 
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The estimate of the variance obtained from the variability of the treatment means 
for factor A is called the mean square for Main Effect A and is given by 

SSA 2 sA =	 (12.22) 
m − 1 

The estimate of the variance obtained from the variability of means for factor B is 
called the mean square for Main Effect B and is given by 

SSB2 sB =	 (12.23) 
n − 1 

The estimate of the variance obtained from the interaction between effects A and 
B is 

SS ( AB )2 

(12.24)s( AB) =
(m − 1)(n − 1) 

This is called the mean square for interaction between A and B. 

Once again, various assumptions must be examined before we can proceed to the 
variance-ratio test. The first assumption is the mathematical model. The simplest 
mathematical model for the case of two experimental factors with replication and 
interaction is 

yijk = µ + αi + β  + (αβ)ij + εijk	 (12.25) 

where	 yijk is the kth observation of the ith level of factor A and the jth level of factor B 

µ is the true overall mean 

αi is the incremental effect of treatment i, such that αi  = µi - µ 

βj is the incremental effect of treatment j, such that βj = µj - µ 

µi is the true population mean for the ith level of factor A 

µj is the true population mean for the jth level of factor B 

(αβ)ij is the interaction effect for the ith level of factor A and the jth level of 
factor B, 

and εijk is the error for the kth observation of the ith level of factor A and the jth 
level of factor B. 

This is the simplest mathematical model, but again it may not be the most 
appropriate. If equation 12.25 applies, the best estimate of the true values would be 

y y j y ≡ ) = yij (12.26) 

j

ŷijk
= ≡ + ( yi – ≡ ) + ( y  – ≡ ) + ( yij – yi – yj + y 

Then residuals are given by (yijk – ŷijk
). 

Again, we are assuming that the errors εijk are (to a good approximation) indepen
dently and identically distributed according to a normal distribution with mean zero 
and fixed but unknown variance σ2. 
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These assumptions are checked by the same plots as were used in section 12.1 for 
the one-way analysis of variance. These were plots (1) to (4) of section (c) of that 
section. 

If plot (2) indicates that the variance is not constant with varying estimates of the 
measured output, ŷijk , some modification of the mathematical model is required. The 
book by Box, Hunter, and Hunter gives a full discussion and an example in their 
section 7.8. 

If the plots give no significant indication that any of the assumptions are incor
rect, we can go on to the analysis of variance for this case. The null hypotheses and 
alternative hypotheses are as follows: 

H0: αi = 0 for all values of i (or µ1 = µ2 = µ3 = ... = µa); 
Ha: αi > 0 for at least one treatment. 

H0: βj = 0 for all values of j (or equal values of µj); 
Ha: βj > 0 for at least one treatment. 

H0: (αβ)ij = 0 for all values of i and j; 
Ha: (αβ)ij > 0 for at least one cell. 

As we discussed in section 12.1, if some of the alternative hypotheses are true, 
some of the corresponding true population variances will be larger than the true 
variance for error. Then the F-test is used to see whether the other estimates of 
variance are significantly larger than the estimate of variance corresponding to error 
(note again that this is a one-sided test). 

A table should be constructed as in Table 12.5 below. 

Table 12.5:  Table of Analysis of Variance for a Factorial Design 

Sources of Variation Sums of Degrees of Mean Variance Ratios 
Squares Freedom Squares 

2 

Main effect A SSA  (m – 1) sA 
2 fobserved1 = 2 

A 

R 

s 

s 
2 

Main effect B SSB  (n – 1) sB 
2 fobserved2  = 2 

B 

R 

s 

s 
2 

Interaction AB SS(AB) (m – 1)(n – 1) s(AB) 
2 fobserved3  = 

( ) 
2 

AB 

R 

s 

s 

Error SSR (m)(n)(r – 1) sR 
2 

Total SST  (N – 1) 
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Again, the observed ratios of variance can be compared to the tabulated values of 
F for the appropriate numbers of degrees of freedom and for various levels of signifi
cance according to the one-sided F-test. 

If there are more than two factors in the factorial design, there will be further 
main effects in Table 12.7 and further interactions. Thus, if there are three factors, the 
main effects might be A, B, and C, and the corresponding interactions would be AB, 
AC, BC, and ABC. 

If some main effects or interactions show no sign of being statistically signifi
cant, their sums of squares and degrees of freedom are sometimes combined with the 
error sum of squares and error degrees of freedom, respectively, to give improved 
estimates of the error mean squares. 

Sometimes it is assumed that fourth-order (or perhaps third-order) and higher-
order interactions are negligible. Then replications are sometimes omitted, so that the 
error mean squares are estimated entirely from the higher-order interactions. 

An extension of this is used in analyzing fractional factorial designs. If the 
number of factors is large, some main effects and their interactions with other main 
effects are likely to have negligible significance. Then these main effects and interac
tions are used to estimate the error of measurements. This is discussed in Chapters 12 
and 13 of the book by Box, Hunter, and Hunter. Since fractional factorial designs are 
used for exploratory investigations, often graphical analysis of the results is sufficient 
to show which variables require more detailed examination. This, also, is discussed 
in the book by Box, Hunter, and Hunter. 

Example 12.2 

A chemical process is being investigated in a pilot plant. The factors under study are, 
first the catalyst, Liquid Catalyst 1 or Liquid Catalyst 2, and then the concentration 
of each (1 gram/liter or 2 grams/liter). Two replicate runs are done for each combina
tion of factors. The response, or dependent variable, is the percentage yield of the 
desired product. Results are shown in Table 12.6 below. 

Table 12.6: Percentage Yields for Catalyst Study 

Yield 
Catalyst Catalyst 

Concentration 1 2 

1g/L 49.3 47.4 

53.4 50.1 

2g/L 63.6 49.7 

59.2 49.9 

308




Introduction to Analysis of Variance 

Is the yield significantly different for a different catalyst or concentration or combina
tion of the two? Use the 5% level of significance. 

Answer: The plots of the residuals were examined in the same way as for the 
previous example and showed no significant patterns. They will be omitted here for 
the sake of brevity. 

Table 12.7: Spreadsheet for Example 12.2, Two-way Analysis of Variance 

A B C D E F 

3 Catalyst,i -> 1 2 

4 Concentration Yield , y ijk 

5 1g/L,j=1 49.3 47.4 

6 53.4 50.1 

7 2g/L,j=2 63.6 49.7 

8 59.2 49.9 

9 y ij(bar): cat 1 (i=1) cat 2 (i=2) cat 1 (i=1) cat 2 (i=2) 

10 1g/L,j=1 (B5+B6)/2= (C5+C6)/2= 1g/L, j=1 51.35 48.75 

11 2g/L, j=2 (B7+B8)/2= (C7+C8)/2= 2g/L, j=2 61.4 49.8 

12 y i(barbar): cat 1 (i=1) cat 2 (i=2) cat 1 (i=1) cat 2 (i=2) 

13 (E10+E11)/2= (F10+F11)/2= 56.375 49.275 

14 y j(barbar): 

15 1g/L, j=1 (E10+F10)/2= 1g/L,j=1 50.05 

16 2g/L, j=2 (E11+F11)/2= 2g/L,j=2 55.6 

17 y (barbarbar): (E13+F13)/2 52.825 

18 (check:) (E15+E16)/2= 52.825 

19 Residuals y ijk -y ij(bar) i=1 i=2 

20 j=1 -2.05 -1.35 B5:C5-E10:F10 

21 2.05 1.35 B6:C6-E10:F10 

22 j=2 2.2 -0.1 B7:C7-E11:F11 

23 -2.2 0.1 B8:C8-E11:F11 

24 For catalyst,  SSA=2*2*SUM((y i(barbar)-y(barbarbar))^2) = 

25 4*((E13-D17)^2+(F13-D17)^2)= 100.82 SSA 

26 For concentration, SSB=2*2*SUM((y j(barbar)-y(barbarbar))^2 = 

27 4*((E15-D17)^2+(E16-D17)^2)= 61.605 SSB 

28 For interaction, SS(AB)=2*SUMiSUMj((y ij(bar)-y i(barbar)-y j(barbar)+y(barbarbar))^2 

29  = 2*((E10-E13-E15+D17)^2+(E11-E13-E16+D17)^2+ 

30   +(F10-F13-E15+D17)^2+(F11-F13-E16+D17)^2)= 40.5 SS(AB) 
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31 For residual,  SSR=SUMiSUMjSUMk(y ijk-y ij(bar))= 

32 C20^2+D20^2+C21^2+D21^2+C22^2+D22^2+C23^2+D23^2= 

33 21.75 SSR 

34 df total=(2)*(2)*(2)-1=  7 df: 

35 Catalyst, df(A) = 2-1 = 1 A 

36 Conc., df(B) = 2-1 = 1  B 

37 Interaction, df df(AB)=(2-1) *(2-1)= 1 AB 

38  df(error)= (2)*(2)*(2-1)= 4 error 

39 Check: D29-D30-D31-D32= 4 (check) 

40 s(A)^2: SSA/df(A)= E25/D35= 100.82 

41 s(B)^2: SSB/df(B)= E27/D36= 61.605 

42 s(AB)^2: SS(AB)/df(AB)= E30/D37= 40.5 

43 s(R)^2: SSR/df(error)= E33/D38= 5.4375 

44 f(obs,A)= s(A)^2/s(R)^2= D40/D43= 18.5416092 

45 f(obs,B)= s(B)^2/s(R)^2= D41/D43= 11.3296552 

46 f(obs,AB)= s(AB)^2/s(R)^2= D42/D43= 7.44827586 

Calculations are shown in the spreadsheet of Table 12.7. The mean yields for the 
cells were found by averaging the yields found for each set of conditions, as shown 
in lines 10 and 11. The mean yields for the catalysts (at all levels of concentration) 
are shown in line 13. The mean yields for  concentrations of 1 g/L and 2 g/L (for 
both catalysts) are shown in lines 15 and 16. The overall mean (or grand average) is 
calculated in line 17. Residuals are calculated in lines 19 to 23 using array formulas. 

The treatment sum of squares for catalyst, SSA, is calculated in lines 24 and 25. 
The treatment sum of squares for concentration, SSB, is calculated in lines 26 and 27. 
The interaction sum of squares between catalyst and concentration, SS(AB), is 
calculated in lines 29 and 30. The residual sum of squares, SSR, is calculated in lines 
31 to 33. 

The total number of degrees of freedom is calculated in line 34 and then parti
tioned into degrees of freedom for catalyst, concentration, interaction, and the 
residual used for estimating error. These are shown in lines 35 to 39. Mean squares, 
estimates of variances, are calculated in lines 40 to 43. They are each found by 
dividing the corresponding sum of squares by the  degrees of freedom. Observed 
variance ratios are calculated in lines 44 to 46. 
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The table of analysis of variance for this case is shown in Table 12.8. 

Table 12.8:  Table of Analysis of Variance for Study of Catalysts, 
Two-way Analysis of Variance 

Sources of Variation Sums of Degrees of Mean Variance Ratios 
Squares Freedom Squares 

Main effect, catalyst  61.605 1 61.605 fobserved1  = 
61.605 

5.4375 
11.33 = 

Main effect, concentration 100.82 1 100.82 fobserved2 = 
100.82 

5.4375 
18.54 = 

Interaction between 
catalyst and concentration 

40.5 1 40.5 fobserved3  = 
40.5 

5.4375 
7.45 = 

Error 21.75 4 5.4375 

Total 224.675 7 

The observed variance ratios in Table 12.8 were found by dividing the mean 
squares for catalyst, concentration, and interaction, respectively, by the mean square 
for error. 

On the basis of the simplest mathematical model for this case, 

yijk = µ + αi + β  + (αβ)ij + εijk,j

the null hypotheses and alternative hypotheses are as follows: 

H0,1: The true effect of the catalyst is zero, as opposed to 
Ha,1: the true effect of the catalyst is not zero. 

H0,2: The true effect of concentration is zero, versus 
Ha,2: the true effect of concentration is not equal. 

H0,3 The true effect of interaction between catalyst and concentration is zero,vs. 
Ha,3   the true effect of interaction between catalyst and concentration is not zero. 

If the alternative hypotheses are correct, the corresponding true variance ratios for 
the populations will be greater than 1. 

f

Now we can apply the F-test. fobserved 1 should be compared with fcritical for a one-
sided test with one degree of freedom and four degrees of freedom at the 5% level of 
significance; this is 7.71. fobserved 2 should also be compared with 7.71, and so should 
observed 3. Then we can reject the null hypotheses that the true population means for 

both catalysts are equal and the true population means for both concentrations are 
equal, both at the 5% level of significance, and accept the alternative hypotheses that 
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of f

the catalyst and the concentration make a difference. However, we do not have 
enough evidence at the 5% level of significance to reject the hypothesis that the mean 
result of the interaction between catalyst and concentration is zero. Because the value 

observed for interaction between catalyst and concentration is only a little smaller 
than the corresponding value of fcritical, we may well decide to collect some more data 
on this point. 

Thus, we conclude (at the 5% level of significance) that the yield is affected by 
both the catalyst and the concentration, but we do not have enough evidence to 
conclude that the yield is affected by the interaction between catalyst and concentration. 

Notice that the analysis discussed in this chapter allows us to conclude that 
certain factors have an effect, but it does not allow us to say quantitatively how the 
yield is changed by any particular level of a factor. In other words, we have not 
determined the functional relationship between the variables. For that, we would have 
to use a regression analysis, which will be discussed in Chapter 14. 

Example 12.3 

Concrete specimens are made using three different experimental additives. The 
purpose of the additives is to try to accelerate the gain of strength as the concrete 
sets. All specimens have the same mass ratio of additive to Portland cement, and the 
same mass ratio of aggregate to cement, but three different mass ratios of water to 
cement. Two replicate specimens are made for each of nine combinations of factors. 
All specimens are kept under standard conditions. After twenty-eight days the 
compression strengths of the specimens are measured. The results (in MPa) are 
shown in Table 12.9. 

Table 12.9: Strengths of Concrete Specimens 

Additives 
Ratio, water #1 #2 #3 

to cement 
Compressive Strengths 

0.45 40.7 42.5 40.4 

39.9 41.4 41.7 

0.55 36 35.6 26.6 

26.3 30.7 28.2 

0.65 24.7 30.6 21.9 

23.9 23.9 27.6 

Do these data provide evidence that the additives or the water:cement ratios or 
interactions of the two affect the yield strength? Use the 5% level of significance. 
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Answer: Again the plots of the residuals were examined in the same way as for 
Example 12.1 but showed no significant patterns that would indicate that some of the 
assumptions were not valid. Again they are omitted for the sake of brevity. Calcula
tions are shown in the speadsheet, Table 12.10. 

Table 12.10: Spreadsheet for Study of Additives to Concrete, 
Two-Way Analysis of Variance with Interaction 

A B C D E F 

1 Additives, i 

2 j, Ratio, w/c i=1 i=2 i=3 Row sums Totals, ratio j 

3 y ijk 

4 j=1, 0.45 40.7 42.5 40.4 123.6 

5 39.9 41.4 41.7 123 246.6 

6 j=2, 0.55 36 35.6 26.6 98.2 

7 26.3 30.7 28.2 85.2 183.4 

8 j=3, 0.65 24.7 30.6 21.9 77.2 

9 23.9 23.9 27.6 75.4 152.6 

10 Totals, addtv i 191.5 204.7 186.4 582.6 

11 Cell means, (B4+B5)/2, and copy:  Grand total, y 

12 y ij(bar): i=1 i=2 i=3 

13 j=1 40.3 41.95 41.05 

14 j=2 31.15 33.15 27.4 

15 j=3 24.3 27.25 24.75 

16  Residuals, y ijk-y ij(bar): 

17 i=1 i=2 i=3 Array formulas: 

18 j=1 0.4 0.55 -0.65 B4:B5-B13, and copy 

19 -0.4 -0.55 0.65 

20 j=2 4.85 2.45 -0.8 B6:B7-B14, and copy 

21 -4.85 -2.45 0.8 

22 j=3 0.4 3.35 -2.85 B8:B9-B15, and copy 

23 -0.4 -3.35 2.85 

24 Means, addtv i  B10/6, and copy 

25 i=1 i=2 i=3 

26     y i(barbar): 31.9166667 34.1166667 31.0666667 

27 Means, ratio j: F5/6, etc.: 

28 j=1 41.1 
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29 j=2 30.5666667 

30 j=3 25.4333333 

31 Overall mean: F10/18= 32.3666667 < y (barbarbar) 

32 For additive, SSA=3*2*SUM((y i(barbar)-y(barbarbar))^2) 

33 6*((B26-C31)^2+(C26-C31)^2+(D26-C31)^2) 29.73 SSA 

34 For w/c ratio, SSB=3*2*SUM((y j(barbar)-y(barbarbar))^2 

35 6*((B28-C31)^2+(B29-C31)^2+(B30-C31)^2)= 765.493333 SSB 

36 Interaction: SS(AB)=2*SUMiSUMj((y ij(bar)-y i(barbar)-y j(barbar)+y(barbarbar))^2 

37  (B13-B26-B28+$C$31)^2, and copy: 

38 i=1 i=2 i=3 

39 j=1 0.1225 0.81 1.5625 

40 j=2 1.06777778 0.69444444 3.48444444 

41 j=3 0.46694444 0.00444444 0.38027778 SUMj 2*SUMj 

42 SUMi 1.65722222 1.50888889 5.42722222 8.59333333 17.1866667 

43 For residuals: SSR=SUMiSUMjSUMk(y ijk-y ij(bar))^2 SS(AB) ^ 

44 (B18:D23)^2: 0.16 0.3025 0.4225 < Array formula 

45 0.16 0.3025 0.4225 

46 23.5225 6.0025 0.64 

47 23.5225 6.0025 0.64 

48 0.16 11.2225 8.1225 

49 0.16 11.2225 8.1225 SUMj 

50 SUMi 47.685 35.055 18.37 101.11 SSR 

51 Degrees of freedom 

52 df total = 3*3*2 - 1= 17 df: 

53 Addtves, df(A): 3-1= 2 A 

54 w:c ratio,df(B): 3-1= 2 B 

55  Interaction, df(AB)= (3-1)*(3-1)= 4 AB 

56  df(error)= (3)*(3)*(2-1)= 9 error 

57 Check: D52-D53-D54-D55= 9 (check) 

58 Mean Squares: 

59 s(A)^2: SSA/df(A)= E33/D53= 14.865 

60 s(B)^2: SSB/df(B)= E35/D54= 382.746667 

61 s(AB)^2: SS(AB)/df(AB)= F42/D55= 4.29666667 

62 s(R)^2: SSR/df(error)= E50/D56= 11.2344444 
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63 f(obsrvd,A)= s(A)^2/s(R)^2= D59/D62= 1.323163 f(A) 

64 f(obsrvd,B)= s(B)^2/s(R)^2= D60/D62= 34.06903 f(B) 

65 f(obsrvd,AB)= s(AB)^2/s(R)^2= D61/D62= 0.382455 f(AB) 

The given data are shown in lines 1 to 9, totals for additive i are shown in line 10, 
and totals for water/cement ratio j are shown in column F. Cell means are calculated 
in cells B13:D15, as shown in cell B11. Then residuals are calculated in cells 
B18:D23. Line 26 shows means yi for additive i for all values of the w/c ratio j 
according to equation 12.12, and similarly cells B28:B30 show means  y j for w/c 

≡ratio j for all values for additive i acccording to equation 12.13. The overall mean, y , 
is calculated in cell C31. 

The treatment sum of squares for factor A (additives), SSA, is calculated in lines 
32 and 33. The treatment sum of squares for factor B, (w/c ratio), SSB, is calculated 
in lines 34 and 35. The treatment sum of squares for interaction, SS(AB), is calculated 
in lines 36 to 42 with the result in cell F42. The residual sum of squares, SSR, is 
calculated in lines 43 to 50 with the result in cell E50. 

The degrees of freedom are calculated in lines 51 to 57. In line 57 we check that 
the number of degrees of freedom available for estimating error is the difference 
between the total degrees of freedom and the degrees of freedom allocated to A, B, 
and interaction AB. 

Finally, mean squares for estimating variances for A, B, AB, and error are calcu
lated in lines 58 to 62, and the observed variance ratios are calculate in lines 63 to 65. 

The analysis of variance for this case is summarized in Table 12.11. Once again, 
the mean squares, or estimates of variance, are found by dividing the corresponding 
sums of squares and degrees of freedom. 

Table 12.11:  Analysis of Variance for Strength of Concrete 

Sources of Variation Sums of Degrees of Mean Variance Ratios 
Squares Freedom Squares 

Additives  29.730 2  14.865 fobserved1  = 
14.865 

11.234 
1.32 = 

Water - cement  ratio 765.493 2 382.747 fobserved2  = 
382.747 

11.234 
34.07 = 

Interaction between
   additives and water 

- cement ratio  17.187 4  4.297 fobserved3  = 
4.297 

11.234 
0.38 = 

Error 101.110 9  11.234 

Total 913.520 17 
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Again the simplest mathematical model for this case is 

yijk = µ + αi + β  + (αβ)ij + εijkj

H
H

The corresponding null hypotheses and alternative hypotheses are as follows:


0,1: The true effect of the additives is zero, as opposed to

a,1: the true effect of the additives is not zero.


H
H0,2: The true effect of the water : cement ratio is zero, versus


a,2: the true effect of the water : cement ratio is not zero.


H
H0,3: The true effect of interaction between additive water:cement ratio is zero, vs.


a,3: the true effect of interaction between  additive and water:cement ratio is not zero.


The observed variance ratios in Table 12.11 are compared with critical values of 
the F-distribution for corresponding numbers of degrees of freedom at the 5% level 
of significance. For two degrees of freedom in the numerator and nine degrees of 
freedom in the denominator, tables indicate that the critical or limiting variance ratio 
is 4.26. Thus fobserved,1 is not significantly different from 1, but fobserved,2 clearly is. 
Since the interaction mean square is smaller than the error mean square, there is no 
indication at all that the interaction has a significant effect. 

We can conclude, then, that the data provide evidence at the 5% level of signifi
cance that the water:cement ratio affects the yield strength, but not that the additives 
or the interaction between additives and cement-water ratio affect the yield strength. 

12.3 Analysis of Randomized Block Design 
As we discussed in section 11.5 (d), blocking is used to eliminate the distortion 
caused by an interfering variable that is not of primary interest. In randomized block 
designs there is no replication within a block, and interactions between treatments 
and blocks are assumed to be negligible (subject to checking). In this section we will 
discuss a simple case in which there is only one treatment in two or more levels. 

The nomenclature is a little simpler than in the previous section. yij is an observa
tion of the i th level of factor A and the jth block. There are a different levels for 
factor A and b  different blocks. m is the true overall mean. αi is the incremental 
effect of treatment i, such that αi = µi – µ, where µi is the true population mean for 
the ith level of factor A. βj is the incremental effect of block j, such that βj = µj  – µ, 
where µj is the true population mean for block j. The error εij is the difference be
tween yij and the corresponding true value. 

The simplest mathematical model is 

yij = µ + αi + β  + εij (12.27)j

The quantities µ, αi, and β  are estimated from the data. The best estimate of µ isj

the grand mean, the mean of all observations: 
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a b 

∑∑ yij 

y = i−1 j=1 

a b)( )(  
The best estimate of µi, the population mean for the ith level factor A, is the treat
ment mean, 

b 

∑ yij 

y = j−1 , 
i b 

so the best estimate of αi is (yi − y) . Similarly, the best estimate of µ , the populationj

mean for block j, is the block mean, 
a 

∑ yij 

y j = i−1 , 
a 

so the best estimate of βj  is (y − y) . Then the best estimate of (µ + αi + β ) isj j

y + (yi − y) + (y j − y) . Since for a block design there is no replication, the error εij 
is estimated by the residual, yij − y + (yi − y)+ (y j − y) = yij − yi − y j + y . Remember  
that for a block design, interaction with the blocking variable is assumed to be 
absent. 

The total sum of squares of the deviations of individual observations from the grand 
a b 2 

average is SST = ∑∑(yij − y) . The treatment sum of squares of the deviations of 
i=1 j=1 a 2 

the treatment means from the mean of all the observations is SSA = b∑(y − y) .i 
i=1 

The block sum of squares of the deviations of the block means from the mean of all 
b 2 

the observations is SSB = a∑(y − y) . The residual sum of squares is j 
j=1


a b 2

SSR = ∑∑(yij − y − y j + y) . It can be shown algebraically that 

i

i=1 j=1


SST = SSA + SSB + SSR (12.28) 

The total number of degrees of freedom, N – 1 = (a)(b) – 1, is partitioned simi
larly into the component degrees of freedom. The number of degrees of freedom 
between treatment means is the number of treatments minus one, or (a – 1). The 
number of degrees of freedom between block means is the number of blocks minus 
one, or (b – 1). The residual number of degrees of freedom is (ab – 1) – (a – 1) – 
(b – 1) = ab – a – b + 1 = (a – 1)(b – 1). 
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Once again, the assumptions should be checked by the same plots of residuals as 
were used in section 12.1. If, contrary to assumption, there is an interaction between 
treatments and the blocks, a plot of residuals versus expected values may show a 
curvilinear shape, that is, a systematic pattern that is not linear. If that occurs, a 
transformation of variable should be attempted (see the book by Montgomery). A full 
factorial design may be required. 

If these plots give no indication of serious error, a table of analysis of variance 
should be prepared as in Table 12.12 below. 

Table 12.12: Table of Analysis of Variance for a Randomized Block Design 

Sources of Variation Sums of Degrees of Mean Variance Ratio 

Between treatments 

Squares 

SSA 

Freedom 

(a – 1) 

Squares 

sA 
2 fobserved,1 = 

sA 
2 

sR 
2 

Between blocks SSB (b – 1) sB 
2 

Residuals SSR (a – 1)(b – 1) sR 
2 

Total (about the 
grand mean, y ) SST (N – 1) 

The null hypothesis and alternative hypothesis are similar to the ones we have 
seen before, and the observed variance ratios are compared as before to the tabulated 
values for the F-test. Then appropriate conclusions are drawn. 

Once again, more than one factor may be present, and the table of analysis of 
variance can be modified accordingly. 

Example 12.4 

Three similar methods of determining the biological oxygen demand of a waste 
stream are compared. Two technicians who are experienced in this type of work are 
available, but there is some indication that they obtain different results. A randomized 
block design is used, in which the blocking factor is the technician. Preliminary 
examination of residuals shows no systematic trends or other indication of difficulty. 
Results in parts per million are shown in Table 12.13. 

Table 12.13: Results of B.O.D. Study in parts per million 

Method 1 Method 2 Method 3 

Technician 1 827 819 847 

Technician 2 835 845 867 

Is there evidence at the 5% level of significance that one or two methods of 
determination give higher results than the others? 
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Answer: 

Table 12.14: Spreadsheet for Example 12.4, Randomized Block Design 

A B C D E F 

1 Methods, i 

2 i=1 i=2 i=3 

3 j, technician y ij Totals, ratio j 

4  j=1 827 819 847 2493 

5  j=2 835 845 867 2547 

6 Totals, method i 1662 1664 1714 5040 Grand Total 

7 B6/2 C6/2 D6/2 

8 Means, method i 831 832 857 Overall Mean: 

9 Means, techn j 831 E4/3, j=1 y(bar,bar)= 840 

10 849 E5/3, j=2 (E6/6) 

11 Residuals, y ij-y i(bar)-y j(bar)+y(bar,bar): 

12 5 -4 -1 B4:D4-B$8:D$8-B9+F$9 

13 -5 4 1 (array formula), and copy 

14 SSA=2*SUM(y i(bar)-y(bar,bar))^2 =2*((B8-F9)^2+(C8-F9)^2+(D8-F9)^2)= 

15 SSA= 868 

16 SSB=3*SUM(y j(bar)-y(bar,bar)^2) =3*((B9-F9)^2+(B10-F9)^2)= 

17 SSB= 486 

18 SSR=SUM(residual^2) =B12^2+B13^2+C12^2+C13^2+D12^2+D13^2= 

19 SSR= 84 

20 df(A) = a-1 = 3-1= 2 

21 df(B) = b-1 = 2-1= 1 

22 df(resid) = (a-1)*(b-1) = D20*D21= 2 

23 Mean Square, A=B15/D20= 434 

24 Mean Square, B=B17/D21= 486 

25 Mean Square, residual= B19/D22= 42 

26 f obs, A = D23/D25= 10.3333333 

The spreadsheet is shown in Table 12.14. The mean result for each technician (for all 
methods) was calculated in column E. The mean result for each method (for both 
technicians) was calculated in line 8. The overall mean (or grand average) was found 
in column F. Residuals were calculated in rows 12 and 13. The treatment (method) 
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sum of squares, SSA, was calculated in rows 14 and 15. The block (technician) sum 
of squares, SSB, was calculated in lines 16 and 17. The residual sum of squares, 
SSR, was calculated in rows 18 and 19. Degrees of freedom were calculated in rows 
20:22. Mean squares were calculated in rows 23:25. Observed variance ratio was 
calculated in row 26. 

On the basis of the simplest mathematical model for this case, 

yij = µ + αi + β  + εij 

the null hypothesis and alternative hypothesis are as follows: 

H0,1: The true effect of the method is zero, as opposed to 
Ha,1: the true effect of the method is not zero. 

If the alternative hypothesis is true, the corresponding population variance ratio 
will be greater than 1. 

f

We are now in a position to apply the F-test. Mean squares and observed f-ratios 
are shown in this case as part of the spreadsheet, rather than as a separate table. 
observed A should be compared to flimit for two degrees of freedom in the numerator and 

two degrees of freedom in the denominator at the 5% level of significance, which is 

j

19.00. Therefore we do not have enough evidence to reject the null hypothesis that 
the true effect of the method is zero. However, the result for Method 3 is appreciably 
above the results for Methods 1 and 2. Thus, we may want to collect more evidence. 

Unless this was only a preliminary experiment, we should probably use larger 
sample sizes from the beginning. Larger numbers of degrees of freedom would 
provide tests more sensitive to departures from the null hypotheses, as we have seen 
before. In this example the sample sizes have been kept small to make the calcula
tions as simple as possible. 

From these data there is no evidence at the 5% level of significance that one or 
two methods give higher results than the others or that the technicians really do affect 
the results. 

12.4 Concluding Remarks 
We have seen in Chapter 11 some of the chief strategies and considerations involved 
in designing industrial experiments. Chapter 12 has introduced the analysis of 
variance, one of the main methods of analyzing data from factorial designs. Both 
these chapters are introductory. Further information on both can be obtained from the 
books by Box, Hunter, and Hunter and by Montgomery (see the List of Selected 
References in section 15.2). For instance, both of these books have much more 
information on fractional factorial designs, including worked examples. Some 
persons find the book by Box, Hunter, and Hunter easier to follow, but the book by 
Montgomery is more up-to-date. 
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The worked examples on the analysis of variance that we’ve seen in this chapter 
were simple cases involving small amounts of data. They were chosen to make the 
calculations as easily understandable as possible. As the number of data increase, 
calculation using a calculator becomes more laborious and tedious, and the probability 
of mechanical error increases. There can be no doubt that the computer calculation is 
much quicker and more convenient, and the probability of error in calculation is much 
smaller. The advantage of the computer increases greatly as the size of the data set 
increases, and a typical set of data from industrial experimentation is much larger than 
the set of data used in Example 12.3. Thus, the great majority of practical analyses of 
variance are done nowadays using various types of software on digital computers. 

There are two main approaches to computer calculations of ANOVA. One is the 
fundamental approach, in which the basic formulas of Excel or another spreadsheet 
are used to perform the calculations outlined in this chapter. That can be used from 
the beginning. The other is use of more complicated and specialized functions such 
as special software like SPSS and SAS. Those are very useful once the reader has a 
good grasp of the basic relations and their usefulness, but they should not be used in 
the learning phase. 

We have noted also that the analysis of variance as introduced in this chapter does 
not give us all the information we want in many practical cases. If the independent 
variables are numerical quantities, rather than categories, we usually want to obtain a 
functional relationship between or among the variables. If a particular independent 
variable increases by ten percent, by how much does the dependent variable increase? 
The analysis of variance in the form discussed in this chapter may tell us that a 
certain independent variable has a significant effect on the dependent variable, but it 
cannot give a quantitative functional relationship between the variables. To obtain a 
functional relationship we must use a different mathematical model and a different 
analysis. That is the analysis called regression, which will be discussed in Chapter 14. 

Problems 
1.	 Three testing machines are used to determine the breaking load in tension of wire 

which is believed to be uniform. Nine pieces of wire are cut off, one after an
other. They are numbered consecutively, and three are assigned to each machine 
using random numbers. Random numbers are used also to determine the order in 
which specimens are tested on each machine. The breaking loads (in Newtons) 
found on each machine are shown in the table below. 

Testing Machine 

#1 #2 #3 

1570 1890 1640 

1750 1860 1760 

1680 2390 2020 
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The diagnostic plots 1, 2, and 3 recommended in part (c) of section 12.1 
were carried out and showed no significant discrepancies. 
a) What further diagnostic plot should be made in this case? Why? If this plot is 

not satisfactory, how will that affect the subsequent analysis? 
b)	 Assuming this further plot is also satisfactory, do the data indicate (at the 5% 

level of significance) that one or two of the machines give higher readings 
than others? 

2.	 Two determinations were made of the viscosities of each of three polymer 
solutions. Viscosities were measured at the same flow rate in the same instru
ment. The order of the tests was determined using random numbers. The results 
were as follows. 

Solution 

#1 #2 #3 

177 184 206 

183 187 202 

176 175 200 

The diagnostic plots recommended in part (c) of section 12.1 were carried 
out and showed no significant discrepancies. Can we conclude (at the 5% level of 
significance) that the solutions have different viscosities? 

3.	 A chemical engineer is studying the effects of temperature and catalyst on the 
percentage of undesired byproduct in the output of a chemical reactor. Orders of 
testing were determined using random numbers. Percentage of the byproduct is 
shown in the table below. 

Temperature, °C 

Catalyst 140 150 

#1 2.3 1.6 

1.3 2.8 

#2 3.6 3.0 

3.4 3.8 

The diagnostic plots recommended in part (c) of section 12.1 were carried 
out and showed no significant discrepancies. Can we conclude (at the 5% level of 
significance) that catalyst or temperature or their interaction affects the percent
age of byproduct? 

4.	 A storage battery is being designed for use at low temperatures. Two materials 
have been tested at two temperatures. The orders of testing were determined 
using random numbers. The life of each battery in hours is shown in the follow
ing table. 
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Material 

Temperature 

–20 °C –35 °C 

#1 90 92 

119 86 

#2 128 85 

150 103 

The diagnostic plots recommended in part (c) of section 12.1 were carried 
out and showed no significant discrepancies. Can we conclude (at the 5% level of 
significance) that material or temperature or their interaction affects the life of 
the battery? 

5.	 The copper sulfide solids from a unit of a metallurgical plant were sampled on 
March 3, March 10, and March 17. Half of each sample was dried and analyzed. 
The other half of each sample was washed with an experimental solvent and 
filtered, then dried and analyzed. The order of testing was determined using 
random numbers. The date of sampling was taken as a blocking factor. The 
percentage copper was reported as shown in the table below. 

March 3 March 10 March 17 

Unwashed 64.48 68.67 68.34 

Washed 68.22 72.74 74.54 

The diagnostic plots showed no significant discrepancies. Is there evidence at 
the 5% level of significance that washing affects the percentage copper? 

6.	 A test section in a fertilizer plant is used to test modifications in the process. A 
processing unit feeds continuously to three filters in parallel. A change is  made 
in the processing unit. A sample is taken from the filter cake of each filter, both 
before and after the change. Percentage moisture is determined for each sample 
in an order determined by random numbers, and results are shown in the table 
below. 

Filter #1 Filter #2 Filter #3 

Before change 2.14 2.31 2.32 

After change 1.51 1.83 1.8 

The diagnostic plots showed no significant discrepancies. Taking the filter 
number as a blocking factor, do these data give evidence at the 5% level of 
significance that the processing change affects the percentage moisture? 
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C H A P T E R  13 
Chi-squared Test for 

Frequency Distributions 
For this chapter the reader should have a good understanding of 

statistical inference from Chapter 9, and of sections 2.2, 4.4, 5.3, and 5.4. 

This is another case in which we set up a null hypothesis and then test the statistical 
significance of disagreement with it. But now we are concerned with frequency 
distributions. We compare observed frequencies with corresponding expected fre
quencies calculated on the basis of a null hypothesis with stated trial assumptions. 
Then we calculate a quantity which summarizes the disagreement between observed 
and expected frequencies, and we test whether it is so large that it would not likely 
occur by chance. 

13.1 Calculation of the Chi-squared Function 
Let the observed frequency for class i be oi, and let the expected frequency for 

that same class be ei. We must have ∑ oi = ∑ ei = total frequency. Then we define 
2


2
χcalculated = ∑ (oi − ei )
(13.1) 

all classes ei 

This is a value of a random variable having approximately a chi-squared distribution, 
and the approximation generally gets better as the data set becomes larger. The theory 
behind that involves both the normal approximation to the binomial distribution and 
the mathematical relationship between the normal distribution and the chi-squared 
distribution. Notice that the summation in equation 13.1 must extend over all pos
sible classes of a particular set rather than any selection of them. 

To prevent the error of approximation in using the χ2 distribution from becoming 
appreciable, each expected value of frequency should be at least 5. This is similar to 
the rough rule for the normal approximation to the binomial distribution, which 
requires that both np and (n)(1 – p) be greater than 5. Under some conditions a small 
proportion of the expected frequencies for the chi-squared test can be less than 5 
without producing serious error (see the book by Barnes listed in section 15.2). 
However, a minimum expected frequency of 5 should be applied in solving problems 
in this book. If one or more expected frequencies are less than 5, it may be reason
able to combine adjacent cells or classes to get a combined expected frequency of at 
least 5. We will see that this is done frequently. 
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However, like other tests of significance, the chi-squared test for frequency distribu
tions becomes more sensitive as the number of degrees of freedom increases, and that 
increases as the number of classes increases. Thus, we should make the number of 
classes as large as we can, keeping the requirements of the last paragraph in mind. 

The value of χ2
calculated can be compared with theoretical values of χ2 for appropri

ate number of degrees of freedom and level of significance. The χ2 distribution to be 
used here is the same as the χ2 distribution introduced in section 10.1 for comparing 
a sample variance with a population variance. Remember that χ is pronounced 
“kigh,” like “high.” The shape of the χ2 distribution is always skewed; shapes of 
distributions for three different numbers of degrees of freedom are shown in Figure 
10.1. Some tabulated values of χ2 can be found in Table A3 in Appendix A. 

If a computer with Excel or some alternative is available, it can be used instead of 
a table. Probabilities for particular values of χ2 can be found from the Excel function 
CHIDIST. The arguments to be used with this function are the value of χ2 and the 
number of degrees of freedom. The function then returns the upper-tail probability. 
For example, for χ2 = 11.07 at 5 degrees of freedom, we type in a cell for a work 
sheet the formula =CHIDIST(11.07,5), or else from the Formula menu, we choose 
Paste Function, Statistical Functions, CHIDIST( , ), then type in the arguments and 
choose the OK button. The result is 0.05000962, the probability of obtaining a value 
of χ2 greater than 11.07 completely by chance. If we have a value of the upper-tail 
probability and the number of degrees of freedom, we use the Excel function 
CHIINV to find the value of χ2. Again, the function can be chosen using the Formula 
menu or it can be typed into a cell. For an upper-tail probability of 0.05 and 5 
degrees of freedom, CHIINV(0.05,5) 
gives 11.0704826. 

Upper-tail probability = 0.05
If the calculated value of χ2 is 

greater than the corresponding tabulated 
or computer value of χ2, the null hypoth
esis must be rejected at the level of 
significance equal to the stated upper-tail 

11.07 χ2 
probability. The chi-squared test for 
frequency distributions is always a one- Figure 13.1: Upper-tail probability 
tailed or one-sided test. for Chi-squared Distribution 

In general, the number of degrees of 
freedom for any statistical test is equal to the number of independent pieces of 
information in the data. For the chi-squared test for frequency distributions, the 
number of degrees of freedom is the number of classes or cells used in the compari
son, less the number of linearly independent restrictions placed on those data. For 
example, if we make 100 tosses of a coin, we have two classes or cells, the number 
of heads and the number of tails, and one restriction, that the number of heads and 
the number of tails must add up to 100. Then the number of degrees of freedom in 
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this case is 2 classes – 1 restriction = 1 degree of freedom. We always have at least 
one restriction, given by the total frequency for all classes or cells. 

In some cases, which we will encounter in section 13.3, there are further restric
tions. This is because one or more statistical parameters such as a mean or a standard 
deviation are estimated from the data. Each calculation of an estimated parameter 
from the data represents another independent restriction that reduces the number of 
degrees of freedom. 

Another way of finding the number of degrees of freedom is to count the number 
of classes or cells to which frequencies could be assigned arbitrarily without chang
ing total frequencies of any kind, and subtract the number of parameters (if any) 
which have been determined from the data. This is often the most practical approach. 

If the number of degrees of freedom is 1, we should apply a correction for 
continuity (called the Yates correction). This correction for continuity is similar to the 
one used for a normal approximation to a discrete distribution. However, that will be 
omitted from this book. It is discussed in the book by Walpole and Myers (see 
reference in section 15.2) and other references. 

The chi-squared test for frequency distributions appears in various forms depend
ing on just what trial assumptions are used to give null hypotheses. In each case the 
expected frequency for any class or cell is the product of two quantities: the total 
frequency for all classes and the probability that a randomly chosen item will fall in 
that particular class. 

13.2 Case of Equal Probabilities 
If it is reasonable to make the trial assumption that all the classes or cells are equally 
probable, we can easily calculate the expected frequencies for the corresponding null 
hypothesis. 

Example 13.1 

A die was tossed 120 times with the observed frequencies shown below. Test whether 
the die shows evidence of bias at the 5% level of significance. 

Result 1 2 3 4 5 6 

Observed frequency 12 25 28 14 15 26 

Answer: 

If there is no bias, all the results are equally likely. 

H0: Pr [1] = Pr [2] = Pr [3] = Pr [4] =Pr [5] =Pr [6] 

Ha: Not all the results are equally likely. 
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On the basis of the null hypothesis, the probability of each of the six possible 
1 120 

results is , so the expected frequency of each result is = 20. Then we have
6 6

We have 6 classes or cells, and we have 1 restriction, that the sum of the frequen
cies must be equal to the total number of tosses. Then the number of degrees of 
freedom is given by 

no. of classes or cells – no. of restrictions = 6 – 1 = 5. 

From Table A3 for 5 d.f. and 0.05 upper-
tail probability, χ2

limit = 11.07, or from Upper-tail probability = 0.05 
Excel CHIINV(0.05,5) = 11.0704826 
(quoting all the digits from Excel). 

χ
The calculated and limiting values of 

2 are compared in Figure 13.2. 

Since χ
11.07 χ2


2
calculated > χ2

limit, we reject the 12.50


null hypothesis. 
Figure 13.2: Comparison of Calculated 

Then there is evidence at the 5% level of and Limiting Values of χχχχχ2 

significance that the die is biased. 

13.3 Goodness of Fit 
We can use the chi-squared test for frequency distributions to compare experimental 
frequencies with the frequencies that would be expected if an assumed probability 
distribution applies. Are the differences between observed and expected frequencies 
small enough so that we can say that they could reasonably be due only to chance, or 
are they too large for that interpretation? We calculate the expected class frequencies 
on the basis of the assumed probability distribution, then use the chi-squared test to 
judge the significance of the differences. That is essentially what we did for a very 
simple probability distribution in section 13.2, but now we will use that approach for 
other, more complex distributions, such as the binomial, Poisson, and normal distri
butions, or generally for any case where probabilities for various categories are 
known. If the assumed probability distribution involves parameters that are estimated 
from the data, each estimated parameter will correspond to a further restriction, and 
that will have to be taken into account in determining the number of degrees of 
freedom. 
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We should note that other tests are also used frequently for tests of goodness of 
fit and may have advantages in some cases. In particular, the Kolmogorov-Smirnov 
and Anderson-Darling tests are said to be better for small samples. See the book by 
Johnson (reference given in section 15.2). 

Example 13.2 

In Example 4.2 and Table 4.5 we had data on the thicknesses of 121 metal parts of an 
optical instrument. The histogram for these data was shown in Figure 4.4, and we 
saw later that its shape was similar to the shape we might expect for a normal fre
quency distribution. In Example 7.9 we plotted the data on normal probability paper 
and found good agreement. Now we will test the data for goodness of fit to a normal 
distribution at 5% level of significance. 

Answer: The mean and standard deviation were estimated from the data of Example 
4.2 to be x  = 3.369 mm and s = 0.0629 mm. These were used in Example 7.6 to 
calculate expected frequencies for the various class intervals according to the normal 
distribution, and these expected frequencies were compared to the observed frequen
cies. The comparison is shown in the table below: 

Table 13.1: Expected and Observed Class Frequencies 

Lower Class Upper Class Expected Class Observed Class 
Boundary, mm Boundary, mm Frequency Frequency 

— 3.195 0.3 0 

3.195 3.245 2.6 2 

3.245 3.295 11.4 14 

3.295 3.345 28.2 24 

3.345 3.395 37.2 46 

3.395 3.445 27.6 22 

3.445 3.495 10.9 10 

3.495 3.545 2.4 2 

3.545 3.595 0.3 1 

3.595 — 0.0 0 

Before we can apply the chi-squared test for frequency distributions to these data, 
some adjacent classes have to be combined so that the expected frequency for each 
revised cell is at least 5. Thus, the first three classes are combined to give a cell with 
expected cell frequency 14.3 and observed cell frequency 16, and the last four classes 
are combined to give a cell with expected cell frequency 13.6 and observed cell 
frequency 13. That leaves us with 10 – 2 – 3 = 5 cells or classes. 
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Now we can calculate 

= 4.07 

We have	 H0: probabilities for the various cells are given by the

normal distribution


and Ha: other factors affect probabilities. 

The number of cells is 5, the total expected frequency has been made equal to the 
total observed frequency, and we have two statistical parameters, µ and σ, which 
have been determined from the data. Then the number of degrees of freedom is 5 – 1 
– 2 = 2. For 2 degrees of freedom and 0.05 level of significance, Table A3 or the 

2 2	 2 2Excel function CHIINV gives χcritical or χlimit = 5.99. Since χcalculated < χlimit , we have 
no reason to reject the null hypothesis. The observed frequency distribution seems to 
be consistent with a normal distribution. 

Example 13.3 

In Example 5.15, a Poisson distribution was fitted to data for the numbers of cars 
crossing a bridge in forty successive 6-minute intervals of time. The sample mean 
was calculated from the data to be x  = 2.875, and this value was used as an estimate 
of the population mean, µ, for calculation of Poisson probabilities. The comparison 
of frequencies for various values of the numbers counted, x, is as follows: 

x Observed Frequency Expected Frequency 

0 2 2.26 

1 7 6.49 

2 10 9.33 

3 8 8.94 

4 6 6.42 

5 3 3.69 

6 3 1.77 

7 1 0.73 

≥ 8 0 0.38 

Is the goodness of fit satisfactory at the 5% level of significance? 
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Answer: To make the minimum expected frequency in each cell at least 5, the first 
two cells should be combined, and also the last four. For counts of 0 or 1, the ob
served frequency becomes 9, and the expected frequency becomes 8.75. For counts 
of 5 or more, the observed frequency becomes 7, and the expected frequency be
comes 6.57. After this modification, the new number of cells is 9 – 1 – 3 = 5. 

Now we are ready to apply the chi-squared test. 

H0: The observed frequency distribution is consistent with a Poisson distribution. 

Ha: The frequency distribution is not adequately fitted by a Poisson distribution. 

= 0.007 + 0.048 + 0.099 + 0.027 + 0.028 

= 0.21 

We have 5 cells, and there are two restrictions, for the total frequency and estima
tion of µ from the data. Then there are 5 – 2 = 3 degrees of freedom. From Table A3 
or the Excel function CHIINV we find for 0.05 upper tail probability and 3 degrees 

2 2 2of freedom, χcritical = 7.81. Since χcalculated << χcritical there is no indication at all that the 
fit is not good enough. 

In fact the fit is too good. You may 
remember from section 10.1.1 that for Upper-tail probability = 0.95 

any number of degrees of freedom, the 
mean of the chi-squared distribution is Upper-tail probability = 0.05 

equal to the number of degrees of 
2freedom. In this case χcalculated is smaller 

than the number of degrees of freedom 
and so smaller than the mean of the 

0.21distribution. For 3 degrees of freedom 
0.35 

7.81 χ2

and 0.95 upper tail probability, so at the 
other end of the distribution, Table A3 Figure 13.3: Comparison of Calculated 

2gives χcritical = 0.35. Then the value of and Limiting Values of χχχχχ2 

2 2χcalculated is even less than χcritical for an 
upper-tail probability of 0.95. See Figure 13.3. 

2There is less than 5% probability of getting by chance a value of χcalculated smaller 
than the reported value. This indicates that the reported data are too good to be true 
and may suggest that they were concocted rather than honestly observed. 
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13.4 Contingency Tables 
A contingency table involves two different factors in more than one row and more 
than one column, giving a two-dimensional array. Both factors are usually qualita
tive. We use the chi-squared distribution to test these two factors for independence: 
does one of the factors affect the other? or are they operating independently? If the 
factors are independent, then the simple form of the multiplication rule applies 
according to equation 2.2: the probability of a particular level of factor A and a 
particular level of factor B is simply the product of the probability of that level of 
factor A and the probability of that level of factor B. The best estimate we can make 
of the probability of a particular level of either factor is the total number of outcomes 
which occur at that level, divided by the total frequency for this set of data. On that 
basis the expected frequency for level i of factor A and level j of factor B is given by 

Pr [level i of factor A ∩ level j of factor B] × total frequency = 

= Pr [level i of factor A] × Pr [level j of factor B] × total frequency 

× total frequency 

The total numbers at particular levels are usually spoken of as column totals and 
row totals, and the total frequency for all conditions is called the grand total. Then 
the expected frequency for level i of factor A and level j of factor B is given by 

(row total )(column total ) 
grand total 

. 

This relationship for the expected frequency applies both for the case where all 
the total numbers at particular levels are random variables and for the case where 
some total numbers at particular levels (either for columns or for rows, not both) are 
fixed at chosen values. Thus, in  Example 13.4 below, the total frequency for each 
shift is fixed at 300. 

Example 13.4 

The observed numbers of days on which accidents occurred in a factory on three 
successive shifts over a total of 300 days are as shown below. The numbers of days 
without accidents for each shift were obtained by subtraction. 
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Shift Days With Accidents Days Without Accidents Total 

A 1 299 300 

B 7 293 300 

C 7 293 300 

Total 15 885 900 

Totals for all rows and all columns have been calculated. Is the difference in number 
of days with accidents between different shifts statistically significant? That is, is 
there evidence that the probability of accidents depends on the shift? Use the 5% 
level of significance. 

Answer: 

H0: The numbers of days with accidents are independent of the shift. 

Ha: Some shifts have greater probability of accidents than others. 

The analysis will use the chi-squared test for frequency distribution with 

− 2


2 i
χ = ∑ (o ei ) . 
all classes ei 

The expected frequencies are found using the null hypothesis and the column and 
row totals. Overall, the best estimate of the probability that there will be at least one 

15 
accident on a randomly chosen shift and day is , and the best estimate of the

900 885 
probability of no accident on a randomly chosen shift and day is 

900 
. (With these 

figures the probability of more than one accident on any particular shift and day is 
small enough to be neglected.)  Similarly, the probability that any randomly chosen 

300 
shift is A shift (or B shift, or C shift) is 

900 
. On the basis of the null hypothesis the 

expected number of days with accidents on A shift or B shift or C shift is then 

 15   300 
(900 ) = 5 , or 

(row total )(column total ) ( )(300 )15 
   = = 5 . Similarly, the 
 900   900  grand total 900 
expected number of days without accidents on A shift or B shift or C shift is 
(row total )(column total )

=
(885)(300 )

= 295. We use these expected frequencies 
grand total 900 

2and the corresponding observed frequencies to find χcalculated . 
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We have 6 classes or cells. The restrictions are the totals for each shift, the total 
number of accidents, and the total number of days without accidents, but these are 
not all linearly independent. The number of degrees of freedom for a contingency 
table is best found as the number of class frequencies which could be varied arbi
trarily without changing any of the row or column totals. In this problem that number 
of degrees of freedom is 2, since 2 cell frequencies could be varied arbitrarily without 
changing the totals. We can see that by removing the individual class frequencies 
from the contingency table, then marking x’s in some cells until no more could be 
varied without affecting some of the totals: 

Shift Days With Accidents Days Without Accidents Total 

A x1 300 

B x2 300 

C 300 

Total 15 885 900 

For instance, if the numbers of accidents for shifts A and B are fixed, then the values 
in all the other cells are determined by the totals. Therefore the number of degrees of 
freedom in this problem must be 2. 

Upper-tail probability = 0.05From Table A3 or the Excel 
function CHIINV, for upper-tail 
probability 0.05 and 2 degrees of 

2freedom, χcritical  = 5.991. This is 
shown on  Figure 13.4. 

5.991 χ2 

Since 4.88 < 5.991, the calculated 4.88 

value of χ2 is not significant at the 5% Figure 13.4: Calculated and 
level of significance. Therefore we Critical Values of Chi-squared
have insufficient evidence to reject the 
null hypothesis. We could gather more information. If further data continue to show 
more accidents on B and C shifts than on A shift, a later analysis might well show a 
significant value of χ2. 

Example 13.5 

Results of a study of the repair records of three models of cars over the first three 
years of the cars’ lives on the basis of a sample are shown below. 

Percentages Requiring 

Car Model 

A  60  20  50  30  

B  30  40  40  20  

C  40  30  60  10  

Number Surveyed Major Repairs Minor Repairs No Repairs 
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Test the hypothesis that all models perform equally well, so probabilities are 
independent of the model. The level of significance to be used will be 5%. 

Answer: Before we can apply the chi-squared test we have to convert percentages to 
observed frequencies and find column and row totals.

             Observed Frequencies 

Car Model Major Repairs Minor Repairs No Repairs Total 

A  12  30  18 60  

B  12  12  6 30  

C  12  24  4 40  

Total 36 66 28 130 

The corresponding expected frequencies are calculated using the null hypothesis. 

H0: Probabilities for repair are independent of the model. 

Ha: At least one model has different probabilities of repair. 
 row total  

Expected frequencies are then calculated using totals: 



grand total 
 (column total). 

36 
Expected frequencies are shown in the table below.  130 
For example, expected frequency of major repairs for model A is 


 

60 
( ) = 16.6 . 

       Expected Frequencies 

Car Model Major Repairs Minor Repairs No Repairs Total 

A 16.6 30.5 12.9 60 

B 8.3 15.2 6.5 30 

C 11.1 20.3 8.6 40 

Total 36 66 28 130 

Then 

2 2 2(12 − 8.3 ) (12 −15.2 ) (6 − 6.5 )
+ + + 

8.3 15.2 6.5 
2 2 2(12 −11.1 ) (24 − 20.3 ) (4 − 8.6 )

+ + + 
11.1 20.3 8.6 

= 8.87 
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The number of degrees of freedom is the number of class frequencies which 
could be changed arbitrarily without changing any of the totals for rows and col
umns. If the frequencies of, say, major repairs for Models A and B and minor repairs 
for Models A and B are chosen arbitrarily, all other frequencies are fixed if the totals 
are to stay the same. Then the number of degrees of freedom is 4. 

(This last calculation can be reduced to a simple formula, but the reader will 
obtain better understanding during the learning process by reasoning from the 
underlying ideas, as we have done here. The formula for number of degrees of 
freedom for contingency tables can be found in a number of reference books, includ
ing the book by Walpole and Myers for which a citation is given in section 15.2.) 

From Table A3 or the Excel function CHIINVat the 0.05 level of significance, 
2 2χcritical = 9.488. Since χcalculated < χcritical , we cannot reject the null hypothesis. We do 

not have sufficient evidence to say that probabilities of the various categories of 
repairs depend on the model. 

Problems 
1.	 Numbers of people entering a commercial building by each of four entrances are 

observed. The resulting sample is as follows: 

Entrance 1  2  3  4 

No. of People 49 36 24 41 

a) Test the hypothesis that all four entrances are used equally. Use the 0.05 level 
of significance. 

b)	 Entrances 1 and 2 are on a subway level while 3 and 4 are on ground level. 
Test the hypothesis that subway and ground-level entrances are used equally 
often. Use again the 0.05 level of significance. 

2.	 Two dice are rolled 100 times and the results are tabulated below according to the 
specified categories: 

Value of roll 2 to 4 5 or 6 7 8 or 9 10 to 12 

No. of rolls 21 21 18 28 12


At the 5% level of significance, can we say that the dice are unbiased?


3.	 A robot-operated assembly line is developed to produce a range of new products, 
which are color-coded black, white, red and green. The assembly line is pro
grammed to produce 11.76% black, 29.41% white, 7.06% red and 51.76% green 
items. A sample of 180 items was taken and the following distribution was 
observed: 

Color Black White Red Green 

Frequency 26 43 15 96 

a)	 Can you conclude at the 5% level of significance that the assembly line 
needs adjustment? 
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b)	 What is the lowest level of significance at which you could conclude that the 
system needs adjustment? 

4.	 When four pennies were tossed 160 times, the frequencies of occurrence of 0, 1, 
2, 3 and 4 heads were 9, 48, 53, 44 and 6, respectively. Is there evidence at the 
5% level of significance that the coins are not fair? 

5.	 Consider the average daily yields of coke from coal in a coke oven plant summa
rized by the grouped frequency distribution shown below. 

Lower Bound Upper Bound Class Midpoint Frequency 

67.95 68.95 68.45 1 

68.95 69.95 69.45 8 

69.95 70.95 70.45 22 

70.95 71.95 71.45 22 

71.95 72.95 72.45 9 

72.95 73.95 73.45 8 

73.95 74.95 74.45 2 

The estimated mean and standard deviation from the data are 71.25 and 1.2775, 
respectively. Is the frequency distribution given above significantly different from 
a normal distribution at the 5% level of significance? 

6.	 Consider the hourly labor costs (in dollars) for a random sample of small con
struction projects summarized in the frequency table below. 

Lower Bound Upper Bound Class Midpoint Frequency 

18.505 19.505 19.005 6 

19.505 20.505 20.005 24 

20.505 21.505 21.005 17 

21.505 22.505 22.005 16 

22.505 23.505 23.005 7 

23.505 24.505 24.005 3 

24.505 25.505 25.005 2 

The mean and standard deviation estimated from these data are $21.15 and 
$1.42, respectively. Are the above data significantly different from a normal 
distribution? Use .05 level of significance. 

7.	 Scores made in the final exam by an elementary statistics section can be summa
rized in the following grouped frequency distribution: 

Class No. Class Midpoint Frequency 

1 14.5 3 

2 24.5 2 

3 34.5 3 
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4 44.5 4 

5 54.5 5 

6 64.5 11 

7 74.5 14 

8 84.5 14 

9 94.5 4 

The mean and standard deviation calculated from these data are 65.48 and 
20.957, respectively. At a 5% level of significance do the above data differ from a 
Normal Distribution? 

8.	 A company has set up a production line for cans of carrots. The numbers of 
breakdowns on the production line over 49 shifts are summarized as follows: 

No. of breakdowns in one shift No. of shifts 

0 	18  

1 	12  

2	 8 

3	 6 

4	 3 

5	 2 

> 5 0 

Is this distribution significantly different from a Poisson distribution? Use the 5% 
level of significance. 

9.	 A section of an oil field has been divided into 48 equal sub-areas. Counting the 
oil wells in the 48 sub-areas gives the following frequency distribution: 

Number of oil wells 0 1 2 3 4 5 6 7 

Frequency 5 10 11 10 6 4 0 2 

Fitting the data to a Poisson Distribution gives the following estimated frequencies: 

3.94 9.85 12.31 10.25 6.41 3.21 1.34 0.47 

Test at the 5% level of significance the null hypothesis that the data fit a Poisson 
distribution. 

10. A study of four block faces containing 52 one-hour parking spaces was carried 
out. Frequencies of vacant spaces were as follows: 

No. of vacant parking spaces 0  1  2  3  4  5  >6  

Observed frequency 30 45 20 15 7 3 0 

From these data the mean number of vacant spaces was calculated to be 1.442. At the 
5% level of significance, can you conclude that the distribution of vacant one-hour 
parking spaces follows a Poisson distribution? 
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11. The number of weeds in each 10 m2 square of lawn was recorded by a team of 
second-year students for a random sample of 220 lawns. 

Number of weeds per 10 m2 Frequency 

0  19  

1  44  

2  68  

3  48  

4  18  

5 7 

6 6 

>6 10 

a) At the 5% level of significance, is this distribution significantly different 
from a Poisson Distribution? 

b) Is there any reason to suggest that the data may not have been reported 
honestly? 

12. A factory buys raw material from three suppliers. All raw materials are made into 
products by the same workers using the same machines. An engineer thinks there 
is a difference in the likelihood of defects in products made from raw materials 
from different suppliers and collects the following information. 

Source of Raw Materials 
Smith Co. Jones Co. Roberts Co. 

No. of defective products 11 5 4 

No. of satisfactory products 54 71 62 

Is there evidence at the 5% level of significance that the discrepancies are not due 
to chance? 

13. A particular type of small farm machinery is produced by four different compa
nies. The proportions of machines requiring repairs in the first year after sale to 
the farmers are as follows: 

Company Total Number of Machines Proportion Requiring Repairs 

A 145 0.1034 

B 140 0.0429 

C 120 0.0333 

D 105 0.1143 

Is the distribution regarding requiring and not requiring repairs independent of 
the company? Use the 1% level of significance. 
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14. An industrial engineer collected data on the frequency and severity of accidents in 
the mining industry and summarized her findings as follows: 

Days of Week 

Severity of Monday & Tuesday & Wednesday Total 
Accident Friday  Thursday 

Severe 22 9 4 35 

Minor 283 254 128 665 

Total 305 263 132 700 

a)	 Can you conclude at the 5% level of significance that the severity of acci
dents is independent of the day of the week? 

b)	 What is the lowest level of significance at which you could conclude that the 
frequency of severe accidents depends upon the day of the week? 

15. In testing the null hypothesis that the level of heavy equipment usage and the 
owner’s maintenance policy are independent variables, a mechanical engineer 
received replies to her questionnaire from a random sample of users. The follow
ing summary applies:

  Maintenance Policy 

Equipment Usage By Calendar By Hours of Operation As Required Total

 Light 12 8 13 33

 Moderate 7 15 22 44

 Heavy 3 22 15 40 

Total 22 45 50 117 

At the 1% level of significance, should the engineer reject the null hypothesis? 

16. The following data have been obtained by an automotive engineer interested in 
estimating owner preferences. From a sample of 163 automobiles the following 
data on engine size and transmission type were obtained. 

Engine Size 

Transmission small medium large 

4-speed 34 19 12 

5-speed 24 28 5 

Automatic 7 12 22 

a)	 He wishes to test the null hypothesis that transmission type and engine size 
chosen by the car-owning population are independent. Using a 5% level of 
significance, do the above data support this hypothesis? 

b)	 In all of Canada, statistics for cars equipped with automatic transmissions 
show that 21% have small engines, 23% have medium size engines and the 
remainder have large engines. Are the data in the above table consistent with 
the Canadian statistics? 
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17. The tread life of a particular brand of tire was evaluated by recording kilometers 
traveled before wearout for a random sample of 500 cars. The cars were classi
fied as subcompacts, compacts, intermediates, and full-size cars. The grouped 
frequency distribution is shown in the following table. 

Treadwear, km  Class of Car 

Lower Bound Upper Bound Subcompact Compact Intermediate Full Size 

0 30,000  26  55  46 23 

30,001 60,000  95 171  99 55 

60,001 90,000 120 205 115 60 

At the 1% level of significance, can you conclude that treadwear and class of car 
are independent? 

18. Four alternative methods of loading a machine are tried to see whether the 
loading method has any effect on the likelihood that  cycles will end in stop
pages. The results are as follows: 

Method of loading A B C D 

Observed frequency of cycles with stoppages 8 4 9 3 

Observed frequency of cycles without stoppages 10 16 12 18 

Use the chi-squared test for frequencies to see whether these data show a signifi
cant effect of the method of loading on the probability of a stoppage. Use the 5% 
level of significance. 
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C H A P T E R  14 
Regression and Correlation 

For this chapter the reader should have a good understanding 
of the material in sections 3.1 and 3.2 and in Chapter 9. 

In previous chapters we have investigated frequency distributions, probability distri
butions, and central values such as means, all at fixed values of the independent 
variables. Now we want to see how the distributions and means change as one or 
more independent variables change. We will look at samples of data taken over a 
range of an independent variable or variables and use those data to obtain informa
tion regarding the relation between the dependent and independent variables. 

In a simple case we have only one independent variable, x, and one dependent 
variable, y. Regression analysis assumes that there is no error in the independent 
variable, but there is random error in the dependent variable. Thus, all the errors due 
to measurement and to approximations in the modeling equations appear in the 
dependent variable, y. If other independent variables have an effect but are kept only 
approximately constant, effects of their variation may inflate the errors in the depen
dent variable. In some cases other independent variables may be varying appreciably 
and may affect the dependent variable, but the effect of a chosen independent variable 
may be examined by itself, as though it were the only independent variable, to obtain 
a preliminary indication of its effect. In any example of regression, the expectation or 
expected value of y varies as a function of x, and errors cause measured values of y to 
deviate from the expected value of y at any particular value of x. If there are several 
measured values of y at one value of x, the mean of the measured values of y will 
give an approximation of the expected value of y at that value of x. 

Engineers often encounter situations where an independent variable affects the 
value of a dependent variable, and errors of measurement produce random fluctua
tions about the expected values. Thus, change in stress produces change in strain plus 
variation in measured strain due to error. The output of a stirred chemical reactor 
changes as the temperature within the reactor varies with time, and the measured 
concentration of any component in the output shows an additional variation caused 
by error. The power produced by an electric motor changes with variation of the 
input voltage, and measurements of output include measuring errors. 
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Correlation involves a different approach and a different set of assumptions but 
some of the same quantities. Those will be discussed in section 14.6. 

The methods of regression are used to summarize sets of data in a useful form. 
The values of x and y and any other quantities are already known from measurements 
and are therefore fixed, so it is not quite right to speak of them in this development as 
variables. The true variables will be the coefficients that are adjusted to give the best 
fit. Therefore, in sections 14.1 to 14.5 we will refer to x and the other “independent” 
pieces of data as inputs or regressors. A quantity such as y, which is a function of the 
inputs, will be called a response. 

14.1 Simple Linear Regression 
The simplest situation is a linear or straight-line relation between a single input and 
the response. Say the input and response are x and y, respectively. For this simple 
situation the mean of the probability distribution is 

( ) = α + β x (14.1)E Y  

where α and β are constant parameters that we want to estimate. They are often 
called regression coefficients. From a sample consisting of n pairs of data (xi,yi), we 
calculate estimates, a for α and b for β. If at x = xi, ŷ i is the estimated value of E(Y), 
we have the fitted regression line 

ŷ = + b  xi (14.2)ai 

where the “hat” on ŷ  indicates that this is an estimated value. 

(a) Method of Least Squares 

The problem now is to determine a and b to give the best fit with the sample data. If 
the points given by (xi,yi) are close to a perfect straight line, it might be satisfactory 
to plot the points and draw the line by eye. However, for the present analysis we need 
a systematic recipe or algorithm. The reader may remember from section 3.2 (g) that 
the sum of squares of deviations from the mean of a sample is less than the sum of 
squares of deviations from any other constant value. We can adapt that requirement to 
the present case as follows. Let ei = − ŷ be the deviation in the y-direction of any yi i 

data point from the fitted regression line. Then the estimates a and b are chosen so 
2that the sum of the squares of deviations of all the points, ∑e , is smaller than fori 

all i 
2 2

any other choice of a and b. Thus, a and b are chosen so that ∑ei = ∑(yi − ŷi ) has 
all i all i 

a minimum value. This is called the method of least squares and the resulting equa
tion is called the regression line of y on x, where y is the response and x is the input. 

Say the points are as shown in Figure 14.1. This is called a scatter plot for the 
data. We can see that the points seem to roughly follow a straight line, but there are 
appreciable deviations from any straight line that might be drawn through the points. 
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Now let us consider the method of least squares in more detail. If the points or 
pairs of values are (xi,yi) and the estimated equation of the line is taken to be 
ŷ = a + bx, then the errors or deviations from the line in the y-direction are 
ei = [yi – (a + bxi)]. These deviations are often called residuals, the variations in y 

2that are not explained by regression. The squares of the deviations are ei = 
[yi – (a + bxi)]2, and the sum of the squares of the deviations for all n points is 

n n 
2∑ei =∑yi − (a + bxi )

2 

. This sum of the squares of the deviations or errors or 
i=1 i=1 

residuals for all n points is abbreviated as SSE. 
n 

2 
The quantity we want to minimize in this case is SSE = ∑ei =


n 
2 

n i=1


∑(yi − ŷi ) = ∑y − (a + bxi )
2 

i . Remember that the n values of x and the n 
i=1 i=1 

values of y come from observations and so are now all fixed and not subject to 
variation. We will minimize SSE by varying a and b, so a and b become the indepen
dent variables at this point in the analysis. You should remember from calculus that 
to minimize a quantity we take the derivative with respect to the independent variable 
and set it equal to zero. In this case there are two independent variables, a and b, so 
we take partial derivatives with respect to each of them and set the derivatives equal 
to zero. Omitting some of the algebra we have 

n n n
2  ∂ (SSE ) = ∂ ∑y − (a + bx  ) = −  2 ∑ y − n  a  − b∑ xi  = 0 

a a∂ ∂ i

i=1 

i i   i=1 i=1 


and 

n n nn 2  2 ∂ (SSE ) = ∂ ∑y − (a + bx  ) = −2∑ x y  − a∑ x − b∑ x  = 0.  
b b∂ ∂ i i  i i 


i=1 
i i   i=1 i=1 i=1 
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These are called the least squares equations (or normal equations) for estimating the 
coefficients, a and b. The right-hand equalities of these two equations give equations 
that are linear in the coefficients a and b, so they can be solved simultaneously. The 
results are 

n n n  ∑ x y  − 1 
∑ xi ∑ yi  

b = 
i i 


i=1 n  i=1   i=1 

n n (14.3)

∑ xi 
2 − 1 


∑ xi 


2 

i=1 n  i=1  

n 

∑(xi − x )(y − y ) 
= 

i

i=1


n


∑(xi − x )2 (14.3a) 

i=1 

and 

n n 

∑ y b∑ x 
a = 

i − i

i=1 i=1
 = y − bx  (14.4) 

n 

The two forms of equation 14.3 for b are equivalent, as can be shown easily. The 
first form is usually used for calculations. The second form, equation 14.3a, is 
preferred when rounding errors in calculations may become appreciable. The second 
form indicates that the numerator is the sum of certain products and the denominator 
is the sum of similar squares. 

These sums of products and squares are used repeatedly and so should be defined 
n 

− 2
at this point. The quantity ∑(x x  ) is sometimes called the sum of squares for x i 

i=1 n 

− 2
and abbreviated Sxx. Similarly, the quantity ∑(y y  ) is sometimes called the sum ofi 

i=1 n 

−squares for y and abbreviated Syy, and the quantity ∑(x x  )(yi − y ) is sometimesi 
i=1 

called the sum of products for x and y and abbreviated Sxy. Then we have 

n n n
2 2S = ∑(xi − x ) = ∑ xi − 1 


∑ x 


2 

xx i  (14.5) 
i=1 i=1 n  i=1  
n n n

2 2S = ∑(yi − y ) = ∑ y − 1 

∑ yi 


 

2 

yy i (14.6) 
i=1 i=1 n  i=1  
n n n n    

S = ∑(xi − x )(y − y ) = ∑ x y  − 1 

∑ xi ∑ yi xy i i i  (14.7) 

i=1 i=1 n  i=1   i=1  
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Equation 14.3 can be written compactly as 
Sxyb = (14.8)Sxx 

These abbreviations will be used also in later equations. 

From equation 14.4 we have 

a y= − bx (14.4a) 

Substituting for a in equation 14.2 with a little rearrangement gives 

ˆ − i(y y  ) = b (x − x ) (14.9)i 

,This indicates that the best-fit line passes through the point (x y  ) , which is called 
the centroidal point and is the center of mass of the data points. After the slope, b, is 
found from equation 14.8, the intercept, a, is usually calculated from equation 14.4a. 

Equations 14.3 and 14.4 are called regression equations. The name “regression” 
arose because an early example of its use was in a study of heredity, which showed 
that under certain conditions some physical characteristics of offspring tended to 
revert or regress from the characteristics of the parents toward average values. The 
name “regression”  has become well established for all uses for such equations and 
for the process of finding best-fit equations by the method of least squares. 

Illustration 

Now let’s apply these equations to the points that were plotted in Figure 14.1. The 
data are given in Table 14.1. 

Table 14.1: Data for Simple Linear Regression 

x 0 1 2 3 4 5 6 7  8  9 10 11 12  

y 3.85 0.03 3.50 6.13 4.07 7.07 8.66 11.65 15.23 12.29 14.74 16.02 16.86 

We have 13 points, so n = 13. The data can  be summarized by the following 
13 13 13 13 13 

2 2sums: ∑xi = 78, ∑ y = 120.10, ∑ xi = 650, ∑y = 1483.0828, ∑ x y  = 968.95 i i i i 

i=1 i=1 i=1 i=1 i=1


78 120.10 
The centroidal point is given by x = = 6, y = = 9.23846. 

13 13 
The sums of squares and the sum of products are 

S = 650 − 1 ( )2
= 650 – 468 = 18278xx 13 

Syy = 1483.0828 − 1 (120.10 )2 
= 1483.0828 – 1109.5392 = 373.5436

13 
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1 
78 Sxy = 968.95 − ( )(120.10 )= 968.95 – 720.60 = 248.35

13 

Sxy 248.35 
Then b = = = 1.36456, 

S 182 

and using the values of x  and y  in equation 14.4a we find 

a = 9.23846 – (1.36456)(6.000) = 9.23846 – 8.18736 = 1.0511 

The best-fit regression equation of y as a function of x (often called the regression 
equation of y on x ) by the method of least squares is 

y = 1.0511 + 1.36456 x 

Notice that this calculation involves taking differences between numbers that are 
often of similar magnitude, so rounding 
the numbers too early could greatly 20 

reduce the accuracy of the results. As 
usual, rounding should be left to the end 

16 
of the calculation. y 

The calculations for regression, 12 

especially for large sets of data, can be 
done much more quickly using a spread
sheet rather than a pocket calculator. 8 

Excel is suitable for such calculations. 
4 

The resulting regression equation of y 
on x is compared with the original points 
in Figure 14.2. The centroidal point is 0 

Centroidal point 

0  4  8 12  
also shown. To emphasize that deviations 
in the y-direction are minimized, lines 
have been drawn in that direction be
tween the points and the line. 

x 

Figure 14.2: Comparison of 
Points and Regression Line 

(b) Comparison of Regressions for Different Assumptions of Error 

The derivation for the regression of y on x assumed that the values of x were known 
without error and that only values of y contained error. Is the result different if this 
assumption is not correct? The opposite assumption would be that values of y are 
known without error and only values of x contain error. In that case deviations from 
the line would be taken in the x-direction at constant y. The roles of y and x would be 
reversed. The equation of the new regression line would be x = a′ + b′y, so 

x a′− 
y = 

b′
.  Derivation for minimum sum of squares of deviations in this case would 

give 
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n n n n ∑ x y  − 1 
∑  ∑  yi 


 

=
∑(xi − x )(yi − y) S 

b′ = 
i i  xi 


i=1 n  i=1  i=1 i=1 = xy


n
n n 
yy∑ yi 

2 − 1 

∑ yi 


2 

∑(yi − y)2 S 
(14.10)i=1i=1 n  i=1  

and 
n n 

∑ x b′∑ yi − i 
i=1 i=1 (14.11)x ′ a′ =  = −  b y 

n 

Again the regression line would pass through the centroidal point. If the equation 
of the new line is solved for y, it becomes 

a′ 1 
y =  +  x (14.12)

b′ b′ 
Thus its slope is Syy / Sxy, instead of S  / Sxx for the slope of the regression of y on x.xy

The new regression line is called the regression of x on y. Then the assumption 
concerning which variable contains the error does make a difference. The only case 
in which the lines for the regression of y on x and the regression of x on y would 
coincide is when the points form a perfect straight line. The more the data points 
depart from a straight line, the more the two regression lines will differ. Figure 14.3 
shows the regression line of y on x and the regression line of x on y for the illustra
tion of Figures 14.1 and 14.2. 

20 

16 

y 

Centroidal point 

y12 

y on x 

8 x on y 

4 

Figure 14.3: Comparison of 
Regression Lines 

0

0  4  8 12 


x 

(c) Variance of Experimental Points Around the Line 

Now we need to estimate the variance of points from the least-squares regression line 
for y on x. This must be found from the residuals, deviations of points from the least-
squares line in the y-direction. As we discussed in part (b) of this section, these 

347




Chapter 14 

y ŷ yi (a y aresiduals can be calculated as ei = −  = −  +  bxi ) =  − − bx  . The error sum i i i i 

of squares abbreviated as SSE, is given by 
n 

2
SSE = ∑(y − −  bxi )ai


i=1


= + bx  and thus a yor, since y a  = − bx  , 
n 

SSE = ∑(yi −  −  b (x − x ) 
2


i=1


n n n


y) i 

− 2 2 2 = ∑(y y) − 2b∑(x − x )(y −  +  b ∑(xi − x )i i i y) 
i=1 i=1 i=1


2
= S − 2bS  + b  S  yy xy xx 

2S 
2 ( )  Sxy 

But from equation 14.8, b = S
xy 

, so b Sxx = 
Sxy 

S =
( )(Sxy ) = b  S  , 

S 
2 xx xy 

xx xx xx ( )  S 
2and −2bSxy + b Sxx = −bS . Then we have 

SSE = S  – b S (14.14) 

xy 

yy xy 

This estimate of the error sum of squares, SSE, must be divided by the number of 
degrees of freedom. The number of degrees of freedom available to estimate the 

2variance σ is the number of points or pairs of values for x and y, less one degree of y x  

freedom for each of the independent coefficients estimated from the data. In this case 
we have n points and we have estimated from the data two independent coefficients, 
b and y , or a and b. The available number of degrees of freedom is (n – 2). The 
estimate of the variance of the points about the line is 

SSE = 
Syy − b  S  2s = xy 

(14.15)y x  n − 2 n − 2 
This quantity is a measure of the scatter of experimental points around the line. 

The square root of this quantity is, of course, the estimated standard deviation or 
standard error of the points from the line. The subscript, y|x, is meant to emphasize 
that the estimated variance around the line is found from deviations in the y-direction 

2
and at fixed values of x. The subscript is omitted in some books. The quantity sy x  

can be used also to obtain estimates of the standard errors of other parameters, such 
as the slope of the best-fit line. These will be discussed in section 14.3 for statistical 
inferences. 

14.2 Assumptions and Graphical Checks 
Let us look first at the assumptions required for finding the best-fit lines. After that, 
we’ll look at additional assumptions required for statistical inferences such as 
confidence limits and statistical significance. Then let’s see how we can examine a 
plot of the data to see whether some assumptions are reasonable for any particular 
case. 
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For simple linear regression of y on x in the simplest case we assume the data 
points are related by an equation of the form 

yi = a + b xi + ei (14.16) 

where the ei represent errors or deviations or residuals. This involves certain assump
tions. The first is that a linear relation between y and x represents the data adequately, 
so that the model represented by equation 14.16 is satisfactory. The second assump
tion is that the errors ei are entirely in the y-direction and so independent of x; thus, 
there are assumed to be no errors in the values of x. Regression calculations also 
assume that the individual residuals, ei, are essentially independent of one another, so 
that equation 14.16 is the only relation affecting y over the region in which measure
ments have been taken. Similar assumptions apply for the regression of x on y. 

In order to apply statistical tests of significance and confidence limits we must 
also assume that the variance is constant and not varying as a function of the vari
ables, and that the statistical distribution of errors or residuals is at least 
approximately normal. In particular, positive and negative deviations from the line 
should be equally likely at all values of x within the range of experimental data. Any 
outliers, points for which residuals are much larger than the others in absolute value, 
may make statistical inferences useless. 

The reasonableness of the assumption that the values of x are known without 
error and all the error is in y must be tested by knowledge of the quantities and how 
they are measured. Because the line for regression of y on x and the line for x on y 
come closer together as data approach a perfect straight line, the effects of this 
assumption become less significant as the data come closer to a perfect correlation. 

Now consider the assumption of a simple linear relation between y and x. Is a 
linear relation between y and x a satisfactory representation of the data? Or is there 
reason to think that some other form of relation would represent the data better? In 
many cases the underlying relation may be more complex, but a straight-line relation 
between y and x may represent the data satisfactorily for a particular range of values. 

To examine these and other questions, we need to calculate the residuals from the 
best-fit straight line (or some more complex alternative), plot them against x or y, and 
examine the results. If we find some systematic relation between the residuals and 
either x or y, then apparently the straight-line relation of equation 14.13 is not 
adequate and we should try a different form for the relation between y and x. 

We can obtain an indication of whether the variance is constant from the plot of 
residuals against x or y. If the residuals show markedly more or markedly less scatter 
(or first one, then the other) as x or y increases, so that the scatter shows a systematic 
pattern, then the variance is probably not constant. Of course, residuals vary ran
domly besides any systematic variation, so we have to be careful not to jump to 
conclusions. It is often desirable to obtain more data to confirm a tentative conclu
sion that the variance is not constant. 
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We should consider the residuals to see whether the assumption of a normal 
distribution is reasonable. Are there about as many positive residuals as negatives? 
Are small deviations considerably more frequent than larger ones? Are there any 
outstanding outliers? We can answer these questions by examining the plot of 
residuals against x or y (usually x). These tests are adequate for relatively small sets 
of data. There are other, more sophisticated tests for a normal distribution that are 
useful for larger data sets, but they are beyond the scope of this book. For them the 
reader is referred to the book by Ryan (see reference in section 15.2). 

Some examples of graphical checks 
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Figure 14.4: Residuals plotted against x 

Figure 14.4 shows a plot of residuals versus x for the same data as in Figures 
14.1, 14.2, and 14.3. There does not seem to be any strong pattern among the points 
in this plot, so we have no reason to discard the straight-line relation. Furthermore, 
there doesn’t seem to be any systematic change beyond random variation in the 
scatter as x increases, so we have no reason to believe that the variance is anything 
other than constant. 

The data points in Figure 14.4 show about the same number of positive and 
negative residuals and no pronounced outliers. Residuals of small absolute value are 
considerably more frequent than larger deviations. Therefore, the assumption that 
deviations from the line are normally distributed seems to be satisfactory. 

For comparison, Figure 14.5 shows a residual plot for a case in which residuals 
plotted against x show systematic deviations. They are systematically less than or 
equal to zero in the middle of the diagram, and greater than or equal to zero on either 
side. 
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Figure 14.5: Another set of residuals plotted against x 

This indicates that a linear relation between y and x does not represent the data 
adequately. In this case a quadratic relation between y and x, such as y = a + bx2, 
might be more appropriate. 

Figure 14.6 shows another plot of residuals against the input quantity. In this case 
we can see that the scatter of the residuals gradually increases as the independent 
variable increases. This indicates that the variance is not constant but appears to be 
increasing as x increases. Before confidence limits or tests of significance can be 
applied to these data, we must do something to make the variance about the line at 
least approximately constant. One possibility is to find a suitable transformation to 
give a quantity which will have a more constant variance about the line. That will be 
explored in section 14.4. Draper and Smith (see reference in section 15.2) suggest 
also a method of weighting the residuals in such a way that the variance becomes 
constant. 
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Figure 14.6: Residuals plotted against input or regressor 
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Draper and Smith suggest other graphical checks of the data. In particular, they 
suggest a plot of residuals against the order in which measurements were made. This 
is done to check for any relation between errors and the time sequence, such as drift 
in calibration of instruments. 

Lack of independence among the y-values in regression is often due to a correla
tion between these y-values and some other independent variable that is changing 
appreciably. If the various runs and measurements have not been properly random
ized, as described in Chapter 11, bias can enter so that results are misleading. 

14.3 Statistical Inferences 
If the graphical checks are satisfactory, we can look at confidence intervals and tests 
of significance. Equation 14.15 has given us an expression for the estimated variance 

2of points about the regression line, sy|x . 

(a) Inferences for Slope 

Let us first look at the variance of the estimated slope, b. From equation 14.8, 
n 

∑(xi − x )(y − y)iS 
b = xy = i=1 . Remembering that the x’s are assumed to be known n 

2Sxx ∑(xi − x ) 
i=1 

without any error, applying the rules for combining variables, which were discussed 
briefly in section 8.2, gives the following: 

2 2s s
2 y x  y x 


sb = 
n


= 
∑(xi − x )2 Sxx (14.17) 
i=1 

The estimated standard error (or standard deviation) of the slope is the square root of 
this. The standard error of the slope is multiplied by the value of t for the appropriate 
probability and the appropriate number of degrees of freedom to find confidence 
intervals. Hypothesis tests are done in the same way as in section 9.2. 

Notice from equation 14.17 that the estimated variance of the slope becomes 
n 

2
smaller as S = ∑(x − x )  increases if the variance sy|x 

2 remains constant. Then if xx i

i=1


the x-values are more widely separated from the mean, we will have a better estimate 
of the slope of the line because the standard error of the slope will be smaller. That 
seems reasonable: if we base an estimate of the slope on more widely separated 
points while s2, the variance of points about the line, remains constant, the estimate 
of the slope should be more reliable. 

(b) Variance of the Mean Response 

Next, we look at the variance of ŷ , which represents the least-squares estimate of y 
as a function of x. This is sometimes called the variance of the mean response. We 
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will use as its symbol s2
ŷ x . (Remember that the circumflex or “hat” in ŷ  indicates an 

estimate from data.) s2
ŷ x   represents the estimated random variation of the best-fit 

line if the experiment is repeated with the same number of points at the same values 
of x. The position of the line is determined by three independent quantities: the 

,position of the centroidal point (x y ) , the slope of the line, b, and the difference 
between the x-coordinate of a particular point and the x-coordinate of the centroidal 
point. From this we get 

2 2 2 
s s (x − x )  1 (x x ) 

y x  + y x  − 2 

2 2 sˆ = = s y x  
xx

y x   n 
+ 

Sxx  
(14.18)n S 

Thus, we see that the variance of the mean response is smallest at the centroidal point 
and increases to the left and to the right by an amount proportional to the estimated 
variance of the points around the line and to the square of the x-distance from the 
centroidal point. Equation 14.18 can be applied at any value of x, including at x = 0, 
where it would give the variance of the intercept, a. Remember, however, that it is 
dangerous to extrapolate outside the region in which measurements have been taken. 

(c) Variance of a Single New Observation 

If we want the variance of a single new observation rather than the mean response, 
the variance shown in equation 14.18 will be larger by the variance around the line, 

2s y x  . Then the  1 (x x  
2 

2 

variance of a single new observation = sy x  1 + +  
S 

− ) 
 (14.19) n xx  

Corresponding standard errors are obtained from the variances of equations 14.18 
and 14.19 by taking square roots. These standard errors are then multiplied by 
appropriate values of t to find confidence intervals (in the case of the mean response) 
and prediction intervals (in the case of single new observations). Tests of significance 
are performed similarly. 

Illustration (continued) 

Continuing with the previous numerical illustration, which was used in Figures 
14.1 to 14.4 and for which data were shown in Table 14.1, we have: 

2s
2 y x  3.15046 

sb = = = 0.01731, sb = 0.1316
S 182 xx 

2 
2  1 (x x2From equation 14.18 y x  = s  + 

− )

 

, and at x = 11 we have sˆ y x  n Sxx  
2 12sŷ x  = (3.15046 ) +

(11 − 6)



 = 0.67510 and sˆ = 0.8216.13 182  y x 
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From equation 14.19 the estimated variance of a single new observation is 

2  1 ( x x   1 ( 11 − 6) 
s  1 + +  

− ) 2 


 

; at x = 11 this becomes (3.15046)  1 +  +  
2 

y x   n Sxx   13 182  
= 3.8256, and the corresponding standard error is 1.956. 

The 95% confidence limits for the mean response and 95% prediction intervals 
for a new individual observation are shown in Figure 14.7 for the same relationship 
as in Figures 14.1 to 14.4. 

The arrows in Figure 14.7 emphasize that errors are assumed to be only in the y 
direction. 
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Legend: Regression line 

Upper limit for mean response 

Lower limit for mean response 
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Figure 14.7: 95% Confidence intervals and

prediction intervals around the regression line
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Example 14.1 

The shear resistance of soil, y kN m–2, is determined by measurements as a function 
of the normal stress, x kN m–2. The data are as shown below: 

10 11 12 13 14 15 16 17 18 19 20 21 

yi 14.08 15.57 16.94 17.68 18.49 19.55 20.68 21.72 22.80 23.84 24.79 25.67 

Find the regression line of y on x. Plot the data, the regression line, and the centroidal 
point. 

Answer: Calculations to find the regression line of y on x are shown below. Interme
diate results are not rounded until final results are obtained to minimize rounding 
errors, but numbers are reported here to only three decimals. 

Totals 

x y x2 y2 xy 

10 14.08 100 198.161 140.770 

11 15.57 121 242.506 171.299 

12 16.94 144 286.844 203.238 

13 17.68 169 312.646 229.863 

14 18.49 196 341.710 258.795 

15 19.55 225 382.179 293.241 

16 20.68 256 427.479 330.809 

17 21.72 289 471.698 369.216 

18 22.80 324 519.880 410.416 

19 23.84 361 568.520 453.029 

20 24.79 400 614.473 495.771 

21 25.67 441 659.118 539.139 

186 241.80 3026 5025.214 3895.587 

186 241.80 
x = = 15.5 y = = 20.151 

12 12 

∑ xi 


 

2 n 
2 

n 
2S = ∑( )−  i=1  = 3026 −

(186)
xixx 

i=1 n 12 

= 3026 – 2883 = 143 
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∑ yi 


 

2 n 
2 

S 
n


yy = ∑ y 2 −  i=1  = 5, 025.214 −
(241.80 )


i 
i=1 n 12


= 5,025.214 – 4,872.399 = 152.815


n n  
∑  ∑  yi 

 
n  i=1Sxy = ∑ x  y  −  i=1 

xi  
 = 3895.587 −

(186 )(241.80 ) 
i i 

i=1 n 12 

= 3895.587 – 3,747.950 = 147.637 

Sxy 147.637 
= − b  x  = 20.151 − (1.032 )(15.5 ) = 4.148. Then b = = = 1.032 and a y

S 143 xx 

Because the calculations of Syy, S , and a all involve differences of numbers of similar xy

magnitudes, it is particularly important not to round the numbers too soon. The 
regression line of y on x is y = 4.148 + 1.032 x. 

The data, centroidal point and regression line of y on x are shown in Figure 14.8. 
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Figure 14.8: Shear resistance of soil as a function of normal stress 

356




Regression and Correlation 

Example 14.2 

For the data of Example 14.1 calculate the standard deviation of points about the 
regression line, then plot residuals against the input, and comment on the results. 

Answer: Calculations for these plots are shown in Table 14.1. 

Table 14.1: Calculation of residuals 

x y ŷ Residuals 

10 14.08 14.47 –0.39 

11 15.57 15.50 +0.07 

12 16.94 16.54 +0.40 

13 17.68 17.57 +0.11 

14 18.49 18.60 –0.12 

15 19.55 19.63 –0.08 

16 20.68 20.67 +0.01 

17 21.72 21.70 +0.02 

18 22.80 22.73 +0.07 

19 23.84 23.77 +0.08 

20 24.79 24.80 –0.01 

21 25.67 25.83 –0.16 

0.4 

Residual,
 e 0.2 

0


-0.2


-0.4


10	 12 14 16 18 20 22 
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Figure 14.9: Residuals plotted against the regressor 
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The residuals are just the differences between the measured values of y and the 
corresponding values on the regression line, ŷ . They are plotted against the input or 
regressor in Figure 14.9. 

From equation 14.14 we have 

SSE = S  – b Syy xy 

= 152.815 – (1.032)(147.637) 

=152.815 – 152.425 

= 0.3896 

From equation 14.15, sy|x = SQRT(SSE / (n – 2))

    = SQRT(0.3896 / 10)

 = 0.1974 

Figure 14.9 shows no systematic effect of the input on the residuals, either in 
average or in variability. Thus there is no reason to think that the shear resistance of 
the soil is not well represented for this range of values by a linear function of the 
normal stress. Furthermore, there is no reason to think that the variance is a function 
of x. The distribution of the residuals is consistent with a normal distribution. Thus, 
we can legitimately use the calculated data to find confidence intervals and prediction 
intervals, and apply tests of significance. 

Example 14.3 

For the data given in Examples 14.1 and 14.2: 

a) Find the 90% confidence interval for the slope of the regression line of shear 
resistance on normal stress. 

b) Is the slope significantly larger than 1.000 at the 5% level of significance? 

c) Find the 95% confidence interval for the mean response of shear resistance at a 
normal stress of 12 kN/m2. 

d) Is the mean response for the shear resistance at a normal stress of 12 kN/m2 

significantly more than 16.5 kN/m2 at the 1% level of significance? 

e) Find the 95% prediction interval for a single new observation at a normal stress 
of 20 kN/m2. 

Answer:  a) By the method of least squares we found in Example 14.1 that the best 
estimate of the slope or regression  coefficient is b = 1.0324. In Example 14.2 we 
calculated the estimated standard error of the points around the best-fit line to be sy|x

2
= 0.1974, and sy x   = 0.03896. From equation 14.17 the estimated variance of the 

2 s y x
slope is sb 

2 = , and from Example 14.1 Sxx = 143. Then the estimated standard 
Sxx 
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0.03896 
error of the slope is sb = = 0.01651. For the 90% confidence interval we 

143 
need the value of t corresponding to probability 0.05 in each tail with 12 – 2 = 10 
degrees of freedom. This is shown in Figure 14.10. From Table A2 we find for a one-
tail probability of 0.05 and for 10 degrees of freedom, t1 = 1.812. Then the 90% 
confidence interval for the slope is from 1.0324 – (1.812)(0.01651) = 1.0025 to 
1.0324 + (1.812)(0.01651) = 1.0623. 

Figure 14.10: t-distribution for 
90% confidence interval 

5% probability 
5% probability 

–t1 t1 t 

b)	 H0 : β = 1.000 

Ha : β > 1.000 (one-tailed test) 

b − 1.000 
Test statistic: t = . 

sb 

Large values of | t | will indicate that the null hypothesis is unlikely to be correct.


b = 1.0324


sb = 0.01651 (from part a)

1.0324 − 1.000 

= = 1.962 

For 10 d.f., one-tail probability 0.05, tcritical = 1.796 as in Figure 14.10. 

tcalculated 0.01651 

Since |tcalculated| > tcritical, the slope is significantly larger than 1.000 at the 5% level of 
significance. 

t

However, for 10 d.f. and one-tail probability of 0.025, Table A2 shows that 

critical = 2.228. Then at 2.5% level of significance, |tcalculated| < tcritical, so the slope is not 
significantly larger than 1.000. But we have to answer the problem as it was stated. 

c)	 The variance of the mean response at x = 12 is given by equation 14.18 as 

2 1 − 2  1 (12 − 15.5 ) 
2 2sˆ = s 	 +

(x x  ) 



= 0.03896  + y x  y x  n Sxx  12 143 	  
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= 0.03896 [0.0833 + 0.0857] 

= 0.00658 

Then the standard error of the mean response is 0.0811. 

For the 95% confidence interval we require the value of t for 10 d.f. and a one-
tail probability of 0.025. This is shown in Figure 14.11. From Table A2 we find 
t1 = 2.228. 

2.5% probability 

Figure 14.11: 
95% confidence interval 

2.5% probability 

- t1 t1 t 

At a normal stress of 12 kN/m2 the prediction from the regression line is 
y = 4.148 + 1.032 x = 4.148 + (1.032)(12) = 16.532. Then the 95% confidence 
interval for the mean response at 12 kN/m2 is 16.532 ± (2.228)(0.0811) = 16.351 to 
16.713. 

Then we can have 95% confidence that the mean response for the shear resistance at 
a normal stress of 12 kN/m2 is between 16.35 and 16.71 kN/m2. 

= 16.5 ˆd) H0: µ y x=12 

Ha: µ y x=12 > 16.5 (one-tailed test)ˆ 

Test statistic: t = ŷ x=12 − 16.5
.  Large values of |tcalculated| will make H0 unlikely to be 

correct. sŷ x=12 

Figure 14.12: t-distribution with 
1% probability in upper tail 

1 % prob ability 

t1 t 
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From Table A2 we find for an upper-tail probability of 0.01, 10 d.f., tcritical = 
2.764. We found in part (c) that  the standard error of the mean response is 0.0811, 
and that at a normal stress of 12 kN/m2 the mean response is 16.532 kN/m2. Then we 
have 

16.532 −16.5 
= = 0.395tcalculated 0.0811 

Since tcalculated < tcritical, the mean response for the shear resistance at a normal stress of 
12 kN/m2 is not significantly more than 16.5 kN/m2 at the 1% level of significance. 

e) At a normal stress of 20 kN/m2 the predicted shear resistance of the soil is 4.148 
+ (1.032)(20) = 24.788. From part (c) and Figure 14.13 for the 95% prediction
interval we have t1 = 2.228. The standard error for a single new observation is 
(from equation 14.19) 

− 2 2 
1 (x x  ) 1 (20 −15.5 )

s 1 + +  = 0.1974  1  +  +  = 0.2185. The 95% y x  n S 12 143xx 

prediction interval for a single new observation is from 24.788 – (2.228)(0.2185) 
to 24.788 + (2.228)(0.2185), or from 24.30 to 25.27 kN/m2. 

14.4 Other Forms with Single Input or Regressor 
(a) Other Forms Linear in the Coefficients 

With an extra step of calculation an important group of equations can be fitted to data 
by the method of least squares. For instance, equations of the form, log y = a + b x, 
where a and b are coefficients to be determined by least squares, can be handled 
easily. Remember that x and y are known quantities, numbers. Then we can calculate 
without difficulty the value of log y for each data point. Then log y can be used in 
place of y, and so the regression coefficients can be calculated as before. 

Example 14.4 

We want to fit the following set of data to an equation of the form, ln y = a + b x, by 
the method of least squares. 

x 0  1  2  3  4  5  6  7  8  9 10 11  

y 1.178 1.142 1.273 1.354 1.478 1.737 1.842 1.778 2.160 2.418 2.339 2.931 

Answer: The first step is to calculate ln y for each value of y. Then x2, (ln y)2, and the 
product (x)(ln y) are calculated. 
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Table 14.2: Calculations for regression using ln y 

Totals 

x ln  y x2 (ln y)2 (x)(ln y) 

0 0.164 0 0.027 0.000 
1 0.133 1 0.018 0.133 
2 0.241 4 0.058 0.482 
3 0.303 9 0.092 0.910 
4 0.391 16 0.153 1.562 
5 0.552 25 0.305 2.760 
6 0.611 36 0.373 3.666 
7 0.575 49 0.331 4.027 
8 0.770 64 0.593 6.161 
9 0.883 81 0.780 7.946 

10 0.850 100 0.722 8.496 
11 1.075 121 1.157 11.830 

66 6.548 506 4.607 47.973 

66 6.548 
Then x = = 5.5 and 1n y = = 0.5457. 

12 12 

 12 
2


2
∑ x  6612 
2S = ∑ x −  i−1  = 506 −

( )
= 506 – 363 = 143 

i=1 12 12 
12 

∑1n y 

 

2

2
12 

2
S1n ,1n y = ∑(1n y) −  i=1  = 4.607 −

(6.548 )
= 4.607 – 3.573 = 1.034 y


i=1 12 12


12 12  
∑ ∑1n y

 
12  i=1 66 = 47.973 – 36.014 = 11.958xS ,1n = ∑( )(1n y) −  i=1 

x  
 = 47.973 −

( )(6.548 ) 
x y 


i=1 12 12


Then b = 
Sx ,1n y = 11.958 = 0.08362 
S 143 xx 

and a = 1n y – (b)( x ) = 0.5457 – (0.08362)(5.5) = 0.5457 – 0.4599 = 0.0858 

Then the fitted equation is 

ln y = 0.0858 + 0.08362 x 

The residuals, fitted values of ln y less observed values of ln y, are plotted versus 
x in Figure 14.13. In fact these data correspond to the data plotted in Figure 14.6 as 
residuals of y vs. x. If these two plots are compared, it will be seen that the logarith
mic transformation has made the variance much more constant. 
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Figure 14.13: Residuals of ln y vs. x 

This modified method works for a considerable number of cases. The require
ment is that the equation to which we fit data must be of the form f1(y) = a + b f2(x), 
where x is the only input quantity. The two functions, f1(y) and f2(x), can be of any 
form and do not have to be linear, but both a and b must be coefficients to be deter
mined by the method of least squares. Thus the fitting equation must be linear in the 
coefficients so that it is easy to solve for a and b. The modified method is sometimes 
still considered to be simple linear regression, but then the word “simple” means that 
there is only one input, and the word “linear” means that the equation is linear in the 
coefficients. Fitting equations amenable to the modified method include the follow
ing types: 

y = a + b x3 

y = a + b x 
2x y = a + b e


b

y = a + 

x

y = a + b x–3


1 b

= a + 
y x 

1

= a + b 1n x
y 

e –y = a + bx


log y = a + b log x
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and many others. Sometimes the nonlinear form for y or x is suggested by theory or 
previous experience, and sometimes it is suggested by consideration of the pattern of 
the residuals and by trial-and-error. 

The graphical checks for constant variance, for fit to the chosen equation, and for 
normality can be done as before. If the checks are satisfactory, statistical inferences 
regarding confidence limits and tests of hypothesis can be applied. However, remem
ber that if y is normally distributed, ln y, y–1, e–y and so on are unlikely to be 
satisfactorily normal. The assumption that the input, x, is known without error still 
applies. 

(b) Other forms transformable to give equations linear in the coefficients 

Various common forms of equations involving one input can be transformed easily to 
give forms of equations which are linear in the coefficients. 

(1) The exponential function, y = a bx, can be modified suitably by taking logarithms 
of both sides. This gives log y = log a + x log b. Notice that this is the form that 
gives straight lines on semi-log graph paper. 

(2) The power function, y = a xb, can also be treated by taking logarithms of both 
sides. The result is log y = log a + b log x. Notice that this form would give 
straight lines on log-log graph paper. 

x 1 a
(3) The function, y = ,  can be inverted to give = + b. An alternative is to 

a b  x  y x+ x
multiply the inverted form by x to give = +a b  x  . 

y 
It is important to note that the squares of the deviations are minimized in the 

transformed response variable ( log y or 1 / y or x / y in the cases above) rather than y, 
and the graphical tests need to be applied to the transformed response variable. It is 
possible in some cases to apply a simple weighting function to make the variance 
approximately constant (see the book by Draper and Smith, reference given in 
section 15.2). 

(c) Extension: Nonlinear Forms 

Equations that cannot be transformed into forms linear in the coefficients can still be 
treated by least squares. However, now instead of applying the relations discussed to 
this point, iterative numerical methods must be used to minimize the sum of squares 
of the deviations from the fitted line. The Excel feature called Solver can be used for 
that calculation. 

14.5 Correlation 
Correlation is a measure of the association between two random variables, say X and 
Y. We do not have for this calculation the assumption that one of these variables is 
known without error: both variables are assumed to be varying randomly. We do 
assume for this analysis that X and Y are related linearly, so the usual correlation 
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coefficient gives a measure of the linear association between X and Y. Although the 
underlying correlation is defined in terms of variances and covariance, in practice we 
work with the sample correlation coefficient. This is calculated as 

S 
r = xy 

xy 
S S  (14.20) 

xx yy 

where Sxx, Syy, and Sxy are defined in equations 14.5 to 14.7. This correlation coeffi
cient is often denoted simply by r. 

If the points (xi, yi) are in a perfect straight line and the slope of that line is 
positive, rxy = 1. If the points are in a perfect straight line and the slope is negative, 

xyrxy = –1. If there is no systematic relation between X and Y at all, r ≈ 0, and rxy differs 
from zero only because of random variation in the sample points. If X and Y follow a 
linear relation affected by random errors, rxy will be close to +1 or –1. These cases are 
illustrated in Figure 14.14. In all cases, because of the definitions –1 ≤ rxy ≤ + 1. 

6 

(a)


6


5 5y y 

4 4 

3 3 

2 2 

1 1 

0 0 
(b) 

0 1 2 3 4 5 0 1 2 3 4 5 

x x 

6 

(c)
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5 5y y 

4 4 

3 3 

2 2 

1 1 

0 0 
(d) 

0 1 2 3 4 5 0 1 2 3 4 5 

x x 

Figure 14.14: Illustrations of various correlation coefficients 
(a) rxy = +1, (b) r = –1, (c) rxy ≈≈≈≈≈ 0, (d) r ≈≈≈≈≈ 1 xy xy 
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Examination of equations 14.8, 14.7 and 14.20 will indicate that rxy has the same 

sign as the slope or regression coefficient, b. Furthermore, rxy = ± b b′.  Then as rxy 

becomes closer to –1 or +1, the equations of the linear regression line of y on x and 
the linear regression line of x on y come closer to coinciding with one another. 

An approximate expression for the standard error of the sample correlation 
coefficient has been derived and is available. It is therefore possible to test the 
hypothesis that the underlying correlation is zero and rxy differs from it only because 
of random fluctuations. However, this gives the same information as testing the 
hypothesis that the slope or regression coefficient b differs from zero only because of 
random fluctuations. We have already seen (Example 14.3) how to test a hypothesis 
concerning the underlying value of the linear slope, b. Therefore this book will not be 
concerned with a test of hypothesis for rxy. 

A common misunderstanding is to assume that a strong correlation between two 
variables is evidence that one causes the other. This may be correct, but often there is 
another explanation. Huff (How to Lie with Statistics, see section 15.2 for reference) 
cites a number of examples in which some other explanation is more likely. One 
example he quotes is that for certain years there was a close relationship between the 
salaries of Presbyterian ministers in Massachusetts and the price of rum in Havana, 
Cuba. Closer examination indicates that both were likely due to a common factor, a 
marked and widespread inflation of salaries and prices over those years. 

If the data come from a well planned, carefully randomized experiment, rather 
than from accumulated routine data, there is much less probability that other factors 
are responsible. In that case, it is considerably more likely that a correlation indicates 
some sort of causal relation between the variables. 

2The square of the correlation coefficient, rxy , is called the coefficient of determination. 
n 

− 2 
The sum of squares of deviations from y  in the y-direction is ∑(y y  ) . Thei 

i=1 

coefficient of determination is the fraction of this sum of squares which is explained 
by the linear relation between ŷ and x given by regression of y on x. Then the 

n n 
2ˆ − 2 

i −coefficient is given by the ratio of ∑(y y  )  to ∑(y y  ) . A closely related i 
i=1 i=1 

quantity is the coefficient of multiple determination, which is useful in multiple 
linear regression. 

If the correlation coefficient or the coefficient of determination becomes larger 
for the same algebraic forms, that indicates that the relationship between the vari
ables has become stronger. However, if an algebraic form changes, say from x to ln x, 
comparing the values of the coefficients is not useful. Instead, in that case we should 
compare the variances of the points around the regression lines. 
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Example 14.5 

a) Calculate a correlation coefficient for the data of Example 14.1. 

b) What fraction of the sum of squares of deviations in the y-direction from y  is 
explained by the linear relation between y and x given by regression? 

S 147.637 
Answer: a) rxy = xy = = 0.9987 

xx yy (143)(152.815 )S S  

b)	 The fraction of the sum of squares of deviations in the y-direction which is 
explained by the linear regression of y on x is equal to the coefficient of determi
nation, r2 = (0.9987)2 = 0.997. Thus, in this case only 0.3% of the sum of squares 
of deviations in the y-direction from y  is not explained by the regression. 

For comparison, the data shown in Table 14.1 and plotted with the regression 
line of y on x in Figure 14.2 give a correlation coefficient of 0.952, and the 
regression explains 90.7% of the sum of squares of deviations in the y-direction 
from y . 

14.6	 Extension: Introduction to Multiple Linear 
Regression 

If there is more than one input or regressor, the basic ideas of linear regression still 
apply, but the algebra becomes considerably more complicated. 

Let us look briefly at three simple cases in which there are only two or three 
inputs. If the two independent inputs are x and z, which enter only as first powers, the 
relation for point i with residual ei becomes 

yi = a + b xi + c zi + ei	 (14.21) 

If the two inputs are x and x2, the relation still comes under the heading of multiple 
linear regression: 

yi = a + b xi + c xi 
2 + ei	 (14.22) 

This could be extended to a longer power series. If both x and z affect y, but now 
second-order terms are included, the relation for point i becomes 

yi = a + b xi + c xi 
2 + d zi + e zi 

2 + f xi zi + ei	 (14.23) 

Notice that the term involving xi zi represents an interaction of the sort discussed in 
section 11.3. 

Multiple linear regression can include terms of the type discussed in part (a) of 
section 14.4. These are forms nonlinear in x or y or both, but linear in the coefficients. 
Thus, the term “linear” in “multiple linear regression” refers to fitting equations 
which are linear in the coefficients. For example, data for vapor pressure of pure 
components are sometimes related to temperature by expressions of the following 
form: 
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    ln y = a – 
b + c 1n x + d  x  6 

This equation can be fitted to data by multiple linear regression. 

As the number of terms increases, the complexity of the algebra increases. For 
each additional term there is another coefficient to be determined by the method of 
least squares. The algebra of the theoretical development becomes simpler if we use 
matrix notation, but the resulting expressions still have to be expanded into scalar 
algebra for calculations. 

Furthermore, the analysis of multiple linear regression frequently involves re
calculation with more or fewer terms. We add terms to try to describe the relationship 
more fully, or we remove terms that do not contribute significantly to a useful 
description. 

Thus, present-day calculations of multiple linear regression are almost always 
done on a digital computer using specialized software. Various computer packages, 
such as SAS and SPSS, are extremely useful once the reader has a good grasp of the 
fundamentals. 

If the data for multilinear regression come from routine operating data rather than 
from a designed experiment, we have to worry about possible correlation among the 
inputs. That is eliminated if data are from a designed experiment with appropriate 
randomization. 

Problems 

x

1. Scraps of iron were selected on the basis of their densities, xi, and their iron

contents, yi, were measured. The results were as follows:


i 2.8 2.9 3.0 3.1 3.2 3.2 3.2 3.3 3.4


yi 27 23 30 28 30 32 34 33 30


Find the regression equation of y on x by the method of least squares.


2.	 For the data given in problem 1 above, use a graph to check whether the form of 
the equation represents the data adequately, whether the variance appears to be 
independent of x, and whether the residuals appear to be normally distributed. 

3.	 For the data given in problem 1 above, assume that graphical checks for fit, 
constancy of variance, and normality are satisfied. Find: 
a) the standard error of the slope of the regression equation, and 
b) the 95% confidence limits of the slope. 

4.	 For the data given in problem 1 above, 
a) find the sample correlation coefficient 
b) what percentage of the variation of yi about y  is explained by regression? 
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y

x

5. The density of molten salt mixtures, y g/cm3 , was measured at various tempera
tures x°C. The results were: 

i 250 270 290 310 330 350 

i 1.955 1.935 1.890 1.920 1.895 1.865 

a) Plot a graph of y vs. x showing these points (the graph is called a scatter 
diagram). 

b) Calculate ∑x, ∑y, ∑x2, ∑y2, ∑xy, x , y . 
c) Calculate the regression equation of y on x in the form y = a + bx. Plot this 

line and the centroidal point on the graph. 
d) Calculate the regression of x on y in the form x = a′ + b′y. Plot on the same 

graph as for parts (a) and (c). 

6.	 For the data given in problem 5 above, use a graph to check whether the form of 
the equation in part (c) represents the data adequately, whether the variance appears 
to be independent of x, and whether the residuals appear to be normally distributed. 

7.	 Assume that the graphical checks of problem 6 above are satisfactory. Then for 
the data given in problem 5 above: 

2
a)	 Calculate the estimated variance around the regression line, sy x  . 
b)	 Is the estimated regression coefficient, b, significantly different from zero at 

the 1% level of significance? Can we conclude that temperature has a signifi
cant effect on density in this case? 

c)	 What is the 95% confidence interval for ß, the true slope or regression 
coefficient? 

d)	 Calculate the 95% confidence interval for the mean value of y at each of 
x = 250, 300, 350. 

e)	 Suppose we repeat the experiment. What is the 95% prediction interval for 
individual values of y at each of x = 250, 300, 350? 

8.	 For the data given in problem 5 above, 
a) Calculate the correlation coefficient for this data set. 
b) Calculate the coefficient of determination. 

9.	 A physical measurement, such as intensity of light of a particular wavelength 
transmitted through a solution, can often be calibrated to give the concentration 
of a particular substance in the solution. 9 pairs of values of intensity (x) and 
concentration (y) were obtained and can be summarized as follows: 

∑x = 30.3, ∑y = 91.1, ∑xy = 345.09, ∑x2 = 115.11, ∑y2 = 1036.65. 
(a) Find the regression equation for y on x. 
(b) Find the correlation coefficient between x and y. 
(c) Assuming that graphical checks are satisfactory, test the null hypothesis that 

the slope of the regression line of y on x is not significantly different from 
zero, using the 1% level of significance, and 

(d) Find the 99% confidence limits of the slope of the straight line relation 
giving y as a function of x. 
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10. An engineering student has a summer job with the forestry service. He measured 
the tree trunk diameters (x) and related them to the age of the tree (y). The 
following information was obtained: 

n = 6, ∑x=21, ∑x2 = 91, ∑y = 26 4, ∑y2 = 142.52, ∑xy = 113.8 
a)	 Find: 

i) the regression equation of y on x 
ii) the correlation coefficient between x and y. 

b)	 Assuming that graphical checks are satisfactory, test whether the regression 
coefficient is significantly different from 0 at the 1% level of significance. 

11. Gasoline consumption of a test automobile was recorded at speeds (x) ranging 
from 56 to 112 km/hr. The observed gasoline consumptions were converted to 
distance traveled per liter of gasoline (y). The following information was compiled: 

∑x = 984, ∑x2 = 84416, ∑xy = 13418.4, ∑y = 165.3, ∑y2 = 2282.45, n = 12.

a) Find the regression equation for y on x.

b) Find the correlation coefficient.


12. Assuming that the graphical checks are satisfactory, for the data given in problem 
11 above: 
a) Test the hypothesis that slope (regression coefficient) is equal to  –0.045, 

using 5% level of significance. 
b) Find the 90% confidence limits for the mean distance traveled per liter of 

gasoline at 90 km/hr speed. 

13. It is much easier to measure diameters of spot welds than to measure their shear 
strengths, and under some conditions they are related. Corresponding values 
were obtained for 10 welds, with shear strengths expressed by y p.s.i. and weld 
diameters, x, expressed as thousandths of an inch. For these 10 pairs of data, 
∑y = 22 860, ∑x = 2325, ∑y2 = 67,719,400, ∑x2= 697,425, ∑xy = 6,872,250. 
a) Find the regression equation for y on x. 
b) Find the correlation coefficient. 
c) Assuming that graphical checks are satisfactory: 

i)	 Is the slope of the regression equation significantly different from 0 at 
the 5% level of significance? 

ii) Test the hypothesis that the slope (regression coefficient) is equal to 10, 
using 1% level of significance. 

iii) Find the 95% confidence limits for the true shear strength of a weld 
0.210 inches in diameter. 

14. Ms. Patsy Knowlet, a water quality engineer, noted that there seemed to be a 
close connection between an important streamflow water quality parameter, Y, 
and the flow, X m3/s. She found that 9 pairs of observations yielded the following 
data: ∑x = 15.2; ∑x2= 57.6; ∑y = 45.6; ∑y2 = 518.3; ∑xy = 172.6. She would like 
to develop an equation that would allow her to predict Y knowing X. 
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a) Find the best estimate of the linear regression line of y on x.

b) Find the correlation coefficient between x and y.


15. Assume that the appropriate graphical check is satisfactory. Then for the data 
given in problem 14 above: 
a) Find the 95% confidence limits of the slope or regression coefficient, β. 
b) What are the 95% confidence limits for the predicted water quality param

eter, Y, at a flow of 4.6 m3/s? 

16. Shear stress (y) and rate of shear (x) can be measured for a liquid in a viscometer. 
For 12 pairs of values the data can be summarized as follows: ∑x = 132.0, 
∑y = 151.7, ∑x2 = 1944.0, ∑y2 = 2570.48, ∑xy = 2233.2 
a) Find the linear regression of y on x. 
b) What is the correlation coefficient? 
c) What fraction of the variance of y is explained by the correlation? 

17. Assume that the appropriate graphical check is satisfactory. Then for the data 
given in problem 16 above: 
a) Find the standard error of the slope. 
b) Find the 95% confidence interval of the slope. 
c) Is the slope significantly smaller than a slope of 1.210 at the 5% level of 

significance? 

18. The number of errors per hour of radio telegraphists (y) as a function of the 
temperature (x) is determined. The relevant data about the relationship are as 
follows: 
∑x = 118 ∑x2 = 3510 
∑y = 56.1 ∑y2 = 809.63 
∑xy = 1679.2 n = 4 
a) Find the regression line of errors/hour on temperature. 
b) Find the correlation coefficient between temperatures and errors/hour. 
c) Assuming that graphical checks are satisfactory: 

i)	 Is the slope of the regression line significantly different from zero? What 
does this imply about the relation between y and x? 

ii) Find the 99% confidence limits of the slope of the regression line. 

19. The relationship between the temperature of a rocket engine (t) and the thrust 
force (f) was investigated in a series of tests. Pairs of data for t and f (in suitable 
units) were collected and can be summarized as follows:  n = 15; ∑t = 540; 
∑f = 33.00; ∑t2 = 21426; ∑f 2 = 77.08; ∑tf = 1267.10 
a) Find the regression equation of f on t. 
b) Assuming that graphical checks are satisfactory: 

i)	 Find the 95% confidence limits of the intercept and slope. 
ii)	 According to Snooker’s theory, the slope of the straight line relating f 

and t in this range of values should be 0.0500. Do the data disagree 
significantly with Snooker at the 5% level of significance? 
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20. The speed (rpm) of a Danor ventilation fan was varied and the airflow capacity 
(cubic meters per second) of the fan was measured. The data pairs of capacity (y) 
versus speed (x) were collected. The following information was obtained: 

n = 12, ∑x = 118.98, ∑y = 30.09, ∑x2 = 1251.06, ∑y2 = 80.57, ∑xy = 317.34. 
(a) Find the regression equation of Y on X, and

b) Find the correlation coefficient between X and Y.

c) Assuming that graphical checks are satisfactory, test whether the slope of the


regression line is significantly different from zero at the 1% level of signifi
cance. 

21. The value of Y, the percentage decrease of volume of leather from the value at 
one atmosphere pressure, was measured for certain fixed values of high pressure, 
x atmospheres. The relevant data about the relationship are as follows: 

∑x = 28,000, ∑y = 19.0, ∑xy = 148,400, ∑x2 = 216,000,000, ∑y2 = 102.2, n = 4. 

a) Find the regression line of y on x. 
b) Find the correlation coefficient between decrease of volume and pressure. 
c) Assuming that graphical checks are satisfactory: 

i) Test whether the slope of the regression line is significantly different 
from zero at the 1% level of significance. 

ii) Find the 99% confidence limits of the slope of the regression line. 

372




C H A P T E R  15 
Sources of 

Further Information 

15.1 Useful Reference Books 
Many reference books are available in the area of probability and statistics for 
engineers. Some that I have found useful will be mentioned here. Detailed references 
are given in section 15.2. 

Some readers may want books that are a little more theoretical and advanced than 
this one. The book by Walpole and Myers is such a book. It is clearly written and 
contains such topics as Baysian and maximum likelihood approaches to estimation. It 
also contains a chapter on nonparametric statistics and one on statistical quality 
control. 

The book by Burr focuses on statistics while providing a good background in 
probability. That author uses to good effect his experience as a statistical consultant. 

The book by Vardeman concentrates on statistics and is very good in that general 
area, including considerable discussion on design of experiments and analysis of 
experimental results. It contains a large number of reports on study projects done by 
undergraduate students. 

On the other hand, the book by Ziemer concentrates on probability and its 
applications in electrical engineering, rather than on statistics. Some readers of the 
present book will want now or later a more mathematically rigorous development of 
probability; they should consider the book by Ziemer. 

The book by Ross also takes a more rigorous approach to probability and statistics. 

The book by Barnes is notable because it takes an approach strongly based on 
using a computer. It uses diskettes of specially formulated software for calculations 
involving probability and statistics. 

The book by Kennedy and Neville has been popular with engineering students 
because it includes many problems from practical engineering situations, both solved 
problems and problems for the student to solve. The present book tries to follow the 
example of Kennedy and Neville in that regard. 
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Finally, there are four areas for which specialized books should be recommended. 
One is design and analysis of experiments, for which mention has already been made 
in Chapters 11 and 12 of books by Box, Hunter, and Hunter and by Montgomery. 
Another area is regression, both simple and multiple, for which I have found the 
book by Draper and Smith very useful. A more up-to-date reference, and an excellent 
source of information, is the book by Ryan. A third area is the application of prob
ability to the theory of electrical communication systems, for which the book by 
Haykin is suitable. The fourth is engineering reliability, for which the book by 
Billinton and Allan is suggested. 

15.2 List of Selected References 
Barnes, J. Wesley. Statistical Analysis for Engineers and Scientists, A Computer-

based Approach. New York: McGraw-Hill, 1994 
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Appendix A contains probability tables for use in statistical calculations. These 
are for the normal distribution, the t-distribution, the chi-squared distribution, and the 
F-distribution. The numbers in the tables were calculated using MS Excel. 

Appendix B describes some of the abilities and properties of MS Excel which are 
useful in statistical calculations. This appendix gives brief instruction in using Excel 
for such a purpose, but the reader is assumed to have a basic knowledge of Excel 
already. 

Appendix C describes some functions of Excel not recommended for use while 
the reader is learning the fundamentals of probability and statistics. These can save 
time in calculations once the reader has fully understood the fundamentals. 

Appendix D contains answers to some of the problem sets. 
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Appendix A: Tables


Table A1 
Cumulative Normal Probability 

ΦΦΦΦΦ(z) = Pr [Z < z] 

–4 –3 –2 –1 0 1 2 3 4 
z 

Table A1 (continued) 
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Table A1 (continued) 
Cumulative Normal Probability 

ΦΦΦΦΦ(z) = Pr [Z < z] 

–4 –3 –2 –1 0 1 2 3 4


z
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Table A2: t-distribution 

One-tail probability 

t1 t 
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Table A3: Chi-squared Distribution 

Upper-tail probability 

χ2  Chi-squared 
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Table A4: F-Distribution 

A
p
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Upper-tail probability 

flimit  F 

Values of F with df1 degrees of freedom in the numerator 
and df2 degrees of freedom in the denominator to give 

Upper-tail Probability of 0.05 



Table A4: F-Distribution (continued) 

Upper-tail probability 

flimit  F 

Values of F with df1 degrees of freedom in the numerator 
and df2 degrees of freedom in the denominator to give 

Upper-tail Probability of 0.01 
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Appendix B 

Appendix B: Some Properties of Excel Useful 
During the Learning Process 
(a) Formulas 

A formula combines values with operators such as a plus sign. We will be concerned 
at present with only the arithmetic operators, which are +, –, /, *, %, and ^. Values 
may be expressed as number constants, such as 34.7, or as references to the content 
of a cell, such as F28 (meaning the cell that is both in column F and in row 28). 
Instead of references we may use names, such as Cost, if those names have been 
defined. An Excel formula always begins with an equal sign, =. That sign indicates to 
the computer that the content of a cell is a formula that needs to be evaluated. In 
many cases the most convenient method of inserting an Excel function is to paste it 
into the appropriate cell. This is discussed briefly at the end of section 5.5. 

As always in engineering calculations, we must make clear how we are perform
ing a calculation. When the formula in a cell has been entered correctly, the 
corresponding cell on the computer screen will show the arithmetic result for that 
formula. For example, entering the formula =20+34 will give the result, 54, and that 
will show in the space for the cell on the screen. If we select that cell, the Formula 
Bar will show the formula. But if we print the work sheet, we will see in that cell 
only the result, 54, and the formula will not appear. Then to make the printed work 
sheet more understandable, a neighboring cell (usually to the left or right of the cell 
in question or above it) should give a clear statement of the formula being used. That 
statement must not begin with an equal sign, or Excel will interpret it as the formula 
itself. Instead, it should (for purposes of this book) end with an equal sign—e.g., 20 
+ 34 =. We see instances of this in  the body of the text, such as Examples 3.4, 4.4, 
and 4.5. 

(b) Array Formulas 

An ordinary formula, as in part (a) above, produces a result in just one cell. Often we 
want to produce results simultaneously in two or more cells. For that we use an array 
formula. For example, we may want to calculate the deviation of each measurement 
from the mean of those measurements. Say the measurements are in rows 18 to 88 of 
column B, which we show as B18:B88, and the mean of the measurements is in cell 
B90. We could calculate each deviation separately, as =B18-B90 in cell C18, =B19
B90 in cell C19, and so on. A faster alternative is to calculate them all together by 
the array formula =B18:B88-B90 in cells C18:C88. It is clear that the array formula 
can be applied much more quickly than the 71 individual formulas. 

To apply the array formula we first select the cells in which we want the answer 
to appear, cells C18:C88 in this case. Then we type in the formula, which is 
=B18:B88-B90 for this example. Then to indicate to the computer that we are 
applying an array formula, we press not just Enter but simultaneously 
CONTROL+SHIFT+ENTER (note: three keys) in Excel for Windows, or 
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COMMAND+ENTER in Excel for Macintosh. The array formula is shown in the 
Formula Bar inside braces, {  }, but do not type the braces yourself. 

(c) Sorting 

The Sort command can save a good deal of effort in developing a frequency distribu
tion and in finding quantiles from the distribution. The Sort command is on the Data 
menu of Excel. For example, say the data we want to sort are in columns A and B, 
and we want to sort according to the numbers or letters in column B, which is headed 
Thickness in row 1. We select columns A and B, then from the Data menu we choose 
Sort. The Sort dialog appears, and we click the button indicating that the list has a 
header row. We select sorting by the heading Thickness in ascending order, increas
ing in magnitude from the smallest to the largest, then click the OK button. (Note 
that if the first results are not in the form desired, we can immediately afterward 
choose Undo Sort from the Edit menu, then try again.) After the data have been 
sorted from the smallest to the largest we can number them in order, say in column 
C, by entering 1 in the first row and 2 in the second row, then completing the series 
by selecting these first two cells in the column, then dragging the fill handle down 
and releasing the mouse button when all the data have been numbered. 

(d) Summing 

Of course we can add up a column of figures and put the result in cell B6 by select
ing that cell and typing (say) =B1+B2+B3+B4+B5, then pressing enter or return. It 
is usually faster and more convenient to sum a column or row of data by selecting the 
cell at the end of that column or row of data and clicking the AutoSum tool on the 
standard toolbar. The AutoSum tool is marked with the Greek letter sigma, Σ. After it 
is clicked, the cells which will be added are surrounded by dotted lines, and the 
formula bar shows =SUM(B1:B5) if cells B1 to B5 are the ones in question. If there 
are possible cells to the left of the selected cell as well as above it, either set of cells 
might have been chosen. Then we need to make sure that we have the right ones. If 
we select the cells we want  just before we select the cell for the sum, it seems to 
come out right, but that may not always be so. 

(e) Functions 

An Excel function is a special prewritten formula that uses a value or values as input, 
performs an operation, and returns a value or values as a result. Excel functions vary 
greatly in complexity, from simple functions that add up input quantities to complex 
functions that perform a multitude of tasks in a particular sequence. Excel functions 
can be inserted by either of two methods. One is to use the Insert menu and choose 
Function. Then the Paste Function dialog appears, and we choose a category such as 
Math & Trig or Statistical, then the required function such as Sum or Frequency. A 
dialog box appears to prompt us to choose values of the argument of the function. 
The alternative method is to type the equals sign (since the function is a type of 
formula), the name of the function, and then the arguments within parentheses and 
separated by commas [for example, =SUM(A1, A2)]. 
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Many of the Excel functions are not recommended for use while a person is 
learning the fundamentals of probability and statistics. That is because they act as 
“black boxes” that perform calculations without requiring any thinking on the part of 
the person using them; the person has only to supply the input values and the com
puter supplies the logic. Thus, these functions do not help the process of learning the 
fundamentals. Some of these functions which are useful at a later stage, when a 
person has already gained a good fundamental knowledge of probability and statis
tics, will be listed in Appendix C. 

However, a few functions can be recommended for use even when the fundamen
tals are being learned. They are as follows. 

(i) Sum Function 

The SUM function simply adds up the arguments or, if the arguments are refer
ences, the contents of the cells. The Sum function in Excel is found in the 
Mathematics and Trigonometry category. The arguments for this function may be 
arrays, such as B1:B5; references to individual cells, such as A26; or numbers, 
such as 5. Thus, =SUM(16,13) gives 29. If A1 contains 11 and B1 contains 7, 
=SUM(A1,B1) gives 18. If A2 contains 14, B2 contains 9, and C2 contains 6, 
=SUM(A2:C2) gives 29. In fact, the AutoSum tool which we saw above uses the 
SUM function. 

(ii) Frequency Function 

The FREQUENCY function counts the numbers of values within given class 
boundaries and returns a frequency array. It is found in the category of Statistical 
functions. In most cases the arguments of the FREQUENCY function are, first, 
the reference to the array of cells containing values of the data which are to be 
counted; then, second, the reference to the array of cells giving the upper class 
boundaries in ascending order (that is, beginning with the smallest and working 
up). As usual, these arguments are separated by commas. The number of values 
less than the lowest upper class boundary appears in the first cell, and the num
bers of values more than previous upper class boundaries but less than successive 
upper class boundaries appear in subsequent cells, ending with the number of 
values larger than the largest class boundary. Thus, the number of cells for class 
frequencies is one more than the number of upper class boundaries. 

The procedure is to select the vertical or horizontal array of cells where we want 
the class frequencies to appear, then to enter =FREQUENCY(input reference, class 
boundaries reference). An illustration of the use of the frequency function is given in 
Example 4.4, where the array formula =FREQUENCY(B2:B122,B135:B143) was 
entered in cells D135:D144. Then the values of the data were taken from cells 
B2:B122, the upper class boundaries were in cells B135:B143, and the resulting 
frequencies were placed in cells D135:D144. 
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(f) Making Histograms or Other Charts or Graphs 

As we see in Chapter 4, histograms are used frequently to show graphically the class 
frequencies for various classes or intervals of the variate. The information for a 
histogram is contained in a grouped frequency table. The ChartWizard provides a 
convenient way to produce a histogram or other chart or graph. 

A chart can be produced from a table of data (for a histogram, that would be a 
grouped frequency table) by selecting Chart from the Insert menu. Modifications, 
major or minor, of the chart are produced using the Chart menu. The procedure for 
histograms is discussed in more detail in section 4.5, particularly in Example 4.4. 
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Appendix C: Functions Useful Once the 
Fundamentals Are Understood 
There are a number of Excel functions which should not be used during the learning 
process but can be very useful later on. The following statistical functions fall in this 
category: 

AVEDEV( ) calculates the mean of the absolute deviations from the mean (see 
section 3.3.4). 

AVERAGE( ) returns the arithmetic mean of the arguments. 

COUNT ( ) counts the numbers in the list of arguments. 

COUNTA( ) counts the number of nonblank values. 

DEVSQ( ) calculates the sum of squares of deviations of data points from their 
2

sample mean, e.g. ∑(xi − x ) . 

GEOMEAN( ) returns the geometric mean of the arguments. 

HARMEAN( ) gives the harmonic mean of the arguments. 

LARGE(array,k) returns the kth largest value in the array. 

MAX( ) gives the maximum value in a list of arguments. 

MEDIAN( ) returns the median of the stated numbers. 

MIN( ) gives the minimum value in a list of arguments. 

MODE( ) returns the mode of the data set. 

PERCENTILE(array,k) returns the kth percentile of numbers in the array. 

PERCENTRANK(array,x,) returns the percentage rank of x among the values in the 
array. 

QUARTILE(array,) returns the minimum,maximum, median, lower quartile, or upper 
quartile from the array. 

RANK( ) gives the rank (order in a sorted list) of a number. 

STDEV( ) gives the sample standard deviation, s, of a set of numbers. 

STDEVP( ) calculates the standard deviation, σ, of a set of numbers taken as a 
complete population. 

TRIMMEAN( array,) calculates the mean after a certain percentage of values are 
removed at the top and the bottom of the set of numbers. 

VAR( ) returns the sample variance, s2, of a set of numbers. 

VARP( ) finds the variance, σ2, of a set of numbers taken as a complete population. 
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Appendix D: Answers to Some of the Problems 
The following answers are believed to be correct, but if you find different answers 
which seem right, you should check with your instructor. 

In chapter 2, section 2.1, problem set beginning on page 10: 
1 (a) 3/14, (b) 9/14, (c) 11/14 
2 (i) 0.644, (ii) 0.689, (iii) 0.089, (iv) 0.267 
4 (a) 0.0909, (b) 0.143 
6 (a) 64, (b) 84, (c) 52, (d) 0.619 
8 (a) (i) 1/6, (ii) 5 to 1, (iii) 1 to 5 

(b) (i) 1/26, (ii) 25 to 1, (iii) 1 to 25

In chapter 2, section 2.2, problem set beginning on page 25: 
1 (a) 0.045, (b) 0.955, (c) 21 to 1 
3 (i) 80, (ii) 0.750, (iii) 0.340 
5 (a) 26, (b) 0.308 
8 6 
9 3 
11 (a) 0.216, (b) 0.324, (c) 0.216 
13 For C-F-C 0.512. For F-C-F 0.384. Then choose C-F-C. 
16 (a) 0.904, (b) 0.0475, (c) 0.0250 
19 (a) 0.192, (b) 0.344, (c) 0.757 
21 (a) (i) 0.526, (ii) 0.0526, (b) 0.0093, (c) 1.53 x 10–9 

In chapter 2, section 2.3, problem set beginning on page 32: 
1 5040 
3 (i) 36, (ii) 15, (iii) 26 
7 10 combinations 
9 (a) 6.1 × 10–4, (b) 4.95 × 10–4, (c) 1.54 × 10–6 

11 56 
15 (a) 0.067, (b) 0.333 

In chapter 2, section 2.4, problem set beginning on page 38: 
1 (a) 0.261, (b) 0.652 
3 (a) 0.907, (b) 0.118, (c)0.282 
7 (a) 0.28, (b)0.755, (c) 0.371 
9 (a) 1.82%, (b) 29.6%, (c) 26.7% 

In chapter 3, sections 3.1 to 3.4, problem set beginning on page 60: 
1 21.575 mm, 21.57 mm 
2 (a) 0.0746 mm2, 0.273 mm, 1.27% 

(b) 0.0895 mm2, 0.299 mm, 1.39% 
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In chapter 4, sections 4.1 to 4.5, problem set beginning on page 80: 

3 (e) 79, 75, 84, (f) 79.4, (i) 80% 

In chapter 5, sections 5.1 and 5.2, problem set beginning on page 91: 

1 (b) 1.23
3
 (a) 1.50, 0.583, (b) 0.0917
5
 (b) 2.333, (c) 0.556, 0.745
9
 (a) 0.162, (b) 57%

In chapter 5, section 5.2, problem set beginning on page 97: 

1 $1425 
7 (a) 9.875, 10.12, (b) 0.830, (c) 0.059 
9 (a) 0.717, (b) $350, (c) 8.47 
11 (a) $2.25 million, (b) –$0.30 million 

In chapter 5, section 5.3, problem set beginning on page 111: 

3 0.264 
5 (b) 2/3, 1/3, (d) 0.812, (e) 28.9% 
7 (a) 0.0137, (b) 0.0152 

In chapter 5, section 5.4, problem set beginning on page 126: 

5 (a) 1.20, (b) 1.22 
7 (b) 0.36, (c) 0.20, (d) 1.13 
9 (a) 0.717, (b) 0.14, (c) 0.036 
11 (a) 0.45, (b) 0.19, (c) 0.14, (d) 0.05 

In chapter 5, section 5.6, problem set beginning on page 138: 

1 0.0575, 0.6227 vs 0.600 etc. 
5 (b) 1.225, 1.2297, (c) 1.107, (d) 0.0014 

In chapter 6, section 6.1, problem set beginning on page 147: 

3 (c) (i) 0.393, (ii) 0.368, (iii) 0.238 

In chapter 6, section 6.2, problem set beginning on page 153: 

1 (a) 1.5, (b) 0.25, (c) 0, (d) 1.65, (e) 0.533 
3 (b) 1.5, (c) 0.2887, (d) 0.5774 
5 (a) 1/3 month, (b) 1/3 month, (c) 0.865, (d) 0.950 

In chapter 7, sections 7.1 to 7.4, problem set beginning on page 170: 

1 (a) 95.2%, (b) 0.5% 
3 (a) 0.4%, (b) 98.6% 
7 (a) 50.89 kg, (b) 39.8%, (c) 51.2 kg 
13 (a) 0.215 cm, (b) 0.826 
17 $13,660 
21 (a) (i) 0.115, (ii) 0.576, (iii) 0.309 

(b) 332 L/min, (c) $29.0/hr
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In chapter 7, sections 7.5 to 7.7, problem set beginning on page 193: 

1 (b) 0.3125, (d) 0.308 
5 (a) (i) 0.002, (ii) 0.005, (iii) 0.01 

(b) (i) 0.370, (ii) 0.371, (iii) 0.390 
7 0.0015, 0.0015, 0.003 

In chapter 8, sections 8.1 to 8.4, problem set beginning on page 208: 

1 (i) 0.147 kg, (ii) 2.94 kg 
3 (a) 12.6%, (b) 100.63 kg, (c) 5.008 kg 
5 (a) $55.46, (b) 0.064 
13 0.019 

In chapter 9, section 9.1.1, problem set beginning on page 218: 

1 z = 2.14 > 1.96. Adjustment required. 
3 Observed level of significance is < 0.1%. Significant at 1% level. 
5 (a) 11.1%, (b) 0.3% 
9 (a) 37.21 kg, (b) 0.019, (c) 37.5 kg, 0.031 

In chapter 9, section 9.1.2, problem set beginning on page 223: 

5 (a) 106, (b) 74%, (c) 0.725% 
7 (a) 0.28, (b) 31 
11 (b) 17.4%, (c) 14 
13 (a) 17, (b) 98.9% 
15 (a) z = –2.08, adjust, (b) 0.046, (c) 42 

9 t
7 t

In chapter 9, section 9.2, problem set beginning on page 240: 

1 (a) t = -2.67, yes, (b) 0.57 to 0.95 ppm 

calculated
 = 1.686, t

critical
 = 2.201, not significant 

calculated
 = 1.745, t

critical
 = 2.571, no significant difference 

= 1.673, t
critical

 = 2.365, difference not significant (a) t13 
calculated

(b) t
calculated

 = 1.038, t
critical

 = 1.761, difference not significant 

In chapter 9, sections 9.1 and 9.2, problem set beginning on page 245: 

3 2.06 < 2.33 so no

7 (a) 4.41 > 1.701 so yes


(b) 1.63 < 1.701 so no

In chapter 10, section 10.1, problem set beginning on page 257: 

7 (a) 0.10 level of signif. gives limit 3.18. 2.04 < 3.18, so not significant 
(b) 0.05 level of signif. gives limit 1.88, 2.66 >1.88, so significantly more 

13 2.59 < 2.71, so not significantly higher 

In chapter 10, section 10.2, problem set beginning on page 276: 

1 (c) 3 
5 (b) 5.6%, (c) 8.1% 
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In chapter 14, sections 14.1 to 14.5, problem set beginning on page 368: 

5 (c) y = 2.141 – 7.71x10–4 x 
(d) x = 2210 – 1000 y


7
 (a) 3.09x10–4 

(b) 3.67 < 4.60 so not significant. No 
(c) –1.88x10–4 to – 13.54x10–4 

(d) At x = 250, 1.913 to 1.984. At x = 300, 1.890 to 1.930 
(e) At x = 300, 1.857 to 1.963. At x = 350, 1.811 to 1.932 

8 (a) 0.878, (b) 0.771 
9 (a) y = 0.257 + 2.930 x 

(b) 0.991
(c) 19.686 > 3.499 so significant 
(d) 2.41 to 3.45
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Engineering Problem-Solver Index


This handy index shows all of the solved example problems arranged by engineering 
application. 

A	 Example 10.3, p. 254 
Example 10.4, p. 254

Analysis of data using ANOVA 
(Analysis of Variance) 
Example 12.1, p. 299 
Example 12.2, p. 308 
Example 12.3, p. 312 
Example 12.4, p. 318 

Analysis of data using chi-squared test 
Example 13.2, p. 328 
Example 13.3, p. 329 
Example 13.4, p. 331 
Example 13.5, p. 333 

Example 11.1, p. 276, 281 
Example 11.2, p. 281 
Example 11.3, p. 282 
Example 11.4, p. 183 
Example 11.5, p. 284 
Example 11.6, p. 286 
Example 11. 7, p. 287 
Example 11.8, p. 288 

M 

Metal analysis 
Example 9.8, p. 235 

Chemical process control	 O 
Example 9.1, p. 215 

Choosing a distribution type for a Ore sample analysis 

particular application	 Example 9.3, p. 221 

Section 6.3, p. 155 Example 9.4, p. 222 

Correlation P
Example 14.5, p. 367 

Particle size distribution
E Example 7.11, p. 191 

Estimating demand using Poisson distribution Plotting and analyzing data sets 

Example 5.14, p. 121 Example 4.1, p. 63 

Example 5.17, p. 136 Example 4.2, p. 68 

Experiment design, testing effectiveness Example 4.3, p. 72 

Example 9.9, p. 237 Example 4.4, p. 75 

Example 9.10, p. 238 
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Engineering Problem-Solver Index 

Process control

Example 10.1, p. 250, 256


Production line quality

Example 3.2, p. 51

Example 3.5, p. 58


R 

Random sampling

Example 8.2, p. 201

Example 8.4, p. 203

Example 9.2, 216

Example 10.7, p. 262

Example 10.8, p. 263

Example 10.9, p. 264


Regression analysis of data set

Example 14.1, p. 355

Example 14.2, p. 357

Example 14.3, p. 358

Example 14.4, p. 361


Reliability, time to failure

Example 7.2, p. 156, 163

Example 7.3, p. 166

Example 8.5, p. 204


S 

Sampling components on production line

Example 2.4, p. 12

Example 2.14, p. 30

Example 2.16, p. 34

Example 5.8, p. 106

Example 5.10, p. 110

Example 5.15, p. 125

Example 5.16, p. 135

Example 8.6, p. 204

Example 9.7, p. 233

Example 10.2, p. 251


T 

t-distribution

Example 10.10, p. 266

when to use over normal distribution,


 p. 228-229
Testing for defective components


Example 2.16, p. 34

Example 5.5, p. 103

Example 5.9, p. 108
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Index


A 

addition rule, 11

alternative hypothesis, 213

analysis of variance, 255, 294-321


one-way, 295-304

two-way, 304-316


ANOVA, 294

applications, 4

arithmetic mean, 41-42

axioms of probability, 9


B 

Bayes’ Rule, 34-38

Bernoulli distribution, 132

beta distribution, 156

bias, 285

binomial distribution, 101-111


nested, 110

blocking, 285

block, randomized analysis, 316

box plots, 65


Central Limit Theorem, 205-208

central location, 41

chance, 2

chi-squared distribution, 249

chi-squared function, 324-340

circular permutations, 31

class boundaries, 67

coefficient of determination, 366

coefficient of variation, 50


combinations, 29-32

computer, 3, 55, 249, 325


binomial distribution, 264

equivalent to Normal Probability paper,


185

F-distribution, 253

normal distribution, 173

plotting individual points to compare


with normal distribution, 188

random numbers, 284


conditional probability, 17

confidence interval, 221, 251, 256, 266


for variance, 251

confidence limits


proportion, 266

contingency tables, 331

continuous random variable, 141

correction for continuity, 179

correlation, 364-367

correlation coefficient, 365

cumulative distribution function, 86, 142

cumulative frequency, 67

cumulative frequency diagram, 72

cumulative probabilities, 184


D 

deciles, 51

degrees of freedom, 228, 325

descriptive statistics, 41

design


sequential or evolulutionary, 278

design of experiments, 272-290

deterministic, 2
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diagnostic plots, 298

discrete random variable, 84


E 

empirical approach to probability, 7

error sum of squares, 348

estimate, 221


interval, 221

estimate of variance


combined or pooled, 234

event, 9

evolutionary operation, 274

Excel, 4, 55, 75-80

expectation, 88

expected mean, 105

expected value, 149

experimentation, 273-290


factorial design, 274-276

randomization in, 280


exponential distribution, 155

extensions, 4


F 

F-distribution, 252

F-test, 252, 253

factorial design, 274, 288-290

fair odds, 9

fitting


normal distribution to frequency data,

175


fitting binomial, 135, 136

fractional factorial design, 288-290

frequency distribution, 133


characteristics, 157

frequency graphs, 66


G 

gamma distribution, 156

geometric distribution, 132

geometric mean, 43

goodness of fit, 327

graphical checks, 349

grouped frequency, 66


H 

harmonic mean, 43

histogram, 70

hypergeometric probability distribution,


132

hypothesis testing, 213


I


inference 
mean


known variance, 213

with estimated variance, 228


inference, for variance, 248

inferences for the mean, 228

inference, statistical, 212

inputs, 342

interaction, 274, 275

interfering factors, 236, 272

interquartile range, 45


L 

least squares, 342

level of confidence, 221

level of significance


critical, 215

observed, 214


linear combination of independent

variables, 198


linear regression, 342

list


references, 374

logarithmic mean, 43

lognormal distributions, 192

loss of significance, 49, 69

lurking factors, 272


M 

mean

arithmetic, 41

geometric, 43


mean deviation from the mean, 45

median, 43-44

mode, 44
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multinomial distribution, 111

multiple linear regression, 367

multiplication rule, 16

mutually exclusive, 12


N 

negative binomial distribution, 131

normal approximation to a binomial


distribution, 178

normal distribution, 155, 157-192


approximation to binomial distribution,

178-183


fitting to frequency data, 175

tables, 161


normal probability paper, 184

null hypothesis, 213-215


O 

one-tailed test, 217

operating data, routine, 273


P 

p-value, 214

percentiles, 51

permutations, 29-32

permutations into classes, 30

planned experiments, 273

Poisson approximation to binomial


distribution, 124

Poisson distribution, 117-125

population, 2, 197

probabilistic, 2

probability, 6


classical or a priori approach, 7

distributions, 84-140

empirical or frequency approach, 7

subjective estimate, 7


probability density function, 141, 158

probability distributions, 84-140

probability functions, 85

probability plotting, 190

proportion, 261


binomial distribution, 108


Q 

quantile, 53

quantile-quantile plotting, 190

Quartiles, 51


R 

random numbers, 133, 284

random sample, 197

random variable, 84

randomization, 280

randomizing, 236

range


interquartile, 45

reference books, 373

regression, 341-368


evidence of cause, 366

multiple linear, 367

non-linear, 364

simple linear, 342

transformable forms, 364

x on y, 347


regression coefficients, 342, 361

regression equations, 345

regression line


y on x, 342

relative cumulative frequency, 68

relative frequency, 67

reliability, 156

replication, 279

residuals, 348

response, 342

Rough Rule, 181

rounding, 10

rules of probability


addition, 11

multiplication, 16


S 

sample, 1

random, 2


sample correlation coefficient, 365

sample range, 45
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sample size, 202

proportion, 269


sample standard deviation, 47, 105-106

sample variance, 47

sampling, 197-211

sampling with replacement, 200

sampling without replacement, 201

scale of experimentation, 273

scatter plot, 342

significance test


paired measurements, 238

sample mean vs population mean, 233

unpaired sample means, 234


simple linear regression, 342

spread, data, 44-51

statistical inferences, 212


slope, 352

standard deviation, 46, 105-106


estimation from a sample, 46

standard error of the mean, 200

statistical inference, 1


proportion, 261

two sample proportions, 269


statistical significance, 215

sample variance vs population variance,


250, 256

statistics, 1

stem-and-leaf displays, 63-64

stochastic relations, 2

Student’s t-test, 229

Sturges’ Rule, 67

sum of products, 344


T 

t-distribution, 229

t-test, 233


paired, 238

unpaired, 234


test of hypothesis, 213

test statistic, 214

transformation of variables, 190

tree diagram, 8, 19

two-tailed test, 213

Type I Error, 217

Type II Error, 217


U 

uniform distribution, 155

unpaired t-test, 234


V


variability, 44-51

variance, 45


discrete random variable, 89

estimation from a sample, 46

points about line, 348

of a difference, 199

of a single new observation, 353

of a sum, 199

of sample means, 199


variance of the mean response, 352

variance ratio, 295

variance-ratio test, 252

Venn Diagram, 12


W 

Weibull distribution, 156


Y 

Yates correction, 326
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LIMITED WARRANTY AND DISCLAIMER OF LIABILITY


[[NEWNES.]] AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR 
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO 
NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY 
USING THE PRODUCT. THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF 
ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY 
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR 
PURPOSE. [[NEWNES.]] WARRANTS ONLY THAT THE MAGNETIC CD-ROM(S) ON 
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY 
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY 
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE 
AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO 
EITHER REPLACEMENT OF THE CD-ROM(S) OR REFUND OF THE PURCHASE PRICE, 
AT [[NEWNES.]]’S SOLE DISCRETION. 

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR 
TORT (INCLUDING NEGLIGENCE), WILL [[NEWNES.]] OR ANYONE WHO HAS BEEN 
INVOLVED IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO 
PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS 
OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE 
OR INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO 
THE CONTENTS OF THE CODE, EVEN IF [[NEWNES.]] HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. 

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE CD-ROM MUST BE POSTAGE 
PREPAID AND MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE CD-ROM, 
YOUR MAILING ADDRESS AND TELEPHONE NUMBER, AND PROOF OF DATE OF 
PURCHASE AND PURCHASE PRICE. SEND SUCH REQUESTS, STATING THE NATURE 
OF THE PROBLEM, TO ELSEVIER SCIENCE CUSTOMER SERVICE, 6277 SEA HARBOR 
DRIVE, ORLANDO, FL 32887, 1-800-321-5068. [[NEWNES.]] SHALL HAVE NO 
OBLIGATION TO REFUND THE PURCHASE PRICE OR TO REPLACE A CD-ROM BASED 
ON CLAIMS OF DEFECTS IN THE NATURE OR OPERATION OF THE PRODUCT. 
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