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ABSTRACT
Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asyn-
chronous state machine design and analysis presented in two parts: Part I on the background fun-
damentals related to asynchronous sequential logic circuits generally, and Part II on self-timed 
systems, high-performance asynchronous programmable sequencers, and arbiters.

Part I provides a detailed review of the background fundamentals for the design and analysis of 
asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented  
state diagrams, and the design and characteristics of basic memory cells and Muller C-elements. 
Simple FSMs using C-elements illustrate the design process. The detection and elimination of tim-
ing defects in asynchronous FSMs are covered in detail. This is followed by the array algebraic ap-
proach to the design of single-transition-time machines and use of CAD software for that purpose, 
one-hot asynchronous FSMs, and pulse mode FSMs. Part I concludes with the analysis procedures 
for asynchronous state machines.

Part II is concerned mainly with self-timed systems, programmable sequencers, and arbiters. It 
begins with a detailed treatment of externally asynchronous/internally clocked (or pausable) systems 
that are delay-insensitive and metastability-hardened. This is followed by defect-free cascadable 
asynchronous sequencers, and defect-free one-hot asynchronous programmable sequencers—their 
characteristics, design, and applications. Part II concludes with arbiter modules of various types, 
those with and without metastability protection, together with applications.

Presented in the appendices are brief reviews covering mixed-logic gate symbology, Boolean 
algebra, and entered-variable K-map minimization. End-of-chapter problems and a glossary of 
terms, expressions, and abbreviations contribute to the reader’s learning experience. Five productiv-
ity tools are made available specifically for use with this text and briefly discussed in the Preface.
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This text emphasizes the design and analysis of a variety of asynchronous sequential machines and 
high-performance asynchronous programmable sequencers presented in a hands-on and in-depth 
manner. As background to this, we devote considerable effort in developing the basic models, the 
use of fully documented state diagrams, and the associated rules and algorithms needed to carry 
out rather complex designs and analyses. The analysis and elimination of the timing defects, those 
exclusively owned by asynchronous sequential machines, are an important part of the background 
fundamentals developed in this text. We also emphasize the use of Muller C-elements, which oper-
ate outside of the fundamental mode, and use them in various different design approaches.

Inclusion of asynchronous systems in modern computer, microprocessor, and application-
specific integrated circuit chip designs have become a reality. With the advent of picosecond com-
plementary metal-oxide semiconductor (CMOS) technology, reliable high-speed asynchronous 
performance is now a reality. We combine the use of asynchronous and locally clocked controller 
systems, thereby offering an attractive alternative to conventional synchronous systems. This is ac-
complished in such a manner as to eliminate clock skew and improve reliability while operating 
with a significant reduction in the power-delay product. Moreover, we develop the use of cascad-
able asynchronous programmable sequencers that can be made reprogrammable during operation, 
permitting instantaneous changes between radically different asynchronous state machines on a 
time-shared basis, all timing-defect-free. Included is the development of a variety of arbiters that 
can be used with both Huffman and Muller controller/data-path frameworks.

The contents of this text are based on the author’s lecture notes used in a graduate course 
taught over many years at Washington State University to graduate students and second-semester 
seniors in electrical and computer engineering. The text is designed to be used as a one-semester 
or two-quarter course in the subject matter. It also serves as a valuable source of information for 
practicing engineers and computer scientists in related fields. Although the text provides the neces-
sary background in asynchronous sequential machine design and analysis, the readership is expected 
to have had a beginning course in logic design and some knowledge of basic Boolean algebra and 
K-map minimization. Every effort is made to take this complex subject matter and present it in a 
manner that can be understood by a readership consisting of individuals of varying backgrounds.  

Preface
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An instructor of a course in this subject matter is provided ample opportunity to limit, alter, or ex-
pound on any part of the text material as needed to satisfy the course description and needs of the 
students. In this regard, the use of Very High Speed IC Hardware Description Language (VHDL) 
or Verilog for purposes of circuit representation and simulation is encouraged. However, space limi-
tation prohibits their development in this text. End-of-chapter problems and a glossary of terms, 
expressions, abbreviations, and symbols at the end of the text aid in the learning process.

A word to the readership: Due to space limitations, the information and developments found 
in this text are presented in a thoughtful but succinct manner requiring careful reading. To assist in 
the learning process, each subject is accompanied by the appropriate state diagrams, logic schemat-
ics, simulations, and Boolean functions as needed for clarity and emphasis. Numerous tables also 
contribute in this regard.
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Instructional Support Software

Students and faculty alike will find these five productivity tools highly useful, if not essential, in 
solving many end-of-chapter problems that appear in this text. Complete instructions accompany 
each software program as a Readme_<software name>.doc WORD file. All of the software de
scribed below, except the EXL-Sim simulator, require the use of a text editor and can be downloaded  
from http://www.exlsim.com cost free. The student version of EXL-Sim used in this text can be 
purchased from this website at nominal cost.

(1) EXL-Sim logic simulator. EXL-Sim is a full-feature, interactive, schematic-capture, and simula-
tion program that is ideally suited for use with this text at either the entry or advanced level of logic 
design. It is the student version of a more powerful professional-level program. Its many features  
include a complete library of mixed logic gate symbols, Muller C-elements with or without CLEAR 
and user-defined delay and buffer symbols; drag-and-drop capability, part rotation and mirroring, 
circuit and part duplication, rubber banding, mixed-logic or positive logic simulations (positive 
logic waveforms mimic those of voltage waveforms); multiple levels of macro generation; individual 
input, gate, and global delay assignments, a wireless connection feature that eliminates the need 
to use wire connections and minimizes error; labeling, editing, sizing, and zooming of schemat-
ics; waveform interactive editing, zooming, scrolling, animation, and stepping; library and project 
management; a variety of export and printout capabilities; and a host of other features including 
preferences for default settings. Check http://www.exlsim.com for updates and announcements.

Note on the schematic captures and simulations of EXL-Sim used in this text: Many of the logic 
schematics and labels have been produced by using a graphics program so as to bring the symbology 
in agreement with that used in other parts of the text. For example, EXL-Sim cannot produce sub-
scripts but the graphics program can, and subscripts are used in the text. However, there are many 
other schematics that have been imported into WORD as produced by EXL-Sim. We normally do 
so to distinguish between the two methods. The simulations are precisely that produced by EXL-
Sim but the labels are usually done by the graphics program before importing them into WORD. 

  xiii
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For some simulations, there are additional labels needed for clarification that had to be added by the 
graphics program and superimposed on the waveforms.

Note on the use of gate path delays: For simplicity, we have used the same path delays for  
all gates throughout most of the text. However, we could have modeled them close to each physi-
cal gate or used random delays, although these added features did not seem to add any significant 
advantages in conveying the information to the reader.

(2) BOOZER logic minimizer. BOOZER is a software minimization tool that is recommended for 
use with this text. It accepts entered variable or canonical (1’s and 0’s) data from K-maps or truth 
tables, with or without “don’t cares,” and returns an optimal or near-optimal single or multioutput 
solution. It can handle up to 12 Boolean function outputs and as many inputs when used on modern 
computers.

(3) ESPRESSO II logic minimizer. ESPRESSO II is another software minimization tool that is in 
wide use in schools and industry. It supports advanced heuristic algorithms for minimization of 
two-level, multioutput Boolean functions, but accepts canonical data only. It is also readily available 
from the University of California, Berkeley, 1986 VLSI Tools Distribution.

(4) ADAM—Advanced CAD design software. Automated Design of Asynchronous Machines 
(ADAM) is a very powerful productivity tool that permits the automated design of complex asyn
chronous single-transition-time state machines, all free of timing defects. The input files are state 
tables for the desired state machines. The output files can be given in the Berkeley format appro
priate for directly programming PLAs. ADAM also allows the designer to design synchronous state  
machines, timing-defect-free. For asynchronous FSM designs, the options include the lumped 
path delay model and the nested element model applicable to Muller C-elements or basic SR cells. 
ADAM can also be used for the D flip-flop design of synchronous FSM designs.

(5) A-OPS—Advanced CAD design software. Asynchronous One-hot Programmable Sequencers 
(A-OPS) is another very powerful productivity tool that permits the design of asynchronous and 
synchronous state machines by using a one-hot programmable sequencer kernel. This software 
generates a PLA or PAL output file (in Berkeley format) or the Very High Speed IC Hardware 
Description Language (VHDL) code for the automated timing-defect-free designs of the fol-
lowing: (a) any one-hot programmable sequencer kernel up to 10 states used to drive any one-hot 
FSM up to 10 states; (b) the one-hot design of multiple input asynchronous or synchronous state 
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machines driven by either PLDs or RAM. The input file is that of a next-state table, for the de-
sired state machine, taken from a state diagram or state table. This software can be used to design 
systems with the capability of instantly switching between several radically different controllers on 
a time-shared basis and all defect-free. An optional essential hazard analysis is provided for each 
one-hot design.
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Introduction and Background

1.1	 FEATURES OF AND NEED FOR ASYNCHRONOUS FINITE 
STATE MACHINES

Although all sequential machines have certain characteristics in common, there are also specific 
features characterizing asynchronous finite state machines (FSMs).

Memory in the absence of clock-driven flip-flops.
The appearance of combinational logic circuits with feedback.

There are, of course, other characteristics exclusively attributed to asynchronous FSMs, and these 
will become evident as we consider in detail the intricacies of clock-independent state machines.

It is natural for us to believe that data processing in the passage through a sequential system is 
best accomplished by a system clock, an enabling or sampling function. This is what happens in syn-
chronous (clock-driven) sequential systems that have led to countless remarkable accomplishments 
over time, many of which we are familiar with. These days, however, clock distribution problems 
have emerged to greatly limit some applications of large, complex, and fast synchronous systems. 
This has prompted inclusion of asynchronous components into synchronous system designs. The 
reason for this is attributed to a number of factors:

The speed requirements of a sequential system design may exceed the capability of a clock-
controlled approach. In some specific cases, a properly designed asynchronous FSM will 
operate faster and be more appropriate than its synchronous counterpart.
Many clock distribution (clock skew) problems can be eliminated by the inclusion of asyn-
chronous components in synchronous systems. Clearly, a purely asynchronous sequential 
machine cannot have clock skew. Remember that clock skew problems can lead to system 
failure by causing some components in a synchronous system to become out of synch with 
other parts.
The absence of flip-flops and oscillator circuits in an asynchronous sequential system design 
can reduce the real estate required on an integrated circuit chip for some applications.

•
•

•

•

•
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Just as there are some designs that lend themselves to a synchronous design, there are oth-
ers that are best designed by using an asynchronous machine approach. Because of this, 
we are seeing the increased embedded usage of asynchronous sequential components into 
synchronous system designs.

Because of these features, designers are becoming more familiar with asynchronous sequential ma-
chine design and analysis, a fact that is certain to play an important role in future super high-speed 
microprocessors and computers designs.

1.2	 FUNDAMENTAL MODE OF OPERATION AND LUMPED 
PATH DELAY MODELS

Data transport through any FSM is not instantaneous; it takes time to “settle in,” that is, to stabilize. 
This fact leads to what is now referred to as the fundamental mode of operation, where input set-up 
time and hold time requirements must be met (see Glossary). It states as follows:

Fundamental Mode of FSM Operation
Operation in the fundamental mode requires that no external FSM input may change until all 

internal signals have stabilized.

This means that only one input is permitted to change at any given time, and that each change 
be minimally separated in time from the next. With few exceptions, all asynchronous FSMs must 
adhere to this requirement. The exceptions include FSMs designed with memory elements that 
operate outside of the fundamental mode as will be discussed later in this and other chapters.

The lumped path delay (LPD) model for an asynchronous Mealy FSM is presented in Figure 
1.1. It consists of a next state (NS) forming logic section, an LPD memory stage, and an output  
(OP) forming logic section. Connecting these three sections are the input (IP) lines, NS lines, and 
present state (PS) feedback lines. This is called a Mealy model (after G. H. Mealy), because the IP 
lines can directly affect both the NS and OP forming logic sections. Thus, the Mealy model is the 
most general model for an FSM. If the IP lines to the OP section are dropped, the model is called 
a Moore model, in honor of E. F. Moore.

In the LPD model, the delays in the next state forming logic are represented as fictitious 
LPD memory elements where each memory element separates an NS variable Yi from a PS variable 
yi, as shown in Figure 1.1. In this sense, the NS forming logic is considered ideal, that is, void of 
delays with the delays lumped as fictitious memory elements in the NS/PS lines. Because operation 

•
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in the fundamental mode requires that no external input can be applied until any previous input 
has settled in and the system has stabilized, the memory in an LPD FSM is preserved. Treating 
the LPD model in this manner greatly simplifies the design and analysis of fundamental mode  
FSMs. 

1.3	 STABILITY CRITERIA AND THE EXCITATION TABLE FOR 
LPD MODELS

An inspection of Figure 1.1 indicates that the functional relationships between the stages can be 
represented in a simple form as

	 Y = f  ( IP, PS)    and    Z = f  ′(IP, PS)	

where it is understood that each LPD memory element Mi represents a fictitious delay Mi = ∆ti. It 
is this fictitious delay that is the cornerstone of the LPD model that, in turn, leads to the important 
stability criteria for asynchronous FSMs operated in the fundamental mode:

Next state
forming

logic

y0

Output
forming

logic

x 0

NS

PS feedback   Fictitious LPD Memory
Elements

LPD Memory stage

M 0

Y0

M1

Y1

M m–1

Ym–1

Z0

Z1

Zr–1

y1

ym–1

x 1

x n-1

Output
(OP)Intput

(IP)

figure 1.1: The generalized LPD model for an asynchronous Mealy FSM operated in the funda-
mental mode with fictitious LPD memory elements.
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Stability Criteria
(a) If the PS is logically equal to the NS in a given state at some point in time, then

Yi (t) = yi(t)    (for all i ) (1.1)

and the asynchronous fundamental mode FSM is stable in that state.
(b) If the PS is not logically equal to the NS in a given state at any point in time, then

Yi (t) ≠ yi (t)    (for any i ) (1.2)

and the asynchronous fundamental mode FSM is unstable in that state and must transition to 
another state.

Thus, the presence of an LPD memory element in each feedback loop together with operation in 
the fundamental mode ensures that each PS is preserved and ready for an NS transition.

Equations (1.1) and (1.2) can be represented in tabular form. When this is done, the results 
are the excitation tables shown in Figure 1.2a and 1.2b. Here, yt = Yt signifies a stable state con
dition, whereas yt ≠ Yt represents an unstable state condition. The notation yt → yt + 1 represents a 
transition from the PS to the NS, implying that yt +1 = Yt for the NS. Readers who are familiar with 
synchronous FSM design will note the similarity between the excitation table for the LPD model 
and that for a D flip-flop. The LPD excitation table in Figure 1.2b will prove essential to the de

Yt

0 0 0�

yt yt+1

0 1 0�

1 0 1�

1 1 1�

Stable

Unstable

Unstable

Stable

�

0 0�

yt  yt+1

0 1�

1 0�

1 1�

� Yt

0

1

0

1

(a) (b)

Set Hold

Set

PS State
variable
change

NS
variable

figure 1.2: (a) Excitation table for the LPD model as derived from Eqs. (1.1) and (1.2). (b) The 
excitation table of (a) arranged in the form familiar for D flip-flops now to be used for the LPD model.
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sign of many asynchronous FSMs operated in the fundamental mode. This will be accomplished by 
combining this excitation table with a state diagram representing the sequential behavior of a FSM, 
the result being entered into entered variable (EV) Karnaugh maps (K-maps) and cover extracted 
for the design. This will all be amply discussed in this and later chapters together with the use of 
computer-aided design methods.

1.4	 NESTED SET–RESET ELEMENT MODELS FOR  
ASYNCHRONOUS SEQUENTIAL MACHINES

Shown in Figure 1.3 is the generalized nested set–reset memory element model for asynchronous Mealy 
FSMs. Here, each fictitious memory element with a Yi NS input in Figure 1.1 has been replaced by 
memory elements with Set–Reset (SR) NS inputs. The memory cells depicted in Figure 1.3 are either 
SR basic cells that operate in the fundamental mode, or SR Muller C-elements that operate outside 
of the fundamental mode. Although these two types of memory elements have some similar char-
acteristics, there are important differences. For example, the basic SR cell is a simple gate-oriented 
FSM with one feedback line to its NS forming logic. In contrast, the SR Muller C-element is not 

Next state
forming

logic

Output
forming

logic

x 0

NS

PS feedback Nested Memory Elements

Memory stage

Z0

Z1

Zr–1

y1

y
m–1

x 1

x n–1

Output
(OP)

Intput
(IP)

S

R
y

S

R
y

S
R

y

S0

R0

y0

S1

R1

Sm–1

Rm–1

figure 1.3: Nested memory element model for an asynchronous Mealy FSM showing a memory 
stage consisting of either basic SR cells that operate in the fundamental mode of SR C-elements that 
operate outside of the fundamental mode.
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gate-oriented and has no feedback to its NS forming logic—it has only a weak feedback feature in its 
output. Use of either basic cells or C-elements in the model of Figure 1.3 may be viewed as embed-
ded or nested FSMs within an FSM. A detailed examination of both types of memory elements is 
left for later discussions in this chapter. Note that if the IP lines to the OP section are dropped, the 
model in Figure 1.3 would be called a nested memory element Moore model.

Clearly, the previous discussion indicates that the memory stage can take on a different char-
acter depending on the input requirements and the type of FSM to be designed. There are four 
types of memory elements that can be used in the design of asynchronous FSMs:

Four Types of Memory Elements Used in Asynchronous FSM Design
(1)  Fictitious LPD memory elements
(2)  SR basic cells
(3)  SR C-elements
(4)  Toggle modules

We have touched on the first three memory elements: fictitious LPD memory elements, SR basic 
cells, and SR C-elements. The first two memory element types (1 and 2) are used in the design of 
asynchronous FSMs that must be operated in the fundamental mode. Muller C-elements operate 
outside of the fundamental mode, whereas toggle modules are used in the design of asynchronous 
FSMs that operate in the pulse mode discussed in Chapter 6. The use of these memory elements 
will be discussed, in turn, together with the appropriate design considerations. Before we do this, 
however, further background discussions of sequential machine fundamentals are necessary.

1.5	 FULLY  DOCUMENTED  STATE  DIAGRAM—SUM  RULE  AND 
MUTUALLY  EXCLUSIVE  REQUIREMENT

The sequential behavior of any FSM (asynchronous or synchronous) is revealed most effectively by 
a fully documented state diagram. Once the FSM has been declared as an asynchronous state machine 
operating in or outside of the fundamental mode, the design process can begin with either the LPD 
model (Figure 1.1) or a nested element model (Figure 1.3), with the state diagram, and with the 
appropriate excitation table. The excitation table in Figure 1.2 applies only to the LPD model. The 
excitation table for the nested SR element models is yet to be determined.

Shown in Figure 1.4 is a segment of a fully documented state diagram that represents the par
tial sequential behavior of an asynchronous FSM. There are three states shown, each depicted as 
an oval-shaped symbol. The branching paths, documented branching conditions, PS state code 
assignments, and the conditional (Mealy) and unconditional (Moore) outputs are all represented in 
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the state diagram segment. The down/up arrows symbol (↓↑) is used to indicate an active output 
upon entering a state and an inactive output upon leaving the state, subject to any conditional input 
indicated. It also serves to visually distinguish outputs from inputs. A branching path out of and 
back into a given state symbol is called a holding condition. In Figure 1.4, the holding condition for 
state a is denoted as fa(xi) or, alternatively, faa(xi), and similarly for states b and c. All others are either 
out-branching or in-branching paths as indicated by the sense of the arrows. Note that the branch-
ing conditions fαβ(xi) given in Figure 1.4 are the input literals required to execute a given transition 
from state α to state β, or from state α to state α. Thus, fαβ(xi) can represent any number of literals 
(inputs) as, for example, X, �T, Add ⋅ V

_
, or B + Hold         

____ 
⋅ C, etc.

The reader will learn with practice that the fully documented state diagram is by far the easi-
est, most lucid, and visually satisfying means of representing the sequential behavior of an FSM. In 
this regard, it is important to note that we have deliberately opted not to use burst mode and extended 
burst mode FSM label notation in state graph construction (see Glossary for definitions) because, to 
do so, would defeat the underlying purposes of this text. It will become clear to the reader that the 
fully documented state diagram is a very powerful tool when used to identify and eliminate a host 
of timing defects in asynchronous FSMs. However, to use the fully documented state diagram for 
such purposes, two rules must “ordinarily” be followed in its proper construction. The first of these 
rules is called the sum rule stated as follows:

c

b

a

fcb(xi)

fab(xi)
fba(xi)

fb(xi)

fc(xi)

fa(xi)

0L00

0L01

0L11

ZE

ZE  if  f(xi)

Unconditional
output

Branching
paths

Branching
conditions

Conditional
output

PS variables
(ym–1 L  y1y0)

PS State code
assignment

fac(xi)

fcd(xi)

figure 1.4: Fully documented state diagram as interpreted for an asynchronous FSM showing branch-
ing paths, branching conditions, conditional and unconditional outputs, and state code assignments.
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Sum Rule
The Boolean sum of all branching conditions from a given state must be logic 1.

Applied to state a in Figure 1.4, the sum rule would be satisfied iff fa + fab + fac = 1. Suppose that the 
branching conditions from state a are fa = XY, fab = � and fac = X �. Clearly, the sum rule holds under 
these branching conditions, because their Boolean sum would be logic 1 (see Appendix A.2 for a re-
view of Boolean algebra). An example of failure to meet the sum rule would be if fab = � Y, the others 
remaining the same. Mathematically, the sum rule can be expressed for all j-to-i transitions as

	
n−1

∑
i = 0

fi←j = 1 	 (1.3)

where fi←j represents the branching condition from the jth state to each ith summed over n states.
If the sum rule is not satisfied, one or more of the branching conditions would not be ac-

counted for and failure of the FSM could result. However, there are occasions in the design of 
an asynchronous FSM where it is desirable not to have the sum rule apply. In these special cases, 
certain input conditions are never allowed thereby permitting the FSM to function normally in  
violation of the sum rule. An example in this case would be if fa = X Y, fab = � Y, and fac = X �. In this 
case, the input condition � � is not accounted for. Thus, the FSM would only operate properly if  
the input change X Y →� � is never permitted to occur.

A second rule is called the mutually exclusive requirement. Although branching accountability 
is met via the sum rule, the asynchronous FSM may still malfunction if two or more of the branch-
ing conditions from a given state “overlap.” This rule may be stated as follows:

Mutually Exclusive Requirement
Each possible branching condition from a give state must control no more than one branching 
path.

Mathematically, this may be expressed as 

	 fi←j =
n−1

∑
k = 0
k = 1

fk←j   or   fi← j fk← j
for all i and k, iff k= i

= 0 	 (1.4)

where each branching condition is found to be the complement of the Boolean sum of those re-
maining. Applied to state a in Figure 1.4, Eqs. (1.4) requires that
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fa = fab + fac or fab ⋅ fac = 0
fab = fa + fac or fa ⋅ fac = 0 , etc. 	 (1.5)

This example demonstrates that a simpler way of satisfying Eq. (1.4) would be to AND each 
pair of branching conditions from a given state. If the result is logic zero for all ANDed pairs, then 
all branching conditions are mutually exclusive. Consider that fa = � �, fab = X, and fac = Y in Figure 
1.4. It is easily seen that the sum rule is obeyed but the mutually exclusivity condition is violated, 
because X and Y both contain XY. Thus, if the holding condition in state a is � � and the change  
� � → XY occurs, then branching to either state b or state c can occur leading to a possible unre-
solved condition that can result in an error transition (or metastability) and failure. Notice also 
that fab ⋅ fac = X ⋅ Y = XY does not satisfy the null product result required by Eq. (1.4). Of course, if 
branching condition XY is never permitted to occur, then there is no potential problem.

1.6	 THE MAPPING ALGORITHM
Fortunately, there is a simple means of designing and analyzing asynchronous FSMs having any 
specified memory stage, and a simple means of converting back and forth between memory ele-
ments. This simple means begins with what is called the mapping algorithm. There are three steps 
that must be followed before applying the mapping algorithm. They are:

Select the FSM to be designed and represent it in the form of a fully documented state 
diagram. The output (OP) logic can be mapped and obtained at this time.
Select the memory element (LPD or an SR type) and represent this memory element in 
the form of an excitation table.
Plot the NS EV Karnaugh maps (K-maps) from items (1) and (2) by using the mapping 
algorithm below, and loop out a minimum or near-minimum NS logic from the EV K-
maps. The use of computer-aided minimization software may be necessary to complete 
this step.

Mapping Algorithm for FSM Design
AND each memory input logic value in the excitation table with the corresponding EV branch-
ing condition (or canonical value) in the state diagram for the FSM to be designed, and enter the 
result in the appropriate cell of the NS K-map.

1.

2.

3.
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1.7	 APPLICATION OF THE MAPPING ALGORITHM TO  
SIMPLE LPD MODEL DESIGNS

Remember that we must begin by following the three preliminary steps cited above before applying 
the mapping algorithm. First, it is necessary to understand what set and reset mean logically. Simply 
put, Set refers to a 0 → 1 transition and Reset to a 1 → 0 transition. These can be represented by a  
simple two-state state diagram as shown in Figure 1.5a, where the sum rule must hold for state 0 
and for state 1 taken separately. Thus, �

 
+ S = 1 and R + � = 1. Now, we AND the logic 1 (for Set) 

in Figure 1.5b with the branching condition S for the 0 → 1 transition in Figure 1.5a and place  
the result (S) in the PS state 0 cell of the EV K-map given in Figure 1.5c. Similarly, we AND logic 
1 (for Set Hold) with the holding condition � in state 1 and enter the result (�

 
) in the PS state 1 of 

the EV K-map. ANDing the branching conditions � and R with logic 0, as required by the excita-
tion table in Figure 1.5b, results in null entries in the NS K-map of Figure 1.5c.

The result in Figure 1.5c is important because it permits K-map conversion, back and forth 
between the LPD and SR models, leading to a design conversion between the two models. In effect, 
this amounts to memory conversion. For reference purposes, we state this result again here

	 Y = S + yRy
_ _

	 (1.6)

0

1

S

R

 R

S

YE

(b)

0 0�

yt yt+1

0 1�

1 0�

1 1�

� Yt

0

1

0

1

(c)

PS State
variable, y

1

0

y

Y = yS + yR

S
PS  0

PS  1

Set

Set Hold

 R

Y

(a)

PS  0

PS  1

figure 1.5: LPD-to-SR memory conversion. (a) The SR state diagram. (b) Excitation table for 
memory in the LPD model as given by Figure 1.2b. (c) EVK-map and LPD-to-SR memory conversion 
logic derived from the state diagram in (a) together with the excitation table in (b) and the use of the 
mapping algorithm.
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The utility of conversion between the LPD and SR models is that it is generally easier to obtain 
the NS logic for the LPD model than for the SR model. Thus, conversion to the SR model via K-
map conversion can save time and reduce errors, and the result applies to either the use of nested 
basic cells or Muller C-elements. The use of a minimization software that accepts map EVs, such 
as BOOZER (see Preface), further reduces the time and effort required in obtaining reliable results. 
All of this will be covered at the appropriate time.

To further help the reader understand the mapping algorithm as applied to the LPD model 
design process, consider the simple three-state FSM in Figure 1.6a. Here, a three-state, fully  
documented state diagram is shown having two state variables ( y1 and y0), two external inputs (A 
and B), and a single conditional output Z. The output must go active in state 00 but only if A is 
active. The FSM will hold in state a under input conditions A + � or any logic combination of in
puts contained in A + �, that is, � �,

 
A� and AB. Notice that the sum rule and mutual exclusivity 

requirement hold for all three states.
Shown in Figure 1.6b is the state table (flow table), which is the tabular form precisely repre

senting the state diagram but more amenable to computer-aided design. The arrows represent the 
possible transitions. The input axis AB is unfolded in 2-bit Gray code with input domains A and 
B indicated by brackets. Each cell entry is a state identifier representing the specific state code  

a
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c
11

b
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A + B

AB

AB
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B

Z     if A

A.B

0 1

0
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b

Y
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y
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Y
1
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y
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y
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0

0
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

y
1
y

0

Z

A

0

y
1
y

0
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Variables

01 = b

11 = c

B

    10 = d

abcc 0

figure 1.6: LPD design of a simple three-state asynchronouc FSM. (a) Fully documented state dia-
gram. (b) State table. (c) NS and output K-maps showing optimal cover (shaded) loops.
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assignment shown on the vertical axis of the state table in agreement with the state diagram. State 
identifiers that are encircled represent holding conditions that satisfy both the state diagram and 
the stability criteria of Eqs. (1.1) and (1.2). In an asynchronous FSM, this means that the FSM 
is stable in any state for which the stability criteria is satisfied, but is unstable otherwise and must 
transit.

As an example, the FSM in Figure 1.6a is stable in state b if both inputs A and B are si-
multaneously active. Then, for the FSM to transition b → a, B must go inactive; hence, A�. The 
transitions 00 → 11 (a → c) and its reverse 11 → 00 (c → a) require that the FSM must transit via 
either state 01 or the don’t care state 10 designated φ10. Thus, the 00 → 11 transition under input 
conditions �B can be guaranteed only if transitions from 01 → 11 and 10 → 11 contain �B, which 
they do. Similarly, the 11 → 00 transition under input conditions A� can be guaranteed only if the 
transitions from 01 → 00 and 10 → 00 contain A�, which they do. The fact that the transitions 
from missing state 10 contain the appropriate branching conditions will become clear when we 
discuss asynchronous FSM analysis in Chapter 7. The transitions 00 → 11 and 11 → 00 via state 01 
or 10 are examples of permissible race conditions to be discussed in Chapter 3.

The K-maps in Figure 1.6c are generated by combining application of the LPD excitation 
table (the characterization of the memory) in Figure 1.2b with the state diagram in Figure 1.6a  
by using the mapping algorithm. This is accomplished by taking each state variable in turn (e.g., y1 
first then y0) and plotting the NS EV K-maps for 0 → 1 and 1 → 1 SET transitions between states. 
Beginning with state 00, there is only one set condition for the y1 state variable and that is a 0 → 1 
transition to state c under branching condition �B. Thus, �B is placed in cell 00 of the Y1 NS vari-
able K-map. Continuing to state 01, there is again only one set condition for the y1 state variable, a 
0 → 1 transition to state c under branching condition �B, which is placed in the cell of coordinates 
01 of the Y1 NS variable K-map. In state 11, the 1 → 1 set-hold occurs under input condition �, 
which is placed in the 11 cell of the Y1 K-map. State 10 is a don’t care state, so a φ is placed in the 
10 cell. Now consider the y0 state variable and state 11. The y0 state variable transits from state 11 
to 11 under input condition � but also from state 11 to 01 under input conditions AB. Therefore, 
the Boolean sum of these two set conditions for state variable y0 is, by the absorptive law in Ap-
pendix A.2, �

 
+ AB = � + B, which must be placed in the 11 cell of the Y0 K-map. (Note: Always 

minimize any combined branching conditions.) Then, for state 01 the transitions 01 → 01 and  
01 → 11 require that AB = �B = B be placed in the 01 cell of the Y0 K-map. Again, a don’t care 
symbol φ is placed in the 10 cell of the Y0 K-map. What is the  00 cell entry for the Y0 K-map?

The output K-map for Z requires that an A be placed in the 00 cell because state 00 has 
a conditional output (Z if A), meaning that this output can go active in state 00 only if A is ac-
tive independent of input B. The other two states, 01 and 11, have no output assigned to them so 
logic 0 must be placed in cells 01 and 11 of the Z K-map. Cell 10 must also contain a don’t care  
symbol, φ.
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When the mapping process has been completed by following Appendix A.3, the maps are 
read (looped out) to give

	 Y1 = + y1A
_
B A

_
    Y0 = + y0B + y1A

_
B A

_
    Z = 0 Ay

_
	 (1.7)

where prime implicants (PIs) �B and y1 � are shared between NS variables Y1 and Y0, and are called 
shared PIs. This yields a total gate/input tally of 6/13 excluding inverters that are used in the LPD 
logic circuit. To help understand the concept of gate/input tally and application of the LPD model, 
the NS and output logic in Eqs. (1.7) are shown in Figure 1.7 to be implemented with a NAND/
INV logic circuit by using mixed-logic notation. Here, as in the LPD model of Figure 1.1, fictitious 
memory elements are represented by the symbol Mi separating the NS variables Yi from the PS 
variables yi. The circuit is implemented assuming that the inputs arrive active high and that the 
output Z is issued active low (a matter of choice). The forward slash on a gate input line indicates a 
logic incompatibility requiring that the input to that logic gate be complemented in the gate output. 
It is not obvious, but the shared PI y1 � provides a transition path from state 00 to state 11 via don’t 
care state 10 should the FSM transit by that path. This will be made clear when FSM analysis is 
discussed in Chapter 7. Note that Figure 1.7 verifies that the gate outputs agree with the p-terms in 
Eqs. (1.7) and that the total gate/input tally is 6/13 exclusive of inverters. Once the reader is familiar 
with LPD model designs, the fictitious memory elements can be removed but implied. Thus, in this 
case, the state variable outputs will then be given as y1(H ) and y0(H ).

1.7.1	 Mixed-Logic Notation and the Cardinal Rule
Learning to construct logic circuits in mixed-logic notation provides the designer with some sig-
nificant advantages, so a brief review of mixed-logic notation will be useful at this time. First, notice 

y0B(L)

AB(L)

y1A(L)
M1

M0

Y1(H)

Y0(H)

y1(H)

y0(H) Z(L)

A(H)

B(H)

figure 1.7: Implementation of Eq. (1.7) with NAND/INV logic assuming that the inputs arrive  
active high and that the output is issued active low. (The slash indicates a logic incompatibility.)
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that the inputs and outputs of the logic circuit in Figure 1.7 carry what are called activation level 
indicators. They are:

(H ) signifies ACTIVE HIGH where Logic 1 is the ACTIVE state
(L) signifies ACTIVE LOW where Logic 0 is the INACTIVE state

The DeMorgan relations for any logic function α, and relationships between (H) and (L) and the 
high and low voltage levels (HV and LV), are essential to understanding the mixed-logic notation 
and design methods in the logic domain used in this text. These are, respectively:

	

α(L) = α(H )
α(H ) = (L)

_

α
_     1(H ) = 0(L) corresponds to HV

0(H ) = 1(L) corresponds to LV
	 (1.8)

The simplicity and utility of this type of notation will become apparent with practice. The above 
notation will be used extensively throughout this text. Appendix A, provided at the end of this text, 
will review mixed-logic symbology and other fundamentals that the designer will find useful. For 
now, the cardinal rule to be followed can be stated as follows:

Cardinal Rule
Always design or analyze a logic circuit in mixed-logic notation and symbology. Use of positive 
logic or voltage-level notation must be left to the hardware implementation stage.

Following this cardinal rule can help users avoid numerous errors and failure. The reader will learn 
that asynchronous state machine design and analysis is complex, requiring a simplified notation that 
maximizes the probability of success. Use of mixed-logic notation and symbology is superbly suited 
to accomplishes that. Readers who have been taught only positive logic must unlearn the positive 
logic notation and aggressively adapt to the cardinal rule.

1.8	 DESIGN OF BASIC MEMORY ELEMENTS AND  
THEIR CHARACTERISTICS

Before we can delve into the subject of the nested element models represented in Figure 1.3, we 
must first discuss the nature of the SR nested elements that constitute the memory for these models. 
As mentioned earlier, there are two classes of memory elements: (1) the basic cells classified as set-
dominant and reset-dominant that operate in the fundamental mode, and (2) the Muller C-elements  
that operate outside the fundamental mode. We will discuss their design and characteristics in 
turn.
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1.8.1 Basic SR Cells
Shown in Figure 1.8 is the design of the set-dominant basic memory cell, which is itself the simplest  
type of gate-level asynchronous FSM possible. Figure 1.8a shows the operation table for the set-
dominant basic cell and Figure 1.8b depicts the state diagram derived from the operation table.  
Notice that in the operation table the SR conditions 10 and 11 both require a set condition, hence 
the name set-dominant. The 00 condition requires a reset hold or set hold in states 0 or 1, respec-
tively. The only reset condition occurs for �R, meaning that S is inactive when R is active. Also note 
that the sum rule and mutual exclusivity condition are both satisfied for the state diagram.

Combining the state diagram in Figure 1.8b with the excitation table in Figure 1.8c for  
the LPD model by using the mapping algorithm results in the NS EV K-map shown in Figure 
1.8d. The optimum cover, looped out of the EV K-map in minterm code, gives the sum-of-products  
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figure 1.8: Design of the set-dominant basic memory cell by using the LPD model. (a) Operation 
table. (b) State diagram. (c) Excitation table for the LPD model. (d) NS K-map and minimum cover.  
(e) NAND Logic circuit showing the fictitious LPD memory element and the single feedback path. (f ) 
Logic circuit with fictitious memory element removed. (g) Logic symbol.
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logic expression Y = S + �y, which is implemented in mixed-logic form with and without the ficti-
tious memory element in Figure 1.8e and 1.8f, respectively. Notice that this simple NAND centered 
asynchronous FSM has but one feedback path. The appearance of the “cross-coupled” NAND gates 
in Figure 1.8f does not change this fact. The logic circuit symbol, given in Figure 1.8g, provides 
a suitable representation of the set-dominant basic cell that can be used in circuits for which the 
nested element model in Figure 1.3 is applied. Thus, the active low indicator bubbles on the inputs 
circuit symbol in Figure 1.8g imply active low S and R inputs.

Shown in Figure 1.9 is the LPD design of the reset-dominant basic cell. The state diagram 
for this cell in Figure 1.9b is derived from its operation table in Figure 1.9a. It is mapped in Fig-
ure 1.9d by using the mapping algorithm to combine the state diagram with the excitation table 
for the LPD model given in Figure 1.9c. The K-map is looped out in maxterm code to yield the  
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figure 1.9: Design of the reset-dominant basic memory cell by using the LPD model. (a) Operation 
table. (b) State diagram. (c) Excitation table for the LPD model. (d) NS K-map and minimum cover.  
(e) NOR Logic circuit showing the fictitious LPD memory element and a single feedback path.  
(f ) Logic circuit with the fictitious memory element removed. (g) Logic symbol.
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product-of-sums (POS) logic expression Y = �(S + y). In maxterm code K-map minimization, the 
domains are complemented and read as POS. Appendix A.3 reviews EV K-map minimization but 
in minterm code only. (See Tinder’s book in Endnotes for an exhaustive treatment of EV K-map 
mapping minimization.)

The logic circuit for Y = �(S + y) is implemented in NOR logic with and without the  
fictitious memory element as shown in Figure 1.9e and 1.9f. Again, we observe that there is but 
one feedback path. Notice that for the reset-dominant basic cell the inputs arrive active high (H), 
whereas for the set-dominant (NAND-centered) basic cell they arrive active low (L). A suitable 
logic symbol for the reset-dominant cell without active low indicator bubbles is given in Figure 1.9f. 
An inspection of the state diagram in Figure 1.9b indicates that the sum rule and mutual exclusivity 
condition are both satisfied.

The logic character of the basic memory cells is best understood by the use of timing diagrams 
(logic waveforms). Shown in Figure 1.10 are the combined timing diagrams for the set- and reset-
dominant basic cells that have been taken from a logic simulator described in the Preface but dressed up  
with a drawing tool. To save space, the input waveforms are made to appear exactly the same for the 
two basic cells but with the understanding that their activation levels SL,SH and RL,RH must be in 
agreement with their respective figures, Figures 1.8f and 1.9f. Thus, the inputs to the cross-coupled  
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figure 1.10: Timing diagrams for the set-dominant and reset-dominant basic cells showing loss of 
mixed-rail outputs for the S,R = 1,1 condition, and the oscillatory behavior that results when S and R 
change 1→ 0 simultaneously.
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NAND cell (set-dominant) are SL and RL, whereas for the cross-coupled NOR cell (reset- 
dominant) they are SH and RH.

Outputs y(H), y(L) are called mixed-rail outputs because they normally issue either as 1H,1L 
or as 0H,0L—in the physical domain, the voltages are the inverse of one another, according to Sec-
tion 1.7.1. However, these outputs do not change simultaneously but rather their changes are sepa-
rated by the propagation delay, τp, of a single gate, which has arbitrarily been taken to be the same 
for both NAND and NOR gates. Notice in Figure 1.10 that the y(L) output from the cross-coupled 
NAND gates is symmetrically set inside of the y(H) output by time delays of τp. Conversely, for the 
cross-coupled NOR gates, the y(H) output is symmetrically set inside of the y(L) output, again by 
time delays denoted by τp.

Under certain conditions, the two basic cells shown in Figure 1.10 can lose their mixed-rail 
output character. Loss of mixed-rail output character means that both outputs go active high, 1H, as 
in the NAND-based cell, or they both go active low, 0H, as in the NOR-based cell. Thus, physi-
cally these outputs are issued at the same voltage level, HV for the NAND-based cell and LV for 
the NOR-based cell. Remember that 1(H) = 0(L) and 0(H) = 1(L) in mixed-logic notation. When 
both inputs to either basic cell go active and then transition 1 → 0 simultaneously as shown in Fig-
ure 1.10, the basic cell may become metastable and either “hang up” in a state that is neither a set 
not reset, or it may oscillate. This supports the need to avoid the S,R = 1,1 condition when using 
basic cells as memory elements and the need to operate them in the fundamental mode, where input 
changes must be minimally separated in time.

If a set of basic memory cells are to be used as memory elements in an asynchronous logic  
circuit, in agreement with the nested element model of Figure 1.3, they must be characterized by an  
excitation table. To design an asynchronous FSM, the mapping algorithm requires that the state di-
agram for the FSM (to be designed) be combined with the excitation table for the selected memory 
element via the mapping algorithm. Shown in Figure 1.11 are the excitation tables for the set- and 
reset-dominant basic cells as derived from their respective state diagrams. We notice from the state 
diagrams that the S,R = 1,1 condition exists under Set (0 → 1) and Set Hold (1 → 1) changes 
for the set-dominant basic cell, and under Reset Hold (0 → 0) and Reset (1 → 0) for the reset- 
dominant basic cell. Thus, S,R = 1,1 is inherent in these two basic cells.

The excitation tables in Figure 1.11 can be combined (merged) to eliminate the presence of  
the S,R = 1,1 condition. By taking from Figure 1.11b and 1.11c only those SR entries that are  
enclosed in shaded loops, a combined form of the excitation table results in the absence of the S,R = 
1,1 condition. Thus, a generic form of the excitation table results that is applicable to either the set- 
or reset-dominant basic cell. Use will be made of the combined form in Section 1.9 and throughout 
the text. Note that each input in an ORed holding condition is taken separately and shown in pa-
rentheses. Thus, S + � for state 1 in Figure 1.11a is presented as (1 φ) for S and (φ 0) for �.
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1.8.2	 Muller C-Elements
Shown in Figure 1.12a is the transistor circuit for a normal Muller C-element—there is no tra-
ditional logic gate representation as is the case of the basic cells. Whereas basic cells have a single 
feedback path to the NS forming logic, the Muller C-element has only cross-coupled inverters in 
its output with a weak (keeper) inverter that serves as the memory. Consequently, a C-element oper
ates outside of the fundamental mode and cannot transition 0 → 1 until both inputs go active, nor 
can it transition 1 → 0 until both inputs go inactive. The truth table in Figure 1.12b derives from 
the transistor circuit, and the state diagram in Figure 1.12c is constructed directly from the truth 
table. Both represent the sequential behavior of the C-element. The two inputs can rendezvous ac-
tive anytime to execute the 0 → 1 transition or can arrive inactive anytime to produce the 1 → 0 
transition; otherwise, the C-element must hold in its respective state. No adverse effects will ensue 
from simultaneous input changes, in contrast to the simultaneous 1 → 0 transitions in basic cells. 
The symbol in Figure 1.12d serves as a suitable logic circuit symbol for a normal C-element and 
will be used as such throughout this text. The clear (CL) feature allows the C-element output y(H) 
to reset at 0(H) when CL = 1(L) and to allow normal operation following a CL = 0(L).

Figure 1.13 shows the four representations for a complimentary C-element with clear. Now, 
the inputs must rendezvous with complementary activation levels (one active high, the other active 
low) before a transition 0 → 1 or 1 → 0 is executed. The truth table and state diagram in Figure  
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1.13b and 1.13c convey this requirement. The circuit symbol in Figure 13d caries an active  
low indicator bubble representing logic level conversion. The clear feature is again added by following 
the configuration shown in Figure 1.12a. With regard to inverters, the reader must remember the 
following:

Function of an Inverter
An inverter does not invert a voltage signal in the logic domain but merely converts positive logic 
to negative logic or vice versa—it is the physical inverter that inverts voltage levels.

Note that the C-element in either Figure 1.12 or 1.13 can be designed without a clear (CL) input 
by shorting the NMOS to ground and by removing the PMOS (an open circuit at the PMOS).

1.9	 SUMMARY OF THE EXCITATION TABLES
An excitation table is the means by which we characterize the memory to be used in the design of 
a logic circuit. The excitation table is combined with the state diagram, for the FSM to be designed 
via the mapping algorithm to produce the NS EV K-maps. Examples of this important process have 
been previously given in Figures 1.5 and 1.6. Shown in Figure 1.14 are the important excitation 
tables used in this text for the LPD model and the nested element models given in Figures 1.1 and 
1.3, respectively. Column 1.14(b) is the same as that in Figure 1.2 used for the LPD model. Column 
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1.14(c) is valid for the complementary C-element in Figure 1.13, column 1.14(d) applies to the 
combined basic cells (either a set- or reset-dominant) as in Figure 1.11, and column 1.14(e) applies 
to a normal C-element. The reader will notice the similarity between entries for the complemen-
tary C-elements and those for the combined basic cells illustrated by loops. Equation (1.6) gives 
not only the conversion logic between the LPD model and basic cells but also the conversion logic 
between the LPD model and complementary C-elements. The idea here is to first design with the 
LPD model, which is relatively easy, and then convert to either a C-element or basic cell memory 
design.

1.10	HU FFMAN VS. MULLER ASYNCHRONOUS FSMs
Historically, the Huffman and Muller schools of thought derive from and are credited to the early 
work of D. A. Huffman and D. E. Muller. The general requirement of a Huffman circuit is that 
the input changes must be minimally separated in time—that is, the circuit must operate in the 
fundamental mode. In contrast, the Muller circuit requires a “ready” signal generated by the circuit 
indicating that another input change is permitted. Thus, the Muller circuits are often referred to as 
speed-independent circuits because they operate outside of the fundamental mode. Over time, these 
definitions have been blurred somewhat by various interpretations. However, they are adequate for 
our purposes. We will concentrate on the proper design and analysis of FSMs whose character may be 
classified as either Huffman or Muller type, but this will be done usually with some qualification.

The use of C-element memory elements in an asynchronous FSM could seemingly be thought 
of as a quasi-Muller circuit design because a C-element itself does not have feedback to its NS logic 
as is required for the fictitious LPD and nested basic SR cell memory elements. So although a C-
element memory operates outside of the fundamental mode, its use as memory in an asynchronous 
FSM does not completely satisfy the requirements for a Muller circuit design. Of course, such a 
design lacks a “ready” signal to enable the next input change, but the rendezvous character of the C-
element makes this special signal partially a nonissue. The problem here, of course, is that outputs 
from C-elements are PS variables that are fed back as inputs to the NS forming logic for the FSM. 
In Chapters 8 and 9, we will deal with asynchronous systems that do operate so as to issue “ready” 
signals and rightfully deserve to be called Muller-type systems. In any case, the classification dis-
tinction of a Huffman vs. Muller design is an option left largely to the designer.

•  •  •  •
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Simple FSM Design and Initialization

In this chapter we will design a simple asynchronous finite state machine (FSM) by using both 
the lumped path delay (LPD) and nested C-element models. Conversion between these models 
will require an extension of the mapping algorithm given in Section 1.6. The reader will find that 
conversion between these models is, in effect, a quasi-conversion between Huffman and Muller 
designs—a powerful tool for use by a knowledgeable designer.

2.1	 THE EXTENDED Y → SR MAPPING ALGORITHM
The extended mapping algorithm is inherent in Eq. (1.6) taken together with the excitation tables 
in Figure 1.14. For the convenience of the reader, we restate Eq. (1.6) here:

	 Y = S + yRy
_ _

	 (1.6)

For the next state (NS) K-map conversion, Y → SR, Eq. (1.6) and the excitation tables in Figure 
1.14 require the following four steps:

Four Steps to Y → SR Conversion
For all that is not the NS y-domain, transfer it directly to the same domain cells in the 
S K-map.
For all that is the NS y-domain, transfer it complemented to the same domain cells in 
the R K-map.
Fill in each empty cell with a don’t care (f) ANDed with the complement of the S or R 
K-map entry of the “other” K-map having the same cell domain number.
Loop out the resulting K-maps to yield the optimum NS SR logic cover.

1.

2.

3.

4.

2.1.1	 Application to FSM Design with C-Elements
Shown in Figure 2.1 are the Y → SR conversion NS K-maps and the optimum covers that result 
from following the four steps given in Section 2.1, as applied to the FSM in Figure 1.6. Note that a 
don’t care f ANDed with an entry means that the entire entry is nonessential: Use it if you can, but 

chapter        2
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don’t use it unless it is necessary to extract optimum or near optimum cover. Brief reviews of EV K-map 
minimization and incompletely specified functions are given in Appendix A.3.

For comparison purposes, the optimum NS and output forming logic for the LPD and SR 
models are given in Eqs. (1.7) and (2.1), where the NS SR logic results from covers given by the 
shaded loops in Figure 2.1b. An inspection of these equations indicates that the NS logic gate/input 
tally for the LPD model is 5/11 exclusive of inverters, whereas that for the nested element model 
yields a gate/input tally of 4/8 exclusive of inverters and C-elements.

	

Y1 = + y1
Y0 = + y0B + y1

⇒
S1 = R1 = A
S0 = R0 = + 1AB

_
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_
B A

_
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_
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A
_
B y

_
A
_

A
_
B

	

(2.1)

                                      
Z = 0 Ay

_
                                          

Z = 0 Ay
_

	

The logic circuit for the LPD model result was previously given in Figure 1.7. The nested SR 
element model in Figure 1.3 and the SR logic in Eq. (2.1) apply to either the use of basic cells or  
C-elements. However, an inspection of the excitation tables for the C-elements and basic cells in 
Figure 1.14 indicates there is an important difference in the way these equations are used. Comple-
mentation of the A0 columns in Figure 1.14c and 1.14e satisfies Eq. (1.6) and allows A1 → S and A0 →  
R providing that the complementation requirement is followed:

Requirements for the R Inputs to C-elements and Basic Cells
To use C-elements in the nested element model, the R logic inputs MUST be complemented.
To use basic cells in the nested element model, the R inputs MUST NOT be complemented.
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This complementation requirement is best illustrated in Figure 2.2 for either the complementary or 
normal C-elements. Thus, having obtained the SR logic from the LPD model, the designer is free 
to choose which inputs are to serve as the S and R inputs owing to the transistor circuit configura-
tions for the C-elements given in Figures 1.12 and 1.13.

To illustrate, the C-element-based logic circuit, representing the SR expressions in Eq. (2.1), 
is shown in Figure 2.3. In this circuit, use is made of the wireless connection feature that is used to 
simplify the appearance of a logic circuit. It is the same feature that is recommended for use with the 
logic simulator described in the Preface. As a reminder, the slash appearing in the figure indicates 
a logic level incompatibility requiring that the input to a gate where it applies be complemented in 
the output of that gate. For example, the two-input conjugate NOR gate whose output is connected 
to the S inputs of the two C-elements has a mixed-logic output �B(H ) Remember also that an in
verter is a logic level converter, (H ) → (L) or (L) → (H ), and must not be given a physical meaning 
such as (high voltage) ↔ (low voltage). These reminders are all part of the mixed-logic notation 
symbology used in this text to design or analyze logic circuits in the logic domain. Refer to Section 
1.7.1 and Appendix A for details.
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Figure 2.2: Typical examples of alternative uses of C-elements as required for SR logic. (a) Compli-
mentary C-elements. (b) Normal C-elements.
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Simulation of the logic circuit in Figure 2.3 is given in Figure 2.4a, where use is again made 
of mixed-logic notation. The reader should follow the A, B input sequence to verify that the FSM 
simulation follows the sequential behavior required by the state diagram in Figure 1.6a. Notice that 
the circuit is initialized to the 00 state by setting the clear input CL(L) = 1(L) for a short period. 
Following release of the CL(L) signal, CL(L) → 0(L) =1(H), the reader should verify that the FSM 
transitions through the three states are consistent with Figure 1.6a. The transitions 00 → 11 and  
11 → 00 follow paths via the state 01 or don’t care state 10 as they must. This is demonstrated by the  
blowup in Figure 2.4b, where the transition y1(H), y0(H) = 00 → 11 follows a path through don’t 
care state 10 spending a time in that state equal to the delay through the NOR gate plus a C-element  
shown in Figure 2.3. Simulation of the FSM in Figure 1.6a, the LPD model version of Figure 2.3, 
would look very similar to that in Figure 2.4. Naturally, requirements for the fundamental mode 
would have to be followed. The subjects of initialization and reset are discussed in Section 2.2.

2.2	 INITIALIZATION OF ASYNCHRONOUS FSMs
Initialization of an FSM into a specific logic state is extremely important. A logic sequence must 
usually begin at an “origin” state and may terminate at the same state or at another state, or it may 
not terminate at all. The designer must remember that when power is applied to a circuit, random 
activity must not occur. Rather, the logic circuit must initialize stably into a specific state so that 
an orderly and predictable sequential behavior occurs. In an asynchronous FSM, this is especially 
important because the power-up action may involve switch “bounce,” which could send the FSM 
into an undesirable and uncontrolled sequence of transitions. This is the reason why we introduce 
the concept of a sanity circuit that can avoid such problems and ensure that the FSM initializes into 
the required state and functions properly thereafter.

(a) (b)

Z(L)

B(H)

A(H)

y0(H)

y1(H)

CL(L)

Figure 2.4: (a) Simulation of the C-element logic circuit in Figure 2.2 showing initialization with 
clear CL(L), its release, and the resulting transitions in agreement with the state diagram in Figure 1.6a. 
(b) Blowup view of the shaded region in (a) showing the transition from state 00 to state 11 via don’t care  
state 10.
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2.2.1	 Sanity Circuits—Design and Applications
FSMs can be initialized into any state, but are typically initialized into either a state of all 0’s or all 
1’s. Furthermore, initialization can be done manually or by an analog circuit such as that shown in 
Figure 2.5a. This circuit is called a sanity circuit because its use is the only sane approach to initial-
izing a logic circuit. In power down, the sanity signals are all active, 1(L) or 1(H ), and the logic 
circuit to which the sanity signals are attached becomes initialized into the desired state. At power 
up and after a short period equal to the time constant for the sanity circuit, the sanity signals all go 
inactive, 0(L) or 0(H ), and the logic circuit is enabled to function normally. The time constant is 
equal approximately to RC as indicated in Figure 2.5b. The CMOS implementation for an invert-
ing Schmitt trigger is provided in Tinder’s text (see Endnotes).

+VS

R

CReset

Sanity (L)

Sanity (L)

Sanity (H)

X

VX

Power Up/Dn
Switch

Inverting
Schmitt
trigger

Diode

Power
Dn (pd)

Power
Up (pu)

time

Voltage
 VX

VS

Vpu

Vpd

0

tpu tpd

VX(t)  VS{1-e-t/RC }

Hysteresis

(a) (b)

figure 2.5: (a) Sanity circuit showing mixed-rail outputs. (b) V-t characteristic at node X for the san
ity circuit in (a) showing power-up (Vpu) and power-down (Vpd) switching thresholds and hysteresis 
effect of the inverting Schmitt trigger.
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figure 2.6: Gate requirements for initializing a logic 0 or a logic 1. (a) Active low gate input from the 
sanity circuit. (b) Active high gate input from the sanity circuit.
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The gate requirements for initializing a logic 0 or logic 1 are given in Figure 2.6. Initialization 
by means of the NS logic is applicable to asynchronous FSMs that adhere to the LPD or nested 
basic cell models in Figures 1.1 and 1.3. Thus, the NS forming logic for such circuits can be imple-
mented with either NAND, AND, NOR, or OR logic, and be initialized by a Sanity(L) signal ac-
cording to Figure 2.6. Use of NAND logic to initialize a 0(H) and 1(H) is illustrated in Figure 2.7a  
and 2.7b, which is applicable to the LPD model with feedback paths to the NS logic. In contrast, 
the C-elements, shown in Figure 2.7c, initialize only to 0(H) = 1(L) when Sanity(L) = 1(L) is ap-
plied. Naturally, it follows that an inverter on the C-element output would allow initialization to 
0(L) = 1(H) if that is necessary. Obviously, initialization by means of say the NAND in Figure 2.7a 
and 2.7b requires additional NAND gate inputs that can slow down the circuit response to input 
change. Initialization by means of C-elements has an advantage because no additional inputs are 
required.

Now, the initialization of the FSM in Figure 2.3 can be easily understood. The CL(L) signal 
is the Sanity(L) that delivers a 1(L) for a short period, about equal to the time constant of the sanity 
circuit in Figure 2.5a. This drives the state variables y1, y0 to 0(H), which initializes the FSM into 
the 00 state as indicated in Figure 2.4. Then after a short period, the Sanity circuit goes to 0(L) and 
the FSM is enabled and function normally. In Figure 2.4, note also that when Sanity(L) = CL(L) 
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figure 2.7: Initializing two-level NAND (SOP) logic and C-elements with Sanity(L). (a) NAND 
logic Sanity(L) = 1(L) = 0(H ), used to initialize a logic 0. (b) NAND logic with Sanity(L) = 1(L) used to 
initialize logic 1. (c) Sanity(L) = 1(L) inputs to C-elements as used to initialize only logic 0’s.
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goes to 0(L) and the inputs are A (H ) = 0, and B(H ) = 1(H ), the FSM transits 00 → 11 as it must 
according to the state diagram in Figure 1.6a. Because the output forming logic Z(L) = � 0A(L) is 
not initialized, it is enabled to go active during initialization into the 00 state if A is active high. The 
output forming logic in Figure 2.3 can be initialized to 0(L) by using a three-input NAND gate 
with Sanity(L) = 1(L) as one of the inputs.

•  •  •  •
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There are five types of timing defects that, if present and active in asynchronous finite state ma-
chines (FSMs), can cause them to malfunction. Nearly all of these defects do not exist in synchro-
nous FSMs because flip-flops, together with the sampling input called Clock, serve to filter them 
out. We will discuss these timing defects as they exist in asynchronous FSMs, indicating their 
potential to cause failure and examine the means by which they can be eliminated. Further discus-
sion on asynchronous state machine design and analysis cannot occur until these timing defects are 
discussed in detail. The five types of timing defects are as follows:

Endless cycles (oscillations)
Critical races
Static hazards in the next state (NS) and output forming logic
Output race glitches (ORGs)
Essential hazards (E-hazards)

3.1	E NDLESS CYCLES
An endless cycle in an asynchronous FSM is nothing more than an oscillation operating at a frequency 
determined solely by the speed of the logic circuit involved in the production of the endless cycle. If 
this defect exists in the asynchronous FSM and is active, it turns the FSM into an oscillator and ac-
cordingly must be eliminated. Shown in Figure 3.1a is a general test used to detect an endless cycle 
involves ANDing the branching conditions between two states P and Q. If fPQ ⋅ fQP ≠ 0, then there 
exists an branching condition common between the two states that can cause the endless cycle. Such 
is the case in Figure 3.1b, where it is clear that (A ⊕ B) ⋅ B = �B, revealing the common branching 
condition �B that can produce an uncontrolled oscillation. One possible means to eliminate this 
endless cycle involves simple changes in the branching conditions as shown in Figure 3.1c. Here, 

1.
2.
3.
4.
5.
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there now results (A ⊕ B) ⋅ AB = 0, thereby eliminating the endless cycles. Endless cycles can occur 
in a variety of state configurations including those involving more than two states.

3.2	 RACES AND CRITICAL RACES
Any set of alternative paths from an origin state to a destination state, involving a change of two 
or more state variables, is called a race or race path. An example of race paths is illustrated in Figure 
1.6a, where transitions between states 00 and 11 must transit via either state 01 or “don’t care” state 
10. Thus, race paths are not only permitted but in some cases are essential to the proper operation of 
the FSM. A race path that can result in a transition to, and stable residence in, an erroneous state is 
called a critical race. This timing defect must not be allowed to exist. The generalized state diagram 
segment in Figure 3.2a serves as a useful model for detection of race and critical race conditions  
associated with the transition between states P and Q under branching condition fPQ. Simply stated, 
if fPQ is contained in either holding condition fR or fS for race states R or S, as indicated in Figure 
3.2c, then a critical race exists—the FSM can erroneously hold up indefinitely in such critical race 
states. The proper function of race states R or S must be to provide transition paths to destination 
state Q via branching condition fRQ or fSQ, as is the case in Figure 1.6a.

The formation and elimination of a critical race is illustrated in Figure 3.3. Here, it is seen 
that a transition 11 → 00 under branching condition �B involves the change in two state variables, 
y1y0, and consequently must transit via either state 01 or 10. If the FSM should transit via state 10, 
it would be erroneously stuck in that state under holding condition B. Also, an output Z would be 
issued should input A go active while in state 10.

P
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fPQ
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Q

P

(b)

Q

AB

AB

AB
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(c)
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AÅB
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AÅB

Possible
correction

Endless cycle
if

(fPQ)(fQP) � 0

Figure 3.1:  Endless cycles in asynchronous FSMs. (a) A seqment of a state diagram used as a model 
for endless cycle analysis. (b) Example of an endless cycle. (c) Elimination of the endless cycle in (b).
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The critical race shown in Figure 3.3 can be easily eliminated by using a correction path that 
diverts the 11 → 00 transition by way of state 01 under the same branching condition �B. The tran-
sition is now 11 → 01 → 00, which is logically adjacent. This is called a cycle or cycle path, which, in 
this case, is permitted. Once the correction path is selected, the FSM must be redesigned by using 
either the lumped path delay (LPD) or nested element model. Further analysis must not continue 
until the FSM is free of endless cycles and critical races, all easily determined by inspection of the 
state diagram.
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Figure 3.2:  Races and critical races in asynchronous FSMs. (a) Generalized state diagram segment 
used as a model for detection of races and critical races. (b) Requirements for non critical races. (c) Re-
quirements for critical races.
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Figure 3.3:  State diagram of an FSM showing a critical race via state 10 for the 11→00 transition 
and its elimination by providing a correction path represented by the dashed line.
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3.3	 STATIC HAZARDS IN THE NS AND OUTPUT  
FORMING LOGIC

A static hazard is a “glitch” (or instability) in an otherwise steady-state signal. A static hazard is 
produced by an input change that propagates along two asymmetric path delays through combina-
tional logic consisting of inverters and gates. It is a combinational hazard called a static hazard (or 
S-hazard) even though it is quite dynamic in its transient behavior. Occurring in the NS logic of 
an asynchronous FSM, an S-hazard can cause malfunction of that FSM. For this reason, all static 
hazards in the NS forming logic must be eliminated. This subject will require the reader to be fa-
miliar with mapping and minimization techniques. To assist the reader, we categorize static hazards 
in the following manner:

A static-1 hazard occurs in sum-of-products (SOP) NS forming logic and is a 1 → 0 → 1 
transient (negative glitch) in an otherwise steady-state (static) logic 1 signal.

	 (a) � An internally initiated static-1 hazard is formed by a 1 → 0 change of a single state 
variable (involves a transition with all external inputs held constant).

	 (b) � An externally initiated static-1 hazard is formed by a 1 → 0 change in a single external 
input variable (occurs on a holding condition with all y variables constant).

2.  A static-0 hazard occurs in product-of-sums (POS) NS forming logic and is a 0 → 1 → 0 
transient (positive glitch) in an otherwise steady-state (static) logic 0 signal.

	 (a) � An internally initiated static-0 hazard is formed by a 0 → 1 change of a single state 
variable (involves a transition with all external inputs constant).

	 (b) � An externally initiated static-0 hazard is formed by a 0 → 1 change in a single external 
input variable (occurs on a holding condition with all y variables constant).

3.3.1	 Detection and Elimination of Static Hazards in the NS Forming Logic
There is a certain nomenclature that we use to convey the relatively simple procedures required to 
detect and eliminate static hazards in two-level logic. The four terms in this nomenclature are as 
follows:

�Coupled variable —a variable that appears uncomplemented in one term of an SOP or POS 
expression and appears complemented in another term of the same expression.
Coupled term —one of two terms that contains only one coupled variable.
Residue —that part of a coupled term that remains after removing the coupled variable.
Hazard cover —the redundant (consensus term) cover required to eliminate the static hazard:

�AND—the residues of the two coupled terms to eliminate a static-1 hazard in an SOP 
expression;

1.
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�OR—the residues of the two coupled terms to eliminate a static-0 hazard in a POS ex
pression. (See Tinder’s book in Endnotes for analyses of static-0 hazards in POS logic.)

In the interest of saving space, we will limit our discussions to static-1 hazards in SOP NS 
forming logic. We will demonstrate that static hazard identification and elimination can easily be 
accomplished by using the NS logic functions from K-maps combined with the state diagram from 
which the K-maps are plotted. In the process, we demonstrate how a normally complicated analysis 
can be made quite tractable, even routine, for the designer. Note: The designer must always check the 
state diagram during a hazard analysis to authenticate the presence of any suspect hazards. 

To illustrate static hazard analysis and elimination, we consider exclusively SOP NS forming  
logic. Shown in Figure 3.4a is a state diagram with four states, two state variables, two external 
inputs, and a single conditional (Mealy) output. The NS K-maps in Figure 3.4b apply to both the 
LPD and nested SR element models. The SR K-maps are generated from the LPD “Y” K-maps by 
following the Y → SR algorithm discussed in Section 2.1. The reader should follow the mapping 
process beginning with the plotting of the entered variable (EV) K-maps followed by the looping-
out process. Once this has been done for the LPD model, attention should next be given to the Y → 
SR transformations. Note that the FSM in Figure 3.4a is devoid of cycles and buffer states.
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Figure 3.4:  A four-state FSM used to demonstrate identification and elimination of static-1 hazards 
in SOP NS logic. (a) State diagram with initialization in to the 00 state and a single conditional output, 
Z. (b) NS K-maps showing optimum SOP cover for both LPD and nested SR element logic designs.
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The NS forming logic for the LPD model is obtained form the Y1 and Y0 EV K-maps in  
Figure 3.4b. When looped out as shown, the results are given by Eq. (3.1). Here, three static-1  
hazards are identified all consistent with the state diagram in Figure 3.4a. Their hazard covers 
(HCs) are indicated by brackets.

	

Y1 = + y1B + y1y0 A + y1 0

Y0 = 1 + y1AB + y1y0 + y0 + y1 y0 A

& }
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(3.1)

Note in Eq. (3.1) that there is only one set of coupled terms in the Y1 expression, an exter-
nally initiated static-1 hazard occurring in state 11 during a change A → � while holding on B. The 
hazard cover for this static hazard is y1y0B, but which is contained in the essential prime implicant 
(EPI) y1B. Thus, in this case, an EPI also serves as hazard cover. Although somewhat rare, this is 
something for which the designer must always check so as to avoid excessive redundant cover.

In contrast, Eq. (3.1) shows that there are two static-1 hazards present in the expression for 
Y0. One is an internally initiated static-1 hazard that takes place on a 11 → 01 transition under 
input conditions � � (refer to the state diagram in Figure 3.4a). The hazard cover HC1 is y0 � �, 
which permanently eliminates this static-1 hazard; with hazard cover, this static hazard is not pos-
sible under any circumstances. The second static-1 hazard is externally initiated occurring in state 

40.0 ns 80.0 ns 120.0 ns 160.0 ns

Interval = 12.0 ns

A(H)

B(H)

y1(H)

y0(H)

Names
200.0 ns 240.0 ns 280.0 ns 320.0 ns

(a) (b)

Figure 3.5:  Timing diagram segments showing the effect of the two static-1 hazards in Y0 of Eq. 
(3.1). (a) Without hazard cover HC1. (b) Combined action of both static-1 hazards in the absence of 
hazard covers HC1 and HC2 resulting in logic instability.
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11 under holding condition A when B changes B → �. The hazard cover for this hazard is HC2 =  
y1y0 A, which permanently eliminates the possibility of its formation. The reader will note that both 
types of hazards result from a 1 → 0 change in a coupled variable, a state variable change y1 → y

_
1 in 

one case and an external input variable change B → � as the other. The internally initiated static-1 
hazard forms as a result of a transition 11 → 01 under constant inputs � �. The externally initiated 
static-1 hazard forms in state 11 under holding condition A. The actions of these static-1 hazards 
are shown in Figure 3.5. When both static hazards are active, as shown in Figure 3.5b, unstable 
conditions occur and malfunction of the FSM most likely results. The interval of 12.0 ns indicated 
in Figure 3.5a is the time it takes for this hazard (without HC1) to be activated and is predictably 
equal to the delay through four gates. For this simulation, the gates and C-elements in the simulator 
have been set to have a fixed delay of 3.0 ns with inverters set to 1.0 ns.

For comparison purposes, we now run a static-1 hazard analysis on the SR nested element 
logic. When the SR logic is extracted from the NS EV K-maps in Figure 3.4b, the results are:
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(3.2)

An inspection of the NS forming logic in Eq. (3.2) indicates that there is a static-1 hazard 
present in the expression for R0. The coupled terms �B + �1 A in R0 produce the hazard on a A →
� change in state 00 and is eliminated by the consensus term �1B. However, use of C-elements as 
the memory, serve as filters for hazards developed in the NS forming logic. Thus, there is no need 
to include the hazard cover term indicated in Eq. (3.2). This hazard cannot reach the output of the 
C-element.

Comparing the LPD and nested element NS logic expressions in Eqs. (3.1) and (3.2) in-
dicates a typical difference in the relative complexity of these two design approaches. The total 
gate/input tally for Eq. (3.1) is 10/31 (with one shared PI y1y0 A), whereas that for Eq. (3.2) is 10/23 
including the shared PI A� in the R1 and R0 expressions. Not included in these gate/input tallies  
are the presence of possible inverters, Sanity inputs that would be applied to the presumed NAND 
logic expressions in Eq. (3.1), and the inclusion of two C-elements to implement Eq. (3.2). Invert-
ers can be included in the tallies only if the activation levels of the external inputs are known.

3.3.2	 Detection and Elimination of Static Hazards in the Output Forming Logic
Static hazards can occur in the output forming logic as well as in the NS forming logic. However, 
there is one major difference. A static hazard occurring in the NS forming logic of an asynchronous 
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FSM has the potential to cause the FSM to malfunction. A static hazard occurring in the output 
forming logic can cause a problem only if the transient effect of the hazard can cause a problem in 
the next stage to which that output is an input. The duration of the transient behavior for all static 
hazards typically occurs over a period equal to an inverter or gate delay. Shown in Figure 3.6a is  
the output logic K-map extracted from Figure 3.4a, indicating the presence of an internally initi
ated static-1 hazard and its cover. This hazard occurs on a 01 → 00 transition under input condition 
A and is a negative glitch of strength equal to that of an inverter. The timing diagram for this static 
hazard is given in Figure 3.7 and accompanies Eq. (3.1). An interval of 16.0 ns is required for pro-
duction of the static hazard following activation of input A to initiate the transition 01 → 00. This 
interval is the delay equal to five gate delays plus an inverter.

3.4	 DYNAMIC HAZARDS AND FUNCTION HAZARDS
Neither dynamic hazards nor function hazards are static hazards in the sense discussed in Section 
3.3. Dynamic hazards are multiple glitches in the output such that the output logic levels are dif-
ferent before and after an input change. Dynamic hazards are usually produced in the output of  
a multilevel circuit due to change in an input for which there are three or more asymmetric paths 
(delay-wise) of that input to the output. Multilevel AND/OR-type circuits can usually be avoided 
so that the appearance of dynamic hazards is a nonissue in these circuits. Dynamic hazards that can 
occur in multilevel exclusive OR (XOR)-type functions are usually unavoidable (see the book by 
Tinder in Endnotes).

Coupled terms containing two or more coupled input variables can produce function hazards 
if the coupled variables are changed in near proximity to each other. The simplest example of a 
function hazard is that produced by an XOR function Y = �B + A� when the inputs are allowed to 
change in close proximity to each other. The resulting glitch formed in the output Y may or may not 
cross the switching threshold and this could cause a problem in the next stage to which Y is an input. 
It is obvious that the potential for function hazard production abounds in asynchronous FSM de

y1

y0 0 1

0

1

Z

1 A

A0 A01 00 HC

Z = y0 A +  y1 y0   +   y1 A

(a) (b)

Figure 3.6:  (a) Output logic K-map plotted from Figure 3.4a. (b) Minimum SOP logic extracted 
from Figure 3.5a showing an internally initiated static-1 hazard and its cover.
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signs. For example, in Eq. (3.1) there are two sets of couple terms with two or three coupled variables 
all of which are capable of producing function hazards. Function hazards in the NS forming logic 
of asynchronous LPD FSMs can be avoided if their input changes are always minimally separated 
in time. A function hazard cannot be eliminated by static hazard cover, but use of the nested C- 
element approach can help to eliminate the effect of function hazards. However, C-elements can go 
metastable under certain conditions as discussed in Section 3.7.

3.5	OU TPUT RACE GLITCHES—DETECTION AND  
ELIMINATION

When an asynchronous FSM transitions between two states that involve a change of two or more 
state variables, a race condition exists. The FSM must transition between an origin state and a desti-
nation state via race states as was discussed in Section 3.2. Depending on the outputs involved with 
respect to the origin and destination states, an ORG may exist. The rules for detecting the presence 
of an ORG are simply stated as follows:

Identify the origin state and the destination state in a state-to-state transition involving a 
change of two or more state variables.
If the origin and destination states have the same output action relative to a given output, 
look for the presence of at least one ORG relative to that output which can appear as either 
a positive or negative glitch.
If the origin and destination states have a different output actions relative to a given output, 
an ORG is not possible relative to that output.

ORGs are timing defects that can be quite disruptive to the proper operation of a given asyn-
chronous FSM. Appearing in an output signal, an ORG can be of strength (time duration) ranging 
from that for an inverter to several gate delays. In a synchronous FSM, such unwanted transient 
signals are easily filtered out by the action of the flip-flops and clock signal. However, in an asyn-
chronous FSM there is no suitable means to filter out ORGs so they must be eliminated.

An inspection of the state diagram in Figure 3.4a indicates the presence of an ORG if the 
FSM transits from origin state 01 to destination state 10 via state 00 under branching conditions 
�B. In this case, the origin and destination states have the same output action relative to output Z, 
that is, neither state can issue an output under branching condition �B. If the FSM should transit 
01 → 10 via race state 00, an ORG will occur. Shown in Figure 3.7 is this ORG that is a positive 
0 → 1 →0 glitch of strength equal to the path delay of an inverter. The transition 01 → 10 via race 
state 11 under branching condition �B, should it occur, would not produce an ORG because the 
output action in that state is conditional on an active input A. Setting (Z if A) in state 00 eliminates 

1.

2.

3.
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the ORG on a 01 → 10 transition. The state diagram given in Figure 1.6a does not have an ORG 
associated with the transitions 00 ↔ 11 based on the three ORG detection rules given at the begin-
ning of this section.

3.6	E SSENTIAL HAZARDS—DETECTION AND ELIMINATION
An active E-hazard is a very serious sequential timing defect that can occur as a result of an explic-
itly located delay in an asynchronous FSM that has at least three states and that is operated in the 
fundamental mode. Because the FSM can operate properly in the absence of this explicitly located 
delay, an E-hazard is classified as a potential timing defect. As with the other timing defects dis-
cussed previously, the fully documented state diagram plays an important role in the identification 
and elimination of E-hazards. Attempting this process by any other means usually ends up as an 
exercise in futility.

The development of an E-hazard involves a race condition of an initiator input X along two 
paths to a race gate (RG), a direct path and an indirect path (IP), as shown in Figure 3.8. If the IP 
wins the race, an E-hazard is produced. If the direct path wins, as would be the case if no causal 
delay ∆tE were present, then no E-hazard results. The race conditions can be stated as follows:

Race to First Level RG
E-hazard forms if ∆tE > (t1 + t2) ⇒ ( yb wins race with initiator X)
E-hazard eliminated if ∆tE < (t1 + t2 + ∆tCorrection) ⇒ (initiator X wins race with yb)

CL(L)

Static-1 Hazard ORG

A(H)

B(H)

y1(H)

y0(H)

Z(H)

24.0 ns 44.0 ns 64.0 ns 84.0 ns 104.0 ns 124.0 ns

Interval = 16.0 ns

Names

Figure 3.7:  Timing diagram segment for the output logic given in Figure 3.6 showing a static-1 
hazard (exclusive of hazard cover), and an output race glitch (ORG).
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Race to Second-Level RG
E-hazard forms if (∆tE + t1) > (t2 + t3 + t4)

 
⇒ ( yb wins race with initiator X )

E-hazard eliminated if (∆tE + t1) < (t2 + t3 + t4 + ∆tCorrection)
 
⇒ (initiator X wins race with yb)

The delay indicated by ∆tCorrection is a counteracting delay placed in a specific feedback path to ne
gate the effect of the inadvertent delay ∆tE, thereby permitting the FSM to function normally.

3.6.1	 Minimum Requirements for E-Hazard and D-trio Formation
Shown in Figure 3.9 are the minimum requirements for first-order E-hazard and d-trio formation 
in NS two-level SOP logic of an asynchronous FSM operated in the fundamental mode. Here, two 
PS variables yi and yj are designated as the first and second invariants, respectively. During transition 
a → b, present state variable �i remains constant, whereas during transition b → c state variable yj 
remains constant. Note that the second y variable invariant is the first to change, whereas the first y 
variable invariant is the next one to change. If active, an E-hazard will cause the FSM to erroneously 
transit a → b → c when it should have transitioned a → b, a fatal error in its operation. A d-trio is an  
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Figure 3.8:  Illustrations of path delay requirements for E-hazard formation in two-level logic show-
ing causal delays ∆tE , initiator input X, first and second invariants, gate delays τ, race gate (RG), and 
correction delays to eliminate the E-hazard. (a) First-level race gate indicating direct and indirect delay 
paths to race gate. (b) Second-level race gate indicating direct and indirect delay paths to race gate.
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E-hazard that erroneously transits a → b → c → b eventually residing stably in state b where it was 
intended to go, but by a roundabout path including state c.

With reference to Figure 3.9, the following is a summary of the minimum requirements for 
activation of E-hazards and d-trios in asynchronous FSMs (here, I denotes an input condition and 
f is a branching condition):

a

b

c

fbcfcb

fab

fb

fc

fa

Iab = LxixjL

Ibc = LxixjL

Iab

fa b

fb

Ibc

fbc

fa

xi = Initiator input

Ia � Iab in state a

For E-hazard formation

Iab fcb

For D-trio formation

Iab fcb

yi = First invariant

yj = Second invariant

(a) (b)

Only a single change in the initiator  x  i
is allowed in a � b � c  transitions with
x j and all other inputs held constant.

fcx

Lyiyj

Lyiyj

Lyiyj Included in
1st Level ANDing

Race Gate if

yjI bc      Yi

Path to
2nd Level ORing

Race Gate if

yiIab      Yi

I
I I

I

I
I

I
I

Figure 3.9:  Minimum requirements for first-order E-hazard and d-trio formation in two-level SOP 
logic. (a) State diagram segment showing first- and second-level race gate requirements only one of 
which will be met in the first-invariant function Yi. (b) Minimum requirements for E-hazard and d-trio 
formation indicating assumed input conditions for Iab and Ibc.

Summary of Minimum Requirements for E-Hazard Formation
Ia → Iab ⊆ fab when Iab ⊆ fa, Ibc ⊆ fbc, Ibc ⊆ fa, and Iab ⊄ fcb

  Only a single change in the initiator xi is permitted for a → b → c with xj held fixed.

Summary of Minimum Requirements for D-Trio Formation
Same as for E-hazards except that now Iab ⊆ fcb
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Summary of IP Requirements for E-Hazard and D-trio Formation as 
Indicated in Figure 3.9

The IP must be via a gate in the second invariant that cannot contain the RG.
The IP must not be inconsistent with all state variables of the initiation state a in Figure 
3.9, meaning the state variables . . . �i, �j.
The IP must not be inconsistent with any input held constant during the E-hazard transi-
tion, meaning input xj in Figure 3.9.
The IP must contain the initiator as either xi or x

_
i.

The IP must follow a path to the RG that is unobstructed.

1.
2.

3.

4.
5.

Therefore, the IP must be via a gate in Yj (second invariant), must contain xi or x
_

i, and must not be 
inconsistent with . . . �i �j and xj for SOP (and . . . yi yj, and x

_
j for POS). For the sake of brevity, we 

will not include POS NS forming logic in our discussions.
Note: Always check any static hazard (S-hazard) cover present for possible involvement in 

the formation of an E-hazard. Static hazard analysis and their elimination must always precede any 
E-hazard analysis because the effects caused by active static hazards are sometimes similar to those 
caused by E-hazards.

ANDing race gate test. AND the branching condition for the second transition in a suspect E- 
hazard path with the second invariant state variable. If the result is contained in the expression 
for the first invariant, then an ANDing RG exists as depicted in Figure 3.8a. In this case, further 
analysis for an ORing RG is not necessary. ANDing RGs are more often encountered than ORing 
RGs.

ORing race gate test. If the test for an ANDing RG is negative, then the analysis must be 
extended to ORing race gates. An ORing RG means that the race occurs at a second-level gate, 
which in NAND logic is an ORing operation. To determine whether an ORing RG is present, 
AND the branching condition for the first transition with the first invariant state variable. If the 
result is contained in the expression for the first invariant, then an ORing RG exists as depicted in 
Figure 3.8b. Clearly, the formation of an E-hazard or d-trio by a second-level ORing RG is more 
unlikely than for a first-level ANDing RG because a larger causal delay ∆tE is required, as indicated 
by Figure 3.8.

3.6.2	 A Simple Example
The detection and elimination of E-hazards is best understood by example, and the use of the fully 
documented state diagram is the simplest means of accomplishing this. As an example, consider the 
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FSM presented in Figure 3.10. Here is what we can directly deduce from the state diagram together  
with Figure 3.9: � � ⊆ fa = A + �, �B ⊆ fb = �B, and there is only one change in initiator B  
with (  � held constant) over the transitions a → b → c. Furthermore, viewing the 00 → 01 → 11 
transitions, it is clear that y1 is the first invariant and y0 is the second invariant. Therefore, to initiate 
the E-hazard, it is required that � �

 
→ �B in state a and that an inadvertent delay ∆tE of sufficient 

magnitude be explicitly located on the initiator B line to the first invariant Y1. Also, the IP must be 
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Figure 3.10:  Simple example of an FSM containing a single E-hazard showing either an ANDing 
RG or the path to an ORing race gate—one or the other but never both.
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Figure 3.11:  K-maps derived from Figure 3.10 showing minimum SOP cover. (a) Cover for the 
LPD design. (b) Cover for the nested SR element logic design.
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via a gate in Y0, must not be inconsistent with �1,  �0,  �, and must contain the initiator as either B 
or �.

All that now remains is to obtain the NS forming logic for the FSM in Figure 3.10 so as to 
determine the RG, IP, and the minimum delay (∆tE) required to activate the E-hazard. Figure 3.11 
shows the K-maps for LPD and SR nested element models as extracted from the state diagram in 
Figure 3.10. Here, we have followed the extended mapping algorithm given in Section 2.1. From 
these K-maps, we loop out minimum cover for the LPD and nested SR element designs with the 
results given by Eq. (3.3) together with the output function Z. Note that an S-hazard exists in NS 
function Y1 with hazard cover y1y0 � added to eliminate the hazard. No hazards are possible for the 
SR functions, which is almost always the case.
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(3.3)

The RG and IP can now be determined by viewing the state diagram in Figure 3.10 and by 
taking into account the minimum requirements for E-hazard formation given in Section 3.6.1. We 
must ask ourselves the following questions:

For an ANDing RG, is y0  � � contained in Y1?  Answer: Yes (see Eq. (3.3))
For an ORing RG, is �1�B contained in Y1?    Answer: No

Therefore, the ANDing RG is y 0 � � in Y1 determined by ANDing the branching condition � � 
with the second invariant y0 according to Figures 3.9 and 3.10. Now, the IP must not be inconsistent 
with �1, �0, �, and must contain B or � in Y0. From Eq. (3.3), it is clear that the IP requirement is 
satisfied via gate �B in Y0. RG and IP are both shown in Eq. (3.3) by shaded areas for both the LPD 
and nested SR element designs. If we assume that both inputs A and B arrive active high, then the 
minimum delay ∆tE required to activate the E-hazard in the LPD results is

	 (∆tE + τ Inv) > τ AB + τY0
_    or   (∆tE) > τ AB + τY0 − τ Inv

_ 	 (3.4)

Here, τInv is included because B(H ) must pass through an inverter before it can be an input to RG 
y0  � �, where the race occurs. Also, tY0

 represents the OR function delay required to produce Y0, as 

1.
2.
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is evident from Eq. (3.3). Similarly, for a C-element design, the minimum path delay ∆tE required 
to activate the E-hazard is from Eq. (3.3) given by

	 (∆tE + τInv) > τ AB + τC - element
_ or (∆tE) > τ AB + τC - element − τ Inv

_ 	 (3.5)

where τC-element is the propagation delay through the C-element.
The logic circuit for the C-element design, as required by Eq. (3.3), is presented in Figure 

3.12. Here, we include the direct and IPs, RG, indirect path gate, and the location of the inadver-
tent causal delay ∆tE. The markings and labels on this circuit are consistent with Figure 3.8. We 
have used the wireless connection feature as recommended for use with the simulator described in the 
Preface. Also included in Figure 3.12 is the output read from the state diagram as

	 Z = 1y0� 	 (3.6)

This output is of interest to us at this point only if the E-hazard becomes active. An E-hazard 
transition a → b → c would cause the output Z to glitch over a period equal to two gate delays as 
indicated in the timing diagram of Figure 3.13.
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Direct Path

Indirect Path

y1(L)
y0(H)

Z(H)

Figure 3.12:  C-element circuit using the wireless connection feature for the SR logic in Eq. (3.3) 
showing the RG, IPG, and the race between the direct path of the initiator B and the indirect path of 
the second invariant y0.
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In our simulations up to this point, we have, for simplicity, assigned a propagation delay of 3.0 
ns to all gates and C-elements, and a propagation delay of 1.0 ns to each inverter. (The simulator 
does permit a wide variation of assigned gate, C-element, and inverter delays.) With this in mind, 
the minimum path delay to activate the E-hazard for either Eq. (3.4) or Eq. (3.5) is

	 ∆tE > (3 + 3 − 1) = 5 ns .	 (3.7)

This result is easily tested by simulation. To do this, we take the C-element design for sim-
plicity. Shown in Figure 3.13 are the simulations for two settings of ∆tE, one exactly at 5.0 ns for 
normal operation, and the other at 5.1 ns causing the formation of the E-hazard. Note that, in the 
latter case, the FSM transits incorrectly 00 → 11 via state 01 spending two gate delays (tAND +  
tC-element = 6.0 ns) in that race state. What is happening here is that the delay ∆tE, of sufficient 
magnitude, allows the second invariant to win the race with the initiator B at the RG, thereby per-
mitting the FSM to cycle from state 00 to 11 via state 01. In effect, the FSM tries to execute the 
proper state change required by � � → �B but because y0 wins the race with initiator B, the FSM 
still senses � � and transits on to state 11, after which �B becomes valid. If ∆tE is not of sufficient 
magnitude to activate the E-hazard, normal operation will occur.

An active E-hazard can effect an output involved in the E-hazard path. This is illustrated in 
Figure 3.13, where an output glitch of 6 ns is produced as a result of the E-hazard path 00 → 01 → 
11, where the FSM spends 6 ns in state 01. Of course, if the E-hazard is absent, the E-hazard OP  

40.00 80.00 120.0040.00 80.00 120.00

ORG ORGE-hazard OP
Glitch

(a) ∆tE > 5.0 ns

Names

CL(L)

A(H)

y1(H)

y0(H)

B(H)

Z(H)

6.0 ns

(b) ∆tE = 5.1 ns

4.0 ns

E-hazard

Figure 3.13:  Timing diagrams for the C-element design of Eq. (3.3) showing the effect of an active 
E-hazard. (a) Normal operation with Δt E ≤ 5.0 ns. (b) FSM malfunction due to an E-hazard formation 
when Δt E > 5.0 ns.
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glitch disappears. Note that with or without the activation of an E-hazard, an ORG is produced 
during the 11 → 00 transition via race state 01. This is a relatively large ORG of 4-ns duration. 
However, this ORG can be easily eliminated by making the output Z conditional on �B. Now,  
the branching 11 → 00 caused by the branching condition A� cannot activate Z during a race  
path via state 01. The large ORG demonstrates that such timing defects can be very disrup-
tive should the output be presented to a next stage that can be affected by such transient output  
signals.

D-trio formation. So far, we have not demonstrated the formation of d-trios mainly because 
an active d-trio may or may not be disruptive to the operation of the FSM. For completeness, we 
draw the readers’ attention to the FSM in Figure 3.4. There are three d-trios identified from this 
state diagram. They are a → d → c → d, d → a → b → a, and c → b → a → b. We will take the first 
one 00 → 10 → 11 → 10 for demonstration purposes. Here is what we can deduce from the state 
diagram together with Eq. (3.1): The initiating transition is AB → �B, the initiator is A with B held 
constant. The ANDing RG is y1AB in Y0, y0 = first invariant and y1 = second invariant. ∆tE must ex-
ist on the A line to Y0. The IP must not be inconsistent with �1, �0, B; must contain A or �; and must 
exist via a gate in Y1. Therefore, the IP must be �B. From this information we calculate the mini-
mum causal delay to be ∆tE > (τ Inv + τY1

). If y1 wins the race with initiator A at the RG y1AB, then 
the FSM will transit to state 11 where, after a short while, it will sense �B and transit back to state 
10. Given the delays we have assigned to the simulator used in this text, ∆tE > (τ Inv + τY1

) = 4 ns.  
To show an understanding of the analysis process, the reader should prove that the d-trio c → b → 
a → b requires an ORing RG if A� → � � occurs in state 11, and that the path to the ORing RG 
is via y0 � � in Y0, which is a hazard cover. Now find the IP.

Elimination of E-hazards. Inadvertent delays ∆tE occur for various reasons; the most common 
are due to manufacturing errors such as those made at the foundry. For this reason, the designer 
cannot disregard the possibility that an E-hazard of sufficient magnitude may appear at a specific 
location. So what can be done to eliminate the possible formation of the E-hazards that may exist 
in a given FSM? The answer is simple and is depicted in Figure 3.8. All that is necessary is to place 
a counteracting delay ∆tCorrect in the feedback of the second invariant state variable. A conservative 
value for this counteracting delay would be equal to ∆tE as determined from E-hazard analysis. 
But what if E-hazards and d-trios abound in a complex state diagram? Some designers would rec-
ommend that the “shotgun” approach be used—that is, the placing of counteracting delays on all 
feedback lines. The problem with this approach is that these delays placed on all feedback lines may 
significantly slow down the operation of the asynchronous FSM. So, whenever it is possible and 
justifiable, the designer should take the time to run the required analyses to determine where the E-
hazards exist and assign reasonable values of ∆tCorrect to be placed in certain specific feedback lines. 
If only one or two E-hazards exist in a relatively complex FSM, it would be a wise move to treat 
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them separately. Also, it is known that some E-hazards require such large ∆tE that nothing may 
need to be done to prevent their becoming active. However, there is one caveat that should be men-
tioned here. Modern designs now use gates (or their metal-oxide semiconductor equivalent) that  
are extremely fast, having very small propagation delays. Line delays caused by transmission line ef-
fects, for example, can cause E-hazards in such circuits. Thus, the designer of such modern circuits 
would be well advised to consider gate propagation delays relative to circuit or chip layout to make 
an intelligent decision as to what, if anything, must be done regarding possible E-hazard formation. 
If counteracting delays ∆tCorrect are necessary in y-variable feedback lines, use of an even number 
of inverters is usually the best choice. Alternatively, inertial delay circuits can be used, but at an ad-
ditional cost in hardware together with an unnecessary increase in response time. An inertial delay 
will usually consist of capacitors, diodes, resistors, and a rendevous module (see Tinder’s text in 
Endnotes).

This brings us to reiterate some important points. E-hazards are “sequential” hazards that 
are strictly a function of the sequential behavior of the asynchronous FSM as evidenced from an 
inspection of the state diagram representation. FSMs of three or more states are subject to pos-
sible E-hazard formation, but only in state machines operated in the fundamental mode. In such 
machines, they are nearly always regarded as potential timing defects that can be activated only 
when delays exceeding a minimum value are placed in specific locations in the circuits. If active, E- 
hazards are guaranteed to cause the malfunction of the asynchronous FSM. The only reliable means 
of eliminating an E-hazard is to place a counteracting delay in the feedback of the second invariant 
state variable as discussed in Section 3.6. 

3.7	 METASTABLE CONDITIONS IN C-ELEMENTS
We have purposely left the reader with the impression that FSMs designed with C-elements lead 
to quasi-Muller designs, implying that the C-elements are free of metastable conditions arising 
from some specific input condition. This is only partially true. It is true that static-1 hazards origi-
nating in the NS forming logic will normally not pass through the C-elements because the C-
elements operate outside of the fundamental mode. This is an important feature of C-elements 
assumed to have inputs from SOP NS forming logic. However, if an input to a C-element is with-
drawn before the “week (keeper)” feedback inverter fully responds to the last input change, a static 
hazard can be formed and a metastable condition can result. This fact as been proven by SPICE 
simulations. Modern high-speed CMOS inverters have a very small propagation delay time, per-
haps less that a picosecond. Here, we are talking about pulse widths that may or may not cross 
the switching threshold. So, even if the probability of a metastable occurrence in C-elements  
is extremely small, it can still happen. Thus, we conclude the obvious: There is no logic device that can be  
guaranteed free of internal conditions leading to metastability. Whether the use of input conditioning 
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arbiters can be justified in C-element-based FSMs is a matter that the designer must weigh. It is 
doubtful that any input conditioning arbiter module can properly deal with the “keeper inverter” 
issue. However, the use of a properly designed arbiter can detect a metastable condition and prevent 
that metastability from being passed on to the next stage. Chapter 11 discusses bus and handshake 
arbiters that effectively deal with the metastability problem.

•  •  •  •
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We now describe a class of asynchronous finite state machines (FSMs) whose transition times 
are the fastest possible and that avoid all race-associated timing defects, namely, critical races and 
output race glitches (ORGs). This class of fundamental mode FSMs are commonly called single 
transition time (STT ) machines. Here, state code assignments must be found that will eliminate 
critical races and ORGs while at the same time producing next state (NS) functions that represent 
the fastest transition times possible. The means by which this can be accomplished is called the ar-
ray algebraic approach to state machine design. This approach lends itself nicely to computer-aided 
design (CAD) all without the use of state diagrams or K-maps. Instead, use will be made of the state 
table and partitioning methods as discussed in the following sections.

4.1	 THE ARRAY ALGEBRAIC APPROACH
To assist in the understanding of the array algebraic approach to asynchronous FSM design, we 
outline the procedure as follows:

By using a state diagram, construct the state table free of cycles and buffer states both of 
which are strictly forbidden. Use state identifiers (a, b, c, …) in the state table as was done 
in Figure 1.6b and make certain that the sum rule holds for all states. Violation of the  
sum rule can cause critical races. If any two rows in the state table are identical with re-
spect to the state identifiers, merge these two rows into one and rename the state identifiers  
accordingly.
Identify the state that is to be initialized and assume that it will be an all-zero state (…000) 
or an all-one state (…111) following the initialization procedure given in Section 2.2. Al-
though these assumptions are not mandatory, they do simplify considerably the initializa-
tion process.

1.

2.

chapter        4

Design of Single Transition  
Time Machines
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Partition the state transitions into sets that eliminate critical races and ORGs. This is done 
by the use of π (partial)-partitions gathered from the input columns of the state table by 
applying an extension of the “into rule” stated as follows:

The state identifier for the initiation state, together with all the other state identifiers as-
sociated with that initialization state, must be positioned on the left side of the π-partitions 
(separated by a comma). In doing this, a valid STT state code assignment can be obtained 
by following the remaining steps of this procedure.

4.  Collect the π-partitions that include all state identifiers into τ (total)-partitions such that 
each τ-partition begins with the state identifier for the initialization state and all other as-
sociated state identifiers on the left side of the partition (indicated by a comma).

5.  Find the minimum set of τ-partitions that “cover” all π-partitions. The resulting number 
of τ-partitions is equal to the minimum number of state variables for the FSM. If there 
is more that one minimum set of τ-partitions, any one of the minimum sets will yield an 
optimum or near optimum STT design—there is usually little difference in their use.

6.  Select a valid state code assignment for the FSM from a minimum set of τ-partitions 
choosing the initialization state to be either an all-zero state (…000) or an all-one state 
(…111), not a mixture. Note that for FSMs lacking cross branching, the partitioning meth-
ods default to a unit distance (Hamming distance of one) coding of states as for the cor-
rected FSM in Figure 3.3.

4.2	 DESIGN EXAMPLE USING C-ELEMENTS
As an example, consider the FSM presented in Figure 4.1a, which contains two cycle paths that are 
eliminated in Figure 4.1b. In eliminating the cycle paths in Figure 4.1a, it is clear that the transition 
c → a under branching condition � � is meant to be c → b, and the transition a → b under branching 
condition �B is meant to be a → c.

The state table representing Figure 4.1b is given in Figure 4.1c, and its significance follows 
the description of the state table in Figure 1.6b. The state identifiers that are encircled indicate the 
holding conditions that satisfy the state diagram and the stability criteria given by Eqs. (1.1) and 
(1.2). From the state table we can obtain the π-partitions and finally the τ-partitions from which 
the state code assignments derive. The π1-, π3-, and π2-partitions are given below from columns I1 =  
�B, I3 = AB, and I2 = A�, respectively.

π1 = abc, d = τ1 from I1;   π3 = ab, cd = τ3 from I3;   π2 = ad, bc = τ2 from I2

3.

The into rule: Make logically adjacent assignments to present states that branch “into” a 
common state, provided that their input conditions are the same.
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Note that τ2 combines π-partitions π4 = ad, b and π5 = ad, c, the numbering system being a matter 
of choice. Because there are three τ-partitions, there must be a minimum set of three state variables 
with a chosen as the initiation state. If we choose to initialize into the 000 state, a valid state as-
signment matrix, S , is given in Eqs. (4.1), which is used to plot the state assignment map in Figure 
4.1d.
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Figure 4.1: (a) State diagram for an FSM having two cycle paths. (b) The state diagram in (a) with 
the cycle paths removed. (c) State table for the state diagram in (b). (d) State assignment map obtained 
from the state matrix, S.
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The column arrangement in the S matrix is a matter of choice because there are 3! = 6 ways to 
permute the three τ-partitions and hence 6 possible and valid state code assignments. We have cho-
sen the state assignment given in S specifically for later comparison with the computer automated 
design of this FSM given in Section 4.4. If initializing into a = 111 state is an alternative, then there 
are 2 × 3! = 12 possible and valid state code assignments. Generally, there are n! valid state code as-
signments for n state variables when the initialization state is chosen to be the all zeros state, or 2n! 
valid state code assignments if initialization into the all ones state is an alternative.

The destination matrix D is also given in Eqs. (4.1). It is constructed from either the state 
table or state diagram by identifying those states whose destination is to a specific present state 
identifier under a given branching condition. For example, under branching condition I0 = � �,  
state b exclusively branches to itself (a holding condition). Or, under branching condition I1 = �B 
states a, b, and c branch to state c, whereas state d branches to itself as a holding condition. The “1” 
in the I0 column for D results from the state association abcd = 1.

Now, with the S and D matrices known, we can find the function matrix, FNS given by
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Here, 
∼

 S is the transpose of S, the matrix multiplication result abcd = 1, and the y-variable matrix on 
the right side is one of a few alternative forms obtained from the state assignment map in Figure 
4.1d. Notice that Figure 4.1d permits �2y1 or y1y0. Although the y-variable matrix in Eqs. (4.2) is 
handpicked for the state assignment chosen, the reader must note that for complex asynchronous 
state machines it may be necessary to use a logic minimizer to obtain an optimum y-variable matrix 
from the state assignment map. This is done within the CAD program called ADAM (Automated 
Design of Asynchronous Machines), described in Section 4.4.

The NS functions can now be found from the following conformable matrix multiplication, 
where it will be recalled that I0 =� �, I1 = �B, I3 = AB, and I2 = A�:
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After simplification by applying the factoring and absorptive laws (see Appendix A.2), there results 
the final two-level expressions for Y2, Y1, and Y0 given by

	

Y2 = y2 + y1AB + y2 y1B
HC

Y1 = + y1B + 2 y1A
Y0 = + 1 + y0 + y0

�B

�B
�� �

�
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	 (4.4)

where HC below the term y2,y0B indicates that term is a static 1-hazard cover for the coupled terms 
y2 �B, y1 AB. Without the hazard cover, this hazard would cause a 1-0-1 glitch in Y2 when A → � 
in state 110 = d under holding condition B. The y-variable matrix in Eqs. (4.2) interpreted from the 
state assignment map in Figure 4.1d eliminates all other S-hazards. (See Section 3.3.1 for a review 
of S-hazards in the NS forming logic.)

Following a similar procedure, the three outputs are obtained as follows:

	

FR = R̃ DI = [0 A 0 0]DI =
�
0 A 0 Ay1y0

�
I R = y1y0AB

FS = S̃DI =
�
0 0 0 A

�
DI =

�
0 Ay2 Ay1 0

�
I S = y2AB

FT = T̃DI = [B 0 0 0]DI =
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�
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	 (4.5)

Here, I represents the input column matrix as in Eqs. (4.3). Notice that the term y2 �B for S is a 
shared PI with the first term in Y2. Such shared PIs are common in the array algebraic method. This 
brings the total NS and output gate/input tally for the LPD results to 15/40 exclusive of inverters.

Now that the LPD NS forming logic has been found by using the array algebraic approach, 
we will use Y → SR K-map conversion to obtain the set–reset (SR) logic required for C-element or 
SR basic cell design of this FSM. To do this, we will plot the NS logic in Eqs. (4.4) in third-order 
entered variable (EV) K-maps so that the essence of the array algebraic approach is maintained. 
Then, using these K-maps, we will convert to SR EV K-maps following the procedure outlined 
and demonstrated in Section 2.1. The K-map Y → SR conversions are shown in Figure 4.2, where 
optimum SR logic is indicated by shaded loops. The reader should follow the plotting and loop-out 
processes closely so that the procedures are fully understood. (Refer to Appendix A.3 for a review of 
EV K-map minimization.) The SR results are given below.

	

S2 = y1AB R2 = � + �1A

S1 = �B R1 = �� + y2�

S0 = �� + �1� 0 = ABR
	

(4.6)

Notice that there is one shared PI, AB, bringing the total NS and output gate/input tally to 13/31 
exclusive of C-elements and inverters. When the three C-elements are included, the total NS and 
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output gate/input tally becomes 16/37, again exclusive of inverters. Inverters are not tallied unless 
their input activation levels are known. Note also that the sanity circuit initialization input to the 
C-elements is not indicated in Eqs. (4.6). That is because the initialization input overrides the NS 
forming logic permitting normal operation of the FSM beginning from the initialization state (state 
a = 000 in this case) only after the sanity input has been “turned off.” 

Shown in Figure 4.3 are two implementations of the asynchronous FSM in Figure 4.1b. 
These are the lumped path delay (LPD) model by using Eqs. (4.4), and the SR design with C- 
elements by using Eqs. (4.6). In both cases, inputs A and B are assumed to arrive active high, and 
the sanity circuit input is assumed to be that of Figure 2.5a with input requirements illustrated in  
Figure 2.7a and 2.7c. Notice that in the case of the LPD model in Figure 4.3a, the Sanity(L) 
inputs must be applied via the ANDing operations to the NS logic. In contrast, the C-element 
implementation in Figure 4.3b allows the Sanity(L) inputs to be applied directly to the C-elements.  
However, in either case, initialization is an override forcing the FSM into the a = 000 state ready for 
the FSM to operate normally once the Sanity(L) input changes 1(L) → 0(L). Notice that the wire-
less connection feature is used in Figure 4.3 to simplify the circuit and thereby minimize the chance 
for error, as will be the practice throughout this text. This is the same schematic capture feature that 
is recommended for use with the logic simulator described in the Preface.
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Figure 4.2: The NS logic LPD-to-SR K-map conversion showing optimum SR cover for use with 
Muller C-elements or SR basic cells.



design of single transition time machines  59

Simulation of the C-element implementation in Figure 4.3b is shown in Figure 4.4 together 
with the outputs in Figure 4.3d. The reader should verify the validity of this timing diagram by 
comparing it with the state diagram given in Figure 4.1b. One advantage of the C-element design 
is that it minimizes the effects of function hazard formation in the NS logic when inputs change 
in close proximity to each other. This advantage results from the fact that C-elements operate  
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Figure 4.3: Implementation of the FSM in Figure 4.1b by using the wireless connection feature.  
(a) The LPD model by using Eq. (4.4) including hazard cover indicated by the shaded gate. (b) The SR 
design with C-elements by using Eq. (4.6) with no hazard cover needed. (c) Inputs. (d) Output logic. 
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outside the fundamental mode. However, the reader must be warned that if the inputs to an output 
function change in close proximity to each other, a function hazard can occur in that output signal. 
Remember that a function hazard actually represents a “proper response” to inputs that are allowed 
to change close to each other. The problem arises when the inputs change so close to together 
that an output spike occurs that might or might not cross the switching threshold. This potential 
problem is eliminated by requiring that input changes to the output logic be minimally separated 
in time. However, internally initiated function hazards (by y variables) can occur and are difficult, 
if not impossible, to eliminate. Static hazards are rare in the output logic functions that derive from 
the array algebraic approach, regardless of the model used.

A simulation of the LPD circuit in Figure 4.3a will differ only slightly from that in Figure  
4.4 because of the difference in throughput delays of the two implementations. The C-element 
design is basically a three-level design, whereas that for the LPD circuit is a two level design—refer-
ring to levels of path delay. This difference is somewhat offset by the fact that the average number 
of gate inputs is a little more than 3 for the LPD design compared to about 2 for the C-element 
design. Remember that gate propagation delay increases with number of inputs. Thus, we conclude 
that the two designs are expected to have about the same power/delay product.

The LPD and SR designs of the FSM in Figure 4.1b, without the use of the array algebraic 
approach, can be done as in Figures 3.10 and 3.11. By using a logic minimizer (such as BOOZER, 
described in the Preface), simplified results can be obtained. However, in doing this, ORGs and 
critical races are now possible. The special state assignment partitioning methods used in the array 
algebraic approach guarantees that these timing defects will not exist in the resulting logic. As a 
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Figure 4.4: Simulation of the C-element logic circuit in Figure 4.3b combined with the outputs in 
Figure 4.3d.
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rule, the presence of cross branching will allow the presence of ORGs and/or critical races unless 
sufficient numbers of state variables are added to remove any race conditions.

4.3	E SSENTIAL HAZARD ANALYSIS IN STT FSMs
It is appropriate at this time to conduct an E-hazard analysis of the FSM in Figure 4.1b. This can  
be done without the need for a logic circuit simply by using the state diagram in Figure 4.1b and  
the NS logic given in Eq. (4.4) or Eq. (4.6), keeping in mind the information provided in Sections 
3.6.1 and 3.6.2. Also, it must be remembered that an E-hazard is only a potential timing defect 
caused by an unintended delay occurring at some specific place in the asynchronous circuit.

E-Hazard #1. The required path is a → c → d (000 → 011 → 110)  with delay ∆t E1 on A (the 
initiator) to y2 (first invariant) under input conditions AB → �B.

Question: Is an ANDing race gate (RG) = y1AB present in Y2 or S2? Answer: Yes.
Question: Is there an indirect path (IP) not inconsistent with the origin state ( �2 , �1 , �0 ),  

constant input B, and that must contain (A or �) in the second invariant y1? Answer: Yes, via  
�B in Y1 or S1.

Therefore, an E-hazard will be activated if the second invariant y1 wins the race with A at 
the RG = y1AB due to the delay ∆tE1 > (2tP + t Inv) on the A line to the first invariant y2. Here, τ Inv 
is required for A to reach gate �B via an inverter, assuming A arrives active high, and the 2τP term 
contains two delays 2t P = t �B + tORing for the LPD circuit or 2tP = t�B + tC-element for the C- 
element circuit. The reader should use either circuit in Figure 4.3 to trace the direct and indirect 
paths for the formation of this E-hazard. A logic simulation of this E-hazard will show that ∆tE1 > 
(2t P + t Inv) is precisely correct regardless of what propagation delays are chosen for the circuit ele-
ments. This E-hazard can be safely eliminated by placing a counteracting delay ∆tCorrect = ∆tE1 on 
the y1 feedback line to RG. This delay is obviously quite conservative because all that is necessary is 
to ensure that ∆tE1 < (2t P + t Inv + ∆tCorrect).

E-Hazard #2. The required path is c → d → a (011 → 110 → 000) with delay ∆t E2 on B (the 
initiator) to y1 under input conditions A� → AB. Here, y1 is the first invariant and y0 is the second 
invariant as deduced from 011 → 110 → 000. The following pertains to the LPD mode only.

Question: Is an ANDing race gate RG = �0 A� present in Y1? Answer: No.
Question: Is an ORing RG via path y1AB present in Y1? Answer: Yes, via y1B in Y1.
Question: Is there an IP not inconsistent with the origin state (�2, y1, y0), constant input A, 

and that must contain (B or � ) in Y0? Answer: Yes, via y0� in Y0. However, there is no gate in Y1 
containing the first invariant y0 or �0 that allows completion of the IP path. Therefore, E-hazard #2 
cannot exist under the existing NS functions.

Had we interpreted c = y1y0 instead of �2 y1 in Eqs. (4.2) and (4.3), the result for Y1 would  
be the OPIs Y1 = � + y1BB + y1y0A  for the LPD model and S1 = �B and R1 = � � + �0� for the 
SR model. Note that no valid S-hazard exists for the coupled terms �B and y1 y0 A. But now the 
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term y1 y0 A in Y1 provides entrance to Y1 via its y0 input as required to complete the IP. Note that 
the new interpretation c = y1y0 does permit an ANDing RG in R1 and an IP via R0. Therefore, we 
now conclude that the minimum path delay required for E-hazard #2 formation is (∆tE2 + t P) >  
(t Inv + 3t P), assuming that input B arrives active high. Here, τP on the left side represents the 
path delay through y1B, whereas 3τP on the right side represents path delays through gates y0�, Y0 
(ORing), and y1y0 A in Y1 in that order. Thus, if y0 wins the race with A to the three-input NAND 
gate performing the ORing operation for y1, the E-hazard will be activated. This E-hazard can be 
prevented by placing a counteracting delay ∆tCorrect on the y0 feedback line such that (∆tE2 + t P) < 
(t Inv + 3t P + ∆tCorrect).

With the Y1 changes given above, the reader should mentally trace through the direct and 
indirect paths for this E-hazard in the LPD circuit of Figure 4.3. Note that E-hazard #2 is not pos-
sible for the SR model because it does not satisfy all requirements for E-hazard formation via an  
ORing RG.

4.4	 COMPUTER AIDED STT FSM DESIGN
ADAM (for Automated Design of Asynchronous Machines) is a unique, versatile, and powerful 
CAD tool that permits the automated design of complex STT asynchronous FSMs. ADAM de-
signs are free of all timing defects in the NS logic with the exception of function hazards, and static 
hazards can exist in the output logic. Depending on the command options used, as described in 
the Readme.doc accompanying the software, ADAM can be used to design LPD model circuits, or 
SR model circuits that use complementary C-elements or SR basic cells as the memory elements. 
ADAM can also be used to directly program programmable logic arrays (PLAs) in the Berkeley 
format. To run ADAM, it must be located in the C:\ADAM directory together with two .txt files 
described below.

Shown in Table 4.1 is the STT input file Fig41c (no punctuation) constructed by using a text 
editor such as Notepad as required by ADAM. For comparison, we will use this file with ADAM to 
design the FSM represented by the state table in Figure 4.1c. The remarks given on the right side 
of the table are self-explanatory. However, it is important that the reader remember that the inputs 
in any state table suitable for use with ADAM must be unfolded in binary not in gray code as in Figure 
4.1c. Thus, the last two columns in Figure 4.1c must be interchanged for use with the ADAM STT 
input file Fig41c. The reader should compare the state table in Figure 4.1c with that in Table 4.1 for 
proof that they are identical—remember that the AB inputs in the two tables are unfolded differ-
ently, one in 2-bit Gray code and the other in 2-bit binary. This state table is free of cycle paths and 
buffer states as required for any STT design that uses the array algebraic approach or ADAM.

Once the input file for ADAM has been constructed, it must be called from a user-generated 
batch file, which we will call Fig41c.bat (again, no punctuation). This batch file, given in Table 4.1, 
is also constructed by using a .txt editor such as Notepad. Notice that it has seven parts to it. This is  
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TABLE 4.1:  CAD design of the FSM in Fig. 4.1(c) by using software called ADAM. (a) STT input 
file, Fig. 4.1c. (b) Remarks on the input file. (c) Batch file Fig41c.bat as required  

by ADAM for an SR design of Fig. 4.1(c).

(a) ADAM Input File (b) Remarks

4 Number of rows in the state table equals the number of states
5 Columns in the state table including the present state decimal column
2 Number of input variables to the machine
3 Number of output variables for the machine

A B # Names of input variables separated by a space and terminated by #
R S T # Names of output variables separated by a space and terminated by #
N User to supply the state code assignment? Y or N

—(Space required here)—
0 1 2 0 0
1 1 2 1 0 State table in Fig. 4.1(c) with inputs AB unfolded in binary not gray code.
2 1 2 2 3 In the first column are the numerical state identifiers (a = 0, b = 1 , c = 2, etc.)
3 1 3 0 3 Place one space between columns; Spaces between rows not required.

—(Space required here)—
0 0 0 0
0 0 1 1 Table for output R from Fig. 4.1(c) with inputs AB unfolded in binary.
0 0 0 0 Numerical state identifier column not entered but assumed.
0 0 0 0 Place one space between columns; Spaces between rows not required.

—(Space required here)—
0 0 0 0
0 0 0 0 Table for output S from Fig. 4.1(c) with inputs AB unfolded in binary.
0 0 0 0 Numerical state identifier column not entered but assumed.
1 1 0 0 Place one space between columns; Spaces between rows not required.

—(Space required here)—
0 1 0 1
0 0 0 0 Table for output T from Fig. 4.1(c) with inputs AB unfolded in binary.
0 0 0 0 Numerical state identifier column not entered but assumed.
0 0 0 0 Place one space between columns; Spaces between rows not required.
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necessary to overcome the DOS barrier when designing large STT FSMs. For our purposes, we will 
design the STT FSM in Figure 4.1c to operate with C-elements requiring use of the SR batch file 
Fig41c.bat given Table 4.1.

After the input and batch files shown in Table 4.1 are constructed using a .txt editor, they 
must be saved to the C:\ADAM directory. Once they are there, the batch file can be activated (e.g., 
double click on Fig41c.bat), after which the seven output file contents given in Table 4.1c will be 
generated and will appear in the C:\ADAM directory. Any of these files can be viewed through 
the edit feature. The most useful of the output files are .out1 and .out7. The major parts of .out1 
are given in Table 4.2 and are seen to be in agreement with Eqs. (4.1). The main parts of .out7 are 
given in Table 4.3. Here, it will be seen that the cubes for S2, R2, S1, R1, S0, R0 are not necessarily 
the same as those given in Eqs. (4.6) but they are, nevertheless, valid. If you consider that ADAM 
must minimize (with ESPRESSO) state assignment maps such as those in Figure 4.1d with several  
don’t care states, it is expected that ADAM will generate one of a variety of valid NS logic solutions. 
In logic design, it is well understood that the larger the number of don’t care states in a logic map to 
be minimized, the greater the number of possible valid design solutions. For further details on this 
and other relevant subjects, the reader should consult the Readme.doc provided with ADAM. It will 
become evident that ADAM is truly a versatile and powerful design tool.

A simulation of the ADAM SR state equations is identical with that in Figure 4.4 with the 
exception of a function hazard that occurs in the y1(H ) state variable, and a static hazard that is 
produced in T (H ). Function hazards are not unusual and must be expected when using ADAM for  
design. This software will normally generate more p-terms (redundant PIs) than necessary in an  
attempt to maximize the number of shared PIs, some subject to function hazard production. Read-
ing the logic for output T from Table 4.3a gives

	
T = �2 �0 AB + �1 y0 AB 	 (4.7)

TABLE 4.1:  (continued)

(c) The Following is the batch file Fig41c.bat for the SR model design of Fig. 4.1(c).
adam1 /SR    Fig41c > Fig41c.out1
adam2 /SR    Fig41c > Fig41c.out2
adam3 /SR    Fig41c > Fig41c.out3
adam4 /SR    Fig41c > Fig41c.out4
adam5 /SR    Fig41c > Fig41c.out5
adam6 /SR    Fig41c > Fig41c.out6
adam7 /SR    Fig41c > Fig41c.out7
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where it is clear that an internally initiated static-1 hazard exists during the b → a (001 → 000) 
when y0 → �0 under branching conditions AB. Hazard cover for this S-hazard is �2 �1 AB. Note 
that this hazard could be avoided by using the logic T = �1 AB  as given in Eqs. (4.5). See Section 
3.3.2 for a review of static hazards in the output forming logic. Simulation of the p-term table in 
Table 4.3b for PLA design yields exactly the same logic waveforms. However, the static-1 hazard 
in the output T (H) still remains as expected by considering the last two p terms in Table 4.3b and  
Eq. (4.7).

The reader should see from an inspection of the SR and p-term cubes in Table 4.3 together 
with the state diagram in Figure 4.1c that the minimum requirements for E-hazards #1 and #2 
discussed in Section 4.3 are met for either implementation of this asynchronous FSM.

4.5	� Summary of Hazard Effects and their  
Elimination in STT FSM Designs

The following summary is presented to help the reader put into perspective the effects of hazard 
formation and elimination in the design of asynchronous FSMs.

TABLE 4.2:  ADAM results given in the file .out1 showing only the π- and τ-partitions, state 
code assignments, and the destination matrix.

The Following lists all the π-Partitions The Following is the State Assignments  
Matrix as Derived from the τ-Partitions0001	 0

01X0	 1 000

0X10	 2 001

X01X	 3 011

X10X	 3 110

0011	 4

The Following are all the τ-partitions as  
Derived from the π-Partitions

The Following is the Destination Matrix as  
Derived from the State Table:

0001	 0             0 0000	 0000	 1XX1	 11XX

0110	 2 1 1111	 0000	 X1XX	 0000

0100	 3 1 0000	 111X	 XX1X	 0000

0010	 3 2 0000	 XXX1	 0000	 XX11

0011	 4 3
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[1]	 Static hazards must be eliminated from the NS forming logic in asynchronous FSMs de-
signed by using the LPD model. This refers to static-1 hazards since we emphasize the use 
of SOP NS forming logic in this text. Such hazards are filtered out by using the nested cell 
model particularly when C-elements are used as the memory. No such filtering mechanism 
is possible for the output forming logic in asynchronous FSMs for which hazard cover must 

TABLE 4.3:  (a) ADAM results given in the file .out7 showing only the final SR state equations 
and the output equations, and (b) P-term table in Berkeley format for a PLA design.

(a) Cubes shown have the form: 
y2 y1 y0 A B

(b) P-term table in Berkeley  
format for PLA design

The Final Next State  
Equations in SR form are:

Table Comments

S2 = -1-11

R2 = -0-11, ----0

S1 = -0-01

R1 = 0100-, --0-0, ---00

S0 = -0-01, ---00

R0 = -1-11, -0-11

The Final Output 
Equations are: 
R = -0110

S = 1--01

T = 0-011-0111

.i 6
.o 6

.ilb y2 y1 y0 A B  SAN
.ob Y2 Y1 Y0  R S T

.p 15
-11101 011000
--1011 011000
-01101 001000
-0-011 011000
---001 001000
-11-01 001000
--10-1 001000
-01-01 001000
1--011 110000
-1-111 110000
11--11 110000
-0110- 000100
1--01- 000010
0-011- 000001
-0111- 000001

.e

(Number of inputs)
(Number of outputs)
(Input names)
(Output names)
(Number of P-terms)

(End)
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be added if it is determined that a static hazard in a given output can affect the operation 
of the next stage to which it is an input.

[2]	 There is no hazard cover that can be used to protect an asynchronous FSMs from the 
formation of function hazards, which are common in the NS and output forming logic 
of these machines. This is true independent of the Huffman design model used, LPD or 
nested memory cell. Remember that function hazard formation is the proper response of 
the NS and output forming logic to inputs that change close to each other. Although the 
use of C-elements in the memory stage can help filter out some function hazards, the only 
reliable means of eliminating function hazards is to make certain that such input changes 
are separated by some satisfactory minimum period. Arbiters can be used to provide this 
minimum separation, as explained in Chapter 11. What the designer does not want are 
function hazard transients to reach near or slightly exceed the switching threshold of a 
given gate where the effect on FSM operation can become unpredictable.

[3]	 E-hazards (sequential hazards) are potential timing defects that, if present and active, are 
certain to cause the malfunction of asynchronous FSMs in which they are formed in FSM 
designs that operate in the fundamental mode. This includes FSMs that use C-elements 
as memory in designs we call quasi-Muller FSMs. These timing defects are produced by 
delays placed at specific places in an asynchronous FSM with delay magnitudes that ex-
ceed certain minimum values. The problem is that most of these delays are unintended 
and may occur as a result of foundry errors in chip production or that may occur simply 
due to transmission line delays or both. In modern high-speed CMOS logic designs, the 
minimum delays required to produce E-hazards are quite small, and may be of the order of 
a nanosecond. The only reliable means of eliminating the effects of a given E-hazard is to 
place a counteracting delay of some safe value on the feedback line of the second invariant 
state variable. This is explained in detail in Section 3.6.

[4]	 Chapters 8 and 9 in Part II of this text feature Muller-type systems that effectively deal 
with all hazard and race-related timing defects in the NS forming logic.

•  •  •  •
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The one-hot design of asynchronous finite state machines (FSMs) requires a state code assignment 
consisting of a single “1” per state. One possible four-state state code assignment would be 0001, 
0010, 0100, 1000, where a transition between any two states represents a Hamming distance of 2.  
Thus, n states each require n state variables. In a one-hot circuit, each state-to-state transition re-
quires that the active “1” of the origin state remain active until the transition to the destination state 
is complete. As a consequence, this forces the FSM to transit through a state with two 1’s, a state 
consisting of 1’s from both the origin and destination states. This process continues as the asyn-
chronous FSM undergoes the remainder of its allowable transitions. The reader will learn that this 
approach to asynchronous FSM design is remarkably simple requiring no next state (NS) or output 
K-map optimization or static hazard analysis. 

5.1	 INTRODUCTION TO THE ONE-HOT APPROACH
Each NS function in a one-hot design of an asynchronous FSM is represented generally in Eqs. 
(5.1), given as follows and consisting of two parts: the “into” terms and a single “out of ” term.

	

Yj =
m −1

∑
k = 0

yk fj←k

“Into” Terms

+ yj Fj

“Out of ”
Term

Z =
m−1
∑

k = 0
yj fj (X )

{ {_

	

(5.1)

Here, the “into” terms of Eqs. (5.1) represent the Boolean sum of all yk f j ← k branching conditions 
into each jth state of a one-hot FSM. The “out of ” term for each NS variable Y is responsible for 
forcing the FSM to transit via a state with two 1’s during an origin-to-destination state transition. 
Fj in Eqs. (5.1) is the Boolean sum of all y variables in states to which the jth state transits, and  – Fj is 
the complement of that sum. The model for the “into” terms to the jth state of Eqs. (5.1) is shown 
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in Figure 5.1a, together with the output function for that state as generalized in Eqs. (5.1). The  
NS and output functions are given in Figure 5.1b, where only the “into” terms are represented for 
the NS functions.

The r output expressions in Z


 of Eq. (5.1), summed over m states, represent conditional 
(Mealy) outputs. Here, f j,(X) represents the jth function of external inputs X for the th output 
with  = 0, 1, 2, . . . (r - 1). For unconditional (Moore) outputs, f j,(X ) = 1.

5.2	 CHARACTERISTICS OF THE ONE-HOT METHOD
Before presenting an example of the one-hot method, it is instructive to briefly discuss the salient 
features of the one-hot method.

State code assignments are not needed or desired. Instead, use is made of state identifiers, 
either alphabetical (a, b, c, etc.), or numerical (0, 1, 2, etc.) used as ( y0, y1, y3,…) in the NS 
and output functions.
The NS and output equations are read directly from a state diagram or state table—m states 
require m NS Y functions. This means that there will be m PS feedback paths required to 
implement a one-hot design. For very complex FSMs, the large number of feedback paths 
may be prohibitive.
All cycles and buffer states must be eliminated prior to any one-hot design. Thus, every state 
must have a holding condition that will not allow further transitions until an input changes.
Static hazards in the NS functions are always internally initiated but are covered by the 
holding conditions of the state. Static hazards in the output logic are not possible.

•

•

•

•
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fj� (m–1)
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Z �j  if f j,0(x)

Y0  = y0 f0� � � �

� � � �

����

0  + y1 f0 1  + y2 f0 2  +L  + ym –1 f0 (m–1)

Y1  = y0 f1 0  + y1 f1 1  + y2 f1 2  +L  + ym –1 f1 (m–1)

Ym –1  = y0 f(m–1) 0  + y1 f(m–1) 1  + y2 f(m–1) 2  +L  + ym–1 f(m–1) (m–1)

Z0  = y0 f0,0(x)  + y1 f1,0(x)  + y2 f2,0(x)  +L  + ym–1 fm–1,0 (x)

Zr–1  = y0 f0,r–1(x)  + y1 f1,r–1(x)  + y2 f2,r–1(x)  +L  + ym–1 fm–1,r–1 (x)

Figure 5.1:  Model for the “into” terms of Eqs. (5.1). (a) State diagram segment showing “into” terms 
branching conditions and Mealy outputs for the j th reference state. (b) Generalized one-hot NS and 
output forming logic for the “into” terms given in Eqs. (5.1) for m states and r total outputs.
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Initialization is accomplished by the “1-hot + zero” method in which an all “0” state is ini-
tialized into the beginning one-hot state. Thus, a term �0�1�2 . . . �m-1 is added to one-hot 
NS variable of the initialized one-hot state. Combining the “out of ” term and the “1-hot + 
zero” term reduces the latter by one � variable after applying the factoring and absorptive 
laws.
The normal C-element implementation of a one-hot design is by the Y → S� one-hot 
conversion algorithm:

	

Sj = ∑ (sum) of all non-yj p terms in Yj

j = ∑of all yj p-term coefficients in Yj�

	

(5.2)

�Here, the initializing 1-hot + zero term is automatically included by the Y → S� conversion  
algorithm. The conversion algorithm for the �j p terms will also automatically include the 
necessary logic to cover the “out of ” term requirements. Thus, if a set–reset (SR) design is 
required, it is strongly recommended that the lumped path delay (LPD) logic functions be 
produced first.
Essential hazards (E-hazards) are always formed via ANDing race gates (RGs) and are 
highly predictable from the state diagram or state table.

5.3	 DESIGN EXAMPLE USING C-ELEMENTS
To illustrate the one-hot FSM design method, we will take a simple example with the understand-
ing that the relatively simple procedure involved is easily applicable to more complex FSMs. Shown 
in Figure 5.2a is a four-state FSM for which there are no cycles or buffer states, a requirement  
of the one-hot design. There are two input variables, A and B, and three outputs, W, X, and Z. Here,  
use is made of alphabetic state identifiers in place of the yi notation in the NS functions. In doing 
this, function representation is significantly simplified. Figure 5.2b shows the NS functions writ-
ten directly from the state diagram in Figure 5.2a. The “into” terms are easily understood from  
an inspection of Figure 5.1 where yk are replaced by the state identifiers a, b, c, and d for simplicity. 
These state identifiers could represent 0001, 0010, 0100, and 1000, respectively—the choice of “1” 
orientations being optional. The “out of ” term in each NS function is designed to force the FSM to 
retain the logic 1 of the origin state until the transition to the destination state is complete. Thus, 
the FSM transitions through a state having two 1’s in passage from the origin to the destination 
state. For example, the state a “out of ” term takes the form � � �  because state a transits to both state 
b and state c. According to Eq. (5.1), the 1-hot + zero term for this FSM must be � � � 

→
.d   When com-

bined with the “out of ” term � � � , the two terms become a + = (a + ) = +� � � �� � � � �� � � �� �a  
by using the factoring and absorptive laws. (See Appendix A.2)

•

•

•
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By using the Y → S� one-hot conversion algorithm given by Eqs. (5.2), the LPD NS equations 
in Figure 5.2b are converted to the SR logic in Eq. (5.3) suitable for use with normal C-elements  
of the type shown in Figure 1.12 and illustrated in Figure 2.2b. Normal C-elements are used  
because the Y → S� conversion algorithm automatically generates the necessary �j requirement for 
each C-element input. Presented in Figure 5.3 is the NAND/C-element implementation of Eqs. 
(5.3). The 1-hot + zero term is represented by the shaded gate. Note that the NS logic gate tally for 
the LPD and SR designs are the same (21), but without taking account of C-element use for the 
SR design.

	

Sa = bA�B+ d� B +

1− Hot + 0

�

Sb = a + c

Sc = a + d

Sd = bAB + c A

a = + c

b = +

c = B +

d = A +

AB

A
_
B B

_
A
_

A
_
B

�

� � � � �

� � ��

� � �

� ��
	

(5.3)

The simulation of the C-element logic circuit in Figure 5.3 is shown in Figure 5.4a. A care
ful inspection of the waveforms indicates that the sequential behavior required by the state diagram 
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Figure 5.2:  (a) A one-hot FSM having no cycle paths but showing the 0000 state as required by the 
one-hot-plus-zero initialization method. (b) The one-hot LPD logic for the FSM in (a). (c) Output 
logic.
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in Figure 5.2a is followed. However, it is also obvious that each origin-to-destination state transi-
tion takes place via a state containing the two 1’s of these states. As discussed earlier, this is a direct 
result of the “out of ” term found in each NS function. This is emphasized in Figure 5.4b, which  
is a blowup of the shaded region in Figure 5.4a. As a result, overlapping outputs are possible (W  
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Figure 5.3:  C-element implementation of Eqs. (5.2) showing the 1-Hot+0 state (shaded), the nec-
essary SANITY(L) input, and the three output functions given in Figure 5.2.
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Figure 5.4:  (a) Simulation of the one-hot FSM in Figure 5.2a implemented with the C-element 
circuit in Figure 5.3 and in agreement with Eqs. (5.3). (b) Blowup of the shaded area in (a) showing the 
c-to-d transition via state 0011 where output X = c A is maintained active with c.
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and X in this case) so care must be exercised when using such output signals as inputs to any next 
stage. Note that there are no static hazards present in this design. The static hazards that exist in the 
LPD Yj functions given in Figure 5.2 are formed between an “into” term and the “out of ” term, but 
are each covered by the holding condition for the function. Thus, static hazards are absent in any 
one-hot design. This is not true for essential hazards as is discussed in the next section.

5.4	E SSENTIAL HAZARDS IN ONE-HOT  
ASYNCHRONOUS FSMs

As with any asynchronous FSM of three or more states, E-hazards will almost certainly be present. 
In one-hot designs, E-hazards are particularly easy to analyze and are highly predictable. In fact, the 
RGs for E-hazards in one-hot asynchronous FSMs are always ANDing RGs. Following Section 
3.6 and using the state diagram in Figure 5.2a, we will now analyze the two E-hazards that exist  
in this FSM, one a → c → d and the other b → d → c. Both of these E-hazards satisfy the minimum 
requirements for E-hazard formation given in Figure 3.9. To carry out this analysis, we will need to 
take into account the two cycle-paths involved for each E-hazard, each cycle path being from one 
one-hot state to another. We will use Eqs. (5.3) for the analysis.

E-Hazard #1. The required path for this E-hazard is a → c → d under input conditions A� →  
AB. The appropriate cycle paths for this E-hazard are given below where the first and second in
variants are identified as y3 under AB, and y2 under A�, respectively. An inadvertent delay ∆t E1 of 
sufficient magnitude must exist on the initiator line B to y3. However, it is not necessary to use the  
y notation. Consistent with the equation in Figure 5.2b, we assign y3 = d and y2 = c, etc. Thus,  
a → (ac) → c means 0001 → 0101 → 0100 with d (first bit, y3) as the first invariant. Then, c is the 
second invariant as shown below. So we deduce that the ANDing RG for this E-hazard must be 
c A� in Sd.

	

a

0001→ (0101) →

AB

c

0100 → (1100) →

A

d

1000

� 	

The indirect path (IP) must not be inconsistent with a, A (a constant), and must contain B  
or � in c. Therefore, the IP must be via a AB in c (i.e., in Sc). With this information, it becomes clear 
that the minimum requirements for E-hazard #1 to form must be ∆t E1 + τInt > (τaAB + τC-element). 
Should this E-hazard form, the FSM would transit a → (0101) → (1100) and reside stably in the 
1100 cycle state, never completing the transition to state d, a serious malfunction of the FSM.

Once the minimum path delay requirements for E-hazard formation are known, a reason-
able choice can be made for the delay ∆tCorrect that could be placed on the c line to the RG. Once 
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∆tCorrect is properly placed, the probably of formation of E-hazard #1 would be greatly diminished. 
Naturally, ∆tCorrect need not be used if the designer feels confident that this E-hazard cannot form. 
Of course, such guesswork could become a serious mistake.

E-Hazard #2. The required path for this E-hazard is b → d → c under input conditions  
�B → AB with cycle paths given by

	

b

0010 → (1010)→

AB

d

1000 → (1100) →

B

c

0100

� 	

With this information, we conclude that the first and second invariants are c (under AB) and 
d (under �B), respectively. Thus, the ANDing RG must be d �B in c (i.e., in Sc). To activate this E- 
hazard, an inadvertent delay ∆tE2 of sufficient magnitude must exist on the initiator line A to the 
first invariant c. The IP must not be inconsistent with b, constant input B and must contain A or � 
in d. Thus, the IP is via bAB in d (i.e., in Sd). From this information, we deduce that the minimum 
delay requirements for E-hazard #2 formation is (∆tE2 + τInv) > (τbAB + τC-element). To be effective, 
the counteracting delay ∆tCorrect must be placed on the c line to the RG.

•  •  •  •
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Up to this point, we have dealt exclusively with asynchronous design methods that permit input 
signals to overlap but with the potential to have certain timing defects that could cause the asyn-
chronous finite state machine (FSM) to malfunction. Asynchronous state machines that are de-
signed to operate with nonoverlapping pulsed inputs and that operate with “data triggered” memory 
elements are called pulse mode sequential machines. The pulse mode approach offers a simple means 
of designing asynchronous FSMs but at the price of greatly restricting input signal conditions. 
The pulse mode approach eliminates the timing defects owned exclusively by fundamental mode 
FSMs, and eliminates the problems associated with clock skew and the need to synchronize inputs 
to the clock. Thus, at first glance, it would seem that the pulse mode approach to FSM design 
has all of the advantages of synchronous FSMs while being free of the timing defects common to 
fundamental mode (Huffman) machines or Muller machines. Although this is true, the apparent 
advantages of the pulse mode methodology are offset by the severe limitations placed on the input 
data signals.

6.1	 MODELS AND CHARACTERISTICS OF THE PULSE MODE
Shown in Figure 6.1 is the general Mealy model for the an asynchronous FSM designed by using 
the pulse mode approach. Note that data-triggered toggle modules are used as memory elements. 
Thus, one major difference between the pulse mode model and that of the lumped path delay 
(LPD) and nested cell models in Figures 1.1 and 1.3 is the memory stage. Recall that in the LPD 
model of Figure 1.1 the memory stage was made up of fictitious LPD memory elements from 
which the stability criteria of Eqs. (1.1) and (1.2) and excitation table in Figure 1.2 are derived. The 
nested element model of Figure 1.3 requires the use of either C-elements or basic cells for which 
the Y → SR conversion is used. Toggle modules, on the other hand, are similar to T flip-flops but 
with a single enabling input called T into which data are entered as discrete positive pulses. It is 
these discrete pulse inputs to T that triggers the toggle modules, thereby controlling the data flow 
through the sequential machine.

chapter        6

Design of Pulse Mode FSMs
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6.1.1	 Requirements and Characteristics of the Pulse Mode Approach
There are a number of unique requirements and characteristics that set pulse mode FSMs apart 
from the fundamental mode approaches to asynchronous FSM design discussed previously in this 
text. These are listed below but not in any specific order of importance.

Branching conditions in a pulse mode state diagram are always single variables or ORed 
single variables (e.g., X + Y ) that are always uncomplemented as required for positive pulses. 
Unconditional branching in a pulse mode state diagram is strictly forbidden.
Any state coding will suffice. However, owing to the toggle character of the toggle module 
memory elements, a binary sequence is preferred wherever possible so as to minimize the 
next state (NS) logic. Recall the toggle character of the binary code beginning with the 
least significant bit and proceeding all the way to the MSB.
Data must be presented to a pulse mode circuit as discrete nonoverlapping positive pulses 
that are at least minimally separated as shown in Figure 6.2. Although there is in no upper 
bound place on their active duration, there is a required lower bound.
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figure 6.1: The generalized model for an asynchronous Mealy FSM operated in the pulse mode  
with data-triggered toggle modules as the memory elements.
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The NS logic is obtained by combining the excitation table for the toggle module (T flip-
flop) with the pulse mode state diagram by using the mapping algorithm in Section 1.6.
Because states in a pulse mode design cannot toggle to themselves, only outgoing single 
variable or ORed single variable branching conditions are required in mapping the NS 
logic. Thus, holding condition should not be given in the state diagram or state table.
From the characteristic described above, it is obvious that the sum rule is never obeyed 
but the mutually exclusive requirement is uniquely satisfied by the nonoverlapping input 
requirement.
Falling edge triggered (FET) toggle modules must be used with the discrete positive pulses 
as in Figure 6.2.
When it is appropriate to do so, the outputs should be made conditional on the exciting 
branching variable (a Mealy output) when using FET toggle modules. Doing this results 
in two important advantages that derive from falling edge triggering:

	 (a) � Output race glitches (ORGs) are not possible.
	 (b) � Static hazards in the output forming logic are not possible.
	 These advantages are not guaranteed if unconditional (Moore) outputs are used.

Initialization methods are exactly the same as used for LPD model designs or for C- 
element designs discussed in Section 2.2. When using a C-element design, initialization 
must be into the all “0” state.
Proper pulse mode designs cannot have endless cycles, critical races, or E-hazards. Static-1 
hazards in the NS logic are not possible when FET toggle modules are used.
Debouncing of inputs from mechanical switches is imperative because pulse-mode circuits 
are highly sensitive to transient signals of sufficient duration and strength.
Synchronization of inputs to a pulse mode FSM is not necessary because the requirement 
of nonoverlapping data inputs, at least minimally separated, is a form of synchronization.
Pulse mode FSMs that are properly designed and operated cannot go metastable and, 
therefore, have an infinite mean time between failures.
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figure 6.2: Examples of nonoverlapping data input signals that are at least minimally separated  
positive pulses having active durations with no upper bound.
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The 13 characteristics of the pulse mode approach to asynchronous FSM design just given 
should seem impressive compared to the LPD and nested element approaches that operate in the 
fundamental mode. It would appear that pulse mode FSMs have all the benefits of asynchronous 
fundamental mode FSMs but without their inherent problems. This is true! However, the price 
that must be paid for this “perfection” is the sever restrictions placed on the input signals and the 
memory elements use to process them—restrictions that require discrete nonoverlapping pulses at 
least minimally separated to be the inputs to FET toggle modules.

6.2	 TOGGLE MODULES AS THE MEMORY ELEMENTS
Toggle modules function such as T flip-flops or D flip-flops have been connected in such a manner 
as to make them operate as toggle modules. Actually, D flip-flops can be converted to T flip-flops or 
to toggle modules. See Tinder’s text in Endnotes for a detailed discussion of these subjects. However, 
it is not necessary to use flip-flop conversion to obtain toggle modules that can be designed directly 
and more simply from first principles. Shown in Figure 6.3 is the design of a FET toggle module 
by using either the LPD model or nested element model. Figure 6.3a shows the four-state state 
diagram representing a toggle module that can be operated as either an FET or RET (rising edge 
triggered) memory element—FET is preferred. Figure 6.3b illustrates the EV K-maps and logic 
for the LPD model design, and the Y → SR converted K-maps and logic for the nested element  
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design by using either C-elements or SR basic cells. See Section 2.1 for a review of the extended 
mapping algorithm required for the Y → SR conversion.

By using the logic given in Figure 6.3b, we have opted to design this toggle module by using 
NOR gates and complementary C-elements of the type shown in Fig 1.13. The resulting logic circuit 
is presented in Figure 6.4a, which is initialized into the 00 state as indicated by the SAN(L) input to 
the C-elements. The circuit symbol for the FET toggle module is given in Figure 6.4b. The simula-
tion of the logic circuit in (a) is provided in Figure 6.4c with Q and P outputs for falling and rising 
edge triggering, respectively. For use in a pulse mode design with nonoverlapping positive pulses, it is  
the Q(H ) = y1(H ) or Q(L) = y1(L) outputs that must be used consistent with the logic circuit symbol 
in (b). An inspection of the waveforms in (c) indicates that the Q(H) and Q(L) output changes are 
indeed triggered by the falling edges of the T (H) waveform. The waveform for P(H ) = y0(H ) changes 
with the rising edge of the T (H) waveform and therefore defines an RET toggle module. Again, it 
is important for the reader to understand that the use of the Q outputs from the toggle module are 
essential to the proper operation of a pulse mode circuit design. They eliminate ORGs and static 
hazards in the output forming logic that might otherwise form with rising edge triggering.

6.3	 A DESIGN EXAMPLE
The design of pulse mode FSMs by using toggle modules requires that the mapping algorithm in 
Section 1.6 be used together with the excitation table for the pulse mode model (the T column) 
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figure 6.4: (a) Implementation of the toggle module with NOR gates and complementary C- 
elements. (b) Circuit symbol for a falling edge triggered (FET) toggle module with a T(H) data input.  
(c) Simulation of the circuit in (a) showing both falling edge triggerig (Q) and rising edge triggering (P).
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given in Figure 6.5. Thus, the pulse mode model requires the toggle conditions 0 → 1 and 1 → 0 
be used in a manner similar to the two set conditions (0 → 1, 1 → 1) used for the LPD model as 
discussed in Section 1.7. Keeping in mind this information and the characteristics of the pulse mode 
given in Section 6.1.1, we can now proceed with a simple pulse mode design.

The state diagram for a 2-bit digital combinational lock is shown in Figure 6.6(a). Note that 
there are no holding conditions in the state diagram, and that all branching conditions are single 
uncomplemented input variables or are ORed combination of the single uncomplemented variables. 
Clearly, the sum rule cannot hold for a pulse mode state diagram. To minimize the NS forming logic, 
the state code assignments are in binary sequence wherever possible. The output OPNVLT (for open 
vault) is conditional on the exiting input X. Thus, all requirements outlined in Section 6.1.1 are met.

The EV K-maps for the NS and output forming logic of the 2-bit digital combinational lock  
are given in Figure 6.6b. The NS K-maps are plotted by using the T excitation table, given in  
Figure 6.5, together with the mapping algorithm in Section 1.6. Thus, the “T” K-maps are plotted 
by toggle branching from each state. For example, in state 011, state variable y1 toggles to state 000 
under X but also toggles to state 100 under Y. This requires the entry to be X + Y for state 011 in the  
T1 K-map. There are three don’t care (unused) states each indicated by a φ symbol. The resulting 
logic for the NS and output functions are given by Eqs. (6.1), where optimum use of the three don’t 
care states is indicated by the shaded loops. Note the shared prime implicants (PIs) y1y0Y and y0 X 
between the NS functions T2 and T1 and between T1 and T0, respectively, and the shared PI y2X 
between T2 and the output function OPNVLT. This gives a gate/input tally of 9/21 for the NS and 
output functions.

	

T2 = y2X + y2Y + y1 y0Y T1 = y1X + y0 X + y1 y0Y T0 = 2Y + y0X

OPNVLT = y2 X
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figure 6.5: Excitation tables for the LPD model and pulse mode designs of asynchronous FSMs.
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figure 6.6: Design of a 2-bit digital combinational lock by using the pulse mode approach. (a) State 
diagram with a conditional (Mealy) output OPNVLT (for opten vault). (b) EV K-maps for use of toggle 
modules as the memory elements. (c) EV K-map for the conditional output, OPNVLT if X.
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figure 6.7: Design of the 2-bit digital combinational lock given in Figure 6.6. (a) Implementation 
of the NS and output forming logic given by Eqs. (6.1). (b) Toggle modules as the memory stage with 
initialization into the 000 state.
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The NS and output functions given by Eqs. (6.1) are implemented with NAND logic in Figure 
6.7a, where all three shared PIs are wired in. Note that the output is issued active low, OPNVLT(L)  
for convenience. The memory stage is made up of three FET toggle modules, as indicated in Fig-
ure 6.7b. The active low indicator bubble on the left side of each toggle module is indicative of the  
falling edge triggering of the memory module.

The simulation of the logic circuit in Figure 6.7 is given in Figure 6.8, where an initial 
Sanity(L) input 1(L) initializes the FSM into the 000 state. Then, after a 1(L) → 0(L) change in 
the Sanity(L) signal, the FSM operates properly. Here, the three Ti(H ) outputs are included for 
completeness, but it is clear that the PS state functions yi(H ) change only on the falling edge of the 
data inputs X and Y. Previously, it was indicated that there is no upper bound on the active dura-
tion of the data pulses. It was also indicated that a lower bound does exist. If a data pulse is not 
developed sufficiently, it will not be read by the toggle module. Worse yet, if the data pulse is two 
weak to completely cross the switching threshold, it cannot be read predictably and a metastable 
condition may ensue.

6.4	O THER MEMORY ELEMENTS SUITABLE FOR PULSE 
MODE DESIGN

Toggle modules of the type designed in Figures 6.3 and 6.4 are not the only type that can be used for 
pulse mode FSM design. We chose to use the C-element design in Figure 6.4 because C-elements  
are less susceptible to metastable conditions compared to, say, basic cell or LPD approaches. Still, 
there are other memory devices incorporating C-elements that can be converted into toggle mod-
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figure 6.8: Simulation of the pulse mode FSM in Figure 6.7 designed to operate as a 2-bit digital 
combinational lock using toggle modules as the memory elements.
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ules. Shown in Figure 6.9 are two examples of alternative memory elements suitable for pulse mode 
FSM design. Figure. 6.9a features an FET D-FF that is converted to an FET toggle module by 
connecting its active low output to the D input. A T-FF can be converted to an FET toggle module 
by connecting its T input to logic 1(H) = HV as in Figure 6.9b. See Tinder’s text in Endnotes for 
further details.

Generally speaking, the toggle module in Figure 6.4 is the most desirable simply because it 
is fast, requires the least amount of hardware for implementation, and is the most reliable option. 
Toggle modules converted from D-FF and T-FF require more logic hardware but are also reliable if 
implemented with C-elements. In any case, runt pulses should be avoided because they may or may 
not be of sufficient strength to cross the switching threshold. 

6.5	 DEBOUNCING CIRCUITS
Pulse mode FSMs are particularly susceptible to input transients that can be caused by mechanical 
switch bounce action. Such transients can cause a pulse mode FSM to transit through an unpredictable  
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D Q

Q
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T Q

Q
CL

T(H)T(H)

1(H)

(b)

figure 6.9: Alternative memory elements for use in asynchronous pulse mode FSM designs. (a) An 
FET D-flip-flop (FF) converted to an FET toggle module. (b) An FET T-FF converted to an FET 
toggle module.
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figure 6.10: Debouncing the single-pole/double-throw (SPDT) switch by using a set-dominant basic 
cell in Figure 1.8. (a) Logic circuit. (b) Logic values for Up-, Dn- and Off-contact positions of switch, 
SW.
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number of states or may even cause metastability in the FSM. To counteract bounce transients, a 
single-pole/double-throw (SPDT) switch can be effectively used, as indicated in Figure 6.10. If 
a spring-loaded switch (SW) is initially in the UP position, the SW outputs are in a Reset state. 
When the SW is depressed, it will pass through a Hold state before reaching the Dn contact. Upon 
reaching the Dn position, the first transient to cross the switching threshold will force the SW out-
puts into a Set state thereby avoiding any further transient action. The reverse process follows the  
release of the SW. Accordingly, the SPDT switch can never undergo an X,Y  1(L) → 0(L) oscillation  
as in Figure 1.10.

•  •  •  •
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Analysis of asynchronous finite state machines (FSMs), as interpreted in this chapter, is a “reverse 
engineering” process. By this, we mean that the analysis process generally begins with a circuit and 
ends with a state diagram or state table. Of course, we have already analyzed circuits for various 
timing defects, and that is, or should be, part of any analysis performed on an asynchronous FSM. 
But remember that the state diagram of an asynchronous FSM serves as a most powerful tool in 
any analysis process. Not only can we analyze a state diagram for various timing defects, but many 
design irregularities become obvious sometime with only a cursory observation of the state diagram. 
We will hold to these notions throughout this chapter, with the result of achieving a practical and 
reliable means of analyzing any given asynchronous FSM.

7.1	 PROCEDURE FOR ANALYZING ANY ASYNCHRONOUS FSM
The following three-part procedure should be followed in analyzing any asynchronous FSM with 
the assumption that a suitable starting point is available—namely, a logic circuit or some closely 
related representation that can be converted to a logic circuit.

Part 1: Begin with a logic circuit in mixed-logic form. If the logic circuit is presented in posi-
tive logic form, then convert it to mixed-logic form. This means that voltage levels and positive logic 
gate symbology must be converted to the mixed-logic form as used in this text. Attempting to do 
otherwise increases greatly the probability for error.

Part 2: Map the NS and output forming logic into lumped path delay (LPD) entered variable 
(EV) K-maps such that each cell has as its coordinates the present state (PS) variables, yi, and as its 
contents a NS subfunction.

If the next state (NS) logic for the asynchronous FSM has been designed by using Set– 
Reset (SR) memory elements, read and map the SR logic into EV K-maps and then use the 
reverse conversion SR → Y algorithm to produce LPD EV K-maps. Note that don’t cares 
will not be present because they cannot be represented in a circuit.
If the NS logic for the asynchronous FSM has been designed by using toggle modules as 
memory elements, read and map the T logic into EV K-maps and then use T → Y K-map 

a)

b)

chapter        7

Analysis of Asynchronous FSMs
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conversion to obtain the LPD EV K-maps. The algorithm for T → Y K-map conversion is 
as follows: For all that IS NOT yi in the Ti K-map, transfer it directly to the same domain 
cells in the Yi K-map. For all that IS yi in the Ti K-map, transfer each cell entry comple-
mented to the same domain cells in the Yi K-map. Again, no don’t care states are possible 
in the analysis.

Part 3: Once the logic circuit has been mapped into LPD EV K-maps, construct the PS/NS 
table. Do this for each state with inputs represented in canonical-literal form as a binary sequence 
covering all possible input conditions for that state. As an example, if a given cell depends on two  
inputs, X and Y, then four entries are necessary (� �, � Y, X �, X Y ). This is necessary so as to avoid  
possible branching omissions. Each entry in the NS column is found by comparing the NS cell 
entries in the K-maps with the corresponding input conditions in the inputs column. When com-
pleted, the PS/NS table is precisely the tabular form of the state diagram. The state diagram ob-
tained from the PS/NS table will have all states represented including possible don’t care states, 
buffer states, and hang states.

7.2	E XAMPLE OF AN LPD MODEL FSM ANALYSIS
The LPD logic circuit to be analyzed is given in Figure 7.1 and is presented in mixed-logic form. 
It is known that E is an enable input, C is a clock input, M is a mode input, and P is pulse output. 
Reading the circuit and simplifying there results the NS and output forming logic given by Eqs. (7.1)  
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y0(H)

(a) (b)

E(H)

C(L)

M(H)

SAN(L)

1 2

3

4

5

6

7

E2

CyMECECy

CyXEyXECY

10

111

++=
++=

EMyCyY 010 +=  

CyP 1=

Figure 7.1:  (a) A three-input, one-output LPD Logic circuit to be analyzed. (b) NS and output 
forming logic as read and simplified from the circuit in (a).
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in Figure 7.1, where the intermediate function X = y0 EM giving � = ( �0 + � + �). At first 
glance, it would appear that there are two externally initiated static-1 hazards in function Y1 when  
C → � in state 10. However, the inclusion of � = (�0 + � + �) into the first equation for Y1 shows 
that these two hazards are covered by the terms y1 �0 E and y1E� inherent in Y1. Thus, no static 
hazards exist in Eqs. (7.1). See Section 3.3 for a review of static hazard detection and elimination in  
the NS logic.
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Figure 7.2:  Next state and output EV K-maps as plotted from Eqs. (7.1) in Figure 7.1.
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The EV K-maps for the NS and output forming logic in Eqs. (7.1) are given in Figure 7.2. 
From these K-maps, the PS/NS table is constructed and presented in Figure 7.3a. Note that the 
inputs are listed in canonical-literal form in binary sequence covering all possible input combina-
tions for each state. In state 00, for example, an inspection of the EV K-maps indicates that cell 00 
(for state 00) depends only on inputs E and C. Therefore, the “Inputs” column in the PS/NS table 
corresponding to state 00 has only the four canonical-literal entries given as a binary sequence. In 
contrast, states (and K-map cells) 01 and 11 depend on inputs E, C, and M so there will be eight 
canonical-literal entries in the PS/NS table for these two states. It is true that shortcuts can be 
taken in constructing the PS/NS table. However, this is not recommended because the probability 
of branching errors is likely to increase.

The PS/NS table in Figure 7.3a is precisely the tabular form of the state diagram shown in 
Figure 7.3b. For example, in PS 00, the 00 → 00 holding condition is C + EC + E = +� � � �

��
,  

and the 00 → 10 branching condition is EC. In state 01 the 01 → 10 branching condition is read 
simply as EC�; the 01 → 01 (holding condition) is E�M + ECM = EM. The 01 → 00 branching 
condition for the five entries is most easily found by constructing a conventional third-order 1’s and 
0’s K-map with ECM as its coordinates. Looping out the five entries readily yields � +�� as the 
conditions for this branching path. The output function for this FSM is read directly from the EV 
K-map in Figure 7.2 and requires that a conditional output P if � be issued in states 10 and 11.

Now that we have obtained the state diagram for this FSM, it would be instructive to know 
exactly its function. A detailed inspection only of the state diagram in Figure 7.3b will most likely 
yield incomplete or incorrect information. However, combined with a simulation, the state diagram 
can contribute significantly to an understanding of its purpose. Shown in Figure 7.4 is the simula
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Figure 7.4:  Simulation of the circuit in Figure 7.1 showing this FSM to be a pulse generation mod-
ule whereby a single pulse or string of pulses are issued antiphase with clock (C ) as controlled by the 
mode (M ) and enable (E ) inputs.
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tion of this FSM. It appears that this FSM is a pulse generation module (PGM) that can issue a single 
pulse or a string of pulses, all antiphase to the clock input and all controlled by the enable and mode 
inputs E and M, respectively. If the PGM enters state 11 and then exits to state 01 on ECM or to 
state 00 on �C, only a single pulse will be issued. On the other hand, if the PGM cycles with C 
between states 11 and 10 under E�, then a string of pulses will occur, one pulse for each cycle but 
antiphase to the clock (C) input. If, at any time, the enable input E goes inactive 1(H ) → 0(H ), then 
no pulses can be issued.

7.2.1	E -hazard and D-trio Analyses of the PGM
A close inspection of the state diagram in Figure 7.3b shows that there are two E-hazards and two 
d-trios. We will briefly consider each of these in turn and judge whether they pose a potential threat 
to the proper operation of the PGM. To simplify the analysis process, we will make use of the gate 
numbers indicated in Figure 7.1a. Also, before reading the following, the reader is advised to review 
Section 3.6.

The E1-hazard path is 00 → 10 → 11 → 01 under input conditions E�M → ECM due to 
an unintended delay of ∆tE1 on the initiator C line to the ANDing race gate (RG) y1� (gate 
4) in y0. The indirect path (IP) must not be inconsistent with – y1, – y0, E, M and must contain  
the initiator as either C or � in y1. Therefore, the IP must be via EC� (gate 2). We conclude 
that ∆tE1 > (τ1 + τ2 + τ6) as the delay requirement for E-hazard formation. Here, τ1 is the 
propagation delay through an inverter commonly taken to be about ¹ ⁄ ³τp, where we use τp 
to represent an average gate delay. Note that this E1-hazard is the fist we have encountered 
that involved three transitions and four states.
The E2-hazard path is 10 → 11 → 01 under input conditions ECM → E�M due to an 
unintended delay of ∆tE2 at E2 (see Figure 7.1) to ORing RG (gate 6) in y1 via the initiator 
C path to y1� (gate 4). The IP must not be inconsistent with y1, �0 , E, M and must contain 
C or � in y0. Therefore, ∆tE2 > (τ7 + τ5+ τ3) as the requirement to activate the E2-hazard.
The D1-trio path is 00 → 10 → 11 → 10 under branching conditions E�� → EC� due 
to an unintended delay of ∆tD1 on the initiator C line to the ANDing RG y1� (gate 4) in y0. 
The IP must not be inconsistent with �1, �0, E, � and must contain the initiator as either 
C or � in y1. Thus, the IP and the minimum path delay required to activate the D1-trio are  
the same as those for E1-hazard activation in item (1). This D1-trio will cause a glitch in 
output P.
The D2-trio path is 01 → 00 → 10 → 00 under branching conditions ECM → – ECM due to 
an unintended delay of ∆tD1 on the initiator E line to the ANDing RG EC� (gate 2, which 

1.

2.

3.

4.
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contains �0EC ) in y1. The IP must be via only gate 5 giving a minimum path delay require-
ment for the D2-trio activation of ∆tE1 > τ5, a relatively small delay. However, activation of 
the D2-trio cannot cause a glitch in P but does cause a glitch in y1.

It is clear that neither E-hazard nor the D1-trio are a cause for concern because the minimum 
delay requirements to activate them are relatively large, all exceeding two gate delays. If there is a 
concern, however, counteracting delays of one or two τp placed on the second invariant feedback 
line will more than suffice to endure proper operation of the FSM.

7.3	E XAMPLE OF AN STT FSM ANALYSIS
Let us suppose we are given a logic circuit whose inputs to three complementary C-element mod-
ules and whose outputs are given by 
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(7.2)

From the information in Eqs. (7.2) and following the analysis procedure outlined in Section 7.1, 
we will analyze this FSM ending with a detailed state diagram showing all states and branching 
paths associated with the FSM. Figure 7.5 shows the SR → Y K-map conversions for the NS logic. 
Note that the conversion process is just the reverse of the four-step Y → SR conversion algorithm 
given in Section 2.1. The reader should trace through this K-map conversion to verify the reverse 
algorithm.

From the LPD EV K-maps in Figure 7.5, we construct the PS/NS table shown in Figure 
7.6a, where the external inputs (A and B) are listed in literal-canonical binary sequence for each of 
the eight present states 000 through 111. This PS/NS table is the tabular form of the state diagram 
presented in Figure 7.6b. Note that there are four primary states (shaded) and that each transition 
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between any two of these states represents a Hamming distance of 2, as was true for the one-hot 
designs. There are four don’t care states easily recognized as those states having only out-branching 
conditions, and no in-branching paths. As can be seen, transitions between any two primary states 
must briefly transit via one of the don’t care states but always with the appropriate branching condi-
tions, again similar to the one-hot designs but faster. Note that this state diagram, with reference to 
the primary states, is the same as that shown in Figure 5.2, but this FSM is now identified as a single 
transition time (STT) machine. Thus, there are no cycles, buffer states, critical races, or output race 
glitches, and every state-to-state transition must pass through a don’t care state.

A simulation of the FSM, represented by Eqs. (7.2) using C-elements as memory, is provided 
in Figure 7.7a. Note that it compares nearly identically with that in Figure 5.4, except that it has 
only three state variables instead of four as required for the one-hot design. Figure 7.7b shows a 
blowup of the shaded area in Figure 7.7a showing the 110 → 011 transition via a very brief passage 
through don’t care state 111. It is true that both one-hot and STT designs of this FSM must transit 
between states with a Hamming distance of 2 (i.e., between states differing by two 1’s in their state 
code assignment). However, it is the STT design that is the faster of the two designs as can be seen 
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by comparing the blowup regions in Figures 5.4b and 7.7b. In general, STT FSMs are the fastest 
machines possible.

A static hazard analysis indicates that there are two externally initiated static-1 hazards in NS 
forming logic given by Eqs. (7.2). One hazard exists in S0 between coupled terms �1 �B and y2 � �, and  
is produced on a B → � change while in state 101 holding � constant. The cover for this hazard 
is y2 �1 �. The second static hazard exists in R0 between coupled terms �1A� and �2 � �, and is pro-
duced on A →� change while in state 000 holding � constant. However, neither of these hazards 
can get by the C-elements and, consequently, no hazard cover is needed. This is one advantage in 
using C-element for the memory stage in asynchronous FSM design. However, there is always the 
possibility that function hazards will be formed if the inputs are allowed to change in close proxim-
ity to each other. Remember that a function hazard glitch is a correct response to competing input 
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Figure 7.6:  (a) PS/NS table derived from the K-maps of Figure 7.5. (b) State diagram, as con-
structed directly from the PS/NS table in (a), showing the four primary states (shaded) and the four don’t 
care states for which there are no in-branching conditions, only out-branching paths.



analysis of asynchronous fsms  95

changes. To avoid function hazards, input changes should be minimally separated so as to avoid runt 
pulses that can cause any memory element to go metastable.

Because E-hazards are potential sequential defects, the minimum requirements for E-hazard 
formation are the same as those given in Section 5.4, but without the need to include a specific 
cycle state as was required for a one-hot E-hazard analysis. Thus, an E-hazard analysis will follow  
the same procedure as laid out in Section 3.6. The FSM in Figure 7.6b has two E-hazards that 
are possible. The first will occur along a path a → c → d under input conditions A� → AB with 
the inadvertent delay ∆tE1 on the initiator line B to the first invariant y0. The RG must be the  
ANDing RG y1A� in y0 found in S0, and the IP must not be inconsistent with the origin state �2, 
�1, �0 and the constant input A, and must contain the first invariant as B or � in y1. Therefore, the  
IP must be via AB in S1. From this information, the minimum path delay requirement must be  
(∆tE1 + τInv) > (τAB + τC-element), hence very similar to the requirement indicated in Section 5.4 for 
the E1-hazard. 

The E2-hazard will occur along a path b → d → c under branching conditions �B → AB with 
an unintended delay ∆tE2 on the A line to the first invariant y0. The RG is the ANDing RG y1�B 
in y0 found in R0. The IP must not be inconsistent with the origin state y2, – y1, y0 and the constant 
input B, and must contain the first invariant as A or � in y1. Thus, the IP must be via AB in S1. Ac-
cordingly, the minimum path delay requirement is (∆tE2 + τInv) > (τAB + τC-element).

Clearly, any given E-hazard analysis is remarkably the same irrespective of the method used 
to implement the asynchronous FSM. In the case of the analysis just completed, we see that the 
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Figure 7.7:  (a) Simulation of the STT FSM represented by Eq. (7.2) implemented with C-elements 
and in agreement with Figure 7.6. (b) Blowup of the shaded area in (a) showing the 110-to-011 transi-
tion taking place via don’t care state 111.
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RGs, IPs, and minimum path delay requirements for E-hazard formation were basically the same. 
This confirms the fact that E-hazards are sequential defects that are inherent in the sequential be-
havior, and not the implementation method or model used.

7.4	E XAMPLE OF A ONE-HOT FSM ANALYSIS
The logic read directly from the logic circuit of a one-hot LPD FSM is given by the NS and output 
forming logic in Eqs. (7.3). Note that there are six state variables, two inputs (X and Y ), that the 
FSM is initialized into state a via a Sanity input to the 000000 state, a 1-hot + zero configuration. 
The 1-hot + zero term in Ya results from simplification by using the factoring and absorptive laws 
to give a� + � � � � � 

→
 f = � � � � 

→
 f . Also, there are two outputs, P and Q, representing both Mealy and 

Moore outputs. For convenience, the state equations are given using state identifiers rather than 
state variables. Note that the first term in each Yi is the holding condition for that state, and that 
the last term in each Yi (the penultimate term in Ya) are the “out of ” terms as required in Eqs. (5.1). 
Finally, note that there are no static hazards possible in this FSM. An S-hazard that exists in an NS 
function will be an internally initiated static-1 hazard between “into” and “out of ” terms, and will 
be covered by the holding condition in that NS function. The apparent externally initiated static-1 
hazard in the output function P between coupled terms c� Y and fXY cannot exist because the FSM 
cannot reside in two one-hot states (c and f  ) simultaneously.
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(7.3)

Because the NS and output forming logic for a one-hot FSM can be read directly from a  
state diagram or state table, the reverse is also true. Shown in Figure 7.8 is the state diagram for this 
one-hot FSM as constructed directly from Eqs. (7.3). An inspection of the state diagram reveals that  
there are no buffer states, cycles, or critical races present. There are no static hazards possible, but 
function hazards are possible if the external inputs or state variables change in close proximity to 
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each other. It happens rarely but some function hazards cannot be avoided and must be dealt with 
by other means such as the use of C-elements as memory and, if necessary, output filters.

There are five potential E-hazards associated with the FSM state diagram in Figure 7.8. 
Referring to Section 5.4, the first E1-hazard paths is a → b → c that divides into two depending on  

TABLE 7.1:  Potential E-hazards in Figure 7.8 showing split paths to states f and e for E1- and  
E2-hazards and an extended state for E3-hazard

a
X

b c
f

eX XY

XY

E1-hazards

b c
f

eX XY

XY

E2-hazards

d f a b
X XY X

E3-hazard

X

X
X

X

XY XY

X+Y

XY

XY

a

b

e f

d

c

PE

QE
PE if XY

PE

PE if XY

Sanity 000000

X

XY

Y
X

QE if XY

X

Figure 7.8:  State diagram constructed directly from Eqs. (7.3) representing a one-hot asynchronous 
FSM.
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the Y input as indicated in Table 7.1. For both E1-hazard paths, the ANDing RG is b� in Yc, and 
the IP is aX in Yb. For these sequences, the branching conditions must be � � → X � leading to state 
f, and � Y → XY leading to state e. The second E2-hazard path is b → c that divides into two, again 
depending the Y input as indicated in Table 7.1. For the E2-hazard paths, the ANDing RG is cX � 
in Yf leading to state f, and is cX Y in Ye leading to state e, with the IP being b� in Yc for both. The 
branching conditions for the E2-hazards are X� →� � to state f, and X Y → � Y to state e. The third 
E3-hazard path is d → f → a → b under branching conditions� Y → XY for which the RG is f � Y in 
Ya with the IP being dX in Yf. For all five E-hazards, the initiator is X but the minimum path delay 
requirements differ for them. To activate either the E1-hazards or the E3-hazard, the minimum 
path delay requirement is (∆tE + τInv) > (τIP + τORing), where the right side of the inequality is an 
ANDing operation into an ORing operation as in the SOP logic of Eqs. (7.3). To activate the E2-
hazards, the minimum path delay requirement is (∆tE) > (τInv + τIP + τORing). As a reminder, only 
a single change of the initiator is allowed in any a → b → g E-hazard path. Thus, paths c → e →  
d and c → f → a cannot produce an E-hazard. Path c → e → b is excluded as an E-hazard path 
because only one initiator change is permitted.

To test the sequential functionality of this FSM, excluding E-hazard production, a simulation 
of the logic circuit (circuit not shown) is provided in Figure 7.9. Here, all state-to-state transitions 
and output responses are shown. The logic circuit from which this simulation is made is NAND- 
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Figure 7.9:  Simulation of the one-hot FSM represented by Eqs. (7.3) showing strict adherence to its  
state diagram in Figure 7.8.
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based with C-elements and the appropriate inverters. Note that each one-hot state-to-state transi-
tion must transit through a state containing two 1’s, one from the origin state and the other from 
the destination state. 

7.5	E XAMPLE OF A PULSE MODE FSM ANALYSIS
Equations (7.4) contain the NS and output logic functions that are read from a pulse mode FSM 
having three-state variables, two inputs (X and Y ) and two outputs, P and Q. The FSM is to be ini-
tialized into the 000 state. These functions are mapped in Figure 7.10 and converted to LPD form by  
using the T → Y K-map conversion algorithm. This algorithm is stated in Part 2 of Section 7.1.

	

T2 = 2 1 0Y + y2 y0 X

T1 = 2 y1 y0X + y0Y

T0 = 2 1 0X + y2 1 y0Y + y1( y2 ⊕ y0)(X + Y )

P = y2 y1X + y1 y0 X + 2 1 y0

Q = y2 y1Y
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(7.4)
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Figure 7.10:  NS T-to-Y K-map conversion and output logic for the pulse mode FSM represented 
by Eqs. (7.4).
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Now that we have mapped the NS and output logic into LPD EV K-maps, we can construct 
the PS/NS table. Construction of a PS/NS table for a pulse mode FSM is remarkably simple be-
cause the inputs must be presented as discrete nonoverlapping positive pulses that are at least mini
mally separated. This means that only input combinations such as a� �, – ab �, or g need be considered  
in the PS/NS table; all others, such as say X Y, � � or �, must be discarded or ignored. Thus, only 
one input can be active at any given time, and a transition cannot occur on an input condition of “no 
active input.” Shown in Table 7.2 is the PS/NS table as obtained directly from the NS EV K-maps 
in Figure 7.10. Remember that any given output is given with respect to the PS, never with respect 
to the NS.

Construction of the state diagram for this pulse mode FSM is accomplished directly from the 
PS/NS table in Table 7.2 and is shown in Figure 7.11. Here, input entries such as X �, � Y, X, or Y 
simply mean that an X or Y pulse is required to execute a given transition on the falling edge of that 
pulse. States 010 and 100 are hang states, meaning that should the FSM power up into either of 
these states the FSM would reside in that state indefinitely. The dashed arrow from state 100 to 101 
is used to indicate that the PS/NS table calls for that transition but which is clearly not possible due 
to the absence of any single, nonoverlapping positive pulse. The presence of hang states addresses 
the importance of initializing into a specific state such as the 000 state. To do otherwise would be a 
serious mistake and could lead to unrecoverable errors.

TABLE 7.2:  PS/NS table as constructed directly from the EV K-maps  
in Figure 7.10 representing the pulse mode FSM given in Eqs. (7.4)

PS NS PS NS

y2 y1 y0 Inputs Y2Y1Y0 P Q y2 y1 y0 Inputs Y2Y1Y0 P Q

000 X 001 0 0 100 – 101 0 0

001 Y 111 1 0 101 � Y
X �

110
001

0 0

010 – 010 0 0 110 � Y
X �

111
111

X Y

011 � Y
X �

000
000

X 0 111 � Y
X �

101
011

X Y
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Figure 7.11:  State diagram obtained from the PS/NS table in Table 7.2 showing extraneous states 
010 and 100.

To complete the analysis of this pulse mode FSM, we iterate the benefits of this approach 
to FSM design. As with all properly designed pulse mode FSMs, the state machine in Figure 7.11 
cannot have endless cycles, critical races, or static hazards in either the NS or output logic, output 
race glitches, and E-hazards. All these benefits result from the stringent requirements placed on 
the inputs to any given pulse mode FSM. That is, all inputs must be presented as discrete nonover-
lapping positive pulses that are at lease minimally separated and that all state transitions occur on 
the falling edge of an input pulse. To meet these input restrictions, it may be necessary to use bus 
arbiters on the incoming data, a subject to be discussed in Chapter 11 and covered by Problem 11.2 
in Appendix B.

•  •  •  •
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Externally asynchronous/internally clocked (EAIC) systems operate somewhere between synchro-
nous and asynchronous design methodologies. To the external world, EAIC systems are entirely 
asynchronous—there is no externally supplied system clock. Internally, the EAIC system is con-
trolled by a clock signal that is generated following rendezvous, at the clock generation circuitry, 
of all “data ready” signals issued from the memory modules. Thus, if a data ready signal is delayed 
for any reason, the system pauses until that data ready signal has successfully rendezvoused with all 
other such signals at the clock generation circuitry—a pausable system. The speed of the clock oper-
ates as fast as the EAIC logic permits and can reach into the high MHz range. Properly designed 
memory modules can lead to extremely large mean time between failures (MTBF) virtually inde-
pendent of the internal clock frequency. Furthermore, the internal clocking of the EAIC system 
guarantees the absence of endless cycles, critical races, essential hazards, and errors caused by static,  
dynamic and function hazards. Finally, there is the issue of metastability, a subject that will be  
effectively dealt with later in this chapter.

8.1	 BASIC ARCHITECTURE AND SYSTEM CHARACTERISTICS
Shown in Figure 8.1 is the block diagram representing the generalized architecture for the EAIC 
system. It consists of input and memory registers, each containing DFLOP memory modules (simi-
lar to D flip-flops), next state (NS) and output forming logic, and clock (CK) generating circuitry, 
which is simply a specially built NOR gate. A tri-state driver is added to the output of the NOR 
gate so that the clock signal can be turned off at any time, forcing the EAIC system into a standby 
condition. Notice that a data ready signal, R, must be issued 0(H) = 1(L) by each DFLOP, and that 
all such signals must rendezvous at the NOR gate before a CK signal is generated 1(H). Thus, the 
CK signal is issued active high to each of the memory DFLOP modules but only when all data ready 
signals have arrived active low at the NOR gate (the conjugate form). At this time, data are clocked 
into the input register and previously clocked-in data are clocked out of the memory register. Then, 

chapter        8

Externally Asynchronous/Internally 
Clocked Systems



106  asynchronous sequential machine design and analysis

when the first DFLOP senses a resolved set or resolved reset, CK is turned off, CK(H ) →0(H ), 
by the active data ready signal R j → 1(H ) = 0(L). At this point, the input register is made ready to 
receive the next set of input data—a two-step process that provides numerous advantages over both 
synchronous and asynchronous systems. In the following, we will show that EAIC systems possess a 
number of features that make them an attractive choice for system-level applications. These features 
include controllers for which the internal clock is used to operate numerous data-path devices such 
as counters, shift registers, etc., and the creation of a highly reliable delay-insensitive or pausable 
mode of operation that creates a near-infinite MTBF. In most cases, input conditioning circuits 
such as arbiters and synchronizers are not needed but debouncers may be required. The use of de-
bouncing circuits is not as critical as in the case of pulse mode designs, where debouncing circuits 
should be considered mandatory (see Section 6.5).

The logic circuit for a multiple input NOR gate, provided in Figure 8.2a, consists of a spe
cial p-channel MOSFET (PMOS) and a bank of n-channel MOSFET (NMOS) such that CK(H) 
can go active only if all data ready inputs go to LV, that is all Ri (H ) → 0(H ) = 1(L). This NOR gate 
is specifically designed to minimize fan-in limitations and propagation delay. The number of per-
missible inputs Ri up to about eight will have negligible effect the gate path delay, a condition not 
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Figure 8.2: Multiple input NOR gate specifically designed to minimize fan-in limitations and propa-
gation delay. (a) CMOS circuit. (b) Generalized NOR gate symbol and input logic level requirements 
for EAIC system operation.

true for a normal complementary metal-oxide conductor (CMOS) NOR gate. To work properly, 
the special PMOS must be designed such that the drain-to-source impedance remains sufficiently 
high as to minimize drain current when one or more NMOS are turned ON. In this respect, the 
special PMOS operates similarly to a depletion-mode NMOS. The generalized NOR symbol is 
shown in Figure 8.2b.

8.2	 DFLOP MEMORY ELEMENT DESIGN WITH C-ELEMENTS
Shown in Figure 8.3 are the block diagrams and state diagrams for a DFLOP memory element ap-
propriate for use in the EAIC system depicted in Figure 8.1. It consists of a C-element resolver (a), 
a C-element output memory stage, and a NAND gate required to generate the data ready signal, 
R. Below the block diagrams are the state diagrams. The state diagram for the resolver is the same 
as that used for the design of an RET (rising edge triggering) D flip-flop as discussed in detail in 
Tinder’s text (see Endnotes). The output memory stage is that for a complementary C-element as 
shown in Figure 1.13 and needs no further discussion. The resolver, on the other hand, requires 
considerable attention to produce the best resolver unit possible, one that will serve to produce the 
desired characteristics mentioned at the beginning of this chapter.

To better understand how the EAIC system in Figure 8.1 operates, consider a blowup of the 
CK waveform segment in Figure 8.4 produced by the CK generating NOR gate. After initializing 
into the 00 state of the resolver, the CK signal is issued at a frequency dependent only on the speed 
of the EAIC logic but independent of the data activation levels to the input registers. The internal 
clock CK goes to 1(H ) only when all data ready R(H ) signals go to 0(H ) = 1(L), and all DFLOP 
resolvers are in their unresolved 00 state. Any delay of one or more DFLOPs causes CK activation 
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to pause until all data ready signals rendezvous properly at the NOR gate. Thus, CK = 1(H ) only 
when all yj (L) = 0(L). At this time, external data are clocked into the input registers and previous 
data are clocked out of the memory registers. However, the first data ready Rj (H ) signal that senses 
a resolved Set or resolved Reset of a DFLOP’s y1(L),y0(L) state variables sends a 1(H ) = 0(L) to the 
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Figure 8.3: Design of the C-element-based DFLOP for EAIC systems and showing the NAND 
gate required to generate the data-ready signel. (a) State diagram for the C-element resolver FSM input 
stage. (b) State diagram for the complementary C-element output stage with output, Q.
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Figure 8.4: Blowup of the CK waveform segment showing requirements for the continuous genera-
tion of the internal clock in the EAIC system.
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CK generating NOR gate. This, in turn, causes CK to go to 0(H ) and all resolvers to transit to their 
unresolved 00 states ready to begin the process all over again.

The entered variable (EV) K-maps for the design of the C-element-based DFLOP resolver 
are given in Figure 8.5. By using the mapping algorithm in Section 1.6, the lumped path delay 
(LPD) K-maps are produced from Figure 8.3a as shown in Figure 8.5a. They are then converted 
to SR K-maps in Figure 8.5b by using the Y → SR conversion algorithm described in Section 2.1. 
From these EV K-maps, the optimum logic expressions are easily extracted and are presented in 
Eqs. (8.1) and (8.2). The logic expressions for the LPD (Huffman) DFLOP design are given in  
Eqs. (8.1), which when implemented operates in the fundamental mode. Equations (8.2) give the 
logic expressions for the Muller C-element DFLOP design. When these expressions are imple-
mented, the DFLOP will operate as a quasi Muller circuit because C-elements operate outside of 
the fundamental mode. It is the C-element design we emphasize in this text because they provide 
the most protection and the highest reliability. There are, however, two other ways to design the 
DFLOP—by using basic cells and by using a different LPD design (see Tinder’s text in End-
notes)—but both must operate in the fundamental mode. Such designs do not afford the same level 
of protection and reliability as the C-element design, but are otherwise completely acceptable. 

	
Y1 = y0DCK + y1�0CK = (D + y1) ⋅ �0CK

Y0 = y1�CK + y1y0CK = (D + y0) ⋅ �1CK
Huffman DFLOP resolver
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Figure 8.5: EV K-maps for the resolver input stage in Figure 8.3a. (a) LPD K-maps obtained by using  
the mapping algorithm given in Section 1.6. (b) SR K-maps obtained by using the Y-to-SR conversion 
algorithm in Section 2.1 for use in the C-element based resolver of a DFLOP.
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	 S1 = �0DCK �1 = CK
S0 = �1�CK �0 = CK

Quasi-Muller DFLOP resolver
	

(8.2)

8.2.1	 D-Trio Analysis of the Resolver  FSM
There are two d-trios in the resolver circuit of Figure 8.3a. Taking the initiation state as 01, the  
first d-trio D1 path is 01 → 00 → 10 → 00 if DCK → ��K occurs in state 01 when an unintended 
delay ∆tD1 of sufficient magnitude is placed on the CK line to an ANDing race gate (RG1). From 
the state diagram the ANDing RG is easily identified as �0DCK in the first invariant Y1, or for a 
quasi-Muller resolver and use of complementary C-elements the RG is y

_
0DCK in S1. Following 

Section 3.6.1, the indirect path must be via gate �1�CK in S0. From this information, it is clear that 
the minimum requirements for d-trio formation would be ∆t D1 > (tNAND + tC-element + tInv). If 
each gate and C-element is assigned 0.3 ns with inverters 0.1 ns, then ∆tD1 > 0.7 ns. An active D1 
would glitch the output Set. It is left as an exercise for the reader to analyze the second d-trio D2. 
Hint: It will be very similar to that for the first d-trio just described.

The logic circuit for the resolver, as derived from the expressions in Eqs. (8.2), is shown in 
Figure 8.6a. Note that two C-elements are required for the resolver stage and one for the output 
stage. Also, note that R1 = R0 = �K

_
, meaning that when used with a complementary C-element  

�= CK, as shown in Figure 8.6a. The two inverters on the yi(L) lines can be removed by reversing 
the inputs to the output C-element and by replacing the NAND gate by an OR gate. Such a change 
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Figure 8.6: C-element design of a Muller DFLOP. (a) Logic circuit as designed from Eqs. (8.2) and 
Figure 8.3 showing the resolver logic, output stage, and the data ready NAND gate. (b) Circuit symbol 
for the DFLOP in agreement with (a).
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presents only minor or insignificant changes in the operation of the DFLOP. The logic circuit sym-
bol for the DFLOP is given in Figure 8.6b.

8.3	 SIMPLE EXAMPLE OF AN EAIC FSM DESIGN
We illustrate the application of the EAIC system by designing the Gray-to-Seven sequence recog-
nizer whose state diagram is presented in Figure 8.7a. Here, the Gray code sequence is presented 
to the finite state machine (FSM) as inputs X, Y, and Z and is recognized only when the input 
sequence reaches the binary seven, XYZ in state 111 issued as a pulse Seq_Rec.
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Figure 8.7: (a) State diagram for a three-bit Gray-to-Seven FSM with a single output. (b) EV K-
maps for the three state variables and output Seq_Rec.
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The EV K-maps for the NS and output logic are given in Figure 8.7b as plotted directly from 
the state diagram in Figure 8.7a by applying the mapping algorithm given in Section 1.6 together 
with the D exitation table given in Figure 1.2. The advantage of the EV mapping approach can be 
appreciated by the fact that use of the old conventional 1’s and 0’s method would require the use of 
sixth-order K-maps. Even so, the third-order EV K-maps in Figure 8.7b are sufficiently complex 
enough to justify the use of a logic minimizer that accepts EVs. The recommended logic minimizer 
is called BOOZER, and its results are given by Eqs. (8.3), (8.4), and (8.5). As is evident, BOOZER 
seeks out and maximizes the use of shared PIs thereby providing optimum or near optimum results. 
(See Preface for a brief description of all recommended software for use with this text.) 
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externally asynchronous/internally clocked systems  113

	 [1] = AC� [2] = B�� � [3] = AX � [4] = �C��Z [5] = �B� YZ [6] = ����

_
YY 	 (8.3)

	 DA = [1] + [2] + [3] DB = DA + [4] + [5] DC = [1] + [3] + [4] + [6]; ; 	 (8.4)

	 Seq Rec ACXYZ= 	 (8.5)

The logic expressions for the Gray-to-Seven sequence recognizer given by Eqs. (8.3), (8.4), 
and (8.5) are shown implemented in Figure 8.8, where the mixed-logic wireless connection feature 
(emphasized in this text) is used to simplify the appearance of the logic circuit. Here, use is made of  
the C-element DFLOP circuit symbol given in Figure 8.6b and the clock generating circuit is a 
six-input NOR gate but with no tri-state driver on its output.

Simulation of this logic circuit is given in Figure 8.9 showing an internal clock frequency 
of about 417 MHz, the Seq_Req(H ) output pulse in state 111, and a static-1 hazard in the DB 
memory register input that could not get passed the C-elements in its DFLOP. Note that the FSM 
is initialized into the 000 state, consistent with the state diagram in Figure 8.7a and the logic circuit 
in Figure 8.8. When the sanity input releases the FSM to operate normally, the FSM begins in state 
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CL(L)

CK(H)

X(H)

Y(H)

Z(H)

QA(H)

QB(H)

QC(H)

Seq_Rec(H)

DA(H)

DC(H)

DB(H)

Names

Static-1 Hazard

Figure 8.9: Simulation of the EAIC circuit in Figure 8.7 showing the internal clock signal, the NS and  
output response to input changes, and a static-1 hazard in the input to an output stage DFLOP.
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001 as required by the state diagram when the input conditions are � � Z
_
. To initialize this FSM 

reliably and stably into state 000, at least one of the inputs must be active at the time the sanity input 
signal goes inactive. Note that the static-1 hazard in DB is externally initiated in the 010 state under 
holding conditions � YZ when Z → Z

_
 as indicated in Eq. (8.6). From an inspection of Eq. (8.6), 

it is clear that the hazard cover for the static hazard in DB would be �B�� Y, but it is not needed 
because the C-element filters out the hazard.

	

DB AC� + B� �Y� + AXY� + �C��Z + �B�YZ
%

010
� Y 010

=

	

(8.6)

8.4	 THE METASTABLE DETECTION STAGE
We must acknowledge that no logic device is completely resistant to metastability. However, we 
know that C-elements operate outside of the fundamental mode, which makes them less susceptible 
to the metastable state. But under certain conditions, even C-elements can become metastable. 
Should such a state manifest itself in a DFLOP memory module, the pausible character of the EAIC 
system will allow the system to operate properly provided the DFLOP can internally exit from the 
metastable state as a clean set or reset. To ensure that the DFLOP module will perform this impor-
tant function, it is necessary to use a special metastable detection stage (MDS) within the DFLOP. 
Such an MDS stage is shown in Figure 8.10 interposed between the resolver and output stage of 
the DFLOP. It is the function of the MDS to prevent any metastable condition produced within 
the resolver stage from being passed on to the output C-element stage. By adjusting the switching 
thresholds of the MDS gates down (↓) and the inverters up (↑), the overall switching threshold Vth is 
lowered to about a quarter of the supply voltage, or Vth ≅ 0.25VDD. This is accomplished by adjust-
ing the PMOS/NMOS width ratios Wp  /Wn of the MOSFETS to 1/4 for down adjustment (↓) and 
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Figure 8.10: C-element design of a Muller DFLOP with a metastable detection stage (MDS) de-
signed to prevent any possible metastable condition from being passed on to the output C-element and 
data-ready gate.
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8/1 for the up adjustment (↑). With the overall switching threshold altered down to about 0.25VDD, 
only strong active low input signals y1 < Vth will carry to the output y1′. On the other hand, active 
low input signals y1 > Vth will not cross the switching threshold and will not carry to the output y1′. 
As a result, only cleanly asserted active low signals can pass through the MDS circuit, whereas any 
metastable condition will cause the MDS to drop low after exiting the metastable state. The MDS 
stage also serves as a mutual exclusion operation. To better understand the above discussion, refer to 
Eqs. (1.8), where in mixed logic symbology it is clear that 0(H ) = 1(L) → LV. Thus, only a strong 
active low y1(L) signal will correspond to y1 < Vth (i.e., LV) and be passed through to the output y′ 1. 
A weak active low y1(L) signal for which y1 > Vth (or HV) would not cross the switching threshold 
(toward zero voltage) and would not carry to the output y′ 1. Figure 8.11 illustrates these facts.

To test the action of the MDS circuit, its PSPICE simulation is shown in Figure 8.11, where 
response to a metastable condition, region (2) is featured after a brief period (1) of correct operation. 
Here, the metastable voltage Vm tends to lie in the usual range of mid-supply (Vm ≈ VDD/2). This 
is the voltage at which a metastable condition resides for a time (the metastable exit time, ∆tm) after 
which it must resolve as either a clean set or reset. Experiments have shown that the metastable exit 
time is highly unpredictable. Furthermore, there is never a guarantee that the metastable state will 
flatline on Vm for a time ∆tm. To test the MDS under worse-case conditions, the inputs, y1 and y0 
in region (2) are introduced as a damped sign-wave oscillation about the threshold voltage Vth with 
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Figure 8.11: PSPICE simulation of the MDS circuit Figure 8.9b showing (a) input voltages and  
(b) output voltages before, during, and after a metastable state.
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a phase difference of 90°. During this metastable state, the oscillatory condition causes only the 
beginning of pulse formation of the MDS outputs y′ 1 and  y′ 0. After a time ∆tm, the inputs resolve as 
either a clean set or reset causing the MDS outputs to drop predictably low after the inputs exceed 
the adjusted threshold voltage Vth. This means that the outputs of the MDS drop to 0(L) with a  
data ready output of R(H ) = 0(H ) and a DFLOP output Q(H ) = 0(H ). Under these conditions, it is  
fair to say the EAIC system would have an MTBF that is extremely high but not infinite.

8.5	 Frequency Characteristics and NS Logic  
Constraints of EAIC Systems

Tracing the CK cycle path in Figure 8.1 beginning at the input of the CK generating NOR gate and 
ending at its output, it is clear that the CK frequency must be given by

	 fCK  (2 DFLOP + 2 NOR)−1= δ δ 	 (8.7)

where δDFLOP is the propagation delay through the DFLOP and δNOR is the propagation de-
lay through the NOR gate exclusive of the tri-state driver. If use is made of modern high-speed 
CMOS, as is assumed in this text, the CK frequency can exceed 400 MHZ as was demonstrated in  
Figure 8.9. Here, we assume that all gates and inverters have a propagation delay of 0.30 and 0.10 ns,  
respectively. For simplicity, no account is taken of gate fan-in although the simulator we use has that 
capability. Also, for the complementary C-elements we have assigned a propagation delay of 0.20 
ns. Thus, a calculation made on this basis by using Eq. (8.7) gives a frequency of 417 MHz, which 
is exactly that measured in a blowup of Figure 8.9. If use is made of the MDS stage in Figure 8.10, 
the CK frequency would drop to 345 MHz.

If the path delay through the NS forming logic in Figure 8.1 exceeds a certain upper bound, 
the proper operation of the EAIC system cannot be guaranteed. To stay within this upper bound, it 
is necessary that the updated Q outputs from the input register propagate through the NS forming 
logic before the next rising edge clock event, that is, during one CK cycle. Tracing one CK cycle 
beginning and ending at the NOR gate, the NS logic constraint is given by

	 δNS ≥ (δDFLOP + 2δNOR) 	 (8.8)

which is more than four gate delays without the MDS or about six gate delays with the MDS. 
Thus, two-level logic with inverters is well within this upper bound and the proper opera-
tion of the EAIC system is guaranteed. Clearly, the minimum width of any data pulse must be 
larger than one CK cycle if it is to be picked up reliably by the EAIC system. The throughput 
is the elapsed time between input change and output response normally occurring in the range 
δThroughput = (3δDFLOP + 2δNOR) ± f −1

CK .
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8.6	 PARALLEL/SERIAL PROCESSING WITH CASCADED EAIC 
MICROCONTROLLERS

8.6.1	 Characteristics
EAIC microcontrollers (MCs) have all the advantages of synchronous designs but without an external 
clock. The internal clock operates as fast as the internal logic permits, even in the high MHz range. 
EAIC MCs are delay-insensitive, pausable systems with a near-infinite MTBF. The internal clock is 
not precisely regular but can operate any number of peripherals just as synchronous MCs can do. 
Logic noise and metastable conditions do not pass through the input and memory registers due to 
the action of C-elements and MDS stages in the DFLOPs. Thus, memory and input registers of 
the EAIC architecture are both “metastability hardened” due to the presence of MDS stages and C-
elements that operate outside the fundamental mode. It is much more difficult to force a C-element 
into a metastable state than in other memory elements. Synchronizer stages and arbiters are not 
required on input signals to MCs even when such inputs compete for access—again the advantage 
afforded the C-elements in memory stages. The internal clock signal of an EAIC MC can be turned 
off (paused) any time an MC is not in use thereby reducing power dissipation. CAD software used 
to optimize D flip-flop designs can be applied to EAIC MCs. Conversion of the EAIC memory  
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Figure 8.12: Cascaded configuration of n -EAIC microcontoller (MC) stages showing possible feed-
back variations between stages, external inputs to each stage, serial and parallel outputs, individual or 
global initialization (RESET), and individual or global internal clock enable (CK-EN).
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elements (DFLOPs) to T and SR memory elements is accomplished via the usual means (see  
Tinder’s text in Endnotes). Thus, counters, shift registers, and other state machine designs can be 
designed by either the EAIC method or by conventional means.

Parallel/serial processing can be achieved by cascading n-EAIC MCs, as that shown in Fig-
ure 8.12. Here, each MC stage can receive inputs from previous stages, from succeeding stages as 
feedback, or from external sources, and outputs can be generated from each stage. Each MC stage 
operates at its own internally generated clock frequency, which can be paused separately at any time 
or paused together with all or any combination of the remaining MCs. The major benefit of such 
a scheme is that it is programmable, highly reliable, and offers versatility not available by other 
schemes. When input data are idle, the internal clock of the MC stages can be turned off indi-
vidually or globally, thereby minimizing power dissipation. Initialization (RESET) of the EAIC 
MC stages can also be done individually or globally. Finally, and most importantly, each MC stage 
shown in Figure 8.12 can be replaced by an MC together with its data path devices to produce a 
series/parallel system of minimicroprocessor (EAIC MM) stages that are fully programmable and 
that can handle complex operations with an extremely high degree of reliability and high speed. In 
all cases, it must be remembered that in a cascaded EAIC system of MCs, there is no single sys-
tem clock that is common to all MCs. Each EAIC MC has its own individual internal clock that 
will normally not be in synch with those produced by other EAIC MCs. However, EAIC designs 
with MDS capability ensure the proper operation of a cascaded EAIC MC system with or without 
EAIC operated data path devices. Thus, clock skew problems become a non-issue.

8.7	 SUMMARY OF THE SALIENT FEATURES OF EAIC SYSTEMS

EAIC systems are essentially delay-insensitive, meaning that the internal clock will pause 
anytime a delay occurs in the input register DFLOPs, or in the DFLOPs of the memory 
(output) register. The internal clock can be deliberately turned off during stand-by peri-
ods.
The internal clock can be used to operate any number of data path devices such as counters, 
shift registers, and other secondary state machines.
EAIC systems are metastably hardened, which raises the MTBF to extremely high val-
ues.
The CAD software ADAM can generate D functions for the design of FSMs suitable for 
use by with EAIC systems.

•  •  •  •

1.

2.

3.

4.
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In Part I of this text, it was made clear that any finite state machine (FSM) designed to operate 
in the fundamental mode must be free of timing defects such as endless cycles, critical races, static 
hazards in the next state (NS) forming logic, and active essential hazards. Normally, the task of rid-
ding the FSM of these defects is not difficult but it can be tedious and does require a considerable 
understanding of the intricacies of asynchronous FSM design methods. The externally asynchro-
nous/internally clocked (EAIC) system, presented in Chapter 8, provides a means of avoiding these 
problems by using an internally generated clock somewhat similar to synchronous FSM design. 
However, the EAIC system cannot be used as a programmable sequencer owing to the mechanism 
required to generate the internal clock. In this chapter, we will consider in detail a versatile and 
highly reliable class of defect-free asynchronous programmable sequencers (APS) that can be cas-
caded to form sequencers of much greater capability—all defect-free. These APS can rightfully be 
classified as true Muller-type systems as defined in Section 1.10.

9.1	 MICROPROGRAMMABLE ASYNCHRONOUS  
CONTROLLER MODULES

Simply put, the downfall of asynchronous designs is the inability of the designer to understand and 
deal with a variety of timing defects that can cause state machine failure. The classical approach to 
asynchronous system design requires that each design be carefully analyzed for a number of tim-
ing defects that may exist and then take whatever corrective action is necessary to eliminate them.  
This is not necessary for a PLD- or RAM-driven cascadable APS system approach as introduced 
here because such safeguards have been built into the programmable sequencers. The use of micro-
programmable asynchronous controller (MAC) modules takes the guesswork out of the design pro-
cess, making it possible for designers less knowledgeable in the intricacies of asynchronous design 

chapter        9

Cascadable Asynchronous  
Programmable Sequencers (CAPS) and 

Time-Shared System Design
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methods to produce reliable clockless APS systems. Cascadable MAC module APS systems can 
be operated under a variety of operating conditions and constraints, and on a time-shared basis, all 
defect-free, including E-hazards—time-, effort-, and expense-saving features.

9.2	 MAC MODULE CHARACTERISTICS FOR USE WITH CAPS 
SYSTEM ARCHITECTURE

The following is a brief summary describing the salient features of the CAPS systems centered 
around MAC modules:

MAC modules can be driven by a bank of PLDs (see Glossary) or by RAM. MAC module 
APS systems can be instantly switched between radically different asynchronous micro-
controllers (AMCs) on a time-shared basis, all defect-free. A deactivate input (DI ) signal 
within the MAC module is used for extensive cycle control but can also be used for con-
nectivity purposes making this APS system highly versatile. A DI signal pulse marks each 
state transition that occurs. The number of individual DI outputs needed depends on the 
number and size of cycle-state FSMs.

1.
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y1 y0 EP OP Se So Reset

DI Te To

SAM

TCM

From interfacing logic

To NS Instruction Logic
if Needed

n

To PLDs

Figure 9.1: Components of an n-input MAC module consisting of a 2n state array machine (SAM) 
and a timing control machine (TCM) and their interconnections.
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Programming a MAC module is easily accomplished manually from a state diagram or 
from a state table and is, therefore, amenable to computer automated design, particularly 
for very large systems. The MAC module architecture has been published and has been 
tested in real time by using a field programmable gate array (FPGA) (see Tinder, Klaus, 
and Snodderley in Endnotes). A variety of state machines have been simulated by us-
ing MAC modules with Muller C-elements as memory. The simulation results for these 
machines show them to be very fast, highly reliable, and all defect-free. E-hazards are not 
possible.
Each MAC module consists of two asynchronous FSMs: a state array machine (SAM) 
and a timing control machine (TCM) in a handshake configuration as shown in Figure 9.1. 
A single n-bit MAC module can be used to produce any state machine of up to 2n states 
with n-way branching capability. Cascading of n-bit modules is an attractive means of  

2.

3.

TABLE 9.1:  Various cascading configurations for MAC modules showing maximum state capacity, 
maximum number of state variables, and out-branching capability

Base  
module  

(n × × m)

Number  
cascaded

Maximum  
state  

capacity

Maximum  
number  
of state  

variables

Out- 
branching  
capability

2 × 2 1 4 = (22)1 2 2

2 × 2 2 16 = (22) 4 4

2 × 2 3 64 = (22)3 6 6

2 × 2 4 256 = (22)4 8 8

2 × 4 1 8 = (2)(1 + 2) 3 3

4 × 4 1 16 = (42)1 4 4

4 × 4 2 256 = (42)2 8 8

4 × 4 3 4096 = (42)3 12 12

2l × 2m × 2n… – 2(l + m + n…) l + m + n… l + m + n…
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producing MAC module APS systems with very large state number capacities all without 
loss of speed or reliability.
MAC modules can be cascaded to produce very large APS systems all without compromis-
ing speed and reliability. For example, cascading three 2n MAC modules produces a MAC 
module of 23n state capability and 3n-way out-branching capability. Table 9.1 illustrates a 
few examples of MAC module cascading configurations
MAC module APSs require logically adjacent state-to-state transitions. Use of cycles 
and buffer states is permitted and is sometimes necessary. Each cycle or buffer state 
transition is strictly controlled by the handshake configuration between the SAM and 
TCM.

4.
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Figure 9.2: Generalized architecture for programming an n-bit MAC module to operate with any 
one of 2k PLDs (ROMs, PLAs, PALs, or CPLDs) by using k-inputs to a PLD select decoder and by 
using 2k, n-inputs to the interfacing logic.
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The general architecture for programming an n-bit MAC module to operate as any one 
of 2k asynchronous state machines or microcontrollers (AMCs) on a time-shared basis is 
shown in Figure 9.2. Here, the driving logic can be any number or combination of PLDs 
such as PLAs, PALs, ROMs, FPGAs, GALs, or CPLDs (see Glossary). A single RAM 
can replace or work in conjunction with the PLDs to produce nearly an unlimited number 
of different AMCs.
Quasi-Muller circuit designs of MAC module APSs are preferred. By designing MAC 
modules with C-elements as memory, use of input arbiters will usually not be necessary. 
Metastability may be a nonissue with properly designed Muller circuits. However, it is not 
clear if any C-element design can render it free of the metastable condition that may result 
when an input to a C-element is withdrawn before the “weak (keeper)” feedback inverter 
has fully responded to the last input change. See Section 3.7 and Chapter 11 for a more 
complete discussion of this subject.

9.3	 C-ELEMENT DESIGN OF A 2 × 2 MAC MODULE
The state diagrams for the 2 × 2 SAM and TCM of a MAC module are given in Figure 9.3. Notice 
in the SAM that all state-to-state transitions are logically adjacent (Hamming distance of one). 
Also note that the inputs I1 and I0 indicate the state variable that changes for any given transition, 
and that the transition enable inputs, To and Te, are indicative of the parity of the origin state. Thus, 
TeI1 indicates that the transition is from an even parity (EP) state and that the state variable of 
weight 21 will change during that transition. An even parity state is one that has an even number 
of 1’s or no 1’s. Obviously, an odd parity (OP) state is one that has an odd number of 1’s. Reset is 
the inactive state of all inputs, meaning Reset = 

−
I1

−
I0 in this case. It is also important to observe that 

the handshake interaction between the SAM and TCM forbid variable pairs To, Te and So, Se from 
becoming active simultaneously.

The NS and output K-maps for the two-input MAC module in Figure 9.3 are shown in  
Figure 9.4. Figure 9.4a and 9.4b shows the Y → SR conversion K-maps using the extended map-
ping algorithm in given in Section 2.1. (Note that the T → S� conversion algorithm cannot be used 
except for one-hot FSM design). The resulting SR K-maps and resulting logic are suitable for the 
C-element design of the MAC module (with the R input complemented), where the minimum 
logic is indicated by shaded loops. From the K-maps in Figure 9.4b and 9.4c, the optimum set of 
NS and output logic expressions for the SAM are given by Eqs. (9.1). Here, Reset = 

−
I1

−
I0, OP =  

y1 ⊕ y0, and EP = y1 ⊕ y0            
_________

 = 
−
OP—. Notice that static hazards are not possible in the NS logic expres-

sions because only one transition enable (Te or To) can be active at any given time—two changing 
variables cannot produce a static hazard.

6.

7.
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S1 = 1 0TeI1 + 1y0ToI1 R1 = y1 0ToI1 + y1y0TeI1

S0 = 1 0TeI0 + y1 0ToI0 R0 = 1y0ToI0 + y1y0TeI0

� � �

� � � �

�

	
(9.1)

	
So = e (I1 + I0)(y1⊕ y0) = e ⋅ Reset ⋅OP� �

___

	
	 Se = o (I1 + I0)(y1 ⊕ y0) = o ⋅ Reset ⋅EP� �

_____ ___
	

The optimized NS and output logic expressions for the TCM are obtained directly from the 
state diagram in Figure 9.3b and from Figure 9.4d and 9.4e, respectively, and are given in Eqs. (9.2). 
Direct reading of the TCM state diagram, to give its NS logic, is possible because So and Se cannot 
be active at the same time and R1 = R0 = Reset are required to return the TCM to the unresolved 
state, 00. Thus, the subscripted variables S1,R1 and S0,R0 are the inputs to the TCM C-elements  
1 and 0, respectively. The prime symbol on TCM state variables, y′1 and y′0, is used to distinguish 
them from the SAM state variables, y1 and y0.

	

S1 = So S0 = Se

R1 = Reset R0 = Reset

To = y1

Te = y0

DI = y1EP + y0OP

= ToEP + TeOP

{ {

	

(9.2)
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Figure 9.3: State diagrams for a two-input (22 state) MAC module. (a) The 2 × 2 state array machine 
(SAM) showing the branching conditions, holding conditions and outputs for even parity (EP) and odd 
parity (OP) states. (b) Timing control machine (TCM).
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The optimum logic circuit for the two-input (four-state) MAC module is shown in Figure  
9.5, where C-elements are used as the memory elements. When C-elements are used as the 
memory, metastability becomes a nonissue except as discussed in Section 3.7. The fact that C- 
elements operate outside of the fundamental mode is important to the reliability of a MAC mod-
ule and to any APS in which it is used. The 2 × 2 MAC module logic in Figure 9.5 has but 
one exclusive OR (XOR) gate to generate the OP signal. This XOR gate can be optimized for 
speed by using a modern CMOS version consisting of only six high-speed transistors (see Tin-
der’s books in Endnotes). Keep in mind that the internal handshake mechanism depends on the 
parity parameters EP and OP, where for an n-input MAC module OP = yn - 1 ⊕ . . . ⊕ y2 ⊕  
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Figure 9.4: NS and output K-maps for the design of a 2 × 2 MAC module. (a) LPD NS K-maps as 
plotted from Figure 9.3a. (b) The Y → SR K-map conversion algorithm in Section 2.1 for the C-element 
design showing minimum cover. (c) Output K-maps showing XOR-type configurations for a minimum 
representation. (d and e) Output K-maps for the TCM.
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y1 ⊕ y0. Thus, the larger the state capacity of the MAC module, the slower will be its state-to-state 
transition response time. Remember that a string of XORed functions requires an XOR tree. As 
will be demonstrated in Section 9.4, two-input MAC modules can be cascaded (according to Table 
9.1) without compromising speed or reliability, a very important design consideration. MAC mod-
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y0(L)

I0  (H)
y1(L)

To(H)
I0  (H)
y1(H)
y0(H)
Te(H)
I0  (H)

Figure 9.5: Optimum NS and output logic diagrams for the C-element design of a two-input (four-
state) MAC module. (a) SAM section implemented from Eqs. (9.1). (b) TCM section implemented 
directly from the state diagram in Figure 9.3b and Eqs. (9.2).
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ules having inputs grater than 2 are unnecessary due to the cascading capability of the two-input 
module.

9.3.1	 Stepwise Operation of the MAC Module
Before applying the MAC module to the design of asynchronous FSMs, let us step through the 
operation of the two-input MAC by using its state diagrams in Figure 9.3. The reader should fol-
low this closely. Begin with the initialization of both SAM and TCM machines into their 00 states. 
In the 00 state, the SAM is in an even parity state, so EP is active, EP(H ) = 1(H ). Also, because 
neither transition enable is activated then To is inactive and �o is active. However, output Se can-
not yet be activated because neither input (I1 or I0) has been activated. One or the other of these 
inputs, but not both, will be activated according to the program table valid for the specific FSM 
to be implemented with the MAC module. Now let us say I1 becomes active. This allows Se to be 
issued by the SAM which, in turn, causes the TCM to transit 00 → 01 issuing Te unconditionally 
in state 01. This permits the SAM to transit 00 → 10 under conditions TeI1, which is now active. 
Remember that a transition enable refers to the state from which the transition originates. Upon 

EP State
yn–1  L  y2 y1y0

SeE if  To (In–1 + L  + I2  + I1 + I0) EP

ResetE  if (In–1 + L  + I2  + I1  + I0)
Te + (I n–1 L    I2 I1 I0)

(In–1)(To) (I2)(To) (I1)(To) (I0)(To)

(In–1)(Te) (I2)(Te) (I1)(Te) (I0)(Te)

OP State
yn–1 L  y2 y1y0

SoE if  Te (In–1   + L  + I2  + I1  + I0) OP

ResetE  if (In–1   + L  + I2  + I1  + I0)
To + (In–1  L    I2 I1 I0)

(In –1)(Te) (I2)(Te) (I1)(Te) (I0)(Te)

(In–1)(To) (I2)(To) (I1)(To) (I0)(To)

Figure 9.6: Generalized transition conditions and outputs for the EP and OP states of a 2n state 
SAM with n-way out-branching.
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arrival of the SAM in state 10, where OP becomes active, the TCM output DI is activated causing 
Reset to be issued by the SAM, which in turn causes the TCM to transit back 01 → 00 deactivating 
Te. Now in state 10, the SAM awaits for the activation of a single input (I1 or I0) before output So 
can be issued. When one of these two inputs becomes active, the SAM will transit to an EP state, 
depending on the particular input that becomes active, and the process begins all over again—an 
orderly, well-defined handshake process.

It is important to remember that each state of the SAM is logically adjacent to all states to 
which it can transit. This fact eliminates any chance that a critical race or output race glitch can oc-
cur. Moreover, it is the programming of the MAC module that permits only one input to be active 
at any given time, thereby eliminating static, function and dynamic hazards from forming in the NS 
logic of the SAM. The generalized transition conditions and outputs for the EP and OP states for 
a 2n state SAM with n-way branching is shown in Figure 9.6.

9.4	 CASCADING THE MAC MODULES
Table 9.1 provides the various cascading possibilities for MAC modules. Shown in Figure 9.7 is an 
example of two 2 × 2 MAC modules that are cascaded (combined) in parallel to produce a 4 × 4 
MAC module. The 4 × 4 MAC module has a 16-state capability with up to four-way branching and 
possesses the same speed and reliability as each of its component 2 × 2 MAC modules. Three 2 ×  
2 MAC modules can be cascaded in parallel to produce a MAC module with a 64-state capacity 
with up to six-way branching capability all without compromising speed and reliability. Alternative 
cascading possibilities are given in Table 9.1 as discussed previously.
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Figure 9.7: (a) Two 2 × 2 MAC modules each with four-state capability and up to two-way branch-
ing. (b) The two 2 × 2 MAC modules in (a) combined to produce a 4 × 4 MAC module with 16-state 
capability and up to four-way branching with no loss of speed or reliability.
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9.5	 PROGRAMMING THE MAC MODULE—FOUR EXAMPLES
We will now give examples of four FSMs that are programmed for implementation by a single 4 ×  
4 MAC module consisting of two cascaded 2 × 2 MAC modules as in Figure 9.7. Each FSM will 
have a state diagram, a program table derived from the state diagram, and the minimum logic as 
obtained from K-maps by using standard mapping procedures. Some of the state diagram represen-
tations will use buffer states to maintain logically adjacent transitions as required by MAC modules. 
Others will require the use of the deactivate inputs (DI) to maintain orderly control of the transi-
tions. Normally, involvement of the DI feature will not be necessary for FSMs whose state-to-state 
transitions are controlled by external inputs. It is the presence of cycle states with no external input 
control that will require the use of the DI feature. Buffer states are not cycle states and do not 
need the use of the DI feature because the transition to a buffer state is controlled by an external  
input.

Shown in Figure 9.8 is the state diagram (a), the PS and NS instructions program table (b), 
and conventional third-order K-maps (c), all for the MAC-0 module design of a 3-bit Gray code 
counter. Notice that none of the state-to-state transitions are controlled by external inputs, which 
makes it necessary to use the DI feature for control purposes. Without the use of the DI feature, this 
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Figure 9.8: Design of the MAC-0 FSM. (a) State diagram for a 3-bit Gray code counter FSM.  
(b) Program table of the 3-bit Gray code counter in (a) as required for implementation by the 4 × 4 
MAC module in Figure 9.7. (c) Optimum XOR logic from the table in (b) suitable for MAC-0 module 
implementation.
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FSM would go out of control much like a multistate oscillator. Recall that as a synchronous FSM, 
this counter would be controlled by the action of a system clock input to three flip-flops.

The optimum XOR-type logic cover is indicated by shaded loops in Figure 9.8c. The opti-
mum results are easily read directly from the K-maps and are given by Eqs. (9.3). In these expres-
sions, the equivalence symbol is given by ⊕

_
 (complement of the XOR symbol). For a review of XOR 

algebra and graphics, see Appendix A.2 and Tinder’s text in Endnotes.

	

I2 = 0( y2 ⊕ y1) I1 = y0(y2 ⊕ y1) I0 = y2 ⊕ y1⊕ y0

CNT = y2 1 0

�

��

	

(9.3)

The optimum logic circuit for the 3-bit Gray code counter is shown in Figure 9.9 in agree-
ment with Eqs. (9.3). The outputs are enabled with NOR gates such that an EN(L) = 1(L) enables 
the output, whereas an EN(L) = 0(L) disables them. Control of output activation in this manner is 
essential to the time-shared multiplexing of different FSMs by using a single MAC module. Note 
that the gate/input tally for the XOR/NAND/NOR circuit in Figure 9.9 is 4/8 (excluding the 
enabling and output logic) as compared to 11/32 for two-level sum-of-product (SOP) logic, again 
excluding the enabling and output logic. Obviously, there is a considerable savings in hardware 
by using XOR-type logic. Note that the deactivate inputs, DI32 and DI10 are necessary for MAC 
module control of the cycle states.

As a second example, consider the FSM in Figure 9.10 that will detect the direction of rota-
tion [counterclockwise (CCW) or clockwise (CW)] of a cylindrical shaft under variable rotational 
speed. This is accomplished by photocell sensing of light beams reflected off the shaft’s end surface, 
half of which has been made a reflecting and half nonreflecting. Thus, the rotational speed of the 
shaft is limited to the response time of the photocells. Shown in Figure 9.10(a) is the MAC-1 
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Figure 9.9: MAC-0 implementation of Eq. (9.3) with XOR/NAND/NOR logic with active low en-
able EN(L) and DI inputs and an active high output, CNT(H ), for use with the 4 × 4 MAC module in 
Figure 9.7b.
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FSM state diagram and inputs as required for detecting the rotational direction of the shaft. Figure  
9.10b shows the program table read directly from the state diagram in Figure 9.10a suitable for use 
with either a 2 × 2 MAC module or the 4 × 4 MAC module given in Figure 9.7b. Note that the in-
put requirements are those needed for the FSM to transit to logically adjacent states with a change 
of only one state variable. For example, in present state 00, an NS instruction of I1 = A� is needed 
to effect the transition 00 → 10 where only state variable y1 changes. Or, in PS 10, a NS instruction 
I0 = � � causes a transition 10 → 11 that takes place with a y0 state variable change. Continuing in 
this manner, the MAC-1 transitions occur strictly controlled by the MAC module, free of all timing 
defects including possible E-hazards.
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Figure 9.10: Design of the MAC-1 FSM required to detect the direction of rotation (CCW or CW) 
of a cylindrical shaft. (a) State diagram and input requirements for the rotation detector having two 
inputs and one output. (b) Program table as required to implement the MAC-1 FSM by using the 4 × 4  
MAC module in Figure 9.7. (c) EV K-maps showing the optimum two-level input and output logic 
suitable for MAC-1 implementation.
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The entered variable (EV) K-maps for the NS instructions, I1 and I0, and the single output 
CCW are given in Figure 9.10c. The optimum two-level logic expressions for the NS instructions 
and output are indicated by shaded loops and are given by Eqs. (9.4) and (9.5), respectively. Also 
given in Eqs. (9.4) are the XOR-type expressions for the two NS instruction parameters, which we 
will use in preference to the two-level logic. The XOR-type expressions in Eqs. (9.4) can be looped 
out directly in maxterm code from their respective K-maps. (See Tinder’s text in Endnotes for K-
map minimization of XOR-type functions.) Note that there are two internally initiated static-1 
hazards in the CCW expression and that they are covered by the two p-terms shown. For a review 
of static hazards in the NS and output logic expressions, refer to Section 3.3.

	
I1 = 1 + y1 = 1A + y1 1 + y1B = y1⊕ A y1 B

I0 = 0 + y0AB = 0 + y0A 0 y0B = ( y0 A) y0 B
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(9.4)

CCW = 1 0 A + 1 y0B + y1 0 + y1y0 + 1AB + y0
Hazard Cover

� � �� � � � A
_
B 	 (9.5)

Implementation of the logic expressions in Eqs. (9.4) and (9.5) is given in Figure 9.11, where 
NOR gates are used for enable NS instruction purposes. The NS instruction inputs, I1 and I0, are 
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Figure 9.11: Logic circuits using the wireless connection feature for the MAC-1 FSM consistent 
with Eqs. (9.4) and (9.5), and suitable to be implemented by the 4 × 4 MAC module shown in Figure 
9.7. (a) NS instruction logic circuit made up of XOR/NOR logic with active low enable EN(L). (b) 
NAND output logic circuit with EN(H ), active low output CCW(L) and showing hazard cover indi-
cated by shaded gates.
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implemented by using exclusively XOR/NOR logic. For a review of mixed-logic XOR and EQV gate  
symbology, see Appendix A.1. Hazard cover in the output CCW is shown as shaded NAND gates.

The third example is that for the MAC-2 FSM featuring a five-state FSM with an additional 
two states used as buffer states to permit logically adjacent transitions as required by MAC module 
implementation. This FSM has two inputs, S and T, controlling the state-to-state transitions and 
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Figure 9.12: Design of the MAC-2 FSM having five primary states and two buffer states, 101 and 
110, as required to prodice logically adjacent transitions. (a) State diagram. (b) Program table obtained 
directly from the state diagram in (a). (c) NS instruction and output K-maps obtained from the program 
table in (b) and showing optimum cover.
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two outputs, P and Q, as shown in the state diagram of Figure 9.12a. The program table for the 
MAC-2 FSM is obtained directly from the state diagram and is presented in Figure 9.12b. From 
the program table, the NS instruction and output functions are plotted in EV K-maps shown in 
Figure 9.12c, where optimum cover is indicated by shaded loops. The NS and output expressions 
for the MAC-2 FSM are extracted from the optimum cover in Figure 9.12c and are presented by 
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with Eqs. (9.6) and suitable to be implemented with the 4 × 4 MAC module given in Figure 9.7. (a) NS 
instruction logic with NAND/AND logic. (b) Output circuits with NAND/AND logic.



caps and time-shared system design  135

0000

0001

0011

0111

0101

1101

1111

1110

1100

1000

0010

0110

0100

XY
Y

X+Y

XY

XY

XY

XY

XY

XY

XY

XY

X

X

Y

X

X

Y

X

Y

XY

XY

XY

XY

XY

XY

XY

XY

Y

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

I
3

I
2

I
1

I
0

XY Y

1

XY

1

XY X

1

XY Y

Y

   

   

   

X XY

X XY

X XY

XYY

SEQ 

SEQ_VALID

1

(b)(a)

XY0 0 0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0 0 0

0

0 X

0

0 00

0 0

0 0 0

0

0

0

0

0

0

0

00

00

0

00

0

PS NS Instructions

MAC-3 Program Table

y
3
y

2
y

1
y

0

Figure 9.14: Design of the MAC-3 FSM, a 10-state sequence recognizer having two inputs control-
ling logically adjacent transitions and one output. (a) State diagram involving three direct buffer states 
and two indirect buffer states. (b) Program table for the PS and NS instruction parameters, and the single 
output.



136  asynchronous sequential machine design and analysis

Eqs. (9.6). Note that static hazards are not possible in the NS instruction functions and none are in
dicated in the output expressions. Implementation of Eqs. (9.6) is given in Figure 9.13, where again 
the wireless connection feature is used to simplify the schematic capture.
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Figure 9.15: NS instruction K-maps for the MAC-3 FSM in Figure 9.14a plotted from the program 
table in Figure 9.14b showing optimum cover indicated by shaded loops.
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As our final example, consider the state diagram and program table for the MAC-3 FSM, 
a 10-state sequence recognizer suitable for implementation by the 4 × 4 MAC module shown in 
Figure 9.7a. The state diagram in Figure 9.14a has two inputs controlling the state transitions and 
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Figure 9.16: Logic circuits using the wireless connection feature representing the four NS instruction 
inputs and the output function SEQ with enable for the MAC FSM-3 in agreement with the K-map 
logic cover given in Figure 9.15 and Eqs. (9.7), and suitable for implementation by using the the 4 × 4 
MAC module in Figure 9.7.
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one output issued in state 1000 at the end of a successful sequence. Any violation of the required 
sequence must return the FSM to the initiation state, 0000, whereupon the FSM automatically 
transits to the first state in the sequence, 0001. Note that three direct buffer states (0010, 0100, 
and 0110) and two indirect buffer states (0101 and 0111) are required to produce logically adjacent 
(reverse parity) transitions given the state assignment shown. By retaining the 0000 initiation state, 
alternative state code assignment schemes are acceptable as long as reverse parity transitions are 
ensured and the FSM is initialized into the 0000 state.

Shown in Figure 9.15 are the EV K-maps for the NS instruction parameters with the opti-
mum cover indicated by shaded loops. Note that there are no shared prime implicants typical for 
MAC module designs. The hardware requirements are significant and perhaps best implemented 
by using a PLD such as a PLA. We will use the optimum two-level SOP logic indicated by shaded 
loops in the K-maps. This logic extracted from the K-maps is presented in Eqs. (9.7) indicating fan-
in requirements from three to six. The output SEQ (sequence valid) in state 1000 is given simply 
by y3�2 making use of the three don’t care states. Note that static hazards are not possible in the NS 
instruction logic because the handshake interaction between the SAM and TCM does not permit 
them to exist.
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9.6	 TIME-SHARED FSM OPERATION BY USING CASCADED 
MAC MODULES

In Figure 9.17, we illustrate how a single 4 × 4 (16-state) MAC module, following the architecture 
of Figure 9.2, can be used to drive four independent, radically different FSMs on a time-shared 
basis all defect-free. These state machines vary in complexity from an eight-state Gray code genera-
tor to a 10-state sequence recognizer. The state diagrams, program tables, and logic circuits for the 
four FSMs are given in Section 9.5, each illustrating something different. They are named MAC-0, 
MAC-1, MAC-2, and MAC-3. For simplicity, these logic circuits, including Figure 9.17, are con-
structed by using the wireless connection feature that is emphasized in this book. Optimum logic 
for each FSM is obtained from EV K-maps following standard mapping procedures. The interfac-
ing logic in Figure 9.17 is necessary to generate I2, I1, and I0 but not I3 because only MAC FSM-3 
requires I3, hence 3I3 = I3. The select inputs to the 2-4 decoder, D0, D1, select which FSM of the 
four is to be activated at any given time and operated by the 4 × 4 MAC module.
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Figure 9.18 illustrates the simulation of the four FSM architecture in Figure 9.17 showing 
the time-shared results for FSMs MAC-0, MAC-1, MAC-3, and MAC-2 presented in that order. 
It is important to note that only for MAC FSM-0 is it necessary to use deactivate inputs, DI32 and 
DI10, for MAC module control because all state-to-state transitions are cycles not controlled by 
external inputs. The remaining three FSMs have state-to-state transitions all controlled by external 
inputs. MAC FSM-2 has two buffer states (101 and 110) and MAC FSM-3 has three buffer states, 
all of which are controlled by external inputs. Thus, one cycle state is acceptable and need not be 
controlled by DIs to the FSM instruction logic. Note that in MAC FSM-3 the primary state 0111 
also serves as a buffer state controlled by the external input �. Obviously, MAC FSM-1 has neither 
buffer nor cycle states. It would not be wrong to use the DI feature for all FSMs, but that would 
be unnecessary and would lead to additional inputs thereby increasing throughput delay. Note that 
the inputs to the four FSMs are continuously present during the entire time-shared operation, but 
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Figure 9.17: Block diagram architecture, consistent with Figure 9.2, used to illustrate the time-
shared operation of four different FSMs, MAC-0, MAC-1, MAC-2, and MAC-3, by using the 4 × 4 
MAC module in Figure 9.7b with master CLEAR (MCL).
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the corresponding outputs are active only when the given FSM is enabled. Remember that all y 
variables can be deactivated anytime during the time-shared operation of the four FSMs by using 
the master CLEAR. It would be more complicated to activate only the y variables to the FSM 
selectively enabled.

The DI(H ) outputs from the 4 × 4 MAC module in Figure 9.17 mark each state-to-state 
transition in a given time-shared operation and are shown in Figure 9.18. As pointed our earlier, 
such DI signals can be used to control system peripherals or other operations as, for example, transi-
tion count and transition time analysis. 

What we have just demonstrated is the use of a MAC module (a cascaded MAC module 
system in this case) to switch instantly from one asynchronous FSM to another radically different 
one on a time-shared basis—all free of timing defects. This is quite remarkable because timing 
defects owned exclusively by asynchronous FSMs are normally considered a major setback to their 
design and operation. Combinational hazards and sequential hazards (essential hazards), which are 
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Figure 9.18: Time-shared simulation of four radically different asynchronous FSMs featured in  
Figure 9.17 all driven by the 4 × 4 MAC module shown in Figure 9.7b as enabled by a 2-4 decoder.
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timing defects with the potential to cause malfunction, are not possible in a MAC module FSM 
design. What this means is that a designer can design and operate any asynchronous FSM and be 
rest assured that it will operate correctly as designed. That is the upside of the MAC approach. The 
downside is that each state-to-state transition must be logically adjacent, a Hamming distance of 
one. This, in turn, may require the use of additional state variables and the insertion of buffer and 
cycle states. But the logically adjacent transition requirement eliminates critical races and output 
race glitches, removing those issues from consideration.

Clearly, use of the MAC module to operate a number of controller FSMs on a time-shared 
basis offers an attractive opportunity to design complex asynchronous systems all free of timing 
defects. By logically combining the appropriate DI and y variable signals from the MAC module, it 
is possible to activate specific data path devices when required for each of the controllers.

•  •  •  •
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Before continuing, the reader should review Chapter 5, which provides the necessary background 
to understand one-hot asynchronous sequencers. In particular, Eqs. (5.1) and the characteristics of 
the one-hot method outlined in Section 5.2 should be thoroughly understood before moving on to 
the more complex subject matter in this chapter.

The one-hot programmable sequencer (A-OPS) enjoys some attractive advantages over the 
microprogrammable asynchronous controller (MAC) module approach discussed in the previous 
chapter. Because of the one-hot coding (one “1” for each state), a timing control machine is not 
needed—no parity detection or deactivation of inputs is required. Furthermore, programming of 
a one-hot sequencer is exceedingly simple because it is only necessary to provide the sequencer 
with the branching condition for each one-hot state-to-state transition as read from a state table 
or state diagram of the finite state machine (FSM) to be designed. Similar to the MAC module, 
the one-hot approach requires a single-state array sequencer machine that can support any number 
of FSMs on a time-shared basis, but only if the FSMs do not exceed the state number limitation 
of the sequencer. Unlike the MAC module sequencer, a one-hot sequencer can support any state-
to-state transition in an FSM provided it is void of cycle conditions, including, in particular, endless 
cycles. Recall that the deactivate inputs DI feature of the MAC module permits cycles to exist and 
be controlled.

10.1	GE NERAL ARCHITECTURE
The generalized architecture for one-hot asynchronous programmable sequencers is shown in Fig-
ure 10.1 and is predictably similar to that for the MAC module given in Figure 9.2. The only differ-
ence is that the 2n state MAC module in Figure 9.2 is replaced by an n-state one-hot sequencer with 
n22k input interfacing logic usually implemented with OR gates. However, there is one important 

chapter        1 0

Asynchronous One-Hot Programmable 
Sequencer Systems
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difference in the manner in which these sequencers are used. One-hot asynchronous sequencers 
cannot be cascaded like MAC modules in Figure 9.7. Thus, only a single one-hot sequence is per-
mitted to operate a given number of FSMs on a time-shared basis, where each FSM is limited to 
the n states of the sequencer.

An inspection of Figure 10.1 indicates that an n-state one-hot sequencer requires specifica-
tion of n2 inputs, one for each branching condition in an n × n state array. As indicated in Figure 
10.2, each jth state of a completely specified n-state one-hot sequencer requires n input branching 
paths, including the required holding condition. This means there exists n-way branching capability 
to and from each state. Thus, for n states, n2 branching conditions must be specified in a one-hot 
sequencer that contains all possible branching paths. For example, a 10-state one-hot sequencer 
requires that 100 branching conditions be specified for a given FSM design, although many of these 
branching conditions are set to logic 0 if their corresponding branching paths do not exist for the 
implementation of a given FSM. Clearly, this is a hardware-intensive design. To avoid costly fan-in 
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Figure 10.1: Generalized architecture for programming an asynchronous n-state one-hot sequencer 
with n2 inputs with feedback y variables to 2k - 1 PLDs.
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delays due to multiple input ORing operations, use can be made of the complementary metal-oxide 
semiconductor (CMOS) NOR gate in Figure 8.2 with active low inputs and with an inverter on 
its output. Such a NOR gate is capable of accommodating up to eight inputs without significant 
throughput delays. For large n-state one-hot sequencers, use of modern programmable logic de-
vices (PLDs) is recommended, preferably programmable logic arrays (PLAs).

An FSM designed via the one-hot method has but a single “1” assigned to each unique state 
of the FSM as mentioned earlier. This makes possible the use of alphabetic or numeric state identi-
fiers such as a, b, c, … or 0, 1, 2, …. Thus, use of state code assignments is not necessary or even 
desirable. The general next state (NS) and output equations for a single one-hot FSM of m states 
are given by Eqs. (5.1). For an n-state A-OPS, there must be n2 branching conditions such that the 
NS equations are represented generally as 

	

Yj =
n− 1

∑
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fij yi
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Terms
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		  (10.1)

with no output Zl expressions required for an A-OPS. In quasi-tensor subscript notation, by using 
the Einstein summation convention, Eq. (10.1) can be written more succinctly as

	
Yj = fij yi + yj j i, j = 0, 1, 2, . . . , n − 1F

_
	 (10.2)

Here, Fj represents the Boolean sum of all y variables to which the jth state transits and F j is the 
complement of that sum. Also, it should be noted that fij ≠ fji, meaning that fj←i ≠ fi←j, that is, 
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Figure 10.2: Generalized transition conditions for the j th state of an n-state one-hot sequencer 
showing n-way branching to and from the j th state.
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the branching condition matrix is asymmetric (not symmetric). The “out of ” term for each NS  
function is a p-term consisting of the uncomplemented state variable for that function ANDed with 
the complement of the remaining state variables. Note that an initialization term �0 �1 �2 �3 … �n-1 
must be combined with a specific Yj in Eq. (10.1) for use with the one-hot-plus-zero approach to 
initialization. This is accomplished by using the factoring and absorptive laws (see Appendix A.2) 
resulting in a reduced p-term consisting of the complement of all state variables exclusive of that 
for the initialization state. Once the one-hot-plus-zero implementation is complete, the sanity cir-
cuit can be used to drive the FSM (to be designed) into the initial one-hot state via the all-zero  
state.

10.2	 DESIGN OF ONE-HOT SEQUENCERS
To illustrate, we design a fully specified four-state one-hot sequencer having the state diagram 
shown in Figure 10.3. Here, initialization into state 0 is accomplished by the one-hot-plus-zero 
method previously described in Section 5.2 and illustrated in Section 5.3. Note that each state re-
quires specification of four branching conditions each represented in the form fij.

Application of Eq. (10.2) to a four-state A-OPS results in the matrix Eq. (10.3) composed 
of the “into” terms and the “out of ” terms as indicated. Notice that the first of the “out of ” terms on 
the right side of Eq. (10.3) results from the factoring and absorptive laws, given in Appendix A.2, 
applied to the sum of the “out of ” and “1-Hot + Zero” terms as required for initialization into the 
“0” state. Thus, y0 �1 �2 �3 + �0 �1 �2 �3 = �1 �2 �3.
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Figure 10.3: State diagram for a four-state 1-hot sequencer that will initialize into the state 0 via the 
one-hot-plus-zero method.
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Expansion of the matrices in Eq. (10.3) results in the equations for the lumped path delay 
design of the asynchronous one-hot sequencer. However, we will use Muller C-elements (Figure 
1.12 or 1.13) in the design of A-OPS machines because C-elements operate outside of the funda-
mental mode. To do this requires that we apply the simple Y → S� algorithm given by Eqs. (5.2) 
and is restated below for the convenience of the reader:

	

Sj = ∑(sum) of all non-yj p-terms in Yj

j = ∑of all yj p-term coefficients in Yj
Y → S Algorithm

R
_ R

_

	

(5.2)

Here, it is seen that the �j function includes the holding condition fjj and the ANDed complements 
of all the present state variables except that for yj. The exception is �0, which is always f00 with the 
application of the one-hot-plus-zero initialization method. By using this conversion algorithm, 
we construct the Sj and �j equations directly from Eq. (10.3) to produce the results given by Eqs. 
(10.4).

	

S0 = f10 y1 + f20 y2 + f30 y3 + 1 2 3

0 = f00
S1 = f01 y0 + f21 y2 + f31y3

1 = f11 + 0 2 3 = f11 + (y0 + y2 + y3)
S2 = f02 y0 + f12 y1 + f32 y3

2 = f22 + 0 1 3 = f22 + (y0 + y1 + y3)
S3 = f03 y0 + f13 y1 + f23 y2

3 = f33 + 0 1 2 = f33 + (y0 + y1 + y2)

� � �

� � �

� � �

� � �

�

�

�

�

	 (10.4)

We can apply the same procedure to the design of any n-state A-OPS. As a second example, 
consider the six-state asynchronous one-hot sequencer fully specified by the state diagram in Figure 
10.4. Here, the 36 branching functions fij are shown together with the Sanity input required for 
the one-hot-plus-zero initialization into the 0 state. As for the four-state diagram, the functions fjj 
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along the leading diagonal of the function matrix represent the holding conditions (six, in this case) 
each of which is one of six “into” branching functions required for a six-state one-hot sequencer.

Applying Eq. (10.2) to the six-state A-OPS results in the matrix Eq. (10.5), where the “into” 
terms consist of a 6 × 6 asymmetric branching function matrix ANDed with a 6 × 1 matrix of  
present-state functions, yi. The first of the “out of ” terms results from combining the y0F j term to 
the one-hot-plus-zero term to give y0 �1 �2 �3 �4 �5 + �0 �1 �2 �3 �4 �5 =  �1 �2 �3 �4 �5 following application of 
the factoring and absorptive laws.
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Figure 10.4: State diagram for a six-state one-hot sequencer showing the 36 branching function and 
the one-hot-plus-zero initialization into state 0.
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(10.5)

The Sj , �j functions in Eqs. (10.6) for a six-state A-OPS derive directly from Eq. (10.5) by 
applying the Y → SR conversion algorithm Eqs. (5.2) previously given. These functions can now be 
used in the design of pseudo-Muller circuits by using C-elements. Initialization into state 0 via the 
000000 state results by connecting Sanity(L) to the CL(L) input inherent in the C-element CMOS 
as indicated in Figures 1.12 and 1.13. Thus, a 1(L) (a low voltage) applied to the CL(L) of all C- 
elements results in the initialization into the “0” state. Sanity circuits have been previously described 
in Section 2.2.1.

	

S0 = f10y1 + f20y2 + f30y3 + f40y4 + f50y5 + y1 + y2 + y3 + y4 + y5
R0 = f00
S1 = f01y0 + f21y2 + f31y3 + f41y4 + f51y5

1 = f11 + y0 + y2 + y3 + y4 + y5
S2 = f02y0 + f12y1 + f32y3 + f42y4 + f52y5

2 = f22 + y0 + y1 + y3 + y4 + y5

3 = f03y0 + f13y1 + f23y2 + f43y4 + f53y5

3 = f33 + y0 + y1 + y2 + y4 + y5
S4 = f04y0 + f14y1 + f24y2 + f34y3 + f54y5

4 = f44 + y0 + y1 + y2 + y3 + y5
S5 = f05y0 + f15y1 + f25y25 + f35y3 + f45y4

5 = f55 + y0 + y1 + y2 + y3 + y4

__

R
__

R
__

R
__

R
__

R
__

S

	

(10.6)

Shown in Figure 10.5 is the C-element implementation of the six-state A-OPS as derived 
from Eqs. (10.6). Note that the wireless connection feature is used as emphasized in this text. Also 
observe that NAND/NOR logic is used including the use of both normal and complementary C-
elements given in Figures 1.12 and 1.13, respectively. The A-OPS is initialized into state 0 via the 
all zero state 000000 following the activation of the a Sanity circuit input, SAN(L) = CL(L) = 1(L). 
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Before the six-state A-OPS is made ready to receive the instruction logic for the time sharing of 
FSMs, the Sanity circuit must be deactivated, 1(L) → 0(L), and the holding condition for state 0, 
f00, must be activated f 00 (H ) → 1(H ) and then deactivated. Once stably in state 0, the A-OPS is 
ready to receive the logic instructions to implement any number of FSMs (e.g., controllers) provid-
ing each FSM does not exceed the six-state maximum requirement and is void of all cycle condi-
tions. Having met these requirements, each FSM can be operated on a time-shared basis free of all 
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Figure 10.5: Simulator macro logic circuit using the wireless connection feature for the six-state  
A-OPS shown in Figure 10.4 and derived from Eq. (10.6) as required for implementation with 
Muller C-elements.
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timing defects. Recall that E-hazards can be activated only if specifically placed delays exceeding 
a minimum magnitude are present as discussed in Section 5.4. Elimination of E-hazards is easily 
accomplished by using feedback delays.

10.3	 TIME-SHARED MULTIPLE FSM OPERATION  
BY A SINGLE A-OPS

We will now design three radically different FSMs to be operated via the six-state A-OPS shown 
in Figure 10.5. To do this, we will follow the generalized architecture given in Figure 10.1 with the 
PLDs being replaced by three FSMs. Each FSM would, of course, be limited to six states, which is 
the state limit of the A-OPS. As a necessary requirement, each FSM must be free of cycle and buf-
fer states and, therefore, must have a holding condition for each state. It will be recalled that in the 
design of one-hot FSMs, state code assignments are unnecessary and are conveniently replaced by 
state identifiers, numeric or alphabetic. Each FSM will be initialized into the zero state by using the 
one-hot plus zero method. Also, following the emphasis of this text, C-elements will be exclusively 
used as the memory elements of choice. Because there must be n2 branching conditions specified for 
an n-state A-OPS, there will be 36 branching conditions required to be specified for this six-state 
A-OPS. The three FSMs will be separately activated by enable inputs 0EN, 1EN, and 2EN, which 
are the outputs from a 2-4 decoder—a time-sharing operation. Each FSM will be represented by an 
EXL-Sim macro (See Instructional Support Software on p. xiii).
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Figure 10.6: Design of a six-state FSM, named A-OPS FSM-0, to be implemented by using the 
six-state A-OPS in Figures 10.4 and 10.5. (a) Fully documented state diagram. (b) NS instructions de
rived directly from the state diagram. (c) Output logic with enable 0EN.
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The first of the three FSMs, to be operated by the six-state A-OPS, is named A-OPS FSM-0  
and is defined by the state diagram in Figure 10.6a. It has six states, two input conditions, A and B, 
and four outputs, 0P, 0Q, 0R, and 0S, where the zero is used to identify these outputs as belonging 
to FSM-0. The NS instructions and output logic are easily derived directly from the state diagram 
and are presented in parts (b) and (c) of Figure 10.6. Shown in Figure 10.7 is the macro logic circuit 
for this FSM generated by the simulator used in this text, EXL-Sim, and briefly discussed on p. xiii. 
Note that a wireless connection feature is used so as to avoid unnecessary detail.

The second FSM, to be designed for and operated by the six-state A-OPS is named A-OPS 
FSM-1. It is represented by the fully documented state table in Figure 10.8a. Recall from Section 
1.7 that a state table is nothing more than a tabular representation of a state diagram. It is particu-
larly useful in computer-aided design of FSMs.

The NS instructions and output logic are easily extracted directly from the state table and are 
given in Figure 10.8(b). This FSM has five states, two inputs (S and T ), and two outputs (1P and 
1Q), identifying them as belonging to FSM-1. The EXL-Sim macro logic circuit for this FSM is 
given in Figure 10.9, which again makes use of the wireless connection feature.

The third FSM designed for and operated via the six-state A-OPS is represented by the 
fully documented state diagram in Figure 10.10a and is given the name A-OPS FSM-2. It has six 
states, two external inputs X and Y, and two outputs, 2P and 2Q, where the 2’s are added to identify 
these outputs as belonging to FSM-2. The NS instructions and output logic for A-OPS opera-
tion are obtained directly from the state diagram and are given in Figure 10.10b and 10.10c. The  
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Figure 10.7: Simulator macro logic circuit using the wireless connection feature for the FSM named 
A-OPS FSM-0 derived from Figure 10.6 and to be implemented by using the A-OPS in Figure 
10.5.
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Figure 10.9: Simulator macro logic circuit using the wireless connection feature for the FSM A-OPS 
FSM-1 derived from Figure 10.8 and to be implemented by using the six-state A-OPS in Figure 10.5.
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EXL-Sim macro logic circuit for the NS instructions and output logic is given in Figure 10.11. As 
with the other logic circuits, a wireless connection feature is used for simplicity.

Note that not all of the branching conditions given in the state diagrams or state table of the 
three FSMs previously described are represented in their respective macro logic circuits. Only one 
of the branching conditions for a given set of inputs need be represented in the FSM’s macro logic 
circuit. For example, there are four branching paths associated with input conditions AB in the state 
diagram of Figure 10.6. We have chosen only the first branching condition 0f21 to represent the 
other three, thereby minimizing the logic necessary for that particular macro logic circuit.

Finally, following the generalized A-OPS logic circuit in Figure 10.1, we present in Figure 
10.12 the simulator logic circuit for operating the three FSMs on a time-shared basis via the six-
state A-OPS. Here, FSM-0, FSM-1, and FSM-2 are all represented as macros together with the 
macros for the six-state A-OPS and the 2-4 decoder. The interfacing logic is presented by using 27 
three-input OR gates but only for the minimum set of branching conditions taken from the logic 
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Figure 10.10: Design of a six-state FSM named A-OPS FSM-2 to be implemented by using the 
six-state A-OPS in Figures 10.4 and 10.5. (a) Fully documented state diagram. (b) NS instructions.  
(c) Output logic with enable 2EN.
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Figure 10.11: Simulator macro logic circuit using the wireless connection feature for the FSM  
A-OPS FSM-2 derived from Figure 10.10 and to be implemented by using the six-state A-OPS in 
Figure 10.5.

circuits for these FSMs. Obviously, not all of the 36 possible branching paths in the six-state A-OPS  
of Figure 10.4 are needed for operation of the three FSMs. In fact, there are nine branching paths 
left unused so that each must be given a forced 0(H ) input to the six-state A-OPS macro as shown— 
no input must ever be left dangling. The 2-4 decoder has inputs I0(H ) and I1(H ) used to select 
one of the three enables 0EN(L), 1EN(L), or 2EN(L) for operating any one of the three respective 
FSMs on a time-shared basis. A CL(L) signal from a SANITY circuit initializes to 0(H ) the six 
y-variable outputs from the six-state A-OPS, and initializes to 0(L) the three outputs from the 2-4  
decoder.

The mixed-logic simulation of the macro logic circuit in Figure 10.12 is shown in Figure 
10.13. In this simulation, three radically different FSMs are operated on a time-shared basis by use 
of the six-state A-OPS given in Figures 10.4 and 10.5. To do this, a 2-4 decoder serves to enable 
one of the three FSMs to be operated independently of the other two. Note that all external inputs, 
A, B, S, T, X, Y, are continuously active throughout the simulation, but only those inputs to an en-
abled FSM produce the required y variables and external outputs. Each active FSM operates free of 
endless cycles, critical races, output race glitches, and static hazards. Recall that the internally initi-
ated static hazards formed in the NS functions are automatically covered by the required holding 
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Figure 10.12: Simulator macro logic circuit demonstrating the time-shared operation of three radi-
cally different FSMs by using an asynchronous one-hot sequencer and the wireless connection fea-
ture. (a) Macros for FSM-0, FSM-1 and FSM-2 defined in Figures 10.6–10.11. (b) Interface logic 
as required by the architecture in Figure 10.1. (c) Macro for the six-state A-OPS in Figure 10.5.  
(d) The 2-4 decoder used to enable in turn any one of the three FSMs on a time-shared basis.
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condition for each state. Essential hazards are possible, but remain only as potential timing defects 
unless unintended delays exceeding minimum values occur in specific locations within the circuit. 
Essential hazards in one-hot FSMs always occur via ANDing race gates and are highly predictable 
but easily eliminated as discussed in Section 5.4.

We have opted to simulate only three FSMs via the A-OPS system. Actually, any number of 
the FSMs can be operated with a suitable A-OPS but the FSMs are each limited to the maximum 
number of states established by the A-OPS. The FSMs can themselves be asynchronous system 
controllers or discrete FSMs. Also, FSMs can be a mixture of both synchronous and asynchronous 
machines (one-hot designs permit this).

Note in Figure 10.13 that we have chosen to use a CL(L) pulse at each decoder enable to 
demonstrate that this as an alternative to not using the CL(L) pulse as in Figure 9.18. Either simu-
lation operates perfectly regardless of whether such a pulse is used. However, it does eliminate any 
possible minute bleed-over of the state variables and outputs during the transitions between FSMs 
as can be seen in Figure 9.18 although barely detectable.
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Figure 10.13: Simulation of Figure 10.12 showing the sequential behavior of three radically different 
FSMs defined in Figures 10.6−10.11 on a time-shared basis and operated by using the six-state A-OPS 
given in Figure 10.5.
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10.4	 A-OPS SOFTWARE CAPABILITIES USED IN THIS TEXT
The A-OPS CAD software used in this text has the following capabilities. (Note that reference to 
Muller designs implies the use of C-elements in quasi-Muller circuits.):

A-OPS software is applicable to systems up to 12 states. A 12-state A-OPS requires 144 
inputs.
It can generate a p-term table in the Berkeley format for Muller or Huffman A-OPS 
designs. These p-term tables are suitable for programming PLAs or programmable array 
logics (PALs) directly but can be altered to program most any complex PLD.
It can generate the VHSIC hardware description language (VHDL) code for C-element 
designs of quasi-Muller circuits.
It can generate the VHDL code for any Huffman A-OPS design.
It can generate all the essential hazard (E-hazard) paths and their corresponding ANDing 
race gates making corrective action easy to eliminate any E-hazard formation.

For the sake of completeness, three sample A-OPS CAD software files are included below 
showing different output representations for the six-state A-OPS kernel used in this section. The 
sample CAD software output tables are as follows: Table A-OPS 1 gives the PLA/PAL p-term 
program table in Berkeley format for a Huffman circuit design; Table A-OPS 2 presents the same 
information in VHDL code; Table A-OPS 3 provides the S, � VHDL code for a Muller circuit 
design using C-elements.

1.

2.

3.

4.
5.

Table A-OPS 1:  PLA/PAL P-term program table in Berkeley format for the  
6-state A-ops kernel

.i 43

.o 6

.ilb y5 y4 y3 y2 y1 y0 f55 f45 f35 f25 f15 f05 f54 f44 f34 f24 f14 f04 

f53 f43 f33 f23 f13 f03 f52 f42 f32 f22 f12 f02 f51 f41 f31 f21 f11 f01 

f50 f40 f30 f20 f10 f00 sanity

.ob Y5 Y4 Y3 Y2 Y1 Y0

.p 43

-----1-----------------------------------10 000001

----1-----------------------------------1-0 000001

---1-----------------------------------1--0 000001
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Table A-OPS 1:  (Continued )

-1-----------------------------------1----0 000001

--1-----------------------------------1---0 000001

1-----------------------------------1-----0 000001

000001------------------------------------0 000001

-----1-----------------------------1------0 000010

----1-----------------------------1-------0 000010

---1-----------------------------1--------0 000010

--1-----------------------------1---------0 000010

-1-----------------------------1----------0 000010

1-----------------------------1-----------0 000010

000010------------------------------------0 000010

-----1-----------------1------------------0 001000

----1-----------------1-------------------0 001000

---1-----------------1--------------------0 001000

--1-----------------1---------------------0 001000

-1-----------------1----------------------0 001000

1-----------------1-----------------------0 001000

000100------------------------------------0 000100

-----1-----------------1------------------0 001000

----1-----------------1-------------------0 001000

---1-----------------1--------------------0 001000

--1-----------------1---------------------0 001000

-1-----------------1----------------------0 001000

1-----------------1-----------------------0 001000

010000------------------------------------0 010000

-----1-----1------------------------------0 100000

----1-----1-------------------------------0 100000

---1-----1--------------------------------0 100000

--1-----1---------------------------------0 100000

-1-----1----------------------------------0 100000

1-----1-----------------------------------0 100000
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Table A-OPS 1:  (Continued )

100000------------------------------------0 100000

000000------------------------------------0 000001

.e

Table A-OPS 2:  VHDL code for the six-state a-OPS kernel as required for Huffman  
circuit designs

-- Computer generated VHDL file for a 6 states Async. One-Hot Kernel

-- Kernel with Y output design

-- A-OPS Computer Aided Design Tool

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity kernel is

	 port(

		  f5, f4, f3, f2, f1, f0 : in std_logic_vector(5 downto 0);

		  sanity: in std_logic;

		  Y_O : out std_logic_vector(5 downto 0)

	 );

end entity;

architecture structure of kernel is

	 signal y, y_l: std_logic_vector(5 downto 0);

	 -- Delay definitions

		  constant tAND	 :time := 3 ns;

		  constant tOR	:time := 3 ns;

		  constant tNOT	 :time := 1 ns;

begin

	 -- Internal inverted feedback.

	 y_l <= not(y) after tNOT;
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Table A-OPS 2:  (Continued )

	 y(0) <= ( (f0(0) and y(0)) or (f1(0) and y(1)) or (f2(0) and 

y(2)) or (f3(0) and y(3)) or (f4(0) and y(4)) or (f5(0) and y(5)) 

or (y(0) and y_l(1) and y_l(2) and y_l(3) and y_l(4) and y_l(5)) or 

(y_l(0) and y_l(1) and y_l(2) and y_l(3) and y_l(4) and y_l(5))) and 

sanity after (tAND+4 ns + tOR);

	 y(1) <= ( (f0(1) and y(0)) or (f1(1) and y(1)) or (f2(1) and 

y(2)) or (f3(1) and y(3)) or (f4(1) and y(4)) or (f5(1) and y(5)) or 

(y_l(0) and y(1) and y_l(2) and y_l(3) and y_l(4) and y_l(5))) and 

sanity after (tAND+4 ns + tOR);

	 y(2) <= ( (f0(2) and y(0)) or (f1(2) and y(1)) or (f2(2) and 

y(2)) or (f3(2) and y(3)) or (f4(2) and y(4)) or (f5(2) and y(5)) or 

(y_l(0) and y_l(1) and y(2) and y_l(3) and y_l(4) and y_l(5))) and 

sanity after (tAND+4 ns + tOR);

	 y(3) <= ( (f0(3) and y(0)) or (f1(3) and y(1)) or (f2(3) and 

y(2)) or (f3(3) and y(3)) or (f4(3) and y(4)) or (f5(3) and y(5)) or 

(y_l(0) and y_l(1) and y_l(2) and y(3) and y_l(4) and y_l(5))) and 

sanity after (tAND+4 ns + tOR);

	 y(4) <= ( (f0(4) and y(0)) or (f1(4) and y(1)) or (f2(4) and 

y(2)) or (f3(4) and y(3)) or (f4(4) and y(4)) or (f5(4) and y(5)) or 

(y_l(0) and y_l(1) and y_l(2) and y_l(3) and y(4) and y_l(5))) and 

sanity after (tAND+4 ns + tOR);

	 y(5) <= ( (f0(5) and y(0)) or (f1(5) and y(1)) or (f2(5) and 

y(2)) or (f3(5) and y(3)) or (f4(5) and y(4)) or (f5(5) and y(5)) or 

(y_l(0) and y_l(1) and y_l(2) and y_l(3) and y_l(4) and y(5))) and 

sanity after (tAND+4 ns + tOR);

	 Y_O <= y;      -- Update output signal with internal feedback.

end structure;
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Table A-OPS 3:  VHDL code for the six-state A-OPS kernel as required  
for quasi-Muller circuit designs using C-elements

-- Computer generated VHDL file for a 6 states Async. One-Hot Kernel

-- Kernel with SR output for C-element design

-- A-OPS Computer Aided Design Tool

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity kernel is

	 port(

		  f5, f4, f3, f2, f1, f0 : in std_logic_vector(5 downto 0);

		  sanity: in std_logic;

		  y : in std_logic_vector(5 downto 0);

		  S_O : out std_logic_vector(5 downto 0);

		  nR_O : out std_logic_vector(5 downto 0)

	 );

end entity;

architecture structure of kernel is

	 signal y_l: std_logic_vector(5 downto 0);

	 -- Delay definitions

		  constant tAND	 :time := 3 ns;

		  constant tOR	:time := 3 ns;

		  constant tNOT	 :time := 1 ns;

begin

	 -- Internal inverted feedback.

	 y_l <= not(y) after tNOT;
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Table A-OPS 3:  (Continued )

	 S_O(0) <= ( (f1(0) and y(1)) or (f2(0) and y(2)) or (f3(0) and 

y(3)) or (f4(0) and y(4)) or (f5(0) and y(5))) and not(sanity);

	 S_O(1) <= ( (f0(1) and y(0)) or (f2(1) and y(2)) or (f3(1) and 

y(3)) or (f4(1) and y(4)) or (f5(1) and y(5))) and not(sanity);

	 S_O(2) <= ( (f0(2) and y(0)) or (f1(2) and y(1)) or (f3(2) and 

y(3)) or (f4(2) and y(4)) or (f5(2) and y(5))) and not(sanity);

	 S_O(3) <= ( (f0(3) and y(0)) or (f1(3) and y(1)) or (f2(3) and 

y(2)) or (f4(3) and y(4)) or (f5(3) and y(5))) and not(sanity);

	 S_O(4) <= ( (f0(4) and y(0)) or (f1(4) and y(1)) or (f2(4) and 

y(2)) or (f3(4) and y(3)) or (f5(4) and y(5))) and not(sanity);

	 S_O(5) <= ( (f0(5) and y(0)) or (f1(5) and y(1)) or (f2(5) and 

y(2)) or (f3(5) and y(3)) or (f4(5) and y(4))) and not(sanity);

	 nR_O(0) <= ( (f0(0) or (y_l(1) and y_l(2) and y_l(3) and y_l(4) 

and y_l(5)) and not(sanity);

	 nR_O(1) <= ( (f1(1) or (y_l(0) and y_l(2) and y_l(3) and y_l(4) 

and y_l(5)) and not(sanity);

	 nR_O(2) <= ( (f2(2) or (y_l(0) and y_l(1) and y_l(3) and y_l(4) 

and y_l(5)) and not(sanity);

	 nR_O(3) <= ( (f3(3) or (y_l(0) and y_l(1) and y_l(2) and y_l(4) 

and y_l(5)) and not(sanity);

	 nR_O(4) <= ( (f4(4) or (y_l(0) and y_l(1) and y_l(2) and y_l(3) 

and y_l(5)) and not(sanity);

	 nR_O(5) <= ( (f5(5) or (y_l(0) and y_l(1) and y_l(2) and y_l(3) 

and y_l(4)) and not(sanity);

end structure;

•  •  •  •
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The main function of an arbiter is to protect a system from competing inputs. Thus, when two 
or more inputs are competing for access to a given system, it is the function of an arbiter to ar-
bitrate and grant first access to only one of the competing inputs. This is especially important 
in Huffman circuits that operate in the fundamental mode. It is for this reason that we opt to 
design quasi-Muller circuits by using C-elements in the design of most asynchronous sequential 
circuits including arbiters. C-elements operate outside the fundamental mode, thereby minimizing 
the probability of metastability developing in a given circuit as discussed in Sections 3.7. Use of a 
metastable detection stage (MDS) in an arbiter is a necessary function to ensure that the signals issued 
from a metastable condition resolve into either a clean set or reset. This is discussed in Section 8.4. 
In general, arbiter modules are two-input asynchronous machines but can be combined to accom-
modate multiple inputs of three or more. We will select a few representative but different arbiters to 
illustrate the arbitration operation.

11.1	 BUS ARBITER MODULE
Many applications of the pulse mode approach to asynchronous finite state machine (FSM) design, 
discussed in Chapter 6, are prohibited because of overlapping input waveforms. This is a severely 
limiting requirement of pulse mode FSMs, where nonoverlapping input pulses are mandatory. The 
bus arbiter module is ideally suited to meet this requirement. A bus arbiter arbitrates two request 
inputs on a first-in/first-out basis but grants access to the second request only after the first request 
goes inactive (is withdrawn). If both request inputs arrive simultaneously, the mutual exclusion (ME) 
character of the bus arbiter must arbitrate access to only one request input at a time—a formidable 
task considering that metastability may also become a factor. The use of C-elements and a metasta-
bility detection stage in the design of the bus arbiter help to significantly mitigate this problem. It is 
true that the MDS also has an inherent ME feature that we combine as a single stage designated as 
metastable detection/mutual exclusion (MD/ME) stage.

Shown in Figure 11.1 are the state diagrams, output logic, logic circuit, and circuit symbol 
for the C-element design of the bus arbiter. Included is the MD/ME stage following Section 8.4, 
whose function it is to detect and eliminate any metastable condition developed in either C-element 

chapter        1 1

Arbiter Modules
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and to issue a clean set or clean reset to only one output grant signal at a time. The design converts 
overlapping requests, R1, R2, to a nonoverlapping grant signal G1 or G2 on the basis of the arbitra-
tion and mutually exclusivity function of the arbiter. The results are clean mutually exclusive and 
minimally separated grant output pulses suitable for use in pulse mode design applications.

The simulation of the bus arbiter shown in Figure 11.1 is given in Figure 11.2. Here, the 
primary function of the bus arbiter module is clearly indicated by the output responses to a given 
random set of input pulses some of which are overlapping. For the propagation delays set for the 
various components of the circuit, the grant pulses (G1, G2) are minimally separated by the delay 
through an inverter. Also, any individual, discrete R pulse (see simulation >300 ns) strong enough 
to cross the switching threshold, will generate a grant pulse that is never less than the path delay of 
an inverter. Notice that the function R0(L) goes active anytime both grant pulses are simultaneously 
inactive. Thus, R0(L) pulses are indicative of the number of grant pulses that have been issued, a 
useful design parameter for some applications. Finally, observe that when CL(L) is active no grant 
pulse will be issued even as the request input signals continue.
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Figure 11.1: Design of the bus arbiter module. (a) State diagrams and output logic for the two C-
elements. (b) Logic circuit using the wireless connection feature for C-elements with active low outputs 
and the MD/ME stage discussed in Section 8.4. (c) Circuit symbol.
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11.2	 MULTIPLE INPUT BUS ARBITERS
Typically, non-handshake arbiter modules have two request inputs and two grant outputs, and can 
vary considerably in design form and function. The bus arbiter, discussed in Section 11.1, is a typi-
cal example of a two-input/two-output arbiter. As we shall see, such arbiters can be combined with 
rendezvous modules (RMODs) to yield multiple input arbiter configurations. Thus, in this section, 
we will limit our discussion to multiple input bus arbiters. However, we do recognize that there are 
alternative designs for multiple input arbiters. We will focus our attention on two very different 
examples in succeeding chapters.

To arbitrate n-inputs to a protected system requires Nn arbiters taken q at a time as given by 
Eq. (11.1), which requires n C-elements (RMODs), each with (n − 1) inputs. For bus arbiters q = 
2 (inputs).

	
Nn =

n!
q!(n − q)!

= No. of arbiters 	 (11.1)

As used in arbiters, a C-element is called an RMOD.
A three-input bus arbiter requires Nn = 3!/2!(3-2)! = 3 arbiters each with (n - 1) = 2 inputs 

and three 2-input RMODs. Shown in Figure 11.3 are the block diagram and the circuit symbol 
for such an arbiter. As stated earlier, this arbiter operates on a first-in/first-out basis, but thereafter 
prioritizes the grant output selection following withdrawal of the first request. Further grant output 
selection is by priority following withdrawal of the two previous requests.

The simulation of this three-input bus arbiter is shown in Figure 11.4 following a CL(L) 
signal change 1(L) → 0(L). Note the random overlapping input request signals and the result-
ing discrete nonoverlapping grant output signals that reveal the required first-in/first-out priority 
grant-select behavior. Activation of the CL(L) to 1(L) removes all output grant signals while allow-
ing the input request signals to remain.
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Figure 11.2: EXL-Sim simulation of the bus arbiter logic circuit in Figure 11.1b showing the basic 
operation of the bus arbiter together with the effect of a CLEAR (CL).
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A variety of multiple input bus arbiters are possible by following Eq. (11.1). Listed in Table 
11.1 are six possibilities ranging from three to eight inputs showing the number of arbiters, RMODs, 
and RMOD inputs required for each. For example a four-input arbiter, numbered 3, 2, 1, 0, would 
require six arbiters to be connected in the following pairs—32, 31, 30, 21, 20, and 10—requiring 
four RMODs each with three inputs. To accommodate the application of three or more RMODs 
requires use of C-element trees as indicated in Figure 11.5a, 11.5b, and 11.5c. At some point, say 
more than four inputs, it might be advantageous to use the generalized hybrid form in Figure 11.5d 
or the complementary metal-oxide semiconductor alternative to (d) in Figure 11.5e.

A short exercise: Discuss whether the generalized C-element in Figure 11.5e can be used to 
implement any one of the p-terms in Eqs. (9.7). Support your answer by an example using mixed-
logic notation in Figure 11.5e.
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RX RY
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GX GY

RX RY
CL

GX GY

RX RY
CL

CL(L)
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C1 C2 C3

R2(H) R3(H)R1(H)
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CL(L)
3-Input

Bus Arbiter

(a) (b)

Figure 11.3: (a) Three-input bus arbiter with CLEAR by using C-element RMODs. (b) Circuit 
symbol.
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Figure 11.4: Simulation of the logic circuit for the three-input bus arbiter in Figure 11.3 showing the 
first-in/first-out priority grant-select behavior of the arbiter and the effect of CLEAR.
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TABLE 11.1:  Requirements for multiple input arbiters with q = 2 by using Eq. (11.1).

Inputs, n Arbiters, Nn No. of RMODs RMOD Inputs

3   3 3 2

4   6 4 3

5 10 5 4

6 15 6 5

7 21 7 6

8 28 8 7

A1

A2

A3

GX

CL CL

CL

GX
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A4
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A3

A4

A5

(a) (b)

(c)

An–1(H)

A1(H)
A0(H)

GX(H)

CL(L)

(d)

+VDD

CL

GX

An–1

A0

A1

(e)

Figure 11.5: RMODs for use with multiple-input arbiters. (a) Asymmetric three-input C-element 
tree. (b) Symmetric four-input C-element tree. (c) Asymmetric five-input C-element tree. (d) General-
ized hybrid NOR/INV RMOD . (e) Generalized CMOS alternative to the hybrid form in (d).
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11.3	 PRIORITY STAND-ALONE ARBITERS
Arbiters that have a fixed number of allowed inputs and cannot be combined to increase the number 
of its inputs are called stand-alone arbiters. Shown in Figure 11.6a is the state diagram for a three-
input stand-alone arbiter. The entered variable (EV) K-maps and optimum cover for the LPD 
design of this arbiter are given in Figure 11.6b, from which Eqs. (11.2) results. Here, we use the  
Y → SR conversion algorithm because the state diagram in Figure 11.6a is interpreted as having a 
one-hot state code assignment. The C-element logic circuit in Figure 11.6c derives from Eqs. (11.2) 
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Figure 11.6: Design of the three-input stand-alone priority arbiter . (a) Fully documented state dia-
gram for minimum input and output logic. (b) NS K-maps. (c) C-element Logic circuits using the wire-
less connection feature for simplicity and following Eqs. (11.2) for the Y→ S, R conversion algorithm 
given by Eqs. (5.2).
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and is initialized into the 000 state by using the CL(L) input to the C-elements—no need for the 
one-hot-plus-zero method.

	

Y2 = �1 �0r r3 2 1 + y2r3 → S2 = �1 �0r3 2 1 �2 = r3

Y1 = �2 �0 r2 1 + y1r2 → S1 = �2 �0r2 1 �1 = r2

Y0 = �2 �1r1 + �0r1 → S0 = �2 �1r1 �0 = r1

g1 = y0 g2 = y1 g3 = y2

_
r
_

r
_

r
_

r
_

r
_

	

(11.2)

The simulation of the stand-alone priority arbiter in Figure 11.6 is shown in Figure 11.7 with and 
without overlapping input request waveforms. It is easy to see that the operation of this arbiter fol-
lows the requirements established by the state diagram in Figure 11.6a. Hence, note that the output 
grant signals, gi = yi, never overlap, making this arbiter suitable for use with pulse mode circuit 
designs.

11.4	H ANDSHAKE ARBITERS WITH ACKNOWLEDGMENT 
(DONE) SIGNALS

Figure 11.8 shows the state diagrams, and the C-element implementation for the handshake arbiter 
module with an MD/ME stage. This arbiter module is the most versatile of all the arbiter modules. 
For example, it can be used as bus arbiter module by setting DX (H ) = D Y (H ) = 0(H ) = 1(L). Or 
with each Grant signal connected to its corresponding Done input, it can be combined with other 
such arbiter modules to produce a multiple-input bus arbiter as in Figure 11.3. Furthermore, the 
Done signals can be delivered back to the handshake arbiter modules from different parts of the cir-
cuit the arbiter is protecting. Finally, as will be demonstrated in Section 11.4, the handshake arbiter 
module together with Trans-HI and Trans-LO modules will be used in a rotating token arbiter. It 
is important to consider that in all these different usages of the handshake arbiter module, ME, and 
metastability protection is guaranteed by virtue of the MD/ME stages. This fact becomes impor-
tant when it is remembered that C-elements operate outside the fundamental mode but can still go 
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Figure 11.7: Simulation of the three-input stant-alone priority arbiter circuit in Figure 11.6c show-
ing its basic operation as designed with C-elements.
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metastable as discussed in Section 3.7. Also, refer to Section 8.4 for a discussion of the MDS. There, 
we show how MDS detects metastability and protects its outputs from passing on that metastability 
to the inputs of any FSM or combinational logic stage to which the arbiter’s output are connected. 
For this system, the mean time between failures (MTBF) can be raised to extremely high values, 
but not to infinity.

The state diagrams in Figure 11.8a are those representing the normal C-element shown in 
Figure 1.12. However, the C-elements in the logic circuit of Figure 11.8c are complementary but 
used as normal C-elements with activation levels for QX (L) and QY (L) matching those of the C- 
elements. For a better understanding of what was done here and for the various alternative C-ele-
ment configurations available for use, refer to Figure 2.2. 

The simulation of the handshake arbiter module is presented in Figure 11.9. Here, the de-
pendence of the Grant outputs are seen to depend on the random set of Done signals received from 
the protected system following a random set of Request signals from the source system. Generally, a 
given Request will be granted on a first-in/first-out basis, but only if its corresponding Done signal 
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Figure 11.8: Design of the handshake arbiter module. (a) State diagrams and output logic for the two 
C-elements. (b) Circuit symbol. (c) Logic circuit with request and done (acknowledgement) inputs and  
grant outputs and highlighting the MD/ME stage that accommodates a master CLEAR.
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is low 0(H ) or goes low after the Request has been issued from the source. However, once a request 
has been granted, the corresponding Done signal can go active 1(H ) without affecting the Grant 
signal that was previously granted. If the two Request signals go active at the same time each with 
low Done signals, then arbitration must select one and grant the request. If a Done signal is then 
issued for the selected Request, the other Request will be granted as shown in Figure 11.9.

11.5	 ROTATING TOKEN ARBITERS
We present here an unusual multiple input arbiter that is characterized by a rotating signal, called 
a token. This arbiter is used to arbitrate on the basis of this token signal but with some interest-
ing characteristics. The rotating token arbiter module uses the handshake arbiter in Figure 11.8 
as its center but combines with Trans-HI and Trans-LO modules also known as transparent D-
Latches—the word “Trans” means Transparent because the data D input transfers through the latch 
when CK is active high (H) or active low (L), respectively. Before moving on to the arbiter module 
architecture, it is useful to define the Trans-Hi and Trans-LO modules. Shown in Figure 11.10a 
and 11.10b are the state diagrams and EV K-maps for these two modules. The K-maps are plot-
ted by using the excitation table in Figure 1.14d for the combined basic SR cells and following 
the mapping algorithm given in Section 1.6. The minimum cover is indicated by the shaded loops 
with the results provided to the right of each K-map. The same result would have been obtained 
by first mapping using the lumped path delay (LPD) model for the y variables and then convert-
ing to the SR by using the Y → SR map conversion algorithm in Section 2.1. The C-element logic 
circuits and circuit symbols are shown in Figure 11.10c and 11.10d for the Trans-HI and Trans-LO  
modules.

Simulation of the Trans-HI and Trans-LO modules is provided in Figure 11.11. Here, rising 
edge triggering, falling edge triggering, and the transparent character are each is shown. Remember 
that the waveform for CK(L) is the logic inverse of that for CK(H ). Thus, the reader should men-
tally invert the CK(L) waveform to confirm that it indeed produces falling edge triggering. In short, 
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Figure 11.9: Simulation of the handshake arbiter circuit in Figure 11.8 showing the dependence of 
the Grant outputs on random Done (acknowledgment) inputs received from the protected system fol-
lowing a given Request from the source system.
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Figure 11.10: C-element design of the Trans-HI and Trans-LO modules. (a and b) State diagram, 
SR K-maps and SR logic for the Trans-HI and Trans-LO modules. (c and d) Logic circuit and circuit 
symbol for the Trans-HI and Trans-LO modules.
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Figure 11.11: Simulation of the Trans-HI and Trans-LO modules in Figure 11.10 showing 0 → 1 
transitions and transparency of Q(H ) when CK(H ) or CK(L) are active.



Arbiter Modules  175

if the D input to these modules is presented to the Trans-HI or Trans-LO module at the time CK 
is active, it will be directly transferred to the output. Otherwise, the D input must be clocked to the 
output on a 0 → 1 transition of CK(H ) or CK(L).

The block diagram logic circuit for the rotating token arbiter module is given in Figure 11.12(a) 
with its circuit symbol provided in Figure 11.12(b). The operation of the rotating token arbiter fol-
lows that of the handshake described in Section 11.3 but with the inclusion of the Trans-HI and 
Trans-LO modules and XOR gate. Basically, an active Grant signal GX(H ) is issued following a 
request RX(H ) provided that Dx(H ) is inactive (0(H )), and that Tin and Tout are of opposite activa-
tion levels. This, in turn, causes the CK(H ) to the Trans-HI module to go active , if only briefly, 
thereby issuing a GX(H ) output. The reader should follow the simulation of Figure 11.12 presented 
in Figure 11.13.

In Figure 11.14, the rotating token arbiter module is used in a series configuration of the 
first four stages in an n-stage (hence, n-input) rotating token arbiter, where the Done signal inputs 
originate from any desirable part of the protected system or systems. The rotating token is initi-
ated by a START ⊕ Tn +1 signal from the XOR gate. A three-stage simulation of the rotating token 
arbiter is given in Figure 11.15, where the Done signals have been purposely delayed by different 
amounts to produce a more realistic simulation. Note that the rotating token Ti signals are paused 
intermittently due to the manner in which the Done signals are received by the arbiter. As a result, 
some of the Request signals fail to produce a Grant output. In fact, any Grant output Gi(H ) can be 
selectively made inactive by holding a Done signal Di(H ) = 1(H ) = 0(L) for some arbitrary time but 
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Figure 11.12: Design of the rotating token arbiter module by using the handshake arbiter and Trans-
HI and Trans-LO modules. (a) Logic circuit. (b) Circuit symbol.
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only prior to the rising edge of the Ri(H ) Request input. For comparison purposes, another simu-
lation of this three-stage arbiter in provided in Figure 11.16 where, in this case, the Grant signal 
for each stage is fed back into the Done input of that stage without delay and with no significant 
pauses in the rotating token signals. Thus, Di(H ) = Gi(H ), where every Request signal produces a 
Grant signal of similar duration but delayed to an extent depending on the relative position of the 
rotating token.

11.6	 APPLICATIONS
Having read the contents of this chapter, the reader should be left with the impression that a multi-
tude of arbiter applications are available to the logic designer, actually too many to discuss in detail 
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Figure 11.13: Simulation of the rotating token arbiter module in Figure 11.12 showing the Request, 
Done and Grant relationships with the Done (acknowledgement) signal.
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given the limited space provided in the text. In this section, we will touch on some applications 
of the rotating token arbiter and then present in some detail an important application of the bus 
arbiters.

One interesting application of the rotating token arbiter concept is to activate and coordinate 
the outputs from different FSMs. In this way, outputs of one FSM could be issued conditional on 

Figure 11.15: Simulation of the three stages of the rotating token arbiter in Figure 11.14 showing 
the dependence of the Grant signals on the Requests, Done acknowledgements and the rotating token 
signals.
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Figure 11.16: For comparison with Figure 11.15, a simulation of Figure 11.14 is made with the same 
Request and Done signals but now with the Grant signals of each stage connected to the Done input of 
that stage.

40.00 ns 80.00 ns 120.00 ns 160.00 ns 200.00 ns 240.00 ns 280.00 ns 320.00 ns 360.00 ns 400.00 ns

CL(L)

START(H)

R1(H)

R2(H)

R3(H)

G1(H)

G2(H)

G3(H)

T1(H)

T2(H)

T3(H)

T4(H)

Names

D1(H)

D2(H)

D3(H)



178  asynchronous sequential machine design and analysis

the Done signals from another FSM. Clearly, each Request input to a given FSM must correspond 
to the Grant signal from that FSM, but regulated by a Done signal from the same or from some 
other FSM. Multiple Grant outputs from each FSM could be issued dependently or independently 
of the Done signals issued by the rotating token arbiters of other FSMs. A type of pipelining opera-
tion can be obtained if the Grant outputs are fed into the Request inputs of the succeeding stages 
with or without outputs to the external world. An array of rotating token arbiters with the appropri-
ate Request, Grant, and Done signal interconnects could conceivably be used in complex pipelining 
operations. The master CLEAR signal for each rotating token arbiter can be used to pause the en-
tire arbiter operation at any time. Alternatively, any individual Done signal can be used to selectively 
deactivate its respective Grant output for some predetermined period. Furthermore, the START 
signal for each arbiter in the array can be used to arrest the rotating token for that arbiter leaving 
only the Request and Done signals active. Overall, the possibilities here are nearly unlimited. Again, 
keep in mind that each rotating token arbiter module is designed with a built-in metastable detec-
tion system. If a metastable condition should occur within one of the arbiter stages, its operation 
would pause until the metastable condition is resolved to a clean set or reset.

The pulse mode approach offers a simple and reliable means of designing asynchronous FSMs 
free of the many timing defects uniquely owned by clock-independent systems. The characteristics 

T2(H) T1(H)

y2(H)
X(H)

y2(H)
Y(H)

y1(H)
y0(H)
Y(H)

y1(H)
X(H)

2
CL

Q

Q

y2(H)

y2(L)
T2(H) 1

CL

Q

Q
T1(H)

y1(H)

y1(L)
0
CL

Q

Q
T0(H)

y0(H)

y0(L)

T0(H)

Y(H)
y2(H)

y0(H)

X(H)

OPNVLT(L)

CL(L) CL(L) CL(L)

Bus
Arbiter

CL(L)

RX(H)

Y(H)

RY(H)

X(H)

Figure 11.17: (a) The pulse-mode 2-bit digital combinational lock in Figures 6.6 and 6.7 now config-
ured with the bus arbiter of Figure 11.1 used to convert overlapping input waveforms to nonoverlapping 
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of the pulse mode approach are detailed in Section 6.1.1. From this, it is clear that the one impor-
tant drawback to designing in the pulse mode is the severe limitation of having discrete nonoverlap-
ping data input signals. Use of the bus arbiter is ideally suited to overcoming this limitation. Shown 
in Figure 11.17 is the logic circuit for the design of the pulse-mode 2-bit digital combinational lock 
of Figures 6.6 and 6.7, but now with its two inputs taken from the bus arbiter featured in Figure 
11.1 and simulated in Figure 11.2.

Simulation of the pulse mode digital combinational lock in Figure 11.17 is shown in Figure 
11.18. Note the transitions from overlapping pulses to discrete nonoverlapping pulses. Although 
some of the edges of these transitions appear to be very close, they are actually separated by an in-
verter path delay. Further separation is easily produced by logic with larger path delays or by insert-
ing delays within the bus arbiter. A simple means of introducing delays is to place pairs of inverters 
in the appropriate places. The obvious place for such delays in the bus arbiter is on the Grant output 
lines.

•  •  •  •
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Figure 11.18: Simulation of the pulse-mode 2-bit combinational lock in Figures 6.6 and 6.7 by using 
the bus arbiter in Figure 11.1 to deal with overlapping input waveforms.
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A.1	 MIXED-LOGIC GATE SYMBOLOGY AND  
CONJUGATE GATE FORMS

NAND Gate

NOR Gate

AND Gate

OR Gate

AND
Function

OR
Function

(b)(a)

Buffer

(H) � (H) (L) � (L)

EQV
Gate

(d)

or or

XOR
Gate

(c)

oror

XOR gate performing the XOR operation XOR gate performing the EQV operation

EQV gate performing the EQV operationEQV gate performing the XOR operation

Inverter

Logic level conversion and buffer symbols

(H) � (L) (L) � (H)

Figure a.1: Summary of conjugate mixed logic gate symbols. (a) Logic level conversion and buf-
fer symbols. (b) AND and OR gate symbology. (c) and (d) XOR and EQV gate symbology and logic  
operations.

appendix         a

Brief Reviews



182  asynchronous sequential machine design and analysis

A.2	 AND/OR LAWS AND THE EQV/XOR LAWS OF BOOLEAN 
ALGEBRA (DUAL RELATIONS)

(Note: Symbols  =⊕ both represent equivalence, EQV)
Associative laws

(X ⋅ Y ) ⋅ Z = X ⋅ (Y ⋅Z ) = X ⋅ Y ⋅ Z

(X + Y ) + Z = X + (Y +Z ) = X + Y +Z 	
(A.1)

(X Y ) Z = X (Y Z ) = X Y Z

(X ⊕ Y ) ⊕ Z = X ⊕ (Y ⊕Z ) = X ⊕Y ⊕Z

� � � � � �

Commutative laws

X ⋅ Y ⋅ Z = X ⋅ Z ⋅ Y = Z ⋅ X ⋅ Y = · · ·

X + Y + Z = X + Z + Y = Z + X + Y = · · · 		
			 
	 X Y Z = X Z Y = Z X Y = ⋅ ⋅ ⋅

X ⊕ Y ⊕ Z = X ⊕Z ⊕ Y = Z ⊕X ⊕ Y = ⋅ ⋅ ⋅

� � � � � � 		
(A.2)

Distributive laws

	

Factoringlaw
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(X + Y ) (X +Z ) = X + (Y Z )� �

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

	
 (A.3)

Absorptive laws

	

X ⋅ ( + Y ) = X ⋅ Y

X + ( ⋅ Y ) = X + Y

X ⋅ ( ⊕ Y ) = X ⋅ Y

X + ( Y ) = X + Y�

�

�

�

� 	
 (A.4)

Consensus laws

XY + Z + ( YZ) = ( XY +    Z)

(X + Y )( + Z)(Y + Z) = ( X + Y )( + Z)

� �

� �

	

XY ⊕ Z + (YZ) = (XY ⊕ Z )

(X + Y ) ( +Z)(Y +Z) = (X + Y ) ( +Z)

� �

� �

�� � �

	

(A.5)
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DeMorgan’s laws (complementation)

	

�
X ·Y = +

X + Y = ·

� �
X ⊕Y = ⊕ = X ⊕ Y

X ⊕ Y = ⊕ = X ⊕ Y

�
� �

� �

��

� �
	 (A.6)

A.3	E NTERED VARIABLE K-MAP COMPRESSION  
AND MINIMIZATION 

As a first example, consider the conventional 1’s and 0’s K-map and function Y expressed as the 
sum of minterms in Figure A.2a. Next, compress function Y into a second-order K-map with A as 
the entered variable (EV), and extract minimum cover as in Figure A.2b. Next, compress function 
Y into a first-order K-map (with EVs A and C ) in Figure A.2c and extract minimum cover with  
A ⊕ C = A� + �C. Notice the OPIs in Figure A.2c.

A.3.1	 Incompletely Specified Functions
φ = don’t care and can be taken as either a logic 0 or logic 1, take your choice. A don’t care function, 
say φX, represents an incompletely specified function or one that is nonessential. Any function α ANDed 

Useful Identities

AND/OR laws XOR/EQV laws

X ⋅ 0 = 0 � ⊕
 
Y = X

 
⊕

 
� = X

 
⊕

 
Y           

_____ 
= �

 
⊕
_
 �

 
= X ⊕

_
 Y

X ⋅ 1 = X �

 
⊕
_ 

Y = X
 
⊕
_ 
� = X

 
⊕
_ 

Y           
_____ 

= �
 
⊕ �

 
= X⊕Y 

X ⋅ X = X X ⊕
_
 X

_
 = X ⊕

_
 X = 1

X ⋅ � = 0 X ⊕
_
 � = X ⊕ X = 0

X + 0 = X X ⊕ 1 = �
 

X + 1 = 1 X ⊕ 0 = X

X + X = X X ⊕
_

 1 = X
 

X ⋅ � = 1 X ⊕
_

 0 = �

X ⊕ Y ≡ X � + � Y                X ⊕
_

 Y ≡ � ⋅ � + X ⋅ Y

For functions α and β: If α ⋅ β = 0 then α ⊕ β = α + β.

For functions α and β: If α + β = 1 then α⊕ β = α ⋅ β.
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with φ, hence φα, means that function α is nonessential and can be used in K-map minimization as 
either 0 × a = 0 or 1 × a = a as needed. See Glossary.

Rules to remember
Use incompletely specified functions in K-map minimization so as to achieve optimum logic cover 
by following three rules.

Treat the don’t care (φ) as an EV, which it is because it can be taken as a logic 0, a logic 1, 
or an input. Remember: Use it if you can; otherwise, ignore it.
In simplifying incompletely specified functions, simplify by applying the absorptive laws:

	
X + φ = X + φ and X ⋅ (φ + ) = φX� � 	 (A.7)

where now X + φ can be taken as X or 1 depending on its best usage. The term φX can be 
taken as either an X or a 0. Note: Functions of the type X + φ have an essential sum-of-
products component, X or 1. What about functions of the type φ X ?

3.	 Terms such as φ (X + Y ) often occur. This means that (X + Y ) is nonessential. To use such 
terms effectively, simplify using the factoring law as

	 φ (X + Y ) = φX + φY 	 (A.8)

then choose how best to use, or not to use, this result in a K-map minimization operation.
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Figure A.2: (a) Conventional third-order K-map for function Y. (b) First-order compression in a 
second-order EV K-map with entered variable A showing minimum cover for Y. (c) Second-order com-
pression in a first-order EV K-map with A and C as EVs and showing use of the adjacent XOR pattern 
in (b) to give the alternative minimum cover in (c) together with diagonal XOR pattern in the first order 
conventional submaps for A and C in the B domains.
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Example
Given the following incompletely specified function represented in Minterm code (see  

Glossary):

	
F (A,B,C,D) = ∑m (3, 6, 9, 10, 11) + φ (0 1, 4, 7, 8) 	 (A.9)

To obtain an optimum cover for function F, first compress it into a third-order K-map in A, B, and 
C with EV D, then into a first-order K-map in A with EVs B and D as in Figure A.3. For a first-
order compression, count by 2’s in the minterm code of Eq. (A.9) beginning with (0,1) and enter 
the results into first-order submaps. Then enter each submap result into the third-order K-map as 
in Figure A.3a.
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See Fig. 2 .1 as  another
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Figure A.3: Minimization of the function F in Eq. (A.9). (a) First-order compression in A, B and 
C with entered variable D, and showing four first-order sub-maps with minterm code numbers corre-
sponding to those in Eq. (A.9). (b) Third-order compression in A with EVs B and D showing minimum 
cover indicated by the shaded loops (independent of input C ).
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Chapter 1
1.1	 Invert the state code assignments in the three-state finite state machine (FSM) given in 

Figure 1.6a and do the following:
(a)  Construct the state table for this FSM with the altered state code assignments.
(b) � Construct the second-order entered variable (EV) K-maps for next state (NS) vari-

ables Y1 and Y0, and for output Z.
(c) � Loop out a minimum cover from these K-maps. Partial answer : Y0 = A� + y1� + 

y0A.
(d) � Construct the logic circuit from the results of (c) exclusive of fictitious memory  

elements.

Chapter 2
2.1  �(a) � Repeat Problem  1.1(b) with the altered state code assignments and use the  K-map 

conversion algorithm for S1, R1 and S0, R0 as given in Section 2.1.
(b)  Loop out a minimum cover from these K-maps. Partial answer : S1 = A, R0 = �B.
(c) � Construct the logic circuit assuming the use of normal C-elements with CL(L) and 

simulate the result by initializing into state 00.
(d) � Construct the logic circuit assuming the use of Set dominant basic cells as the mem-

ory and simulate the result by initializing into state 11.
(e) � Do the simulation results of (c) and (d) compare? Explain.
(f )  Compare the results of part (b) with those of Eqs. (2.1). What do you conclude?

2.2	 Redesign both basic cells in Figures 1.8 and 1.9 by using C-elements. Simulate and com-
pare the results with those in Figure 1.10. Partial answer : RC-element = �R for set-domi-
nated basic cell.

Chapter 3
3.1	 The state diagram in Figure 11.10a is that for a Trans-HI module otherwise known as an 

RET transparent D-latch.

End-of-Chapter Problems

appendix         b
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(a) � Design this FSM by using the lumped path delay (LPD) model and sum-of-products 
(SOP) logic. Show that it contains an externally initiated static-1 hazard, indicate 
how it is formed and give its required hazard cover.

(b)  Simulate this LPD circuit with and without the hazard cover.
3.2  Shown in Figure B.1 is the state diagram of an FSM to be analyzed for static hazards.

(a) � Design this FSM by using the LPD model by obtaining the NS SOP expres-
sions for Y1 and Y0. Show that this FSM contains an internally initiated static 
hazard. Show how this hazard is formed and find its hazard cover. Partial answer :  
Y1 = �0 �B + y1 B + y1 �0.

(b)  Simulate this FSM with and without the hazard cover.
(c) � By using the Y → SR K-map conversion algorithm described in Section 2.1, obtain  

the Set–Reset (SR) logic required for implementation of a nested C-element or nested 
cell design. Determine whether this SR design contains a static hazard.

3.3  The FSM in Figure 3.10 contains an output race glitch (ORG) but no static hazard.
(a)  Explain how this ORG can form.
(b) � Correct the state diagram so as to make the formation of an ORG impossible. (Hint: 

The transition from 11 to 00 must pass through two states.)
(c) � Redesign this FSM for the LPD model and use the Y → SR conversion algorithm to 

obtain the SR logic suitable for a C-element design. Compare these results with those 
of Eqs. (3.3).

(d)  Check for static hazards in the new results of (c) and if they exist, eliminate them.
(e) � Simulate the results of part (c) to prove that it follows the corrected state diagram of 

(b).

A+B

AB

A

A

A

B

B

AB
a

b

c

d

00

10

11

01 AB

Figure B.1: An FSM to be analyzed for static hazards.
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3.4	 Shown in Figure B.2 is a four-state FSM that contains a critical race. If the critical race is 
not eliminated, it can cause the FSM to malfunction.
(a)  Explain how the critical race can form and under what conditions.
(b)  Correct the state diagram in Figure B.2 to show that the critical race is not possible.
(c) � With the corrected state diagram of part (b), design this FSM by using the LPD 

model followed by the Y → SR conversion algorithm in Section 2.1 to obtain the SR 
logic suitable for using C-elements as the memory.

(d)  Simulate the results of (c) and verify that it follows the corrected state diagram.
3.5	 Shown in Figure B.3 is an FSM that has both a potential essential hazard (E-hazard) and 

a potential d-trio. (Note: This is an advanced exercise requiring a complete understanding 
of Section 3.6.)
(a) � By using the LPD model, find the NS functions, Y1 and Y0, and note that there are 

no static hazards present.
(b) � Read Section 3.6 carefully, then run a complete E-hazard and d-trio analysis on this 

FSM. To do this, follow Section 3.6.1 and the example in Section 3.6.2. Find the 

AB
A8B

AB

AB

ABA

B
B

B

ZE if A

00 01 11 10
a b c d

A

Figure B.2: State diagram of an FSM that possesses a critical race that must be eliminated.
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A
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B

B

a

b

c

d

00

01

11

10

AB

ZE

Figure B.3: An FSM that contains an E-hazard and a d-trio
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input initiation requirements, the initiator input, and the first and second invariants 
for each. Determine the direct and indirect paths for E-hazard and d-trio formation, 
their race gates (ANDing or ORing), and the minimum delays, ∆tE and ∆tD, required 
to activate each, respectively.

(c) � Repeat parts (a) and (b) for an SR C-element design of this FSM by using the Y → 
SR conversion algorithm in Section 2.1.

(d)  Test the LPD and SR results of (a)–(c) by simulation with and without ∆tE and ∆tD.

Chapter 4
4.1	 The FSM in Figure 3.10 is to be designed by using the single time transition (STT) array 

algebraic approach. To do this, use the alphabetic state identifiers, follow Sections 4.1 and 
4.2, and do the following:
(a)  Construct the state table from the state diagram for this FSM.
(b) � Find the π- and τ-partitions, and the state matrix S and the destination matrix D. 

Partial answer : π1 = a,bc = τ1.
(c)  From the results of (b) find the function matrix FNS and the state functions Y1 and Y0. 
Partial answer : Y0 = y0 � + y1 � + �B. (Hint: There is an externally initiated static hazard in 
Y1.) Compare these results with those of Eqs. (3.3). What do you conclude?
(d) � Following a similar procedure as in (b) and (c), find the output logic for Z and show 

that no ORG exists. Note that this result is not the same as in Eq. (3.6). In what way 
do these results differ and has the sense of the sequential nature of this FSM been 
altered by the STT approach? Explain.

(e) � Will an E-hazard analysis of the STT results differ from those given in Section 3.6.2? 
Explain.

4.2	 Shown in Figure B.4 is a five-state, two-input and three-output FSM that is to be designed 
via the STT array algebraic method. The state diagram and state table for this FSM are 
given in parts (a) and (b). Note that the state table is unfolded in Gray code as has been the 
practice up to this point.

Given in Figure B.5 are the π- and τ-partitions, one possible state assignment matrix 
S, which are derived from Figure B.4, and the state assignment map, which is presented 
as a fourth-order EV K-map. Now, by following the example in Section 4.2, complete the 
design of this FSM by doing the following:
(a)  Obtain the destination matrix from the state table in Figure B.4.
(b)  Determine from Figure B.5 and Section 4.2 how many valid S matrices are possible.
(c) � From the results of (a), find the function matrix FNS making use of the state assign-

ment map in Figure B.5c to determine that e = y4, bc = �1y0, d = y1y0, abcde = 1, among 
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others. Now, find the NS functions for Y4, Y3, Y2, Y1, Y0. Use the laws of Boolean 
algebra to simplify the expressions wherever possible. Check for static hazards and 
eliminate any that exist. Partial answer : Y1 = � � + y1 � + y1 y0 �.
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Figure B.4: A five-state, two-input, three-output FSM to be design by using the STT array algebraic 
method. (a) State diagram. (b) State table derived from (a) laid out in Gray code.
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(d)  Determine the outputs W, X, and Z, and again simplify wherever possible.
(e) � Study the state diagram in Figure B.4 and determine how many E-hazard paths sat-

isfy the minimum requirements given in Section 3.6.1. Give the path for each includ-
ing their initiating input conditions and race gates (ANDing or ORing). Hint: There 
are more than four E-hazard paths.

4.3	 Design the FSM in Figure B.4 by using the CAD program ADAM. To do this, review 
Section 4.4 and carefully read the Readme.doc that accompanies the software. Remember 
that the state table must be unfolded in binary not in Gray code and it must not include the 
output functions. Three separate tables are required for the three outputs. Use a .txt editor 
for both the input file and the batch file. (Note: This is an advanced exercise requiring a 
complete understanding of the ADAM software.)
(a) � Run ADAM and find the π- and τ-partitions, the state assignment matrix, the desti-

nation matrix. Also find the cubes for the NS functions Y4, Y3, Y2, Y1, Y0, and for the 
SR equations as required for a C-element design. Lastly, find the p-term table in the 
Berkeley format for a PLA design of this FSM.

(b)  Check for static hazards and eliminate any that exist in the LPD results.
(c) � Discuss the inherent differences between the “pencil-and-paper” FSM design in 

Problem 4.2 and that of the ADAM-CAD design of this problem (4.3). In particular, 
discuss the relative use of shared PIs by these two approaches.

Chapter 5
5.1	 In Figure B.6a is a four-state asynchronous FSM, which has two inputs, X and Y, and two 

outputs, P and Q, that is to be designed via the one-hot-plus-zero method. After reading 
Sections 5.1 and 5.2, follow the design example in Section 5.3 and do the following:
(a) � Write directly from the state diagram the NS and output expressions assuming that 

the FSM has been initialized into the 0000 state by the one-hot-plus-zero method. 
Simplify the expression for Ya by applying the factoring and absorptive laws. Partial 
answers: Yb = bX � + b� Y + a� Y + d� Y + b� �  and P = b� + c� Y.

(b) � From the results of (a), construct the logic circuit assuming the LPD model. Use the 
wireless connection feature wherever convenient. Note that static hazards are not pos-
sible in properly designed one-hot FSMs.

(c) � Simulate this FSM and confirm that each one-hot state-to-state transition must pass 
through a state having two 1’s—one “1” for the initial state and the other “1” for the 
destination state.

(d) � Read Section 5.4 and analyze any E-hazards this FSM may have. (Hint: There are two, 
assuming that X

_
Y → XY

_ 
in state b is not permitted, since it can create a function hazard.)
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5.2	 Repeat parts (a) and (b) of Problem 5.1 for the six-state asynchronous FSM in Figure B.6b, 
but now use the one-hot Y → S R conversion algorithm in Section 5.2 to design with C- 
elements. Partial answers: Sa = b� � + f AB + � � �  � f

_
;  Rd = � + � + �

 
 = ABe.

(a) � Simulate the C-element design of this FSM and confirm that the state diagram in 
Figure B.6b is followed.

(b) � Determine how many potential E-hazards in this FSM satisfy the minimum require-
ments for E-hazard formation and give the initiating conditions for each. For ex-
ample, an input change of AB → A� in state a causes the transition a → c → b → d. 
(Hint: There are more than nine E-hazards.)

Chapter 6
6.1	 Design the FSM in Figure B.7a as a pulse mode machine by using falling edge-triggered 

(FET) toggle modules as the memory. To do this, first read Sections 6.1, 6.2, and 6.3.
(a) � By using the “T” excitation table in Figure 6.5, plot the two second-order K-maps 

with EVs X and Y, then extract minimum cover for the two NS functions T1 and T0, 
and for the output Z.
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Figure B.6: Two asynchronous FSMs that are to be designed by using the one-hot-plus-zero method. 
(a) A four-state FSM with two inputs and two outputs. (b) A six-state FSM with two inputs and four 
outputs.
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(b) � Construct the logic circuit by using FET toggle modules as the memory following 
Figures. 6.3 and 6.4. The use of toggle module macros is highly recommended.

(c) � Simulate the circuit and verify that it conforms to the state diagram in Figure B.7a.
6.2	 Repeat parts (a), (b), and (c) for the design of the pulse-mode FSM in Figure B.7b. To do 

this in part (a), plot three third-order NS K-maps and two output K-maps with EVs X and 
Y. Now complete parts (b) and (c) as in Problem 6.1.

Chapter 7
7.1	 A logic circuit is represented by three NS functions and two output functions given below 

that have been read directly from the logic circuit. Analyze this FSM by doing the follow-
ing with help from Sections 7.1 and 7.2.

Y2 = y2�� + A�

Y1 = y1�� + �B + y1 y0 AB

Y0 = y2�� + �B + y0 AB + A�

X = y2�� + y1 y0AB

Z = y1�� + y1 y0AB
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figure B.7: Two FSMs to be design in the pulse mode by using toggle modules. (a) A four-state 
sequence recognizer with two inputs and one output. (b) A six-state FSM with two inputs and two  
outputs.
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(a) � Plot the third-order EV K-maps for the NS and output functions, then construct the 
PS/NS table from which the state diagram can be constructed. Identify all don’t care 
states that exist and show their branching relationship with the primary state routine. 
Follow Figure 7.6 in this regard.

(b) � What kind of FSM is this, based on what has been covered so far in this text? Indicate 
how this FSM should be initialized.

(c) � By using the state diagram, check for the presence of endless cycles, critical races, 
ORGs, and static hazards. If any of these timing defects are present, show how they 
can be eliminated. Thus, if static hazards are present, provide the correct hazard cover 
to eliminate them. (Hint: There are six externally initiated static-1 hazards in this 
FSM.)

(d) � Run an E-hazard analysis and identify any potential E-hazards or d-trios that may 
exist.

7.2	 The NS and output function for an asynchronous FSM shown below are read directly from 
a pulse mode circuit. From this information, construct the state diagram for this FSM and 
analyze it.

               
T2 = �2 �1 y0Y + y2 X T1 = �2 y1X + y0Y T0 = �2 y1X + �2 y1Y + y2 �0Y + y2 �1Y + �0X

P = y1X + �2 �1y0 Q = y2 y1Y

(a) � Map these NS and output functions into third-order EV K-maps and perform the  
T → Y K-map conversion given in Section 7.1, part 2b. Note that this conversion  
follows the XOR relation for T → Y giving Y = y ⊕ T = �T + y�.

(b) � From the results of (a), construct the PS/NS table and the state diagram for this FSM. 
Verify that it satisfies the requirements for a pulse mode FSM and note any problems 
it may have. Indicate how the FSM should be initialized.

(c) � Can endless cycles, critical races, ORGs, static hazards or E-hazards occur in this 
pulse mode FSM? Explain.

7.3	 The NS and output functions below are those for an FSM design by the one-hot-plus-zero 
method by using C-elements as the memory.

Sa = e�T + � �� �

Sb = a�� + c��

Sc = bST + dST

Sd = �T

Se = bS� + cS� + d�

�a = S + T + �

�b = �� +

� c = T + � �

�d = �T + � �

� e = S + � + �

P = eS�

Q = d�T + eS + b

�� �

b
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Analyze this FSM by doing the following:
(a) � Carry out the reverse conversion S�

 
→ Y, then use the Y functions directly to con-

struct the state diagram. It will be helpful to consult Sections 5.1, 5.2, 5.3, and 7.4 
before starting on part (a). Partial answer: Yb = a� � + c� � + b� � + b� �  � .

(b)  Simulate this FSM to show that it conforms to the state diagram.
(c) � Follow Section 7.4 and run an E-hazard analysis on this FSM by giving the E- 

hazard paths, initiating conditions, initiator input, first and second y-variable invari-
ants, direct and indirect paths, race gates (ANDing or ORing), and the minimum 
path delays required to activate each E-hazard.

Chapter 8
8.1	 The four-state FSM in Figure B.8a is a simple sequence recognizer having two inputs  

and a single output. Design this FSM by using the externally asynchronous/internally 
clocked system (EAIC) method. To accomplish this, do the following:
(a) � Following Section 8.2, design and make a macro of the DFLOP shown in Figures 

8.3, 8.5, and 8.6.
(b) � Simulate the DFFOP design in (a) and verify that it conforms to the state diagrams 

in Figure 8.3.
(c) � From the state diagram in Figure B.8a, plot the DA and DB EV K-maps by using the 

excitation table in Figure 1.2b, the mapping algorithm in Section 1.6, and its applica-
tion in Sections 1.7 and 8.3.

(d) � Extract minimum cover from the EV K-maps in part (c). Partial answer: DA = A� Y +  
BXY + AB.

(e) � Use the DFLOP shown in Figure 8.6 and design the logic circuit for this FSM fol-
lowing the example in Section 8.3. For simplicity, use the wireless connection feature 
emphasized in this text.

(f ) � Simulate the resulting EAIC circuit and demonstrate that the simulation conforms 
to the state diagram.

8.2	 Repeat parts (a), (b), (c), (d), (e), and (f ) of Problem 8.1 for the FSM in Figure B.8b. Partial 
answer : DC = � � � + CT.

Chapter 9
9.1	  �(a) Read Sections 9.1 and 9.2 and then, following Section 9.3, design and make a macro 

of the 2 × 2 microprogrammable asynchronous controller (MAC) module by using C- 
elements.
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(b) � Test the macro of (a) by simulation to verify that the macro conforms to the state 
diagrams in Figure 9.3.

(c) � Cascade the 2 × 2 MAC module with another to produce a 4 × 4 MAC module as 
in Figure 9.7 and test it by simulation. Making a macro of the 4 × 4 MAC module is 
optional.

9.2 Shown in Figure B.9 are three FSMs to be designed by the 4 × 4 MAC module and oper-
ated on a time-shared bases. After completing Problem 9.1, do the following:
(a) � By following the examples in Section 9.5, construct the MAC program table for each 

FSM, plot the NS instruction inputs in appropriate EV K-maps, and loop out an op-
timum cover for each. Partial answer : I2 = y2 �0 �T + �2 y1 y0S + y2 �1� for MAC-0.
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Figure B.8: Design of two FSMs by using the EAIC system. (a) A simple four-state sequence recog-
nizar having two inputs and one output. (b) A more complex five-state FSM having two inputs and two 
outputs.
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(b) � Following Section 9.6 and Figures 9.17 and 9.18, simulate the time-shared operation 
of the three FSMs by using the 4 × 4 MAC module. Take particular caution in set-
ting up the interfacing logic and making the appropriate use of the DI inputs to the 
MAC-2 FSM.

Chapter 10
10.1 �(a) � Following Sections 10.1 and 10.2, design and make a macro of the six-state asyn-

chronous one-hot programmable sequencer (A-OPS) shown in Figure 10.4.
(b) � Test the macro by simulation and verify that it conforms to the state diagram in 

Figure 10.4.
10.2 �Shown in Figure B.10 are three FSMs to be designed via the six-state A-OPS in Figure 

10.4 and operated by the six-state A-OPS on a time-shared basis. To do this, do the fol-
lowing:
(a) � By following Section 10.3, obtain the NS instruction and output logic for each FSM 

directly from their respective state diagrams. Refer to Eqs. (10.1) and (10.2) before 
starting on this exercise.

(b) MAC-1
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Figure B.9: Three asynchronous FSMs to be design by using the 4 × 4 MAC module in Figure 9.7 
and operated on a time-shared basis after having been initialized into the all-zero state. (a) MAC-0, 
a seven-state FSM of two inputs and three outputs. (b) MAC-1, a selector module with two inputs 
and two outputs. (c) MAC-2, a 2-bit gray code counter with one output.
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(b) � From the results of (a), construct the logic circuit for each FSM. Note: It is advisable 
to make macros for each of these FSMs. Compare the results of Figure B10b with 
that of Problem 5.1.

(c) � Simulate the time-shared operation of these three FSMs following the format of Fig-
ures 10.12 and 10.13. Note that it is not necessary to pulse the CL(L) input for each 
enable EN(L) from the decoder.

(d) � Use the A-OPS software to generate all E-hazard paths, their initiators and first- and 
second-invariants, and the ANDing race gates so that corrective action can easily be 
taken if necessary. 

Chapter 11
11.1 (a) � Following Section 11.1, design and make a macro of the bus arbiter shown in Figure 

11.1.
(b) � Test the macro by simulation to verify that it conforms to the state diagrams and 

output logic in Figure 11.1a.

(a) A-OPS-0 (c) A-OPS-2

SgT T

ST

ST

ST

ST STST

S

T

ST

ST

ZE if ST

WE if S

a

b c

d

WE if ST

X

X
X

X

X

XY XY

X+Y

XY

XY

a

b

e f

d

c

PE

QE
PE if XY

PE

PE if XY

X

XY

Y
X

QE if XY

(b) A-OPS-1

CK

CK

CK

CK

DCK

DCK

CK

c

a

b

SETE

RESETE

Figure B.10: Three asynchronous FSMs to be designed by using the six-state A-OPS in Figure 10.4 
and to be operated on a time-shared basis. (a) A three-state FSM with two inputs and two outputs. 
(b) A four-state FSM with two inputs and two outputs. (c) A six-state FSM with two inputs and two 
outputs.
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(c) � By following Section 11.1.1, design and simulate a four-input bus arbiter by using  
C-elements as the RMODs. Verify that the grant outputs do not overlap. To do this, 
blow up a waveform portion.

11.2 (a) � Use the FET toggle module designed in Section 6.2 and redesign the pulse mode 
FSM in Figure 7.11 by using the two-input bus arbiter in Problem 11.1 to deal with 
overlapping inputs RX and RY as in Figure 11.17.

(b) � Simulate the result of part (a) by using similar RX and RY waveforms as in Figure 
11.18.

11.3 �(a) � Follow Section 11.3 and make a macro of the handshake arbiter in Figure 11.8. 
Simulate to verify that it conforms to the state diagrams, output logic and circuit in 
Figure 11.8.

(b) � By following Section 11.4, design and make macros of the Trans-Hi and Trans-LO 
modules by using C-elements. Simulate to verify that they conform to the state dia-
grams in Figure 11.10.

(c) � Following Section 11.4, design and make a macro of the rotating token arbiter mod-
ule. Simulate this arbiter module and compare with Figure 11.13.

(d) � Following Figures 11.14, 11.15, and 11.16 and by using the results of parts (b) and 
(c), design a four-input rotating token arbiter with grant signals connected back into 
the respective Done signals. Simulate to verify its proper operation.

Additional Problems and Exercises: Invert state assignments or reassign state identifiers 
in state diagrams where appropriate and rework the problems in Chapters 1 through 11.

Advanced Projects:
PROJECT I

Repeat Problems 5.1 and 5.2 by using the A-OPS software and VHDL.
PROJECT II

Repeat Problems 10.1 and 10.2 by using the A-OPS software and VHDL.
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I.	GE NERAL BACKGROUND DIRECTLY SUPPORTING  
MATERIAL IN THIS TEXT

Supporting material for nearly all subject matters covered in this text can be found in Chapters 
14, 15, and 16 of the revised second edition of Tinder’s book cited below. Additional supporting 
material and associated work by Tinder and others can be found in publications by VanScheik and 
Tinder, and by Tinder et al.

R. F. Tinder, Engineering Digital Design, 2nd ed. Revised, Academic Press, San Diego, CA, 2000.
W. S. VanScheik and R. F. Tinder, “High speed externally asynchronous/internally clocked sys-

tems,” IEEE Trans. Comput. 46(7), 824–829 (1997).
R. F. Tinder, R. I. Klaus, and J. A. Snodderley, “High speed microgrammable asynchronous control-

ler modules,” IEEE Trans. Comput. 43(10), 1226–1232 (1994).

II.	 Alternative Approaches to Asynchronous  
State Machine Design and Analysis

Comparatively speaking, the book by Myers offers a significantly different approach to asynchro-
nous finite state machine (FSM) design by using Petri nets, set theory, positive logic, state graphs, 
burst-mode, and extended burst-mode FSMs, and VHSIC hardware description language, among 
others features. It also provides discussions of both Huffman- and Muller-type syntheses and em-
phasizes the use of C-elements. The book by Myers provides an extensive list of 425 references, 
some of which, however, are only peripherally related to the subject matter of Tinder’s text.

C. J. Myers, Asynchronous Circuit Design, John Wiley & Sons, New York, 2001.

III.	 Important Historical Contributions to  
Asynchronous Circuit Synthesis

Many publications of the past fall into this category. However, there are a few that stand out as 
having had a significant impact on the subject matter presented in this text by Tinder. The book by 

Endnotes
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Unger and the contributions of Huffman, and Muller are good examples. Also, the publication by 
Maki and Tracey provide an early look at the single transition time approach to asynchronous FSM 
design.

S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley-Interscience, New York, 1969.
D. A. Huffman, “The synthesis of sequential switching circuits,” in E. F. Moore, Ed., Sequential 

Machines: Selected Papers, Addison-Wesley, Reading, MA, 1964.
D. E. Muller, “The general synthesis problem for asynchronous digital networks,” in Annual Sym-

posium on Switching and Automata Theory, New York, 1967.
G. K. Maki and J. H. Tracey, “A state assignment procedure for asynchronous sequential circuits,” 

IEEE Trans. Comput. 20, 666–668, 1971.

IV.	 Sources Related to the Subject of EAIC Systems 
Discussed in this Text

A variety of systems have been studied that utilize both internally fixed and pausable clocks, but for 
various reasons are inherently more complex than the externally asynchronous/internally clocked 
system (EAIC) system described at length in this text. In further contrast, these systems offer little 
or no protection from metastable effects—an important feature of the EAIC approach. There are 
two selected references that are typical of these studies. They are works by Nowick and Dill, and by 
Rosenberger et al. The work of Rosenberger et al. describes the design and analysis of Q-flops in an 
internally clocked configuration. The Q-flops are designed with an internal handshaking mecha-
nism to ensure that the inputs are not stored until the input stage is ready to accept them, and the 
outputs are not updated until the input stage has fully resolved and is stable in its new state. This 
allows the design of sequential delay-insensitive modules that require fewer delay constraints than 
other functionally equivalent design methodologies.

S. M. Nowick and D. L. Dill, “Automatic synthesis of locally-clocked asynchronous state ma-
chines,” Proc. ICCAD, 1991.

F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. Fang, “Q-modules: internally clocked delay-
insensitive modules,” IEEE Trans. Comput. 37(9), 1005–1018, 1988.
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ABEL   Advanced Boolean expression language.
Activate   To assert or make active.
Activation level   The logic state of a signal designated to be active or inactive.
Activation level indicator   A symbol, (H) or (L), attached to a signal name to indicate positive 
logic or negative logic, respectively.
Active   A descriptor that denotes an action condition and that implies logic 1.
Active high (H)   A term that indicates a positive logic source or signal.
Active low (L)   A term that indicates a negative logic source or signal.
Active state   The logic 1 state of a logic device.
Active transition point   The point in a voltage waveform where a digital device passes from the 
inactive state to the active state.
ADAM   Automated design of asynchronous machines.
Adjacent cell   A K-map cell whose coordinates differ from that of another cell by only 1 bit.
Adjacent pattern   An XOR pattern involving an uncomplemented function in one cell of a  
K-map and the same function complemented in an adjacent cell.
Algorithm   Any special step-by-step procedure for accomplishing a task or solving a problem.
Alternative race path   One of two or more transit paths an FSM can take during a race condition.
ALU   Arithmetic and logic unit.
AMC   Asynchronous microcontroller.
Analog   A term that refers to continuous signals such as voltages and current, in contrast to digital 
or discrete signals.
Analysis of FSMs   The procedure that yields a state diagram, or state table, beginning with a 
logic circuit or its VHDL representation. Also the procedure used to identify and eliminate timing 
defects in asynchronous FSMs.
AND   An operator requiring that all inputs to an AND logic circuit symbol be active before the 
output of that symbol is active—also, Boolean product or intersection.

Glossary of  Terms, Expressions, and  
Abbreviations
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AND function   The function that derives from the definition of AND.
AND gate   A physical device that performs the electrical equivalent of the AND function.
AND laws   A set of Boolean identities based on the AND function.
Antiphase   A term used in this book to mean complemented triggering of a device relative to a 
reference system as, for example, an FET or RET D-latch.
A-OPS   Asynchronous one-hot programmable sequencer.
Arbiter or arbiter module   A device that is designed to control access to a protected system by 
arbitration of contending signals.
Array algebra   The algebra of Boolean arrays and matrices associated with the design of STT 
machines.
Array logic   Any of a variety of logic devices, such as ROMs, PLAs, or PALs, that are composed 
of an AND array and an OR array (see Programmable logic device or PLD).
ASIC   Application specific IC.
Assert   Activate.
Assertion level   Activation level.
Associative law   A law of Boolean algebra that states that the operational sequence as indicated 
by the location of parentheses in a p-term or s-term does not matter.
Associative pattern   An XOR pattern in a K-map that allows a term or variable in an XOR or 
EQV function to be looped out (associated) with the same term or variable in an adjacent cell pro-
vided that the XOR or EQV connective is preserved in the process.
Asynchronous   Clock independent or self- timed—having no fixed time relationship.
Asynchronous input   An input that can change at any time, particularly during the sampling 
interval of the enabling input.
Asynchronous override   An input such as preset or clear that, when activated, interrupts the 
normal operation of a memory element.
Asynchronous parallel load   The parallel loading of a register or counter by means of the asyn-
chronous PR and CL overrides of the flip-flops.
Basic cell   A basic memory cell, composed of either cross-coupled NAND gates or cross-coupled 
NOR gates, used in the design of other asynchronous FSMs including flip-flops.
Binary   A number system of radix two; having two values or states.
Binary code   A combination of bits that represent alphanumeric and arithmetic information.
Binary coded decimal (BCD)   A four-bit, 10-word decimal code that is weighted 8, 4, 2, 1 and is 
used to represent decimal digits as binary numbers.
Binary coded hexadecimal (BCH)   The hexadecimal number system used to represent bit pat-
terns in binary.
Binary coded octal (BCO)   The octal number system used to represent bit patterns in binary.
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Binary word   A linear array of juxtaposed bits that represents a number or that conveys an item 
of information.
Bit   A binary digit.
Bit slice   Partitioned into identical parts such that each part operates on 1 bit in a multibit word—
part of a cascaded system of identical parts.
Boolean algebra   The mathematics of logic attributed to the mathematician George Boole 
(1815–1864).
Boolean product   AND or intersection operation.
Boolean sum   OR or union operation.
BOOZER   BOOlean ZEro-one Reduction—a multioutput logic minimizer that accepts entered 
variables or canonical data.
Boundary   The separation of logic domains in a K-map.
Bounded pulse   A pulse with both lower and upper limits to its width.
Branching condition (BC)   The input requirements that control a state-to-state transition in an 
FSM.
Branching path   A state-to-state transition path in a state diagram.
Buffer   A line driver.
Buffer state   A state (in a state diagram) whose only purpose is to remove a race condition. 
Burst-mode FSM   An FSM whose branching paths in a state diagram are labeled with prescribed 
input and output signal transitions as opposed to their logic values as in the classical notation.
Bus arbiter   A two-input/two output arbiter that grants on request an output on a first-in/ 
first-out basis but will grant access to a second request only after the first request is withdrawn.
Byte   A group of 8 bits.
Call module   A module designed to control access to a protected system by issuing a request for 
access to the system and then granting access after receiving acknowledgment of that request.
Canonical   Made up of terms that are either all minterms or all maxterms.
Canonical truth table   A 1’s and 0’s truth table consisting exclusively of minterms or maxterms.
CAPS   Cascadable asynchronous programmable sequencers.
Cardinality   The number of prime implements (p-term or s-term cover) representing a function.
Cascade   To combine identical devices in series such that any one device drives another; to bit-
slice.
C-element   A two-input rendezvous module (RMOD) that operates outside of the fundamental 
mode such that its inputs are permitted to change simultaneously.
Cell   The intersection of all possible domains of a K-map.
Circuit   A combination of elements (e.g., logic devices) that are connected together to perform a 
specific operation.
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CL or CLR   Clear.
CLEAR   An asynchronous input that, when activated, forces the internal state of the device to 
logic 0.
Clock (CK)   A regular source of pulses that control the timing operations of a synchronous se-
quential machine.
Clock skew   A phenomenon that is generally associated with high-frequency clock distribution 
problems in synchronous sequential systems.
CMOS   Complementary configured MOSFET in which both NMOS and PMOS are used.
CNT   Mnemonic for count.
Code converter   A device designed to convert one binary code to another.
Collapsed truth table   A truth table containing irrelevant input symbols.
Combinational hazard   A hazard that is produced within a combinational logic circuit.
Combinational logic   A configuration of logic devices in which the outputs occur in direct, im-
mediate response to the inputs without feedback.
Commutative law   The Boolean law that states that the order in which variables are represented 
in a p-term or s-term does not matter.
Compatibility   A condition where the input to a logic device and the input requirement of the 
device are of the same activation level, that is, are in logic agreement.
Complementary C-element   A Muller C-element in which one of its inputs required and active 
low input.
Complementary metal oxide semiconductor (CMOS)   A form of MOS that uses both p- and 
n-channel transistors (in pairs) to form logic gates.
Complementation   A condition that results from logic incompatibility; the mixed-logic equiva-
lent of the NOT operation.
Composite output map   A K-map that contains entries representing multiple outputs.
Computer   A digital device that can be programmed to perform a variety of tasks (e.g., computa-
tions) at high speed.
Concatenation   Act of linking together or being linked together in a series.
Conditional branching   State-to-state transitions that depend on the input status of the FSM.
Conditional output   An output that depends on one or more external inputs.
Conjugate gate forms   A pair of logic circuit symbols that derive from the same physical gate and 
that satisfy the DeMorgan relations.
Connective   A Boolean operator symbol (e.g., +, ., ⊕, etc.).
Consensus law   A law in Boolean algebra that allows simplification by removal of a redundant 
term.
Consensus term   The redundant term that appears in a function obeying the consensus law.
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Controlled inverter   An XOR gate that is used in either the inverter or transfer mode.
Controller   That part of a digital system that controls the data path devices.
Conventional K-map   A K-map whose cell entries are exclusively l’s and 0’s.
Counteracting delay   A delay placed on an external feedback path to eliminate an E-hazard or  
d-trio.
Counter   A combinational logic device whose function it is to count in binary some count  
sequence.
Coupled term   One of two terms containing only one coupled variable.
Coupled variable   A variable that appears complemented in one term of an expression (SOP or 
POS) and that also appears uncomplemented in another term of the same expression.
Cover   A set of terms that covers all minterms or maxterms of a function.
CPLD   Complex PLD.
Critical race   A race condition in an asynchronous FSM that can result in a transition to an  
erroneous state.
Cross branching   Multiple transition paths from one or more states in the state diagram (or state 
table) of a sequential machine whereby unit distance coding of states is not possible.
Cube   A p-term containing a set of 2n minterms in reduced or minimized form. Also an s-term 
containing a set of 2n maxterms in reduced or minimized form.
Cycle   Two or more successive and uninterrupted state-to-state transitions in an asynchronous 
sequential machine, usually not controlled by input conditions.
Cycle state   A state among others in state-to-state transitions not controlled by external inputs.
Data bus   A parallel set of conductors that are capable of transmitting or receiving data between 
two parts of a system.
Data path   The part of a digital system that is controlled by a controller.
Data path unit   The group of logic devices that comprise the data path.
Data selector   A multiplexer.
Data-triggered   A term that refers to flip-flops triggered by external inputs (no clock) as in the 
pulse mode.
DCL   Digital combination lock.
Deactivate   To make inactive.
Debounce   To remove the noise that is produced by a mechanical switch.
Debouncing circuit   A circuit that is used to debounce a mechanical switch.
Decade   A quantity of 10.
Decoder   A combinational logic device that will activate a particular minterm code output line 
determined by the binary code input. A demultiplexer.
Delay   The time elapsing between related events in progress.
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Delay circuit   A circuit whose purpose it is to delay a signal for a specified period.
DeMorgan relations   Mixed logic expressions of DeMorgan’s laws.
DeMorgan’s laws   A property that states that the complement of the Boolean product of terms is 
equal to the Boolean sum of their complements; or that states that the complement of the Boolean 
sum of terms is the Boolean product of their complements.
Demultiplexer   A decoder.
D flip-flop   A 1-bit memory device whose output value is set to the D input value on the trigger-
ing edge of the clock signal.
DFLOP module   A memory element used in an EAIC system that has characteristics similar to 
that of a D flip-flop but that delivers a “data ready” signal.
Diagonal pattern   An XOR pattern formed by identical EV subfunctions in any two diagonally 
located cells of a K-map whose coordinates differ by 2 bits.
Digit   A single symbol in a number system.
Digital   Related to discrete quantities.
Digital combination lock   A sequence recognizer that can be used to unlock or lock something.
Digital engineering design   The design and analysis of digital devices.
Digital signal   A logic waveform composed of discrete logic levels (e.g., a binary digital signal).
Diode   A two-terminal passive device consisting of a p–n junction that permits significant current 
to flow only in one direction.
Disjoint   As used in “mutually disjoint” to mean a set of p-terms whose ANDed values taken two 
at a time are always logic zero. Thus, mutually disjoint terms never take logic 1 at the same time.
Distributive law   The dual of the factoring law where both are categorized as a distributive law.
DMUX   Demultiplexer (see Decoder).
Domain   A range of logic influence or control.
Domain boundary   The vertical or horizontal line or edge of a K-map.
Don’t care   A nonessential minterm or maxterm, denoted by the symbol φ, which can take either 
a logic 1 or logic 0 value. Also a delimiter that, when attached to a variable or term, renders that 
variable or term nonessential to the parent function.
Don’t care state   A state having only output transition paths and that is not part of the primary 
(essential) state sequence in the state diagram representing an asynchronous FSM.
Driver   A one-input device whose output can drive substantially more inputs than a standard 
gate. A buffer.
D-trio   A type of essential hazard that causes a fundamental mode machine to transit to the cor-
rect state via an unauthorized path.
Duality   A property of Boolean algebra that results when the AND and OR operators (or XOR 
and EQV operators) are interchanged simultaneously with the interchange of l’s and 0’s.
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Dual relations   Two Boolean expressions that can be derived one from the other by duality.
Duty cycle   In a periodic waveform, the percentage of time the waveform is active.
Dyad   A grouping of two logically adjacent minterms or maxterms.
Dynamic hazard   Multiple glitches in the output such that the output logic levels are different 
before and after an input change and which are usually produced in multilevel circuits involving 
three or more asymmetric paths (delay-wise) of the input to the output.
EAIC system   Externally asynchronous/internally clocked system.
Edge-triggered flip-flop   A FLIP-FLOP that is triggered on either the rising edge or falling 
edge of the clock waveform and that exhibits the data lockout feature.
E-hazard   Essential hazard.
EN   Enable.
Enable   An input that is used to enable (or disable) a logic device, or that permits the device to 
operate normally.
Endless cycle   An oscillation that occurs between states in an asynchronous FSM.
Entered variable (EV)   A variable entered into a K-map.
EPI   Essential prime implicant.
EPLD   Erasable PLD.
EPROM   Erasable programmable read-only memory.
Equivalence   The output of a two-input logic gate that is active if, and only if, its inputs are logi-
cally equivalent (i.e., both active or both inactive).
EQV   Equivalence.
EQV function   The function that derives from the definition of equivalence and given the symbol 
 or ⊕

_
  as used in this text.

EQV gate   A physical device that performs the electrical equivalent of the EQV function.
EQV laws   A set of Boolean identities based on the EQV function.
Erasable programmable read-only memory (EPROM)   A ROM that can be programmed many 
times.
ESPRESSO logic minimizer   A software minimization tool that supports advanced heuristic 
algorithms of multioutput Boolean functions but does not accept entered variables.
Essential hazard (E-hazard)   A disruptive sequential hazard that can occur as a result of an  
unintended, explicitly located delay in an asynchronous FSM that has at least three states.
Essential prime implicant (EPI)   A PI that must be used to achieve minimum cover.
EV   Entered variable.
EV K-map   A K-map that contains EVs.
EV truth table   A truth table containing EVs.
Even parity   An even number of l’s (or 0’s) in a binary word depending on how even parity is defined.
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EVM   Entered variable K-map.
Excitation table   A state transition table relating the branching paths to the branching condition 
values given in the state diagram for a memory element.
Exclusive OR (XOR)   A two-variable function that is active iff one of the two variables is active.
EXL-Sim   A powerful, fully featured, interactive, schematic capture, and simulation software ide-
ally suited for use with this text (see link exlsim.com).
Extended burst-mode FSM   Use of directed don’t care branching conditions that allow the de-
signer to specify that an input change may or may not happen in a given input burst.
Factoring law   The Boolean law that permits a variable to be factored out of two or more p-terms 
that contain that variable in an sop or XOR expression.
Falling edge-triggered (FET)   Activation of a device on the falling edge of the triggering (sam-
pling) variable.
Fan-in   The maximum number of inputs a gate may have.
Fan-out   The maximum number of equivalent gate inputs that a logic gate output can drive.
Feedback path   A signal path of a PS variable from the memory output to the NS input.
FET   Falling edge-triggered. Also, field effect transistor.
FF   Flip-flop.
Field programmable gate array (FPGA)   A complex PLD that may contain a variety of primitive 
devices such as discrete gates, MUXs, and flip-flops.
Field programmable logic array (FPLA)   One-time user programmable PLA.
Finite state machine (FSM)   A sequential machine that has a finite number of states into which 
it can reside.
Flip-flop (FF)   A one-bit memory element that exhibits sequential behavior exclusively con-
trolled by a clock input.
Flow table   A tabular realization of a state diagram representing the sequential nature of an FSM.
Fly state   A state (in a state diagram) whose only purpose is to remove a race condition. A buffer state.
Forward bias   A voltage applied to a p–n junction diode in a direction as to cause the diode to 
conduct (turn ON).
FPGA   Field programmable gate array.
FPLA   Field programmable logic array.
FPLS   Field programmable logic sequencer.
Frequency, f   The number of waveform cycles per unit time in Hz.
FSM   Finite state machine, either synchronous or asynchronous.
Fully documented state diagram   A state diagram that specifies all input branching conditions 
and output conditions in literal or mnemonic form, that satisfies the sum rule and mutually exclu-
sive requirement, and that has been given a proper state code assignment.
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Function   A Boolean expression representing specific binary operations.
Functional partition   A diagram that gives the division of device responsibility in a digital system.
Function hazard   A hazard that is produced when two or more coupled variables change in close 
proximity to each other—an output response to competing coupled input changes.
Fundamental mode   The operational condition of an asynchronous FSM in which no input 
change is permitted to occur until the FSM has stabilized following any previous input change.
GAL   Generic array logic.
Gate   A physical device (circuit) that performs the electrical equivalent of a logic function. Also, 
one of three terminals of a MOSFET.
Gate/input tally   The gate and input count associated with a given logic expression—the gate 
tally may or may not include inverters, but the input count must include both external and internal 
inputs.
Gate-minimum logic   Logic requiring a minimum number of gates, and may include XOR and 
EQV gates in addition to two-level logic.
Gate path delay   The interval of time required for the output of a gate to respond to an input 
signal change.
Glitch   An unwanted transient in an otherwise steady-state signal.
Go/no-go configuration   A single input controlling the hold and exit conditions of a state in a 
state diagram.
Gray code   A reflective unit distance code.
Ground   A reference voltage level usually taken to be zero volts.
Hamming distance   As used in this text, the number of state variables required to change during 
a given state-to-state transition in an FSM. 
Handshake arbiter   A versatile arbiter that receives a done (acknowledgment) signal and issues a 
grant signal following the successful receipt of a request from a protected system. 
Handshake interface   A configuration between two devices whereby the outputs of one device are 
the inputs to the other and vice versa.
Hang state   An isolated state into which an FSM can reside stably but which is not part of the 
authorized routine.
Hardware description language (HDL)   A high-level programming language with specialized 
structures for modeling hardware.
Hazard   A glitch or unauthorized transition that is caused by an asymmetric path delay via an 
inverter, gate, or lead during a logic operation.
Hazard cover   The redundant cover (consensus term) that removes a static hazard.
HDL   Hardware description language.
Heuristic   By empirical means or by discovery.
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Hold condition   Branching from a given state back into itself or the input requirements necessary 
to effect such branching action.
Hold time   The interval of time immediately following the transition point during which the 
data inputs must remain logically stable to ensure that the intended transition of the FSM will be 
successfully completed.
Huffman circuit   An asynchronous FSM that operates in the fundamental mode.
HV   High voltage.
Hybrid function   Any function containing both SOP and POS terms.
IC   Integrated circuit.
Implicant   A term in a reduced or minimized expression.
Inactive   Not active and implying logic 0.
Inactive state   The logic 0 state of a logic device.
Inactive transition point   The point in a logic waveform where a digital device passes from the 
active state to the inactive state.
Incompatibility   A condition where the input to a logic device and the input requirement of that 
device are of opposite activation levels.
Incompletely specified function   A function that contains nonessential minterms or maxterms 
(see Don’t care).
Indirect path   The path taken by the initiator input to the race gate (RG) via the second y-vari-
able invariant in the development of an E-hazard or d-trio.
Inertial delay circuit   A delay circuit based mainly on R–C components.
Initialize   To drive a logic circuit into a beginning or reference state.
Initiator input   The external input whose single change initiates an E-hazard or d-trio.
Input   A signal or line into a logic device that controls the operation of that device.
Intersection   AND operation.
Inversion   The inverting of a signal from HV to LV or vice versa.
Inverter   A physical device that performs voltage inversion in the physical domain or that per-
forms logic level conversion in the logic domain.
l/O   Input/output.
IPG   Indirect path gate.
Irredundant   Not redundant, as applied to an absolute minimum Boolean expression.
Irrelevant input   An input whose presence in a function is nonessential.
Island   A K-map entry that must be looped out of a single cell.
Iterative   Repeated many times to achieve a specific goal.
Juxtapose   To place side by side.
Karnaugh map (K-map)   Graphical representation of a logic function named after M. Karnaugh 
(1953).
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K-map   Karnaugh map.
Latch   A name given to certain types of memory elements as, for example, the D latch.
Latency   The time required to complete an operation in a sequential machine.
LD   Mnemonic for load.
Least significant bit (LSB)   The bit (usually at the extreme right) of a binary word that has the 
lowest positional weight.
Level   A term used when specifying the number of gate path delays of a logic function (from input 
to output) usually exclusive of inverters. See, for example, two-level logic.
Level triggered   Rising edge triggered (RET) or falling edge triggered (FET).
Linear state machine   An FSM with a linear array of states.
Line driver   A device used to boost and sharpen a signal so as to avoid fan-out problems.
Logic   The functional capability of a digital device that is interpreted as either a logic 1 or logic 0.
Logic adjacency   Two logic states whose state variables differ from each other by only 1 bit.
Logic circuit   A digital circuit that performs the electrical equivalent of some logic function or 
process.
Logic diagram   A digital circuit schematic consisting of an interconnection of logic symbols.
Logic instability   The inability of a logic circuit to maintain a stable logic condition. Also, an 
oscillatory condition in an asynchronous FSM.
Logic level   Logic status indicating either positive logic or negative logic.
Logic level conversion   The act of converting from positive logic to negative logic or vice versa.
Logic map   Any of a variety of graphical representations of a logic function.
Logic noise   Undesirable signal fluctuations produced within a logic circuit following input 
changes.
Logic state   A unique set of binary values that characterize the logic status of a machine at some 
point in time.
Logic waveform   A rectangular waveform between active and inactive logic states.
Loop-out   The action that identifies a prime implicant in a K-map.
Loop-out protocol   A minimization procedure whereby the largest group of logically adjacent 
minterms or maxterms are looped out in the order of increasing n (n = 0, 1, 2, 3, …).
LPD   Lumped path delay.
LSB   Least significant bit.
LSD   Least significant digit.
LSI   Large-scale integration.
Lumped path delay (LPD) model   A model, which is applicable to FSMs that operate in the  
fundamental mode, characterized by a lumped memory element for each state variable/feedback 
path.
LV   Low voltage.
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MAC module   Microprogrammable asynchronous controller module.
Majority function   A function that becomes active when a majority of its variables become active.
Majority gate   A logic gate that yields a majority function.
Map   Usually a Karnaugh map.
Map compression   A reduction in the order of a K-map usually involving EVs.
Mapping algorithm   In FSM design, the procedure to obtain the NS functions by ANDing the 
memory input logic value in the excitation table with the corresponding branching condition in the 
state diagram for the FSM to be designed, and entering the result in the appropriate cell of the NS 
K-map.
Maxterm   A POS term that contains all the variables of the function.
Maxterm code   A code in which complemented variables are assigned logic 1 and uncomple-
mented variables are assigned logic 0—the opposite of minterm code.
MD/ME stage   Metastable detection/mutually exclusive stage.
MDS. Metastable detection stage.
Mealy machine   An FSM that conforms to the Mealy model.
Mealy model   The general model for a sequential machine where the output state depends on the 
input state as well as the present state.
Mealy output   A conditional output.
Memory   The ability of a digital device to store and retrieve binary words on command.
Memory element   A device for storing and retrieving 1 bit of information on command in a syn-
chronous or asynchronous FSM. Also in asynchronous FSM terminology only, a fictitious lumped 
path delay, a basic cell or C-element.
Merge   The concatenation of buses to form a larger bus.
Merging of states   In a state diagram, the act of combining states to produce fewer states.
Metal-oxide-semiconductor   The material constitution of an important logic family (MOS) 
used in IC construction.
Metastability   An unresolved state of an FSM which resides between a set and a reset condition 
or which becomes logically unstable for an unpredictable period of time, in either case.
Metastable exit time   The unpredictable time interval between entrance into and exit from the 
metastable state.
MEV   Map entered variable.
Minimization   The process of reducing a logic function to its simplest form.
Minimum cover   The optimally reduced representation of a logic expression.
Minterm   A term in an SOP expression where all variables of the expression are represented in 
either complemented or uncomplemented form.
Minterm code   A logic code in which complemented variables are assigned logic 0 whereas un-
complemented variables are assigned logic 1—the opposite of maxterm code.
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Mixed logic   The combined use of the positive and negative logic systems.
Mixed-rail output   Dual, logically equal outputs of a device (e.g., a basic cell) where one output is 
issued active high whereas the other is issued active low, but which are not issued simultaneously.
Mnemonic   A short single group of symbols (usually letters) used to convey a meaning.
Mnemonic state diagram   A fully documented state diagram.
Model   The means by which the major components and their interconnections are represented for 
a digital machine or system.
Module   A device that performs a specific function and that can be added to or removed from a 
system to alter the system’s capability. A common example is an arbiter module.
Monad   A minterm (or maxterm) that is not logically adjacent to any other minterm (or max-
term) in a K-map.
Moore machine   A sequential machine that conforms to the Moore model.
Moore model   A degenerate form of the Mealy (general) model in which the output state de-
pends only on the present state and which is independent of external inputs.
Moore output   An unconditional output.
MOS   Metal-oxide semiconductor.
MOSFET   Metal-oxide semiconductor field effect transistor.
Most significant bit (MSB)   The extreme left bit of a binary word that has the highest positional 
weight.
MSB   Most significant bit.
MSD   Most significant digit.
MSI   Medium-scale integration.
MTBF   Mean time between failures.
Muller C-element   A rendezvous module (RMOD) that operates outside of the fundamental 
mode and that changes activation levels only after all inputs change to the same activation level.
Muller circuit   A speed-independent circuit that operates outside of the fundamental mode.
Multilevel logic minimization   Minimization involving more than two levels of path delay.
Multiple-output minimization   Optimization of more than one output expression from the 
same logic device.
Multiplex   To select or gate (on a time-shared basis) data from two or more sources onto a single 
line or transmission path.
Multiplexer   A device that multiplexes data.
Mutually exclusive requirement   A requirement in state diagram construction that forbids over-
lapping branching conditions (BCs)—i.e., it forbids the use of BCs shared between two or more 
branching paths.
MUX   Multiplexer.
NAND-centered basic cell   Cross-coupled NAND gates forming a basic cell.
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NAND gate   A physical device that performs the electrical equivalent of the NOT AND  
function.
NAND/INV logic   Combinational logic consisting exclusively of NAND gates and inverters.
Negative logic   A logic system in which high voltage (HV) corresponds to logic 0 and low voltage 
(LV) corresponds to logic 1. The opposite of positive logic.
Negative pulse   A 1-0-1 pulse.
Nested cell   A basic cell used as the memory in an asynchronous FSM design.
Nested element model   A model in which memory elements are embedded into an FSM.
Nested machine   Any asynchronous machine that serves as the memory in the design of a larger 
sequential machine. Any FSM that is embedded within another.
Next state (ns)   A state that follows the present state (PS) in a sequence of states.
Next state forming logic   The logic hardware in a sequential machine whose purpose it is to gen-
erate the next state function input to the memory.
Next state function   The logic function that defines the next state of an FSM given the present 
state.
Next state map   A composite K-map where the entries for each cell are the next state subfunction 
for the present state represented by the coordinates of that cell.
Next state variable   The variable representing the next state function.
NMOS   An n-channel MOSFET.
Noise immunity   The ability of a logic circuit to reject unwanted signals.
Noise margin   The maximum voltage fluctuation that can be tolerated in a digital signal without 
crossing the switching threshold of the switching device.
NOR-centered basic cell   Cross-coupled NOR gates forming a basic cell.
NOR gate   A physical device that performs the electrical equivalent of the NOT OR function.
NOR/INV logic   Combinational logic consisting exclusively of NOR gates and inverters.
NOT function   An operation that is the logic equivalent of complementation.
NOT laws   A set of Boolean identities based on the NOT function.
NS   Next state.
Octad   A grouping of eight logically adjacent minterms or maxterms.
Odd parity   An odd number of l’s or 0’s depending on how odd parity is defined.
Offset pattern   An XOR pattern in a K-map in which identical subfunctions are located in two 
nondiagonal cells that differ in cell coordinates by 2 bits.
O-HAPS. One-hot asynchronous programmable sequencer.
One-hot code   A nonweighted code in which there exists only one “1” in each word of the code.
One-hot design method   The use of the one-hot code for synchronous and asynchronous FSM 
design.
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One-hot-plus-zero   One-hot code plus the all-zero state.
Operand   A number or quantity that is to be operated on.
Operation table   A table that defines the functionality of a device.
Operator   A Boolean connective.
OPI   Optional prime implicant.
Optional prime implicant (OPI)   A PI whose presence in a minimum function produces alterna-
tive minimum cover.
OR   An operator requiring that the output of an OR gate be active if one or more of its inputs 
are active.
Order   Refers to the number of variables on the axes of a K-map.
OR function   A function that derives from the definition of OR.
ORG   Output race glitch.
OR gate   A physical device that performs the electrical equivalent of the OR function.
OR laws   A set of Boolean identities based on the OR function.
Outbranching   Branching from a state exclusive of the HOLD branching condition.
Output   A concluding signal issued by a digital device.
Output forming logic   The logic hardware in a sequential machine whose purpose it is to gener-
ate the output signals.
Output race glitch (ORG)   An internally initiated function hazard that is produced by a race 
condition in a sequential machine.
Packing density   The practical limit to which switches of the same logic family can be packed in 
an IC chip.
PAL   Programmable array logic (registered trademark of Advanced Micro Devices, Inc.).
Parity   Related to the existence of an even or odd number of 1’s or 0’s in a binary word.
Parity bit   A bit appended to a binary word to detect, create, or remove even or odd parity.
Pass transistor switch   An MOS transistor switch that functions as a nonrestoring switching 
device and that does not invert a voltage signal. A transmission gate.
PDP   Power-delay product.
Period   The time in seconds [s] between repeating portions of a waveform, hence, the inverse of 
the frequency.
Physical truth table   An I/O specification table based on a physically measurable quantity such 
as voltage.
PI   Prime implicant.
Pipeline   A processing scheme where each task is allocated to specific hardware ( joined in a line) 
and to a specific time slot.
PISO   Parallel-in/serial-out operation mode of a register.
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PLA   Programmable logic array.
Planar format   A two-dimensional K-map array used to minimize functions of more than four 
variables.
PLD   Programmable logic device such as PALs, FPLAs, FPGAs, ROMs, EPROMs, and other 
CPLDs.
PLS   Programmable logic sequencer.
PMOS   A p-channel MOSFET.
p–n junction diode   (see Diode).
Polarized mnemonic   A contracted signal name onto which is attached an activation level  
indicator.
Port   An entry or exit element to an entity (e.g., the name given to an input signal in a VHDL 
declaration).
POS   Product-of-sums.
POS HAZARD   A static-0 hazard.
Positive logic   Logic system in which HV corresponds to logic 1 and LV corresponds to logic 0.
Positive pulse   A 0-1-0 pulse.
Power, P   The product of voltage, V, and current, I, given in units of watts [W].
Power-delay product (PDP)   The average power dissipated by a logic device multiplied by its 
propagation delay time.
PR or PRE   PRESET.
Present state (PS)   The logic state into which the FSM resides at a given instant.
Present-state/next-state (PS/NS) table   A table that is produced from the next state K-maps 
and that is used to construct a fully documented state diagram in an FSM analysis.
Preset   An asynchronous input that is used in to set an FSM to a logic 1 condition.
Prime implicant (PI)   A cube that cannot be combined with any other cube in any way to produce 
a cube of fewer variables.
Primitive   A discrete logic device such as a gate, MUX, decoder, etc.
Priority stand-alone arbiter   An arbiter design for a fixed number of inputs and that cannot be 
combined with other such arbiters to increase that number of inputs.
Product-of-sums (POS)   The ANDing of ORed terms in a Boolean expression.
Programmable logic array (PLA)   Any PLD that can be programmed in both the AND and OR 
planes.
Programmable logic device (PLD)   Any two-level combinational array logic device from the 
families of ROMs, PLAs, PALs or FPGAs, etc.
Programmable read-only memory (PROM)   A once-only user-programmable ROM.
PROM   Programmable read-only memory.
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Propagation delay   In a logic device (e.g., a gate), the time interval of an output response to an 
input signal.
PS   Present state.
PS/NS   Present-state/next-state.
P-term   A Boolean product term—one consisting only of ANDed literals.
P-term table   A table that consists of p-terms, inputs and outputs and that is used to program 
PLA type devices.
Pull-down resistor   A resistor that causes a signal on a line to remain at low voltage.
Pull-up resistor   A resistor that causes a signal on a line to remain at high voltage.
Pulse   An abrupt change from one level to another followed by an opposite abrupt change.
Pulse mode   An operational condition for an asynchronous FSM where the inputs are required to 
be discrete nonoverlapping pulse signals.
Pulse width   The active duration of a positive pulse or the inactive duration of a negative pulse.
Quad   A grouping of four logically adjacent minterms or maxterms.
R   Request or data ready signal. Also reset or resistance.
Race condition   A condition in an asynchronous sequential circuit where the transition from one 
state to another involves two or more alternative paths.
Race gate   The gate to which two or more input signals are in race contention. 
Race path   Any path that can be taken in a race condition.
Race state   Any state through which an FSM may transit during a race condition.
RAM   Random access memory.
Random access memory (RAM)   A read/write memory system in which all memory locations 
can be accessed directly independent of other memory locations.
R-C   Resistance/capacitance or resistor/capacitor.
Read-only memory (ROM)   A PLD that can be mask programmed only in the OR plane.
Redundant cover   Nonessential and nonoptional cover in a function representation.
Redundant prime implicant   A PI that yields redundant cover.
Rendezvous module (RMOD)   An asynchronous state machine whose output becomes active when 
all external inputs become active and becomes inactive when all external inputs become inactive.
Reset   A logic 0 condition or an input to a logic device that sets it to a logic 0 condition.
Residue   The part of term that remains when the coupled variable is removed (see Consensus term).
Resistance, R. The voltage drop across a conducting element divided by current through the ele-
ment (in ohms).
RET   Rising edge triggered.
Reverse bias   A voltage applied to a p–n junction diode in a direction as to minimize conduction 
across the junction.
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Reverse saturation current   The current through a p–n junction diode under reverse bias.
RG   (See Race gate)
Rise time   The length of time it takes a voltage (or current) signal to change from 10% to 90% of 
its high value.
Rising edge triggered (RET)   Activation of a logic device on the rising edge of the triggering 
variable.
RMOD   Rendezvous module.
ROM   Read-only memory.
Rotating token arbiter   A multistage arbiter in which each stage sampled by a rotating token 
signal results in the issuance of a grant from a given stage provided a request input to that stage is 
active at the time the token enters that stage.
RPI   Redundant prime implicant.
Runt pulse   Any pulse that falls short of reaching the switching threshold of a device into which 
it is introduced.
S   SET.
SAM   (See State array machine)
Sampling interval   Sum of the setup and hold times.
Sampling variable   The last variable to change in initiating a state-to-state transition in an FSM.
Sanity circuit   A circuit that is used to initialize an FSM into a particular state; usually a resis-
tor/capacitor (R/C) type circuit.
Schmitt trigger   An electronic gate with hysteresis and high noise immunity that is used to “square 
up” pulses.
Selector module   A device whose function it is to steer one of two input signals to either one of 
two outputs depending on whether a specific input is active or inactive.
Sequence detector (recognizer)   A sequential machine that is designed to recognize a particular 
sequence of input signals.
Sequential hazard   An essential hazard.
Sequential machine   Any digital machine with feedback paths whose operation is a function of 
both its history and present input data.
SET   A logic 1 condition or an input to a logic device that sets it to a logic 1 condition.
Set-up time   The interval of time prior to the transition point during which all data inputs must 
remain stable at their proper logic level to ensure that the intended transition will be initiated.
S-hazard   A static hazard.
Shared prime implicant (SPI)   Two identical PIs appearing in two or more NS and/or output 
functions from the same FSM.
Single transition time (STT)   A state-to-state transition in an asynchronous FSM that occurs in 
the shortest possible time, that is without passing through a race state. 
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SOP   Sum-of-products.
SOP hazard   Static-1 hazard.
Source   The origin of a digital signal.
SPDT switch   Single-pole/double-throw switch.
Square wave   A rectangular waveform.
SRAM   Static RAM.
Stability criteria   The requirements that determine if an asynchronous FSM, operated in the 
fundamental mode, is stable in a given state.
Stable state   Any logic state of an asynchronous FSM that satisfies the stability criteria.
Stack format   A three-dimensional array of conventional fourth-order K-maps used for function 
minimization of more than four variables.
State   A unique set of binary values that characterize the logic status of a machine at some point 
in time.
State adjacency set   Any 2n set of logically adjacent states of an FSM.
State array machine (SAM)   A 2n array of states such that each state in the array has transition 
paths only to states that are logically adjacent.
State code assignment   Unique set of code words that are assigned to an FSM to characterize its 
logic status.
State diagram   The diagram or chart of an FSM that shows the state sequence, branching condi-
tions, and output information necessary to describe its sequential behavior.
State machine   A finite state machine (FSM). A sequential machine.
State identifier   Any symbol (e.g., numerical or alphabetical) that is used to represent or identify 
a state in a state diagram.
State table   Tabular representation of a state diagram.
State transition table   (see Excitation table).
State variable   Any variable whose logic value contributes to the logic status of a machine at any 
point in time. Any bit in the state code assignment of a state diagram.
Static hazard   An unwanted glitch in an otherwise steady-state signal that is produced by an in-
put change propagating along asymmetric path delays through inverters or gates.
Static-1 hazard   A glitch that occurs in an otherwise steady-state 1 output signal from SOP  
logic due to a change in an input for which there are two asymmetric paths (delay-wise) to the 
output.
Static-0 hazard   A glitch that occurs in an otherwise steady-state 0 output signal from POS logic 
due to a change in an input for which there are two asymmetric paths (delay-wise) to the output.
Static RAM   A nonvolatile form of RAM—does not need periodic refreshing to hold its infor-
mation.
Steering logic   Logic based primarily on transmission gate switches.
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S-term   A Boolean sum term—one containing only ORed literals.
STT   Single transition time.
Sum-of-products (SOP)   The ORing of ANDed terms in a Boolean expression.
Sum rule   A rule in state diagram construction that requires that all possible branching conditions 
be accounted for.
Switching speed   A device parameter that is related to its propagation delay time.
Synchronizer circuit   A logic circuit (usually a D flip-flop) that is used to synchronize an input 
with respect to a clock signal.
Synchronous machine   A sequential machine that is clock driven.
System level design   A design that includes controller and data path sections.
Tabular minimization   A minimization procedure that uses tables exclusively.
TCM   (See Timing control machine)
T flip-flop   A flip-flop that operates in either the toggle or hold mode.
Throughput   The time required to produce an output response due to an input change.
Time constant   The product of resistance and capacitance given in units of seconds [s]—a mea-
sure of the recovery time of an R–C circuit.
Timing control machine (TCM)   A three-state resolver FSM whose function it is to control the 
SAM transitions via a handshake configuration in the MAC module.
Timing diagram   A set of logic waveforms showing the time relationships between two or more 
logic signals.
Toggle   Repeated but controlled transitions between any two states, as between the set and reset 
states.
Toggle module   A flip-flop that is configured to toggle only. Also, a divide-by-2 counter.
Trans-HI module   A transparent high (RET) D latch.
Trans-LO module   A transparent low (FET) D latch.
Transistor   A three-terminal switching device that exhibits current or voltage gain.
Transition   In a digital machine, a change of one state (or level) to another.
Transmission gate   A pass transistor switch.
Transparent D latch   A two-state D flip-flop in which the output, Q, tracks the input, D, when 
clock is active if RET or when clock is inactive if FET.
Tree   Combining of like gates or C-elements to accommodate multiple inputs or to overcome 
fan-in limitations.
Triggering threshold   The point beyond which a transition takes place.
Triggering variable   Sampling (enabling) variable.
Tri-state bus   The wire-ORed output lines from a multiplexed scheme of PLDs having tri-state 
enables.
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Tri-state driver   An active logic device that operates in either a disconnect mode or an inverting 
(or noninverting) mode.
Truth table   A table that provides an output value for each possible input condition to a combi-
national logic device.
Two-level logic   Logic consisting of only one ANDing and one ORing stage.
Unconditional branching   State-to-state transitions that take place independent of the input sta-
tus of the FSM.
Unconditional output   An output of an FSM that does not depend on an input signal. A Moore 
output.
Union   OR operation.
Unit distance code   A code in which each state in the code is surrounded by logically adjacent 
states.
Unstable state   Any logic state in an asynchronous FSM that does not satisfy the stability criteria.
VEM   Variable entered map.
Very-large-scale integrated circuits   IC chips that contain thousands to millions of gates.
VHDL   VHSIC hardware description language.
VHSIC   Very-high-speed integrated circuit.
VLSI   Very-large-scale integrated circuit.
Voltage, V   The potential difference between two points, in units of volts [V]. Also, the work 
required to move a positive test charge against an electric field.
Voltage waveform   A voltage waveform in which rise and fall times exist.
Wireless connection feature   In schematic capture, the simplifying feature that permits input and 
output labels to be presented separately from corresponding labels used throughout a circuit—thus, 
no wire connections are needed to convey connectivity. 
WSI circuits   Wafer-scale integrated circuits.
XNOR   Exclusive NOR (see Equivalence and eqv).
XOR   Exclusive OR.
XOR function   The function that derives from the definition of Exclusive OR.
XOR gate   A physical device that performs the electrical equivalent of the XOR function.
XOR laws   A set of Boolean identities that are based on the XOR function.
XOR pattern   Any of four possible K-map patterns that result in XOR type functions.
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