

Table	of	Contents
Beginning	Swift

Why	Subscribe?
PacktPub.com

Contributors
About	the	Authors
Packt	is	Searching	for	Authors	Like	You

Preface
What	This	Book	Covers
What	You	Need	for	This	Book
Who	This	Book	is	for
Conventions
Reader	Feedback
Customer	Support

Downloading	the	Example	Code
Errata
Piracy
Questions

1.	Swift	Basics
Lesson	objectives
Swift	Program	Structure

Hello,	World!
Swift	Variables	and	Constants

Declaring	Swift	Variables
Variables	Versus	Constants
Type	Inference
Variable	Naming

Working	with	Variables
Tuples

Creating	a	Tuple
Optionals

Declaring	an	Optional
Working	with	Optionals
Optional	nil	Values
Accessing	Optional	Values
Force	Unwrapping	an	Optional
Conditionally	Unwrapping	Optionals

Using	Optionals
The	Swift	guard	Statement

Activity	B:	Variable	Summary
Swift	Data	Types

Numeric	Data	Types
Int	on	64-Bit	Versus	32-Bit	Platforms
Built-In	Numeric	Data	Types
Choosing	the	Appropriate	Numeric	Data	Type
Declaring	and	Assigning	Integer	Variables
Declaring	and	Assigning	Floating	Point	Numbers

Numeric	Literal	Grouping
Numeric	Type	Conversions

Using	Numeric	Types
Boolean
Character

Assigning	a	Character
Constructing	a	Character	Literal

String
Instantiating	a	String
String	Concatenation
Extracting	Characters
String	Length

Activity	C:	Data	Type	Summary
Enums

Basic	Enum	Syntax
Enum	with	Raw	Values
Activity	D:	Using	Swift	Enums

Summary
2.	Swift	Operators	and	Control	Flow

Lesson	objectives
Swift	Operators

Assignment	Operator
Arithmetic	Operators

Standard	Arithmetic	Operators
Remainder	Operator
Unary	minus	Operator
Compound	Assignment	Operators

Comparison	Operators
Equality
Inequality
Comparison	between	Two	Values

Ternary	Conditional	Operator
Logical	Operators
Bitwise	Operators
Nil-Coalescing	Operator
Range	Operators

Closed	Range	Operator
Half-Open	Range	Operator
One-Sided	Range	Operator

Activity	A:	Operators
Branching

The	if	Statement
Condition	Lists
Optional	Unwrapping	with	if

The	switch	Statement
switch	Statement	Rules
The	break	Keyword
The	fallthrough	Keyword
Matching	Non-Scalar	Values
Multiple	Patterns	in	a	Single	Case
Using	the	where	Statement	within	case
Evaluating	Optionals	with	a	switch	Statement

Activity	B:	Converting	Code	from	if	to	switch
Loops

The	for…in	Statement
Iterating	over	Objects
Iterating	over	Array	Objects	with	index
The	for	Loop	where	Clause
The	break	Control	Transfer	Statement
The	continue	Control	Transfer	Statement

The	while	Loop
The	repeat…while	Loop

Activity	C:	Implementing	Loops
Summary

3.	Functions,	Classes,	and	Structs
Lesson	Objectives
Functions

Defining	a	Function
Argument	Labels
Excluding	Argument	Labels
Parameter	Default	Values
Activity	A:	Implementing	a	Function
Returning	Values	from	Functions
Using	@discardableResult
Function	Attributes
Variadic	Parameters
inout	Parameters
Recursion
Functions	as	Parameters
Closures

Creating	a	Function	to	Receive	Content	from	an	Asynchronous
Web	Service	Call
Error	Handling

The	do…catch	Statement
Multiple	catch	Blocks
Using	do	without	catch
The	guard	Statement
Activity	B:	Exception	Handling

Object-Oriented	Features
Object-Oriented	Principles
Classes	Versus	Structs

Illustration
Defining	Classes	and	Structures
Activity	C:	Creating	a	Customer	Struct	and	Class

Summary
Challenge

4.	Collections
Lesson	Objectives
Arrays

Working	with	Arrays
Index

Utilizing	Common	Operations	with	Index
ArraySlice

Creating	Slices

Creating	Slices	Using	Range	Operators
Activity	A:	Working	with	Arrays

Sets
Working	with	Sets
Combining	Sets
Comparing	Sets
Activity	B:	Removing	Duplicates	from	a	Sequence

Dictionaries
Working	with	Dictionaries
Activity	C:	Using	Dictionaries

Summary
5.	Strings

Lesson	Objectives
String	Fundamentals

Character
Collection
Index

Working	with	String	Index
Debugging
Activity	A:	All	Indices	of	a	Character

Using	Strings
Creating	Strings
Common	Operations

Implementing	Extra	Text	Operations	on	a	String
Activity	B-1:	All	Ranges	of	a	Substring
Activity	B-2:	Counting	Words,	Sentences,	and	Paragraphs

Substring
Creating	Substrings

Parsing	Strings
Converting	NSRange	to	Range
Activity	C:	CamelCase

Summary
6.	Functional	Programming	and	Lazy	Operations

Lesson	Objectives
Function	Type
Functional	Methods

filter
Using	the	filter	Method

map
Using	the	map	Function

flatMap
Using	the	flatMap	Function

reduce
Using	the	reduce	Function

Activity	A:	Implementing	Functional	Programming
Lazy	Operations

Lazy	Sequences
Sequence	Internals
Creating	Lazy	Operations

sequence(first:next:)
sequence(state:next:)

Activity	B:	Implementing	a	Lazy	Version	of	a	Method

Swifty	Code
Naming
Organizing	Code
Miscellaneous

Writing	Swifty	Code
Summary
Further	Study
Challenge

Index

Beginning	Swift

Beginning	Swift
Copyright	©	2018	Packt	Publishing	All	rights	reserved.
No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any
means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations
embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this
book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this
book	is	sold	without	warranty,	either	express	or	implied.
Neither	the	authors,	nor	Packt	Publishing	or	its	dealers
and	distributors,	will	be	held	liable	for	any	damages
caused	or	alleged	to	have	been	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark
information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee
the	accuracy	of	this	information.

Acquisition	Editor:	Aditya	Date	Content	Development
Editor:	Taabish	Khan	Production	Coordinator:	Vishal
Pawar	First	published:	May	2018

Production	reference:	1310518

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78953-431-3

www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access
to	over	5,000	books	and	videos,	as	well	as	industry
leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more
information,	please	visit	our	website.

Why	Subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical
eBooks	and	Videos	from	over	4,000	industry	professionals

Learn	better	with	Skill	Plans	built	especially	for	you

http://www.packtpub.com
https://mapt.packtpub.com/

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every
book	published,	with	PDF	and	ePub	files	available?	You
can	upgrade	to	the	eBook	version
at	www.PacktPub.com	and	as	a	print	book	customer,	you
are	entitled	to	a	discount	on	the	eBook	copy.	Get	in
touch	with	us	at	service@packtpub.com	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of
free	technical	articles,	sign	up	for	a	range	of	free
newsletters,	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.PacktPub.com

Contributors
ABOUT	THE	AUTHORS

Rob	Kerr	is	a	mobile	software	architect	based	in	United
States.	He	has	been	working	professionally	with	Swift
since	its	introduction,	delivering	applications	to	the	public
App	Store	and	through	enterprise	distribution.	His
current	focus	is	developing	state-of-the-art	iOS
applications	using	Swift	in	the	IoT	space.

Kåre	Morstøl	is	an	independent	software	developer
from	Norway,	with	a	bachelor's	degree	in	software
development.	He	has	programmed	almost	exclusively	in
Swift	since	it	was	announced.	He	thinks	it's	a	great
language	that	is	continually	getting	better.

Packt	is	Searching	for
Authors	Like	You
If	you're	interested	in	becoming	an	author	for	Packt,
please	visit	authors.packtpub.com	and	apply	today.	We
have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their
insight	with	the	global	tech	community.	You	can	make	a
general	application,	apply	for	a	specific	hot	topic	that	we
are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Preface
Swift	is	a	multi-paradigm	language.	It	has	expressive
features	familiar	to	those	used	to	working	with	modern
functional	languages,	whilst	also	keeping	the	object-
oriented	features	of	Objective-C.	Swift	vastly	streamlines
the	developer	experience,	and	Apple's	Xcode
playground	is	a	real	game-changer.

The	book	begins	by	teaching	you	the	basic	syntax	and
structure	of	Swift,	and	how	to	correctly	structure	and
architect	software	using	Swift.	It	then	builds	expertise	in
the	core	Swift	standard	library	you	will	need	to
understand	to	complete	real-world	Swift	programming
projects.	We	will	work	through	concepts	such	as
operators,	branching	and	loop	structures,	functions,
classes,	structs,	collections,	and	strings.	We	end	the
book	with	a	brief	look	at	functional	programming	and	lazy
operations.

After	reading	and	understanding	this	book,	you	will	be
well-prepared	to	begin	developing	native	end-user
applications	for	iOS	or	macOS,	or	to	develop	server-side
(backend)	application	and	web	services	using	Swift	on
Linux.

What	This	Book	Covers
Lesson	1,	Swift	Basics,	covers	the	fundamentals	of	using
the	Swift	programming	language.	In	this	lesson,	you'll
learn	basic	Swift	syntax	and	program	structure.	You'll
also	learn	how	to	use	Swift	built-in	data	types	and
enums,	and	how	to	declare	and	use	Swift	variables	and
constants.

Lesson	2,	Swift	Operators	and	Control	Flow,	shows	you
how	to	use	the	fundamental	flow	control	structures	and
language	elements	that	form	the	building	blocks	of	Swift
programs.	We	will	specifically	cover	operators,	branching
statements,	and	loops	in	this	lesson.

Lesson	3,	Functions,	Classes,	and	Structs,	teaches	you
how	to	develop	fully	featured	Swift	functions,	catch
unexpected	errors,	and	use	asynchronous	programming
paradigms.	You'll	learn	how	to	create	your	own	data
types,	and	create	object-oriented	applications	using
classes	and	structs.

Lesson	4,	Collections,	shows	you	how	to	work	with
Swift's	collections,	such	as	arrays,	sets,	and	dictionaries.

Lesson	5,	Strings,	covers	Swift	strings	in	detail.	We	will
create	and	use	strings	and	substrings,	and	see	the
various	common	operations	available	for	strings.

Lesson	6,	Functional	Programming	and	Lazy
Operations,	ventures	at	functional	programming	and
explains	what	lazy	operations	are.	We	will	end	this
lesson	with	an	important	but	often	overlooked	topic—
writing	Swifty	code.

What	You	Need	for	This
Book
This	book	will	require	the	following	hardware:

A	Mac	computer	capable	of	running	macOS	Sierra	10.12.6+

An	internet	connection

Please	ensure	you	have	the	following	software	installed
on	your	machine:

Operating	system:	macOS	Sierra	10.12.6+

Xcode	9.1

Safari	browser

Who	This	Book	is	for
This	book	is	ideal	for	developers	seeking	fundamental
Swift	programming	skills,	in	preparation	for	learning	to
develop	native	applications	for	iOS	or	macOS.	No	prior
Swift	knowledge	is	expected	but	object-oriented
programming	experience	is	desirable.

You	should	have	basic	working	knowledge	of	computer
programming	in	a	procedural/object-oriented	language,
such	as	Objective-C,	BASIC,	C++,	Python,	Java,	or
JavaScript.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that
distinguish	between	different	kinds	of	information.	Here
are	some	examples	of	these	styles	and	an	explanation	of
their	meaning.

Code	words	in	text	are	shown	as	follows:	"Finally,	use
the	console	print	function	to	output	the	content	of	each
error	variable."

Folder	names,	filenames,	file	extensions,	pathnames,
include	file	names	in	text	are	shown	as	follows:	"Launch
Xcode	as	before,	and	create	a	new	playground	named
Create	a	Variable.playground."

A	block	of	code	is	set	as	follows:

let	name	=	"John	Doe"

var	address	=	"201	Main	Street"

print("\(name)	lives	at	\(address)")

New	terms	and	important	words	are	shown	in	bold.
Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:
"Choose	Blank	as	the	playground	template,	and	then
press	the	Next	button."

Important	new	programming	terms	are	shown	in	bold.
Conceptual	terms	are	shown	in	italics.

NOTENOTE
Important	additional	details	about	a	topic	appear	like	this,	as	in	a	sidebar.

TIPTIP
Important	notes,	tips,	and	tricks	appear	like	this.

Reader	Feedback
Feedback	from	our	readers	is	always	welcome.	Let	us
know	what	you	think	about	this	book—what	you	liked	or
disliked.	Reader	feedback	is	important	for	us	as	it	helps
us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail
<feedback@packtpub.com>,	and	mention	the	book's
title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see
our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	Support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we
have	a	number	of	things	to	help	you	to	get	the	most	from
your	purchase.

Downloading	the	Example	Code
You	can	download	the	example	code	files	from	your
account	at	http://www.packtpub.com	for	all	the	Packt
Publishing	books	you	have	purchased.	If	you	purchased
this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have
the	files	emailed	directly	to	you.

Errata
Although	we	have	taken	every	care	to	ensure	the
accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books—maybe	a	mistake	in	the
text	or	the	code—we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report
them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission
Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted
and	the	errata	will	be	uploaded	to	our	website	or	added
to	any	list	of	existing	errata	under	the	Errata	section	of

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata

that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	book	in	the	search	field.	The
required	information	will	appear	under	the	Errata
section.

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an
ongoing	problem	across	all	media.	At	Packt,	we	take	the
protection	of	our	copyright	and	licenses	very	seriously.	If
you	come	across	any	illegal	copies	of	our	works	in	any
form	on	the	Internet,	please	provide	us	with	the	location
address	or	website	name	immediately	so	that	we	can
pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>
with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and
our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you
can	contact	us	at	<questions@packtpub.com>,	and
we	will	do	our	best	to	address	the	problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter	1.	Swift	Basics
Swift	is	a	relatively	new	programming	language	designed
by	Apple	Inc.,	and	was	initially	made	available	to	Apple
developers	in	2014—primarily	intended	as	a
replacement	for	the	aging	Objective-C	language	that	was
the	foundation	of	OS	X	and	iOS	software	development	at
the	time.

Unlike	many	object-oriented	languages,	which	are	based
on	older	procedural	languages—for	example,	C++	and
Objective-C	are	based	on	C—Swift	was	designed	from
the	ground	up	as	a	new,	modern,	object-oriented
language	that	makes	programming	faster	and	easier,
and	helps	developers	produce	expressive	code	that's
less	prone	to	errors	than	many	languages.

While	not	based	on	an	older	language,	Swift,	in	the
words	of	its	chief	architect,	Chris	Lattner,	"was	inspired
by	drawing	ideas	from	Objective-C,	Rust,	Haskell,	Ruby,
Python,	C#,	CLU,	and	far	too	many	others	to	list."	(Chris
Lattner	home	page:	http://nondot.org/sabre/).

Swift	was	initially	a	proprietary	language,	but	was	made
open	source	software	in	December	2015	as	of	its	version
2.2.	While	Swift	remains	primarily	used	by	developers
targeting	the	Apple	macOS	and	iOS	platforms,	Swift	is
also	fully	supported	on	Linux,	and	there	are	unofficial
ports	under	development	for	Windows	as	well.

http://nondot.org/sabre/

The	objective	of	this	lesson	is	to	learn	the	fundamentals
of	using	the	Swift	programming	language.	In	this	lesson,
you'll	learn	basic	Swift	syntax	and	program	structure.
You'll	also	learn	how	to	use	Swift	built-in	data	types	and
enums,	and	how	to	declare	and	use	Swift	variables	and
constants.	Let's	get	started.

Lesson	objectives
By	the	end	of	this	lesson,	you	will	be	able	to:

Explain	the	program	structure	and	syntax	of	Swift	programs

Declare	and	use	Swift	variables	and	constants

Use	the	various	built-in	Swift	data	types

Use	the	Swift	enum	language	syntax

Swift	Program	Structure
In	this	first	section,	we'll	look	at	the	basic	language
syntax	for	Swift,	and	you'll	write	your	first	fully	functional
Swift	program.

Like	many	modern	programming	languages,	Swift	draws
its	most	basic	syntax	from	the	programming	language	C.
If	you	have	previous	programming	experience	in	other	C-
inspired	languages,	such	as	C++,	Java,	C#,	Objective-C,
or	PHP,	many	aspects	of	Swift	will	seem	familiar,	and
many	Swift	concepts	you	will	probably	find	quite	familiar.

We	can	say	the	following	about	Swift's	basic	syntax:

Programs	are	made	up	of	statements,	executed	sequentially

More	than	one	statement	are	allowed	per	editor	line	when
separated	by	a	semicolon	(;)

Units	of	work	in	Swift	are	modularized	using	functions	and
organized	into	types

Functions	accept	one	or	more	parameters,	and	return	values

Single	and	multiline	comments	follow	the	same	syntax	as	in	C++
and	Java

Swift	data	type	names	and	usage	are	similar	to	that	in	Java,	C#,
and	C++

Swift	has	the	concept	of	named	variables,	which	are	mutable,	and
named	constants,	which	are	immutable

Swift	has	both	struct	and	class	semantics,	as	do	C++	and	C#

If	you	have	prior	experience	in	other	C-inspired

languages,	such	as	Java,	C#,	or	C++,	Swift	has	some
improvements	and	differences	that	will	take	some	time
and	practice	for	you	to	become	accustomed	to:

Semicolons	are	not	required	at	the	end	of	statements—except
when	used	to	separate	multiple	statements	typed	on	the	same	line
in	a	source	file.

Swift	has	no	main()	method	to	serve	as	the	program's	starting	point
when	the	operating	system	loads	the	application.	Swift	programs
begin	at	the	first	line	of	code	of	the	program's	source	file—as	is	the
case	in	most	interpreted	languages.

Functions	in	Swift	place	the	function	return	at	the	right-hand	side	of
the	function	declaration,	rather	than	the	left.

Function	parameter	declaration	syntax	is	inspired	by	Objective-C,
which	is	quite	different	and	often	at	first	confusing	for	Java,	C#,	and
C++	developers.

The	difference	between	a	struct	and	a	class	in	Swift	is	similar	to
what	we	have	in	C#	(value	type	versus	reference	type),	but	not	the
same	as	in	C++	(both	are	the	same,	except	struct	members	are
public	by	default).

For	those	coming	to	Swift	from	Java,	C++,	C#,	and
similar	languages,	your	previous	experience	with	other
C-inspired	languages	will	help	accelerate	your	progress
learning	Swift.	However,	be	sure	to	study	the	language
syntax	carefully	and	be	on	the	lookout	for	subtle
differences.

Hello,	World!
When	learning	a	new	language,	it's	traditional	for	a	first
program	to	make	sure	the	development	environment	is
installed	and	properly	configured	by	writing	a	program
that	outputs	something	to	the	screen.	That's	what	we'll

do	next.

Now,	let's	use	an	Xcode	playground	to	create	a	simple
Swift	program	to	display	the	string	Hello,	World	to	the
playground	console,	by	following	these	steps:

1.	 Begin	by	launching	Xcode.	You	should	be	presented	with	a
Welcome	to	Xcode	screen	with	the	following	commands	listed	on
the	left:

1.	 Get	started	with	a	playground
2.	 Create	a	new	Xcode	project
3.	 Clone	an	existing	project

2.	 Since	we'll	be	writing	code	but	not	building	an	application	in	this
lesson,	choose	the	Get	started	with	a	playground	option	to	open
an	interactive	code	window.

NOTENOTE
Xcode	playgrounds	are	provided	to	allow	developers	to	quickly	experiment	with
Swift	code.	In	addition	to	learning	Swift,	as	we	are	in	this	lesson,	you	can	use
playgrounds	to	develop	functions	and	test	whether	a	specific	fragment	of	Swift
code	will	do	what	you	expect.

3.	 Choose	Blank	as	the	playground	template,	and	then	press	the
Next	button.

4.	 Next,	Xcode	will	prompt	where	to	save	the	playground.	This	will
save	your	code	in	a	file	with	a	playground	file	extension.	Name	the
playground	HelloWorld,	and	save	it	to	your	desktop.

5.	 When	Xcode	creates	a	new	playground,	it	adds	some	default	code
to	the	editing	window.	Press	⌘A	on	your	keyboard	and	then	the
Delete	key	on	the	keyboard	to	delete	the	sample	code.

6.	 In	the	now-blank	editor	window,	add	the	following	two	lines	of	code:

let	message	=	"Hello,	World."

print(message)

Congratulations!	You've	just	written	your	first	Swift
program.	If	you	see	the	text	Hello,	World.	output	in	the
bottom	pane	of	the	playground	window,	your	program

has	worked.

Before	we	move	on,	let's	look	at	the	structure	of	the
playground	window:

Note	the	following	regions	in	the	playground	window,	as
indicated	by	the	numbers	within	the	red	circles:

1:	At	the	top	of	the	window	is	a	status	bar	which	tells	you	the	state
of	the	playground.

2:	The	editing	pane	of	the	window	is	where	you	type	the	code	to	run
in	the	playground.

3:	The	right-hand	pane	of	the	playground	window	shows
information	about	the	effect	of	each	line	of	code.	In	this	simple
program,	it	shows	the	value	message	has	been	set	to	("Hello,
World."),	and	the	text	that	was	sent	to	the	console	("Hello,
World.\n").	Note	the	right	pane	discloses	that	the	print()	function
added	a	newline	(\n)	character	to	the	output.

4:	The	output	pane	of	the	playground	window	shows	the	debug
console,	which	in	this	case	displays	what	the	Swift	program	has
output.	If	your	code	has	errors,	the	debug	console	will	output
information	about	those	errors	as	well.

Now	that	we	have	a	development	environment	up	and
running	where	we	can	create	and	run	Swift	code,	let's
move	on	to	learning	about	and	using	the	Swift	language.

Swift	Variables	and
Constants
Virtually	all	programming	languages	include	the	ability	for
programmers	to	store	values	in	memory	using	an
associated	name	chosen	by	the	programmer.	Variables
allow	programs	to	operate	on	data	values	that	change
during	the	run	of	the	program.

Declaring	Swift	Variables
A	Swift	variable	declaration	uses	the	following	basic
syntax:

var	<variable	name>	:	<type>	=	<value>

Given	this	syntax,	a	legal	declaration	for	a	Pi	variable
would	be	the	following:

var	pi	:	Double	=	3.14159

This	declaration	means:	create	a	variable	named	pi,
which	stores	a	Double	data	type,	and	assign	it	an	initial
value	of	3.14159.

NOTENOTE
The	Swift	Standard	Library	has	Pi	built	in,	accessed	by	using	the	Float.pi	and	Double.pi
properties.

Variables	Versus	Constants

You	may	want	to	store	a	named	value	in	your	program
that	will	not	change	during	the	life	of	the	program.	In	the
previous	example,	the	value	of	Pi	should	never	change
during	the	course	of	a	program.	How	can	we	ensure	that,
once	defined,	this	named	value	can	never	be
accidentally	changed	by	our	code?

Swift	variables	are	declared	using	the	var	keyword,	while
Swift	constants	are	declared	using	the	let	keyword,	for
example:

var	pi1	=	3.14159

let	pi2	=	3.15159

In	this	code,	the	named	value	pi1	is	a	variable,	and	its
value	can	be	changed	by	the	code	after	it	is	declared.
The	following	line	of	code	later	in	the	program	would	be
legal,	even	though	it	would	result	in	an	invalid	value	for
pi1:

pi1	=	pi1	*	2.0

On	the	other	hand,	since	pi2	was	declared	as	a	constant,
using	the	let	keyword,	the	following	line	of	code	later	in
the	program	would	result	in	a	compile-time	error,	since
changing	a	let	constant	is	illegal:

pi2	=	pi2	*	2.0

Generally,	any	time	you	create	a	named	value	that	will
never	be	changed	during	the	run	of	your	program,	you
should	use	the	let	keyword	to	create	a	constant.	The

Swift	compiler	enforces	this	recommendation	by	creating
a	compile-time	warning	whenever	a	var	is	created	that	is
not	subsequently	changed.

NOTENOTE
Other	than	the	restriction	on	mutating	the	value	of	a	constant	once	declared	(for	safety),
Swift	variables	and	constants	are	used	in	virtually	identical	ways,	and	you	usually	won't
think	about	whether	a	symbol	is	a	variable	or	a	constant	after	declaring	it.

Type	Inference
In	the	previous	example,	we	created	the	variable	pi1
without	specifying	its	data	type.	We	took	advantage	of	a
Swift	compiler	feature	called	type	inference.

When	you	assign	the	value	of	a	variable	or	constant	as
you	create	it,	the	Swift	compiler	will	analyze	the	right-
hand	side	of	the	assignment,	infer	the	data	type,	and
assign	that	data	type	to	the	variable	or	constant	you're
creating.	For	example,	in	the	following	declaration,	the
compiler	will	create	the	variable	name	as	a	String	data
type:

var	name	=	"George	Smith"

As	a	type-safe	language,	once	a	data	type	is	inferred	by
the	compiler,	it	remains	fixed	for	the	life	of	the	variable	or
constant.	Attempting	to	assign	a	non-string	value	to	the
name	variable	declared	above	would	result	in	a	compile-
time	error:

name	=	3.14159		//	Error:	"Cannot	assign	

value	of	type	'Double'	to	'String'

While	Swift	is	a	type-safe	language,	where	variable
types	are	explicit	and	do	not	change,	it	is	possible	to
create	Swift	code	that	behaves	like	a	dynamic	type
language	using	the	Swift	Any	data	type.	For	example,
the	following	code	is	legal	in	Swift:

var	anyType:	Any

anyType	=	"Hello,	world"

anyType	=	3.14159

While	this	is	legal,	it's	not	a	good	Swift	programming
practice.	The	Any	type	is	mainly	provided	to	allow
bridging	between	Objective-C	and	Swift	code.	To	keep
your	code	as	safe	and	error-free	as	possible,	you	should
use	explicit	types	wherever	possible.

Variable	Naming
Swift	variables	and	constants	have	the	same	naming
rules	as	most	C-inspired	programming	languages:

Must	not	start	with	a	digit

After	the	first	character,	digits	are	allowed

Can	begin	with	and	include	an	underscore	character

Symbol	names	are	case	sensitive

Reserved	language	keywords	may	be	used	as	variable	names	if
enclosed	in	backticks	(for	example,	`Int`:Int	=	5)

When	creating	variable	and	constant	names	in	Swift,	the
generally	accepted	naming	convention	is	to	use	a
camelCase	naming	convention,	beginning	with	a
lowercase	letter.	Following	generally	accepted	naming

conventions	makes	code	easier	for	others	to	read	and
understand	(https://swift.org/documentation/api-design-
guidelines/#follow-case-conventions)

For	example,	the	following	would	be	a	conventional
variable	declaration:

var	postalCode	=	"48108"

However,	the	following	would	not	be	conventional,	and
would	be	considered	incorrect	by	many	other	Swift
developers:

var	PostalCode	=	"48108"

var	postal_code		=	"48108"

var	POSTALCODE	=	"48108"

Unlike	many	other	programming	languages,	Swift	is	not
restricted	to	the	Western	alphabet	for	its	variable	name
characters.	You	may	use	any	Unicode	character	as	part
of	your	variable	declarations.	The	following	variable
declarations	are	legal	in	Swift:

var	helloWorld	=	"Hello,	World"

var		=	"Hello	World"

var	ᛠ	=	"Smile!"

NOTENOTE
Just	because	you	can	use	any	Unicode	character	within	a	variable	name,	and	can	use
reserved	words	as	variables	when	enclosed	in	backticks,	it	doesn't	mean	you	should.
Always	consider	other	developers	who	may	need	to	read	and	maintain	your	code	in	the
future.	The	priority	for	variable	names	is	that	they	should	make	code	easier	to	read,
understand,	and	maintain.

WORKING	WITH	VARIABLES

https://swift.org/documentation/api-design-guidelines/#follow-case-conventions

In	this	section,	you'll	use	an	Xcode	playground	to	create
a	variable	and	constant,	and	observe	the	difference
between	them.	So,	let's	get	started.

To	work	with	variables,	follow	these	steps:

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Create	a	Variable.playground.

2.	 Add	the	following	code	to	the	playground	to	create	a	constant	(that
is,	an	immutable	variable)	named	name,	and	a	variable	named
address:

let	name	=	"John	Doe"

var	address	=	"201	Main	Street"

print("\(name)	lives	at	\(address)")

In	this	code,	both	name	and	address	store	string	text	in	named
memory	locations.	And	we	can	include	them	both	in	the	print
statement	in	the	same	way.

3.	 Now	add	the	following	code	to	change	John	Doe's	address	and
print	the	new	information	to	the	console:

address	=	"301	Fifth	Avenue"

print("\(name)	lives	at	\(address)")

In	the	console	output,	the	address	is	changed	as	expected.
4.	 Finally,	let's	try	to	change	the	string	stored	in	the	name	variable:

name	=	"Richard	Doe"

In	this	case,	the	Swift	compiler	generates	a	compile-time	error:

Cannot	assign	to	value:	'name'	is	a	

'let'	constant

By	declaring	name	as	an	immutable	variable	with	let,	we
let	the	compiler	know	no	code	should	be	allowed	to
change	the	content	of	the	variable	after	its	value	is
initially	set.

Tuples
One	of	Swift's	unique	language	features	is	its	inclusion	of
tuples.	By	default,	variables	and	constants	store	a	single
value.	Tuples	allow	a	variable	or	constant	name	to	refer
to	a	set	of	values.	While	tuples	do	not	exist	in	many
languages,	you	can	think	of	them	as	compound	values,
and	they	function	almost	identically	to	a	structure,	which
is	a	single	named	object	which	can	store	more	than	one
variable	embedded	within	it.

By	using	a	tuple,	we	could	take	the	following	variable
declaration:

var	dialCode	=	44

var	isoCode	=	"GB"

var	name	=	"United	Kingdom"

We	could	combine	it	to	the	following:

var	country	=	(44,	"GB",	"United	Kingdom")

Then	we	can	access	the	individual	members	of	the	tuple
as	follows:

print(country.0)		//	outputs	44

print(country.1)		//	outputs	GB

print(country.2)		//	outputs	United	

Kingdom

Tuple	members	can	also	be	given	individual	names,	as
follows:

var	country	=	(dialCode:	44,	isoCode:	

"GB",	name:	"Great	Britain")

print(country.dialCode)		//	outputs	44

print(country.0)														//	also	

outputs	44!

print(country.isoCode)			//	outputs	GB

print(country.name)							//	outputs	

United	Kingdom

Swift	functions	can	accept	multiple	input	parameters,	but
return	only	one	value.	A	common	use	case	for	a	tuple
variable	type	is	to	include	more	than	one	value	from	a
function:

func	getCountry()	->	(dialCode:	Int,	

isoCode:	String,	name:	String)	{

				let	country	=	(dialCode:	44,	isoCode:	

"GB",	name:	"United	Kingdom")

				return	country

}

let	ret	=	getCountry()

print(ret)

A	second	way	to	return	multiple	values	from	a	function	is
to	use	inout	parameters,	which	allows	a	function	to
change	the	value	of	an	input	parameter	within	that
function.

While	there	are	valid	use	cases	for	changing	inout
parameter	values,	returning	a	tuple	has	the	advantage	of
returning	a	value	type—rather	than	modifying	input
values.

NOTENOTE
Tuples	behave	much	like	structures—which	are	predefined	compound	data	types	in	Swift
and	many	other	languages.	You	may	be	tempted	to	use	tuples	rather	than	making	the	extra
effort	to	create	structures	since	they	provide	similar	utility.	Be	careful	not	to	overuse	tuples.
They	are	convenient	for	ad	hoc,	lightweight	composite	data	types,	but	when	used	in
complex	programming,	use	cases	can	result	in	code	that's	more	difficult	to	understand	and
harder	to	maintain.	Use	tuples	as	they're	intended,	as	a	means	to	bundle	a	few	related
components	of	a	data	element.

CREATING	A	TUPLE

Let's	look	at	creating	a	tuple.	We'll	use	an	Xcode
playground	to	create	and	use	a	tuple.	Here	are	the
steps:

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Create	a	Tuple.playground.

2.	 Add	the	following	code	to	the	playground	to	create	a	tuple
containing	a	person's	name,	address	and	age:

let	person1	=	("John	Doe",	"201	Main	

Street",	35)

print("\(person1.0)	lives	at	\

(person1.1)	and	is	\(person1.2)	

years	old.")

This	code	is	very	similar	to	the	previous,	except	that	we've	used	a
tuple	to	group	together	values	describing	John	Doe—rather	than
using	separate	variables	for	each	element.

While	this	syntax	is	legal,	acceptable,	and	common,	it	can	begin	to
result	in	difficult	to	understand	and	maintain	code—especially	when
a	tuple	contains	more	than	two	simple	values.	To	make	a	tuple
more	maintainable,	you	can	give	variable	names	to	each	of	its
components.

3.	 Add	the	following	to	the	playground:

let	person2	=	(name:	"Jane	Doe",	

address:	"301	Fifth	Avenue",	age:	

35)

print("\(person2.name)	lives	at	\

(person2.address)	and	is	\

(person2.age)	years	old.")

In	this	second	approach,	each	member	of	the	tuple	has	a
descriptive	name,	making	it	easier	for	the	reader	of	the	program	to
understand	and	maintain	the	code.

Optionals
Another	unique	language	feature	Swift	provides	is	the
optional.	In	most	programming	languages,	all	variables
and	constants	must	hold	some	value.	But,	in	the	real
world,	sometimes	a	value	is	unknown.	For	example,	an
address	may	or	may	not	contain	a	second	address	line,
and	more	than	60	countries	in	the	world	don't	use	postal
codes.	Optionals	allow	variables	to	indicate	whether	their
value	is	missing	(that	is,	not	assigned),	or	is	truly	a	blank
value.

NOTENOTE
When	variables	are	declared	optional	in	Swift,	they	behave	very	similarly	to	column	values
in	SQL	database	such	as	Oracle,	SQL	Server,	and	MySQL.

Optionality	for	Swift	variables	is	optional	(pun	intended).
To	declare	a	variable	as	an	optional,	add	a	question
mark	(?)	to	the	end	of	its	data	type	(or	assign	another
optional	variable's	value	to	it	so	the	optional	property	is
inferred	from	the	existing	variable).

The	following	variable	name	is	not	an	optional:

var	name:	String	=	"Hello"

This	next	variable	name	is	an	optional,	and	has	an	initial

value	of	nil:

var	name:	String?

The	presence	of	the	question	mark	intuitively	expresses
that	the	variable	may—or	may	not—contain	a	string.	If
the	optional	is	not	assigned	a	value,	it	will	automatically
be	set	to	nil,	meaning	it	has	no	value.

DECLARING	AN	OPTIONAL

Earlier	in	this	lesson,	we	declared	variables	with	initial
values	assigned.	These	variables	are	not	optional,	have
a	value,	and	can	never	be	assigned	a	nil	value,	or	an
unwrapped	optional	variable's	value.

In	this	section,	we	define	a	variable	as	an	optional	by
adding	a	question	mark	to	the	type	name,	which	makes	it
subject	to	the	Swift	compiler's	optional	validation	rules.

A	third	possibility	is	to	declare	a	force	unwrapped
variable—a	variable	that	can	be	nil,	but	is	not	optional.
This	type	of	variable	is	declared	by	placing	an
exclamation	point	(!)	after	the	type	(rather	than	the
question	mark	(?)	for	the	optional),	for	example:

var	customerAge:	Int!

When	a	variable	is	declared	in	this	fashion,	the	compiler
will	allow	the	variable	to	be	assigned	a	nil	value	at	any
time,	but	will	not	warn	the	programmer	at	compile	time
when	the	variable's	value	is	(or	could	be)	assigned	a	nil

value.

There	are	limited	circumstances	where	this	technique	is
required,	and	in	general	it	should	be	avoided.

NOTENOTE
Why	don't	we	make	all	variables	optional?	Optional	is	a	powerful	Swift	feature,	but	working
with	optional	variables	requires	more	code	as	they	are	used,	primarily	to	check	for	nil
values	before	accessing	the	optional	value.	In	general,	you	should	use	optional	variables
when	variables	may	be	missing	values,	but	not	use	optional	variables	when	you	know	a
variable	will	always	have	a	value.

WORKING	WITH	OPTIONALS

As	mentioned,	the	simplest	way	to	declare	a	variable	as
an	optional	is	to	append	the	data	type	with	a	question
mark,	for	example:

var	name:	String?

Because	of	Swift's	type	inference,	the	following	line	of
code	will	create	a	second	variable	of	optional	type:

var	nameCopy	=	name

The	syntax	to	assign	a	value	to	this	variable	is	the	same
as	it	would	be	if	the	variable	was	not	declared	as
optional:

name	=	"Adam	Smith"

The	difference	between	optional	and	non-optional
variables	is	primarily	when	you	access	the	value	of	an
optional,	which	we'll	cover	next.

OPTIONAL	NIL	VALUES

Optional	variables	in	Swift	can	be	directly	compared	to
the	absence	of	value	(nil)	and	assigned	a	nil	value.
For	example,	in	the	following	two	statements,	variable	a
initially	has	a	value	of	4,	then	is	assigned	a	nil	value,	and
then	is	checked	for	having	a	nil	value:

var	a:	Int?	=	4

a	=	nil

if	a	==	nil	{

		print("a	is	nil")

}

While	the	presence	or	absence	of	a	value	within	an
optional	can	be	directly	tested,	extracting	and	using	the
value	contained	within	an	optional	requires	that	the
optional	(the	envelope)	be	unwrapped,	and	the	content
(value)	extracted.	We'll	learn	how	to	do	this	next.

ACCESSING	OPTIONAL	VALUES

Think	of	an	optional	as	a	value	wrapped	in	an	envelope.
You	cannot	access	the	contents	of	an	envelope	without
opening	it	(unwrapping	it),	and	then	removing	the
contents.

You	can	primarily	unwrap	an	optional	and	use	its	value	in
two	ways:

Force	unwrap

Conditional	unwrap

We'll	learn	each	of	these	techniques	next.

FORCE	UNWRAPPING	AN	OPTIONAL

Look	at	the	two	optional	Int	variables:

var	a:	Int?

var	b:	Int	=	4

You	could	attempt	to	assign	a	to	b,	for	example:

b	=	a

But	this	would	result	in	a	compile-time	error:

Value	of	optional	type	'Int?'	not	

unwrapped;	did	you	mean	to	use	'!'	or	'?'?

As	the	error	indicates,	accessing	the	value	of	an
unwrapped	optional	variable	is	(always)	illegal.	One
approach	to	solving	this	problem	is	to	force	unwrap	the
variable	as	we	use	it.	To	force	unwrap	a	variable,	simply
place	an	exclamation	mark	(!)	after	the	variable	name,
for	example:

b	=	a!

Force	unwrapping	is	similar	to	using	a	type	cast	in	many
languages.	In	Swift,	a	force	unwrap	tells	the	compiler	to
assume	that	the	optional	contains	a	value.

However,	a	force	unwrap	shifts	all	the	responsibility	to
the	programmer	for	ensuring	optionals	actually	have
values.	The	above	example,	b	=	a!,	would	allow	the
code	to	compile,	but	would	generate	the	following

runtime	error,	and	the	application	will	crash:

Fatal	error:	Unexpectedly	found	nil	while	

unwrapping	an	Optional	value

Because	variable	a	is	an	optional	with	no	value,	there	is
no	value	to	extract	from	it	to	assign	to	b.

NOTENOTE
Force	unwrapping	should	not	be	viewed	as	a	way	to	get	around	compiler	type-safety
features.	Only	use	force	unwrapping	when	you're	absolutely	certain	that	it's	impossible	for
an	optional	variable	to	contain	a	nil	value.	In	the	following	code,	a	force	unwrap	would	be
acceptable:

var	a:	Int?	=	2

var	b:	Int	=	4

b	=	a!

CONDITIONALLY	UNWRAPPING
OPTIONALS

While	there	are	times	when	force	unwrapping	variables
is	safe,	you	should	typically	take	advantage	of	Swift's
type-safety	features	by	using	conditional	unwrapping.

With	conditional	unwrapping,	we	ask	the	compiler	to	first
check	whether	the	optional	has	a	value,	and	return	the
value	if	present,	or	nil	if	not.

For	example,	to	assign	the	value	of	optional	a	to	a	new,
non-optional	variable	b,	we	can	use	the	following	code:

var	a:	Int?	=	4

if	let	b	=	a	{

			print(b)

}

This	code	snippet	would	print	the	value	4	to	the	console.
If	we	had	not	assigned	the	initial	value	4	to	a,	then
nothing	would	have	been	printed.

Using	Optionals

Use	an	Xcode	playground	to	create	and	use	an	optional,
by	performing	the	following	steps:

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Using	Optionals.playground.

2.	 Add	the	following	code	to	the	playground	to	create	an	optional
containing	a	person's	name:

var	name:	String?	=	nil

3.	 Now	add	the	following	code	to	check	whether	the	optional	is	nil:

if	name	==	nil	{

				print("name	is	nil")

}	else	{

				print("name	is	not	nil")

}

Of	course,	since	we	assigned	the	value	nil,	it	is	nil.

A	more	common	way	to	check	for	a	non-nil	optional	is	to	use	the
if/let	syntax	covered	previously.

4.	 Add	the	following	code	to	assign	a	value	to	the	optional	content,
then	print	it	to	the	console:

name	=	"John	Doe"

if	let	n	=	name	{

				print(n)

}	else	{

print("the	name	is	still	nil")

Because	you	assigned	a	value	to	the	variable	name,	the	string	John
Doe	is	printed	to	the	console.

5.	 Finally,	comment	out	the	variable	assignment.	The	output	will	now

change	to	the	name	is	still	nil,	because	the	if/let	syntax
detected	that	the	variable	name	contains	no	value.

THE	SWIFT	GUARD	STATEMENT

It's	very	common	that	Swift	functions	should	only
execute	when	parameters	passed	to	them	are	in	an
expected	state.	In	early	versions	of	Swift,	the	conditional
unwrapping	technique	was	often	used	to	provide	this
type	of	safety	checking.	For	example,	a	function	that
accepts	an	optional	Int	value,	but	should	only	proceed
when	the	parameter	is	not	nil	might	look	as	follows:

func	doubleValue(input:	Int?)	->	Int?	{

			if	let	i	=	input	{

						return	i	*	2

			}

			return	nil

}

While	this	function	is	only	a	few	lines	of	code,	imagine	if
the	work	done	on	the	unwrapped	variable	was	more
complex.	To	allow	parameter	and	other	data	state
checking	to	be	concisely	done	at	the	beginning	of
functions,	Swift	includes	a	guard	keyword.

The	following	is	a	version	of	doubleValue	that	uses	the
guard	syntax	to	place	data	state	checks	at	the	top	of	the
function:

func	doubleValue(input:	Int?)	->	Int?	{

			guard	let	i	=	input	else	{	return	nil	}

			return	i	*	2

}

This	is	the	end	of	this	section.	Here,	we	have	had	a	deep
look	at	how	to	declare	variables	and	constants	in	Swift.
We	also	worked	with	tuples	and	optionals.

Activity	B:	Variable	Summary
In	Swift,	variables	are	declared	before	being	used.
Variables	can	be	declared	in	various	ways,	and	may	not
even	need	to	have	their	type	explicitly	stated	when	the
compiler	can	infer	data	type	from	initial	assignment.

Use	an	Xcode	playground	to	practice	how	to	declare
variables,	constants,	and	tuples.

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Topic	B	Summary.playground.

2.	 Add	the	following	code	to	the	playground	to	create	three	variables
storing	values	related	to	the	weather	conditions	in	Berlin:

let	cityName	=	"Berlin"

var	humidityPercentage:	Double?

var	temperatureCentigrade:	Double?

Note	that	cityName	is	a	constant,	non-optional	variable,	with	an
initial	string	value.	Since	we	know	the	name	of	the	city	in	advance,
and	it	doesn't	change	for	this	program,	it's	most	appropriate	to	use
let	to	declare	this	value	as	a	constant.

humidityPercentage	and	temperatureCentigrade	are
declared	as	optional,	since	we	do	not	yet	know	the	weather
conditions	in	Berlin	at	the	start	of	this	program.

3.	 Next,	add	the	following	line	of	code	to	create	a	tuple	to	collect	the
weather	report	data	into	a	single	variable	named	weather:

var	weather	=	(city:	cityName,	

humidityPercentage:	

humidityPercentage,	temperature:	

temperatureCentigrade)

Recall	that	providing	reference	names	for	each	tuple	member	is
optional,	but	is	included	here	to	make	the	remaining	part	of	the
program	clearer	to	other	programmers	who	may	need	to	read	this
program	later.

4.	 Next,	set	the	value	of	humidity	within	the	tuple:

weather.1	=	0.70

Note	that	even	though	you	created	a	reference	name	for	humidity
(humidityPercentage),	you	can	still	set	the	value	using	the
ordinal	position	within	the	tuple.	The	following	line	of	code	would
probably	be	better	in	this	case:

weather.humidityPercentage	=	0.70

5.	 Now	print	the	tuple	to	the	console.	On	noticing	that	the	variable
provided	is	a	tuple,	the	console	print()	function	prints	all
members	of	the	tuple—along	with	the	reference	names	provided:

print(weather)

The	output	of	the	print	statement	is	as	follows:

(city:	"Berlin",	humidityPercentage:	

Optional(0.69999999999999996),	

temperature:	nil)

6.	 Finally,	print	each	of	the	tuple's	components,	each	on	its	own	line:

print("City:	\(weather.city)")

print("Humidity:	\

(String(describing:weather.humidityP

ercentage))")

print("Temperature:	\

(String(describing:weather.temperatu

re))")

The	output	of	this	code	is	as	follows:

City:	Berlin

Humidity:	

Optional(0.69999999999999996)

Temperature:	nil

Swift	Data	Types
Like	most	programming	languages,	Swift	includes	a	full
complement	of	built-in	data	types	that	store	numbers,
characters,	strings,	and	Boolean	values.

NOTENOTE
In	the	previous	section,	we	covered	the	use	of	Swift	optionals,	and	worked	through	several
examples	declaring	an	Int	variable	as	optional	and	non-optional.	Keep	in	mind	that	any
Swift	variable,	of	any	type,	can	be	declared	as	an	optional.

Numeric	Data	Types
Like	most	programming	languages,	Swift	provides	built-
in	numeric	data	types	that	represent	either	integer	or
floating-point	values.

INT	ON	64-BIT	VERSUS	32-BIT
PLATFORMS

While	it's	likely	you'll	develop	Swift	applications
exclusively	on	64-bit	platforms,	it's	important	to	know	that
Swift	is	available	on	both	32-bit	and	64-bit	platforms.
When	using	a	generic	integer	numeric	type	(Int	or
UInt),	the	generic	type	will	be	mapped	to	an	underlying,
specific	equivalent	that	matches	the	current	platform's
word	size.	For	example,	on	a	64-bit	platform,	Int	is
mapped	to	Int64;	on	a	32-bit	platform,	the	same	Int
type	is	mapped	to	an	Int32.

BUILT-IN	NUMERIC	DATA	TYPES

The	following	table	summarizes	the	available	Swift
numeric	data	types:

Type Min	value Max	value

Int8 -128 127

Int16 -32768 32767

Int32 -2.1	x	109 2.1	x	109

Int64 -9.2	x	1018 9.2	x	1018

UInt8 0 255

UInt16 0 65535

UInt32 0 4.3	x	109

19

UInt64 0 1.8	x	10

Double -1.8	x	 08 1.8	x	10

Float -3.4	x	10 3.4	x	10

CHOOSING	THE	APPROPRIATE	NUMERIC
DATA	TYPE

Conceptually,	a	UInt64	variable	will	consume	four	times
more	RAM	than	a	UInt8	variable,	so	you	may	ask,
"Should	I	tune	my	variables	by	selecting	the	smallest
number	of	bits	needed	to	meet	requirements?"

While	it	may	seem	intuitive	to	select	the	numeric	type
that	uses	the	least	RAM	to	store	the	variable's	expected
range	of	values,	it's	usually	preferable	to	use	the	generic
integer	types	(for	example,	Int	when	declaring	integers
and	Double	when	declaring	floating-point	numbers).

NOTENOTE
This	is	a	reference	from	The	Swift	Programming	Language	(Swift	4):	"Unless	you	need	to
work	with	a	specific	size	of	integer,	always	use	Int	for	integer	values	in	your	code.	This	aids
code	consistency	and	interoperability."	Visit
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Program
ming_Language/	for	the	official	documentation.

DECLARING	AND	ASSIGNING	INTEGER
VARIABLES

19

103 308

38 38

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/

Integer	values	may	be	instantiated	using	base	10
(decimal),	base	2	(binary),	base	8	(octal),	or	base	16
(hexadecimal)	literal	values,	or	by	assigning	another	Int
variable	of	the	same	type	to	the	new	variable.

For	example,	assigning	the	number	100	to	a	new	Int
variable	holding	a	duration	in	minutes	can	be	done	in
any	of	the	following	ways:

let	minutes	=	100									//	decimal

let	minutes	=	0b1100100			//	binary

let	minutes	=	0o144							//	octal

let	minutes	=	0x64								//	hexadecimal

DECLARING	AND	ASSIGNING	FLOATING
POINT	NUMBERS

Floating-point	numbers	are	represented	by	either	Float
or	Double	data	types.	In	general,	you	should	use
Double—and	employ	Float	only	when	specific
circumstances	require	using	the	smaller,	32-bit	numeric
variable.

Declaring	and	assigning	value	to	floating-point	variables
follows	the	same	syntax	rules	as	with	integer	variables.
For	example,	the	following	statement	creates	a	new
Double	variable	interestRate,	and	assigns	an	initial
value	to	it:

var	interestRate	=	5.34

NUMERIC	LITERAL	GROUPING

When	assigning	constant	values	to	numeric	types,	Swift
provides	a	handy	format	to	make	code	more	readable:
the	underscore	character	is	ignored	when	parsing
numeric	literals.

This	feature	is	most	commonly	used	to	provide
groupings	of	thousands	in	a	large	integer	or	floating-
point	assignments,	but	actually	can	be	used	to	provide
any	grouping	separation	that	makes	code	more
readable.	For	example,	the	following	statements	all
assign	the	value	100,000	to	the	variable	minutes:

var	minutes	=	100000

var	minutes	=	100_000

var	minutes	=	10_00_00

var	minutes	=	0b110_000110_101000_00

Using	the	underscore	for	readability	can	also	be	used	for
floating-point	literal	values.	For	example,	the	following
statements	are	equivalent:

var	balance	=	10000.44556

var	balance	=	10_000.44_556

NUMERIC	TYPE	CONVERSIONS

Like	many	fully	compiled	languages,	Swift	is	a	strongly
typed	language,	and	requires	explicit	type	conversions
(or	casts)	when	assigning	the	value	from	one	variable
type	to	a	variable	of	a	different	type.

Many	new	Swift	programmers	find	that	Swift	is	even
stricter	than	languages	they've	used	before.	In	many

programming	languages,	the	compiler	will	implicitly
convert	between	data	types	during	an	assignment	so
long	as	the	value	contained	within	the	variable	being
assigned	(on	the	right	of	the	equals	sign)	could	not
overflow	the	variable	being	assigned	to	(on	the	left	of	the
equals	sign).

In	other	words,	in	many	languages,	the	following	code
would	be	legal,	since	an	Int8	is	known	to	always	fit	into
an	Int16	without	a	numeric	overflow:

Int8	smallNumber	=	3;

Int16	mediumNumber	=	smallNumber;

However,	this	equivalent	code	in	Swift	would	result	in	a
compile-time	error:

var	smallNumber:	Int8	=	3

var	mediumNumber:	Int16	=	smallNumber

This	code	would	generate	the	following	error:

error:	cannot	convert	value	of	type	'Int8'	

to	specified	type	'Int16'

In	Swift,	it's	always	the	programmer's	responsibility	to
ensure	that	assignments	have	the	same	data	type	on	the
left	and	right	of	the	assignment	operator	(that	is,	the
equals	sign).	The	following	code	corrects	the	compile-
time	error:

var	smallNumber:	Int8	=	100

var	mediumNumber:	Int16	=	

Int16(smallNumber)

NOTENOTE
This	requirement	for	explicit	type	assignment	is	one	reason	why	most	Swift	programming
uses	the	generic	numeric	variables	Int	and	Double,	except	when	specific	usage	requires
tuning	for	numeric	range	or	memory	storage	size.

Using	Numeric	Types

Now,	let's	see	how	to	use	various	numeric	variable	types
by	following	these	steps:

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Topic	B	Using	Numeric	Types.playground.

2.	 Add	the	following	code	to	the	playground	to	create	three	Int
variables,	using	binary,	base10,	and	base16	literal	notation,
respectively:

var	base2	=	0b101010

var	base10	=	42

var	hex	=	0x2A

3.	 Now	add	the	following	three	corresponding	lines	to	print	the	data
type	and	value	for	each	of	the	variables	you	just	created.

print("Printing	\(type(of:	base2)):	

\(base2)")

print("Printing	\(type(of:	base10)):	

\(base10)")

print("Printing	\(type(of:	hex)):	\

(hex)")

Examining	the	output,	note	that	the	three	variables	all	have	the
same	data	type	(Int)	and	same	value	(42	in	base	10).

4.	 Add	the	following	lines	of	code	to	create	two	more	variables,	and	to
print	the	types	and	values	for	each:

var	scientific	=	4.2E+7

let	double	=	4.99993288828

print("Printing	\(type(of:	

scientific)):	\(scientific)")

print("Printing	\(type(of:	double)):	

\(double)")

Note	that	both	variables	were	created	as	Double	types—even
though	the	value	of	the	first	is	actually	an	Integer.	Swift's	inference
system	doesn't	always	look	at	the	actual	value.	In	this	case,	the
presence	of	scientific	notation	in	the	literal	value	caused	Swift	to
assume	the	value	should	be	a	Double.

5.	 Now	add	the	following	lines	to	cast	and	round	the	variable	named
double	to	an	Int:

var	castToInt	=	Int(double)

var	roundToInt	=	

Int(double.rounded())

print("Printing	\(type(of:	

castToInt)):	\(castToInt)")

print("Printing	\(type(of:	

roundToInt)):	\(roundToInt)")

As	you	probably	expected,	the	castToInt	discarded	the	fractional
value	of	the	original	double	variable.	For	the	roundToInt
variable,	we	called	the	.rounded()	function	on	the	variable
double,	and	then	cast	that	value.	Since	4.999	was	rounded	up	to	5
before	being	cast,	the	Int	contains	the	rounded	value.

6.	 Finally,	add	the	following	lines	to	create	a	very	large	unsigned
integer	and	then	print	its	type	and	value:

var	bigUnsignedNumber:UInt64	=	

18_000_000_000_000_000_000

print("Printing	\(type(of:	

bigUnsignedNumber)):	\

(bigUnsignedNumber)")

This	code	works	as	expected—printing	an	integer	with	20	digits	(the
underscore	is	added	to	help	count	how	many	digits	there	are).

Note	that	in	this	case,	we	specified	UInt64	should	be	the	data	type
for	this	variable.	Had	we	not	made	the	type	explicit,	Swift's	type
inference	rules	would	have	assigned	the	smaller	Int	data	type	to	the
variable,	and	it	would	have	overflowed.

Again,	keep	in	mind	the	inference	engine	examines	the
format	of	a	constant	perhaps	more	than	the	value	of	the
numeric	value	being	assigned.	You	should	rely	on	the
inference	engine	by	default,	but	keep	in	mind	you	may
sometimes	need	to	be	explicit	when	you	know	more
about	how	a	variable	will	be	used	than	Swift	can	infer.

Boolean
In	Swift,	the	Boolean	data	type	is	Bool,	and	stores	a
value	of	true	or	false.	As	with	other	data	types,	in	the
case	that	a	Bool	value	is	not	yet	known,	a	Bool	can	be
declared	as	optional,	for	example,	Bool?.

For	example,	the	following	code	declares	a	Boolean	in
Swift,	and	then	changes	its	value:

var	isChecked	=	false

isChecked	=	true

Testing	for	the	value	of	a	Bool	value	is	similar	to	how	we
do	it	in	other	C-inspired	languages,	for	example:

if	isChecked	{

			//	statements	to	execute	if	isChecked	

is	true

}

if	isChecked	==	true	{

			//	statements	to	execute	if	isChecked	

is	true

}

if	!isChecked	{

			//	statements	to	execute	if	isChecked	

is	false

}

Character
The	Character	data	type	in	Swift	is	an	extended
grapheme	cluster.

What	does	that	mean?

An	extended	grapheme	cluster	is	an	ordered	sequence
of	one	or	more	Unicode	scalars	(that	is,	values)	that,
when	taken	together,	produce	a	human-readable
character.

Most	important	to	understand	is	that,	unlike	ASCII	or
ANSI	character	representations	many	programmers
have	worked	with	before,	a	Character	in	Swift	may	be
made	of	more	than	one	Unicode	value.

In	Swift	4,	the	underlying	complexities	of	Unicode,	scalar
values,	and	extended	grapheme	clusters	are	largely
managed	for	you,	but	as	you	begin	to	work	natively	with
Unicode	characters	and	strings,	bear	in	mind	that	the
Swift	Character/String	architecture	was	developed	from
the	ground	up	around	Unicode	character	representation
—not	ANSI/ASCII	as	many	other	languages	were.

ASSIGNING	A	CHARACTER

The	following	are	two	examples	creating	new	Character
variables,	and	assigning	literal	values:

let	ch1:Character	=	"A"

let	ch2:Character	=	"ᛤ"

Note	the	following	regarding	this	assignment:

In	Swift,	a	Character	literal	is	delimited	by	a	double	quote,	rather
than	the	single	quote	that's	common	in	most	C-inspired	languages.

Because	the	Swift	compiler's	type	inference	rules	will	assume
double	quotes	around	a	literal	imply	a	string	variable,	the	above	ch1
assignment	must	explicitly	declare	the	variables	as	Character	type
—otherwise	the	Swift	compiler	will	create	ch1	as	a	string.

CONSTRUCTING	A	CHARACTER	LITERAL

To	construct	a	Character	type	using	Unicode	values,	you
can	assign	an	escape	sequence,	or	use	the
UnicodeScalar	struct	to	create	a	Character	using
numeric	Unicode	values	as	input.

The	following	line	of	code	creates	a	UnicodeScalar	from
the	value	65	(the	ASCII	value	for	the	English	letter	A),
and	then	assigns	it	to	the	immutable	variable	ch1:

let	ch1	=	Character(UnicodeScalar(65))

In	this	case,	there	is	no	ambiguity	with	regards	to	double
quotation	marks,	so	it's	not	necessary	to	explicitly	assign
the	Character	type	during	this	assignment.

It's	also	common	to	construct	a	Character	using	a
UnicodeScalar	escape	sequence	within	double	quotation
marks.	The	following	creates	a	character	variable
containing	an	emoji	character	represented	by	the
UnicodeScalar	1F601:

let	ch3	=	"\u{1F601}"		//	sets	ch3	to	"ᛗ"

While	Unicode	scalars	are	conceptually	similar	to
ASCII/ANSI	value	encoding,	Swift	Characters	may	be
made	of	more	than	one	numeric	value,	while	ASCII	and
ANSI	use	only	one	numeric	value	to	represent	each
character.

For	example,	an	accented	Western	letter	is	expressed	by
providing	a	UnicodeScalar	containing	two	character
values.

We	can	construct	the	Unicode	representation	of	an
accented	e	character	as	follows:

let	ch4	=	"e\u{301}"			//	é

The	expression	on	the	right	of	the	assignment	contains
the	literal	letter	e,	followed	by	the	escaped	value	for	the
accent	modifier	(301).	The	Swift	compiler	combines
these	two	elements	into	a	single	extended	grapheme
cluster.

String
Strings	in	Swift	are	very	similar	to	strings	in	other
programming	languages.	As	string	handling	is	so	central
to	any	application	development	project,	we'll	dedicate	an
entire	subsequent	lesson	to	Swift's	powerful	string
handling	capabilities.	In	this	section,	we'll	discuss	the
basics	for	declaring	and	using	a	string.

Fundamentally,	strings	are	arrays	of	the	Character	types,
supporting	the	familiar	assignment	operator	(=),
substrings,	concatenation,	and	C-inspired	escape
characters.

INSTANTIATING	A	STRING

Instantiating	a	string	variable	is	highly	intuitive.	The
following	statements	create	string	variables:

var	alphabet	=	

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

let	macCharacters	=	"⌘⌃⌥⇧	⏎⌫⇪⎋⇥"
let	emoji	=	"ᛤᛘ ᛲᛜ"

STRING	CONCATENATION

As	in	many	languages,	Swift	strings	can	be
concatenated	using	the	plus	(+)	operator:

let	alphaMac	=	alphabet	+	macCharacters

String	also	supports	the	unary	addition	operator:

alphabet	+=	macCharacters

EXTRACTING	CHARACTERS

One	difference	between	Swift	strings	and	strings	in	many
languages	is	how	individual	elements	of	strings	are
accessed.	Specifically,	the	following	syntax	with	Swift
strings	is	illegal:

let	ch	=	alphabet[4]

error:	'subscript'	is	unavailable:	cannot	

subscript	String	with	an	Int,	see	the	

documentation	comment	for	discussion

In	Swift,	the	input	to	the	subscript	operator	(that	is,
what's	between	the	[]	characters)	is	expected	to	be	of
type	String.Index,	not	Int.

In	practice,	you	will	construct	an	Index,	then	pass	the
index	to	the	substring	operator,	for	example:

let	idx	=	

alphabet.index(alphabet.startIndex,	

offsetBy:	4)

let	ch	=	alphabet[idx]		//	ch	is	assigned	

the	character	"E"

STRING	LENGTH

Obtaining	the	length	of	string	is	quite	easy—simply	call
the	count	property	of	a	string:

var	alphabet	=	

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

let	alphabetLength	=	alphabet.count		//	26

We	have	now	reached	the	end	of	this	section.	Here,	we
worked	with	the	different	data	types	in	Swift,	specifically
numeric,	Boolean,	character,	and	string	data	types.

Activity	C:	Data	Type	Summary
Now	that	you've	learned	about	the	various	data	types
available	with	Swift,	let's	put	this	knowledge	into	practice
by	using	various	types	together,	and	also	using	the

Apple	Foundation	framework.

Use	an	Xcode	playground	to	practice	various	data	types.
You'll	be	using	numeric	data	types,	formatting	them	as
strings,	and	using	string	interpolation	to	print	string
values	from	various	data	types.

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Data	Type	Summary.playground.

2.	 Add	the	following	code	to	the	playground	to	create	an	immutable
Double	with	an	initial	value:

let	dVal	=	4.9876

3.	 Next,	create	a	Boolean	mutable	variable	with	an	initial	value	of
true,	and	another	variable	set	to	the	Double	variable	after
rounding	to	a	whole	number:

var	iValRounded	=	true

var	iVal	=	Int(dVal.rounded())

4.	 Next,	we're	going	to	use	a	class	from	Foundation	to	create	a	string
representation	of	the	Double	value,	rounded	to	two	digits.	If	you're
not	familiar	with	NumberFormatter,	don't	worry.	This	is	just	one	of
the	many	utility	classes	Apple	provides	in	its	expansive	SDK	for
macOS	and	iOS:

var	formatDigits	=	2

let	nf	=	NumberFormatter()

nf.numberStyle	=	.decimal

nf.maximumFractionDigits	=	

formatDigits

let	formattedDouble	=	

nf.string(from:	NSNumber(value:	

dVal))	??	"#Err"

Because	NumberFormatter.string	returns	an	optional,	we
need	either	to	check	it	(with	if/let,	or	as	here,	provide	a	default
value	("#Err")	in	case	the	function	does	return	nil.

5.	 Now	add	the	following	line	to	print	a	statement	about	the	values

we've	created:

print("The	original	number	was	\

(formattedDouble)	(rounded	to	\

(formatDigits)	decimal	places),	

while	the	value	\(iValRounded	?	

"rounded"	:	"unrounded")	to	Integer	

is	\(iVal).")

The	output	of	this	code	is	as	follows:

The	original	number	was	4.99	

(rounded	to	2	decimal	places),	while	

the	value	rounded	to	Integer	is	5.

6.	 Finally,	add	the	following	lines	to	change	the	rounding	strategy,	and
print	a	sentence	about	the	result	of	the	new	string	conversions:

formatDigits	=	0

nf.maximumFractionDigits	=	

formatDigits

formattedDouble	=	nf.string(from:	

NSNumber(value:	dVal))	??	"#Err"

iValRounded	=	false

iVal	=	Int(dVal)

print("The	original	number	was	\

(formattedDouble)	(rounded	to	\

(formatDigits)	decimal	places),	

while	the	value	\(iValRounded	?	

"rounded"	:	"unrounded")	to	Integer	

is	\(iVal).")

The	output	of	this	second	sentence	is	as	follows:

The	original	number	was	5	(rounded	

to	0	decimal	places),	while	the	

value	unrounded	to	Integer	is	4.

Enums
Enums	are	frequently	used	in	Swift	to	create	custom
data	types	that	have	a	predefined	set	of	possible	values
to	select	from.	Enums	serve	to	make	code	more
readable	and	maintainable,	and	also	provide	compile-
time	checking	for	parameters	and	value	assignments
which	yield	higher	quality,	more	robust	code.

Many	languages	provide	built-in	enum	features,	and
Swift's	implementation	of	the	enum	is	very	similar	to
other	languages.	Swift	does	have	some	unique	enum
features,	which	we'll	cover	in	this	section.

Basic	Enum	Syntax
Consider	the	following	code,	which	creates	and	uses	a
basic	enum:

enum	DayOfWeek	{

				case	monday,	tuesday,	wednesday,	

thursday,	friday

}

var	today	=	DayOfWeek.wednesday

if	today	==	.friday	{

				print("Today	is	Friday")

}	else	{

				print("Today	is	not	Friday")

}

Defining	the	enum	DayOfWeek	declares	a	new	data
type,	which	can	be	used	just	like	any	other	data	type.
Because	the	variable	today	is	of	the	type	DayOfWeek,
which	can	only	be	assigned	one	of	the	seven	listed
values,	we	could	not	assign	anything	else.	For	example,
the	following	code	would	generate	a	compile-time	error,
because	Saturday	is	not	included	in	the	predefined
values:

Var	today	=	DayOfWeek.saturday

The	preceding	example	illustrates	the	two	most
important	advantages	of	enums:

Possible	values	are	restricted	to	a	predefined	list,	making
assignment	of	invalid	values	something	that	is	tested	at	compile
time	rather	than	at	runtime.

Code	that	uses	enums	become	self-documenting	and	easier	to
understand.

Enum	with	Raw	Values
In	the	preceding	enum	example,	the	enum	values
(.monday,	.tuesday,	and	so	on)	have	no	underlying
data	type.	For	example,	we	might	want	to	calculate	the
day	of	week	by	subtracting	the	ordinal	number	for	the
today	variable	from	.monday.

However,	with	the	enum	as	defined,	there	is	no	numeric
value	associated,	so	the	following	code	will	fail	to
compile:

var	nthDay	=	today	-	DayOfWeek.Monday

This	code	generates	the	following	error:

Binary	operator	–	cannot	be	applied	to	two	

'DayOfWeek'	operands

This	is	by	design,	because	unlike	some	languages,	a
Swift	enum	need	not	be	mapped	to	a	native	data	type
(and	should	not	be,	if	there's	no	reason	to	do	so).

However,	Swift	enums	can	be	mapped	to	any	underlying
data	type.	In	the	following	revision,	we	map	the	day	of
week	to	the	Int	data	type,	which	enables	the	nth	day	of
the	week	calculation	mentioned	above:

enum	DayOfWeek:	Int	{

				case	monday,	tuesday,	wednesday,	

thursday,	friday

}

var	today	=	DayOfWeek.Wednesday	//	

DayOfWeek.wednesday

var	nthDay	=	today.rawValue	-	

DayOfWeek.monday.rawValue	+	1	//	3

var	tomorrow	=	DayOfWeek(rawValue:	

today.rawValue	+	1)	//	DayOfWeek.thursday

In	this	case,	all	we	needed	to	do	was	add	a	native	data
type	(Int)	to	the	enum	declaration.	The	Swift	compiler
then	holds	a	.rawValue	property.	When	an	enum	has	an
underlying	value,	it	also	becomes	possible	to	create	an
enum	member	by	passing	it	to	the	rawValue:	parameter
of	the	enum	initializer.

NOTENOTE
Use	care	with	raw	values.	Passing	a	rawValue:	to	an	enum	initializer	that	does	not	match
a	defined	case	within	the	enum	results	in	the	creation	of	a	nil	optional.

In	the	preceding	example,	we	used	Int	as	the	raw	value
for	the	revised	DayOfWeek	enum.	Swift	allows	any	data
type	to	serve	as	the	underlying	value	of	an	enum.	For
example,	we	could	use	String	instead	of	Int	to	enable
the	following	use	case:

enum	DayOfWeek:	String	{

				case	monday	=	"Monday"

				case	tuesday	=	"Tuesday"

				case	wednesday	=	"Wednesday"

				case	thursday	=	"Thursday"

				case	friday	=	"Friday"

				case	saturday	=	"Saturday"

}

var	today	=	DayOfWeek.Wednesday	//	

DayOfWeek.wednesday

let	dayString	=	today.rawValue		//	

"Wednesday"

In	this	section,	we	have	looked	at	enums	in	detail.	We
saw	its	syntax	and	how	to	define	an	enum	with	raw
values.	We	will	now	work	through	an	activity	where	we
will	use	enums	to	implement	error	codes.

Activity	D:	Using	Swift	Enums
Enumerations	are	a	powerful	construct	available	in	many
programming	languages.	Enumerations	make	code	more
robust	and	easier	for	others	to	understand	and	maintain.

Use	Xcode	to	define	error	codes	using	conventional
error	number	techniques,	and	alternatives	that	use	Swift
enums.

1.	 Launch	Xcode	as	before,	and	create	a	new	playground	named
Activity	D	-	Using	Numeric	Types.playground.

2.	 Add	the	following	lines	of	code	to	create	a	set	of	error	codes	using
simple	integer	values:

//	Store	an	error	condition	as	an	

integer

let	success	=	0

let	ioFailure	=	1

let	timeoutFailure	=	2

3.	 Now	create	the	same	set	of	error	codes	using	an	enum	without	a
raw	value:

//	Store	an	error	condition	as	an	

enum	type

enum	Result	{

				case	success

				case	ioFailure

				case	timeoutFailure

}

4.	 Finally,	create	the	same	set	again,	this	time	using	an	enum	with	a
raw	Integer	value	associated	with	each	result	code:

//	Store	an	error	condition	as	an	

enum	type	with	raw	value

enum	ResultWithRawValue:	Int	{

				case	success	=	0

				case	ioFailure	=	1

				case	timeoutFailure	=	2

}

5.	 Now	let's	use	these	error	values	by	creating	a	new	variable,
assigning	the	ioFailure	error	condition	to	each	one:

let	error1	=	ioFailure

let	error2	=	Result.ioFailure

let	error3	=	

ResultWithRawValue.ioFailure

6.	 Finally,	use	the	console	print	function	to	output	the	content	of	each
error	variable.	Note	how	each	one	is	represented	to	the	console:

//	Now	print	out	the	error	result	

from	each	case.

print("File	access	resulted:	\

(error1)")

print("File	access	resulted:	\

(error2)")

print("File	access	resulted:	\

(error3)")

print("File	access	resulted:	\

(error3.rawValue)")

Summary
In	this	lesson,	we've	learned	the	basic	language
structure	and	syntax	for	the	Swift	programming
language.	We've	now	understood	the	following	concepts:

The	fundamental	structure	of	Swift	programs,	and	how	to	use	an
Xcode	playground	to	develop	simple	and	complex	programs

How	to	create	and	use	mutable	and	immutable	Swift	variables

The	built-in	data	types	available	to	Swift	programs,	and	how	to
select	the	appropriate	data	type	depending	on	circumstance

Swift's	powerful	optional	construct	for	detecting	and	branching
program	flow	when	data	values	are	not	available

Swift's	type	inference	and	strict	type	safety	syntax	and	usage

Now	that	you	have	the	basics	well	in	hand,	we're	ready
to	move	on	to	the	next	lesson,	where	we'll	learn	how	to
use	these	language	elements	in	complex	Swift
programs.	Specifically,	we'll	look	at	the	control	flow
structures	and	operators	offered	by	Swift.

Chapter	2.	Swift	Operators
and	Control	Flow
In	the	last	lesson,	you	learned	the	fundamentals	of	Swift
syntax,	data	types,	and	how	to	use	variables	to	store	and
operate	on	data	in	a	Swift	program.

In	this	lesson,	you'll	learn	how	to	use	the	fundamental
flow	control	structures	and	language	elements	that	form
the	building	blocks	for	Swift	programs.

Swift	contains	a	full	set	of	flow	control	constructions	that
help	you	build	logic	and	organize	applications.	Swift
implements	control	structures	you'll	find	familiar,	and
Swift	adds	modern	features	and	extensions	not	available
in	some	other	languages.

This	lesson	also	covers	the	broad	range	of	Swift	logical
and	bitwise	operators.	Swift	supports	a	comprehensive
set	of	operators,	based	on	the	C	operator	construction—
but	with	modern	extensions	that	we'll	fully	cover	in	this
lesson.

Lesson	objectives
By	the	end	of	this	lesson,	you	will	be	able	to	do	the
following:

Use	the	assignment,	arithmetic,	and	bitwise	operators

Use	Swift's	comparison	operators

Explain	the	functionality	of	Swift's	range	operators

Use	the	Swift	branching	features:	if	and	switch

Control	program	flow	with	loops,	such	as	for,	while,	and
repeat/while

Swift	Operators
Operators	are	special	characters—usually	drawn	from
mathematics—that	are	used	to	process	evaluations,
modify	variable	values,	and	combine	values.	Swift
operators	break	down	into	categories	by	the	function
they	perform:

Assignment	operators

Arithmetic	operators

Comparison	operators

Logical	operators

Bitwise	operators

Nil-coalescing	operators

Range	operators

Refer	to	the	following	diagram:

Swift	implements	its	assignment,	arithmetic,	comparison,
logical,	and	bitwise	operators	nearly	identically	to	other
C-inspired	languages,	such	as	C++,	Java,	and	C#—so
your	previous	experience	with	these	operators	will	apply
directly	to	Swift	programming.

In	this	lesson,	we'll	summarize	this	common	set	of
operators,	and	only	highlight	unique	Swift
implementations.	Should	you	need	detailed	information
on	the	meaning	of	any	of	these	operators,	please	refer	to
Apple's	The	Swift	Programming	Language	guide
(https://developer.apple.com/library/content/documentati
on/Swift/Conceptual/Swift_Programming_Language/).

The	nil	coalescing	and	range	operators	are	unique	to
Swift	and	you	may	not	have	encountered	them	before—
we'll	cover	these	operators	in	detail.

Assignment	Operator
Swift	uses	the	equals	sign	(=)	to	assign	the	value	of	one
object	to	another,	for	example:

let	x	=	3.0

Like	most	languages,	the	equals	sign	(=)	is	not
overloaded	for	comparison.	Thus,	the	following	is	not	a
valid	if	statement:

if	x	=	3	{

				//	do	something

}

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/

//	error:	use	of	'='	in	a	boolean	context,	

did	you	mean	'=='?

Arithmetic	Operators
Let's	look	at	the	arithmetic	operators,	beginning	with	the
standard	ones.

STANDARD	ARITHMETIC	OPERATORS

Swift	supports	the	four	standard	arithmetic	operators	for
number	types:

Addition
+

Subtraction
-

Multiplication
*

Division
/

REMAINDER	OPERATOR

Swift's	remainder	operator	(%)	returns	the	remainder
when	a	second	operand	is	divided	into	a	first	operand.
For	example,	the	result	(r)	in	the	following	expression	is
2,	since	14/4=3,	with	a	remainder	of	2:

let	r	=	14	%	4			//	r	==	2

NOTENOTE
The	remainder	operator	(%)	is	designed	to	accept	Int	operands.	To	calculate	the
remainder	for	floating-point	numbers,	instead	use	the	function
remainder(dividingBy:),	for	example:

let	r	=	15.3.remainder(dividingBy:	5.0)	//	r	==	0.3

UNARY	MINUS	OPERATOR

Use	the	unary	minus	operator	(-)	before	a	variable	or
constant	to	return	the	value	multiplied	by	-1,	for	example:

let	x	=	3			//	x	==	3

let	y	=	-x		//	y	==	-3

COMPOUND	ASSIGNMENT	OPERATORS

Swift	supports	the	compound	assignment	operators	as	a
shortcut	for	assigning	a	variable	the	value	of	itself
changed	with	another	numerical	operator.	For	example,
the	following	two	statements	are	equivalent:

x	=	x	+	1

x	+=	1

Unlike	C	(and	some	C-inspired	languages),	Swift	does
not	support	the	use	of	the	++	unary	operator.	The
following	is	not	a	Swift	syntax:

x++				//	Unary	operator	'++'	cannot	be	

applied

Comparison	Operators
Swift's	comparison	operators	are	nearly	identical	to	other
C-inspired	languages.	We'll	summarize	them	and	any
key	differences	in	this	section.

EQUALITY

To	compare	whether	the	value	of	two	value	types	are
equal	(for	example,	whether	two	Int	variables	contain
the	same	value),	use	the	double-equals	sign,	for
example:

if	x	==	3	{

				//	do	something

}

To	compare	whether	two	class	instances	are	the	same
instance,	use	the	triple-equals	sign,	for	example:

if	obj1	===	obj2	{

		//	do	something	if	the	variables	refer	

to	the	same	object

}

INEQUALITY

To	test	for	inequality	(rather	than	equality),	replace	the
first	equals	sign	with	an	exclamation	point:

Test	for	equality Test	for	inequality

== !=

=== !==

COMPARISON	BETWEEN	TWO	VALUES

Swift	inequality	operators	are	straightforward,	each
returning	a	Bool	type.	The	following	table	explains	each
one:

Greater	than >

Less	than <

Greater	than	or	equal	to >=

Less	than	or	equal	to <=

Ternary	Conditional	Operator
This	operator	provides	a	shorthand	for	assignments	to
variables	that	result	from	if…then…else	structured
comparisons.	For	example,	the	following	two	statements
are	equivalent:

//	conventional	if..then..else

if	x	>	4	{

			y	=	1

}	else	{

			y	=	2

}

//	ternary	conditional	operator

y	=	x	>	4	?	1	:	2

Logical	Operators
Swift's	logical	operators	follow	the	same	conventions	as
other	C-inspired	languages.	The	following	logical
operators	are	available:

NOT !

AND &&

OR
||

Local	operators	can	be	chained	in	a	single	expression,
for	example:

let	canEnter	=	atDoor	&&	doorUnlocked	||	

haveKey

Local	operators	are	evaluated	as	a	chain	of	pairs,	and
are	left	associative,	meaning	that	this	expression	is
evaluated	as	follows:

let	canEnter	=	(atDoor	&&	doorUnlocked)	||	

haveKey

This	statement	as	written	suggests	a	visitor	should	have
a	key	whether	the	door	is	locked	or	unlocked—which	is
probably	not	what	was	intended.	Change	the	order	of
evaluation	for	logical	operators	using	parentheses	to	get
what	we	want:

let	canEnter	=	atDoor	&&	(doorUnlocked	||	

haveKey)

Bitwise	Operators
Swift's	bitwise	operators	also	follow	the	same
conventions	as	other	C-inspired	languages.	The
following	bitwise	operators	are	available:

NOT
~

AND &

OR
|

XOR
^

Left	shift <<

Right	shift >>

Nil-Coalescing	Operator
The	nil-coalescing	operator	is	used	when	unwrapping	an
optional	when	a	default	value	is	desired	in	the	case	that
the	optional	is	nil.

The	following	code	unwraps	an	optional	with	and	without
nil-coalescing:

let	x:Int?

let	y	=	x							//	y	is	an	optional	of	

type	Int?,	and	is	nil

let	z	=	x	??	4		//	z	is	a	non-optional	

Int,	with	value	4

Range	Operators
Swift	range	operators	are	unique,	and	many	developers
new	to	Swift	have	not	encountered	this	type	of	operator
in	other	languages.	Range	operators	are	used	to
express	a	range	of	values	in	a	concise	syntax.

We	will	use	a	range	operator	when	we	will	introduce	the
for	loop:

for	var	i	in	0..<10	{

				print(i)

}

The	for	loop	iterates	over	a	range	of	Int	values
(1,2,3,4,5,6,7,8,9,10),	which	are	created	using	the	range
operator	..<.

Range	operators	can	be	classified	into	three	types:

Closed	range	operator

Half-open	range	operator

One-sided	range	operator

CLOSED	RANGE	OPERATOR

To	create	a	range	that	includes	the	beginning	and	ending
elements,	use	the	closed	range	operator,	which	is

indicated	by	three	periods	(...):

let	numbers	=	0...10			//	numbers	=	

[0,1,2,3,4,5,6,7,8,9,10]

HALF-OPEN	RANGE	OPERATOR

The	half-open	range	operator	(..<)	creates	a	range	that
includes	the	first	specified	element	and	all	values	before
the	ending	element:

let	numbers	=	0..<10			//	numbers	=	

[0,1,2,3,4,5,6,7,8,9]

ONE-SIDED	RANGE	OPERATOR

One-sided	range	operators	are	variations	on	the	closed
and	half-open	operators.	As	the	name	suggests,	the
one-sided	variants	exclude	one	of	the	bounding
elements,	creating	a	range	that	includes	all	possible
values	on	the	unbounded	side	of	the	operator:

let	a	=	[-1,-2,-3,0,1,2,3]

let	b	=	a[2...]						//	b	=	[-3,0,1,2,3]

let	c	=	a[...2]						//	c	=	[-1,-2,-3]

let	e	=	a[..<2]						//	d	=	[-1,-2]

Here,	2	refers	to	the	position	of	a	value	in	the	array.

This	is	the	end	of	this	section.	We	have	covered	the
various	operators	available	in	Swift	in	detail.

Activity	A:	Operators

Swift	provides	a	rich	set	of	operators	you	can	use	to
manipulate	and	transform	data	within	your	program.
Many	of	the	Swift	operators	will	be	familiar,	while	some
provide	powerful	modern	features	you	may	not	be
familiar	with.

Use	an	Xcode	playground	to	practice	using	Swift
operators.

1.	 Launch	Xcode,	create	a	new	playground,	and	save	it	to	your
desktop	with	the	name	Operators.playground.

2.	 Add	a	custom	class	called	MyString,	which	contains	a	single
string	object.	Don't	worry	that	we	haven't	formally	covered	objects—
we'll	be	covering	them	fully	in	the	next	lesson!	For	now,	know	that	a
class	is	a	custom	type	you	can	create	that	contains	variables	and
methods:

class	MyString	{

				var	content	=	"Foo"

}

3.	 Next,	create	two	instances	of	your	custom	class:	string1,
string2,	and	a	constant	string3	assigned	the	value	string2:

let	string1	=	MyString()

let	string2	=	MyString()

let	string3	=	string2

4.	 Use	variables	to	evaluate	whether	the	content	and	instances	are
equal	to	each	other:

var	isContentEqual	=	string1.content	

==	string2.content

var	isObjectEqual	=	string1	===	

string2

isObjectEqual	=	string2	===	string3

5.	 Change	the	content	of	one	of	the	strings,	and	re-evaluate	whether
the	content	and	object	equality	has	changed:

string2.content	=	"Bar"

isContentEqual	=	string1.content	==	

string2.content

isObjectEqual	=	string1	===	string2

6.	 Finally,	use	a	for	loop	with	a	bitwise	operator	to	print	Int	values
containing	only	one	on	bit	(we'll	cover	for	loops	in	detail	in	the	next
section):

let	val	=	1

for	i	in	1..<16	{

				print("\(val)	shifted	left	\(i)	

times	is	\(val	<<	i)")

}

Branching
Flow	control	structures	enable	developers	to	apply
logical	processes	and	make	decisions	about	what	code
is	executed.	Most	modern	programming	languages
provide	a	similar	set	of	flow	control	structures:

The	if	statements	execute	code	blocks	when	a	Boolean	condition
is	true.

The	while	loops	execute	blocks	of	code	while	a	Boolean	condition
remains	true.

The	for	loops	execute	blocks	of	code	a	specific	number	of	times.

It's	said	that	virtually	any	programming	control	flow
requirement	can	be	implemented	with	a	while
statement	alone.	However,	the	other	various	control
structures	allow	programmers	to	create	control	flow
that's	more	concise	and	clearly	expresses	the	intent	of
the	logical	program	flow.

Indeed,	Swift	provides	a	rich	and	powerful	set	of	control
structures,	which	you'll	learn	about	in	this	section.

The	if	Statement

The	most	basic	flow	control	statement	in	programming	is
the	if	statement,	which	executes	a	block	of	code	if
some	Boolean	expression	is	true.	The	preceding
diagram	is	the	flow	chart	of	the	if	statement.	The	syntax
for	the	Swift	if	statement	is	as	follows:

if	{condition-list}	{

			{statements}

}	else	{

			{statements}

}

The	following	code	example	implements	an	if
statement:

Let	age	=	18

if	age	>=	18	{

			print("person	can	vote")

}

A	{condition-list}	can	be	one	or	more	expressions	that
each	return	a	Bool	data	type.	Any	of	the	following	are
valid	for	a	Swift	{condition}:

A	variable	of	Bool	type

Use	of	a	comparison	operator	which	returns	a	Bool	type	(for
example,	==,	>,	>=,	and	so	on)

The	Bool	constants	true	and	false

Calling	a	function	that	returns	a	Bool	data	type

Swift	has	several	rules	regarding	the	if	statement	that
may	be	different	from	other	programming	languages
you're	familiar	with:

Parentheses	aren't	added	around	the	{boolean	expression},	as	they
are	in	most	C-inspired	languages

The	{statements}	must	be	enclosed	in	curly	braces—even	if	there	is
only	a	single	statement.

Swift	allows	multiple	{conditions}	in	a	comma-separated	list.	All
conditions	in	the	condition	list	must	be	satisfied	for	the	code	block
to	be	executed.

CONDITION	LISTS

The	Swift	if	statement	can	accept	multiple,	independent
{condition}	clauses,	in	a	comma-delimited	fashion.

In	the	following	code	sample,	the	code	block	is	executed
only	when	the	isCar	and	isNew	values	are	both	true:

let	isCar	=	true

let	isNew	=	true

if	isCar,	isNew	{

				print("new	car")

}

NOTENOTE
Swift	also	supports	the	use	of	logical	operators	when	writing	the	condition	portion	of	an	if
statement.	For	example,	in	the	previous	code,	the	following	would	be	the	equivalent	in
Swift:

if	isCar	&&	isNew	{

		print('new	car")

}

However,	condition	lists	are	required	when	using	the	if	statement	to	unwrap	optional	values
as	part	of	a	condition,	which	you'll	learn	about	in	the	next	section.

OPTIONAL	UNWRAPPING	WITH	IF

You'll	use	the	if	statement	to	unwrap	optional	values
frequently.	In	fact,	the	if	construction	will	probably	be

the	most	frequent	way	you'll	access	values	stored	in
optionals!

We	covered	optionals	in	the	previous	lesson.

Unwrapping	a	variable	with	the	if	statement	is	done	by
embedding	an	assignment	into	a	new	variable	within	the
if	statement	condition	list,	for	example:

let	price:Double?	=	5.99

if	let	p	=	price,	p	>	5.0	{

				print(p)

}

In	this	case,	the	original	variable,	price,	is	an	optional.
In	the	first	clause	of	the	condition	list,	we	ask	the
compiler	to	check	for	a	value	within	the	optional	price,
and	if	there	is	one,	assign	it	to	the	new	constant	p.	Then,
the	second	clause	of	the	condition	list	tests	whether	the
unwrapped	value	is	greater	than	5.0,	and	if	so,	the	code
block	is	executed.

If	the	optional	price	had	been	nil,	the	comparison
clause	would	not	have	been	executed,	and	the	code
block	would	not	have	executed.	Program	flow	would
have	continued	after	the	if	block.

Incidentally,	when	using	the	if	statement	to	unwrap	a
variable,	it	can	be	unwrapped	into	a	mutable	variable	if
required.	For	example,	the	following	code	sample
extracts	the	optional	value	into	the	variable	p,	which	is
then	modified	before	the	print	statement:

let	price:Double?	=	5.99

if	var	p	=	price	{

				p	+=	1

				print(p)

}

The	switch	Statement
Have	a	look	at	the	following	diagram.	It	illustrates	how
the	switch	statement	works:

A	switch	statement	is	a	powerful	and	flexible	branching
structure	that	most	developers	will	use	very	often	in	their
programs.	Swift's	switch	has	powerful,	flexible	features
that	we'll	cover	in	detail	next.

Creating	a	program	that	needs	to	execute	different	code
blocks	depending	on	the	same	{Boolean	expression}	is	a
common	requirement,	and	can	be	implemented	with	the
if	statement	as	follows:

if	personAge	<	1	{

				print("baby")

}	else	if	personAge	<	3	{

				print("toddler")

}	else	if	personAge	<	5	{

				print("preschooler")

}	else	if	personAge	<	13	{

				print("gradeschooler")

}	else	if	personAge	<	18	{

				print("teen")

}	else	{

				print("adult")

}

The	preceding	code	implements	the	requirement	to	print
a	child's	life	stage	depending	on	their	current	age,	but
repeating	the	condition	for	each	case	quickly	becomes
repetitive	and	can	be	more	prone	to	coding	errors	than	a
more	concise	switch	statement.

The	previous	code	fragment	can	be	easily	rewritten	with
a	switch/case	statement	as	follows:

switch	personAge	{

			case	0..<1:	print("baby")

			case	1..<3:	print("toddler")

			case	3..<5:	print("preschooler")

			case	5..<13:	print("gradeschooler")

			case	13..<18:	print("teen")

			default:	print("adult")

}

A	switch	statement	evaluates	a	single	control
expression,	personAge,	in	this	case,	and	then	executes
the	lines	of	code	contained	within	the	first	matching	case
block.

Using	the	switch	control	structure	to	implement	this	logic
results	in	code	that's	more	concise	and	easier	to	read
and	maintain.

SWITCH	STATEMENT	RULES

There	are	a	few	syntax	rules	to	note	when	using	the
Swift	switch	statement:

The	cases	within	a	switch	statement	must	be	exhaustive.	In	the
example	above,	the	special	default	case	is	included	to	mean	"When
no	other	case	is	matched,	do	this…."

If	a	default	case	is	included,	it	must	be	the	last	case	before	the
switch	statement's	closing	brace.

If	the	switch	statement's	control	expression	matches	more	than
one	case	expression,	Swift	will	execute	only	the	statements
included	with	the	first	matching	case.

A	case	must	include	at	least	one	line	of	code.	If	you	don't	intend	to
execute	any	code	when	a	case	is	matched,	add	a	single	break
keyword	to	inform	the	compiler	you	intend	for	no	code	to	be
executed	when	the	case	is	true.

By	default,	Swift's	switch	statement	does	not	support	fallthrough
to	code	in	other	cases.	Fallthrough	is	supported	via	the
fallthrough	keyword.

The	switch	statement	goes	much	further,	and	has
many	powerful	extensions,	which	we'll	review	next.

THE	BREAK	KEYWORD

As	mentioned	above,	if	a	case	is	matched	that	should
run	no	code,	simply	include	a	break	statement.

The	following	example	will	print	baby	for	ages	<	1,	adult
for	ages	>	17,	and	print	nothing	for	ages	1-17:

switch	personAge	{

			case	0..<1:	print("baby")

			case	1..<18:	break

			default:	print("adult")

}

THE	FALLTHROUGH	KEYWORD

If	a	matched	case	should	execute	statements	declared
for	the	case	that	directly	follows	it,	use	the
fallthrough	keyword.

The	following	example	will	group	all	school	age	(ages	3-
17)	people	with	the	teen	category:

switch	personAge	{

			case	0..<1:	print("baby")

			case	1..<3:	print("toddler")

			case	3..<5:	fallthrough

			case	5..<13:	fallthrough

			case	13..<18:	print("teen")

			default:	print("adult")

}

MATCHING	NON-SCALAR	VALUES

Unlike	many	other	programming	languages,	Swift	does
not	limit	switch	statements	to	scalar	data	types.	The
expression	provided	to	a	switch	statement	can	be	a
variable	holding	a	scalar	(discrete)	set	of	values—as	the
previous	examples	have	been—but	can	also	be	floating-
point,	string,	enumerations,	or	any	type	for	which	you
can	write	a	valid	matching	expression	for	each	case
pattern.

The	following	example	is	a	valid	switch	statement	using
a	Double	data	type	as	input:

switch	temperature	{

			case	-29.0..<(-7.0):	print("bitter	

cold")

			case	-7.0..<12.0:	print("cold")

			case	12.0..<20:	print("warm")

			case	20..<40.0:	print("hot")

			default:	print("deadly")

}

Switch	can	also	be	used	to	match	non-numeric	values,
such	as	String	values:

let	quarterName	=	"Second	Quarter"

var	quarterNum:	Int?

switch	quarterName	{

			case	"First	Quarter":	quarterNum	=	1

			case	"Second	Quarter":	quarterNum	=	2

			case	"Third	Quarter":	quarterNum	=	3

			default:	quarterNum	=	4

}

MULTIPLE	PATTERNS	IN	A	SINGLE	CASE

A	single	case	within	a	switch	statement	can	match
multiple	patterns,	as	shown	here:

let	monthName	=	"February"

var	quarterNum:	Int?

switch	monthName	{

			case	"January",	"February",	"March":	

quarterNum	=	1

			case	"April",	"May",	"June":	quarterNum	

=	2

			case	"July",	"August",	"September":	

quarterNum	=	3

			default:	quarterNum	=	4

}

USING	THE	WHERE	STATEMENT	WITHIN
CASE

Swift	provides	the	flexibility	to	add	evaluation	logic	within
a	case	statement.	This	flexibility	allows	a	case	to	be
matched	only	when	specific	conditions	are	true.

The	following	switch	statement	branches	on	the
relationship	between	two	variables,	temperature	and
humidity:

let	temperature	=	21.5

let	humidity	=	22.0

switch	(temperature,	humidity)	{

			case	let	(t,h)	where	t	>	h:	

print("humidity	lower")

			case	let	(t,h)	where	t	<	h:	

print("humidity	higher")

			default:	"humidity	and	temperature	are	

the	same"

}

Swift	allows	the	flexibility	for	cases	to	use	where	in	some
case	expressions	but	not	in	others,	for	example:

let	responseCode	=	501

switch(responseCode)	{

			case	200:	print("ok")

			case	let	code	where	code	>=	500:	

print("server	error")

			default:	print("Request	failed	for	

another	reason")

}

EVALUATING	OPTIONALS	WITH	A	SWITCH
STATEMENT

The	switch	statement	can	branch	depending	on
whether	a	Swift	optional	is	nil,	and	then	evaluate	the
value	contained	in	a	non-nil	optional:

let	responseCode:Int?

let	error:Error?

//	make	a	web	service	call,	which	will	set	

responseCode	or	error	to	non-nil

switch	(error,	responseCode)	{

		case	(.none,	.some(let	code))	where	code	

==	200:	print("success")

		case	(.some(let	err),	.none):	

print(err.localizedDescription)

		default:	print("something	else	

happened")

}

As	you	can	see	already,	the	switch	statement	in	Swift
is	highly	flexible	and	can	meet	a	vast	array	of	use	cases!
In	general,	whenever	you	include	multiple	code	branches
based	on	the	value	of	a	single	variable	(or	related	set	of
variables),	consider	using	the	switch	statement	rather
than	constructing	a	series	of	nested	if/else
statements.

Activity	B:	Converting	Code	from	if	to
switch
The	switch	statement	is	essentially	a	more	structured
and	readable	way	to	implement	a	nested	if	statement.
It's	common	to	refactor	a	nested	if	to	a	case	statement
to	make	the	code	more	readable	and	maintainable.	Let's
do	this	now.

Use	an	Xcode	playground	to	convert	a	code	with	if
statements	to	an	equivalent	code	with	switch	statements.

1.	 Launch	Xcode,	create	a	new	playground,	and	save	it	to	your
desktop	with	the	name	CaseRefactor.playground.

2.	 Add	the	following	code,	which	uses	a	nested	if	statement	to
determine	the	country	code	given	a	country	name:

let	countryName	=	"United	States"

var	countryCode	=	""

if	countryName	==	"United	Kingdom"	{

				countryCode	=	"GB"

}	else	if	countryName	==	"Mexico"	{

				countryCode	=	"MX"

}	else	if	countryName	==	"Canada"	{

				countryCode	=	"CA"

}	else	if	countryName	==	"Spain"	{

				countryCode	=	"ES"

}	else	if	countryName	==	"United	

States"	{

				countryCode	=	"US"

}	else	{

				countryCode	=	"??"

}

print("Country	named	'\

(countryName)'	has	code	\

(countryCode)")

3.	 Next,	let's	employ	an	enumeration,	which	we	learned	in	the	last
lesson,	to	encapsulate	the	country	names	into	a	more	maintainable
data	structure.	Add	the	following	code	underneath	the	print
statement:

enum	Countries:String	{

				case	uk	=	"United	Kingdom"

				case	mx	=	"Mexico"

				case	ca	=	"Canada"

				case	es	=	"Spain"

				case	us	=	"United	States"

				case	unknown	=	""

}

4.	 Add	a	switch	statement,	which	accomplishes	the	same	logic	as
the	nested	if—but	in	a	more	readable	and	structured	way.	Also
note	that	because	a	case	statement	is	required	to	be	exhaustive,	it
would	be	a	compiler	error	to	forget	to	add	countries	included	in	the
enumeration	to	the	case	statement:

switch	Countries(rawValue:	

countryName)	??	.unknown	{

				case	.uk:	countryCode	=	"GB"

				case	.mx:	countryCode	=	"MX"

				case	.ca:	countryCode	=	"CA"

				case	.es:	countryCode	=	"ES"

				case	.us:	countryCode	=	"US"

				case	.unknown:	countryCode	=	

"??"

}

5.	 To	make	the	conversion	complete,	add	the	original	print	statement
below	the	switch	statement:

print("Country	named	'\

(countryName)'	has	code	\

(countryCode)")

Loops
After	the	branching	structures	if	and	switch,	the	most
common	structures	you'll	use	in	your	programming	are
looping	structures,	which	cause	your	program	flow	to
execute	the	same	code	iteratively.

The	looping	structures	you'll	learn	in	this	section	are	the
following:

for…in,	which	executes	the	same	code	a	predetermined	number
of	times

while	and	repeat…while,	which	executes	code	until	a	true
condition	becomes	false

As	with	the	switch	control	structure,	there	are	many
features	and	flexible	options	provided	by	these
structures	that	make	Swift	more	expressive	and	powerful
than	many	other	programming	languages.

The	for…in	Statement
The	following	diagram	illustrates	how	the	for...in
statement	works:

Most	programming	languages	have	a	for	statement	used
to	execute	a	code	statement	a	certain	number	of	times.
The	preceding	diagram	illustrates	how	the	for...in
statement	works.	A	canonical	example	of	a	for	loop	in	C,
similar	to	many	other	C-inspired	languages,	is	the
following:

for(int	i=0;	i<10;	i++)

			printf("i=%d\n",	i);

The	equivalent	for	loop	written	in	Swift	is	as	follows:

for	var	i	in	0..<10	{

				print(i)

}

Comparing	the	two	for	loops,	they	appear	quite	similar,
but	you	could	argue	the	Swift	version	is	easier	to	read!

NOTENOTE
In	Swift,	a	for…in	loop	always	iterates	over	a	collection	of	values,	rather	than	simply
serving	as	a	mechanism	to	count	iterations.	The	range	operator	used	in	the	preceding
example	returns	a	set	of	Int	values,	which	are	then	iterated	over.

Internally,	Swift	creates	an	Iterator,	then	calls	the	next()	method	of	the	Iterator	until
next()	returns	nil,	running	the	code	block	for	each	iteration.

ITERATING	OVER	OBJECTS

Although	the	previous	code	example	actually	does
iterate	over	Int	values,	it's	effectively	running	a	code
block	a	specific	number	of	times.	More	often,	you'll	use
for…in	to	iterate	over	a	collection	of	objects	stored	in
your	application.

The	most	common	method	to	iterate	over	a	set	of
objects	is	to	use	the	for	syntax,	as	in	the	following
example:

let	strings	=	["First	String",	"Second	

String",	"Third	String",	"Fourth	String"]

for	obj	in	strings	{

				print(obj)

}

Using	this	syntax,	the	print	statement	within	the	block
is	executed	once	for	each	object	in	the	strings	array.
Swift	implicitly	creates	the	constant	variable	obj	for	use
within	the	block.

NOTENOTE
In	the	previous	example,	the	obj	local	variable	is	implicitly	created	as	a	constant	(that	is,
let).

While	let	is	the	default	behavior,	you	can	instruct	the	for	loop	to	create	a	mutable
variable	by	specifying	var	in	the	for	loop	declaration,	as	follows:

for	var	obj	in	strings	{

				obj	=	"obj	is:	\(obj)"

				print(obj)

}

ITERATING	OVER	ARRAY	OBJECTS	WITH
INDEX

The	preceding	example	iterates	over	the	strings	array,
providing	each	string	to	the	execution	block	in	a	local
variable	named	obj.	Sometimes,	the	code	may	need	to
know	the	ordinal	position	of	the	object	being	processed.
This	can	be	accomplished	by	using	the	Array
enumerated	member	function	of	the	collection	being

iterated:

for	(index,	text)	in	strings.enumerated()	

{

				print("The	object	at	index	\(index)	is	

\(text)")

}

THE	FOR	LOOP	WHERE	CLAUSE

The	next	feature	of	the	for	loop	we'll	learn	is	using	the
where	clause	to	control	which	iterations	are	processed.

In	the	previous	examples,	the	code	always	outputs	all	of
the	strings	in	the	variable	strings.	We	might	want	to	only
output	strings	meeting	a	certain	test,	for	example,	only
strings	beginning	with	the	letter	F:

One	way	to	accomplish	this	requirement	would	be	to
rewrite	the	for	loop	as	follows:

let	strings	=	["First	String",	"Second	

String",	"Third	String",	"Fourth	String"]

for	string	in	strings	{

				if	string.starts(with:	"F")	{

								print(string)

				}

}

An	even	more	concise	way	to	write	this	code	is	to	use
the	for	loop's	where	clause,	as	follows:

let	strings	=	["First	String",	"Second	

String",	"Third	String",	"Fourth	String"]

for	string	in	strings	where	

string.starts(with:	"F")	{

				print(string)

}

THE	BREAK	CONTROL	TRANSFER
STATEMENT

Like	most	C-inspired	languages,	Swift	supports	the	use
of	the	break	control	transfer	statement	in	for	loops.

The	break	statement	has	the	effect	of	immediately
transferring	program	flow	to	the	statement	following	the
for	loop,	effectively	skipping	the	remaining	portion	of
the	current	iteration,	and	cancelling	all	remaining
iterations.

In	the	following	example,	the	code	within	the	for	loop
tests	whether	the	current	iteration's	string	begins	with	the
letter	T.	If	so,	the	for	loop	is	immediately	exited:

let	strings	=	["First	String",	"Second	

String",	"Third	String",	"Fourth	String"]

for	string	in	strings	{

				if	string.starts(with:	"T")	{

								break

				}

				print(string)

}

THE	CONTINUE	CONTROL	TRANSFER
STATEMENT

Swift	also	supports	the	use	of	the	continue	control

transfer	statement	in	for	loops.

The	continue	statement	has	the	effect	of	skipping	the
remaining	portion	of	the	current	iteration.	Control	then
passes	to	the	top	of	the	for	loop,	where	the	next	iteration
proceeds	(if	there	is	a	next	iteration	available).

In	the	following	example,	the	continue	control	transfer
statement	is	used	to	skip	any	iteration	having	a	string
starting	with	the	letter	F:

let	strings	=	["First	String",	"Second	

String",	"Third	String",	"Fourth	String"]

for	string	in	strings	{

				if	string.starts(with:	"F")	{

								continue

				}

				print(string)

}

Swift	provides	a	simple,	expressive,	and	powerful	for
loop	for	you	to	use	in	your	programs.	Key	points	to
keep	in	mind	regarding	usage	of	the	for	loop	are	as
follows:

for	always	iterates	over	a	collection	of	elements	(and	is	not	simply
a	counting	variation	of	the	while	loop	as	it	is	in	some	programming
languages).

The	Swift	Standard	Library	includes	many	functional	programming
methods	that	can	generate	transformed	object	collections	(for
example	enumerated()	as	we	did	above).	Use	these	methods	to
maintain	simpler	logic	within	your	loops.

for	loops	support	the	break	and	continue	control	transfer

statements	to	provide	flow	control	exceptions	controlled	by	the	code
block	they	iterate	over.

The	while	Loop

Where	the	for	loop	executes	a	code	block	a
predetermined	number	of	times,	the	while	loop
continues	executing	a	code	block	until	a	Boolean
expression	evaluates	as	false.	The	preceding	diagram
illustrates	how	the	while	loop	works.

The	general	syntax	of	the	while	loop	is	as	follows:

while	{condition-list}	{

		statements

}

The	syntax	rules	for	the	while	loop	are	essentially
identical	to	that	of	the	if	statement,	specifically	the
following	ones:

{condition-list}	can	be	one	or	more	conditions,	each	returning	a
Boolean	value

{condition-list}	can	include	the	unwrapping	of	an	optional	value,
which	is	then	used	in	the	code	block

There	are	no	parentheses	around	the	{condition-list}

The	code	block	must	be	enclosed	in	curly	braces

The	while	statement	supports	the	break	and
continue	keywords	to	redirect	flow	control	in	the	same
manner	as	the	for	loop.

The	following	example	uses	a	while	loop	to	iterate	over
an	array	of	Double	values	to	calculate	an	average	for	all
prices	less	than	seven	(7):

let	price:[Double]	=				[1.99,	2.99,	3.99,	

4.99,	5.99,	6.99,	7.99,	8.99]

var	total	=	0.0

var	i	=	0

while	i	<	price.count	&&	price[i]	<	7.0	{

				i	+=	1

				total	+=	price[i]

}

print(total		Double(i))		/	5.49

THE	REPEAT…WHILE	LOOP

Because	it	evaluates	its	condition(s)	prior	to	the	first
iteration,	a	while	loop	occasionally	won't	meet	your
needs.	If	you	won't	know	whether	a	while	loop	should
continue	until	after	the	first	iteration,	use	the	repeat…
while	variant.

If	you	were	developing	a	console	application	that	should
play	a	game	until	the	user	pressed	Enter	without
entering	text,	a	repeat…while	loop	would	be	the	ideal
solution.	For	example,	the	following	Swift	command-line
program	effectively	uses	repeat…while	where	a	while
loop	would	be	awkward:

#!/usr/bin/swift

func	playGame()	{

				print("simulate	gameplay")

}

repeat	{

				playGame()

				print("enter	q	to	quit")

}	while	readLine()	!=	"q"

NOTENOTE

In	most	other	programming	languages,	the	Swift	repeat…while	statement	is	called	do…
while.	In	Swift	1.0,	this	statement	did	use	the	more	traditional	do…while	name.	However,
when	Swift	added	exception	handling,	the	do	keyword	was	given	to	that	feature,	and
replaced	with	the	keyword	repeat.

This	completes	our	look	at	the	loops.	Loops	in	Swift	are
important	to	implement	the	various	program	flow
structures	you	might	need	to	develop	a	variety	of	custom
applications.

Activity	C:	Implementing	Loops
Loops	and	iteration	are	a	core	part	of	any	computer
program.	Data	is	often	stored	in	array	and	collection	data
structures,	and	loops	allow	you	to	develop	concise,	well-
organized	code	to	operate	on	them.

Use	an	Xcode	playground	to	practice	using	the	looping
flow	control	structures	we	have	covered	in	this	section.

1.	 Launch	Xcode	and	create	a	new	playground,	then	save	it	to	your
desktop	with	the	name	Loops.playground.

2.	 Add	the	following	declaration	of	a	new	array,	which	contains	a	list	of
Canadian	provinces:

let	provinces	=	["Ontario",	

"Quebec",	"Nova	Scotia",	"New	

Brunswick",	"Manitoba",	"British	

Columbia",	"Prince	Edward	Island",	

"Saskatchewan",	"Alberta",	

"Newfoundland	and	Labrador"]

3.	 Add	the	following	repeat…while	loop	to	print	each	of	the
provinces	to	the	console:

var	i	=	0

repeat	{

				print(provinces[i])

				i	+=	1

}	while	i	<	provinces.count-1

print("==============")

4.	 Add	the	following	while	loop	to	print	the	same	list	of	provinces	to
the	console:

i	=	0

while	i	<	provinces.count-1	{

				print(provinces[i])

				i	+=	1

}

print("==============")

5.	 Add	the	following	for	loop	to	build	a	string	containing	the	first
letters	of	all	provinces,	and	then	print	to	the	console	as	a	sorted
unique	set	of	letters:

var	firstLetters	=	""

for	province	in	provinces	{

				firstLetters	+=	

province.prefix(1)

}

print("Canadian	provinces	start	with	

one	of	the	following	letters:	\

(Set(firstLetters).sorted())")

6.	 Finally,	use	a	for	loop	with	enumerated	to	determine	the	array
indices	of	all	provinces	starting	with	the	letter	N:

var	nProvinces	=	[Int]()

for	(index,	province)	in	

provinces.enumerated()	{

				if	province.prefix(1)	==	"N"	{

								nProvinces.append(index)

				}

}

print("The	indices	of	provinces	

starting	with	'N'	are:	\

(nProvinces)")

Summary
In	this	lesson,	you've	learned	how	to	use	Swift's	key
language:

Assignment,	arithmetic,	and	bitwise	operators

Comparison	and	range	operators

The	Swift	branching	features:	if	and	switch

Loops:	for,	while,	repeat…while

You	now	have	the	skills	needed	to	develop	robust
applications	using	Swift's	powerful	and	expressive
language	syntax.	In	the	next	lesson,	you'll	learn	the	skills
to	develop	functions	and	classes	to	organize	your	code.
You	will	also	explore	and	use	error	handling	to	efficiently
handle	unexpected	errors	in	your	programs.

Chapter	3.	Functions,
Classes,	and	Structs
In	the	previous	two	lessons,	you	learned	the
fundamentals	of	Swift	syntax,	data	types,	and	how	to	use
variables	to	store	and	operate	on	data	in	a	Swift
program.	Specifically,	you	learned	how	to	use
fundamental	Swift	elements	such	as	operators,	control
structures,	variables,	and	built-in	data	types.	With
knowledge	of	these	language	elements,	you're	already
prepared	to	create	fully	functional	Swift	programs.

In	this	lesson,	you'll	build	on	these	skills,	and	learn	how
to	develop	fully	featured	Swift	applications,	catch
unexpected	errors,	and	begin	using	asynchronous
programming	paradigms.	You'll	learn	how	to	create	your
own	data	types,	and	create	object-oriented	applications
using	classes	and	structs.

All	object-oriented	programming	languages	provide	the
ability	to	build	your	own	custom	classes.	Classes
increase	the	level	of	modularity	in	your	application,	and
promote	code	reuse.	This	lesson	will	cover	the	key	skills
you'll	need	to	build	robust,	object-oriented	applications
with	Swift.

Lesson	Objectives

By	the	end	of	this	lesson,	you	will	be	able	to	do	the
following:

Define	and	call	Swift	functions

Explain	how	to	pass	functions	as	parameters	and	argument	labels

Implement	exception	handling	with	do…catch	and	guard

Use	object-oriented	features	such	as	struct	and	class

Functions
In	the	program	structure	section	in	Lesson	1,	we
mentioned	that	functions	are	a	key	part	of	Swift's
structure,	and	are	units	of	code	that	can	accept
parameters	and	can	return	values.	In	this	section,	we'll
dive	into	Swift	functions,	learning	how	to	implement	and
call	them	in	the	course	of	a	Swift	application.

Before	diving	into	Swift	function	syntax,	we	should
summarize	some	key	points	about	how	functions	are
used	in	Swift,	and	in	modern	software	development
generally:

Functions	are	units	of	code	that	carry	out	some	specific	task.

In	terms	of	lines	of	code,	functions	should	be	short.	How	many	lines
of	code	is	a	maximum	for	a	function	has	been	a	topic	of	debate	for
decades.	However,	long	functions	often	do	not	satisfy	the	specific
task	definition.

All	things	being	equal,	it's	better	to	have	a	complex	process	broken
into	smaller	functions,	rather	than	combined	into	a	large,	complex
function.

All	things	being	equal,	a	function	that	references	its	parameters—
but	not	global	variables—is	more	maintainable,	less	error-prone
and	more	testable.

Defining	a	Function
For	many	developers	new	to	Swift,	its	function
declaration	syntax	may	seem	unfamiliar.	Swift's	function
syntax	is	probably	most	similar	to	Pascal,	but	also	has

ideas	from	C++,	Objective-C,	and	others.	With	some
practice,	Swift	code	will	begin	to	feel	elegant	and
familiar.

The	basic	syntax	for	a	Swift	function	that	accepts
parameters	is	as	follows:

func	functionName(parm1:	Type1,	parm2:	

Type2)	->	ReturnType	{

The	basic	syntax	for	a	Swift	function	that	accepts	no
parameters	is	as	follows:

func	functionName()	->	ReturnType	{

The	basic	syntax	for	a	Swift	function	that	accepts	no
parameters	and	returns	nothing	is	as	follows:

func	functionName()	{

Let's	break	down	the	syntax:

The	keyword	func	signals	that	what	follows	is	a	function
declaration.	In	Swift,	there's	no	distinction	between	functions	(that
return	a	value)	and	procedures	(which	do	not)—both	begin	with
func.

Following	func	is	the	name	of	the	function.	The	naming	rules	for
functions	are	the	same	as	for	Swift	variables,	and	like	variables,	it's
conventional	to	begin	a	function	name	with	a	lowercase	letter.

If	the	function	accepts	input	parameters,	they	are	listed	within
parentheses.	Each	parameter	is	followed	by	a	colon	(:)	and	then	the
data	type	of	the	parameter.

If	the	function	returns	a	value,	the	data	type	of	the	returned	value	is
provided	after	an	arrow	formed	by	the	hyphen	and	greater	than

characters	(->).

The	beginning	of	the	code	block	referenced	by	the	function	name
begins	at	the	opening	brace	character	({).

The	following	is	a	basic	Swift	function:

func	printArray(array:	[String])	->	Int	{

				var	count	=	0

				for	string	in	array	{

								print(string)

								count	+=	1

				}

				return	count

}

This	function	is	defined	with	the	name	printArray.	It
accepts	a	single	parameter—an	array	of	String,	which
it	will	iterate	and	print.	Finally,	it	returns	a	single	Int	value,
which	is	the	count	of	String	values	that	it	printed	to	the
console.

Argument	Labels
In	the	previous	section,	we	created	a	function	with	a
parameter	named	array,	which	is	the	parameter	label	we
used	when	calling	the	function:

printArray(array:	strings)

Swift	supports	optional	argument	labels	for	parameters,
which	will	be	familiar	to	Objective-C	programmers,	and
likely	unfamiliar	to	others.

Consider	the	following	function,	which	returns	the

concatenation	of	two	strings:

func	concatenatedNames(n1:	String,	n2:	

String)	->	String	{

			return	"\(n1)	\(n2)"

}

While	using	short	variable	names	within	the	function	is
convenient,	calling	the	function	may	seem	unintuitive
from	the	point	of	view	of	the	programmer	calling	the
function:

let	fullName	=	concatenatedNames(n1:	

"John",	n2:	"Smith")

Argument	labels	allow	us	to	create	a	function	that	allows
the	caller	of	our	function	to	refer	to	the	function's
parameters	by	different	names	than	we	use	within	the
function.

For	example,	we	might	add	argument	labels	to	the
function	as	follows:

func	concatenatedNames(firstName	n1:	

String,	lastName	n2:	String)	->	String	{

			return	"\(n1)	\(n2)"

}

Adding	the	argument	labels	doesn't	change	the
implementation	of	the	function	at	all—we	still	use	the
variable	names	n1	and	n2	within	the	function.	But	the
caller	of	the	function	may	now	use	the	more	intuitive
argument	labels	to	refer	to	the	parameter	names:

let	fullName	=	

concatenatedNames(firstName:	"John",	

lastName:	"Smith")

Excluding	Argument	Labels
In	addition	to	changing	the	calling	reference	for	a
function's	parameters,	argument	labels	can	be	used	to
remove	names	for	input	parameters.	Doing	so	can	make
functions	feel	more	like	calling	C	or	Objective-C
functions.

For	example,	consider	the	following	function:

func	addTwoInts(_	a:	Int,	_	b:	Int)	->	Int	

{

			return	x	+	y

}

By	specifying	the	underscore	(_)	character	for	the
argument	label	associated	with	each	parameter,	the
caller	need	not	specify	a	parameter	name.	The	compiler
will	simply	match	each	passed	parameter	to	the
function's	passed	parameter	in	the	same	order	in	which
they	are	declared:

let	c	=	addTwoInts(4,	5)			//	c	will	be	9

NOTENOTE
While	excluding	parameter	names	is	a	powerful	feature,	it	should	be	used	appropriately.
Use	this	technique	when	the	parameters	passed	to	a	function	are	obvious.	For	example:
addTwoInts(a,b),	or	logMessage("Opened	file").	Don't	use	optional	parameter
names	to	make	Swift	feel	more	like	you're	using	a	programming	language	you've	used	in
the	past.	The	default	Swift	behavior—explicitly	specifying	parameter	names—is	intentional,
and	makes	code	easier	to	read,	understand	and	maintain.

Parameter	Default	Values
Like	many	other	C-inspired	languages,	you	can	provide
parameter	default	values	for	any	parameter.	When	a
default	value	is	specified	in	the	function	definition,	the
function	caller	can	omit	the	parameter—and	the	default
value	will	be	substituted	instead.

The	following	function	prints	the	temperature.	It	assumes
the	provided	value	is	in	Centigrade	units,	if	units	are	not
specified:

enum	TemperatureUnits	:	String	{

				case	celcius	=	"\u{00B0}C"

				case	fahrenheit	=	"\u{00B0}F"

}

func	printTemperature(value:	Double,	

units:	TempUnits	=	.celcius)	{

				print("The	temperature	is	\(value)\

(units.rawValue)")

}

Because	a	default	value	is	provided	for	units,	we	can
omit	the	units	when	calling	the	function:

printTemperature(value:	17.5)	//	The	

temperature	is	17.5°C

Activity	A:	Implementing	a	Function
In	any	programming	language,	functions	are	a	core
language	element	used	to	make	programs	modular,
readable,	and	maintainable,	and	virtually	every	program

you	write	will	use	functions	extensively.	Let's	practice
what	you've	learned	about	Swift	functions.

Use	an	Xcode	playground	to	implement	a	function	that
uses	a	variety	of	parameter	techniques	covered	until
now.

1.	 Launch	Xcode	and	create	a	new	playground,	then	save	it	to	your
desktop	with	the	name	Implement	a	Function.playground.

2.	 Add	the	following	function	to	the	playground:

func	buildAddress(_	name:	String,	

address:	String,	city:	String,	

zipCode	postalCode:	String,	country:	

String?	=	"USA")	->	String	{

				return	"""

								\(name)

								\(address)

								\(city)

								\(postalCode)								\

(country	??	"")

				"""

}

3.	 Call	the	function	within	the	print	function	twice,	passing	parameters
as	in	the	following	code:

print(buildAddress("John	Doe",	

address:	"5	Covington	Square",	city:	

"Birmingham",	zipCode:	"01234"))

print("=====")

print(buildAddress("John	Doe",	

address:	"5	Covington	Square",	city:	

"Birmingham",	zipCode:	"01234",	

country:	nil))

An	example	output	is	given	here:

John	Doe

				5	Covington	Square

				Birmingham

				01234

				USA

=====

				John	Doe

				5	Covington	Square

				Birmingham

				01234

Returning	Values	from	Functions
Returning	values	from	functions	is	largely	consistent	with
C-inspired	programming	languages	you've	probably
used	in	the	past.	When	processing	is	finished,	a	function
simply	uses	the	return	keyword	to	return	a	value	to	the
caller.	In	the	previous	function	example,	we
concatenated	two	String	variables,	and	returned	the
result	using	the	return	keyword.

The	following	are	some	Swift-specific	notes	regarding
returning	values	from	functions:

The	value	returned	from	the	function	must	exactly	match	the	return
data	type	specified	in	the	function	definition.	To	avoid	compile-time
errors,	convert	or	cast	values	that	do	not	exactly	match	the	return
data	type.

It	is	allowed	in	Swift	to	use	the	return	keyword	anywhere	in	the
function.	You	can	return	from	more	than	one	place	in	the	function,
when	appropriate	(such	as	in	a	guard	statement,	which	we'll	cover
shortly).

To	return	from	a	function	that	does	not	specify	a	return	value,
simply	use	the	return	keyword	by	itself.

When	a	function	returns	no	value,	the	return	statement	before	the

function's	closing	brace	is	optional.

If	a	return	value	type	is	listed	in	the	function	definition,	you	must
return	a	value	of	that	type	from	every	code	path	within	the	function.
Failure	to	do	so	will	generate	a	compiler	error.

While	Swift	functions	can	return	only	one	value,	that	value	can	be	a
tuple,	which	can	embed	multiple	other	values	together.	For
example,	to	return	the	three	integers	2,	4,	and	6	from	a	function,	we
can	do	the	following:

return	(2,	4,	6)

Swift	can	also	return	complex	and	custom	types	from
functions.	For	example,	your	functions	can	return
instances	of	structures,	instances	of	classes,	and
references	to	other	functions.	So,	while	returning	a	single
value	may	seem	limiting,	Swift	actually	provides
tremendous	flexibility	in	its	function	return	features.

Using	@discardableResult
The	Swift	compiler	will	generate	a	warning	if	you	call	a
function	that	returns	a	result	but	do	not	use	or	assign
that	result	in	your	code.	For	example,	consider	the
following	function:

func	addTwoInts(_	a:	Int,	_	b:	Int)	->	Int	

{

			return	x	+	y

}

Suppose	we	had	called	it	with	this	line	of	code:

addTwoInts(4,	5)			//	return	is	

"discarded"

The	Swift	compiler	doesn't	understand	why	we	would	call
a	function	that	returns	a	value	but	not	use	that	value.
While	not	an	error,	it	will	generate	a	compile-time
warning.

There	are	times	when	you	may	implement	a	function	that
returns	a	value	which	may	not	be	important	to	the	calling
program.	This	is	especially	true	when	developing
frameworks	for	use	by	other	applications—where	you
provide	functionality	that	the	consumer	of	the	framework
may	not	feel	is	important	to	them.

For	example,	a	log()	function	may	return	a	Bool
indicating	how	many	characters	of	data	were	written	to
the	log—even	if	the	callers	don't	consider	this
information	interesting:

func	log(_	message:	String)	->	Int

Suppose	the	caller	calls	this	function	without	using	the
Int	return	value:

log("app	started!")

The	compiler	will	generate	the	following	warning:

Result	of	'log(message:)	is	unused

To	suppress	the	warning,	simply	add	the
@discardableResult	function	attribute	with	the
declaration:

@disdcardableResult	func	log(_	message:	

String)	->	Int

Now,	knowing	that	you	expect	callers	might	disregard	the
return	value,	the	Swift	compiler	will	no	longer	issue	a
warning	at	the	point	of	the	function	call.

NOTENOTE
Another	way	to	suppress	this	warning	is	to	assign	the	function	return	value	to	a
placeholder,	for	example:

_	=	log("app	started")

In	this	syntax,	the	underscore	character	(_)	is	effectively	a	local	variable	with	no	name.

Function	Attributes
In	the	previous	section,	we	used	the	function	attribute
discardableResult	to	provide	additional	information
to	the	Swift	compiler	about	the	usage	of	a	function	we
declared.	In	that	case,	the	discardableResult
attribute	informs	the	compiler	that	we	expect	callers	of	a
function	may	ignore	the	value	returned	from	the	function.

You	may	encounter	and	use	other	function	attributes	in
the	course	of	your	Swift	programming.	The	following	are
some	of	the	more	common	function	attributes:

Name Description

objc Used	to	generate	Objective-C	calling	wrappers.	Used	when	a	Swift	
function	you	write	should	also	be	callable	from	an	Objective-C	

module.

nono

bjc

Suppresses	the	generation	of	Objective-C	compatibility	wrappers	
where	it	otherwise	would	be	created.	Typically	used	to	resolve	
circular	references	that	occasionally	occur	between	Swift	and	
Objective-C	modules.

avai

labl

e

Informs	the	compiler	which	OS	versions,	Swift	versions,	or	
platforms	are	required	for	a	function	to	be	called.

disc

arda

bleR

esul

t

The	return	value	may	be	ignored	by	function	callers	without	
generating	a	compiler	warning	message.

IBAc

tion

Marks	a	function	as	a	call	point	that	can	be	connected	to	an	
Interface	Builder	design	file.

intr

oduc

ed

The	first	version	of	the	platform	or	language	where	this	function	
was	available.

depr

ecat

Marks	a	function	as	deprecated.

ed

For	more	complete	information	about	language
attributes,	refer	to	the	Swift	documentation	at
https://developer.apple.com/library/content/documentatio
n/Swift/Conceptual/Swift_Programming_Language/Attrib
utes.html.

Variadic	Parameters
Swift	supports	functions	with	variadic	parameters—these
are	named	parameters	that	accept	more	than	one	value
of	the	same	type.

For	example,	we	could	write	a	function	to	make	a
sentence	containing	a	variable	number	of	words:

import	Foundation

func	makeSentence1(_	words:	String...)	->	

String	{

				var	sentence	=	""

				for	word	in	words	{

								sentence	+=	"\(word)	"

				}

				return	"\

(sentence.trimmingCharacters(in:	["	"]))."

}

let	sentence1	=	makeSentence1("Hello",	

"World",	"And",	"Universe")

In	this	example,	the	makeSentence1	function	will

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Attributes.html

accept	any	number	of	words	as	input,	and	then	uses	the
for…in	loop	to	combine	them	into	a	sentence.

Because	Swift's	array	features	are	quite	powerful,	and
declaring	an	ad	hoc	array	of	values	of	the	same	type	is
quite	easy,	you	might	also	approach	variadic	parameters
in	the	following	way:

func	makeSentence2(_	words:	[String])	->	

String	{

				var	sentence	=	""

				for	word	in	words	{

								sentence	+=	"\(word)	"

				}

				return	"\

(sentence.trimmingCharacters(in:	["	"]))."

}

let	sentence2	=	makeSentence2(["Hello",	

"World",	"And",	"Universe"])

The	output	of	both	makeSentence1	and
makeSentence2	is	the	same:

Hello	World	And	Universe.

inout	Parameters
In	each	example	so	far,	when	we've	written	a	function
that	provided	values	back	to	the	point	of	function	call,
we've	used	function	return	to	do	so.	Using	the	return
statement	to	return	a	new	value	to	a	function	caller	is	the
most	common	approach,	and	the	approach	you	should

use	by	default.

However,	using	return	to	send	data	back	to	the
function's	caller	returns	a	new	value.	In	some	cases,	it
may	be	desirable	to	modify	variables	that	are	owned	by
the	caller—rather	than	return	new	values.	Swift	provides
inout	parameters	as	a	way	to	accomplish	this.

Consider	the	following	function,	which	swaps	two	Int
values	without	inout	parameters:

func	swapValues1(_	a:	Int,	_	b:	Int)	->	

(Int,	Int)	{

				return	(b,	a)

}

var	a	=	3

var	b	=	2

let	(a1,b1)	=	swapValues1(a,	b)

a	=	a1

b	=	b1

print("\(a),	\(b)")	//	2,	3

The	parameters	a	and	b	are	read-only	within	the
function,	and	swapValues	cannot	change	them.
Instead,	the	function	allocates	a	new	tuple	and	returns	it
with	the	values	in	a	swapped	order.	The	caller	assigns
these	new	values	into	the	tuple	(a1,	b1).	The	caller
must	then	reassign	the	values	of	a	and	b	to	achieve	the
desired	result.

By	using	inout	parameters,	we	can	write	a	function	that

can	modify	the	values	of	the	parameter	values,	and	allow
it	to	make	the	changes	on	behalf	of	the	code	in	the
calling	scope:

var	a	=	3

var	b	=	2

func	swapValues2(_	a:	inout	Int,	_	b:	

inout	Int)	{

				let	temp	=	a

				a	=	b

				b	=	temp

}

swapValues2(&a,	&b)

print("\(a),	\(b)")	//	2,	3

In	the	swapValues2	version,	the	inout	keyword	makes
the	parameters	a	and	b	read/write	variables,	so	the
code	can	reassign	their	values.

When	calling	inout	parameters,	an	ampersand	(&)	must
be	placed	before	the	variable	being	passed	into	the
function.	If	you've	used	C	or	C++,	you	may	recognize
this	syntax,	which	in	those	languages	means	the
address	of.	The	effect	is	the	same	as	in	those	languages
—the	callee	of	the	function	is	given	permission	to
change	the	content	of	the	variable	provided	as	a
parameter.

Recursion
Like	many	modern	programming	languages,	Swift
supports	recursive	function	calls.	Recursion	is	simply	the
ability	for	a	function	to	call	itself	from	within	its	own	body.
Most	canonical	use	cases	for	recursion	come	from

computer	science,	for	example,	sorting	algorithms.
However,	even	if	you're	an	end	user	app	developer,
there	may	be	times	when	recursion	will	make	your	code
more	concise	and	efficient.

The	following	function	uses	recursion	to	calculate	the
mathematical	factorial:

func	factorialWithRecursion(n:	Int)	->	Int	

{

				return	n	==	0	?	1	:	n	*	

factorialWithRecursion(n:	n-1)

}

The	following	line	calls	the	recursive	function,	assigning
the	result	to	a	variable	named	factorial2:

let	factorial2	=	factorialWithRecursion(n:	

6)	//	720

Functions	as	Parameters
Many	languages,	including	Swift,	have	the	ability	to	pass
in	functions	by	reference,	which	can	then	be	called	from
within	the	called	function.	In	many	languages,	the
function	passed	as	a	parameter	is	referred	to	as	a
callback	function,	since	it	has	the	effect	of	allowing	a
function	to	call	back	to	the	caller's	code	to	perform	some
action	after	the	function	has	done	what	was	asked	of	it.

In	the	following	example,	let's	rewrite	the	makeSentence
function	with	a	version	that	passes	in	a	callback	function
as	a	parameter:

import	Foundation

func	makeSentence3(_	words:	[String],	

thenPrint:	(String)	->	Void)	{

				var	sentence	=	""

				for	word	in	words	{

								sentence	+=	"\(word)	"

				}

				thenPrint("\

(sentence.trimmingCharacters(in:	["	

"])).")

}

func	printSentence(_	sentence:	String)	{

				print(sentence)

}

makeSentence3(["Hello",	"World",	"and",	

"Universe"],	thenPrint:	printSentence(_:))

The	output	of	this	code	is	identical	to	makeSentence1
and	makeSentence2	that	we	saw	earlier.

In	the	function	as	parameter	version	3,	the
makeSentence3	function	has	no	knowledge	of	how	the
printing	will	be	done.	It	simply	calls	the	function	it's
provided	through	the	thenPrint	parameter,	and	calls	it
when	the	sentence	is	finished.

The	function	as	parameter	technique	is	commonly	used
in	scenarios	where	there	may	be	more	than	one
predefined	alternative	ending	for	a	program	flow.	In	the
preceding	example,	we	could	have	one
printSentence	routine	that	printed	to	the	console,	a
second	that	posted	the	result	to	a	web	service,	and	a
third	that	displayed	a	message	box.

Functions	as	parameters	are	very	powerful	and	flexible,
and	are	commonly	used	in	Swift	programming.	Next,
we'll	learn	about	a	similar—and	even	more	commonly
used	variant	of	this	technique:	closures.

Closures
In	the	previous	section,	you	learned	how	to	pass	a
named	function	into	another	function,	allowing	the	latter
to	call	the	former	at	the	appropriate	time.

Closures	are	another	way	to	pass	code	to	a	function,
which	it	can	then	call	later.	In	the	case	of	closures,
however,	we're	passing	a	block	of	code	that	can	be
called	from	within	the	function.

The	two	approaches	are	very	similar—and	to	some
extent,	interchangeable.	In	both	cases,	the	called
function	will	run	a	block	of	code	using	the	name	specified
by	its	own	parameter	name.	A	closure	is	primarily
different	in	that	a	function	as	parameter	has	a	name	in
the	caller's	scope,	while	a	closure	is	an	unnamed	block
of	code.

Closures	in	Swift	are	the	most	common	approach	to
providing	code	to	execute	after	asynchronous
processing	has	completed.	The	following	function	uses	a
closure	to	download	data	from	the	web.	You'll	fully
implement	this	solution	in	the	following	activity:

func	doWebRequest(closure:	@escaping	(_	

webSiteContent:	String?)	->	Void)	{

								let	url	=	URL(string:	

"https://www.packtpub.com")!

								let	urlRequest	=	URLRequest(url:	

url)

								let	session	=	

URLSession(configuration:	

URLSessionConfiguration.default)

								let	task	=	session.dataTask(with:	

urlRequest)	{

												(data,	response,	error)	in

												let	content	=	String(data:	

data!,	encoding:	.utf8)

												closure(content)

								}

								task.resume()

				}

This	ends	our	look	at	functions.	In	this	section,	we	took	a
deep	dive	into	how	Swift	implements	functions	and	the
importance	of	functions	in	developing	virtually	any
application	in	Swift.

CREATING	A	FUNCTION	TO	RECEIVE
CONTENT	FROM	AN	ASYNCHRONOUS
WEB	SERVICE	CALL

For	application	developers	who	use	any	type	of	web
service,	processing	the	results	of	asynchronous	web
service	requests	will	be	a	daily	requirement.	Let's	apply
what	you've	learned	about	writing	functions	to	implement
real-world	web	service	requests:

1.	 Launch	Xcode,	and	open	the	start	project	named	Functions	-
Starter.xcodeproj.

2.	 Add	the	following	function	to	the	ViewController.swift	file
before	the	closing	brace	of	the	ViewController	class:

func	doWebRequest()	->	String	{

				var	webPageContent	=	"No	data	

yet!"

				let	url	=	URL(string:	

"https://www.packtpub.com")!

				let	urlRequest	=	URLRequest(url:	

url)

				let	session	=	URLSession(

									configuration:	

URLSessionConfiguration.default)

				let	task	=	

session.dataTask(with:	urlRequest)	{

								(data,	response,	error)	in

								webPageContent	=	

String(data:	data!,	encoding:	

.utf8)!

				}

				task.resume()

				return	webPageContent

}

3.	 Change	the	start	project's	startButtonTapped	method	to	contain	the
following	body:

@IBAction	func	startButtonTapped(_	

sender:	UIButton)	{

								

self.updateTextView(doWebRequest())

				}

4.	 Run	the	application	with	a	simulator,	press	the	Start	Web	Request
button,	and	observe	the	output	in	the	TextView	underneath	the
button.

What	happened?	Why	didn't	that	work?

The	doWebRequest	function,	as	written,	doesn't	wait	for
the	web	request	to	complete	before	returning	the
webPageContent	String	variable.

5.	 Replace	the	doWebRequest	function	with	the	following
implementation:

func	doWebRequest(closure:	@escaping	

(_	webSiteContent:	String?)	->	Void)	

{

								let	url	=	URL(string:	

"https://www.packtpub.com")!

								let	urlRequest	=	

URLRequest(url:	url)

								let	session	=	

URLSession(configuration:	

URLSessionConfiguration.default)

								let	task	=	

session.dataTask(with:	urlRequest)	{

												(data,	response,	error)	

in

												let	content	=	

String(data:	data!,	encoding:	.utf8)

												closure(content)

								}

								task.resume()

				}

This	function	accepts	a	closure	parameter	(named
closure).	In	this	implementation,	the	function
doWebRequest	has	no	return	value.	Instead,	it	waits	until
the	web	request	has	completed,	and	then	returns	the	HTML
response	by	calling	the	closure	function,	passing	the
HTML	to	the	closure	as	a	parameter	value.

6.	 Modify	the	startButtonTapped	function	as	follows,	so	that	it
calls	the	new	doWebRequest	version,	which	accepts	a	closure
parameter:

@IBAction	func	startButtonTapped(_	

sender:	UIButton)	{

								doWebRequest	{	(content)	in

																

self.updateTextView(content!)

								}

				}

7.	 Run	the	application	on	a	simulator,	press	the	Start	Web	Request
button,	and	observe	the	output	in	the	debug	console.	You	should
now	see	the	HTML	source	for	the	web	page	assigned	to	the	url
variable.

Assuming	you	encountered	no	exceptions	or	web
connectivity	problems,	the	program	you	coded	for	the
web	request	activity	will	have	worked	just	fine.	But	it
lacks	any	error	handling	and	is	not	up	to	scratch	to
include	in	a	production	application!

Open	the	project	in	the	Functions	–	Finished
with	Error	Handling	folder,	and	review	it.	Then,	ask
yourself	what	steps	have	been	taken	to	ensure	this	code
will	not	crash	the	application	when	external	data	is	not
returned	as	expected.

Error	Handling
We	ended	the	last	section	by	examining	some	sample
code	after	it	had	been	made	production-quality	by	adding
correct	error	handling	techniques.	In	this	section,	we'll
dig	into	the	most	common	Swift	error	handling
techniques,	which	will	help	ensure	all	the	code	you
develop	in	Swift	will	be	robust	and	of	high	quality.

Swift	supports	many	of	the	same	error	handling
techniques	available	in	other	object-oriented	languages,
such	as	C++,	Java,	and	C#.	Functions—either	your	own
or	standard	library	functions—often	return	error	codes	as
integers,	error	types,	and	Boolean	variables.	In	addition,
Swift	provides	exception	handling	using	the	do…catch
construction,	which	is	functionally	equivalent	to	the	try…
catch	construction	used	in	many	other	languages.

The	do…catch	Statement
Most	modern	languages	have	exception	handling
features	that	allow	code	to	throw	exceptions	from	an
inner	scope	that	can	be	caught	in	an	outer	scope.	In
Swift,	this	pattern	is	implemented	using	the	do…catch
structure.

You'll	very	often	use	the	Swift	do…catch	structure	when
calling	underlying	Apple	frameworks	to	do	data
processing	or	file	access	work	on	your	behalf.	Catching

exceptions	can	help	bubble	up	highly	detailed	error
information	to	your	code.

The	following	code	declares	a	block	that	calls	a	function
decode,	which	may	throw	an	exception	of	type	Error:

do	{

				let	userObject	=	try	decode()

				print(userObject.name)

}	catch	let	error	{

				print(error)

}

The	important	thing	to	note	is	that	the	code	in	between
do	and	catch	doesn't	explicitly	check	for	an	error.	It
simply	instructs	the	decode	function	to	try	to	complete
successfully.	In	the	event	that	decode	encounters	an
error,	the	remainder	of	the	do	block	will	be	skipped	and
the	catch	block	will	receive	the	thrown	Error	object,
assigning	it	to	the	local	variable	error.

Multiple	catch	Blocks
In	practice,	a	function	that	throws	an	exception	may
throw	one	of	several	more	specific	exceptions,
depending	on	what	went	wrong.

The	do…catch	construction	allows	you	to	catch	more
than	one	exception	type.	This	works	almost	identically	to
constructing	a	switch	statement	with	multiple	case
code	blocks.

Multiple	catch	blocks	provide	the	program	with	more

specific	information	about	the	cause	of	the	decoding
error,	if	available,	for	example:

func	decodeWithException()	{

			if	let	data	=	jsonText.data(using:	

String.Encoding.utf8)	{

						let	decoder	=	JSONDecoder()

						do	{

									let	userObject	=	try	

decoder.decode(UserInfo.self,	from:	data)

									print("User	decoded	form	JSON:	\

(userObject)")

						}	catch	let	

DecodingError.typeMismatch(_,	context)	{

									print("Type	Mismatch	Error:	\

(context.debugDescription)")

						}	catch	let	

DecodingError.dataCorrupted(context)	{

									print("Decoding	Error:	\

(context.debugDescription)")

						}	catch	let	error	{

									print(error.localizedDescription)

						}

						print("program	always	continues	from	

this	point.")

			}

}

Using	do	without	catch
What	if	you	didn't	want	to	catch	an	exception,	but	wanted
your	program	to	continue	even	when	an	exception	is
thrown?

By	using	the	try?	keyword	(that	is,	try	with	a	question

mark	after	it),	we	can	ask	Swift	to	try	to	run	code	that
may	throw	an	exception,	and	return	the	result	as	an
optional	variable.	In	this	case,	if	an	exception	is	thrown,
the	returned	optional	will	be	nil;	if	no	exception	is
thrown,	the	optional	will	contain	the	value	the	function
would	normally	return,	for	example:

do	{

				let	userObject	=	try?	decode()

				print(userObject?.name)

}

In	this	case,	if	the	decode	function	throws	an	exception,
the	userObject	optional	will	be	nil,	and	the
print(userObject.name)	line	will	not	be	executed.
Because	the	action	taken	if	an	exception	is	thrown	is	to
assign	nil	to	the	variable	on	the	left-hand	side	of	the
equal	sign,	it's	no	longer	necessary	to	wrap	the	decode
call	in	the	do…catch	block.

The	guard	Statement
The	guard	statement	is	most	commonly	used	at	the	top
of	a	function	body	to	validate	that	the	data	the	function
will	use	to	complete	its	task	is	in	an	expected	state.	In
this	sense,	the	guard	statement	acts	as	a	guard	at	the
gate—checking	the	contents	of	inputs	to	the	function
before	they're	allowed	in.

In	early	versions	of	Swift,	we	didn't	have	the	guard
statement,	and	it	was	common	to	implement	functions
structured	like	the	following:

func	printAddress1(zipCode:	String?,	

countryCode:	String?,	areaCode:	String?)	-

>	Bool	{

				if	let	zip	=	zipCode,	let	country	=	

countryCode,	let	area	=	areaCode	{

								if	zip.count	!=	5	{

												return

								}

								if	country.count	!=	2	{

												return

								}

								if	area.count	!=	3	{

												return

								}

								print("\(zip),	\(country),	\

(area)")

				}

}

While	this	function	isn't	too	difficult	to	follow,	it	can
become	confusing	for	the	reader	where	the	ending	brace
of	the	if	let	{	}	block	ends.	Developers	would
frequently	reduce	the	editor	font	to	a	tiny	size	to	try	to
make	out	where	in	the	sequence	of	ending	braces	the
close	of	the	original	error	checking	if	let	block	ended!

The	guard	keyword	is	effectively	a	clearer	version	of	this
structure—moving	the	closing	braces	of	validations
together	in	neat	code	blocks.	An	equivalent	function
using	the	guard	syntax	is	as	follows:

func	printAddress(zipCode:	String?,	

countryCode:	String?,	areaCode:	String?)	{

				guard	let	zip	=	zipCode,	zip.count	==	

5	else	{	return	}

				guard	let	country	=	countryCode,	

country.count	==	2	else	{	return	}

				guard	let	area	=	areaCode,	area.count	

==	3	else	{	return	}

				print("\(zip),	\(country),	\(area)")

}

In	the	second	version,	the	guard	statement	makes	the
code	more	readable,	and	moves	all	the	state-checking
code	to	the	beginning	of	the	function	where	it	can	be
easily	reviewed	and	understood.

We	have	reached	the	end	of	this	section.	Here,	we
focused	on	error	handling	and	exception	handling,	as
implemented	in	Swift.	To	reiterate,	Swift	uses	do…catch
instead	of	try…catch	and	also	allows	us	to	use	multiple
catch	blocks.

Activity	B:	Exception	Handling
Exception	handling,	as	the	name	implies,	is	an	error
handling	technique	that	enables	you	to	let	the	Swift
compiler	know	what	errors	you	expect,	and	provide	a
way	to	listen	for	them	if	they	occur	while	your	program	is
running.	We'll	now	apply	exception	handling	in	one	of	the
most	common	use	cases	for	application	developers—
parsing	data	structures	from	JSON	into	application	data
structures.

Use	an	Xcode	playground	to	practice	catching	an
exception	while	parsing	a	JSON	string	into	a	custom

data	structure—a	very	common	task	in	any	application
development	work	that	involves	integration	with	web
services.

1.	 Launch	Xcode	and	create	a	new	playground,	then	save	it	to	your
desktop	with	the	name	ExceptionHandling.playground.

2.	 Add	the	following	import	to	the	top	of	the	playground	file:

import	Foundation

3.	 Add	the	following	code	to	define	a	data	structure	that	holds	basic
user	information	for	an	application:

struct	UserInfo	:	Codable	{

						var	name:	String

						var	email:	String

						var	userId:	String

			}

4.	 Now	add	the	following	decodeJson	function	to	decode	a	JSON
string:

func	decodeJson(jsonText:	String)	{

				if	let	data	=	

jsonText.data(using:	

String.Encoding.utf8)	{

								let	decoder	=	JSONDecoder()

								do	{

												let	userObject	=

																try	

decoder.decode(UserInfo.self,	from:	

data)

												print("User	decoded	form	

JSON:	\(userObject)")

								}	catch	let	error	{

												

print(error.localizedDescription)

								}

				}

				print("program	always	continues	

from	this	point.")

}

5.	 Add	the	following	statement	to	call	the	decodeJson	function	with	a
data	string	that	almost	correctly	matches	the	expected	data
structure	keys	(the	name	field	has	the	wrong	case):

decodeJson(jsonText	:	"{	\"Name\"	:	

\"John	Smith\",	\"email\"	:	

\"john@smith.com\",	\"userId\"	:	

\"jsmith\"}")

6.	 Observe	the	exception	printed	to	the	debug	console.
7.	 Modify	the	string	to	correct	the	uppercase	letter	in	the	name	field,

and	observe	that	the	properly	encoded	JSON	object	is	printed	in
the	console.

Because	the	jsonText	data	is	not	in	the	correct	format
(the	name	field	cannot	begin	with	an	uppercase	letter),
the	decoder.decode	function	throws	an	exception.
The	exception	is	caught	in	the	catch	block,	reporting	an
error.	You	eliminate	the	exception	by	changing	the	case
of	the	name	field	in	the	jsonText	string.

Object-Oriented	Features
Throughout	the	past	couple	of	lessons,	we've	been
learning	how	to	use	Swift	syntax,	variables,	functions,
and	control	flow	structures	to	develop	the	building	blocks
of	Swift	applications.	In	the	final	section	of	this	lesson,
we'll	learn	how	to	pull	all	those	language	components
together	into	Swift's	object-oriented	classes	and
structures—the	high-level	building	blocks	of	most
professional	Swift	applications.

Object-Oriented	Principles
Swift	is	an	object-oriented	programming	language,	and
enables	the	core	principles	of	object-oriented
programming.	Generally	speaking,	in	object-oriented
programming,	variables,	functions	and	data	structures
that	implement	a	functional	unit	of	your	program	are
combined	into	an	object	that	exists	within	its	own
namespace,	and	is	accessed	by	other	objects	through
filtered,	publicly	exposed	interfaces.

Using	Swift,	instances	are	created	using	both	structs
and	classes.	Structs	and	classes	support	encapsulation
and	abstraction,	though	only	classes	support	inheritance.
Both	object	types—structs	and	classes—are	frequently
used	in	Swift,	and	neither	is	better	than	the	other	for	all
use	cases.

Classes	Versus	Structs
Virtually	all	object-oriented	languages	are	based	on	the
concept	of	organizing	units	of	code	into	classes	that
perform	a	very	specific	set	of	actions	on	a	specific	set	of
data.

ILLUSTRATION

A	class	can	be	thought	of	as	a	pattern,	such	as	one	a
clothes	factory	might	place	over	a	bolt	of	fabric	to	cut	a
new	shirt.	The	pattern	(class)	has	all	the	dimensions	and
notations	that	describe	to	the	tailor	what	shape	the	shirt
will	take.	The	tailor	can	use	the	pattern	to	create	as
many	shirts	as	they	need—each	one	perfectly	formed	by
placing	the	pattern	on	the	raw	fabric	and	cutting	around
the	pattern.	Here,	the	tailor	is	the	Swift	runtime,	the
pattern	is	the	class	(or	struct)	designed	by	the
programmer,	and	the	finished	shirt	is	an	object
generated	by	the	Swift	runtime	environment.

While	this	section	isn't	a	comprehensive	tutorial	on
object-oriented	programming,	some	general	guidelines
for	selecting	between	classes	and	structs	are	the
following:

Structs	are	value	types,	which	are	always	copied	when	passed
between	objects	or	assigned	to	variables.	This	makes	them	ideal	to
use	when	creating	objects	that	are	primarily	used	to	store	data
structures	(though	structs	can	and	do	include	functions	that	operate
on	their	data).

Classes	support	inheritance,	which	makes	them	the	only	alternative
when	defining	objects	that	will	serve	as	base	classes	or	be	derived

from	base	classes.

Classes,	as	reference	types,	are	also	a	better	choice	when	it's
advantageous	to	pass	an	object	by	reference,	allowing	its	members
to	be	directly	modified	by	functions	it's	passed	to	(this	is	somewhat
similar	to	the	inout	parameter	distinction	we	learned	earlier	in	this
lesson).

Defining	Classes	and	Structures
In	this	lesson,	we'll	focus	on	the	syntax	to	define,
instantiate,	and	use	your	own	structs	and	classes.	These
techniques	are	nearly	the	same	for	each	object	type.

A	class	or	struct	is	defined	with	the	following	syntax:

The	struct	or	class	keyword	defines	a	namespace	for	the	class.
This	namespace	is	prepended	to	any	symbol	definition	within	the
scope	of	the	struct	or	class	when	your	application	is	assembled.

The	definition	of	struct	or	class	members	is	enclosed	in	braces
({…}).

If	a	class	or	struct	contains	member	variables	that	are	not	assigned
default	values	where	defined,	an	initializer	must	be	provided	so	the
uninitialized	member	variables	can	be	assigned	a	value.	For	structs
(but	not	for	classes),	the	Swift	compiler	will	create	an	initializer	for
you.

Within	the	definition	braces,	variables	and	functions	can	be	added,
according	to	the	techniques	learned	in	the	last	couple	of	lessons.

Classes,	structs,	and	their	enclosed	methods	and	variables	can	be
given	specific	access	levels,	which	control	how	visible	they	will	be
from	outside	modules.	The	default	access	level	is	Internal,	which
makes	all	elements	visible	to	any	code	in	the	same	module.

The	following	are	declarations	for	a	Customer	object—
the	first	declared	as	a	struct	and	the	second	as	a	class:

struct	Customer	{

			var	name:	String

			var	customerNumber:	String

}

class	Customer	{

			var	name:	String

			var	customerNumber:	String

}

Throughout	the	last	couple	of	lessons,	you've	been	using
structs	and	classes,	for	example:

The	String	type	is	a	struct	that	contains	many	properties	and
functions—for	example,	the	.count	property	we	often	used	to
count	the	characters	contained	in	a	string.

We	used	the	JSONDecoder	class	to	decode	the	JSON	text	in
Activity	B.

As	you	develop	applications	with	Swift,	you'll	use	classes
and	structs	frequently,	and	will	often	define	your	own.

Next,	you'll	solidify	your	understanding	of	basic	struct
and	class	usage	by	practicing	the	creation	of	each	type
of	object	in	an	activity.

Activity	C:	Creating	a	Customer
Struct	and	Class
To	compare	the	differences	(and	similarities)	between
Swift	classes	and	structs,	it's	useful	to	implement	the
same	data	structure	in	both.	This	is	exactly	what	we'll	do
now.

Use	an	Xcode	playground	to	practice	how	to	create	Swift
structs	and	classes.

1.	 Launch	Xcode	and	create	a	new	playground,	then	save	it	to	your
desktop	with	the	name	CustomerStructClass.playground.

2.	 Add	the	following	lines	of	code	to	declare	a	new	Customer	struct:

struct	CustomerStruct	{

}

3.	 Below	the	closing	brace	of	the	struct	definition,	create	a	new
variable	of	type	Customer.	Congratulations!	You've	created	a	struct
definition,	and	instantiated	your	first	custom	object!

var	customer1	=	CustomerStruct()

4.	 Modify	the	code	to	the	following,	adding	the	enum	CustomerType
and	variable	type	to	the	struct.	Then	modify	your	code	to	print
the	current	customer.type	to	the	debug	console:

struct	CustomerStruct	{

				enum	CustomerType:	String	{

								case	gold	=	"Gold	Customer!"

								case	silver	=	"Silver	

Customer!"

								case	unknown	=	"Unknown	

customer	type"

				}

				var	type:	CustomerType?

}

var	customer1	=	CustomerStruct()

print(customer1.type	??	"invalid	

customer	type")

At	this	point,	the	print	statement	prints	invalid	customer
type,	because	the	member	variable	within	the	struct	is
initialized	to	an	optional	having	a	nil	value.

5.	 Because	this	is	a	struct,	Swift	has	auto-created	an	initializer	we	can
use	to	set	an	initial	value	for	the	customer	value.	Modify	the
instantiation	of	the	customer	variable	as	follows:

var	customer	=	CustomerStruct(type:	

.gold)

Now	when	the	code	runs,	the	output	is	the	string	gold.

6.	 Creating	a	similar	data	structure	as	a	class	is	quite	similar.	Add	the
following	class	definition	to	your	playground:

class	CustomerClass	{

				enum	CustomerType:	String	{

								case	gold	=	"Gold	Customer!"

								case	silver	=	"Silver	

Customer!"

								case	unknown	=	"Unknown	

customer	type"

				}

				var	type:	CustomerType?

				init(type:CustomerType)	{

								self.type	=	type

				}

}

This	definition	declares	a	class	of	type	CustomerClass.
Because	Swift	does	not	automatically	create	initializers	for
classes,	CustomerClass	includes	an	initializer	to	allow	its
CustomerType	variable	to	be	set	on	instantiation—just	as
the	automatically	created	struct	initializer	does	for
CustomerStruct.

7.	 Finally,	add	the	following	two	lines	to	the	playground	to	instantiate
an	object	of	type	CustomerClass,	and	print	its	type	enum	member
to	the	debug	console:

var	customer2	=	CustomerClass(type:	

.silver)

print(customer2.type	??	"invalid	

customer	type")

Summary
In	the	last	couple	of	lessons,	you've	learned	all	the	key
building	blocks	needed	to	build	feature-rich,	robust	Swift
programs:

In	Lesson	1,	Swift	Basics,	you	learned	key	language	basics:	using
variables,	optionals,	data	types,	and	essential	Swift	code	syntax

In	Lesson	2,	Swift	Operators	and	Control	Flow,	you	learned	the
fundamental	structures	you	need	to	build	logic	and	express	the	core
flow	of	your	application:	control	flow,	looping	structures,	and	the
range	of	operators	Swift	supports

In	this	lesson,	you	began	taking	your	Swift	skills	to	the	next	level	by
creating	functions,	handling	exceptions,	and	defining	your	own	data
types	using	struct	and	class	language	features

In	the	next	couple	of	lessons,	you'll	continue	to	build	your
Swift	knowledge	by	learning	more	advanced	language
concepts,	including	the	following:

Using	and	extending	Swift	collections

Swift's	sophisticated	and	powerful	Unicode	String	structure	and
protocols

Using	Swift's	functional	programming	and	lazy	operations	features

Challenge
We'll	tie	together	a	variety	of	Swift	language	techniques,
giving	you	additional	practice	to	create	structs,	functions,
data	types,	and	optionals,	and	use	flow	control
structures.

To	solidify	your	understanding	of	basic	struct	and	class
usage	by	practicing	the	creation	of	each	type	of	object.

1.	 Launch	Xcode,	and	create	a	new	playground,	then	save	it	to	your
desktop	with	the	name	Activity	5	-	Final
Activity.playground.

2.	 Add	the	following	enum,	which	will	be	used	to	classify	customers	by
gold,	silver,	and	platinum	levels.	Note	that	this	enum	has	a
rawValue	of	type	String,	which	we	will	use	while	printing	customer
information:

enum	CustomerType:String	{

				case	silver	=	"SILVER"

				case	gold	=	"GOLD"

				case	platinum	=	"PLATINUM"

}

Create	a	new	Customer	struct	with	a	set	of	String	variables,	including
an	optional	for	country	and	the	variable	type	to	classify	the	customer	into
one	of	the	CustomerType	categories:

struct	Customer	{

				var	name:	String

				var	address:	String

				var	city:	String

				var	state:	String

				var	country:	String?

				var	type:	CustomerType

Add	a	function	printAddress	to	the	Customer	struct	that	can	be	called	to	print	customer	address
information	in	a	variety	of	styles.	This	function	returns	a	result,	but	includes	the	@discardableResult
annotation	so	that	callers	who	do	not	store	its	return	value	won't	generate	a	compiler	warning.	This	function
also	allows	(but	does	not	require)	additional	text	lines	to	be	appended	to	the	end	of	the	address	label	output
via	a	variadic	parameter:
@discardableResult	func	printAddress(outputType:	OutputType	=	.label,	additionalLines:	String?...)	->	OutputType	{

				switch	outputType	{

								case	.both:

												printDebug()

												fallthrough

								case	.label:

												printLabel(additionalLines)

								case	.debug:

												printDebug()

					}

				return	outputType

}

Add	a	function	printLabel	to	the	Customer	struct	that	creates	a	formatted	string	and	prints	it	to	the
console.	Note	that	this	function	is	declared	as	private	so	that	it	can	be	called	only	from	other	functions	in
the	Customer	class	(forcing	callers	to	go	through	the	printAddress	function	to	print	label	data).	This
function	also	accepts	an	array	of	optional	strings:
private	func	printLabel(_	additionalLines:	[String?])	{

				var	addressString	=	"""

								\(type.rawValue)

								\(name)

								\(address)

								\(city),	\(state)

								"""

				if	let	countryText	=	country	{

								addressString	+=	"\n\(countryText)"

				}

				for	line	in	additionalLines	{

								if	let	line	=	line	{

												//	"line"	and	"line"	have	the	same	name,	but	exist	in	different	scopes.

												//	The	inner	'line'	variable	is	a	non-Optional,	scoped	within	this	block,

												//and	is	created	only	when	the	Optional	'line'	variable	created	by	the	for	statement	is	not	nil

												addressString	+=	"\n\(line)"

								}

				}

				print(addressString)

}

}

Within	the	Customer	struct,	add	an	enum	OutputType	to	control
customer	printing	output	style	as	either	a	formatted	label,	a	debug	output,	or	both.
This	enum	has	no	rawValue:

enum	OutputType	{

			case	label,	debug,	both

}

Add	a	function	printDebug	to	the	Customer	class	to	print	a	simple	output	string	to	the	console.	This
function	will	be	called	when	the	printAddress	function	is	called	with	either	the	.debug	or	.both
style	parameters:
private	func	printDebug()	{

				print(self)

}

Add	a	function	customerTuple	to	return	customer	information	as	a	tuple	containing	six	unnamed
members:
func	customerTuple()	->	(String,	String,	String,	String,	String?,	String)	{

				return	(name,	address,	city,	state,	country,	type.rawValue)

}

Now	create	two	Customer	objects,	customer1	and	customer2,	with	different	address
information:
let	customer1	=	Customer(name:	"John	Doe",	address:	"100	First	Street",	city:	"Springfield",	state:	"Indiana",	country:	"USA",	type:	.platinum)

let	customer2	=	Customer(name:	"Jane	Doe",	address:	"57	Morgan	Circle",	city:	"Las	Vegas",	state:	"Nevada",	country:	"USA",	type:	.silver)

Create	a	constant	variable	tuple,	and	assign	it	the	return	of	the	customerTuple	function:
let	tuple	=	customer1.customerTuple()

Print	the	first	and	third	members	of	the	tuple	(customer	name	and	address):
print("Customer	named	",	tuple.0,	"	lives	in	",	tuple.2)

Call	the	printAddress	function	on	the	customer2	object,	directing	the	function	to	print	a	formatted
label	with	two	additional	lines	under	the	address:
customer2.printAddress(outputType:	.label,	additionalLines:	"C/O	Sam	Johnson",	"Forwarding	Requested")

Call	the	printAddress	function	on	the	customer2	object,	this	time	passing	the	.debug	style
parameter,	and	no	additional	lines:
customer2.printAddress(outputType:	.debug)

Finally,	call	the	printAddress	function	on	the	customer1	object,	this	time	passing	the	.both	style
parameter.	The	printAddress	function's	switch	statement	will	use	the	fallthrough	instruction	to
print	both	versions	of	the	address	output:
customer1.printAddress(outputType:	.both)

Chapter	4.	Collections
In	the	previous	lesson,	we	looked	into	building	Swift
functions,	error	handling,	and	developing	fully-featured
Swift	programs.	We	also	briefly	looked	at	a	few	OOP
features.

In	this	lesson,	we	will	work	extensively	with	Swift's
collections,	such	as	arrays,	sets,	and	dictionaries.

The	Swift	Standard	Library
(https://developer.apple.com/documentation/swift)	is
automatically	imported	into	all	Swift	code,	and	contains
basic	types	such	as	Int,	Double,	Bool,	Optional,	and
more.	It	is	primarily	organized	around	protocols,	because
Swift	is	a	Protocol-Oriented	language
(https://developer.apple.com/videos/play/wwdc2015/408/
).

The	root	protocol	for	collections,	which	they	all	inherit
from,	is	Sequence.	All	a	type	needs	to	conform	to	it	is
the	ability	to	provide	one	value	at	a	time,	until	it	is	empty,
at	which	point	it	will	output	nil.	This	simple	requirement
provides	a	long	list	of	methods
(https://developer.apple.com/documentation/swift/sequen
ce#topics),	and	lets	you	iterate	over	the	type	with	a	for…
in	loop:

for	element	in	somesequence	{

https://developer.apple.com/documentation/swift
https://developer.apple.com/videos/play/wwdc2015/408/
https://developer.apple.com/documentation/swift/sequence#topics

		//	do	something	with	'element'

}

Collection
(https://developer.apple.com/documentation/swift/collecti
on)	inherits	from	Sequence,	and	adds	the	ability	to	refer
to	a	specific	position	in	the	collection	with	an	index.	You
can	only	go	forwards	from	an	index,	until	you	reach	the
end.	Unlike	Sequence,	it	guarantees	that	you	can	iterate
over	it	multiple	times.	In	other	words,	it	preserves	its
contents,	whereas	a	Sequence	may	forget	each	value
as	soon	as	it	has	provided	it:

https://developer.apple.com/documentation/swift/collection

It	is	worth	noting	that,	like	practically	everything	else	in
the	Standard	Library,	all	of	the	collections	are	value
types
(https://developer.apple.com/library/content/documentati
on/Swift/Conceptual/Swift_Programming_Language/Clas
sesAndStructures.html#//apple_ref/doc/uid/TP40014097-
CH13-ID88).	That	means	they	are	not	reference	types
(pointers),	like	classes,	so	no	two	identifiers	ever	refer	to
the	same	value.

Lesson	Objectives
By	the	end	of	this	lesson,	you	will	be	able	to	do	the
following:

Implement	the	main	collections	in	the	Swift	Standard	Library:
arrays,	sets,	and	dictionaries

Explain	sequences,	collections,	and	other	useful	protocols

Create	extensions	of	the	standard	library,	as	well	as	new	types

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html#//apple_ref/doc/uid/TP40014097-CH13-ID88

Arrays
An	array	is	an	ordered	collection	of	elements	of	the
same	type,	and	they	are	used	for	pretty	much	anything
that	requires	storing	things	in	a	certain	order,	such	as	the
contents	of	lists	in	apps.	It	works	like	similar	types	in
other	languages.

Working	with	Arrays
Follow	these	steps	to	work	with	arrays:

1.	 We	can	create	an	array	like	this:

let	a	=	[0,1,2,3,4]	//	array	literal

2.	 We	can	join	two	arrays	like	this:

var	b	=	a	+	[5,6]			//	join	two	

arrays

3.	 We	can	have	a	repeated	value	like	this:

let	c	=	Array(repeating:	4.1,	count:	

3)	//	repeat	one	value

4.	 To	create	an	array	from	any	sequence,	we	can	do	this:

//	create	from	any	Sequence	(a	

String	is	a	Sequence	of	Character)

var	d	=	Array("The	☀	and		")

5.	 To	append	a	value	to	an	array,	use	this:

b.append(10)	//	append	one	element

6.	 To	append	an	entire	array,	use	this:

b	+=	a	//	append	an	array

Another	way	to	append	an	array	is	by	using	this:

b.append(contentsOf:	a)	//	append	an	

array

7.	 To	count	the	length	of	an	array,	we	can	do	this:

b.count	//	the	length	of	the	array

8.	 To	assign	a	value	in	the	array,	we	can	do	this:

b[0]	//	0

b[0]	=	9

b[0]	//	9

for	nr	in	b	{

		//	do	something	with	'nr'

}

Here	are	their	abilities,	represented	by	some	of	the
protocols	they	conform	to:

A	BidirectionalCollection	can	go	backwards	from	any	index
(except	for	the	first	one).

A	MutableCollection	can	replace	any	element	with	a	different
one,	but	can't	necessarily	change	the	length	of	the	collection.

A	RangeReplaceableCollection	can	add	and	remove
elements.	You	can	also	create	an	empty	one.

RandomAccessCollection	does	not	offer	any	new	methods	over
BidirectionalCollection,	but	it	guarantees	that	accessing
any	part	of	the	collection	takes	the	same	amount	of	time,	no	matter
how	big	it	is.	Array	can	do	this	because	all	of	its	elements	are	the
same	size,	so	it	can	instantly	calculate	where	they	are	in	memory.

Index
The	index	type	of	an	Array	is	Int	(integer),	and	its
startIndex	is	always	0.	Its	endIndex	is	the	same	as
the	length	of	the	array.	You	can	think	of	an	index	as
something	that's	pointing	to	the	space	between
elements,	right	before	the	element	it	refers	to.	Here	is	an
array	of	characters:

var	characters	=	Array("The	☀	and	")

endIndex	points	to	the	position	after	the	end,	so	if	you
ever	try	to	access	an	element	at	endIndex	with
characters[characters.endIndex]	(or	with	any
other	invalid	index),	your	program	will	crash.	If	an	array
is	empty,	startIndex	and	endIndex	are	both	0.

UTILIZING	COMMON	OPERATIONS	WITH
INDEX

Common	operations	which	are	used	with	index	are
shown	here:

1.	 To	read	an	element	at	a	particular	index,	use	this:

characters[2]	//	read	element	at	

index	2	("e")

2.	 To	change	the	element	at	a	particular	index,	use	this:

characters[2]	=	"a"	//	change	

element	at	index	2

3.	 To	remove	and	return	an	element	at	a	particular	index,	use	this:

let	removed	=	characters.remove(at:	

8)	//	remove	and	return	element

4.	 To	insert	an	element	at	a	particular	index,	use	this:

characters.insert("i",	at:	7)	//	

insert	element

5.	 To	insert	a	collection	of	elements	at	a	particular	index,	use	this:

characters.insert(contentsOf:	"t	

the",	at:	9)	//	insert	collection	of	

elements

6.	 To	print	all	of	the	characters,	use	this:

print(characters)

//	["T",	"h",	"a",	"	",	"☀",	"	",	
"a",	"i",	"n",	"t",	"	",	"t",	"h",	

"e",	"	",	"		"]

NOTENOTE
Many	collections	use	their	own	custom	index	type	instead	of	Int,	and	even	those	that	use
Int	do	not	necessarily	have	a	startIndex	that	is	always	0.	It	is	therefore	recommended
to	always	use	an	array's	startIndex	instead	of	0.	This	also	makes	the	code	clearer.

As	with	all	indices,	note	that	they	may	become	invalid	or
point	to	the	wrong	element	if	the	Array	is	mutated	after
they	are	created.	To	check	if	an	index	can	still	be	used,
all	collections	have	an	indices	property,	which	is	a
collection	of	all	the	current	indices:

characters.indices.contains(index)

ArraySlice
All	sequences	have	a	SubSequence,	a	type	which
represents	a	subrange	of	its	elements.	The
Array.SubSequence	is	an	ArraySlice:

It	has	the	same	heritage	and	API	as	Array.	It	keeps	a
reference	to	the	array	it	was	created	from,	and	its
startIndex	and	endIndex	represent	the	subrange
within	the	array:

let	characters	=	Array("The	☀	and		")
let	slice	=	characters[4..<9]

print(slice)	//	["☀",	"	",	"a",	"n",	"d"]

This	allows	us	to	have	just	one	copy	of	a	big	array	in
memory,	and	have	as	many	slices	as	there	are	views	on
it.	However,	each	slice	holds	on	to	the	array,	so	if	you
want	to	keep	a	slice	around	for	a	while,	it	is
recommended	to	convert	it	to	an	array	(using
Array(slice)).	This	will	copy	the	elements	of	the	slice
to	its	own	array	and	release	the	reference,	allowing	the
big	array	to	be	freed	if	nothing	else	holds	on	to	it.

If	you	mutate	the	array	or	the	slice	after	the	slice	has
been	created,	a	copy	will	be	made	automatically	and	the
change	will	not	be	reflected	in	the	other.

CREATING	SLICES

Slices	can	be	created	in	different	ways,	as	shown	here:

1.	 To	create	a	slice	with	the	first	three	elements,	use	this:

characters.prefix(3)	//	the	first	

three	elements

2.	 To	create	a	slice	with	all	the	elements	before	the	first	space,	use
this:

characters.prefix(while:	{$0	!=	"	

"})	//	all	elements	before	the	first	

space

3.	 To	create	a	slice	with	the	last	two	elements,	use	this:

characters.suffix(2)	//	the	last	two	

elements

4.	 To	create	a	slice	with	elements	from	4,	use	this:

characters.suffix(from:	4)	//	

elements	from	number	4	and	out

CREATING	SLICES	USING	RANGE
OPERATORS

We	will	now	see	how	to	use	range	operators	to	create
slices:

1.	 To	create	a	slice	from	elements	2	to	4	inclusive,	use	this:

characters[2...4]	//	elements	2	to	4	

inclusive

2.	 To	create	a	slice	from	element	3	up	to,	but	not	including	6,	use	this:

characters[3..<6]	//	elements	3	up	

to,	but	not	including	6

3.	 To	create	a	slice	from	element	3	to	the	end,	use	this:

characters[3...]	//	from	element	3	

to	the	end

4.	 To	create	a	slice	from	the	beginning	up	to	and	including	element	5,
use	this:

characters[...5]	//	from	the	

beginning	up	to	and	including	5

5.	 To	create	a	slice	from	the	beginning	up	to	but	not	including	element
5,	use	this:

characters[..<5]	//	from	the	

beginning	up	to,	but	not	including	5

That	ends	our	look	at	arrays.	Next,	we'll	work	through	an
activity	that	solidifies	our	understanding	of	arrays	and	its
related	concepts.

Activity	A:	Working	with	Arrays

Many	operations	on	arrays	can	be	done	far	more
efficiently	if	the	array	is	sorted.	We	will	add	methods	that
take	advantage	of	this	for	insertion,	finding	the	index	of
the	first	or	last	occurrence	of	an	element,	and	checking	if
the	array	contains	an	element.

We	will	just	add	methods	to	an	array	in	an	extension,	but
ideally	this	should	be	its	own	type	with	an	internal	array
so	that	we	can	guarantee	that	it	is	always	sorted.	Check
out	ole/SortedArray
(https://github.com/ole/SortedArray)	for	an	example	of
this.

To	perform	basic	array	operations	such	as,	inserting
elements	into	an	array	and	searching	an	element	in	an
array.

1.	 Open	the	CollectionsExtra	Xcode	project,	and	go	to
SortedArray.swift.

2.	 Create	an	extension	to	Range	to	find	the	middle	of	it.	This	will	be
used	with	the	indices	of	the	array:

public	extension	Range	where	Bound	

==	Int	{

		///	The	value	in	the	middle	of	

this	range.	Returns	nil	if	the	range	

is	empty.

		var	middle:	Int?	{

				guard	!isEmpty	else	{	return	nil	

}

				return	lowerBound	+	count	/	2

		}

}

3.	 We	will	assume	that	the	array	has	been	sorted	using	the	<	operator
(ascending),	and	we	will	assure	that	elements	can	be	used	with	this

https://github.com/ole/SortedArray

operator	by	constraining	the	extension	to	arrays	with	elements	that
adopt	the	Comparable	protocol.	This	also	means	they	can	be	used
with	>,	==,	!=,	>=,	and	<=:

extension	Array	where	Element:	

Comparable	{

4.	 Next,	we	need	to	find	the	insertion	point	if	we	were	to	insert	an
element	into	the	sorted	array.	We	can	use	this	for	insertion	and
checking	if	the	array	contains	a	specific	element.	This	is	a	standard
binary	search,	implemented	with	recursion:

///	The	index	to	use	if	you	were	to	

insert	this	element	into	a	sorted	

array.

		///

		///	-	Parameters:

		///			-	element:	The	element	to	

potentially	insert.

		///			-	range:	The	range	to	search	

in.

		///	-	Note:	If	the	element	already	

occurs	once	or	more,	the	index	to	

one	of	those	will	be	returned.

		func	insertionIndex(for	element:	

Element,	in	range:	Range<Index>)	->	

Index	{

				guard	let	middle	=	range.middle	

else	{	return	range.upperBound	}

				if	self[middle]	<	element	{

						return	insertionIndex(for:	

element,	in:	index(after:	middle)..

<range.upperBound)

				}	else	if	self[middle]	>	element	

{

						return	insertionIndex(for:	

element,	in:	range.lowerBound..

<middle)

				}

				return	middle

		}

Note	that	when	returning	middle,	we	do	not	check	if	the	element	in
that	position	is	the	one	we	are	searching	for.	This	is	because	the
Comparable	protocol	demands	that	if	an	element	is	neither	bigger
than	or	smaller	than	another	element,	then	they	must	be	equal.

The	range	will	normally	start	as	the	entire	array.
5.	 Inserting	an	element	is	now	very	simple:

///	Inserts	the	element	in	the	

correct	position	in	a	sorted	array.

		///

		///	-	Parameter	element:	The	

element	to	insert.

		///	-	Returns:	The	index	where	the	

element	was	inserted.

		@discardableResult

		public	mutating	func	

sorted_insert(_	element:	Element)	->	

Index	{

				let	index	=	insertionIndex(for:	

element,	in:	startIndex..<endIndex)

				self.insert(element,	at:	index)

				return	index

		}

6.	 When	checking	if	the	array	contains	a	specific	element,	we	can	first
get	the	insertion	index,	check	that	it	is	not	the	endIndex	(if	the
element	does	not	exist	and	is	larger	than	all	the	other	elements),
and	see	if	the	element	at	the	index	is	the	one	we	are	searching	for:

///	Checks	if	a	sorted	array	

contains	an	element.

		public	func	sorted_contains(_	

element:	Element)	->	Bool	{

				let	index	=	insertionIndex(for:	

element,	in:	startIndex..<endIndex)

				return	(index	!=	endIndex)	&&	

(self[index]	==	element)

		}

7.	 When	searching	for	the	first	occurrence	of	an	element	in	the	array,
we	can't	use	insertionIndex.	This	is	because	if	the	element

occurs	more	than	once,	it	may	return	the	index	to	any	of	those
occurrences.	Instead,	we	will	use	a	slightly	modified	version
(https://github.com/raywenderlich/swift-algorithm-
club/blob/master/Count%20Occurrences/README.markdown):

///	The	index	of	the	first	

occurrence	of	this	element	in	a	

sorted	array.

		///

		///	-	Parameters:

		///			-	element:	The	element	to	

search	for.

		///			-	range:	The	range	to	search	

within.

		///	-	Returns:	The	index,	or	nil	

if	not	found.

		public	func	sorted_index(of	

element:	Element,	in	range:	

Range<Index>?	=	nil)	->	Index?	{

				let	range	=	range	??	

startIndex..<endIndex

				guard	let	middle	=	range.middle	

else	{

						let	index	=	range.upperBound

						return	

(self.indices.contains(index)	&&	

self[index]	==	element)	?	index	:	

nil

				}

				if	self[middle]	<	element	{

						return	sorted_index(of:	

element,	in:	index(after:	middle)..

<range.upperBound)

				}

				return	sorted_index(of:	element,	

in:	range.lowerBound..<middle)

		}

The	main	difference	is	that	we	only	check	if	the	element	in	the
middle	is	less	than	what	we	are	searching	for,	not	both	less	than
and	greater	than,	like	in	insertionIndex.	We	can	do	this

https://github.com/raywenderlich/swift-algorithm-club/blob/master/Count%20Occurrences/README.markdown

because,	in	a	sorted	array,	all	equal	elements	are	grouped	together.
Even	if	middle	happens	to	point	to	an	equal	element,	there	may
still	be	more	of	those	to	the	left,	so	we	continue	searching	there.	If
there	aren't,	we	still	end	up	with	the	index	in	the	correct	place.

Since	we	are	using	properties	of	self	for	the	default	value	of	the
range	parameter,	we	cannot	provide	them	in	the	function	header.
Instead,	we	set	the	default	value	to	nil,	and	then	create	a	new
local	variable	called	range	which	is	set	to	the	default	value
startIndex..<endIndex	if	no	other	value	was	provided	when
the	function	was	called.

8.	 The	code	for	finding	the	last	index	of	an	element	is	almost	identical:

///	The	index	of	the	last	occurrence	

of	this	element	in	a	sorted	array.

		///

		///	-	Parameters:

		///			-	element:	The	element	to	

search	for.

		///			-	range:	The	range	to	search	

within.

		///	-	Returns:	The	index,	or	nil	

if	not	found.

		public	func	sorted_lastIndex(of	

element:	Element,	in	range:	

Range<Index>?	=	nil)	->	Index?	{

				let	range	=	range	??	

startIndex..<endIndex

				guard	let	middle	=	range.middle	

else	{

						let	index	=	self.index(before:	

range.upperBound)

						return	

(self.indices.contains(index)	&&	

self[index]	==	element)	?	index	:	

nil

				}

				if	self[middle]	>	element	{

						return	sorted_lastIndex(of:	

element,	in:	range.lowerBound..

<middle)

				}

				return	sorted_lastIndex(of:	

element,	in:	index(after:	middle)..

<range.upperBound)

		}

}

Here,	we	check	if	middle	points	to	an	element	that	is	greater	than
what	we	are	searching	for.	If	it	isn't,	we	go	to	the	right.	When	we
have	finally	found	an	index,	we	use	the	index	before	it.

9.	 Go	to	SortedArrayTests.swift,	uncomment	the	unit	tests,	and
run	them	all.

Sets
A	set	is	an	unordered	collection	of	unique	elements.	It
can	very	efficiently	add,	remove,	or	check	if	it	contains	a
specific	element	(on	average	O(1),	meaning	it	takes	the
same	time	regardless	of	the	size	of	the	set),	in	contrast
to	an	unsorted	array,	where	these	operations	take	O(n)
(the	array	may	need	to	access	and/or	move	most	of	its
element).

Sets	can	be	used	for	tracking	which	part	of	a	custom
view	should	be	hidden,	like	which	parts	of	an	outline
view	are	collapsed.	When	displaying	the	view,	you	would
only	show	the	children	of	those	nodes	which	are	not	in
the	collapsed	set.	So,	you	are	in	a	sense	adding	a	Bool
property	to	types	you	do	not	control.	Sets	can	also	be
used	for	removing	duplicates;	you	just	add	a	sequence
to	an	empty	set	and	all	duplicates	will	be	gone.

Have	a	look	at	the	following	diagram	to	get	a	view	on
sets:

Equatable	means	you	can	check	if	instances	are	equal	with	a	==
b	or	not	equal	with	a	!=	b.	Each	type	defines	for	itself	what	equal

means,	and	it	doesn't	necessarily	mean	identical.

Hashable	types	have	an	integer	property	hashValue,	which
dictionaries	and	sets	(among	others)	use	to	quickly	find	instances.
Values	that	are	equal	always	have	the	same	hashValue.

SetAlgebra	has	some	mathematical	set	operations	such	as
intersection,	union,	and	subtraction.

NOTENOTE
A	Set	is	a	Collection	which	has	its	own	index	type,	but	since	Set	is	unordered,	we	hardly
ever	have	a	need	for	it.

All	types	used	in	a	set	have	to	conform	to	the	Hashable
protocol:

A	lot	of	other	types	conform	to	Hashable	as	well
(https://developer.apple.com/documentation/swift/hashab
le#adopted-by).

Working	with	Sets
Let's	look	at	working	with	sets	by	following	these	steps:

1.	 To	create	a	set,	we	can	do	this:

var	numbers:	Set	=	

[0,1,2,3,10,2.75,-3,-3.125,-14]

2.	 We	can	then	print	it	like	this:

//	order	is	not	preserved

print(numbers)	//	[-3.125,	10.0,	

2.75,	2.0,	-3.0,	3.0,	-14.0,	0.0,	

1.0]

3.	 To	insert	a	value	if	nothing	equal	is	already	there,	we	can	do	this:

//	insert	if	nothing	equal	is	

already	there

numbers.insert(4)

4.	 To	insert	a	value	and	replace	it	if	something	equal	is	already	there,
we	can	do	this:

//	insert,	and	replace	it	if	

something	equal	is	already	there

numbers.update(with:	4)

5.	 Here	are	some	more	common	operations	with	sets:

numbers.remove(4)

numbers.contains(3)

numbers.isEmpty

for	n	in	numbers	{

https://developer.apple.com/documentation/swift/hashable#adopted-by

		//	...

}

Combining	Sets
Have	a	look	at	the	following	code:

extension	Double	{

		var	isInteger:	Bool	{	return	

self.truncatingRemainder(dividingBy:	1)	==	

0	}

}

let	negativenumbers	=	numbers.filter	{	$0	

<	0	}

let	positivenumbers	=	

numbers.subtracting(negativenumbers.union(

[0]))

let	integers	=	numbers.filter	{	

$0.isInteger	}

let	negativeintegers	=	

integers.intersection(negativenumbers)

print(negativeintegers)	//	[-3.0,	-14.0]

Here's	what	this	code	does:

union	combines	two	sets

intersection	returns	the	elements	both	sets	have	in	common

symmetricDifference	returns	elements	that	are	in	either	of	the
two	sets,	but	not	in	both

subtracting	returns	elements	of	the	first	set	that	do	not	occur	in
the	second	set

All	of	these	have	mutating	versions	that	change	the	first
set	in-place	(they	all	start	with	form,	except	for
subtract.	For	more	information,	check	out:

https://swift.org/documentation/api-design-
guidelines/#name-according-to-side-effects.)

Comparing	Sets
Have	a	look	at	the	following	code:

//	all	of	the	following	return	"true"

numbers.isSuperset(of:	negativeintegers)

integers.isSubset(of:	numbers)

positivenumbers.isStrictSubset(of:	

numbers)

numbers.isStrictSuperset(of:	

negativenumbers)

negativenumbers.isDisjoint(with:	

positivenumbers)

Set	A	is	a	superset	of	set	B	if	every	member	of	B	is	also
a	member	of	A.	This	also	makes	B	a	subset	of	A.	These
are	strict	supersets/subsets	if	A	contains	at	least	one
element	that	is	not	a	member	of	B.	In	other	words:	a
strict	superset	or	subset	means	that	the	two	sets	are	not
equal.	Disjoint	means	the	two	sets	have	no	elements	in
common.

In	this	section,	we	have	looked	at	sets	in	detail.	Sets	are
useful	in	various	situations,	for	example,	removing
duplicates.	We'll	see	this	in	an	activity	next.

Activity	B:	Removing	Duplicates	from
a	Sequence
The	most	common	method	of	removing	duplicates	from
a	sequence	is	to	just	add	the	entire	sequence	to	a	set,

https://swift.org/documentation/api-design-guidelines/#name-according-to-side-effects

and	then	create	a	new	sequence	from	the	set.	However,
this	might	re-order	the	remaining	elements.	Here,	we	will
use	filter	to	keep	the	original	order,	and	use	a	set	to	keep
track	of	which	values	are	already	in	the	sequence.

By	adding	the	method	as	an	extension	to	Sequence,	it
can	be	used	by	any	collection	type,	including	Array,
Dictionary,	and	Set	(though	it	would	be	rather	pointless
to	use	it	on	dictionaries	and	sets,	as	they	are	already
duplicate-free).

To	use	an	Xcode	playground	to	create	a	method	which
removes	duplicates	from	a	sequence	while	preserving
the	order	of	the	remaining	values.

1.	 Open	the	CollectionsExtra	Xcode	project	we	used	earlier,	and
go	to	Set.swift.

2.	 Paste	the	following	code	here:

extension	Sequence	where	Element:	

Hashable	{

		///	Returns	an	array	containing	

each	element	in	`self`	only	once,	in	

the	same	order.

		public	func	removeDuplicates	()	->	

[Element]	{

				var	originals	=	Set<Element>

(minimumCapacity:	

underestimatedCount)

				return	self.filter	{	x	in

						if	originals.contains(x)	{

								return	false

						}

						originals.insert(x)

						return	true

				}

		}

}

filter	is	a	method	of	Sequence,	which	takes	a	function,
Element	->	Bool,	and	returns	an	array	with	only	those	elements
for	which	the	function	returns	true.	In	this	function,	we	check	if	the
element	is	already	in	the	originals	set.	If	it	is,	we	return	false
(meaning	the	element	will	be	dropped).	If	it	is	not	in	the	set,	we	add
it	to	it	and	return	true,	so	the	element	will	be	included	in	the
resulting	array.

3.	 Go	to	SetTests.swift,	uncomment	the	unit	test,	and	run	it.

Dictionaries
A	Dictionary	is	an	unordered	collection	of
mappings/associations	from	keys	to	values.	It	is	very
similar	to	a	Set	and	has	the	same	performance,	but
stores	a	key/value	pair,	and	only	the	key	has	to	be
Hashable.	It	can	be	used	for	storing	preferences,	or
when	you	have	a	group	of	named	values	where	there
are	either	too	many	or	change	too	often	to	be
hardcoded.	Then,	you	can	use	the	names	as	keys:

The	full	name	is	Dictionary<Key,	Value>,	but	it	is

more	commonly	written	as	[Key:	Value].

Dictionary	ignores	the	order	in	which	values	are	added
or	removed,	and	may	change	them	arbitrarily,	just	like
Set.

Working	with	Dictionaries
Now	it's	time	to	lay	our	hands	on	dictionaries.	Follow
these	steps	to	get	started:

1.	 To	create	a	dictionary,	we	can	do	this:

var	numbers	=	[0:	"zero",	1:	"one",	

10:	"ten",	100:	"one	hundred"]

2.	 We	can	then	print	it	like	this:

print(numbers)	//	[100:	"one	

hundred",	10:	"ten",	0:	"zero",	1:	

"one"]

3.	 To	add	or	change	a	value,	we	can	do	this:

//	Add	or	change	value

numbers[20]	=	"twenty"

4.	 The	following	lookup	returns	an	optional:

//	Lookup	returns	an	optional

if	let	one	=	numbers[1]	{

		//	...

}

Or,	you	can	use	a	default	value	if	the	key	is	not	found:

//	Or	you	can	use	a	default	value	if	

the	key	is	not	found

let	two	=	numbers[2,	default:	"no	

sensible	default"]

5.	 You	can	remove	a	value	by	setting	it	to	nil:

//	Remove	a	value	by	setting	it	to	

nil

numbers[2]	=	nil

6.	 You	can	iterate	over	the	contents	of	the	dictionary	like	this:

//	You	can	iterate	over	the	contents	

(again:	the	order	is	not	defined)

for	(key,	value)	in	numbers	{

		//	...

}

7.	 This	is	how	we	can	have	a	collection	of	all	of	the	keys	of	the
dictionary:

//	A	collection	of	all	keys

numbers.keys

8.	 This	is	how	we	can	have	a	collection	of	all	of	the	values	of	the
dictionary:

//	A	collection	of	all	values

numbers.values

This	is	the	end	of	this	section.	Here,	we	have	looked	at
dictionaries	extensively	and	evaluated	the	differences
between	arrays,	sets,	and	dictionaries.

Activity	C:	Using	Dictionaries
A	CountedSet	allows	you	to	add	equal	elements	more
than	once,	and	keeps	count	of	how	many	of	each
element	it	contains.	Naturally,	it	is	very	useful	for
counting	things,	such	as	how	many	times	a	word
appears	in	a	text,	without	having	to	store	each	word
more	than	once.

To	use	an	Xcode	playground	to	develop	a	new
CountedSet	type	using	a	dictionary	internally.

1.	 Open	the	CollectionsExtra	Xcode	project	we	used	earlier,	and
go	to	CountedSet.swift.

2.	 Leave	the	commented-out	code	as	is,	and	add	this	to	the	top	of	the
file:

public	struct	CountedSet<Element:	

Hashable>	{

		typealias	ElementsDictionary	=	

[Element:	Int]

		private	var	elements:	

ElementsDictionary

		public	init()	{

				elements	=	ElementsDictionary()

		}

}

We	use	a	type	alias	here	because	ElementsDictionary	will	be
referred	to	several	times	in	the	code.

3.	 Add	the	following	code	below	the	initialiser:

public	mutating	func	insert(_	

newelement:	Element,	count:	Int	=	1)	

{

		elements[newelement,	default:	0]	

+=	count

}

When	inserting,	we	first	get	the	current	count	of	the	element	(or	0	if
the	element	is	not	in	the	dictionary),	then	we	add	how	many	times
the	element	should	be	inserted	(1	by	default)	to	this	and	insert	the
new	value	into	the	dictionary.	+=	here	means	this:

elements[newelement]	=	

elements[newelement,	default:	0]	+	

count

4.	 Now,	we	implement	adding	a	Sequence	of	elements	to	the	set:

public	mutating	func	insert<S>

(contentsOf	other:	S)	where	

S:Sequence,	S.Element	==	Element	{

		for	newelement	in	other	{

				insert(newelement)

		}

}

The	generic	<S>	combined	with	the	where	clause	allows	us	to	use
any	sequence	here,	as	long	as	its	elements	are	the	same	type	as
the	elements	of	this	set.

5.	 We	also	need	a	way	to	query	how	many	of	an	element	this	set
contains:

public	func	count(for	element:	

Element)	->	Int	{

		return	elements[element,	default:	

0]

}

If	the	elements	dictionary	does	not	contain	the	element,	we	return
0	instead.

6.	 And	here	is	the	method	for	counting	the	total	number	of	elements:

public	var	count:	Int	{

		var	result	=	0

		for	count	in	elements.values	{

				result	+=	count

		}

		return	result

}

7.	 It's	time	to	verify	whether	this	is	working	or	not.	Go	to
CountedSetTests.swift,	uncomment	the	testInsert	unit
test,	and	run	it.

8.	 Go	back	to	CountedSet.swift.
9.	 Now,	we	can	add	some	helpful	initialisers.	Add	the	following	code

below	the	first	initialiser:

public	init<S>(_	other:	S)	where	

S:Sequence,	S.Element	==	Element	{

		self.init()

		insert(contentsOf:	other)

}

This	allows	us	to	initialise	from	a	sequence:

CountedSet(["a","b","c","a"])

10.	 Add	the	following	code	below	the	entire	struct	declaration:

extension	CountedSet:	

ExpressibleByArrayLiteral	{

		public	init(arrayLiteral	

elementarray:	Element...)	{

				self.init(elementarray)

		}

}

Now,	if	a	function	asks	for	a	CountedSet,	we	can	use	an	array
literal	directly.

11.	 Within	the	struct	declaration,	right	below	the	last	count	method,
insert	the	following	code:

@discardableResult

public	mutating	func	remove(_	

element:	Element,	count	

countToRemove:	Int	=	1)	->	Int	{

		guard	var	count	=	

elements[element]	else	{	return	0	}

		count	-=	countToRemove

		guard	count	>	0	else	{

				elements.removeValue(forKey:	

element)

				return	0

		}

		elements[element]	=	count

		return	count

}

This	is	the	most	complex	code	we	have	used	so	far.	It	lowers	the
count	of	the	element	by	the	provided	amount,	and	returns	the	new
count.	Here's	the	explanation:

@discardableResult	means	if	we	do	not	use	the	return
value	from	this	method,	we	don't	want	a	warning	from	the
compiler.

We	retrieve	the	current	count	of	the	element.	If	it	is	not	in
the	dictionary,	we	return	0.

Then,	we	subtract	with	the	provided	amount.

If	the	new	count	is	not	greater	than	0,	we	remove	the
element	from	the	dictionary	and	return	0.

Otherwise,	we	store	the	new	count	in	the	dictionary	and
return	it.

12.	 At	the	bottom	of	the	file,	there	is	code	for	adopting	the
Collection	protocol.	Uncomment	it.	It	is	too	long	to	go	through	in
detail	here,	but	feel	free	to	look	through	it.

13.	 Also	uncomment	all	the	unit	tests	in	CountedSetTests.swift,
and	verify	whether	they	all	pass	or	not.	Notice	how	the	unit	tests
use	methods	such	as	contains	and	isEmpty	that	we	did	not
implement,	but	got	for	free	because	we	adopted	the	Collection
protocol.

14.	 The	contains	method	from	the	collection	protocol	is	quite
inefficient	for	our	type,	because	it	goes	through	every	single
element	and	compares	it	to	the	element	it	is	searching	for.	We	can
do	better.	Add	the	following	code	below	the	remove	method	in	the
struct	declaration:

public	func	contains(_	element:	

Element)	->	Bool	{

		return	elements[element]	!=	nil

}

This	checks	the	dictionary	directly,	which	as	we	mentioned	earlier	is
much	faster.

Summary
In	this	lesson,	we	covered	the	three	main	collections	in
the	Swift	Standard	Library:	Array,	Set,	and	Dictionary;
what	they	are;	and	how	they	can	be	used.	We	also
learned	about	indices,	slices/subsequences,	and	some
common	protocols.	We	also	implemented	methods	for
searching	in	sorted	arrays,	for	removing	duplicates	from
a	sequence,	and	created	the	new	collection,
CountedSet.

In	the	next	lesson,	we	will	explore	Strings	in	detail.

Chapter	5.	Strings
In	the	previous	lesson,	we	worked	with	arrays,	sets,	and
dictionaries,	all	of	which	are	part	of	Swift's	collections.	In
this	lesson,	we	will	look	at	strings	in	detail.

The	wide	variety	of	characters	and	emojis	a	modern	app
may	encounter	requires	correct	handling	of	Unicode	text.
Luckily,	Swift	does	this	by	default.	However,	this	means
we	have	to	treat	strings	in	Swift	a	bit	differently	than	most
programming	languages.

Lesson	Objectives
By	the	end	of	this	lesson,	you	will	be	able	to:

Explain	why	strings	work	the	way	they	do	in	Swift

Create	and	use	strings	and	substrings

Implement	the	various	common	operations	you	can	do	with	strings

String	Fundamentals
Before	we	get	into	how	to	use	strings,	we	will	cover	why
they	are	the	way	they	are.	For	developers	coming	from
other	languages,	this	is	a	very	reasonable	question	to
ask.

Character
We	won't	go	into	the	details	of	Unicode,	but	there	are
several	ways	of	viewing	a	piece	of	Unicode	text	in	Swift.
This	is	done	by	using	different	collections:

let	string	=	"The	☀	and	"
string.utf8.count	//	19

string.utf16.count	//	13

string.unicodeScalars.count	//	12

NOTENOTE
An	element	of	UTF-8	is	1	byte,	UTF-16	is	2	bytes,	and	a	Unicode	scalar	is	4	bytes.

In	addition	to	everyone	reporting	a	different	number	of
symbols	in	the	string,	you	may	have	also	noticed	that
they	are	all	wrong.	String	itself,	however,	has	the	right
answer:

string.count	//	11

This	is	because	String	is	an	ordered	collection	of
Character.	Character	represents	what	we	humans
would	consider	one	symbol,	regardless	of	how	many

bytes	it	consists	of.

The	reason	for	the	discrepancies	is,	of	course,	the	two
emojis:

let	moon	=	Character("")

String(moon).utf8.count	//	4

String(moon).utf16.count	//	2

moon.unicodeScalars.count	//	1

let	sun:	Character	=	"☀"
String(sun).utf8.count	//	6

String(sun).utf16.count	//	2

sun.unicodeScalars.count	//	2

Even	a	simple	letter	such	as	é	may	surprise	you:

let	accented_e:	Character	=	"é"

String(accented_e).utf8.count	//	2

String(accented_e).utf16.count	//	1

accented_e.unicodeScalars.count	//	1

There	may	be	several	ways	of	representing	the	same
symbol	in	Unicode,	but	Character	still	considers	them
to	be	equal:

let	another_accented_e:	Character	=	

"e\u{0301}"	//	"e"	+	combining	acute	

accent

String(another_accented_e).utf8.count	//	3

String(another_accented_e).utf16.count	//	

2

another_accented_e.unicodeScalars.count	//	

2

accented_e	==	another_accented_e	//	true

NOTENOTE
This	is	a	great	example	of	two	values	that	are	equal,	but	not	identical.

Collection
Let's	see	what	kind	of	a	collection	String	is:

NOTENOTE
StringProtocol	contains	common	string	operations.

Comparing	this	diagram	with	the	one	for	Array	in	the
previous	lesson,	we	see	that	both
MutableCollection	and
RandomAccessCollection	are	missing.

This	is	because,	as	we	have	seen,	symbols	may	take	up
varying	amounts	of	space,	and	in	a
MutableCollection,	we	can	replace	one	element	for
another.	But	what	if	we	replace	one	character	with	one
that	takes	more	space?	Then	we	would	have	to	move	all
succeeding	characters	to	make	room,	and	the
MutableCollection	protocol	does	not	allow	this.	It	is
the	same	with	RandomAccessCollection:	it	requires
taking	approximately	the	same	amount	of	time	to	retrieve
the	5 	element	as	the	20,000 ,	and	we	can't	do	that
when	the	elements	are	not	of	the	same	size.

So,	why	not	add	some	padding	and	make	all	characters
in	a	string	take	up	the	same	amount	of	memory?	Well,
we	did	have	an	array	of	characters	in	the	previous
lesson,	which	does	just	that.	Let's	bring	it	back	and
compare	its	memory	usage	with	the	corresponding
string:

th th

An	instance	of	Character	takes	up	eight	bytes	in	an
array.	The	most	common	characters	usually	take	up	two
bytes	or	fewer	in	a	string,	and	as	strings	are	often	the
largest	collections	in	an	application,	wasting	all	that
space	is	not	really	an	option.

Index
Just	like	arrays,	strings	have	indices,	which	refer	to	the
position	of	every	single	character.	But	before	we	get	into
what	the	type	of	strings	index	is,	we	should	cover	what	it
is	not:	an	integer.

The	index	type	of	an	array	is	an	integer.	Because	every
element	takes	up	the	same	amount	of	space,	you	can
ask	for	the	500th	element	and	it	will	multiply	500	with	the
byte	size	of	an	element,	add	the	memory	address	of	the
first	element,	and	find	the	element	at	the	resulting
address.

If	we	ask	a	string	for	the	500 	character,	it	has	to	start
with	the	first	character,	see	how	much	space	it	takes,
move	past	it,	see	how	much	space	the	next	character
takes,	and	so	on,	and	repeat	this	500	times.

On	StackOverflow	and	other	places,	you	will	often	find
code	examples	which	add	a	new	subscript	to	String	with
an	integer	parameter,	allowing	us	to	do	something	such
as	this:

for	i	in	0..<string.count	{

th

		let	character	=	string[i]

		//	...

}

This	is	extremely	inefficient.	Consider	what	is	actually
happening	here:	the	string	has	to	process	the	first
character,	then	the	first	and	second	characters,	then	the
first,	second,	and	third	characters,	and	so	on.	For	a
string	of	merely	500	characters,	it	will	have	processed
the	first	character	500	times,	the	second	one	499,	and	so
on	until	it	has	processed	characters	n(n+1)/2	or	125,250
times,	plus	500	to	find	the	count.

The	following,	however,	will	visit	each	character	exactly
once,	and	is	much	simpler:

for	character	in	string	{

		//	...

}

WORKING	WITH	STRING	INDEX

The	actual	index	type	of	String	is	String.Index.	It's
a	custom	type	whose	inner	workings	we	are	blissfully
unaware	of.	All	operations	on	it	are	performed	using	the
standard	Collection	and
BidirectionalCollection	methods	on	String.

1.	 Let's	define	a	few	indices:

let	alphabet	=	

"abcdefghijklmnopqrstuvwxyz"

let	b_index	=	alphabet.index(after:	

alphabet.startIndex)

let	a_index	=	alphabet.index(before:	

b_index)

let	g_index	=	

alphabet.index(a_index,	offsetBy:	6)

let	e_index	=	

alphabet.index(g_index,	offsetBy:	

-2)

2.	 We	can	also	add	a	limit	to	the	offset.	We	get	nil	if	the	result	goes
beyond	this	limit:

let	no_index	=	

alphabet.index(e_index,	offsetBy:	

30,	limitedBy:	alphabet.endIndex)

3.	 To	find	the	index	of	the	first	occurrence	of	a	character,	we	do	the
following.	We	get	nil	if	it	is	not	found:

let	i	=	alphabet.index(of:	"z")

4.	 The	number	of	positions	one	index	is	from	another	is	found	like	this:

let	a_e_distance	=	

alphabet.distance(from:	a_index,	to:	

e_index)

Debugging
Perhaps	the	biggest	drawback	of	using	this	custom	type
instead	of	an	integer	comes	up	during	debugging,	when
we	would	like	to	see	what	it	contains.	If	we	just	print	an
index	to	the	console,	we	get	something	like	this:

Swift.String.Index(_compoundOffset:	100,	

cache:	

Swift.String.Index.Cache.character(1))

This	contains	exactly	nothing	of	interest.	If	we	add	this
extension	in	a	unit	test	module,	we	get	something	more

useful:

//	use	in	unit	tests

extension	String.Index:	

CustomDebugStringConvertible	{

		//	The	offset	into	a	string's	UTF-16	

encoding	for	this	index.

		public	var	debugDescription:	String	{	

return	"\(encodedOffset)"	}

}

Now,	when	we	print	an	index,	we	get	the	zero-based
position	of	this	index	in	the	string	if	this	string,	so	far,	only
contains	characters	that	can	be	expressed	in	one	UTF-
16	code	unit.	So	it's	not	always	correct,	but	better	than
nothing.

This	topic	is	a	primer	into	the	wide	world	of	strings.	In
this	section,	we	have	covered	concepts	such	as
collection,	index,	and	debugging.	We'll	continue	our
journey	with	strings	in	the	next	section.

Activity	A:	All	Indices	of	a	Character
The	String.index(of:)	method	finds	the	index	of
the	first	occurrence	of	a	character	in	a	string.	Create	a
method	which	finds	all	the	indices	of	a	character.

To	use	an	Xcode	playground	to	find	the	indices	of	a
character.

1.	 Open	the	StringsExtra	Xcode	project,	and	go	to	the
StringsExtra.swift	file.

2.	 Enter	the	following	code:

extension	String	{

The	method	definition	is	similar	to	the	one	for
index(of:):

public	func	indices(of	

character:	Character)	->	

[Index]	{

		var	result	=	[Index]()

		var	i	=	startIndex

Make	sure	to	not	access	anything	at	endIndex,	as	it	will
crash.	This	check	also	takes	care	of	empty	strings:

while	i	<	endIndex	{

				if	self[i]	==	character	{

						result.append(i)

				}

Move	to	the	next	index,	like	this:

i	=	index(after:	i)

				}

		return	result

		}

}

This	is	the	traditional	way	of	implementing	it,	to	show	how	to	work
directly	with	indices.	Later,	we	will	learn	a	much	simpler	and
concise	way	to	do	this.

3.	 Go	to	the	unit	tests	in	StringsExtraTests.swift.
4.	 Uncomment	the	first	comment	block,	so	this	becomes	active:

func	testIndices()

5.	 Run	the	unit	test	and	verify	that	it	passes.

Using	Strings
So	far	in	this	course,	we	have	only	covered	the	Swift
Standard	Library,	but	when	it	comes	to	strings	we	must
also	include	the	Foundation	framework,	as	it	contains	a
lot	of	both	basic	and	advanced	text	functionality	that	is
missing	from	the	Swift	Standard	Library.

Foundation	is	available	on	all	Apple	platforms	and	has
been	around	for	a	long	time	(there	is	also	a	version	for
other	platforms,	re-implemented	in	Swift;	see:
https://github.com/apple/swift-corelibs-foundation).	It	is
written	in	and	for	Objective-C,	but	a	lot	of	its	API	has
been	updated	to	be	easier	to	work	with	from	Swift.	Not
all	of	it	has	been	though,	and	as	we'll	see,	you	might	run
into	some	problems	when	converting	Foundation	types
to	Swift	types.

Foundation's	string	type	is	NSString,	and	it	works
directly	with	UTF-16	encoded	text.	It	does	not	know	what
the	Character	type	is,	and	does	not	necessarily	handle
Unicode	text	correctly	like	Swift	does.	NSString	can	be
used	as	Swift	String	and	vice	versa	as	they	can	share
the	same	underlying	storage.

It	also	has	CharacterSet,	which,	despite	the	name,	is
a	set	of	UnicodeScalar.	It	has	several	useful
predefined	sets,	like	CharacterSet.alphanumerics,
.whitespaces,	.decimalDigits,	and	more.	You	can

https://github.com/apple/swift-corelibs-foundation

only	use	them	if	you're	lucky	enough	to	have	characters
consisting	of	only	one	UnicodeScalar:

CharacterSet.alphanumerics.contains(charac

ter.unicodeScalars.first!)

Foundation's	range	type	is	NSRange,	and	it	uses
integers	to	refer	to	positions	in	an	NSString.	It	can	do
this	efficiently	because	each	element	of	NSString	takes
up	the	same	amount	of	space.	We	can	always	convert	a
Swift	Range	to	NSRange	with	NSRange(range,	in:
string),	but	we	can't	necessarily	go	the	other	way,	as
we	will	see	later	on.

Creating	Strings
Let's	look	at	creating	strings	by	following	these	steps:

1.	 There	are	many	ways	of	creating	strings.	You've	already	seen	the
string	literal:

let	literal	=	"string	from	literal"

2.	 There	are	also	multiline	literals:

let	multilineLiteral	=	"""

		line	1

		line	2

				line	3	indented

		"""

The	result	is	"line	1\nline	2\n\tline	3	indented\n".	The	closing	three
quotes	must	be	at	the	beginning	of	the	line	(excluding	indentation)
and	any	indentation	that	precedes	it	will	be	removed	from	the
beginning	of	every	line	in	the	string.

3.	 Use	backslash	to	insert	special	characters	like	\\	(backslash),	\t

(horizontal	tab),	\n	(line	feed),	\r	(carriage	return),	\"	(double
quotation	mark),	and	\'	(single	quotation	mark).

4.	 We	can	create	characters	directly	from	their	hexadecimal	Unicode
code	points,	like	this:

let	blackDiamond	=	"\u{2666}"	//	♦

let	brokenHeart	=	"\u{1F494}"	//	

5.	 To	include	variables	in	the	text,	we	use	string	interpolation,	like	this:

let	array	=	[1,2,3]

let	stringInterpolation	=	"The	array

	\(array)	has	\(array.count)	items."

//	"The	array	[1,	2,	3]	has	3	items."

6.	 Strings	can	describe	absolutely	any	type,	as	shown	here:

struct	CustomType	{

		let	value:	Int

		let	otherValue:	Bool

}

let	customType	=	CustomType(value:	5

,	otherValue:	false)

String(describing:	customType)	//	"C

ustomType(value:	5,	otherValue:	fals

e)"

7.	 We	can	customize	the	description,	like	this:

extension	CustomType:	CustomStringCo

nvertible	{

		var	description:	String	{

				return	"\(value)	and	\(otherValu

e)"

		}

}

String(describing:	customType)	//	"5

	and	false"

8.	 Text	can	be	repeated,	as	shown	here:

String(repeating:	"la",	count:	5)

9.	 We	can	read	text	files,	like	this:

import	Foundation

do	{

		let	fileContents	=	try	String(cont

entsOfFile:	"file.txt")

}	catch	{	/*	...	*/	}

Common	Operations
Follow	these	steps	to	look	at	how	to	implement	common
operations	on	a	string:

1.	 Many	of	the	common	sequences	and	collection	methods	are	useful
on	strings	too,	as	shown	here:

let	string	=	"""

											Line	1

											line	2

											"""

let	range1	=	..<string.index(of:	"1"

)!

//	return	the	substring	over	range	1

string[range1]

//	return	true	if	the	string	begins	

with	"Line"

string.hasPrefix("Line")

//	return	true	if	the	string	ends	wi

th	"2"

string.hasSuffix("2")

2.	 These	mutate	the	string:

var	mutablestring	=	string

//	remove	the	characters	in	range1,	

and	insert	"line	up"	there.

mutablestring.replaceSubrange(range1

,	with:	"line	up")

//	remove	the	characters	in	range1.

mutablestring.removeSubrange(range1)

//	remove	the	first	character.

mutablestring.removeFirst()

//	remove	the	first	2	characters.

mutablestring.removeFirst(2)

//	remove	the	last	character.

mutablestring.removeLast()

//	remove	the	last	2	characters.

mutablestring.removeLast(2)

3.	 There	aren't	many	operations	specifically	made	for	strings:

//	return	a	new	string	in	uppercase.

string.uppercased()

//	return	a	new	string	in	lowercase.

string.lowercased()

4.	 We	get	a	lot	more	if	we	import	Foundation,	like	this	simple	test	for
the	existence	of	a	substring:

string.contains("	1")

5.	 All	of	the	following	methods	return	a	new	string	with	the	changes;
the	original	string	is	left	intact:

//	new	string	with	all	the	words	cap

italised	(ignoring	language)

string.capitalized

//	new	string	with	all	the	words	cap

italised,	using	the	rules	of	the	lan

guage	from	the	provided	locale

string.capitalized(with:	Locale.curr

ent)

//	new	string	with	all	occurrences	o

f	one	substring	replaced	with	anothe

r

string.replacingOccurrences(of:	"Lin

e",	with:	"line")

//	new	string	with	all	occurrences	o

f	a	substring	removed

string.replacingOccurrences(of:	"Lin

e",	with:	"")

//	new	string	with	all	occurrences	o

f	a	substring	in	the	provided	range	

removed,	using	the	provided	options

string.replacingOccurrences(of:	"lin

e",	with:	"triangle",	options:	.case

Insensitive,	range:	string.startInde

x..<string.index(of:	"\n")!)

//	the	range	of	the	first	character	

that	belongs	to	the	provided	Charact

erSet

string.rangeOfCharacter(from:	.decim

alDigits)

//	the	range	of	the	first	occurrence

	of	the	substring

let	range	=	string.range(of:	"Line")

!

//	the	substring	over	this	range

string[range]

//	the	range	of	the	line	or	lines	co

ntaining	the	provided	range

string.lineRange(for:	range)

//	new	string	with	the	characters	in

	the	provided	CharacterSet	removed	f

rom	the	beginning	and	the	end

"	\t		trim		\n	".trimmingCharacters(

in:	.whitespacesAndNewlines)

//	a	new	string	of	the	given	length,

	by	either	removing	characters	from	

the	end	or	adding	'withPad'	to	the	e

nd

"Padded".padding(toLength:	10,	withP

ad:	"	",	startingAt:	0)

"Pad".padding(toLength:	10,	withPad:

	"_	",	startingAt:	1)

6.	 The	following	methods	return	an	array	of	strings:

//	an	array	of	strings,	from	splitti

ng	the	original	string	over	the	prov

ided	substring

string.components(separatedBy:	".	")

//	an	array	of	strings,	from	splitti

ng	the	original	string	over	characte

rs	in	the	provided	CharacterSet

string.components(separatedBy:	.newl

ines)

IMPLEMENTING	EXTRA	TEXT
OPERATIONS	ON	A	STRING

Follow	this	step	to	implement	extra	text	operations	on	a
string:

1.	 Open	Strings.playground	on	the	Common	string
operations	page	and	see	if	you	can	find	more	text	operations	on
string,	using	autocomplete	and	the	documentation	in	Xcode.

This	section	is	focused	on	how	we	can	use	strings	and
the	various	operations	on	strings	that	are	allowed	in
Swift.	Next,	we'll	look	at	substrings	in	detail.

Activity	B-1:	All	Ranges	of	a
Substring
There	is	already	a	method	on	String	for	finding	the	first
range	of	a	substring.	This	method	will	find	all	of	the
ranges	of	a	substring.

To	use	an	Xcode	playground	to	create	a	method	on
string	which	finds	all	ranges	of	a	substring.

1.	 Open	the	StringsExtra	Xcode	project,	and	go	to	the

StringsExtra.swift	file.
2.	 Enter	the	following	code:

import	Foundation

extension	String	{

The	method	has	the	same	parameters	as	String.range:

public	func	allRanges(of	aStri

ng:	String,

				options:	String.CompareOpt

ions	=	[],

				range	searchRange:	Range<S

tring.Index>?	=	nil,

				locale:	Locale?	=	nil)	->	

[Range<String.Index>]	{

If	no	search	range	is	given,	we	search	the	entire	string:

var	searchRange	=	searchRange	

??	startIndex..<endIndex

				var	ranges	=	[Range<String

.Index>]()

while	let	is	a	very	useful	combination	of	loop	and	optionals.
It	continues	until	self.range	returns	nil:

while	let	foundRange	=	self.ra

nge(of:	aString,	options:	opti

ons,	range:	searchRange,	local

e:	locale)	{

						ranges.append(foundRange)

If	we	are	searching	backwards,	we	need	to	narrow	the
search	range	from	the	right	instead	of	from	the	left.	We	only
narrow	it	by	one	character	so	we	can	find	repeating
substrings	(like	the	five	occurrences	of	lala	in
lalalalalala):

searchRange	=	options.contains

(.backwards)	?

								searchRange.lowerBound

..<self.index(before:	foundRan

ge.upperBound)	:

								self.index(after:	foun

dRange.lowerBound)..<searchRan

ge.upperBound

				}

				return	ranges

		}

}

3.	 Go	to	the	unit	tests	in	StringsExtraTests.swift.
4.	 Uncomment	the	first	comment	block,	so	these	become	active:

let	string	=	"""

		func	testAllRanges()

5.	 Run	all	unit	tests	and	verify	that	they	pass.

Activity	B-2:	Counting	Words,
Sentences,	and	Paragraphs
Perhaps	the	most	straightforward	way	of	counting	the
number	of	words	in	a	string	is	to	count	the	number	of
spaces	and	add	one.	But,	even	if	you	only	have	text
using	the	Latin	alphabet,	this	will	often	be	wrong	(there
could	be	two	spaces	in	a	row,	and	doesn't	is	technically
two	words).	Foundation	has	NSLinguisticTagger,
which	handles	these	things	and	other	alphabets.	Not	all
of	its	APIs	have	been	updated	for	Swift	yet,	so	it	can	be
a	bit	cumbersome	to	use,	but	the	method	that	we	will	use
here	is	fairly	straightforward.

To	use	an	Xcode	playground	to	create	a	method	on
string	which	can	count	words,	sentences,	and

paragraphs.

1.	 Open	the	StringsExtra	Xcode	project,	and	go	to	the
StringsExtra.swift	file.

2.	 Enter	the	following	code:

extension	String	{

NSLinguisticTaggerUnit	is	an	enum	with	cases
paragraph,	sentence,	and	word:

public	func	countLinguisticTok

ens(ofType	unit:	NSLinguisticT

aggerUnit,	options:	NSLinguist

icTagger.Options	=	[.omitPunct

uation,	.omitWhitespace])	->	I

nt	{

This	class	can	do	a	lot	of	advanced	text	analysis,	such	as
detecting	nouns,	verbs,	and	so	on,	and	find	the	stem	of
words,	but	in	this	case	we	are	only	interested	in	linguistic
tokens:

let	tagger	=	NSLinguisticTagge

r(tagSchemes:	[.tokenType],	op

tions:	0)

				tagger.string	=	self

Like	everything	in	Foundation,	this	class	works	on
NSString,	which	sometimes	uses	NSRange	instead	of
Range.	Luckily,	converting	from	Range	to	NSRange	is	no
problem:

let	range	=	NSRange(startIndex

..<endIndex,	in:	self)

				var	result	=	0

This	closure	has	parameters	for	a	tag	type,	nsrange,	and
a	Boolean	for	whether	or	not	it	should	stop,	but	in	this	case
we	are	only	interested	in	how	many	times	it	is	called:

tagger.enumerateTags(in:	range

,	unit:	unit,	scheme:	.tokenTy

pe,	options:	options,	using:	{	

,	,	_	in

						result	+=	1

				})

				return	result

		}

}

3.	 You	can	call	it	like	this:

string.countLinguisticTokens(ofType:

	.paragraph)

string.countLinguisticTokens(ofType:

	.sentence)

string.countLinguisticTokens(ofType:

	.word)

4.	 Go	to	the	unit	tests	in	StringsExtraTests.swift.
5.	 Uncomment	the	next	comment	block,	so	these	become	active:

let	english	=	"""

func	testCountLinguisticTokens_Engli

sh()	{

let	internationalText	=	"""

func	testCountLinguisticTokens_Inter

national()	{

6.	 Run	all	unit	tests	and	verify	that	they	pass.

Substring
SubString	is	for	strings	like	what	ArraySlice	is	for	arrays:
a	view	of	a	part	of	a	string,	where	its	startIndex	and
endIndex	are	indices	into	the	original	string.	It	conforms
to	the	same	protocols	as	String:

StringProtocol	contains	many	of	the	common	text
operations,	so	when	you	write	functions	that	take	a	string
parameter	you	can	often	use	StringProtocol	instead
to	also	accept	substrings.	When	you	do,	you	have	to	use
generics,	as	shown	here:

func	foo<S:	StringProtocol>(s:	S)	{

		//	use	's'	almost	like	a	normal	string.

}

Just	as	with	ArraySlice,	substrings	keep	a	reference	to
the	entire	string,	so	when	you	are	done	processing
substrings	you	should	turn	them	into	normal	strings	and
allow	the	original	string	to	be	released	(if	nothing	else	is
using	it):

String(substring)

Creating	Substrings
Now	it's	time	to	create	substrings.	Follow	these	steps	to
do	so:

1.	 We	can	create	substrings	by	passing	a	range	of	indices	to	a	string
subscript:

string[from..<upTo]

string[from...upToAndIncluding]

2.	 And	we	get	a	substring	of	the	entire	string	with	this	little	shortcut:

string[...]

3.	 The	following	methods	return	a	substring	and	leave	the	original
string	intact:

let	string	=	"This	is		a	pretty	 	

sentence"

//	a	substring	from	the	2nd	

character	and	out

string.dropFirst()

//	a	substring	from	the	6th	

character	and	out

string.dropFirst(5)

//	a	substring	from	the	first	up	to	

and	including	the	second	last

string.dropLast()

//	a	substring	from	the	first	up	to	

the	9th	last	character

string.dropLast(9)

//	a	substring	from	the	first	space	

and	out

string.drop(while:	{$0	!=	"	"})

//	the	index	of	the	first	space,	or	

the	first	character	if	there	are	no	

spaces

let	space_index	=	string.index(of:	"	

")	??	string.startIndex

//	a	substring	with	the	first	7	

characters

string.prefix(7)

//	a	substring	from	the	first	up	to	

space_index	(excluding)

string.prefix(upTo:	space_index)

//	a	substring	from	the	first	up	to	

and	including	space_index

string.prefix(through:	space_index)

//	a	substring	of	the	consonants	at	

the	beginning	of	the	string	("Th")

string.prefix(while:	{!["a",	"e",	

"i",	"o",	"u"].contains($0)})

//	a	substring	of	the	last	8	

characters

string.suffix(8)

//	a	substring	from	space_index	and	

out

string.suffix(from:	space_index)

4.	 The	following	methods	return	an	array	of	substrings:

//	the	substrings	between	the	spaces

string.split(separator:	"	")

//	split	the	string	into	5	

substrings	(at	the	first	4	spaces),	

including	the	empty	substring	

between	the	2	adjacent	spaces

string.split(separator:	"	",	

maxSplits:	4,	

omittingEmptySubsequences:	false)

//	the	substrings	between	the	vowels

string.split(whereSeparator:	{["a",	

"e",	"i",	"o",	"u"].contains($0)})

PARSING	STRINGS

Follow	these	steps	to	parse	strings:

1.	 Go	to	the	Exercise	-	Parse	page	of	the	Strings	playground.
Enter	the	code	to	turn	this:

let	info	=	"""

		title:	Beginning	Swift

		type:	course

		year:	2018

		publisher:	Packt	Publishing

		topic:	programming

		"""

Into	this	dictionary:

["year":	"2018",	"publisher":	"Packt	

Publishing",	"title":	"Beginning	

Swift",	"topic":	"programming",	

"type":	"course"]

2.	 A	possible	solution	is	this:

for	line	in	info.split(separator:	

"\n")	{

		guard	let	colon	=	line.index(of:	

":")	else	{	continue	}

		let	key	=	line.prefix(upTo:	colon)

		let	value	=	line.suffix(from:	

line.index(colon,	offsetBy:	2))

		result[String(key)]	=	

String(value)

}

Converting	NSRange	to	Range
Earlier,	we	made	the	countLinguisticTokens
method	for	counting	the	number	of	words,	sentences,
and	paragraphs	in	a	string.	It	would	be	nice	if	we	could
get	hold	of	the	actual	words,	sentences,	and	paragraphs,
too:

func	linguisticTokens(ofType	unit:	

NSLinguisticTaggerUnit,	options:	

NSLinguisticTagger.Options	=	

[.omitPunctuation,	.omitWhitespace])	->	

[String]	{

		let	tagger	=	

NSLinguisticTagger(tagSchemes:	

[.tokenType],	options:	0)

		tagger.string	=	self

		let	range	=	NSRange(startIndex..

<endIndex,	in:	self)

		var	result	=	[String]()

		tagger.enumerateTags(in:	range,	unit:	

unit,	scheme:	.tokenType,	options:	

options,	using:	{	,	tokenRange,		in

				let	token	=	(self	as	

NSString).substring(with:	tokenRange)

				result.append(token)

		})

		return	result

}

The	only	changes	are	the	return	type	and	these	two
lines:

let	token	=	(self	as	

NSString).substring(with:	tokenRange)

				result.append(token)

tokenRange	is	of	type	NSRange,	so	we	can't	use	it
directly	on	String,	but	have	to	cast	ourselves	into
NSString	first.

This	works	fine,	but	it	would	be	even	nicer	and	more
Swifty	if	we	could	get	back	ranges	instead	of	strings,	so
we	can	decide	for	ourselves	if	we	want	to	turn	them	into
substrings	or	strings	or	do	other	operations	with	them.	If
we	try	to	convert	the	NSRange	to	a	Swift	Range	with
Range(tokenRange,	in:	self),	it	returns	an
optional,	and	worse,	in	the	third-last	line	of	the	example
text,	it	returns	nil.	Twice.	This	is	presumably	because
these	characters	do	not	fit	in	one	UTF-16	code	unit,	and
the	conversion	would	create	an	index	pointing	to	the
middle	of	a	Swift	Character	(see	methods
linguisticTokens2	and	linguisticTokens3	for
attempts	at	moving	the	index	to	the	correct	side	of	this
character).

This	highlights	the	usefulness	of	a	string	type	which
takes	care	of	these	things	for	us,	and	potential	problems

with	converting	between	Foundation	types	and	Swift
types,	not	to	mention	the	importance	of	testing	with
various	languages.

Luckily,	there	is	another	Foundation	method	we	can	use
that	returns	Swift	ranges.	We	will	use
enumerateLinguisticTags	in	the	next	activity.

In	this	section,	we	have	looked	at	substrings	in	detail:
starting	from	its	relation	to	strings	to	creating	substrings.

Activity	C:	CamelCase
Such	a	method	can	be	used	to	automatically	format	code
or	create	a	text	service	on	the	Mac.

To	use	an	Xcode	playground	to	create	a	method	on
String,	which	turns	it	into	one	CamelCased	word,
optionally	with	the	first	letter	lowercased.

1.	 Open	the	StringsExtra	Xcode	project,	and	go	to	the
StringsExtra.swift	file.

2.	 Add	this	code	to	the	bottom	of	the	file:

extension	String	{

First,	we	create	a	method	which	returns	an	array	of	ranges
of	all	the	words	in	the	string:

public	func	wordRanges()	->	

[Range<String.Index>]	{

				let	options:	

NSLinguisticTagger.Options	=	

[.omitPunctuation,	

.omitWhitespace]

				var	words	=	

[Range<String.Index>]()

This	method	on	String	gives	us	Swift	ranges	(as	opposed
to	the	NSRanges	of	the	linguisticTokens	method	we
used	previously).	Unfortunately,	it	doesn't	provide
sentences	or	paragraphs,	but	in	this	case	words	are	all	we
need:

self.enumerateLinguisticTags(

						in:	startIndex..

<endIndex,

						scheme:	

NSLinguisticTagScheme.tokenTyp

e.rawValue,

						options:	options)	{	(_,	

range,	,)	in

								words.append(range)

				}

				return	words

		}

Now,	for	the	camelCased	method	itself,	which	returns	a
capitalised	CamelCase	word	by	default:

public	func	

camelCased(capitalised:	Bool	=	

true)	->	String	{

First,	we	get	all	the	ranges	of	the	words	in	this	string.	We
exit	if	there	are	no	words	in	order	to	avoid	a	crash	in	the
next	line	(removeFirst	removes	and	returns	the	first
element,	and	crashes	if	there	isn't	one):

var	wordRanges	=	

self.wordRanges()

				guard	!wordRanges.isEmpty	

else	{	return	""	}

				let	firstRange	=	

wordRanges.removeFirst()

We	initialize	result	to	the	first	word,	which	is	optionally
capitalised.	Note	that	both	capitalized	and

lowercased	are	methods	on	SubString	which	return
strings:

var	result	=	capitalised	?	

self[firstRange].capitalized	:	

self[firstRange].lowercased()

Then,	it's	a	simple	matter	of	going	through	the	remaining
words,	capitalizing	them,	and	adding	them	to	result:

for	range	in	wordRanges	{

						result	+=	

self[range].capitalized

				}

				return	result

		}

}

3.	 Go	to	the	unit	tests	in	StringsExtraTests.swift.
4.	 Uncomment	the	next	comment	block,	so	this	becomes	active:

func	testCamelCased()	{

5.	 Run	all	unit	tests	and	verify	that	they	pass.

Summary
In	this	lesson,	we	learned	about	strings	in	Swift,	how
they	are	and	why,	and	how	to	use	them.	We've	also
learned	about	string	indices,	substrings,	and	some	things
to	look	out	for	when	using	strings	with	the	Foundation
framework.	We	have	also	added	some	useful	extensions
to	String.

In	the	next	lesson,	we	will	take	a	brief	look	at	functional
programming	and	explore	lazy	operations.

Chapter	6.	Functional
Programming	and	Lazy
Operations
In	the	previous	lesson,	we	looked	at	strings	and
substrings.	In	this	lesson,	we	will	take	a	brief	look	at
functional	programming	and	learn	what	lazy	operations
are.	We	will	end	this	lesson	with	an	important	but	often
overlooked	topic:	writing	Swifty	code.

Functional	programming	is	a	style	of	programming	which
tries	to	keep	things	simple	by	avoiding	state,	especially
mutable	state,	and	using	a	relatively	small	set	of	highly
versatile	functions/methods	which	take	other	functions
as	input.	The	Swift	Standard	Library	contains	several	of
these.	They	often	make	the	code	shorter,	simpler,	and
easier	to	read	if	you	know	what	they	do.	They	can	also
free	you	from	the	burden	of	having	to	come	up	with
names	for	temporary	variables.	Even	if	you	don't	use
them	in	your	own	code,	it	is	important	to	know	how	they
work	as	a	lot	of	Swift	code	out	there	uses	them.

Lesson	Objectives
By	the	end	of	this	lesson,	you	will	be	able	to:

Explain	functional	programming

Implement	the	filter,	map/forEach,	flatMap,	and	reduce
methods

Use	lazy	sequences	to	delay	operations	until	they	are	needed

Write	proper	Swifty	code

Function	Type
NOTENOTE
Open	Functional.playground	at	the	Introduction	page.

First,	let's	reiterate	what	a	function	type	is:

var	sum:	(Int,	Int)	->	Int

The	type	of	sum	is	a	function	that	takes	two	Int	values
and	returns	one	Int	value.	We	can	assign	both
functions	and	closures	to	it,	as	they	are	essentially	the
same	thing:

func	sumFunction(a:	Int,	b:	Int)	->	Int	{

		return	a	+	b

}

let	sumClosure	=	{(a:	Int,	b:	Int)	in	

return	a	+	b}

sum	=	sumFunction

sum	=	sumClosure

We	can	also	assign	an	operator	to	it:

sum	=	(+)

This	is	because	an	operator	is	a	function	(the
parentheses	around	the	+	operator	are	just	to	signal	that
we	want	to	use	it	as	a	function,	not	add	things	together
right	away).	The	definition	of	the	+	operator	for	Int	is:

static	func	+(lhs:	Int,	rhs:	Int)	->	Int

So,	whenever	a	function	has	a	parameter	of	a	function
type,	we	can	supply	an	operator,	as	long	as	the	input
and	output	match:

func	perform(operation:	(Int,	Int)	->	Int,	

on	a:	Int,	_	b:	Int)	->	Int	{

		return	operation(a,b)

}

perform(operation:	+,	on:	1,	2)

Initialisers	can	also	be	used	as	functions:

extension	Int	{

		init(add	a:	Int,	_	b:	Int)	{

				self.init(a	+	b)

		}

}

sum	=	Int.init

perform(operation:	Int.init,	on:	2,	3)

We	have	to	use	.init	to	show	that	we	are	referring	to
an	initialiser,	not	the	type	Int	itself.

If	several	functions	have	the	same	name,	or	initialisers
have	the	same	number	and	types	of	arguments,	we	can
specify	which	one	we	are	referring	to	by	including	the
argument	labels.	Here	are	the	full	names	of	the
preceding	functions:

sumFunction(a:b:)

perform(operation:on:_:)

Int.init(add:_:)

Functional	Methods
NOTENOTE
Open	Functional.playground	at	the	Methods	page.

NOTENOTE
The	following	sections	show	different	ways	of	performing	the	same	tasks.	They	say	nothing
about	which	version,	if	any,	is	better.

filter
The	filter	method	looks	like	this:

func	filter(_	isIncluded:	(Element)	throws	

->	Bool)	rethrows	->	[Element]

This	is	a	simple	method	on	Sequence,	which	we	have
already	used.	The	input	function	takes	an	element	of	the
sequence	and	returns	either	false	or	true.	filter
returns	an	array	of	only	those	elements	for	which	the
input	function	returns	true:

let	numbers	=	[-4,4,2,-8,0]

let	negative	=			numbers.filter	{$0<0}	//	

[-4,	-8]

Set	and	Dictionary	have	their	own	versions	of	this
method,	which	return	a	Set	or	Dictionary,	respectively.

USING	THE	FILTER	METHOD

Let's	look	at	using	the	filter	method	by	following	this

step:

1.	 In	Activity	A	of	Lesson	5,	we	implemented	a	method	on	String	for
finding	the	indices	of	all	occurrences	of	a	character.	Go	to	the	-
filter	page	in	Functional.playground	and	replace	the	body
of	the	method	with	one	that	uses	filter.	Make	sure	the	unit	test
passes	afterwards.

Here's	a	hint:	when	introducing	arrays	in	Lesson	4,	we	mentioned
how	to	get	all	the	indices	of	a	collection.

Here's	the	solution:

return	indices.filter	{	self[$0]	==	

character	}

map
map	is	a	method	often	used	on	container	types.	For
Sequence,	it	looks	like	this:

func	map<T>(_	transform:	(Element)	throws	

->	T)	rethrows	->	[T]

Each	element	of	the	sequence	is	passed	to	the	input
function,	and	the	outputs	are	returned	in	an	array.	This	is
a	straight	one-to-one	transformation,	where	the	resulting
array	has	the	same	number	of	elements	as	the
sequence.

map	is	remarkably	versatile.	Once	you	know	about	it,
you'll	be	seeing	uses	for	it	everywhere.	Here's	how	we
can	use	it	to	perform	mathematical	operations	on	arrays
of	numbers:

let	numbers	=	[-4,4,2,-8,0]

let	squared	=	numbers.map	{$0*$0}	//	[16,	

16,	4,	64,	0]

There	is	also	a	similar	function	on	the	sequence	that
doesn't	return	anything:

func	forEach(_	body:	(Element)	throws	->	

Void)	rethrows

This	does	the	exact	same	thing	as	map,	except	it	doesn't
return	an	array,	because	the	input	function	doesn't	return
anything.	It	avoids	having	to	create	and	return	an	array
of	Void	(even	Void	takes	up	space	in	an	array):

squared.forEach	{	print($0)	}

Perhaps	surprisingly,	we	also	have	map	on	optionals.
This	makes	sense	if	you	think	of	an	optional	as	a
container	of	either	0	or	1	elements:

func	map<U>(_	transform:	(Element)	throws	

->	U)	rethrows	->	U?

If	the	optional	is	nil,	map	returns	nil.	If	not,	the	value
the	optional	contains	is	passed	to	the	input	function,	and
the	result	is	returned	in	an	optional.

This	is	very	useful	for	initialisers	and	other	functions
which	return	optionals,	such	as	Int(String),	which
can	only	create	an	integer	if	the	string	contains	one:

let	textTimesTwo	=	Int("4").map	{	$0	*	2	}

Or,	if	we	have	an	optional	delegate	we	want	to	pass	to	a
function,	but	only	if	it	is	not	nil.	The	obvious	way	of
doing	it	is	by	doing	this:

if	let	delegate	=	delegate	{

		doSomething(with:	delegate)

}

Using	map	is	shorter	and	more	to	the	point:

delegate.map(doSomething)

USING	THE	MAP	FUNCTION

Now	that	we	had	a	brief	about	the	map	function,	let's	see
how	we	can	make	use	of	it.	Here	are	the	steps	to	do	so:

1.	 Go	to	the	-	map	page	in	Functional.playground.
2.	 Create	an	array	with	the	number	of	characters	of	each	word	in

text.
3.	 Edit	the	body	of	the	range(where	predicate:	(Element)

throws	->	Bool)	function	to	use	the	optional	map	instead	of
guard	let.

Solution	1:

let	wordLengths	=	

text.split(separator:	"	").map	

{$0.count}

Solution	2:

return	try	index(where:	

predicate).map	{	start	in

		let	end	=	try	self[start..

<endIndex]

				.index(where:	{	try	

!predicate($0)	})	??	endIndex

		return	start..<end

}

flatMap
What	if	the	function	you	provide	to	map	returns	an	array,
and	you	don't	want	to	end	up	with	an	array	of	arrays?
The	flatMap	method	on	Sequence	takes	care	of	that:

func	flatMap<S:Sequence>(_	transform:	

(Element)	throws	->	S)	rethrows	->	

[S.Element]

The	input	function	takes	in	an	element	and	returns	a
sequence	of	elements,	possibly	of	another	type.
flatMap	runs	the	input	function	on	each	of	the	original
sequence's	elements,	joins	the	resulting	sequences
together,	and	returns	them	in	an	array.	You	can	think	of	it
as	first	running	a	normal	map,	then	flattening	the
resulting	sequence	of	sequences	into	a	normal
sequence.

Here's	how	you	can	use	it	to	split	up	an	array	of	ranges
into	a	single	array	of	bounds:

let	ranges	=	[0...2,	5...7,	10...11]

let	bounds	=	ranges.flatMap	

{[$0.lowerBound,	$0.upperBound]}

//	[0,	2,	5,	7,	10,	11]

There	is	also	a	slightly	different	method	of	the	same
name	on	Sequence:

func	flatMap<U>(_	transform:	(Element)	

throws	->	U?)	rethrows	->	[U]

Here,	the	input	function	returns	an	optional,	even	if	the
sequence	does	not	contain	optionals.	Every	time	the
input	function	returns	nil,	it	is	ignored.	This	is	more	like
a	combination	of	map	and	then	filtering	out	all	nil
values.	The	method	is	misnamed,	and	will	be	renamed
to	compactMap	(https://github.com/apple/swift-
evolution/blob/master/proposals/0187-introduce-
filtermap.md)	in	Swift	4.1:

["a","1","b","3"].flatMap(Int.init)	//	[1,	

3]

Optional	has	its	own	version	of	flatMap:

func	flatMap<U>(_	transform:	(Element)	

throws	->	U?)	rethrows	->	U?

If	the	optional	is	nil,	flatMap	returns	nil.	If	not,	the
value	the	optional	contains	is	passed	to	the	input
function,	and	the	result	is	returned.	Using	this	function
instead	of	map	avoids	getting	an	optional	of	an	optional
in	return:

var	stringOptional:	String?

...

let	intOptional	=	

stringOptional.flatMap(Int.init)

USING	THE	FLATMAP	FUNCTION

https://github.com/apple/swift-evolution/blob/master/proposals/0187-introduce-filtermap.md

1.	 Go	to	the	-	flatMap	page	in	Functional.playground.
2.	 Create	the	inverted	array	using	one	flatMap	instead	of	a	filter

and	a	map.
3.	 Change	the	body	of	the	range(between:and:)	function	to	use

flatMap	and	map	instead	of	guard	let.

Solution	1:

let	inverted	=	numbers.flatMap	{	nr	

in

		return	nr	==	0	?	[]	:	

[1.0/Double(nr)]

}

Or:

let	inverted	=	numbers.flatMap	{	nr	

in

		return	nr	==	0	?	nil	:	

1.0/Double(nr)

}

Solution	2:

public	func	range(between	

fromElement:	Element,	and	toElement:	

Element)	->	Range<Index>?	{

		return	index(of:	fromElement)

				.flatMap	{	fromIndex	in

						let	start	=	index(after:	

fromIndex)

						return	suffix(from:	

start).index(of:	toElement)

								.map	{	toIndex	in	start..

<toIndex	}

				}

}

Or	if	you	want	to	go	all	the	way:

public	func	range(between	

fromElement:	Element,	and	toElement:	

Element)	->	Range<Index>?	{

		return	index(of:	fromElement)

				.map(index(after:))

				.map(suffix(from:))

				.flatMap	{	suffix	in

						suffix.index(of:	toElement)

								.map	{	suffix.startIndex..

<$0	}

				}

}

reduce
reduce	is	used	to	produce	a	single	value	from	a
sequence:

func	reduce<Result>(_	initialResult:	

Result,	_	nextPartialResult:	(Result,	

Element)	throws	->	Result)	rethrows	->	

Result

It	can	be	used	to,	for	example,	multiply	all	the	numbers
together:

let	multiplied	=	negative.reduce(1)	{	

result,	element	in	result	*	element	}

First,	it	calls	the	input	function	with	initialResult	and
the	first	element	of	the	sequence.	The	result	is	passed	to
the	input	function	again,	together	with	the	next	element
of	the	sequence.	After	going	through	the	entire
sequence,	the	last	result	from	the	input	function	is
returned.

There	is	another	version	where	the	result	parameter	to

the	input	function	is	inout,	in	other	words,	mutable.	The
input	function	itself	doesn't	return	anything:

func	reduce<Result>(into	initialResult:	

Result,	_	updateAccumulatingResult:	(inout	

Result,	Self.Element)	throws	->	())	

rethrows	->	Result

Here	is	the	previous	example	using	this	version:

let	multiplied2	=	negative.reduce(into:	1)	

{	result,	element	in	result	=	result	*	

element	}

The	mutable	version	is	best	for	producing	more	complex
values,	such	as	arrays.	It	lets	us	directly	add	to	one	array
in	place	instead	of	having	to	create	a	new	array	for	every
run	of	the	input	function.

USING	THE	REDUCE	FUNCTION

Now,	follow	the	given	step	to	implement	the	reduce
function:

1.	 Go	to	the	-	reduce	page	in	Functional.playground.
Compute	the	average	using	reduce.

Here's	the	solution:

let	average	=	

Double(numbers.reduce(0,	+))	/	

Double(numbers.count)

This	is	the	end	of	our	journey	with	functional
programming.	In	this	section,	we	described	functional
programming	and	worked	with	four	important	functions:

filter,	map,	flatMap,	and	reduce.

Activity	A:	Implementing	Functional
Programming
We	want	to	make	the	code	clearer,	more	concise,	and
hopefully	easier	to	read.

To	use	an	Xcode	playground	to	make	a	part	of	the	code
in	CountedSet	from	Lesson	4,	Collections,	more
functional.

1.	 Duplicate	the	CollectionsExtra	project	from	Lesson	4,	and
name	the	duplicate	CollectionsExtraFunc.

2.	 Open	the	new	project	in	Xcode,	and	go	to	CountedSet.swift.
3.	 Go	to	the	following	method:

public	var	count:	Int	{

				var	result	=	0

				for	count	in	elements.values	{

						result	+=	count

				}

				return	result

		}

4.	 This	is	the	archetypical	use	case	for	reduce.	Replace	the	body	of
the	function	with	this:

return	elements.values.reduce(0,	+)

Beautiful,	isn't	it?
5.	 Next,	go	to	the	following	function:

public	mutating	func	insert<S>

(contentsOf	other:	S)

				where	S:Sequence,	S.Element	==	

Element	{

				for	newelement	in	other	{

						insert(newelement)

				}

		}

6.	 One	option	is	to	use	forEach:

other.forEach({self.insert($0)})

7.	 Preferably,	we	would	use	other.forEach(insert)	here	but	it
leads	to	an	error	message	about	self	being	immutable,	even
though	we	are	in	a	mutating	method.

There	is	a	merge
(https://developer.apple.com/documentation/swift/dictionary/289285
5-merge)	method	on	Dictionary	that	is	perfect	for	us.	It	takes	a
sequence	of	key-value	pairs	and	adds	it	to	the	dictionary.	Every
time	it	encounters	a	key	that	already	exists,	it	passes	the	current
value	and	the	new	one	to	the	function	we	provide,	and	uses
whatever	that	function	returns	as	the	new	value:

elements.merge(other.lazy.map	{	($0,	

1)	},	uniquingKeysWith:	+)

NOTENOTE
The	elements	dictionary	has	elements	for	keys	and	their	count	as	value.

First,	we	convert	the	other	sequence	to	key-value	pairs,	which	is
simple	since	the	count	of	each	element	is	1	(we	will	learn	about	the
lazy	property	in	the	next	section).	And	for	any	keys	that	already
exist,	we	just	need	to	add	their	values	together	with	the	+
operator/function.

https://developer.apple.com/documentation/swift/dictionary/2892855-merge

Lazy	Operations
All	the	sequences	and	methods	we	have	looked	at	so	far
this	lesson	have	been	eager,	which	means	they	perform
their	operations	immediately,	and	filter,	map,	and
flatMap	return	their	results	in	arrays.	But	sometimes,
we	may	want	to	delay	operations	until	they	are	needed.

Say	you	have	a	very	large	array,	and	you	want	to	first
use	map	and	then	perform	other	operations.	If	done
eagerly,	map	will	create	a	new	array	with	the	same
number	of	elements	as	the	original	one	to	store	its
results.	But	if	we	do	it	lazily,	map	will	return	a
LazyMapSequence,	which	will	perform	each	map
operation	directly	when	asked	for,	without	using	any
intermediate	storage.

Infinite	sequences	must	be	handled	lazily,	as	they
obviously	cannot	be	stored.

Lazy	Sequences

Have	a	look	at	the	preceding	diagram	that	talks	of	lazy
sequences.	A	lazy	sequence	is	one	that	conforms	to
LazySequenceProtocol.	The	original	sequence	itself
may	or	may	not	work	lazily	internally,	but	some	further
operations	on	the	sequence	are	lazy,	for	example,
filter,	map,	flatMap,	drop(while:),	and
prefix(while:).

NOTENOTE
Open	Functional.playground	at	the	Lazy	sequences	page.

To	make	a	sequence	lazy,	just	use	the	lazy	property:

let	array	=	[1,2,3,4]

let	lazyArray	=	array.lazy

The	actual	type	we	get	back	depends	on	the	type	of	the
original	sequence.	For	array,	it	is
LazyRandomAccessCollection<Array<Element>>

.

We	can	chain	many	operations	together:

let	complexType	=	lazyArray

		.flatMap	{	-2..<$0	}

		.map	{	$0*$0	}

		.filter	{	$0<4	}

Note	that	none	of	the	operations	have	been	performed
yet.	This	won't	happen	until	we	turn	the	sequence	into	an
array	(Array(complexType)),	use	it	in	a	for…in	loop,
or	perform	an	operation	that	is	not	lazy:

let	eager	=	complexType.dropFirst(4)

One	thing	you	will	notice	about	lazy	sequences	is	that
the	types	may	become	very	long	and	complex.	For
example,	the	type	signature	for	complexType
mentioned	previously	is	as	follows:

LazyFilterCollection<LazyMapCollection<Fla

ttenBidirectionalCollection<LazyMapBidirec

tionalCollection<[Int],	

CountableRange<Int>>>,	Int>>

If	a	type	signature	threatens	to	get	out	of	hand,	we	can
shorten	it	with	this:

let	shorterTypeSignature	=	

AnySequence(complexType).lazy

//	LazySequence<AnySequence<Int>>

Beware	that	this	may	prevent	some	optimizations,	as	the
compiler	no	longer	knows	what	types	are	at	work.

NOTENOTE
If	they	save	memory,	why	not	always	use	lazy	sequences?

Because	they	are	not	necessarily	faster.	Lazy	operations	do	not	store	their	results,	so	every
time	they	are	called,	they	have	to	do	the	same	operation	again.	You	have	to	be	careful
which	parts	of	your	chain	of	operations	are	lazy	to	avoid	redoing	the	same	operations	over
and	over.

Sequence	Internals
NOTENOTE
Open	Functional.playground	at	the	Sequence	internals	page.

The	Sequence	protocol	looks	like	this	(from	the	Swift
source	code,	slightly	simplified;	see
https://github.com/apple/swift/blob/master/stdlib/public/co
re/Sequence.swift):

public	protocol	Sequence	{

		///	A	type	representing	the	sequence's	

elements.

		associatedtype	Element

		///	A	type	that	provides	the	sequence's	

iteration	interface	and

		///	encapsulates	its	iteration	state.

		associatedtype	Iterator	:	

IteratorProtocol	where	Iterator.Element	==	

Element

		///	Returns	an	iterator	over	the	

elements	of	this	sequence.

		func	makeIterator()	->	Iterator

}

This,	of	course,	begs	the	question:	so	what	is
IteratorProtocol?

public	protocol	IteratorProtocol	{

		///	The	type	of	element	traversed	by	the	

iterator.

		associatedtype	Element

		///	The	next	element	in	the	underlying	

sequence,

		///	if	a	next	element	exists;	otherwise,	

`nil`.

		mutating	func	next()	->	Element?

}

https://github.com/apple/swift/blob/master/stdlib/public/core/Sequence.swift

Every	time	a	sequence	is	used	in	a	for…in	loop,	or
when	other	methods	go	through	its	elements,	it	first
returns	an	iterator	from	makeIterator,	which	in	turn
provides	one	element	at	a	time	from	next,	until	it	is
empty	and	returns	nil.

Creating	Lazy	Operations
NOTENOTE
Open	Functional.playground	at	the	Lazy	operations	page.

How	do	we	create	operations	that	work	lazily?	For	more
complex	operations,	including	those	that	use	recursion,	it
is	often	best	to	create	a	new	type	which	implements	the
Sequence	and	IteratorProtocol	protocols.	But	for
simpler	tasks,	there	are	two	very	convenient	functions
the	Standard	Library	provides.

SEQUENCE(FIRST:NEXT:)

Here	is	the	function:

func	sequence<T>(first:	T,	next:	@escaping	

(T)	->	T?)	->	UnfoldSequence<T,	(T?,	

Bool)>

This	function	creates	the	sequence	first,
next(first),	next(previous	element),
next(previous	element),	and	so	on,	until	next
returns	nil	(or,	if	it's	infinite,	the	sequence	will	continue
forever).

It	is	very	useful	for	following	references:

for	view	in	sequence(first:	someView,	

next:	{	$0.superview	})	{

		//	someView,	someView.superview,	

someView.superview.superview,	...

}

It	is	also	useful	for	some	mathematical	sequences:

let	powersOf2	=	sequence(first:	1)	{

		let	result	=	

$0.multipliedReportingOverflow(by:	2)

		return	result.overflow	?	nil	:	

result.partialValue

}

SEQUENCE(STATE:NEXT:)

Here	is	the	function:

func	sequence<T,	State>(state:	State,	

next:	@escaping	(inout	State)	->	T?)	->	

UnfoldSequence<T,	State>

This	creates	a	sequence	by	repeatedly	passing	mutable
State	to	the	next	function.	It	is	useful	when	there	are
changing	values	that	are	different	than	the	output.

Here	is	the	obligatory	Fibonacci	sequence	example
(where	each	element	is	the	sum	of	the	previous	two
elements):

let	fibonacci	=	sequence(state:	(0,1))	{	

numbers	->	Int?	in

		numbers	=	(numbers.1,	numbers.0	+	

numbers.1)

		return	numbers.0

		}.prefix(91)

This	outputs	1,	1,	2,	3,	5,	8,	and	so	on.	We	limit	the
sequence	to	the	first	91	elements,	because	the	92 	is
too	large	to	fit	in	an	Int	type,	and	the	program	will
crash.

For	a	slightly	more	complex	example,	this	method
returns	the	elements	of	the	underlying	sequence	in
groups	of	two,	in	tuples:

extension	LazySequenceProtocol	{

		///	Group	the	elements	of	this	sequence	

in	tuples	of	2.

		///	If	there	is	an	odd	number	of	

elements,	the	last	element	is	discarded.

		func	group2()	->	

LazySequence<UnfoldSequence<(Element,	

Element),	Iterator>>	{

				return	sequence(state:	

self.makeIterator())	{	iterator	in

						let	result	=	iterator.next().flatMap	

{	a	in

								iterator.next().map	{	b	in	(a,b)	}

						}

						return	result

				}.lazy

		}

}

NOTENOTE
Ideally,	we	would	return	directly	without	using	result,	but	then	the	compiler	complains	that
type	of	expression	which	is	ambiguous	without	more	context.

nd

Here,	we	use	the	iterator	of	the	underlying	sequence	as
the	mutable	state,	and	only	return	a	value	if	both	calls	to
iterator.next()	are	not	nil.	We	use	flatMap	first,
because	the	next	line	can	also	be	nil.

The	code	from	let	result	to	return	result	does
the	same	as	this:

guard	let	a	=	iterator.next(),

		let	b	=	iterator.next()

		else	{	return	nil	}

return	(a,b)

In	this	section,	we	have	covered	what	lazy	operations
are	and	how	they	are	useful.	We'll	end	this	section	with
an	activity	that	allows	us	to	implement	the	lazy	version	of
a	method.

Activity	B:	Implementing	a	Lazy
Version	of	a	Method
We	want	to	make	the	method	use	less	memory,	or	be
more	efficient	if	we	only	need	some	of	the	ranges.

To	use	an	Xcode	playground	to	make	a	lazy	version	of
the	allRanges	method	from	Lesson	5,	Strings.

1.	 Duplicate	the	StringsExtra	project	from	Lesson	4,	and	name	the
duplicate	StringsExtraLazy.

NOTENOTE
If	you	did	not	finish	the	StringsExtra	project,	you	can	use	the	project	provided
for	this	lesson,	and	check	out	the	Activity_B_start_here	branch	in	the
Xcode	Source	Control	Navigator	(⌘2).

2.	 Open	a	new	project,	and	go	to	StringsExtra.swift.
3.	 First,	it	would	be	nice	if	both	the	current	and	the	lazy	version	of	the

method	could	be	used	on	both	strings	and	substrings.	To	achieve
this,	we	must	move	the	current	version	from	String	to
StringProtocol	(we	can	do	this	because	the	method	we	use
inside,	range(of:),	is	also	available	on	StringProtocol).	At
the	top	of	the	file,	change	the	line	extension	String	{	to
extension	StringProtocol	{.

4.	 We	get	an	error	message	a	couple	of	lines	below,	saying	this:

Cannot	convert	value	of	type	

'Range<Self.Index>'	to	expected	

argument	type	'Range<String.Index>'

This	is	because	even	though	only	String	and	Substring	conform	to
StringProtocol,	and	they	both	use	String.Index	as	index
type,	this	associated	type	has	not	been	set	on	StringProtocol.
We	need	to	constrain	our	extension:

extension	StringProtocol	where	Index	

==	String.Index	{

5.	 There	is	still	one	error	in	countLinguisticTokens.	We	won't
deal	with	that	now,	but	just	move	that	method	to	the	extension	on
String	below.

6.	 Run	unit	tests,	and	verify	that	they	pass.
7.	 At	the	bottom	of	the	file,	add	the	following:

extension	LazySequenceProtocol	where	

Elements:	StringProtocol,	

Elements.Index	==	String.Index	{

}

Here,	we	are	adding	the	same	constraints	as	in	the	preceding
extension,	except	we	add	them	to
LazySequenceProtocol.Elements.

8.	 Paste	a	copy	of	the	original	allRanges	method	into	the	new
extension.	Some	errors	appear:

Use	of	unresolved	identifier	

'startIndex'

Use	of	unresolved	identifier	

'endIndex'

This	is	because	we	are	no	longer	in	String.	We	are	in
LazySequenceProtocol,	and	it	does	not	have	those	properties.
However,	its	elements	property	is	a	string	or	a	substring,	thanks	to
the	constraints	we	added	to	the	extension.	So,	for	every	error	that
now	appears,	insert	elements.	in	front	of	the	identifier	mentioned
in	the	error	message,	for	example:

var	searchRange	=	searchRange	??	

startIndex..<endIndex

The	preceding	line	of	code	becomes	this:

var	searchRange	=	searchRange	??	

elements.startIndex..

<elements.endIndex

9.	 Verify	that	everything	builds	okay	(⌘B).
10.	 Now,	let's	look	at	the	method	and	how	to	make	it	lazy.	We	will	be

returning	a	sequence	of	some	kind,	but	we're	not	quite	sure	which
yet.	For	now,	we	can	just	remove	the	return	type	from	the	function
definition,	and	the	return	statement	at	the	end.	We	no	longer
need	the	ranges	variable;	remove	the	two	lines	it	appears	in.

11.	 We	should	now	be	left	with	this:

extension	LazySequenceProtocol	where	

Elements:	StringProtocol,	

Elements.Index	==	String.Index	{

		public	func	allRanges(of	aString:	

String,

				options:	String.CompareOptions	=	

[],

				range	searchRange:	

Range<String.Index>?	=	nil,

				locale:	Locale?	=	nil)	{

				var	searchRange	=	searchRange	??	

elements.startIndex	..<	

elements.endIndex

				while	let	foundRange	=	

self.elements.range(

						of:	aString,	options:	options,

						range:	searchRange,	locale:	

locale)	{

						searchRange	=	

options.contains(.backwards)	?

								searchRange.lowerBound	..<	

self.elements.index(before:	

foundRange.upperBound)	:

								self.elements.index(after:	

foundRange.lowerBound)	..<	

searchRange.upperBound

				}

		}

}

The	code	inside	the	while	loop	is	what	will	be	run	for	each	turn	of
the	sequence	we	are	creating.	We	need	to	identify	what	state	is
changing	each	time.	In	this	case,	it	is	easy	to	see,	as
searchRange	is	the	only	variable	left.

12.	 So,	we	have	some	state	external	to	the	loop;	the
sequence(state:)	function	seems	like	a	good	fit.	Insert	this	on
the	line	above	the	while	loop:

let	result	=

13.	 Begin	to	type	seq,	and	select	sequence(state:	(and	so	on)	from
the	auto	completion	pop-up	menu.	Enter	searchRange	in	the	first
blue	field,	press	Tab,	and	then	press	enter	on	the	next	blue	field.
You	are	left	with	this:

let	result	=	sequence(state:	

searchRange)	{	()	->	T?	in

				}

14.	 We	can	just	call	the	input	parameter	to	the	closure	searchRange

as	well,	and	the	return	type,	the	element	type	of	the	sequence	we
are	now	creating,	is	Range<String.Index>:

let	result	=	sequence(state:	

searchRange)	{

						(searchRange)	->	

Range<String.Index>?	in

				}

15.	 Move	the	closing	brace	down	so	the	entire	loop	is	inside	the
closure.	Ignore	the	Missing	return	in	a	closure…	error	message.

16.	 We	need	to	know	when	to	stop,	and	that	is	when	foundRange	is
nil.	Change	the	while	let	line	and	the	next	two	ones	to	this:

guard	let	foundRange	=	

self.elements.range(

						of:	aString,	options:	options,

						range:	searchRange,	locale:	

locale)

						else	{	return	nil	}

17.	 Now	we	can	listen	to	the	error	message;	insert	this	at	the	end	of	the
closure:

return	foundRange

18.	 There	should	be	a	warning	on	the	first	line	of	the	body	of	the
method.	Click	on	it,	and	then	click	on	fix	to	change	var
searchRange	to	let	searchRange.

19.	 Now	all	that	is	left	is	to	actually	return	something	from	the	method.
Click	on	result	to	put	the	text	marker	inside	it,	and	look	in	the
Quick	Help	Inspector	in	the	top-right	corner	of	the	window	(if	it	is	not
already	open,	press	⌘⌥2).	You	should	see	the	type	of	the
sequence	there.	Click	on	UnfoldSequence	to	view	the
documentation:

20.	 Go	to	the	bottom	of	the	documentation	page,	where	it	says	this:

Conforms	To	IteratorProtocol,	

Sequence

UnfoldSequence	performs	its	operations	lazily	and	internally,	but
since	it	does	not	conform	to	LazySequenceProtocol,	other
operations	on	it	like	map	and	filter	are	not	lazy.	Since	we	are
adding	a	method	to	LazySequenceProtocol,	we	need	to	make
sure	that	any	sequence	we	return	also	conforms	to	it.	To	do	this,
add	.lazy	right	after	the	closing	brace	of	the	closure,	on	the	line

below	return	foundRange.
21.	 Place	the	text	marker	inside	result	again.	In	the	top	right	corner,

the	type	has	changed	to	this:

LazySequence<UnfoldSequence<Range<St

ring.Index>,	Range<String.Index>>>

Copy	and	paste	it	in	as	the	return	type	of	the	method.
22.	 Replace	let	result	=	with	return.
23.	 Verify	that	it	builds.
24.	 Go	to	the	unit	test	file	StringsExtraTests.swift,	and	insert

the	following	below	the	first	unit	test:

func	testAllRangesLazy()	{

				let	lazyString	=	string.lazy

				

XCTAssertEqual(Array(lazyString.allR

anges(of:	"Line",	options:	

.caseInsensitive)).count,	2)

				

XCTAssertEqual(Array(lazyString.allR

anges(of:	"Line")).count,	1)

				

XCTAssertEqual(Array(lazyString.allR

anges(of:	"hsf")).count,	0)

				

XCTAssertEqual(Array("LineLineLine".

lazy.allRanges(of:	"Line")).count,	

3)

				

XCTAssertEqual(Array("lalalalalala".

lazy.allRanges(of:	"lala")).count,	

5)

				

XCTAssertEqual(Array("llllllll".lazy

.allRanges(of:	"ll")).count,	7)

				

XCTAssertEqual(Array(lazyString.allR

anges(

						of:	"li",	options:	

.caseInsensitive,	locale:	

.current).map{string[$0]}).count,	2)

				

XCTAssertEqual(Array(lazyString.allR

anges(

						of:	"li",	options:	

[.caseInsensitive,	.backwards],	

locale:	.current)).count,	2)

		}

Here,	we	extract	all	elements	from	the	lazy	sequences	by	wrapping

them	in	arrays.
25.	 Run	all	unit	tests	(⌘U)	and	verify	that	they	all	pass.

And	that's	it.	Congratulations!

Swifty	Code
When	learning	a	new	programming	language,	you're	not
just	learning	syntax,	built-in	libraries,	tooling,	terminology,
formatting	style,	and	so	on.	There	is	also	a	somewhat
vaguely	defined	idea	of	what	constitutes	good	code,	a
way	of	performing	some	tasks	that	fits	well	with	the
language	and	has	evolved	together	with	it	over	time.	In
Swift,	such	code	is	often	referred	to	as	Swifty	code.	This
is	in	no	way	a	well-defined	term,	and	experts	in	the
language	may	disagree	on	some	points.	Here,	we	will
only	cover	things	where	there	seems	to	be	a	consensus.
The	list	is	by	no	means	exhaustive,	and	there	are
exceptions	to	many	of	these.

Many	of	these	points	are	covered	in	Apple's	official
guidelines	(https://swift.org/documentation/api-design-
guidelines/).	We	strongly	recommend	reading	it;	it's	a
fairly	short	page	and	a	very	easy	read.

Naming
Names	of	types	and	protocols	are	in	UpperCamelCase.
Everything	else	is	in	lowerCamelCase.	This	makes	it
easy	to	tell	values	and	types	apart.

Try	to	name	functions	and	their	parameters	so	that	they
form	English	phrases	when	called.	So,	instead	of	this:

https://swift.org/documentation/api-design-guidelines/

x.insert(y,	position:	z)

x.subViews(color:	y)

x.nounCapitalize()

Do	this:

x.insert(y,	at:	z)

x.subViews(havingColor:	y)

x.capitalizingNouns()

Functions	returning	Booleans	should	read	well	in	an	if
statement:

if	x.isEmpty	{...}

if	line1.intersects(line2)	{...}

Methods	that	are	mutating	or	have	other	side	effects
should	read	like	commands:

print(x),	x.sort(),	x.append(y)

If	this	isn't	possible	because	the	operation	is	best
described	by	a	noun,	prepend	form	instead:

y.formUnion(z),	c.formSuccessor(&i)

Append	ed	or	ing	to	methods	that	return	a	new	value
instead	of	mutating:

Mutating Nonmutating

x.sort() z	=	x.sorted()

x.append(y) z	=	x.appending(y)

For	nouns,	just	use	the	noun	on	its	own	for	the	non-
mutating	version:

Mutating Nonmutating

y.formUnion(z) x	=	y.union(z)

c.formSuccessor(&i) j	=	c.successor(i)

Organizing	Code
Avoid	free	functions,	and	place	them	where	they	belong.
A	function	that	processes	text	should	be	placed	in	an
extension	on	StringProtocol	(so	it	can	be	used	by
both	strings	and	substrings).	If	the	function	doesn't	take
a	value	as	input,	make	it	static.

Group	methods	and	properties	that	belong	together	in
one	extension.	For	example,	if	you	are	adding	protocol

conformance	to	a	type,	group	everything	that	is	required
by	that	protocol	together	in	one	extension.

If	you	have	a	function	that	is	only	going	to	be	used	from
one	other	function,	place	it	inside	that	function.	This
makes	it	clear	as	to	why	it	exists.

Miscellaneous
Don't	put	semicolons	at	the	end	of	lines.	That	is	pointless
in	Swift.	You	can,	however,	use	a	semicolon	to	write	two
statements	on	one	line,	but	that	is	not	something	you
should	do	very	often.

Languages	without	optionals	have	various	ways	of
signaling	the	absence	of	a	value:	""	for	strings,	-1	for
positive	integers,	null	for	objects,	and	so	on.	Swift,
thankfully,	only	has	one	–	nil.	Always	use	optionals	if	a
value	can	be	empty.

Use	Int	for	most	integers,	even	if	you	only	need	positive
values	or	smaller	values	that	can	fit	in	Int8,	Int16,	or
Int32.	Otherwise,	you	will	have	to	do	a	lot	of	conversions
since	Swift	does	not	do	this	automatically,	not	even	when
it	is	guaranteed	to	be	safe.

Unless	the	order	is	significant,	place	a	parameter	taking
a	closure	last	in	the	function	definition	so	that	it	can	be
used	with	trailing	closure	syntax.	Place	parameters	with
default	values	second	to	last.

Put	underscores	in	long	numeric	literals,	so	they	are

easier	to	read:

1_000_000,	0.352_463

If	you	need	to	change	a	value	after	you	have	returned	it,
use	this	code:

let	oldvalue	=	value

value	+=	1

return	oldvalue

Use	defer	instead:

defer	{	value	+=	1	}

return	value

WRITING	SWIFTY	CODE

Finally,	we're	ready	to	write	Swifty	code.	Here	is	the	step
to	do	so:

1.	 Rewrite	the	following	code	to	be	more	Swifty,	using	the	guidelines
mentioned	previously:

///	An	immutable	entry	in	an	error	

log.

struct	LogError	{

		var	header:	String

		let	errorMessage:	String

		init(header:	String	=	"",	

errorMessage:	String)	{

				self.header	=	header

				self.errorMessage	=	

errorMessage;

				if	header.isEmpty	{

						self.header	=	"	

::Error::errorCode::"

				}

		}

}

LogError(errorMessage:	"something	

bad")

LogError(header:	"head",	

errorMessage:	"something	bad")

Here	is	the	solution:

///	An	immutable	entry	in	an	error	

log.

struct	ErrorLogItem	{

		let	header:	String

		let	errorMessage:	String

		init(errorMessage:	String,	header:	

String?	=	nil)	{

				//	Only	if	empty	strings	are	

invalid	as	headers.

				precondition(header	!=	"",	"A	

header	cannot	be	empty.")

				self.header	=	header	??	"	

::Error::errorCode::"

				self.errorMessage	=	errorMessage

		}

}

ErrorLogItem(errorMessage:	

"something	bad")

ErrorLogItem(errorMessage:	

"something	bad",	header:	"head")

This	ends	our	brief	journey	into	code	naming	and	organization,	or	in
other	words,	how	to	write	code	in	the	Swifty	way.

Summary
In	this	lesson,	we	learned	about	the	functional	operations
filter,	map,	flatMap,	and	reduce.	Then,	we	learned
about	lazy	operations	and	a	few	ways	of	creating	them.
Finally,	we	learned	characteristics	of	good	Swifty	code.

The	last	three	lessons	of	this	course	have	been	focused
on	the	Swift	Standard	Library.	We	began	with	learning
about	the	three	main	generic	collections:	Arrays,	Sets,
and	Dictionaries,	and	added	some	useful	methods	to
them.	We	also	created	our	own	collection:	CountedSet.
Then,	we	learned	about	text	handling	in	Swift	and
working	with	Foundation,	and	added	some	useful	String
methods.	We	also	looked	at	functional	programming	and
lazy	operations.

This	entire	course	is	designed	to	be	a	thorough
introduction	to	Swift	for	programmers	who	are	new	to	the
language.	We	hope	you	have	found	it	useful	and
welcome	you	as	a	fellow	Swift	programmer.

Further	Study
Apple's	own	books	on	Swift	programming
(https://itunes.apple.com/no/book-series/swift-
programming-series/id888896989?mt=11)	are	very	well-
written	and	highly	recommended.	So	are	the	books	from
the	no-longer-appropriately-named	objc.io
(https://www.objc.io/books/).

https://itunes.apple.com/no/book-series/swift-programming-series/id888896989?mt=11
https://www.objc.io/books/

Challenge
For	a	final	challenge,	here	is	what	you	can	do	after	the
book.	The	Standard	Library	has	methods	for	splitting	a
string	over	a	single	character,	or	a	function	that	takes	a
single	character	and	returns	a	Boolean.	However,	it
doesn't	have	any	methods	for	splitting	a	string	over	a
substring,	or	doing	it	lazily.

Create	a	new	method,	which	can	be	used	on	lazy	strings
and	substrings,	and	takes	a	separator	(String)	and
optionally	String.CompareOptions	and	Locale,	and
returns	a	lazy	sequence	of	the	ranges	between	each
occurrence	of	the	separator	in	the	original
string/substring.

There	are	several	ways	of	achieving	this.	The	following
hints	describe	one	solution	which	uses	some	of	the
methods	we	have	created	in	this	course.	Try	and	see	if
you	can	complete	this	by	using	as	few	hints	as	possible.

Hints:

We	can	find	the	ranges	of	the	separators	first,	and	then	invert	them
to	get	the	ranges	of	the	spaces	between	the	separators.

Use	the	lazy	allranges	method	we	created	in	Lesson	6.

Break	up	the	lowerBound	and	upperBound	of	the	ranges	of	the
separators	into	a	sequence	of	indices.

Create	a	new	sequence,	still	lazy,	from	the	start	index	of	the	original
string/substring,	the	indices	from	the	previous	hint,	and	the	end

index.

There	is	no	built-in	way	of	joining	sequences	of	different	types	lazily
together.	Here	is	one	way:

private	func	joinSequences<S1,S2>(_	

s1:	S1,		s2:	S2)

		->	UnfoldSequence<S1.Element,	

(Optional<S1.Iterator>,	

S2.Iterator)>

		where	S1:Sequence,	S2:Sequence,	

S1.Element	==	S2.Element	{

				return	sequence(state:	

(Optional(s1.makeIterator()),	

s2.makeIterator()))

				{	seqs	->	S1.Element?	in

						guard	let		=	seqs.0	else	{	

return	seqs.1.next()	}

						return	seqs.0?.next()

								??	{	seqs.0	=	nil;	return	

seqs.1.next()	}()

				}

}

public	func	+<S1,S2>(s1:	S1,	s2:	S2)

		->	UnfoldSequence<S1.Element,	

(Optional<S1.Iterator>,	

S2.Iterator)>

		where	S1:Sequence,	S2:Sequence,	

S1.Element	==	S2.Element	{

				return	joinSequences(s1,	s2)

}

public	func	+<S1,S2>(s1:	S1,	s2:	S2)

		->	

LazySequence<UnfoldSequence<S1.Eleme

nt,	(Optional<S1.Iterator>,	

S2.Iterator)>>

		where	S1:Sequence,	

S2:LazySequenceProtocol,	S1.Element	

==	S2.Element	{

				return	joinSequences(s1,	

s2).lazy

}

public	func	+<S1,S2>(s1:	S1,	s2:	S2)

		->	

LazySequence<UnfoldSequence<S1.Eleme

nt,	(Optional<S1.Iterator>,	

S2.Iterator)>>

		where	S1:LazySequenceProtocol,	

S2:Sequence,	S1.Element	==	

S2.Element	{

				return	joinSequences(s1,	

s2).lazy

}

Take	the	new	sequence,	flatten	it	if	necessary,	and	group	two	and	two	indices
together.
Use	the	group2	method	from	Lesson	6.
Create	ranges	from	these	grouped	indices.
Return	this	as	a	lazy	sequence.

Index
A

argument	labels

adding,	to	function	/	Argument	Labels

excluding,	from	function	/	Excluding	Argument	Labels

arithmetic	operators

standard	arithmetic	operators	/	Standard	Arithmetic
Operators

remainder	operator	/	Remainder	Operator

unary	minus	operator	/	Unary	minus	Operator

arrays

about	/	Arrays

working	with	/	Workingarraysworking	with	with	Arrays,
Activity	A:	Working	with	Arrays

index	/	Index

ArraySlice	/	ArraySlice

ArraySlice

about	/	ArraySlice

assignment	operator

about	/	Assignment	Operator

compound	assignment	operator	/	Compound	Assignment
Operators

B
BidirectionalCollection	/	Workingarraysworking	with	with	Arrays

bitwise	operators

about	/	Bitwise	Operators

Boolean	data	type

about	/	Boolean

Bool	value

about	/	Boolean

branching

about	/	Branching

if	statement	/	The	if	Statement

condition	lists	/	Condition	Lists

switch	statement	/	The	switch	Statement

break	keyword

about	/	The	break	Keyword

using	/	The	break	Keyword

C
CamelCase

about	/	Activity	C:	CamelCase

using	/	Activity	C:	CamelCase

Character	data	type

about	/	Character

values,	assigning	/	Assigning	a	Character

Character	literal,	constructing	/	Constructing	a	Character
Literal

classes

about	/	Object-Oriented	Principles,	Illustration

versus,	structs	/	Classes	Versus	Structs,	Illustration

defining	/	Defining	Classes	and	Structures

closed	range	operator

about	/	Closed	Range	Operator

closures

about	/	Functions	as	Parameters,	Closures

code

converting,	from	if	to	switch	/	Activity	B:	Converting	Code
from	if	to	switch

comparison	operators

about	/	Comparison	Operators

equality	/	Equality

inequality	/	Inequality,	Comparison	between	Two	Values

compound	assignment	operators

about	/	Compound	Assignment	Operators

conditional	unwrapping

about	/	Conditionally	Unwrapping	Optionals,	Using
Optionals

continue	statement

using	/	The	continue	Control	Transfer	Statement

CountedSet	/	Activity	C:	Using	Dictionaries

customer	class

creating	/	Activity	C:	Creating	a	Customer	Struct	and	Class,
Challenge

customer	struct

creating	/	Activity	C:	Creating	a	Customer	Struct	and	Class,

Challenge

D
@discardableResult

about	/	Using	@discardableResult

using	/	Using	@discardableResult

data	types,	Swift

about	/	Swift	Data	Types

numeric	data	types	/	Numeric	Data	Types

Boolean	/	Boolean

Character	/	Character

string	/	String

working	with	/	Activity	C:	Data	Type	Summary

dictionaries

about	/	Dictionaries

working	with	/	Workingdictionariesworking	with	with
Dictionaries

using	/	Activity	C:	Using	Dictionaries

do…catch

about	/	The	do…catch	Statement

implementing	/	The	do…catch	Statement

E
endIndex	/	Index

enum

about	/	Enums

basic	syntax	/	Basic	Enum	Syntax

raw	values	/	Enum	with	Raw	Values

using	/	Activity	D:	Using	Swift	Enums

Equatable	/	Sets

error	handling

about	/	Error	Handling

do…catch	statement	/	The	do…catch	Statement

multiple	catch	blocks	/	Multiple	catch	Blocks

do	without	catch,	using	/	Using	do	without	catch

guard	statement	/	The	guard	Statement

exception	handling

about	/	Activity	B:	Exception	Handling

F
fallthrough	keyword

about	/	The	fallthrough	Keyword

filter	method

about	/	filter

using	/	Usingfilter	methodusing	the	filter	Method

flatMap	method

about	/	flatMap

using	/	Using	flatMap	methodusingthe	flatMap	Function

force	unwrapped	variable

about	/	Declaring	an	Optional

force	unwrapping

about	/	Force	Unwrapping	an	Optional

for…in	statement

about	/	The	for…in	Statement

objects,	iterating	over	/	Iterating	over	Objects

array	objects	with	index,	iterating	over	/	Iterating	over	Array
Objects	with	index

for	loop	where	clause	/	The	for	Loop	where	Clause

break	control	transfer	statement	/	The	break	Control
Transfer	Statement

continue	control	transfer	statement	/	The	continue	Control
Transfer	Statement

functional	methods

about	/	Functional	Methods

filter	/	filter

map	/	map

flatMap	/	flatMap

reduce	/	reduce

functional	programming

implementing	/	Activity	A:	Implementing	Functional
Programming

function	attributes

about	/	Function	Attributes

functions

about	/	Functions

defining	/	Defining	a	Function

basic	syntax	/	Defining	a	Function

argument	labels,	adding	/	Argument	Labels

argument	labels,	excluding	/	Excluding	Argument	Labels

parameter	default	values,	providing	/	Parameter	Default
Values

implementing	/	Activity	A:	Implementing	a	Function

values,	returning	from	/	Returning	Values	from	Functions

@discardableResult,	using	/	Using	@discardableResult

function	attributes	/	Function	Attributes

variadic	parameters	/	Variadic	Parameters

inout	parameters	/	inout	Parameters

recursion	/	Recursion

as	parameters	/	Functions	as	Parameters

closures	/	Closures

creating,	for	receiving	content	from	asynchronous	web
service	call	/	Creating	a	Function	to	Receive	Content	from
an	Asynchronous	Web	Service	Call

function	type

about	/	Function	Type

G
guard	statement

about	/	The	guard	Statement

using	/	The	guard	Statement

H
half-open	range	operator

about	/	Half-Open	Range	Operator

Hashable	/	Sets

Hello,	World	program

about	/	Hello,	World!

I
if	statement

about	/	Branching,	The	if	Statement

implementing	/	The	if	Statement

implementing,	with	multiple	conditions	/	Condition	Lists

optional	unwrapping	/	Optional	Unwrapping	with	if

index	type,	arrays

about	/	Index

common	operations,	utilizing	/	Utilizing	Common
Operations	with	Index

indices	of	character,	string

identifying	/	Activity	A:	All	Indices	of	a	Character

infer	data	type	/	Type	Inference

inout	parameters

about	/	inout	Parameters

L
lazy	operations

about	/	Lazy	Operations

lazy	sequence	/	Lazy	Operations,	Lazy	Sequences

implementing	/	Lazy	Sequences

Sequence	internals	/	Sequence	Internals

creating	/	Creating	Lazy	Operations

sequence	functions	/	sequence(first:next:),
sequence(state:next:)

lazy	version,	of	method

implementing	/	Activity	B:	Implementing	a	Lazy	Version	of	a
Method

logical	operators

about	/	Logical	Operators

loops

about	/	Loops

for…in	statement	/	The	for…in	Statement

while	loop	/	The	while	Loop

implementing	/	Activity	C:	Implementing	Loops

M
map	method

about	/	map

using	/	map

multiple	catch	blocks

about	/	Multiple	catch	Blocks

MutableCollection	/	Workingarraysworking	with	with	Arrays

N
nil-coalescing	operator

about	/	Nil-Coalescing	Operator

NSRange

converting,	to	Range	/	Converting	NSRange	to	Range

numeric	data	types

about	/	Numeric	Data	Types

Int	on	64-bit	platform,	versus	32-bit	patform	/	Int	on	64-Bit
Versus	32-Bit	Platforms

built-in	numeric	data	types	/	Built-In	Numeric	Data	Types

appropriate	numeric	data	type,	selecting	/	Choosing	the
Appropriate	Numeric	Data	Type

Integer	variables,	declaring	/	Declaring	and	Assigning
Integer	Variables

Integer	variables,	assigning	/	Declaring	and	Assigning
Integer	Variables

floating-point	numbers,	declaring	/	Declaring	and	Assigning
Floating	Point	Numbers

floating-point	numbers,	assigning	/	Declaring	and	Assigning
Floating	Point	Numbers

numeric	literal	grouping	/	Numeric	Literal	Grouping

numeric	type	conversions	/	Numeric	Type	Conversions

working	with	/	Using	Numeric	Types

O
one-sided	range	operator

about	/	One-Sided	Range	Operator

optional

about	/	Optionals

declaring	/	Declaring	an	Optional

working	with	/	Working	with	Optionals

nil	values	/	Optional	nil	Values

values,	accessing	/	Accessing	Optional	Values

force	unwrapping	/	Force	Unwrapping	an	Optional

conditional	unwrapping	/	Conditionally	Unwrapping
Optionals,	Using	Optionals

R
RandomAccessCollection	/	Workingarraysworking	with	with	Arrays

range	operators

about	/	Range	Operators

closed	range	operator	/	Closed	Range	Operator

half	open	range	operator	/	Half-Open	Range	Operator

one-sided	range	operator	/	One-Sided	Range	Operator

RangeReplaceableCollection	/	Workingarraysworking	with	with
Arrays

ranges,	of	substring

finding	/	Activity	B-1:	All	Ranges	of	a	Substring

recursion

about	/	Recursion

reduce	method

about	/	reduce

using	/	Using	reduce	methodusingthe	reduce	Function

S
SetAlgebra	/	Sets

sets

about	/	Sets

working	with	/	Working	setsworking	withwith	Sets

combining	/	Combining	Sets

comparing	/	Comparing	Sets

duplicates,	removing	from	sequence	/	Activity	B:	Removing
Duplicates	from	a	Sequence

slices

creating	/	Creating	Slices

creating,	range	operators	used	/	Creating	Slices	Using
Range	Operators

startIndex	/	Index

string

about	/	String

instantiating	/	Instantiating	a	String

concatenation	/	String	Concatenation

Characters,	extracting	/	Extracting	Characters

length,	obtaining	/	String	Length

indices	of	character,	identifying	/	Activity	A:	All	Indices	of	a
Character

using	/	Using	Strings

creating	/	Creating	Strings

common	operations,	implementing	/	Common	Operations

text	operations,	implementing	/	Implementing	stringtext
operations,	implementingExtra	Text	Operations	on	a	String

ranges	of	substring,	finding	/	Activity	B-1:	All	Ranges	of	a
Substring

number	of	spaces,	counting	/	Activity	B-2:	Counting	Words,
Sentences,	and	Paragraphs

string	fundamentals

about	/	String	Fundamentals

character	/	Character

collection	/	Collection

index	/	Index,	Working	with	String	Index

debugging	/	Debugging

String	index

working	with	/	Working	with	String	Index

StringProtocol

about	/	Substring

structs

about	/	Object-Oriented	Principles

defining	/	Defining	Classes	and	Structures

substrings

about	/	Substring

creating	/	Creating	Substrings

parsing	/	Parsing	Strings

NSRange,	converting	to	Range	/	Converting	NSRange	to
Range

Swift

program	structure	/	Swift	Program	Structure,	Hello,	World!

basic	language	syntax	/	Swift	Program	Structure

Hello,	World	program	/	Hello,	World!

variables	/	Swift	Variables	and	Constants

constants	/	Variables	Versus	Constants

type	inference	/	Type	Inference

optional	/	Optionals

data	types	/	Swift	Data	Types

branching	/	Branching

object-oriented	features	/	Object-Oriented	Features

object-oriented	principles	/	Object-Oriented	Principles

Swift	collections

arrays	/	Arrays

Swift	guard	statement

about	/	The	Swift	guard	Statement

Swift	operators

about	/	Swift	Operators

categories	/	Swift	Operators

assignment	operator	/	Assignment	Operator

arithmetic	operators	/	Standard	Arithmetic	Operators

comparison	operators	/	Comparison	Operators

ternary	conditional	operator	/	Ternary	Conditional	Operator

logical	operators	/	Logical	Operators

bitwise	operators	/	Bitwise	Operators

nil-coalescing	operator	/	Nil-Coalescing	Operator

range	operators	/	Range	Operators

working	with	/	Activity	A:	Operators

Swift	variables

declaring	/	Declaring	Swift	Variables

versus,	Swift	constants	/	Variables	Versus	Constants

variable	naming	/	Variable	Naming

working	with	/	Working	with	Variables,	Activity	B:	Variable
Summary

Swifty	code

about	/	Swifty	Code

naming	/	Naming

code	organization	/	Organizing	Code

miscellaneous	/	Miscellaneous

writing	/	WritingSwifty	codewriting	Swifty	Code

switch	statement

about	/	The	switch	Statement

syntax	rules	/	switch	Statement	Rules

break	keyword	/	The	break	Keyword

fallthrough	keyword	/	The	fallthrough	Keyword

multiple	patterns,	matching	in	single	case	/	Multiple
Patterns	in	a	Single	Case

where	statement,	using	within	case	/	Using	the	where

Statement	within	case

optionals,	evaluating	with	/	Evaluating	Optionals	with	a
switch	Statement

T
ternary	conditional	operator

about	/	Ternary	Conditional	Operator

try?	keyword

using	/	Using	do	without	catch

tuples

about	/	Tuples

creating	/	Creating	a	Tuple

type-safe	language

about	/	Type	Inference

type	cast

force	unwrapping	/	Force	Unwrapping	an	Optional

type	inference

about	/	Type	Inference

U
UnfoldSequence	/	Activity	B:	Implementing	a	Lazy	Version	of	a
Method

V
variable	naming

about	/	Variable	Naming

variadic	parameters

	

about	/	Variadic	Parameters

W
while	loop

about	/	The	while	Loop

syntax	rules	/	The	while	Loop

using	/	The	while	Loop

repeat…while	loop	/	The	repeat…while	Loop

	Beginning Swift
	Table of Contents
	Beginning Swift
	Why Subscribe?
	PacktPub.com

	Contributors
	About the Authors
	Packt is Searching for Authors Like You

	Preface
	What This Book Covers
	What You Need for This Book
	Who This Book is for
	Conventions
	Reader Feedback
	Customer Support
	Downloading the Example Code
	Errata
	Piracy
	Questions

	1. Swift Basics
	Lesson objectives
	Swift Program Structure
	Hello, World!

	Swift Variables and Constants
	Declaring Swift Variables
	Variables Versus Constants
	Type Inference
	Variable Naming
	Working with Variables

	Tuples
	Creating a Tuple

	Optionals
	Declaring an Optional
	Working with Optionals
	Optional nil Values
	Accessing Optional Values
	Force Unwrapping an Optional
	Conditionally Unwrapping Optionals
	Using Optionals

	The Swift guard Statement

	Activity B: Variable Summary

	Swift Data Types
	Numeric Data Types
	Int on 64-Bit Versus 32-Bit Platforms
	Built-In Numeric Data Types
	Choosing the Appropriate Numeric Data Type
	Declaring and Assigning Integer Variables
	Declaring and Assigning Floating Point Numbers
	Numeric Literal Grouping
	Numeric Type Conversions
	Using Numeric Types

	Boolean
	Character
	Assigning a Character
	Constructing a Character Literal

	String
	Instantiating a String
	String Concatenation
	Extracting Characters
	String Length

	Activity C: Data Type Summary

	Enums
	Basic Enum Syntax
	Enum with Raw Values
	Activity D: Using Swift Enums

	Summary

	2. Swift Operators and Control Flow
	Lesson objectives
	Swift Operators
	Assignment Operator
	Arithmetic Operators
	Standard Arithmetic Operators
	Remainder Operator
	Unary minus Operator
	Compound Assignment Operators

	Comparison Operators
	Equality
	Inequality
	Comparison between Two Values

	Ternary Conditional Operator
	Logical Operators
	Bitwise Operators
	Nil-Coalescing Operator
	Range Operators
	Closed Range Operator
	Half-Open Range Operator
	One-Sided Range Operator

	Activity A: Operators

	Branching
	The if Statement
	Condition Lists
	Optional Unwrapping with if

	The switch Statement
	switch Statement Rules
	The break Keyword
	The fallthrough Keyword
	Matching Non-Scalar Values
	Multiple Patterns in a Single Case
	Using the where Statement within case
	Evaluating Optionals with a switch Statement

	Activity B: Converting Code from if to switch

	Loops
	The for…in Statement
	Iterating over Objects
	Iterating over Array Objects with index
	The for Loop where Clause
	The break Control Transfer Statement
	The continue Control Transfer Statement

	The while Loop
	The repeat…while Loop

	Activity C: Implementing Loops

	Summary

	3. Functions, Classes, and Structs
	Lesson Objectives
	Functions
	Defining a Function
	Argument Labels
	Excluding Argument Labels
	Parameter Default Values
	Activity A: Implementing a Function
	Returning Values from Functions
	Using @discardableResult
	Function Attributes
	Variadic Parameters
	inout Parameters
	Recursion
	Functions as Parameters
	Closures
	Creating a Function to Receive Content from an Asynchronous Web Service Call

	Error Handling
	The do…catch Statement
	Multiple catch Blocks
	Using do without catch
	The guard Statement
	Activity B: Exception Handling

	Object-Oriented Features
	Object-Oriented Principles
	Classes Versus Structs
	Illustration

	Defining Classes and Structures
	Activity C: Creating a Customer Struct and Class

	Summary
	Challenge

	4. Collections
	Lesson Objectives
	Arrays
	Working with Arrays
	Index
	Utilizing Common Operations with Index

	ArraySlice
	Creating Slices
	Creating Slices Using Range Operators

	Activity A: Working with Arrays

	Sets
	Working with Sets
	Combining Sets
	Comparing Sets
	Activity B: Removing Duplicates from a Sequence

	Dictionaries
	Working with Dictionaries
	Activity C: Using Dictionaries

	Summary

	5. Strings
	Lesson Objectives
	String Fundamentals
	Character
	Collection
	Index
	Working with String Index

	Debugging
	Activity A: All Indices of a Character

	Using Strings
	Creating Strings
	Common Operations
	Implementing Extra Text Operations on a String

	Activity B-1: All Ranges of a Substring
	Activity B-2: Counting Words, Sentences, and Paragraphs

	Substring
	Creating Substrings
	Parsing Strings

	Converting NSRange to Range
	Activity C: CamelCase

	Summary

	6. Functional Programming and Lazy Operations
	Lesson Objectives
	Function Type
	Functional Methods
	filter
	Using the filter Method

	map
	Using the map Function

	flatMap
	Using the flatMap Function

	reduce
	Using the reduce Function

	Activity A: Implementing Functional Programming

	Lazy Operations
	Lazy Sequences
	Sequence Internals
	Creating Lazy Operations
	sequence(first:next:)
	sequence(state:next:)

	Activity B: Implementing a Lazy Version of a Method

	Swifty Code
	Naming
	Organizing Code
	Miscellaneous
	Writing Swifty Code

	Summary
	Further Study
	Challenge

	Index

