Beginning
Swift

Table of Contents

Beginning Swift
Why Subscribe?
PacktPub.com
Contributors
About the Authors
Packt is Searching for Authors Like You
Preface
What This Book Covers
What You Need for This Book
Who This Book is for
Conventions
Reader Feedback
Customer Support
Downloading the Example Code
Errata
Piracy
Questions
1. Swift Basics
Lesson objectives
Swift Program Structure
Hello, World!
Swift Variables and Constants
Declaring Swift Variables
Variables Versus Constants
Type Inference
Variable Naming
Working with Variables
Tuples
Creating a Tuple
Optionals
Declaring an Optional
Working with Optionals
Optional nil Values
Accessing Optional Values
Force Unwrapping an Optional
Conditionally Unwrapping Optionals
Using Optionals
The Swift guard Statement
Activity B: Variable Summary
Swift Data Types
Numeric Data Types
Int on 64-Bit Versus 32-Bit Platforms
Built-In Numeric Data Types
Choosing the Appropriate Numeric Data Type
Declaring and Assigning Integer Variables
Declaring and Assigning Floating Point Numbers

Numeric Literal Grouping
Numeric Type Conversions
Using Numeric Types
Boolean
Character
Assigning a Character
Constructing a Character Literal
String
Instantiating a String
String Concatenation
Extracting Characters
String Length
Activity C: Data Type Summary
Enums
Basic Enum Syntax
Enum with Raw Values
Activity D: Using Swift Enums
Summary
2. Swift Operators and Control Flow
Lesson objectives
Swift Operators
Assignment Operator
Arithmetic Operators
Standard Arithmetic Operators
Remainder Operator
Unary minus Operator
Compound Assignment Operators
Comparison Operators
Equality
Inequality
Comparison between Two Values
Ternary Conditional Operator
Logical Operators
Bitwise Operators
Nil-Coalescing Operator
Range Operators
Closed Range Operator
Half-Open Range Operator
One-Sided Range Operator
Activity A: Operators
Branching
The if Statement
Condition Lists
Optional Unwrapping with if
The switch Statement
switch Statement Rules
The break Keyword
The fallthrough Keyword
Matching Non-Scalar Values
Multiple Patterns in a Single Case

Using the where Statement within case
Evaluating Optionals with a switch Statement

Activity B: Converting Code from if to switch
Loops
The for...in Statement
Iterating over Objects
Iterating over Array Objects with index
The for Loop where Clause
The break Control Transfer Statement
The continue Control Transfer Statement
The while Loop
The repeat...while Loop
Activity C: Implementing Loops
Summary
3. Functions, Classes, and Structs
Lesson Objectives
Functions
Defining a Function
Argument Labels
Excluding Argument Labels
Parameter Default Values
Activity A: Implementing a Function
Returning Values from Functions
Using @discardableResult
Function Attributes
Variadic Parameters
inout Parameters
Recursion
Functions as Parameters
Closures
Creating a Function to Receive Content from an Asynchronous
Web Service Call
Error Handling
The do...catch Statement
Multiple catch Blocks
Using do without catch
The guard Statement
Activity B: Exception Handling
Object-Oriented Features
Object-Oriented Principles
Classes Versus Structs
lllustration
Defining Classes and Structures
Activity C: Creating a Customer Struct and Class
Summary
Challenge
4. Collections
Lesson Objectives
Arrays
Working with Arrays
Index
Utilizing Common Operations with Index
ArraySlice
Creating Slices

Creating Slices Using Range Operators
Activity A: Working with Arrays
Sets
Working with Sets
Combining Sets
Comparing Sets
Activity B: Removing Duplicates from a Sequence
Dictionaries
Working with Dictionaries
Activity C: Using Dictionaries
Summary
5. Strings
Lesson Objectives
String Fundamentals
Character
Collection
Index
Working with String Index
Debugging
Activity A: All Indices of a Character
Using Strings
Creating Strings
Common Operations
Implementing Extra Text Operations on a String
Activity B-1: All Ranges of a Substring
Activity B-2: Counting Words, Sentences, and Paragraphs
Substring
Creating Substrings
Parsing Strings
Converting NSRange to Range
Activity C: CamelCase
Summary
6. Functional Programming and Lazy Operations
Lesson Objectives
Function Type
Functional Methods
filter
Using the filter Method
map
Using the map Function
flatMap
Using the flatMap Function
reduce
Using the reduce Function
Activity A: Implementing Functional Programming
Lazy Operations
Lazy Sequences
Sequence Internals
Creating Lazy Operations
sequence(first:next:)
sequence(state:next:)
Activity B: Implementing a Lazy Version of a Method

Swifty Code
Naming
Organizing Code
Miscellaneous
Writing Swifty Code
Summary
Further Study
Challenge
Index

Beginning Swift

Beginning Swift

Copyright © 2018 Packt Publishing All rights reserved.
No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any
means, without the prior written permission of the
publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this
book to ensure the accuracy of the information
presented. However, the information contained in this
book is sold without warranty, either express or implied.
Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages
caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products
mentioned in this book by the appropriate use of
capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Acquisition Editor: Aditya Date Content Development
Editor: Taabish Khan Production Coordinator: Vishal
Pawar First published: May 2018

Production reference; 1310518

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78953-431-3

www.packtpub.com

wM

mapt.io

Mapt is an online digital library that gives you full access
to over 5,000 books and videos, as well as industry
leading tools to help you plan your personal
development and advance your career. For more
information, please visit our website.

e Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

e Learn better with Skill Plans built especially for you

http://www.packtpub.com
https://mapt.packtpub.com/

e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every
book published, with PDF and ePub files available? You
can upgrade to the eBook version

at www.PacktPub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more
details.

At www.PacktPub.com, you can also read a collection of
free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

http://www.PacktPub.com
http://www.PacktPub.com

Contributors

Rob Kerr is a mobile software architect based in United
States. He has been working professionally with Swift
since its introduction, delivering applications to the public
App Store and through enterprise distribution. His
current focus is developing state-of-the-art iOS
applications using Swift in the 10T space.

Kare Morstgl is an independent software developer
from Norway, with a bachelor's degree in software
development. He has programmed almost exclusively in
Swift since it was announced. He thinks it's a great
language that is continually getting better.

If you're interested in becoming an author for Packt,
please visit authors.packtpub.com and apply today. We
have worked with thousands of developers and tech
professionals, just like you, to help them share their
insight with the global tech community. You can make a
general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Preface

Swift is a multi-paradigm language. It has expressive
features familiar to those used to working with modern
functional languages, whilst also keeping the object-
oriented features of Objective-C. Swift vastly streamlines
the developer experience, and Apple's Xcode
playground is a real game-changer.

The book begins by teaching you the basic syntax and
structure of Swift, and how to correctly structure and
architect software using Swift. It then builds expertise in
the core Swift standard library you will need to
understand to complete real-world Swift programming
projects. We will work through concepts such as
operators, branching and loop structures, functions,
classes, structs, collections, and strings. We end the
book with a brief look at functional programming and lazy
operations.

After reading and understanding this book, you will be
well-prepared to begin developing native end-user
applications for iOS or macOS, or to develop server-side
(backend) application and web services using Swift on
Linux.

Lesson 1, Swift Basics, covers the fundamentals of using
the Swift programming language. In this lesson, you'll
learn basic Swift syntax and program structure. You'll
also learn how to use Swift built-in data types and
enums, and how to declare and use Swift variables and
constants.

Lesson 2, Swift Operators and Control Flow, shows you
how to use the fundamental flow control structures and
language elements that form the building blocks of Swift
programs. We will specifically cover operators, branching
statements, and loops in this lesson.

Lesson 3, Functions, Classes, and Structs, teaches you
how to develop fully featured Swift functions, catch
unexpected errors, and use asynchronous programming
paradigms. You'll learn how to create your own data
types, and create object-oriented applications using
classes and structs.

Lesson 4, Collections, shows you how to work with
Swift's collections, such as arrays, sets, and dictionaries.

Lesson 5, Strings, covers Swift strings in detail. We will
create and use strings and substrings, and see the
various common operations available for strings.

Lesson 6, Functional Programming and Lazy
Operations, ventures at functional programming and
explains what lazy operations are. We will end this
lesson with an important but often overlooked topic—

writing Swifty code.

What You Need for This
Book

This book will require the following hardware:

e A Mac computer capable of running macOS Sierra 10.12.6+

e An internet connection

Please ensure you have the following software installed
on your machine:

e Operating system: macOS Sierra 10.12.6+
e Xcode 9.1

e Safari browser

This book is ideal for developers seeking fundamental
Swift programming skills, in preparation for learning to
develop native applications for iOS or macOS. No prior
Swift knowledge is expected but object-oriented
programming experience is desirable.

You should have basic working knowledge of computer
programming in a procedural/object-oriented language,
such as Objective-C, BASIC, C++, Python, Java, or
JavaScript.

In this book, you will find a number of text styles that
distinguish between different kinds of information. Here
are some examples of these styles and an explanation of
their meaning.

Code words in text are shown as follows: "Finally, use
the console print function to output the content of each
error variable."

Folder names, filenames, file extensions, pathnames,
include file names in text are shown as follows: "Launch
Xcode as before, and create a new playground named
Create a Variable.playground.”

A block of code is set as follows:

let name = "John Doe"
var address = "201 Main Street"
print("\(name) lives at \(address)")

New terms and important words are shown in bold.
Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this:
"Choose Blank as the playground template, and then
press the Next button."

Important new programming terms are shown in bold.
Conceptual terms are shown in italics.

NOTE

Important additional details about a topic appear like this, as in a sidebar.

TP

Important notes, tips, and tricks appear like this.

Feedback from our readers is always welcome. Let us
know what you think about this book—what you liked or
disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail
<feedback@packtpub.com>, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see
our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Now that you are the proud owner of a Packt book, we
have a number of things to help you to get the most from
your purchase.

Downloading the Example Code

You can download the example code files from your
account at http://www.packtpub.com for all the Packt
Publishing books you have purchased. If you purchased
this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files emailed directly to you.

Errata

Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you find
a mistake in one of our books—maybe a mistake in the
text or the code—we would be grateful if you could
report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission
Form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata

that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The
required information will appear under the Errata
section.

Piracy

Piracy of copyrighted material on the Internet is an
ongoing problem across all media. At Packt, we take the
protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any
form on the Internet, please provide us with the location
address or website name immediately so that we can
pursue a remedy.

Please contact us at <copyright@packtpub.com>
with a link to the suspected pirated material.

We appreciate your help in protecting our authors and
our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you
can contact us at <questions@packtpub.com>, and
we will do our best to address the problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Swift Basics

Swift is a relatively new programming language designed
by Apple Inc., and was initially made available to Apple
developers in 2014—primarily intended as a
replacement for the aging Objective-C language that was
the foundation of OS X and iOS software development at
the time.

Unlike many object-oriented languages, which are based
on older procedural languages—for example, C++ and
Objective-C are based on C—Swift was designed from
the ground up as a new, modern, object-oriented
language that makes programming faster and easier,
and helps developers produce expressive code that's
less prone to errors than many languages.

While not based on an older language, Swift, in the
words of its chief architect, Chris Lattner, "was inspired
by drawing ideas from Objective-C, Rust, Haskell, Ruby,
Python, C#, CLU, and far too many others to list." (Chris
Lattner home page: http://nondot.org/sabre/).

Swift was initially a proprietary language, but was made
open source software in December 2015 as of its version
2.2. While Swift remains primarily used by developers
targeting the Apple macOS and iOS platforms, Swift is
also fully supported on Linux, and there are unofficial
ports under development for Windows as well.

http://nondot.org/sabre/

The objective of this lesson is to learn the fundamentals
of using the Swift programming language. In this lesson,
you'll learn basic Swift syntax and program structure.
You'll also learn how to use Swift built-in data types and
enums, and how to declare and use Swift variables and
constants. Let's get started.

By the end of this lesson, you will be able to:

e Explain the program structure and syntax of Swift programs
e Declare and use Swift variables and constants
e Use the various built-in Swift data types

e Use the Swift enum language syntax

In this first section, we'll look at the basic language
syntax for Swift, and you'll write your first fully functional
Swift program.

Like many modern programming languages, Swift draws
its most basic syntax from the programming language C.
If you have previous programming experience in other C-
inspired languages, such as C++, Java, C#, Objective-C,
or PHP, many aspects of Swift will seem familiar, and

many Swift concepts you will probably find quite familiar.

We can say the following about Swift's basic syntax:

e Programs are made up of statements, executed sequentially

e More than one statement are allowed per editor line when
separated by a semicolon (;)

e Units of work in Swift are modularized using functions and
organized into types

e Functions accept one or more parameters, and return values

e Single and multiline comments follow the same syntax as in C++
and Java

e Swift data type names and usage are similar to that in Java, C#,
and C++

e Swift has the concept of named variables, which are mutable, and
named constants, which are immutable

e Swift has both struct and class semantics, as do C++ and C#

If you have prior experience in other C-inspired

languages, such as Java, C#, or C++, Swift has some
improvements and differences that will take some time
and practice for you to become accustomed to:

e Semicolons are not required at the end of statements—except
when used to separate multiple statements typed on the same line
in a source file.

e Swift has no main() method to serve as the program's starting point
when the operating system loads the application. Swift programs
begin at the first line of code of the program's source file—as is the
case in most interpreted languages.

e Functions in Swift place the function return at the right-hand side of
the function declaration, rather than the left.

e Function parameter declaration syntax is inspired by Objective-C,
which is quite different and often at first confusing for Java, C#, and
C++ developers.

e The difference between a struct and a class in Swift is similar to
what we have in C# (value type versus reference type), but not the
same as in C++ (both are the same, except struct members are
public by default).

For those coming to Swift from Java, C++, C#, and
similar languages, your previous experience with other
C-inspired languages will help accelerate your progress
learning Swift. However, be sure to study the language
syntax carefully and be on the lookout for subtle
differences.

Hello, World!

When learning a new language, it's traditional for a first
program to make sure the development environment is
installed and properly configured by writing a program

that outputs something to the screen. That's what we'll

do next.

Now, let's use an Xcode playground to create a simple
Swift program to display the string Hello, World to the
playground console, by following these steps:

1. Begin by launching Xcode. You should be presented with a
Welcome to Xcode screen with the following commands listed on
the left:

1. Get started with a playground
2. Create a new Xcode project
3. Clone an existing project

2. Since we'll be writing code but not building an application in this
lesson, choose the Get started with a playground option to open
an interactive code window.

NOTE

Xcode playgrounds are provided to allow developers to quickly experiment with
Swift code. In addition to learning Swift, as we are in this lesson, you can use
playgrounds to develop functions and test whether a specific fragment of Swift
code will do what you expect.

3. Choose Blank as the playground template, and then press the
Next button.

4. Next, Xcode will prompt where to save the playground. This will
save your code in a file with a playground file extension. Name the
playground HelloWorld, and save it to your desktop.

5. When Xcode creates a new playground, it adds some default code
to the editing window. Press 3 A on your keyboard and then the
Delete key on the keyboard to delete the sample code.

6. In the now-blank editor window, add the following two lines of code:

let message = "Hello, World."
print(message)

Congratulations! You've just written your first Swift
program. If you see the text Hello, World. output in the
bottom pane of the playground window, your program

has worked.

Before we move on, let's look at the structure of the
playground window:

o Ready | Today at 1:58 P 9 el & U

1 message = ‘ *Hello, World."
7 print(message) "Hello, World\n"

4 MyPlayground

3

& p
Hello, World.

4

Note the following regions in the playground window, as
indicated by the numbers within the red circles:

1. At the top of the window is a status bar which tells you the state
of the playground.

e 2: The editing pane of the window is where you type the code to run
in the playground.

e 3: The right-hand pane of the playground window shows
information about the effect of each line of code. In this simple
program, it shows the value message has been set to ("Hello,
World."), and the text that was sent to the console ("Hello,
World.\n"). Note the right pane discloses that the print() function
added a newline (\n) character to the output.

e 4: The output pane of the playground window shows the debug
console, which in this case displays what the Swift program has
output. If your code has errors, the debug console will output
information about those errors as well.

Now that we have a development environment up and
running where we can create and run Swift code, let's
move on to learning about and using the Swift language.

Virtually all programming languages include the ability for
programmers to store values in memory using an
associated name chosen by the programmer. Variables
allow programs to operate on data values that change
during the run of the program.

Declaring Swift Variables

A Swift variable declaration uses the following basic
syntax:

var <variable name> : <type> = <value>

Given this syntax, a legal declaration for a Pi variable
would be the following:

var pi : Double = 3.14159

This declaration means: create a variable named pi,
which stores a Double data type, and assign it an initial
value of 3.14159.

NOTE

The Swift Standard Library has Pi built in, accessed by using the Float.pi and Double.pi
properties.

Variables Versus Constants

You may want to store a named value in your program
that will not change during the life of the program. In the
previous example, the value of Pi should never change
during the course of a program. How can we ensure that,
once defined, this named value can never be
accidentally changed by our code?

Swift variables are declared using the var keyword, while
Swift constants are declared using the let keyword, for
example:

var pil = 3.14159
let pi2 3.15159

In this code, the named value pil is a variable, and its
value can be changed by the code after it is declared.
The following line of code later in the program would be
legal, even though it would result in an invalid value for
pil:

pil = pil1 * 2.0

On the other hand, since pi2 was declared as a constant,
using the let keyword, the following line of code later in
the program would result in a compile-time error, since
changing a let constant is illegal:

pi2 = pi2 * 2.0

Generally, any time you create a named value that will
never be changed during the run of your program, you
should use the let keyword to create a constant. The

Swift compiler enforces this recommendation by creating
a compile-time warning whenever a var is created that is
not subsequently changed.

NOTE

Other than the restriction on mutating the value of a constant once declared (for safety),
Swift variables and constants are used in virtually identical ways, and you usually won't
think about whether a symbol is a variable or a constant after declaring it.

Type Inference

In the previous example, we created the variable pil
without specifying its data type. We took advantage of a
Swift compiler feature called type inference.

When you assign the value of a variable or constant as
you create it, the Swift compiler will analyze the right-
hand side of the assignment, infer the data type, and
assign that data type to the variable or constant you're
creating. For example, in the following declaration, the
compiler will create the variable name as a String data

type:
var name = "George Smith"

As a type-safe language, once a data type is inferred by
the compiler, it remains fixed for the life of the variable or
constant. Attempting to assign a non-string value to the
name variable declared above would result in a compile-
time error:

name = 3.14159 // Error: "Cannot assign
value of type 'Double' to 'String'

While Swift is a type-safe language, where variable
types are explicit and do not change, it is possible to
create Swift code that behaves like a dynamic type
language using the Swift Any data type. For example,
the following code is legal in Swift:

var anyType: Any
anyType = "Hello, world"
anyType = 3.14159

While this is legal, it's not a good Swift programming
practice. The Any type is mainly provided to allow
bridging between Objective-C and Swift code. To keep
your code as safe and error-free as possible, you should
use explicit types wherever possible.

Variable Naming

Swift variables and constants have the same naming
rules as most C-inspired programming languages:

e Must not start with a digit

After the first character, digits are allowed

Can begin with and include an underscore character

Symbol names are case sensitive

Reserved language keywords may be used as variable names if
enclosed in backticks (for example, “Int:Int = 5)

When creating variable and constant names in Swift, the
generally accepted naming convention is to use a
camelCase naming convention, beginning with a
lowercase letter. Following generally accepted naming

conventions makes code easier for others to read and
understand (https://swift.org/documentation/api-design-
guidelines/#follow-case-conventions)

For example, the following would be a conventional
variable declaration:

var postalCode = "48108"

However, the following would not be conventional, and
would be considered incorrect by many other Swift
developers:

var PostalCode = "48108"
var postal_code = "48108"
var POSTALCODE = "48108"

Unlike many other programming languages, Swift is not
restricted to the Western alphabet for its variable name
characters. You may use any Unicode character as part
of your variable declarations. The following variable
declarations are legal in Swift:

var hellowWorld = "Hello, World"
var = "Hello World"
var © = "Smile!"

NOTE

Just because you can use any Unicode character within a variable name, and can use
reserved words as variables when enclosed in backticks, it doesn't mean you should.
Always consider other developers who may need to read and maintain your code in the
future. The priority for variable names is that they should make code easier to read,
understand, and maintain.

WORKING WITH VARIABLES

https://swift.org/documentation/api-design-guidelines/#follow-case-conventions

In this section, you'll use an Xcode playground to create
a variable and constant, and observe the difference
between them. So, let's get started.

To work with variables, follow these steps:

1. Launch Xcode as before, and create a new playground named
Create a Variable.playground

2. Add the following code to the playground to create a constant (that
is, an immutable variable) named name, and a variable named

address:
let name = "John Doe"
var address = "201 Main Street"

print("\(name) lives at \(address)")

In this code, both name and address store string text in named
memory locations. And we can include them both in the print
statement in the same way.

3. Now add the following code to change John Doe's address and
print the new information to the console:

address = "301 Fifth Avenue"
print("\(name) lives at \(address)")

In the console output, the address is changed as expected.
4. Finally, let's try to change the string stored in the name variable:

name = "Richard Doe"

In this case, the Swift compiler generates a compile-time error:

Cannot assign to value: 'name' is a
'"let' constant

By declaring name as an immutable variable with let, we
let the compiler know no code should be allowed to
change the content of the variable after its value is
initially set.

Tuples

One of Swift's unique language features is its inclusion of
tuples. By default, variables and constants store a single
value. Tuples allow a variable or constant name to refer
to a set of values. While tuples do not exist in many
languages, you can think of them as compound values,
and they function almost identically to a structure, which
is a single named object which can store more than one
variable embedded within it.

By using a tuple, we could take the following variable
declaration:

var dialCode = 44
var isoCode = "GB"
var name = "United Kingdom"

We could combine it to the following:

var country = (44, "GB", "United Kingdom")

Then we can access the individual members of the tuple
as follows:

print(country.®@) // outputs 44
print(country.1) // outputs GB
print(country.2) // outputs United
Kingdom

Tuple members can also be given individual names, as
follows:

var country = (dialCode: 44, isoCode:
"GB", name: "Great Britain")

print(country.dialCode) // outputs 44

print(country.0) // also
outputs 44!

print(country.isoCode) // outputs GB
print(country.name) // outputs

United Kingdom

Swift functions can accept multiple input parameters, but
return only one value. A common use case for a tuple
variable type is to include more than one value from a
function:

func getCountry() -> (dialCode: Int,
isoCode: String, name: String) {

let country = (dialCode: 44, isoCode:
"GB", name: "United Kingdom")

return country

let ret = getCountry()

print(ret)

A second way to return multiple values from a function is
to use inout parameters, which allows a function to
change the value of an input parameter within that
function.

While there are valid use cases for changing inout
parameter values, returning a tuple has the advantage of
returning a value type—rather than modifying input
values.

NOTE

Tuples behave much like structures—which are predefined compound data types in Swift
and many other languages. You may be tempted to use tuples rather than making the extra
effort to create structures since they provide similar utility. Be careful not to overuse tuples.
They are convenient for ad hoc, lightweight composite data types, but when used in
complex programming, use cases can result in code that's more difficult to understand and
harder to maintain. Use tuples as they're intended, as a means to bundle a few related
components of a data element.

CREATING A TUPLE

Let's look at creating a tuple. We'll use an Xcode
playground to create and use a tuple. Here are the
steps:

1. Launch Xcode as before, and create a new playground named
Create a Tuple.playground

2. Add the following code to the playground to create a tuple
containing a person's name, address and age:

let personl = ("John Doe", "201 Main
Street", 35)

print("\(personi1.0) lives at \
(personl.1) and is \(personl.2)
years old.")

This code is very similar to the previous, except that we've used a
tuple to group together values describing John Doe—rather than
using separate variables for each element.

While this syntax is legal, acceptable, and common, it can begin to
result in difficult to understand and maintain code—especially when
a tuple contains more than two simple values. To make a tuple
more maintainable, you can give variable names to each of its
components.

3. Add the following to the playground:

let person2 = (name: "Jane Doe",
address: "301 Fifth Avenue", age:
35)

print("\(person2.name) lives at \

(person2.address) and is \
(person2.age) years old.")

In this second approach, each member of the tuple has a
descriptive name, making it easier for the reader of the program to
understand and maintain the code.

Optionals

Another unigue language feature Swift provides is the
optional. In most programming languages, all variables
and constants must hold some value. But, in the real
world, sometimes a value is unknown. For example, an
address may or may not contain a second address line,
and more than 60 countries in the world don't use postal
codes. Optionals allow variables to indicate whether their
value is missing (that is, not assigned), or is truly a blank
value.

NOTE

When variables are declared optional in Swift, they behave very similarly to column values
in SQL database such as Oracle, SQL Server, and MySQL.

Optionality for Swift variables is optional (pun intended).
To declare a variable as an optional, add a question
mark (?) to the end of its data type (or assign another
optional variable's value to it so the optional property is
inferred from the existing variable).

The following variable name is not an optional:

var name: String = "Hello"

This next variable name is an optional, and has an initial

value of nil;

var name: String?

The presence of the question mark intuitively expresses
that the variable may—or may not—contain a string. If
the optional is not assigned a value, it will automatically
be set to nil, meaning it has no value.

DECLARING AN OPTIONAL

Earlier in this lesson, we declared variables with initial
values assigned. These variables are not optional, have
a value, and can never be assigned a nil value, or an
unwrapped optional variable's value.

In this section, we define a variable as an optional by
adding a question mark to the type name, which makes it
subject to the Swift compiler's optional validation rules.

A third possibility is to declare a force unwrapped
variable—a variable that can be nil, but is not optional.
This type of variable is declared by placing an
exclamation point (!) after the type (rather than the
guestion mark (?) for the optional), for example:

var customerAge: Int!

When a variable is declared in this fashion, the compiler
will allow the variable to be assigned a nil value at any
time, but will not warn the programmer at compile time
when the variable's value is (or could be) assigned a nil

value.

There are limited circumstances where this technique is
required, and in general it should be avoided.

NOTE

Why don't we make all variables optional? Optional is a powerful Swift feature, but working
with optional variables requires more code as they are used, primarily to check for nil
values before accessing the optional value. In general, you should use optional variables
when variables may be missing values, but not use optional variables when you know a
variable will always have a value.

WORKING WITH OPTIONALS

As mentioned, the simplest way to declare a variable as
an optional is to append the data type with a question
mark, for example:

var name: String?

Because of Swift's type inference, the following line of
code will create a second variable of optional type:

var nameCopy = name

The syntax to assign a value to this variable is the same
as it would be if the variable was not declared as
optional:

name = "Adam Smith"

The difference between optional and non-optional
variables is primarily when you access the value of an
optional, which we'll cover next.

OPTIONAL NIL VALUES

Optional variables in Swift can be directly compared to
the absence of value (nil) and assigned a nil value.
For example, in the following two statements, variable a
initially has a value of 4, then is assigned a nil value, and
then is checked for having a nil value:

var a: Int? = 4

a = nil

if a == nil {
print("a is nil")

}

While the presence or absence of a value within an
optional can be directly tested, extracting and using the
value contained within an optional requires that the
optional (the envelope) be unwrapped, and the content
(value) extracted. We'll learn how to do this next.

ACCESSING OPTIONAL VALUES

Think of an optional as a value wrapped in an envelope.
You cannot access the contents of an envelope without
opening it (unwrapping it), and then removing the
contents.

You can primarily unwrap an optional and use its value in
two ways:

e Force unwrap

e Conditional unwrap

We'll learn each of these techniques next.

FORCE UNWRAPPING AN OPTIONAL

Look at the two optional Int variables:

var a: Int?
var b: Int = 4

You could attempt to assign a to b, for example:
b =a
But this would result in a compile-time error:

Value of optional type 'Int?' not
unwrapped; did you mean to use '!' or '?'?

As the error indicates, accessing the value of an
unwrapped optional variable is (always) illegal. One
approach to solving this problem is to force unwrap the
variable as we use it. To force unwrap a variable, simply
place an exclamation mark (!) after the variable name,
for example:

b = a!

Force unwrapping is similar to using a type cast in many
languages. In Swift, a force unwrap tells the compiler to
assume that the optional contains a value.

However, a force unwrap shifts all the responsibility to
the programmer for ensuring optionals actually have
values. The above example, b = a!, would allow the
code to compile, but would generate the following

runtime error, and the application will crash:

Fatal error: Unexpectedly found nil while
unwrapping an Optional value

Because variable a is an optional with no value, there is
no value to extract from it to assign to b.

NOTE

Force unwrapping should not be viewed as a way to get around compiler type-safety
features. Only use force unwrapping when you're absolutely certain that it's impossible for
an optional variable to contain a nil value. In the following code, a force unwrap would be

acceptable:

var a: Int? = 2
var b: Int = 4
b = a!

CONDITIONALLY UNWRAPPING
OPTIONALS

While there are times when force unwrapping variables
is safe, you should typically take advantage of Swift's
type-safety features by using conditional unwrapping.

With conditional unwrapping, we ask the compiler to first
check whether the optional has a value, and return the
value if present, or nil if not.

For example, to assign the value of optional a to a new,
non-optional variable b, we can use the following code:

var a: Int? = 4
if let b = a {
print(b)

This code snippet would print the value 4 to the console.
If we had not assigned the initial value 4 to a, then
nothing would have been printed.

Using Optionals

Use an Xcode playground to create and use an optional,
by performing the following steps:

1. Launch Xcode as before, and create a new playground named
Using Optionals.playground

2. Add the following code to the playground to create an optional
containing a person's name:

var name: String? = nil

3. Now add the following code to check whether the optional is nil:

if name == nil {
print("name is nil")
} else {

print("name is not nil")

Of course, since we assigned the value nil, itis nil.

A more common way to check for a non-nil optional is to use the
if/let syntax covered previously.

4. Add the following code to assign a value to the optional content,
then print it to the console

name = "John Doe"
if let n = name {
print(n)
} else {
print("the name is still nil")

Because you assigned a value to the variable name, the string John
Doe is printed to the console.
5. Finally, comment out the variable assignment. The output will now

change to the name is still nil, because the if/let syntax
detected that the variable name contains no value.

THE SWIFT GUARD STATEMENT

It's very common that Swift functions should only
execute when parameters passed to them are in an
expected state. In early versions of Swift, the conditional
unwrapping technique was often used to provide this
type of safety checking. For example, a function that
accepts an optional Int value, but should only proceed
when the parameter is not nil might look as follows:

func doublevalue(input: Int?) -> Int? {
if let i = input {
return i * 2

}

return nil

While this function is only a few lines of code, imagine if
the work done on the unwrapped variable was more
complex. To allow parameter and other data state
checking to be concisely done at the beginning of
functions, Swift includes a guard keyword.

The following is a version of doubleValue that uses the

guard syntax to place data state checks at the top of the
function:

func doublevalue(input: Int?) -> Int? {
guard let i = input else { return nil }
return i * 2

This is the end of this section. Here, we have had a deep
look at how to declare variables and constants in Swift.
We also worked with tuples and optionals.

Activity B: Variable Summary

In Swift, variables are declared before being used.
Variables can be declared in various ways, and may not
even need to have their type explicitly stated when the
compiler can infer data type from initial assignment.

Use an Xcode playground to practice how to declare
variables, constants, and tuples.

1. Launch Xcode as before, and create a new playground named
Topic B Summary.playground.

2. Add the following code to the playground to create three variables
storing values related to the weather conditions in Berlin:

let cityName = "Berlin"
var humidityPercentage: Double?
var temperatureCentigrade: Double?

Note that cityName is a constant, non-optional variable, with an
initial string value. Since we know the name of the city in advance,
and it doesn't change for this program, it's most appropriate to use
let to declare this value as a constant.

humidityPercentage and temperatureCentigrade are
declared as optional, since we do not yet know the weather
conditions in Berlin at the start of this program.

3. Next, add the following line of code to create a tuple to collect the
weather report data into a single variable named weather:

var weather = (city: cityName,
humidityPercentage:
humidityPercentage, temperature:
temperatureCentigrade)

Recall that providing reference names for each tuple member is
optional, but is included here to make the remaining part of the
program clearer to other programmers who may need to read this
program later.

4. Next, set the value of humidity within the tuple:

weather.1 = 0.70

Note that even though you created a reference name for humidity
(humidityPercentage), you can still set the value using the
ordinal position within the tuple. The following line of code would
probably be better in this case:

weather.humidityPercentage = 0.70

5. Now print the tuple to the console. On noticing that the variable
provided is a tuple, the console print () function prints all
members of the tuple—along with the reference names provided:

print(weather)

The output of the print statement is as follows:

(city: "Berlin", humidityPercentage:
Optional(0.69999999999999996),
temperature: nil)

6. Finally, print each of the tuple's components, each on its own line:

print("City: \(weather.city)")
print("Humidity: \
(String(describing:weather.humidityP
ercentage))")

print("Temperature: \
(String(describing:weather.temperatu

re))")

The output of this code is as follows:

City: Berlin
Humidity:
Optional(0.69999999999999996)

Temperature: nil

Like most programming languages, Swift includes a full
complement of built-in data types that store numbers,
characters, strings, and Boolean values.

NOTE

In the previous section, we covered the use of Swift optionals, and worked through several
examples declaring an Int variable as optional and non-optional. Keep in mind that any
Swift variable, of any type, can be declared as an optional.

Numeric Data Types

Like most programming languages, Swift provides built-
in numeric data types that represent either integer or
floating-point values.

INT ON 64-BIT VERSUS 32-BIT
PLATFORMS

While it's likely you'll develop Swift applications
exclusively on 64-bit platforms, it's important to know that
Swift is available on both 32-bit and 64-bit platforms.
When using a generic integer numeric type (Int or
UInt), the generic type will be mapped to an underlying,
specific equivalent that matches the current platform's
word size. For example, on a 64-bit platform, Int is
mapped to Int64; on a 32-bit platform, the same Int
type is mapped to an Int32.

BUILT-IN NUMERIC DATA TYPES

The following table summarizes the available Swift
numeric data types:

Type Min value Max value
Int8 -128 127
Intil6 -32768 32767
Int32 -2.1x109 2.1 x109
Int64 -9.2x 1018 9.2 x 1018
UInt8 0 255
UIntl6 0 65535
UInt32 0 4.3x10°

UInt64 0 1.8 x 10%°

Double 1.8 x %08 1.8 x 10°%

Float 3.4 x10°° 3.4x10%°

CHOOSING THE APPROPRIATE NUMERIC
DATA TYPE

Conceptually, a UInt64 variable will consume four times
more RAM than a UInt8 variable, so you may ask,
"Should | tune my variables by selecting the smallest
number of bits needed to meet requirements?"

While it may seem intuitive to select the numeric type
that uses the least RAM to store the variable's expected
range of values, it's usually preferable to use the generic
integer types (for example, Int when declaring integers
and Double when declaring floating-point numbers).

NOTE

This is a reference from The Swift Programming Language (Swift 4): "Unless you need to
work with a specific size of integer, always use Int for integer values in your code. This aids
code consistency and interoperability." Visit
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Program
ming_Language/ for the official documentation.

DECLARING AND ASSIGNING INTEGER
VARIABLES

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/

Integer values may be instantiated using base 10
(decimal), base 2 (binary), base 8 (octal), or base 16
(hexadecimal) literal values, or by assigning another Int
variable of the same type to the new variable.

For example, assigning the number 100 to a new Int
variable holding a duration in minutes can be done in
any of the following ways:

let minutes = 100 // decimal

let minutes = 0b1100100 // binary

let minutes = 00144 // octal

let minutes = 0x64 // hexadecimal

DECLARING AND ASSIGNING FLOATING
POINT NUMBERS

Floating-point numbers are represented by either Float
or Double data types. In general, you should use
Double—and employ Float only when specific
circumstances require using the smaller, 32-bit numeric
variable.

Declaring and assigning value to floating-point variables
follows the same syntax rules as with integer variables.
For example, the following statement creates a new
Double variable interestRate, and assigns an initial
value to it:

var interestRate = 5.34

NUMERIC LITERAL GROUPING

When assigning constant values to numeric types, Swift
provides a handy format to make code more readable:
the underscore character is ignored when parsing
numeric literals.

This feature is most commonly used to provide
groupings of thousands in a large integer or floating-
point assignments, but actually can be used to provide
any grouping separation that makes code more
readable. For example, the following statements all
assign the value 100,000 to the variable minutes:

var minutes = 100000
var minutes = 100_000
var minutes = 10_00_00

0b110_000110_101000_00

var minutes

Using the underscore for readability can also be used for
floating-point literal values. For example, the following
statements are equivalent:

var balance = 10000.44556
var balance 10_000,44 556

NUMERIC TYPE CONVERSIONS

Like many fully compiled languages, Swift is a strongly
typed language, and requires explicit type conversions
(or casts) when assigning the value from one variable
type to a variable of a different type.

Many new Swift programmers find that Swift is even
stricter than languages they've used before. In many

programming languages, the compiler will implicitly
convert between data types during an assignment so
long as the value contained within the variable being
assigned (on the right of the equals sign) could not
overflow the variable being assigned to (on the left of the
equals sign).

In other words, in many languages, the following code
would be legal, since an Int8 is known to always fit into
an Int16 without a numeric overflow:

Int8 smallNumber = 3;

Int16 mediumNumber smallNumber;

However, this equivalent code in Swift would result in a
compile-time error:

var smallNumber: Int8 = 3
var mediumNumber: Int16 = smallNumber

This code would generate the following error:

error: cannot convert value of type 'Int8'
to specified type 'Inti6'

In Swift, it's always the programmer's responsibility to
ensure that assignments have the same data type on the
left and right of the assignment operator (that is, the
equals sign). The following code corrects the compile-
time error:

var smallNumber: Int8 = 100

var mediumNumber: Int16 =
Int16(smallNumber)

NOTE

This requirement for explicit type assignment is one reason why most Swift programming
uses the generic numeric variables Int and Double, except when specific usage requires

tuning for numeric range or memory storage size.

Using Numeric Types

Now, let's see how to use various numeric variable types
by following these steps:

1. Launch Xcode as before, and create a new playground named
Topic B Using Numeric Types.playground

2. Add the following code to the playground to create three Int
variables, using binary, basel0, and basel6 literal notation,
respectively:

var base2 = 0b101010
var basel® = 42
var hex = 0x2A

3. Now add the following three corresponding lines to print the data
type and value for each of the variables you just created.

print("Printing \(type(of: base2)):

\(base2)")

print("Printing \(type(of: basel0)):
\(base10)")

print("Printing \(type(of: hex)): \

(hex)")

Examining the output, note that the three variables all have the
same data type (Int) and same value (42 in base 10).

4. Add the following lines of code to create two more variables, and to
print the types and values for each:

var scientific = 4.2E+7
let double = 4.99993288828
print("Printing \(type(of:

scientific)): \(scientific)")
print("Printing \(type(of: double)):
\(double)")

Note that both variables were created as Double types—even
though the value of the first is actually an Integer. Swift's inference
system doesn't always look at the actual value. In this case, the
presence of scientific notation in the literal value caused Swift to
assume the value should be a Double.

. Now add the following lines to cast and round the variable named
double to an Int:

var castToInt = Int(double)
var roundToInt =
Int(double.rounded())
print("Printing \(type(of:
castToInt)): \(castToInt)")
print("Printing \(type(of:
roundToInt)): \(roundToInt)")

As you probably expected, the castToInt discarded the fractional
value of the original double variable. For the roundToInt
variable, we called the . rounded () function on the variable
double, and then cast that value. Since 4.999 was rounded up to 5
before being cast, the Int contains the rounded value.

. Finally, add the following lines to create a very large unsigned
integer and then print its type and value:

var bigUnsignedNumber:UInt64 =
18_000_000_000_000_000_000
print("Printing \(type(of:
bigUnsignedNumber)): \
(bigUnsignedNumber)'")

This code works as expected—printing an integer with 20 digits (the
underscore is added to help count how many digits there are).

Note that in this case, we specified UInt64 should be the data type
for this variable. Had we not made the type explicit, Swift's type
inference rules would have assigned the smaller Int data type to the
variable, and it would have overflowed.

Again, keep in mind the inference engine examines the
format of a constant perhaps more than the value of the
numeric value being assigned. You should rely on the
inference engine by default, but keep in mind you may
sometimes need to be explicit when you know more
about how a variable will be used than Swift can infer.

Boolean

In Swift, the Boolean data type is Bool, and stores a
value of true or false. As with other data types, in the
case that a Bool value is not yet known, a Bool can be
declared as optional, for example, Bool?.

For example, the following code declares a Boolean in
Swift, and then changes its value:

var isChecked = false
isChecked = true

Testing for the value of a Bool value is similar to how we
do it in other C-inspired languages, for example:

if isChecked {
// statements to execute if isChecked
is true

if isChecked == true {
// statements to execute if isChecked
is true

if !isChecked {
// statements to execute if isChecked
is false

}

Character

The Character data type in Swift is an extended
grapheme cluster.

What does that mean?

An extended grapheme cluster is an ordered sequence
of one or more Unicode scalars (that is, values) that,
when taken together, produce a human-readable
character.

Most important to understand is that, unlike ASCII or
ANSI character representations many programmers
have worked with before, a Character in Swift may be
made of more than one Unicode value.

In Swift 4, the underlying complexities of Unicode, scalar
values, and extended grapheme clusters are largely
managed for you, but as you begin to work natively with
Unicode characters and strings, bear in mind that the
Swift Character/String architecture was developed from
the ground up around Unicode character representation
—not ANSI/ASCII as many other languages were.

ASSIGNING A CHARACTER

The following are two examples creating new Character
variables, and assigning literal values:

let chil:Character = "A"

let ch2:Character = "©"
Note the following regarding this assignment:

e |n Swift, a Character literal is delimited by a double quote, rather
than the single quote that's common in most C-inspired languages.

e Because the Swift compiler's type inference rules will assume
double quotes around a literal imply a string variable, the above chl
assignment must explicitly declare the variables as Character type
—otherwise the Swift compiler will create chl as a string.

CONSTRUCTING A CHARACTER LITERAL

To construct a Character type using Unicode values, you
can assign an escape sequence, or use the
UnicodeScalar struct to create a Character using
numeric Unicode values as input.

The following line of code creates a UnicodeScalar from
the value 65 (the ASCII value for the English letter A),
and then assigns it to the immutable variable ch1l:

let chl = Character(UnicodeScalar(65))

In this case, there is no ambiguity with regards to double
guotation marks, so it's not necessary to explicitly assign
the Character type during this assignment.

It's also common to construct a Character using a
UnicodeScalar escape sequence within double quotation
marks. The following creates a character variable
containing an emoji character represented by the
UnicodeScalar 1F601:

let ch3 = "\u{1F601}" // sets ch3 to "®"

While Unicode scalars are conceptually similar to
ASCII/ANSI value encoding, Swift Characters may be
made of more than one numeric value, while ASCII and
ANSI use only one numeric value to represent each
character.

For example, an accented Western letter is expressed by
providing a UnicodeScalar containing two character
values.

We can construct the Unicode representation of an
accented e character as follows:

let ch4 = "e\u{301}" // é

The expression on the right of the assignment contains
the literal letter e, followed by the escaped value for the
accent modifier (301). The Swift compiler combines
these two elements into a single extended grapheme
cluster.

String

Strings in Swift are very similar to strings in other
programming languages. As string handling is so central
to any application development project, we'll dedicate an
entire subsequent lesson to Swift's powerful string
handling capabilities. In this section, we'll discuss the
basics for declaring and using a string.

Fundamentally, strings are arrays of the Character types,
supporting the familiar assignment operator (=),
substrings, concatenation, and C-inspired escape
characters.

INSTANTIATING A STRING
Instantiating a string variable is highly intuitive. The

following statements create string variables:

var alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

let macCharacters = "#"\Xg “@go-"
let emoji = "©® @O"

STRING CONCATENATION

As in many languages, Swift strings can be
concatenated using the plus (+) operator:

let alphaMac = alphabet + macCharacters

String also supports the unary addition operator:

alphabet += macCharacters

EXTRACTING CHARACTERS

One difference between Swift strings and strings in many
languages is how individual elements of strings are
accessed. Specifically, the following syntax with Swift
strings is illegal:

let ch = alphabet[4]

error: 'subscript' is unavailable: cannot
subscript String with an Int, see the
documentation comment for discussion

In Swift, the input to the subscript operator (that is,
what's between the [] characters) is expected to be of
type String.Index, not Int.

In practice, you will construct an Index, then pass the
index to the substring operator, for example:

let idx =
alphabet.index(alphabet.startIndex,
offsetBy: 4)

let ch = alphabet[idx] // ch is assigned
the character "E"

STRING LENGTH

Obtaining the length of string is quite easy—simply call
the count property of a string:

var alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
let alphabetLength = alphabet.count // 26

We have now reached the end of this section. Here, we
worked with the different data types in Swift, specifically
numeric, Boolean, character, and string data types.

Activity C: Data Type Summary

Now that you've learned about the various data types
available with Swift, let's put this knowledge into practice
by using various types together, and also using the

Apple Foundation framework.

Use an Xcode playground to practice various data types.
You'll be using numeric data types, formatting them as
strings, and using string interpolation to print string
values from various data types.

1. Launch Xcode as before, and create a new playground named
Data Type Summary.playground.

2. Add the following code to the playground to create an immutable
Double with an initial value:

let dval = 4.9876

3. Next, create a Boolean mutable variable with an initial value of
true, and another variable set to the Double variable after
rounding to a whole number:

var iValRounded = true
var ival = Int(dval.rounded())

4. Next, we're going to use a class from Foundation to create a string
representation of the Double value, rounded to two digits. If you're
not familiar with NumberFormatter, don't worry. This is just one of
the many utility classes Apple provides in its expansive SDK for
macOS and iOS:

var formatDigits = 2
let nf = NumberFormatter()

nf.numberStyle = .decimal
nf.maximumFractionDigits =
formatDigits

let formattedDouble =
nf.string(from: NSNumber(value:
dval)) ?? "#Err"

Because NumberFormatter.string returns an optional, we
need either to check it (with if/let, or as here, provide a default
value ("#Err") in case the function does return nil.

5. Now add the following line to print a statement about the values

we've created:

print("The original number was \
(formattedDouble) (rounded to \
(formatDigits) decimal places),
while the value \(ivalRounded ?
"rounded" : "unrounded") to Integer
is \(ival).")

The output of this code is as follows:

The original number was 4.99
(rounded to 2 decimal places), while
the value rounded to Integer is 5.

6. Finally, add the following lines to change the rounding strategy, and
print a sentence about the result of the new string conversions:

formatDigits = 0
nf.maximumFractionDigits =
formatDigits

formattedDouble = nf.string(from:
NSNumber (value: dval)) ?? "#Err"
ivalRounded = false

ival = Int(dval)

print("The original number was \
(formattedDouble) (rounded to \
(formatDigits) decimal places),
while the value \(ivalRounded ?
"rounded" : "unrounded") to Integer
is \(ival).")

The output of this second sentence is as follows:

The original number was 5 (rounded
to 0 decimal places), while the
value unrounded to Integer is 4.

Enums are frequently used in Swift to create custom
data types that have a predefined set of possible values
to select from. Enums serve to make code more
readable and maintainable, and also provide compile-
time checking for parameters and value assignments
which yield higher quality, more robust code.

Many languages provide built-in enum features, and
Swift's implementation of the enum is very similar to
other languages. Swift does have some unique enum
features, which we'll cover in this section.

Basic Enum Syntax

Consider the following code, which creates and uses a
basic enum:

enum DayOfWeek {
case monday, tuesday, wednesday,
thursday, friday

}

var today = DayOfWeek.wednesday

if today == .friday {
print("Today is Friday")
} else {

print("Today is not Friday")

Defining the enum DayOfWeek declares a new data
type, which can be used just like any other data type.
Because the variable today is of the type DayOfWeek,
which can only be assigned one of the seven listed
values, we could not assign anything else. For example,
the following code would generate a compile-time error,
because Saturday is not included in the predefined
values:

Var today = DayOfWeek.saturday

The preceding example illustrates the two most
important advantages of enums:

e Possible values are restricted to a predefined list, making
assignment of invalid values something that is tested at compile
time rather than at runtime.

e Code that uses enums become self-documenting and easier to
understand.

Enum with Raw Values

In the preceding enum example, the enum values
(.monday, .tuesday, and so on) have no underlying
data type. For example, we might want to calculate the
day of week by subtracting the ordinal number for the
today variable from .monday.

However, with the enum as defined, there is no numeric
value associated, so the following code will fail to
compile:

var nthDay = today - DayOfWeek.Monday

This code generates the following error:

Binary operator - cannot be applied to two
'DayOfWeek' operands

This is by design, because unlike some languages, a
Swift enum need not be mapped to a native data type
(and should not be, if there's no reason to do so).

However, Swift enums can be mapped to any underlying
data type. In the following revision, we map the day of
week to the Int data type, which enables the nth day of
the week calculation mentioned above:

enum DayOfWeek: Int {
case monday, tuesday, wednesday,
thursday, friday

}

var today = DayOfWeek.Wednesday //
DayOfWeek .wednesday

var nthDay = today.rawValue -
DayOfWeek.monday.rawvalue + 1 // 3

var tomorrow = DayOfWeek(rawValue:
today.rawvalue + 1) // DayOfWeek.thursday

In this case, all we needed to do was add a native data
type (Int) to the enum declaration. The Swift compiler
then holds a .rawValue property. When an enum has an
underlying value, it also becomes possible to create an
enum member by passing it to the rawValue: parameter
of the enum Iinitializer.

NOTE

Use care with raw values. Passing a rawValue: to an enum initializer that does not match
a defined case within the enum results in the creation of a nil optional.

In the preceding example, we used Int as the raw value
for the revised DayOfWeek enum. Swift allows any data
type to serve as the underlying value of an enum. For
example, we could use String instead of Int to enable
the following use case:

enum DayOfWeek: String {

case monday = "Monday"

case tuesday = "Tuesday"
case wednesday = "Wednesday"
case thursday = "Thursday"
case friday = "Friday"

case saturday = "Saturday"

var today = DayOfWeek.Wednesday //
DayOfWeek .wednesday

let dayString = today.rawValue //
"Wednesday"

In this section, we have looked at enums in detail. We
saw its syntax and how to define an enum with raw
values. We will now work through an activity where we
will use enums to implement error codes.

Activity D: Using Swift Enums

Enumerations are a powerful construct available in many
programming languages. Enumerations make code more
robust and easier for others to understand and maintain.

Use Xcode to define error codes using conventional
error number techniques, and alternatives that use Swift

enums.

1. Launch Xcode as before, and create a new playground named
Activity D - Using Numeric Types.playground

2. Add the following lines of code to create a set of error codes using
simple integer values:

// Store an error condition as an
integer

let success = 0

let ioFailure = 1

let timeoutFailure = 2

3. Now create the same set of error codes using an enum without a
raw value:

// Store an error condition as an
enum type
enum Result {

case success

case ioFailure

case timeoutFailure

}

4. Finally, create the same set again, this time using an enum with a
raw Integer value associated with each result code:

// Store an error condition as an
enum type with raw value
enum ResultwWithRawValue: Int {
case success = 0
case ioFailure =1
case timeoutFailure = 2

}

5. Now let's use these error values by creating a new variable,
assigning the ioFailure error condition to each one:

let errorl = ioFailure

let error2 = Result.ioFailure
let error3
ResultwWithRawValue.ioFailure

6. Finally, use the console print function to output the content of each
error variable. Note how each one is represented to the console:

// Now print out the error result
from each case.

print("File access resulted: \
(errorl1)")

print("File access resulted: \
(error2)")

print("File access resulted: \
(error3)")

print("File access resulted: \
(error3.rawvValue)")

In this lesson, we've learned the basic language
structure and syntax for the Swift programming
language. We've now understood the following concepts:

e The fundamental structure of Swift programs, and how to use an
Xcode playground to develop simple and complex programs

e How to create and use mutable and immutable Swift variables

e The built-in data types available to Swift programs, and how to
select the appropriate data type depending on circumstance

e Swift's powerful optional construct for detecting and branching
program flow when data values are not available

e Swift's type inference and strict type safety syntax and usage

Now that you have the basics well in hand, we're ready
to move on to the next lesson, where we'll learn how to
use these language elements in complex Swift
programs. Specifically, we'll look at the control flow
structures and operators offered by Swift.

Chapter 2. Swift Operators
and Control Flow

In the last lesson, you learned the fundamentals of Swift
syntax, data types, and how to use variables to store and
operate on data in a Swift program.

In this lesson, you'll learn how to use the fundamental
flow control structures and language elements that form
the building blocks for Swift programs.

Swift contains a full set of flow control constructions that
help you build logic and organize applications. Swift
implements control structures you'll find familiar, and
Swift adds modern features and extensions not available
in some other languages.

This lesson also covers the broad range of Swift logical
and bitwise operators. Swift supports a comprehensive
set of operators, based on the C operator construction—
but with modern extensions that we'll fully cover in this
lesson.

By the end of this lesson, you will be able to do the
following:

Use the assignment, arithmetic, and bitwise operators
Use Swift's comparison operators

Explain the functionality of Swift's range operators
Use the Swift branching features: if and switch

Control program flow with loops, such as for, while, and
repeat/while

Operators are special characters—usually drawn from
mathematics—that are used to process evaluations,
modify variable values, and combine values. Swift
operators break down into categories by the function
they perform:

e Assignment operators
e Arithmetic operators

e Comparison operators
e Logical operators

e Bitwise operators

e Nil-coalescing operators

e Range operators

Refer to the following diagram:

Operatrs

Temay
(ot
Opetos

ments | nelc [Compeion

bwse Ny

Opors W Opelos | el Opecs | Opeos

Swift implements its assignment, arithmetic, comparison,
logical, and bitwise operators nearly identically to other
C-inspired languages, such as C++, Java, and C#—so
your previous experience with these operators will apply
directly to Swift programming.

In this lesson, we'll summarize this common set of
operators, and only highlight unique Swift
implementations. Should you need detailed information
on the meaning of any of these operators, please refer to
Apple's The Swift Programming Language guide
(https://developer.apple.com/library/content/documentati
on/Swift/Conceptual/Swift_Programming_Language/).

The nil coalescing and range operators are unique to
Swift and you may not have encountered them before—
we'll cover these operators in detail.

Assighment Operator

Swift uses the equals sign (=) to assign the value of one
object to another, for example:

let x = 3.0

Like most languages, the equals sign (=) is not
overloaded for comparison. Thus, the following is not a
valid if statement:

if x = 3 {
// do something
}

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/

// error: use of '=' in a boolean context,
did you mean '=='?

Arithmetic Operators

Let's look at the arithmetic operators, beginning with the
standard ones.

STANDARD ARITHMETIC OPERATORS

Swift supports the four standard arithmetic operators for
number types:

Addition

Subtraction

Multiplication

Division

REMAINDER OPERATOR

Swift's remainder operator (%) returns the remainder
when a second operand is divided into a first operand.
For example, the result (r) in the following expression is
2, since 14/4=3, with a remainder of 2:

let r = 14 % 4 // r == 2

NOTE

The remainder operator (%) is designed to accept Int operands. To calculate the
remainder for floating-point numbers, instead use the function
remainder (dividingBy:), for example:

let r = 15.3.remainder(dividingBy: 5.0) // r == 0.3

UNARY MINUS OPERATOR

Use the unary minus operator (-) before a variable or
constant to return the value multiplied by -1, for example:

3 // x == 3
-x //y == -3

let x
let vy

COMPOUND ASSIGNMENT OPERATORS

Swift supports the compound assignment operators as a
shortcut for assigning a variable the value of itself
changed with another numerical operator. For example,
the following two statements are equivalent:

X =x + 1
X +=1

Unlike C (and some C-inspired languages), Swift does
not support the use of the ++ unary operator. The
following is not a Swift syntax:

X++ // Unary operator '++' cannot be
applied

Comparison Operators

Swift's comparison operators are nearly identical to other
C-inspired languages. We'll summarize them and any
key differences in this section.

EQUALITY

To compare whether the value of two value types are
equal (for example, whether two Int variables contain
the same value), use the double-equals sign, for
example:

if x == 3 {
// do something
}

To compare whether two class instances are the same
instance, use the triple-equals sign, for example:

if obj1 === obj2 {
// do something if the variables refer
to the same object

}

INEQUALITY

To test for inequality (rather than equality), replace the
first equals sign with an exclamation point:

Test for equality Test for inequality

COMPARISON BETWEEN TWO VALUES

Swift inequality operators are straightforward, each
returning a Bool type. The following table explains each
one:

Greater than >
Less than <
Greater than or equal to >=

Less than or equal to <=

Ternary Conditional Operator

This operator provides a shorthand for assignments to
variables that result from if...then...else structured
comparisons. For example, the following two statements
are equivalent:

// conventional if..then..else
if x > 4 {

y =1
} else {

y = 2
}
// ternary conditional operator
y=x>421:2

Logical Operators

Swift's logical operators follow the same conventions as
other C-inspired languages. The following logical
operators are available:

NOT !

AND &&

OR

Local operators can be chained in a single expression,
for example:

let canEnter = atDoor && doorUnlocked ||
haveKey

Local operators are evaluated as a chain of pairs, and
are left associative, meaning that this expression is
evaluated as follows:

let canEnter = (atDoor && doorUnlocked) ||
haveKey

This statement as written suggests a visitor should have
a key whether the door is locked or unlocked—which is
probably not what was intended. Change the order of

evaluation for logical operators using parentheses to get
what we want:

let canEnter = atDoor && (doorUnlocked ||
haveKey)

Bitwise Operators

Swift's bitwise operators also follow the same
conventions as other C-inspired languages. The
following bitwise operators are available:

NOT

AND &
OR
XOR
N
Left shift <<
Right shift >>

Nil-Coalescing Operator

The nil-coalescing operator is used when unwrapping an
optional when a default value is desired in the case that
the optional is nil.

The following code unwraps an optional with and without
nil-coalescing:

let x:Int?

let y = x // y is an optional of
type Int?, and is nil

let z =x?? 4 // z is a non-optional
Int, with value 4

Range Operators

Swift range operators are unique, and many developers
new to Swift have not encountered this type of operator
in other languages. Range operators are used to
express a range of values in a concise syntax.

We will use a range operator when we will introduce the
for loop:

for var i1 in 0..<10 {
print(i)
}

The for loop iterates over a range of Int values
(1,2,3,4,5,6,7,8,9,10), which are created using the range
operator ..<.

Range operators can be classified into three types:

e Closed range operator
e Half-open range operator

e One-sided range operator

CLOSED RANGE OPERATOR

To create a range that includes the beginning and ending
elements, use the closed range operator, which is

indicated by three periods (...):

let numbers = 0...10 // numbers =
[0,1,2,3,4,5,6,7,8,9,10]

HALF-OPEN RANGE OPERATOR

The half-open range operator (..<) creates a range that
includes the first specified element and all values before
the ending element:

let numbers = 0..<10 // numbers =
[0,1,2,3,4,5,6,7,8,9]

ONE-SIDED RANGE OPERATOR

One-sided range operators are variations on the closed
and half-open operators. As the name suggests, the
one-sided variants exclude one of the bounding
elements, creating a range that includes all possible
values on the unbounded side of the operator:

let a = [-1,-2,-3,0,1,2,3]

let b = a[2...] // b =1[-3,0,1,2,3]
let ¢ = a[...2] // ¢ =[-1,-2,-3]
let e = a[..<2] // d = [-1,-2]

Here, 2 refers to the position of a value in the array.

This is the end of this section. We have covered the
various operators available in Swift in detalil.

Activity A: Operators

Swift provides a rich set of operators you can use to
manipulate and transform data within your program.
Many of the Swift operators will be familiar, while some
provide powerful modern features you may not be
familiar with.

Use an Xcode playground to practice using Swift
operators.

1. Launch Xcode, create a new playground, and save it to your
desktop with the name Operators.playground.

2. Add a custom class called MyString, which contains a single
string object. Don't worry that we haven't formally covered objects—
we'll be covering them fully in the next lesson! For now, know that a
class is a custom type you can create that contains variables and
methods:

class MyString {
var content = "Foo"

}

3. Next, create two instances of your custom class: stringi,
string2, and a constant string3 assigned the value string2:

let stringl = MyString()
let string2 MyString()
let string3 = string2

4. Use variables to evaluate whether the content and instances are
equal to each other:

var isContentEqual = stringl.content
== string2.content

var isObjectEqual = stringl ===
string2

isObjectEqual = string2 === string3

5. Change the content of one of the strings, and re-evaluate whether
the content and object equality has changed:

string2.content = "Bar"
isContentEqual = stringl.content ==
string2.content

isObjectEqual = stringl === string2

6. Finally, use a for loop with a bitwise operator to print Int values
containing only one on bit (we'll cover for loops in detail in the next
section):

let val = 1

for 1 in 1..<16 {
print("\(val) shifted left \(1i)
times is \(val << i)")

}

Flow control structures enable developers to apply
logical processes and make decisions about what code
is executed. Most modern programming languages
provide a similar set of flow control structures:

e The if statements execute code blocks when a Boolean condition
is true.

e The while loops execute blocks of code while a Boolean condition
remains true.

e The for loops execute blocks of code a specific number of times.

It's said that virtually any programming control flow
requirement can be implemented with a while
statement alone. However, the other various control
structures allow programmers to create control flow
that's more concise and clearly expresses the intent of
the logical program flow.

Indeed, Swift provides a rich and powerful set of control
structures, which you'll learn about in this section.

The if Statement

if False

{expression}

True

Execute code block

The most basic flow control statement in programming is
the if statement, which executes a block of code if
some Boolean expression is true. The preceding
diagram is the flow chart of the if statement. The syntax
for the Swift if statement is as follows:

if {condition-1list} {
{statements}

} else {
{statements}

The following code example implements an if
statement:

Let age = 18
if age >= 18 {
print("person can vote")

A {condition-list} can be one or more expressions that
each return a Bool data type. Any of the following are
valid for a Swift {condition}-

e Avariable of Bool type

e Use of a comparison operator which returns a Bool type (for
example, ==, >, >=, and so on)

e The Bool constants true and false

e Calling a function that returns a Bool data type

Swift has several rules regarding the if statement that
may be different from other programming languages
you're familiar with:

e Parentheses aren't added around the {boolean expression}, as they
are in most C-inspired languages

e The {statements} must be enclosed in curly braces—even if there is
only a single statement.

e Swift allows multiple {conditions} in a comma-separated list. All
conditions in the condition list must be satisfied for the code block
to be executed.

CONDITION LISTS

The Swift 1 statement can accept multiple, independent
{condition} clauses, in a comma-delimited fashion.

In the following code sample, the code block is executed
only when the isCar and isNew values are both true:

let isCar = true
let isNew true

if isCar, isNew {
print("new car")

NOTE

Swift also supports the use of logical operators when writing the condition portion of an if
statement. For example, in the previous code, the following would be the equivalent in
Swift:

if isCar && isNew {
print('new car")

}

However, condition lists are required when using the if statement to unwrap optional values
as part of a condition, which you'll learn about in the next section.

OPTIONAL UNWRAPPING WITH IF

You'll use the if statement to unwrap optional values
frequently. In fact, the if construction will probably be

the most frequent way you'll access values stored in
optionals!

We covered optionals in the previous lesson.

Unwrapping a variable with the 1f statement is done by
embedding an assignment into a new variable within the
1f statement condition list, for example:

let price:Double? = 5.99

if let p = price, p > 5.0 {
print(p)

}

In this case, the original variable, price, is an optional.
In the first clause of the condition list, we ask the
compiler to check for a value within the optional price,
and if there is one, assign it to the new constant p. Then,
the second clause of the condition list tests whether the
unwrapped value is greater than 5.0, and if so, the code
block is executed.

If the optional price had been nil, the comparison
clause would not have been executed, and the code
block would not have executed. Program flow would
have continued after the if block.

Incidentally, when using the if statement to unwrap a
variable, it can be unwrapped into a mutable variable if
required. For example, the following code sample
extracts the optional value into the variable p, which is
then modified before the print statement:

let price:Double? = 5.99
if var p = price {
p+=1
print(p)
}

The switch Statement

Have a look at the following diagram. It illustrates how
the switch statement works:

switch {expression}

case condition
#1 true?

case condition
#2 true?

case condition
#3 true?

lFaIse

Default code block

Execute code
block #1

Execute code
block #2

Execute code
block #3

A

A switch statement is a powerful and flexible branching
structure that most developers will use very often in their
programs. Swift's switch has powerful, flexible features
that we'll cover in detail next.

Creating a program that needs to execute different code
blocks depending on the same {Boolean expression} is a
common requirement, and can be implemented with the
if statement as follows:

if personAge < 1 {
print("baby")

} else if personAge < 3 {
print("toddler")

} else if personAge < 5 {
print("preschooler")

} else if personAge < 13 {
print("gradeschooler")

} else if personAge < 18 {
print('"teen")

} else {
print("adult")

The preceding code implements the requirement to print
a child's life stage depending on their current age, but
repeating the condition for each case quickly becomes
repetitive and can be more prone to coding errors than a
more concise switch statement.

The previous code fragment can be easily rewritten with
a switch/case statement as follows:

switch personAge {

case
case
case
case
case

0.
1.
3.
5.

.<1: print("baby")

.<3: print("toddler")

.<5: print("preschooler")
.<13: print("gradeschooler™")

13..<18: print("teen")
default: print("adult")

A switch statement evaluates a single control
expression, personAge, in this case, and then executes
the lines of code contained within the first matching case

block.

Using the switch control structure to implement this logic
results in code that's more concise and easier to read

and maintain.

SWITCH STATEMENT RULES

There are a few syntax rules to note when using the
Swift switch statement:

e The cases within a switch statement must be exhaustive. In the

example above, the special default case is included to mean "When
no other case is matched, do this...."

e [f a default case is included, it must be the last case before the
switch statement's closing brace.

e [f the switch statement's control expression matches more than

one case expression, Swift will execute only the statements
included with the first matching case.

e A case must include at least one line of code. If you don't intend to
execute any code when a case is matched, add a single break

keyword to inform the compiler you intend for no code to be
executed when the case is true.

e By default, Swift's switch statement does not support fallthrough
to code in other cases. Fallthrough is supported via the
fallthrough keyword.

The switch statement goes much further, and has
many powerful extensions, which we'll review next.

THE BREAK KEYWORD

As mentioned above, if a case is matched that should
run no code, simply include a break statement.

The following example will print baby for ages < 1, adult
for ages > 17, and print nothing for ages 1-17:

switch personAge {
case 0..<1: print("baby")
case 1..<18: break
default: print("adult")

}

THE FALLTHROUGH KEYWORD

If a matched case should execute statements declared
for the case that directly follows it, use the
fallthrough keyword.

The following example will group all school age (ages 3-
17) people with the teen category:

switch personAge {
case 0..<1: print("baby")
case 1..<3: print("toddler")
case 3..<5: fallthrough
case 5..<13: fallthrough
case 13..<18: print("teen")

default: print("adult")

MATCHING NON-SCALAR VALUES

Unlike many other programming languages, Swift does
not limit switch statements to scalar data types. The
expression provided to a switch statement can be a
variable holding a scalar (discrete) set of values—as the
previous examples have been—but can also be floating-
point, string, enumerations, or any type for which you
can write a valid matching expression for each case
pattern.

The following example is a valid switch statement using
a Double data type as input:

switch temperature {
case -29.0..<(-7.0): print("bitter
cold")
case -7.0..<12.0: print("cold")
case 12.0..<20: print("warm")
case 20..<40.0: print("hot")
default: print("deadly")

Switch can also be used to match non-numeric values,
such as String values:

let quarterName = "Second Quarter"
var quarterNum: Int?

switch quarterName {
case "First Quarter": quarterNum = 1
case "Second Quarter": quarterNum = 2

case "Third Quarter": quarterNum = 3
default: quarterNum = 4

MULTIPLE PATTERNS IN A SINGLE CASE

A single case within a switch statement can match
multiple patterns, as shown here:

let monthName = "February"
var quarterNum: Int?

switch monthName {

case "January", "February", "March":
quarterNum = 1

case "April", "May", "June": quarterNum
=2

case "July", "August", "September":
quarterNum = 3

default: quarterNum = 4

USING THE WHERE STATEMENT WITHIN
CASE

Swift provides the flexibility to add evaluation logic within
a case statement. This flexibility allows a case to be
matched only when specific conditions are true.

The following switch statement branches on the
relationship between two variables, temperature and
humidity:

let temperature = 21.5
let humidity = 22.0

switch (temperature, humidity) {

case let (t,h) where t > h:
print("humidity lower")

case let (t,h) where t < h:
print("humidity higher")

default: "humidity and temperature are
the same"

}

Swift allows the flexibility for cases to use where in some
case expressions but not in others, for example:

let responseCode = 501

switch(responseCode) {

case 200: print("ok")

case let code where code >= 500:
print("server error'")

default: print("Request failed for
another reason")

}

EVALUATING OPTIONALS WITH A SWITCH
STATEMENT

The switch statement can branch depending on
whether a Swift optional is nil, and then evaluate the
value contained in a non-nil optional:

let responseCode:Int?
let error:Error?
// make a web service call, which will set
responseCode or error to non-nil
switch (error, responseCode) {

case (.none, .some(let code)) where code
== 200: print("success")

case (.some(let err), .none):
print(err.localizedDescription)

default: print("something else

happened")
}

As you can see already, the switch statement in Swift
is highly flexible and can meet a vast array of use cases!
In general, whenever you include multiple code branches
based on the value of a single variable (or related set of
variables), consider using the switch statement rather
than constructing a series of nested if/else
statements.

Activity B: Converting Code from if to
switch

The switch statement is essentially a more structured
and readable way to implement a nested if statement.
It's common to refactor a nested if to a case statement
to make the code more readable and maintainable. Let's
do this now.

Use an Xcode playground to convert a code with 1f
statements to an equivalent code with switch statements.

1. Launch Xcode, create a new playground, and save it to your
desktop with the name CaseRefactor.playground.

2. Add the following code, which uses a nested if statement to
determine the country code given a country name:

let countryName = "United States"
var countryCode = ""

if countryName == "United Kingdom" {
countryCode = "GB"
} else if countryName == "Mexico" {

countryCode = "MX"

} else if countryName == "Canada" {
countryCode = "CA"

} else if countryName == "Spain" {
countryCode = "ES"
} else if countryName == "United
States" {
countryCode = "US"
} else {
countryCode = "??"
¥

print("Country named '\
(countryName)' has code \
(countryCode)")

3. Next, let's employ an enumeration, which we learned in the last
lesson, to encapsulate the country names into a more maintainable
data structure. Add the following code underneath the print
statement:

enum Countries:String {

case uk = "United Kingdom"
case mx = "Mexico"
case ca = "Canada"
case es = "Spain"
case us = "United States"

case unknown = ""

}

4. Add a switch statement, which accomplishes the same logic as
the nested if—but in a more readable and structured way. Also
note that because a case statement is required to be exhaustive, it
would be a compiler error to forget to add countries included in the
enumeration to the case statement:

switch Countries(rawValue:
countryName) ?? .unknown {

case .uk: countryCode = "GB"
case .mx: countryCode = "MX"
case .ca: countryCode = "CA"
case .es: countryCode = "ES"

case .us: countryCode = "US"

case .unknown: countryCode =
Ilr)r) n

}

5. To make the conversion complete, add the original print statement
below the switch statement:

print("Country named '\
(countryName)' has code \
(countryCode)")

After the branching structures if and switch, the most
common structures you'll use in your programming are
looping structures, which cause your program flow to
execute the same code iteratively.

The looping structures you'll learn in this section are the
following:

e for..in, which executes the same code a predetermined number
of times

e while and repeat..while, which executes code until a true
condition becomes false

As with the switch control structure, there are many
features and flexible options provided by these
structures that make Swift more expressive and powerful
than many other programming languages.

The for...in Statement

The following diagram illustrates how the for...in
statement works:

Initialize list of objects

Fetch first object from list

Objects False

remain?

True

Execute code block with
current object

Fetch next object from list

Most programming languages have a for statement used
to execute a code statement a certain number of times.
The preceding diagram illustrates how the for...in
statement works. A canonical example of a for loop in C,
similar to many other C-inspired languages, is the
following:

for(int i=0; i<10; i++)
printf("i=%d\n", 1i);

The equivalent for loop written in Swift is as follows:

for var i1 in 0..<10 {
print(i)

Comparing the two for loops, they appear quite similar,
but you could argue the Swift version is easier to read!

NOTE

In Swift, a for..in loop always iterates over a collection of values, rather than simply
serving as a mechanism to count iterations. The range operator used in the preceding
example returns a set of Int values, which are then iterated over.

Internally, Swift creates an Iterator, then calls the next () method of the Iterator until
next (') returns nil, running the code block for each iteration.

ITERATING OVER OBJECTS

Although the previous code example actually does
iterate over Int values, it's effectively running a code
block a specific number of times. More often, you'll use
for..in to iterate over a collection of objects stored in
your application.

The most common method to iterate over a set of
objects is to use the for syntax, as in the following
example:

let strings = ["First String", "Second
String", "Third String", "Fourth String"]
for obj in strings {

print(obj)

Using this syntax, the print statement within the block
is executed once for each object in the strings array.
Swift implicitly creates the constant variable obj for use
within the block.

NOTE

In the previous example, the obj local variable is implicitly created as a constant (that is,
let).

While 1et is the default behavior, you can instruct the for loop to create a mutable
variable by specifying var in the for loop declaration, as follows:

for var obj in strings {
obj = "obj is: \(obj)"
print(obj)

ITERATING OVER ARRAY OBJECTS WITH
INDEX

The preceding example iterates over the strings array,
providing each string to the execution block in a local
variable named obj. Sometimes, the code may need to
know the ordinal position of the object being processed.
This can be accomplished by using the Array
enumerated member function of the collection being

iterated:

for (index, text) in strings.enumerated()

{

print("The object at index \(index) is
\(text)")
}

THE FOR LOOP WHERE CLAUSE

The next feature of the for loop we'll learn is using the
where clause to control which iterations are processed.

In the previous examples, the code always outputs all of
the strings in the variable strings. We might want to only
output strings meeting a certain test, for example, only
strings beginning with the letter F:

One way to accomplish this requirement would be to
rewrite the for loop as follows:

let strings = ["First String", "Second
String", "Third String", "Fourth String"]

for string in strings {
if string.starts(with: "F") {
print(string)

An even more concise way to write this code is to use
the for loop's where clause, as follows:

let strings = ["First String", "Second
String", "Third String", "Fourth String"]

for string in strings where

string.starts(with: "F") {
print(string)

}

THE BREAK CONTROL TRANSFER
STATEMENT

Like most C-inspired languages, Swift supports the use
of the break control transfer statement in for loops.

The break statement has the effect of immediately
transferring program flow to the statement following the
for loop, effectively skipping the remaining portion of
the current iteration, and cancelling all remaining
iterations.

In the following example, the code within the for loop
tests whether the current iteration's string begins with the
letter T. If so, the for loop is immediately exited:

let strings = ["First String", "Second
String", "Third String", "Fourth String"]

for string in strings {
if string.starts(with: "T") {
break

}
print(string)

}

THE CONTINUE CONTROL TRANSFER
STATEMENT

Swift also supports the use of the continue control

transfer statement in for loops.

The continue statement has the effect of skipping the
remaining portion of the current iteration. Control then
passes to the top of the for loop, where the next iteration
proceeds (if there is a next iteration available).

In the following example, the continue control transfer
statement is used to skip any iteration having a string
starting with the letter F:

let strings = ["First String", "Second
String", "Third String", "Fourth String"]

for string in strings {
if string.starts(with: "F") {
continue

}
print(string)

Swift provides a simple, expressive, and powerful for
loop for you to use in your programs. Key points to
keep in mind regarding usage of the for loop are as
follows:

e for always iterates over a collection of elements (and is not simply
a counting variation of the while loop as it is in some programming
languages).

e The Swift Standard Library includes many functional programming
methods that can generate transformed object collections (for
example enumerated() as we did above). Use these methods to
maintain simpler logic within your loops.

e for loops support the break and continue control transfer

statements to provide flow control exceptions controlled by the code
block they iterate over.

The while Loop

Is condition
true?

¢True

Execute code block with

current object

False

Where the for loop executes a code block a
predetermined number of times, the while loop
continues executing a code block until a Boolean
expression evaluates as false. The preceding diagram
illustrates how the while loop works.

The general syntax of the while loop is as follows:

while {condition-list} {
statements

The syntax rules for the while loop are essentially
identical to that of the if statement, specifically the
following ones:

e {condition-list} can be one or more conditions, each returning a
Boolean value

e {condition-list} can include the unwrapping of an optional value,
which is then used in the code block

e There are no parentheses around the {condition-list}

e The code block must be enclosed in curly braces

The while statement supports the break and
continue keywords to redirect flow control in the same
manner as the for loop.

The following example uses a while loop to iterate over
an array of Double values to calculate an average for all
prices less than seven (7):

let price:[Double] = [1.99, 2.99, 3.99,

4.99, 5.99, 6.99, 7.99, 8.99]

var total = 0.0

var i = 0

while i < price.count && price[i] < 7.0 {
i+=1
total += price[i]

}
print(total Double(i)) / 5.49

THE REPEAT...WHILE LOOP

Because it evaluates its condition(s) prior to the first
iteration, a while loop occasionally won't meet your
needs. If you won't know whether a while loop should
continue until after the first iteration, use the repeat..
while variant.

If you were developing a console application that should
play a game until the user pressed Enter without
entering text, a repeat...while loop would be the ideal
solution. For example, the following Swift command-line
program effectively uses repeat..while where a while
loop would be awkward:

#1/usr/bin/swift

func playGame() {
print("simulate gameplay")

}
repeat {

playGame()

print("enter g to quit")
} while readLine() !'= "q"

NOTE

In most other programming languages, the Swift repeat..while statement is called do...
while. In Swift 1.0, this statement did use the more traditional do..while name. However,
when Swift added exception handling, the do keyword was given to that feature, and
replaced with the keyword repeat.

This completes our look at the loops. Loops in Swift are
important to implement the various program flow
structures you might need to develop a variety of custom
applications.

Activity C: Implementing Loops

Loops and iteration are a core part of any computer
program. Data is often stored in array and collection data
structures, and loops allow you to develop concise, well-
organized code to operate on them.

Use an Xcode playground to practice using the looping
flow control structures we have covered in this section.

1. Launch Xcode and create a new playground, then save it to your
desktop with the name Loops. playground.

2. Add the following declaration of a new array, which contains a list of
Canadian provinces:

let provinces = ["Ontario",
"Quebec", "Nova Scotia", "New
Brunswick", "Manitoba", "British
Columbia", "Prince Edward Island",
"Saskatchewan", "Alberta",
"Newfoundland and Labrador"]

3. Add the following repeat..while loop to print each of the
provinces to the console:

var i = 0
repeat {
print(provinces[i])

i+=1
} while i < provinces.count-1

4. Add the following while loop to print the same list of provinces to
the console:

i=20

while i < provinces.count-1 {
print(provinces[i])
i+=1

}

piginid@E==========---

5. Add the following for loop to build a string containing the first
letters of all provinces, and then print to the console as a sorted
unique set of letters:

var firstLetters = ""

for province in provinces {
firstLetters +=

province.prefix(1)

}

print("Canadian provinces start with

one of the following letters: \

(Set(firstLetters).sorted())")

6. Finally, use a for loop with enumerated to determine the array
indices of all provinces starting with the letter N:

var nProvinces = [Int]()
for (index, province) in
provinces.enumerated() {
if province.prefix(1) == "N" {
nProvinces.append(index)

}

print("The indices of provinces
starting with 'N' are: \
(nProvinces)")

In this lesson, you've learned how to use Swift's key
language:

Assignment, arithmetic, and bitwise operators

Comparison and range operators

The Swift branching features: if and switch

Loops: for, while, repeat..while

You now have the skills needed to develop robust
applications using Swift's powerful and expressive
language syntax. In the next lesson, you'll learn the skills
to develop functions and classes to organize your code.
You will also explore and use error handling to efficiently
handle unexpected errors in your programs.

Chapter 3. Functions,
Classes, and Structs

In the previous two lessons, you learned the
fundamentals of Swift syntax, data types, and how to use
variables to store and operate on data in a Swift
program. Specifically, you learned how to use
fundamental Swift elements such as operators, control
structures, variables, and built-in data types. With
knowledge of these language elements, you're already
prepared to create fully functional Swift programs.

In this lesson, you'll build on these skills, and learn how
to develop fully featured Swift applications, catch
unexpected errors, and begin using asynchronous
programming paradigms. You'll learn how to create your
own data types, and create object-oriented applications
using classes and structs.

All object-oriented programming languages provide the
ability to build your own custom classes. Classes
increase the level of modularity in your application, and
promote code reuse. This lesson will cover the key skills
you'll need to build robust, object-oriented applications
with Swift.

By the end of this lesson, you will be able to do the
following:

Define and call Swift functions

Explain how to pass functions as parameters and argument labels

Implement exception handling with do...catch and guard

Use object-oriented features such as struct and class

In the program structure section in Lesson 1, we
mentioned that functions are a key part of Swift's
structure, and are units of code that can accept
parameters and can return values. In this section, we'll
dive into Swift functions, learning how to implement and
call them in the course of a Swift application.

Before diving into Swift function syntax, we should
summarize some key points about how functions are
used in Swift, and in modern software development
generally:

e Functions are units of code that carry out some specific task.

e |nterms of lines of code, functions should be short. How many lines
of code is a maximum for a function has been a topic of debate for
decades. However, long functions often do not satisfy the specific
task definition.

e All things being equal, it's better to have a complex process broken
into smaller functions, rather than combined into a large, complex
function.

e All things being equal, a function that references its parameters—
but not global variables—is more maintainable, less error-prone
and more testable.

Defining a Function

For many developers new to Swift, its function
declaration syntax may seem unfamiliar. Swift's function
syntax is probably most similar to Pascal, but also has

ideas from C++, Objective-C, and others. With some
practice, Swift code will begin to feel elegant and
familiar.

The basic syntax for a Swift function that accepts
parameters is as follows:

func functionName(parml: Typel, parm2:
Type2) -> ReturnType {

The basic syntax for a Swift function that accepts no
parameters is as follows:

func functionName() -> ReturnType {

The basic syntax for a Swift function that accepts no
parameters and returns nothing is as follows:

func functionName() {

Let's break down the syntax:

e The keyword func signals that what follows is a function
declaration. In Swift, there's no distinction between functions (that
return a value) and procedures (which do not)—both begin with
func.

e Following func is the name of the function. The naming rules for
functions are the same as for Swift variables, and like variables, it's
conventional to begin a function name with a lowercase letter.

e [f the function accepts input parameters, they are listed within
parentheses. Each parameter is followed by a colon (;) and then the
data type of the parameter.

e [f the function returns a value, the data type of the returned value is
provided after an arrow formed by the hyphen and greater than

characters (->).

e The beginning of the code block referenced by the function name
begins at the opening brace character ({).

The following is a basic Swift function:

func printArray(array: [String]) -> Int {
var count = 0
for string in array {
print(string)
count += 1

}

return count

This function is defined with the name printArray. It
accepts a single parameter—an array of String, which
it will iterate and print. Finally, it returns a single Int value,
which is the count of String values that it printed to the
console.

Argument Labels

In the previous section, we created a function with a
parameter named array, which is the parameter label we
used when calling the function:

printArray(array: strings)

Swift supports optional argument labels for parameters,
which will be familiar to Objective-C programmers, and
likely unfamiliar to others.

Consider the following function, which returns the

concatenation of two strings:

func concatenatedNames(nl: String, n2:
String) -> String {

return "\(n1) \(n2)"
}

While using short variable names within the function is
convenient, calling the function may seem unintuitive
from the point of view of the programmer calling the
function:

let fullName = concatenatedNames(n1i:
"John", n2: "Smith")

Argument labels allow us to create a function that allows
the caller of our function to refer to the function's
parameters by different names than we use within the
function.

For example, we might add argument labels to the
function as follows:

func concatenatedNames(firstName n1i:

String, lastName n2: String) -> String {
return "\(n1) \(n2)"

}

Adding the argument labels doesn't change the
implementation of the function at all—we still use the
variable names n1 and n2 within the function. But the
caller of the function may now use the more intuitive
argument labels to refer to the parameter names:

let fullName =
concatenatedNames(firstName: "John",
lastName: "Smith")

Excluding Argument Labels

In addition to changing the calling reference for a
function's parameters, argument labels can be used to
remove names for input parameters. Doing so can make
functions feel more like calling C or Objective-C
functions.

For example, consider the following function:

func addTwoInts(_ a: Int, _ b: Int) -> Int
{

return x + vy

By specifying the underscore (_) character for the
argument label associated with each parameter, the
caller need not specify a parameter name. The compiler
will simply match each passed parameter to the
function's passed parameter in the same order in which
they are declared:

let ¢ = addTwoInts(4, 5) // ¢ will be 9

NOTE

While excluding parameter names is a powerful feature, it should be used appropriately.
Use this technigue when the parameters passed to a function are obvious. For example:
addTwoInts(a,b), or logMessage("Opened file"). Don't use optional parameter
names to make Swift feel more like you're using a programming language you've used in
the past. The default Swift behavior—explicitly specifying parameter names—is intentional,
and makes code easier to read, understand and maintain.

Parameter Default Values

Like many other C-inspired languages, you can provide
parameter default values for any parameter. When a
default value is specified in the function definition, the
function caller can omit the parameter—and the default
value will be substituted instead.

The following function prints the temperature. It assumes
the provided value is in Centigrade units, if units are not
specified:

enum TemperatureUnits : String {
case celcius = "\u{00BO}C"
case fahrenheit = "\u{OOBO}F"

}

func printTemperature(value: Double,
units: TempUnits = .celcius) {

print("The temperature is \(value)\
(units.rawvalue)")

}

Because a default value is provided for units, we can
omit the units when calling the function:

printTemperature(value: 17.5) // The
temperature is 17.5°C

Activity A: Implementing a Function

In any programming language, functions are a core
language element used to make programs modular,
readable, and maintainable, and virtually every program

you write will use functions extensively. Let's practice
what you've learned about Swift functions.

Use an Xcode playground to implement a function that
uses a variety of parameter techniques covered until
now.

1. Launch Xcode and create a new playground, then save it to your
desktop with the name Implement a Function.playground.
2. Add the following function to the playground:

func buildAddress(_ name: String,
address: String, city: String,
zipCode postalCode: String, country:
String? = "USA") -> String {

return """
\ (name)
\(address)
\(city)
\ (postalCode) \
(country 2?2 "")

}

3. Call the function within the print function twice, passing parameters
as in the following code

print(buildAddress("John Doe",
address: "5 Covington Square", city:
"Birmingham", zipCode: "01234"))

print(buildAddress("John Doe",
address: "5 Covington Square", city:
"Birmingham", zipCode: "01234",
country: nil))

An example output is given here:

John Doe
5 Covington Square
Birmingham
01234

John Doe

5 Covington Square
Birmingham

01234

Returning Values from Functions

Returning values from functions is largely consistent with
C-inspired programming languages you've probably
used in the past. When processing is finished, a function
simply uses the return keyword to return a value to the
caller. In the previous function example, we
concatenated two String variables, and returned the
result using the return keyword.

The following are some Swift-specific notes regarding
returning values from functions:

e The value returned from the function must exactly match the return
data type specified in the function definition. To avoid compile-time
errors, convert or cast values that do not exactly match the return
data type.

e [tis allowed in Swift to use the return keyword anywhere in the
function. You can return from more than one place in the function,
when appropriate (such as in a guard statement, which we'll cover
shortly).

e To return from a function that does not specify a return value,
simply use the return keyword by itself.

e When a function returns no value, the return statement before the

function's closing brace is optional.

e [f areturn value type is listed in the function definition, you must
return a value of that type from every code path within the function.
Failure to do so will generate a compiler error.

e While Swift functions can return only one value, that value can be a
tuple, which can embed multiple other values together. For
example, to return the three integers 2, 4, and 6 from a function, we
can do the following:

return (2, 4, 6)

Swift can also return complex and custom types from
functions. For example, your functions can return
instances of structures, instances of classes, and
references to other functions. So, while returning a single
value may seem limiting, Swift actually provides
tremendous flexibility in its function return features.

Using @discardableResult

The Swift compiler will generate a warning if you call a
function that returns a result but do not use or assign
that result in your code. For example, consider the
following function:

func addTwoInts(_ a: Int, _ b: Int) -> Int
{

return x + vy

Suppose we had called it with this line of code:

addTwoInts(4, 5) // return is
"discarded"

The Swift compiler doesn't understand why we would call
a function that returns a value but not use that value.
While not an error, it will generate a compile-time
warning.

There are times when you may implement a function that
returns a value which may not be important to the calling
program. This is especially true when developing
frameworks for use by other applications—where you
provide functionality that the consumer of the framework
may not feel is important to them.

For example, a 1og() function may return a Bool
indicating how many characters of data were written to
the log—even if the callers don't consider this
information interesting:

func log(_ message: String) -> Int

Suppose the caller calls this function without using the
Int return value:

log("app started!")

The compiler will generate the following warning:

Result of 'log(message:) is unused

To suppress the warning, simply add the
@discardableResult function attribute with the
declaration:

@disdcardableResult func log(_ message:
String) -> Int

Now, knowing that you expect callers might disregard the
return value, the Swift compiler will no longer issue a
warning at the point of the function call.

NOTE

Another way to suppress this warning is to assign the function return value to a
placeholder, for example:

_ = log("app started")

In this syntax, the underscore character (_) is effectively a local variable with no name.

Function Attributes

In the previous section, we used the function attribute
discardableResult to provide additional information
to the Swift compiler about the usage of a function we
declared. In that case, the discardableResult
attribute informs the compiler that we expect callers of a
function may ignore the value returned from the function.

You may encounter and use other function attributes in
the course of your Swift programming. The following are
some of the more common function attributes:

Name |[Description

objc |Used to generate Objective-C calling wrappers. Used when a Swift
function you write should also be callable from an Objective-C

module.

nono |[Suppresses the generation of Objective-C compatibility wrappers

bjc |where it otherwise would be created. Typically used to resolve
circular references that occasionally occur between Swift and
Objective-C modules.

avail |Informs the compiler which OS versions, Swift versions, or

labl |platforms are required for a function to be called.

e

disc |[The return value may be ignored by function callers without

arda |generating a compiler warning message.

bleR

esul

t

IBAc [Marks a function as a call point that can be connected to an

tion [Interface Builder design file.

intr |[The first version of the platform or language where this function

oduc |was available.

ed

depr |Marks a function as deprecated.

ecat

ed

For more complete information about language
attributes, refer to the Swift documentation at
https://developer.apple.com/library/content/documentatio
n/Swift/Conceptual/Swift_Programming_Language/Attrib
utes.html.

Variadic Parameters

Swift supports functions with variadic parameters—these
are named parameters that accept more than one value
of the same type.

For example, we could write a function to make a
sentence containing a variable number of words:

import Foundation
func makeSentencel(_ words: String...) ->
String {
var sentence = ""
for word in words {
sentence += "\(word) "

}
return "\
(sentence.trimmingCharacters(in: [" "]))."

}

let sentencel = makeSentencel("Hello",
"World", "And", "Universe")

In this example, the makeSentencel function will

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Attributes.html

accept any number of words as input, and then uses the
for..1in loop to combine them into a sentence.

Because Swift's array features are quite powerful, and
declaring an ad hoc array of values of the same type is
quite easy, you might also approach variadic parameters
in the following way:

func makeSentence2(_ words: [String]) ->
String {
var sentence = ""
for word in words {
sentence += "\(word) "

}

return "\
(sentence.trimmingCharacters(in: [" "]))."

}

let sentence2 = makeSentence2(["Hello",
"World", "And", "Universe"])

The output of both makeSentencel and
makeSentence2 is the same:

Hello World And Universe.

inout Parameters

In each example so far, when we've written a function
that provided values back to the point of function call,
we've used function return to do so. Using the return
statement to return a new value to a function caller is the
most common approach, and the approach you should

use by default.

However, using return to send data back to the
function's caller returns a new value. In some cases, it
may be desirable to modify variables that are owned by
the caller—rather than return new values. Swift provides
inout parameters as a way to accomplish this.

Consider the following function, which swaps two Int
values without inout parameters:

func swapValuesl(_ a: Int, _ b: Int) ->
(Int, Int) {
return (b, a)

}
var a = 3
var b = 2

let (a1,b1) = swapValuesi(a, b)

a=al
b = bl

print("\(a), \(b)") // 2, 3

The parameters a and b are read-only within the
function, and swapValues cannot change them.
Instead, the function allocates a new tuple and returns it
with the values in a swapped order. The caller assigns
these new values into the tuple (a1, b1). The caller
must then reassign the values of a and b to achieve the
desired result.

By using inout parameters, we can write a function that

can modify the values of the parameter values, and allow
it to make the changes on behalf of the code in the
calling scope:

var a = 3
var b = 2
func swapValues2(_ a: inout Int, _ b:

inout Int) {
let temp = a
a=~>b
b = temp

}
swapValues2(&a, &b)

print("\(a), \(b)") // 2, 3

In the swapValues?2 version, the inout keyword makes
the parameters a and b read/write variables, so the
code can reassign their values.

When calling inout parameters, an ampersand (&) must
be placed before the variable being passed into the
function. If you've used C or C++, you may recognize
this syntax, which in those languages means the
address of. The effect is the same as in those languages
—the callee of the function is given permission to
change the content of the variable provided as a
parameter.

Recursion

Like many modern programming languages, Swift
supports recursive function calls. Recursion is simply the
ability for a function to call itself from within its own body.
Most canonical use cases for recursion come from

computer science, for example, sorting algorithms.
However, even if you're an end user app developer,
there may be times when recursion will make your code
more concise and efficient.

The following function uses recursion to calculate the
mathematical factorial:

func factorialwWithRecursion(n: Int) -> Int

{

returnn =072 1 : n *
factorialwithRecursion(n: n-1)
}

The following line calls the recursive function, assigning
the result to a variable named factorial?2:

let factorial2 = factorialwWithRecursion(n:
6) // 720

Functions as Parameters

Many languages, including Swift, have the ability to pass
in functions by reference, which can then be called from
within the called function. In many languages, the
function passed as a parameter is referred to as a
callback function, since it has the effect of allowing a
function to call back to the caller's code to perform some
action after the function has done what was asked of it.

In the following example, let's rewrite the makeSentence
function with a version that passes in a callback function
as a parameter:

import Foundation
func makeSentence3(_ words: [String],
thenPrint: (String) -> Void) {
var sentence = ""
for word in words {
sentence += "\(word) "

}
thenPrint ("\

(sentence.trimmingCharacters(in: ["
H])).H)
}

func printSentence(_ sentence: String) {
print(sentence)

}

makeSentence3(["Hello", "World", "and",
"Universe"], thenPrint: printSentence(_:))

The output of this code is identical to makeSentencel
and makeSentence?2 that we saw eatrlier.

In the function as parameter version 3, the
makeSentence3 function has no knowledge of how the
printing will be done. It simply calls the function it's
provided through the thenPrint parameter, and calls it
when the sentence is finished.

The function as parameter technique is commonly used
in scenarios where there may be more than one
predefined alternative ending for a program flow. In the
preceding example, we could have one
printSentence routine that printed to the console, a
second that posted the result to a web service, and a
third that displayed a message box.

Functions as parameters are very powerful and flexible,
and are commonly used in Swift programming. Next,
we'll learn about a similar—and even more commonly
used variant of this technique: closures.

Closures

In the previous section, you learned how to pass a
named function into another function, allowing the latter
to call the former at the appropriate time.

Closures are another way to pass code to a function,
which it can then call later. In the case of closures,
however, we're passing a block of code that can be
called from within the function.

The two approaches are very similar—and to some
extent, interchangeable. In both cases, the called
function will run a block of code using the name specified
by its own parameter name. A closure is primarily
different in that a function as parameter has a name in
the caller's scope, while a closure is an unnamed block
of code.

Closures in Swift are the most common approach to
providing code to execute after asynchronous
processing has completed. The following function uses a
closure to download data from the web. You'll fully
implement this solution in the following activity:

func dowebRequest(closure: @escaping (_
webSiteContent: String?) -> Void) {

let url = URL(string:
"https://www.packtpub.com")!

let urlRequest = URLRequest(url:
url)

let session =
URLSession(configuration:
URLSessionConfiguration.default)

let task = session.dataTask(with:
urlRequest) {
(data, response, error) in
let content = String(data:
data!, encoding: .utf8)
closure(content)

}

task.resume()

This ends our look at functions. In this section, we took a
deep dive into how Swift implements functions and the
importance of functions in developing virtually any
application in Swift.

CREATING A FUNCTION TO RECEIVE
CONTENT FROM AN ASYNCHRONOUS
WEB SERVICE CALL

For application developers who use any type of web
service, processing the results of asynchronous web
service requests will be a daily requirement. Let's apply
what you've learned about writing functions to implement
real-world web service requests:

1. Launch Xcode, and open the start project named Functions -
Starter.xcodeproj.

2. Add the following function to the ViewController.swift file
before the closing brace of the ViewController class:

func dowWebRequest() -> String {
var webPageContent = "No data
yet!"

let url = URL(string:
"https://www.packtpub.com")!
let urlRequest = URLRequest(url:
url)
let session = URLSession(
configuration:
URLSessionConfiguration.default)

let task =
session.dataTask(with: urlRequest) {
(data, response, error) in

webPageContent =
String(data: data!, encoding:
.utf8)!
}

task.resume()

return webPageContent

}

3. Change the start project's startButtonTapped method to contain the
following body:

@IBAction func startButtonTapped(_
sender: UIButton) {

self.updateTextView(dowebRequest())
}

4. Run the application with a simulator, press the Start Web Request
button, and observe the output in the TextView underneath the
button.

e What happened? Why didn't that work?

e The doWebRequest function, as written, doesn't wait for
the web request to complete before returning the
webPageContent String variable.

5. Replace the doWebRequest function with the following
implementation:

func dowebRequest(closure: @escaping
(_ webSiteContent: String?) -> Void)
{

let url = URL(string:
"https://www.packtpub.com")!

let urlRequest =
URLRequest(url: url)

let session =
URLSession(configuration:
URLSessionConfiguration.default)

let task =
session.dataTask(with: urlRequest) {
(data, response, error)
in
let content =
String(data: data!, encoding: .utf8)
closure(content)

}

task.resume()

e This function accepts a closure parameter (named
closure). In this implementation, the function
dowWebRequest has no return value. Instead, it waits until
the web request has completed, and then returns the HTML
response by calling the closure function, passing the
HTML to the closure as a parameter value.

6. Modify the startButtonTapped function as follows, so that it
calls the new dowebRequest version, which accepts a closure
parameter:

@IBAction func startButtonTapped(_
sender: UIButton) {
dowebRequest { (content) in

self.updateTextView(content!)

}

7. Run the application on a simulator, press the Start Web Request
button, and observe the output in the debug console. You should
now see the HTML source for the web page assigned to the url
variable.

Assuming you encountered no exceptions or web
connectivity problems, the program you coded for the
web request activity will have worked just fine. But it
lacks any error handling and is not up to scratch to
include in a production application!

Open the project in the Functions - Finished
with Error Handling folder, and review it. Then, ask
yourself what steps have been taken to ensure this code
will not crash the application when external data is not
returned as expected.

We ended the last section by examining some sample
code after it had been made production-quality by adding
correct error handling techniques. In this section, we'll
dig into the most common Swift error handling
techniques, which will help ensure all the code you
develop in Swift will be robust and of high quality.

Swift supports many of the same error handling
techniques available in other object-oriented languages,
such as C++, Java, and C#. Functions—either your own
or standard library functions—often return error codes as
integers, error types, and Boolean variables. In addition,
Swift provides exception handling using the do..catch
construction, which is functionally equivalent to the try...
catch construction used in many other languages.

The do...catch Statement

Most modern languages have exception handling
features that allow code to throw exceptions from an
inner scope that can be caught in an outer scope. In
Swift, this pattern is implemented using the do...catch
structure.

You'll very often use the Swift do..catch structure when
calling underlying Apple frameworks to do data
processing or file access work on your behalf. Catching

exceptions can help bubble up highly detailed error
information to your code.

The following code declares a block that calls a function
decode, which may throw an exception of type Error:

do {
let userObject = try decode()
print(userObject.name)

} catch let error {
print(error)

}

The important thing to note is that the code in between
do and catch doesn't explicitly check for an error. It
simply instructs the decode function to try to complete
successfully. In the event that decode encounters an
error, the remainder of the do block will be skipped and
the catch block will receive the thrown Error object,
assigning it to the local variable error.

Multiple catch Blocks

In practice, a function that throws an exception may
throw one of several more specific exceptions,
depending on what went wrong.

The do...catch construction allows you to catch more
than one exception type. This works almost identically to
constructing a switch statement with multiple case
code blocks.

Multiple catch blocks provide the program with more

specific information about the cause of the decoding
error, if available, for example:

func decodewWithException() {
if let data = jsonText.data(using:
String.Encoding.utf8) {
let decoder = JSONDecoder ()

do {
let userObject = try
decoder .decode(UserInfo.self, from: data)
print("User decoded form JSON: \
(userObject)")
} catch let
DecodingError.typeMismatch(_, context) {
print("Type Mismatch Error: \
(context.debugbDescription)")
} catch let
DecodingError.dataCorrupted(context) {
print('"Decoding Error: \
(context.debugbDescription)")
} catch let error {
print(error.localizedDescription)

print("program always continues from
this point.")
}

Using do without catch

What if you didn't want to catch an exception, but wanted
your program to continue even when an exception is
thrown?

By using the try? keyword (that is, try with a question

mark after it), we can ask Swift to try to run code that
may throw an exception, and return the result as an
optional variable. In this case, if an exception is thrown,
the returned optional will be nil; if no exception is
thrown, the optional will contain the value the function
would normally return, for example:

do {
let userObject = try? decode()
print(userObject?.name)

}

In this case, if the decode function throws an exception,
the userObject optional will be nil, and the
print(luserObject.name) line will not be executed.
Because the action taken if an exception is thrown is to
assign nil to the variable on the left-hand side of the
equal sign, it's no longer necessary to wrap the decode
call in the do...catch block.

The guard Statement

The guard statement is most commonly used at the top
of a function body to validate that the data the function
will use to complete its task is in an expected state. In
this sense, the guard statement acts as a guard at the
gate—checking the contents of inputs to the function
before they're allowed in.

In early versions of Swift, we didn't have the guard
statement, and it was common to implement functions
structured like the following:

func printAddressi(zipCode: String?,
countryCode: String?, areaCode: String?) -
> Bool {
if let zip = zipCode, let country =
countryCode, let area = areaCode {
if zip.count '= 5 {
return

}

if country.count !'= 2 {
return

}

if area.count != 3 {
return

}
print("\(zip), \(country), \
(area)")

}

While this function isn't too difficult to follow, it can
become confusing for the reader where the ending brace
of the if let { } block ends. Developers would
frequently reduce the editor font to a tiny size to try to
make out where in the sequence of ending braces the
close of the original error checking if let block ended!

The guard keyword is effectively a clearer version of this
structure—moving the closing braces of validations
together in neat code blocks. An equivalent function
using the guard syntax is as follows:

func printAddress(zipCode: String?,
countryCode: String?, areaCode: String?) {

guard let zip = zipCode, zip.count ==
5 else { return }

guard let country = countryCode,
country.count == 2 else { return }

guard let area = areaCode, area.count
== 3 else { return }

print("\(zip), \(country), \(area)")
}

In the second version, the guard statement makes the
code more readable, and moves all the state-checking
code to the beginning of the function where it can be
easily reviewed and understood.

We have reached the end of this section. Here, we
focused on error handling and exception handling, as
implemented in Swift. To reiterate, Swift uses do..catch
instead of try..catch and also allows us to use multiple
catch blocks.

Activity B: Exception Handling

Exception handling, as the name implies, is an error
handling technique that enables you to let the Swift
compiler know what errors you expect, and provide a
way to listen for them if they occur while your program is
running. We'll now apply exception handling in one of the
most common use cases for application developers—
parsing data structures from JSON into application data
structures.

Use an Xcode playground to practice catching an
exception while parsing a JSON string into a custom

data structure—a very common task in any application
development work that involves integration with web
services.

1. Launch Xcode and create a new playground, then save it to your
desktop with the name ExceptionHandling.playground.
2. Add the following import to the top of the playground file:

import Foundation

3. Add the following code to define a data structure that holds basic
user information for an application:

struct UserInfo : Codable {
var name: String
var email: String
var userId: String

}

4. Now add the following decodeJson function to decode a JSON
string:

func decodedson(jsonText: String) {
if let data =
jsonText.data(using:
String.Encoding.utf8) {
let decoder = JSONDecoder ()

do {
let userObject =
try
decoder .decode(UserInfo.self, from:
data)

print("User decoded form
JSON: \(userObject)")
} catch let error {

print(error.localizedDescription)

}

print("program always continues
from this point.")

}

5. Add the following statement to call the decodeJson function with a
data string that almost correctly matches the expected data
structure keys (the name field has the wrong case):

decodeJson(jsonText : "{ \"Name\"
\"John Smith\", \"email\"
\"john@smith.com\", \"userId\"
\"jsmith\"}")

6. Observe the exception printed to the debug console.

7. Modify the string to correct the uppercase letter in the name field,
and observe that the properly encoded JSON object is printed in
the console.

Because the jsonText data is not in the correct format
(the name field cannot begin with an uppercase letter),
the decoder .decode function throws an exception.
The exception is caught in the catch block, reporting an
error. You eliminate the exception by changing the case
of the name field in the jsonText string.

Throughout the past couple of lessons, we've been
learning how to use Swift syntax, variables, functions,
and control flow structures to develop the building blocks
of Swift applications. In the final section of this lesson,
we'll learn how to pull all those language components
together into Swift's object-oriented classes and
structures—the high-level building blocks of most
professional Swift applications.

Object-Oriented Principles

Swift is an object-oriented programming language, and
enables the core principles of object-oriented
programming. Generally speaking, in object-oriented
programming, variables, functions and data structures
that implement a functional unit of your program are
combined into an object that exists within its own
namespace, and is accessed by other objects through
filtered, publicly exposed interfaces.

Using Swift, instances are created using both structs
and classes. Structs and classes support encapsulation
and abstraction, though only classes support inheritance.
Both object types—structs and classes—are frequently
used in Swift, and neither is better than the other for all
use cases.

Classes Versus Structs

Virtually all object-oriented languages are based on the
concept of organizing units of code into classes that
perform a very specific set of actions on a specific set of
data.

ILLUSTRATION

A class can be thought of as a pattern, such as one a
clothes factory might place over a bolt of fabric to cut a
new shirt. The pattern (class) has all the dimensions and
notations that describe to the tailor what shape the shirt
will take. The tailor can use the pattern to create as
many shirts as they need—each one perfectly formed by
placing the pattern on the raw fabric and cutting around
the pattern. Here, the tailor is the Swift runtime, the
pattern is the class (or struct) designed by the
programmer, and the finished shirt is an object
generated by the Swift runtime environment.

While this section isn't a comprehensive tutorial on
object-oriented programming, some general guidelines
for selecting between classes and structs are the
following:

e Structs are value types, which are always copied when passed
between objects or assigned to variables. This makes them ideal to
use when creating objects that are primarily used to store data
structures (though structs can and do include functions that operate
on their data).

e Classes support inheritance, which makes them the only alternative
when defining objects that will serve as base classes or be derived

from base classes.

e Classes, as reference types, are also a better choice when it's
advantageous to pass an object by reference, allowing its members
to be directly modified by functions it's passed to (this is somewhat
similar to the inout parameter distinction we learned earlier in this
lesson).

Defining Classes and Structures

In this lesson, we'll focus on the syntax to define,
instantiate, and use your own structs and classes. These
techniques are nearly the same for each object type.

A class or struct is defined with the following syntax:

e The struct or class keyword defines a namespace for the class.
This namespace is prepended to any symbol definition within the
scope of the struct or class when your application is assembled.

e The definition of struct or class members is enclosed in braces

(.-

e [f a class or struct contains member variables that are not assigned
default values where defined, an initializer must be provided so the
uninitialized member variables can be assigned a value. For structs
(but not for classes), the Swift compiler will create an initializer for
you.

e \Within the definition braces, variables and functions can be added,
according to the techniques learned in the last couple of lessons.

e Classes, structs, and their enclosed methods and variables can be
given specific access levels, which control how visible they will be
from outside modules. The default access level is Internal, which
makes all elements visible to any code in the same module.

The following are declarations for a Customer object—
the first declared as a struct and the second as a class:

struct Customer {

var name: String
var customerNumber: String

class Customer {
var name: String
var customerNumber: String

Throughout the last couple of lessons, you've been using
structs and classes, for example:

e The String type is a struct that contains many properties and
functions—for example, the . count property we often used to
count the characters contained in a string.

e \We used the JSONDecoder class to decode the JSON text in
Activity B.

As you develop applications with Swift, you'll use classes
and structs frequently, and will often define your own.

Next, you'll solidify your understanding of basic struct
and class usage by practicing the creation of each type
of object in an activity.

Activity C: Creating a Customer
Struct and Class

To compare the differences (and similarities) between
Swift classes and structs, it's useful to implement the
same data structure in both. This is exactly what we'll do
now.

Use an Xcode playground to practice how to create Swift
structs and classes.

1. Launch Xcode and create a new playground, then save it to your
desktop with the name CustomerStructClass.playground.
2. Add the following lines of code to declare a new Customer struct:

struct CustomerStruct {

}

3. Below the closing brace of the struct definition, create a new
variable of type Customer. Congratulations! You've created a struct
definition, and instantiated your first custom object!

var customerl = CustomerStruct()

4. Modify the code to the following, adding the enum CustomerType
and variable type to the struct. Then modify your code to print
the current customer. type to the debug console:

struct CustomerStruct {
enum CustomerType: String {

case gold = "Gold Customer!"

case silver = "Silver
Customer!"

case unknown = "Unknown
customer type"

}

var type: CustomerType?

var customerl = CustomerStruct()

print(customerl.type ?? "invalid
customer type")

e At this point, the print statement prints invalid customer
type, because the member variable within the struct is
initialized to an optional having a nil value.

5. Because this is a struct, Swift has auto-created an initializer we can
use to set an initial value for the customer value. Modify the
instantiation of the customer variable as follows:

var customer = CustomerStruct(type:
.gold)

e Now when the code runs, the output is the string gold.

6. Creating a similar data structure as a class is quite similar. Add the
following class definition to your playground:

class CustomerClass {
enum CustomerType: String {

case gold = "Gold Customer!"

case silver = "Silver
Customer!"

case unknown = "Unknown
customer type"

}

var type: CustomerType?

init(type:CustomerType) {
self.type = type

e This definition declares a class of type CustomerClass.
Because Swift does not automatically create initializers for
classes, CustomercClass includes an initializer to allow its
CustomerType variable to be set on instantiation—just as
the automatically created struct initializer does for
CustomerStruct.

7. Finally, add the following two lines to the playground to instantiate
an object of type CustomerClass, and print its type enum member
to the debug console:

var customer2 = CustomerClass(type:
.silver)

print(customer2.type ?? "invalid
customer type")

In the last couple of lessons, you've learned all the key
building blocks needed to build feature-rich, robust Swift
programs:

e |n Lesson 1, Swift Basics, you learned key language basics: using
variables, optionals, data types, and essential Swift code syntax

e In Lesson 2, Swift Operators and Control Flow, you learned the
fundamental structures you need to build logic and express the core
flow of your application: control flow, looping structures, and the
range of operators Swift supports

e In this lesson, you began taking your Swift skills to the next level by
creating functions, handling exceptions, and defining your own data
types using struct and class language features

In the next couple of lessons, you'll continue to build your
Swift knowledge by learning more advanced language
concepts, including the following:

e Using and extending Swift collections

e Swift's sophisticated and powerful Unicode String structure and
protocols

e Using Swift's functional programming and lazy operations features

We'll tie together a variety of Swift language techniques,
giving you additional practice to create structs, functions,
data types, and optionals, and use flow control
structures.

To solidify your understanding of basic struct and class
usage by practicing the creation of each type of object.

1. Launch Xcode, and create a new playground, then save it to your
desktop with the name Activity 5 - Final
Activity.playground

2. Add the following enum, which will be used to classify customers by
gold, silver, and platinum levels. Note that this enum has a
rawValue of type String, which we will use while printing customer
information:

enum CustomerType:String {
case silver = "SILVER"
case gold = "GOLD"
case platinum = "PLATINUM"

e Create a new Customer struct with a set of String variables, including
an optional for country and the variable type to classify the customer into
one of the CustomerType categories:

struct Customer {
var name: String
var address: String
var city: String
var state: String
var country: String?
var type: CustomerType

e Within the Customer struct, add an enum OutputType to control
customer printing output style as either a formatted label, a debug output, or both.
This enum has no rawValue:

enum OutputType {
case label, debug, both

» Add a function printAddress to the Customer struct that can be called to print customer address
information in a variety of styles. This function returns a result, but includes the @discardableResult
annotation so that callers who do not store its return value won't generate a compiler warning. This function
also allows (but does not require) additional text lines to be appended to the end of the address label output

via a variadic parameter:
@discardableResult func printAddress(outputType: OutputType = .label, additionallLines: Str:

switch outputType {
case .both:
printDebug()
fallthrough
case .label:
printLabel(additionallLines)
case .debug:
printDebug()

}

return outputType

b
» Add a function printLabel to the Customer struct that creates a formatted string and prints it to the

console. Note that this function is declared as private so that it can be called only from other functions in
the Customer class (forcing callers to go through the printAddress function to print label data). This

function also accepts an array of optional strings:
private func printLabel(_ additionallLines: [String?]) {
var addressString = """
\(type.rawValue)
\ (name)
\(address)
\(city), \(state)

if let countryText = country {
addressString += "\n\(countryText)"
3

for line in additionallines {
if let line = line {
// "line" and "line" have the same name, but exist in different scopes.
// The inner 'line' variable is a non-Optional, scoped within this block,
//and is created only when the Optional 'line' variable created by the for stat
addressString += "\n\(line)"

}

print(addressString)

» Add a function printDebug to the Customer class to print a simple output string to the console. This
function will be called when the printAddress function is called with either the .debug or .both

style parameters:

private func printDebug() {
print(self)

b

» Add a function customerTuple to return customer information as a tuple containing six unnamed

members:

func customerTuple() -> (String, String, String, String, String?, String) {
return (name, address, city, state, country, type.rawValue)

b

» Now create two Customer objects, customeril and customer2, with different address

information:
let customerl = Customer(name: "John Doe", address: "100 First Street", city: "Springfield'

let customer2 = Customer(name: "Jane Doe", address: "57 Morgan Circle", city: "Las Vegas",
» Create a constant variable tuple, and assign it the return of the customerTuple function:
let tuple = customeril.customerTuple()

» Print the first and third members of the tuple (customer name and address):
print("Customer named ", tuple.®, " lives in ", tuple.2)

» Call the printAddress function on the customer2 object, directing the function to print a formatted

label with two additional lines under the address:
customer2.printAddress(outputType: .label, additionallLines: "C/0 Sam Johnson", "Forwarding

» Call the printAddress function on the customer2 object, this time passing the .debug style

parameter, and no additional lines:
customer2.printAddress(outputType: .debug)

o Finally, call the printAddress function on the customer1 object, this time passing the . both style
parameter. The printAddress function's switch statement will use the fallthrough instruction to

print both versions of the address output:
customerl.printAddress(outputType: .both)

Chapter 4. Collections

In the previous lesson, we looked into building Swift
functions, error handling, and developing fully-featured
Swift programs. We also briefly looked at a few OOP
features.

In this lesson, we will work extensively with Swift's
collections, such as arrays, sets, and dictionaries.

The Swift Standard Library
(https://developer.apple.com/documentation/swift) is
automatically imported into all Swift code, and contains
basic types such as Int, Double, Bool, Optional, and
more. It is primarily organized around protocols, because
Swift is a Protocol-Oriented language
(https://developer.apple.com/videos/play/wwdc2015/408/

)-

The root protocol for collections, which they all inherit
from, is Sequence. All a type needs to conform to it is
the ability to provide one value at a time, until it is empty,
at which point it will output nil. This simple requirement
provides a long list of methods
(https://developer.apple.com/documentation/swift/sequen
ce#topics), and lets you iterate over the type with a for...
in loop:

for element in somesequence {

https://developer.apple.com/documentation/swift
https://developer.apple.com/videos/play/wwdc2015/408/
https://developer.apple.com/documentation/swift/sequence#topics

// do something with 'element'

}

Collection
(https://developer.apple.com/documentation/swift/collecti
on) inherits from Sequence, and adds the ability to refer
to a specific position in the collection with an index. You
can only go forwards from an index, until you reach the
end. Unlike Sequence, it guarantees that you can iterate
over it multiple times. In other words, it preserves its
contents, whereas a Sequence may forget each value
as soon as it has provided it:

https://developer.apple.com/documentation/swift/collection

Sequence

Collection

It is worth noting that, like practically everything else in
the Standard Library, all of the collections are value
types
(https://developer.apple.com/library/content/documentati
on/Swift/Conceptual/Swift_ Programming_Language/Clas
sesAndStructures.html#//apple_ref/doc/uid/TP40014097-
CH13-1D88). That means they are not reference types
(pointers), like classes, so no two identifiers ever refer to
the same value.

By the end of this lesson, you will be able to do the
following:

e Implement the main collections in the Swift Standard Library:
arrays, sets, and dictionaries

e Explain sequences, collections, and other useful protocols

e Create extensions of the standard library, as well as new types

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html#//apple_ref/doc/uid/TP40014097-CH13-ID88

An array is an ordered collection of elements of the
same type, and they are used for pretty much anything
that requires storing things in a certain order, such as the
contents of lists in apps. It works like similar types in
other languages.

Working with Arrays

Follow these steps to work with arrays:

1. We can create an array like this:
let a = [0,1,2,3,4] // array literal
2. We can join two arrays like this:

var b = a + [5,6] // join two
arrays

3. We can have a repeated value like this:

let ¢ = Array(repeating: 4.1, count:
3) // repeat one value

4. To create an array from any sequence, we can do this:

// create from any Sequence (a
String is a Sequence of Character)
var d = Array("The % and ")

5. To append a value to an array, use this:
b.append(10) // append one element

6. To append an entire array, use this:

b += a // append an array

Another way to append an array is by using this:

b.append(contentsOf: a) // append an
array

7. To count the length of an array, we can do this:
b.count // the length of the array
8. To assign a value in the array, we can do this:

b[e] // ©
b[O] = 9
b[e] // 9
for nr in b {
// do something with 'nr'

}

Here are their abilities, represented by some of the
protocols they conform to:

Sgquence

Collction

BidrectonalCollction MutableCollection | RangeReplaceableColletion

|

RandomAccassCollection
— LS ——

!

e ABidirectionalCollection can go backwards from any index
(except for the first one).

e AMutableCollection can replace any element with a different
one, but can't necessarily change the length of the collection.

e ARangeReplaceableCollection can add and remove
elements. You can also create an empty one.

e RandomAccessCollection does not offer any new methods over
BidirectionalCollection, but it guarantees that accessing
any part of the collection takes the same amount of time, no matter
how big it is. Array can do this because all of its elements are the
same size, so it can instantly calculate where they are in memory.

Index

The index type of an Array is Int (integer), and its
startIndex is always 0. Its endIndex is the same as
the length of the array. You can think of an index as
something that's pointing to the space between
elements, right before the element it refers to. Here is an
array of characters:

var characters = Array("The % and ")

e ondldey

endIndex points to the position after the end, so if you
ever try to access an element at endIndex with
characters[characters.endIndex] (or with any
other invalid index), your program will crash. If an array
Is empty, startIndex and endIndex are both O.

UTILIZING COMMON OPERATIONS WITH
INDEX

Common operations which are used with index are
shown here:

1. Toread an element at a particular index, use this:

characters[2] // read element at
index 2 ("e")

2. To change the element at a particular index, use this:

characters[2] = "a" // change
element at index 2

3. To remove and return an element at a particular index, use this:

let removed = characters.remove(at:
8) // remove and return element

4. To insert an element at a particular index, use this:

characters.insert("i", at: 7) //
insert element

5. Toinsert a collection of elements at a particular index, use this:

characters.insert(contentsOf: "t
the", at: 9) // insert collection of
elements

6. To print all of the characters, use this:

print(characters)
// ["T", "h", "a", n H, Il;+3||, n ",
"a", "i", IlnH, IltH, n H, IltH, "h",

HeH, n H, n H]

NOTE

Many collections use their own custom index type instead of Int, and even those that use
Int do not necessarily have a startIndex that is always 0. It is therefore recommended
to always use an array's startIndex instead of 0. This also makes the code clearer.

As with all indices, note that they may become invalid or
point to the wrong element if the Array is mutated after
they are created. To check if an index can still be used,
all collections have an indices property, which is a
collection of all the current indices:

characters.indices.contains(index)

ArraySlice

All sequences have a SubSequence, a type which
represents a subrange of its elements. The
Array.SubSequence is an ArraySlice:

Sequence

Collction

BidrectonalCollection MitableCollection Y RangeReplaceableCollection

RandomAccessColection

!

d ArraycElement> €

It has the same heritage and API as Array. It keeps a
reference to the array it was created from, and its
startIndex and endIndex represent the subrange

within the array:

let characters = Array("The % and ")
let slice = characters[4..<9]
prlnt(sllce) // [Il;+3||, n ", "a", "n", Ildll]

Charactr

aidl

sartiner

sat

el

endinder

ondinder

This allows us to have just one copy of a big array in
memory, and have as many slices as there are views on
it. However, each slice holds on to the array, so if you
want to keep a slice around for a while, it is
recommended to convert it to an array (using
Array(slice)). This will copy the elements of the slice
to its own array and release the reference, allowing the
big array to be freed if nothing else holds on to it.

If you mutate the array or the slice after the slice has
been created, a copy will be made automatically and the
change will not be reflected in the other.

CREATING SLICES

Slices can be created in different ways, as shown here:

1. To create a slice with the first three elements, use this:

characters.prefix(3) // the first
three elements

2. To create a slice with all the elements before the first space, use
this:

characters.prefix(while: {$0 !="
"}) // all elements before the first
space

3. To create a slice with the last two elements, use this:

characters.suffix(2) // the last two
elements

4. To create a slice with elements from 4, use this:

characters.suffix(from: 4) //
elements from number 4 and out

CREATING SLICES USING RANGE
OPERATORS

We will now see how to use range operators to create
slices:

1. To create a slice from elements 2 to 4 inclusive, use this:

characters[2...4] // elements 2 to 4
inclusive

2. To create a slice from element 3 up to, but not including 6, use this:

characters[3..<6] // elements 3 up
to, but not including 6

3. To create a slice from element 3 to the end, use this:

characters[3...] // from element 3
to the end

4. To create a slice from the beginning up to and including element 5,
use this:

characters[...5] // from the
beginning up to and including 5

5. To create a slice from the beginning up to but not including element
5, use this:

characters[..<5] // from the

beginning up to, but not including 5

That ends our look at arrays. Next, we'll work through an
activity that solidifies our understanding of arrays and its
related concepts.

Activity A: Working with Arrays

Many operations on arrays can be done far more
efficiently if the array is sorted. We will add methods that
take advantage of this for insertion, finding the index of
the first or last occurrence of an element, and checking if
the array contains an element.

We will just add methods to an array in an extension, but
ideally this should be its own type with an internal array
so that we can guarantee that it is always sorted. Check
out ole/SortedArray
(https://github.com/ole/SortedArray) for an example of
this.

To perform basic array operations such as, inserting
elements into an array and searching an element in an
array.

1. Openthe CollectionsExtra Xcode project, and go to
SortedArray.swift.

2. Create an extension to Range to find the middle of it. This will be
used with the indices of the array:

public extension Range where Bound
== Int {

/// The value in the middle of
this range. Returns nil if the range
is empty.

var middle: Int? {

guard !iseEmpty else { return nil

return lowerBound + count / 2

}
}

3. We will assume that the array has been sorted using the < operator
(ascending), and we will assure that elements can be used with this

https://github.com/ole/SortedArray

operator by constraining the extension to arrays with elements that
adopt the Comparable protocol. This also means they can be used
with >, ==, 1=, >=, and <=:

extension Array where Element:
Comparable {

. Next, we need to find the insertion point if we were to insert an
element into the sorted array. We can use this for insertion and
checking if the array contains a specific element. This is a standard
binary search, implemented with recursion:

/// The index to use if you were to
insert this element into a sorted

array.

///

/// - Parameters:

/// - element: The element to
potentially insert.

/// - range: The range to search
in.

/// - Note: If the element already
occurs once or more, the index to
one of those will be returned.

func insertionIndex(for element:
Element, in range: Range<Index>) ->
Index {

guard let middle = range.middle
else { return range.upperBound }
if self[middle] < element {
return insertionIndex(for:
element, in: index(after: middle)..
<range.upperBound)
} else if self[middle] > element

return insertionIndex(for:
element, in: range.lowerBound..
<middle)
}

return middle

5.

Note that when returning middle, we do not check if the element in
that position is the one we are searching for. This is because the
Comparable protocol demands that if an element is neither bigger
than or smaller than another element, then they must be equal.

The range will normally start as the entire array.
Inserting an element is now very simple:

/// Inserts the element in the
correct position in a sorted array.
///
/// - Parameter element: The
element to insert.
/// - Returns: The index where the
element was inserted.
@discardableResult
public mutating func
sorted_insert(_ element: Element) ->
Index {
let index = insertionIndex(for:
element, in: startIndex..<endIndex)
self.insert(element, at: index)
return index

}

6. When checking if the array contains a specific element, we can first

get the insertion index, check that it is not the endIndex (if the
element does not exist and is larger than all the other elements),
and see if the element at the index is the one we are searching for:

/// Checks if a sorted array
contains an element.
public func sorted_contains(_
element: Element) -> Bool {
let index = insertionIndex(for:
element, in: startIndex..<endIndex)
return (index !'= endIndex) &&
(self[index] == element)

}

7. When searching for the first occurrence of an element in the array,

we can't use insertionIndex. This is because if the element

occurs more than once, it may return the index to any of those
occurrences. Instead, we will use a slightly modified version
(https://github.com/raywenderlich/swift-algorithm-
club/blob/master/Count%200ccurrences/README.markdown):

/// The index of the first
occurrence of this element in a
sorted array.

///

/// - Parameters:

/// - element: The element to
search for.

/// - range: The range to search
within.

/// - Returns: The index, or nil
if not found.
public func sorted_index(of
element: Element, in range:
Range<Index>? = nil) -> Index? {
let range = range ??
startIndex..<endIndex
guard let middle = range.middle
else {
let index = range.upperBound
return
(self.indices.contains(index) &&
self[index] == element) ? index :
nil
}
if self[middle] < element {
return sorted_index(of:
element, in: index(after: middle)..
<range.upperBound)
}
return sorted_index(of: element,
in: range.lowerBound..<middle)

}

The main difference is that we only check if the element in the
middle is less than what we are searching for, not both less than
and greater than, like in insertionIndex. We can do this

https://github.com/raywenderlich/swift-algorithm-club/blob/master/Count%20Occurrences/README.markdown

because, in a sorted array, all equal elements are grouped together.
Even if middle happens to point to an equal element, there may
still be more of those to the left, so we continue searching there. If
there aren't, we still end up with the index in the correct place.

Since we are using properties of self for the default value of the
range parameter, we cannot provide them in the function header.
Instead, we set the default value to nil, and then create a new
local variable called range which is set to the default value
startIndex..<endIndex if no other value was provided when
the function was called.

8. The code for finding the last index of an element is almost identical:

/// The index of the last occurrence
of this element in a sorted array.

///

/// - Parameters:

/// - element: The element to
search for.

/// - range: The range to search
within.

/// - Returns: The index, or nil
if not found.
public func sorted_lastIndex(of
element: Element, in range:
Range<Index>? = nil) -> Index? {
let range = range ??
startIndex..<endIndex
guard let middle = range.middle
else {
let index = self.index(before:
range.upperBound)

return
(self.indices.contains(index) &&
self[index] == element) ? index
nil
}

if self[middle] > element {
return sorted_lastIndex(of:
element, in: range.lowerBound..
<middle)

}

return sorted_lastIndex(of:
element, in: index(after: middle)..
<range.upperBound)

}

Here, we check if middle points to an element that is greater than
what we are searching for. If it isn't, we go to the right. When we
have finally found an index, we use the index before it.

. Goto SortedArrayTests.swift, uncomment the unit tests, and

run them all.

A set is an unordered collection of unique elements. It
can very efficiently add, remove, or check if it contains a
specific element (on average O(1), meaning it takes the
same time regardless of the size of the set), in contrast
to an unsorted array, where these operations take O(n)
(the array may need to access and/or move most of its
element).

Sets can be used for tracking which part of a custom
view should be hidden, like which parts of an outline
view are collapsed. When displaying the view, you would
only show the children of those nodes which are not in
the collapsed set. So, you are in a sense adding a Bool
property to types you do not control. Sets can also be
used for removing duplicates; you just add a sequence
to an empty set and all duplicates will be gone.

Have a look at the following diagram to get a view on
sets:

A ——— Suenc

Y V Y

e Equatable means you can check if instances are equal with a ==
b or not equal with a '= b. Each type defines for itself what equal

means, and it doesn't necessarily mean identical.

e Hashable types have an integer property hashValue, which
dictionaries and sets (among others) use to quickly find instances.
Values that are equal always have the same hashValue.

e SetAlgebra has some mathematical set operations such as
intersection, union, and subtraction.

NOTE

A Set is a Collection which has its own index type, but since Set is unordered, we hardly
ever have a need for it.

All types used in a set have to conform to the Hashable
protocol:

Equatable

|
.

Hashable

AnyHashable B3

<

Character K.

Double <

\

UnicodeScalar

A lot of other types conform to Hashable as well
(https://developer.apple.com/documentation/swift/hashab
le#adopted-by).

Working with Sets

Let's look at working with sets by following these steps:

1. To create a set, we can do this:

var numbers: Set =
[0,1,2,3,10,2.75,-3,-3.125, -14]

2. We can then print it like this:

// order is not preserved
print(numbers) // [-3.125, 10.0,
2.75, 2.0, -3.0, 3.0, -14.0, 0.0,
1.0]

3. Toinsert a value if nothing equal is already there, we can do this:

// insert if nothing equal is
already there
numbers.insert(4)

4. To insert a value and replace it if something equal is already there,
we can do this

// insert, and replace it if
something equal is already there
numbers.update(with: 4)

5. Here are some more common operations with sets:

numbers.remove(4)
numbers.contains(3)
numbers.isEmpty

for n in numbers {

https://developer.apple.com/documentation/swift/hashable#adopted-by

/7.

Combining Sets

Have a look at the following code:

extension Double {

var isInteger: Bool { return
self.truncatingRemainder(dividingBy: 1) ==
0}
}

let negativenumbers = numbers.filter { $0
<0}

let positivenumbers
numbers.subtracting(negativenumbers.union(

[6e1))

let integers = numbers.filter {
$0.isInteger }

let negativeintegers =
integers.intersection(negativenumbers)
print(negativeintegers) // [-3.0, -14.0]

Here's what this code does:

e union combines two sets
e intersection returns the elements both sets have in common

e symmetricDifference returns elements that are in either of the
two sets, but not in both

e subtracting returns elements of the first set that do not occur in
the second set

All of these have mutating versions that change the first
set in-place (they all start with form, except for
subtract. For more information, check out:

https://swift.org/documentation/api-design-
guidelines/#name-according-to-side-effects.)

Comparing Sets

Have a look at the following code:

// all of the following return "true"
numbers.isSuperset(of: negativeintegers)
integers.isSubset(of: numbers)
positivenumbers.isStrictSubset(of:
numbers)

numbers.isStrictSuperset(of:
negativenumbers)
negativenumbers.isDisjoint(with:
positivenumbers)

Set A is a superset of set B if every member of B is also
a member of A. This also makes B a subset of A. These
are strict supersets/subsets if A contains at least one
element that is not a member of B. In other words: a
strict superset or subset means that the two sets are not
equal. Disjoint means the two sets have no elements in
common.

In this section, we have looked at sets in detail. Sets are
useful in various situations, for example, removing
duplicates. We'll see this in an activity next.

Activity B: Removing Duplicates from
a Segquence

The most common method of removing duplicates from
a sequence is to just add the entire sequence to a set,

https://swift.org/documentation/api-design-guidelines/#name-according-to-side-effects

and then create a new sequence from the set. However,

this might re-order the remaining elements. Here, we will
use filter to keep the original order, and use a set to keep
track of which values are already in the sequence.

By adding the method as an extension to Sequence, it
can be used by any collection type, including Array,
Dictionary, and Set (though it would be rather pointless
to use it on dictionaries and sets, as they are already
duplicate-free).

To use an Xcode playground to create a method which
removes duplicates from a sequence while preserving
the order of the remaining values.

1. Openthe CollectionsExtra Xcode project we used earlier, and
go to Set.swift.
2. Paste the following code here:

extension Sequence where Element:
Hashable {

/// Returns an array containing
each element in “self” only once, in
the same order.

public func removeDuplicates () ->
[Element] {

var originals = Set<Element>
(minimumCapacity:
underestimatedCount)
return self.filter { x in
if originals.contains(x) {
return false
}
originals.insert(x)
return true

filter is a method of Sequence, which takes a function,
Element -> Bool, and returns an array with only those elements
for which the function returns true. In this function, we check if the
element is already in the originals set. If itis, we return false
(meaning the element will be dropped). If it is not in the set, we add
it to it and return true, so the element will be included in the
resulting array.

3. GotoSetTests.swift, uncomment the unit test, and run it.

ADictionary is an unordered collection of
mappings/associations from keys to values. It is very
similar to a Set and has the same performance, but
stores a key/value pair, and only the key has to be
Hashable. It can be used for storing preferences, or
when you have a group of named values where there
are either too many or change too often to be
hardcoded. Then, you can use the names as keys:

V

Collection

Dictionary<Key,Value where Key: Hashable>

The full name is Dictionary<Key, Value>, butitis

more commonly written as [Key: Value].

Dictionary ignores the order in which values are added
or removed, and may change them arbitrarily, just like
Set.

Working with Dictionaries

Now it's time to lay our hands on dictionaries. Follow
these steps to get started:

1. To create a dictionary, we can do this:

var numbers = [0: "zero", 1: "one",
10: "ten", 100: "one hundred"]

2. We can then print it like this:

print(numbers) // [100: "one
hundred", 10: "ten", ©: "zero", 1:
Ilonell]

3. To add or change a value, we can do this:

// Add or change value
numbers[20] = "twenty"

4. The following lookup returns an optional:

// Lookup returns an optional
if let one = numbers[1] {
/] ..

}

Or, you can use a default value if the key is not found:

// 0Or you can use a default value if
the key is not found

let two = numbers[2, default: "no
sensible default"]

5. You can remove a value by setting it to nil:

// Remove a value by setting it to
nil
numbers[2] = nil

6. You can iterate over the contents of the dictionary like this:

// You can iterate over the contents
(again: the order is not defined)
for (key, value) in numbers {

/]

}

7. This is how we can have a collection of all of the keys of the
dictionary:

// A collection of all keys
numbers.keys

8. This is how we can have a collection of all of the values of the
dictionary:

// A collection of all values
numbers.values

This is the end of this section. Here, we have looked at
dictionaries extensively and evaluated the differences
between arrays, sets, and dictionaries.

Activity C: Using Dictionaries

A CountedSet allows you to add equal elements more
than once, and keeps count of how many of each
element it contains. Naturally, it is very useful for
counting things, such as how many times a word
appears in a text, without having to store each word
more than once.

To use an Xcode playground to develop a new
CountedSet type using a dictionary internally.

1. Openthe CollectionsExtra Xcode project we used earlier, and
goto CountedSet.swift.

2. Leave the commented-out code as is, and add this to the top of the
file:

public struct CountedSet<Element:
Hashable> {

typealias ElementsDictionary =
[Element: Int]

private var elements:
ElementsDictionary

public init() {
elements = ElementsDictionary()

We use a type alias here because ElementsDictionary will be
referred to several times in the code.
3. Add the following code below the initialiser:

public mutating func insert(_
newelement: Element, count: Int = 1)

{

elements[newelement, default: 0]
+= count
}

When inserting, we first get the current count of the element (or O if
the element is not in the dictionary), then we add how many times
the element should be inserted (1 by default) to this and insert the
new value into the dictionary. += here means this:

elements[newelement] =
elements[newelement, default: 0] +
count

4. Now, we implement adding a Sequence of elements to the set:

public mutating func insert<S>
(contentsOf other: S) where
S:Sequence, S.Element == Element {
for newelement in other {
insert(newelement)

The generic <S> combined with the where clause allows us to use
any sequence here, as long as its elements are the same type as
the elements of this set.

5. We also need a way to query how many of an element this set
contains:

public func count(for element:
Element) -> Int {

return elements[element, default:
0]
}

If the elements dictionary does not contain the element, we return
O instead.
6. And here is the method for counting the total number of elements:

public var count: Int {
var result = 0
for count in elements.values {
result += count

}

return result

}

7. It's time to verify whether this is working or not. Go to
CountedSetTests.swift, uncommentthe testInsert unit
test, and run it.

8. Go back to CountedSet.swift.

9. Now, we can add some helpful initialisers. Add the following code
below the first initialiser:

public init<S>(_ other: S) where
S:Sequence, S.Element == Element {

self.init()
insert(contentsOf: other)

This allows us to initialise from a sequence:
Countedset([Ilall , Ilbll , IlCII , Ilall])
10. Add the following code below the entire struct declaration:

extension CountedSet:
ExpressibleByArrayLiteral {
public init(arraylLiteral
elementarray: Element...) {
self.init(elementarray)

Now, if a function asks for a CountedSet, we can use an array
literal directly.

11. Within the struct declaration, right below the last count method,
insert the following code:

@discardableResult
public mutating func remove(_
element: Element, count
countToRemove: Int = 1) -> Int {
guard var count =
elements[element] else { return 0 }
count -= countToRemove
guard count > 0 else {
elements.removeValue(forKey:
element)
return 0
}
elements[element] = count
return count

This is the most complex code we have used so far. It lowers the
count of the element by the provided amount, and returns the new
count. Here's the explanation:

12.

13.

14.

e @discardableResult means if we do not use the return
value from this method, we don't want a warning from the
compiler.

e \We retrieve the current count of the element. If it is not in
the dictionary, we return 0.

e Then, we subtract with the provided amount.

e |f the new count is not greater than 0, we remove the
element from the dictionary and return 0.

e Otherwise, we store the new count in the dictionary and
return it.

At the bottom of the file, there is code for adopting the
Collection protocol. Uncomment it. It is too long to go through in
detail here, but feel free to look through it.

Also uncomment all the unit tests in CountedSetTests.swift,
and verify whether they all pass or not. Notice how the unit tests
use methods such as contains and isEmpty that we did not
implement, but got for free because we adopted the Collection
protocol.

The contains method from the collection protocol is quite
inefficient for our type, because it goes through every single
element and compares it to the element it is searching for. We can
do better. Add the following code below the remove method in the
struct declaration:

public func contains(_ element:
Element) -> Bool {
return elements[element] != nil

This checks the dictionary directly, which as we mentioned earlier is
much faster.

In this lesson, we covered the three main collections in
the Swift Standard Library: Array, Set, and Dictionary;
what they are; and how they can be used. We also
learned about indices, slices/subsequences, and some
common protocols. We also implemented methods for
searching in sorted arrays, for removing duplicates from
a sequence, and created the new collection,
CountedSet.

In the next lesson, we will explore Strings in detalil.

Chapter 5. Strings

In the previous lesson, we worked with arrays, sets, and
dictionaries, all of which are part of Swift's collections. In
this lesson, we will look at strings in detail.

The wide variety of characters and emojis a modern app
may encounter requires correct handling of Unicode text.
Luckily, Swift does this by default. However, this means
we have to treat strings in Swift a bit differently than most
programming languages.

By the end of this lesson, you will be able to:

e Explain why strings work the way they do in Swift
e Create and use strings and substrings

e |Implement the various common operations you can do with strings

Before we get into how to use strings, we will cover why
they are the way they are. For developers coming from
other languages, this is a very reasonable question to
ask.

Character

We won't go into the details of Unicode, but there are
several ways of viewing a piece of Unicode text in Swift.
This is done by using different collections:

let string = "The * and "
string.utf8.count // 19
string.utf16.count // 13
string.unicodeScalars.count // 12

NOTE
An element of UTF-8 is 1 byte, UTF-16 is 2 bytes, and a Unicode scalar is 4 bytes.

In addition to everyone reporting a different number of
symbols in the string, you may have also noticed that
they are all wrong. String itself, however, has the right
answer:

string.count // 11

This is because String is an ordered collection of
Character. Character represents what we humans
would consider one symbol, regardless of how many

bytes it consists of.

The reason for the discrepancies is, of course, the two
emojis:

let moon = Character("")
String(moon).utf8.count // 4
String(moon).utfi6.count // 2
moon.unicodeScalars.count // 1

let sun: Character = "x"
String(sun).utf8.count // 6
String(sun).utfi6.count // 2
sun.unicodeScalars.count // 2

Even a simple letter such as € may surprise you:

let accented_e: Character = "é"
String(accented_e).utf8.count // 2
String(accented_e).utf16.count // 1
accented_e.unicodeScalars.count // 1

There may be several ways of representing the same
symbol in Unicode, but Character still considers them
to be equal:

let another_accented_e: Character =
"e\u{0301}" // "e" + combining acute
accent
String(another_accented_e).utf8.count // 3
String(another_accented_e).utf16.count //
2

another_accented_e.unicodeScalars.count //
2

accented_e == another_accented_e // true

NOTE

This is a great example of two values that are equal, but not identical.

Collection

Let's see what kind of a collection String is:

l

Eoutable Collectlo

BidrctionalColltion 1 RangeReplaeatieColection

\‘/

SingProtoco

J

NOTE

StringProtocol contains common string operations.

Comparing this diagram with the one for Array in the
previous lesson, we see that both
MutableCollection and
RandomAccessCollection are missing.

This is because, as we have seen, symbols may take up
varying amounts of space, and in a
MutableCollection, we can replace one element for
another. But what if we replace one character with one
that takes more space? Then we would have to move all
succeeding characters to make room, and the
MutableCollection protocol does not allow this. It is
the same with RandomAccessCollection: it requires
taking approximately the same amount of time to retrieve
the 5" element as the 20,000, and we can't do that
when the elements are not of the same size.

So, why not add some padding and make all characters
in a string take up the same amount of memory? Well,
we did have an array of characters in the previous
lesson, which does just that. Let's bring it back and
compare its memory usage with the corresponding
string:

An instance of Character takes up eight bytes in an
array. The most common characters usually take up two
bytes or fewer in a string, and as strings are often the
largest collections in an application, wasting all that
space is not really an option.

Index

Just like arrays, strings have indices, which refer to the
position of every single character. But before we get into
what the type of strings index is, we should cover what it
IS not: an integer.

The index type of an array is an integer. Because every
element takes up the same amount of space, you can
ask for the 500th element and it will multiply 500 with the
byte size of an element, add the memory address of the
first element, and find the element at the resulting
address.

If we ask a string for the 500" character, it has to start
with the first character, see how much space it takes,
move past it, see how much space the next character
takes, and so on, and repeat this 500 times.

On StackOverflow and other places, you will often find
code examples which add a new subscript to String with
an integer parameter, allowing us to do something such
as this:

for 1 in 0..<string.count {

let character = string[i]
/]

}

This is extremely inefficient. Consider what is actually
happening here: the string has to process the first
character, then the first and second characters, then the
first, second, and third characters, and so on. For a
string of merely 500 characters, it will have processed
the first character 500 times, the second one 499, and so
on until it has processed characters n(n+1)/2 or 125,250
times, plus 500 to find the count.

The following, however, will visit each character exactly
once, and is much simpler:

for character in string {
/] ..

}

WORKING WITH STRING INDEX

The actual index type of Stringis String.Index. It's
a custom type whose inner workings we are blissfully
unaware of. All operations on it are performed using the
standard Collection and
BidirectionalCollection methods on String.

1. Let's define a few indices:

let alphabet =
"abcdefghijklmnopqrstuvwxyz"

let b_index = alphabet.index(after:
alphabet.startIndex)

let a_index = alphabet.index(before:
b_index)

let g_index =
alphabet.index(a_index, offsetBy: 6)
let e_index =
alphabet.index(g_index, offsetBy:
-2)

2. We can also add a limit to the offset. We get nil if the result goes
beyond this limit

let no_index =
alphabet.index(e_index, offsetBy:
30, limitedBy: alphabet.endIndex)

3. To find the index of the first occurrence of a character, we do the
following. We get nil if it is not found:

let i = alphabet.index(of: "z")
4. The number of positions one index is from another is found like this:

let a_e_distance =
alphabet.distance(from: a_index, to:
e_index)

Debugging

Perhaps the biggest drawback of using this custom type
instead of an integer comes up during debugging, when
we would like to see what it contains. If we just print an
index to the console, we get something like this:

Swift.String.Index(_compoundOffset: 100,
cache:
Swift.String.Index.Cache.character(1))

This contains exactly nothing of interest. If we add this
extension in a unit test module, we get something more

useful:

// use in unit tests
extension String.Index:
CustomDebugStringConvertible {

// The offset into a string's UTF-16
encoding for this index.

public var debugDescription: String {
return "\(encodedOffset)" }

}

Now, when we print an index, we get the zero-based
position of this index in the string if this string, so far, only
contains characters that can be expressed in one UTF-
16 code unit. So it's not always correct, but better than
nothing.

This topic is a primer into the wide world of strings. In
this section, we have covered concepts such as
collection, index, and debugging. We'll continue our
journey with strings in the next section.

Activity A: All Indices of a Character

The String.index(of:) method finds the index of
the first occurrence of a character in a string. Create a
method which finds all the indices of a character.

To use an Xcode playground to find the indices of a
character.

1. Openthe StringsExtra Xcode project, and go to the
StringsExtra.swift file.
2. Enter the following code:

extension String {

e The method definition is similar to the one for
index(of:):

public func indices(of
character: Character) ->
[Index] {
var result = [Index]()
var i = startIndex

e Make sure to not access anything at endIndex, as it will
crash. This check also takes care of empty strings:

while i < endIndex {
if self[i] == character {
result.append(i)

e Move to the next index, like this:

i = index(after: 1)

}

return result

}

This is the traditional way of implementing it, to show how to work
directly with indices. Later, we will learn a much simpler and
concise way to do this.

. Gototheunittestsin StringsExtraTests.swift.

. Uncomment the first comment block, so this becomes active:

func testIndices()

. Run the unit test and verify that it passes.

So far in this course, we have only covered the Swift
Standard Library, but when it comes to strings we must
also include the Foundation framework, as it contains a
lot of both basic and advanced text functionality that is
missing from the Swift Standard Library.

Foundation is available on all Apple platforms and has
been around for a long time (there is also a version for
other platforms, re-implemented in Swift; see:
https://github.com/apple/swift-corelibs-foundation). It is
written in and for Objective-C, but a lot of its API has
been updated to be easier to work with from Swift. Not
all of it has been though, and as we'll see, you might run
into some problems when converting Foundation types
to Swift types.

Foundation's string type is NSString, and it works
directly with UTF-16 encoded text. It does not know what
the Character type is, and does not necessarily handle
Unicode text correctly like Swift does. NSString can be
used as Swift String and vice versa as they can share
the same underlying storage.

It also has CharacterSet, which, despite the name, is
a set of UnicodeScalar. It has several useful

predefined sets, like CharacterSet.alphanumerics,
.whitespaces, .decimalDigits, and more. You can

https://github.com/apple/swift-corelibs-foundation

only use them if you're lucky enough to have characters
consisting of only one UnicodeScalar:

CharacterSet.alphanumerics.contains(charac
ter.unicodeScalars.first!)

Foundation's range type is NSRange, and it uses
integers to refer to positions in an NSString. It can do
this efficiently because each element of NSString takes
up the same amount of space. We can always convert a
Swift Range to NSRange with NSRange(range, in:
string), but we can't necessarily go the other way, as
we will see later on.

Creating Strings
Let's look at creating strings by following these steps:

1. There are many ways of creating strings. You've already seen the
string literal:

let literal = "string from literal"
2. There are also multiline literals:

let multilineLiteral = """
line 1
line 2
line 3 indented

The result is "line 1\nline 2\n\tline 3 indented\n". The closing three
guotes must be at the beginning of the line (excluding indentation)
and any indentation that precedes it will be removed from the
beginning of every line in the string.

3. Use backslash to insert special characters like \\ (backslash), \t

(horizontal tab), \n (line feed), \r (carriage return), \" (double
quotation mark), and \' (single quotation mark).

4. We can create characters directly from their hexadecimal Unicode
code points, like this:

let blackbDiamond = "\u{2666}" // ¢
let brokenHeart = "\u{1F494}" //

5. To include variables in the text, we use string interpolation, like this:

let array = [1,2,3]

let stringInterpolation = "The array
\(array) has \(array.count) items."
// "The array [1, 2, 3] has 3 items."

J —

6. Strings can describe absolutely any type, as shown here:

struct CustomType {
let value: Int
let otherValue: Bool

let customType = CustomType(value: 5
, otherValue: false)
String(describing: customType) // "C
ustomType(value: 5, otherValue: fals
e)"

7. We can customize the description, like this:

extension CustomType: CustomStringCo
nvertible {
var description: String {
return "\(value) and \(otherValu
e)"

}

String(describing: customType) // "5
and false"

8. Text can be repeated, as shown here:

String(repeating: "la", count: 5)
9. We can read text files, like this:

import Foundation

do {

let fileContents = try String(cont
entsOfFile: "file.txt")
} catch { /7* ... */ }

Common Operations

Follow these steps to look at how to implement common
operations on a string:

1. Many of the common sequences and collection methods are useful
on strings too, as shown here:

let string = """
Line 1
line 2

let rangel = ..<string.index(of: "1"

)!

// return the substring over range 1
string[rangel]

// return true if the string begins
with "Line"

string.hasPrefix("Line")

// return true if the string ends wi
th "2"

string.hasSuffix("2")

2. These mutate the string:

var mutablestring = string

// remove the

characters in rangel,

and insert "line up" there.

mutablestring.
, with: "line
// remove the
mutablestring.
// remove the
mutablestring.
// remove the
mutablestring.
// remove the
mutablestring.
// remove the
mutablestring.

replaceSubrange(rangel
up")

characters in rangel.
removeSubrange(rangel)
first character.
removeFirst()

first 2 characters.
removeFirst(2)

last character.
removelLast()

last 2 characters.
removelLast(2)

. There aren't many operations specifically made for strings:

// return a new string in uppercase.
string.uppercased()
// return a new string in lowercase.
string.lowercased()

. We get a lot more if we import Foundation, like this simple test for
the existence of a substring:

string.contains(" 1")

. All of the following methods return a new string with the changes;
the original string is left intact:

// new string with all the words cap
italised (ignoring language)
string.capitalized

// new string with all the words cap
italised, using the rules of the lan
guage from the provided locale
string.capitalized(with: Locale.curr
ent)

// new string with all occurrences o
f one substring replaced with anothe
-

string.replacingOccurrences(of: "Lin

e", with: "line")

// new string with all occurrences o
f a substring removed
string.replacingOccurrences(of: "Lin
e", with: "")

// new string with all occurrences o
f a substring in the provided range
removed, using the provided options
string.replacingOccurrences(of: "lin
e", with: "triangle", options: .case
Insensitive, range: string.startInde
X..<string.index(of: "\n")!)

// the range of the first character
that belongs to the provided Charact
erSet

string.rangeOfCharacter(from: .decim
alDigits)

// the range of the first occurrence
of the substring

let range = string.range(of: "Line")
|

// the substring over this range
string[range]

// the range of the line or lines co
ntaining the provided range
string.lineRange(for: range)

// new string with the characters in
the provided CharacterSet removed f
rom the beginning and the end

"\t trim \n ".trimmingCharacters(

in: .whitespacesAndNewlines)

// a new string of the given length,
by either removing characters from
the end or adding 'withPad' to the e

nd

"Padded" .padding(toLength: 10, withP

ad: " ", startingAt: 0)
"Pad".padding(toLength: 10, withPad:
"_ ", startingAt: 1)

6. The following methods return an array of strings:

// an array of strings, from splitti
ng the original string over the prov
ided substring
string.components(separatedBy: ". ")
// an array of strings, from splitti
ng the original string over characte
rs in the provided CharacterSet
string.components(separatedBy: .newl
ines)

IMPLEMENTING EXTRA TEXT
OPERATIONS ON A STRING

Follow this step to implement extra text operations on a
string:

1. Open Strings.playground onthe Common string
operations page and see if you can find more text operations on
string, using autocomplete and the documentation in Xcode.

This section is focused on how we can use strings and
the various operations on strings that are allowed in
Swift. Next, we'll look at substrings in detail.

Activity B-1: All Ranges of a
Substring

There is already a method on String for finding the first
range of a substring. This method will find all of the
ranges of a substring.

To use an Xcode playground to create a method on
string which finds all ranges of a substring.

1. Openthe StringsExtra Xcode project, and go to the

StringsExtra.swift file.
2. Enter the following code:

import Foundation
extension String {

e The method has the same parameters as String.range:

public func allRanges(of aStri
ng: String,

options: String.CompareOpt
ions =[],

range searchRange: Range<S
tring.Index>? = nil,

locale: Locale? = nil) ->
[Range<String.Index>] {

e |f no search range is given, we search the entire string:

var searchRange = searchRange
?? startIndex..<endIndex

var ranges = [Range<String
.Index>]()

e while let is a very useful combination of loop and optionals.
It continues until self.range returns nil:

while let foundRange = self.ra
nge(of: aString, options: opti
ons, range: searchRange, local
e: locale) {
ranges.append(foundRange)

{ -

If we are searching backwards, we need to narrow the
search range from the right instead of from the left. We only
narrow it by one character so we can find repeating
substrings (like the five occurrences of 1lala in
lalalalalala):

searchRange = options.contains

(.backwards) ?
searchRange.lowerBound
..<self.index(before: foundRan
ge.upperBound) :
self.index(after: foun
dRange. lowerBound). .<searchRan
ge.upperBound

}

return ranges

}
}

3. Gotothe unittestsin StringsExtraTests.swift.
4. Uncomment the first comment block, so these become active:

let string = """
func testAllRanges()

5. Run all unit tests and verify that they pass.

Activity B-2: Counting Words,
Sentences, and Paragraphs

Perhaps the most straightforward way of counting the
number of words in a string is to count the number of
spaces and add one. But, even if you only have text
using the Latin alphabet, this will often be wrong (there
could be two spaces in a row, and doesn't is technically
two words). Foundation has NSLinguisticTagger,
which handles these things and other alphabets. Not all
of its APIs have been updated for Swift yet, so it can be
a bit cumbersome to use, but the method that we will use
here is fairly straightforward.

To use an Xcode playground to create a method on
string which can count words, sentences, and

paragraphs.

1. Openthe StringsExtra Xcode project, and go to the
StringsExtra.swift file.
2. Enter the following code:

extension String {

e NSLinguisticTaggerunit is an enum with cases
paragraph, sentence, and word:

public func countLinguisticTok
ens(ofType unit: NSLinguisticT
aggerunit, options: NSLinguist
icTagger.Options = [.omitPunct
uation, .omitWhitespace]) -> I
nt {

e This class can do a lot of advanced text analysis, such as
detecting nouns, verbs, and so on, and find the stem of
words, but in this case we are only interested in linguistic
tokens:

let tagger = NSLinguisticTagge
r(tagSchemes: [.tokenType], op
tions: 0)

tagger.string = self

e Like everything in Foundation, this class works on
NSString, which sometimes uses NSRange instead of
Range. Luckily, converting from Range to NSRange is no
problem:

let range = NSRange(startIndex
..<endIndex, in: self)
var result = 0

This closure has parameters for a tag type, nsrange, and
a Boolean for whether or not it should stop, but in this case
we are only interested in how many times it is called:

tagger.enumerateTags(in: range
, unit: unit, scheme: .tokenTy
pe, options: options, using: {

, , _ in
result += 1
1)
return result
}
}
J —

3. You can call it like this:

string.countLinguisticTokens(ofType:
.paragraph)

string.countLinguisticTokens(ofType:
.sentence)

string.countLinguisticTokens(ofType:
.word)

4. Goto the unit tests in StringsExtraTests.swift.
5. Uncomment the next comment block, so these become active:

let english = """

func testCountLinguisticTokens_Engli
sh() {

let internationalText = """

func testCountLinguisticTokens_Inter
national() {

6. Run all unit tests and verify that they pass.

SubString is for strings like what ArraySlice is for arrays:
a view of a part of a string, where its startIndex and
endIndex are indices into the original string. It conforms
to the same protocols as String:

|

Collcton

BidretionalColction 1 RangeReplaeatleColecion

\//

StingProtoco

K B

StringProtocol contains many of the common text
operations, so when you write functions that take a string
parameter you can often use StringProtocol instead
to also accept substrings. When you do, you have to use
generics, as shown here:

func foo<S: StringProtocol>(s: S) {
// use 's' almost like a normal string.

}

Just as with ArraySlice, substrings keep a reference to
the entire string, so when you are done processing
substrings you should turn them into normal strings and
allow the original string to be released (if nothing else is
using it):

String(substring)

Creating Substrings

Now it's time to create substrings. Follow these steps to
do so:

1. We can create substrings by passing a range of indices to a string
subscript:

string[from..<upTo]
string[from...upToAndIncluding]

2. And we get a substring of the entire string with this little shortcut:
string[...]

3. The following methods return a substring and leave the original
string intact:

let string = "This is a pretty
sentence"

// a substring from the 2nd
character and out
string.dropFirst()

// a substring from the 6th
character and out
string.dropFirst(5)

// a substring from the first up to
and including the second last
string.dropLast()

// a substring from the first up to
the 9th last character
string.dropLast(9)

// a substring from the first space
and out

string.drop(while: {$0 != " "})

// the index of the first space, or
the first character if there are no
spaces

let space_index = string.index(of: "
") ?? string.startIndex

// a substring with the first 7
characters

string.prefix(7)

// a substring from the first up to
space_index (excluding)
string.prefix(upTo: space_index)

// a substring from the first up to
and including space_index
string.prefix(through: space_index)
// a substring of the consonants at
the beginning of the string ("Th")
string.prefix(while: {!["a", "e",
"i", "o", "u"].contains($0)})

// a substring of the last 8
characters

string.suffix(8)

// a substring from space_index and
out
string.suffix(from: space_index)

4. The following methods return an array of substrings:

// the substrings between the spaces
string.split(separator: " ")

// split the string into 5
substrings (at the first 4 spaces),
including the empty substring
between the 2 adjacent spaces
string.split(separator: " ",
maxSplits: 4,
omittingEmptySubsequences: false)

// the substrings between the vowels
string.split(whereSeparator: {["a",
"e", "i", "o", "u"].contains($0)})

PARSING STRINGS

Follow these steps to parse strings:

1. Gotothe Exercise - Parse page of the Strings playground.
Enter the code to turn this:

let info = """
title: Beginning Swift
type: course
year: 2018
publisher: Packt Publishing
topic: programming

Into this dictionary:

["year": "2018", "publisher": "Packt
Publishing", "title": "Beginning
Swift", "topic": "programming",
"type": "course"]

2. Apossible solution is this:

for line in info.split(separator:
"\n") {
guard let colon = line.index(of:
":") else { continue }
let key = line.prefix(upTo: colon)
let value = line.suffix(from:
line.index(colon, offsetBy: 2))
result[String(key)] =
String(value)

}

Converting NSRange to Range

Earlier, we made the countLinguisticTokens
method for counting the number of words, sentences,
and paragraphs in a string. It would be nice if we could
get hold of the actual words, sentences, and paragraphs,
too:

func linguisticTokens(ofType unit:
NSLinguisticTaggerUnit, options:
NSLinguisticTagger.Options =
[.omitPunctuation, .omitWhitespace]) ->
[String] {

let tagger =
NSLinguisticTagger (tagSchemes:
[.tokenType], options: 0)

tagger.string = self

let range = NSRange(startIndex..
<endIndex, in: self)

var result = [String]()

tagger.enumerateTags(in: range, unit:
unit, scheme: .tokenType, options:
options, using: { , tokenRange, 1in

let token = (self as

NSString).substring(with: tokenRange)

result.append(token)
1)

return result

}

The only changes are the return type and these two
lines:

let token = (self as
NSString).substring(with: tokenRange)
result.append(token)

tokenRange is of type NSRange, so we can't use it
directly on String, but have to cast ourselves into
NSString first.

This works fine, but it would be even nicer and more
Swifty if we could get back ranges instead of strings, so
we can decide for ourselves if we want to turn them into
substrings or strings or do other operations with them. If
we try to convert the NSRange to a Swift Range with
Range(tokenRange, in: self), itreturns an
optional, and worse, in the third-last line of the example
text, it returns nil. Twice. This is presumably because
these characters do not fit in one UTF-16 code unit, and
the conversion would create an index pointing to the
middle of a Swift Character (see methods
linguisticTokens2 and 1linguisticTokens3 for
attempts at moving the index to the correct side of this
character).

This highlights the usefulness of a string type which
takes care of these things for us, and potential problems

with converting between Foundation types and Swift
types, not to mention the importance of testing with
various languages.

Luckily, there is another Foundation method we can use
that returns Swift ranges. We will use
enumeratelLinguisticTags in the next activity.

In this section, we have looked at substrings in detail:
starting from its relation to strings to creating substrings.

Activity C: CamelCase

Such a method can be used to automatically format code
or create a text service on the Mac.

To use an Xcode playground to create a method on
String, which turns it into one CamelCased word,
optionally with the first letter lowercased.

1. Openthe StringsExtra Xcode project, and go to the
StringsExtra.swift file.
2. Add this code to the bottom of the file:

extension String {

e First, we create a method which returns an array of ranges
of all the words in the string:

public func wordRanges() ->
[Range<String.Index>] {

let options:
NSLinguisticTagger.Options =
[.omitPunctuation,
.omitWhitespace]

var words =

[Range<String.Index>]()

e This method on String gives us Swift ranges (as opposed
to the NSRanges of the 1inguisticTokens method we
used previously). Unfortunately, it doesn't provide
sentences or paragraphs, but in this case words are all we
need:

self.enumeratelLinguisticTags(

in: startIndex. .
<endIndex,

scheme:
NSLinguisticTagScheme.tokenTyp
e.rawValue,

options: options) { (_,
range, ,) in

words.append(range)

}

return words

e Now, for the camelCased method itself, which returns a
capitalised CamelCase word by default:

public func
camelCased(capitalised: Bool =
true) -> String {

e First, we get all the ranges of the words in this string. We
exit if there are no words in order to avoid a crash in the
next line (removeFirst removes and returns the first
element, and crashes if there isn't one):

var wordRanges =
self.wordRanges()

guard !wordRanges.isEmpty
else { return "" }

let firstRange =
wordRanges.removeFirst()

e We initialize result to the first word, which is optionally
capitalised. Note that both capitalized and

lowercased are methods on SubString which return
strings:

var result = capitalised ?
self[firstRange] .capitalized
self[firstRange].lowercased()

Then, it's a simple matter of going through the remaining
words, capitalizing them, and adding them to result:

for range in wordRanges {
result +=
self[range].capitalized

}

return result

3. Gotothe unittestsin StringsExtraTests.swift.
4. Uncomment the next comment block, so this becomes active:

func testCamelCased() {

5. Run all unit tests and verify that they pass.

In this lesson, we learned about strings in Swift, how
they are and why, and how to use them. We've also
learned about string indices, substrings, and some things
to look out for when using strings with the Foundation
framework. We have also added some useful extensions
to String.

In the next lesson, we will take a brief look at functional
programming and explore lazy operations.

Chapter 6. Functional
Programming and Lazy
Operations

In the previous lesson, we looked at strings and
substrings. In this lesson, we will take a brief look at
functional programming and learn what lazy operations
are. We will end this lesson with an important but often
overlooked topic: writing Swifty code.

Functional programming is a style of programming which
tries to keep things simple by avoiding state, especially
mutable state, and using a relatively small set of highly
versatile functions/methods which take other functions
as input. The Swift Standard Library contains several of
these. They often make the code shorter, simpler, and
easier to read if you know what they do. They can also
free you from the burden of having to come up with
names for temporary variables. Even if you don't use
them in your own code, it is important to know how they
work as a lot of Swift code out there uses them.

By the end of this lesson, you will be able to:

e Explain functional programming

e Implement the filter, map/forEach, flatMap, and reduce

methods

e Use lazy sequences to delay operations until they are needed

e \Write proper Swifty code

NOTE

Open Functional.playground at the Introduction page.

First, let's reiterate what a function type is:

var sum: (Int, Int) -> Int

The type of sum is a function that takes two Int values
and returns one Int value. We can assign both
functions and closures to it, as they are essentially the
same thing:

func sumFunction(a: Int, b: Int) -> Int {
return a + b

}
let sumClosure = {(a: Int, b: Int) in

return a + b}

sumFunction
sumClosure

sum

sum

We can also assign an operator to it:
sum = (+)

This is because an operator is a function (the
parentheses around the + operator are just to signal that
we want to use it as a function, not add things together
right away). The definition of the + operator for Int is:

static func +(lhs: Int, rhs: Int) -> Int

So, whenever a function has a parameter of a function
type, we can supply an operator, as long as the input
and output match:

func perform(operation: (Int, Int) -> Int,
on a: Int, _ b: Int) -> Int {
return operation(a,b)

perform(operation: +, on: 1, 2)

Initialisers can also be used as functions:

extension Int {
init(add a: Int, _ b: Int) {
self.init(a + b)
}
}

sum = Int.init
perform(operation: Int.init, on: 2, 3)

We have to use .init to show that we are referring to
an initialiser, not the type Int itself.

If several functions have the same name, or initialisers
have the same number and types of arguments, we can
specify which one we are referring to by including the
argument labels. Here are the full names of the
preceding functions:

sumFunction(a:b:)
perform(operation:on:_:)

Int.init(add:_:)

NOTE
Open Functional.playground at the Methods page.

NOTE

The following sections show different ways of performing the same tasks. They say nothing
about which version, if any, is better.

filter

The filter method looks like this:

func filter(_ isIncluded: (Element) throws
-> Bool) rethrows -> [Element]

This is a simple method on Sequence, which we have
already used. The input function takes an element of the
sequence and returns either false or true. filter
returns an array of only those elements for which the
input function returns true:

let numbers = [-4,4,2,-8,0]
let negative = numbers.filter {$0<0} //
['41 '8]

Set and Dictionary have their own versions of this
method, which return a Set or Dictionary, respectively.

USING THE FILTER METHOD

Let's look at using the filter method by following this

step:

1. In Activity A of Lesson 5, we implemented a method on String for
finding the indices of all occurrences of a character. Go to the -
filter page in Functional.playground and replace the body
of the method with one that uses filter. Make sure the unit test
passes afterwards.

Here's a hint: when introducing arrays in Lesson 4, we mentioned
how to get all the indices of a collection.

Here's the solution:

return indices.filter { self[$0] ==
character }

map

map is a method often used on container types. For
Sequence, it looks like this:

func map<T>(_ transform: (Element) throws
-> T) rethrows -> [T]

Each element of the sequence is passed to the input
function, and the outputs are returned in an array. This is
a straight one-to-one transformation, where the resulting
array has the same number of elements as the
sequence.

map is remarkably versatile. Once you know about it,
you'll be seeing uses for it everywhere. Here's how we
can use it to perform mathematical operations on arrays
of numbers:

let numbers = [-4,4,2,-8,0]

let squared = numbers.map {$0*$0} // [16,
16, 4, 64, 0]

There is also a similar function on the sequence that
doesn't return anything:

func forEach(_ body: (Element) throws ->
Void) rethrows

This does the exact same thing as map, except it doesn't
return an array, because the input function doesn't return
anything. It avoids having to create and return an array
of Void (even Void takes up space in an array):

squared.forEach { print($0) }

Perhaps surprisingly, we also have map on optionals.
This makes sense if you think of an optional as a
container of either 0 or 1 elements:

func map<U>(_ transform: (Element) throws
-> U) rethrows -> U?

If the optional is nil, map returns nil. If not, the value
the optional contains is passed to the input function, and
the result is returned in an optional.

This is very useful for initialisers and other functions
which return optionals, such as Int(String), which
can only create an integer if the string contains one:

let textTimesTwo = Int("4").map { $0 * 2 }

Or, if we have an optional delegate we want to pass to a
function, but only ifitis not nil. The obvious way of
doing it is by doing this:

if let delegate = delegate {
doSomething(with: delegate)

}

Using map is shorter and more to the point:

delegate.map(doSomething)

USING THE MAP FUNCTION

Now that we had a brief about the map function, let's see
how we can make use of it. Here are the steps to do so:

1. Gotothe - map page in Functional.playground.

2. Create an array with the number of characters of each word in
text.

3. Edit the body of the range(where predicate: (Element)
throws -> Bool) function to use the optional map instead of
guard let.

Solution 1;

let wordLengths =
text.split(separator: " ").map
{$0.count}

Solution 2;

return try index(where:
predicate).map { start in
let end = try self[start..
<endIndex]
.index(where: { try
Ipredicate($0) }) ?? endIndex

return start..<end

flatMap

What if the function you provide to map returns an array,
and you don't want to end up with an array of arrays?
The flatMap method on Sequence takes care of that:

func flatMap<S:Sequence>(_ transform:
(Element) throws -> S) rethrows ->
[S.Element]

The input function takes in an element and returns a
sequence of elements, possibly of another type.
flatMap runs the input function on each of the original
sequence's elements, joins the resulting sequences
together, and returns them in an array. You can think of it
as first running a normal map, then flattening the
resulting sequence of sequences into a normal
sequence.

Here's how you can use it to split up an array of ranges
into a single array of bounds:

let ranges = [0...2, 5...7, 10...11]
let bounds = ranges.flatMap
{[$0.1lowerBound, $0.upperBound]}

// [0, 2, 5, 7, 10, 11]

There is also a slightly different method of the same
name on Sequence:

func flatMap<U>(_ transform: (Element)
throws -> U?) rethrows -> [U]

Here, the input function returns an optional, even if the
sequence does not contain optionals. Every time the
input function returns nil, itis ignored. This is more like
a combination of map and then filtering out all nil
values. The method is misnamed, and will be renamed
to compactMap (https://github.com/apple/swift-
evolution/blob/master/proposals/0187-introduce-
filtermap.md) in Swift 4.1:

["a","1","b","3"].flatMap(Int.init) // [1,
3]

Optional has its own version of flatMap:

func flatMap<U>(_ transform: (Element)
throws -> U?) rethrows -> U?

If the optional is nil, flatMap returns nil. If not, the
value the optional contains is passed to the input
function, and the result is returned. Using this function
instead of map avoids getting an optional of an optional
in return:

var stringOptional: String?

let intOptional =
stringOptional.flatMap(Int.init)

USING THE FLATMAP FUNCTION

https://github.com/apple/swift-evolution/blob/master/proposals/0187-introduce-filtermap.md

. Gotothe - flatMap page in Functional.playground.

. Create the inverted array using one flatMap instead of a filter
and a map.

. Change the body of the range (between:and:) function to use
flatMap and map instead of guard let.

Solution 1;

let inverted = numbers.flatMap { nr

in
return nr == 0 ? []
[1.0/Double(nr)]
}
Or:
let inverted = numbers.flatMap { nr
in
return nr == 0 ? nil
1.0/Double(nr)
}
Solution 2:

public func range(between
fromElement: Element, and toElement:
Element) -> Range<Index>? {
return index(of: fromElement)
.flatMap { fromIndex in

let start = index(after:
fromIndex)

return suffix(from:
start).index(of: toElement)

.map { toIndex in start..

<toIndex }

}

Or if you want to go all the way:

public func range(between
fromElement: Element, and toElement:

Element) -> Range<Index>? {
return index(of: fromElement)
.map(index(after:))
.map(suffix(from:))
.flatMap { suffix in
suffix.index(of: toElement)
.map { suffix.startIndex..
<$0 }
b

reduce

reduce is used to produce a single value from a
sequence:

func reduce<Result>(_ initialResult:
Result, _ nextPartialResult: (Result,
Element) throws -> Result) rethrows ->
Result

It can be used to, for example, multiply all the numbers
together:

let multiplied = negative.reduce(1l) {
result, element in result * element }

First, it calls the input function with initialResult and
the first element of the sequence. The result is passed to
the input function again, together with the next element
of the sequence. After going through the entire
sequence, the last result from the input function is
returned.

There is another version where the result parameter to

the input function is inout, in other words, mutable. The
input function itself doesn't return anything:

func reduce<Result>(into initialResult:
Result, _ updateAccumulatingResult: (inout
Result, Self.Element) throws -> ())
rethrows -> Result

Here is the previous example using this version:

let multiplied2 = negative.reduce(into: 1)
{ result, element in result = result *
element }

The mutable version is best for producing more complex
values, such as arrays. It lets us directly add to one array
in place instead of having to create a new array for every
run of the input function.

USING THE REDUCE FUNCTION

Now, follow the given step to implement the reduce
function:

1. Gotothe - reduce page in Functional.playground.
Compute the average using reduce.

Here's the solution:

let average =
Double(numbers.reduce(0, +)) /
Double(numbers.count)

This is the end of our journey with functional
programming. In this section, we described functional
programming and worked with four important functions:

filter, map, flatMap, and reduce.

Activity A: Implementing Functional
Programming

We want to make the code clearer, more concise, and
hopefully easier to read.

To use an Xcode playground to make a part of the code
in CountedSet from Lesson 4, Collections, more
functional.

1. Duplicate the CollectionsExtra project from Lesson 4, and
name the duplicate CollectionsExtraFunc.

2. Open the new project in Xcode, and go to CountedSet.swift.

3. Go to the following method:

public var count: Int {
var result = 0
for count in elements.values {
result += count

}

return result

}

4. This is the archetypical use case for reduce. Replace the body of
the function with this:

return elements.values.reduce(0, +)

Beautiful, isn't it?
5. Next, go to the following function:

public mutating func insert<S>
(contentsOf other: S)

where S:Sequence, S.Element ==
Element {

for newelement in other {
insert(newelement)

6. One option is to use forEach:
other.forEach({self.insert($0)})

7. Preferably, we would use other.forEach(insert) here but it
leads to an error message about self being immutable, even
though we are in a mutating method.

There is a merge
(https://developer.apple.com/documentation/swift/dictionary/289285
5-merge) method on Dictionary that is perfect for us. It takes a
sequence of key-value pairs and adds it to the dictionary. Every
time it encounters a key that already exists, it passes the current
value and the new one to the function we provide, and uses
whatever that function returns as the new value:

elements.merge(other.lazy.map { (%0,
1) }, uniquingKeysWith: +)

NOTE

The elements dictionary has elements for keys and their count as value.

First, we convert the other sequence to key-value pairs, which is
simple since the count of each element is 1 (we will learn about the
lazy property in the next section). And for any keys that already
exist, we just need to add their values together with the +
operator/function.

https://developer.apple.com/documentation/swift/dictionary/2892855-merge

All the sequences and methods we have looked at so far
this lesson have been eager, which means they perform
their operations immediately, and filter, map, and
flatMap return their results in arrays. But sometimes,
we may want to delay operations until they are needed.

Say you have a very large array, and you want to first
use map and then perform other operations. If done
eagerly, map will create a new array with the same
number of elements as the original one to store its
results. But if we do it lazily, map will return a
LazyMapSequence, which will perform each map
operation directly when asked for, without using any
intermediate storage.

Infinite sequences must be handled lazily, as they
obviously cannot be stored.

Lazy Sequences

Sequence

LazySequenceProtocol

LanySequence / LanyPrfiWhiSequence
LanyFterequence * LanyDropWhieSequence

LazyMapSequence

LazyCollctionProtoco

Have a look at the preceding diagram that talks of lazy
sequences. A lazy sequence is one that conforms to
LazySequenceProtocol. The original sequence itself
may or may not work lazily internally, but some further
operations on the sequence are lazy, for example,
filter, map, flatMap, drop(while:), and
prefix(while:).

NOTE

Open Functional.playground at the Lazy sequences page.

To make a sequence lazy, just use the lazy property:

let array = [1,2,3,4]
let lazyArray = array.lazy

The actual type we get back depends on the type of the
original sequence. For array, it is
LazyRandomAccessCollection<Array<Element>>

We can chain many operations together:

let complexType = lazyArray
.flatMap { -2..<%0 }
.map { $0*$0 }
.filter { $0<4 }

Note that none of the operations have been performed
yet. This won't happen until we turn the sequence into an
array (Array(complexType)), useitina for..in loop,
or perform an operation that is not lazy:

let eager = complexType.dropFirst(4)

One thing you will notice about lazy sequences is that
the types may become very long and complex. For
example, the type signature for complexType
mentioned previously is as follows:

LazyFilterCollection<LazyMapCollection<Fla
ttenBidirectionalCollection<LazyMapBidirec
tionalCollection<[Int],
CountableRange<Int>>>, Int>>

If a type signature threatens to get out of hand, we can
shorten it with this:

let shorterTypeSignature =
AnySequence (complexType).lazy
// LazySequence<AnySequence<Int>>

Beware that this may prevent some optimizations, as the
compiler no longer knows what types are at work.

NOTE

If they save memory, why not always use lazy sequences?

Because they are not necessarily faster. Lazy operations do not store their results, so every
time they are called, they have to do the same operation again. You have to be careful
which parts of your chain of operations are lazy to avoid redoing the same operations over
and over.

Sequence Internals

NOTE

Open Functional.playground at the Sequence internals page.

The Sequence protocol looks like this (from the Swift
source code, slightly simplified; see
https://github.com/apple/swift/blob/master/stdlib/public/co
re/Sequence.swift):

public protocol Sequence {

/// A type representing the sequence's
elements.

associatedtype Element

/// A type that provides the sequence's
iteration interface and

/// encapsulates its iteration state.

associatedtype Iterator
IteratorProtocol where Iterator.Element ==
Element

/// Returns an iterator over the
elements of this sequence.
func makeIterator() -> Iterator

This, of course, begs the question: so what is
IteratorProtocol?

public protocol IteratorProtocol {

/// The type of element traversed by the
iterator.

associatedtype Element

/// The next element in the underlying
sequence,

/// if a next element exists; otherwise,
‘nil".

mutating func next() -> Element?

}

https://github.com/apple/swift/blob/master/stdlib/public/core/Sequence.swift

Every time a sequence is used in a for..1n loop, or
when other methods go through its elements, it first
returns an iterator from makeIterator, which in turn
provides one element at a time from next, until it is
empty and returns nil.

Creating Lazy Operations

NOTE

Open Functional.playground at the Lazy operations page.

How do we create operations that work lazily? For more
complex operations, including those that use recursion, it
is often best to create a new type which implements the
Sequence and IteratorProtocol protocols. But for
simpler tasks, there are two very convenient functions
the Standard Library provides.

SEQUENCE(FIRST:NEXT:)

Here is the function:

func sequence<T>(first: T, next: @escaping
(T) -> T?) -> UnfoldSequence<T, (T?,
Bool)>

This function creates the sequence first,
next(first), next(previous element),
next(previous element), and so on, until next
returns nil (or, if it's infinite, the sequence will continue
forever).

It is very useful for following references:

for view in sequence(first: someView,
next: { $0.superview }) {

// someView, someView.superview,
someView.superview.superview,

}

It is also useful for some mathematical sequences:

let powersO0f2 = sequence(first: 1) {
let result =

$0.multipliedReportingOverflow(by: 2)
return result.overflow ? nil :

result.partialvalue

}

SEQUENCE(STATE:NEXT:)

Here is the function:

func sequence<T, State>(state: State,
next: @escaping (inout State) -> T?) ->
UnfoldSequence<T, State>

This creates a sequence by repeatedly passing mutable
State to the next function. It is useful when there are
changing values that are different than the output.

Here is the obligatory Fibonacci sequence example
(where each element is the sum of the previous two
elements):

let fibonacci = sequence(state: (0,1)) {
numbers -> Int? in

numbers = (numbers.1, numbers.0 +
numbers.1)

return numbers.0

}.prefix(91)

This outputs 1, 1, 2, 3, 5, 8, and so on. We limit the
sequence to the first 91 elements, because the 92" is
too large to fit in an Int type, and the program will
crash.

For a slightly more complex example, this method
returns the elements of the underlying sequence in
groups of two, in tuples:

extension LazySequenceProtocol {
/// Group the elements of this sequence
in tuples of 2.
/// If there is an odd number of
elements, the last element is discarded.
func group2() ->
LazySequence<UnfoldSequence<(Element,
Element), Iterator>> {
return sequence(state:
self.makelterator()) { iterator in
let result = iterator.next().flatMap
{ a in
iterator.next().map { b in (a,b) }
}
return result
}.lazy

NOTE

Ideally, we would return directly without using result, but then the compiler complains that
type of expression which is ambiguous without more context.

Here, we use the iterator of the underlying sequence as

the mutable state, and only return a value if both calls to
iterator.next() are not nil. We use flatMap first,
because the next line can also be nil.

The code from let result toreturn result does
the same as this:

guard let a = iterator.next(),
let b = iterator.next()
else { return nil }

return (a,b)

In this section, we have covered what lazy operations
are and how they are useful. We'll end this section with
an activity that allows us to implement the lazy version of
a method.

Activity B: Implementing a Lazy
Version of a Method

We want to make the method use less memory, or be
more efficient if we only need some of the ranges.

To use an Xcode playground to make a lazy version of
the allRanges method from Lesson 5, Strings.

1. Duplicate the StringsExtra project from Lesson 4, and name the
duplicate StringsExtralLazy.

NOTE

If you did not finish the StringsExtra project, you can use the project provided
for this lesson, and check out the Activity B_start_here branch in the
Xcode Source Control Navigator (382).

. Open a new project, and go to StringsExtra.swift.

. First, it would be nice if both the current and the lazy version of the
method could be used on both strings and substrings. To achieve
this, we must move the current version from String to
StringProtocol (we can do this because the method we use
inside, range(of:), is also available on StringProtocol). At
the top of the file, change the line extension String {to
extension StringProtocol {.

. We get an error message a couple of lines below, saying this:

Cannot convert value of type
'Range<Self.Index>' to expected
argument type 'Range<String.Index>'

This is because even though only String and Substring conform to
StringProtocol, and they both use String.Index as index
type, this associated type has not been set on StringProtocol.
We need to constrain our extension:

extension StringProtocol where Index
== String.Index {

. There is still one error in countLinguisticTokens. We won't
deal with that now, but just move that method to the extension on
String below.

. Run unit tests, and verify that they pass.

. At the bottom of the file, add the following:

extension LazySequenceProtocol where
Elements: StringProtocol,
Elements.Index == String.Index {

Here, we are adding the same constraints as in the preceding
extension, except we add them to
LazySequenceProtocol.Elements.

. Paste a copy of the original al1Ranges method into the new
extension. Some errors appear:

Use of unresolved identifier

10.

11.

'startIndex'
Use of unresolved identifier
'endIndex'

This is because we are no longer in String. We are in
LazySequenceProtocol, and it does not have those properties.
However, its elements property is a string or a substring, thanks to
the constraints we added to the extension. So, for every error that
now appears, insert elements. in front of the identifier mentioned
in the error message, for example:

var searchRange = searchRange ??
startIndex..<endIndex

The preceding line of code becomes this:

var searchRange = searchRange ??
elements.startIndex..
<elements.endIndex

Verify that everything builds okay (3£B).

Now, let's look at the method and how to make it lazy. We will be
returning a sequence of some kind, but we're not quite sure which
yet. For now, we can just remove the return type from the function
definition, and the return statement at the end. We no longer
need the ranges variable; remove the two lines it appears in.
We should now be left with this:

extension LazySequenceProtocol where
Elements: StringProtocol,
Elements.Index == String.Index {
public func allRanges(of aString:

String,

options: String.CompareOptions =
[1,

range searchRange:
Range<String.Index>? = nil,

locale: Locale? = nil) {

var searchRange = searchRange ??
elements.startIndex ..<

elements.endIndex

while let foundRange =
self.elements.range(
of: aString, options: options,
range: searchRange, locale:
locale) {

searchRange =

options.contains(.backwards) ?

searchRange.lowerBound . .<
self.elements.index(before:
foundRange. upperBound)

self.elements.index(after:
foundRange. lowerBound) ..<
searchRange.upperBound

}

The code inside the while loop is what will be run for each turn of
the sequence we are creating. We need to identify what state is
changing each time. In this case, it is easy to see, as
searchRange is the only variable left.

12. So, we have some state external to the loop; the
sequence(state:) function seems like a good fit. Insert this on
the line above the while loop:

let result =

13. Begin to type seq, and select sequence(state: (and so on) from
the auto completion pop-up menu. Enter searchRange in the first
blue field, press Tab, and then press enter on the next blue field.
You are left with this:

let result = sequence(state:
searchRange) { () -> T? in

}

14. We can just call the input parameter to the closure searchRange

as well, and the return type, the element type of the sequence we
are now creating, is Range<String.Index>:

let result = sequence(state:
searchRange) {

(searchRange) ->
Range<String.Index>? in

}

15. Move the closing brace down so the entire loop is inside the
closure. Ignore the Missing return in a closure... error message.

16. We need to know when to stop, and that is when foundRange is
nil. Change the while let line and the next two ones to this:

guard let foundRange =
self.elements.range(

of: aString, options: options,

range: searchRange, locale:
locale)

else { return nil }

17. Now we can listen to the error message; insert this at the end of the
closure:

return foundRange

18. There should be a warning on the first line of the body of the
method. Click on it, and then click on fix to change var
searchRange to let searchRange.

19. Now all that is left is to actually return something from the method.
Click on result to put the text marker inside it, and look in the
Quick Help Inspector in the top-right corner of the window (if it is not
already open, press #~\-2). You should see the type of the
sequence there. Click on UnfoldSequence to view the
documentation:

000) (B Stage | My Stingstr | Bl Succentnd | Vst 2850 1 =EheUdO

2 [@]Stfinqu)dra }\"{_'\Sourcas)DStﬂnquxlra).StrmgsExtra‘swiﬁ}maHHangss[m:optiuns:mnge:\oca\e:) ()
rosult += self{range]. capitalized ‘Qulck Help
1]
] Degrgion Lot result:
T et ‘ UnfoldSequencachange<tts
} 1 g, ndess,
} RangedString, [ndexps

Declared 1 StrnggExtra swit
uxtension LazySequenceProtocal whare Elenents: StrdngProtocol, Elmments, Indey = String.Index {

public fune allRanges(of aString: String,
options: Strdng. Comparelptions =],
range searchRange: RangeeString. Indens? = nil,
Locale: Locale? = nil) {

Let searchRange = searchRange 77 elenents, startIndex, .<elenents, endIndes
Lot result = sequonce (state: searchRange] { X Italzation of bl v vesut s neve e, con.
(searchRange -> RangeeString. Indoes? in]

quard Lat foundRange = salf,elenents, range
of: aString, options: ptions,
range: searchRange, Locale: locale
else { retum nil }

searchRange = options, contadnsl backiards) 7

searchRange. LowerBound. . <self .eLenents, ndex before: foundAange. LpperBound) : 22%

sulf. elenents, index(after: foundRange. lowarBound) . <searchRange. upperBound 1

return faundRange 20}

}]

}]

} BEYYE

20. Go to the bottom of the documentation page, where it says this:

Conforms To IteratorProtocol,
Sequence

UnfoldSequence performs its operations lazily and internally, but
since it does not conform to LazySequenceProtocol, other
operations on it like map and filter are not lazy. Since we are
adding a method to LazySequenceProtocol, we need to make
sure that any sequence we return also conforms to it. To do this,
add . lazy right after the closing brace of the closure, on the line

below return foundRange.
21. Place the text marker inside result again. In the top right corner,
the type has changed to this:

LazySequence<UnfoldSequence<Range<St
ring.Index>, Range<String.Index>>>

000) (B Stage | My Stingsr | Bl Succendnd | Vst 2850 1 =020
B () Bsogebt) [Sumes) [Sngebt) § Sosbimait) [aRengesptinsrngeoca) () Do
result += self{range]. capitalized ‘Qulck Help
} Decraion Lot result:
return reslt LazySequenceelnfoldSoque
}] nee<RngedString. Inders,
} Rangedtring, Indaipsd

Declared 1 StrnggExtra swit
uxtension LazySequenceProtocal whare Elenents: StrdngProtocol, Elements, Indey = String.Index {

public func allRanges(of aString: String,
options: Strdng. Compareptions = (],
range searchRange: RangeeString. Indews? = nil,
Locale: Locale? = nil) {

§
Let searchRange = searchRange 77 elenents, startIndex, .<elenents, endIndes
Lot result = sequonce (state: searchRange] { X Italzationof mmutabl vaie vesut s neve e, con.
(searchRange -> RangeeString. Indoes? in 3
quard let foundRange = salf,elements, range
of: aString, options: ptions,
range: searchRange, Locale: locale)
else { retum nil }
searchRange = options, contadns backards) 7 §
searchRange. LowerBound. . <self .eLenents, ndex before: foundAange. LpperBound) : 2
sulf, elenents, index(after: foundRange. LowarBound) . <searchRange. upperBound l
roturn foundRange A4
} 1oy 1
] i

}

iR

Copy and paste it in as the return type of the method.
22. Replace let result =with return.
23. Verify that it builds.
24. Gotothe unittest file StringsExtraTests.swift, and insert

the following below the first unit test:

func testAllRangesLazy() {
let lazyString = string.lazy

XCTAssertEqual(Array(lazyString.allR
anges(of: '"Line", options:
.caselInsensitive)).count, 2)

XCTAssertEqual(Array(lazyString.allR
anges(of: "Line")).count, 1)

XCTAssertEqual(Array(lazyString.allR
anges(of: "hsf")).count, 0)

XCTAssertEqual(Array("LineLinelLine".
lazy.allRanges(of: "Line")).count,
3)

XCTAssertEqual(Array("lalalalalala".
lazy.allRanges(of: "lala")).count,
5)

XCTAssertEqual(Array("11111111".lazy
.allRanges(of: "11")).count, 7)

XCTAssertEqual(Array(lazyString.allR
anges(

of: "1i", options:
.caselnsensitive, locale:
.current).map{string[$0]}).count, 2)

XCTAssertEqual(Array(lazyString.allR
anges(

of: "1i", options:
[.caseInsensitive, .backwards],
locale: .current)).count, 2)

}

Here, we extract all elements from the lazy sequences by wrapping

them in arrays.
25. Run all unit tests (38 U) and verify that they all pass.

And that's it. Congratulations!

When learning a new programming language, you're not
just learning syntax, built-in libraries, tooling, terminology,
formatting style, and so on. There is also a somewhat
vaguely defined idea of what constitutes good code, a
way of performing some tasks that fits well with the
language and has evolved together with it over time. In
Swift, such code is often referred to as Swifty code. This
is in no way a well-defined term, and experts in the
language may disagree on some points. Here, we will
only cover things where there seems to be a consensus.
The list is by no means exhaustive, and there are
exceptions to many of these.

Many of these points are covered in Apple's official
guidelines (https://swift.org/documentation/api-design-
guidelines/). We strongly recommend reading it; it's a
fairly short page and a very easy read.

Naming

Names of types and protocols are in UpperCamelCase.
Everything else is in lowerCamelCase. This makes it
easy to tell values and types apart.

Try to name functions and their parameters so that they
form English phrases when called. So, instead of this:

https://swift.org/documentation/api-design-guidelines/

x.insert(y, position: Zz)
X.subViews(color: vy)
X.nounCapitalize()

Do this:

x.insert(y, at: z)
X.subViews(havingColor: vy)
X.capitalizingNouns()

Functions returning Booleans should read well in an if
statement:

if x.isEmpty {...}
if linel.intersects(line2) {...}

Methods that are mutating or have other side effects
should read like commands:

print(x), x.sort(), X.append(y)

If this isn't possible because the operation is best
described by a noun, prepend form instead:

y.formuUnion(z), c.formSuccessor(&i)

Append ed or ing to methods that return a new value
instead of mutating:

Mutating Nonmutating

x.sorted()

x.sort() z

x.appending(y)

x.append(y) z

For nouns, just use the noun on its own for the non-
mutating version:

Mutating Nonmutating

y.union(z)

y.formUnion(z) X

c.successor(1i)

c.formSuccessor(&i) J

Organizing Code

Avoid free functions, and place them where they belong.
A function that processes text should be placed in an
extension on StringProtocol (so it can be used by
both strings and substrings). If the function doesn't take
a value as input, make it static.

Group methods and properties that belong together in
one extension. For example, if you are adding protocol

conformance to a type, group everything that is required
by that protocol together in one extension.

If you have a function that is only going to be used from
one other function, place it inside that function. This
makes it clear as to why it exists.

Miscellaneous

Don't put semicolons at the end of lines. That is pointless
in Swift. You can, however, use a semicolon to write two
statements on one line, but that is not something you
should do very often.

Languages without optionals have various ways of
signaling the absence of a value: "" for strings, -1 for
positive integers, null for objects, and so on. Swift,
thankfully, only has one — nil. Always use optionals if a
value can be empty.

Use Int for most integers, even if you only need positive
values or smaller values that can fit in Int8, Int16, or
Int32. Otherwise, you will have to do a lot of conversions
since Swift does not do this automatically, not even when
it is guaranteed to be safe.

Unless the order is significant, place a parameter taking
a closure last in the function definition so that it can be
used with trailing closure syntax. Place parameters with
default values second to last.

Put underscores in long numeric literals, so they are

easier to read:

1 _000_000, 0.352_463

If you need to change a value after you have returned it,
use this code:

let oldvalue = value
value += 1
return oldvalue

Use defer instead:

defer { value += 1 }
return value

WRITING SWIFTY CODE

Finally, we're ready to write Swifty code. Here is the step
to do so:

1. Rewrite the following code to be more Swifty, using the guidelines
mentioned previously:

/// An immutable entry in an error
log.
struct LogError {

var header: String

let errorMessage: String

init(header: String = "",
errorMessage: String) {
self.header = header
self.errorMessage =
errorMessage;
if header.isEmpty {
self.header = "

::Error::errorCode::"

}

LogError(errorMessage: "something
bad")

LogError (header: "head",
errorMessage: "something bad")

Here is the solution:

/// An immutable entry in an error
log.
struct ErrorLogItem {

let header: String

let errorMessage: String

init(errorMessage: String, header:
String? = nil) {
// Only if empty strings are
invalid as headers.
precondition(header != "", "A
header cannot be empty.")

self.header = header ?? "
::Error::errorCode::"
self.errorMessage = errorMessage

ErrorLogItem(errorMessage:
"something bad")
ErrorLogItem(errorMessage:
"something bad", header: "head")

This ends our brief journey into code naming and organization, or in
other words, how to write code in the Swifty way.

In this lesson, we learned about the functional operations
filter, map, flatMap, and reduce. Then, we learned
about lazy operations and a few ways of creating them.
Finally, we learned characteristics of good Swifty code.

The last three lessons of this course have been focused
on the Swift Standard Library. We began with learning
about the three main generic collections: Arrays, Sets,
and Dictionaries, and added some useful methods to
them. We also created our own collection: CountedSet.
Then, we learned about text handling in Swift and
working with Foundation, and added some useful String
methods. We also looked at functional programming and
lazy operations.

This entire course is designed to be a thorough
introduction to Swift for programmers who are new to the
language. We hope you have found it useful and
welcome you as a fellow Swift programmer.

Apple's own books on Swift programming
(https://itunes.apple.com/no/book-series/swift-
programming-series/id888896989?mt=11) are very well-
written and highly recommended. So are the books from
the no-longer-appropriately-named objc.io
(https://www.objc.io/books/).

https://itunes.apple.com/no/book-series/swift-programming-series/id888896989?mt=11
https://www.objc.io/books/

For a final challenge, here is what you can do after the
book. The Standard Library has methods for splitting a
string over a single character, or a function that takes a
single character and returns a Boolean. However, it
doesn't have any methods for splitting a string over a
substring, or doing it lazily.

Create a new method, which can be used on lazy strings
and substrings, and takes a separator (String) and
optionally String.CompareOptions and Locale, and
returns a lazy sequence of the ranges between each
occurrence of the separator in the original
string/substring.

There are several ways of achieving this. The following
hints describe one solution which uses some of the
methods we have created in this course. Try and see if
you can complete this by using as few hints as possible.

Hints:

e \We can find the ranges of the separators first, and then invert them
to get the ranges of the spaces between the separators.

e Use the lazy allranges method we created in Lesson 6.

e Break up the lowerBound and upperBound of the ranges of the
separators into a sequence of indices.

e Create a new sequence, still lazy, from the start index of the original
string/substring, the indices from the previous hint, and the end

index.

e There is no built-in way of joining sequences of different types lazily
together. Here is one way:

private func joinSequences<S1,S2>(_
sl: S1, s2: S2)

-> UnfoldSequence<S1.Element,
(Optional<Si1.Iterator>,
S2.Iterator)>

where S1:Sequence, S2:Sequence,
S1.Element == S2.Element {

return sequence(state:
(Optional(sl.makeIterator()),
s2.makeIterator()))
{ seqs -> S1.Element? 1in
guard let = seqs.0 else {
return seqgs.1.next() }
return seqs.0?.next()
?? { seqs.0 = nil; return
segs.l.next() }()
}

public func +<S1,S2>(sl1: S1, s2: S2)
-> UnfoldSequence<S1.Element,
(Optional<Si.Iterator>,
S2.Iterator)>
where S1:Sequence, S2:Sequence,
S1.Element == S2.Element {
return joinSequences(sl, s2)

public func +<S1,S2>(sl1: S1, s2: S2)

->
LazySequence<UnfoldSequence<S1.Eleme
nt, (Optional<Si.Iterator>,
S2.Iterator)>>

where Si1:Sequence,
S2:LazySequenceProtocol, Sl1.Element
== S2.Element {

return joinSequences(s1i,
s2).lazy
}

public func +<S1,S2>(sl: S1, s2: S2)

->
LazySequence<UnfoldSequence<S1.Eleme
nt, (Optional<Si.Iterator>,
S2.Iterator)>>

where S1:LazySequenceProtocol,
S2:Sequence, S1.Element ==
S2.Element {

return joinSequences(s1i,

s2).lazy

}

o Take the new sequence, flatten it if necessary, and group two and two indices
together.

e Use the group2 method from Lesson 6.

e Create ranges from these grouped indices.

e Return this as a lazy sequence.

Index

A

e argument labels

e adding, to function / Argument Labels

e excluding, from function / Excluding Argument Labels
e arithmetic operators

e standard arithmetic operators / Standard Arithmetic
Operators

e remainder operator / Remainder Operator
e unary minus operator / Unary minus Operator

e arrays

e about/ Arrays

e working with / Workingarraysworking with with Arrays,
Activity A: Working with Arrays

e index/ Index

e ArraySlice / ArraySlice
e ArraySlice

e about / ArraySlice
e assignment operator

e about / Assignment Operator

e compound assignment operator / Compound Assignment
Operators

e BidirectionalCollection / Workingarraysworking with with Arrays

bitwise operators

e about / Bitwise Operators
Boolean data type

e about/ Boolean
Bool value

e about/ Boolean
branching

e about / Branching
e if statement/ The if Statement
e condition lists / Condition Lists

e switch statement / The switch Statement
break keyword

e about/ The break Keyword

e using / The break Keyword

CamelCase

e about / Activity C: CamelCase

e using / Activity C: CamelCase
Character data type

e about / Character
e values, assigning / Assigning a Character

e Character literal, constructing / Constructing a Character
Literal

classes

e about / Object-Oriented Principles, lllustration

e versus, structs / Classes Versus Structs, lllustration

e defining / Defining Classes and Structures
closed range operator

e about / Closed Range Operator
closures

e about / Functions as Parameters, Closures
code

e converting, from if to switch / Activity B: Converting Code
from if to switch

comparison operators

e about / Comparison Operators
e equality / Equality

e inequality / Inequality, Comparison between Two Values
compound assignment operators

e about / Compound Assignment Operators
conditional unwrapping

e about / Conditionally Unwrapping Optionals, Using
Optionals

continue statement
e using / The continue Control Transfer Statement

CountedSet / Activity C: Using Dictionaries

customer class

e creating / Activity C: Creating a Customer Struct and Class,
Challenge

customer struct

e creating / Activity C: Creating a Customer Struct and Class,

Challenge

e @discardableResult

e about / Using @discardableResult

e using / Using @discardableResult
e data types, Swift

e about / Swift Data Types

e numeric data types / Numeric Data Types

Boolean / Boolean

Character / Character

string / String

e working with / Activity C: Data Type Summary
e dictionaries

e about / Dictionaries

e working with / Workingdictionariesworking with with
Dictionaries

e using / Activity C: Using Dictionaries
e do...catch

e about/ The do...catch Statement

e implementing / The do...catch Statement

e endindex / Index

® enum

e about/Enums
e basic syntax / Basic Enum Syntax

e raw values / Enum with Raw Values

e using / Activity D: Using Swift Enums

e Equatable / Sets

e error handling

e about / Error Handling

e do...catch statement/ The do...catch Statement
e multiple catch blocks / Multiple catch Blocks

e do without catch, using / Using do without catch

e guard statement / The guard Statement
e exception handling

e about / Activity B: Exception Handling

e fallthrough keyword
e about / The fallthrough Keyword
e filter method

e about / filter

e using / Usingdfilter methodusing the filter Method
e flatMap method

e about / flatMap

e using / Using flatMap methodusingthe flatMap Function
e force unwrapped variable

e about / Declaring an Optional
e force unwrapping

e about / Force Unwrapping an Optional
e for...in statement

e about/ The for...in Statement

e objects, iterating over / Iterating over Objects

e array objects with index, iterating over / Iterating over Array
Objects with index

e for loop where clause / The for Loop where Clause

e break control transfer statement / The break Control
Transfer Statement

e continue control transfer statement / The continue Control
Transfer Statement

e functional methods

e about / Functional Methods

filter / filter

e map / map

flatMap / flatMap

reduce / reduce
e functional programming

e implementing / Activity A: Implementing Functional
Programming

e function attributes
e about / Function Attributes
e functions

e about / Functions

e defining / Defining a Function

e Dbasic syntax / Defining a Function

e argument labels, adding / Argument Labels

e argument labels, excluding / Excluding Argument Labels

e parameter default values, providing / Parameter Default
Values

e implementing / Activity A: Implementing a Function

values, returning from / Returning Values from Functions
@discardableResult, using / Using @discardableResult
function attributes / Function Attributes

variadic parameters / Variadic Parameters

inout parameters / inout Parameters

recursion / Recursion

as parameters / Functions as Parameters

closures / Closures

creating, for receiving content from asynchronous web
service call / Creating a Function to Receive Content from
an Asynchronous Web Service Call

e function type

e about / Function Type

e guard statement

e about/ The guard Statement

e using / The guard Statement

half-open range operator
e about / Half-Open Range Operator

Hashable / Sets

Hello, World program

e about / Hello, World!

if statement

e about / Branching, The if Statement

e implementing / The if Statement

e implementing, with multiple conditions / Condition Lists
e optional unwrapping / Optional Unwrapping with if

e index type, arrays

e about / Index

e common operations, utilizing / Utilizing Common
Operations with Index

e indices of character, string
e identifying / Activity A: All Indices of a Character

e infer data type / Type Inference

e inout parameters

e about/ inout Parameters

e |azy operations

e about / Lazy Operations

e lazy sequence / Lazy Operations, Lazy Sequences
e implementing / Lazy Sequences

e Sequence internals / Sequence Internals

e creating / Creating Lazy Operations

e sequence functions / sequence(first:next:),
sequence(state:next:)

e |azy version, of method

e implementing / Activity B: Implementing a Lazy Version of a
Method

e |ogical operators

e about / Logical Operators
e |oops

e about/ Loops
e for...in statement / The for...in Statement
e while loop / The while Loop

e implementing / Activity C: Implementing Loops

e map method

e about/ map

e using / map
e multiple catch blocks
e about / Multiple catch Blocks

e MutableCollection / Workingarraysworking with with Arrays

e nil-coalescing operator

e about / Nil-Coalescing Operator
e NSRange

e converting, to Range / Converting NSRange to Range
e numeric data types

e about/ Numeric Data Types

e nt on 64-bit platform, versus 32-bit patform / Int on 64-Bit
Versus 32-Bit Platforms

e Dbuilt-in numeric data types / Built-In Numeric Data Types

e appropriate numeric data type, selecting / Choosing the
Appropriate Numeric Data Type

Integer variables, declaring / Declaring and Assigning
Integer Variables

Integer variables, assigning / Declaring and Assigning
Integer Variables

floating-point numbers, declaring / Declaring and Assigning
Floating Point Numbers

floating-point numbers, assigning / Declaring and Assigning
Floating Point Numbers

numeric literal grouping / Numeric Literal Grouping
numeric type conversions / Numeric Type Conversions

working with / Using Numeric Types

e one-sided range operator

e optional

about / One-Sided Range Operator

about / Optionals

declaring / Declaring an Optional

working with / Working with Optionals

nil values / Optional nil Values

values, accessing / Accessing Optional Values
force unwrapping / Force Unwrapping an Optional

conditional unwrapping / Conditionally Unwrapping
Optionals, Using Optionals

e RandomAccessCollection / Workingarraysworking with with Arrays

e range operators

about / Range Operators

e closed range operator / Closed Range Operator
e half open range operator / Half-Open Range Operator

e one-sided range operator / One-Sided Range Operator

e RangeReplaceableCollection / Workingarraysworking with with
Arrays

e ranges, of substring

e finding / Activity B-1: All Ranges of a Substring
e recursion

e about / Recursion
e reduce method

e about/ reduce

e using / Using reduce methodusingthe reduce Function

e SetAlgebra/ Sets

e sets

e about/ Sets

e working with / Working setsworking withwith Sets
e combining / Combining Sets

e comparing / Comparing Sets

e duplicates, removing from sequence / Activity B: Removing
Duplicates from a Sequence

e slices

e creating / Creating Slices

e creating, range operators used / Creating Slices Using
Range Operators

e startindex / Index

e string

about / String

instantiating / Instantiating a String
concatenation / String Concatenation
Characters, extracting / Extracting Characters
length, obtaining / String Length

indices of character, identifying / Activity A: All Indices of a
Character

using / Using Strings
creating / Creating Strings
common operations, implementing / Common Operations

text operations, implementing / Implementing stringtext
operations, implementingExtra Text Operations on a String

ranges of substring, finding / Activity B-1: All Ranges of a
Substring

number of spaces, counting / Activity B-2: Counting Words,
Sentences, and Paragraphs

e string fundamentals

about / String Fundamentals

character / Character

collection / Collection

index / Index, Working with String Index

debugging / Debugging

e String index

e working with / Working with String Index

e StringProtocol

e structs

about / Substring

about / Object-Oriented Principles

e defining / Defining Classes and Structures
e substrings

e about / Substring
e creating / Creating Substrings
e parsing / Parsing Strings

e NSRange, converting to Range / Converting NSRange to
Range

e Swift

e program structure / Swift Program Structure, Hello, World!
e basic language syntax / Swift Program Structure

e Hello, World program / Hello, World!

e variables / Swift Variables and Constants

e constants / Variables Versus Constants

e type inference / Type Inference

e optional / Optionals

e data types / Swift Data Types

e branching / Branching

e object-oriented features / Object-Oriented Features

e object-oriented principles / Object-Oriented Principles
e Swift collections

e arrays / Arrays
e Swift guard statement

e about / The Swift guard Statement
e Swift operators

e about / Swift Operators
e categories / Swift Operators

e assignment operator / Assignment Operator

arithmetic operators / Standard Arithmetic Operators
comparison operators / Comparison Operators

ternary conditional operator / Ternary Conditional Operator
logical operators / Logical Operators

bitwise operators / Bitwise Operators

nil-coalescing operator / Nil-Coalescing Operator

range operators / Range Operators

working with / Activity A: Operators

e Swift variables

declaring / Declaring Swift Variables
versus, Swift constants / Variables Versus Constants
variable naming / Variable Naming

working with / Working with Variables, Activity B: Variable
Summary

e Swifty code

about / Swifty Code

naming / Naming

code organization / Organizing Code
miscellaneous / Miscellaneous

writing / WritingSwifty codewriting Swifty Code

e switch statement

about / The switch Statement

syntax rules / switch Statement Rules

break keyword / The break Keyword
fallthrough keyword / The fallthrough Keyword

multiple patterns, matching in single case / Multiple
Patterns in a Single Case

where statement, using within case / Using the where

Statement within case

e optionals, evaluating with / Evaluating Optionals with a
switch Statement

ternary conditional operator

e about / Ternary Conditional Operator
try? keyword

e using / Using do without catch
tuples

e about/ Tuples

e creating / Creating a Tuple
type-safe language

e about / Type Inference
type cast

e force unwrapping / Force Unwrapping an Optional
type inference

e about/ Type Inference

UnfoldSequence / Activity B: Implementing a Lazy Version of a
Method

variable naming
e about / Variable Naming

variadic parameters

e about / Variadic Parameters

e while loop

e about / The while Loop
e syntax rules / The while Loop
e using / The while Loop

e repeat...while loop / The repeat...while Loop

	Beginning Swift
	Table of Contents
	Beginning Swift
	Why Subscribe?
	PacktPub.com

	Contributors
	About the Authors
	Packt is Searching for Authors Like You

	Preface
	What This Book Covers
	What You Need for This Book
	Who This Book is for
	Conventions
	Reader Feedback
	Customer Support
	Downloading the Example Code
	Errata
	Piracy
	Questions

	1. Swift Basics
	Lesson objectives
	Swift Program Structure
	Hello, World!

	Swift Variables and Constants
	Declaring Swift Variables
	Variables Versus Constants
	Type Inference
	Variable Naming
	Working with Variables

	Tuples
	Creating a Tuple

	Optionals
	Declaring an Optional
	Working with Optionals
	Optional nil Values
	Accessing Optional Values
	Force Unwrapping an Optional
	Conditionally Unwrapping Optionals
	Using Optionals

	The Swift guard Statement

	Activity B: Variable Summary

	Swift Data Types
	Numeric Data Types
	Int on 64-Bit Versus 32-Bit Platforms
	Built-In Numeric Data Types
	Choosing the Appropriate Numeric Data Type
	Declaring and Assigning Integer Variables
	Declaring and Assigning Floating Point Numbers
	Numeric Literal Grouping
	Numeric Type Conversions
	Using Numeric Types

	Boolean
	Character
	Assigning a Character
	Constructing a Character Literal

	String
	Instantiating a String
	String Concatenation
	Extracting Characters
	String Length

	Activity C: Data Type Summary

	Enums
	Basic Enum Syntax
	Enum with Raw Values
	Activity D: Using Swift Enums

	Summary

	2. Swift Operators and Control Flow
	Lesson objectives
	Swift Operators
	Assignment Operator
	Arithmetic Operators
	Standard Arithmetic Operators
	Remainder Operator
	Unary minus Operator
	Compound Assignment Operators

	Comparison Operators
	Equality
	Inequality
	Comparison between Two Values

	Ternary Conditional Operator
	Logical Operators
	Bitwise Operators
	Nil-Coalescing Operator
	Range Operators
	Closed Range Operator
	Half-Open Range Operator
	One-Sided Range Operator

	Activity A: Operators

	Branching
	The if Statement
	Condition Lists
	Optional Unwrapping with if

	The switch Statement
	switch Statement Rules
	The break Keyword
	The fallthrough Keyword
	Matching Non-Scalar Values
	Multiple Patterns in a Single Case
	Using the where Statement within case
	Evaluating Optionals with a switch Statement

	Activity B: Converting Code from if to switch

	Loops
	The for…in Statement
	Iterating over Objects
	Iterating over Array Objects with index
	The for Loop where Clause
	The break Control Transfer Statement
	The continue Control Transfer Statement

	The while Loop
	The repeat…while Loop

	Activity C: Implementing Loops

	Summary

	3. Functions, Classes, and Structs
	Lesson Objectives
	Functions
	Defining a Function
	Argument Labels
	Excluding Argument Labels
	Parameter Default Values
	Activity A: Implementing a Function
	Returning Values from Functions
	Using @discardableResult
	Function Attributes
	Variadic Parameters
	inout Parameters
	Recursion
	Functions as Parameters
	Closures
	Creating a Function to Receive Content from an Asynchronous Web Service Call

	Error Handling
	The do…catch Statement
	Multiple catch Blocks
	Using do without catch
	The guard Statement
	Activity B: Exception Handling

	Object-Oriented Features
	Object-Oriented Principles
	Classes Versus Structs
	Illustration

	Defining Classes and Structures
	Activity C: Creating a Customer Struct and Class

	Summary
	Challenge

	4. Collections
	Lesson Objectives
	Arrays
	Working with Arrays
	Index
	Utilizing Common Operations with Index

	ArraySlice
	Creating Slices
	Creating Slices Using Range Operators

	Activity A: Working with Arrays

	Sets
	Working with Sets
	Combining Sets
	Comparing Sets
	Activity B: Removing Duplicates from a Sequence

	Dictionaries
	Working with Dictionaries
	Activity C: Using Dictionaries

	Summary

	5. Strings
	Lesson Objectives
	String Fundamentals
	Character
	Collection
	Index
	Working with String Index

	Debugging
	Activity A: All Indices of a Character

	Using Strings
	Creating Strings
	Common Operations
	Implementing Extra Text Operations on a String

	Activity B-1: All Ranges of a Substring
	Activity B-2: Counting Words, Sentences, and Paragraphs

	Substring
	Creating Substrings
	Parsing Strings

	Converting NSRange to Range
	Activity C: CamelCase

	Summary

	6. Functional Programming and Lazy Operations
	Lesson Objectives
	Function Type
	Functional Methods
	filter
	Using the filter Method

	map
	Using the map Function

	flatMap
	Using the flatMap Function

	reduce
	Using the reduce Function

	Activity A: Implementing Functional Programming

	Lazy Operations
	Lazy Sequences
	Sequence Internals
	Creating Lazy Operations
	sequence(first:next:)
	sequence(state:next:)

	Activity B: Implementing a Lazy Version of a Method

	Swifty Code
	Naming
	Organizing Code
	Miscellaneous
	Writing Swifty Code

	Summary
	Further Study
	Challenge

	Index

