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CHAPTER 1

Introduction to Computational
Intelligence

1.1 WELCOME TO COMPUTATIONAL INTELLIGENCE

Welcome to the world of computational intelligence (CI), which takes inspiration
from nature to develop intelligent computer-based systems. Broadly, the field of CI
encompasses three main branches of research and application: (1) neural networks,
which model aspects of how brains function, (2) fuzzy systems, which model aspects
of how people describe the world around them, and (3) evolutionary computation,
which models aspects of variation and natural selection in the biosphere. These three
approaches are often synergistic, working together to supplement each other and
provide superior solutions to vexing problems.

1.2 WHAT MAKES THIS BOOK SPECIAL

A unique feature of this textbook is that each of us has been an editor-in-chief for an
IEEE Transactions sponsored by the IEEE Computational Intelligence Society (CIS),
the main technical society supporting research in CI around the world. This book
offers the only systematic treatment of the entire field of CI from the perspectives of
three experts who have guided peer-reviewed seminal research published in the top-
tier journals in the area of CL.

The publications we’ve edited include the IEEE Transactions on Neural Networks
(Derong Liu), the IEEE Transactions on Fuzzy Systems (James Keller), and the IEEE
Transactions on Evolutionary Computation (David Fogel). These publications con-
sistently present the most recent theoretical developments and practical implementa-
tions in the field of CL

As you read through the book, you’ll notice that each central area of Cl is offered in
its own style. That’s because each of us has taken the primary lead on the material in
our own area of expertise. We’ve made efforts to be consistent, but you’ll certainly



notice three distinct ways of conveying what we know. We believe that this is one of
the advantages of our partnership—you get the whole story, but not from the
standpoint of a single author. We made a deal to allow each of us to tell our story
in our own way.

You may relate more to one of our styles over the others, but the content is solid and
your efforts at studying this material will be rewarding. The theories and techniques
described will allow you to create solutions to problems in pattern recognition,
control, automated decision making, optimization, statistical modeling, and many
other areas.

1.3 WHAT THIS BOOK COVERS

This introduction to CI covers basic and advanced material in neural networks, fuzzy
systems, and evolutionary computation. Does it cover all of the possible topics within
the field of computational intelligence? Certainly not!

Our goal is to provide fundamental material in the diverse and fast growing area of
CI and give you a strong fundamental understanding of its basic concepts. We also
provide some chapters with more advanced material. Each chapter offers exercises to
test your knowledge and explore interesting research problems. When you master
these chapters, you will be ready to dig deeper into the literature and create your own
contributions to it.

1.4 HOW TO USE THIS BOOK

The best way for you to use this book is to study all of the chapters. (You knew we
would say that, right?) We think that the development from neural networks to fuzzy
systems to evolutionary computation provides a logical flow within the framework of
a semester-long course. You’ll find that each of the three main topics is described with
basic chapters upfront, which cover theory, framework, and algorithms. These are
followed by more advanced chapters covering more specific issues, fine points, and
extensions of the basic constructions.

For instructors, presuming a typical 16-week U.S. university semester, you can
easily construct three 4-week modules from the basic material with plenty of time
remaining for in-class exercises, homework discussions, and computer projects.
There’s even some time available to pursue more advanced research in your own
favorite area. (This is how the “Introduction to CI” class at the University of Missouri
(MU) is organized.)

Alternatively, if you want to focus more on one area of CI, you can certainly use
this book to do so. For example, if you wanted a course mainly on fuzzy systems, you
could use all four of the chapters on fuzzy systems, and then sample from neural
networks (to demonstrate the basis for neuro—fuzzy systems) and evolutionary
computation (to develop optimization approaches in the design of fuzzy inference



systems). By analogy, you could focus on neural networks or evolutionary computa-
tion, and then supplement those materials with the other chapters in the book.

1.5 FINAL THOUGHTS BEFORE YOU GET STARTED

An introductory course on computational intelligence has been taught at the Univer-
sity of Missouri (Jim’s place) since 2005. Various texts have been used, including
most recently draft chapters from this book. The class is colisted in the Electrical and
Computer Engineering Department and the Computer Science Department and is
available to both seniors and beginning graduate students.

In at least one semester, students were given a first-day assignment to provide a list
of things that computers can’t do as well as humans. The following are some of the
items from the combined list:

Qualitative classification

Going from specific to general, or vice versa
Consciousness and emotion

Driving a car

Writing a poem

Chatting

Shopping

Handling inaccuracies in problems

Ethics

Natural language in conversation, with idioms
Face recognition

Aesthetics

Adaptivity

Learning (like humans do)

This was from a group of students with little or no background in intelligent
systems. Depending on what you read and/or do, you might say that progress
(significant in some cases) has been made on creating systems with attributes
from that list, and you’d be right. Amazing things are happening. This book will
provide you with the background and tools to join in the fun.

As editors-in-chief of the three main IEEE publications in the area of CI, we’ve had
the good fortune to see novel advancements in our fields of interest even before
they’ve been peer-reviewed and published. We’ve also had the joy of participating in
making some of those advancements ourselves.

In fact, we’ve devoted our lives to advancing the theory and practice of the
methods that you’ll read about in this textbook. We’ve done that because we’ve often
found these techniques to offer practical advantages as well as mental challenges. But
in the end, we’ve pursued these lines of research primarily because they’re a lot of fun.



We hope that you’ll find not only a mathematically and practically challenging set
of material in this book, but also that the material ultimately brings you as much
enjoyment as it has brought for us, or even more!

Enjoy!

James KELLER, Ph.D.
DeronG Liu, Ph.D.
Davip FoceL, Ph.D.



CHAPTER 2

Introduction and Single-Layer
Neural Networks

All of us have a highly interconnected set of some 10'" neurons to facilitate our
reading, breathing, motion, and thinking. Each of the biological neurons has the
complexity of a microprocessor. Remarkably, the human brain is a highly complex,
nonlinear, and parallel computer. It has the capability to organize its structural
constituents, that is, neurons, so as to perform certain computations many times
faster than the fastest digital computer in existence today.

Specifically, the human brain consists of a large number of highly connected
elements (approximately 10* connections per element) called neurons [Hagan e al.,
1996]. For our purposes, these neurons have three principal components: the
dendrites, the cell body, and the axon. The dendrites are tree-like receptive networks
of nerve fibers that carry electrical signals into the cell body. The cell body effectively
sums and thresholds these incoming signals. The axon is a single long fiber that carries
the signal from the cell body out to other neurons. The point of contact between an
axon of one cell and a dendrite of another cell is called a synapse. It is the arrangement
of neurons and the strengths of the individual synapses, determined by a complex
chemical process, that establishes the function of the neural network. Figure 2.1
shows a simplified schematic diagram of two biological neurons.

Actually, scientists have begun to study how biological neural networks operate.
It is generally understood that all biological neural functions, including memory, are
stored in the neurons and in the connections between them. Learning is viewed as the
establishment of new connections between neurons or the modification of existing
connections. Then, one may have the question: Although we have only a rudimentary
understanding of biological neural networks, is it possible to construct a small set of
simple artificial neurons and then train them to serve a useful function? The answer is
“yes.” This is accomplished using artificial neural networks, commonly referred to as
neural networks, which have been motivated right from its inception by the
recognition that the human brain computes in an entirely different way from the
conventional digital computer. Figure 2.2 shows a simplified schematic diagram of



Dendrites

Cell body

Synapse

FIGURE 2.1 The schematic diagram of two biological neurons.

two artificial neurons. Here, the two artificial neurons are connected to be a simple
artificial neural network and each artificial neuron contains some input and output
signals.

The neurons that we consider here are not biological. They are extremely simple
abstractions of biological neurons, realized as elements in a program or perhaps as
circuits made of silicon. Networks of these artificial neurons do not have a fraction of
the power of the human brain. However, they can be trained to perform useful
functions. Note that even though biological neurons are very slow compared to
electrical circuits, the brain is able to perform many tasks much faster than any
conventional computer. One important reason is that the biological neural networks
hold massively parallel structure and all of the neurons operate at the same time.
Fortunately, the artificial neural networks share this parallel structure, which makes
them useful in practice.

FIGURE 2.2 The schematic diagram of two artificial neurons.



Artificial neural networks do not approach the complexity of the brain. However,
there are two main similarities between the biological neural networks and artificial
neural networks. One is that the building blocks of both networks are simple
computational devices (although artificial neurons are much simpler than biological
neurons) that are highly interconnected. The other is that the connections between
neurons determine the function of the network.

2.1 SHORT HISTORY OF NEURAL NETWORKS

Generally speaking, the history of neural networks has progressed through both
conceptual innovations and implementation developments. However, these advance-
ments seem to have occurred in fits and starts, rather than by steady evolution [Hagan
et al., 1996].

Some of the background work for the field of neural networks occurred in the late
nineteenth and early twentieth centuries. The primarily interdisciplinary work was
conducted by many famous scientists from the fields of physics, psychology, and
neurophysiology. In this stage, the research of neural networks emphasized general
theories of learning, vision, conditioning, and so on, and did not include specific
mathematical models of the neuron operation.

Then, the modern view of neural networks began in the 1940s with the work of
Warren McCulloch and Walter Pitts, who showed that networks of artificial neurons
could, in principle, compute any arithmetic or logical function. Notice that this
important work is often regarded as the origin of the neural network community.
Then, scientists proposed a mechanism for learning in biological neurons.

The first practical application of neural networks came in the late 1950s, with the
invention of the perceptron network and the associated learning rule [Rosenblatt,
1958]. In this stage, the great success brought large interest to the research of neural
networks. However, it was later shown that the basic perceptron network could only
solve a limited class of problems. At the same time, scientists introduced a new
learning algorithm and used it to train an adaptive linear neural network, which is still
in use today. In fact, it was similar in structure and capability to Rosenblatt’s
perceptron.

Unfortunately, Rosenblatt’s networks suffered from the same inherent limitation of
what class of problems could be learned. Though Rosenblatt was aware of the
limitation and proposed new networks to overcome it, he was not able to modify the
learning algorithm to accommodate training more complex networks. Therefore,
many people believed that further research on neural networks was a dead end. What’s
more, considering the fact that there were no powerful digital computers to conduct
experiment, the research on neural networks was largely suspended.

Interest in neural networks faltered during the late 1960s because of the lack of new
ideas and powerful computers with which to experiment. However, during the 1980s,
these impediments were gradually overcome. Hence, research on neural networks
increased dramatically. In this stage, new personal computers and workstations,
which rapidly grew in capability, became widely available. More importantly, some



new concepts were introduced. Among those, two novel concepts were most
responsible for the rebirth of the neural network field. One was the use of statistical
mechanics to explain the operation of a certain class of recurrent networks, which
could be used as an associative memory. The other was the development of the
backpropagation algorithm, which was introduced for helping to train multilayer
perceptron networks [Rumelhart et al., 1986a, 1986b; Werbos, 1974, 1994].

These new developments reinvigorated the neural network community. In the last
several decades, thousands of excellent papers have been written. The neural network
technique has found many applications. Now, the field is buzzing with new theoretical
and practical work. It is important to notice that many of the advances in neural
networks have been related to new concepts, such as innovative architectures and
training rules. In addition, the availability of powerful new computers, which test the
new concepts, is also of great significance [Hagan et al., 1996].

It is apparent that a neural network derives its computing power through its
massively parallel distributed structure and also its ability to learn and therefore
generalize. The characteristic of generalization refers to the neural network producing
reasonable outputs for inputs that were not encountered during training. These two
information processing capabilities make it possible for neural networks to solve
complex and large-scale problems that are currently intractable. However, in practice,
neural networks cannot provide the solution by working individually. Instead, they
need to be integrated into a consistent system engineering approach. Specifically, a
complex problem of interest is decomposed into a number of relatively simple tasks,
and some neural networks are assigned a subset of the tasks that match their inherent
capabilities. However, it is important to recognize that we still have a long way to go
before we can build a computer architecture that mimics a human brain. Conse-
quently, how to achieve the true brain intelligence via artificial neural network is one
of the main research objectives of scientists.

2.2 ROSENBLATT’S NEURON

Artificial neural networks, commonly referred to as “neural networks,” represent a
technology rooted in many disciplines: neurosciences, mathematics, statistics,
physics, computer science, and engineering. Neural networks are potentially mas-
sively parallel distributed structures and have the ability to learn and generalize.
Generalization denotes the neural network’s production of reasonable outputs for
inputs not encountered during learning process. Therefore, neural networks can be
applied to diverse fields, such as modeling, time series analysis, pattern recognition,
signal processing, and system control.

The neuron is the information processing unit of a neural network and the basis for
designing numerous neural networks. A fundamental neural model consists of the
following basic elements [Haykin, 2009]:

> A set of synapses, or connecting links, each of which is characterized by a
weight or strength of its own.



> An adder for summing the input signals, weighted by the respective synaptic
strengths of the neuron.

> An activation function for limiting the amplitude of the output of a neuron.

> An externally applied bias, which has the effect of increasing or lowering the
net input of the activation function.

The most fundamental network architecture is a single-layer neural network, where
the “single-layer” refers to the output layer of computation neurons. Note that we do
not count the input layer of source nodes because no computation is performed there.

In neural network community, a signal flow graph is often used to provide a
complete description of signal flow in a network. A signal flow graph is a network of
directed links that are interconnected at certain points called nodes. The flow of
signals in the various parts of the graph complies with the following three rules
[Haykin, 1999]:

1. A signal flows along a link only in the direction indicated by the arrow on the
link.

2. A node signal equals the algebraic sum of all signals entering the pertinent node
via the incoming links.

3. The signal at a node is transmitted to each outgoing link originating from that
node, with the transmission being entirely independent of the transfer functions
of the outgoing links.

It should be pointed out that there are two different types of links, namely, synaptic
links and activation links.

> The behavior of synaptic links is governed by a linear input—output relation.
See Figure 2.3, the node signal x; is multiplied by the synaptic weight w; to
produce the node signal yy, that is, y, = wyX;.

> The behavior of activation links is governed by a nonlinear input—output
relation. This is illustrated in Figure 2.4, where ¢(-) is called the nonlinear
activation function, that is, y, = ¢(x;).

W’kj
Xj O »

Yk = WigXj

FIGURE 2.3 TIllustration of the synaptic link.

b
>

X O o Y= %)

FIGURE 2.4 Illustration of the activation link.



Another expression method that can also be utilized to depict a network is called
the architectural graph. Unlike the signal flow graph, the architectural graph possesses
the following characteristics [Haykin, 1999]:

1. Source nodes supply input signals to the graph.
2. Each neuron is represented by a signal node called a computation node.

3. The communication links interconnecting the source and computation nodes of
the graph carry no weight. They merely provide directions of signal flow in the
graph.

Now, we introduce Rosenblatt’s neuron [Haykin, 1999, 2009; Rosenblatt, 1958].
Rosenblatt’s perceptron occupies a special place in the historical development of
neural networks. It was the first algorithmically described neural network, which was
built around a nonlinear neuron, namely, the McCulloch—Pitts model. Incidentally,
the McCulloch-Pitts model is a neuron stated in recognition of the pioneering work
done by McCulloch-Pitts. Rosenblatt’s perceptron is an algorithm for learning a
binary classifier: a function that maps its input x (a real-valued vector) to an output
value f(x) (a single binary value):

I, ifw-x+b>0
fix) = { 0, otherwise @D

where w is a vector of real-valued weights, w - x is the dot product (which here
computes a weighted sum), and b (a real scalar) is the “bias,” a constant term that does
not depend on any input value. Figure 2.5 shows the signal flow graph of the
Rosenblatt’s perceptron.

Here, the harder limiter input (i.e., the induced local field) of the neuron is
w-X+b.

The value of f(x) (0 or 1) is used to classify x as either a positive or a negative
instance, in the case of a binary classification problem. The decision rule for the
classification is to assign the point represented by the inputs X, Xp, . . . , X, to class
N, if the perceptron output y is +1 and to class N if it is 0. Note that for the case of two
input variables, the decision boundary takes the form of a straight line in a two-
dimensional plane (see Figure 2.6). If b is negative, then the weighted combination of
inputs must produce a positive value greater than |b| in order to push the classifier

X1

X2

Output

Inputs v y

Hard
limiter

Xn

FIGURE 2.5 Signal flow graph of the perceptron.
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FIGURE 2.6 [llustration of the two-dimensional, two-class pattern classification problem.

Xg=+1

Oulput
Hard ¥

limiter

FIGURE 2.7 Equivalent signal flow graph of the perceptron.

neuron over the 0 threshold. Spatially, the bias alters the position (although not the
orientation) of the decision boundary.

We now give an equivalent model of the perceptron described in Figure 2.5. Here,
the bias b is viewed as a synaptic weight driven by a fixed input equal to +1. Then, the
signal flow graph is shown in Figure 2.7.

2.3 PERCEPTRON TRAINING ALGORITHM

Now we consider the performance of the perceptron network and are in a position to
introduce the perceptron learning rule. This learning rule is an example of supervised
training, in which the learning rule is provided with a set of examples of proper
network behavior:

{p17t1}7{p2at2}a~-'7{pq7tq} (22)

Here p; is an input to the network and t; is the corresponding target output. As each
input is applied to the network, the network output is compared with the target. The
learning rule then adjusts the weights and biases of the network in order to move the
network output closer to the target.
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FIGURE 2.8 The test problem.

2.3.1 Test Problem

In our presentation of the perceptron learning rule, we will begin with a simple test
problem and will experiment with possible rules to develop some intuition about how
the rule should work. The input—target pairs for our test problem are

R e P R O R

where p; represents the input and t; represents the corresponding target output. The
problem is displayed graphically in Figure 2.8, where the two input vectors whose
target is O are represented with a light circle O, and the vector whose target is 1 is
represented with a dark circle @ . This is a very simple problem, and we could almost
obtain a solution by inspection. This simplicity will help us gain some intuitive
understanding of the basic concepts of the perceptron learning rule.

The network for this problem should have two inputs and one output. To simplify
our development of the learning rule, we will begin with a network without a bias. The
network will then have just two parameters wi ; and wj >, as shown in Figure 2.9.

By removing the bias, we are left with a network whose decision boundary must
pass through the origin. We need to ensure that this network is still able to solve the
test problem. There must be an allowable decision boundary that can separate the

Inputs No bias neuron

> P s

a = hardlim (Wp)

FIGURE 2.9 Test problem network.
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FIGURE 2.10 The boundaries.

vectors p, and p; from the vector p,. Figure 2.10 illustrates that there are indeed an
infinite number of such boundaries.

Figure 2.11 shows the weight vectors that correspond to the allowable decision
boundaries. (Recall that the weight vector is orthogonal to the decision boundary.) We
would like a learning rule that will find a weight vector that points to one of these
directions. Remember that the length of the weight vector does not matter; only its
direction is important.

2.3.2 Constructing Learning Rules

Training begins by assigning some initial values to the network parameters. In this
case, we are training a two-input/single-output network without a bias, so we can only
initialize its two weights. Here we set the elements of the weight vector ;w to the
following randomly generated values:

wh=[10, -0.8] (2.3)

We will now begin presenting the input vectors to the network and find the
corresponding outputs, which we will call 8. We begin with p;:

8 = hardlim(;w"p,) = hardlim([l.O —0.8] [;}) (2.4)
9 = hardlim(-0.6) =0

FIGURE 2.11 The weight vectors and boundaries.



FIGURE 2.12 The classification result for the first input.

The network has not returned the correct value. The network output is 0, while the
target response t; is 1.

We can see what happened in Figure 2.12. The initial weight vector results in a
decision boundary that incorrectly classifies the vector p;. We need to alter the weight
vectors so that it points more toward p;, so that in the future it has a better chance of
classifying it correctly.

One approach would be to set ;w equal to p;. This is simple and would ensure that
p; was classified properly in the future. Unfortunately, it is easy to construct a problem
for which this rule cannot find a solution. Figure 2.13 shows a problem that cannot be
solved with the weight vectors pointing directly at either of the two class 1 vectors. If
we apply the rule ;w =p every time one of these vectors is misclassified, the
network’s weights will simply oscillate back and forth and will never find a solution.

Another possibility would be to add p; to ;w. Adding p; to ;w would make ;w
point more in the direction of p,. Repeated presentations of p; would cause the
direction of | w to asymptotically approach the direction of p;. This rule can be stated:

Ift=1and9 =0, then W™ = W +p (2.5)

Applying this rule to our test problem results in new values for | w:

new __ old _ 1.0 1 _ 2.0
V=W AR = [—0.8] + M = {1.2] (2.6)
A
o
O >
o @

FIGURE 2.13 Another test problem that poses a challenge for setting ;w = p,.
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FIGURE 2.14 New values of the weight after adjusting by Eq. 2.6.

This operation is illustrated in Figure 2.14.

We now move on to the next input vector and continue making changes to the
weights and cycling through the inputs until they are all classified correctly.

The next input vector is p,. When it is presented to the network, we find

9 = hardlim(,w"p,) = hardlim ([2.01.2] [_1 D

2 2.7
= hardlim(0.4) = 1

The target t, associated with p, is O and the output 9 is 1. A class 0 vector was
misclassified as a 1.

Since we now find that we’d like to move the weight vector ;w away from the
input, we can simply change the addition in Eq. 2.5 to subtraction:

Ift=0and9 = 1, then ;W™ = ,w —p (2.8)

If we apply this to the test problem, we find

new _ o 207 _[-17_[30
W= W -, = [1.2] B {2 ] = [—0.8] @9)

which is illustrated in Figure 2.15.

2Q o'

FIGURE 2.15 New values of the weight after adjusting by Eq. 2.9.
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FIGURE 2.16 The classification result for the updated perceptron on all three vectors.

Now we present the third vector p;:

9§ = hardlim(;w"p;) = hardlim ([3.0 —-0.8] {O })

-1 (2.10)
= hardlim(0.8) = 1

The current ; w results in a decision boundary that misclassifies p;. This is a situation
for which we already have a rule, so ;w will be updated again, according to Eq. 2.8:

new __ old _ _ 3.0 _ 0 _ 3.0
W =W P3—[_0.8 “11= o2 (2.11)

Figure 2.16 shows that the perceptron has finally learned to classify the three vectors
properly. If we present any of the input vectors to the neuron, it will output the correct
class for that input vector.

This brings us to our third and final rule: If it works, don’t fix it.

Ift =9, then W™ = w°l (2.12)

Here are the three rules, which cover all possible combinations of output and target
values:
Ift=1and9d =0, then ;W™ = wo¢ +p
Ift=0and 9 = 1, then ,w™" = ,w° —p (2.13)
Ift=9, then ,w"" =, w°¢

2.3.3 Unified Learning Rule

The three rules in Eq. 2.13 can be rewritten as a single expression. First, we will define
a new variable, the perceptron error e:

e=t—9 (2.14)



We can now rewrite the three rules of Eq. 2.13 as follows:

new old

Ife = 1, then , w"¥ = ,w°“ +p
Ife = -1, thenlw =, wold -p (2.15)
Ife = 0, then | WV = lw"'d

Looking carefully at the first two rules in Eq. 2.15, we can see that the sign of p is
the same as the sign on the error e. Furthermore, the absence of p in the third
rule corresponds to an e of 0. Thus, we can unify the three rules into a single
expression:

W = wol pep = w4 (t—9)p (2.16)

This rule can be extended to train the bias by noting that a bias is simply a weight
whose input is always 1. We can thus replace the input p in Eq. 2.16 with the input to
the bias, which is 1. The result is the perceptron rule for a bias:

bV =pold e (2.17)

2.3.4 Training Multiple-Neuron Perceptrons

The perceptron rule, as given by Eqgs. 2.16 and 2.17, updates the weight vector of a
single-neuron perceptron. We can generalize this rule for the multiple-neuron
perceptron of Figure 2.17 as follows:

To update the ith row of the weight matrix, use

W = wOld +ep (2.18)

To update the ith element of the bias vector, use
breY = bold ¢ (2.19)

Inputs No bias neuron
r N N

9 = hardlim( Wp+b)

FIGURE 2.17 Test problem multiple-neuron network.



Perceptron rule: This rule can be written conveniently in matrix notation:
wWiew = Wold  epT (2.20)
and
b =1 4 e (2.21)
To test the perceptron learning rule, consider the apple/orange recognition problem.

2.3.4.1 Problem Statement A producer dealer has a warehouse that stores a
variety of fruits and vegetables. When fruit is brought to the warehouse, various types
of fruit may be mixed together. The dealer wants a machine that will sort the fruit
according to the type. There is a conveyer belt on which the fruit is loaded. This
conveyer passes through a set of sensors that measure three properties of the fruit:
shape, texture, and weight. These sensors are somewhat primitive. The shape sensor
will output a 1 if the fruit is approximately round and a —1 if it is more elliptical. The
texture sensor will output a 1 if the surface of the fruit is smooth and a —1 if it is rough.
The weight sensor will output a 1 if the fruit is more than 1 Ib and a —1 if it is less than
1 1b.

The three sensor outputs will then be input to a neural network. The purpose
of the network is to decide which kind of fruit is on the conveyer, so that the
fruit can be directed to the correct storage bin. To make the problem even simpler,
let’s assume that there are only two kinds of fruit on the conveyer: apples and
oranges.

As each fruit passes through the sensors, it can be represented by a three-
dimensional vector. The first element of the vector represents shape, the second
element represents texture, and the third element represents weight:

shape
p = | texture (2.22)
weight
Therefore, a prototype orange would be represented by
1
p=|-1 (2.23)
-1

and a prototype apple would be represented by

p= |1 (2.24)



The neural network will receive one three-dimensional input vector for each fruit on
the conveyer and must make a decision as to whether the fruit is an orange (p,) or an

apple (p,).
For the apple and orange problem, the input/output prototype vectors will be

1
p1 = -1 , hh = [O] ) p = 1 , = [1] (225)
-1 -1

(Note that we are using 0 as the target output for the orange pattern p, instead of —1, as
was used in previous statements. This is because we are using the hardlim transfer
function.)

Typically the weights and biases are initialized to small random numbers. Suppose
that here we start with the initial weight matrix and bias:

W=[05 -1 -05], b=05 (2.26)

The first step is to apply the first input vector p; to the network:

1
9 = hardlim(Wp, +b) = hardlim|{ [0.5 -1 —-0.5]|-1|+05 2.27)
-1 :
¥ = hardlim(2.5) =1
Then we calculate the error:
e=t-9=0-1=-1 (2.28)
The weight update is
WY = Wl ept =05 -1 —05]+(-1[1 -1 -1]
(2.29)
= [—0.5 0 0.5]
The bias update is
b =bM 4 e=054(-1)=-05 (2.30)
This completes the first iteration.
The second iteration of the perceptron rule is
1
9 = hardlim(Wp, +b) = hardlim| [-0.5 0 0.5]|1 | +(=0.5) 231)
-1 :

= hardlim(-1.5) = 0



e=tb—-9=1-0=1 (2.32)

W'Y =Wt ep’ =[-05 0 05]+1[1 1 -1]=[05 1 -0.5]

(2.33)
b =pM e =—05+1=0.5 (2.34)
The third iteration begins again with the first input vector:
1
9 = hardlim(Wp, +b) = hardlim| [0.5 1 —0.5] —i +0.5 (2.35)
= hardlim(0.5) = 1

e=t;—-3=0-1=-1 (2.36)

whew — yyold epT =05 1 -05[+(C-Df1 -1 -1
[ } [ ] (2.37)

=[-05 2 05]

prev — bold +e=05-1=-0.5 (2.38)

If you continue with more iterations, you will find that both input vectors will be
classified correctly. The algorithm has converged to a solution, whose boundary
correctly classifies the two input vectors.

We can now summarize the perceptron training algorithm. First, we define some
variables:

e y = f(x) denotes the output from the perceptron for an input vector x.

* b is the bias term.

D = {(x(1),d(1)),. .., (x(s),d(s))} is the fraining set of s samples, where
x(k) is the n-dimensional input vector.

d(k) is the desired output value of the perceptron for that input.
We show the values of the features as follows:

¢ x;(k) is the value of the ith feature of the kth training input vector.
° Xo(k) =1.



To represent the weights:

w; is the ith value in the weight vector, to be multiplied by the value of the ith
input feature.

Becausexg(k) = 1, wy is effectively a learned bias that we use instead of the bias
constant b.

To show the time dependence of w, we use the following:

wi(k) is the weight i at time k.
o is the learning rate, where 0 < a < 1.

Too high a learning rate makes the perceptron periodically oscillate around the
solution unless additional steps are taken.

Then, the training algorithm goes iteratively in accordance with the following
procedure [Haykin, 1999, 2009]:

1.

2.

24

Initialize the weights and the threshold. Weights may be initialized to O or to a
small random value. In the example below, we use 0.

For each example k in our training set D, perform the following steps over the
input x(k) and desired output d(k):

. Calculate the actual output:

y(k) = f[w(®) - x(K)] = f[wo(k) + wi(K)x1(k) + wa(K)xa(K) + - -+ + wa(K)xa (k)]
(2.39)

. Update the weights:

wilk + 1) = wi(k) + a(di(k) — y;(k))xi(k) (2.40)

for all features 0 <i <n.

In the following section, the proof of the perceptron convergence algorithm
in the case of a =1 and the fixed increment convergence theorem will be
discussed.

THE PERCEPTRON CONVERGENCE THEOREM

Given the initial condition w(0) = 0, we now present the proof of the perceptron
convergence algorithm [Haykin, 1999, 2009].

Let 2A; be the subspace of training vectors that belong to class N, while 2, be the
subspace of training vectors that belong to class N;.

Suppose the perceptron incorrectly classifies the training vectors x(1), x(2), .. ..
For example, wT(k)x(k) < 0 for k =1,2,..., but x(1), x(2), ... belongs to the



subset ;. Considering o(k) = 1, the second equation in (2.40) can be written as

w(k + 1) = w(k) + x(k), for x(k) belongs to class X, (2.41)

Expanding (2.41), we can further obtain

k

wk+1)=>"x() (2.42)

j=1

Because N; and R, are assumed to be linearly separable, there exists a solution w°
such that w'Tx(k) > 0 for the training vectors x(1), x(2), . .., x(k) belonging to the
subset 2. Define

. 0T
= k 2.4
0 X(}{)nénQll w x(k) (2.43)
Then we can derive that
k
wlwik+ 1) =) wx(j) > ko (2.44)

j=1
Using the Cauchy—Schwarz inequality, we can obtain
WO ik + DIF 2 (WTwik +1))° > K26 (2.45)

where ||| denotes the Euclidean norm of the enclosed argument vector. Therefore, we
have

K*6?
Ik + DI > = (2.46)
WOl
On the other hand, we can rewrite (2.41) as
w(l+1)=wl) +x(), forl=1,2,...,kandx(l) € 2, (2.47)
Then, we can obtain
[w(+ DI = [ + [xMIF + 2w ()x(1) (2.48)

According to the supposition wl(k)x(k) < 0, we can further derive that

[w(l+ DI < WP + IxO? (2.49)



which is equivalent to

Iw@+ DI = Iw@F < <O (2.50)
Define
_ : 2
5= min Ix)I 251

Then, in accordance with Eq. 2.50, we can obtain
k
Iwd+ D < kO <k8 (2.52)
=1

By making a comparison between Eqs. 2.46 and 2.52, we can find that the two
equations hold simultaneously only if

k <kmpax =90 (2.53)

Otherwise, the two equations conflict with each other. As a consequence, we have
proved that for a(k) = 1 for all k and w(0) = 0, and given that a solution vector w”
exists, the rule for updating the synaptic weights of the perceptron must terminate after
at most ky,y iterations. Incidentally, the value of w0 or Ky is not unique, which can
be seen from Eqs. 2.43, 2.51, and 2.53.

Now, we expound the fixed increment convergence theorem for the perceptron as
follows [Rosenblatt, 1962].

Theorem 2.1 Let the subsets of training vectors 2; and 2, be linearly separable. Let
the inputs presented to the perceptron originate from these two subsets. The
perceptron converges after some ko iterations, in the sense that

w(ko) = w(ko + 1) = w(ko +2) = ---

is a solution vector for kg < Kpax.

2.5 COMPUTER EXPERIMENT USING PERCEPTRONS

Table 2.1 describes two classes of patterns in the two-dimensional plane.
Consider the single-layer perceptron illustrated in Figure 2.18. The corresponding
input—output mapping is defined as

1, ifwix;+wyx,+b>0

y=¢(v)= {0, if wix; +wox, +b <0 (2.54)



TABLE 2.1 Pattern Classification

X1 Xo d Class
2 0 Ny
1 -2 1 N,
-2 2 0 Ny
-1 0 1 N,

Now, we describe the iterative process of the training algorithm as follows, with the
purpose of classifying the patterns:

1.
2.

Set w(0) = 0.
Compute
T
y(0)=¢([0 0 0][1 2 2] ) =d0)=1
Since the actual response is not equal to the desired response, we update the
weight and bias as
wih)=[0 0 0]"+@©0-1[1 2 2]"=[-1 =2 -2]"

. Compute

y(1)=¢([—1 2 =2][1 1 —2]T)=¢(1)=1

The actual response is equal to the desired response, so we do not need to
update the weight and bias.

. Compute

y(z):¢([—1 2 2][1 -2 2}T)=¢(—1):0

Inpuls Output

FIGURE 2.18 Structure of the single-layer perceptron.



Here, the actual response is equal to the desired response. Therefore, we do
not need to update the weight and bias.

5. Compute

y(3)=¢([—1 2 =2][1 -1 o]T)=¢(1)=1

Since the actual response is also equal to the desired response, we keep the
weight and bias in their present values.

6. Compute

y@=o([-1 2 2][1 2 2]") =¢(-=9=0

We see that the actual response is equal to the desired response. Thus, we do
not need to update the weight and bias. Besides, we can further observe that the
weight and bias here can make the actual response equal to the desired response
for all input patterns. Accordingly, no update is required.

By considering

—2X1 - 2X2 -1=0 (255)

we can obtain a line

Xy = —X] — = (2.56)

to classify the inputs patterns in Table 2.1, as shown in Figure 2.19.

A X

O Class X
N O Class R,
\g ————————— -
NN R B
-2 o2
-2 10
X, =X L
2 T

FIGURE 2.19 [Illustration of the computer experiment that creates a line to separate the two
classes.



2.6 ACTIVATION FUNCTIONS

In biologically inspired neural networks, the activation function is usually an
abstraction representing the rate of action potential firing in the cell. In its simplest
form, this function is binary, that is, the neuron is either firing or not.

The activation function defines the output of a neuron in terms of the induced local
field [Haykin, 2009]. In this part, we identify two basic types of activation functions: a
threshold function and a sigmoid function.

2.6.1 Threshold Function
The threshold function is defined as

1, ifv>0:;
")(V)‘{o, ifv <0 2.57)

In engineering, this form of a threshold function is commonly referred to as a
Heaviside function. See Figure 2.20.
The output of neuron m employing such a threshold function is expressed as

1, ifvy, >0
m { 0, ifvy,<O (2.58)
where
n
Vi = D Winixi + by, (2.59)
i=1

Notice in this model, the output of a neuron takes on the value of 1 if the induced local
field of that neuron is nonnegative, and 0 otherwise. Such a neuron is referred to as the
McCulloch—Pitts model.

Plv) A

»
| 4
v

FIGURE 2.20 The threshold function from Eq. 2.57.



2.6.2 Sigmoid Function

The sigmoid function is the most common form of activation function used in the
construction of neural networks. It is a strictly increasing function, which holds an
excellent balance between linear and nonlinear behavior. The logistic function, a
typical example of such function, is defined by

P(v) = (2.60)

where a is the slope parameter of the sigmoid function. It is depicted in Figure 2.21.
Note that a threshold function assumes the value of 0 or —1, while a sigmoid
function assumes a continuous range of values from 0 to 1. Another important
property of the sigmoid function is that it is differentiable, whereas the threshold
function is not.

In (2.57) and (2.60), the activation functions range from O to +1. However, it
is sometimes desirable to have the activation function range from —1 to 1. In this
case, the threshold function can be defined as the signum function, which is
formulated as

1, ifv>0
dv)=40, ifv=0 (2.61)
-1, ifv<0

and described in Figure 2.22.
The corresponding form of a sigmoid function is hyperbolic tangent function
defined as
eV —e™’
ev +ev

¢(v) = tanh(v) =

2.62)

and plotted in Figure 2.23. It allows the activation function to assume negative values
and can bring practical benefits.

RS

v

-1

FIGURE 2.21 The logistic function from Eq. 2.60.
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FIGURE 2.22 The signum function.
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FIGURE 2.23 The hyperbolic tangent function.

EXERCISES

2.1. Suppose the inputs applied to neuron j, which is built around the McCulloch—
Pitts model, are 10, —20, 4, —2. The synaptic weights of connecting to the neuron
are 0.8, 0.2, —1, —0.9. Given that the externally applied bias is 0, compute the
induced local field and the output of neuron j, respectively.

2.2. Study how the graph of the logistic function is affected by varying the value of
slope parameter a in Eq. 2.60. Calculate the slope of the logistic function at
origin. Then point out what the logistic function will be when the slope
parameter approaches infinity.

2.3. The limiting values of the algebraic sigmoid function

A\
Y= i

are —1 and +1. Show that the derivative of ¢(v) with respect to v is given by

W _¢'w)

dv V3
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FIGURE 2.24 The piecewise-linear function of Exercise 2.4.

Calculate the value of the derivative at the origin.

2.4. Another activation function

1
0, ifv<s—=
, 1v< )

1 1

V) = if — 2 L

(v) v, if -5 <v<s
1, ifv>—
, ifvxg

is depicted in Figure 2.24 and is called the piecewise-linear function. Here, the
amplification factor inside the linear region of operation is assumed to be
unity. Based on this expression, consider the activation functions presented in
Figures 2.25 and 2.26 and, and study the following problems, respectively.

d(v) A

[
»
v

-0.5a 0| 0.5a

FIGURE 2.25 The activation function of Exercise 2.4 (case 1).

¢G(v) A

A 4

-b

FIGURE 2.26 The activation function of Exercise 2.4 (case 2).



2.5.

2.6.

2.7.

TABLE 2.2 Pattern Classification of Exercise 2.6

X1 X5 d Class
0 2 1 Ny
1 0 1 Ny
0 -2 0 N,
2 0 0 N,

1. Formulate ¢(v) as a function of v.
2. Show what will happen to ¢(v) if a is allowed to approach zero.

Suppose that in the signal flow graph of the perceptron shown in Figure 2.7, the
hard limiter is prescribed as the sigmoidal nonlinearity:

$(v) = tanh G)

where v is the induced local field. The classification decisions made by the

perceptron are defined as

> observation vector x that belongs to class N if the outputy > &, where Eis a
threshold; otherwise, x belongs to class N;.

Show that the decision boundary so constructed is a hyperplane.

Table 2.2 describes the two classes of patterns in the two-dimensional plane.
Classify the two classes by using the single-layer perceptron. Given the detailed
iterative process of the training algorithm, draw the separating line on the x;, X,
plane.

Show the single-layer perceptron can classify the patterns described in
Table 2.3 successfully. However, a basic limitation of the perceptron is

TABLE 2.3 Pattern Classification of
Exercise 2.7

X1 X2

—_—— O O
—_ o = O
— o o Ol e




2.8.

that it cannot implement the EXCLUSIVE OR function. Explain the reason for
this limitation.

Consider two one-dimensional, Gaussian-distributed classes ¥; and N, that have
a common variance equal to 1. Their mean values are p; = —10, p, = 10,
respectively. These two classes are essentially linearly separable. Design a
classifier that separates these two classes.



CHAPTER 3

Multilayer Neural Networks and
Backpropagation

Rosenblatt’s perceptron that we studied in Chapter 2 is basically a single-layer neural
network and it is limited to the classification of linearly separable patterns. In this
chapter, in order to overcome the practical limitations of the perceptron, we look to a
new neural network structure called a multilayer perceptron.

The following are the basic features of multilayer perceptrons [Haykin, 2009]:

¢ Each neuron model in the network includes a nonlinear activation function that
is differentiable.

* The network contains one or more layers that are hidden from both the input and
output modes.

e The network holds a high degree of connectivity, the extent of which is
determined by synaptic weights of the network.

The architectural graph of a multilayer perceptron with two hidden layers and an
output layer is depicted in Figure 3.1.

A computationally effective method for training the multilayer perceptrons is
the backpropagation algorithm [Rumelhart et al., 1986a, 1986b; Werbos, 1974, 1994],
which is regarded as a landmark in the development of neural network.

3.1 UNIVERSAL APPROXIMATION THEORY

A multilayer perceptron trained with the backpropagation algorithm can be consid-
ered as a practical means for performing a nonlinear input—output mapping of a
general nature. Let ng denote the number of input (source) nodes of a multilayer
perceptron, and let N = n; denote the number of neurons in the output layer of the
network. Then, the input—output relationship of the network defines a mapping from
an np-dimensional Euclidean input space to an N-dimensional Euclidean output



Input
signal

Output
signal

First Second
hidden hidden
layer layer

Input
layer

Output
layer

FIGURE 3.1 Architectural graph of a multilayer perceptron with two hidden layers.

space, which is infinitely continuously differentiable when the activation function is
likewise continuously differentiable. The universal approximation theorem for a
nonlinear input—output mapping is directly applicable to multilayer perceptrons.

Theorem 3.1 [Haykin, 1999] Let ¢(-) be a nonconstant, bounded, and monotone-
increasing continuous function. Let I,, denote the nyo-dimensional unit hypercube
[0, 1]™. The space of continuous functions on I, is denoted by C(I,,). Then, given
any function f € C(I,,) and & > 0, there exist an integer n; and sets of real constants
p; and b;, and wy;, wherei=1,2,...,nyandj = 1,2,...,ng such that we may define

n; no
F(Xl,xz,...,xno)zZpi¢<ZWinj+bi> (3.1
i=1 =1

as an approximate realization of the function f(-); that is,
|F(x1,x2,...,xno)—f(xl,xz,...,xn0)| <€ (3.2)
for all x1,Xz,...,Xy, that lie in the input space.

Here, we notice that the hyperbolic tangent function used as the nonlinearity in a
neural model for the construction of a multilayer perceptron is indeed a nonconstant,
bounded, and monotone-increasing function. Therefore, it satisfies the conditions
imposed on the function ¢(+). In addition, Eq. 3.1 represents the output of a multilayer
perceptron described as follows:

e The network has ny input nodes and a single hidden layer consisting of n;
neurons, while the inputs are x;, Xp, ..., Xp,-

* Hidden neuron i has synaptic weights wij, Wi, ..., Wiy, and bias b;.
* The network output is a linear combination of the outputs of the hidden neurons,
with py, p,, ..., W, being the synaptic weights of the output layer.



Note that the universal approximation theorem is an existence theorem in the sense
that it provides the mathematical justification for the approximation of an arbitrary
continuous function as opposed to an exact representation.

3.2 THE BACKPROPAGATION TRAINING ALGORITHM

3.2.1 The Description of the Algorithm

Now, we present the backpropagation algorithm.

Consider Figure 3.2, the neuron j is fed by a set of function signals produced by a
layer of neurons to its left. The induced local field v;j(k) produced at the input of the
activation function associated with neuron j is

vitk) = wi(k)y;(k) 3.3)
i=0

Here, n is the total number of inputs (excluding the bias) applied to neuron j. Note the
synaptic weight wjo related to the fixed input y, = +1 equals the bias b; applied to
neuron j. The function signal y;(k) appearing at the output of neuron j at iteration k is

yi(k) = d;(vj(k)) (3.4)
Then, the error signal produced at the output of neuron j is defined by
ej(k) = dj(k) - y;(k) (3.5)

where d;j(k) is the corresponding desired signal. We define the instantaneous error
energy of neuron j as

1
Ej(k) = 5¢/(K) (3.6)

FIGURE 3.2 Signal flow graph highlighting the details of output neuron j.



By summing the error energy contributions of all the neurons in the output layer, we
express the total instantaneous error energy of the whole network as the following
form:

Ek) =Y E(k) = %Z e?(k) (3.7)
j J

Let
£ = {x(k), d b, (3.8)
be the training sample used to train the network. Basing on the total instantaneous

error energy given in Eq. 3.7, we define the error energy averaged over the training
sample, or the empirical risk as

_ S 1 &
E(k) = ; E(k) = K k;‘ zj: e?(k) (3.9)

where K denotes the number of examples that the training sample consists.

The backpropagation algorithm applied a correction Aw;;(k) to the synaptic weight
wii(k). Therefore, it is important to compute the partial derivative OE(k)/0w;i(k).
According to the chain rule of calculus, we can express the gradient as follows:

OE(k) _ OE(K) Oej(k) y;(k) dvj(k)

= (3.10)
8wji(k) 8ej (k) 8yj (k) an (k) 8wji(k)
First, considering Eq. 3.6, we can find that
OE(k)
=eik 3.11
aej (k) ej( ) ( )
Then, differentiating both sides of Eq. 3.5 with respect to y;(k), we obtain
8Cj(k)
=—1 (3.12)
8}’1‘(]()
Next, differentiating Eq. 3.4 with respect to vj(k), we can get
dyk)
= di(vi(k)) (3.13)

Ovi(k)



At last, from Eq. 3.3, we derive that

dvik)
owii(k) -

yi(k) (3.14)

Substituting Egs. 3.11-3.14 to Eq. 3.10 yields

OE(K)
aWji(k) -

—e;j(k); (vi(k))yi(k) (3.15)

The correction Awji(k) applied to wji(k) is defined by the delta rule, that is,

OE(K)
Owii(k)

AWJ,(k) = -0 (3 1 6)

where o is the learning rate parameter of the backpropagation algorithm. Combining
Eqgs. 3.15 and 3.16, we have

Awii(k) = adj(k)y;(k) (3.17)
where the local gradient §;(k) is defined by

_ 9E(K)
avi(k)

__ OE(k) dej(k) dy;(k) (3.18)
0ej(k) dy;(k) vj(k)

= ¢j(K)d;(vj(k))

di(k) =

From Eq. 3.18, we observe that the local gradient 5;(k) for output neuron j is equal to
the product of the corresponding error signal e;(k) for the neuron and the derivative
$;(vi(k)) of the associated activation function. We have two cases to be considered
to compute it according to the location of neuron j, as shown in the following
[Haykin, 2009]:

Case 1 Neuron j is an output node. When neuron j is located in the output layer of
the network, it is supplied with a desired response of its own. We can use Eq. 3.5 to
compute the error signal e;(k) associated with this neuron. After that, we may compute
the local gradient §;(k) straightforwardly by using Eq. 3.18.

Case2 Neuron j is a hidden node. When neuron j is located in a hidden layer of the
network, there is no specified desired response for that neuron. Then, the back-
propagation algorithm becomes complicated. The error signal for a hidden neuron
would have to be determined recursively and working backward in terms of the error
signals of all the neurons to which that hidden neuron is directly connected.



+1

Wo(k) =b;(k) Wyo(k) = b, (k)

yi(k)

FIGURE 3.3 Signal flow graph highlighting the details of output neuron 1 connected to the
hidden neuron j.

See Figure 3.3, where neuron j is a hidden node of the network. The error signal at the
output of neuron 1 at iteration k is defined by

&) = dik) - (k)
= (k) - H(K) G.19)

where
vitk) = wy(K)y;(k) (3.20)
=0

Notice in Eq. 3.20, the synaptic weight wio(k) is equal to the bias bj(k) applied to
neuron 1, while the corresponding input is +1. Here, the instantaneous sum of squared
errors of the network is

E(k) = %Zef(k) (3.21)
1

Then, we can obtain

OE(K) _ e der(k)
1

3}’j(k) a}’j(k)
(3.22)
_ Z e 3e](k) aV](k)
— " dvi(k) (k)
From Eq. 3.19, we have
0ab) _ i) (3.23)

ovi(k)



Besides, according to Eq. 3.20, we can find that

8V1 (k) _
dy;(k)

wjj(k) (3.24)

Substituting Egs. 3.23 and 3.24 to Eq. 3.22, we derive the partial derivative:

OE(k) - _ Z e1d; (vi(k))wij(k)
dy;(k) T (3.25)
=_ Z B1(k)wj(k)
T

where §(k) = e;¢d;(vi(k)). Therefore, considering Eqs. 3.13 and 3.18, we can further
obtain

OE(K)
vk
__ 9E(K) dy,(K)
y;(k) dvj(k)

G(vi(K) > 8i(k)wy(k)
1

8i(k) =

(3.26)

Now, we summarize the relations that we have derived for the backpropagation
algorithm. According to Eq. 3.17, the correction Awyi(k) applied to the synaptic
weight connecting neuron i to neuron j is given by the following delta rule:

ae; (k)i (vi(k))y;(k), if neuron jis an output node
Awi(k) =
wii(k) i (vi(K)3, (eﬂ)j(vl(k))wlj(k))yi(k), if neuron jis a hidden node
(3.27)

From Eq. 3.27, we can clearly find that the computation of the correction Awj;(k)
requires knowledge of the derivative of the activation function ¢(-). Evidently,
we require the function f(-) to be continuous to ensure its derivative exists. Actually,
differentiability is the only requirement that an activation function must satisfy.
The logistic function and hyperbolic tangent function are two representative
instances.

1. Logistic function. According to the definition of logistic function given in
(2.60), we can express the induced local field of neuron j as

1

B = @)

(3.28)



where a > 0 is an adjustable parameter. By using Eq. 3.4, we can write the
derivative ¢;(vj(k)) as follows:

o _aexp(-avj(k))
N0 = e Cavo)? (3.29)
= ay,(k)(1 - y;(K)

Let oj(k) be the jth element of the output vector of the multilayer perceptron.
When the neuron j is located in the output layer, we have

yj(k) = 0j(k) (3.30)

Then, according to Eqgs. 3.18 and 3.29, we obtain the local gradient for
neuron j as

5j(k) = ej(k)d;j(vi(k))
: aj(dj(ki _Joj(k))Oj (k)(l — 0; (k)) 3.31)

When the neuron j is located in the hidden layer, from Egs. 3.26 and 3.29, the
local gradient can be expressed as

8i(k) = Pj(vi(k)) 22 Bik)wij(k)

(3.32)
ay; (1 = )’j(k)) > dik)wi(k)

. Hyperbolic tangent function. Another commonly used sigmoidal nonlinearity is
the hyperbolic tangent function, which in general, can be defined as

¢;(vj(k)) = atan h(bvj(k)) (3.33)

where a and b are positive constants. Considering Eq. 3.4, we obtain the
derivative of the hyperbolic tangent function as

absech?(bv;(k))
ab(1 — tan h*(bv;(k))) (3.34)

= 2~y ()(a+ 5 (k)

b;(vi(k)

Then, using Eqgs. 3.18 and 3.34, we derive the local gradient as
§i(k) = ej(k)dj(vi(k))

b (3.35)
= - (@) — o5(k))(a — oj(k))(a + oj(k))



when the neuron j is an output node. Similarly, from Eqgs. 3.26 and 3.34, the
local gradient is

8i(k) = dj(vj(k)) X2, Silk)wy (k)

= 2=y )+ y®) S 800wy (k)
1

a

(3.36)

when the neuron j is a hidden node.

Using Eqgs. 3.31 and 3.32 for the logistic function and Eqs. 3.35 and 3.36 for the
hyperbolic tangent function, we can compute the local gradient ;(k), and then get
the correction Aw;i(k) applied to wji(k).

3.2.2 The Strategy for Improving the Algorithm

In the backpropagation algorithm, the smaller we set the learning rate parameter, the
smaller the changes to the synaptic weights in the network will be from one iteration to
the next, and the smoother will be the trajectory in the weight space. However, this
result is attained at the cost of a slower rate of learning. On the other hand, if we set the
learning rate parameter too large in order to speed up the rate of learning,
the corresponding large changes in the synaptic weights may assume such a form
that the network becomes unstable.

For the purpose of increasing the rate of network learning while avoiding the
appearance of instability, a momentum term may be added to the delta rule (Eq. 3.17).
This results in a generalized delta rule formulated as

Aw;i(k) = BAw;(k — 1) + oy (K)y; (k) (3.37)

where the parameter f is usually positive, called the momentum constant [Haykin,
2009]. This represents a minor modification to the weight update in the back-
propagation algorithm.

Next, in order to observe the effect of the sequence of pattern presentations on the
synaptic weights due to the momentum constant, we rewrite Eq. 3.37 as a time series
with index t. Then, Aw;;(k) can be further denoted as a sum of §;(t)y;(t) with t growing
from O to k, that is,

k
Aw;i(k) = Y B8Oy (1) (3.38)
t=0

Obviously, the momentum constant must satisfy 0 < |B| < 1 to ensure the time series
to be convergent. The case p = 0 reveals that the backpropagation algorithm operates
without momentum, namely, Eq. 3.37 becomes Eq. 3.17. Moreover, by making a



comparison between Eq. 3.16 and Eq. 3.17, we can obtain

OE(t)
8wji(t)

k
Awji(k) = —a Y (3.39)
t=0

which shows that the current adjustment Aw;;(k) represents the sum of an exponen-
tially weighted time series.

The inclusion of a momentum term has a great impact on the backpropagation
algorithm in terms of finding a proper equilibrium between the learning speed and
stability during the training process of network. When the partial derivative
OE(t)/ Owji(t) has the same algebraic sign on consecutive iterations, the exponentially
weighted sum Awj;(k) grows in magnitude, and therefore the weight wj; (k) is adjusted
by a large amount. In this case, the inclusion of momentum in backpropagation
algorithm tends to accelerate adjustment in steady directions. Conversely, when the
partial derivative OE(t)/Ow;i(t) has opposite sign on consecutive iterations, the
exponentially weighted sum Aw;;(k) shrinks in magnitude, and therefore the weight
wii(k) is adjusted by a small amount. Here, the inclusion of momentum in back-
propagation algorithm has a stabilizing effect.

3.2.3 The Design Procedure of the Algorithm

For implementing the backpropagation algorithm online, the sequential updating
approach of network weights is performed here [Haykin, 1999]. The design procedure
of backpropagation algorithm via the training sample {x(k), d(k)}f=l is described as
follows. Notice x(k) is the input vector applied to the input layer and d(k) is the desired
response vector presented to the output layer.

1. Initialization. Start with a reasonable network configuration. Set the synaptic
weights and threshold levels of the network to small random numbers that are
uniformly distributed.

2. Presentation of training samples. Present the network with an epoch of training
examples. For each example in the sample, perform the forward and backward
computations, as described in steps 3 and 4.

3. Forward computation. For a training example denoted by (x(k), d(k)), compute
the induced local fields and function signals of the network by proceeding
forward through the network, layer-by-layer. The induced local field vj(h) for
neuron j in layer h is

W =3 wil oy M) (3.40)
i=0

where yi(h_l)(k) is the output signal of neuron i at iteration k, and WJ(Ih )(k) is

the synaptic weight of neuron j in layer h that is fed from neuroniin layerh — 1.



Fori = 0, we have y(h 1)(k) +1 and W(h)(k) = bj(h)(k), Whereb§h)(k) is the bias
applied to neuron j in layer h. Then, the output signal of neuron j in layer h is

yi" () = ¢y (v{(K)) (3.41)
If neuron j is in the first hidden layer (i.e., h = 1), set
y1(k) = xj(k) (3.42)

If neuron j is in the output layer (i.e., h = H, where H is referred to as the
depth of the network), set

¥ (k) = 0j(k) (3.43)
Then, the error signal can be obtained by
e (k) = dj(k) — oj(k) (3.44)

4. Backward computation. Compute the local gradients of the network according
to

o e.(H)(k)cbf(v(H)(k))y if neuron j is located in output layer H
8. (k) =
! ¢; (V(h)(k))ZIS(hH)(k) 1h+1)(k) if neuron j is located in hidden layer h

(3.45)

Here, ¢ (V}h)(k)) denotes the differentiation with respect to the argument.
Update the synaptic weights of the network in layer h in accordance with the
generalized delta rule:

Wi+ 1) = wiP ) + (w00 = wic = 1)) + o8 (ky" (k) (3.45)

where a is the learning rate parameter and P is the momentum constant.

5. Iteration. Let k = k + 1. Iterate the forward and backward computations in
steps 3 and 4 by presenting new epochs of training examples to the network
until E(k) satisfies the prespecified requirement. The order of presentation of
training examples should be randomized from epoch-to-epoch.

3.3 BATCH LEARNING AND ONLINE LEARNING

Now, we present two different learning methods, batch learning and online learning,
on the basis of how the supervised learning of the multilayer perceptron is actually
performed.



3.3.1 Batch Learning

In batch learning, adjustments to the synaptic weights of the multilayer perceptron are
performed after presenting all the K examples in the training sample ¢ that constitute
one epoch of training. That is to say, the cost function for batch learning is defined by
the average error energy E. Adjustments to the synaptic weights of the multilayer
perceptron are made on an epoch-by-epoch basis. Then, one realization of the learning
curve is obtained by plotting E versus the number of epochs. Note that for each epoch
of training, the examples in the training sample ¢ are randomly shuffled. Therefore,
the learning curve is computed by ensemble averaging a large enough number of such
realizations, where each realization is performed for a different set of initial conditions
chosen at random.

The advantages of batch learning are as follows when the gradient descent method
is used to implement the training process:

* It can give an accurate estimation of the gradient vector, that is, the derivative of
the cost function E with respect to the weight vector w, thereby guaranteeing,
under simple conditions, convergence of the steepest descent method to a local
minimum.

* It ensures the parallelization of the learning process.

Nevertheless, from a practical perspective, batch learning is rather demanding in
terms of storage requirements.

Besides, in a statistical context, batch learning may be viewed as a form of
statistical inference. Therefore, it is well suited for solving nonlinear regression
problems.

3.3.2 Online Learning

In online learning, adjustments to the synaptic weights of the multilayer perceptron
are performed on the example-by-example basis. Thus, the cost function to be
minimized is the total instantaneous error energy E(k).

Consider an epoch of K training examples arranged in the order {x(1),d(1)},
{x(2),d(2)}, ..., {x(K),d(K)}. The first example pair {x(1),d(1)} in the epoch is
presented to the network, and the weight adjustments are performed using the
gradient descent method. Then, the second example {x(2),d(2)} in the epoch is
presented to the network, which leads to further adjustments to weights in the
network. This procedure is continued until the last example {x(K),d(K)} is
considered. Unfortunately, such a procedure works against the parallelization of
online learning.

For a given set of initial conditions, a single realization of the learning curve is
obtained by plotting the final value E(k) versus the number of epochs used in the
training session. The training examples are randomly shuffled after each epoch. As
with batch learning, the learning curve for online learning is computed by ensemble
averaging such realizations over a large enough number of initial conditions chosen at



random. Naturally, for a given network structure, the learning curve obtained under
online learning will be quite different from that under batch learning.

Given that the training examples are presented to the network in a random manner,
the use of online learning makes the search in the multidimensional weight space
stochastic in nature. Note that it is for this reason that the method of online learning is
sometimes referred to as a stochastic method. This stochasticity has the desirable
effect of making it less likely for the learning process to be trapped in a local
minimum, which is a definite advantage of online learning over batch learning.
Another advantage of online learning is the fact that it requires much less storage than
batch learning.

Moreover, when the training data are redundant (i.e., the training sample ¢
contains several copies of the same example), we find that, unlike batch learning,
online learning is able to take advantage of this redundancy because the examples are
presented one at a time.

Another useful property of online learning is its ability to track small changes in the
training data, particularly when the environment responsible for generating the data is
nonstationary.

To summarize, despite the disadvantage of online learning, it is highly popular for
solving pattern classification problems due to the following two important practical
reasons [Haykin, 2009]:

* Online learning is simple to implement.

* It provides effective solutions to large-scale and difficult pattern classification
problems.

Accordingly, we can find that much of the material presented in the chapter is
devoted to online learning.

3.4 CROSS-VALIDATION AND GENERALIZATION

3.4.1 Cross-Validation

From the above sections, we know that the essence of backpropagation learning is to
encode an input—output mapping (represented by a set of labeled examples) into the
synaptic weights and thresholds of a multilayer perceptron. It is hoped that the
network becomes well trained so that it learns enough about the past to generalize to
the future. From such a perspective, the learning process amounts to a choice of
network parameterization for a given set of data. In other words, we may view the
network selection problem as choosing, within a set of candidate model structures
(parameterizations), the “best” one according to a certain criterion. Here, cross-
validation, which is a standard tool in statistics, provides an appealing guiding
principle.

First, the available data set is randomly partitioned into a training sample and a test
set. The training sample is further partitioned into two disjoint subsets:



e an estimation subset, used to select the model;
¢ a validation subset, used to test or validate the model.

The motivation is to validate the model on a data set different from the one used for
parameter estimation. In this way, we may use the training sample to assess the
performance of various candidate models and then choose the “best” one. However,
there is a distinct possibility that the model with the best-performing parameter values
may end up overfitting the validation subset. For the purpose of guarding against this
possibility, the generalization performance of the selected model is measured on the
test set, which is different from the validation subset [Haykin, 2009].

Cross-validation is appealing particularly when we have to design a large neural
network with good generalization as the goal in different ways.

1. Network complexity. The problem of choosing network complexity measured in
terms of the number of hidden neurons used in a multilayer perceptron can be
interpreted as that of choosing the size of the parameter set used to model the
data set. Measured in terms of the ability of the network to generalize, there is
obviously a limit on the size of the network. This follows from the basic
observation that it may not be an optimal strategy to train the network to
perfection on a given data set, because of the ill-posedness of any finite set of
data representing a target function, a condition that is true for both “noisy” and
“clean” data. Rather, it would be better to train the network in order to produce
the “best” generalization. To do so, we may use cross-validation. Specifically,
the training data set is partitioned into training and test subsets, in which case
“overtraining” will show up as poorer performance on the cross-validation set.

2. Size of training set. Another direction in which cross-validation can be used is to
decide when the training of a network on the training set should be actually
stopped. In this case, the error performance of the network on generalization is
exploited to determine the size of the data set used in training. The idea of cross-
validation used here is illustrated in Figure 3.4, where two curves are shown for
the mean-squared error in generalization, plotted versus the number of epochs
used in training. In Figure 3.4, one curve relates to the use of few adjustable
parameters (i.e., underfitting), while the other relates to the use of many
parameters (i.e., overfitting). In addition, we can find that the error performance
on generalization exhibits a minimum point, and the minimum mean-squared
error for overfitting is smaller and better defined than that for underfitting.
Therefore, we may obtain good generalization even if the neural network
designed has too many parameters, provided that training of the network on the
training set is stopped at a number of epochs corresponding to the minimum
point of the error performance curve on cross-validation.

3. Size of learning rate parameter. Cross-validation may also be employed to
adjust the size of the learning rate parameter of a multilayer perceptron, with
backpropagation learning used as a pattern classifier. In particular, the network
is first trained on the subtraining set, and then the cross-validation set is used to
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FIGURE 3.4 Illustrating the idea of cross-validation.

validate the training after each epoch. When the classification performance of
the network on the cross-validation set fails to improve by a certain amount, the
size of the learning rate parameter is reduced. After each succeeding epoch, the
learning rate parameter is further reduced, until once again there is no further
improvement in classification performance on the cross-validation set. The
training of the network is halted as soon as that point is reached.

3.4.2 Generalization

During the process of backpropagation learning, we typically start with a training
sample and use the backpropagation algorithm to compute the synaptic weights of a
multilayer perceptron by loading (encoding) as many of the training examples as
possible into the network. It is hoped that the designed neural network will generalize
well. A network is said to generalize well when the input—output mapping computed
by the network is correct (or nearly so) for test data never used in creating or training
the network. Note that the term “generalization” is borrowed from psychology. Here,
it is assumed that the test data are drawn from the same population used to generate the
training data [Haykin, 2009].

Training a neural network may be considered as a “curve fitting”” problem. Besides,
the network itself may be viewed simply as a nonlinear input—output mapping. In this
sense, we can regard generalization as the effect of a good nonlinear interpolation of
the input data. The network performs useful interpolation primarily because multi-
layer perceptrons with continuous activation functions lead to output functions that
are also continuous.

Figure 3.5 describes how generalization may occur in a hypothetical network.
The nonlinear input—output mapping represented by the curve depicted in the figure
is computed by the network as a result of learning the points labeled as “training
data.” The generalization point is seen as the result of interpolation performed by
the network.

A neural network that is designed to generalize well will produce a correct input—
output mapping even when the input is slightly different from the examples used to
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FIGURE 3.5 Properly fitted nonlinear mapping with good generalization.

train the network. However, if a neural network learns too many input—output
examples, the network may end up memorizing the training data. It may do so by
finding a feature that is present in the training data, but not true of the underlying
function that is to be modeled. Such a phenomenon is referred to as overfitting or
overtraining. When the network is overtrained, it loses the ability to generalize
between similar input—output patterns.

Ordinarily, loading data into a multilayer perceptron in this way requires the use of
more hidden neurons than are actually necessary, with the result that undesired
contributions to the input space due to noise are stored in synaptic weights of the
network. For the same data as depicted in Figure 3.5, an example of how poor
generalization due to memorization in a neural network may occur is illustrated in
Figure 3.6. “Memorization” is essentially a “lookup table,” which implies that input—
output mapping computed by the neural network is not smooth. In input—output
mapping, on the contrary, it is important to select the “simplest” function in the
absence of any prior knowledge [Poggio and Girosi, 1990a, 1990b]. The simplest
function signifies the smoothest function that approximates the mapping for a given
error criterion, because such a choice generally demands the fewest computational
resources. In addition, smoothness is also natural in many applications, depending on
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FIGURE 3.6 Overfitted nonlinear mapping with poor generalization.



the scale of the phenomenon being studied. Therefore, it is meaningful to seek a

smooth nonlinear mapping for ill-posed input—output relationships, so that the

network is able to classify novel patterns correctly with respect to the training patterns.
Overall, generalization is influenced by the following three factors:

* the size of the training sample and how representative the training sample is of
the environment of interest;

¢ the architecture of the neural network; and
* the physical complexity of the problem at hand.

Clearly, we have no control over the third factor. Thus, we can view the issue of
generalization from the following two perspectives [Haykin, 2009]:

¢ When the architecture of the network is fixed, the issue to be considered is that of
determining the size of the training sample needed for a good generalization to
occur.

* When the size of the training sample is fixed, the issue of interest is that of
determining the best architecture of network for achieving good generalization.

In practice, it seems that all we really need for a good generalization is to have the
size of the training sample K satisfy the condition

K=0 (W> (3.47)

€

where W is the total number of free parameters in the network, including synaptic
weights and biases, € denotes the fraction of classification errors permitted on test
data, and O(-) denotes the order of quantity enclosed within.

3.4.3 Convolutional Neural Networks

In this chapter, we know that the basic idea of backpropagation is that gradients can be
computed efficiently by propagation from the output to the input. Needless to say,
backpropagation is by far the most widely used neural network learning algorithm,
and probably the most widely used learning algorithm of any form. In this part, we
provide an extended introduction of the convolutional neural networks [LeCun et al.,
1998].

The ability of multilayer networks trained with gradient descent to learn complex,
high-dimensional, nonlinear mappings from large collections of examples makes
them obvious candidates for image recognition tasks. In the traditional model of
pattern recognition, a hand-designed feature extractor gathers relevant information
from the input and eliminates irrelevant variabilities. A trainable classifier then
categorizes the resulting feature vectors into classes. In this scheme, standard, fully
connected multilayer networks can be used as classifiers. A potentially more



interesting scheme is to rely as much as possible on learning in the feature extractor
itself. In the case of character recognition, a network could be fed with almost raw
inputs (e.g., size-normalized images). While this can be done with an ordinary fully
connected feedforward network with some success for tasks such as character
recognition, there are problems shown as follows.

For one thing, typical images are large, often with several hundred variables
(pixels). A fully connected first layer with, for example, 100 hidden units in the first
layer would already contain several tens of thousands of weights. Such a large number
of parameters increase the capacity of the system and therefore it requires a larger
training set. In addition, the memory requirement to store so many weights may rule
out certain hardware implementations. But the main deficiency of unstructured nets
for image or speech applications is that they have no built-in invariance with respect to
translations or local distortions of the inputs. Before being sent to the fixed-size input
layer of a neural network, character images, or other two- or one-dimensional signals,
must be approximately size normalized and centered in the input field. Unfortunately,
no such preprocessing can be perfect: Handwriting is often normalized at the word
level, which can cause size, slant, and position variations for individual characters.
This, combined with variability in writing style, will cause variations in the position of
distinctive features in input objects. In principle, a fully connected network of
sufficient size could learn to produce outputs that are invariant with respect to
such variations. However, learning such a task would probably result in multiple units
with similar weight patterns positioned at various locations in the input so as to detect
distinctive features wherever they appear on the input. Learning these weight
configurations requires a very large number of training instances to cover the space
of possible variations. In convolutional neural networks, as described below, shift
invariance is automatically obtained by forcing the replication of weight configura-
tions across space.

For another thing, a deficiency of fully connected architectures is that the topology
of the input is entirely ignored. The input variables can be presented in any (fixed)
order without affecting the outcome of the training. On the contrary, images (or time—
frequency representations of speech) have a strong two-dimensional local structure:
Variables (or pixels) that are spatially or temporally nearby are highly correlated.
Local correlations are the reasons for the well-known advantages of extracting and
combining local features before recognizing spatial or temporal objects, because
configurations of neighboring variables can be classified into a small number of
categories (e.g., edges, corners). Convolutional neural networks force the extraction
of local features by restricting the receptive fields of hidden units to be local.

Convolutional neural networks provide an efficient method to constrain the
complexity of feedforward neural networks by weight sharing and restriction to
local connections. Convolutional networks combine three architectural ideas to
ensure some degree of shift, scale, and distortion invariance: (i) local receptive
fields; (i) shared weights (or weight replication); and (iii) spatial or temporal
subsampling. The kernel of the convolution is the set of connection weights used
by the units in the feature map. An interesting property of convolutional layers is that
if the input image is shifted, the feature map output will be shifted by the same



amount, but it will be left unchanged otherwise. This property is at the basis of the
robustness of convolutional networks to shifts and distortions of the input. Besides,
since all the weights are learned with backpropagation, convolutional networks can
be seen as synthesizing their own feature extractor. The weight sharing technique
has the interesting side effect of reducing the number of free parameters, thereby
reducing the “capacity” of the machine and reducing the gap between the test error
and training error.

The field of deep machine learning focuses on computational models for
information representation that exhibit similar characteristics to that of the neo-
cortex. Actually, the structure of convolutional neural networks is well established
in the current deep learning field and shows great promise for future work.
Convolutional neural networks are the first truly successful deep learning approach
where many layers of a hierarchy are successfully trained in a robust manner. A
convolutional neural network is a choice of topology or architecture that leverages
spatial relationships to reduce the number of parameters that must be learned and
thus improves upon general feedforward backpropagation training. Convolutional
neural networks were proposed as a deep learning framework that was motivated by
minimal data preprocessing requirements. In convolutional neural networks, small
portions of the image (dubbed a local receptive field) are treated as inputs to the
lowest layer of the hierarchical structure. Information generally propagates through
the different layers of the network whereby at each layer digital filtering is applied
in order to obtain salient features of the data observed. The method provides a level
of invariance to shift, scale, and rotation as the local receptive field allows the
neuron or processing unit access to elementary features such as oriented edges or
corners. The advancements made with respect to developing deep machine learning
systems will undoubtedly shape the future of machine learning and artificial
intelligence systems in general.

3.5 COMPUTER EXPERIMENT USING BACKPROPAGATION

In this section, we reconsider the exclusive-OR (XOR) problem [Haykin, 2009]. From
Chapter 2, we know that the Rosenblatt’s single-layer perceptron has no hidden
neuron. As a result, it cannot classify input patterns that are not linearly separable. A
typical example is the XOR problem.

The XOR problem can be viewed as a special case of the problem of classifying
points in the unit hypercube. Each point in the hypercube is in either class 0 or class 1.
In a more special case of the XOR problem, we need to consider only the four corners
of a unit square that correspond to the input patterns (0, 0), (0, 1), (1,0), and (1, 1).

Denote @ as the exclusive-OR Boolean function operator. Since

090 =0 (3.48)

1¢1=0 (3.49)



TABLE 3.1 Pattern Classification

X1 X2 y

0 0 0

0 1 1

1 0 1

1 1 0

and

0l =1 (3.50)
160=1 3.51)

the input patterns (0, 0) and (1, 1) are in class 0, while (0, 1) and (1, 0) are in class 1.
See Table 3.1. Obviously, the input patterns (0, 0) and (1, 1) are at opposite corners of
the unit square, but they produce the identical output. This is the same for the input
patterns (0, 1) and (1,0).

We know that the use of a single neuron with two inputs results in a straight line for
a decision boundary in the input space. For all points on one side of this line, the
neuron outputs 1, while for all points on the other side of the line, it outputs 0. The
position and orientation of the line in the input space are determined by the synaptic
weights of the neuron connected to the input nodes and the bias applied to the neuron.
As the input patterns (0,0) and (1, 1) are located on opposite corners of the unit
square, and likewise for the other two input patterns (0, 1) and (1,0), we cannot
construct a straight line for a decision boundary so that (0,0) and (1, 1) lie in one
decision region and (0, 1) and (1, 0) lie in the other decision region. This implies that
the single-layer perceptron cannot solve the XOR problem.

However, we can solve the XOR problem by using a network with a single
hidden layer with two neurons, as plotted in Figure 3.7. The corresponding signal
flow graph of the network is shown in Figure 3.8. Notice that the following two
assumptions are required.

* Each neuron is represented by a McCulloch—Pitts model, which utilizes the
threshold function as activation function.

Neuron 1

Neuron 2
Input Hidden  Output
layer layer layer

FIGURE 3.7 Architectural graph of network for solving the XOR problem.



FIGURE 3.8 Signal flow graph of network for solving the XOR problem.

* Bits 0 and 1 are represented by the levels O and +1, respectively.

In Figure 3.7, the top neuron, labeled as “Neuron 1” in the hidden layer, is
characterized as

Wi = Wi = +1

The slope of the decision boundary constructed by this hidden neuron is equal to —1
and positioned as in Figure 3.9. The bottom neuron, labeled as “Neuron 2” in the
hidden layer, is characterized as

W1 = Wy = +1

by =——
)
The orientation and position of the decision boundary constructed by this hidden
neuron are shown in Figure 3.10. The output neuron, labeled as “Neuron 3,” is
characterized as

W31 = -2

w3y = +1
1
b3 = —5

Output = 1
0,1) i L1

Output =0

'y
»
Xl

(0,0) (1,0)

FIGURE 3.9 Decision boundary constructed by hidden neuron 1 of the network in
Figure 3.7.



(0,0) 1,0) x,
Output =0

FIGURE 3.10 Decision boundary constructed by hidden neuron 2 of the network in
Figure 3.7.

Output =0

FIGURE 3.11 Decision boundaries constructed by the complete network in Figure 3.7.

The function of the output neuron is to construct a linear combination of the decision
boundaries formed by the two hidden neurons. The computation result is shown in
Figure 3.11. See Figure 3.8, we find that the bottom hidden neuron has a positive
connection to the output neuron, whereas the top hidden neuron has a negative
connection to the output neuron. When both hidden neurons are off, which occurs
when the input pattern is (0, 0), the output neuron remains off. When both hidden
neurons are on, which occurs when the input pattern is (1, 1), the output neuron is
switched off again because the inhibitory effect of the larger negative weight
connected to the top hidden neuron overpowers the excitatory effect of the positive
weight connected to the bottom hidden neuron. When the top hidden neuron is off and
the bottom neuron is on, which occurs when the input patterns is (0, 1) or (1, 0), the
output neuron is switched on because of the excitatory effect of the positive weight
connected to the bottom hidden neuron. Accordingly, the network described in
Figure 3.7 does indeed solve the XOR problem.

EXERCISES

3.1. Consider the functions

$00 = \} | e

2n o



3.2

3.3.

34.

and
B0 = 2tan” ()

Explain why both the functions fit the requirement of a sigmoid function. What is
the difference between the two functions?

Consider a two-layer network containing no hidden neurons. Assume that the
network has q inputs and a single output neuron. Let X; denote the ith input signal
and define the corresponding output as

q
y=¢ <Z Wixi>
i=0

where w; is a threshold and

1
P(v) = 1 +exp(-v)

Show that this network implements a linear decision boundary that consists of a
hyperplane in the input space RY. Tllustrate your conclusion when q = 2.

The network shown in Figure 3.12 has been trained to classify correctly a set of
two-dimensional, two-class patterns. Identify the function performed by the
classifier, assuming initially that the neurons have function

1
1 + exp (—av)

d(v) =

Draw the resulting separating lines between the two classes on the x|, X, plane.

Figure 3.13 shows a neural network involving a single hidden neuron for solving
the XOR problem. It can be viewed as an alternative to the network considered in
Section 3.5. Show that the network of Figure 3.13 solves the XOR problem by
constructing decision regions and a truth table for the network.

Inputs

FIGURE 3.12 The network of Exercise 3.3.



3.5.

3.6.

3.7.

Inputs

FIGURE 3.13 The network of Exercise 3.4.

Use the backpropagation algorithm for computing a set of synaptic weights and
bias levels for a neural network structured as in Figure 3.7 to solve the XOR
problem. Assume the use of a logistic function for the nonlinearity.

Consider the network shown in Figure 3.14, with the initial weight and basis are
chosenas w; =1,b; =1,wy, =-2, b, = 1.
The activation function ¢(-) is set the same as Exercise 3.2. Assume the input
and the desired responses of the network are x = 1, d = 1, respectively.
1. Calculate the total instantaneous error energyE.
2. Compute OE/Ow; based on the result of 1.
3. Recompute JE/Ow; by using the backpropagation algorithm and compare
the result with (2).

Linearly nonseparable patterns as shown in Figure 3.15 have to be classified into
two categories by using a layered network. Construct the separating planes in the
pattern space and draw patterns in the image space. Calculate all weights and

d
W, &) W, -1
Input x W —pO €
b, b,

FIGURE 3.14 The network of Exercise 3.6.

O Class X,
O Class X,

FIGURE 3.15 Patterns for layered network classification for Exercise 3.7.



3.8.

3.9.

O Class &,
O Class X,

FIGURE 3.16 Pattern classification of Exercise 3.9.

threshold values of related units. Use the minimum number of threshold units to
perform the classification.

Investigate the use of backpropagation learning algorithm employing a sigmoi-
dal nonlinearity to achieve one-to-one mappings, as described below:

1. f(x):%7 1 <x <100
2. f(x)=1gx, 1<x<10
3. f(x) =exp(-x), 1<x<10,
4. f(x) = sinx, Ostg
For each mapping, do the following things.

1. Set up two sets of data, one for network training and the other for testing.

2. Use the training data set to compute the synaptic weights of the network,
assuming it has a single hidden layer.

3. Evaluate the computation accuracy of the network by using the test data.
Use a single hidden layer, but with a variable number of hidden neurons.

Investigate how the network performance is affected by varying the size of the

hidden layer.

Classify the two classes of input patterns depicted in Figure 3.16 by using
backpropagation training algorithm.



CHAPTER 4

Radial-Basis Function Networks

As described in Chapter 3, the backpropagation algorithm for the design of a
multilayer perceptron can be viewed as an application of an optimization method
known in statistics as stochastic approximation. In this chapter, we adopt a different
approach by viewing the design of a neural network as a curve-fitting (approxima-
tion) problem in a high-dimensional space. In this sense, learning is equivalent to
finding a surface in a multidimensional space that provides a best fit to the training
data. Correspondingly, generalization is equivalent to the use of this multi-
dimensional surface to interpolate the test data. Such a viewpoint is indeed the
motivation behind the method of radial-basis function(RBF) in the sense that it
draws upon research work on traditional strict interpolation in a multidimensional
space. In RBFs, the hidden units provide a set of “functions” that constitute an
arbitrary “basis” for the input pattern (vectors) when they are expanded into the
hidden unit space. With first introduced in solving the real multivariate interpola-
tion problem, the radial-basis functions are now one of the main fields of research in
numerical analysis. In this chapter, we focus on the radial-basis function network as
an alternative to multilayer perceptrons. It will be interesting to find that in a
multilayer perceptron, the function approximation is defined by a nested set of
weighted summations, while in a RBF network, the approximation is defined by a
single weighted sum. This can be regarded as the basic structural difference
between the two networks.

4.1 RADIAL-BASIS FUNCTIONS

A radial-basis function is a real-valued function whose value depends only on the
distance from the origin, so that ¢(x) = d(|x|)), or alternatively on the distance from
some other point ¢, called a center, so that d(x, ¢) = d(|x — ¢[|). Some commonly used
radial-basis functions are as follows:



1. Multiquadrics

o) = (P +2)"? 4.1)
where ¢ > 0 and r € R.
2. Inverse multiquadrics
1
¢(r) = m 4.2)
where ¢ > 0 and r € R.
3. Gaussian functions
2
¢(r) = exp <— @) 4.3)

where 6 > 0 and r € R.

4.2 THE INTERPOLATION PROBLEM

Consider a feedforward network with an input layer, a single hidden layer, and an
output layer consisting of a single unit. We choose a single output unit to simplify the
exposition without loss of generality. The network is designed to perform a nonlinear
mapping from the input space to the hidden space, followed by a linear mapping from
the hidden space to the output space. Let ny denote the dimension of the input space.
Then, the network represents a map from the ny-dimensional input space to the single-
dimensional output space, which can be written as

F:R™ > R 4.4)

Here, we can think of the map § as a hypersurface (graph) I' ¢ R™*!. For example,
we think of the elementary map § : R' — R', where F(x) = x2, as a parabola drawn
in M2 space. The surface I is a multidimensional plot of the output as a function of
the input. In a practical situation, the surface I" is unknown and the training data are
usually contaminated with noise. The training phase and generalization phase of
the learning process, respectively, may be viewed as follows:

» The training phase constitutes the optimization of a fitting procedure for the
surface I', based on known data points presented to the network in the form of
input—output examples (patterns).

* The generalization phase is synonymous with interpolation between the data
points, with the interpolation being performed along the constrained surface
generated by the fitting procedure as the optimum approximation to the true
surface I'.



Now, we introduce the theory of the well-known multivariable interpolation in
high-dimensional space. The interpolation problem can be stated in the following
form:

Given a set of K different pomts {x e 2R“°| i=1,2,...,K} and a corresponding
set of K real numbers {d; € R'[i=1,2,...,K}, ﬁnd a funct1on F:R™ - R! that
satisfies the interpolation condition:

Fx)=d;, i=1,2,...,K 4.5)

Note that the interpolating surface, that is, the function F, is constrained to pass
through all the training data points. The di(i=1,2,...,K) is called the desired
response scalar.

The technique of radial-basis functions consists of choosing a function F that has
the form

F(x) = Zwl |x —X || (4.6)

where {cb(”x —xi||)|i =1,2,... ,K} is a set of K arbitrary (generally nonlinear)
functions, known as radial-basis functions, and || denotes a norm that is usually
Euclidean.

By combining Eqgs. 4.5 and 4.6, and denoting

di=o(IK =), 1Lj=12,....,K .7)
we obtain
by b o Pk Wi d
NN Rl D (4.8)
b1 ko 0 bk WK dx
Denote
‘1)11 ¢12 ¢1K
Gy b o bk
¢:
4.9)
b1 Pxa o bk
T
W = [W] \"%) WK}
d= [di dp --- dK]T

where ¢, w, and d represent the K X K interpolation matrix, KX 1 linear weight
vector, and K X 1 desired response vector, respectively. Then, (4.8) can be written in



compact form as
ow =d (4.10)

Assuming that ¢ is nonsingular, the inverse matrix ¢! exists. Then, we can solve the
weight vector w as

w=¢'d (4.11)

The vital question is how can we be sure that the interpolation matrix ¢ is non-
singular? It turns out that for a large class of radial-basis functions and under certain
conditions, the answer to this basic question is given in the following Micchelli’s
theorem.

Theorem 4.1 [Micchelli, 1986] Let {x! }iK=1 be a set of distinct points in R™. Then,
the K x K interpolation matrix ¢, whose ji-th element is ¢y = ¢(|[x —x||), is
nonsingular.

In order to ensure that the radial-basis functions listed in Eqgs. 4.1-4.3 are
nonsingular, the input points {x! }I(=1 must all be different. This is all that is required
for nonsingularity of the interpolation matrix ¢, whatever the values of size K of the
data points or dimensionality ny of the vectors (points) x' happen to be.

Actually, we can solve the linear weight vector in the light of the generalized
inverse theory if the interpolation matrix is singular, that is,

w=¢d 4.12)

Note that the inverse multiquadrics (4.2) and the Gaussian functions (4.3) share a
common property. That is, they are both localized functions, in the sense that ¢(r) —
0 as r — oo. For the two cases, the interpolation matrix ¢ is positive definite.
However, the multiquadrics (4.1) are nonlocal, because ¢(r) becomes unbounded
as r — oo. In addition, the corresponding interpolation matrix ¢ has K — 1 negative
eigenvalues and only one positive eigenvalue, with the result that it is not positive
definite [Micchelli, 1986]. Anyway, an interpolation matrix ¢ based on multiquadrics
is nonsingular and therefore suitable for use in the design of RBF networks (see
Exercise 4.1).

In the next section, we introduce a new network, namely, the RBF network,
according to (4.5)—(4.11), and derive its training algorithm.

4.3 TRAINING ALGORITHMS FOR RADIAL-BASIS FUNCTION
NETWORKS

4.3.1 Layered Structure of a Radial-Basis Function Network

We now envision an RBF network in the form of a layered structure, as illustrated in
Figure 4.1. Specifically speaking, the three layers are described as follows [Haykin,
2009]:
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Output y = F(x)
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FIGURE 4.1 Structure of an RBF network, based on the interpolation theory.

1. Input layer: The input layer consists of ny source nodes, where ny is the
dimensionality of the input vector x.

2. Hidden layer: The hidden layer consists of the same number of computation
units as the size of the training sample, namely, K. Each unit is mathematically
described by a radial-basis function:

o) =¢(|x-x), j=1,2,....,K (4.13)

The jth input data point x! defines the center of the radial-basis function, and

the vector x is the signal (pattern) applied to the input layer. Besides, we find

that unlike the multilayer perceptron, the source nodes are directly connected
with the hidden units with no weights.

3. Output layer: The output layer consists of a single computational unit.
Clearly, there is no restriction on the size of the output layer, except to
say that typically the size of the output layer is much smaller than that of the
hidden layer.

Henceforth, we focus on the use of a Gaussian function as the radial-basis
function, in which case each computational unit in the hidden layer of the network
is defined by

¢; (x)

Il
<
—
>
|
o
~—

Il

o

>

ho}
/N

1

_ (4.14)
! ||X—XJ||2>, i=1,2,...,K
20j

where o; is a measure of the width of the jth Gaussian function with center xJ.
Typically, but not always, all the Gaussian hidden units are assigned a common width
c. In such a case, the parameter that distinguishes one hidden unit from another is the
center xJ. The reason behind the choice of the Gaussian function as the radial-basis



function in building RBF networks is that it has many desirable properties, which will
become evident as the discussion progresses.

4.3.2 Modification of the Structure of RBF Network

In the formulation of the RBF network depicted in Figure 4.1, the size of hidden layer
is set the same as the size of training sample. However, this could be wasteful of
computational resources, particularly when the size of training sample is large. In fact,
the training sample may inherently contain redundancy. As a result, the redundancy of
neurons in hidden layer may occur when they are chosen according to Eq. 4.14. Under
such circumstances, it is necessary to make the size of the hidden layer a part of that of
the training sample. The RBF network under this idea is shown in Figure 4.2. By
comparing it with Figure 4.1, we find that the size of hidden layer of the two networks
is different, namely, S < K.

Unlike the multilayer neural networks, the training process of both of these two
networks does not involve the backpropagation of error signals. Besides, the
approximating function realized by them has the same mathematical form

S
F) = 3 wid(x, x)
j=1

S 1 in2
= ZWJ exp _FHX_XH
j=1

(4.15)

where the dimensionality of the input vector x is ny and each hidden unit is
characterized by the radial-basis function ¢(x,x/) with j =1,2,...,S. The output
layer is assumed to consist of a single unit and characterized by the weight vector w,
whose dimensionality is also S.

4)1()

center x'

Output y = F(x)
Input vector x

o)

center X
Input layer Hidden layer Output layer
of sizen, ofsize S<K ofsizeone

FIGURE 4.2 Structure of the modified RBF network. Note that the size of the hidden layer in
Figure 4.2 is smaller than that in Figure 4.1, that is, S < K.



Note that when the training sample {x', d; }fil is noiseless, the design of the hidden
layer in Figure 4.1 is solved simply by using the input vector x/ to define the center of
the radial-basis function ¢(x,x/) for j = 1,2, ..., K. Otherwise, we have to come up
with a new procedure in order to design the hidden layer in Figure 4.2, as stated in the
following section.

4.3.3 Hybrid Learning Process

The hybrid learning process for RBF network consists of two different stages:
estimating appropriate locations for the centers of the radial-basis functions in the
hidden layer and estimating the linear weights of the output layer.

In the learning process, we need a clustering algorithm to partition the given set of
data points into subgroups, each of which should be as homogeneous as possible. One
such algorithm is the k-means clustering algorithm, which places the centers of the
radial-basis functions in only those regions of the input space where significant data
are present.

First, we partition the training samples into S clusters, where S is smaller than K
and may be determined through experimentation. Then, let {cj(k)}js=1 denote the
centers of the radial-basis functions at iteration k of the algorithm. Next, we describe
the design procedure of k-means clustering algorithm as follows:

1. Initialization: Choose random values for the initial center c;(0) for
j=1,2,...,S. These initial values should be different.

2. Sampling: Draw a sample vector x from the input space with a certain
probability, and then use it as the input of the algorithm at iteration k.

3. Similarity matching: Let j(x) denote the index of the best matching center for
input vector x. Find j(x) at iteration k by using

j(x)=argmjion(k)—cj(k)H, ji=1,2,...,S (4.16)

where c;j(k) is the center of the jth radial-basis function at iteration k.

4. Updating: Adjust the centers of the radial-basis functions according to the
update rule:

citk+1) = { 283+ o(x(0) = b)) E ;JJ((’)‘()) 4.17)

where o is the learning rate parameter and 0 < o < 1.

5. Continuation: Setk = k + 1 and go back to step 2. Continue the procedure until
no noticeable changes are observed in the centers cj(k) for j=1,2,...,S.

Subsequently, let dp,ax be the maximum distance between the obtained S centers of
k-means clustering algorithm. To simplify the design, the standard width of all the



Gaussian radial-basis functions is fixed at

dmax

6= (4.18)

V25

This formula ensures that the individual radial-basis functions are not too peaked or
too flat.

After identifying the individual centers of the Gaussian radial-basis functions and
their common width, the next stage of the hybrid leaning process is to estimate the
weights of the output layer.

Define

i =o(x =¥), i=1,2,....K, j=12,....8 (4.19)

Let the error signal produced at the output layer at iteration K is

S
ei(k) = di(k) = > wi(K)P; (4.20)

=1

Then, the instantaneous error energy at the output layer is

K
E(k) = %Z e2(k) (4.21)
i=1

Hence, we can obtain the gradient

OE(K) -
%@T—Zﬂmm (4.22)

i=1

Like Eq. 3.16, the correction Aw;(k) applied to wj(k) is defined by the delta rule:

OE(K)

Awi(k) = —a v,

(4.23)

where o is the learning rate parameter. Accordingly, the weights of output layer can be
updated as

K
wilk + 1) = witk) + Y _ ei(k)dy; (4.24)
L

1

forj=1,2,...,S.



4.4 UNIVERSAL APPROXIMATION

We discussed the universal approximation properties of multilayer perceptron in the
last chapter. Similarly, radial-basis functions also have good approximation propert-
ies. Actually, the family of RBF network is broad enough to uniformly approximate
any continuous function on a compact set.

Let G : R™ — R' be an integrable bounded function such that G is continuous
and

J G(x) dx # 0 (4.25)
R0

Let 2 denote the family of RBF networks consisting of functions F : R™ — R'
represented by

! X — Cj
R =Y wio(*-2) 426
(x) ;j wiG(~— (4.26)
where 6 >0, w; € R!, and ¢; € R™ for i=1,2,...,n,. Then, the universal
approximation theorem of RBF networks can be stated as follows.

Theorem 4.2 [Park and Sandberg, 1991] For any continuous input—output
mapping function f(x), there is an RBF network with a set of centers {c;}i., and
acommon width ¢ > 0, such that the input—output mapping function F(x) realized by
the RBF networks is close to f(x) in the L, norm, p € [1, c0].

Note in the stated theorem, the G : R™ — R is not required to satisfy the property
of radial symmetry. Hence, the theorem is stronger than necessary for RBF networks.
Most importantly, it provides the theoretical basis for design of neural networks in
practice based on radial-basis functions.

Here, it is essential to clarify the comparison between RBF networks and
multilayer perceptrons [Haykin, 1999]. On the one hand, they are both universal
approximators. Accordingly, there always exists an RBF network that is capable of
accurately mimicking a specified multilayer perceptron, or vice versa. On the other
hand, there are also some remarkable differences between the two networks, as stated
in the following respects:

* An RBF network has a single hidden layer, while a multilayer perceptron may
have one or more hidden layers.

 Typically, the computation nodes of a multilayer perceptron located in a hidden
or an output layer share a common neuronal model. However, the computation
nodes in the hidden layer of an RBF network are quite different and serve a
different purpose from those in the output layer of the network.

* The hidden layer of an RBF network is nonlinear, while the output layer is linear.
However, the hidden and output layers of a multilayer perceptron used as a
pattern classifier are usually all nonlinear.



» The argument of the activation function of each hidden unit in an RBF network
computes the distance between the input vector and the center of the unit.
However, the activation function of each hidden unit in a multilayer perceptron
computes the inner product of the input vector and the synaptic weight vector of
that unit.

* The multilayer perceptrons construct global approximations to nonlinear input—
output mapping. Nevertheless, the RBF networks construct local approxima-
tions to nonlinear input—output mappings, using exponentially decaying local-
ized nonlinearities.

The differences also reveal that for the approximation of a nonlinear input—
output mapping, multilayer perceptrons require a smaller number of parameters
than an RBF network for the same degree of accuracy. In addition, the RBF differs
from the perceptron in that it is capable of implementing arbitrary nonlinear
transformations of the input space. This significant property can be illustrated
by revisiting the XOR problem, which cannot be solved by a single perceptron. See
Exercise 4.4.

Atlast, itis important to point out that RBF networks and multilayer perceptrons can
be trained in alternative ways besides those presented. For multilayer perceptrons, the
backpropagation algorithm is simple to compute locally and it performs stochastic
gradient descent in weight space when the algorithm is implemented in an online
learning mode. Hence, the backpropagation algorithm has become a computationally
efficient and useful algorithm for the training of multilayer perceptrons. The algorithm
derives its name from the fact that the partial derivatives of the cost function with respect
to the free parameters of the network are determined by backpropagating the error
signals through the network layer by layer. However, it relies on the gradient vector as
the only source of local first-order information about the error surface, which always
brings in a slow rate of convergence, particularly in the case of large-scale problems.
Therefore, in order to produce a significant improvement in the convergence perform-
ance of a multilayer perceptron, it is better to use the higher order information in the
training process. This can be done by invoking a quadratic approximation of the error
surface around the current point, which is the essence of Newton’s method. In fact, there
are some efficient algorithms for training multilayer perceptrons, like quasi-Newton
method, conjugate-gradient method, and Levenberg—Marquardt method, as alternative
ways of the classical backpropagation algorithm. For RBF networks, there are also some
alternative methods for the training purpose in the literature, using different algorithms
for the two stages of the procedure.

4.5 KERNEL REGRESSION

The description of RBF network presented in the foregoing sections is built on the
notion of interpolation. Now, we take another viewpoint to study the network. It is
kernel regression, which is built on the notion of density estimation.



First, we point out that the Gaussian function ¢(x,x)) may be interpreted as a
kernel, a term that is widely used in the statistics literature.

Consider a function dependent on an input vector X, with its center located at the
origin of the Euclidean space. Basic to the formulation of this function is a kernel,
denoted by k(x). It has the properties similar to those associated with the probability
density function of a random variable.

¢ The kernel k(x) is a continuous, bounded, and real function of x and symmetric
about the origin, where it attains its maximum value.

¢ The total volume under the surface of the kernel k(x) is unity, that is,
J k(x)dx =1 (4.27)
mn

for an n — dimensional vector X.

Except for a scaling factor, the Gaussian function ¢(x,x)) satisfies both of these
properties for the center x/ located at the origin. For a nonzero value of xJ, the above
two properties still hold except for the fact that x/ replaces the origin.

Then, consider a nonlinear regression model defined by

y; = f(x) +¢e), i=1,2,...,K (4.28)

where €(i) is an additive white-noise term of zero mean and variance c2. As a
reasonable estimate of the unknown regression function f(x), we may take the mean of
observable near a point x. For this approach to be successful, however, the local
average should be confined to observations in a small neighborhood around the point
x, because the observations related to points away from x will have different mean
values. More precisely, we find that the unknown function f(x) is equal to the
conditional mean of the observable y given the regressor X, that is,

f(x) = B{yl)

0 4.29)
= J YPy[x (y|x)dy

where pY‘X(y|x) is the conditional probability density function of the random variable
Y given that the random vector X is assigned the value x. In accordance with the
probability theory, we have

Px.y(X,y)
=X 4.30
leX(y|x) px(X) ( )

where py(x) is the probability density function of py(x) and py y(x,y) is the joint
probability density function of X and Y. Combining (4.29) and (4.30), the regression



function can be written as

J yPx v (X, y)dy
fx)=2== 431
(x) e 4.31)

In the situation that the joint probability density function py y(x,y) is unknown while

all that we have available is the training sample {(x', yi)}iKzl, we use a nonparametric
estimator, known as the Parzen—Rosenblatt density estimator, to estimate px v(X,y)
and py(x). Basic to the formulation of this estimator is the availability of a kernel k(x).
Assuming that the observations x', x?, ..., xK are statistically independent and
identically distributed, we may formally define the Parzen—Rosenblatt density

estimate of pyx(x) as

i

. 1 & X —X N
pX(x)zm;k( - ) for x € R™ (4.32)

where the smoothing parameter h is a positive number called bandwidth, or simply
width. Note that h controls the size of the kernel. An important property of the
Parzen—Rosenblatt density estimator is that it is a consistent estimator, that is,
asymptotically unbiased, in the sense that if h = h(K) is chosen as a function of K
such that

Klim h(K) =0 (4.33)
then
Kh_‘?;o E{px(x)} = px(x) (4.34)

In Eq. 4.34, x should be a point of continuity for py(x).
In a manner similar to that described in Eq. 4.32, we may formulate the
Parzen—Rosenblatt density estimate of the joint probability density function

pX,Y(X7 y) as

a y-y n
Pxy(x,y) = hno+1zk< ) ( . 1), forx ER™ and yER

(4.35)

Integrating Py y(X,y) with respect to y, we get

- R AV R
J_wypx.y(& y)dy = T Zl: k( m )Loyk (T) dy (4.36)



Set T = (y —y;)/h, make use of Eq. 4.27, and then we can derive that

o 1 & X —xi
Jwypx,y(x,y)dy=W;yik( - > 4.37)

Hence, by using Eqs. 4.32 and 4.37, we can obtain an estimate of the regression
function f(x) in Eq. 4.31 as

F(x) = f(x)

Yo yik((x = x)/h) (4.38)
Yo k((x = x)/h)

Next, we assume spherical symmetry of the kernel k(x), in which case we may

set
k E— = k I R f all 1 (4.3 9)
= (0

where |-| denotes the Euclidean norm of the enclosed vector. Define the normalized
radial-basis function as

W (x, x) = kli((”x_xl||)/h) L i=1,2,....K (4.40)
> iz k((Ix = ) /h)
with
K .
Z\PK(X, x') = 1,for all x 4.41)

i=1
The subscript K in Wk(x, x') signifies the use of normalization. 4
The linear weights w; applied to the basic functions Wk(x,x') are simply the
observable y; of the regression model for the input data x'. Accordingly, letting

yio=w, i=12,...,K 4.42)

we may rewrite the approximating function of Eq. 4.38 in the general form:

K
F(x) = wi¥k(x,x)) (4.43)
i=1



Equation 4.43 represents the input—output mapping of a normalized RBF network [Xu
et al., 1994]. Note that

0 < Wk(x,x) <1, forallxandx (4.44)

Therefore, Pk (x, x') may be interpreted as the probability of an event described by the
input vector x, conditional on x'.

The basic difference between the normalized radial-basis function Wk (x,x') of
Eq. 4.40 and an ordinary radial-basis function, such as Eq. 4.14, is a denominator term
that constitutes the normalization factor. This normalization factor is an estimate of
the underlying probability density function of the input vector x. Thus, the basis
function Wk (x,x!) fori = 1,2, ..., K sum to unity for all x, as described in Eq. 4.41.

In general, a variety of kernel functions can be utilized. However, the theoretical
and practical considerations may limit the choice. A widely used kernel is the
multivariate Gaussian distribution

_ 1 x|
k(x) = 2 73 €Xp (— 7) (4.45)

where ny is the dimension of the input vector x. The spherical symmetry of the kernel
k(x) can be observed in Eq. 4.45. Assuming the use of a common width ¢ that plays
the role of smoothing parameter h for a Gaussian distribution, and centering the kernel
on a data point x!, we may write

x—x\ _ 1 ==
k< h )_(ZEGZ)UO/Z exXp (—T s 1—172,...,K (446)

Then, according to Eqs. 4.40, 4.43, and 4.46, we derive that the input—output mapping
function of the normalized RBF network can be written as

K -
> wiexp (—(Hx — x| )/202)
F(x) = =1 (4.47)
> exp (~(x = ¥)/20?)
j=1

where the denominator term, representing the Parzen—Rosenblatt density estimator,
consists of the sum of K multivariate Gaussian distributions centered on the data
points x', x2, ..., x¥ [Specht, 1991].

We can see that in Eq. 4.47, the centers of the normalized radial-basis functions
coincide with the data points {xi}f(= - As with ordinary radial-basis functions, a
smaller number of normalized radial-basis functions can be used, with their centers
treated as free parameters to be chosen according to some heuristic manners, for
example, the K-means clustering algorithm.



EXERCISES

4.1.

4.2.

4.3.

44.

For the inverse multiquadrics (4.2) and the Gaussian functions (4.3), the cor-
responding interpolation matrix ¢ is positive definite. However, the ¢ related to
the multiquadrics (4.1) is not positive definite. Prove these propositions.

There is a remarkable fact that radial-basis functions that grow at infinity, such as
multiquadrics, can be used to approximate a smooth input—output mapping with
greater accuracy than those that yield a positive definite interpolation matrix. Try
to explain the statement.

The multiquadrics (4.1) and the inverse multiquadrics (4.2) provide two
possible choices for radial-basis functions. An RBF network using the inverse
multiquadrics constructs local approximation to nonlinear input—output map-
ping. However, the use of a multiquadrics represents a counterexample to this
property of RBF networks. Justify the validity of these two statements.

Revisit the XOR problem described in Table 3.1. Here, we solve it using an RBF
network, whose structure is given in Figure 4.3.
Define a pair of Gaussian hidden functions as

(])j(x) =exp (—Hx—chz), ji=12

where the centers ¢; and c, are

1. Calculate the weight vector of the RBF network and explain why this kind of
network can be utilized to deal with the XOR problem successfully.

2. Study the necessity of adding the bias b. Take off the bias and the fixed input,
and then point out if the corresponding network can still solve the problem
or not.

¢1 ()

Fixed input +1
bias b

Input vector Output

¢2 ()
Input Gaussian
nodes functions

Linear
output
neuron

FIGURE 4.3 Structure of the RBF network in Exercise 4.4.



4.5.

4.6.

Reconsider the XOR problem by using an RBF network with four hidden units,
with each radial-basis function center being determined by each piece of input
data.

1. Construct the interpolation matrix ¢ for the resulting RBF network and then
compute the inverse matrix ¢~".

2. Calculate the linear weights of the output layer of the network.

The input—output relationship of a Gaussian-based RBF network is defined by

e OH-w®?\
y(l):;wj(k)exp<—%>, i=1,2,...,k

where p/(k) is the center point of the jth Gaussian unit, the width o(k) is common
to all the K units, and wj(k) is the linear weight assigned to the output of the jth
unit. Note that all these parameters are measured at time k. The cost function
used to train the network is defined by

1K
E=-) e
2 i=1
where

e(i) = d(i) - y(i)

The cost function E is a convex function of the linear weights in the output layer,

but nonconvex with respect to the centers and the width of the Gaussian units.

1. Evaluate the partial derivatives of the cost function with respect to each of the
network parameters wi(k), p(k), and o(k), for all i.

2. Express the update formulas for all the network parameters w;(k), p(k), and
o(k), provided the learning rates of them are a,, ,, and o, respectively.

3. The gradient vector OE/Opi(k) has an effect on the input data that is similar to
clustering. Justify this statement.



CHAPTER 5

Recurrent Neural Networks

The multilayer perceptron and the RBF network considered in Chapters 3 and 4
represent two important examples of a class of neural networks known as nonlinear
layered feedforward networks. In this chapter, we consider another class of neural
networks that have a recurrent structure.

As we have seen from the preceding chapters, time plays a critical role in learning.
When time is built into the operation of a neural network through the use of global
feedback, which encompasses one or more layers of hidden neurons, or the whole
network, it results in the recurrent neural network.

The recurrent neural networks incorporate a static multilayer perceptron or parts
thereof, and exploit the nonlinear mapping capability of the multilayer perceptron
as well.

5.1 THE HOPFIELD NETWORK

The Hopfield network is a form of recurrent artificial neural network invented by
John Hopfield in 1982. It consists of a set of neurons and a corresponding set of unit
time delays, formatting a multiple-loop feedback system. A simple example of the
architectural graph can be seen in Figure 5.1. The number of feedback loops is equal to
the number of neurons. Basically, there is no self-feedback in the model. The output of
each neuron is fed back, via a unit time delay element, to each of the other neurons in
the network.
The equations that describe the network operation are

x(K) = p 5.1)

and
x(k + 1) = satlins(Wp + b) (5.2)

where satlins is the transfer function that is linear in the range [—1, 1], and saturates at 1
for inputs greater than 1 and at —1 for inputs less than —1.
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FIGURE 5.1 Architectural graph of the Hopfield network consisting of N neurons.

To illustrate the operation of the network, we have determined a weight matrix and a
bias vector that can solve our orange and apple pattern recognition problem. They are
given in

02 0 0 0.9
W=[0 12 01|, b=]| 0 (5.3)
0 0 02 -0.9

Although the procedure for computing the weights and biases for the Hopfield network
is beyond the scope of this chapter, we can say a few things about why the parameters in
(5.3) work for the apple and orange example.

We want the network output to converge to either the orange pattern, p;, or the apple
pattern, p,. In both patterns, the first element is 1 and the third element is —1. The
difference between the patterns occurs in the second element. Therefore, no matter
what pattern is input to the network, we want the first element to converge to —1, and
the second element to go to either 1 or —1, whichever is closer to the second element
of the input vector.

The equations of operation of the Hopfield network, using the parameters given in
(5.3), are

x1(k + 1) = satlins(0.2x,(k) + 0.9)
xa(k + 1) = satlins(1.2x,(k)) (5.4
x3(k + 1) = satlins(0.2x3(k) — 0.9)

Regardless of the initial values, x;(k), the first element will be increased until it
saturates at 1, and the third element will be decreased until it saturates at —1. The
second element is multiplied by a number larger than 1. Therefore, if it is initially
negative, it will eventually saturate at —1; if it is initially positive, it will saturate at 1.

Let us take our oblong orange to test the Hopfield network. The outputs of the
Hopfield network for the first three iterations would be

-1 0.7 1 1
xk)y=| -1, x(k+1)=|-1|, x(k+2)=|-1], x(k+3)=|-1
-1 -1 -1 -1

(5.5)

The network has converged to the orange pattern.
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FIGURE 5.2 Discrete model of the Hopfield network consisting of N neurons.

Now, we will introduce a normalized discrete Hopfield network based on the
McCulloch-Pitts model, which is shown in Figure 5.2.
The induced local field of neuron j at time step k + 1 is denoted by

N
Vj(k + 1) = Z Wj,‘Xi(k) + bj (5.6)

i=1

where wji and b; are the synaptic weight and the bias of neuron j, respectively.
Additionally, wj; = 0 when i = j, which in fact means that the self-feedback does not
exist in the model. Then, the output of neuron j by applying the signum function is

1, ifvik+1)>0;
xi(k+1) = d(vi(k + 1)) = { 1, ifijﬁu 1% <0 oD

Note that neuron j remains in its previous state if vj(k + 1) is zero.

Next, we consider the circuit model of the continuous Hopfield network depicted in
Figure 5.3, where N denotes the number of neurons and ¢j(-), j=1,2,... N, represent
the activation functions. The corresponding physical terms in Figure 5.3 are defined
as follows:

Ij: external current
wii: conductance
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FIGURE 5.3 Circuit model of the continuous Hopfield network consisting of N neurons.

R;: leakage resistance
C;: leakage capacitance
Xj: potential

Let the induced local field of neuron j be denoted by

N
Vj(t) = Z WjiXi(t) + Ij (5.8)
i=1

where x;(t) is the potential at time t. Also, we can determine the output of neuron j by
using the nonlinear relation

xj(t) = d;(vj(t) (5.9)

Then, according to the Kirchoff’s current law, we have

N
Ci(0) dVJ(t) R(') =Y wix(®+I, j=12,...,N (5.10)
)

i=1

Hence, the model of the Hopfield network can be given in the following form:

dvJ (t)

. N
i) VJT@jLZWﬁq)i(Vi(t))Hj, j=12,... N (.11
J i=1



5.2 THE GROSSBERG NETWORK

In this section, we will present the Grossberg network [Grossberg, 1998]. This
network was inspired by the operation of the mammalian visual system. Grossberg
networks are so heavily influenced by biology that it is difficult to discuss his
networks without putting them in their biological context. In this section we want to
provide a brief introduction to vision, so that the function of the network will be
more understandable.

First, we see Figure 5.4 [Hagan, Demuth, and Beale, 1996]. In part (a), we see an
edge as it is originally perceived by the rods and cones, with missing sections. But
usually we do not see edges as displayed in part (a). The neural systems in our visual
pathway must be performing some operation that compensates for the distortions and
completes the image.

Grossberg suggests that there are two primary types of compensatory processing
involved. The first, which he calls emergent segmentation, completes missing
boundaries. The second, which he calls featural filling-in, fills in the color and
brightness inside the resulting boundaries. Consider, for example, the two figures
in Figure 5.5. In part (a) you should be able to see a bright white triangle lying on the top
of several other black objects. In fact, no such triangle exists in the figure. It is purely a
creation of the emergent segmentation and featural filling-in process of your visual
system. The same is true of the bright white circle that appears to lie on the top of the
lines in part (b) of the figure.

In addition to emergent segmentation and featural filling-in, there are two other
phenomena that give us an indication of what operations are being performed in the

‘T IR B
FIGURE 5.4 Compensatory processing.
(@) {b)

FIGURE 5.5 Emergent segmentation and featural filling-in.
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FIGURE 5.6 Test of brightness constancy.

early vision system: brightness constancy and brightness contrast. The brightness
constancy effect is shown as small gray disk inside a darker gray annulus, which is
illuminated by white light of a certain intensity. The subject is asked to indicate the
brightness of the central disk by looking at a series of gray disks, separately
illuminated, and selecting the disk with the same brightness. Next, the brightness
of the light illuminating the gray disk and dark annulus is increased, and the subject is
again asked to select the disk as matching the original central disk. Even though the
total light entering the subject’s eye is 10—100 times brighter, it is only the relative
brightness that registers (Figure 5.6).

Another phenomenon of the vision system, which is closely related to brightness
constancy, is brightness contrast. This effect is illustrated by the two figures in
Figure 5.7. At the centers of the two figures, we have two small disks with equivalent
gray scale. The small disk in part (a) of the figure is surrounded by a darker annulus,
while the small disk in part (b) is surrounded by a lighter annulus. Even though both
disks have the same gray scale, the one inside the darker annulus appears brighter. This
is because our vision system is sensitive to relative intensities. It would seem that the
total activity across the image is held constant.

The properties of the brightness constancy and brightness contrast are very
important to our vision system. Since we see things in so many different lighting
conditions, if we were not able to compensate for the absolute intensity of a scene, we

(@) (b)

FIGURE 5.7 Test of brightness contrast.



would never learn to recognize things. Grossberg calls this process of normalization
“discounting the illuminant.”

5.2.1 Basic Nonlinear Model

Before we introduce the Grossberg network, we will begin by looking at some of the
building blocks that make up the network [Hagan, Demuth, and Beale, 1996]. The first
building block is the “leaky” integrator, which is shown in Figure 5.8.

The response of the leaky integrator to an arbitrary input p(t) is

1 t
n(t) = e~ *n(0) + S J e~ ep(t — 1)dt (5.12)
0

The leaky integrator forms the nucleus of one of Grossberg’s fundamental neural
models: the shunting model, which is shown in Figure 5.9. The equation of operation of
this network is

d
Sd—rt1= —-n+ G " —n)pt—(@n+b)p” (5.13)

where pt is a nonnegative value representing the excitatory input to the network, and
p~ is a nonnegative value representing the inhibitory input. The biases b™ and b~ are

Leaky inlegrator

T

edyt:-n(t)+p(t)

FIGURE 5.8 Leaky integrator.

Input Leaky inlegrator

~ +
b‘T+

ad%l =-n+(" —n)p" —(n+b")p”

FIGURE 5.9 Shunting model.
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FIGURE 5.10 Grossberg competitive network.

nonnegative constants that determine the upper and lower limits on the neuron
response, respectively. From the operation of the shunting model (5.7), we can see
that if n(0) falls between b* and b~, then n(t) will remain between these limits.

5.2.2 Two-Layer Competitive Network

We are now ready to present the Grossberg competitive network. There are three
components to the Grossberg network: Layer 1, Layer 2, and the adaptive weights.
Layer 1 is a rough model of the operation of the retina, while Layer 2 represents the
visual cortex. A block diagram of the network is shown in Figure 5.10.

5.2.2.1 Layer 1 Layer 1 of the Grossberg network receives external inputs and
normalizes the intensity of the input pattern (Figure 5.11).
The equation of operation of layer 1 is

g(dn'/dt) = —n' + (*b" —n")[*W!]p — (n'+"BH["W']p (5.14)

where

+W1



Input Layer 1

S'xs!
| |
8dn%l — _nl +(+b+ _n\-)[+W|]p_ (n\ 4 bl)[—W\]P

FIGURE 5.11 Layer 1 of the Grossberg network.

Therefore, the excitatory input to neuron i is the ith element of the input vector. The
inhibitory input to layer 1 is [TW']p where

0 1 1

1 0 1
_Wl — .

11 0

Thus, the inhibitory input to neuron i is the sum of all elements of the input vector,
expect the ith element.

To illustrate the performance of Layer 1, consider the case of two neurons, with the
inhibitory bias “b! =0, *b! =1, e =0.1:

1

O™ = a0+ (1 = nl()py ~nl(0p, 6.15)
1

O™ = ol + (1 = n3)p, — nl0pas 5.16)

2 10
For two inputs P; = [8} and P, = {40} , we can compute that the response of the

network maintains the relative intensities of the inputs, while limiting the total
response. The total response (n](t) + nl(t)) will always be less than 1.

5.2.2.2 Layer2 Layer?2 ofthe Grossberg network, which is a layer of continuous-
time instars, performs several functions. Figure 5.12 is a diagram of layer 2. As with
layer 1, the shunting model forms the basis for layer 2. The main difference between
layer 2 and layer 1 is that layer 2 uses feedback connections. The feedback enables the
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FIGURE 5.12 Layer 2 of the Grossberg network.
network to store a pattern, even after the input has been removed. The feedback also

performs the competition that causes the contrast enhancement of pattern.
The equation of operation of layer 2 is

2
8((11_? = —n? + (b = n?){["WI*(n%) + Wa' } (5.17)
—(?+7b)[" W22 (n?)

To illustrate the performance of layer 2, consider a two-neuron layer with

T
8=O.1,+b2= |:i:|7—b2 — |:0:|7W2 — [(IWZ) 1 _ |:09 O45:| (518)

0 (2wz)T 045 0.9
and
2\ 10(“)2
f(n%) = - (n)2 (5.19)

The equations of operation of the layer will be

dn(t) _
dt

(0.1) —ni(0) + (1 = nfO){(}©) + (w)'a' } — O (03(V)  (5.20)



dn3(t)

On——= —n3(0) + (1 = O 30) + Gw)'a' } ~ O (i)  (5:21)

Define the input vector a' = [0.2,0.8]". Then the inputs of layer 2 are

(w)Tal = [0.9 045][0'2
. 9 0.

=0.54
0.8

0 (5.22)
w)Tal = [045 0.9] lO.S] =0.81

Therefore, the second neuron has 1.5 times as much input as the first neuron.
However, after 0.25 s the output of the second neuron is 6.34 times the output of
the first neuron. The second characteristic of response is that after the input has been
set to zero, the network further enhances the contrast and stores the pattern. After the
input is removed, the output of the first neuron decays to zero, while the output
of the second reaches a steady state value of 0.79. This output is maintained, even after
the input is removed.

5.2.2.3 Learning Law The third component of the Grossberg network is the
learning law for the adaptive weights W2. Grossberg calls these adaptive weights
the long-term memory (LTM). This is because the rows of W2 will represent
patterns that have been stored and that the network will be able to recognize. The
learning for W? is given by

dwi%j )
a -

{=930 + 02000 ] (5.23)

Now we summarize the Grossberg network.

Basic Nonlinear Model: Leaky Integrator

e T = —n(®) +p()

Shunting Model

edrcli_(tt) = —n(t) + (b* = n(©)[*W']p — (n()) + b")["W']p



Two-Layer Competitive Network

Layer 1
g(dn'/dt) = —n' + ("b* —n)[*W!]p — (n!+"bH)["W!]p
1 0 0 0 1 1
() 1 () 1 () 1
A o W=
0 0 1 1 1 0
Layer 2

g(dn®/dt) = —n® + ("b* — ) {[*W?]f*(n*) + W?a' } — (0°+7b*)["W?]f*(n%)
Learning Law

dw; i(0)
Yo
dt

{~w2i0 +n¥on/ 0}

If we substitute the output of the Grossberg network as its input, then the network is
recurrent. In 1983, Michael A. Cohen and Stephen Grossberg described a general
principle for assessing the stability of a certain class of neural networks, by a system of
coupled nonlinear differential equations, given as

du; N
% = a(y;) [bj(uj) - chi¢i(ui)] , i=12,...N (5:24)
i=1

5.3 CELLULAR NEURAL NETWORKS

In 1988, Leon O. Chua and Lin Yang proposed a novel class of information processing
systems called cellular neural networks [Chua and Roska, 2004]. The basic circuit
unit of cellular neural networks is called a cell. It contains linear and nonlinear circuit
elements, which typically are linear capacitors, linear resistors, linear and nonlinear
controlled sources, and independent sources. The structure of cellular neural networks
is similar to that found in cellular automata; namely, any cell in a cellular neural
network is connected only to its neighbor cells. The adjacent cells can interact directly
with each other. Cells not directly connected together may affect each other indirectly
because of the propagation effects of the continuous-time dynamics of cellular neural
networks. A simple example of a two-dimensional cellular neural network is shown
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FIGURE 5.13 A two-dimensional cellular neural network. The circuit size is 3 X 3. The
squares are the circuit units called cells.

in Figure 5.13. Actually, we can define a cellular neural network of any dimension.
However, we will concentrate on the two-dimensional case in this chapter. The results
can be easily generalized to higher dimension cases.

Now, consider an M X N cellular neural network, having M X N cells arranged in M
rows and N columns. We call the cell on the ith row and jth column cell (i, j), and denote
it by C(i,j) as in Figure 5.14.

Ther — neighborhoodof a cell C(i,j) of a cellular neural network is defined by

N:i(i,j) = {C(k,1) : max{lk —il, 1 —jl} <r,1 <k <M;1 <1< N} (5.25)

where r is a positive integer number. The Figure 5.15 shows a neighborhood of the cell
located at the center. Usually, we call the r neighborhood a “(2r + 1) X (2r + 1)
neighborhood.” Note that the neighborhood defined above exhibits a symmetry
property, that is, if C(i,j) € N(k, 1), then C(k,1) € N,(i, ), for all C(i,j) and C(k,1)
in a cellular neural network.

A typical example of a cell C(i,j) of a cellular neural network is shown in
Figure 5.16, where the suffixes u, x, and y denote the input, state, and output,
respectively. The node voltage vy;; of C(i,]) is called the state of the cell and its
initial condition is assumed to have a magnitude less than or equal to 1. The node

Column
1 2 j N
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o-- - 0
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Rowj 00 - O

FIGURE 5.14 A two-dimensional cellular neural network. The circuit size is M X N.
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FIGURE 5.15 The neighborhood of cell C(i, ) defined by (5.25) for r = 2.
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FIGURE 5.16 An example of a cell circuit.

voltage v, is called the input of C(i, j) and is assumed to be a constant with magnitude
less than or equal to 1. The node voltage vy;; is called the output.

According to Figure 5.16, each cell C(i, j) contains one independent voltage source
E;j, one independent current source I, one linear capacitor C, two linear resistors Ry and
Ry, and at most 2 m linear voltage-controlled current sources, which are coupled to its
neighbor cells via the controlling input voltage vy, and the feedback from the output
voltage vy of each neighbor cells. In particular, I (i, j; k, 1) and Ly (i, j; k, 1) are linear
voltage-controlled current sources with the characteristics L (i, j; k, 1) = A(i, j; k, Dvyu
and I, (i, j; k, 1) = B(i, j; k, I)vy forall C(i, j) € N(i,j). The only nonlinear element in
each cell is a piecewise linear voltage-controlled current source Iy, = (1/Ry)f(vy)
with characteristic f(-) as shown in Figure 5.17.

All of the linear and piecewise line-controlled sources used in the cellular neural
network can be easily realized via operational amplifiers (op amps). Applying

A
f(v)

1

“v

-1

[(v)=%(|v+1l—|v—1l)

FIGURE 5.17 The characteristic of the nonlinear controlled source.



Kirchhoff’s current law and Kirchhoft’s voltage law, the circuit equations of a cell are
easily derived as follows:

State equation:

dvyi(t 1 .
c —Zili( ) _ S0+ >0 AGGK DV
x CO I ENG) (5.26)
+ Y BljkDvw@®+1, 1<i<M; 1<j<N
C(k,l) € N;(i,))

Output equation:
Vyij(t) = % (V@ + 1] = [vg® = 1]), 1<i<M; 1<j<N (5.27)

Input equation:

vij =B, 1<i<M, 1<j<N (5.28)

Constraint conditions:
vij(0)| <1, 1<i<M, 1<j<N (5.29)
vl <1, 1<i<M, 1<j<N (5.30)

Parameter assumptions:
A, kD) =AKk;1,j), 1<ik<M, 1<j 1<N (5.3D)

C>0, R(>0 (5.32)

The inner cell is the cell that has (2r + 1)2 neighbor cells, where r is defined in (5.25).
All other cells are called boundary cells. All inner cells of a cellular neural network
have the same circuit structures and element values. A cell neural network is com-
pletely characterized by the set of all nonlinear differential equations (5.26)—(5.32)
associated with the cells in the circuit.

5.4 NEURODYNAMICS AND OPTIMIZATION

First, we describe the mathematical model of a nonlinear dynamic system [Haykin,
2009]. Let x;(t), xa(t), ..., xn(t) denote the state variables of a nonlinear dynamic
system, where the continuous time t is the independent variable and N is the order of



the system. The dynamics of a large class of nonlinear dynamic systems may be written
as the following first-order differential equations:

d
SO =Fi0), =1,2,...,N (5.33)

where the function Fj(-) is, in general, a nonlinear function of its argument. For
convenience of notation, the N state variables are collected into an N-by-1 vector x(t),
that is,

x(t) = [x1(t), x2(0), . . ., xn(O)]" (5.34)

which is called the state vector, or simply state of the system. Then, we can express
Eq. 5.33 in a compact form as follows:

d
—x(t) = F(x(t)) (5.35)
dt

where the nonlinear function F(x(t)) is

F(x(1)) = [F1(x1(1)), Fa(x2(t)), . . ., Ex(xn(1)]" (5.36)

A nonlinear dynamic system for which the vector function F(x(s)) does not depend
explicitly on time t is said to be autonomous. A constant vector X is said to be an
equilibrium state of system (Eq. 5.35) if it satisfies

F(x) = 0 (537)

where 0 is the null vector. Clearly, the constant function x(t) = X is a solution of
Eq. 5.35 since the velocity vector dx/dt vanishes at X.

Now, we discuss some of the important issues involved in neurodynamics.
Neurodynamics possesses the following general characteristics:

1. A large number of degrees of freedom: The human cortex is a highly parallel,
distributed system that is estimated to possess about 10 billion neurons, with
each neuron modeled by one or more state variables. It is generally believed that
both the computational power and the fault-tolerant capability of such a neuro-
dynamic system are the result of the collective dynamics of the system. The
system is characterized by a very large number of coupling constants represented
by the strengths of the individual synaptic junctions.

2. Nonlinearity: A neurodynamic system is inherently nonlinear. In fact, non-
linearity is essential for creating a universal computing machine.

3. Dissipation: A neurodynamic system is dissipative. It is therefore characterized
by the convergence of the state space volume onto a manifold of lower
dimensionality as time goes on.



4. Noise: Noise is an intrinsic characteristic of neurodynamic systems. In real-life
neurons, membrane noise is generated at synaptic junctions.

5.5 STABILITY ANALYSIS OF RECURRENT NEURAL NETWORKS

For the purpose of studying the stability of recurrent neural networks, it is necessary to
be familiar with the definition of stability, in the context of an autonomous nonlinear
dynamic system (Eq. 5.35 with equilibrium state X [Khalil, 1992].

Definition 5.1 The equilibrium state X is said to be uniformly stable if, for any
positive constant €, there exists another positive constant & = §(¢) such that the
condition

1x(0) - %[ < &
implies that

Ix() -xl < e
for all t > 0.

Definition 5.2 The equilibrium state X is said to be convergent if there exists a
positive constant d such that the condition

Ix(0) — x| < &

implies that

x(t) > Xast — oo

Definition 5.3 The equilibrium state X is said to be asymptotically stable if it is both
stable and convergent.

Definition 5.4 The equilibrium state X is said to be globally asymptotically stable
if it is stable and all trajectories of the system converge to X as time t approaches
infinity.

By making a comparison among the above definitions, we find that uniform stability
means that a trajectory of the system can be made to stay within a small neighborhood
of the equilibrium state X if the initial state x(0) is close to X. In addition, the
convergence reveals that if the initial state x(0) of a trajectory is close enough to
the equilibrium state X, then the trajectory described by the state vector x(t) will
approach X as time t approaches infinity. Furthermore, it is only when stability and



convergence are both satisfied that we have asymptotic stability. Global asymptotic
stability implies that the system will ultimately settle down to a steady state for any
choice of initial conditions.

The definition of the positive definite function is also required when doing stability
analysis. A function V(x) is called positive definite if it satisfies the following
conditions:

1. The function V(x) has continuous partial derivatives with respect to the elements
of the state x.

2. V(X) =0.

3. V(x) > 0if x € A —X,, where 2 is a small neighborhood around X.

Incidentally, the definition of negative definite can be easily derived in the light of
the above conditions.

An elegant approach for investigating the stability of dynamic systems is the direct
method of Lyapunov, which is based on a continuous scalar function of the state, called
a Lyapunov function. The Lyapunov’s theorems on the stability analysis of the
dynamic system (5.35) are stated as follows [Khalil, 1992]:

Theorem 5.1 The equilibrium state X is stable if, in a small neighborhood of X, there
exists a positive definite function V(x) such that its derivative with respect to time is
negative semidefinite in the region.

Theorem 5.2 The equilibrium state X is asymptotically stable if, in a small
neighborhood of X, there exists a positive definite function V(x) such that its derivative
with respect to time is negative definite in the region.

The scalar function V(x) that satisfies the requirements of these two theorems is
called a Lyapunov function for the equilibrium state X.

To summarize, given that V(x) is a Lyapunov function, then according to Theorem
5.1, the equilibrium state X is stable if

d

aV(x) <0, for xEA-X (5.38)
Similarly, according to Theorem 5.2, the equilibrium state X is asymptotically stable if

d -

aV(x) <0, for x€A-X (5.39)

It should be noted that global stability of a nonlinear dynamic system generally requires
that the condition of radial unboundedness holds, that is,

V(x) - ooas||x|| — 00



This condition is usually satisfied according to the Lyapunov functions constructed for
neural networks with sigmoid activation functions.

5.5.1 Stability Analysis of the Hopfield Network

To facilitate the stability analysis of Hopfield network (5.28), we make the following
three assumptions [Haykin, 2009]:

1. The matrix of synaptic weights is symmetric, that is,
wii = wyj, for all i and j (5.40)

2. Each neuron has a nonlinear activation of its own, that is, ¢;(-).

3. The inverse of the nonlinear activation function exists. According to (5.26), we
may write

v=o¢(x) (5.41)

Let the sigmoid function ¢;(-) be defined by the hyperbolic tangent function as

avy 1 —exp(—av)
— (V) =t h(_)=— 5.42
X = bi(v) = tan 2 1 + exp (—a;v) (542)
which has a slope of a;/2 at the origin, that is,
aj dq)
. 5.43
2 dvi,o ( )

Thus, we refer to a; as the gain of neuron i.
Based on (5.42), the inverse output—input relation of (5.42) can be further written as

v=¢7'(x) = —i In (1 — X> (5.44)

a 14+x

Let the standard form of the inverse output—input relation for a neuron of unity gain be
denoted as

¢~'(x) = —In <l — X) (5.45)

1+x

Then, Eq. 5.44 has an equivalent form presented as follows:

or'(x) = %d)‘l(X) (5.46)



Define the Lyapunov function of the Hopfield network shown in Figure 5.3 as
1NN Noq o N
=52 W+ DI KT SRR
i=1 j=1 j=1 7940 j=1
Differentiating V with respect to time t, we can obtain

dv Sl L dxg
a —ZZ%X] +Z ¢ (J)dt ZJ

i=1 j=I1

(5.48)
N

-2 (Zwﬁxl — o 07 )+ I) (:it

j=1

From (5.10) and (5.41), we get

N

[Ta)® (Z wibi(vi) ) % (5.49)

=1

Combining (5.12) with (5.49), we can further derive that

dv; de
5.50
Z Idt dt (5.50)

Next, we apply (5.49) to (5.50) and find that

EN: dd) (XJ)dXJ

N dd) (XJ) dx\ *
- _ZJ dx; (dtj>

In accordance with Figure 2.11, we see that the hyperbolic tangent function is a
monotonically increasing function. Thus, the inverse output—input relation
q)j_l(xj) is also a monotonically increasing function of the output x;, which
implies that

(5.51)

dopy! (x)

>0, forallx; (5.52)
de



Clearly,

2
(%) >0, for allx; (5.53)

Therefore, for the energy function V defined in (5.31), we have

dv
5 S0, forallt (5.54)

Additionally, from the definition of (5.47), we note that the function V is bounded. In
summary, the energy function V is a Lyapunov function of the continuous Hopfield
model. Furthermore, the model is stable in accordance with Theorem 5.1.

The time evolution of the continuous Hopfield model described by the system of
nonlinear first-order differential equations given in (5.11) represents a trajectory in
state space that seeks out the minima of the Lyapunov function V and comes to a
stop at such fixed points. From Eq. 5.51, we note that the derivative dV /dt vanishes
only if

D5 _ 0. for allj (5.55)
dt - Y J .
Hence, we have
dv ) .
G < 0, except at a fixed point (5.56)

which reveals that the Lyapunov function V of a Hopfield network is a monotonically
decreasing function of time. Consequently, the Hopfield network is asymptotically
stable in the Lyapunov sense.

5.5.2 Stability Analysis of the Cohen—Grossberg Network
The Lyapunov function corresponding to Eq. 5.24 is defined as

1 N N N ryj
V=3 DO cidiu)dyu) = > L by (M (1)dA (5.57)
i=1 j=I =1

where §;(A) is the derivative of ¢;(A) with respect to . The following conditions should
be held in order to ensure the validity of definition of Eq. 5.41.

1. The synaptic weights of the network are symmetric, that is,

Cii = Cjj (558)



2. The function aj(u;) satisfies the nonnegativity condition, that is,
aj(le) >0 (5.59)

3. The nonlinear input-output function ¢;(u;)satisfies the monotonicity condition,
that is,

(I)J( _])

J

WCHES

(5.60)

With this background, we may now formally state the Cohen—Grossberg
theorem.

Theorem 5.3 [Haykin, 2009] Provided that the system of nonlinear differential
equations (5.24) satisfies the conditions of symmetry, nonnegativity, and monotonicity,
the Lyapunov function V of the system defined by Eq. 5.57 satisfies the condition

dv

<0 5.61
T (5.61)

Once this basic property of the Lyapunov function V is in place, stability of the system
follows from Theorem 5.1.

By comparing the general system of Eq. 5.24 with the system of Eq. 5.11 for a
continuous Hopfield model, we may make the correspondences between the Hopfield
model and the Cohen—Grossberg theorem that are summarized in Table 5.1. Applying
the correspondences in Table 5.1 to Eq. 5.57, we can obtain a Lyapunov function
for the continuous Hopfield model expressed as

l\Jl'—‘

N N N /vy,
Z Z wiid; (Vi) (v;) + Z L (1% - Ij) $i(v)dv (5.62)
j=1

i=l j=1

TABLE 5.1 Correspondences between the Cohen—
Grossberg Theorem and the Continuous Hopfield Model

Cohen—Grossberg Theorem Hopfield Model
uj Gi(v))
aj (Uj) 1
bj (Uj) - ﬁ +L
R,
Cii —Wii

&) Bi(vi)




Note that the following equations hold:

1. q)i(vi) = Xj.
2. [y di(v)dv = [Ydx = x;.
3.0 vi(v)dv = Jvdx = 3’(])]_ '(x)dx.

By applying them to Eq. 5.62, we can further obtain a Lyapunov function that is
identical with Eq. 5.47. This demonstrates that the Hopfield model can be seen as a
special case of the Cohen—Grossberg theorem [Haykin, 2009].

The Cohen—Grossberg theorem is a general principle of neurodynamics with a wide
range of applications.

EXERCISES
5.1. The Lyapunov function of a Hopfield network is written as
V= —% (7x% + 12x1x, — ZX%)
Point out the matrix of synaptic weight of the network.

5.2. Compute the equilibrium state of the following dynamic system:

dx —X1 +X%
a =

—xo(x; + 1)

Then, confirm the stability of the equilibrium state by choosing the Lyapunov
function as

V(x) = x"x

5.3. Given a nonlinear dynamic system as

dx l xz—2x1(x%+x§) 1

de —X1 — 2%, (x% + x%)

study the stability of the origin, by making use of the following Lyapunov
function:

V(x) = ax] + px3



5.4. The discrete (time) gamma model of a neurodynamical system is described by the

5.5.

5.6.

following pair of equations:

xj(k) = (Z > wix “‘“(k))

i<j m
and
xjfm)(k) = (1 - pj)x}m)(k -+ pjxj(m_l)(k -1)
where k denotes discrete time, j=1,2,...,N,and m=1,2,...,M

1. Compare the discrete gamma model with the model described in (5.6).
2. Construct a signal flow graph for the recursive part of the gamma model.

3. Find the value of the control parameter y; for which the discrete gamma model
is stable.

Consider a Hopfield network made up two neurons. The synaptic weight matrix of
the network is
0 -1
W=
-1 0

The bias applied to each neuron is zero. The following are the four possible states
of the network:

xb=[+1,+1]"
x2=[-1,+1]"
x> =[-1,-1]"
x*=[+1,-1]"

1. Demonstrate that states x2 and x* are stable, whereas states x' and x> exhibit a
limit cycle. Do this demonstration by using the stability condition and energy
function, respectively.

2. Confirm the length of the limit cycle characterizing the states x! and x>.

Define the Lyapunov function related to the cellular neural network described in
Section 5.3 as

V=-3 Z D " AG, ik, DV (vt + 5— = Z vZi(t)

@ D ")
=260 2oy B I K Dvyig(Ovak = 2 5 Tvyig(6)

Try to perform the stability analysis of the network.



CHAPTER 6

Basic Fuzzy Set Theory

6.1 INTRODUCTION'

Uncertainty2 is universal! Take, for example, a computer system whose task is to
recognize trees in a visual image. Sources of uncertainty in this task include (but are
not limited to) noise in the sensed imagery,’ distortion due to pose and lens
conditions, variability of the class of interest (what is a “tree”?), faithfulness of
the features used to described a tree, missing features, spatial context (a tree in a forest
versus a tree in New York City), temporal context (a tree in summer versus a tree in
winter), the choice of recognition algorithm, and so on. If multispectral (or hyper-
spectral) imagery is available or multiple algorithms are applied to the decision-
making aspect, then the problems of how to fuse compensatory or even conflicting
information becomes important.

The historical framework for dealing with uncertainty has been probability theory.
This is a powerful tool that has served science well in modeling situations where the
primary source of uncertainty is randomness. In some instances, we argue that
uncertainty takes other forms. Many times, instead of asking whether something is
true, we ask how much it is true, that is, how much is a certain property exhibited in a
particular instance. For example, we may want to know how much a particular object
matches an ideal prototype.

Jim Bezdek [1993] in the inaugural editorial of the IEEE Transactions on Fuzzy
Systems gave the following example: You are dying of thirst in a desert when you
come across two bottles. One has a label that says “probability of being potable is

! Chapters 6-9 follow the pattern in a short introductory chapter in Xu ez al. [2008] with permission from
World Scientific Publishing & Imperial College Press. Several good applications of fuzzy set theory to
bioinformatics can be found in that source.

2 We use the term “uncertainty” in a very general sense. For the most part, we concentrate on the notions of
vagueness, similarity, or preference as opposed to ambiguity.

3 Noise can be thought of as a source of ambiguity: There is a true value but it is hard to distinguish which
one is the correct value from a set of possible answers. Fuzzy measures in Chapter 9 also provide a
characterization of ambiguity.



0.91,” while the other reads “membership in the class of potable liquids is 0.91.”
Jim asks the question “which one would you drink?” The probability bottle may
contain something really tasty or it may contain acid. The fuzzy bottle, assuming a
reasonable definition of membership, will probably not have the tastiest liquid, but
shouldn’t hurt you. Is one model of uncertainty better than the other? No! They
measure different aspects of uncertainty and should be used as is appropriate to a
particular problem.

In many cases, there is a lack of clear boundaries between classes of objects: When
does an image object stop being a tree and become, say, a bush? In doing some
landscaping, we planted a Crepe Myrtle, which turns out to be both a bush and a tree
early in its life, that is, there are objects that “completely” belong to multiple
classes. In these situations, alternative methodologies should be utilized to aid us in
making automated evaluations. Fuzzy set theory and fuzzy logic provide a different
way to view the problem of modeling uncertainty and offer a wide range of
computational tools to aid decision making. Clearly, it is not our intention to
diminish the vital role of probabilistic models in science and engineering. Fuzzy set
theory and fuzzy logic provide complementary information to that which comes
from a probabilistic view.

Many science and engineering problems are formulated in a deterministic manner.
Most of these problems are defined by fixed objective functions and solved through
optimization. Many dynamic processes are modeled using differential equations with
deterministic behavior. However, there are at least three situations in which fuzziness
should be considered: intrinsic fuzziness in real-life systems (e.g., biology), multiple
states or roles of a real object (organisms that can be male or female as environmental
conditions dictate), and fuzzy descriptions of phenomena, that is, when our knowl-
edge is incomplete and/or vague. For example, our descriptions of many biological
concepts often have difficulty fitting into a deterministic (crisp) explanation. As a
result, our knowledge, concepts, and representations of biological and other domain
terms may also be fuzzy. Hybrids of flowers or hybrids of types of engines in an
automobile make crisp classification of species or vehicle type problematic. The auto
industry just created a new class called Hybrid to solve the marketing issues.

Descriptions for similarity and typicality can be fuzzy. Consider defining a chair.
How much does a king’s throne resemble a three-legged stool? What properties do
they (partially) share? How close is a given example to the prototypical chair? Such
fuzziness could result from the limitations of classifications, natural language, or poor
understanding of the underlying mechanism. Tolerance of fuzziness allows us to
explore complex concepts effectively.

But we still ask the question: do we really need fuzziness? If the world were
deterministic, the answer would be no. Boolean logic and probability theory would
clearly suffice. This is the “balls in the urn” world; you know that when you put 12 red
balls and 7 green balls into an urn and ask questions like “If you pick out 5 balls,
what’s the probability that they are all red?”” If however, you put balls of varying radii
into the urn and picked out five, what’s the probability that they are all SMALL? Here
the event, SMALL balls, is ambiguous. You can convert this into the former case if
you set a threshold radius below which a ball is considered SMALL, but then two



balls just on each side of the threshold will feel the same, but one will be SMALL and
the other Not SMALL. So, establishing such a threshold doesn’t match well with
human intuition in ambiguous cases. It would be nice to have models and calculi that
handle these situations.

Fuzzy set theory in general and fuzzy logic specifically are natural ways to model
ambiguous events that occur in human-like reasoning. People have no trouble
operating with phrases such as “large risk factor,” “somewhat likely to be involved
in cancer,” “accelerate rapidly,” and so on. As will be seen, rules containing such
ambiguous clauses can be successfully handled in a fuzzy logic system.

The beauty (and also a danger, if we are not careful) of fuzzy set theory is that it
offers a multitude of calculi for the fusion of partial support for a hypothesis under
investigation, that is, flexible mechanisms to increase or decrease confidence in a
decision as evidence unfolds. In his seminal text on computer vision, David Marr
[1982] stated two principles to be followed in the design of intelligent (vision)
algorithms. The first is called the principle of least commitment (PLC). He states it
simply as “Don’t do something that later must be undone.” Hence, in a complex
computing scenario, one where there are many decision-making steps, avoid
making deterministic decisions for as long as is possible. It is very difficult,
perhaps impossible, to recover from a wrong crisp decision early on. Keep your
options open until the situation demands a final answer. While Marr was interested
in computer vision, the PLC certainly applies to all complex automated decision-
making problems. Clearly, the concept of assigning and maintaining degrees of
membership (perhaps confidence in competing hypotheses) or more general
linguistic labels in fuzzy set theory supports the PLC for complex decision-making
applications such as bioinformatics, eldercare, landmine detection, and human
activity recognition.

The second principle of Marr is called the principle of graceful degradation (PGD).
By this he meant that algorithms should deliver a partial (reasonable) answer as input
degrades. In other words, intelligent algorithms should encompass a degree of
robustness and continuity. Here also, techniques that utilize membership degrees
or other fuzzy constructs in the calculation of their response to input conditions
have the potential to degrade much more gracefully than their crisp counterparts.
Consider, for example, a simple stability assessment for an elder that relies on a
single test value, say the amount of time it takes the elder to get up from a chair and
walk 10 m, turn around, walk back, and sit down (similar to an actual test and good
for illustrative purposes). The standard outcome is categorical (one of four discrete
states) and the algorithm is crisp, based on time threshold. A slight difference in
how the stopwatch was pressed can (and does) actually flip the screening result
from a high-risk- to medium-risk category. If however, the output is a set of
memberships in the various categories generated by putting trapezoidal functions
around the thresholds [Klir and Yuan, 1995], such small perturbations can be
ameliorated and a more realistic assessment of stability generated. Figure 6.1 shows
a typical trapezoidal curve, along with other standard fuzzy membership functions.
This simple example illustrates the point that fuzzy models embrace the concept
of the PGD.
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FIGURE 6.1 Examples of common fuzzy membership functions where X =[0,1]. (a)

triangular, (b) trapezoidal, and (c) smooth quadratic functions. See Example 6.1 and Problems
6.1 and 6.2.



6.2 A BRIEF HISTORY

Concepts of vagueness and fuzziness have been contemplated in mathematics and
science for quite a while. For example, in 1923 Bertrand Russell [1923] stated that
“All traditional logic habitually assumes that precise symbols are being employed. It
is therefore not applicable to this terrestrial life, but only to an imagined celestial
existence.” Like Russell, the philosopher Max Black [1937] was concerned with
vagueness and imprecision in language, and the effect of these concepts on logic. In
fact, he believed that all terms whose application involves using our senses are vague.
Black, in 1937, actually came up with the concept that we now associate with
membership functions. He even conducted a cognitive psychological experiment with
a group of people that effectively constructed membership functions exemplifying
vagueness of certain words. However, most people attribute the beginning of fuzzy set
theory to Lotfi A. Zadeh’s 1965 paper [Zadeh, 1965] that developed this topic in its
current form. An excellent treatment of the history of fuzzy sets and fuzzy logic can be
found in Seising [2005]. The journal Fuzzy Sets and Systems published a “40th
Anniversary of Fuzzy Sets” in December 2005 that contains 14 position papers
covering various aspects of the role and future prospects of fuzzy sets [Dubois, 2005].

The mathematical basis for formal fuzzy logic can be found in infinite-valued
logics, first studied by the Polish logician Jan Lukasiewicz in the 1920s (see Borkowski
[1970]). Lukasiewicz constructed a series of multivalued logical systems, generalizing
from small finite numbers of truth values to those containing infinite sets of truth
values. His work and calculation formulas are ingrained in modern fuzzy set theory and
fuzzy logic, the genesis of which is credited to Zadeh in his seminal three-part treatise
on the theory and applications of linguistic variables [Zadeh, 1975a, 1975b, 1976].

Perhaps the biggest boost to the visibility and perceived utility of fuzzy set theory
came from the application of rule-based fuzzy systems to problems in control [Mamdani
and Assilian, 1975; Mamdani, 1977; Sugeno, 1985; Takagi and Sugeno, 1985;
Verbruggen and Babuska, 1999, Yurkovich and Passino, 1999]. In what has become
commonplace now, sets of linguistically described rules were created and inserted into
a variety of nonlinear control systems. The ease of design and the smoothness of the
control surface from only a handful of rules made fuzzy controllers very popular in a
variety of products from the automotive industry, consumer electronics markets, and
so on. Fuzzy controllers are well suited for low-cost embedded systems.

While the big economic impact of fuzzy set theory and fuzzy logic centers on
control, particularly in consumer electronics, there has been, and continues to be,
much research and application of these technologies in pattern recognition, informa-
tion fusion, data mining, and automated decision making [Keller et al., 1996; Bezdek
et al., 1999]. There are national, multinational, and international fuzzy systems
professional societies around the globe whose purposes are to foster research,
development, and application of fuzzy set theory and fuzzy logic. Fuzzy systems
comprise one of the core pillars of the IEEE Computational Intelligence Society.

The “fuzzy” chapters of this book cover the basics of fuzzy set theory and fuzzy
logic along with a few more advanced topics, but there is a wealth of literature to
explore. For example, the reader is referred to Klir and Yuan [1995] and Bezdek et al.



[1999] for more extensive development of the theory and selected applications. In
Xu et al. [2008], fuzzy set theory and fuzzy logic are examined in several applications
to bioinformatics.

6.3 FUZZY MEMBERSHIP FUNCTIONS AND OPERATORS

6.3.1 Membership Functions

Traditional set theory is based on binary, or two-valued, logic. Given a “universe” set
X, asubset A of X can be defined in several ways. Suppose that X is the set of integers.
The subset of prime numbers less than 10 can be specified by listing its members:

A=1{2,3,57} 6.1)
or by providing defining properties:

A = {x € X|xisapositiveintegerless than 10 and x has only two distinctdivisors: 1 and x }
6.2)

Alternatively, we define a subset A by its characteristic function, which is also
denoted by the set name, A: X — {0, 1} from X into the binary set {0,1} given by

1, ifx€eA

Ak) = {0, ifx & A 6.3)

Zadeh [1965] simply defined a fuzzy subset of X as a function A: X — [0, 1], that is,
a characteristic function from X into the interval [0,1]. The value A(x) is called the
membership of the point x in the fuzzy set A or the degree to which the point x
belongs to the set A. For example, the fuzzy subset of “big positive integers” could
be defined by

I——, ifx>0
AX) = o (6.4)

0, else

All fuzzy set theory is based on the concept of a membership function. Where do
these membership functions come from? In many cases, they are defined as in the two
examples above: Common sense definitions that convey some linguistic expression.
More generally, they come from expert knowledge directly or they can be derived
from questionnaires, heuristics, and so on. This is a human-centric view and is
certainly open to debate. In many cases, the membership functions take on specific
functional forms such as triangular, trapezoidal, S-functions, pi-functions, sigmoids,
and even Gaussians for convenience in representation and computation. Pi-functions
and S-functions are constructed from quadratic functions “pieced together” to make



smooth curves. Figure 6.1 displays several common fuzzy membership functions,
with definitions in Example 6.1. Alternatively, membership functions (or the
parameters of the specific equation forms) can be learned from training data, much
as probability density functions are learned. Some fuzzy clustering algorithms
naturally produce membership functions as their output. A neural network, given
the proper input/output training data, also acts as a membership function for new
input.

One of our favorite practical membership functions comes from the field of pain
assessment. Figure 6.2a is a rendition of an analog version of a pain scale, in the
spirit of McGrath et al. [1996] and Marquie et al. [2007]. A patient is asked to slide
the bar to a position indicative of his or her level of pain. The color and width
provide a guide. The corresponding scale on the right is effectively a membership in
the fuzzy set “pain,” and can be used as a guide to pain remediation treatment. The
goal is to provide sufficient pain medication without overdosing. This is a
continuous membership function. For young children, and in fact for many people,
a discrete pain scale is preferred. You can find these in doctors’ offices and clinics, and
are usually made from a set of graphic “faces” going from happy (no pain) to crying
(most pain) [Hicks et al., 2001; Wong et al., 2001]. A discrete membership array
accompanies the set of figures. Figure 6.2b contains our “pirate pain scale” as an
example.

(a) Most pain
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FIGURE 6.2 (Continued)
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FIGURE 6.2 Practical membership function generators from a pain assessment instrument
for medication dosage. In (a), the patient slides a marker to the place on the visual scale that best
represents his or her level of pain. The nurse can read off the analog “pain membership” value
from the corresponding scale. Part (b) is discrete version for younger children or others to pick a
face to estimate a similar, although quantized, version of pain membership.

EXAMPLE 6.1 DEFINITIONS OF MEMBERSHIP FUNCTIONS

It is pretty obvious how to define triangular and trapezoidal fuzzy membership
functions over a real-valued domain, that is, an interval subset of R (piecewise
linear functions—right?) (see Problem 6.1). S-functions are defined by three
parameters (a,b,c) where a < b < c. The function S(x; a,b,c) is required to be 0 up to
a; a parabola that opens up from a to b with S(b; a,b,c) =1/2; a parabola that
“matches up” and opens downward from b to ¢ with S(c; a,b,c) = 1. The equation
for such an S-function is

0, x<a
(x —a)’
W, a<x<b
S(x;a,b,c) = ) (6.5)
;((}))(—(:))2_'_17 b<x<c
—C
1, X>c

How do we get that equation? Do Problem 6.3. A Z-function is just the “flip” of
the S-function, that is, Z(x;a,b,c) =1 — S(x;a,b,c). A pi-function just pieces an
S-function with a Z-function to look something like a Gaussian, although it
actually reaches 0 and is made from parabolic sections. It has six parameters
a<b<c<d<e<f and is defined by




S(x;a,b,c), x<c
Pi(x;a,b,c,d,e, f) = 1, c<x<d (6.6)
Z(x;d, e, f), x>d

Note that if ¢ <d, a pi-function resembles a “soft” trapezoid. Of course, we can
(and do) use properly scaled Gaussian functions as membership functions in many
applications. They have the advantage of having derivatives of all orders, but they
never actually reach 0.

Notice that all of these membership functions have at least one value where the
function value is 1. A fuzzy set A whose membership function A(x) “reaches” 1 is
called normal. To be precise, define the height of A by ht(A) = sup, < x{A(x)}. We
use supremum (sup) instead of maximum to handle certain infinite domain cases,
like the logistic membership function A(x) = 1/(1 + e™), where the domain X is the
set of all real numbers R. A(x) never actually reaches 1 but is asymptotic to 1. Its
height is 1. If Ht(A) <1, we say A is subnormal.

6.3.2 Basic Fuzzy Set Operators

Once fuzzy subsets of a universal set X are defined, definitions for the complement
of a set, the union of two sets, and the intersection of two sets are required to
actually generate a “set theory.” In 1965, Zadeh proposed the following.
Suppose A: X — [0, 1] is a fuzzy subset of X. The complement A° of A is defined
by

A'(x) =1-A®x) (6.7)
Additionally, if B: X — [0, 1] is another fuzzy subset of X, Zadeh defined
(AUB)(x) = max{A(x), B(x)} = A(x) v B(x) (6.8)
and
(ANB)(x) = min{ A(x), B(x)} = A(x) A B(x) (6.9)
Why did Zadeh define the operators in this manner? Quite obvious, it was because
these definitions revert back to the standard crisp definitions if the subsets are crisp.
Hence, this forms a true extension of normal set theory. As can be found in the
many textbooks on fuzzy set theory (see, for example, Klir and Yuan [1995] and
Pedrycz and Gomide [1998]), all of the theorems of crisp set theory hold for this

fuzzy set theory except two: the law of contradiction (LOC) and the law of excluded
middle (LEM).



The LOC states that the intersection of a set and its complement must be empty
(ANAC = ¢), while the LEM requires that the union of a set and its complement must
be the whole universe set (AUA® = X). Since crisp set theory is formally equivalent to
the first-order predicate logic, these two laws state that a proposition cannot be both true
and not true simultaneously, and that either a proposition or its negation (complement)
must be true. While these statements seem reasonable, they give rise to a paradox within
classical logic, commonly called Russell’s paradox. A simple version goes something
like this: Russell’s barber has a sign that states “I shave everyone, and only those, who do
not shave themselves.” Then who shaves the barber? If he shaves himself, then he
cannot (he shaves only those who do not shave themselves); but if he does not shave
himself, then he must (since he shaves everyone who don’t shave themselves). Such a
dilemma! As mentioned earlier, the Crepe Myrtle is both a tree and a nontree (it is also a
bush). Hence, it is impossible to put it only into one set; it also naturally fits into the
complement set. So, perhaps itis not that unreasonable to disobey the LOC and the LEM
(Can you demonstrate this? See Problem 6.7).

EXAMPLE 6.2 FUZZY SET PROPERTIES

A Simple law: Show that standard fuzzy set theory satisfies the commutative law
for union, that is, (AUB) = (BUA). This will follow from what we know about
real numbers. We have to show that for each x € X, (AUB)(x) = (BUA)(x). Just
“follow your nose”: (AUB)(x) = A(x) V B(x) = B(x) v A(x) = (BUA)(x). The
commutative law for union is a result of the fact that the maximum of two real
numbers is commutative.

A little more complicated law: Show that standard fuzzy set theory satisfies the
distributive law: (AU(BNC) = (AUB)N(AUC).

To verify this property, we have to show that for each x € X, (AUBNC)(x) =
((AUB)N(AUC))(x).

First consider the left-hand side (LHS) of the conjectured equality.

Now, (AUBNC)(x) = A(x) v (BNCO)(x) = A(x) V (B(x) A C(x)). Similarly,
the right-hand side (RHS) becomes ((AUB)N(AUC))(x)= (AUB)(x)A
(AUC)(x) = (A(x) V B(x)) A (A(x) vV C(x)). The proof is established by looking
at all the possible configurations for the three values A(x), B(x), and C(x):

Case 1. A(x) < B(x) < C(x). Here, the LHS becomes A(x) Vv B(x) = B(x) and
similarly the RHS becomes (A(x)V B(x)) A (A(x) vV C(x)) = B(x) A C(x) =
B(x), that is, for case 1, LHS =RHS. 4/

Case 2. A(x) < C(x) < B(x). You get the idea, right?

For all configurations, you verify that the operations on the LHS and RHS give the
same result. How many configurations are there for three real numbers? (see Exercise
6.5). It’s tedious but straightforward to verify this law for fuzzy set theory. The proof
is like the truth table proof done for the crisp version of the law in a digital logic class
(except that there the three variables can only take on values of 0 and 1).




Suppose that the membership function values for a particular element x in X
are interpreted as the confidences that x possesses certain properties, for example,
A(x) is the confidence that an image region x is LONG and B(x) corresponds to
the confidence that x is STRAIGHT. Then the original Zadeh definitions of
complement, union, and intersection produce confidences related to the linguistic
concepts of NOT, OR, and AND: A®(x) is the confidence that x is NOT LONG;
(AUB)(x) gives the degree to which x is either LONG or STRAIGHT (or both);
(ANB)(x) computes the confidence that x is both LONG and STRAIGHT.

The 2012 World Congress on Computational Intelligence was held in Brisbane
Australia. If A is the set of mammals, then the platypus at the Lone Pine Koala Sanctuary
is an example of an object that has nonzero membership in both A and A°. Of course, if B
represents all reptiles, then B(platypus)>0 and BS(platypus) > 0*. So, nonbinary
confidence values for concept membership are a normal occurrence of nature, and
hence, should be considered in our computational models of nature.

The good news and the bad news in fuzzy set theory is that there are infinite
numbers of ways to define complement, union, and intersection [Dubois and Prade,
1985; Klir and Yuan, 1995].5 An alternative fuzzy set theory that is useful for fuzzy
logic inference is generated by the operators,

(AUpB)(x) = 1 A (A(X) + B(x)) (6.10a)
(ANyB)(x) = 0V (1 — (A(X) + B(x))) (6.10b)

called the bounded sum and bounded difference, along with the standard comple-
ment,

A'(x) =1-Ax) (6.10c)

Each such extension of crisp set theory loses either LOC and LEM or two other
properties (idempotency and distributivity) [Klir and Yuan, 1995]. For this choice,
LOC and LEM are satisfied, while idempotency and distributivity are lost. Actually,
there are infinite families of union, intersection, and complement operators that are
extremely useful in multicriteria decision making where partially supported criteria
are to be combined in disjunctive (OR) and/or conjunctive (AND) manners to reach
an overall evaluation of an alternative.

One such infinite family of connectives is due to Yager [1980]. Here, complement,
union, and intersection are given by

Ax) = (1 = AK)™MYY,  w € (0, ) (6.11a)

* Yes, a platypus has membership greater than zero in the set of reptiles. See http://usatoday30.usatoday.
com/tech/science/genetics/2008-05-08-platypus-genetic-map_N.htm.

5 Axioms have been developed for classes of operators that behave like intersections, unions, and
complements (see Klir and Yuan [1995]). The intersections are usually called T-norms and the unions
T-conorms. A rich mathematical diversity evolves from the satisfaction of subsets of these axiom sets.


http://usatoday30.usatoday.com/tech/science/genetics/2008-05-08-platypus-genetic-map_N.htm
http://usatoday30.usatoday.com/tech/science/genetics/2008-05-08-platypus-genetic-map_N.htm

(AU,B)(x) = min{1,(Ax)" + Bx)")""}, w € (0, ), (6.11b)

(ANyB)x) = 1 —min{1, (1 — AX)" + (1 =B/}, wE (0,00) (6.11c)

For all choices of w, the value of the Yager union operator is greater than the standard
union (max), while that for the intersection is less than the standard intersection (min).
In other words, a Yager union operator is more optimistic than the maximum (in
combining confidence), whereas each Yager intersection produces values that are
more pessimistic than the minimum. The parameter w controls the degree of optimism
or pessimism. In fact, the following limits hold:

lim (AU B)(x) = A(X) V B(x) (6.12)

and

Tim (ANLB)(x) = A(x) A B(x) (6.13)

At the other end, that is, the limits as w — 0, generate the drastic union and
intersection, defined by

A(x), ifB(x)=0
(AUgB)(x) =< B(x), ifA(x)=0 (6.14a)
1, else

A(x), ifB(x)=1
(ANgB)(x) = ¢ B(x), ifA®x)=1 (6.14Db)

0, else

Fuzzy operators have been used extensively in multicriteria decision making [Bell-
man and Zadeh, 1970; Yager, 1988, 2004].

EXAMPLE 6.3 FUZZY DECISION TREES

There are many problems where several different criteria influence a final decision.
Sometimes the criteria need to be conjunctively combined: They all need to be
satisfied for decision confidence to be high. The satisfaction of other criteria may
be disjunctively aggregated: any one of them being high will allow for a confident
output. Some satisfaction values need to be negated to fit into a, say, maximization
scheme. These aggregations of degrees of satisfaction of criteria can be organized
in many different ways to match individual preferences about the interactions of
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FIGURE 6.3 Fuzzy tree structure to demonstrate the utility of fuzzy operators for
hypothetical heart disease risk.

the criteria. Because of the logical nature of fuzzy operators, a convenient model
for analyzing alternatives with respect to a given set of criteria is a fuzzy decision
tree. As a particularly simplistic illustration, consider an algorithm that might be
used to assess the risk of heart disease for a person. Risk of heart disease is a
complicated matter that is influenced by many factors. The simple tree shown in
Figure 6.3 was made up, not to actually solve this problem, but to demonstrate
how fuzzy operators can be connected within a multicriteria decision-making
problem. Making it relate to heart disease is only to grab your attention (it
certainly grabbed mine). In this hypothetical configuration, heart disease risk is
determined to be high if either external factors or health-related risks are high.
This is modeled by a union operator (OR). External factors are defined as the
conjunction (AND) of age risk and family history risk. Why use an AND
operator? While a family history of heart issues presents a risk, combining with
increased age heightens the propensity (age by itself is only an indirect risk
factor). The health-related risks are more obvious, and we list only three: high
blood pressure, high cholesterol, and an unhealthy diet. Any one of these can
trigger high heart disease risk, so they are connected by a disjunction (OR). We
suppose that a “healthy diet index” can be ascertained so that we demonstrate the
negation operator. Clearly, the decision tree shown in Figure 6.3 is only loosely
based on medical science, but the example is meant to demonstrate the utility of
fuzzy operators in multicriteria decision making more than focusing on reality.
If you don’t want to assess risk, think about how you would rate pizza parlors
in your town or pick a new car. In Figure 6.3, we model each of the operators
with the corresponding Yager connective (Eq. 6.11). The parameters for these
four connectives will be labeled w; for the top disjunction, w, for the
conjunction of external factors, ws for the disjunction of health-related factors,
and w, for the complement.




TABLE 6.1 Heart Disease Risk Output for Various Weights for
the Input Values Displayed in the Text

Parameters w1 Wo W3 Wy Risk
1 0.5 0.5 2.0 0.5 0.1
2 1.0 10.0 1.0 0.5 0.3
3 0.5 0.5 1.0 2.0 0.7
4 0.5 0.5 0.5 2.0 1.0

Obviously, there must be membership mappings to create the levels of
satisfaction of the various base criteria in a fuzzy decision tree. Incidentally,
these mappings effectively normalize the original domains for the underlying
variables into the unit interval. Given the tree in Figure 6.3, suppose that we have
determined the following fuzzy membership values for the leaf nodes: age
risk =0.2, family history risk =0.8, high blood pressure risk = 0.0, high choles-
terol risk = 0.1, and healthy diet=0.8. That is, a particular patient is fairly young
but with a family history of heart problems, while being pretty heart healthy. If
the logical operators are the classical Boolean ones, then the risk of cancer would
be zero for this set, assuming that the fuzzy memberships are hardened at a
0.5 threshold. The advantage of fuzzy set theory is that the operators that govern
complement, disjunction, and conjunction can be tailored to reflect different user
dispositions. Table 6.1 displays the heart disease risk output for a few choices
of connection parameters. For example, using the parameters on line 3 of Table 6.1,
we calculate the risk as

Risk = min{1, (1 —min{1, (1 —0.2)*° + (1 — 0.8)*%)?})*?
+ (min{ 1, (min{1,(0" +0.1")" /"' + (1 - 0.8)"%)) /" )**)*} = 0.7

The weights in case 1 of Table 6.1 produce operators that behave like Boolean logic
(yes or no), and hence produce risk near zero. If the patient or doctor is more
aggressive relative to assessing risk, Table 6.1 provides examples that produce
low, moderate, and even complete risk for those same inputs. While we claim that
this flexibility is an advantage of fuzzy set theory, some may argue that it
confuses the situation. The message is that no one should use computational or
logical operations on data without understanding how these operators combine
the data. By studying fuzzy set connectives (as in Klir and Yuan [1995]), different
degrees of aggressiveness can be quantified and produce meaningful trade-offs to
apatient in this case, or for more general multicriteria decision-making processes.
There are even models that allow you to weight each criteria’s satisfaction
differently within the logical operator aggregation. For example, you might want
family history of heart-related problems to be considered much more strongly
than age in the above example.




TABLE 6.2 Risk Output for Various Amounts of High Blood Pressure for
wy = 1.0, w, =10.0, w3 = 1.0, w4 = 0.5, and for the Input Values Stated in
the Text

High blood 00 01 02 03 04 05 06 07 08 09 1.0
pressure risk
Overall heart 03 04 05 06 07 08 09 10 10 1.0 10
disease risk

Additionally, for a given choice of parameters, a “what-if” game can be played.
In the above example, with the parameters as in case 2 of Table 6.1, we can
examine the change in heart disease risk given by changing a patient’s risk
resulting from high blood pressure, as shown in Table 6.2.

6.4 ALPHA-CUTS, THE DECOMPOSITION
THEOREM, AND THE EXTENSION PRINCIPLE

Suppose you want to take the average, or weighted average of a bunch of senor
measurements that are uncertain. We might model the uncertainty by fuzzy numbers,
thatis, by normal, convex fuzzy sets over the real line. You know what normal fuzzy sets
are; intuitively convex fuzzy subsets of the real numbers have membership function that
“go up” for a while and then “go down,” like triangles, trapezoids, pi-functions, and
Gaussians, but nothing bimodal for example. We’ll make this more precise shortly. So,
how do we do arithmetic with fuzzy numbers? The story goes like this.

Let A be a fuzzy subset of X. For each a € (0, 1], define “A = {x € X|A(x) > a}.
The crisp set *A is called the a-cut of A. The set A, that is, the set of x such that
A(x)=1, is called the core of A. Of course, OA is all of X. If we define the strong
a-level set of A by “tA = {x € X|A(x) > a}, then A is the set of all x such that
A(x)> 0, known as the support of A. Now we can formalize in the simple case what
we mean by convex fuzzy subsets of the reals R. They are those fuzzy subsets all
of whose a-cuts are crisp convex subsets of the real numbers (intervals for one
dimension). See Klir and Yuan [1995] for a more general definition of a convex
fuzzy set along with the theorem connecting that definition to a-cuts.

o, X E%A

0, x&°A Note that for all o

Foreach o € (0, 1], define a fuzzy set (,A)(x) = {

except 1, this is a subnormal fuzzy subset.
Why go through all this work? We can decompose a fuzzy set into the “union” of
its a-cuts [Klir and Yuan, 1995].

Decomposition Theorem: Let A be a fuzzy subset of X. Then

A= |J .A, where ( U aA)(x)z sup { A®X)} (6.15)
o € [0,1]

o € [0,1] a € [0,1]



This theorem (actually pretty straightforward to prove) states that if you know the
a-cuts of A, then you know A itself. This is one of the two building blocks to perform
fuzzy math. The other is the extension principle [Zadeh, 1975a, 1975b, 1976]. Simply
put, given a function f: X — Y between two domains, we can “extend” f to be a
function between fuzzy subsets of X and fuzzy subset of Y. Note that you already
know how to extend f to a function on the crisp subsets of X by f(A)=
{y € Y|y = f(x) for some x € A}. The image of a crisp subset A of X is again a
crisp subset f(A) of Y. There might be many values of x that map to a given y (think of
f(x)=x> and y = 1), but all you need for crisp subsets is one such correspondence.
Hence, for crisp subsets,

1, ify=f(x)for somex € A

i ={ g o 616

If A is a fuzzy subset of X, then the extension principle states that for a fuzzy subset A
of X,

f(A)(y) = sup{AR)ly = f(x)} (6.17)

that is, you find the “largest” membership in the set of elements of X that map to y. If
the domain of f has a dimension greater than 1, say f: X; X X, X -+ X X;;, = Y, and
you have fuzzy subsets A, ..., A, in their respective domains, the extended
function becomes

f(A)y) = sup{Ai(x1)) A Aa(x2) A - A An(Xn)ly = (X1, X2, - ++, Xn)}  (6.18)

(we’ll see more of this in Chapter 7).

Now we combine these two ingredients to get fuzzy number math. While the
approach below can extend to many kinds of functions (see the problems at the end of
the chapter), we restrict to those needed in computing the weighted average of fuzzy
numbers where the weights themselves are fuzzy numbers, that is, addition, subtrac-
tion, multiplication, and division. To perform one of these binary operations on a pair
of fuzzy numbers, the function under consideration looks like #: R X R — R, where
#1is one of {+, —, X, /}. Suppose A and B are two fuzzy numbers. By the extension
principle (6.17), we could directly compute (A#B)(y) = sup{A(x;) AB(x2)|y =
X1#x, }. This is tedious at best, and in the continuous case involves solving a non-
linear program for each value of y. However, for fuzzy numbers and the basic
arithmetic operators, we have [Klir and Yuan, 1995]

*(A#B) = (*A)#("B) (6.19)
Since the a-cuts of a fuzzy number are closed intervals, computing the a-cut of

the extended arithmetic operation reduces to interval arithmetic, something that is
easy to do. Then using the decomposition theorem, we finish this off by noting



that

A#B = ( U q(A#B)) (6.20)

aE[0,1]

EXAMPLE 6.4 EXTENSION PRINCIPLE AND a-CUTS

A. Suppose X ={-3,-2,-1,0, 1,2, 3}, thought of as a subset of the integers. Let
fuzzy subsets A and B of X be defined by their membership vectors A = (0.0,
0.3, 0.8, 1.0, 0.8, 0.3, 0.0) and B=(1.0, 0.9, 0.7, 0.5, 0.2, 0.0, 0.0).

According to the extension principle, (A + B)(0) = sup,_(A(x) A B(y)).
Since X is a finite set, the “sup” is just the maximum value, that is,
(A + B)(0) = Vxqy=0(A(x) A B(y)). Consider the following table of values
with x and y coming from X and x +y=0:

X y A(X) B(y)
1 -1 0.8 0.7
2 -2 0.3 0.9
3 -3 0.0 1.0

-1 1 0.8 0.2

-2 2 0.3 0.0

-3 3 0.0 0.0

Clearly, the max of the mins of the columns 3 and 4 is 0.7 and so, (A +B)
(0)=0.7. Note that (A + B)(0) is NOT A(0) + B(0), since that would result in a
value of 1.5, not a legal option for a fuzzy set. Exercise 6.12 will ask you to
compute all of the values of A + B over all of the integers and not just X itself.

Can we compute other extensions? What about Max(A,B)? Be careful, it’s
not the same as the union of A and B. For example, Max(A,B)(—1) =
SUP(xyy)=—1(A(X) A B(y)). The value of Max(A,B)(~1) is computed to be
0.8 from row 3 of the following table:

X y Ax) B(y)
-1 -1 0.8 0.7
-1 -2 0.8 0.9
-1 -3 0.8 1.0
-2 -1 0.3 0.7
-3 -1 0.0 0.7

B. Using this approach, you can do these tedious calculations on finite sets to get
extensions of many functions, such as A2, exp(A), In(A), and so on.




Thankfully, Egs. 6.19 and 6.20 make it possible to generate approximations to
complex domains, like intervals of the real line.

0, ifx < —4orx >3
Let A(x) = %7 if —4<x<0

XH3 dfo<x<3

0, ifx <—=2o0rx>0

Bx)=¢x+2, if —2<x<-1
—X, if —1<x<0

Both A and B are triangular fuzzy numbers, and hence, their a-cuts are closed
intervals. To invoke the decomposition theorem, we use the fact that *(A + B) =
(*A) + (*B) along with interval arithmetic to compute the right hand side of this
expression. Now, for0 < a < 1, wehave “A = [4a — 4,3 — 3a]and *B =[o —
2, —a] (calculate the intersection of the line y = o with the lines defining A and
B). Hence, (A +B) = (*A) + (“B) = [Sa — 6,3 — 4a]. For a fixed «, say
a=0.5, we have A = [-2,1.5],%°B = [-1.5,-0.5], and thus, “>(A + B) =
(®3A) + (*3B) =[-3.5, 1]. Now, we could have computed (A + B)(1) directly
from the extension principle by analyzing various subintervals between —4 and
3and finding that in the interval [2,3], the “sup of the mins” is equal to 0.5 and is
less than that for all other subintervals (can you do it?). The solution is actually a
constrained optimization problem for every value (ouch) where the constraints
are given by the arithmetic expression linking the domain variables. However,
by computing the a-cut intervals for several values of «, and plugging them into
Egs. 6.19 and 6.20, a good approximation can be gotten to the extended
functional equation. Exercise 6.13 will have you explore this in more detail.

6.5 COMPENSATORY OPERATORS

Of course, the meaningfulness of the results of an analysis as in Example 6.3 depends
on the faithfulness of the model and the accuracy of assessing the input values. This
problem is not specific to fuzzy set theory, but is inherent to all computational
paradigms. The discussion here makes no overt claims to accurately model cancer
risk, but is only used to demonstrate the flexibility of fuzzy connectives in decision
processes.

In Figure 6.3, we might conjecture that the external factors and health-related risks
might better be combined in a compensative manner, that is, more like an average than
a union. Besides modeling negation (NOT), disjunction (OR), and conjunction
(AND), fuzzy set theory admits mechanisms to model compensatory connections,



that is, aggregation operators where a high value in matching one criterion can
compensate to some extent for a low value for another criterion. The simplest of these
is called the generalized mean. If a;, a,, ..., a, are the degrees of satisfaction of n
criteria, the generalized mean is defined as

1
af +ag+ - +a:) a ©621)

ha(alaaZa"'aan)— ( n
where a is a fixed real number. For o =1, this equation implements the arithmetic
average, for a=—1, we have the harmonic average, and for a converging to O,
Eq. 6.21 produces the geometric mean, the nth root of the product of the values. All
instantiations of the generalized means produce values between the minimum and
maximum of the degrees of satisfaction of the individual criteria. Additionally,

lim he(ay,...,a,) = min{a,...,a,} (6.22)
a——0c0
and
lim hy(ay, ...,a,) = max{a,...,a,} (6.23)
o—00

This high degree of coverage makes fuzzy set connectives appealing for multicriteria
decision making.

In Krishnapuram and Lee [1992a, 1992b], Yager unions and intersections, along
with generalized means, were used in hierarchical decision networks, and a gradient
descent-based training algorithm was created to learn the parameters of the con-
nectives in the network from a set of input/output training data. However, there were
fairly cumbersome tests to decide if a node should be a union, intersection, or mean
(and to flip between them). A more general class of connectives, called fuzzy hybrid
operators, combine all three types of linguistic connectives into a single equation.
The typical arithmetic and multiplicative hybrid operators are given by

A®,B = (1-y)(ANB) +y(AUB) (6.24)
A®,B = (ANB)'"- (AUB) (6.25)

where v is between 0 and 1 and controls the amount of “mixing” of the union and
intersection components, that is, if y is close to 0, the hybrids acts like an intersection,
near 1 produces a union-like response, and for y around 0.5, the hybrid takes on the
characteristics of a generalized mean.

Zimmermann and Zysno [1980] proposed a hybrid operator for multicriteria
aggregation that was modeled after the compensatory nature of human aggregation.
This hybrid operator (y model) is an example of Eq. 6.25 and is given by

n 1=y n Y
Y = (H (a1)6‘> (1 -1 - ai)6i> (6.26)
i=1 i=1



Final node

FIGURE 6.4 A fuzzy aggregation network of multiplicative hybrids used in Parekh and
Keller [2007].

where a; €[0,1] are the criteria satisfactions to be aggregated, 0 <y <1 is the mixing
coefficient, and Z?=1 8; = n. Here, d; are weights associated with each criterion a; and
n is the number of criteria being aggregated.

Krishnapuram and Lee [1992a, 1992b] also developed a backpropagation algo-
rithm to learn the parameters of operators of this type in a network-based decision
application. While the algorithm converged, the derivatives were quite messy and as
with all such algorithms, convergence could only be guaranteed to a local minimum of
a least-squares fitness function. Keller ef al. [1994] extended the approach to additive
hybrid networks. In Parekh and Keller [2007], particle swarm optimization [Eberhart
and Kennedy, 1995; Clerc, 2004] was used to train these aggregation networks.
Figure 6.4 displays such a network. The advantage of swarm optimization is that
many potential solutions (here, the list of all node parameters) are randomly generated
and through individual particle memory and communication between particles, large
areas of the optimization search space can be covered while still moving quickly to a
(usually very good) local optimum of the fitness function. Additionally, in this case,
no derivatives were necessary, since each particle contains all the node parameters and
evaluation is performed directly at each time step.

EXAMPLE 6.5 LEARNING FUZZY AGGREGATION NETWORK
PARAMETERS

As an example, synthetic data were used to verify this approach. Parameters for
the multiplicative hybrid operators were randomly generated and assigned to
each node. Then, a table of 1000 input values was randomly generated and
corresponding outputs were calculated from successive applications of Eq. 6.25.
The training data consisted of 800 data points and the test data had 200 data
points. Table 6.3 shows a sample of the training and test data from one




TABLE 6.3 Sample of the 800 Training and 200 Testing Input/Output Data for
Learning the Parameters of the Nodes in the Network of Figure 6.4, Where Each
Node Has Two Inputs

Sample of Training Data

Node 1 Node 2
al a2 al a2 Y Y’ SSE
0.425 0.590 0.655 0.861 0.364 0.363 0.00175
0.768 0.452 0.629 0.668 0.209 0.211
0.532 0.053 0.521 0.548 0.018 0.018
0.235 0.868 0.722 0.892 0.490 0.492
0.673 0.925 0.428 0.829 0.542 0.541

Sample of Test Data

0.467 0.538 0.518 0.990 0.423 0.420 0.00052
0.771 0.678 0.617 0.999 0.621 0.622
0.810 0.344 0.392 0.109 0.005 0.005
0.997 0.644 0.235 0.630 0.242 0.244
0.272 0.032 0.821 0.528 0.009 0.008

TABLE 6.4 Actual and Recovered Parameters Corresponding to Table 6.3

Parameter Actual Recovered
Node 1 5, 0.440 0.446
5, 1.559 1.553
Y 0.255 0.341
Node 2 8, 0.161 0.163
5, 1.838 1.836
Y 0.180 0.198
Final Node 5, 0.786 0.816
5, 1.213 1.183
% 0.0846 0.028

experiment while Table 6.4 shows the original and recovered hybrid parameters.
With an easy and effective training mechanism, such fuzzy aggregation networks
are attractive tools for hierarchical confidence fusion. Besides the ability to
approximate input/output training data, an additional advantage of these net-
works is that after training, each node can be associated with a linguistic
connective (disjunction, conjunction, mean), based on the corresponding value
of v, and the weights give an indication of the importance of the particular criteria
toward the fused result.




6.6 CONCLUSIONS

In this chapter, a small slice of the rich theory and application potential of basic fuzzy
sets as a means to model and manipulate uncertainty was presented. Our hope is that
this quick look will inspire you, the reader, to explore the theory and the numerous
applications to real problem domains with a view to incorporate these principles into
your own research and development endeavors.

EXERCISES

6.1. A trapezoid membership function is defined by four parameters a<b <c<d.
(If b=c, you have a triangular function). Define the equations for trapezoid
and triangular fuzzy sets over a fixed interval of reals [r,s]. Note that these
membership functions do not need to be symmetric about the “center.” What
happens if b <r? What about s <c?

6.2. Let X=[0, 10]. Define and draw the graphs of the Trap(x; 1,2,3,5), Trap(x;
3,5,7,9), Trap(x; 8,9,9,10), Trap(x; —2,—1,3,5), and Trap(x; 8,9,11,12).

6.3. A. Derive the equation for the S-function of Example 6.1. Hint: There are two
parabola pieces and for each piece you know two points, the value of the
function at two of the parameters. But wait you say, a parabola has three
coefficients, so you need at least three equations to find them. Think about
the derivative.

B. Show that a symmetric S-function (where b is the midpoint of a and c) has a
well-defined derivative at all points in its domain (even at the “join”
points).

C. Let X=][0, 10]. Define and graph the functions S(x; 5,7,9), Z(x; 2,3,6),
Pi(x; 1,2,3,3,4,5), and Pi(x; 4,5,6,7,8,10).

6.4. Suppose X={-3, -2, —1, 0, 1, 2, 3}. Let fuzzy subsets A and B of X be
defined by their membership vectors A =(0.0, 0.3, 0.8, 1.0, 0.8, 0.3, 0.0) and
B=(1.0, 0.9, 0.7, 0.5, 0.2, 0.0, 0.0)

A. Using Zadeh’s original definitions, compute
AC
AUB
ANB

B. What is AUB if AUB(x) = 1 A (A(x) + B(x))?
6.5. Finish the proof of the distributive law in Example 6.2.



6.6.

6.7.

6.8.

6.9.

6.10.

6.11.
6.12.

Show that DeMorgan’s laws hold for the standard fuzzy set theory definitions,
that is, that (AUB)° = A°NB® and (ANB)° = A°UB¢.

Show that LEM and LOC do not hold for the standard fuzzy set theory
definitions, that is, show that AUA® = X and ANA® = ¢ are not true in general
for fuzzy set theory. Note that X(x) = 1 and ¢(x) = O forall x € X. Hint: Think
about how you show that a statement is not a theorem.

Consider the operators:

(AUB)(x) = 1 A (A(x) + B(x))
(ANB)(x) =0V (A(X)+B(x)—1)
A(x) =1 - A(x)

A. Show that intersection and complement satisfy the law of contradiction.
B. Is it true that intersection is idempotent: ANA = A? (prove or give a

counterexample)
0, ifx<-3 or x>-1
Let Ax)=4¢ x+3, if -3<x<-2
—x—-1, if —2<x<-1

0, ifx<1l or x>3
Bx)=<¢x—-1, ifl<x<2
—x+3, if2<x<3

A. Compute *7A.
B. Using the standard definitions, sketch a picture of B°.

0, ifx<2 or x>4
C. Now, let C(x) =< x—2, if2<x<3 Compute BNC
—x+4, if3<x<4

Suppose X ={a, b, c, d, e}. Let A be the fuzzy set with memberships (0.5, 0.4,
0.7,0.8, 1) for a, b, c, d, and e, respectively. (A common way you might see in
the literature to write this is A=0.5/a+0.4/b+0.7/c+0.8/d + 1/e). List all
nonempty a-cuts of A.

Let A be any fuzzy subset of X. Show that *A CPA if <«

For the fuzzy sets defined in Example 6.4 (A), generate all of the nonzero values
of (A 4+ B) and Max(A,B).



6.13. For the fuzzy sets defined in Example 6.4(B), compute the a-cuts, “"(A + B),
for several values of 0 < a <1 and sketch the graphs of A, B, and (A + B).
Does this match your intuition? Why or why not?

(Hint:To get a nice graph, you can use the strong a-cut **(A + B) for a =0, to
define the support of the extension; then connect the endpoints.) Is (A +B) a
triangular fuzzy number?

6.14. Repeat Exercise 6.13 for (A — B) and (A X B).



CHAPTER 7

Fuzzy Relations and Fuzzy
Logic Inference

7.1 INTRODUCTION

There are times when domain knowledge, and hence, the decision functions, about a
particular problem can best be described in terms of linguistic rules. For example, in
the heart disease risk example, we might have rules like

IF The External Factor Risk is SOMEWHAT LOW and
The Health Related Risk is LOW

THEN
The Overall Heart Disease Risk is LOW.

Traditional crisp expert systems including those that manipulate numeric
confidences or probabilities have been around for many years [Ignizio, 1991;
Giarratano and Riley, 2004]. Fuzzy logic extends this approach by modeling
linguistic propositions, rules, and the inference procedure directly with fuzzy sets.
In this chapter, we describe the background necessary to understand and construct
fuzzy logic inference systems for decision-making problems and control
applications.

Fuzzy logic begins with the concept of a linguistic variable [Zadeh, 1975a,
1975b; Zadeh, 1976]. A linguistic variable is, as its name suggests, a variable
whose values are words. For example, the linguistic variable “Age” might take as
values “infant,” “young,” “adult,” “middle,” “senior,” and “very old.” With any
linguistic variable, there is an underlying domain, X that will be used to create the
meanings for the linguistic values. In our simple example above, the underlying
domain is the real numbers between 0 and 1 since risk factors are normalized to
that range. Each linguistic value has a fuzzy subset of X that serves as its
definition. An example will be given at the end of this chapter.



7.2 FUZZY RELATIONS AND PROPOSITIONS

Once we have this fundamental concept of a linguistic variable, we can build the
machinery necessary for fuzzy logic inference. We will provide mechanisms for making
deductions that are all based on the concept of fuzzy relations. A crisp relation is simply
a mapping between two domains, X and Y, for example, R : X — Y. Actually, R may
be restricted to a subset of X. Alternatively, we can write R as a crisp subset of the cross-
product domain R : X X Y — {0, 1}, where R(x,y) = 1 if, and only if R(x) =y, that
is, if x is “related” to y by R. For example, suppose X is the set of cities in the United
States and Y is the set of airports. Then R may be the mapping that relates cities to
airports when the airport is within 25 miles of the city center. So, the pair (New York,
LaGuardia)is in R, but so is the pair (New York, JFK). Hence, relations don’t need to be
functions. Certainly, there are cities in the United States that are related to no airports
with respect to this definition. Now, just as we extended crisp sets to fuzzy sets by
introducing continuous memberships, we do the same for relations, since they are also
sets. That is, a fuzzy relation is simply a fuzzy subset of the cross-product domain
R:X XY — [0, 1], where now we interpret R(x,y) as the strength of the relation
between x and y. We could convert the above example into a fuzzy relation by creating
the relation strength between a city and an airport with an S function defined over driving
distance from the airport to the city center. Then, R(New York, LaGuardia) and R(New
York, JFK) would have different relational strengths. There are many examples of direct
applications of fuzzy relations, and we will concentrate on the main use, that of
providing an engine for logical inference in a fuzzy rule-based system.

In what follows, let X, Xy, X», ..., X, and Y be domains, U, Uy, Uy, ..., Uy, and
V,Vi,..., Vpn be linguistic variables, and A, Ay,...,A, and B,B;,..., By, be the
fuzzy sets that model linguistic values over respective domains. An atomic proposi-
tion in fuzzy logic is a statement of the form “U is A,” where U is the name of a
linguistic variable and A is the name of a linguistic value, that is, it is the name of a
fuzzy subset of the domain X; think of something like “AGE is Young.”

To make the language richer, atomic propositions can have values that contain
“hedges” like NOT, SOMEWHAT, MORE_OR_LESS, VERY, RATHER, QUITE; the
list can go on and on. Either you can define all such values directly, perhaps a tedious job,
or you can posit that a hedged linguistic value has a fuzzy set that is a hedged function of
the base value. The hedge NOT is the easiest; just use your favorite complement operator
on the original fuzzy set: NOTYoung(x) = Young®(x). Other hedges are defined by
functions that carry the linguistic semantics of the words. For example, VERY Young(x)
might be defined by squaring the values of Young(x) while MORE_OR_LESS Young
uses the square root. Using these functions, it’s easy to see that VERY Young(x) <
Young(x) < MORE_ OR _LESSYoung(x) for all actual ages x. Of course, many other
formulations can be conceived; the important point is to preserve the common semantic
relationships between hedged values.

The conjunctive proposition between two fuzzy sets can be written as follows [Klir
and Yuan 1995]:

U;isA; and Uy is Ay (7.1)



where U; are linguistic variables over domains X; and where A;(x;) are linguistic
values represented by fuzzy sets on those domains. Here, an example is “AGE is
Young and HEALTH is Good.” Note that the challenge is to create the appropriate
domains for the definitions of the linguistic values of a given linguistic variable; AGE
is straightforward, but HEALTH is more problematic. Using such linguistic variables
requires care in the definition of suitable scales to characterize the fuzzy sets that
specify the meanings of linguistic values. Exercise 7.9 explores this issue in more
detail.

The result of this operation is a fuzzy relation of the cross-product domain based on
U; and U,, which is called the cylindrical closure of the fuzzy sets A; and A,. A fuzzy
relation so referenced is just a fuzzy subset of X; X X,. The cylindrical closure can be
viewed as the intersection of the extension of each fuzzy set to the cross-product
domain X; X X, that is, a fuzzy subset, A| X A,, of X; X X, where

Ap X Ax(x1,X2) = Aq(x1) A Ax(x2) (7.2)

Here we use minimum as the intersection operator, but note that any fuzzy intersection
operator could be used.

EXAMPLE 7.1

Suppose X ={1,2,34}, X, ={@#, &}. For Ay =SMALL =1.0/1 +0.8/2+ 0.0/
34+0.0/4 and A, =LARGE=0.0/@ +0.6/# +1.0/&, the meaning of the com-
pound proposition Uj is A; and U, is A; is given by the cylindrical closure of A,
and A; in X; X X;. Since the domains are finite, this fuzzy relation (using the min
operator) is viewed as the 4 X 3 matrix:

0.0 0.6 1.0
AL XA, = 0.0 0.6 0.8
0.0 0.0 0.0
0.0 0.0 0.0

The condition proposition, or fuzzy implication, between two fuzzy propositions is
written as

IFUisATHEN Vis B (7.3)

where U and V are linguistic variables that have elements x € X and y € Y,
respectively, and where A(x) and B(y) are linguistic values represented by fuzzy
sets on those elements. The definition of an implication proposition is a fuzzy relation
R between X and Y, based on U and V, that can take many forms in combining the



input fuzzy sets (see Klir and Yuan [1995] for many possibilities). Three common
definitions used in many fuzzy rule systems are as follows:
The Lukasiewicz implication (Zadeh’s original implication operator):
Rz(x,y) = min(l, 1 — A(x) + B(y)) (7.4)
Correlation min implicationl:
Rem(x,y) = min(A(x), B(y)) (7.5)

Correlation product implication:

Rep(x,y) = A(x)*B(y) (7.6)

EXAMPLE 7.2

Suppose X=1{1,2,3,4}, Y={ab,c,d,e}. For A=SMALL =1.0/1+0.8/2+0.0/
3+40.0/4 and B=MEDIUM =0.0/a +0.5/b+ 1.0/c +0.5/d + 0.0/e, consider the
rule: IF U is SMALL then V is MEDIUM. First note that we can express both
fuzzy sets as “vectors” over their respective domains: A =(1.0, 0.8, 0.0, 0.0) and
B =(0.0, 0.5, 1.0, 0.5, 0.0). For x=2 and y=d, we have

R,(2,d) = min(1, 1 — A(2) + B(d)) = min(1, 1 — 0.8 + 0.5) = 0.7
Rem(2,d) = min(A(2), B(d)) = min(0.8,0.5) = 0.5, and
Rep(2,d) = A2)+B(d) = 0.8+0.5 = 0.40

The full fuzzy relations can be visualized as matrices (of size 4 X 5) generated by
the above equations. They are formally equivalent to “fuzzy outer products”
A" B, where the matrix arithmetic is interpreted to be one of the defining relation
equations. Hence,

1.0 0.0 05 1.0 05 00
0.8 02 07 1.0 07 02
R, = (0.0 05 1.0 05 00)=
0.0 10 1.0 1.0 1.0 1.0

0.0 1.0 1.0 1.0 1.0 1.0

! Note that modeling of logical implication (If A Then B) as Not A OR B creates a fuzzy relation. With
Correlation Min (A AND B), we derive a fuzzy relation, although strictly speaking it is not an implication.
The same is true for correlation product. It establishes a relationship between the antecedent and consequent
that is useful for inference procedures. This is a fundamental difference between traditional logic and fuzzy
logic. X



Note: The details of the calculation of element (2,d) are shown above. Similarly,

1.0 0.0 05 1.0 05 00

0.8 0.0 05 08 05 00
Rep = (0.0 05 1.0 05 0.0)= ,

0.0 0.0 0.0 00 00 00

0.0 0.0 0.0 00 00 00
and

1.0 0.0 05 1.0 05 00

0.8 00 04 08 04 00
Re, = (00 05 1.0 05 00)=

0.0 0.0 0.0 00 00 00

0.0 0.0 00 00 00 00

This is a very simple example and is intended only to demonstrate the hand
calculation of an implication proposition for finite domains. Other than visualiza-
tion, there is no inherent reason why these matrices need to be formed a priori. In
some cases, it is faster to compute the values needed on the fly (as we will see
later). For “fun,” combine this example with Example 7.1 and write out the
implication relations for the proposition: IF U; is SMALL and U, is LARGE
Then V is MEDIUM. Note that the resulting relations will be 4 X 3 X 5 matrices
(see Exercise 7.3).

7.3 FUZZY LOGIC INFERENCE

Note that a fuzzy implication proposition is just a (fuzzy) rule. The compositional rule
of inference or generalized modus ponens can now be described to combine a fuzzy
rule and a linguistic proposition.

The compositional rule of inference is [Zadeh, 1973] as follows:

Rule: If U is A then V is B
Fact: Uis A’
Conclusion: V is B

where the conclusion expression is the composition operation:

B'(y) = A'(x)°R(x,y) (7.7)

Here, R(x,y) is the chosen translation of the fuzzy implication. The composition
operation is defined as

B'(y) = A'(x)°R(x,y) = Sup min{A'(x), R(x,y)} (7.8)



where “sup” is the supremum of the set, that is, the least element that is greater than or
equal to each element in the set. Note that for finite domains X and Y, the
compositional rule of inference looks like matrix multiplication where min replaces
multiplication and sup replaces summation.

EXAMPLE 7.3

Consider the rule from Example 7.2, IF U is SMALL then V is MEDIUM, and
suppose that A" is SMALL. Using the three translations of implication given above
(Egs. 7.4-7.6), the conclusion of the inference is

00 05 1.0 05 00
02 07 10 07 02
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
=(02 07 1.0 07 02)

B,=(1.0 08 0.0 00)°

00 05 1.0 05 00
00 05 08 05 0.0
00 00 00 00 0.0
00 00 00 00 00
=(00 05 1.0 05 00)

B,,=(1.0 08 00 00)°

00 05 10 05 00
0.0 045 08 045 0.0
00 00 00 00 00
00 00 00 00 00
=(00 05 1.0 05 00)

B, =(1.0 08 0.0 0.0)°

Here, all three outputs could be recognized as MEDIUM, although with the
Zadeh translation (Eq. 7.4), B/, is less certain than those for correlation min and
correlation product. Why would anyone want to consider the Zadeh translation if
it doesn’t precisely satisfy crisp modus ponens? Part of the answer is that it uses
the Lukasiewicz multivalued logic implication, and hence is a true translation of
“Not A or B.” Neither correlation min nor correlation product translates the
logical equivalence of implication. Also, in operation, the answer lies in the




following situation. What should happen to the above inference if A’ is NOT
SMALL? Students of symbolic logic know that nothing should be concluded from
(@IF U is A then V is B) and U is NOTA). So, when A" is NOT SMALL, we have
00 05 1.0 05 0.0
02 07 1.0 07 02
B,=(00 02 1.0 1.0)°
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
=(1.0 1.0 1.0 10 1.0)
00 05 1.0 05 0.0
00 05 08 05 0.0
B, = (0.0 02 1.0 1.0)°
00 0.0 0.0 00 0.0
0.0 0.0 0.0 0.0 0.0
=(0.0 02 02 02 00)
00 05 10 05 00
0.0 045 08 045 0.0
B, =(00 02 10 1.0)°
0.0 00 00 0.0 00
00 00 00 00 00
=(00 02 02 02 0.0)
The fuzzy set where all membership values are 1 represents “UNKNOWN,” that is,
all elements of the output domain have maximum possibility of being the “true”
value. Correlation min and product produce output sets with very small member-
ships (in this example), indicating low correlation between antecedent and fact, but
this is not logic!

Rarely will rules only have one antecedent clause. Rules with multiple antecedent
clauses pose no conceptual problem. The compositional rule of inference with
multiple antecedent clauses is the following:

Rule: IF U; is A; and Uy is A, and . . . and U, is A, THEN V is B
Fact: U; is A} and U, is A} and . . . and U, is A}
Conclusion: V is B’

The first step in this case is to find the cylindrical closure, Aj X Ay X -+ X A, of
the n antecedent clauses, that is, the intersection of the extensions of all these fuzzy



sets to the domain X; X X, X --+ X X,. Once computed, the above definition for
implication can be applied to the rule:

IF(Uy, Uy, ..., Uy)is Aj X Ay X -+ X A, Then Vis B (7.9)
This produces a fuzzy relation R between X; X X, X --- X X, and Y, that is, a fuzzy

subset of X} X X, X -++ X X, X Y. Finally, the fuzzy conclusion can be drawn with
the compositional rule of inference as

B(y)=A| X -+ XA (X,...,Xn)°R(X1,...,Xy,y), foreachyinY (7.10)
The compositional rule of inference with several rules takes the following form:

Rule 1: IF Uy is Ay and . . . and U, is A;, THEN V is B,
Rule 2: IF Uy is Ay and . . . and U, is Ay, THEN V is B,

Rule k: IF U; is Ay and . . . and U, is Ay, THEN V is By
Fact: U; is A} and Uy is A} and . . . and U, is A
Conclusion: V is B’

Each rule is translated as above to form Ri(xy, ..., X,, y) and then the compositional
rule of inference is applied to that rule with the fact to obtain

Bi(y) = Aj; X -+ X A (X1,...,Xn)°Ri(X1,...,Xn,y) (7.11)

These partial conclusion expressions are usually aggregated into a single output fuzzy
set by either

k
B(y)=>_Bi(y) (7.12)
i=1
or
B(y) = max {Bi(y)} (7.13)

Note that the first expression may exceed 1 for particular values of y and hence, not
formally be a fuzzy subset of Y. However, it is easy to normalize. In fact, this formula
is popular in those cases like fuzzy control where the output fuzzy set needs to be
converted to a single numeric value. This process is known as defuzzification. The
most common form is centroid defuzzification:

- ZyE vy - B(y)
YT VB )

although many other defuzzification techniques are available (Figure 7.1).

(7.14)
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FIGURE 7.1 Example of using Eq. 7.12 for aggregation and Eq. 7.14 for defuzzification.

7.4 FUZZY LOGIC FOR REAL-VALUED INPUTS

While the above development handles the general case of fuzzy inference, in most
applications of fuzzy rule-based systems, the inputs are not actually fuzzy sets
themselves, but crisp values in their respective domains. For example, in a fuzzy
system to perform classification, the inputs may be values of features extracted from
the objects to be classified. The rules may contain propositions like “Feature 1 is
LOW,” “Class 1 confidence is HIGH,” and so on, indicating the uncertainty in the
decision process. However, in application, given an object to classify, Feature 1 is
normally a real number X;. The standard method to convert it to a fuzzy set for the
inference process is to create a (crisp) set that is 1 for x; and zero everywhere else in
the domain X;. This makes the firing of the rules particularly simple [Klir and Yuan
1995]. To see this, recall that for finite domains, the result of generalized modus
ponens for a single rule is given by

B(y)=A] X -+ XA (X1,...,Xn)°R(X1,...,Xp,y) for each y in Y (7.10). The
cylindrical closure is usually defined by the min operator and so, if correlation min is
also used to encode the rule relation R, we have

B/(y) = A/] Xoeer XA;(Xh s 7XH)3R(X17 s aXmY)
= Max(y, x, [(A](x1) A Ay(x2)A (7.15)
- ANAL (Xn )) A(AL(X) AAIXD)) A oo AA(Xn) A B(y)]

Now, if each input clause is modeled by a singleton fuzzy set, zero membership
everywhere except the numeric input value, this complex looking equation will be
identically zero except for the n-tuple Xi, ..., X, producing the output

B'(y) = (A1(x1) A Aa(X2) A -+ A An(Xa) AB(Y)) (7.16)
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FIGURE 7.2 Graphical illustration of generalized modus ponens firing of rules using
Correlation-Min encoding, followed by aggregation and defuzzification (see text for details).

The interpretation is that you let each input numeric value fire the corresponding
antecedent clause, take the minimum firing strength, and use that minimum to
“chop off” the consequent clause fuzzy set B. Figure 7.2 shows graphically Eq.
7.16 in action with two rules, each having three antecedent clauses. In this case, at
each iteration the input will be a triple of real values (x;, X,, X3). For each rule, the
membership of x; in Antecedent; is computed (the vertical lines). The minimum of
those three values (denoted by the dashed line) is used in the minimum operator
with each value of the rule consequent (thus the comment about “chopping” the
consequent). This very fast operation is done for each rule, the chopped conse-
quents are added and then the centroid is computed (defuzzification). That value can
be used as a crisp classifier confidence or it can be sent to a controller and a new
cycle begins. Sure takes some of the mystery out of fuzzy logic controllers! The
point is that this can be done very fast and there is no need to precompute and store
large multidimensional rule matrices. Most of the early fuzzy logic controllers were
built with this scheme.

Figure 7.3 describes a generic numeric-based fuzzy logic system. If the system is to
be used for classification, then the outputs don’t go back to a “physical plant,” but are
interpreted as confidence in class labels. An example of such a classification system
for landmine detection built on fuzzy rules can be found in Gader et al [2001],
although many other applications of this type exist.

Alternatively, a simple triangular set, a pi-function, or any membership function
can be centered at x; to explicitly model the uncertainty in the feature extraction (see
Figure 6.1). This process of converting measured crisp inputs into fuzzy sets for
inference purposes is known as fuzzification. It may seem artificial at times, but the
rule clauses describe the uncertainty and variability in the problem domain. For more
complex situations, the input values themselves may be fuzzy sets, and hence, the
computational simplification described above cannot be used. However, new methods
to increase processing speed are being developed. For example, Harvey [2008]
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FIGURE 7.3 “Standard” fuzzy logic controller.

describes a fast method to do general modus ponens using a graphics processing
unit (GPU).

The system of inference described above is referred to as a Mamdani—Assilion or
MA fuzzy rule system [Mamdani, 1977]. An alternative formulation, denoted as a
Takagi—Sugeno—Kang (TSK) system [Takagi and Sugeno, 1985; Sugeno and Kang,
1988], only modifies a function described in the consequent clause. It was developed
for control applications where the output of the rule firing should be a function of a set
of crisp input values. Instead of a general fuzzy set B of Y, the output of each rule is a
specific function of the real inputs. The antecedent part of each rule, R;, is matched as
in the MA approach, but the output then becomes

yi = A X o XA Xy, Xn) - fi(Xp, LX) (7.17)

The weighted average of this set of k values is used as the system output.? One of the
main motivations to recast fuzzy inference in this way is that stability theory for fuzzy
controllers could be developed [Passino, 1998; Verbruggen and Babuska, 1999]. Both
methods, as well as other formulations, can be used to produce similar results for
specific application domains. The choice is really in the description of the consequent
clause, as will be demonstrated in the example below.

2 Here also, like with Correlation Min and Correlation Product, the rule in a TSK system is not a direct
translation or generalization of logical implication. Rather the rule describes a relationship between the
fuzzy antecedents and a function describing the desired output.



You might recall Theorem 3.1 from Chapter 3, the universal approximation
theorem for one hidden layer nonlinear perceptrons. It said that given a continuous
function defined on a compact subset D of Euclidean n space, R", mapping into
Euclidean m space, f: D - R™, there exists a one hidden layer perceptron that
uniformly approximates f on D. The same turns out to be true for fuzzy systems.
The earliest mention we can find for such a result is in a 1990 paper presented in the
Proceedings of the North American Fuzzy Information Processing Society meeting
[Cao, 1990].% In 1992, several variations of the universal approximation theorem
started to surface, including Buckley [1992], Wang [1992] and Kosko [1992]. A
nice survey can be found in Kreinovich et al. [1998]. Because of the flexibility of
defining operators and aggregation functions in a fuzzy system, this theorem has
been reproved numerous times for different configurations. The bottom line is that
fuzzy rule-based systems fall into the category of universal approximators for real
(vector)-valued functions just like multilayer perceptrons. You need to be cautious
because just like with perceptrons, proofs don’t tell you how to build the fuzzy
systems, only that one exists for any level of approximation accuracy. A potential
added value over neural networks is that the fuzzy system has the connection to the
semantics of the problem, possibly adding to the understandability of the approxi-
mation process.

7.5 WHERE DO THE RULES COME FROM?

Fuzzy logic systems are quite powerful and have been used in many applications from
nonlinear control to classification. However, a common question is often asked:
Where do the rules come from? Much like our discussion of membership functions,
sometimes the rules come from experts. The person who has controlled a complex
piece of equipment can linguistically describe his or her reactions to a variety of input
conditions. Think about a simple task of balancing a broom in the palm of your hand.
While you may not be able to solve the equations for motion in your head, at any
instant, you can see roughly the angle the broom makes with the desired vertical
orientation, say in terms of words like “big,” “medium,” “small,” and so on, and you
can “feel” the rate at which the broom is moving, either up or down and quantized in a
similar way to the angle. (Note that here we only consider the broom falling away
from us, though both directions should be taken into account.) It wouldn’t take long
for you to come up with rules like “IF the broom’s angle is MEDIUM and the broom is
falling away from me SLOWLY THEN push my hand forward FAIRLY FAST”.
Balancing the “inverted pendulum” on a motorized cart was one of the early
demonstrations of fuzzy logic rule-based control.

In cases where training data are available, fuzzy rules can be learned, many times
through the use of clustering algorithms or other computational intelligence tech-
niques like neural networks, evolutionary computation, swarm intelligence, and so
on. (see, for example, Pedrycz and Gomide [1998], Zurada et al. [1994], and Fogel

9

3 However, the manuscript contained no proofs due page limitations (author comment in the paper).



and Robinson [2003)]. Learning the rules (and their membership functions) is treated
as an optimization problem; the performance of the rule system on the training data is
the function that needs to be maximized. There are many tools available to manually
build or learn fuzzy rule systems. In fact, in the example given below, Matlab contains
a “neuro-fuzzy” implementation of the TSK model (called ANFIS [Math Works,
1995]) that supports learning both the antecedent membership functions and the
consequent function parameters. One important point to remember about fuzzy rule-
based systems versus statistically trained classifiers is that important conditions that
are improbable (i.e., ones that don’t happen frequently enough to be captured in the
training data) can be easily “hand” encoded into rules that will only contribute to
output in those infrequent cases.

Fuzzy rule-based systems clearly generalize standard expert systems. In the
inverted pendulum example, an equivalent crisp rule control system could be
developed by quantizing the angle and the rate of motion into small intervals and
building a rule for all pairs of intervals, the output of each rule being a set velocity
of cart motion. How fine does the quantization need to be? That depends on how
smooth you desire the control. Fuzzy rule systems, by their very construction, are
great interpolators and so few rules are usually needed compared to crisp expert
systems. Should fuzzy rules always be used? If the data are purely symbolic in
nature, then fuzzy logic certainly doesn’t apply. Probabilities can be associated
with crisp rules and uncertainty can be updated along with rule firing. Bayesian
networks, or more generally, belief networks, offer alternative ways to encode and
manage probabilistic uncertainty in hierarchical frameworks. The choice of model
should always be dictated by the form of the problem, the nature of the uncertainty,
the ease of use of the particular formulation, and the meaningfulness of the results.

EXAMPLE 74

We close with a simple example of a fuzzy inference system that comes from Wang
et al. [2006]. It involves softening the output of the short physical performance
battery (SPPB) test, a series of timed physical activities that have been created to
evaluate, discriminate, and predict physical functional performance for both research
and clinical purposes, primarily for physically impaired older adults. The original
scoring system of the SPPB test uses crisp time boundaries to assign the subject to
discrete classes of performance. The crisp (and somewhat arbitrary) nature of the
thresholds can easily produce anomalies. The SPPB test measures balance, gait,
strength, and endurance. Although it is a timed performance test, each subtask score
is an integer value in the range of 0—4. A score of 0 indicates the inability to complete
the task in a nominal time frame, while categories 1-4 are assigned to the
corresponding quartiles of time needed to perform the action.

The original scoring for the SPPB standing test is as given in Table 7.1
[Guralnik et al., 1994]:




TABLE 7.1 Scoring Performance on Tests of Standing Balance

Score Side-by-Side Stand Semi-Tandem Stand Full-Tandem Stand
0 t<10s Not attempted Not attempted

1 t=10s t<10s Not attempted

2 t=10s t=10s t<3s

3 t=10s t=10s 3s<=t<10s

4 t=10s t=10s t=10s

In Wang et al. [2006], rules and the membership functions for the linguistic
values were constructed manually with input from nurses. Here is a simple set of
fuzzy rules for Standing Test Performance:

1. If (Side-by-Side_Stand_Time is SHORT) then (Standing_Test_Performance is
VERY_POOR)

2. If (Side-by-Side_Stand_Time is LONG) and (Semi-Tandem_Stand_Time is
SHORT) then (Standing_Test_Performance is POOR)

3. If (Side-by-Side_Stand_Time is LONG) and (Semi-Tandem_Stand_Time is
LONG) and (Full-Tandem_Stand_Time is ShortSHORT) then (Standing_
Test_Performance is OK)

4. If (Side-by-Side_Stand_Time is LONG) and (Semi-Tandem_Stand_Time is
LONG) and (Full-Tandem_Stand_Time is MEDIUM) then (Standing_Test_
Performance is GOOD)

5. If (Side-by-Side_Stand_Time is LONG) and (Semi-Tandem_Stand_Time
is LONG)and (Full-Tandem_Stand_Time is LONG) then (Standing_Test_
Performance is EXCELLENT)

Membership functions were modeled either by triangles and trapezoids or
smooth curves, in this case, chosen heuristically to reflect common sense. As an
example, the membership functions for short, medium, and long for the linguistic
variable Full-Tandem Stand are shown in Figure 7.4.

The system was implemented in Matlab [Math Works, 1995] using both an
MA fuzzy set output and a functional TSK output format (the output function
for each rule is just the class label value, 0-4). Figure 7.5 displays one
implementation of an MA system response when Side-by-Side Stand is 10s,
Semi-Tandem Stand is 10s, and Full-Tandem Stand is 9s. Here, the defuzzi-
fied output is 3.2, close to the crisp output of 3 in this case. The fuzzy system
provides a smoother transition from one category to the next as the times
change. The goal is to do frequent passive monitoring of elders to detect
gradual changes in their physical performance.

Figure 7.6 shows a similar configuration for a TSK version of the rule base,
with smooth membership functions. Particularly with small rule bases, the
performance is not overly sensitive to the form of the precise definition of the
membership functions.
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FIGURE 7.4 Membership functions for Full-Tandem Stand, used in the fuzzified scoring
rule-based SPPB system.

Finally, Figure 7.7 shows the complete output surfaces obtained by varying two
of the three input values across their entire respective ranges. The figure clearly
shows the smoothness of the output function to small changes.

Side-by-side_Stand = 10 Semi-tandem_Stand = 10 Full-tandem_Stand = 9
| | | Output 1 = 3.2
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FIGURE 7.5 Matlab implementation of simple MA rule system for PSSB scoring. The
antecedents of each of the five rules are activated by a singleton fuzzy set (measured value
represented by the vertical lines). The outputs of each rule, according to Eq. 7.16, is shown
as a darkened area. Note that for these inputs, only rules 4 and 5 produce nonzero output sets.
The bottom of the fourth column shows the aggregation and defuzzification.




Side-by-Side_stand = 10 Semi-tandem_stand = 10 Full-tandem_stand = 7.88
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FIGURE 7.6 Matlab implementation of simple TSK rule system for fuzzy PSSB scoring.
Here, the membership functions for antecedent values are pi-functions, but the interpretation
is the same as in Figure 7.5.
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FIGURE 7.7 Output surface of fuzzy SPPB rules system with respect to Semi-Tandem
Stand time and Side-by-Side Stand time using the TSK system described in the text.

7.6 CHAPTER SUMMARY

Just as fuzzy set theory extends traditional crisp set theory, fuzzy logic represents an
extension of classical logic. Logical propositions are translated into fuzzy relations



where the diversity of underlying fuzzy operators provides many possible interpreta-
tions. IF-THEN rules form the basis of a fuzzy logic inference system. Generalized
modus ponens allow for deductions to be made from propositions that only approxi-
mately match the antecedents of a fuzzy rule. Systems of fuzzy rules can be built or
learned to perform control functions (the original big pay-off), but also to work as a
pattern classifier. These systems in many cases behave like statistical classifiers, but
can also encode human knowledge directly into the structure in a linguistically
pleasing manner.

EXERCISES

7.1.

7.2

7.3.

74.

In a fuzzy logic control application, explain what is meant by the terms
“fuzzification” and “defuzzification.” Why are they necessary?

Let Y={-3, -2, -1, 0, 1, 2, 3}. Suppose that the output of three rules are as
follows:

B, =(0,.1,.6,.6,.6,2,.1)
B, =(0,0,0,.2,.7,.7,.2)
B; =(0,0,0,0,0,1,0)

Compute the crisp output generated by a fuzzy control system, using centroid
defuzzification.

Let X= {1, 2, 3}; Y={a, b}; Z={w, X, y, z}; and

let A=1.0/1404/2+0.1/3
B=0.2/a+0.8/b
C=0.0/w+0.4/x +0.8/y + 1.0/z

Consider the rule: IFUis ATHEN Wis C

A. Translate this rule using Zadeh’s original translation formula (i.e., the
Lukasiewicz implication).
B. Show the result of inference if the input is
i. Uis A;
ii. Uis NOT A;
iii. U is A" where A’'=0.6/1+1.0/2+0.0/3.

C. Translate the following rule using Correlation-Min encoding:
If U; is A and U, is B THEN W is C

If the exact fuzzy antecedent is applied to a fuzzy rule that is translated using
Zadeh’s original formula (i.e., the Lukasiewicz implication), the result is not
exactly the consequent fuzzy set. However, what nice property does this
translation of modus ponens possess? Can you prove it (not just give an
example)?



7.5. Let X;={1, 2, 3}; Xo={w, X, y, z}; Y={a, b}; and

let A;=(0.0, 1.0, 0.6) (fuzzy subset of X;)
A,=(0.0,04,0.38, 1.0 (fuzzy subset of X5)
B=(0.2,0.8) (fuzzy subset of Y)

Consider the rule: IF Vis A THEN W is B

A. Translate this rule using Correlation-Product encoding.

B. Show the result of inference (for the translation in part A) if the input is
i Vis A
ii. Vis NOT A,

7.6. Let X={a, b, c,d, e, f}; Y={1, 2, 3, 4}; Z={s, t}; and

let A=0.0/a+0.0/b+1.0/c+1.0/d +0.0/e + 1.0/f
B=1.0/14+0.7/2+0.2/3+0.0/4
C=.9/5+0.5/t

Consider the rule: IFVis ATHEN Wis B

A. Translate this rule using Zadeh’s original translation formula (i.e., the
Lukasiewicz implication).

B. Show the result of the compositional rule of inference (for the translation in
part A) when the input is “V is A.”

C. Based on the result of part B, state and prove a theorem about the “firing” of
rules that have a crisp antecedent.

7.7} You are to design a Takagi—Sugeno fuzzy rule-based system to perform a 2-input,
1-output control function. Based on a considerable experiment in which a skilled
human controlled the plant, it is decided that the linguistic variable for the first
antecedent should have two linguistic values, while that of the second needed three
values, and with linear functions for the output. While you believe that the
membership functions should be triangular (though not necessarily symmetric),
their actual definitions are uncertain. You decide to adopt an evolutionary
computation approach to optimize the complete rule base. (For simplicity, assume
only two rules in your system.)

A. Sketch a diagram of the input domains for the antecedent linguistic variables
and their corresponding output functions.

B. Define an evolutionary algorithm data structure to optimize the membership
functions and function parameters.

C. Describe a good fitness function, and how it is used to evaluate each
candidate solution.

“ Problems 7.7 and 7.8 ask you think about using evolutionary computation approaches to optimize a fuzzy
rule base. You may need to delay solving these until you study those chapters.



7.8 You are to design a fuzzy rule-based system to balance a broomstick: a 2-input,

7.9.

1-out control function. The inputs are the angle the broom makes with the
vertical axis and the rate of change in that angle between instances. The output is
the force you apply to your hand to bring the broom into balance. (Actually, this
is called the inverted pendulum problem and the output is voltage to a cart
motor.) Based on a considerable data collection experiment in which a skilled
human balanced the broom, it is decided that the linguistic variable for the first
antecedent should have two linguistic values, while that of the second needed
three values, and the output linguistic variable needed four values. While you
believe that the membership functions should be triangular (though not neces-
sarily symmetric), their actual definitions are uncertain. You decide to adopt a
PSO approach to optimize the complete rule base.

A. Sketch a diagram of the input and output domains for the linguistic variables.
B. Define a particle structure to optimize the membership functions.

C. Describe a good fitness function, and how it will be evaluated for each
particle.

Right after Eq. 7.1, we mentioned how it is a challenge to define appropriate
domains to describe the values (create fuzzy sets) for some linguistic variables.
Take the example of HEALTH. How could you define a domain on which you
could define values like good, average, poor, and so on, so that some
(hopefully) measured index could be used to activate a rule with HEALTH
in one of its antecedent clauses? If you don’t like HEALTH, think of a
different variable that doesn’t directly map into an obvious numeric range, like
AGE does. In many applications, standard nominal ranges (0—10, 0-100) are
used and a person is asked to pick a number—Ilike the faces in the membership
function for pain in Chapter 6 (Figure 6.2). A nice extension of this would be
to ask a person to draw a fuzzy set over the nominal range that they feel
represents their HEALTH condition—might be multimodal. Of course, using
this type of fuzzification requires a full generalized modus ponens since the
input is no longer a singleton.

5 This is a “naive physics” version of control of the inverted pendulum problem. Section 12.5.1 provides a
good description of a few variations of this problem along with an experiment using evolutionary
computation to learn a neural network controller. Chapter 12 of Klir and Yuan [1995] contains a nice
description of a fuzzy controller for the simple inverted pendulum. You should solve this problem before
looking there (or the many other references on this problem).



CHAPTER 8

Fuzzy Clustering and Classification

8.1 INTRODUCTION TO FUZZY CLUSTERING

Unsupervised learning is the area of pattern recognition comprising theories and
algorithms that attempt to search for “natural structure” in unlabeled data. The principal
tool in unsupervised learning is clustering where the goal is to group objects that are
similar to each other into one set and have objects that are not similar placed into
different groups. Most clustering techniques work with sets of feature vectors in
Euclidean d-space, in which each vector of measured features represents an object
in some real problem. Approaches that utilize numeric feature vectors are called
object-based methods. This will be the main focus of this chapter, with the fuzzy
C-means (FCM) and the possibilistic C-means (PCM) as the primary examples.
However, any set of objects for which a dissimilarity measure can be developed can
be used for clustering. Such methods are referred to as relational clustering approaches.
For example, in Wilbik and Keller [2012], a distance metric was created to measure
distance between linguistic summaries of human activities. Clustering algorithms have
then been applied to sets of such summaries [Wilbik ez al., 2012]. If you have a set X of
objects, then as long as you have a method to assess the distance or even the dissimilarity
(doesn’t have to be a metric) between pairs of objects, you are in business to do
clustering. There are relational variations of many clustering approaches, including the
FCM and PCM [Bezdek et al., 1999], although we won’t discuss them here.

There are really three distinct problems in clustering. Given a data set, X, the first
question is whether there are any clusters in the data. Many times we forget this step
and dive right into finding them since we have intuition as to what we think might be
present in the data. Intuition is sometimes hard to come by when the problem
dimensionality is large. There are visual methods to create a two-dimensional image
to augment our intuition. The VAT and iVAT families of algorithms, for example,
supply such visualizations [Bezdek and Hathaway, 2002; Havens and Bezdek, 2012].
The second question deals with actually finding the clusters once you believe there are
some, the main topic of this chapter. All clustering algorithms will do their best at
finding clusters. But, are the clusters good? The final problem in clustering addresses



this question. Various cluster validity measures have been proposed to create a
numeric index of goodness. This way, different sets of algorithm parameters or
different algorithms, producing different clusters in the data, can be tried with the
validity measure deciding the optimal choice.

Object-based clustering focuses on vectors of real numbers. We denote the set by
X = {x1,X2,...,X,} where x; € R¢. What constitutes natural structures in X? The
easy answer is that they are the ones we like, but of course, this glib answer is hard to
define when the data are of high dimensionality. Hence, assumptions must be made,
and with each assumption, we place constraints on the groupings allowed by
automated techniques. For example, it is completely reasonable to assert that points
in a real-valued feature space that are “close” to each other end up in the same cluster.
How do we define “close?” Usually, we pick a distance metric in R". Certainly, the
choice of distance measure strongly influences the resultant grouping of data, that is, it
defines the geometry of clusters of feature vectors. The standard Euclidean distance
d*(x,y) = (x —y)'(x — y), the dot product of the difference between the two vectors,
favors groups of vectors that are hyperspherical. Different choices of distance
functions or even dissimilarity measures give rise to alternative definitions of
closeness of objects for clustering approaches.

Clustering is based on the concept of a C-partition of the data set X. A partition of
ndata points into C clusters, Ay, . . . , Ac, is defined by a partition matrix U = {uy},
where 0 < uj < 1 is the degree that data point x belongs to cluster A;, usually
subject to the constraint that the total degree of a data point belonging to all clusters
is 1, that is,

C
> g = 1for all k (8.1)

i=1

For simplicity, we will also call uy, the degree of membership of data point xy in cluster
A;. Note that in the crisp case, each xy will be assigned to one and only one cluster A;,
that is, a crisp partition satisfies the Laws of Contradiction and Excluded Middle. In
other words, foreachk=1, . . . ,n,ux = 1 for some ibetween 1 and C and uj, = 0 for
all other cluster indices j. Fuzzy partitions ease this binary constraint and allow the
degrees of membership to be in the unit interval and spread across the clusters. This
spreading constraint is rooted in Eq. 8.1. We will see later that possibilistic partitions
relax the constraint even further.

In the following sections, we develop some standard clustering algorithms and
display results on three simple data sets." The collections of points are in R so that
we can visualize what should happen, but always think about data in some higher
dimensional space where intuition fails us. Table 8.1 contains a version of the
“famous” butterfly data, created by Jim Bezdek in his classic book [Bezdek, 1981] to
illustrate the advantages of the fuzzy C-means. It is al5 point two-dimensional data
set, shown graphically in Figure 8.1. Visually, you can imagine that there are two
small symmetric triangular looking clusters with a bridge point (#8) between them.

! JK is grateful to his good friend, Professor Mihai Popescu, who graciously provided results of various
algorithms depicted in this chapter.



TABLE 8.1 Fifteen-Point Butterfly Data Set

Point Index X; Yi

1 -3 -2

2 =3 0

3 =3 2

4 -2 -1

5 -2 0

6 -2 1

7 -1 0

8 0 0

9 1 0

10 2 -1

11 2 0

12 2 1

13 3 -2

14 3 0

15 3 2
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FIGURE 8.1 Butterfly data set for clustering.

Figures 8.2 and 8.3 contain other configurations of two-dimensional points, called
Clouds 1 and Clouds 2. They both contain 1200 two-dimensional vectors. How many
clusters do you see?

You probably have no trouble guessing that Clouds 1 contains three clusters. But
what about Clouds 2? Are there still three clusters? It is harder to tell; might there be
only two clusters or possibly four? Of course, we “know” because we made up the
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FIGURE 8.2 Clouds 1 unlabeled data.

data. The quotes in the previous sentence indicate that if we create labeled data, say
from a mixture of probability distributions, there is no guarantee that clustering
algorithms are going to agree with that labeling. If these points are randomly
generated, and we compute all pairwise (Euclidean) distances, we can display the
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FIGURE 8.3 Clouds 2 unlabeled data.
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FIGURE 8.4 Distance matrix shown as an image for Clouds 1.

distance matrices as images. Figures 8.4 and 8.5 show the distance matrices for
Clouds 1 and Clouds 2 (would you be able to do this for 10 million points?).

Big help, right? This might be all you have if, instead of two-dimensional
vectors, the data sets were in dozens, hundreds, thousands, or higher numbers of
dimensions, as is the case in real applications. Can you use these distance matrices
to give you a clue that there might be structure in data sets? One way to get a
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FIGURE 8.5 Distance matrix shown as an image for Clouds 2.
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FIGURE 8.6 The VAT image of the distance matrix for Clouds 1.

glimpse of the geometric structure comes from the VAT/iVAT families of algorithms
[Bezdek and Hathaway, 2002; Havens and Bezdek, 2012]. Essentially, VAT creates
the minimal spanning tree (MST) of the data set and then reorders the points
according to their indices in the MST. Euclidean distance is replaced by a geodesic
distance to help iVAT generate a much cleaner version of the resultant image. Based
on this reordering, dark blocks along the diagonal indicate that many points are close
together in Euclidean space. The contrast between the dark diagonal blocks and the
off-diagonal blocks hint at the separation of the groupings. Figure 8.6 is the VAT
image for Clouds 1, while Figure 8.7 is the iVAT image for Clouds 2.

Does this help? Certainly, Figure 8.6 would lead us to believe that there is strong
evidence that three pretty distinct clusters might exist in the data (look again at
Figure 8.2). For Clouds 2, the situation is far less clear. If you stare at Figure 8.7,
you might guess that there are four clusters (or not), but that they are somewhat
jumbled up. Recall that VAT/iVAT construction is based on Euclidean distance to
form the MST, so they inherently impose a geometry on feature space. Real clusters
may not conform to this constraint, leading to misinformation from the visualiza-
tion. Note also that this visualization technique does not produce clusters, but only
provides evidence for whether there is some structure, along with a guess as to how
many clusters to look for.

Actually, Clouds 1 and Clouds 2 are synthetic data sets generated as Gaussian
mixtures. The generating parameters are given in Tables 8.2 and 8.3 and the “labeled”
data are shown in Figures 8.8 and 8.9.

It is certainly much easier to understand if the data are labeled! Even with the
component labels, Clouds 2 is a much more difficult data set to analyze. That is the
challenge for clustering: start with unlabeled data and produce meaningful labels.
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TABLE 8.2 Parameters for Clouds 1 Data Set
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FIGURE 8.7 The iVAT image of the distance matrix for Clouds 2.
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FIGURE 8.8 Clouds 1 labeled data set.
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In the next two sections, we will explore one of the main approaches to produce
soft clusters of object data, the fuzzy C-means. Results on our three sets of two-
dimensional feature vectors will be used to illustrate the variations of the algorithms,
including the most popular crisp clustering algorithm as a limit case. Following this,
in Section 8.4, the possibilistic C-means algorithm will be introduced and studied.

8.2 FUZZY C-MEANS

As we mentioned above, the first task in unsupervised learning is to decide if there are
any clusters in a given data set X, and if so, how many should we look for. Most
clustering algorithms, including the one in this section, require the number of clusters
as an input. Their job, then, is to search for the “best” partition of X, where the choice
of what is meant by “best” partition varies from approach to approach. The fuzzy
C-means [Bezdek, 1981; Bezdek et al., 1999] is a scheme to partition X into a
predefined number of clusters taking into account the uncertainty of cluster assign-
ment. It produces a fuzzy partition of X that allows sharing of objects between
clusters. In the FCM, each cluster is represented by a cluster center (or exemplar or
prototype). Let v; be the prototype of cluster A; and let V be the set of all C cluster
centers. The objective of the FCM is to minimize the following criterion function:

n C
UV =) (i)™ d (i, vi) (8.2)

k=1 i=1

subject to the constraint that ZIC=1 ujx = 1 for all k. A fuzzy partition that minimizes
J(U,V) is the “best” one for FCM. This is a generalized least-squares criterion
function whose goal is to minimize the weighted sum of squared distances between
the data and the set of cluster centers. The constraint is necessary to guard against
the trivial solution, that is, setting all cluster memberships to zero, an obvious
minimum of Eq. 8.2. Here, the parameter m is called the fuzzifier. This is because
larger values of m favor more “fuzzy” partitions, that is, more similar degrees of
membership of a data point in all clusters. Performing this minimization leads to
two equations, one for memberships and one for cluster centers, expressing
necessary conditions for a minimum.

The theorem [Bezdek, 1981] that gives rise to the FCM algorithm expresses
necessary conditions on the partition membership values and the prototype vectors.
We will state and prove it for distance measures that are based on Euclidean inner
products, that is, where d?(x,y) = (x — y)'A(x — y) for some positive definite d x d
matrix A (like the inverse of a covariance matrix), but there are many extensions to
other distance measures. After the proof, we’ll see that the FCM generalizes a very
basic and popular crisp clustering algorithm, the hard C-means (HCM).?

2 The machine learning community likes to call this algorithm simply the K-means.



Theorem 8.1 Let X = {X1,X2,...,X,}, Wwhere x¢x € R U= {ug},i=1,...,C
andk=1, ...,n,where 0 <uy < 1isafuzzy C partition of X; V = {vy,...,vc} be
a set of prototypes; and m>1 be a fuzzifier. For each k=1, ..., n, define
Iy = {i|1 <i<Cand dizk = dz(xk7 Vi) = 0}. Then the pair (U, V) is a minimum of
J(U,V) only if

(a) Ix = ¢, then

(1/d(x, i)y ™

ik = (8.3a)
> (10, 19) """
j=
(b) Ix # ¢, then vy = Ofor all i & Iy and
C
> =1 (8.3b)

i=1

Additionally, for point prototypes, that is, where each cluster is represented by a single
vector in the feature space, these prototypes must have the form

n
> (i) "x
k=l

=— (8.4)
Z (Uik)m
k=1

Vi

Proof: Assume that Iy = ¢. The objective is to find necessary conditions for a
minimum of J(U,V). First, fix V. Using LaGrange multipliers, write

n C n C
J(U, V) = Z Z uﬁ; dZ(Xk7 Vi) - Z}»k <Z Uik — 1)
i=1 k=1 i=1

k=1

Then

oJ -
Ouys =m U le(X57 Vi) = As

Setting this partial equal to O and solving we get

< A >1/(m—l)
Us = | —FH,——<
m- dz(xS7 Vi)



Put this into the constraint (obtained by differentiating with respect to As) to obtain

C 1/(m=1)
As m
I =1, Ay =
P (m-dz(xs,vi)> . 2 )"
- <Z (1/d(xs,vi)) )

i=

—_

Hence,

C (m-1) m- I (m—=1)
m/( (1/d*(xs,vi)) > |
i=1

e m~d2(x Vi) Iy 1/(m=1)
oV (z (@00, )/ (@30, 1) )

Now, in the event that Iy # ¢ for some xi, we place nonzero memberships in those
clusters where the distance is O (using the constraint Zlczl uj = 1) and zero member-
ships in the clusters where the distance is nonzero, thus providing a minimum value
for the least-squares criteria function. This condition is called a singularity (although
not the singularity event!). In practice, this situation is not common given the finite
representation of real numbers in a computer. However, it can happen and needs to be
addressed in any algorithm that implements the theorem.
To determine the necessary conditions on the prototypes, note that

AU, V) _ I~ 04 (xa, vi)
6vi - kzzl: Yik 8\/1

In the case where d(x,y) = (x — y)'A(x — y), where A is a d x d positive definite

symmetric matrix, we have

AIU, V) & od*(xy, Vi) e O — Vi) A — Vi) ~
T STy T 5 =2 WA

k=1 k=1

Setting this partial equal to the zero vector and knowing that A is invertible, we obtain

o = ket (U)X
O ()"
the desired expression for the prototype update. QED.

Note that Egs. 8.3 and 8.4 are coupled in the way that the partition memberships are
needed to compute the prototypes and the prototypes are required to update the
memberships. The FCM algorithm performs an iterative technique called alternating
optimization (AQO) in which cluster memberships and cluster centers are alternately
updated in each iteration. The algorithm can be summarized as follows:



Let X = {xy,X2,...,Xn}, where xx € RY is the set of vectors to be clustered.

Initialization: Set

C, the number of clusters desired

m, the fuzzifier

€, the convergence threshold

v = {v?%.”,vgn} an initial set of cluster centers
//Note: The v$)
other mechanisms//

can be chosen randomly from X or through

Set t =0
REPEAT
DO FOR each k =1, . . ., n
IF d(xy,vi) = 0 for some subset of clusters, i.e., Ix # ¢
THEN
Set ugtk) =0 for j & Iy andu(jtk) >0 for j € Ix, as inEg. 8.3b
ELSE
Compute u(itk) fromEqg. 8.3a.
ENDIF
END FOR
Set t « t + 1
Using UV, estimate V®) from Eq. 8.4.
c
UNTIL ) |[v v < e

i=1

where |*| is any vector norm (like Euclidean) .

//Note: There are other stopping criteria, including number
of iterations, but this is the most common.//

This algorithm initializes by choosing C cluster centers. Alternatively, the algorithm
can be initialized by randomly assigning values to the partition matrix subject to the
constraint that the memberships for each vector sum to 1. Then, the computation steps
need to be reversed inside the FOR loop (first estimate the cluster centers, and then
update the partition matrix). How many initializations are there? Well, if you randomly
choose prototypes from the data, there are g such initializations—that’s abunch since
n is usually much larger than C. If the initialization is done on the partition matrix, there
is a “computationally infinite” number of starting points for FCM (not actually infinite,
but effectively so). If you only run the FCM, or almost any other clustering algorithm,
only one time, you risk misleading yourself with the result. Later, we’ll show an
example where different initializations lead to dissimilar final partitions.

Note that m=2 is the default value for the fuzzifier because it makes Eq. 8.3a
particularly simple. What happens as m — oo? Look at Eq. 8.3a. If the inverse
distances are bigger than 1, then a large value of m in the exponent will drive them
toward 1 from above, and if they started as fractions, they will be moved toward 1



TABLE 8.4 HCM Memberships for Butterfly Data

Indexk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
U o o 0o 0 0 0 0 1 1 1 1 1 1 1 1
W 1 1 1 1 1 1 1 0 0 O O O 0 0 0

from below by the exponentiation. Hence, all terms in the calculation will become
close, and so the cluster memberships will get closer to each other, that is, the
memberships will be fuzzier. In the limit, all memberships will converge to 1/C,
except possibly for the common cluster center if it lands on an element of X because of
Eq. 8.3b—highly unlikely for real data. This is the most ambiguous partition possible.

If the cluster memberships are required to be binary at each step, that is, the
clustering algorithm is to build a crisp C-partition of X, then the above AO algorithm
reduces to the crisp or hard C-means with the two steps in the UNTIL loop: (i) Assign
each vector to the cluster with the closest cluster center. (ii)) Compute new cluster
centers as the means of the vectors assigned to the respective clusters [Theodoridis
and Koutroumbas, 2009]. In fact, as m — 1, the FCM partition converges to a HCM
partition when d is the Euclidean distance. The HCM criterion is to find a set of cluster
centers such that the sum of the distances of all points to their closest cluster center is
minimized. Can you write that criterion function?

The hard 2-means was run on the butterfly data, using randomly chosen initial
cluster centers. The final cluster memberships are shown in Table 8.4. Note that the
bridge point (#8) is assigned to cluster 1 for this run. The final cluster center
coordinates, {(—2.3, 0.0)!, (2.0, 0)'}, are shown in Figure 8.10. The bridge point
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FIGURE 8.10 Butterfly data and hard 2-means cluster centers (shown as disks).



TABLE 8.5 FCM Memberships for Butterfly Data with C=2 and m =2

Index k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Uy 0.13 0.03 0.13 0.05 0.00 0.05 0.12 0.50 0.88 0.95 1.00 095 0.87 097 0.87
Ugo 087 0.97 087 095 1.00 095 0.88 0.50 0.12 0.05 0.00 0.05 0.13 0.03 0.13

had to be assigned to one of the clusters, in this case the right cluster. The crisp
assignment required by the HCM clearly affects the locations of the cluster centers.

One application of clustering is to use it in conjunction with a classification problem
where the distribution of data within each class is not well understood. The idea is to
cluster training data of only one class to look for substructure within the group. The
resultant cluster centers can actually be used as multiple prototypes for the given class in
a multiprototype pattern recognition approach—for test vectors, compute their distance
to all prototypes of all classes and put them into the class of the closest prototype. You
could also cluster all the training data and then examine the results (human intervention)
to assign real class labels to the clusters, and then just use the cluster centers as single
prototypes of each category. So, getting good estimates of the cluster centers is very
important. Since they are normally averages of vectors, weighted by cluster member-
ships, their locations can vary depending upon the treatment of points in overlapped
areas and especially by outliers (perhaps caused by sensor failure or faulty feature
extraction). Section 8.4 will address the outlier issue in more depth. An example of
combining clustering and prototype classification can be found in Banerjee et al. [2013].
Think about this algorithm when you study Section 8.5.

Next, we ran the fuzzy 2-means on these data with m =2. Table 8.5 shows the
fuzzy memberships, while Figure 8.11 provides the locations of the final cluster

A " A A " " A
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FIGURE 8.11 Butterfly data and fuzzy 2-means cluster centers {(—2.1,0.0)", (2.1,0.0)' } form = 2.




TABLE 8.6 FCM Memberships for Butterfly Data with C=2 and m =1.25

Index k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Uy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Uy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 100 1.00 1.00 1.00 1.00 1.00

TABLE 8.7 FCM Memberships for Butterfly Data with C=2 and m=6

Indexk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Uy 0.57 0.63 0.57 062 086 0.62 059 0.50 041 038 0.14 038 043 037 043
Uy 043 037 043 038 0.14 038 041 050 059 062 0.86 0.62 0.57 0.63 0.57

centers. The bridge point now is shared equally between the two clusters. Because
of the equal membership values for the bridge point, the cluster centers are
symmetric.

As stated above, the FCM converges to the HCM as m approaches 1. As a
demonstration, we ran the fuzzy 2-means on the butterfly set with m =1.25. Table 8.6
corresponds to fuzzy memberships for this case. Memberships except for the bridge
point are actually crisp. That vector is still shared between the two clusters with final
memberships of 0.5 in each. The locations of the final cluster centers are in the same
place as for m=2.

On the other hand, as m gets larger, the memberships move toward 1/C. Table 8.7
displays the results of the FCM on the butterfly data with C =2 and m = 6 (not infinity
by a long shot, but fairly large for a FCM fuzzifier). You can easily see the “blurring”
of vector membership. How would it look for m=10?

Now let’s see how these basic clustering algorithms do on the Gaussian cloud
data sets. Clouds 1 should be no problem since the bunches of data are fairly
compact and well separated (Hmm, might those criteria be used in judging the
goodness of a final partition—the cluster validity issue?). Of course, you need to
pick the right value of C. Figure 8.12 shows the output of the HCM with C=3.
The crisp membership symbols are generated from the final partition. No surprises
here. The final partition of the HCM with C =4 is displayed in Figure 8.13. The
HCM did its job; it found a partition that at least was a local minimum of the HCM
criterion. To get four clusters from Clouds 1, the HCM had to split a cluster. Given
that we’re talking about the standard Euclidean norm, it seems perfectly reason-
able to split the elliptical cluster in half, favoring hyperspherical (circular in R?)
groupings.

Initialization is a big issue in clustering. What is shown in the figures is one run of
the algorithm with a random initialization of the cluster centers (sampled from the data
set). We’ll show later what can happen for different initializations. Sensitivity to the
choice of initialization is a significant question for clustering since the whole purpose
of clustering is data exploration—you don’t know the labels. A common practice is to



20

15

-10 0 10 20
FIGURE 8.12 Results of HCM on Clouds 1 with C=3.

run the clustering algorithm multiple times and see if the results are stable. Of course,
then you have to define what you mean by stable. Essentially, this means that you
have to compare the partition matrices or the cluster centers, or both. This is not as
easy as it sounds.
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FIGURE 8.13 Results of HCM on Clouds 1 with C=4.
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FIGURE 8.14 Results of FCM on Clouds 1 with C=3 and m=2.

How does FCM do on Clouds 1? Like HCM, the fuzzy clustering algorithm finds
the same final crisp partition, as seen in Figure 8.14 with C =3 and m = 2. Pretty hard
to miss when the clusters are so well behaved. The final fuzzy partition is “hardened”
to form the displayed crisp partition by assigning each vector to the cluster that has the
highest membership.

If all data sets looked like Clouds 1, there would be little need for fuzzy (or other
more generalized) clustering. The HCM algorithm would be sufficient. Clouds 2 is
still a nice collection of points, being generated as a mixture of Gaussians. However,
three of the components are close together and there is overlap in the distributions.
Using a random initialization, the HCM doesn’t handle the situation well according to
what our intuition and knowledge of Clouds 2 construction tells us. Figure 8.15 shows
the final HCM partition for C=4. What we called component 4 is divided and
combined with the two flanking clusters, while the component in the upper right area
is split to form two clusters. Actually, with C=35 (an intuitively wrong value), it’s
hard to argue with the breakdown of the data as seen in Figure 8.16, if we take a
Euclidean viewpoint of the world.

The basic FCM using Euclidean distance does a little better in the final crisp
partition on Clouds 2 as displayed in Figure 8.17, but it still doesn’t match what we
know about the class structure. Why? Euclidean distance in the criterion function
imposes geometric constraints that are not satisfied by the actual data set. We will
soon see how to accommodate more general distance metrics into the FCM structure.

Before leaving this section, we give a simple example that shows the importance of
initialization. Figure 8.18 shows four seemingly (well) separated clusters. Do you
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FIGURE 8.15 Results of HCM on Clouds 2 with C=4.
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FIGURE 8.16 Results of HCM on Clouds 2 with C =5. Is this reasonable for Euclidean
distance?
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FIGURE 8.17 Results of FCM on Clouds 2 with C=4 and m=2.
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FIGURE 8.18 Data set with four seeming separated clusters to test initialization.



10 . . . .

9_ -
x x X

81 [u] [m] ] i
x g %

71 0 o o ]
* X x %

6l 0O o O ]

5_ o

v v Vv v

4r v vwvwv |
*

3+ v v vy g

all v wevwvvwv |

1_ 2
0 1 1 1 1

0 2 4 6 8 10

FIGURE 8.19 An intuitively correct hardened partition of the data in Figure 8.17 found by
FCM with C=4 and m =2. Note that the cluster centers don’t line up with the centers of the
squares.

agree? You would think that it would be easy to find them with any clustering
algorithm.

The FCM with C=4 and m =2 was run with two different initializations. Each
initialization filled the beginning partition matrix with numbers chosen as uniform
random with the constraint that they sum up to 1 for each vector. After convergence,
the final partitions were hardened with the usual method and displayed with
corresponding final cluster centers. Figure 8.19 shows a crisp partition that seems
to match our expectations. But notice that the final cluster centers aren’t exactly in the
centers of the squares. This reflects the fact that all vectors contribute to the weighted
average in the prototype calculation. With a second random initialization, the FCM
finalizes on the partition displayed, in hardened form, in Figure 8.20. The different
sizes and positions of what seems to be four natural groups stump the algorithm.
Would you get the same partitions if you implemented and ran the FCM, say
100 times, on these data? Maybe not since the results depend heavily on initialization.
It would be an interesting exercise to see how many different crisp partitions, and their
frequencies, could be generated from ensembles of runs of HCM and FCM on the data
from Figure 8.18. The point is that you always need to be careful (skeptical?) when
using the partitions generated by any clustering algorithm. Unsupervised methods are
by definition ways to explore the structure on unlabeled data. The better you
understand the assumptions embedded in clustering techniques, the better you will
be at interpreting their results.
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FIGURE 8.20 An unexpected final hardened partition of the data in Figure 8.17 from a
second initialization by FCM with C=4 and m=2.

8.3 AN EXTENSION OF THE FUZZY C-MEANS

As we have seen from the examples above, the act of clustering, that is, running a
clustering algorithm, enforces a belief about the geometry of feature space. Euclidean
distance tends to produce clusters that are roughly hyperspherical in shape, and hence
it determines the retrieved geometry of feature space. It didn’t matter much with
Clouds 1 since the groups of points had similar sizes and were well separated. But
Clouds 2 proved to be more of a challenge (Figure 8.17). If the clusters are assumed to
be hyperellipsoidal in structure as with the Clouds data, they can be modeled using a
cluster-specific Mahalanobis distance:

dZ(Xk, Vi) = (Xk - vi)tZi_l(xk - Vi) (85)

Here, %; represents the estimated “fuzzy” covariance matrix for the ith cluster
[Gustafson and Kessel, 1979; Bezdek et al., 1999; Theodoridis and Koutroumbas,
2009]. Note that this basic choice fits the assumptions of the FCM theorem, that is, it is
an inner product norm distance. However, the distance metric should be cluster
specific to capture the spread of the data within each group, which means that there are
additional parameters that need to be estimated during each step of the resulting
algorithm. Using this family of distance metrics, the resulting clusters will assume
hyperellipsoidal shapes. As in the theorem for the FCM, the membership value and
cluster center updates are the same (prove this! Problem 8.4). However, now



necessary conditions on the cluster-specific fuzzy covariance matrices need to be
determined for use in the AO algorithm, after the cluster centers are computed. In a
similar fashion to the necessary conditions for cluster centers in Theorem 8.1, the
fuzzy covariance approximation equations are found to be

_ Dt ()" (% = vi)(xi — Vi)'

% =
> e (k)

(8.6)

Exercise 8.5 challenges you to derive Eq. Eq. 8.6 as a corollary to Theorem 8.1. We
note that these necessary conditions are determined in a fashion that is essentially the
same as its counterpart in the expectation—-maximization (EM) approach to Gaussian
mixture decomposition.

An extended FCM algorithm, called GK-FCM, incorporates into the FCM
algorithm of Section 8.2 the estimation of fuzzy covariance matrices using Eq.
8.6. Also, it scales the cluster-specific Mahalanobis distance by the dth root of the
determinant of Z;. This scaling attempts to normalize the clusters at each step to have
the same hypervolume, thereby accommodating different sized clusters. Hence, the
GK-FCM is more conducive to find hyperellipsoidal-shaped clusters of different sizes
[Gustafson and Kessel, 1979; Bezdek et al., 1999].

Applying GK-FCM to Clouds 2 (C=4 and m=2) and then hardening the final
partition by assigning each point to the cluster with highest membership results in the
distribution shown in Figure 8.21. It does find four clusters that look similar to the
original distributions from Figure 8.9, although it tended to squeeze component 4.
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FIGURE 8.21 GK-FCM (C =4, m=2) hardened results on Clouds 2.



Many striking examples of the utility of this algorithm can be found in the clustering
literature.

Gath and Geva [1989] proposed an extension to FCM that incorporated what they
called exponential distance and an estimate of prior probabilities of clusters. Their
algorithm, fuzzy maximum likelihood estimation (FMLE), is close in both form
and results to Gaussian mixture decomposition (GMD) using the EM algorithm
[Theodoridis and Koutroumbas, 2009]. In dealing with data that can be thought of as
Gaussian mixtures, most clustering algorithms (certainly HCM, FCM, GK-FCM,
FMLE, and GMD) are similar. The differences lie in the interpretation of the
underlying structure and assumptions made on the distributions. You should use
the approach that seems most natural for the problem you have.

8.4 POSSIBILISTIC C-MEANS

As we saw in Sections 8.2 and 8.3, the FCM clustering algorithm shares the soft
memberships for each point across the clusters, although requiring them to sum to 1.
This does ameliorate the problem of crisp assignment of vectors to particular clusters
when the features possess ambiguity. When vectors are of high dimension, this fuzzy
partition is useful not only in finding strong elements in a cluster (close to binary
memberships) but also for detecting objects that lie in an overlapped region when
memberships in multiple clusters are close to equal. This idea was used in Pal
et al. [2005] to find, for example, proteins that had been incorrectly annotated in the
Gene Ontology [Lord, 2003]. However, there is no reason that memberships of a
given feature vector should always sum to 1. This is a definition within crisp
clustering and is required in the FCM to avoid the trivial solution (all memberships
equal zero) in minimizing the FCM criterion function. As mentioned in Chapter 6, a
Crepe Myrtle is both a bush and a tree. In bioinformatics, there are proteins that belong
completely to different families. So, the digital representation of this type of protein,
or the Crepe Myrtle, is not consistent with the laws of excluded middle and
contradiction, that is, under crisp algorithms, such objects must be placed entirely
in one and only one cluster, certainly contrary to reality. The opposite is true for
outliers, that is, for objects (or feature vectors) that do not belong to any of the groups.
Sometimes, faults in sensors can give rise to completely bogus feature values. Such
vectors should not be grouped into any cluster. Alternatively, if clusters in feature
space are used to represent a normal condition, then identifying outliers is a means of
creating an alert to signal an abnormal circumstance. The FCM spreads the degree of
belonging across clusters better than does the HCM (recall Tables 8.5 and 8.6 for the
butterfly data), but still does not capture the conditions of high membership in
multiple clusters or low membership in all clusters. Crisp approaches have no choice
other than to dump anomalies into a single group, and fuzzy algorithms can at best
force their memberships close to 1/C. If the number of points being clustered is not
huge, this can result in making noticeable changes in the cluster prototypes.
Remember the multiprototype classifier technique discussed in Section 8.2. True
outliers can drastically affect performance of that algorithm.



Krishnapuram and Keller [1993, 1996] found a way to relax the sum constraint
while avoiding the trivial solution. It was done by modifying the FCM criterion
function, resulting in a clustering technique called the possibilistic C-means. Their
criterion function is

C

n C n
U, V) =)0 uid (i vi)+ > m > (=)™ (8.7)
k=1

k=1 i=1 i=1

where n; are the appropriately chosen or estimated values [Krishnapuram and Keller,
1993, 1996].

The first term is the same weighted least-squares construct as in FCM, whereas the
second term has the effect of trying to keep cluster memberships high. In Krishna-
puram and Keller [1993], necessary conditions to minimize Eq. 8.7 with respect to the
partition matrix entries are shown to be

Ui = ! (8.8)

1+ (dz(xk,vi)/ni)l/(m_l)

for a minimum of J(U, V). The necessary condition on the cluster centers is identical to
Eq. 8.4. The proof mirrors that of the FCM theorem except that the zero distance case
is unnecessary (see Problem 8.6). The PCM theorem and associated AO algorithm
effectively decouples each cluster in computing membership values; hence, they
possess a natural symmetry in membership. The values uy in Eq. 8.8 are called
typicalities in the PCM since they measure how typical a particular input point is to
each cluster, that is, how close the point is to each cluster prototype. Since all clusters
are decoupled in the PCM formulation, the cluster centers have the freedom to seek
out dense regions of feature space, and so the PCM algorithm is actually a mode-
seeking technique. In the PCM algorithm, the parameters n; have a significant
influence on the final partition matrix; they determine the distance from the cluster
center at which the membership crosses 0.5 (the 3dB point). In Krishnapuram and
Keller [1996], it is recommended that if the data are not too noisy, FCM be run first for
a few iterations to get a reasonable starting partition and then estimate these
parameters as

n m 42 . A dZX,V'
0 =M 1 =M for some0 <a <1 (8.9)

. or .
' ZE:] uH; l Eu;k>a1 ’

after running the FCM. The first form of the constant is simply the weighted average
of all distances of vectors to the ith cluster center, whereas the second choice
computes the average distance of “good” ith cluster points, that is, points that belong
to the a-level cut of the cluster. Of course, now you have to decide what level cut to
use, but it does add flexibility. For data sets where there might be more noise, the
estimates in Eq. (8.9) can be done at the end of each iteration of the PCM algorithm. In
the case of very noisy data, running FCM may not (probably won’t) result in good
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FIGURE 8.22 The butterfly data and final PCM cluster centers. Symmetric membership
functions are produced by the PCM.

starting points for the PCM. In Krishnapuram and Keller [1993, 1996], there are
several heuristics given for running the PCM.

You might ask what is “possibilistic”” about the PCM algorithm. Actually, nothing
in the true sense of possibility theory [Zadeh, 1978; Dubois and Prade, 2001]. The
truth is that we were looking for a name for this approach to partitioning and “fuzzy”
was already used. Hence, we picked possibilistic C-means just to distinguish it from
the sum-to-one fuzzy partitions of FCM. So, please don’t get confused over trying to
attribute deeper significance to the name; it was just a name of convenience that, as
names tend to do, stuck.

Figure 8.22 shows the final PCM cluster centers {(—1.9, 0.0)', (1.9, 0)'} for the
butterfly data. These fuzzy clusters are completely symmetric, possible because PCM
eliminated the constraint that the memberships for each point need to sum to 1 across
the clusters. In this case, the bridge point obtained low and equal typicalities of 0.22 in
both clusters and the cluster centers moved to symmetric positions. Table 8.8 gives the
PCM typicalities for the butterfly data.

The PCM is very robust to outliers [Krishnapuram and Keller, 1996]. To
demonstrate this capability, a 16th point was added to the butterfly data set. This
point (0, 9)" can be considered an outlier since it is far from either of the two more
recognizable clusters. This outlier causes serious problems for the hard 2-means, as
seen in Figure 8.23.

TABLE 8.8 PCM Typicalities for Butterfly Data with C =2 and m =1.25

Indexk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Uy 0.16 0.44 0.16 050 098 0.50 057 0.22 0.11 0.06 0.06 0.06 0.03 0.04 0.03
Uy 0.03 0.04 0.03 0.06 0.06 0.06 0.11 0.22 057 050 098 050 0.16 044 0.16
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Final crisp partition and cluster centers of the HCM on the butterfly + outlier

The FCM does better, generating a 0.5 membership for both the bridge point and
the outlier. The final cluster centers {(—2.0, 0.40)", (2.0, 0.40)'} are shifted vertically
(refer to Figure 8.11) due to the 0.5 outlier membership in both clusters, as seen in

Figure 8.24.
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FIGURE 8.24 Final harden partition and cluster centers of the FCM on the butterfly + outlier

data.



Using the final FCM cluster centers as initialization for the PCM, as suggested in
Krishnapuram and Keller [1993], the possibilistic 2-means generates the same final
cluster centers (up to the display precision), as shown in Figure 8.22, because it
produces a typicality of 0.01 in each cluster for the outlier point. That is the whole
point of how PCM can be used for outlier detection. The final typicalities are only
slightly different from Table 8.8 for the other points.

The PCM tends to search for dense regions of feature space and can have the
property that more than one cluster center, and hence the clusters themselves, end up
identical. This has been cited as a bad property by some [Barni et al., 1996], but
Krishnapuram and Keller argue that it is a good trait in situations where the exact
number of clusters is unknown. A larger number of clusters than “expected” can be
specified as C and then identical clusters can be pruned. In fact, in Yang and
Lai [2011], the authors propose to exploit this by having all points initially serve as
cluster centers and then constructing an automatic merging algorithm (AM-PCM).
The AM-PCM is a deterministic algorithm once the parameters are set, and so the key
is to study the parameter setting. The fact that all points (or some gridding of feature
space) are used as initial cluster centers gives rise to the major challenge of using this
algorithm. In a report [Plodpradista, 2012], the author does an in-depth comparison
between the PCM and the AM-PCM from the standpoint of studying the parameters of
both algorithms, as well as through extensive controlled testing on numerous data
sets. The final analysis there is summarized in Table 8.9.

In some sense, PCM searches for the correct number of clusters by overspecifying
and looking at the coincident clusters after convergence, whereas AM-PCM starts
with n clusters and performs merging. This situation is a classical issue in clustering
since most clustering approaches require knowledge of C. This problem, known as
cluster validity, is normally attacked by running the algorithm on a data set several
times, varying the number of clusters. A number (called a validity measure) is
calculated from the final output of each run. While there are numerous examples of

TABLE 8.9 Comparison of PCM and AM-PCM

PCM AM-PCM
Pros Pros
Great for large data sets Deterministic (no random initialization)
Inexpensive resource usage Good for small data sets of high dimension
Searches for modes in the data Parameters relatively insensitive in

presence of some noise in the data
No need to specify the number of clusters

Cons Cons
Random initialization can cause Gridding is complicated on high-
results to vary dimensional data
Can produce coincident clusters Resource intensive for large data sets
(really a con? Sometimes)
Fuzzifier has definite effect on Can leave cluster centers on outlier points

results in noisy data




validity measures, most (for object data clouds) are functions of the closeness of
points assigned to, or shared by, a particular cluster and the separation of distinct
clusters. The measure is usually maximized or minimized (depending on its form)
when the “correct” number of compact, well-separated clusters is found. We direct the
interested reader to Theodoridis and Koutroumbas [2009] for the general concepts of
cluster validity as well as for several examples of such measures for both crisp and
fuzzy clustering algorithms.

While the algorithms considered above require object data (vectors in R?), some data
sets have the property that only relational information is known. A distance, or more
generally a dissimilarity, is calculated (or given somehow) between objects, but these
numbers are not derived from vectors of real features. For example, Wilbik and
Keller [2012] developed a metric between linguistic protoform summaries of the form
“Q As are P” where the quantifier Q and summarizer P are modeled as fuzzy sets. So, the
distance is between sentences; there is no vector space representation. Another common
example is in the comparison of objects that are annotated by terms from an ontology, like
proteins described by expressions in the Gene Ontology [Popescu et al., 2006]. The
representation there is a bag-of-words and the dissimilarity measures are constructed
accordingly. Hence, the data, and algorithms that handle it, are called relational since all
that is known is the relationship between objects. Most clustering algorithms have
relational duals, although the development is beyond the scope of this text.

8.5 FUZZY CLASSIFIERS: FUZZY K-NEAREST NEIGHBORS

Clustering methods are used to look for structure in sets of unlabeled vectors. In many
applications, we need to assign known labels to test data. In these cases, we assume
that we have training sets of patterns that represent the various classes (labels) under
consideration. The task now is to find a mapping, called a classifier, from the set of
new samples into the set of class labels. As with clustering, there are crisp,
probabilistic, fuzzy, and possibilistic classification models. In fact, most crisp
classifiers can be extended to produce labels that contain uncertainty, be it probabi-
listic, fuzzy, or possibilistic. Many classifier methods can be extended to utilize fuzzy
or possibilistic labels on the training data themselves. You saw a fuzzy classifier in
Chapter 7; a set of fuzzy IF-THEN rules can be crafted for some pattern recognition
problem where the number of features is modest and the outputs are (fuzzy) class
assignments. Chapter 9 will introduce a very powerful classifier framework, fuzzy
integrals, but again for situations where the input dimensionality is fairly low. This
section defines a simple, yet powerful family of algorithms, referred to as k-nearest
neighbor (k-NN) algorithms, to dynamically build a classification mapping that can be
used for multiclass and high-dimensionality feature sets.

Let’s suppose that you are a beer lover (well, if you don’t like beer, switch to wine,
tea, coffee, cigars, etc.). As you try new brews, you keep track of whether you like
them or not, or even better, you assign each one either memberships or typicalities in
the Like/Don’t_Like classes. Now FlatBranch Brewery is coming out with a new
edition and you wonder whether or not you will like it before buying a growler. We



might tell you to find the closest beer from your list and make your decision based on
its label. But how do you decide on the closest beer? Being a good pattern recognition
person, when you tried each entry, you recorded important beer parameters like the
International Bitterness Units (IBU), Alcohol By Volume (ABV), Maltiness Index,
and so on. Good old Euclidean distance can come to the rescue, that is, we represent
each beer by a vector of numeric features and then find the closest vector to the brew
under consideration. If you liked the closest one (enough), you will probably like the
new one; otherwise, don’t spend your hard earned money. If you wanted a little more
evidence, you might find the closest three and look for the majority opinion. If instead
of picking three closest, you chose two or four, you might end up with a tie
considering only the crisp labels. In such a case, a simple tie breaker is to then
choose the class of the closest point (reverting back to the 1-NN). This simple example
is the essence of the crisp and fuzzy k-nearest neighbors classifier.

To formalize this pattern recognition approach, let X = {x1,Xz,...,X,} where
Xj € RY is the set of feature vectors, except that we now assume that each x; has class
labels u;;, i=1, . . ., C. The set X is called the labeled training data for the classifier.
In the crisp case, u;; = 1 for only one class i, and is zero elsewhere. This signifies that
Xj represents an object sampled from class i. By relaxing the binary constraint to
ZiC:l u;; = 1, for each j, or even just requiring 0 < u;; < 1, we produce fuzzy or
possibilistic labels, respectively, on the training data. You might ask how training data
could have soft labels. After all, training data are supposed to be pure representatives
of their respective classes. That may be true in theory, but remember that objects are
represented by vectors of features extracted from them. Sometimes these features
aren’t a completely faithful class mapping, and sometimes the classes have ambiguous
representatives. Consider separating the handwritten digits “1” and “7”. If you
collected 10,000 samples of each from many people, you would see some very
carefully written and some where you (the expert human) couldn’t tell the difference.
Even though a digit may have the label “1”, features extracted from it may be in a
region that has a population of “7”’s and vice versa. Forcing binary memberships will
only confuse matters. So, it is reasonable to postulate that training data should have
soft labels.

The goal of the k-NN algorithm is to use the labeled training data to decide the class
membership of a new test point x. The classical crisp k-NN goes like this. Given an
input vector x to classify, find the closest k-neighbors in the training data (pick your
favorite distance or dissimilarity measure). Assign x to the class with the majority
label among the k-nearest neighbors. Ties are broken arbitrarily. The simplest case is
when k=1, called the nearest neighbor or the 1-NN algorithm—Iike our first beer
predictor. Perhaps surprisingly, Cover and Hart [1967] proved that in the limit, the
error rate of the 1-NN converged to a value that is no more than twice the optimal
Bayes error rate. Of course, we can’t realize the limit case (no matter how many pubs
we visit) and so very little theory can be applied to predict the finite performance of the
k-NN. However, its simplicity and reasonable (sometimes, very good) results have
made it a very attractive numeric feature vector classifier.

In the “more sophisticated” beer predictor, a tie was broken by picking the label
(likeableness) of the closest point. The idea of using distances is a natural idea to make



the k-NN more sensitive to the actual data distribution. There have been numerous
extensions to the k-NN algorithm that make use of the individual distances, dj(x) =
d(x,x;) for j=1, . . ., k [Dasarathy, 1991]. Here, we show how both the distances
and fuzzy (or possibilistic) labels are combined to create class labels for the test
vector. Like the crisp counterpart, the fuzzy k-NN (FKNN) algorithm is simple in
concept. Let x;, Xy, . . ., Xg be the k-nearest neighbors of a test vector x. The goal is to
compute the membership of x in each class. The formula for the membership of x in
the ith class, u;(x), as given in Keller et al. [1985] is

Z};l Ujj (1/ (d(x, xj)z/(m_1)>)
S (1t )

where m > 1 is a constant (like the fuzzifier in the FCM). Hence, u;(x) is proportional
to a weighted average of the inverse distances of x to each of its k-nearest neighbors.
The weights correspond to fuzzy ith class labels of neighbors. The denominator is
used to scale the memberships for all classes so that they sum to 1. In the crisp case,
this is an inverse distance weighted k-NN [Dasarathy, 1991]. Just be careful for the
unlikely event that one of the distances is actually zero (handle that case separately).
As with fuzzy clustering, if it is necessary to compute a crisp label, x can be assigned
to the class with the largest computed membership.

From the form of Eq. 8.10, it’s not hard to concoct many other variations that can
be called a fuzzy k-NN classifier or even a possibilistic k-NN classifier—why force
the confidences add up to 1 (see Problem 8.9).

As a simple two-class example, consider the classification of a two-dimensional
feature vector with coordinates (0.0, 0.0)" shown as a star in Figure 8.24. The feature
values and class labels for the six nearest neighbors in the training data are given in
Table 8.10 and shown graphically in Figure 8.25.

Clearly, the crisp 6-NN would result in a tie. That’s why most often in two-class
problems, an odd number of neighbors is specified. We are using an even number of
neighbors in this example only to make this point. How many neighbors should you use?
The obvious, but unhelpful, answer is “enough, but not too many.” Unfortunately, it is
problem dependent and so there is no definitive answer. If you have a good training set,
you could do a “leave-one-out” cross-validation experiment with a range of values fork

u;(x) =

(8.10)

TABLE 8.10 Training Data for k-NN Classifier

X1 X5 Crisp Label Soft Label for Class 1 Soft Label for Class 2
0.25 0.0 1 0.625 0.375
0.0 0.5 1 0.625 0.375
-0.5 0.0 1 0.625 0.375
0.0 -0.5 2 0.0 1.0
1.0 0.0 2 0.0 1.0
-1.0 0.0 2 0.0 1.0
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FIGURE 8.25 Graphical rendition of the k-NN example. Class 1 vectors are disks while class
2 points are triangles. The test point is the star.

and look for where the classification accuracy levels out. That knee in the performance
curve should give you a good estimate for the correct number of neighbors to use.

Since the crisp 6-NN resulted in a tie, we can look at a fuzzy 6-NN result, here
using Eq. 8.10. If the class memberships are crisp, that is, 1 in the designated class and
0 in the other, then for m =2, Eq. 8.10 produces

44242
R v S S
and
24+1+1
u(x) = o =0.33

442424241+1

Hence, class 1 receives the higher membership, and so if crisp assignments are
required, the star would become a circle. However, consider the soft labels for the
training data in Table 8.10. Here, for the sake of this example, the three vectors from
class 1 have membership 0.625 in their class (with membership 0.375 in class 2),
while those from class 2 are strong representatives with full class 2 membership (0 in
class 1).

Now the calculations yield

_ 4(0.625) +2(0.625) + 2(0.625) +2(0) + 1(0) + 1(0)

=0.42
44242424141 0

ug(x)

and

_ 4(0.375) + 2(0.375) + 2(0.375) + 2(1) + 1(1) + 1(1)

=0.58
44242+241+1

UQ(X)



Hence, the fuzzy 6-NN algorithm generates membership values for x that places it
more in class 2 due to the weaker confidence in the typicality of the class 1 points. A
crisp assignment would thus make the star a square. However, an advantage of a fuzzy
classifier is that these memberships can be used in further processing if required.

How the training data receive fuzzy labels is problem dependent, but in Keller
et al. [1985], we suggested using a version of the k-NN itself to assign those labels,
that is, reflecting the fact that even for labeled training data, the feature vectors can lie
in areas of more or less uncertainty. For a training point x;, find the n closest neighbors
in the training set and define

051 + (5) -049,  ifx; is labeled class i
ujj = n: n (811)
(H) .049, i x;is not labeled class i

where n; is the number of the n-nearest neighbors of x; labeled class i. This ensured
that the membership of a training vector in its assumed class will always be over 0.5,
even if the feature representation puts it squarely in a group of vectors from other
classes. Is this reasonable? Certainly, it seemed like a good idea at the time, but you
might want a different behavior in the soft label assignment. There is no reason that a
class memberships of a particular training sample need to sum to 1 as above. Here too,
Problem 8.9 will ask you to think about this issue. Bezdek [1981] was the first person
that we know of to suggest that training data could (should) have soft labels.

This simple family of variations on the same theme has great utility in real
applications. In Gader et al. [1995, 1997], k-NN algorithms were used to provide
desired outputs for training data to be used in neural network classifiers for hand-
written characters, and then for word recognition using dynamic programming or
fuzzy integration (see Chapter 9). They trained multilayer perceptrons to approximate
fuzzy sets instead of crisp sets. For example, using handwritten data from the U.S.
Post Office, there was considerable confusion between some characters, like “U’ and
“J,” and the extracted features showed this uncertainty. They assigned fuzzy desired
outputs on both “U” and the “J” nodes for each of two training patterns that
corresponded to how well the given pattern represented both a “U” and a “J.”
Actually, they used a variant of the k-NN that assigned possibilistic memberships by
giving the ground truth class a membership of 1 regardless of the location of the
feature vector. As aresult, a multilayer perceptron learned and represented the training
data more realistically by incorporating the uncertainty associated with the patterns.
They compared networks trained with standard and supervised approaches on U.S.
Postal Service data sets. For isolated character recognition, networks trained with
crisp outputs achieved superior character recognition rates: 89.2% for the crisp
networks and 83.8% for the fuzzy networks. However, the fuzzy networks achieved
word recognition rates of about 76%, compared to 70% achieved with crisp networks.
We can interpret this result as an affirmation of Marr’s principle of least commitment
[Marr, 1982]:

Don’t do something that may later have to be undone.



In the case of handwritten word recognition, if we use crisp class memberships,
then the neural network makes irreversible decisions concerning the class member-
ship of an input segment. If the identity is not correct, the mistake will lead to an
erroneous output in word recognition. Fuzzy class memberships are not definite; the
network represents multiple class memberships and can more accurately make the
final decision at a later stage of processing.

Frigui and Gader [2009] developed a possibilistic k-NN classifier to assign
confidence to a large two-class problem, vehicle-based landmine detection from
ground-penetrating radar volumes (cross-track, downtrack, depth). The feature vectors
were built from edge histogram descriptors from areas in the 3D space that were
identified by an inexpensive optimistic prescreening algorithm. They compared the
possibilistic k-NN with several other high-performance approaches. Their algorithm
outperformed all other algorithms involved in a large-scale cross-validation experi-
ment that used a diverse data set covering over 41,807 m? acquired from four outdoor
test sites at different geographic locations over the course of several years.

The concept of nearest neighbors normally refers to distance in a metric space. That
need not be the case. For example, in Bondagula and Xu [2007], comparisons of
amino acid sequences don’t lend themselves to standard Euclidean space feature
vectors. In secondary structure prediction (how a protein folds in a three-dimensional
space), sequence alignment of portions of the protein to large databases of known
structures is used to match an unknown protein structure. Based on the search,
numeric similarities to known states of the database structures are calculated from a
statistical measurement. The resulting dissimilarities are not true distance values, but
were used in the fuzzy k-NN algorithm to form one subset of features for a neural
network predictor. Together with another set of structure-related features, the
resulting algorithm outperformed two other state-of-the-art approaches on large
data sets, the only substantial difference being the addition of the fuzzy k-NN features.

As a final note, you might wonder what if anything the fuzzy k-NN has to do with
clustering. Well, at least in Gader et al. [1995, 1997], the k-NN soft labels were used
to drive a self-organizing feature map (SOFM), a neural-based clustering algorithm. It
can also be considered the extreme case of the multiprototype classification that is
related to clustering. Pretty big stretch, but there is a connection.

8.6 CHAPTER SUMMARY

Searching for structure in data has been a problem for a long time and continues to
hold an important role as data sets become larger and larger and of higher and higher
dimensionality. Because it is unsupervised, in real applications where there is no
actual ground truth, clustering approaches using crisp, fuzzy, probabilistic, possibil-
istic, neural, evolutionary, swarm, and hybrid frameworks abound. There are thou-
sands of clustering algorithms in the literature, some very general and others specific
to particular problem domains, some with strong mathematical grounding and others
very heuristic. There is no way to do justice to this enormous field. We presented a few
of the basic clustering approaches that have their roots in fuzzy set theory. Then, we



presented a single family of techniques in the field of fuzzy classifier design, the
k-NN, and showed the versatility and usefulness of these simple algorithms. As with
the other chapters, our hope is that these sections whet your appetite to study further.

EXERCISES

8.1. What is the basic concept underlying all clustering procedures?

== (OGO

Execute one complete iteration of the fuzzy 2-means algorithm with m=2
and one complete iteration of the possibilistic 2-means with m =2 and each 1 is
equal to 1.

8.3. a. Apply the crisp 2-means algorithm using Euclidean distance to the data set:

={(o) ()G (5) () (o) GG}
with v, (1) = (O(')S) and va(1) = (33.555>

b. Now run the crisp 3-means beginning with the final two cluster centers from
(a) and a third center that is the point of X furthest from its cluster center. Do
you think there are two or three clusters in these data? This is usually done
computationally by using a validity index.

8.4. Prove that the necessary condition for the cluster centers in an FCM algorithm
with Mahalanobis distances takes the same form as in Theorem 8.1.

8.5. For the mathematically hardy, prove that Eq. 8.6 represents the necessary
conditions on the covariance matrices when using cluster-specific Mahalanobis
distances.

8.6. Develop the necessary conditions for a minimum of the possibilistic C-means
criterion function.

8.7. What are the similarities and differences between the hard (crisp) C-means
(HCM), the fuzzy C-means (FCM), and the possibilistic C-means (PCM)? Be as
specific as possible, but don’t just write down the update equations.

8.8. a. Use the final partition matrix from Problem 8.3 as fuzzy labels for two

classes. Compute the memberships for y, = (2; ) andy, = (0'5 ) using the

0.5
fuzzy 2-NN and fuzzy 3-NN algorithms.



. Now suppose that X is a small piece of a larger training set, and the fuzzy
labels for X are given as follows:

X1 X2 X3 X4 X5 X6 X7 Xg

08 0.6 00 00 00 06 00 0.0.

U= U
1.0 1.0 1.0 04 1.0 1.0

wu 02 04

Compute the crisp and fuzzy class labels for y = (;g) using the crisp 5-

NN and fuzzy 5-NN.
Give a variation to Eq. 8.9 for a fuzzy k-NN and for a possibilistic k-NN.

Can you think of other ways to assign soft labels to training points?



CHAPTER 9

Fuzzy Measures and Fuzzy Integrals

Many problems in decision making can be cast as in the framework of fusion of
multiple sources of information. For example, doctors may request several tests to
arrive at a diagnosis. These tests, including patient history, all supply partial evidence
for possibly more than one conclusion. An expert diagnostician combines the results
of the tests with “worth” of the individual assays, as well as groups of them, to support
or refute particular conclusions. Some tests taken individually may only provide
limited confidence in a decision, but taken as a group greatly increase that support.
One of the advantages of fuzzy set theory is the wide range of computational
mechanisms to implement such fusion of information. In this chapter, we develop
one of these powerful frameworks, the fuzzy integral. It is used to combine partial
(objective) support for a hypothesis from the standpoint of individual sources of
information together with (possibly subjective) weights of various subsets of these
sources of information.

All classifiers are either implicit or explicit fusion engines. A simple Bayes
classifier with Gaussian probability density functions fuses the values from individual
features into a class decision. The covariance matrices carry the information about the
connection between features for each class. The same is true for the rule-based
systems in Chapter 7 and the crisp/fuzzy/possibilistic k-NNs of Chapter 8. Here, we
consider the situation of explicit information fusion with one of our favorite frame-
works, fuzzy integrals.

9.1 FUZZY MEASURES

The fuzzy integral is based on the concept of fuzzy measures,' generalizations of
probability measures, which in themselves will be shown to be effective to combine
information in certain applications. Consider a finite set X = {x;,X2,...,X,} of

! Fuzzy measures, and the more specific belief and probability measures, address the ambiguity axis of
uncertainty: how likely can the answer to a question be found in various subsets of the sources of
information.



sources of information. Each x; can be a diagnostic test, a feature (e.g., color, texture,
or shape) in a segmentation problem, a particular pattern recognition algorithm, and so
on. While only finite sets are considered here, the theory of fuzzy measures and fuzzy
integrals can be extended to infinite sets (see Grabisch et al. [2000] and Wang and
Klir [1993]).

Let 2% denote the power set of X, that is, the set of all (crisp) subsets of X. A fuzzy
measure, g, is a real-valued function g:2% — [0,1], satisfying the following
properties:

1. g(@)=0and g(X) =1
2. g(A)<gB), ifACB ©.1)

Note that the normal additivity condition of probability theory, that is,
g(AUB) = g(A) + G(B) if ANB = ¢, is replaced by the weaker condition of monot-
onicity (property 2). All probability measures are fuzzy measures (prove this—
Exercise 9.1). So you already know many fuzzy measures. But there are many more
fuzzy measures over a given set than there are probability measures. Consider the set
X ={Xy, Xz, x3}. Table 9.1 lists the subsets of X and a few fuzzy measures over X.
Measure g; represents total ignorance—there is no proper subset of X with nonzero
measure, g, signifies total confusion—all nonempty subsets of X have full measure,
and g3 is a measure that gives complete certainty to {x;}. We all recognize g4, a
probability measure. Measure gs might correspond to the statement that “the whole is
greater than the sum of its parts”, whereas gg is the opposite, that is, “the whole is less
than the sum of its parts.” In other words, the sources of information in g5 support each
other; in combination they are much stronger than probability would suggest. Con-
versely, gg represents a situation where there is some conflict in the sources, that is,
combinations don’t give as strong a support as the corresponding probability measure
would supply. These examples show precisely what a fuzzy measure actually “mea-
sures,” at least in this context, that is, our confidence or belief that each given subset of
sources of information will provide the answer to the question at hand.

With the infinite possibilities for fuzzy measures even in the low cardinality cases,
how do we find useful fuzzy measures (other than probability functions)? You sure

TABLE 9.1 Subsets of Set with Three Elements and a Few Fuzzy Measures

Subset g1 1263 23 84 gs g6
) 0.0 0.0 0.0 0.0 0.0 0.0
{x1} 0.0 1.0 1.0 0.2 0.2 0.2
{x>} 0.0 1.0 0.0 0.3 0.2 0.2
{x3} 0.0 1.0 0.0 0.5 0.2 0.2
{x1, X2} 0.0 1.0 1.0 0.5 0.6 0.3
(X1, X3 0.0 1.0 1.0 0.7 0.7 0.4
{x5, X3} 0.0 1.0 0.0 0.8 0.8 0.5

X ={x1, X2, X3} 1.0 1.0 1.0 1.0 1.0 1.0




can’t try them all. (How many numbers need to be specified for a fuzzy measure over a
finite set X = {x1,X2,...,Xy}?) There are many approaches to construct interesting
measures. One popular tactic is to restrict the freedom a little by adding additional
constraints to the class of fuzzy measures. Exercise 9.3 gives one interesting and
useful such family of fuzzy measures, possibility and necessity measures. We now
develop a very general form of fuzzy measure that has found great utility in theory and
application.

For a fuzzy measure g, let g' = g({x;}). The mapping x; — g' is called a fuzzy
density function. The fuzzy density value g' is interpreted as the (possibly subjective)
importance of the single information source x; in determining the answer to a
particular question, perhaps the similarity of two genes or the label of a particular
object. Fuzzy measures are quite general since they require only two simple properties
to be satisfied. However, it is often the case that the densities can be extracted from the
problem domain or supplied by experts. We do know that for X = {x1,Xz,...,Xs},
there are only n numbers needed to represent the densities. One key to using fuzzy
measures involves finding ones that can be built out of the densities. One of the most
useful classes of fuzzy measures is due to Sugeno [1977]. A fuzzy measure g is called
a Sugeno measure (g, fuzzy measure) if it additionally satisfies the following property
[Sugeno, 1977]:

3. For all A,BC X with ANB = @,
2,(AUB) = g, (A) + g,(B) + Ag, (A)g,(B), for some A > —1 (9.2)

Unless needed, the subscript A will be omitted for simplicity. If the densities are
known, the value of A for any Sugeno fuzzy measure can be uniquely determined for a

n
finite set X using Eq. 9.2 and the facts X = | J{x;} and g,(X) = 1, which leads to
i=1

solving the following equation for A:

n

(14+2) =T +2g) 9.3)

i=1
Exercise 9.3 asks you to verify this for a specific case.

This equation has a unique solution for A > —1 [Sugeno, 1977]. The right-hand side
of Eq. 9.3 is a polynomial of degree n with respect to A. It could have as many as n real
roots, so Eq. 9.3 could have as many as n — 1 real solutions. How can it have only 1? It
is perhaps the coolest polynomial on the planet. Its coefficients are the symmetric

functions of the densities
n
k=j+1

n—2 n—1 n
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First note that A =0 is a solution to Eq. 9.3. If A =0, what does that say about the fuzzy
measure g and about the sum of the densities (Exercise 9.4)? For values other than 0,
Sugeno showed that Eq. 9.3 has a unique solution for A > —1. Here we give a simple
calculus-based proof adapted from Tahani and Keller [1990].

Proposition 9.1 For information sources X = {X1,X2,...,X,} and densities {g'},
0 < g' < 1, there is a unique A> —1 and A # O satisfying Eq. 9.3.

Proof: It is sufficient to show that the polynomial G(A) = []—;(1 + Ag') and the line
A+ 1 intersect only at one point A>—1 and A # 0. Now,

n n
G(\)= Zg (1+rg') | and G”(?x)zz Z H (1+rg)
i=1 —1 k=1 | i= =1
j?“ :¢L j?ﬁl

jFk

For A> -1, G(A), G'(M), and G”(A) are all greater than zero, that is, G(A) is a positive
strictly increasing real-valued function that is concave upon the open interval (-1, c0).
Furthermore, G(0)=1 and G'(0)=Y_1_, '. The slope of the line L(A) =X+ 1 is 1 and
LO)=1. If Y i, g' <1, then G(A) crosses L(A) at A=0 with a slope G'(0)< 1
(obvious to you?). Since G(M) is a polynomial of at least degree 2 strictly increasing
on (—1,00), it follows that it must cross L(A) exactly one more time for some large
enough value of A. (Draw a picture to give yourself the intuition behind the calculus. G
must be above L on (-1, 0) and below L right after 0, but strictly increasing and
concave up.)

A similar argument holds for i, g < 1 QED.
So, Sugeno A-measures form a subclass (although still quite large) of general fuzzy
measures that have the property that they can be completely determined by an
assignment of worth (density) to each singleton source of information. For our pattern
recognition types, you can imagine running some basic classifier on each source
separately on training data and using correct classification rates to help set the
densities. Or, in the algorithm/sensor fusion domain, each source has been trained and
so, some value can be assigned to measure of the singleton source. Note that once the
densities are fixed, the measures of all subsets of sources are computable from a
recursive application of Eq. 9.2. Even though Sugeno measures form a large subset,
they don’t allow a person to say something like “neither of these two sources is
particularly strong, but together they answer the question.” More on this later.

While we don’t present Dempster—Shafer (D—S) belief theory [Shafer, 1976], there
is a strong connection between Sugeno measures and belief/plausibility measures of
D-S. Belief and plausibility measures are particular subclasses of fuzzy measures
with additional constraints. In the statistical literature, they are referred to as lower and
upper probabilities—belief is a lower bound for the assumed underlying probability,



while plausibility generates an upper bound. It turns out that a Sugeno A-measure is a
belief measure if >0 (3_1_, g' < 1) and a plausibility measure if A< 0 (>, g' > 1)
[Banon, 1981].

EXAMPLE 9.1 SUGENO FUZZY MEASURE

To illustrate the calculation of a Sugeno fuzzy measure, suppose X = {x, X2, X3}
and g' = 0.2, g = 0.3, and g> = 0.1. Note that the resulting measure in this case
cannot be a probability measure because the densities, that is, the measures of the
singleton subsets, do not add up to 1. Then, Eq. 9.3 becomes

1+A=(1+0.20)(1+0.30)(1 +0.1A)

Expanding and collecting terms, A must be the solution of the quadratic equation
0.0060> +0.111 — 0.4 = 0. While there are two solutions, only one of them,
A=3.2,1is greater than —1, as guaranteed by the theory. Hence, the complete fuzzy
measure is shown in Table 9.2.

TABLE 9.2 Sugeno Fuzzy Measure for X = {x;,x;,x3} with Densities 0.2, 0.3, and
0.1

Subset Measure Value

[0} 0.0

{xi} 0.2

{x2} 0.3

{x3} 0.1

{x1, X2} 0.240.343.2(0.2)(0.3)=0.69

{x1, X3} 0.2+0.14+3.2(0.2)(0.1)=0.36

{X5, X3} 0.3+0.1+3.2(0.3)(0.1)=0.5

X={xq, X2, X3} 0.69 +0.1+3.2(0.69)(0.1)=1.01~1.0

0.36 +0.3+3.2(0.36)(0.3)=1.006 1.0
0.5+4+0.2+43.2(0.5)(0.2)=1.02=1.0
(we rounded-off the intermediate results)

Many applications exist where fuzzy measures are used to make decisions or to build
similarity values. Proponents of D-S theory subscribe to this approach. Instead of a set
of sources of information, X is viewed as the set of all possible answers to a given
question, like the suspects in a crime. Each piece of evidence serves to create a measure
over the subsets of X (the perp was left-handed, or had blond hair, or was a particular
person seen leaving the crime area, etc.). A rule of aggregation (Dempster’s rule) allows
these individual belief measures to be combined [Shafer, 1976]. The end result is a
measure of confidence that the perpetrator lies in each of the many subsets of X. Of
course, the police and DA would like all of the belief focused on a singleton subset of X,



while the defense wants the final belief distribution to be much less specific, that is, to
create a situation that is not “beyond a reasonable doubt.”

Closer to home for this book, fuzzy measures can be used to create a fuzzy
similarity value between objects described by phrases or sentences from structured
vocabularies. The following example shows an application of fuzzy measures to build
a similarity between sets of annotations coming from an ontology, specifically, the
Gene Ontology [Popescu et al., 2006]. See Xu et al. [2008] for a detailed exposition of
the creation and use of fuzzy measures in biological ontologies.

9.2 FUZZY INTEGRALS

Let X beasetand leth : X — [0, 1] be a function that provides the support of a given
hypothesis from the standpoint of each source of information, called a partial support
function. Suppose g : 2% — [0, 1] is a fuzzy measure. Then, the Sugeno fuzzy integral
is defined by

[Bx) o = sup |mintnin . (B = sup [min(ezA] O
ECX x€E a e [0,1]
where A, = {x/h(x) > a} [Sugeno, 1977].
For the finite case (the case that this chapter really addresses), reorder X =
{X1,X2,...,Xg} to get X = {x(]),x(z),...,x(n)} so that h(x)) > -+ > h(X().
Then, the Sugeno fuzzy integral reduces to

S,(h) = max [min(h(x). g(A7)] 9.3)

where Aj = {x(1),...,Xg} (see Exercise 9.6).

The reader is referred to Grabisch et al. [2000] and Wang and Klir [1993] for an
extensive theoretical background on fuzzy measures and fuzzy integrals.

The Sugeno integral of a partial support function is the best pessimistic agreement
between the objective evidence (h) and the (possibly subjective) worth of that evidence
(g). This is shown graphically for a set of 10 sources of information in Figure 9.1.

In the case of 10 information sources, the measure g would need to be calculated on
1022 subsets. However, if g is a Sugeno A-measure, these computations can be
streamlined using a recursive application of Eq. 9.2. Specifically,

gAY =g({xph) =g (9.6)
2(A) = gV + g(Ain) + 2gVg(Ainy), for i>1

If the number of information sources is not too large, then any measure can be
precomputed and indexed so that as the function values are sorted, corresponding
measure values are extracted from the list.

The original definition given by Sugeno for the fuzzy integral is not a proper
extension of the Lebesgue integral, that is, the integral from Calculus, in the sense that
the Lebesgue integral is not recovered when the measure is additive. To avoid this
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FIGURE 9.1 Graphical interpretation of Sugeno integration of a partial support function with
respect to a measure. The set X is sorted so that the function is nondecreasing (curve marked by
squares) and the measure of the sets A; increases. In the continuous case, the value of the
integral would be the intersection of these two curves. For finite sets, the value is the square or
diamond below this intersection, and closest to it.

drawback, Murofushi and Sugeno [1991] proposed the Choquet fuzzy integral,
referring to a functional defined by Choquet in a different context. Let h be the
partial support function on X with values in [0,1] and g be a fuzzy measure. The
Choquet integral is

I

Ih(x) og= J g(Ag)da, where Aq = {x|h(x) > a} 9.7)
0

X

If X is a discrete set, the Choquet integral can be computed as follows:

n

Cg(h) = Z [h(xg) = h(xge1))] - 2(AD) 9.8)

i=1
where X is sorted so that h(xg)) > -+ >h(Xy), h(X@ne)=0, and
Ai = {xqay, -, X}

It is also informative to write the discrete Choquet integral as a (nonlinear)
weighted sum of these values in which the weights depend on their order. Define

61(g) = g(Al) - g(Ai—l); for i= 1; 27 <oyl (99)

where we take g(Ao) to be 0. Then,

Ce(h) = 8i(2) - hixg) (9.10)
i=1



Note that, in the general case, the sum in Eq. 9.10 is a nonlinear combination of the
values of h because the ordering of the original arguments xi, . .., X, depends upon
the relative sizes of the values of the function h.

EXAMPLE 9.2 FUZZY INTEGRALS

As a simple illustration, suppose that the set of information sources is X = {x;, X2, X3 }
with the Sugeno fuzzy measure specified in Table 9.2. For the partial evaluation
function h : X — [0, 1], given by h(x;) = 0.9, h(x;) = 0.7, and h(x3) = 0.2, we
calculate the Sugeno and Choquet fuzzy integrals. First note that the function values
are already sorted in descending order so that there is no need to reorder the set of
information sources. From Eq. 9.5, the Sugeno fuzzy integral of h with respect to the
fuzzy measure is given by

Sg(h) =(0.9A02)Vv(0.7A0.69) Vv (0.1 A1.0)=0.69
Similarly, Eq. 9.8 produces a Choquet fuzzy integral of
Cy(h) = (0.9 -0.7)(0.2) + (0.7 — 0.2)(0.69) + (0.2 — 0.0)(1.0) = 0.59

Both Sugeno and Choquet fuzzy integrals act as generalized expectation operators,
that is, their values lie between the minimum and maximum values of h(x;), . . .,
h(x,). This property and several other elementary properties of fuzzy integrals are
studied in Exercises 9.9-9.15.

Following the idea in Popescu et al. [2006], for each o € [0, 1], Wilbik and
Keller [2013] defined a similarity index between two sets of linguistic protoform
summaries (Q As are P) from A-fuzzy measures defined over the two sets of summaries.
The average of the two measure is a measure and the “obvious” aggregation across o
is the Sugeno integral of the function h(x)=1 — x with respect to that measure.

EXAMPLE 9.3 FUZZY INTEGRALS AS NONLINEAR FILTERS

Let X be a finite set, for example, X may represent the pixels in a neighborhood of
a given point, called W, here. The idea here is to replace the center pixel in a
window by the integral of the values in the window. Selection of different fuzzy
measures yields different types of filters. In Keller ef al. [2000], several examples
of Choquet fuzzy integral filters are given, with references to filters represented
as Sugeno integrals. Assume that all neighborhoods are of size n. If the measure g
is additive with all densities equal to 1/n, then the filter is the simple local average.
Suppose n=2k + 1. If the measure, g, is defined to be

1, if JAl>k
gx(A)—{Q else (9.11)




then the filter is the median filter. This is easy to see using Eq. 9.10 because & from
Eq. 9.9 will be nonzero for only one value of the index, which is the index required
to “pick off” the median of the input values. In fact, replacing k with any i between
1 and 2k + 1 in the above definition yields the ith order statistic (including the
maximum for i=1 and the minimum for i =2k + 1).

In this image processing example, let W, be a neighborhood of a point x.
Choquet integral filters can also represent linear combination of order statistic
(LOS) filters defined by

LOSw, (h)(x) = Z wih(x)) 9.12)
xx € Wy
where the weights, {w;,...,w,} satisfy the requirements that w; €[0,1] and

> bWk =1, and the function values are sorted in descending order. This
operator can be seen as a fuzzy integral operator by defining the measure g
according to

0, ifA=¢
gA) =< (see Exercise 9.16) 9.13)

> wy, iflal=i
j=1

They have also been referred to as generalized order filters by Grabisch and are
useful for implementing robust estimators, such as the alpha-trimmed mean. These
filters can also be referred to as ordered weight average (OWA) filters if the
weights have a linguistic interpretation, such as “at least two neighbors are bright”
or “many neighbors are highly textured” [Yager, 1988, 1993, 1996, 2004]. The
point is that a wide variety of linear and nonlinear filters can be modeled by the
same operator with just a change in the measure that defines the integral. Hence, if
you had training data, that is, if you could specify input windows and desired
responses, just using these simple measures, you could hunt over a large subclass
of Choquet integrals for optimal or near-optimal filters that match the desired
outputs. How can you do this search? By now, you probably have some ideas, but
stay tuned.

9.3 TRAINING THE FUZZY INTEGRALS

The key to using fuzzy integrals to fuse multiple sources of information is to construct
fuzzy measures that specify the worth of all subsets of sources of information. For
many applications, Sugeno measures are employed. As noted above for these fuzzy
measures, only densities (the worth of each singleton information source) need to be
specified. There are numerous methods to automatically learn either densities or entire
measures if training data are available [Tahani and Keller, 1990; Keller et al., 1994;
Grabisch et al., 2000; Keller et al., 2000; Mendez-Vazquez et al., 2008]. These
techniques dramatically increase the applicability of fuzzy integrals for general
information fusion.



Consider a two-class pattern recognition problem wy and ®;. In the framework of
fuzzy integration, the set X={x;, ..., X,} represents the names of features,
algorithms, sensors, or other sources of information (including human intelligence)
that are brought to bear on the question of deciding the class label of an object O. Note
that in this case x; is not the vector of values as is the common notation for other
classifiers (like the k-NN). Instead, the partial support function plays that role. To be
precise, we should write

h(0; x;)

h(O; x;)
h(O) =

h(O; xy)

to denote that h maps the object into a set of numbers in [0,1] from the standpoint of
each source of information. That’s pretty tedious, so as long as there is no confusion,
we assume that we know we evaluate each object, drop the designation “O,” and just
write h(x;), . . ., h(x,). Under the most straightforward interpretation, we want the
fuzzy integral of objects in @y to have a value 0 and those in ®; to map to 1. Since it is
harder to extend this framework to multiple classes, alternately, we could search for
two measures go and g; such that

Jh °gy > Jh og;, iIfOEwy and -conversely if O € v, 9.14)

This clearly extends to multiple classes, although it complicates training (learning the
measures). You can even consider the situation where different sources of information
are used to assess individual class confidence. This generalization requires separate h
functions and measures for each class. The nice thing about this general formulation is
that the number of sources of information need not be the same for each class; sources
of information that provide confidence for class w; can be different from those
supplying evidence for w;. The class evaluation is effectively decoupled, that is, the
resulting integrals behave like possibilities as they will not necessarily sum to 1.
While there is some contention to this statement, we believe that Keller et al., [1986,
1987] and Tahani and Keller [1990] represent the first papers that frame the pattern
recognition problem as one of fuzzy integration.

However you formulate the problem, the key is to learn the appropriate measure(s).
If you choose Sugeno A-measures, possibility measures, measures like those in
Example 9.3, or other so-called “decomposable” measures, then the problem reduces
to finding n density values instead of learning 2" — 2 numbers (why is it 2" — 2 instead
of 2"?). For these measures, the learning task is linear instead of being exponential,
which makes a big difference as n grows. Additionally, it is usually easier to
determine a worth for each singleton source of information than to specify worth
for all possible combinations of sources. The common approach to learn densities



from a set of training data where class labels are known is to train a one source (usually
a feature) classification algorithm and to calculate densities based on how well the
training data (or a validation set of data) is separated by the one source algorithm. For
example, Keller er al., [1986, 1988] simply used the relative amount of overlap
between the histograms of a feature for the various classes (on training data) to
generate densities, mapping the overlap inversely into the interval [0,1]. They built
A-measures and performed segmentation with the Sugeno integral. Another early
implementation of this approach for segmentation is given in Example 9.4. It uses
possibility measures instead of A-measures.

EXAMPLE 94 FUZZY INTEGRALS FOR SEGMENTATION

Since fuzzy integrals can fuse local information at any resolution, it is natural to
use it for image segmentation [Keller et al., 1986, 1988], which is just a pattern
recognition problem “in the small.” Here again, the trick to employing fuzzy
integrals successfully is to determine the measures for the various regions. Since
the integration process produces soft class decisions, this approach to segmenta-
tion not only groups pixels together but also assigns region labels to them.

As an example, Yan [Yan, 1993, Yan and Keller, 1991] utilized possibility
integrals, that is, Sugeno fuzzy integrals with respect to possibility measures, to
segment color images of natural scenes. Possibility measures were used
because of their simplicity in assigning the measure to arbitrary sets. In
particular, if g'=g({x;}) represents the densities for a possibility measure
for one of the classes, then

g(A) = max {g'} (9.15)

Yan used a recursive variation of random search to hunt for a set of densities to
separate three classes from two features (intensity and position) extracted at each
pixel. Using one image for training (hand segmented), he generated a huge
number of training data patterns. Densities for each class were chosen randomly
(and exhaustively given a quantization of the interval [0,1]). The h functions for
each pixel for each class were generated from the normalized histograms of the
training data for the intensity feature, and from heuristic membership functions for
position. The best set of densities, at the coarsest quantization level, was found
from the classification results on the training data. Small intervals (at the next
lower order of magnitude) were chosen around each of the winning densities, and
the process was repeated. This was continued until no better segmentation results
on the training image were obtained with increased quantization. Figure 9.2a
shows an intensity training image, while Figure 9.2b depicts the output of the
segmentation of the training image at the completion of the training phase. This
set of densities was then used to segment several additional test images of the
same basic type, that is, outdoor scenes with roads, trees, and sky. Figure 9.3
displays one such test.




FIGURE 9.2 Training image. (a) Intensity training image. (b) Fuzzy integral
segmentation.

(@)

FIGURE 9.3 Test image. (a) Intensity testing image. (b) Fuzzy integral segmentation.

Since this is a book on computational intelligence, it should be jumping out at you
that learning densities from training data for either a Sugeno or Choquet integral-
based pattern recognition problem is exactly suited to evolutionary computation
techniques. The obvious structure has chromosomes having n genes or particles
having n slots, one for each density required. The fitness function is class assignment
of the evaluation of the fuzzy integral on the training data. The generalized problem
can be framed as one of coevolution. Example 9.4 can be thought of as an overly
simplistic attempt at guided random search. Evolutionary computation algorithms are
efficient ways to hunt for good sets of densities for fuzzy integral pattern recognition
since the chromosomes have a nice and compact gene structure.

In an effort to link the problem of learning densities to concepts from neural
networks, Keller and Osborn [1996] created a training algorithm that used a “reward—
punishment” approach similar to thatused in neural networks to train the fuzzy densities



for each class in a pattern recognition problem. Initially, the densities for each class
started out at the same value, for example, 1/n. For a given labeled object instance, the
integrals were calculated for each classification hypothesis. If the largest integral value
did not correspond to the correct classification, training must be done. The offending
fuzzy integrals were punished by decreasing the densities that supported their integral
values, while the correct class had its supporting densities increased. This tended to raise
the integral value of the correct class integral and lower the value of those that were
misclassifying the input. This process was continued until all objects were correctly
classified. They proved a theorem that characterized the calculation of the new A after
adjustment of the densities, showing that the problem and it’s solution were well
defined.

Why not just use gradient descent on the density values themselves? The answer is
that you can, but you have to be careful. You need a criterion function that is
differentiable and then you have to be able to take the partial derivatives to formulate
the algorithm. The obvious criterion function is one of least squares involving the
Choquet integral. For the two-class, one-measure problem, let Oy = {Oyy, . .., Oop, }
be the training data from class wg and O; = {Oyy,..., Oy, } be the corresponding
training set for ®;. Let oy and a; be the target values for the integral for the respective
classes (could be ap=0 and o; =1). Define

No

B =3 (CohOo) — o) + 3 (Clh(O1) - ot )’ ©.16)
i=1

i=1

Rewriting Eq. 9.8 to highlight the dependence on the object under consideration, we
have

n

Ce(h(0)) = > _[h(0;x) — h(0; x(e1)] - g(AY) (9.17)

i=1

If the measure is a A-measure, we can take the partial derivatives OE* /0g*. Evaluating
these partial derivatives requires the ability to compute dg(A;)/dg. Note that from
Eq. 9.6, g(Ai) is defined recursively by g(A;) = g({x)}) = ¢V and g(Ai) = gV +
g(Ain) +2gg(A) for i> 1.

If A was a constant for all time, this would be a straightforward calculation.
However, ) is a function of the densities (Eq. 9.3). Hence, to obtain dg(A;)/dg", it is
also necessary to compute 9A/0g*. This has to be done with implicit differentiation.
In Mendez-Vazquez et al. [2008], it is shown that for A # 0,

O _ A+
92" (L+Ag)[1—(1+2) 3L, (/1 +2g))]

Can you derive this? This looks messy, but once formulated, gradient descent is easily
applied to fuzzy density estimation for Sugeno measures. Mendez-Vazquez et al.
reformulated the criterion to be one of discriminative training using a measure for
each class and requiring only that, given an training object, the Choquet integral for
the correct class be greater than that for the other class (actually, this was even

(9.18)



generalized to the multi class, multimeasure situation). This led to better overall
results in general in a real landmine detection scenario. One of the main advantages is
that you don’t have to guess about what values to pick for ay and a;. It turned out
for the landmine detection data set, ap=0 and o; = Iwere not that good as choices.

There have been attempts to incorporate neural network models to learn measures
for fuzzy integration, but it is hard to build in the monotonicity constraints into that
framework. The following example shows one successful approach that uses self-
organizing feature maps (SOFM) to help generate densities in a word recognition
application.

EXAMPLE 9.5 HANDWRITTEN CHARACTER AND WORD
RECOGNITION

This example of learning measures for pattern recognition comes from the work of
Gader and Chiang and has to do with estimating confidence in word recognition
hypotheses based on several partial estimates of character confidence [Gader et al.,
1996, 1997]. Handwriting recognition systems are useful for automated document
processing systems, such as mail sorting, and also in handheld computing systems.
Here we discuss a novel use of fuzzy integrals on Kohonen self-organizing feature
maps [Kohonen, 1982; Kohonen et al., 1992] as an aid in handwritten character
classification [Chiang and Gader, 1997].

Consider the handwritten word shown in Figure 9.4.

Suppose that a lexicon for matching contains the strings “Richmond” and
“Edmund.” We can try to match the word in Figure 9.4 to these strings as shown in
Figure 9.5.

FIGURE 9.4 An example of a handwritten word.

ﬁ.ctimamd_

R=53 i=27 =52 h=61 m=70 0=43 n=61  d=8g Richmond"
Best

o el om ommd o

E=12 d=79 m=85 u=25 n=61 d=88 "Edmund"

FIGURE 9.5 Ways of matching the word image in Figure 9.4 to the strings “Richmond”
and “Edmund.”
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FIGURE 9.6 Example to show how fuzzy integration can be used on the SOFM.

In the standard approach to processing each input string, the word image is
split into pieces, called segments. Each segment is matched to a character in the
corresponding lexicon string. Each match is assigned a score. The question is
how to assign an overall score to the match between a word image and a string
given the matches between the segments of the image and the characters in the
string. A particular problem that can arise is that a piece of one or more characters
can look something like the “c” attached to a piece of the “h” in the figure above.
These pieces are outliers and their effect can be diminished using the robustness
properties of the Choquet integral because it inherently satisfies the principle of
least commitment.

When properly trained, a SOFM provides a spatially organized two-dimen-
sional array representing an input character as shown in Figure 9.6. Each element
of the array is called a node. A region of the SOFM is a connected collection of
nodes. When a digital image of a handwritten character is presented as input to the
SOFM, each node takes on a value between 0 and 1. These values are referred to as
activation values. Ideally, characters with similar shapes produce high activation
values in similar regions and low activation values in similar regions as indicated
in the figure. Higher activation is indicated by darker colors.

The fuzzy integral filter methodology worked as follows: For each character
class “a,” “b,” “c,” and so on, regions were identified for which that character
class produced high outputs in the SOFM. Each region was considered as a set of
information sources. A measure was defined on each region by defining
densities according to how often a node in the SOFM was high for a given
class. When an unknown character was presented to the SOFM, a fuzzy integral
was calculated on each region using the activation values as the h-function and
the measures defined off-line. The maximum fuzzy integral output over all the
regions associated with each class was taken as the confidence that the input
character was from that class.

A more precise description is the following: For each class o, let A, = {X |
X is a region for class w}. A given class may have several regions of
high activity in the map. For each region X € A,,, define a A-fuzzy measure
gx o Let

N! =number of times class ® wins at node i,
N' =number of times node i wins, and

Bi = number of nodes at which class  wins at least once and that there are four
neighbors of node i.




The density values for X are defined by the following:

For class®w = 1,2,...,26 Do
For each region X € A,
For each nodei € X
PNy
8o TN B

Intuitively, the density of a node reflects its degree of importance in terms of
relative winning frequency. This classification algorithm helped to increase word
recognition performance from 80 to 86% on real-data sets from the US Post Office.
Details can be found in Chiang and Gader [1997].

You might decide to learn the entire measure from training data instead of focusing
on the densities. Certainly, you can consider the least-squares criterion function above
(or the equivalent one for the Sugeno integral) as a fitness function in an evolutionary
computation algorithm. As long as n is not too big, 2" — 2 genes in a chromosome (or
particle) is no longer unreasonable from a computation standpoint. The challenge with
an EC approach to learn entire measures comes with crossover and/or mutation.
Specifically, if values for the measure of some subsets are swapped or if the values are
mutated, say by the addition of a random number, constraint 2 of the fuzzy measure
(g(A) < g(B)if A C B) may be violated. This is not impossible to resolve, but care
must be taken to ensure that the constraint is satisfied after reproduction. For example,
if g(A) is changed, then all supersets of A can be bumped up to at least g(A) to satisfy
the constraint. A similar kind of care was needed in crossover to maintain constraints
in the standard form of solving the traveling salesman problem (see Chapter 11).

Grabisch and Nicolas [1994] transformed learning measures for the Choquet fuzzy
integral with least-squares criteria into a quadratic programming (QP) problem.
Specifically, consider learning the measure for a Choquet integral mapping function
for a desired set of training data T = {(Oj,%)|j = 1,...,m}:

n

C(h(0) = > _[h(0}; X)) — h(Oj; X)) - g(A) = a5, for j=1,...,m (9.19)

i=1

Then, the goal is to find a measure g that minimizes

m
E> =) (Cy(h(0)) — oy)’ (9.20)
=1
To formulate the optimization problem, define g; ;,...; = g({Xi,, ... X;,}). Using lexi-

graphic ordering, we combine the 2" — 2 unknown measure values into a vector:

g€=0(21,8 212,813 &30t - -gz3...n)t 9.21)
For any subset A of X, and object O;, let

s = { h(Oj; X(i)) - h(Oj; X(i+1))7 if A= Ai for some i
A =

else ©.22)

3



For each j, define the vector

r_] = (07 o 707 h(OJ7 x(l)) - h(oja X(Z))7 s ah(ojv X(n—l)) - h(0]7 X(n))v Oa o 70)t
(9.23)

Note that Tj € R¥-? with only n—1 possible nonzero values corresponding
to those indices that occur in the definition of the Choquet integral. Hence,
C,(05) = (I§ - g) +h(Oj; X)) and so

B’ = ( «(h(0y) - (XJ)

Ms

1

.
Il

NgE

(r} - g + [h(Oj; X)) — ocj])t : (F} -8+ [h(0j; xm) - ij]>

.
[

(2Tl + 20h(O5: Xa) = o515 + (005 X)) — o)

-

1l
—_

J

=g (ZIBF}) g+2 <Z[h(OJ, X(n)) - %]r;) g+ Z[h(OJ, X(n)) - (Xj]2
=1 j=1

j=1

which is equivalent to
E’=g'Dg+I'g+ o’ (9.24)

where
m m m

D= (Z rjr;> I= (Z 2(h(O0j; X(n) — aj)rj> ;anda® = [h(O; x(n) — o
j=1 j=1 j=1

Now, consider the constraints, a total of n(2“‘1 — 1), on the measure, g. We require

g —g2=0
g —g3=<0
g —823... 50,

€123 .on-1 — 8123...n. <0

23...n—2123..n. <0

You could list all of the inequalities that arise from the montonicity condition on the
measure, but there is a smaller subset that is sufficient by thinking of the subsets of X



as a partially ordered lattice and then you only need to enforce the constraints from one
level to the next. For example, g, — g3 < Ois already guaranteed by g, — g,, < Oand
212 — 8123 < 0. This can be written in matrix form as

10 - 0 =1 0 ... 000 --- 0
1 0 -« 0 O -1 -« 0 O
A-g+b=
0 0 0 0 0 1 0 0
00 --- 0 0 0 N T |
g1 0
g2 0 (9.25)
£13

€23...m2 | +10 <0

g123...n-1 -1
g134...n -1

-1
£€234...n

where A is of size (n(2”‘1 - 1)) X (2" = 2),bisof size (n(2“‘1 - 1)) X 1,and bis the
vector of all 0’s except for the last n entries that are of value —1. Note that the —1 entries
correspond to the fact that g;,5..., = 1 and so, the last set of inequalities that involve
the measure of the whole space have that measure explicitly given, and that we only
need to specify the inequalities for the sets directly “below” the whole space in a lattice
representation. For example, the row of A that is shown with a 1 and the rest zeros is
there to encode the inequality g;53...,-1 — &123..., < 0. You have to ponder Eq. 9.25
for a while to understand the dimensions involved. Hence, the search for the measure g
reduces to a quadratic program of the form

N "
Mlmmlzezg -D-g+I"-g (9.26)
subject toA-g+b <0and0 <g<1

Note, D = (ZJ";] I‘jI‘}) need only be scaled by a factor of 2 and our inequality,



formulation has been used to find a single measure and has been extended to find
multiple measures in pattern recognition problems.

EXAMPLE 9.6 RECOVERING A KNOWN MEASURE VIA EQ. 9.26

This example is courtesy of Professor Derek Anderson, Mississippi State Univer-

sity, who needed to construct it for another reason. Using the above quadratic

programming approach, we learn a fuzzy measure that fits a set of data, T, for the

case of n=3 and m = 8. The «; values are generated below using an OWA operator
0.68

with the weights w' = (.6 3.1 ) For example, in T, O; = | 0.53 |, and so
0.81

a; = (0.6)-0.81+(0.3)-0.68 +(0.1) - 0.53 = 0.743
Specifically, we solve for g below using the following QP (re)formulation.
1
Minimize Egt -D-g+I'"-g
subject to0 <g<landA-g<b

The corresponding set of matrices and vectors are as follows:

0.68 0.53 081 0.743
0.74 099 0.86 0.926 g,
045 007 0.08 0.301 o
o [00s o4 03 foswo | e |
022 0.10 025 0.226 -
0.91 096 0.80 0.929 -
015 0 043 0.303 g5
0.82 0.77 091 0.869
0O 0 0130 0150
0 0130 0 0 012
037 0 0 0 00l 0
0 0050 0 0 03l
“=lo o o003 0 012 0
0 005 0 011 0 0
0 0 028 0 015 0
0 0 009 0 005 0



where Z is the matrix of I'j entries and

0.2738 0 0 0 0.0074 O
0 0.0438 0 0.110 0 0.0622
0 0 0.2086 0 0.1392 0
b= 0 0.0110 O 0.0242 0 0 ’
0.0074 0 0.1392 0 0.1240 O
0 0.0622 0 0 0 0.2210
—0.1709
—0.0922
—-0.2504
I'=
—0.0284
—0.1996
—0.2362

The constraints (note that there is no g;,5 here, it’s got to be 1 anyway) are given by

1 00 -1 0 O 0
1 000 -10 0
010 -1 0 O 0
0100 0 -1 0
A=]10 01 0 -1 0 |, b=]0
0010 0 -l 0
0001 0 O 1
000O0 1 O 1
00 00 0 1 1

After optimization, that is, after running the quadratic program, the resulting fuzzy
measure is

0.6

0.6

0.6

0.9

0.9

0.9

e
Il




This measure is the desired OWA measure, that is, sets of equal size cardinality
have equal measure value and the OWA weights are found by the following:

w(l)=g =g =g=06
w(2)=gp—w(l)=g; -w(l) =gy —w()=03
wWi3)=gpn—w2)=1-.9=0.1

9.4 SUMMARY AND FINAL THOUGHTS

As extensions to probability measures, fuzzy measures provide a plethora of ways
to build credibility of subsets of objects or evidence in answering a question. They
continue to be directly useful in decision-making applications. In the context of
pattern recognition or fusion of information where the set over which the measure is
defined is a set of sensors/algorithms/features/intelligence, and where for each
object or instance under consideration is an evaluation of confidence with respect to
each source of information, fuzzy integration is a great mechanism to fuse this
objective evaluation with the (possibly subjective) worth of the sources. We
introduced both the Sugeno and Choquet integrals as generalized expectation
operators, considered some of their properties, and described a few of the learning
algorithms for real problems. There is a rich and evolving theory and new
applications continue to arise.

EXERCISES

9.1. Show that all probability measures are fuzzy measures, that is, if a set
function g : 2% — [0, 1] satisfies g(@) = 0 and g(X) = 1 and g(AUB) = g(A)
+g(B), if ANB = ¢, then it must also satisfy g(A) < g(B)if A CB.

9.2. LetX={xy,---x,} and F: X — [0, 1] be a fuzzy subset of X.
Define

g@) =0
g(A) = max{1 —F(x)}, forall xeA

Is g a fuzzy measure? Justify your answer. Consider conditions on the fuzzy
set F.

9.3. LetF:X — [0, 1] be a normal fuzzy subset of X and let Pos : 2X — [0, 1] be a
function defined by

0, ifA=¢

Pos(A) = {maxx cA(F(), ifA#d



A. Show that Pos is a fuzzy measure (called a possibility measure).
B. Show that Pos(AUB) = Pos(A) v Pos(B) for all subsets A and B of X.

C. Define a function Nec(A)=1 — Pos(A®). Show that Nec is also a fuzzy
measure, called a Necessity measure.

D. What is the relationship between Pos(A) and Nec(A)?
E. Why do you think they are called “possibility” and “necessity”?

9.4. Show that Eq. 9.2 holds for X = {x;, x,, X3} and densities {g', g% g°}.
9.5. If A=0in Eq. 9.2, show that g is a probability measure and that > |, g' = 1.

9.6. Letg'=04;g°=03;g’=0.2
Calculate the complete Sugeno A-measure on X = {Xy, X, X3}.

Subset A g(A)

0]

{x1}

{x2}

{x3}

{x1, X2}
{x1, x3}
{x2, X3}
{x1, X2.x3}

9.7. Show that Eq. 9.4 holds for finite sets. Hint: What are the level sets for the
sorted fuzzy set {h(x(])), e ,h(x(n))}?

9.8. Given the measure

Subset A g(A)
o 0
{x1} 0.5
{Xz} 0.1
{X3} 0.3

{ X1, Xz} 0.7
{x1, x3} 0.9
{Xz, X3} 0.5
X 1.0

Calculate the Sugeno and Choquet fuzzy integrals for the following
functions:

i. h(x;)=0.3; h(x,)=0.5; h(x3)=0.9
ii. h(x;)=0.5; h(x,)=0.5; h(x3)=0.5

9.9. Given a finite set X={xy, Xa, . . ., X}, a measure g :2X — [0,1], and a
function h : X — [0, 1], show that both the Sugeno and Choquet integrals of h



9.10.
9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.
9.18.

9.19.

9.20.
9.21.

9.22.

with respect to g are generalized expected values, that is, they both lie between
the minimum and maximum of the values h(x;), . . ., h(xp).

Show that if h(x)=a for all x, then Sg(h) =a, and Cy(h)=a.

Show that if g;(A) < g,(A)for all A C X, then S, (h) < Sg, (h) (same for the
Choquet integrals).

Show that if hy(x) < hy(x) for all x € X, then Sy(h;) < S,(hy) (same for the
Choquet integrals).

Is the Sugeno/Choquet integral linear, that is, is Sg(a-h+b) =a- Sy(h) +b,
where a and b are real numbers in [0,1]? (Same equation substituting C, for S,).
You can assume that the linear combinations remain in the interval [0,1],
although that is not strictly required. Supply a justification or a counterexample.

What can you conclude if Sy(h)=07? Is it true that the function h must be
identically 0?

Let h be the characteristic function for a subset A of X, that is,

1, ifxEeA . . .
h(x) = {07 fxe&A What is the integral (Sugeno or Choquet) of this h

with respect to a given fuzzy measure g?

Verify that g in Eq. 9.13 is a fuzzy measure and that Cy(h) (Eq. 9.12) is the
corresponding LOS operator.

Generate Eq. 9.18, that is, compute and simplify 9A/0g~.

Using the notational convention in Eq. 9.21 with three sources of information,
intuitively describe the fusion operation performed by the Choquet integral
with the following measures:

i. g=[0,0,0,1,1,1,1]
i g=[1,1,1,1,1,1, 1]
iii. g=[1/3, 1/3, 1/3, 2/3, 2/3, 2/3, 1]
iv. g=[0, 0,0, 0,0, 0, 1]

Write the complete matrix A and vectors g and b in Eq. 9.25 for a set of
information sources X that has four elements.

Fill in all the details in Example 9.6, that is, hand-compute «, Z, D, A, and b.

Use the Sugeno measure in Table 9.2 and redo Example 9.6 with the same input
training data O. You will have to write the QP program (or use the Matlab or
other package version). Do you recover the measure in Table 9.27

Give an interpretation of the Sugeno and Choquet fuzzy integrals; compare and
contrast them: you might want to illustrate with examples.



CHAPTER 10

Evolutionary Computation

10.1 BASIC IDEAS AND FUNDAMENTALS

Evidence suggests that life has been evolving on Earth for over 3 billion years
[Schopf, 2006]. Three billion years is a long time. With a few exceptions, we each live
for less than a century and thus it’s difficult to truly comprehend a segment of time
that’s as long as 3 billion years. Fortunately, the fossil record gives us a glimpse into
times long since past. Bones, fossilized footprints, and an occasional bug in amber can
provide clues about what life was like in ancient times. Even a casual examination of
the world around us now, and the worlds we can envision from history, leads to an
obvious observation: Nature’s organisms are, and have often been, wonderfully
adapted to their environments.

In the grand scale of time, these beautiful adaptations are ephemeral. They last for
mere moments relative to the history of the universe. Scientists estimate the average
life span for various species to be between 1 and 16 million years [Buzas and Culver,
1984; Liow et al., 2008]. So, to use a fuzzy term, that’s about 107 years.1 If we
compare a time frame on the order of 107 years with the universe’s 1.3 x 10'° years,
it’s fair to say that on average every organism on the planet lasts for just a blink of the
universe’s eye.

But for that brief blink of time, time and again, nature has found a way to solve
some very challenging engineering problems. You may not have considered life to be
a series of engineering problems, but let’s consider some examples.

1. How is it that a fly can walk upside down on a ceiling? The answer, which is
common to over 300 observed insect species, is that fly feet have multiple fat
footpads to provide surface area, and tiny hairs on the feet excrete a sticky
substance of sugars and oils. They are literally adhered to the ceiling, glued
sufficiently to walk upside down, but also weakly enough that they can become
airborne just before a flyswatter arrives [Binns, 2006].

' Some species likely endure much less than 1 million years, at best leaving just traces in the fossil record,
and thus making it very difficult to determine exactly how long they were here.



2. Speaking of sticky situations, how is it that spiders do not stick to their own
webs? The answer is again one of delicate engineering. Spiders’ legs are
protected by a nonstick chemical coating and are covered with hairs that reduce
exposure to the sticky part of the web. Spiders also move around adeptly on
their webs, crawling in ways that minimize adhesive forces [Bricefio and
Eberhard, 2012].

3. What about geckos? Like flies, they seemingly defy gravity as they climb walls
and hang upside down (even by just two legs). Do they use glue, like flies do? In
a sense, they do, but the glue they use isn’t a substance, it’s a force. Gecko feet
have millions of tiny hairs called setae, and these interact with the surface by
way of van der Waals forces to attract them to the surface [Autumn et al., 2002].
In essence, geckos use these forces to “hang in there.”?

These ingenious inventions of nature are examples of evolution by variation and
natural selection. Evolution is a simple concept, but it was resisted for three-quarters
of a century after first being proposed by Charles Darwin and Alfred Russel Wallace
in 1859 [Mayr, 1988]. Ultimately, a synthesis of biological thought took place in the
1930s and 1940s, which serves as the foundation of the modern understanding of
evolution.

Despite the simplicity of the concept, evolution is a complex process, itself a
compilation of numerous nonlinear interacting processes. Thus, any concise descrip-
tion of evolution will omit many important details. However, the essence of
evolution—variation and selection—can be illustrated conveniently and cogently
by way of a series of mapping functions that connect genetics with behavior.

Living organisms act as a duality of their genotype (the underlying genetic coding)
and their phenotype (the manner of response contained in the behavior, physiology,
and morphology of the organism). This genotype—phenotype pairing may be viewed
as a pairing across two state spaces, G and P, that are informational (genetic) and
behavioral (phenotypic), respectively. Figure 10.1 shows how these spaces are
connected [Lewontin, 1974; Atmar, 1992, 1994]. Specially, four functions map
elements in G and P to each other.

These four mappings can be described as follows.

fi: IXG->P
f,: P->P
f3: P->G
fs: GG

The function f; is called epigenesis. This maps an element g, € G and indexed set
of symbols (iy, . . ., ix) € I, where I is the set of all such environmental sequences into

2 Researchers have found that the gecko’s ability to adhere to surfaces depends in part on temperature and
humidity, and others have suggested that lipids found in gecko footprints may also play a role in their
adhesion, so a complete understanding of “gecko technology” may not yet be at hand [Niewiarowski et al.,
2008; Hsu et al., 2011].
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FIGURE 10.1 The evolution of a population within a single generation. Evolution can be
viewed as occurring as a succession of four mapping functions—epigenesis, selection,
genotypic survival, and mutation—relating the genotypic information state space and the
phenotypic behavioral state space.

the phenotypic space P as a particular collection of phenotypes p;, whose develop-
ment is modified by its environment. It’s important to recognize that the same set of
genetics can correspond to alternative observed behaviors when exposed in different
environments. The function f,, selection, maps phenotypes p; into p,. As natural
selection operates only on the phenotypic expressions of the genotype [Mayr, 1960;
Hartl and Clark, 1989; Reed and Bryant, 2004], the underlying coding g; is not
involved in function f,.

Before describing functions f3 and fy, it may be helpful to emphasize this property
of selection. Natural selection acts on the behaviors generated by organisms and thus
only indirectly on their underlying genes. Within the past few decades, there has been
a great deal of focus on evolution from the viewpoint of genes, how they change in
frequency over time, and what selective advantages may accrue to individual genes. It



has been written sometimes that evolution is a change in gene frequencies (see Smith
and Smith [2006]), but this view has the twofold problem of (i) omitting or under-
stating the connection of the environment to genes in order to generate behaviors, and
(i1) omitting the effects of selection on behaviors altogether. Some have argued that
evolution does not even require a change in gene frequencies [Sober, 2000], but,
importantly, function is what is pertinent to natural selection. When a cheetah chases a
gazelle, it is the speed, agility, eyesight, and stamina of both that are being tested
directly, and not their genes per se, except indirectly and in a particular environmental
setting. This is a very important facet of evolutionary modeling, which will be covered
again later in this and subsequent chapters.

Returning to the mappings between genes and behaviors, function f3, genotypic
survival, describes the effects of selection and migration processes on G. For those
phenotypes that survive the selection function f5, there is a collection of genotypes g, that
correspond to those surviving phenotypes. (The collection g, differs from g; because
selection and migration have removed individuals from g;.) These are now the focus of
function f4, mutation, which maps the representative codings g, € Gtothepointg; € G.
This function represents the “rules” of genetic variation—individual gene mutations,
recombination, inversion, and so forth—that occur in the creation of offspring from
parents. With the creation of a new population of genotypes g, one generation is
complete. Evolutionary adaptation occurs over successive iterations of these mappings.

With the view that selection is the primary evolutionary force that prevails in
shaping the behavioral (phenotypic) characters of organisms [Mayr, 1988; Hoffman,
1989; Brunk, 1991; Wilson, 1992; Rundle et al. 2003; Steinger et al., 2003; Lyytinen
etal., 2004], it becomes reasonable to address the concept of “fitness,” where fitness is
defined as the ability to survive and reproduce in a specific environment [Hartl and
Clark, 1989]. Here fitness refers to the aptness of an organism’s behaviors in the
context of its present environment.® In essence then, as depicted many years ago
[Wright, 1932], evolution occurs on a landscape (topography) that is the result of a
function describing the fitness or suitability of being adapted to the environment.
Figure 10.2 illustrates this concept.

An adaptive landscape will look very familiar to an engineer, mathematician, or
computer scientist, for it is immediately suggestive of the concept of function
optimization. Rather than having a purpose of searching for a maximum, minimum,
or perhaps a saddle point on the landscape, evolution moves without purpose. But its
movements appear purposeful in that the results of evolution reflect opportunities to
improve fitness (or obversely to reduce predictive error’). Selection eliminates

3 There are many definitions of fitness, each tailored for a specific application of the term. For example,
Fisher [1930] described the fitness of a gene as the per capita rate of increase (of a genotype, based on the
average effect of gene substitution). Gene-based definitions of fitness are numerous in the so-called selfish
genetics [Dawkins, 1976]. The utility of these definitions for doing anything other than counting genes is
beyond the scope of this text. Interested readers are referred to Fogel [2006] and Fogel and Fogel [2011] for
further information.

4 Living organisms can be viewed as being in a constant state of predicting what is coming next in their
environment. Better predictions equate to less surprise, and being surprised in nature is quite often a really
bad outcome (e.g., consider the surprise a fly gets when it is met by a frog’s tongue).



FIGURE 10.2 Evolution of an inverted adaptive topography. A landscape is abstracted to
represent the fitness of alternative phenotypes and, as a consequence, alternative genotypes.
Rather than viewing individuals or populations as maximizing fitness and thereby climbing
peaks on the landscape, a more intuitive perspective may be obtained by inverting the
topography [Atmar, 1979; Templeton, 1982; Raven and Johnson, 1986]. Populations proceed
down the slopes of the topography toward valleys of minimal predictive error.

organisms that are less fit relative to others. Variation provides an unending source of
searching for new possibilities. Coupled together, variation and selection provide a
mechanism for searching over a landscape, resulting in outcomes that often appear
highly engineered or “designed” for survival.

Note that unlike many engineering optimization problems, which may be of the
form:

Find x | f(x) is minimized

where x is a scalar value and f(x) is a real-valued function of x, problems of
optimization in evolution involve numerous variables acting simultaneously. An
extremely fast animal, such as cheetah, can accelerate from a standing start to 60 mph
(96 kph) within 3 s, but their chases rarely last for more than 100 yards of distance or
1 min of time. Their highly energy-intensive bursts of speed come at the expense of
endurance. There are always trade-offs like these across behavioral traits.



Not only is there an interaction between behavioral traits, recall that these traits
arise as a function of the interaction with an environment and with some genetic basis.
The relationship between genes and behaviors is not one-to-one. Instead, the
relationship is one-to-many in some cases and many-to-one in others, simultaneously.
Figure 10.3 provides a graphic that illustrates these effects, which are described by the
terms pleiotropy (\pli-'d-tro-p€, one gene has many effects) and polygeny (one effect

Gene Gene product Character
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FIGURE 10.3 The effects of pleiotropy and polygeny. Pleiotropy is the effect where a single
gene affects multiple phenotypic characters. Polygeny is the effect where a single phenotypic
character is affected by multiple genes. (Source: After Mayr [1963].)



FIGURE 10.4 This is a drone fly (Eristalis tenax). It mimics a honey bee. If honey bees and
other insects with similar warning patterns did not exist, there would be no selective pressure for
the fly to have evolved this pattern. The fly does not have a stinger. (Source: From http://www.
dpughphoto.com/pitt_ county_arboretum.html.)

coming from many genes). As one example, about 40% of cats with white fur and
blue eyes are also deaf. There’s no reason to expect deafness to correlate with fur and
eye color, but the complexity of the cat’s genetic makeup links these effects [Hartl
and Jones, 2005]. (What’s more, white cats that have one blue eye and one yellow
eye are more likely to be deaf only on the blue-eyed side.) Even single genetic point
mutations can have manifold effects on resulting behaviors, and thus on an
organism’s fitness.

Moreover, fitness, which may be difficult to measure instantaneously, is a function
of the environment that includes all the other organisms present. Consider the
example shown in Figure 10.4. It looks like a bee, but it’s not. It’s a fly. It gets
the benefit of looking like a bee, which may be a big benefit if there are other bees
around. In the absence of bees and other insects with similar warning patterns, this
particular pattern would be of much less or even no particular value.” Thus, fitness is a
temporal function of the world in which the organism lives. Adaptive landscapes look
simple in three dimensions, but they are in fact highly complex, span numerous
dimensions, and vary in time.

Having introduced the concepts of variation and selection on an adaptive topog-
raphy, as well as noting the ingenious evolutionary inventions found in nature, it’s
natural to explore the possibility of simplifying evolutionary processes in software
(evolutionary algorithms) that can be used for engineering purposes. These purposes

5 Warning patterns are common across diverse species and are described with the term aposematism (from
the Latin apo = away, sematic = sign).
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include optimization, design, and learning. It’s also of interest then to study the
mathematical properties of these algorithms.

Such efforts have been ongoing for at least 60 years, and for the past two
decades under a moniker of evolutionary computation. The simplest evolutionary
algorithm can be viewed as a search procedure that generates potential solutions
to a problem, tests each for suitability, and then generates new solutions. It’s
important to understand how this process differs from exhaustive search or blind
random search.

10.2 EVOLUTIONARY ALGORITHMS: GENERATE AND TEST

Consider a sample space S, from which individual potential solutions sy, . . . , i can
be selected (|S|=k). In principle, the cardinality of S can be infinite, but there is
always some limit of precision on a computer, so no loss of generality occurs here
when treating a finite number k. Suppose there is a real-valued function f(s) for which
it’s desired to find a maximum. An exhaustive search of S can be described in
pseudocode by the following procedure:

i=1;
best = 1i;
bestscore = f(s(i));
repeat
i=14+1;
if £(s(i)) > bestscore then
begin
best = 1i;
bestscore = f(s(1));
end
until (i == k);

This will indicate the best solution s(best), which has the corresponding
greatest score f(s(best)). While such a procedure is certain to find the best
solution, the time required to find it may be prohibitive. As will be discussed
in the next chapter, many practical problems pose search spaces that are trans-
computationally large, meaning that the size of the space is greater than 10'%.
There are only about 10'® s in the history of the universe, so in these cases you
could examine 10%° solutions every second, and still not be done in over 13 billion
years!® (And after another 13 billion years, no one would be around to applaud
you for finding the solution.)

© The value 10*° happens to correspond to estimates of the number of protons in the observable universe.
So, imagine doing calculations on par with the number of protons in the observable universe every second
for 13 billion years and still not completing your task.



Instead of searching exhaustively, consider searching at random, blindly choosing
a series of possible solutions sy, . . . , s, from S, where the sequence of length n <k is
chosen uniformly without replacement. Mathematically, this means that for the first
sample s;, each solution in S has a 1/k probability of being selected. After s; is
selected, every remaining solution in S has a 1/(k — 1) probability of being selected as
sy, and so forth. In pseudocode, the procedure looks like this:

i=1;
selected = U(1, k); //
chosen uniformly at random over the integers 1, .. ., k
best = selected;
bestscore = f (s (selected)) ;
repeat
i=14+1;

remove s (selected) from S;

selected = U(1, k - i + 1); //chosen uniformly over the
remaining solutions

if f(s(selected)) > bestscore then

begin
best = selected;
bestscore = f (s (selected)) ;
end
until (i == n);

The procedure can be performed such that it completes in a reasonable amount of
time by selecting n appropriately. Unfortunately, this procedure often performs poorly
on real-world problems (although it has some interesting mathematical properties on
average across all possible problems, which will be presented in greater depth in
Chapter 11).

Note that both the exhaustive procedure and the blind random sampling choose
each next solution without regard to what has been chosen previously. As suggested
by the term blind, blindly searching for things is often a big handicap. Traditional
search procedures described in mathematics are not blind. They explore for a
maximum (or minimum) by utilizing information from the function being searched.
Often this involves use of the gradient or higher order statistics that allow a search
algorithm to move rapidly in a direction that is presumed to be beneficial (i.e.,
leading to higher or lower values depending on whether the task is to maximize or
minimize). These procedures can converge quickly on a maximum or minimum, but
run the risks of stalling at a saddle point—where the gradient is zero—or becoming
trapped in maxima or minima that are only optimal locally. Figure 10.5 illustrates
an example.

Evolutionary algorithms operate in two ways that are fundamentally different from
traditional gradient methods. First, rather than executing a point-to-point search, they
incorporate a population of solutions, each individual solution competing for
survival. Second, instead of utilizing gradient information from the response surface
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FIGURE 10.5 A function that provides opportunities for a gradient-based search algorithm to
stall at local maxima, minima, or saddle points. The function is f(x, y) = x> + 2y? — 0.3 cos(3nx) —
0.4 cos(4my) + 0.7.

being searched, they utilize random variation to explore for new solutions. In
pseudocode, the basic procedure looks like this:

g =0; // g is for generation number
choose initial population; //
often this is selected at random from S
repeat
evaluate population; //assign a score to each individual
select parents; // based on the scores, choose a subset
of individuals
generate offspring; //based on the parents, create
offspring
g=9g+1;
until (g == max)

Mlustrating this procedure with an example, suppose we want to find the minimum
of the function f(x) = x. The function is convex and continuous, thus gradient
methods would be more appropriate (the Newton—Gauss method would be most
appropriate). But the function will serve for instructional purposes. The value g
represents the number of generations completed. It starts at zero. The initial popula-
tion is chosen. This might be done at random from a broad range of S. It requires



choosing a population size, for purposes that will be made clear shortly, which we will
describe with the term (p+ A). Each of the (i + A) solutions is evaluated in light of
f(x). The p individuals with the best scores are selected to become parents. These
parents then become the basis for generating A offspring and the generation counter g
is incremented by 1.” The process continues until a maximum number (max) of
generations is completed.

The relationship between parent and offspring defines inheritance. If there is no
inheritance, then the procedure is essentially like a blind random search conducted
multiple samples at a time. Suppose instead that the value of an offspring is related to
its parent as follows:

X' =x+N(0,0)

where x' is the offspring of x and N(0, o) is a Gaussian random variable with zero
mean and standard deviation ¢. If 6 — o0, then the search is again like a blind
random search. If the ¢ — 0, then there is complete inheritance from parent to
offspring and there’s no search at all because each offspring merely replicates its
parent. But with 0 < 6 < oo, the procedure becomes a stochastic parallel search
with many interesting mathematical properties. These will be discussed further in
Chapters 11 and 13.

But first, let’s examine an example of a simple evolutionary algorithm at work.
Let’s consider the function f(x,y) = x> +y? and use an evolutionary approach to
approximate the answer that minimizes the function. We’ll start with a population of
100 candidate solutions that we choose uniformly at random from the range
(x,y) € (=10, 10)*. Figure 10.6 shows our initial population. In this very basic
approach, we’ll have each parent generate one offspring by mutating the (X,y)
coordinates. Mutation is accomplished by adding a Gaussian random variable
with zero mean and a fixed standard deviation of 0.01 to the x- and y-coordinates
of the parent. After the creation of 100 offspring, we choose 100 best solutions from
among the parents and offspring to be parents for the next generation. Figure 10.7
shows the improvement in the score of the best surviving solution at each generation.
Figure 10.8 shows the distribution of the 100 surviving solutions at generation 100.
After generation 100, you’ll note that the solutions are distributed from —0.005 to
0.005 in each dimension, confined in a box that’s 0.01 units on each side. A box that is
0.01 on a side has an area that is 2.5 x 10~ of the area of the initial box we started
with, which was 20 units on a side. So, one way of judging the improvement that the
evolutionary algorithm offers in this case is that that narrows the area of the best
answer by a factor of over 1 million in 100 generations.®

7 The nomenclature of p parents and A offspring comes from decades of use in one subset of evolutionary
computation called evolution strategies. It is now commonplace to use this notation in evolutionary
algorithms broadly.

8 There are more efficient ways to construct an evolutionary algorithm for this problem. There are many
more efficient algorithms that are constructed exactly for this problem, such as Newton—Gauss. The
example here is intended only to illustrate a simple case.
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FIGURE 10.6 The initial distribution of 100 parent candidate solutions to the problem of
minimizing f(x,y) = x> + y2. Solutions are chosen uniformly at random in a box from —10 to
10 in x and y. The contours of the function depict lower error as they approach the origin.
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FIGURE 10.7 The rate of optimization of the best solution as a function of the number of
generations. The rate slows after about the 50th generation as the population approaches the
origin. The “error score” is f(x,y) = x* + y2.
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FIGURE 10.8 The distribution of surviving solutions at generation 100. All solutions are in
the range from —0.005 to 0.005 in x and y. This area is 2.5 x 1077 of the initial area, which is one
way of assessing the improvement that the evolutionary approach was able to offer over 100
generations.

10.3 REPRESENTATION, SEARCH, AND SELECTION OPERATORS

Evolutionary algorithms are often viewed in terms of the data structures that are used
to represent solutions, the search operators that are applied to those data structures,
and the selection operators that determine which solutions in a population will
influence the creation of the next generation.

With some mathematical contortionism, it’s possible to encode solutions into
representations that are completely unintuitive and difficult to work with. For
example, in the simple case above in which the goal was to minimize the real-valued
functionf(x, y) = x> + y2, the most natural representation for a solution (x, y) is a pair
of real values. It’s the most natural because it allows you to think intuitively about the
problem with an image in mind that corresponds well to the shape of the function.

Alternatively, it’s possible to encode any real value into, say, some number of
binary digits to a given degree of precision. For example, we could encode the integers
—7 to 7 with four digits, where the first digit is 1 if the number is positive and 0
otherwise, and the remaining three digits are the binary representation of the integer.
Thus, [0 1 1 1] would be the number —7. With very long bit strings, we could
essentially do what computers do in representing real-valued numbers with lots of
precision, but it wouldn’t be very intuitive.



Choosing a representation for a problem must be done in light of what search
operators (i.e., variation operators) are going to be applied to that representation. It’s
infeasible, or certainly not optimal, to consider representation separately from search.
Variation operators applied to a current population modify a probability mass/density
function over the sample S that provides for a biased random walk in that space,
searching for solutions of better quality. It’s not possible to decouple the effects of
search operators from the data structures that they are operating on. Some of the more
common search operators include mutation functions that apply to a single parent, and
recombination functions that apply to two or more parents. One special case of
recombination is crossover, which takes contiguous segments and swaps them
between two parents. The choice and effects of different search operators in
alternative cases will be explored further in Chapters 11 and 13; however, for
now it is important to know that it is provable that across all problems no single
search operator is superior to any other.

The effects of search operators cannot be partitioned from representation, nor
can they be partitioned from the effects of selection operations. Selection can vary
in effect from strong to weak. Strong selection ensures that only the very best
solutions in a population will serve as parents for the next generation. Weak
selection offers nonzero probability that weaker solutions may also serve as
parents. One common form of weak selection is called proportional selection, in
which parents are chosen with probabilities that are proportional to their relative
fitness (under the assumption of strictly positive fitness values). Strong and weak
selection may also be used to describe the percentage of a population that is
retained as parents. For example, in the case illustrated earlier, if p > A, then this
would be weak selection, whereas if p < A, then this would be strong selection.
Certain heuristics are sometimes applied to ensure that the best solution in a
population is not lost under weak selection. These heuristics are generally
described as elitist.

Search and selection are intertwined in effects. A very narrow search can be made
effectively broader by using weak selection. This would allow subpar solutions to
become parents, thus expanding the application of the narrow search operation.
Similarly, a broad search can be made effectively narrower to some extent by using
strong selection. Some mathematical relationships between search and selection are
described in Chapter 12.

It may be helpful to view evolutionary algorithms in the form of an update
equation:

r[t+ 1] = k(v(r[t]))

where k() is the selection operation, v(°) is the variation operation(s), r[t] is the
population at time t under representation r, and there is an implicit generation of r[0],
for example, starting by sampling uniformly at random across all possible solutions.
The use of bold notation for r emphasizes that there is a population of multiple
solutions forming a vector. Formally, r is a transformation on s € S, such that r(s) is a
solution s being represented as r(s), or r for convenience.



This update equation applies to all search algorithms, including exhaustive search,
blind random search, hill-climbing, and evolutionary algorithms. But when applied to
describe the behavior of evolutionary algorithms, it illustrates that the algorithm
designer has certain choices to make about initialization, representation, variation,
and selection. Variation is random, and often so is selection. Thus, the equation is a
stochastic update equation that describes the probability of sampling from different
locations in S at each generation t. To a certain extent, design choices for any one of
these operators can be compensated by choices made in implementing the others. For
a given problem, suitable choices will yield greater probabilities for more quickly
locating solutions of interest. Across all problems, there are no choices that will be
uniformly superior [Wolpert and Macready, 1997].

10.4 MAJOR RESEARCH AND APPLICATION AREAS

10.4.1 Optimization

The most common application of evolutionary algorithms comes in optimization. The
problems addressed span numerical and combinatorial optimization, with represen-
tation and operators tailored to the specific problems. Many real-world problems also
pose constraints, which must be addressed to generate feasible solutions. They also
may pose multiple criteria, and thus require either a tailored function to aggregate the
degrees of achievement across the criteria into a single overall value or a mechanism
for trading off more success in one criterion against less success in others.

There are literally thousands of published applications in the literature of evolu-
tionary algorithms. These applications range in diversity, including biomedical
pattern classification, industrial scheduling, financial forecasting, video game char-
acter control, and many others. Evolutionary algorithms can often be hybridized
easily with other approaches and can also accommodate domain-specific knowledge
that may be available. Specific attention to evolutionary algorithms for optimization
will be given in Chapter 11 and with extensions to games in Chapter 12.

10.4.2 Design

Design is often connected intrinsically to optimization. Suppose there is an electronic
circuit that must be designed to fulfill a particular function. If the degree to which it
performs the function can be written objectively in mathematical terms, evolving a
circuit to meet the specified needs is a problem of optimization. Sometimes, however,
it is the case that no clear knowledge of an objective function is available to measure
the worth of potential solutions to a problem. In this case, real-world in sifu
experimentation can provide a means for evolving solutions. For example, suppose
the task was to evolve a hearing aid for a certain person. Only the person in question
can truly provide guidance on whether or not any audio transformation being applied
by a hearing aid is assisting in providing greater clarity of sound. Having a human in
the loop providing guidance for selection is termed inferactive evolutionary compu-
tation. Some further examples will also be provided in Chapter 13.



10.4.3 Learning and Games

Learning often refers to the case of adjusting strategies for accomplishing a task based
on feedback about the quality of performance being generated. Classic examples
involve learning mapping functions to classify patterns, for instance using neural
networks to classify cases of malignancy in mammograms [Fogel et al., 1998]. In this
case, evolutionary algorithms can be used to adjust the weights between nodes in a
neural network as well as the topology of the network simultaneously. When available
data in a learning application are static, the task is essentially another form of direct
optimization: adjusting available parameters to maximize or minimize some objective
function (e.g., minimizing the squared error between the output of a neural network
and the desired target value for each pattern).

This situation becomes intricate when the task requires learning in the face of
dynamic data, such as controlling a nonlinear system. For example, the famous
cart—pole system (see Section 12.5.1) presents a dynamic learning problem of
having to prevent a pole connected to a moving cart from falling over. The
problem can be made very challenging by adding additional poles [Wieland,
1991a, 1991b].

Learning strategies in control systems can be made even more demanding when
the system being controlled is itself purposeful. This is the essence of gaming, in
which two or more players allocate resources in order to achieve desired objectives.
These objectives may be antithetical, such as in checkers or chess. When one player
wins, the other necessarily loses. In other cases, however, the objectives may seem to
offer the possibility for mutual cooperation, as in a game called the iterated prisoner’s
dilemma. Evolutionary algorithms can be used to model each player in games such as
these. This concept is explored further in Chapter 12.

10.4.4 Theory

As with all mathematical algorithms, it is of interest to analyze and evaluate
evolutionary algorithms in terms of their efficiency, rates of convergence, quality
of evolved solution, computational requirements, and so forth. Mathematical
proofs regarding the properties of algorithms are often more compelling than mere
empirical evidence. But it may be very difficult or even impossible to formulate
purely theoretical analyses of evolutionary algorithms on problems of interest.
Indeed, often the problems of greatest interest are the ones for which mathemati-
cal tools are lacking. Through a combined effort of analysis and experiment, it’s
possible to gain insight into some properties of evolutionary algorithms that
appear important for designing efficient searches on specific problems. It’s also
possible to gain insight to reject some conventional wisdom that has been proven
either incorrect or unhelpful, thus saving wasted time and effort. Basic theoretical
considerations, along with empirical supplementation, are offered in Chapter 12,
with a perspective of helping the practitioner gain best his or her own intuition
about how evolutionary algorithms work and how best to apply them in problem
solving.



10.5 SUMMARY

Evolution provides inspiration for solving complex problems. The problems that
living organisms address every day are routinely much more complicated than the
problems found in textbooks. The fly that clings upside down to the ceiling must not
only avoid being eaten but also find food and water (often the water is found in food,
like fruit), and importantly it must maintain viability as it develops from a larva to a
pupa to a fly, and then it must make other viable flies, otherwise there will be no more
flies. The tremendous complexity of life is enormous compared to a problem like
classifying which song you are listening to from a short snippet (as with the
Smartphone “app” Shazam®) or identifying which species of iris a flower belongs
to based on the length and width of sepals and petals [Fisher, 1936].

Sometimes our own problems can seem trivial by comparison to what nature is
solving. However, solving these problems can help make our own lives more
enjoyable. Problems can sometimes be addressed effectively by standard mathe-
matical techniques, such as gradient-based optimization; however, it’s often the
case that nonlinear aspects of problems and their solutions (for instance, in the
case of neural networks or fuzzy systems) render traditional problem-solving
approaches inadequate. In these cases, evolutionary algorithms—simplified mod-
els of nature’s process of evolution by random variation and selection—may offer
a robust alternative.

Evolutionary algorithms have been explored for over six decades, dating back to
some of the earliest applications of “modern” computing in the 1950s [Fogel, 1988].
These algorithms have been used to discover solutions to problems that pose multiple
local optima, in noisy conditions, that vary over time, and in light of objectives that are
not associated with typical least-squares minimization or linear constraint satisfaction.
The field of evolutionary computation has a rich history of application and theoretical
development. The following chapters are aimed to assist you as a problem solver
better understand and apply these techniques.

EXERCISES

10.1. Living organisms are a duality of their genotype and their phenotype, expressed
in a given environment. What do these terms refer to? Are there any examples
of nonliving systems that have a similar duality of a genotype and a phenotype?

10.2. What is meant by the terms pleiotropy and polygeny? If one of your genes is
altered, say, by a simple mutation, could this change more than one of your
behavioral traits? Why or why not?

10.3. Evolution can be viewed as an optimization process, but it is important not
to confuse optimization with perfection. Some describe evolution as a
“satisficing” process, in which solutions have to be “just good enough.”
Why does evolution fail to generate perfect solutions to the problems
organisms face?



10.4.

10.5.

10.6.

10.7.

Despite the inability for evolution to create perfect solutions, it can often
engineer creations that are pretty stunning, if you can see them. One strategy for
survival mentioned in the chapter deals with warning signs (aposematism),
such as those found on honey bees or their mimics. Another strategy is to not
call attention to yourself, to hide in the background. This is called crypsis. Have
a look at the lizard found at http://en.wikipedia.org/wiki/Crypsis in the upper-
right photograph. (Have a look, that is, if you can find it at all.) Explore other
cases of crypsis and suggest which examples are most impressive to you.

Evolutionary algorithms differ from traditional search algorithms in several
ways. They rely on a population of solutions instead of just one to form a basis
for searching via random variation and selection. Explain intuitively how
variation, selection, and representation are connected.

In the example provided in this chapter, an evolutionary algorithm was
described to find a minimum of f(x,y) = x> +y by adjusting values of the
solutions based on Gaussian variation. Consider some other forms of variation,
such as by adding a uniform random variable or a Cauchy random variable?
What is your intuition about the advantages and disadvantages of these random
variations relative to a Gaussian variation. Recall that a Gaussian distribution
has the shape of a bell curve. A uniform distribution is constant across a defined
minimum to maximum range. A Cauchy distribution appears a lot like a
Gaussian distribution but has fatter tails and infinite variance. (You can create a
Cauchy random variable by taking the ratio of two standard Gaussian random
variables.)

A French biologist and the Nobel Prize winner, Francois Jacob (1920-2013)
wrote in 1977 that evolution works more like a tinkerer than an engineer [Jacob,
1977]. (Jacob’s paper is easily accessible online.) Describe what Jacob meant
by this remark. How does the evolutionary process of problem solving differ
from that of a human engineer solving a problem?


http://en.wikipedia.org/wiki/Crypsis

CHAPTER 11

Evolutionary Optimization

Since early in the history of evolutionary computation, simulated evolution has been
used as a search mechanism to find optimal solutions to problems of interest. In the
1950s, some used evolutionary methods to design computer programs that would
control a robot [Friedman, 1956] or craft a simple computer program [Friedberg et al.,
1958]. In the 1960s, others used evolutionary methods to design physical devices
[Rechenberg, 1965] or create predictive models of time series data [Fogel et al.,
1966]. Still others sought evolutionary methods for generating strategies in games
[Reed et al., 1967; Fogel and Burgin, 1969]. The examples here are meant only to be
illustrative and not exhaustive. There is a rich and interesting history to the field of
evolutionary computation, as described in Evolutionary Computation: The Fossil
Record [Fogel, 1998]; however, in virtually all of these cases, evolution was used as a
foundation for searching a space of possible solutions to a problem using methods of
random variation and selection.

In speaking about evolutionary algorithms used for optimization, or in other words
evolutionary optimization, it is important to recognize that a problem to be solved
must be well defined. This means that any possible solution to the problem must be
comparable to another possible solution. It is not enough to identify merely the most
desired outcome as “the solution.” Often in the real world, we are not presented with
sufficient resources or there are other constraints that prevent us from obtaining that
“golden future.” For a problem to be well defined, at least in the sense that is meant
here, any possible solution to the problem must be assessable relative to all others.

Most often, the comparisons between two or more candidate solutions are based on
quantitative measures of how well a proposed solution meets the needs of the
problem. For example, you may have a problem of finding a minimum path from
some point to another point separated by obstacles. Any proposed path that avoids the
obstacles and gets from the first point to the other point has a certain distance. That
distance provides a quantitative measure of the quality of the path. In this case, as in
golf, smaller numbers are better. Other cases might be designing a schedule for a
factory that maximizes profitability, or finding a new potential drug that binds to a
specific protein with minimum free energy.



Evolutionary algorithms are quite flexible, however, and it is not always the case
that purely quantitative measures of a solution’s “fitness” are required. For example,
suppose that you may want to find a blend of coffee that you find most enjoyable from
a mixture of five different types of coffee beans. You could try random combinations
of blends and seek to evolve the overall blend that you like best. You could rate each
blend on a numeric scale, say from 0 to 10 with 10 being the best coffee you’ve ever
tasted. Then you could make a quantitative comparison between blends. (There’s a
problem here though because the best coffee that you’ve ever tasted might be
surpassed by a new blend that is the new best coffee that you’ve ever tasted, and
by our scoring system, each would receive a score of 10, unless you retaste and
rescore coffees at each generation.) But instead you could simply rank the blends in
order of preference, or in the most primitive case simply assert that you like one blend
more than another. (See Herdy [1997] for an example of evolving coffee blends.)

The use of qualitative or even fuzzy descriptors of measures of fitness are most
often found in what’s called interactive evolutionary computation, in which a human
provides a judgment about the quality of proposed solutions. Putting a human in the
loop of assessing the merits of alternative solutions is typically slow relative to
evolutionary algorithms that can compute a quantitative measure of a solution’s
quality. Nevertheless, there are certain applications that require a human’s assess-
ment, such as judging which type of music or art is preferred [Takagi, 2001], or the
quality of a hearing aid or tinnitus masking device [Fogel, 2008].

This chapter focuses on quantitative evolutionary optimization, in which there is a
numeric description—a function—that operates on a potential solution and returns
either a single real number or multiple numbers that describe the value of the solution.
Within evolutionary optimization, as with all engineering, there are essentially two
forms of optimization problem.

One form is numeric. For example, find the point (x, y) such that f(x, y) = x> + y? is
minimized, which we saw in Chapter 10. Here, the solution space is R* and f(x, y) can
be used as a measure of solution quality (lower is better because it’s a minimization
problem).

The other form is combinatoric. For example, given a collection of tools, each with
a certain weight, find the combination that has the greatest combined weight that will
fit in a bag that can hold only 25% of the weight of all the tools combined. This is
called a knapsack problem. In this case, you aren’t searching for a point in R", but
rather for a combination of items that can be listed. In the case here, the order of the
listing doesn’t matter; the tools can go in the bag in any order. In other problems, the
order of presentation of the items makes a big difference. For example, think about
optimizing the arrival of supplies at a construction site.

This chapter provides an introduction to both numeric and combinatorial evolu-
tionary optimization. It also describes some of the mathematical properties of repre-
sentation and selection operators, and of evolutionary algorithms broadly. Some
important extensions of the basic application of evolutionary algorithms for optimiza-
tion are also covered, including handling constraints and allowing the evolutionary
algorithm to learn how to optimize its own search parameters in a process called self-
adaptation.



11.1 GLOBAL NUMERICAL OPTIMIZATION

11.1.1 A Canonical Example in One Dimension

In the previous chapter, we saw an example that used an evolutionary algorithm to
address a simple problem in two dimensions. Let’s briefly consider something even
simpler first: the case of searching for a point x € R, such that f(x)= x> is
minimized. Since the function f(x) is quadratic, finding the minimum by calculus
methods is straightforward.' But suppose we didn’t know that the function f(x) was
actually f(x) = x2. Suppose it was just a “black box” that responded with a number
any time we put a number in the box. We put the number 4 in the box and the box
says 16. We put the number —4 in the box and again the box says 16. We need to
find a number that minimizes what the box generates. This is called black box
optimization.

An evolutionary approach to finding the minimum number could be as follows.
Suppose we form a population of candidate solutions, X, ..., X,, where there are p
“parents.” We select these parents at random from a portion of real numbers, say
uniformly between a lower limit of —100 and an upper limit of +100. In pseudocode,
this would be as follows:

i = 0;
repeat

i=14+ 1;

x[i]= U(-100,100) ;
until (i == p);

where U(—100, 100) is a uniformly distributed random variable over the interval
(—100,100).

Each of these parents is varied randomly to create more solutions, Xui1, - . . , Xusa,
where there are A “offspring.”> We could conduct this random variation in many
ways, but one typical method is to add a random number from a standard Gaussian
distribution (i.e., a mean of zero and standard deviation of 1) to a parent to create an
offspring.

For the sake of simplifying notation, assume that in this case A = p and thus
each parent creates one offspring (although there is no limitation in evolutionary
algorithms about the number of offspring that can be created from a parent). Then,
in pseudocode, the process of creating offspring from parents would be as
follows:

! Take the derivative f'(x) = 2x and set it equal to zero and solve for x (x = 0). Then take the second
derivative f”(x) = 2 and note that it is positive, thus the point x = 0 is a minimum of f(x).

2 The notation of p parents and A offspring is standard nomenclature in evolutionary algorithms and
developed within the offshoot of evolutionary computation known as evolution strategies that emerged in
Germany in the 1960s. It’s important not to be confused by the use of p, which has a long history in statistics
of describing the mean of a population or a random variable.



i=0;
repeat

i=14+1;

x[p + 1] = x[i] + N(0,1);
until (i == p);

where N(0, 1) denotes a standard Gaussian random variable (also known as a
“standard normal”).

At this point, we have 2p random ideas about what to put in the black box. We now
have to test each idea and see what the box says. In pseudocode, this would be as follows:

i=0;
repeat

i=1i+41;

score x[i] = f(x[i]);
until (i == 2p);

We then rank order the 2 solutions in terms of their scores from lowest to highest.
The p best-ranking solutions then become the new parents for the next generation. In
pseudocode, the process is as follows:

InitializePopulation;

repeat
CreateOffspring;

ScoreEveryone;
SelectNewParents;
until (done);

The question of when to halt this procedure is often a matter of how much time is
available to compute a solution or what level of quality is required. Here, we might
continue the process of variation and selection for some number of generations g, or
until the value of the best solution is lower than a threshold, say, 107°. This threshold
would work in our problem if we had a hunch that zero was the minimum (which it is for
f(x) = x2).> If you construct a simple evolutionary algorithm for this problem, you’ll
find that it quickly locates solutions that have a score of less than 10~, but not as quickly
as some other search methods, such as bisection or gradient search, and certainly not as
quickly as calculus if we knew the function inside the black box ahead of time.

11.1.2 A Canonical Example in Two or More Dimensions

Having reviewed the canonical example in a single dimension, it is easy to extend it to
the canonical case of two (or more dimensions), as we did in the example in

3 Alternatively, a stopping rule could be to halt when improvement from one generation to the next is below
a threshold, or improvement over several generations is below a threshold.



Chapter 10. Parents are chosen from the space R", where n is the number of
dimensions. Offspring can be created by randomly varying each dimension of the
parent, and also by combining or averaging across parents. Then, all the solutions are
assessed and the best are retained to be parents of the next generation.

With regard to creating offspring from parents, traditionally, methods that use a
single parent to create a single offspring are described under the heading of mutation,
whereas methods that seek to combine multiple parents to create offspring are
described with the term recombination. There are various forms of recombination
that have their origins in inspiration from nature.

One method of recombination is called crossover. This operates on the following
two solutions:

X115 X125 -+ - s XIn

X21,X22, -« -, X2n

where X, denotes the second parameter of the first solution and n is the number of
parameters (dimensions). A crossover point is selected, usually at random, and two
new solutions are created by splicing the first part of the first solution with the second
part of the second solution, and vice versa. For example, suppose the crossover point
was 3, then the two offspring would be

X11,X12,X23, - - -, X2n

X21,X22,X13, - - -5, XIn

This “one-point” crossover operator has the sometimes undesirable property of forcing
segments that are near each end of the solution vector to remain together. Thus, a
multipoint® crossover operator can be employed, which treats the solution vectors more
like rings in which sections can be exchanged, rather than strings in which a transition is
made from one to the other. The limiting form of this, called uniform crossover [Fraser
and Burnell, 1970; Syswerda, 1991], selects one component from either parent at
random without regard to maintaining continuous segments and exchanges them.

Another form of recombination is blending. This averages parameters of parent
solutions when creating offspring. For example, the two parents

X11, X125+« -3 X1n
X21,X22, ..., X2n

could create

(XU + X21)/2,(X12 +X22)/27 c. ,(Xln + in)/z

In general, there is no need to use a simple arithmetic mean; a weighted arithmetic
mean or even a geometric mean may be useful in certain circumstances.

“ This is called “n-point” in evolutionary algorithm literature, but here n refers to the number of crossing
points not the dimension of the problem.



Recombination, in terms of both crossover and blending, can be extended to more
than two parents. There are no restrictions that evolutionary operators follow the
mechanics of the operations as found in nature.

It’s almost always the case that evolutionary algorithms are employed when an
optimization problem has multiple dimensions rather than just one dimension. In
pseudocode, the process can be described as

InitializePopulation;
repeat

CreateOffspring; //mutate and/or recombine
ScoreEveryone;
SelectNewParents;

until (done) ;

11.1.3 Evolution versus Gradient Methods

If the problem at hand presents a smooth, convex, continuous landscape (e.g.,
f(x,y) = x> +y?), then gradient or related methods of optimization will be faster in
locating the single optimum point. On the other hand, if the problem presents a landscape
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Rastrigin’s function with n = 2 and A = 10 (see text). This function is sometimes used as a test
case for evolutionary algorithms and other techniques to assess the challenge of overcoming
local optima and saddle points.



optimum solution because each gradient is associated only with the local optima created
by the effects of the cosine function.” This may present an opportunity for evolutionary
optimization to be used effectively. If the landscape is discontinuous and/or not smooth,
then gradient-based approaches may be inapplicable—it may not be possible to compute
gradients—and thus other “generate and test” methods such as evolutionary algorithms
again may present an opportunity for addressing the problem successfully.

11.2 COMBINATORIAL OPTIMIZATION

To illustrate the use of evolutionary algorithms for combinatorial optimization, let’s
consider the canonical case of addressing the traveling salesman problem. The
problem is as follows. There are n cities. The salesman starts at one of these cities
and must visit each other city once and only once and then return home. The salesman
wants to do this in the shortest distance. The problem then is to determine the best
ordering of the cities to visit. This is a difficult problem because the total number of
possible solutions increases as a factorial function of the number of cities. More
precisely, for n cities, the total number of possible solutions is (n — 1)!/2. For a small
problem such as n = 10, there are 181,440 different paths to choose from. For
n = 100, the number of different paths is on the order of 10"°, Figure 11.2 shows the
relationship between the number of cities and the number of possible tours. By way of
comparison, as mentioned earlier, there are about 10'® s in the approximately 13
billion year history of the universe. So, when there are so many possibilities to choose
from, enumerating them all and determining the best one is infeasible.

The traveling salesman problem is NP-hard. There are no known methods for
generating solutions in a time that scales as a polynomial function of the number of
cities, n. There are heuristics that are available for this canonical form of the traveling
salesman problem, and some of these can be effective even for large n given certain
cases of the general problem but for the time being let’s focus on an evolutionary
approach to the problem.

First we must create a data structure to represent a solution. One such structure is a list
of cities to be visited in order. For example, given the seven cities, a potential solution is

[1,3,2,5,7,6,4]

in which the salesman is presumed to start at city 1 and return to city 1 after visiting city
4. Other data structures are also possible. For example, since the salesman’s circuit is a
series of links between cities (more formally edges on a graph), the representation
could be in the form of a series of links, such as

[(1,3),3,2),(2,5),(5,7),(7,6), (6,4), (4, 1)]

5 This function is known as Rastrigin’s function and was introduced in evolutionary algorithm research
many decades ago as a test case to determine how effective evolutionary methods could be on functions that
present many local optima. At the time of this writing, there is a nice illustration of Rastrigin’s function at
en.wikipedia.org/wiki/Rastrigin_function.
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FIGURE 11.2 The number of possible tours in a traveling salesman problem as a function of
the number of cities. There are (n — 1)!/2 possible tours for n cities. The formula is derived
noting that whenever you start, there are (n — 1) possible next cities, then (n — 2), then (n — 3),
and so forth; however, it doesn’t matter which direction you traverse the tour, thus the (n — 1)!
options can be divided by 2. Problems with 70 cities are already close to presenting 10'%°
possible options.

Some people may find this more intuitive; however, since the ordered list of cities
is quite straightforward, so for our purposes here, we’ll focus on that representation.

Next, we must be able to score any potential solution. Here, the score associated
with any solution, f, is the length of the total path through the cities:

n—1
f="d(ci,cisr) +d(cn, c1)
p

where d(a, b) is the distance between city a and city b, and c; is the ith city. Lower
scores are better.

Then we must determine a method for creating offspring solutions from parent
solutions. Given the representation of an ordered list, the following are some of the
potential methods:

1. Select and replace: Choose a city at random along the list and replace it at a
random place along the list.

2. Invert: Choose two cities along the list at random and invert the segment
between those cities.

3. Protect and randomize: Choose a segment of the list to be passed from the
parent to the offspring intact, and then randomize the remaining cities in the list.
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FIGURE 11.3 The best tour length for each average of 50 trials of a (50 + 50) evolutionary
algorithm using permutation encoding on a 100-city traveling salesman problem as a function
of the number of generations. The legend shows the results of different mutation operators:
dotted = protect and randomize, dashed = select and replace, solid = invert a segment. At 5000
generations, the mean best tour lengths based on these mutation operators were 1932.6, 988.4,
and 807.0 units, respectively.

Figure 11.3 shows a comparison of results for these three operators. Each curve
represents the average score of the best solution in the population at the specified
generation. The results suggest that the two-point inversion operator generates better
solutions faster than the other two mutation operators on this problem. (We’ll discuss how
to use statistics to make conclusions about these sorts of comparisons in later examples.)

Let’s consider as well a recombination operator we could try on the traveling
salesman problem. One possibility is an operator called partially mapped crossover
(PMX).® The operator works on two parents by choosing a segment of the first parent
to move directly to the offspring. It then moves the feasible parts from the second
parent to the offspring. Finally, it assigns the remaining values to the offspring based
on the indexing in the first parent. Here’s an example.

Suppose we have two parents

3,5,1,2,7,6,8,4]

6 PMX is also called partially matched crossover but, as introduced in Goldberg and Lingle [1985], it was
described as partially mapped crossover.



and
[1,8,5,4,3,6,2,7]

and suppose that the segment [1, 2, 7] is selected to be saved from parent 1. Then, at
this step the offspring could be written as

[+7 +7 172777 +7 +7 +]

where the 4+ symbol in a placeholder for an undetermined component of the solution.
Next, the feasible elements of parent 2 are copied to the offspring. These are the values
that do not already appear in the offspring. So, the offspring becomes

[+7 87 17277767 +’ +]

Finally, we look at the first position, which was a 1 in parent 2 but we can’t copy that
because 1 already appears in the offspring. So, we look at where 1 appears in parent 1
and see that the corresponding value for parent 2 in that position is 5. So, 5 goes in the
first place in the offspring. Similarly, 4 goes in the seventh place and 3 goes in the
eighth place, and we end up with

[57 8) 17277)674)3]

Figure 11.4 shows the average results on 50 trials of applying the PMX operator on
the same 100-city traveling salesman problem instead of the other mutation operators.
It also shows the results of combining PMX with inversion, with the probability of
having an inversion set at 0.5 per offspring. The results show that the PMX operator
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FIGURE 11.4 The average of 50 trials with the same 100-city traveling salesman problem as
studied previously comparing the best tour as a function of the number of generations for PMX and
PMX plus a 0.5 probability of applying inversion. On average, PMX alone stalls at a relatively
poor solution. By including inversion, the search for improved solutions can continue.
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FIGURE 11.5 The average of 20 trials on the 100-city traveling salesman problem comparing

PMX + inversion (0.5 probability/offspring) with inversion alone. The combination of PMX

and inversion offers more rapid improvement on average for about the first 3000 generations.

After that, the results suggest relying on inversion alone.

alone stalls at a mean tour length that’s just less than 3000 units. It does this because
selection has eliminated the variation in the population and the PMX operator cannot
generate anything new. It can only recombine existing solutions. Once those solutions
look the same, PMX (or any standard crossover operator) becomes incapable of
searching further. The results show that adding in the possibility of mutating offspring
via inversion allows the evolutionary search to proceed toward improved solutions.

It’s natural to want to compare the results of the PMX + inversion approach with
inversion alone to see if PMX is offering any benefit to the search. Figure 11.5 shows
the results of that comparison through 10,000 generations. Up to generation 3000, the
combination of PMX and inversion generated faster improvement than inversion
alone, on average. After the 3000th generation, inversion alone did better on average
at fine-tuning toward better solutions.

At this point, if you are thinking that perhaps it would make sense to use different
variation operators at different times during an evolutionary search, rather than rely
only on a fixed set of operators in a certain framework (e.g., PMX + inversion at 0.5
probability/offspring), that’s great! We’ll cover more on the self-adaptation of
variation operators later in this chapter.

Returning to the broader concept of combinatorial optimization problems, there is a
wide variety of these problems that can be addressed using evolutionary algorithms.
Some of these are extensions of canonical problems, such as the traveling salesman
problem. For example, consider the problem of optimizing the routing of delivery trucks
for a major logistics company. Each truck must be loaded optimally in order to provide



each driver the opportunity to deliver the products on time. Not all customers are equally
important; some deserve higher priority. Not all drivers are capable of handling the same
equipment: Some are rated to drive larger vehicles. Determining the best way to allocate
the materials to the trucks, assigning the drivers to their vehicles, and routing the
vehicles to their destination present a complicated real-world problem.

There are other forms of combinatorial problems that are related to optimal subset
selection problems. These are common in mathematical regression, in which you must
explain observed data using independent variables but must decide which subset of
variables provide the most explanatory power. They arise in many machine learning
applications in the form of determining the appropriate number of neurons and topology
for a neural network, or the number and shape of membership functions in a fuzzy
control system. Similarly, data structures of variable size such as finite-state automata
and symbolic expression trees also pose opportunities for combinatorial optimization.

11.3 SOME MATHEMATICAL CONSIDERATIONS

Any optimization approach should be amenable to analysis. Computers have
increased in speed so dramatically that much of the analysis that used to be performed
analytically (i.e., by mathematical theorem and proof) can be done effectively by
empirical observation. Put another way, it’s often possible to arrive at a good
understanding of the mathematical properties of an approach through statistical
estimation based on repeated sampling of a given procedure on a particular problem
of interest. This approach is limited, however, to that particular set of observations and
it can be difficult to generalize those results to other problems.

Early in the development of evolutionary computing techniques, there were broad
beliefs that certain choices would offer superior performance generally. For example,
one such belief was that binary representation would offer an intrinsic advantage over
other representations regardless of the problem and that a selection method called
proportional selection would provide an optimal way to create offspring in the search
for improved optimization performance [Holland, 1975]. These and other specifics
will be addressed in more detail in this section; however, it’s important to note that
mathematical analysis has shown that there truly is no single best approach to
computational (i.e., computer-based) problem solving generally [Wolpert and Mac-
ready, 1997; see also Corne and Knowles [2003] and DuenezGuzman and
Vose [2013]. Extending this “no free lunch” principle, it’s important to note that
there is always a challenge of generalizing the results of an evolutionary algorithm (or
any algorithm) on a particular problem to other problems, even though they may
appear to be closely related. The onus is on the researchers to effectively make the
case if they want to claim a generalized result via empirical observations.

11.3.1 Convergence

Prior to the fast modern-day PC computers, extensive efforts were made to determine
the mathematical properties of evolutionary algorithms both broadly and on specific



function optimization problems of interest. These efforts continue in order to more
precisely describe the behavior of evolutionary algorithms in certain cases; however,
for a basic understanding of general properties of evolutionary algorithms, it is
important to review fundamental issues regarding their convergence properties.

11.3.1.1 Convergence with Probability 1 Evolutionary algorithms can be
constructed in the framework of a Markov chain, which provides the mathematical
tools to show that these algorithms can converge to an optimum solution with
probability 1. Relevant publications can be found in Eiben et al. [1991];
Fogel [1992b]; Davis and Principe [1993]; and Rudolph [1994], and one accessible
proof is found in Fogel [2006]. Rather than repeat the proof here, the essence of it is to
consider different configurations of an evolving population to be states in a Markov
chain.

If you don’t know what a Markov chain is, it’s a stochastic process, which is a fancy
way of saying that it’s a time-indexed sequence of random variables. The Markov chain
is defined over a set of states (e.g., “awake” and “asleep”). The probability of
transitioning from one state to another is time invariant and depends only upon the
current state. For example, here’s a Markov chain for “Awake and Asleep.”

Awake[t+ 1] Asleep[t + 1]
Awake]t] 0.4 0.6

Asleep|[t] 0.8 0.2

In this case, if you are in the state Awake at time t, then you have a 0.4 probability of
staying in the state Awake and a 0.6 probability of transitioning to the state Asleep. If
you are already in the state Asleep, then you have a 0.8 probability of transitioning to
the state Awake, and a 0.2 probability of staying in the state Asleep.

Since the transition probabilities depend on the states in the system and don’t
depend on any particular time, the probability of being in a state of two time steps in
the future can be found by multiplying the probability matrix (described by the letter
P) by itself (squaring the matrix). Iterating from one point in time to another, say, k
steps in the future, in a Markov chain is accomplished by raising P to the kth power. In
our case, the basic transition matrix is written as

[0.4 0.6
P=
0.8 02

and thus the two-step transition matrix is

r_ [0.64 0.36]
0.48 0.52

So, if you are in the state Awake at a time t, then there is a 0.64 probability that you
will be in the state Awake at time t 4 2. It’s natural to think about what state you would



be in if time went to infinity. In our case,

» _ [0.5714 04286
~10.5714  0.4286

That is, no matter which state you are in at time t, there is (approximately) a 0.5714
probability that you will be in the state Awake as time goes to infinity, and a 0.4286
probability that you will be in the state Asleep as time goes to infinity.

We can apply this same principle to study the long-term behavior of some
evolutionary algorithms in which the time history of how the population arrived
at its present state is not pertinent to the population’s future trajectory, and also the
probabilities for transitions for one configuration to another are fixed (stationary). If
an evolutionary algorithm is constructed with a form of selection called elitist
selection, in which the absolute best solution(s) in the population is always retained
into the next generation, and if the algorithm is constructed such that a mutation
operation can reach any state with nonzero probability (e.g., applying a Gaussian
random mutation on all parameters), then the transition matrix for the Markov chain

can be written as
1 0 }
P=
R Q

where P is the transition matrix, 1 is a 1 X 1 identity matrix describing the absorbing
state that has the global best solution, R is a strictly positive (all entries > 0) tx 1
submatrix, Q is a t X t transition submatrix, 0 is a 1 X t matrix of zeros, and t is a
positive integer based on the size of the state space. Essentially, if the population
already contains the best possible solution, then it is in the state “1”” and will stay there
forever. If the population doesn’t contain the best solution, then the submatrix R
describes the probabilities of transitioning to “1” in the next step, and submatrix Q
describes the probabilities of transitioning elsewhere.
This is a special case of a more general transition matrix

o
P=
R Q

where I, is an a X a identity matrix.
In the limit, as k tends to infinity,

limP* = ~1
e [-QR Q

The components “0” indicate that given infinite time, there is zero probability that the
chain will be in a state that is not an absorbing state, and the absorbing state(s) was
defined as a state(s) that contains a global optimum due to elitist selection. So, this



means that there is convergence with probability 1 to a global optimum. Special
properties of the matrix entries R and Q provide for this result, implying a stronger
form of convergence called complete convergence [Hsu and Robbins, 1947].”

This mathematical result is of limited utility because no one has infinite time to
wait to discover a globally optimal solution; however, it may be useful to recognize
that without elitist selection and without a mutation operation that can reach all
possible states, this proof of convergence with probability 1 does not hold. In
particular, if crossover is substituted for mutation, then the result does not guarantee
convergence to a global optimum, but rather only to a homogenous state in which all
solutions are identical and therefore no new solutions are possible.

11.3.1.2 Premature Convergence Evolutionary algorithms that rely predom-
inantly on crossover or other recombination methods to generate offspring can
sometimes suffer from what is termed premature convergence, which occurs
when a population becomes homogeneous at a solution that is not the global optimum
(or is less than desirable). The term is often used incorrectly to describe the effect of
converging to a local optimum, but the origin of the term applies directly to the case in
which no further progress is likely because the population lacks diversity, which
effectively stalls an evolutionary algorithm that is heavily reliant on crossover or
recombination. (We saw an example of premature convergence when exploring the
use of the PMX operator on the traveling salesman problem. The PMX operator
became ineffective when the population became homogeneous.)

In some studied cases of evolutionary algorithms that rely heavily on crossover, the
likelihood of converging prematurely to a given solution has been shown to be related
to the quality of the solution (i.e., there was more likelihood of stalling at a point if that
point was of higher quality) [Spears and De Jong, 1997]. The most common methods
for overcoming premature convergence include restarting from a new randomized
population, using heuristics to move the population to a new collection of points (e.g.,
by hill climbing), or redesigning the approach. Early literature in evolutionary
algorithms often recommended very high rates of crossover and very low rates of
mutation [Holland, 1975; Goldberg, 1989], which made premature convergence more
likely. Observing repeated premature convergence in an evolutionary algorithm
suggests, at least, reconsidering the variation operators that are being used and
giving consideration to modifying the probabilities of applying those operators, or
creating new variation operators that are better tailored to the problem.

11.3.2 Representation

Designing an evolutionary optimization algorithm requires choices of representation,
selection, and variation operators. With regard to representation, as mentioned early in
this chapter, for many years in the early formulations of evolutionary algorithms, there

7 Rudolph [1994] showed that some nonelitist evolutionary algorithms can also converge on strictly convex
functions.



was a general belief that it would be beneficial to represent solutions using binary

strings.

For example, when facing an optimization problem in R", instead of treating
solutions directly as a vector [xi,...,X,] where x € R", the solution would be
transformed into a series of bits [xy, ..., Xx], where k defined the length of the bit

string. The greater the degree of desired precision, the larger the value of k would need
to be. The belief was that longer strings generated more opportunities for an
evolutionary algorithm to explore the subspace of possible solutions via substrings,
and that this would provide a greater “information flow” [Holland, 1975].8

Many problems do not lend themselves easily to a description in binary strings. For
example, consider representing a traveling salesman problem as a series of 1’s and 0’s.
This is anything but straightforward. Suppose there are five cities. An intuitive
representation would be an ordered list of cities, such as

[12345]
Encoding these in binary could be done as
[001010011100101]

with each three-bit segment corresponding to the number of a city. But this
representation is not easily varied by mutation or recombination. For example,
mutating the fifth bit from 1 to O yields

[001000011100101]

and then the second city to visit is city “zero,” which doesn’t exist. Similarly, crossing
two such bit strings would almost certainly generate offspring that would not
correspond to legal tours of the available cities.”

8 As a historical footnote, this belief originated in the subfield of evolutionary computing known as “genetic
algorithms.” The core idea of this approach was to view solutions in terms of building blocks that can be
assembled via crossover. This is of course possible in some problem constructions, but not in others. When
real-valued encodings were first tried on problems in R" using this approach, it violated the “building block
hypothesis” of genetic algorithms; however, placing more emphasis on mutation and less on crossover was
often successful with this real-valued representation and the results were published. This led to an approach
called a “real-valued genetic algorithm.” That is a misnomer because the core genetic algorithm concept of
building block construction within parameters does not take place in the real-valued representation on R".
In this case, it’s essentially equivalent to what emerged in other branches of evolutionary computation, such
as evolution strategies [Rechenberg, 1973], evolutionary programming [Fogel, 1990], and see Bremermann
et al. [1966] and others. Differentiating between evolutionary approaches (e.g., genetic algorithms versus
evolution strategies) is of dubious scientific value in modern evolutionary computing.

° In an ingenious procedure, Grefenstette et al. (1985) proposed a binary encoding for the traveling
salesman problem that was amenable to recombination based on the order in which cities were removed
from a list. But the procedure did not ultimately provide better optimization performance than comparative
methods.



Fortunately, the notion that binary representations are universally better than other
representations is false. In fact, there is no “best” representation across all problems,
and under some conditions there is a provable mathematical equivalence of repre-
sentations of different cardinality [Fogel and Ghozeil, 1997; see also Radcliffe [1992]
and Battle and Vose [1993]]. Thus, the choice of a representation for a particular
problem is often a matter of which provides the greatest intuition to the practitioner as
the problem solver.

Some important aspects to consider when selecting a representation include the
following:

1. The representation should optimally provide immediate information about the
solution itself. For example, in the traveling salesman problem, the list of cities
is suggestive of the solution.

2. The representation should be amenable to variation operators that are well
understood for their mathematical properties and can exhibit a gradation of change.
This means that variation operators should be available to make both small changes
and big changes to any given parent(s), and that the likelihood of these different-
sized changes can be controlled. For example, when searching forx € R" such that
f(x) is minimized, using a Gaussian variation operator on x allows generating
offspring that are close to or far from x, and this can be controlled by changing the
standard deviation in each dimension (see Section 11.5).

3. Unless the objective is to explore the utility of a novel representation, utilizing
representations that have been studied and for which results have been
published may allow more systematic and meaningful comparisons.

With experience, you can gain better intuition about the effects of different
representations, and how they are coupled with variation operators in order to search
a solution space (landscape) for successively better answers to a problem of interest.

11.3.3 Selection

Selection describes either the process of eliminating solutions from an existing
population or making proportionally more offspring from certain parents. Some
common forms of selection include plus/comma, proportional, tournament, and linear
ranking. Each of these has different effects on the likelihood of particular individuals
to survive as parents or create offspring, and thus each has conditions that favor or
disfavor its utility.

11.3.3.1 Plus/Comma Selection The notation (p+A) and (p,A) are now
commonplace in evolutionary algorithms and refers to the two cases in which (i)
p parents create A offspring and the best p individuals are selected from among the
p + A to be parents of the next generation, or (ii) p parents create A offspring and the
best p individuals are selected only from among the A offspring to be parents for the
next generation. Thus, in “plus” selection, all parents and offspring compete to be



parents for the next generation, whereas in “comma” selection, the parents die each
generation and a surplus of offspring must be created. Some variations of these
approaches include (i) the case of (p + 1), which is sometimes referred to as “steady-
state” or “continuous” selection, and (ii) allowing parents to survive for some
maximum number of generations g before being removed in the comma selection
process.

11.3.3.2 Proportional Selection As the name infers, proportional selection
picks parents for reproduction in proportion to their relative fitness. (The procedure is
sometimes also called roulette wheel selection.) Thus, the procedure is constrained to
maximization problems on strictly positive fitness scores. If it were desired to find the
minimum of f(x, y) = x> + y? using proportional selection, the problem would need to
be turned first into a maximization problem, such as find the maximum of 1/f(x, y). The
probability of selecting an individual in the population for reproduction is determined as

p
p; = f(0)/ Y _ ()
=1
where p; is the probability of selecting the ith individual, there are p existing
individuals, and f(i) is the fitness of the ith individual. Rather than working directly
on the fitness values, proportional selection can work on the relative ranking of
solutions (thus making it applicable to minimization problems). Proportional selection
is applied to individuals generally by selecting one individual for mutation, or two (or

more) individuals for recombination until the population size for the next generation
has been filled.

11.3.3.3 Tournament Selection There have been different forms of tourna-
ment selection in the history of evolutionary algorithms, but the more common one
selects a subset of size q (often q = 2) from the existing population and selects the best
of those q individuals to be a member of the next generation. The process is repeated
until the population is filled. The process can be conducted with or without
replacement, that is, individuals that are selected out of a g-tournament can be given
an opportunity (or not) to be selected again in another g-tournament. As with
proportional selection, tournament selection allows the possibility that solutions
that are less than best can propagate into a future generation.

11.3.3.4 Linear Ranking Selection Linear ranking selection maps individuals
to selection probabilities according to a prescribed formula based on the rank of the
solution (see the earlier remark on proportional selection based on ranking in Section
11.3.3.2). There are many variations of this approach, but one early approach [Baker,
1985] assigned a probability to the ith ranked individual as

pi=m" =" =n)li-1]/[u—1]D/p

where p; is the probability of selecting the ith individual, p is the number of
individuals in the population (sometimes described with A, see [Béck, 1994]), and



Nt and n~ are user-controlled constants constrained by 1 <n* <2andn™ =2 —-n*.
For example, if p = 100 and n*t = 1.5, then n~ = 0.5, and the probability of selection
of the ith-ranked solution in the population is

p, = (1.5 — (1)(0/99))/100 = 0.0015
p, = (1.5 — (1)(1/99))/100 = 0.00148989 . ..

Pioo = (1.5 = (1)(100/99))/100 = 0.0048989 . . .
Thus, better solutions are favored over lesser solutions.

11.3.3.5 Example Let’s examine the effects of different selection operators when
combined with a simple evolutionary algorithm to search for the minimum of Rastrigin’s
function in two dimensions. The function is f(x,y) = 20 + x> — 10cos(2nx) +
y? — 10cos(2my). We'll initialize a population of 30 candidate solutions uniformly at
random from [—10, 10] in each dimension. Variation will be accomplished by a Gaussian
mutation, zero mean, with standard deviation equal to 0.25 applied to each dimension.
We’ll create 60 offspring from 30 parents and compare the results of a (30, 60) selection
with those from roulette wheel selection and tournament selection with q = 2. Figure 11.6

500 Trials
20

= (30,60)
Roulette
Tournament(q=2)

Score
S
T

0 . | 1 1 )
0 20 40 60 80 100
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FIGURE 11.6 A comparison of (30, 60) selection, roulette wheel selection, and tournament
selection with q = 2 on Rastrigin’s function in two dimensions. The results, averaged over 500
trials, favor the use of roulette wheel selection in this case.



shows the average results of 500 trials with each method through the first 100 generations.
Tournament selection with q = 2 evidenced the slowest rate of improvement, while
roulette wheel selection found better solutions on average than did the (30, 60) selection
method. It’s important to also know the variation of the data in order to assess whether or
not these differences are meaningful.

11.3.3.6 Considerations There are various extensions to these basic forms of
selection. For example, elifist selection can be applied, which automatically ensures
that the best solution in a population is retained in the next generation. Nonlinear
ranking methods can be used [Michalewicz, 1992]. Generally, however, there is a
continuum of selection methods from those that are “soft” to those that are “hard.” The
harder the selection, the faster the better solutions can overtake the population.

This is often described in terms of fakeover time, which is the expected number of
generations required to fill a population with copies of what is initially a single best
individual when applying only selection (no variation). As shown by Bick [1994], for
typical settings of the parameters in the procedures above and on given test cases, the
order of selection strength from weakest to strongest is proportional selection, linear
ranking selection, tournament selection, and then plus/comma selection.

If you are using an evolutionary algorithm that relies heavily on recombination,
then diversification is required for the population to search for new solutions (see
premature convergence (Section 11.3.1.2)). In this case, it may be advisable to try a
weaker form of selection so as to maintain more diversification; however, this may
serve as a drag on progress toward an optimal solution. Stronger selection may result
in faster optimization, but that optimization may be only toward a local optimum. You
must weigh the trade-offs between different rates of progress and the suitability of
alternative variation operators that require diversification to greater or lesser degree as
those trade-offs pertain to the problem at hand.'”

11.3.4 Variation

Variation operators provide the means for searching the solution space for improved
solutions, or potentially for weaker solutions that could lead to improved solutions.
(The latter comes in the case of having a weak selection method that allows less-than-
best solutions to survive and be the basis of further exploration.) There are many
traditional variation operators, some of which have already been discussed, such as
binary mutation, Gaussian mutation, or one-point, n-point, or uniform crossovers.
Although some people go into the problem with a set of variation operators in mind

10 As a historical note, for many years, proportion selection was viewed as the optimal selection method
based on analysis in Holland [1975]. It was claimed that proportional selection generated “minimum
expected losses” when sampling from competing random distributions with different means and variances
(analogous to sampling from different subspaces). This was later shown to be false by counterexample
[Rudolph, 1997] and by mathematical derivation [Macready and Wolpert, 1998] (i.e., the analysis in
Holland [1975] was flawed). Each person must decide which form of selection to employ based on the
problem. There is no generally optimal form of selection.



and then seek to adjust the representation and selection operators, it’s clear that the
choice of variation operators goes “hand in glove” with the choice of representation.

11.3.4.1 Real-Valued Variation When searching R", it is typical to use a
Gaussian mutation operator. Recall that a Gaussian distribution is defined by two
parameters: the mean and standard deviation (or variance). When applying a Gaussian
mutation, the mean is set typically to zero, providing for an unbiased search in the
neighborhood of a parent. The size of the neighborhood is defined by the standard
deviation, c; the smaller the standard deviation, the smaller the search neighborhood,
although for any ¢ > 0, there is a nonzero probability of a Gaussian random variable
returning any value between —oco and co. But the probability of a large move away
from 0 may be very small. For example, with ¢ = 1, the probability of a zero-mean
Gaussian random variable returning a value greater than 1 or less than —1 is
approximately 0.32. For ¢ = 0.5, this probability is approximately 0.05. Aspects
of controlling the setting of ¢ will be described in Section 11.5; however, note that the
progress that a search based on a Gaussian random mutation operator will make is
highly dependent on the value(s) of o (in each dimension).

Attimes, it may be desirable to have a larger probability of creating a greater distance
between an offspring and its parent. Rather than increasing the value of ¢ in a Gaussian
mutation, an alternative is to employ a Cauchy-distributed random mutation. A Cauchy
random variable is constructed by taking the ratio of two independent identically
distributed Gaussian random variables. (For example, using a random number genera-
tor, create two independent Gaussian-distributed numbers and divide one by the other.)

The Cauchy distribution has the interesting mathematical properties of being
symmetric and yet having no explicit mean or standard deviation (i.e., the expected
value of the random variable is undefined and so are all higher moments of the
distribution). The Cauchy distribution has “fatter tails” than a corresponding Gaussian
distribution, thus the probability of mutating a real-valued parameter to a greater
extent is markedly greater. This can be helpful for escaping from locally optimal
solutions. Section 11.5 addresses approaches to trading-off between Gaussian and
Cauchy mutation operators in real-valued evolutionary optimization.

11.3.4.2 Multiparent Recombination Operators Earlier discussion high-
lighted the use of one-point, n-point, and uniform crossovers, as well as blending
recombination that averages components of multiple individuals. Note that there is no
limit to relying on two parents. Nature provides inspiration for evolutionary algo-
rithms but it is up to the designer to find what inspires him or her. In some cases, it may
be beneficial to recombine elements or blend parameters of three or more solutions.
When applying blending recombination, averaging components across multiple
solutions, note that the result is an offspring that essentially estimates the mean of
the population. The greater the number of individuals that contribute to that blending,
the more reliably the offspring will estimate the population mean (centroid). When a
population is contained in a locally optimal region of the search space, a blending
operator can accelerate convergence toward the local optimum. This comes at the
expense of sacrificing searching outside of the local region.



11.3.4.3 Variations on Variable-Length Structures Certain representations
employ data structures of variable length. For example, consider the case of evolving a
neural network that can adapt not only its weights and bias terms but also the number of
nodes it uses and the feedback loops that it employs (if any). The data structure used
might well be of variable length. As another example, consider the case of evolving a
collection of fuzzy membership functions that are used in a fuzzy controller. The
number of fuzzy functions, as well as their shape and location, could be subject to
evolutionary adaptation. When considering a representation that poses a variable-length
data structure, you can consider an array of variation operators with the idea of ensuring
the possibility of a thorough search of the solution space. Three other common examples
involve finite-state machines, symbolic expressions, and difference equations.

Finite-State Machines Finite-state machines have long been used in evolutionary
algorithms for predicting sequences of symbols (time series prediction). Fogel
et al. [1966] employed Mealy/Moore finite-state automata for this purpose. A
finite-state machine was defined by its number of states, its starting state, the input/
output function for each state, and the input/state transition function for each state.
Suppose that the available symbols were {0, 1}, then one finite-state machine could
have the following characteristics (Figure 11.7):

(a) Two states.

(b) State 1 is the start state.

(c) Instate 1, input of 0 yields 0, input of 1 yields 1; in state 2, input of O yields 1,
input of 1 yields 0,

(d) Instate 1, input of O transitions to state 2, input of 1 remains in state 1; in state
2, input of 0 remains in state 2, input of 1 transitions to state 1.

There are five modes of mutation that follow naturally from the description of the
finite-state machine:

(a) Add a state.
(b) Delete a state.
(c) Change the start state.

U /’io\
g'\_/%

Start state
Input/output

FIGURE 11.7 An example of a finite-state machine as described in the text.
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FIGURE 11.8 An example of subtree crossover on two symbolic expressions. In the
example, it’s desired to have a function that represents f(x) = x? + 2x + 1. This is accomplished
by swapping the right branches of the trees.

(d) Change an input—output relationship.
(e) Change an input—state transition relationship.

By employing nonzero probabilities of applying each of these mutation operators,
a parent finite-state machine can create a very different offspring (in terms of its input—
output behavior) or one that is very similar. Note that the effects on the sequences that
a finite-state machine may generate (i.e., the “behavior” of the machine) vary across
these mutation operators. The effect of deleting a state may be much greater than
merely adjusting the output a state generates for some particular input."’

Symbolic Expressions Similarly, consider evolving a solution to a problem using a
symbolic expression (s—expression).'? The data structure is of variable length and there
are opportunities to modify any terminal node and to perform subtree recombination.
Suppose the problem was to find a polynomial expression that returned the value of
x? + 2x + 1 for aninput of x. Figure 11.8 shows an example of a subtree recombination

" In practice, adding and deleting states are limited to a maximum number of states and a minimum of one
state, respectively. Also, when deleting states, any transitions that pointed to that deleted state must be
redirected. When adding states, it may be desirable to also affect state transitions to ensure that the new state
has the possibility of being expressed and thus changing the behavior of the finite-state machine. States that
cannot be expressed are sometimes described as introns in analogy to sections of DNA that do not translate
directly to proteins.

12 This is often called genetic programming (following Koza [1992]), but there’s no scientific benefit
derived from giving separate names to applying variation operators to different data structures. Similarly,
there’s no need to describe evolutionary algorithms applied to neural networks, fuzzy systems, or other data
structures with some new monikers.
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FIGURE 11.9 Mutation can be accomplished on tree-based expressions by changing
operators or numeric terms, as indicated in the figure. In addition, variables can be modified,
and branches can be grown or eliminated.

that would take two suboptimal expressions and combine them to create the correct
formula. Figure 11.9 shows an example of mutating specific values associated with
nodes in the expression. It would also be feasible to add/construct new branches in the
expression tree or delete existing ones. As with the prior example pertaining to finite-
state machines, each of these operations may have a different degree of behavioral
change on the expression, and thus the probabilities of applying the operators can be
adjusted so as to provide for a more (or less) gradual search of the solution space.

Difference Equations Another example comes in a form of mathematical modeling
known as system identification. In this case, input—output examples are given for a
particular system and the objective is to construct a mathematical model that represents
the input—output relationship. This is a typical neural networks application; however,
particularly on time series problems, it is more common to address system identification
using autoregressive (AR) moving-average (MA) models (or ARMA), which are
particular forms of difference equations. These are of the form

x[t+ 1] = apx[t] + a;x[t — 1] + - -+ +ax[t —j] +e[t] + bie[t — 1]+ - - + bye[t — K]

where x[t] is the observed variable at time t (this is the AR part), e[t] is the random noise
occurring at time t (this is the MA part), and a, ..., aj, by, ..., by are coefficients. A
standard approach employs gradient methods to estimate the coefficients for a model that
has a predefined number of lag terms for the AR and MA parts of the model. This is
problematic because the best choice of j and k are unknown a priori, and thus multiple
searches must be conducted over different choices of j and k to provide confidence in a final
result. Moreover, some nonlinear time series involve ratios of AR and MA processes, and
gradient methods may lead to entrapment at suboptimal solutions (just as backpropagation
may do the same when optimizing weights and bias terms of a neural network).

An evolutionary approach to this problem encodes both the number of lag terms
and the coefficients as a single solution, such as

[2,1.5,0.7,0]

where the first integer is the number of lag terms in the AR process, the next two
entries are the coefficients of those lag terms, and then the next integer is the number



of lag terms in the MA process. As that is zero, there are no more entries. This specific
representation corresponds to the model

x[t+ 1] = 1.5x[t] + 0.7x[t — 1] + e[t]
The following are the variation operators that follow naturally from this representation:

(a) Vary the number of AR terms
(b) Vary the number of MA terms
(c) Vary the coefficients of any/all terms

In addition, it may be feasible to apply recombination operators to combine two or
more models. Note that in cases where the degrees of freedom of a model are allowed
to increase as part of the search process, a trade-off should be employed that
incorporates the goodness-of-fit of the model to the data and also the number of
degrees of freedom. An example is described in Section 12.2.2.

11.3.4.4 Considerations One common approach to evolutionary optimization
involves employing a high rate of crossover and low rate of mutation. A possible
justification for this approach is a view of evolution in nature proceeding by assembling
building blocks of genetic code between parents. This view of evolution is controversial (as
it was 20 years ago, see Atmar [1994]), but the effectiveness of believing that a particular
problem is amenable to solution by assembling building blocks can be tested empirically.

As an example, let’s explore this with a function that poses multiple local optima.
The function is

f(x,y) = exp(=[(x = 3)° + (y — 3)°1/5) + 0.8 exp(—[x* + (y + 3)*1/5)
+ 0.2[cos(x/2) + cos(yn/2))] + 0.5

which is displayed in Figure 11.10. The maximum of the function in this range is
1.6903, which occurs at (3, 3), and let’s say we want to find that maximum. In order to
assess the possibility for recombining building blocks, we’ll choose a binary
representation that was familiar within one early school of evolutionary algorithms.
The representation takes the real values for x and y and encodes them in eight bits
ranging from [00000000] = =5to [11111111] = 5. With eight bits of precision, there
are 2% possible values for x and y, and a precision of 0.039. If we wanted more
precision, we could increase the number of bits used to represent the x and y values.
For this level of precision, the maximum value of the function is 1.6902.

We can compare the effects of one-point, two-point, and uniform crossovers on this
function. Recall that one-point and two-point crossovers select and recombine segments of a
solution that might serve as building blocks for new solutions. Uniform crossover doesn’tdo
that. It chooses each component (each bit) from each parent with equal probability. We can
also compare the effects of regular binary coding and what’s called Gray coding, which uses
binary but encodes numbers so that two successive numbers differ by only one bit.

Figures 11.11 and 11.12 show a comparison over 200 trials, starting in a range of —5
to 5 inx and y, with 100 parents making 100 offspring under roulette wheel selection for
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FIGURE 11.10 The function f(x,y) = exp (=[(x —3)* + (v — 3)*]/5) + 0.8 exp (—[x* +
(v +3)*1/5) +0.2[cos (x1/2) + cos (yn/2))] + 0.5. It reaches a maximum height of 1.6903.
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FIGURE 11.11 When averaged over 200 trials using standard binary encoding on the
function in Figure 11.10, uniform crossover outperformed two- and one-point crossovers.



Scores of 3 crossover operators (Gray coding for 200 trials) _
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FIGURE 11.12 When averaged over 200 trials using Gray coding on the function in
Figure 11.10, uniform crossover again outperformed two- and one-point crossovers, but did
not reach as high a score on average as when using standard binary encoding.

each of the three recombination operators using traditional binary encoding and Gray
coding. The results indicate that the “building block hypothesis” for bringing together
good subsections of solutions does not hold for this problem, as uniform crossover
outperforms one- and two-point crossovers under both representations.

One procedure for testing this hypothesis is to compare the effectiveness of an
evolutionary algorithm that uses recombination with one that does not on the same
problem. Statistical hypothesis testing can then be employed to determine if there is
any statistically significant evidence to favor one approach over another. Many test
problems in the literature have shown niches where mutation alone has worked better
than recombination, and others where it has not [Fogel and Atmar, 1990; Schaffer and
Eshelman, 1991; Fogel and Stayton, 1994; Chellapilla, 1997; Luke and Spector,
1998; Spears, 1998; and many others].'® You might try an evolutionary algorithm that
uses a real-valued representation and Gaussian mutation on this function and see how
it compares to the results in Figures 11.11 and 11.12.

Another procedure, offered in Jones [1995a], employs what is called headless
chicken crossover. The procedure takes an existing parent and instead of crossing it
over with another existing parent, it crosses the parent with a completely random

13 Despite more than 20 years of empirical and theoretical comparison between different evolutionary
optimization methods showing no single approach works best, it’s common to observe complacency and a
reliance on a particular approach that is “comfortable” to a researcher. This is true across computational
intelligence methods, and it’s likely also true in science generally. People tend to start with the tools they are
most comfortable with, rather than starting with the problem and asking which tools they should employ
(see Michalewicz and Fogel [2006]).



solution. At this point, the mechanism of crossover is still present but the effect of the
mechanism is purely a large mutation, since it is just random material that is being
swapped with the existing parent to create offspring. There have been cases shown
(and this was surprising initially to many) in which headless chicken crossover
outperformed the usual one-point or other variations of crossover (e.g., Angel-
ine [1997]; see also White and Poulding [2009]). In those cases, greater attention
can be placed on mutation operators, or attention can be placed on reformulating the
problem representation in order to facilitate crossover.'*

One variation operator that has received little attention is inversion. As proposed
originally [Fraser, 1968; Holland, 1975], this operator inverted the index position of
elements in a solution string. For example, given a set of values Xi,...,Xs with an
additional subscript for the position of those values, an initial solution might be

[X11,X22, X33, X44, X55] (IL.1)

but after inverting between position 2 and 4, this would be

[X11, X24, X33, X42, X55] (11.2)

Thus, if the objective were to, say, minimize the value of f(xX) = x} + 2x3 + 5x3 + xj +
xg then each of (11.1) and (11.2) above would evaluate to the same f(x). Inversion here did
not change the values of xy, ..., Xs, it only changed the position of these values in the
solution string. The suggested purpose of doing this was to ensure that one-point crossover
would have more opportunity to find building blocks between elements of a solution
regardless of their initial position in the solution string. Given all the research performed
on the effectiveness of variation operators, there has been comparatively little research on
the value that could be imparted by utilizing this form of inversion in certain cases.
When designing an evolutionary optimization algorithm keep in mind that the
number of variation operations applied in creating an offspring can be greater than 1.
It is typical to see an approach such as apply crossover with a probability of 0.9 and
mutation with a probability of 0.01, or apply one from a list of variation operators each
with equal probability. But a greater exploration of a search space, and also sometimes
a more gradual one, can be created by repeating variation operators. For example,
when mutating a finite-state machine (Section 11.3.4.3), rather than select only one
variation operator, or rather than test for the application of each variation operator
once, another parameter could be the number of variations to apply. One way to

4 One of the authors (DF) has seen this many times in more than 30 years of evolutionary algorithm
experience: An evolutionary approach does not yield effective results and thus the designer seeks to
reformulate the problem to be more amenable to crossover. An alternative and potentially more fruitful
suggestion is to reformulate the algorithm to be more amenable to yielding a superior solution. Crossover is
just one of many tools in the virtual Swiss-army knife of the evolutionary algorithmist. Using crossover is
not an objective in and of itself.



engineer this is to use a Poisson random variable with a set mean rate, and use a
sample from that random variable to determine how many variation operations to
apply. This also leads to the concept of having the evolutionary process learn how
much variation to apply, which is treated in Section 11.5.

It is easy to become accustomed to a basic plan of applying an evolutionary
algorithm for optimization. Some opt for a plan that involves a high rate of crossover
between parents and a low rate of mutation. Others opt for no crossover or other form
of recombination at all and employ only mutation unless the problem at hand suggests
that mutation alone is insufficient or inefficient. With experience, you can demon-
strate to yourself that neither of these approaches is optimal generally. It is often
beneficial to think imaginatively about how to design variation operators that exploit
the characteristics of the objective function being searched in light of the chosen
representation and type of selection.

Different variation operators can be effective at different stages of an evolutionary
optimization process. That is, it may be that recombination may be most effective
early in optimization with mutation serving to fine-tune optimization in a later stage.
Or it may be that mutation and recombination actually generate very similar expected
rates of progress given the same population and fitness criteria. An example of this is
given in Section 11.5.5. The use of static probabilities of applying variation operators
has been of limited utility in the experience of one of the authors (DF); in contrast, the
concept of having the evolutionary algorithm adjust its own search via reinforcement
learning mechanisms has demonstrated utility and is described in more detail in
Section 11.5.

11.4 CONSTRAINT HANDLING

Almost all real-world problems are constrained problems. For example, suppose you
are designing an optimal schedule for a bus company. They have a specific number of
existing buses. That is one constraint. They have a limited budget to purchase
additional buses. That is another constraint. They have a limited number of qualified
drivers for each different type of bus. That is yet another constraint. Each bus has
limited capacity, which is yet another constraint. We could invent more constraints for
this problem, including required maintenance, roads that can and cannot be used, the
available time for each driver to work each week, and so forth.

Thus, when applying evolutionary algorithms it is important to consider how to
treat the constraints of the problem. Some of these constraints are part of the
objective, whereas some are part of the parameters of a solution and therefore
impose boundary conditions on the search space. Each of these may pose hard or
soft constraints.

A hard constraint is one that, if violated, makes the entire proposed solution
worthless. For example, suppose you are designing a new golf club for professional
golfers. The United States Golf Association (USGA) requires that all golf clubs be at
least 18 in. in length and not more than 48 in. in length. These are hard constraints on
your design because anything outside of these limits cannot be used in regulation play.
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FIGURE 11.13 A sketch of a penalty function to describe the cost of a fuel truck arriving too
early or too late to a fuel station to refuel the station. The function describes the cost to the
company. If the truck arrives too early, the company pays the driver an hourly wage to sit and
wait until the station becomes close to empty. If the truck arrives too late, the company loses the
opportunity to sell fuel to customers and also loses customers to its competitors.

A soft constraint is one that can be violated, but there is some imposed penalty for
violating it, and perhaps the penalty increases with the degree of violation. For
example, suppose you are creating a schedule for fuel trucks to refuel gas stations. A
constraint would be to design a schedule in which no station is ever empty, which
would mean the oil company would have customers waiting at the gas pumps for a
refueling truck. But this is not likely to be a hard constraint. If you crafted a schedule
that had a gas station out of fuel for 1 min, it might lead to some bad publicity. In fact,
it would be more likely to add to bad publicity the longer the station remained empty.
So, a penalty function of the form shown in Figure 11.13 could be used to describe this
soft constraint.

It is often helpful to craft an objective function that comes in two parts. The
first involves the primary criteria of interest and the second involves a penalty
function that treats constraint violations. Sometimes these two parts can be simply
added together. For example, in information-theoretic model building, there are
many criteria that trade off the goodness-of-fit of a mathematical model to
available data and the number of parameters (degrees of freedom) that the model
employs. For example, Akaike’s information criteria (AIC) [Akaike, 1974] can be
written as

AIC(x) = —21n (L) +2p

where x is the parameter vector of the model, L is the likelihood function of the
model, and p is the number of model parameters. If you don’t know what a likelihood
function is, you can think of it as a measure of the goodness-of-fit of the model to the
available data. Better models generate lower AIC scores. For each new parameter that
is added, the likelihood function will be higher (and thus —2 In (L) will be lower), but



it has to be sufficiently better to “pay for” the addition two points that the extra
parameter will cost. Here, there is no hard constraint on the number of parameters, but
each additional parameter comes at a cost.

When a hard constraint is involved, the objective function can be set to an infinitely
bad score if the constraint is violated. For example, suppose that in the above AIC
minimization problem there was a constraint not to use more than 10 parameters. Then
the objective function could be written as

@) AIC(x), p<10
X) =
00, p> 10

The difficulty with this approach is that it sets up areas of the search space that have no
information content to direct the evolutionary search to any places of improved
performance. Anything in the search space that violates the hard constraint is equally
worthless. An alternative is to impose a penalty for violating the hard constraint that
increases in effect gradually over successive generations. In this way, the constraint is
treated as a soft constraint at first but over time solidifies as a hard constraint. A
drawback to this approach is the requirement for tuning a schedule for how to
transition the soft constraint to a hard constraint."

Sometimes it is possible to treat constraints in the objective function as constraints
in parameters. For example, in the above case, a hard constraint that p < 10 could be
handled by ensuring that any mutation that generates p > 10 is set aside, or that
mutations to values of p that are greater than 10 are reflected into the feasible range.
That is, if a parent had p = 9 and a mutation were to make p grow by 3, then it would
first become 10, and then it would reflect into the feasible range to 9 and then again to
8. This has advantage of always evaluating feasible solutions, but it can have the
disadvantage of introducing boundary effects on variation operators that are some-
times difficult to intuit.

Thinking about problem solving is often more important than attempting problem
solving. By thinking about the problem at hand, it is often possible to garner insights
about that problem and design-specific operators to address the intricacies and
constraints posed therein. For example, Michalewicz et al. [1996] studied an
n-dimensional problem of maximizing:

n n n
f(x) = Z cos*(x;) — 2 [ cos®(x;) Z ix?
i=1 i=1 i=1

subject to [[,_, i >0.75, >, xi<0.75n,and 0 <x; < 10 for I <i <n.By
recognizing that the maximum point was likely to exist on the boundary condition
I1..; .xi =0.75, Michalewicz et al. constructed an evolutionary algorithm that
searched only on that boundary. They initialized the algorithm on the boundary

'3 This is analogous to tuning a schedule for reducing the temperature in a simulated annealing procedure
[Kirkpatrick et al., 1983].



condition and then constructed a new “geometric crossover” that combines two
parents X and y as follows:

[x1, - Xq]

o, l—a 4 l—a]

[yla"'7yn]_)[XIY1 ""7Xnyn

where a is selected uniformly at random in the interval [0, 1]. When applied to any
two solutions on the boundary condition, this operator returns another solution on
the boundary. Finally, they also employed a mutation operator that selected two
components of an existing solution and multiplied one by a factor q > 0 and the
other by 1/q. By tailoring the operators to the problem in this way, Michalewicz
et al. [1996] reported finding a new best solution for this problem (better than
previous approaches that had relied on traditional forms of evolutionary
algorithms).

11.5 SELF-ADAPTATION

When considering a simple evolutionary algorithm, say, one that employs only
Gaussian mutation to real-valued components of potential solutions, X, it is evident
that the setting of the standard deviation of the mutation will affect the degree of
progress that can be made toward an optimum. For example, consider Figures 11.14
and 11.15, which show the case in one dimension. The function f(x) = x? is to be
minimized and there is a parent solution at x = 2. Using a zero-mean Gaussian
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FIGURE 11.14 Suppose that there is a one-dimensional function to be minimized, such as the
parabola in the figure, and the current solution is represented by the black dot. Under zero-mean
Gaussian mutation, as the step size grows large, the probability of finding a solution that has a
better score (corresponding to a lower point on the function) becomes very small. Here the
probability is illustrated at about 0.15.
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FIGURE 11.15 Suppose we have the same one-dimensional function to be minimized, such
as the parabola in the figure, and the current solution is again represented by the black dot, but
this time we have a zero-mean Gaussian mutation with a very small standard deviation. As the
standard deviation shrinks close to zero, the probability of improving tends to 0.5; however, the
amount of improvement at that limit will be close to zero.

distribution for mutation, denoted N(0, c), for increasingly large values of o, say
o = 10°%, the likelihood that an offspring will be better than the parent is extremely low
(zero in the limit) (see Figure 11.14). In contrast, for infinitesimal values of o, say
6 = 1/(national debt of the United States), the likelihood that an offspring will be
better than the parent approaches 0.5. This increased likelihood of success comes with
the drawback of a high likelihood of making very little progress toward the optimum
(because the step size is so small) (see Figure 11.15).

The problem shown poses a balance between the step size of the mutation and the
expected rate of progress. For very small steps, the likelihood of success can be
maximized but the rate of progress is slow. For steps that are too large, the likelihood
of success is minimized and the rate of progress is also slow. In between there is an
optimum step size for which the likelihood of success is not maximized, but the rate of
progress toward the optimum is maximized.

11.5.1 The 1/5 Rule

Rechenberg [1973] studied two minimization problems that are linear and
quadratic functions of x. Using a (1 + 1) evolutionary algorithm that relied on
zero-mean Gaussian mutation, Rechenberg studied the trade-off between the rate



of improvement (i.e., how quickly the best solution’s score decreases as a function
of the number of generations) and the probability of improvement (i.e., the
likelihood that an offspring will be better than its parent). It was shown that as
the number of dimensions n — oo, the maximum rate of improvement on the
linear function occurred when the probability of improvement was approximately
0.184, and for the quadratic function it was approximately 0.27. Rechenberg
selected 0.2 as a compromise between these two values and offered a heuristic
called the 1/5 rule: The ratio of successful mutations to all mutations should be
about 1/5.

Schwefel [1995] suggested a simple method for computing this empirically. After
every m mutations, determine the success rate over the previous 10m mutations. If the
success rate is less than 0.2, multiply the step size () by 0.85. If the success rate is
greater than 0.2, then divide the step size by 0.85. When the success rate is too low
(< 0.2), the step sizes will become smaller, and conversely when the success rate is
too high (> 0.2), the step sizes will increase.

It is important to recall that the 1/5 rule is a heuristic that was derived only from two
simple types of functions, as the number of dimensions tends to infinity, and for a
(1 + 1) evolutionary algorithm. There is no general case to make for the utility of the
1/5 rule (see Chellapilla and Fogel [1999] for counterexamples). Still, it illustrates that
static parameters for variation operators are very unlikely to lead to the best rates of
progress toward optimum solutions.

11.5.2 Meta-Evolution on Real-Valued Parameters

Given the limited utility of the 1/5 rule, more general methods for controlling the
degree to which variation operators act coarsely or finely are desired. A common
method employed in evolutionary algorithms views the parameters that control the
evolutionary search as part of the evolutionary process to be adapted while searching
for an optimum. This poses a form of meta-evolution in that adaptation takes place on
two levels within the evolutionary algorithms: the parameters that are used to evaluate
the objective function (objective parameters) and the parameters that are used to
control variation (strategy parameters).

The history of meta-evolutionary approaches extends back to the 1960s [Reed
et al., 1967; Rosenberg, 1967; Rechenberg, 199616]. Currently, for real-valued
evolutionary optimization, the most common approach follows a procedure offered
in Schwefel [1981]. With the problem of minimizing (maximizing) a real-valued
function f(x), encode a possible solution as (x,6), where x is the vector of real-
valued objective parameters and ¢ is the vector of strategy parameters, which
designate the positive standard deviation to apply a Gaussian mutation in the given
dimension.

'8 In personal communication with one of the authors (DF), Ingo Rechenberg remarked that he devised an
unpublished self-adaptive approach for evolution strategies in 1967.



Each parent creates an offspring via a two-step process applied across all
dimensions, i=1,...,n:

1. o) = o exp (T(N(0, 1)) + TN;i(0, 1))
2. x; = x; + N(0, o))

where o] is the standard deviation for the offspring in the ith dimension, N(0, 1) is a
standard Gaussian random variable sampled once and held at the same value for all i
dimensions, N;(0, 1) is a standard Gaussian random variable sample: w for each of
the i dimensions, T and ' are constants that are proportional to 1/ 2\/3 and 1/ \/%,
respectively, and x; is the objective parameter value for the offspring in the ith
dimension.

In this process, the standard deviations used in mutating a parent are carried as
“genetic” information along with the parent solution. The first step mutates the
standard deviations using a lognormal distribution. The second step uses the mutated
standard deviations to create the offspring’s objective parameters. In this way,
standard deviations that lead to improved solutions are retained by selection, while
those that lead to solutions of lesser quality perish. In essence, the procedure uses a
form of reinforcement learning to update the strategy parameters of the evolutionary
search while the search is in progress.

The two-step process above allows the evolutionary algorithm to learn how to shape
the Gaussian distribution to better fit the contours of the objective function in the
neighborhood of each solution. In this process, the dimensions are treated independently;
however, extensions to self-adapting correlated mutations have also been offered in
Schwefel [1981] (and for further discussion, see Fogel [2006]). Figure 11.16 provides an

(@) (b)

@ Line of equal probability density to place an offspring

FIGURE 11.16 Self-adapting the mutation distributions on each solution allows new trials to
be generated in light of the contours of the response surface. Independent adjustment of the
standard deviation in each dimension provides a mechanism for varying the width of the
probability contour in alignment with each axis (a). Correlated standard deviations provide a
mechanism for generating trials such that the probability contours are not aligned with the
coordinate axes (b). (Taken from Fogel [Fogel, 2000, p. 157] and Back et al. [1991].)



intuitive picture of what the self-adaptive process can accomplish. In addition, acommon
form of modern self-adaptation simplifies step (11.3) to be

o) = aiexp (TNi(0, 1)) (11.3)

foregoing the use of a “global” Gaussian random variable and relying solely on
independent Gaussian random variables for each ith dimension.

11.5.3 Meta-Evolution on Probabilities of Variation Operators

The concept of meta-evolution can be extended to support variation operators that are
not in the continuous domain. Self-adaptation can be applied both within a variation
operator (controlling how that operator functions) and to determine the likelihood or
number of times the variation operator is applied.

For example, when considering a traveling salesman problem, Chellapilla and
Fogel [1997b] utilized a permutation representation (an ordered list of cities to visit)
and applied self-adaptation to adjust either (i) the length of an inversion operation or
(ii) the probability of applying every possible inversion from length 1toc/2 — 1,
where there were c cities. Angeline et al. [1996] used self-adaptation to adjust the
mutation probabilities of varying finite-state machines.

Thus, self-adaptation is useful potentially not only for applications of evolutionary
optimization in R" but also in virtually any real-world application. It can be used to
adjust the likelihood of using mutation, crossover, blending recombination, multi-
parent recombination, as well as the types of these operators (e.g., one-point, n-point,
uniform crossovers). It is extremely unlikely that any static settings for variation
operators will be optimal for solving a problem, and the effectiveness of different
variation operators changes during the course of the evolution.

11.5.4 Meta-Evolution on Combinations of Variation Operators

An additional extension of self-adaptive meta-evolutionary methods comes in
blending different operators. For example, as mentioned in Section 11.3.4.1, in a
real-valued evolutionary optimization, there is a trade-off between using Gaussian
variation and Cauchy variation. Instead of hand-tuning the probabilities of using these
operators, their effects can be adjusted via self-adaptation, implemented potentially as
follows:

(1) o} = o; exp (T'N;(0, 1)) /Istep-size control for the Gaussian component

(2) s; =i exp (TN;(0, 1)) //step-size control for the Cauchy component

(3) o =a+N(@0,w) /Iweight to apportion between Gaussian and Cauchy
@) x| = x; + [sin(a)IN(0, ) + /lupdate with mutation in part by Gaussian and Cauchy
(1 = Isin(o)hC(0, s7) components

where o; and s; are the offspring scaling parameters for the Gaussian- and Cauchy-
distributed mutations, respectively, T and v’ are scaling constants, o' is the



offspring’s adjustment factor for weighting the effects of Gaussian and Cauchy
mutations,  is a stepsize parameter for mutating o, and N(0, 6) and C(0, s) represent
Gaussian and Cauchy distributions centered at zero with scaling parameters ¢ and s,
respectively. Using the transform [sin(a)| returns a value between 0 and 1 and thus
weights the contribution of the Gaussian and Cauchy components of the overall
variation.'”

11.5.5 Fitness Distributions of Variation Operators

Applying a variation operator to a parent or set of parents generates offspring based on
a probability mass or density function. Choosing among variation operators and
changing the parameters of those operators alters the likelihood of sampling each
point from the solution space. Thus, a probabilistic distribution of offspring fitness
scores can be created given a variation operator and the parent or parents that it
operates on. In certain simple cases, this fitness distribution can be computed
mathematically (e.g., leading to Rechenberg’s 1/5 rule), but it can be estimated
empirically in general cases. Doing so is computationally intensive, as it requires
generating a sufficient number of examples of applying an operator to a parent(s) and
determining the results statistically; however, the fitness distribution of an operator
can yield insight into setting its parameters, how to make them subject to self-
adaptation, and whether or not to include them.

For example, Nordin and Banzhaf [1995] quantified the change in fitness that
occurred after applying crossover to machine code expressions that represented
regression equations. Figure 11.17 shows the histogram of the percentage of fitness
change over 35 successive generations. Positive change denotes an improvement. The
figure shows that the most common result was either no change in fitness at all (i.e.,
the offspring’s fitness was the same as the parent’s fitness) or a 100% decrease in
fitness. In this case, the success rate of crossover was very small, leading to the
suggestion that in this case (and others [Nordin et al., 1996; Teller, 1996]) crossover
was acting as an ineffective macromutation [Banzhaf er al., 1998].

Fogel and Jain [2000] showed that for the case of evolving a neural network to
perform the XOR function, the fitness distributions of Gaussian mutation and one-
point crossover changed as a function of the progress of the evolution. At certain
times, the expected progress was the same regardless of which operator was chosen; at
others, mutation or crossover was favored. For additional background on fitness
distributions, see Altenberg [1995], Grefenstette [1995], Fogel and Ghozeil [1996],
and Fogel [2006].

'7 The process suggested here is untested and provides an open area for research, including self-adaptation
of . See Saravanan and Fogel [1997] and Chellapilla and Fogel [1997a] for other methods of adapting the
use of Gaussian and Cauchy variation operators. As an aside, it is easy to imagine applying this form of
adaptation to neural networks or fuzzy systems in evolving weights on transfer or membership functions.
For example, a neural network can have nodes that are flexible between sigmoid (SIG) and radial-basis
functions (RBF) by adapting a parameter a and utilizing it in the manner of aSIG + (1 — «)RBF.
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FIGURE 11.17 The fitness change after crossover on problems evolving machine code
expressions from Nordin and Banzhaf [1995]. The vast majority of crossovers either resulted in
no change in fitness or a large decrease in offspring fitness.

11.6 SUMMARY

Evolutionary algorithms have a long history of being used for optimization [Fogel,
1998]. These procedures have been applied to a wide array of problems in different
areas: drug design, finance, video games, robotics, pattern recognition, scheduling,
and many more. This chapter has provided an introduction to the application of
evolutionary algorithms for optimizing solutions to problems in their canonical forms,
including real-valued optimization, combinatorial optimization, and hybrids of these.

The essence of the evolutionary approach to optimization is to utilize a population
of contending ideas about how to solve a problem and subject those ideas to random
variation and selection in light of objective criteria that provide feedback on the
suitability of the solutions. Determining which solutions to maintain as parents
follows the concept of natural selection, eliminating the least-fit candidate solutions
from the population probabilistically.

Representation, selection, and variation act in concert. There is no best choice to
make for these design variables outside of the context of the problem at hand [Wolpert
and Macready, 1997; see also English [1996]]. All canonical forms of variation—
Gaussian mutation, one-point crossover, binary mutation, recombination by blend-
ing—serve not as ends but as beginnings for the evolutionary algorithmist (you!) who
must design an effective search of a solution space. Self-adaptive methods can assist
in allowing the evolutionary algorithm to learn how to search the solution space via
reinforcement of the strategies that have already found better solutions.



It is important to maintain an open mind when designing an evolutionary
algorithm. Simple traditional approaches may be sufficient, and if so, they should
be used. But imaginative thinking can lead to interesting new approaches (as with the
use of “geometric recombination” noted in Section 11.4). For example, consider the
problem of optimizing for a solution in R" that minimizes f(x), except that the
representation is made in polar coordinates instead of Cartesian coordinates (see
Ghozeil and Fogel [1996]). Or consider the problem of designing variation operators
that can effectively jump from one locally optimal region directly to another in a given
application. These sorts of activities may require a fundamental understanding of the
properties of the “landscape” posed by the objective function in light of the variation
operators [Jones, 1995b]. (Variation operators define the search neighborhood of each
parent regardless of the “shape” of the landscape being searched.) Each of these
requires specific investigation and standard approaches as found commonly in
literature may not be effective.

Evolutionary algorithms offer opportunities for hybridizing with other methods.
For example, an evolutionary algorithm can be run for a number of generations and
then a gradient method can be used to approach a local optimum more quickly.
Evolutionary algorithms also offer significant flexibility in being able to handle
problems with constraints (both hard and soft), with multiple criteria. The chapter has
not treated the application of evolutionary algorithms to dynamic and noisy environ-
ments. Some examples are provided in Chapter 14. It has also not treated many of the
mathematical properties of evolutionary algorithms with the depth that would be
found in a textbook dedicated solely for that purpose. Students of evolutionary
algorithms who would like a more detailed mathematical treatment should refer to
Bick [1996], Vose [1999], Fogel [2006], and Beyer [2010].

EXERCISES

11.1. Write an evolutionary program that addresses the traveling salesman problem
as described in Section 11.2, except that instead of evaluating solutions based
on minimizing total length, try the following two objectives: (1) minimize
total length but have a large penalty for crossing x = 0, and (2) minimize total
length but have a large bonus for crossing x = 0. You can use any evolu-
tionary approach you like. Have a look at the solutions that emerge for each
variation. Do they each reflect the varied objective of the problem?

11.2. Try another variation of the traveling salesman problem in which you
designate a specific city as the starting city and all segments that are traversed
from north to south (a higher y-coordinate to a lower y-coordinate) cost 1.5
times the distance of the segment. Do the solutions you generate appear
different than those that do not incorporate this penalty?

11.3. Work with Rastrigin’s function as described in Section 11.1. Choose an
evolutionary algorithm that uses a real-valued representation and zero-mean
Gaussian mutations. Implement self-adaptation as described in Section 11.5.2



11.4.

11.5.

11.6.

11.7.

with the simplified version of updating the standard deviations:
o, = o; exp (TN;(0, 1))

using v =1/ \/5?1 Explore the rate of optimization on Rastrigin’s function
in 2 and 10 dimensions as a function of the population size when trying a
(1 + 5p) configuration. For different values of p, plot the best score attained as
a function of the number of generations.

For the same problem as in exercise 11.3, compare the use of self-adaptation to
the 1/5 rule (Section 11.5.1). Does the 1/5 rule provide for faster convergence
to better solutions on Rastrigin’s function in 2 and 10 dimensions than does
simple self-adaptation?

For the problem illustrated in Section 11.3.4.4, determine the fitness distribu-
tion of various operators as follows. Start with a real-valued representation,
initialization between [—5,5] in each dimension, and zero-mean Gaussian
mutation with a standard deviation of 0.33 with 100 parents making 100
offspring (as in the text). Run the algorithm for 10 generations and then focus
on the best parent. Empirically, determine what fitness values would result
from mutating this parent with a zero-mean Gaussian mutation using different
fixed standard deviations for x and y. Then compare the best Gaussian
mutation that you find with a Cauchy distribution. (You can compute a
standard Cauchy distribution by taking Ny /N, where N; and N, are inde-
pendent N(0O, 1) random variables.)

Now try the same problem, but using a binary encoding as shown in the text.
Using one-point crossover and a probability of mutation = 0.01/bit, stop the
evolution at generation 10 and then determine the fitness distribution of one-
point, two-point, and uniform crossovers by selecting the best parent and a
random other parent from the population. Does one recombination operator
provide a better fitness distribution than another?

Data for total sunspots are available widely on the Internet. Acquire the data
for total sunspots for 2000-2013 and plot the data as a function of year
(sunspots on the y-axis, year on the x-axis). Determine the best linear equation
to model these data in the form of

y=ax+b

where a and b are evolved via any evolutionary algorithm that you choose in
order to minimize the squared error between each predicted value (ax + b) and
the actual value y. Using standard regression software, check how close your
values for a and b come to the optimal values. Now try evolving a and b so as
to minimize the absolute value of the cube of the error. How much different
are a and b from before?



11.8.

11.9.

11.10.

11.11.

11.12.

Develop code structures for finite-state machines and symbolic expressions, as
described in Section 11.3.4.3, including variation operators. (You’ll need
these in Chapter 12.) Test your code by evolving finite-state machines to
generate a sequence [100111001] and a symbolic expression to match
x2+2x+ 1. You can use any objective functions that you believe will
help the evolution get to the desired outcome.

For the problem illustrated in Section 11.3.4.4, let’s impose a constraint that
x <y —1. The domain of (x,y) is still [=5,5], but now the only feasible
candidates for (x,y) must satisfy the constraint. Create a penalty method for
addressing this constrained problem and apply an evolutionary algorithm of
your choice. How well does it do? Try at least 30 independent trials to assess
your results.

Explain why premature convergence is not necessarily to a point that is locally
optima in a continuous space. (That is, the population may converge, but there
would be a gradient that would suggest moving to a better point.) When is this
more or less likely in evolutionary optimization?

Indicate the conditions that allow an evolutionary algorithm to converge with
probability 1 to a global optimum solution.

Explain the benefits and drawbacks of self-adaptation in evolutionary algo-
rithms, in terms of adjusting standard deviations in both continuous search and
operator probabilities generally.



CHAPTER 12

Evolutionary Learning and
Problem Solving

Chapters 10 and 11 have introduced the basic concepts of evolutionary algorithms,
particularly as they are applied for optimization. This chapter explores many specific
applications of evolutionary algorithms for problem solving. The discussion moves
generally from simpler problems to more complex ones, but much of the framework
for applying evolution comes in the form of modeling systems so as to predict what
they will do next, or perhaps to control what they will do next.

It has been said that “prediction is the keystone of intellect” [Fogel et al., 1966].
When you can predict what is coming next, then you can claim a degree of
understanding and take action to have a more desired outcome. From that perspective,
intelligence is the property that allows a system to allocate resources to meet goals in a
range of environments. Such a system can be a person, a group, a colony of ants, or
even a computer running a program. The applications that we’ll cover here are aimed
generally at assisting us to make more intelligent decisions by providing a better
understanding of the world around us.

To do that, we often rely on mathematical models. The basic tenet of mathematical
modeling is to provide a description of a system that is neither too complex nor too
simple. This is captured in a dictum known as the maxim of parsimony or Occam’s
Razor. A mathematical model needs to be sufficiently complicated to make useful
predictions about a system. If it is more complicated than necessary, a simpler
explanation should be favored. In addition, an explanation that is more complicated
than is required can be expected to fail to provide the best predictions about future
states of a system owing to the unintended consequences of interactions of the
unnecessary parts of the model.

If you’re familiar with statistics, parameter estimation, and information theory,
much of what follows will also be familiar, even if the application of evolutionary
algorithms in these specific examples is novel. If you have not gained experience with
statistical methods, the text that follows will serve as an introduction, but you’re
encouraged to supplement these materials with additional foundational coursework.



12.1 EVOLVING PARAMETERS OF A REGRESSION EQUATION

12.1.1 A Canonical Example

To provide a simple starting point, let’s reconsider the problem of finding a best linear
model for n pairs of data (x,y), which we saw in an exercise in Chapter 11 dealing
with modeling sunspot data. For linear regression, we have the following equation:

y=ax+b+e (12.1)

where y is the dependent variable, x is the independent variable, a and b are
parameters of the equation, and e represents an unknown noise source, which is
assumed typically to be normally distributed, with zero mean, and constant variance;
however, for our purposes now, we do not need to make any assumptions about e. The
typical approach to finding a and b, given a set of data (x;,y,), ..., (Xa, ¥,,), relies on a
least-squares error criterion.

Find a and b such that

> -8 (12.2)
i=1

is minimized, where y; is the estimate of y; that is computed from ax + b. This
principle of least squares has roots back to the early 1800s in models of astronomy and
other physical measurements, having been offered by Legendre.

It is straightforward to compute least-squares coefficients using calculus methods,
taking the partial derivatives of the objective function above with respect to each
coefficient, setting the result equal to zero, and solving. The set of equations that derive
from these operations are called the “normal” equations and take the following form:

jim=bn+a§éx (12.3)
i=1 i=1

iimw=b§im+a§iﬁ (12.4)
i=1 i=1

i=1

for a constant b and a coefficient a multiplying a single independent variable x.
Additional expanded equations are realized with additional independent variables.
Note that these formulas for the least-squares values of a and b do not depend on the
unknown properties of e. Actually, e doesn’t enter into the above formulas at all. If
some of the statistical characteristics of e are known then it may be possible to generate
confidence intervals around the estimated coefficients; however, for the present
discussion, such efforts will be set aside.

The issue at hand concerns the utility of the least-squares estimates. The procedure
is so commonplace that it is almost taken for granted as being appropriate. But



consider the following situation: Suppose you are listening to active sonar—pings of
sound under the water—trying to detect man-made targets (such as a reflection from
an underwater explosive). You can make one of two decisions: Either there is or is not
a man-made object represented in the data from a particular active sonar pulse. Thus,
there are four possible outcomes: (i) correctly classify a man-made object, (ii)
correctly declare the absence of a man-made object, (iii) misclassify background
noise or other signals as man-made, or (iv) miss a man-made object by declaring the
absence of such an object when it is in fact present.

There are two ways to be correct and two ways to be incorrect. It is clear, however,
that in any operational setting, correctly identifying an underwater explosive is more
important than correctly identifying the absence of that explosive. Equally correct
predictions are not of equal worth. Similarly, the type I error (a false alarm) may have
a very different cost than the type II error (a miss). Here, a miss may be much more
costly because of the danger posed by bumping into an underwater explosive.

A least-squares approach attributes zero error to any correct prediction. In the
above setting, this is inappropriate. But this is almost always the case in real-world
practice. Furthermore, using the squared error penalizes incorrect predictions that are
too high or too low, or of type I or type I, based solely on their magnitude. Again, this
is rarely appropriate in real-world settings.' The least-squares approach to estimating
coefficients is mathematically tractable, but can be of limited utility when placed
under this sort of scrutiny. It would be useful to have a method for optimizing the
coefficients of models that could be responsive to any arbitrary cost function. In this
regard, evolutionary algorithms can be particularly useful.

12.1.2 Objectives Other Than Least Mean Squared Error

12.1.2.1 Least Absolute Error Consider the data shown in Figure 12.1. These
100 points were generated from the equation

y = 1.5x + 1+ N(0, 50) (12.5)

where x € {1,...,100} and N(0, 50) is a Gaussian random variable with zero mean
and standard deviation of 50. If given only the data in (x,y) pairs, the least-squares
estimates of the slope and intercept are [1.483, 0.778], which generate the line shown
in Figure 12.2. The root mean squared residual error is 48.495, or about 0.5 per datum.
Suppose that instead of a squared error cost function, the desired evaluation depended
on the absolute error between the model’s predicted y value and the actual value. A
simple evolutionary algorithm can be constructed to optimize the slope and intercept
under these new conditions.

Suppose that 100 candidate solutions are allowed in the initial population. Each
candidate solution is a two-element vector (i.e., the slope and the intercept), and for
convenience, each element is set to zero to start the process. (Alternatively, we could

! A weighted least-squares approach can be used to give more or less weight to an error depending on the
direction of the error and its magnitude, but it is still limited within a squared error framework.
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FIGURE 12.1 One hundred points (x, y) generated using the equation y = 1.5x + 1 + N(0, 50).
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FIGURE 12.2 The least-squares regression line for the data in Figure 12.1.



start by having a random distribution of slopes and intercepts, or any other reasonable
choice.) Each of the 100 possibilities in the population generates an offspring by
adding a standard Gaussian random variable to each of its elements. If we denote an
offspring (a,b) as (a’,b’), then this mutation operation is

a’=a+N(0,1) (12.6)
b'=b+N(0, 1) (12.7)

After each parent solution has generated an offspring, all 200 solutions are scored on
how well they fit the data in terms of mean absolute error. The 100 best solutions (least
sum absolute error) are retained to serve as parents for the next generation, and the
process is repeated. Figure 12.3 shows the rate of optimization of the evolutionary
process as it converges on its best solution of [1.621, 1.390]. The mean absolute error
is 38.299, which is lower than the root mean squared error from the least-squares
model above. (It also happens to be lower than the mean absolute error for the least-
squares model at 38.432.) There is very little qualitative difference between the two
sets of slope—intercept coefficients, but the latter model is optimized for its specific
criterion and performs that specific task (minimizing mean absolute error) better than
the least-squares model.
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FIGURE 12.3 The rate of optimization of the best solution in a (100 + 100)-EA using real-
valued representation and fixed standard normal mutations in order to minimize the sum of the
absolute errors between the model and the data in Figure 12.1.
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FIGURE 12.4 An evolved line when the objective function is changed from squared error or
absolute error across all data to applying the absolute error if the model predicts a value that is
too high and squared error if the model predicts a value that is too low.

12.1.2.2 Extensions to Other Functions The situation might be more com-
plicated in that errors where the prediction is greater than the actual value might be
scored in terms of absolute error, but errors where the prediction is lower might be
scored in terms of squared error. By executing the same evolutionary procedure but
substituting this new cost function, we find the evolved result after 50 generations
shown in Figure 12.4 and the final best estimates of the slope and intercept are [1.545,
97.2553]. Note how much larger the y-intercept is in this new model. Although it
seems unreasonable at first, it reflects the particular chosen payoff function. Here, it
costs less to predict on the high side, and the optimal model reflects this bias, reflecting
on the high side for virtually all the data.

Error functions can be as complicated as necessary to describe a desired outcome.
Section 12.1 has explored only the standard squared and absolute error conditions. In
practice, the objective function may comprise many components, be subject to
constraints, and even incorporate fuzzy logic in terms of fuzzy weighted error
(i.e., describing degrees of error with fuzzy terms).

12.2 EVOLVING THE STRUCTURE AND PARAMETERS
OF INPUT-OUTPUT SYSTEMS

Regression equations are often used for predictive modeling. Prediction is the
keystone of intellect because intelligent behavior requires acting appropriately in



an environment in order to meet a desired goal, or collection of goals.? In order to
accomplish that feat, you (or another intelligent system) have to be able to anticipate
what is going to happen in the future so as to be prepared for it when it happens. It’s
relatively easy to be a “Monday morning quarterback™ and identify what someone
should have done, or shouldn’t have done, in retrospect. It’s far more challenging to
predict the future with accuracy and precision. But that’s the requirement that natural
selection has placed organisms since the dawn of life itself. Creatures that cannot
predict what is going to happen next in the real world are often the victims of other
creatures who can.

In engineering, it’s commonplace to utilize input—output mathematical models to
make predictions about the future. The inputs and outputs could be all sorts of things:

1. Measurements of aircraft parameters in flight as inputs and control stick actions
as output.

2. Measurements of atmospheric variables as inputs and extent of polar ice caps as
output.

3. Historical records of movie ticket sales by genre, actors, release date, and
production studio and total revenue as output.

You can surely imagine many other examples. Various mathematical models can
be employed to describe these sorts of relationships, each with varying precision and
accuracy. To be effective, a model must be able to yield a sufficiently accurate
prediction at a suitable time in the future with sufficient precision. It’s easy to generate
a 100% accurate predictive model: “In the future, something will happen.” That is
certain, but this model has no precision. It also has no definitive time span (since we
do not know with certainly if time will ever come to a stop in the universe). Effective
predictive models must incorporate appropriate precision and accuracy over an
appropriate time frame.

As mentioned earlier, engineers and other practitioners often use a so-called maxim
of parsimony, also known as Occam’s Razor, to help design mathematical models.
This maxim, as paraphrased by Albert Einstein, says to keep models as simple as
possible and no simpler.* If a model is too simple, it will not be sufficient to explain
the process that is being modeled. For example, it’s not possible to make a
mathematical model of a falling object with high fidelity using only a linear function.
As we know from physics class, this requires a quadratic function. On the other hand,
mathematical models can be made so complex that they can “explain” all of the
available historical data, but what they really do in those cases is fit the noise in the

2 This was the basis of Lawrence J. Fogel’s doctoral dissertation [Fogel, 1964].

3 The saying derives from the situation in which National Football League games are played mainly on
Sunday. On Monday, it is easy to say that the quarterback of a losing team should have done something
different. It is another version of the famous idiom “hindsight is 20-20.”

*See https://en.wikiquote.org/wiki/Albert_Einstein for a historical view of the development of this
attribution.
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data—perfectly—and thus these overly complex models tend to predict poorly
because future data are by definition uncorrelated to the noise in past data.

These aspects of mathematical modeling are very important generally, and quite
pertinent in the application of evolutionary algorithms for predictive modeling.
Without a priori knowledge of a system to be studied, the range of available models
is unlimited. Practical experience over many generations of modeling has generated
different classes of models that may help explain certain processes. These are only
guides and you should always be open to considering other mathematical models. The
following sections provide examples of evolving models within three classes of
input—output systems that are commonplace in time series modeling.

12.2.1 Evolving ARMA(X) Models

12.2.1.1 Fundamentals Anautoregressive moving average (ARMA) model is one
that consists of two parts. The autoregressive partindicates that future values of an observed
variable are a function of prior values of the observed variable. For example, the model

y[t+ 1] = apy[t] + ajy[t — 1] (12.8)

indicates that the predicted value for the observed variable y at time (t+ 1) is the
weighted sum of the value of y at time t and the value of y at time (t — 1), weighted by a,
and a;, respectively. This model is an AR model. It is a regression equation in itself
(hence “autoregressive”). The concept of the moving average comes from additional
terms that model noise in the system, such as

y[t+ 1] = apy[t] + a;y[t — 1] + coe[t] + cre[t — 1] (12.9)

where the new terms are e[t] and e[t — 1], the values of random noise attimetandt — 1,
respectively, weighted by ¢ and c;, respectively. Often, the actual noise in a system is
unknown and modeled as a function of the difference between a predicted value of
y[t+ 1] and the observed value. Models of the form (12.9) are sometimes written in
shorthand notation as

A(q)y[t] = C(q)elt] (12.10)
where A(q) and C(q) are polynomials in the so-called shift operator q~'. For example, if
ylt+ 1] = 2y[t] + 4y[t — 1] + 3e[t] — 2e[t — 1] (12.11)

then A(q) = [2 4]and C(q) = [3 —2]. This can be extended in the case where a
system is a function of its own past values as well as external inputs (such as an airplane
that has inertia and also is affected by control surface changes). In this case, the system
is described as

A(q)y[t] = B(q)u[t] + C(q)elt] (12.12)



where B(q) is a polynomial in the shift operation q~! and u[t] is the control input. This is
then called an ARMAX model (ARMA + eXternal inputs).

12.2.1.2 Model Optimization If you decide to model a system with an ARMA
or ARMAX model, you will have to determine the appropriate number of lag terms in
each polynomial A(q) and C(q) (and B(q) if the model is ARMAX) and also the
appropriate values of the parameters in the polynomials. You might imagine if data
were generated from (12.9) using standard Gaussian noise” for e[t]. But suppose
nobody told you that there were two lag terms in A(q) and two lag terms in C(q).
Following a standard approach that every student of system identification learns in
school, you’d have to guess at the form of the model. Does it seem best to use one lag
in A(q) and three in C(q)? How about 10 lags in A(q) and 1 in C(q)? There are infinite
possibilities.

Once you choose a model form, you could employ traditional gradient-based
methods to find the best estimates for the parameters in A(q) and C(q) in terms of
minimizing the squared error of model outputs to observed data. These methods are
sometimes called recursive prediction error methods (RPEM) because they use the
predictive error to update the model parameters in a recursive manner—conceptually
this is similar to backpropagation in neural networks, and it also has all the drawbacks
of a local search mechanism just as backpropagation does. If the model form is
appropriate and the noise is stationary, then the gradient RPEM methods can locate
optimal parameter values. If the model form is not appropriate or the noise is
nonstationary, then the RPEM methods can yield answers that are only locally
optimal and quite possibly insufficient for the task at hand.

Evolutionary algorithms offer different capabilities for exploring model develop-
ment in these cases. One option is a straightforward extension of what was
demonstrated for the linear regression problem in (12.1), in which an evolutionary
algorithm can be used to optimize the parameters of a mathematical model and
potentially overcome the local optima that might entrap an RPEM method. In this
approach, you still have to select the order of the model (the number of lag terms) and
the evolutionary algorithm adapts the weights on each term in the model. While that’s
a possible advantage over RPEM methods, the fact that evolutionary methods do not
need to rely on gradient information offers a broader advantage in that a search can be
made for appropriate model order at the same time parameters are optimized.

Information Criteria As mentioned earlier, arbitrarily complex models can be
constructed to fit any available data. Thus, it is important to be able to assess the
complexity of amodel in light of the degree of fit it offers to those data. This trade-off of
complexity versus goodness-of-fit has been quantified in several different approaches
over many years of development in statistical information theory. These approaches
have yielded alternative formulas that can be used as objective functions in evolu-
tionary optimization. So it’s important to have a basic understanding of the most
common of these approaches.

5 Recall, a standard Gaussian variable has a mean of zero and standard deviation of 1.



One of the most common is called Akaike’s information criteria (AIC) [Akaike,
1974]. This incorporates the principle of maximum-likelihood estimation (MLE) and
a penalty for the number of free parameters that are incorporated in a model.
Maximum-likelihood estimation is a method of parameter estimation that involves
finding parameters so that the observed data have maximum likelihood. The AIC of a
set of parameters, 0, in a predictive model is given by

AIC(0) = —2 In(f(yl0)) + 2p (12.13)

where p is the number of independently adjusted parameters in 6, y is the observed
data, and f(yl0) is the likelihood function. (The term 0 is used here to be consistent
with control theory notation, which is where the AIC was first derived.) The “best”
model minimizes the AIC.® If you aren’t familiar with MLE methods, then (12.13)
may look mysterious, but you can view it in two parts. The first part treats the
goodness-of-fit of the model (with the parameter vector 8). The better the fit to the
observed data, the greater the In(f(yl0)), and thus the smaller the —2 In(f(yl0)).
Remember that we want to minimize (12.13) so that better fitting models yield lower
scores. The second part involves the cost for each parameter, where there are
p parameters. Essentially, the goodness-of-fit component is penalized by adding a
factor that is twice the number of free parameters. Each parameter that you add has to
pay for itself by lowering —2 In(f(yl8)) by at least two points. Otherwise, the AIC
would favor not including that parameter.

An alternative to the AIC is called the minimum description length (MDL)
principle [Rissanen, 1978, 1984]. This approach finds an optimum structure size
that yields the shortest description of observed data in an information-theoretic sense.
The criterion is

MDL(0) = —log, (f(yl6)) + 0.5plog, n (12.14)

where there are n total observations of data and the other symbols retain the same
meaning as in (12.13). The difference between (12.13) and (12.14) is most impor-
tantly in the form of the penalty function for the number of parameters. In the MDL,
each additional parameter must pay for 0.5log, n of reduction in —log, (f(yl0)),
otherwise it hasn’t “paid its own way.” Both MDL and AIC have interesting
mathematical properties that suggest their use or disuse [Kashyap, 1980; Fogel,
2000]. It’s often reasonable to employ both criteria and consider any differences that
result in choosing which model is “optimal.”

Two other criteria that should be noted are the predicted squared error (PSE)
method [Barron, 1984] and an older method employed for optimal subset selection in
regression called C, [Mallows, 1973]. The PSE statistic is

PSE = TSE + 26%(p/n) (12.15)

© The derivation of AIC comes from Kullback-Liebler information theory statistics, which is beyond the
scope of this book.



where o2 is a prior estimate of the true error variance that does not depend on a

particular model, p is the number of coefficients in the model (analogous to p in the
AIC and MDL criteria), and TSE is the average squared error of the model for n
observations. The model that achieves the lowest PSE is considered best. Again, the
lower the error of the model, the lower the TSE and thus the lower the PSE, but every
additional parameter p costs 26 /n points.

The C, statistic [Mallows, 1973] has been more commonly used in statistical
model building for optimal subset selection in regression analysis and is calculated as

Cp = SSg(p)/c* —n +2p (12.16)

where SSg(p) is the sum of the squared errors between the observed and estimated
outputs of the model, n is the number of observations, p is again the number of
parameters in the model, and o2 is an unbiased estimate of the variance of an error
term. Lower overall model error makes the first term lower, which is offset by the
addition of twice the number of parameters required to obtain that model error. The
expected value of C, = pif the fitted model has negligible bias, but C, > p otherwise.
Generally, small values of C,, that are close to p are desired.

These four criteria, AIC, MDL, PSE, and C,, are potential ways to trade off a
model’s goodness-of-fit for the number of degrees of freedom (parameters) that the
model employs. Traditional gradient methods require fixing a model form first and
then finding parameter values that optimize the objective function (such as lowest
mean squared error), and then repeating that for multiple model forms, and then only
at the end comparing results in terms of these sorts of information criteria. In contrast,
evolutionary algorithms can be used to search over a landscape of varying model
forms and parameter values simultaneously.

Example Consider the following example of applying an evolutionary approach to
modeling real-world data in light of the AIC [Fogel, 1992b]. A time series of ocean
acoustic data was recorded in the arctic with a sampling rate of 22 kHz. The data were
observed to be predominantly “quiet ocean” with intermittent, short-duration ice
cracks. These cracks (signals) lasted for less than 2.5 ms and were of relatively low
signal-to-noise ratio (SNR) (i.e., about 0 dB as measured by taking 10 times the log 10
of the ratio of the estimated variance of the signal to the estimated variance of the noise).
Three of these ice cracks were extracted for modeling. The data were scaled to be within
a range of [—1, 1]. ARMA models of the time series were considered as a possible
representation for theice cracks. Figure 12.5 shows a time series of the firstice crack that
occurs near the end of the depicted waveform.

The evolutionary approach started with a population of 250 candidate models of
the form

A(Qy[t] = C(g)e[t] (12.17)

These were created initially at random by choosing model orders for A(q) and C(q)
uniformly over the integers {1,...,8} and initializing the associated parameters
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FIGURE 12.5 The waveform (time series) for data from the first ice crack. The crack appears
as the larger amplitude impulse near the end of the time series (207 samples). (From Fogel
(1992b).)

uniformly over the interval [—0.5, 0.5]. To review then, each candidate solution in the
population consisted of a pair of integers, each being between 1 and 8 inclusive, which
represented the number of lag terms in A(q) and C(q), respectively, along with a
parameter vector of variable length with a real-valued entry for each parameter
specified in A(q) and C(q). For example, one solution might have been

[2,3,-0.1,0.2,0.4,0.3,-0.02]
which could correspond to the model, with two lags in y and three lags in e:

y[t+1]=y[t]=0.1y[t—1]+0.2y[t—2]+e[t] +0.4e[t— 1]+ 0.3e[t— 2] —0.02¢[t — 3]
(12.18)

where y[t] is the amplitude of the ocean wave at time t and e[t] is the standard
Gaussian noise process. The coefficient on y[t] and e[t] is often assumed to be 1.0.

The performance of each candidate was defined in terms of its overall AIC value,
that is, the sum of the independent AIC scores when the chosen model was used as a
one-step ahead predictor of each individual ice crack time series. One offspring was
created from each parent by randomly altering the order of the A(q) and/or C(q)
polynomial (0.5 probability of each). The number of lags to be increased or decreased
was chosen at random with respect to a Poisson distribution with a rate of 0.1. Each
polynomial coefficient was altered by adding a Gaussian random variable with mean
zero and variance inversely proportional to the fitness score.” In this procedure, an
individual could be mutated by changing both its model form (order of A(q) and C(q))
and its parameters simultaneously, thus providing a search over model construction
and parameter optimization at the same time.

Competition for survival was handled by conditioning on the each contending
solution in turn and comparing it with 10 other randomly selected solutions. If the
contending solution offered a superior AIC, it received a “win.” When performed
across all contending solutions, this version of tournament selection focused on the

7 More precisely, this was accomplished using an “affine” function, which is a function that uses a linear
transformation and a translation, such as f(x) =ax +b.
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FIGURE 12.6 The rate of optimization of the best solution in the population for fitting the
available ice crack data in terms of AIC as a function of the number of generations. (From Fogel
(1992b).)

solutions with the most wins to be parents for the next generation. Overall, evolution
was iterated for 100 generations.

Figure 12.6 shows the evolutionary optimization of the best model in the
population at each generation in terms of AIC score. You'll note that there was a
rapid improvement starting from randomized models to those that more appropriately
fit the available data and did so with as few parameters as feasible. The best-evolved
model after 100 generations had four lag terms in A(q) and one lag term in C(q):

A(q) =[1 -0.7800 -0.4040 —0.1278 —0.3552]

(12.19)
C(@) =[1 0.5479]

Figure 12.7 shows the predictive fit of these models to the available ice crack data for
each of the three modeled events. The mean squared error per prediction over each
sampled amplitude was 0.0402. Since there is no reason to believe that ice cracking is
actually created by a 4-lag AR, 1-MA process, the result of the evolutionary modeling
wasn’t to show that evolutionary could find “the right model,” but rather to provide a
reasonable mathematical approximation to the physical process of ice cracking.
Visually, to use a fuzzy term, the degree of fit looks reasonable.

For comparison, a recursive prediction error method (RPEM) was applied to the
same data. Recall that if you wanted to use an RPEM method generally, you’d have to
select the model form by hand and then use the gradient method of RPEM to find
values for parameters. If you restricted attention to all models with up to 8 lags in AR
and MA, that would be 64 possible models to consider. To facilitate the comparison,
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FIGURE 12.7 The predicted and observed amplitudes for the three samples of ice cracks.
(From Fogel (1992b).)

attention was focused just on the same model structure as found by evolution (four
lags in AR, one lag in MA) and RPEM returned the following coefficients:

A(@ =[1 -1.0113 —0.6949 —0.4579 —0.1056]

(12.20)
C(q) =[1 0.3525]
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which translated to a mean squared error per sample of 0.0426, close but slightly
higher than the 0.0402 that was attained by evolution.

The coefficients for the RPM appear quite different from those evolved, but one
way to compare them is to examine what is called the frequency response of each
model, which shows amplitude response as a function of frequency. Figure 12.8
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FIGURE 12.8 The frequency response of the best evolved model (EP) and a model of the
same order optimized by recursive prediction error, a traditional method. In this case, the
frequency response for both models is very similar despite having very different model
coefficients. (From Fogel (1992b).)



shows the comparison of frequency response for the RPEM and evolved model, and
the results are very similar. This makes an important broader point: models that look
different in structure can have similar behavioral effects.®

12.2.2 Evolving Neural Networks

Although ARMA(X) models can generate enormously flexible behaviors, particularly
when put in a so-called Box-Jenkins form:

A(Q)y[t] = (B(q)/D(@)ult] + (C(a)/F(a)e(t] (12.21)

where A(q), B(q), C(q), D(q), and F(q) all are polynomials in the shift operator q~!, it is
often necessary to expand the possible form of model to a general nonlinear function. As
described in the beginning of this book, neural networks can provide a convenient
representation for such functions. Here’s an example that combines evolutionary
optimization with neural networks and also employs AIC to assess whether or not
the evolved models explained the available data better than a noise-only model.

Consider the problem of modeling a chaotic time series such as the logistic
difference equation [Fogel and Fogel, 1996]

x[t+ 1] = A x x[t] x (1 = x[t]) (12.22)

which is capable of diverse behavior [May, 1976] and depends on the value of A. If
1 < A < 3, the fixed point for the equation is x = 1 —A~'. At A =3, the system
bifurcates to give a cycle of period 2, which is stable for 3 <A < 1+ 6%, As A
increases beyond this range, bifurcations give rise to a cascade of period doublings
that lead to an apparently chaotic sequence for 3.57 < A < 4. The experiments
presented here used A = 4. One thousand samples were created from (12.22) using
A =4 and x[0] =0.2.

A multilayer feedforward neural network was used to model this process. It had
two input units, two hidden units, and a single output unit (Figure 12.9). The two input
units corresponded to the values x[t] and x[t — 1], respectively, while the output unit
provided the prediction of x[t + 1]. Note that the values of x[t — 1] do not enter into
(12.22), but they were provided as extraneous input to examine the manner in which
these uncorrelated data would be handled. The nonlinear functions in both hidden
nodes were sigmoid functions

f(d) = (1 +e79)! (12.23)

where d is the dot product of the appropriate weights and the inputs to the node, offset
by a given bias term. The output of the net was calculated as the simple dot product of

8 For example, within neural networks you could create a multilayer perceptron that performs very similar
to a radial-basis function network, even though the structures of the two networks would be very different.
Also, you may find in constructing evolutionary algorithms that the behavioral effects of mutation operators
may be very similar to some other operator, such as crossover, in certain cases.
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FIGURE 12.9 The neural network structure used to model the logistic system with A = 4.
There are two input nodes, two hidden nodes (H1 and H2), and one output node. The figure
shows the best evolved neural network after 1000 generations. Note that the weights from the
input node associated with x[t — 1] are very close to zero, indicating that the evolutionary
process learned that x[t — 1] was not involved in the system. (From Fogel and Fogel (1996).)

the weights and inputs to the final node, offset by the associated bias term. No sigmoid
function was applied to the output.

The evolutionary approach included 50 parent neural networks, each initialized with
uniformly randomized weights and biases from [—2, 2]. Offspring were created from the
parents by adding a Gaussian random variable with zero mean and variance equal to the
mean squared error of the parent to every weight in the parent network.” The process
generated one offspring from each parent and was iterated for 1000 generations.

Two experimental setups were employed to examine two different facets of this
modeling problem. The first did not employ any noise in (12.22) and the experiment sought
to determine if the evolutionary process would learn that the input associated with x[t — 1]
was not relevant for future predictions. The second employed an additional noise term

x[t+ 1] = A x x[t] x (1 — x[t]) + e]{] (12.24)

where e[t] was zero mean Gaussian noise with a standard deviation that was
approximately the same as the standard deviation of the logistic process without
noise in (12.22). This creates a signal-to-noise ratio problem of being able to identify
whether or not there was a chaotic signal embedded in the noise.

For the first case, Figure 12.9 shows the best-evolved weights and bias terms. The
weights from the input node for x[t — 1] were set very close to zero, which was as
expected because x[t— 1] does not enter into the generation of x[t+ 1]. The
agreement between the actual values generated by the system and the neural network
model are shown in Figure 12.10.

® This procedure allows a smaller step-sized mutation as performance improves; however, it requires an
estimate of a lower bound on the error. In this case, the estimated lower bound was 0.0, but this is not the
case generally, and thus self-adaptive variation methods are favored as a more general approach.
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FIGURE 12.10 The agreement between the actual logistic system (dark line) with A = 4 over
100 time steps and the output of the best evolved neural network (red line) shown in
Figure 12.9. (From Fogel and Fogel (1996).)

For the second case, Table 12.1 shows a comparison of the AIC score for each of
five trials using the noisy logistic model (12.24). In this case, the best-evolved neural
network was compared against a Gaussian noise-only model. Recall that the AIC
incorporates both the goodness-of-fit of a model and also the number of parameters
used. The evolved neural networks could be expected to generate a better fit than a
noise-only model, but it was not known ahead of time whether or not a signal could be
detected in noise by comparing the evolved neural networks with a noise-only model.
The expected AIC generated by assuming only a Gaussian noise process for (12.24) is
—1368.1. In each of the five evolutionary trials, the AIC for the evolved neural

TABLE 12.1 The AIC Value for Each Trial with the Noisy Logistic Function

Trial AIC for Evolved Neural Network Expected AIC Noise-Only Hypothesis
1 —1443.3 —1368.1
2 —1478.2 —1368.1
3 —1398.1 —1368.1
4 —1452.8 —1368.1
5 —1502.1 —1368.1

Source: From Fogel and Fogel (1996).



network was lower, indicating that it was a better explanation for the data than was a
noise-only model. Thus, this provided a confirmation that the evolutionary method
was able to detect a chaotic signal in noise, in this case at a level where the standard
deviation of the signal was on par with the standard deviation of the noise.'”

12.2.3 Evolving Multiple Interacting Programs as Networks

There’s an extension to the concept of evolving neural networks that hasn’t received
comparable attention, but possesses a flexibility that makes it interesting. Recall that
neural networks can include feedback loops, rather than just be feedfoward, and also
recall that when using evolution to optimize neural networks, the functions inside the
nodes do not necessarily need to be differentiable because no calculus methods are being
used to find points of optimality. With that in mind, consider the possibility for having
arbitrarily connected networks, in which each node is itself an arbitrary function.

For example, suppose a tree-based representation [Koza, 1992; Chellapilla, 1998]
were used to represent the transfer functions inside the nodes of a neural network (see
Section 12.2.2). A tree structure might represent a function such as

To = (x + T1)T (12.25)

in the following form:

(%)
(1) @
» O

where T| is an input from another node, x is an observed variable, and Ty is the prior
output the last time the function was called. Suppose there were several functions like
this, each acting as the transfer function in a recursive neural network. The result
might appear as shown in Figure 12.11.

In this “neural network,” the values of Ty, T;, and T, are initialized at specified
values, such as 1.0. The value x is an observed value, which could be a function of
time (i.e., x[t]), and one node is designated as the output node for the network (in this
case the node that defines the function for Ty). The single input x is passed to all three
other nodes, but each of these nodes performs a mapping function (which is later
subject to evolution by variation and selection). Ty depends on previous values of

10 This is also known as 0 decibels or 0 dB. The results are similar to those offered in Fogel and Fogel
(1996).



(In/(T2+0.97831))
(To - 0.11345)

To=
(In+Ti)To

Ta=
T2 +03745*
In(To + T1)

FIGURE 12.11 A multiple interactive programs (MIPs) network. The structure looks much
like a neural network. The value of Ty is presumed as the output of the network. The value “In”
represents an input.

itself, as well as the value T;. T in turn depends on the results from T,y and T, and T,
depends on all three noninput nodes. Since each function inside of each node can be
represented as a tree, and since tree representations were developed early in evolu-
tionary computation within a branch known as genetic programming, these functions
are often described as programs, and thus a network like this is described as a network
of multiple interacting programs, or a MIPs net.

Evolution can operate on MIPs networks by adjusting both the topology of the
network, including adding and deleting nodes, and the connectivity of the nodes, as
well as the functions inside the nodes. This is constrained by having to include the
input variables and output variables. (In the diagram above, the net would always
include an input node and it would always include a function for T, which was
designated as the output.) The functions inside the nodes can be modified via
recombination and/or mutation (see Section 11.1).

One example [Angeline, 1998] used evolutionary MIPs nets to predict annual
sunspot data.'! Figure 12.12 shows the rate of optimization of the best MIPs net in
terms of the mean squared error when using 100 parents to generate 150 offspring

' As of this writing, sunspot data are available at http://www.heatonresearch.com/wiki/Workbench_Time-
Series_Example.
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FIGURE 12.12 The normalized mean squared error of the best-evolved MIPs network
applied to the problem of predicting sunspots. (From Angeline (1998).)

FIGURE 12.13 The structure and equations representing the best-evolved MIPs network
after 800 generations. (From Angeline (1998).) The values d;,d;,ds, anddg indicate
previous observations from 1, 2, 4, and 8 time steps in the past.

each generation over 800 generations. Figure 12.13 shows the architecture that
resulted from the evolution and Figure 12.14 shows the performance of the best model
on future data in the sunspot series. Table 12.2 compares results from other literature
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FIGURE 12.14 The goodness-of-fit to the number of sunspots per year that was obtained by
the best MIPs network. (From Angeline (1998).)



TABLE 12.2 A Comparison of the Training and Testing Performance Obtained
in Angeline (1998) Using MIPs Networks and Other Publications Using Neural
Networks

Study Total Number of Nodes Training Set NMSE 1921-1950 Test Set NMSE
Weigend et al. 16(12-3-1) 0.082 0.086
Svarer et al. 16(12-3-1) 0.090 0.082
Aerrabotu et al. 16(12-3-1) 0.100 0.106
MIPs 8(4-1-1-1-1) 0.103 0.079

Although the MIP networks had a slightly higher training error, the test set performance in years 1921-1993
was better than published results. NMSE: normalized mean squared error.

on sunspot prediction in terms of number of nodes in the network and the training/
testing performance, which favored the MIPs net on testing.

T3 =0(—0.8637— (d, —0.1021 +dy +dsds + (do +d; +ds +ds +ds)dg))  (12.26)

To=c d; _ dg+d, dsdsdy _0.3027—(0.0657+d2)
2 T3/(d1+d4+T3d1) 4 —0.9370 0.1120T3 d, +d;
(12.27)
Tody /(ds +ds)+(ds—0.4183)x
T =6 (d8+d8/(T2+0.4601+T3—(T3+0.9195))—T2)+d4+(T2/d])—dg d
1= —Uug
dg
(12.28)
d; =T, Tsd,

Ty=—7—""— 12.29
0 T;+T, ( )

12.2.4 Summary

Input—output modeling is central to many scientific activities. Traditional methods of
input—output modeling have required a person (the investigator) to use judgment to
offer a model form for consideration and then use gradient-based methods to optimize
parameters for the model. This results in an iterative approach, as it’s rarely the case
that someone can consider the “best” model on an initial attempt, and gradient search
methods may stall at local optima even if the model is “correct.”'* The evolutionary
approach described here is also iterative; however, it offers the possibility of

'2 The word correct is put in quotes because there is something known as “the myth of the mathematical
model” in that nature presents us with physical systems, not mathematical systems. We employ mathematics
to gain a better understanding of those systems; however, it is a mistake to believe that mathematical models
are equivalent to nature. Thus, in most cases of modeling nature, there is no such thing as a “correct” model,
only models that provide better or worse predictive understanding of the phenomena of interest.



automating much of the exploration for model form and associated parameters,
particularly when coupled with information-theoretic criteria that can trade off the
goodness-of-fit of the model for the number of parameters it employs.

Time series prediction models provide an opportunity to illustrate an important
point in evolutionary computation. The effectiveness of a particular variation operator
depends directly on the match between the representation and the evaluation function.
Research in Chellapilla et al. (1997a, 1997b) showed that four completely equivalent
forms of linear filters (i.e., mathematical models) generated completely different error
landscapes in the neighborhood of the optimum instantiation for a given set of data
(see Figure 12.15). Each of these representations involved the use of continuous
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FIGURE 12.15 Chellapilla et al. (1997) studied the application of evolutionary system identifi-
cation applied to a system governed by the transfer function H(z) = [0.0154(1 4+ 3z~ + 3272 +
z7)]/[1.0 — 1.9927" + 1572022 — 0.4583z3] driven by white noise. The letter z is employed to
be consistent with system identification literature. There are four equivalent model forms that can be
used to describe the system, known as direct, lattice, cascade, and parallel. Each uses continuous-
valued coefficients. The graphs (a)-(d) show the mean squared error surface plotted in the
neighborhood of the optimal solution for each of these model forms, respectively. Even though
each model form is equivalent in function, the surface that each generates varies dramatically from a
ridge function to a quadratic bowl. The proper variation operators to use differ in each case.



parameters, and yet the appropriate variation operators to use would certainly be much
different in each case. Thus, there is plain evidence that neither the cardinality of the
representation (coding in real numbers versus, say, binary numbers) nor the model
form itself is sufficient to indicate which variation operator(s) will be best. It is the
degree of fit between the operator, the representation, and the error surface that
ultimately determines the optimization performance of an evolutionary algorithm.

The application of evolutionary algorithms to time series prediction is wide ranging
and very engaging. Some recent publications of interest include Mirmomeni and Punch
(2011), which focused on forecasting chaotic times series using coevolutionary models
(coevolution is described later in this chapter), Huang et al. (2009), which analyzed
financial market trading opportunities with coevolutionary fuzzy predictive modeling,
and Braun et al. (2011), which studied evolutionary parameter and structure optimiza-
tion in dynamic systems, including modeling a hydraulic valve.

12.3 EVOLVING CLUSTERS

Clustering has already been described within the areas of neural networks and fuzzy
systems as a core activity. Indeed, clustering and its close cousin classification are two of
the principal concerns in signal processing or the broader field of data mining. Clustering is
the activity of recognizing similarities between observed data and then associating different
data together as a group. Also important is recognizing differences between observed
signals so that the within-group variance is much smaller than the between-group variance.
Classification involves assigning particular labels to observed signals. Such labels may or
may not refer to particular properties that would be useful for clustering.

As described elsewhere in this book, clustering and classification are sometimes
described as unsupervised and supervised learning, respectively. In unsupervised
learning, the clustering algorithm uses a measure of effectiveness that typically involves
minimizing the description length of clustering or a trade-off of within-group and
between-group variance. In supervised learning, examples of each class of interest are
presented and the task is to find a mapping function such that when new examples from
each class are observed, they will be classified correctly (i.e., assigned to the appropriate
class). The measure of effectiveness concerns the payoffs for correct classifications, and
the costs of the various errors (at least the cost of type I and type II errors).

Evolutionary algorithms can be applied usefully to both clustering and classification.
The payoff functions involved in both cases are often not amenable to classic optimiza-
tion. As such, you must either simplify the payoff function or use some other non-
traditional method of optimization. Evolutionary optimization provides one possibility for
consideration.

12.3.1 Evolutionary Information: Theoretic Clustering with
Rotatable Hyperboxes

Suppose data are observed in two continuous dimensions, x; and X;, and must be
clustered into groups with similar properties. One approach to this clustering problem
was offered in Simpson (1992, 1993), which suggested using boxes as clusters to
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FIGURE 12.16 In the diagram, there are two measurable parameters x; and x;. A box is
drawn that defines a cluster. Points contained within the boundaries of the box (e.g., points A
and B) are said to be complete members of that cluster, or possess membership 1.0. Points
outside the box (e.g., C and D) could still be considered members of the cluster defined by the
box, but they would possess membership less than 1.0. Typically, membership is based on a
metric such that D is given less membership than C.

surround grouped data. (In higher dimensions, these would be “hyperboxes,” but in two
dimensions as we have here, they are simply rectangles.) Others, such as Buckles et al.
(1994), suggested a similar idea of using ellipses (or hyperellipses), but for the sake of
illustration, we’ll focus on using boxes. Simpson viewed these boxes as fuzzy clusters,
with elements inside a box having a membership of 1.0 and elements outside a box
having a membership that depended on a rule for that box (see Figure 12.16).

In Simpson (1992, 1993), the boxes were always aligned with the coordinate axes,
but data are not always aligned with coordinate axes, so let’s consider an extension in
which the boxes can be rotated and thus not aligned with coordinate axes. As reported
in Ghozeil and Fogel (1996a), a population of 50 parents was created in which each
solution encoded a complete clustering: a set of hyperboxes (in this case, rectangles),
represented as a five-tuple:

(X7 y7 97 W7 h)

where x and y defined the (x, y) position of the center of the hyperbox, O was the rotation
in radians anticlockwise of the hyperbox around its center, w was the length of the sides
of the hyperbox in the direction of 6 (i.e., the width), and h was the length of the sides of
the hyperbox in the direction perpendicular to 0 (i.e., the height). This evolutionary
approach also employed self-adaptation (see Section 11.5), incorporating a five-tuple of
self-adaptive parameters that were used to control the generation of an offspring:

(0x, Oy, g, O, Op)

where each element was defined as the standard deviation of a Gaussian mutation for
the corresponding component (explained in more detail below).

Each parent was also defined by a parameter, Nbox, indicating the number of
hyperboxes in its solution, and two additional self-adaptive parameters, 6aqqpox and



OpelBox, for controlling the likelihood of adding boxes or deleting boxes from a
solution when creating an offspring.

So, for example, one solution might have been (1, 20, 30, 0, 10, 40, 0.25,0.25, 5, 5,
0.5, 5, 5). This would, in order of parameters, indicate one box, centered at
(x,y) = (20,30), with 6 = 0, width of 10, height of 40, and with the remaining
parameters governing how to create an offspring from the offspring of this solution
(O AddBox; ODelBox; Ox; Oy, 09, O, oh).13 Of course, a clustering solution with only one
cluster isn’t very interesting. The actual method started each parent with five boxes,
and initialized the parameters at values that were considered reasonable given the
range of the observed data (0—100 in x and y).

Mutation worked by creating a new solution via Gaussian random variation of each
existing box. For example, the x location of a new offspring was set to

X' =x + N(0, 04) (12.30)

and similarly for the other parameters of each box. The number of boxes was raised
(up to the maximum of five) or lowered (down to the minimum of one) probabilisti-
cally. New boxes were initialized at random. The self-adaptive parameters were
updated using a lognormal approach akin to that described in Chapter 11.5, such as

O'rddBox = OAddBox X €Xp[N(0.3, ;) + N(0.3,7)] (12.31)

where 1, = [2(Nbox)p]™> and 1, = [2(Nbox)p*>]~", and there were p = 5 dimen-
sions per box. The product of Nbox and p yields the total dimensions involved in that
particular solution. The other self-adaptive parameters were determined by

o, = ox X exp[N(0.3, 1) + N(0.3, 7)] (12.32)

and similarly for Oy, Op, Oy and o},. (Note: The value 0.3 that was included in the self-
adaptive update was determined empirically and appeared to offer a bias toward
increasing the mutation step sizes in balance to selective pressures that reduce step sizes.)

Unlike the prior time series modeling described in Section 12.2, the work in
Ghozeil and Fogel (1996a) relied on the minimum description length principle. The
details of the implementation are lengthy, but in summary,

1. MDL requires an assumption about the likelihood function for the data. For the
experiments in Ghozeil and Fogel (1996a), the likelihood function was a
uniform distribution, where the likelihood for any point in a hyperbox was
the inverse of the volume of the hyperbox. It was required that hyperboxes have
at least one more point in them than there were dimensions in the data.

2. Any hyperboxes that contained no data were pruned and not evaluated as part of
any proposed clustering solution.

'3 In this case, the box parameters were generated first and then the self-adaptive parameters were varied. So
the new self-adaptive parameters could only be tested after the offspring had made it through a round of
selection. This is perhaps an atypical approach. The more typical approach varies the self-adaptive
parameters first and then uses the new self-adaptive parameters to create the offspring.



3. An “outlier” hyperbox was always included in every clustering to take care of
scoring any points not contained in other hyperboxes. This “outlier” hyperbox

was defined to cover the entire range of the available data. (In Ghozeil and Fogel
(1996a), data ranged from [0,100] in x and y.)

Figure 12.17a and b shows the result of evolving the clustering for data generated
uniformly in a rotated hyperbox. Figure 12.17a shows the rate of optimization for a 50
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FIGURE 12.17 (a) The rate of optimization for a (50 +50) evolutionary algorithm over 400
generations for the problem of clustering uniformly distributed data in a rotated box. The solid
line is the best score at each generation, while the dashed line is the mean score of all surviving

parent solutions. (b) The final best-evolved clustering for the data generated by placing data
uniformly at random in a rotated box. (From Ghozeil and Fogel (1996a).)



parent/50 offspring population over 400 generations. Figure 12.17b shows that the
optimization of the MDL score generated a box that contained almost all of the data.
One point at approximately (52,38) is outside the main box, and is therefore
considered part of the outlier box.

Figure 12.18a—c shows a similar result for data generated uniformly in two rotated
boxes. Figure 12.18b shows a typical best-evolved clustering, which could be
improved still by tightening the box in the lower left to fit the data in its cluster
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FIGURE 12.18 (a) The rate of optimization for a (50 + 50) evolutionary algorithm over 2000
generations for the problem of clustering uniformly distributed data in two separated rotated
boxes. The solid line is the best score at each generation, while the dashed line is the mean score of
all surviving parent solutions. (b) A typical best-evolved clustering for the case of data uniformly
distributed from two rotated boxes. These results could be improved still by tightening the box in
the lower left to fit the data in its cluster more closely. (c) An unusual (1 in 50) result from the
evolution on the problem in part (a). Occasionally, the evolution would fail to separate the two
boxes, opting for a single box instead. (From Ghozeil and Fogel (1996a).)
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FIGURE 12.18 (Continued)

more closely. In 1 of 50 trials, the result in Figure 12.18c was obtained, which was
suboptimal; however, it was within one standard deviation of the mean of all the best
clusterings in 49 other trials.

Figure 12.19a and b shows the results of clustering two overlapping rectangles. In
this case, because the MDL penalizes boxes that overlap—it isn’t a minimum
description of a data point to place it in two or more boxes—the best-evolved
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FIGURE 12.19 (a) The rate of optimization for a (50 + 50) evolutionary algorithm over 2000
generations for the problem of clustering uniformly distributed data in a rotated box. The solid
line is the best score at each generation, while the dashed line is the mean score of all surviving
parent solutions. (b) A typical best-evolved clustering for the case of data uniformly distributed
from two rotated boxes that overlap in a cross. These results could be improved still by
tightening the box on the left to fit the data in its cluster more closely while picking up the two
points that remain outside the cluster. (From Ghozeil and Fogel (1996a).)
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clustering after 2000 generations shows three boxes and the leftmost could be
optimized further to produce a tighter cluster, which would ultimately remove the
two outlier data points from the outlier box.

For the three cases, the MDL of the “true” data clustering (i.e., a clustering that
reflects the manner in which the data were generated) were 887, 893, and 1025,
respectively. The average best MDL scores across 50 trials in each case were 877.7,
909.1, and 1004.6, respectively. Thus, in the final case, the best-evolved MDL was
actually lower (i.e., better) than “truth” because of the disadvantage truth has in
having overlapping boxes.

The choice of hyperboxes for clustering is somewhat arbitrary, and other shapes
could be used, notably hyperellipses, which have received more attention in the
literature (for example, this is akin to radial basis function neural networks). An
extension that combines hyperboxes and hyperellipses would be an interesting
contribution to the literature.

12.4 EVOLUTIONARY CLASSIFICATION MODELS

12.4.1 Evolving Neural Networks

There are voluminous examples of applying evolutionary optimization to adjust the
weights and/or topology of neural networks. One example described later in this
chapter treats the problem of controlling a cart—pole system comprising multiple
poles. That system uses a fully connected recursive neural network. For an example in
classification, however, the case illustrated here involves a feed-forward neural
network applied to a problem in breast cancer detection.



Carcinoma of the breast is second only to lung cancer as a tumor-related cause of
death in women. The U.S. Centers for Disease Control and Prevention (CDC) indicate
that over 220,000 women were diagnosed with breast cancer in 2011 in the United
States (the most recent available year) and over 40,000 deaths occurred. Breast cancer
begins as a focal curable disease, but it is usually not identifiable by palpation at this
stage. Mammography remains a mainstay in effective screening.

The use of neural networks to assist mammographers in screening mammo-
grams began in the mid-1990s. In one example, Fogel et al. (1998) employed
evolutionary algorithms to optimize the weights of a fixed, small, neural network.
In this case, data were acquired from 216 cases of suspicious mammograms.
These were cases that were potentially suggestive of a malignancy; however, in
each case, the woman had subsequently undergone a fine needle aspiration and
assessment—a procedure in which cells are removed at a particular location and
examined under a microscope. Thus, the “truth” of whether or not each woman
had cancer could be known about each of these cases, to the extent possible: It’s
always possible that the fine needle aspiration may be taken and miss some cancer
cells, or that a reading may be performed incorrectly. Of the 216 cases, 111 were
associated with a biopsy-proven malignancy and 105 cases were indicated to be
negative by biopsy.

A domain expert (Eugene Wasson, MD, Maui Memorial Hospital, Maui, HI)
assessed these mammograms in terms of the following features:

1. Mass size: either zero or in millimeters
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2), or
high (3))
a. Well circumscribed
b. Microlobulated
c. Obscured
d. Indistinct
e. Spiculated
3. Architectural distortion: none or distortion
4. Calcification number: none (0), <5 (1), 5-10 (2), or >10 (3)
5. Calcification morphology: none (0), not suspicious (1), moderately suspicious
(2), or highly suspicious (3)
6. Calcification density: none (0), dense (1), mixed (2), faint (3)
7. Calcification distribution: none (0), scattered (1), intermediate (2), clustered (3)
8. Asymmetric density: either zero or in millimeters

These features, along with patient age, were recorded for each case as rated by the
domain expert and used as inputs to a neural network with 13 inputs (12 radiographic
features and patient age). The neural network had only two hidden nodes (this was as
compared to other literature using backpropagation to train networks in similar cases
that employed an order of magnitude more nodes, for example, Wu et al. (1993)). The



hidden nodes were sigmoid functions:
f(y)=(1+e7)" (12.33)

where y was the sum of the bias term and the dot product of the input feature vector
and the associated weight vector.

Rather than use a typical train—test—validate approach, leave-one-out cross-vali-
dation was employed. This procedure removes the first data example from the
available data and trains on the remainder. It then employs the best evolved neural
network to predict the case for the held-out data. After that, the held-out example is
returned and the next in sequence is held-out. The process is repeated for all data. In
the end, for n examples to learn from, there are n held-out cases, each based on
training all the remaining data.'*

In the available data, there were 158 cases that involved suspicious masses; the
other cases involved suspicious calcifications without suspicious masses. For these
158 cases, a population of 250 neural networks was evolved over 200 generations in a
(250 +250)-EA using standard Cauchy mutations on weights and biases and self-
adaptation to adjust the scaling on the Cauchy mutation. The self-adaptation step for
the ith scaling factor was

o, = oj exp (tN(0, 1) + TN;(0, 1)) (12.34)

where n = 31 parameters, T = (2n) ", ' = (2n°%)™%°, N(0, 1) is a standard normal
random variable sampled once for all n parameters of the vector o, and N;(0, 1) is a
standard normal random variable sampled anew for each parameter. (As described in
Chapter 11, this is a standard approach in self-adaptation.) These updated self-
adaptive parameters were then used to generate new weight values for the offspring
according to the rule

X, = x; +6C (12.35)

where C is a standard Cauchy random variable. Selection eliminated half of the total
parent and offspring weight sets based on their observed error performance using a
form of tournament selection.

Figure 12.20 shows a typical rate of optimization in each training run, while the
effectiveness of the overall process is shown in Figure 12.21 using a receiver
operating characteristic (ROC) curve, which shows the trade-off between the
probability of correctly identifying a malignancy and the probability of a false
positive (type I error). Often in ROC analysis, attention is given to the area under
the curve (AUC), for which bigger numbers are better. (The best would be a 1.0
probability of detection and a 0.0 probability of false alarm, which would yield an
AUC=1.0.) In this case, the AUC was approximately 0.9196. Another way to

14 There are other versions of cross-validation that hold out more than 1 case at a time. These are often called
k-fold cross-validation, where k is the number held-out at each “fold.”
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FIGURE 12.20 A typical rate of optimization for the best-evolved neural network in terms of
minimizing mean squared error between the network’s output and the target value (0 =benign,
1 =malignant) on features describing suspicious masses in mammograms. (From Fogel et al.
(1998).)

examine the discriminatory capability of a classifier is a cell point chart (see
Figure 12.22), which shows good separation between the two classes for this
approach.

It’s important to compare different-sized neural networks in classification because
of the classic problem of overfitting versus undergeneralizing. (A function—like a
neural network—with too many parameters can overfit training data and give poor
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FIGURE 12.21 A typical receiver operating characteristic (ROC) curve for a best-evolved
neural network with two hidden nodes on the mammogram data describing suspicious masses.
(From Fogel et al. (1998).)
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FIGURE 12.22 A typical cell point chart for testing separation of benign and malignant cases
in the mammogram data pertaining to suspicious masses. There was good separation between
the classes. (From Fogel et al. (1998).)

performance on new data. But a function with too few parameters may not be able to
generalize sufficiently from the available training data, and therefore also give poor
performance on new data.) Figure 12.23 shows a comparison of ROC curves for
evolved neural networks using 1-5 hidden nodes when applied in leave-one-out
cross-validation to the entire data set of masses and calcifications. The performance of
the neural network with two hidden nodes dominates the others, and notably the
performance of a network with only one hidden node was much worse.
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FIGURE 12.23 The receiver operating characteristic (ROC) curves obtained when classify-
ing all available data (including masses and microcalcifications) using neural networks with one
to five hidden nodes. The results show both the benefit of using multiple hidden nodes as
compared to a single hidden node and that there was no benefit for having more than two hidden
nodes. (From Fogel et al. (1998).)
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FIGURE 12.24 The output of the best-evolved neural network for the case of suspicious
masses in which mass size is varied from 0 to 80 mm and the patient age varied from 20 to 100
years of age with all other inputs held at their mean values. The network’s output did not tend to
vary with mass size, but exhibited a sigmoid relationship to patient age. (From Fogel et al.
(1998).)

Neural networks sometimes present a challenge in determining the relationships
between input and output data that have been captured by the distributed network. In
Fogel et al. (1998), efforts were made to better understand the relationship between
the output of the best evolved neural networks and the inputs of patient age and mass
size. To do this, over the 158 cases of suspicious masses, all variables other than
patient age and mass size were held constant at their average values, while age and
size were varied from 20 to 100 (years) and from O to 80 (mm), respectively.
Figure 12.24 shows the result, in which the neural network’s output increased as a
sigmoid function of patient age, but appeared independent of mass size. The
relationship to patient age was not surprising—the recommendation for annual
screening for mammograms in the United States is presently controversial between
the ages of 40 and 50, which is reflected in Figure 12.24 as the range of time when risk
is likely to increase. The lack of relationship of mass size to malignancy was
potentially surprising; however, this may reflect early detection of smaller cancers
and the presence of large benign masses (fibro adenomas) in the available data.

12.4.2 Evolving Rules

Evolutionary algorithms can be used to optimize decision trees or sets of rules just as
well as neural networks, fuzzy clusters, or other data structures. One example of this is
found in Porto et al. (2005), in which evolution was used to optimize rule sets for
classifying sonar returns from man-made or natural objects underwater. The data used in
this example were from active sonar units that produced various signals in a shallow



water field containing four metal spheres resembling sea mines positioned at different
depths. Signals were taken from settings in which these man-made objects were present
or absent, in which case the sonar would pick up natural sources of reflectance. There
were four input features that were derived from the sonar returns at different times.
These features measured how “peaked” a particular return might be. (The more the
“peaked,” the more likely the return to have come from a metal sphere.) Data consisted
of 425 examples, which were divided into training, testing, and validation sets.

The process of evolving rules was in essence that of evolving a program. Rules
were determined as sets of expressions, connecting logical operators, and conse-
quents. For example, a rule might take the form of

IF (Input Variable #1 > 0.5) THEN (TempVar #2 += 0.2) (12.36)

which means that if the value of the first input variable is greater than 0.5, the value in the
second temporary variable must be increased by 0.2. A more complex rule might be

IF ((Input Variable #1 > 0.5) AND (TempVar #3 < 0.5) OR (Input Variable #3 >
Input Variable #4) THEN (Output += TempVar #3)
(12.37)

Porto et al. (2005) arbitrarily limited the number of expressions in any rule from one to
twice the number of input nodes. Each rule had to contain at least one and up to a
maximum (user-defined) number of expressions, where each expression contained the
values from at least one of some number of descriptors and temporary variables (TV).
For convenience, a procedure was adopted where if any expression or logic with an
antecedent before or after an AND statement was false, then the entire antecedent was
considered false. Thus, in the more complex rule above, if the first or second condition
were false, then the entire rule would be considered false regardless of the relationship
between the third and fourth input variables.

An expression had three parts: (i) a left-hand side (LHS), which was either a
descriptor or a temporary variable (TV), (i) an operator, which was either less than,
less than or equal to, greater than, or greater than or equal to, and (iii) a right-hand side
(RHS), which was either a fixed real number or a TV or another descriptor. Two or
more expressions in a rule were connected by a logical operator AND or OR. The full
combination of expressions and logic operators was termed an antecedent.

For each rule there were two possible consequents: THEN or ELSE. If an antecedent
was true, what follows the THEN was considered, otherwise what follows the ELSE (if
itexists) wasn’t considered. There were three possible actions following the consequent:
(1) do nothing, (ii) update the output, and (iii) alter a TV. Every rule was required to have
a THEN consequent that was used when the rule as evaluated was true. The rule could
have an optional ELSE consequent. A consequent had three parts: (i) a LHS, which was
an output or TV, (ii) an operator, which was an increment (+=), decrement (—=), or set
equal to (=), and (iii) a RHS, which was either a TV or a real number.

The rule set generated an output value that was used for classifying data. The value
of the output was used when all of the rules in a rule set were executed in order. There



were numerous parameters governing the evolution of the rule sets, including the
typical number of parents, offspring, generations, inputs used, and so forth. In
addition, the following specific conditions were also applied:

* The initial number of temporary variables (set to 2)

* The maximum number of temporary variables (set to 20)

¢ The initial number of rules (set to 20)

¢ The maximum number of rules (set to 30)

* The possible initial values for temporary variables (set to 0.0 or 0.5, at random)
* The starting sigma values for evolving real values (set to 0.1)

* A collection of 32 self-adaptable probabilities for (i) applying operators,
including operators to add, delete, swap, reverse, reinsert, or copy rules, or
reinsert a block of rules, (ii) mutating rules by modifying the LHS, RHS,
negation, add/delete an ELSE, changing logic, add/delete a temporary variable,
or changing a temporary variable value, and (iii) combining rules through one-
point, two-point, or uniform crossover, and also through each of the corre-
sponding so-called “headless chicken” or “random” forms of these operators.

Figure 12.25 shows a comparison of training and testing while evolving rule sets
for classifying the sonar data. Test set performance was computed at each generation
of training. While training performance improved consistently over time, test set
performance achieved a best result around generation 350, indicating the possibility
for overfitting data in the training set. Ultimately, Figure 12.26 shows a representative
separation between classifying the spheres versus natural objects; the separation is
clear, and is reflected in the ROC curve shown in Figure 12.27.
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FIGURE 12.25 The training and testing performance of the evolved rules sets when
classifying sonar data. Training set performance improved through 1000 generations (x-
axis); however, test set performance started to degrade after about the 300th generation.
This indicates the possibility of overfitting after that iteration. Y-variable refers to the training
and testing results. (From Porto et al. (2005).)
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FIGURE 12.26 The test set performance (shown with box and whiskers plot, where circles
represent outliers in the top or bottom 5% of the data) of the best-evolved rule set for classifying

metal spheres (0) versus normal background (1). There was good separation between the two
classes. (From Porto et al. (2005).)

The evolved rule-based classifiers demonstrated excellent ability to discriminate
between simulated sea mines and background reflections. To offer one example of a
rule-based classifier, the following set of eight rules were evolved for the second
shuffle of the data. Both TV#1 and TV#2 were initialized at 0.5.

1: TF (attribute#2 < TV#1) ELSE (TV#2=0.5)

2: IF (attribute#1 <0.724314) OR (attribute#1 > 0.197255) AND (attribute#1
<0.172157) OR (attribute#1 <TV#2) OR (attribute#4 > TV#1) THEN
(TV#1 =0.5)
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FIGURE 12.27 The receiver operating characteristic (ROC) curve for the best-evolved rule
sets in classifying metal spheres versus normal background. The area under the curve was close
to 1.0. (From Porto et al. (2005).)



3: IF (attribute#1 > attribute#3) OR (attribute#4 > TV#2) AND (attribute#4 >
TV#2) AND (attribute#1 > TV#2) THEN (TV#2 += 0.130713)

4: TF (attribute#3 > TV#2) THEN (TV#1 += TV#2)
: TF (attribute#2 > 0.661569) AND (attribute#2 > TV#2) THEN (TV#2 += TV#2)

6: IF (attribute#3 < 0.846667) AND (attribute#1 < attribute#2) AND (attribute#3
<TV#2) OR (attribute#2 > attribute#4) OR (attribute#2 > 0.539216) THEN
(TV#1 —= 0.111959)

7: IF (attribute#4 > TV#2) THEN (TV#1 —= 0.1)

8: IF (attribute#4 >0.344706) AND (attribute#3 > 0.793333) AND (attribute#4
< attribute#1) OR (attribute#4 >0.517255) AND (attribute#2 < attribute#4)
THEN (Output#1 =TV#1) ELSE (Output #1 =0.1)

W

In this case, rule #1 is a functional no-op because TV#2 starts at 0.5 and there is no
other consequence to this rule. It could be removed without affecting any outcome.
Other rules are not as plain to examine.

While the example here used precise terms, the rules could just as well be fuzzy.
For example, temporary variables could represent thresholds of membership in fuzzy
membership functions. The comparisons of an attribute versus a threshold could be
written in the form of an attribute versus a fuzzy membership term, such as “IF
(attribute is HIGH)” or “IF (attribute is SUFFICIENTLY CLOSE).” The membership
functions could also be optimized by evolutionary algorithms both in terms of the
shape of the functions and the scaling of the functions.

12.5 EVOLUTIONARY CONTROL SYSTEMS

12.5.1 Cart-Pole Systems

Figure 12.28 shows a single pole atop a cart that is placed on a track. The goal in this
problem is to push and pull on the cart so as to keep the pole from falling over (or
falling beyond a threshold number of degrees) while simultaneously keeping the cart
from hitting either end of the track. Wieland (1991a, 1991b) examined the application
of evolutionary algorithms to optimize neural controllers of single, multiple, and
jointed cart—pole systems (see Figures 12.29 and 12.30). The single-pole system is
controllable with a linear system of the position and velocity of the cart (x, x) and the
angle and angular velocity of the pole (0, 0). The problem is more challenging when
having to control multiple or jointed cart—pole systems.

Wieland (1991a, 1991b) described the multiple-pole system with the following
equations:

F o sen (0 SN F
o Fpesen (X)N+ ;1:1 i (12.38)
M+ Zi:l m;
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FIGURE 12.28 A typical cart—pole system. A single pole is mounted at the center of a cart.
The cart is on a track. The control goal is to apply a series of forces F to the cart to keep the cart
within limits on the track and keep the pole from exceeding a displacement angle 6. (From
Wieland (1991a, 1991b).)

where x is the distance of the cart from the center of the track, 6; is the angle of the ith
pole from vertical, N is the number of poles on the cart, g is the acceleration due to
gravity, m; and ; are the mass and the half-length of the ith pole, M is the mass of the
cart, . is the coefficient of friction of the cart on the track, Hp, ~is the coefficient
of friction for the ith hinge, F is the force applied to the cart, and F; is the effective

0,

X

FIGURE 12.29 A cart—pole system with multiple poles. The control goal remains to apply a
series of forces F to the cart to keep the cart within limits on the track and keep both poles from
exceeding displacement angles. (From Wieland (1991a, 1991b).)



FIGURE 12.30 A cart—pole system with a hinged pole. The control goal remains to apply a
series of forces F to the cart to keep the cart within limits on the track and keep both poles from
exceeding displacement angles. (From Wieland (1991a, 1991b).)

force from the ith pole on the cart:

141

~ 22 3 p‘pvéi .
F; = m;l;0; sin 0; + —m; cos 6; ‘— + g sin 0; (12.40)
4 m;l
and my; is the effective mass of the ith pole:
- 3,
m; = my;| 1 ~ cos” 6 (12.41)

Fully connected neural networks with 10 nodes were evolved via a process of
mutation, crossover, inversion, and proportional selection. Each network had neurons
defined for input and output and these values along with each weight and threshold
were encoded in eight bits (binary). The weights and threshold values were concate-
nated to form each candidate neural controller. Selection was based on how long a
neural controller could keep the cart—pole system in balance.

The challenge of a multiple-pole system is greatest when the poles are about the
same length. When one is much smaller than the other, the “region of controllability”
is much larger. Wieland (1991a, 1991b) invented a learning process in which a system
with one pole of 1 m and another pole of 0.9 m was eventually kept in balance by
starting with poles of 1 and 0.1 m and incrementally elongating the shorter pole by 1%
after the neural networks demonstrated an ability to control the system for a long
period of time. Specific details regarding the mass of the cart, length of the track, and
maximum angle of deflection for each pole were omitted; however, standard values of



these parameters in other literature include a 1.0 kg cart, a 4.8 m track, and a maximum
angle of +12° or +n/16 rad (about +11.25°).

Fogel (1996) used an evolutionary approach to combine the modeling methods
described in Section 12.2 in order to control a cart—pole system with one pole. In this
case, the system was modeled as

g sin O, + cos 6 {(Fl — mpléf sin ; + p, sgn(k,))/m. + mp} - (ppét/mpl)

0 = 1 [(4/3) + (m,, cos 6,)/(m. + mp)]

(12.42)

Fi + myl {6? sin 8, — 6, cos Gt} — . sgn(k;)
i = (12.43)
me +m,

where m. = 1.0kg (mass of the cart), m, = 0.1 kg (mass of the pole), 1 =0.5m
(half-pole length), p. = 0.0005 (coefficient of friction of the cart on the track),
Hp = 0.000002 (coefficient of friction of the pole on the cart), F; = the force applied
to the cart’s center of mass at time t, and g = 9.8 m/ s2. The maximum allowable
limit for the cart was +1 m and for the pole was +n/16 rad, with a control force
limited to =10 N.

The goal was to estimate a linear model of the cart—pole system given the observed
sequential stimulus—response pairs in closed loop and generate a control input to the
system to keep it balanced as long as possible. The linear equations were of the
following form:

A1(@x(t) = Bi(q)u(t) + Ci(q)ei(t) + Di(q)0(1) (12.44)

Aa(q)6(t) = Ba(q)u(t) + Ca(q)e(t) + Da(q)x(t) (12.45)

where the first equation described the position of the cart (which is coupled with
the dynamics of the pole) and the second equation described the angle of the
pole (which is coupled with the dynamics of the cart). The process u(t) represented
the control input to the system at time t and e;(t) and e,(t) represented the
residual error terms for each equation. As in Section 12.2, the polynomials
A1,A2;B1,B,;C,Cy; and Dy, D, were functions of their respective terms, going
back in time to some number of lag values. The size of each polynomial and the
corresponding parameters were evolved while controlling the cart—pole system,
up until the point of system failure.

For the sake of space here, if you’re interested in replicating the procedure, you
should refer to the details in Fogel (1996). The results for a case of a pole with half-
length of 0.5 m and a cart of mass 1.0 kg are shown in Figure 12.31, which shows the
failures of the system as the cart hit the end of the track or the pole exceeded the
maximum allowable threshold; however, after about 60 s the system was stabilized.
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FIGURE 12.31 The behavior of the cart—pole system during evolutionary learning. The cart
(a) and pole (b) exceed their control limits, while the evolutionary process learns the closed-
loop system. The last 40 s of the depicted time show the cart and pole oscillating within the
control limits. (From Fogel (1996).)

Figure 12.32 shows how the cart and the pole oscillated during the period of stability,
with the cart and pole moving in opposition. In this case, the evolution generated not
only a control input to move the cart appropriately but also a set of equations that
modeled the dynamics of the unstable system, even though it was being observed in
closed loop.
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FIGURE 12.32 The behavior of the cart—pole system after the evolutionary controller had
learned to control the system within the control limits. The cart and pole oscillated in opposition
to maintain control. (From Fogel (1996).)

12.5.2 Truck Backer-Upper

Here’s another system that’s interesting to explore as an introduction to applying
evolutionary algorithms to control problems. It involves a semi-trailer truck. The semi-
trailer is hitched to the tractor and can swivel behind it, as shown in Figure 12.33. The
objective of the control problem is to take the semi-trailer truck from an arbitrary starting
location and move it so that the midpoint of the rear of the trailer is positioned next to the
loading dock at the designated position and such that the trailer is perpendicular to the
loading dock. Since the trailer can only be affected by the application of control through
the hinged system, this can make for some complicated system dynamics.

The typical problem in published papers uses four dimensions to describe the state
of the system: the (X, y)-coordinates of the midpoint of the rear of the trailer and 6, and
84, the angle of the trailer with respect to the loading dock, and the angle of the tractor
relative to the angle of the trailer, respectively [Chellapilla, 1998; Koza, 1992]. An
additional variable 6, is used to describe the angle of the tractor (also known as a
“cab”) to the line perpendicular to the loading dock.

To make the problem more manageable, the truck is assumed to back up at a
constant speed, and steering is accomplished by changing the angle u(t), which
represents the angle of the front tires with respect to the tractor at time t. (The standard
nomenclature here uses t both as an index for time and for the subscript on the angle of
the trailer with respect to the line perpendicular to the loading dock.)
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FIGURE 12.33 The truck backer—upper problem. The trailer is attached to the cab via a hitch.
The midpoint of the back of the trailer is described as a point (x,y). The angles describe the
configuration of the trailer and the cab, and u(t) describes the input control.

The control goal is to modify u(t) at each time step (typically with at = 0.02 s interval)
such that x is within 0.1 m of the loading dock, y is within 0.42 m of the loading dock,
and O, is within about 0.12 rad (7°) of horizontal. These values follow earlier work that
used neural networks for performing this task [Nguyen and Widrow, 1989].

The system dynamics for the semi-trailer involve the following seven equations:

A = rcos(u(t)) (12.46)
B = A cos (0c(t) — 6,(t)) (12.47)
C = Assin (0c(t) — 0,(t)) (12.48)
x(t+ 1) = x(t) — B cos (6(t)) (12.49)
y(t+ 1) = y(t) — B sin (6(t)) (12.50)
1 [ dcsinOc(t) — r cos Oc(t)sin u(t)
Oc(t+1) = tan (dC cos O(t) + r sin O,(t) sin u(t)) (12.51)
1 {dssinB(t) — C cos By(t)
O(t+1) = tan <dS cos By(t) — C sin et(t)> (12.52)

where d. is the length of the tractor (set at d. = 6 m) and d; is the length of the trailer
(set at dg = 14 m). A controller is given a certain amount of time (e.g., 60 s) to move
the tractor-trailer from an arbitrary starting point to within the target area for the
loading dock.



Various evolutionary approaches have been made to address this problem that rely
on symbolic expressions in the form of tree-based data structures, for example, Koza
(1992) and Chellapilla (1998). The trees operated on terminal states of {X, Y, TANG,
DIFF, NumericConstant} and the function set of {ADD, SUB, MUL, DIV, ATG,
IFLTZ}. Each of these is self-explanatory with the exception possibly of ATG
(arctangent), NumericConstant (a randomized real number), and IFLTZ (if less than
zero, which takes three arguments and represents “if argl is less than zero then return
arg2 else return arg3”) [Chellapilla, 1998].

The system in Koza (1992) relied heavily on subtree crossover to create new trees
from existing trees. In contrast, the system in Chellapilla (1998) relied on six different
mutation operations, and no subtree crossover, to generate new solutions. Impor-
tantly, both methods addressed the problem satisfactorily. The method of Chellapilla
(1998) generated better solutions as determined by an overall objective function
(assessed as “an order of magnitude” better); however, no statistical significance of
the difference to the solutions in Koza (1992) was presented in Chellapilla (1998).

12.6 EVOLUTIONARY GAMES

Games are characterized by rules that govern the behavior of one or more players.
Most often we think of games between two or more players, but many games can be
played single-handed, such as solitaire. Behavior in games is a matter of stimu-
lus—response, that is, for a given state—the stimulus—what move should be made?—
the response. Generally, there is an overall goal to a game, which may be defined in
terms of winning, losing, or playing to a draw; however, games are very general and
life itself can be viewed as a game, with each person having a complex time-varying
objective function that describes something fuzzy, like overall happiness.

Rational players seek to maximize the payoffs that they receive when making moves
in a game, hopefully placing themselves in more favorable states that lead to even more
successful moves. Some games are called zero-sum, meaning that what one player wins,
another necessarily loses (such as with poker). But not all games are necessarily
competitive. The players on a soccer team, for example, must work together to
collectively achieve a goal. Even then, there is winning and losing or playing to a
draw. But if one again considers life, there are many opportunities for successful
teamwork that do not depend on winning or losing, such as marriage and raising children.

Sometimes players do not have the same objective function. Unlike checkers,
chess, backgammon, or other competitive games, sometimes one player may be
ambivalent to another—such as the game of courtship, in which one person tries to
win the attention of another, and sometimes the other is entirely disinterested. The
concept of gaming is very flexible and can be used to treat problems in economics,
evolution, social dilemmas, board games, video games, and so forth. Any situation in
which purpose-driven entities can recognize a state of existence and determine how to
allocate resources to move to a different more desirable state can be viewed as a game.

Intelligence itself has been described in terms of games: the ability to make
appropriate decisions in order to adapt behavior to meet specific goals in a range of



environments [Fogel et al., 1966]. Whereas the rules dictate what allocations of
resources are available to players, strategies determine how those plays in the game
will be undertaken. Game theory [von Neumann and Morgenstern, 1944] can treat
certain classes of mathematical games; however, many real-world circumstances go
beyond the mathematical limits and assumptions of game theory. In these cases,
evolutionary algorithms can be used to determine suitable or even optimal strategies
to play as a function of the behavior of the opponent(s).

Evolution in these cases is often conducted in a format called coevolution. Instead
of evolving solutions against a fixed objective function, solutions are judged in terms
of how well they compete against other solutions in the same or a different population.
Thus, the objectives may change as the players themselves change. This is more akin
to what occurs in nature, as the environment is a function not only of physical
processes but also of the other organisms that it comprises.

This section highlights one particular game that has received considerable atten-
tion: the iterated prisoner’s dilemma. Other games are mentioned as well, but are
beyond the scope of replication in an introductory class. Still, it is important for
students in evolutionary computing to have a broad appreciation of the types of
problems that can be addressed by evolutionary algorithms, and also the comparably
low level of domain knowledge that may be necessary, even in games that would be
challenging to many adults.

12.6.1 Iterated Prisoner’s Dilemma

A classic game that has received many decades of research interest is the iterated
prisoner’s dilemma. The game is structured with two players, each having two options:
cooperate with each other or defect against each other. These options are described
typically with the symbols C and D. The rationale for the game, and why it’s called a
prisoner’s dilemma, comes from imaging two prisoners who have been caught for a
crime. During separate interrogation, the prosecutor offers each a lesser sentence for
“ratting out” his cohort in crime. If neither criminal rats out his partner, then the sentence
will be pretty low for each one (as the evidence the prosecutor has isn’t that strong). If
one criminal defects against the other, while the other refuses to defect, then the rat goes
free and the other criminal gets a long sentence (based on the rat’s testimony). Butif both
criminals rat each other out, then they each get somewhat long sentences.

It’s often easier to view games from the perspective of maximizing payoffs (rather
than minimizing how long you go to jail). So, the prisoner’s dilemma is often recast as
follows:

Player 1/Player 2 C D
C R/R S/IT
D T/S u/u

Player 1’s play of C or D is in column 1. Player 2’s play is in column 2. If both
players choose to cooperate (C), then they each get a reward of R points. If they both



defect (D), they each get U points for being uncooperative. If one chooses to cooperate
(C) and the other chooses to defect (D), then the one cooperating gets the sucker’s
choice of S points and the one defecting gets the temptation choice of T points. One
specific example of a well-studied prisoner’s dilemma is

Player 1/Player 2 C D
C 3/3 0/5
D 5/0 1/1

Thinking about the game logically, if you are a player in the game, you may
consider it this way. If the other player cooperates, you will do better if you defect. If
the other player defects, you again will do better if you defect. Therefore, you should
defect. Of course, the other player would have the same thoughts and thus both of you
would choose to defect and get only 1 point each, when you each could have
cooperated and received 3 points each. Research has shown that when this game is
iterated over many plays between two players, the propensity for mutual defection is
often reduced. Thus, the iterated prisoner’s dilemma (IPD) is fundamentally different
from the one-shot prisoner’s dilemma.

There is a vast literature on evolutionary approaches to exploring the IPD. A
thorough treatment would comprise a complete chapter in a textbook. For space, the
focus here will be on two early approaches that contrast different representations of
the iterated prisoner’s dilemma game. The first is from Axelrod (1987), which is a
fundamental contribution in the history of IPD research. Robert Axelrod, a game
theoretician, conducted tournaments with other academics and practitioners in 1979
that showed a robust strategy in a long iterated game that was called tit-for-tat, which
cooperates on the first move and then mirrors whatever the other player does after that.
Tit-for-tat will meet cooperation with more cooperation but will defect against a
player who defects until that other player changes to cooperate. Axelrod was
interested to see if tit-for-tat, or something like it, would evolve spontaneously in
a population of competing strategies.

The approach in Axelrod (1987) used a binary encoding of all moves with a history
limited to the prior three moves. The encoding described what to do on the first move
(C or D), what to do on the second move based on what was done on the first move
(CC/C or D, CD/C or D, DC/C or D, DD/C or D, where the pair of symbols is the first
and second player’s moves, respectively, from the first move, and the C or D after the
slash represents the choice of whether or not to cooperate on the next move), and so
forth up to move histories of length 3. Axelrod (1987) used a 70-bit string to encode
each of these possibilities, and used a formulation much like a simple genetic
algorithm to let the strings evolve against each other.

One experiment involved a population of these strings competing against each
other. This is a form of coevolution, because there is no fixed objective function to
maximize or minimize. The right strategy for one population may not be the right
strategy for all populations. For example, if all but one strategy would always
cooperate no matter what, then the best choice for the last strategy is to always defect.
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FIGURE 12.34 A finite-state machine for the iterated prisoner’s dilemma. The machine starts
in state 6 and cooperates on the first move. If the opponent also cooperates (C,C), then the
machine cooperates and transitions to state 7. (From Fogel (1993).)

But if all but one strategy is tit-for-tat, then the worst choice for the last strategy is to
always defect. Axelrod (1987) had strings multiply in proportion (up to the limit size
of the population) to their earned scores, and used mutation and crossover to vary the
strings as they multiplied. The experiment generated binary strings that would diverge
initially away from cooperation but then over time would tend toward mutual
cooperation. This was a fundamentally important result because it showed that no
intervention is required in an iterated prisoner’s dilemma to have cooperation emerge
(at least in the particular IPD that Axelrod explored).

One limitation with this approach is that it is defined to act only on histories of
moves that go back three plays in time. In order to explore the possibility of having
longer time histories, Fogel (1991, 1993) created a similar coevolutionary algorithm
but used finite-state machines to represent strategies. For example, Figure 12.34
shows a finite-state strategy. This machine starts in state 6 and cooperates. Then, if the
other player cooperates, this machine will again cooperate and go to state 7. If the
other player defects, this machine will cooperate again but go to state 2. You can
follow the different possibilities through the trajectory of states.

In Fogel (1993), coevolutionary trials with the IPD and finite-state machines using
populations ranged from 50 to 1000 parents, and the average results were very similar.
Figure 12.35 shows that the mean score of the surviving parents fell initially
(indicating that most survivors were doing a lot of defecting) and then rose up to
about 3.0 (indicating mutual cooperation). The results were robust across population
sizes, and similar to what was seen in Axelrod (1987).
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FIGURE 12.35 The mean score of all parents at each generation in the iterated prisoner’s
dilemma as a function of the population size. The pattern was same for all tested population
sizes: initial evolution toward mutual defection followed by a rise to mutual cooperation. (From
Fogel (1993).)

The iterated prisoner’s dilemma has received considerable attention with evolu-
tionary methods. The basic prisoner’s dilemma model is a simplification of real-world
circumstances. It leaves out many potentially important facets. For example, if you are
playing a game with someone, it might be that you have the option to leave the game,
so you have the problem of determining how long you should stay engaged [Fogel,
1995]. You may find that your options aren’t as simple as a dichotomy of cooperate or
defect. You may have a range of behaviors that allow you to “cooperate a little bit.”
This can be modeled as a continuum from —1 (complete defection) to +1 (complete
cooperation) using evolutionary neural networks rather than finite-state machines
[Harrald and Fogel, 1996] as well as by fuzzy descriptions of behaviors [Borges et al.,
1997] or with intermediate precise levels [Darwen and Yao, 2002]. Results have
shown that more options in behavior or a continuum of behavioral choices can cause
less mutual cooperation [Darwen and Yao, 2001] (see also studies in Ashlock et al.
(2010) and the reviews and contributions in Kendall et al. (2007)).

12.6.2 Board Games and Video Games

Traditional board games present challenging environments for machine learning, and
there have been many interesting applications of evolutionary computing on a wide
range of these games. In contrast to knowledge-based methods, which generally seek
to craft the best possible playing program by capturing existing human expertise,
research using evolutionary algorithms to evolve and adapt strategies is often aimed at



determining what concepts can be learned autonomously and what level of play can be
achieved without human intervention (or with as little as feasible).

For example, the world’s best checkers program is called Chinook [Schaeffer et al.,
1996] and it is perfect. Checkers has been proven to be draw from the standard starting
position [Schaeffer et al., 2007], and Chinook contains all the information required to
play perfectly. However, suppose that there were no human experts in checkers, no
way of looking up the right moves from an endgame database, and no suggestions for
how to judge the quality of different positions of checkers on the board. Could a
machine still learn how to play the game at some level of competence?

This was the question posed and answered in the “Blondie24” research offered in
Fogel (2002). By combining evolutionary algorithms with neural networks to
evaluate alternative checkerboard positions, the computer was able to compete
different ideas about which moves to favor. Random mutation of neural network
weights served to generate new ideas.'> Over hundreds of generations, based on the
information contained in the number of pieces, the location of the pieces, the types of
pieces, and the rules of checkers, along with a minimax decision strategy,'® the
evolutionary program created a neural network, called Blondie24, that was evaluated
as being in the top 500 of 120,000 checkers players on www.zone.com. For specifics
on the implementation of Blondie24, see Chellapilla and Fogel (2001).

The Blondie24 line of research was extended to chess and dubbed “Blondie25.”
Starting from a publicly available chess program rated below the master level and with
additional neural networks added to evaluate positions, the evolutionary approach
adapted chess playing strategies that were eventually able to defeat Fritz8 (which was
in the top five computer programs in the world at the time) as well as a human master,
James Quon (see Fogel et al. (2005, 2006)).17

Checkers and chess are deterministic games: Random chance does not play a part
in the outcome. Many games, however, rely on an element of random chance, such as
blackjack, Monopoly®, Risk®, or backgammon. Each of these games (and more) has
been addressed with evolutionary algorithms; see Darwen (2001), Fogel (2004),
Azaria and Sipper (2005), Frayn (2005), and Mukhar (2013)). This reference list is
merely a small sample of all the work that has been done in these areas, and these areas
represent a small sample of the space of board games that has been considered.
Readers who are interested in learning more about this line of research should review
papers published in the IEEE Symposium on Computational Intelligence and Games
and the IEEE Transactions on Computational Intelligence and Al in Games.

In addition to board games, evolutionary algorithms can be used to control the
behavior of players or even the content in video games. For many years, there have
been competitions held at the major annual conferences in evolutionary computation
that encourage researchers to explore evolving faster and smoother racing cars using

!> The neural networks started with random weight and the piece count was entered in the output node.
Thus, the initial generation was governed by the piece differential and random noise.

' Minimax chooses a move that minimizes the maximum damage that an opponent can be expected to do in
the future.

'7 Sadly, James Quon passed away in 2010 at the age of 42 from a brain aneurysm. His chess legacy is
remembered today by the James Quon Chess Foundation.


http://www.zone.com

The Open Racing Car Simulator (TORCS), more deadly bots in the first-person
shooter game Unreal (or more lifelike bots, or bots that are harder to differentiate from
a human-controlled bot), team play in games such as Pac-man® (controlling the ghost
team), and many others. Some of the relevant references include, but are not limited
to, Wittkamp et al. (2008), Hastings et al. (2009), Perez et al. (2009), Galanopoulos
et al. (2012), Pena et al. (2012), and Cotta et al. (2013).

It’s natural to think about extending the evolution of strategies or designs in
simulations to evolving physical designs of real-world devices. Some examples of
that come in an area called evolvable hardware, which is reviewed in the next
chapter; however, the Web site www.boxcar2d.com has an interesting and simple
look at evolving moving vehicles using simple physical models, which follows
seminal work by Karl Sims that can be seen at https://www.youtube.com/watch?
v=JBgG_VSP7{8. Lipson and Pollack (2000) evolved mobile robots in a simulator
and then used a three-dimensional printer to actually create the evolved designs and
proved their viability. You can see a video of this at https://www.youtube.com/
watch?v=qSIOHSkzG1E.

12.7 SUMMARY

Evolutionary algorithms can be applied to a very wide variety of optimization
problems. Here, we started with the basics of regression analysis and identified
that evolutionary optimization can be applied not only to adjust parameters of a
regression model but also to do so in light of criteria that are not related to the mean
squared error. This served as a foundation for extending evolutionary modeling to
time series prediction in which the model coefficients and structure can be varied
simultaneously and evaluated in light of information criteria. Similarly, evolutionary
algorithms can adjust the weights and topology of neural networks, or the member-
ship of functions of fuzzy systems.

The evolutionary approach isn’t restricted to the time domain. It can also be
applied to the spatial domain and used for clustering and classification. Again,
information theoretic criteria can be used to find an optimal number of clusters and the
objective functions in classification applications do not need to be based on squared
error or any differentiable function.

System modeling can then be extended to control systems. If a model can be
created to anticipate what a system will do next, then it becomes feasible to ask what
must be done to put that system in a more desired state. In the case here, the cart—pole
system and truck backer—upper were offered as canonical examples.

The extension from control is gaming, which involves two or more intelligent
adversaries trying to control each other. There have been many applications in gaming
and the focus in this chapter was on games of cooperating versus defecting, as well as
more traditional games such as checkers, chess, and video games. It is now possible to
also evolve physical devices in simulation and then construct them using three-
dimensional printing or other technologies. This broad range of applications is
testament to the flexibility of evolutionary computing.


http://www.boxcar2d.com
https://www.youtube.com/watch?v=JBgG_VSP7f8
https://www.youtube.com/watch?v=JBgG_VSP7f8
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https://www.youtube.com/watch?v=qSI0HSkzG1E

EXERCISES

12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

Generate 100 (x, y) points from a uniform distribution over (—10, 10). Write an
evolutionary rule-based classifier to determine which quadrant each point is in.

Create an evolutionary algorithm operating on neural networks to replicate the
chaos detection experiment offered in Section 12.2.2; however, instead of using
sigmoid transfer functions, use radial basis functions (f(x) = (1/ \/27n)exp(—x2))
and see if this transfer function provides as good an ability to differentiate
between signal and noise-only models.

Generate 100 samples from a sine wave y = sin (2x +3) as x =1,..., 100.
Add Cauchy-distributed random noise to the samples. (Recall that a standard
Cauchy random variable is obtained by taking the ratio of two independent
standard normal random variables.) Use an evolutionary algorithm to estimate
an equation of y = sin (ax + b) based on minimizing the squared error between
the predicted and actual values of y, and then also using the absolute error.
Which objective function gives an answer that you think is better?

Create two distributions of 50 points in (X, y). The first is distributed as a two-
dimensional Gaussian random variable centered at (2, 2) with standard devia-
tion of (1, 1), respectively, for each dimension. The second is also Gaussian,
centered at (5, 5) with standard deviation of (1, 1) for each dimension. Create an
evolutionary algorithm that assigns each of the 100 points to one of two
clusters. Devise a metric for assessing the quality of the clustering and then use
an evolutionary algorithm to optimize for that metric. What does the final
assignment look like? Is it reasonable? Now repeat the process assigning points
to one of three clusters. What adjustment do you think would be appropriate to
compare the clustering with two assigned groups versus three assigned groups?

Search on the Internet for data that are suitable for a classification problem. For
example, you might search for “Wisconsin breast cancer data machine learn-
ing.” For the set of data that you choose, create a classification algorithm that
uses fuzzy membership functions to interpret the inputs. For example, with the
Wisconsin breast cancer data, the first feature is the radius of a cell nucleus.
This could be described as “small,” “medium,” or “large,” with various
membership functions. Use an evolutionary algorithm to adjust the member-
ship functions based on training and test set performance. Describe the results
in terms of class separation and/or receiver operating characteristic curves.

Using the same data set, write an evolutionary algorithm that performs feature
selection. That is, have the evolutionary algorithm determine which features to
include in the analysis and which to omit. One way to do this is to evolve a bit
string in which a 1 indicates that a feature will be used and a 0 indicates that it
will not be used. Choose one of the information-theoretic statistics to help trade
off the goodness-of-fit that you can obtain for the number of features that you
include.



12.7.

12.8.

Write an evolutionary algorithm to learn to play tic-tac-toe against a fixed rule-
based opponent that makes perfect moves, but has a 0.1 probability of playing
at random to any open square. The evolutionary algorithm could use a neural
network, fuzzy logic system, rule-based finite-state automata, or symbolic
expression to determine the next move. Any data structure is fine as long as it is
subject to variation and selection. Determine a metric for measuring improve-
ment against the fixed opponent and identify whether or not your evolutionary
algorithm is making progress toward being a perfect player.

Write an evolutionary algorithm for the iterated prisoner’s dilemma taking into
account that players reside in physical locations. Using a 3 X 3 grid, let each of
the nine cells in the grid be represented by an evolving population of prisoner’s
dilemma players. Each player is evaluated against another randomly selected
player from a neighboring population. Selection then eliminates the lower
scoring players in each population and variation operators (recombination and/
or mutation, as you determine) are used to create new players. Does mutual
cooperation emerge from this arrangement of players? If so, decrease the payoff
for mutual cooperation until it does not; if not, increase the payoff for mutual
cooperation until it does.



CHAPTER 13

Collective Intelligence and Other
Extensions of Evolutionary
Computation

Chapters 10-12 have introduced the basic concepts of evolutionary algorithms,
particularly as they are applied for optimization. In this chapter, we’ll cover other
aspects of evolutionary algorithms and methods that are related to simulating
evolution on computers.

It’s important to understand upfront that there are very many extensions of evolutionary
algorithms. This text is intended to provide an introduction to the field of evolutionary
computation that would be suitable as part of a broader introduction to computational
intelligence within the framework of a one semester college course. By consequence, we
cannot cover everything here and do it in any level of depth that would be appropriate.

This chapter begins with a population-based optimization approach called particle
swarm optimization (PSO), which models the flocking behavior we see in certain
animals. We then focus on another population-based approach called differential
evolution, which searches a landscape for optima by using different vectors between
existing solutions. Another approach follows that is based on modeling how ants
search and find food sources. It turns out that the strategy ants use can be applied for
finding short paths through graphs and other engineering problems.

After that, we’ll focus on specific applications of evolution that are found in
hardware, as opposed to only in software. We’ll also address problems for which
having a person act as the fitness function provides possibilities that are beyond what
evolutionary algorithms can do solely in software. Finally, we’ll conclude with the
application of evolutionary algorithms to multiple criteria optimization problems.

13.1 PARTICLE SWARM OPTIMIZATION

When considering how a flock of birds or a school of fish moves, it’s easy to think that
the actions of each individual are somehow coordinated with the actions of the others,
and that’s exactly the case. Research shows, for example, that starlings coordinate



their movements based on seven neighboring birds [Young ef al., 2013]. Thousands
of starlings may form a flock, but the movements of the flock are based on the local
interactions of overlapping groups of just seven birds.

It’s interesting that modeling the way birds flock, or fish school, or things in
general “swarm” can lead to an optimization algorithm. The organisms that we might
model in these cases are likely optimizing something, such as group cohesiveness
versus individual effort [Young et al., 2013]. That might not correlate to what we’d
like to do in terms of using swarming as a method to find points of interest on an
objective function, but we can tailor a swarming method toward that end.

Particle swarm optimization was introduced as such an approach [Kennedy and
Eberhart, 1995]. Suppose you have a collection of possible solutions to a problem,
which we’ll call particles. The particles reside in R" and the goal is to find the minimum,
maximum, or some other point of an objective function f(x), where x € R". Much like
the solutions in the population of an evolutionary algorithm, these particles are located at
various positions and can be evaluated in light of some objective criteria. Each particle is
denoted by x;(t), where x; is the ith particle located at x (a vector) at a particular time t.

Next comes the swarming part: How do the particles move? They each have a
velocity vector, denoted by v;(t), where v; is the velocity of the ith particle at a
particular time t. If there were no swarming, each of the particles would move
according to their unchanging velocity forever. The fact that the particles will swarm
means that their velocities will change as a function of what is known about other
particles in the collective, and also what a particle remembers about where it has been.

Each particle is given a memory. It remembers the location that has yielded the best
result from the objective function. Each particle also has knowledge about the results of
other particles in a neighborhood (akin to starlings being aware of other starlings), and each
particle knows the location of the particle in its neighborhood that has the best result from
the objective function. That information is used to change the velocities of the particles and
thereby having them move to different locations, searching for a better location.

Each particle’s new velocity is a function of (i) its current velocity, (ii) the vector
that points to the particle’s own best location, and (iii) the vector that points to the best
location of the particles in its neighborhood. The vectors that point to known best
locations are weighted by random variables. With starlings, the neighborhood is
believed to be seven birds, but in PSO the neighborhood can be small, like a particle
and its two closest neighbors, or it can expand to be the entire collection of particles.
Each particle then moves according to its new velocity.

A little pseudocode can help clarify the update procedure for each particle:

vi(t+ 1) = ax vi(t) + b X U; X (PersonalBest; — xi(t)) + ¢ X Us
X (NeighborhoodBest; — x;(t))

Xi(t + 1) = Xi(t) + Vi(t + 1)

where Uy and U, are distributed U(0, 1), PersonalBest; is the location where the ith
particle found the best score in its memory, NeighborhoodBest; is the location where
the best score was found in the ith particle’s neighborhood of particles, and a, b, and ¢



are scaling terms. Some basic settings for the scalars are a = 1, and b + ¢ = 4. The
trade-off of b and c essentially weights the relative importance of a particle’s own
experience for the importance of its neighborhood’s experience.

One issue that comes with these update equations is that the particles can see their
velocities increase in magnitude without bound. That’s not particularly realistic for
modeling real flocking and empirically it’s not helpful when searching for optima in our
typical objective functions. So, a limit is placed on the velocity in each dimension, Vp,x.
Some experimentation may be required to have a good setting for this maximum value.

Another issue that arises is the choice of the number of particles. Many publica-
tions have used collections of 10-50 particles, but the appropriate size is problem
dependent, as is the choice of how to construct a neighborhood for each particle.

Here’s an example that uses 50 particles with a neighborhood of 3 particles and
[v| = 1 applied to the function f(x, y) = x> + y? — 20[cos(nx) + cos(ny) — 2], which is
depicted in Figure 13.1. The global minimum value of the function is f(x,y) = 0 and
the second-best minimum value is f(x,y) =4

In this example, all the particles were initialized uniformly at random between —10
and 10 in each dimension. After 500 iterations, the best score found was 0.0355.
Figure 13.2 shows the best score of all the particles at each generation and the average
of each particle’s historical best score. The graph shows continual improvement
toward the global optimum.
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FIGURE 13.1 A surface with multiple local optima used for testing the particle swarm
optimization algorithm.
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FIGURE 13.2 The rate of optimization for the best score ever found and the mean of all
particles’ best scores for the problem shown in Figure 13.1.

There are many areas for investigation in particle swarm optimization. For
example, it may be that neighborhood size would benefit by varying by particle,
or varying by particle over time. The learning factors that represent the weights on the
acceleration terms can also be subject to online learning per particle. The velocity
update equation can be modified by applying a “constriction” factor to the overall
velocity, which relieves the need for setting a value of vy,x. Other extensions include
applications in discrete space and dynamic settings. Reviews can be found in Banks
et al. [2007], Kiranyaz et al. [2013], and Kaveh [2014] with current research found
annually in the IEEE Swarm Intelligence Symposium.

13.2 DIFFERENTIAL EVOLUTION

Another population-based search algorithm that relies on updating the location of the
individuals in the population is called differential evolution. It was introduced in Storn
and Price [1996], Storn [1996], and other publications about the same time as particle
swarm optimization and is tailored to searching in real-valued spaces for maxima or
minima of functions. Each of the individuals in the population is subject to a form of
mutation and recombination, as well as selection.

The key ingredient in differential evolution is that individuals move based on the
differential vectors from the individual to other individuals in the population. The
population size needs to be at least four individuals and as with all evolutionary or
related methods, the population is initialized at random or based on some prior
knowledge of where to search for a solution to the problem posed.



Each of the individuals in the population is subjected first to mutation, which is
based on the individual’s relationship to three other distinct individuals in the
population, chosen at random each time. Let’s call these three individuals x;, X,
and x3, and let’s call the individual that we are mutating Xo.

First we pick a random dimension of the problem, d, uniformly from 1 to n, where
the problem has n dimensions. We’ll remember that dimension. Then, for each
dimensioni = 1,...,n, we create a uniform random number u; ~ U(0, 1). If u; < p, or
i = d, then the new value of the solution in the ith dimension is given by

Xoi = Xij + a(Xo; — X3i)

where a is a scalar value between [0, 2] called a differential weight; otherwise, the new
value of the solution in the ith dimension is retained from x¢;. The value p, is a
“crossover probability,” which really means that it is transplanting a value for that
dimension from another random solution added with a weighted combination of a
difference between two other solutions.

Finally, for this solution, if the new version of Xq is better than the original, it
replaces the original in the next generation; otherwise the original X is retained for the
next generation. This process continues until a solution of sufficient quality is found,
or a maximum number of generations is met.

Let’s see how this approach works on two simple functions. The first is the usual
quadratic bowl defined by f(x,y) = x> + y? (Figure 13.3), and the second is the same
one that we just saw in Figure 13.1, which has multiple local optima.

We’ll use 50 solutions in the population in each case, with our scalar value a = 0.8
and p, = 0.02, with all solutions initialized uniformly at random between —20 and 20.
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FIGURE 13.3 A simple quadratic function f(x,y) = x> + y? to be used in the differential
evolution experiments.
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FIGURE 13.4 The average of all scores in the population (n = 50) and the best score in the
population when applying differential evolution to the quadratic bowl. Note that the y-axis is
on a log scale.

Figure 13.4 shows the average of all the scores in the population and the best score as a
function of the number of generations for the quadratic bowl and Figure 13.5 shows
these data when applying differential evolution on the multimodal surface.
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FIGURE 13.5 The average of all scores in the population (n = 50) and the best score in the
population when applying differential evolution to the multlimodal function
f(x,y) = x> + y> — 20[cos (mx) + cos (my) — 2]. Note that the y-axis is on a log scale.



For the quadratic bowl, the best solution has less than 10~° error in about 40
generations. For the multimodal function, the method is still able to find a solution that
has less than 10~ error in about 80 generations. A quick comparison with the results
using PSO on the same multimodal function favors the use of differential evolution;
however, it’s always important to remember that this may not generalize to other
functions, and may be sensitive even simply to the initialization.

13.3 ANT COLONY OPTIMIZATION

Another biologically inspired method for solving problems is called ant colony
optimization (ACO), and it simulates how ants discover food sources and communi-
cate their discoveries with other ants. ACO predates PSO and differential evolution
[Dorigo, 1992] and is used generally for combinatorial optimization problems.

Here’s the thinking underlying the approach. Suppose you’re an ant and you have
to get from your colony’s nest to a food source. The problem is that you don’t know
where the food source is. So you have to search for it. Once you find it, you have to get
back home, so you have to search for that too.

It would be great if you could share what you learn as you search with other ants, so
that they could search more efficiently. Nature provides a way to do that. It’s called a
pheromone trail, and ants leave pheromone trails as they move. The strength of the
trail is dependent on the number of ants that traverse the trail and how recently the ants
have traversed the trail.

More ants on a trail means more pheromone, which entices other ants to follow that
trail rather than search somewhere else. The pheromone evaporates over time, so once
food sources are exhausted, the ants don’t continue to travel to an “empty refrigerator”
forever.

Let’s see how we can model these principles to address a classic 30-city traveling
salesman problem. The ants will start at a particular city and they have to find a
complete path that visits every other city once and only once and then returns home.
The objective is to complete the path with the shortest possible distance. Let’s say we
have a set of 50 ants in our population.

It’s time for the first ant to start its trek. The probability of it visiting any of the other
available city is given by

ph(i, j) x cost(i,j)™"
Zk S Allph(i7 k) X COSt(ia k)_l

p(,j) =

where p(i, j) is the probability of going from city i to city j, ph(i, j) is pheromone factor
between city i and city j, and cost(i, j) is the distance between city i to city j. When
starting, we set the value of ph(i,j) to 1.0 for all pairs of cities.

From the formula, the probability that the ant will go to city j is dependent in part
on the pheromone factor. The higher the value of ph(i, j), the higher the likelihood of
traveling to city j. Also, the probability is inversely related to the distance between the



current city i and the new city j. Each ant wanders through the cities in traveling
salesman problem according to the probability equation, which is computed for all
available (unvisited) cities at each step through the path for each ant.

The pheromone factor can be updated in different ways. For our example, let’s say
we update the pheromone factor after each of the 50 ants has traversed a tour of the
cities. The new pheromone strength is computed as

new ph(i, j) = aph(i, j) + Aph(i, j)
where a is the evaporation rate and Aph(i, j) is the delta increment that comes from
ants going from city i to city j. Here, let’s say that the evaporation rate « = 0.9 and

Aph(i,j)=>

50 { Q, if kth ant traveled between city i and city j
0, else

and Q = 1/50 (i.e., the inverse of the number of ants).

After each set of 50 ants traverses the graph, the pheromone factors are updated,
encouraging the ants to favor shorter paths that have been well traveled.

Here are some results from this approach on a 30-city traveling salesman problem.
Figure 13.6 shows the best path found after 800 iterations of the 50 ants traversing the
graph. The problem was created by distributing the cities uniformly at random in a
100 x 100 square. The final best path is 411.41 units long. Statistical mechanics can
be used to estimate the optimum path length for n randomly distributed cities in an

Final path after converged
100 o
_ ® 30 cities
90 q — Travel path

80

7ol |
60
50
40

30,
20

10

0 10 20 30 40 50 60 70 80 90 100

0

FIGURE 13.6 The best path found by a group of 50 ants iterated 800 times using the ant
colony optimization routine on a randomly generated 30-city traveling salesman problem.
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FIGURE 13.7 The average cost over each of the 50 ants at each iteration and cost of the best
path found when iterating 800 times using the ant colony optimization routine on the traveling
salesman problem shown in Figure 13.6.

area A by the formula 0.749 x (nA)*> [Bonomi and Lutton, 1984]. In this example,
the expected best solution is 410.24. So, the solution is close to the expected best tour
length.

Figure 13.7 shows the rate of optimization of the best and average cost of tours
found during the search. By about the 100th iteration, the best solution already has
nearly the expected best score. By the 800th iteration, the average tour length across
all 50 ants is also close to this score, indicating that the search has converged.

Ant colony optimization has been applied to a diverse set of engineering problems.
For example, the method has been employed to construct neural network topologies
[Salama and Abdelbar, 2014], design type-2 fuzzy controllers [Hsu and Juang, 2013],
induce decision trees [Otero et al., 2012], perform fingerprint analysis [Cao ef al.,
2012], and many other application areas. For reviews, see Dorigo and Gambardella
[1997] and Dorigo and Stutzle [2004].

13.4 EVOLVABLE HARDWARE

We’ve spent a lot of time addressing specific implementations of evolutionary
algorithms or other variations of evolutionary computing, all in software. But it’s
interesting to consider implementing evolutionary principles in the design of hard-
ware too.



FIGURE 13.8 The hinged plates assembled as a physical device. Angles between the plates
were described by x; through xs. A ball falling through a series of nails was used to create
random numbers to vary the protractors. From geneticargonaut.blogspot.com/2006/03/evolu-
tionary-computation-classics-vol.html.

Some of the earliest experiments in evolutionary computation accomplished by a
group in Berlin, Germany, involved manipulating physical devices [Rechenberg,
1973]. This was performed by constructing a device, such as series of planes attached
at hinges with measured protractor settings (Figure 13.8), and then throwing dice or
using a pachinko-like device to generate a random number, and making random
changes to the physical structures.’

Scoring the set of hinged plates was accomplished in a de facto wind tunnel, where
the drag of the plates was measured using a pitot tube. The objective was to adjust the
angles between the plates such that the overall set of plates would have minimum
drag. This method of throwing dice and making adjustments based on the random
rolls, while retaining the best-found configuration as the next starting point, was able
to find the series of flat plates that provides minimum drag.

More complicated experiments involved evolving the mechanical design of a bent
pipe and a nozzle that would offer maximum energy efficiency of fluids flowing
through the devices. These experiments are reviewed in Fogel [1988].2

More recently, experiments in Lohn ez al. [2015] describe the evolution of S-band
omnidirectional and medium gain antennas, which were evolved in simulation and

! Ingo Rechenberg and Hans-Paul Schwefel worked in tandem, with a third contributor Peter Bienert, at
Technical University of Berlin starting in 1963—1964. The first computer available to the group was a Zuse
723 that arrived in 1965. The experiments in hardware evolution were conducted in real hardware primarily
because the researchers conducting the experiments had no electronic computers available to model the
dynamics of the systems and execute the algorithms in software. In addition, whether or not all of the
relevant physics in more complicated structures were known was uncertain. Thus, performing experiments
in situ provided real validation of the physics of the system (I. Rechenberg (1996) personal communication
to D. Fogel at Technical University of Berlin, Germany).

2 Also see http:/geneticargonaut.blogspot.com/2006/03/evolutionary-computation-classics-vol.html for a
video of the evolution of the flashing nozzle created by H.-P. Schwefel.
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]
FIGURE 13.9 The final prototype of the S-band antenna from Lohn et al. [2015].

then verified in real-world settings. Figure 13.9 shows a sample design of the antenna,
which is unconventional. The final evolved designs were launched into space as part
of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE), which
launched on September 6, 2013 and orbited the moon from October 2013 through
April 2014. The antennas provided “65% increased downlink coverage and 44% cost
savings for the mission” [Lohn et al., 2015]. For other related work, see Homby et al.
[2011].

Other interests in evolving hardware have focused on adapting field programmable
gate arrays (FPGAs) [Thompson, 1996, 1998; Stoica et al., 2003] and recovering from
faults that may occur [Greenwood, 2005]. Additional research has been performed in
evolving electronic circuits in simulation [Koza ef al., 1996; Vasicek and Sekanina,
2014]. While a more in-depth treatment of evolving hardware is beyond the scope of
this text, interested readers should see Greenwood and Tyrrell [2006] for more
information.

13.5 INTERACTIVE EVOLUTIONARY COMPUTATION

Sometimes it’s not very easy or even impossible to know how to write a fitness
function in a mathematical equation. For example, suppose you wanted to use an
evolutionary algorithm to create a piece of artwork or music. What fitness function
would you use?

There have been some thoughts on this. For example, symmetry in artwork can be
aesthetically pleasing [Fogel, 1992]. Certain known chord progressions resonate with
our expectations when listening to music [Fukumoto, 2014]. These and other aspects
might be measureable and therefore could be put in a heuristic for scoring a particular
drawing or musical composition.

But, as the cliché goes, sometimes beauty really is in the eye of the beholder. In
such cases, it’s possible to use a human’s judgment as the fitness function and guide
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FIGURE 13.10 A starting biomorph described as a “frog” at www.emergentmind.com/
biomorphs

evolution to solutions that fit the individual’s judgment. The result is something called
interactive evolutionary computation, because it involves the interaction of the human
operator for the scoring function.

One early example is found in the Biomorphs program introduced in Dawkins
[1986]. The program is replicated presently at www.emergentmind.com/biomorphs
so that you can try it for yourself. The program provides you nine different stick figure
objects. You can guide an evolutionary search to see if you can create various shapes.

One of the authors (D. Fogel) tried this and started with the frog-like figure shown in
Figure 13.10. Over a succession of 25 generations, he was able to create the rocketship-
like drawing shown in Figure 13.11. His goal was the prototype spaceship shown in

)

FIGURE 13.11 The biomorph D. Fogel evolved over 25 generations with the idea of making
the image look like a rocketship.
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FIGURE 13.12 The image that D. Fogel had in mind while adapting the original biomorph
from Figure 13.10 over 25 generations. This prototype image was provided at the Web site as an
example of a possible outcome.

Figure 13.12. Although the fit between the two images is not exact, the image in
Figure 13.11 is qualitatively closer to that of Figure 13.12 than is Figure 13.10.

In this same vein, one of the first practical applications of interactive evolutionary
computation was in area of police sketch artistry [Caldwell and Johnson, 1991], where
someone can say whether or not a given face looks more or less like the suspect he/she
has in mind and the algorithm can adjust that face until it comes close to the person’s
mental image.

Interactive evolutionary algorithms have been used in designing ergonomic
systems [Brintrup et al. 2008], portions of video games [Walsh and Gade, 2010;
Cardamone et al. 2011], personal hearing aids [Takagi and Ohsaki, 2007; also see
Fogel and Fogel [2012]], and even finding a nice blend of coffee [Herdy, 1996]. For a
review of many other examples, see Takagi [2001].

13.6 MULTICRITERIA EVOLUTIONARY OPTIMIZATION

The final topic to cover involves finding solutions that satisfy multiple criteria. This is
often the case in real-world problem solving, where a solution may be measured in
multiple ways. For example, a financial asset management algorithm might be measured
in terms of the return on investment, but also in terms of its volatility (such as the
annualized standard deviation of its monthly returns). In this case, we’d like the ROI to
be high, but we also want the volatility (which is a way of measuring risk) to be low.

One approach to handling multiple criteria is to combine them in a single utility
function that returns a real value. For example, we could say that the value of the asset
management algorithm was determined by

f(x) = ax; /x;



where X is the ROI, x; is the volatility, and a is a scaling constant. As ROl increases,
so does f(x). As volatility decreases, f(x) increases. So, the best values of f(x) will
represent some trade-off between ROI and volatility.

A different approach to handling multiple criteria involves finding solutions that
are not “dominated” by other solutions. A solution dominates another when it is
equally good or better in all measurable criteria, but better in at least one criterion.
There may be many nondominated solutions for a given multicriteria problem.

The entire set of these solutions is called the Pareto set.* This is the set of solutions
for which, for any solution in the set, no objective can be improved without reducing
performance with respect to a different objective. It’s sometimes of interest to find the
entire Pareto set, or approximate it as closely as possible.

Evolutionary algorithms have been applied to this problem for many years
[Fonseca and Flemming, 1993; Zitzler and Thiele, 1998; Knowles and Corne,
1999]. One interesting approach to the problem is called NSGA-II [Deb et al.,
2002], which stands for nondominated sorting genetic algorithm.

The procedure starts by looping over all individuals x;, i=1,...,k in the
population. Each solution begins with a set S; initialized to the empty set and a
number n; set equal to 0. The set S; ultimately contains all the individuals that are
dominated by x;. The number n; is the number of individuals in the solution that
dominates x;. When the loop is complete, every individual that has n; = 0 belongs to
the “first front” (another set) and its rank r; = 1.

After determining the members in the first front (presuming it’s not empty), a
procedure is implemented to determine the individuals to be stored in the second front.
For each individual x; in the first front, a loop is performed over all individuals in the
corresponding S; (which is the set of individuals dominated by x;). For each individual
jin S;, its value n; is decremented. If that value is zero, then that individual is assigned
to the second front. Once that loop is completed, the second front is also complete.
The procedure is repeated until the subsequent front remains empty.

Next, the NSGA-II algorithm works to determine the crowding of individuals
within each front. Initially, all crowding scores are set to zero. Then, for each objective
function m, individuals are sorted based on the objective. Individuals at the extremes
of each front are assigned a value of positive infinity so that they will always be
propagated into the next generation. In between the extremes, the crowding scores are
incremented for each individual based on the Euclidean distance between each pair of
neighboring individuals (within in front) across all of the objectives. The crowding
procedure sets up a tournament selection function, which is based on nondomination
and crowding criteria.

Selection can be implemented to fill the population for each next generation from
each front in turn (that is, first from the first front, then from the second front, and so
on) until the number of solutions in the remaining front would exceed the population

3 A similar form of measure is called the Sharpe Ratio, which is computed as (ROI-RFR)/STD, where ROI
is the return on investment, RFR is the risk-free rate of return, and STD is the standard deviation of the return
on investment. In essence, the ratio measures how many standard deviations above the risk-free rate of
return the asset is producing.

4 Named after Vilfredo Pareto (1848-1923).



size. Solutions from this last front can be selected at random or based on crowding
criteria.

New offspring solutions can be created from the new parents by any appropriate
evolutionary algorithm. For example, here is an implementation of a 50 parent—50
offspring NSGA-II procedure on the problem:

Find the Pareto front for x;, X, x5 for the two criteria:

3 1Y
fi=1—-exp| - Xj——=

3 1\
fo=1-—exp —Z (Xi+—>
i=1 \/g

The solutions were initialized at random in the range [—5, 5]. Mutation was based on a
fixed Gaussian random variation of a normal random variable with zero mean and
standard deviation of 1 added to each dimension of a parent.’

For this problem, we can compute the actual Pareto front before we start the
evolution, so we can determine how well the NSGA-II algorithm can fit the Pareto
front. The equation of the Pareto front is

A>-2AB+B?>+8A+8B+16=0

where
A =log(l — 1)

B =log(1 —f5)

with f; and £, € [0,1 —e™].

The population after generation 10 is shown in Figure 13.13. By generation 30,
you can see the population starting to converge toward the Pareto-optimal front
(Figure 13.14). At generation 70, the front is well estimated (Figure 13.15) and there
are only four solutions remaining in the second front. By generation 100, all solutions
are in the first front and the process has evidently converged close to the correct
answer (Figure 13.16).

Remember that this problem and the approach are provided only for illustration.
The variation operator here was not constructed to converge quickly. It used a fixed
step size, with a standard deviation that was clearly larger than optimal given the
distribution of solutions shown in Figure 13.16. Still, the NSGA-II process was able to
guide the simple evolutionary algorithm to come close to the optimal Pareto set in
only 100 generations.

> This was done to keep the illustration simple. Faster convergence could be expected by a more appropriate
choice of mutation, as discussed in earlier chapters.
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FIGURE 13.13 The population at the 10th generation on the multicriteria problem described
in the text. The legend indicates which front each of the solutions is in. The solid black line
represents the mathematical optimum solution for this problem.
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FIGURE 13.14 The population at the 30th generation on the multicriteria problem described
in the text. Solutions in the population are now contained in one of two fronts. The solid black
line represents the mathematical optimum solution for this problem.
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FIGURE 13.15 The population at the 70th generation on the multicriteria problem described
in the text. Only four solutions remain in the second front. The first front is close to the solid
black line that represents the mathematical optimum solution for this problem.
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FIGURE 13.16 The population at the 100th generation on the multicriteria problem
described in the text. All surviving solutions are in the first front, which has converged close
to the solid black line that represents the mathematical optimum solution for this problem.



Readers are encouraged to review Deb ef al. [2002] for implementing NSGA-II
and Deb and Jain [2014] for an extension of NSGA-II, as well as Zhou et al. [2011] for
a survey of multiobjective evolutionary algorithm techniques.

13.7 SUMMARY

This and the prior chapters on evolutionary computation are intended to introduce the
main concepts of the field as part of a semester course on computational intelligence.
We’ve covered many topics in these four chapters. But there’s more to learn about, as
there are many aspects of evolutionary computation that we haven’t covered.

If you’d like to discover more about topics such as evolutionary search on
constrained problems [Michalewicz and Schoenauer, 1996; Coello Coello, 2012],
classifier systems [Wilson, 1995; Bull, 2015], cultural algorithms [Reynolds, 1994;
Ali et al. 2014], memetic algorithms [Mei et al. 2011], evolutionary robotics [Lipson
and Pollack, 2000; Nolfi and Floreano, 2000; Nouyan et al., 2009; Lipson, 2014],
artificial immune systems [Dasgupta et al., 2011], artificial life [Conrad and Pattee,
1970; Ray, 1992; Ostman and Adami, 2013], and coevolution [Fan et al., 2014;
Omidvar et al., 2014], please see the references included for you. Even when
including those topics, that wouldn’t cover everything in evolutionary computation.
But as they say in statistical regression analysis: “You have to draw the line
somewhere.” And in evolutionary computation, that line is always evolving.

This chapter has presented several extensions of evolutionary computation that are
based on modeling natural search mechanisms and other population-based search
procedures. The chapter also has identified that sometimes it’s helpful to evolve
solutions in hardware or use a human operator to offer a judgment about the quality of
evolved solutions. Finally, the topic of multicriteria optimization was introduced in
terms of both optimizing against a single multiattribute utility (fitness) function and
finding a Pareto set of solutions.

Together with the earlier chapters, these materials can provide you with a strong
foundation for designing and applying evolutionary algorithms to help address your
own challenging problems.

EXERCISES

13.1. Implement a particle swarm optimization algorithm to find the minimum of the
function  f(x,y) = x> +y? — 20[cos (nx) + cos (my) —2] as shown in
Figure 13.1. Then extend the function to be a function of n dimensions:

f(x) = Z; x? =20 (le(cos (nxi) — 1))

Estimate the convergence rate in terms of number of generations to reach a
target level of the function for an initialization that you choose as a function of n
forn =2,3,5, and 10.



13.2.

13.3.

13.4.

13.5.

13.6.

Refer back to software you have written or use an available feed forward neural
network simulator that employs sigmoid functions for the nodes and instead of
using backpropagation, substitute a differential evolution algorithm to do the
training. Test the results on data from http://archive.ics.uci.edu/ml/datasets/
Wine, which provide 13 attributes about wine from three different wineries.
The object is to have the neural network identify which winery made the wine
based on the attributes. Compare your performance with differential evolution
with that of backpropagation. Based on your results, what is your intuition
about the relative convergence rate and reliability of the two approaches on
these data?

Implement an ant colony optimization algorithm to demonstrate the double-
bridge problem. The problem has ants that start on one side of a double bridge
and must go across one of the two bridges to get to a food source. Start with one
of the bridges at half the length of the other. How quickly does the population of
ants converge to traversing the shorter bridge? Now increase the length of the
shorter bridge and estimate convergence time as a function of the ratio of the
two bridge lengths. For more details on the double-bridge experiment, see
http://www.scholarpedia.org/article/File:SameLengthDoubleBridge.png.

Imagine that you wanted to design a possible improvement to the winglets that
are now ubiquitous on commercial airplane wingtips. Winglets are a relatively
recent invention, having been developed in the 1970s at NASA. Think about a
series of experiments you could conduct using evolvable hardware that might
assist in finding a new design to improve the lift and drag performance of a wing
that has winglets.

Consider the problem of finding a personalized shoe for elite professional
athletes. How could you use interactive evolutionary computation to help
design such a shoe? Detail the steps and experiments you would conduct.

For the Pareto problem in Section 13.6, code the NSGA-II algorithm and see if
you can replicate the results presented in the chapter to your own satisfaction.
Next, increase the number of variables to four and five and rerun the algorithm.
What is your expectation about the algorithm’s run time until convergence as a
function of the number of variables on this problem?
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basic ideas and fundamentals, 209-216
canonical example, 229-232
coevolution, 314-320, 340
constraint handling, 255-258, 340
convergence (general), 238-241
convergence with probability 1, 238-241
design, 223
example on quadratic bowl, 219-221
fuzzy memberships, 307, 320
games, 314-320
hardware, 320, 331-333
interactive, 223, 228, 333-335
learning and games, 224
multicriteria optimization, 335-340
neural networks, 284, 298-303, 320



evolutionary computation (continued)
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input-output mapping, 25, 35, 36, 47, 49,
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the interpolation problem, 62, 63
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kernel regression, 70
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possibilistic k-NN, 179
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quadratic programming, 198-203
reward-punishment, 194, 195
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M
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neurodynamics, 91, 92, 99
no free lunch principle, 238

nonlinear regression, 46, 71
normal equations, 270
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(0]
online learning, 45-47, 70
open car racing simulator, 320
optimization
black box, 229
combinatorial, 233-238
overfitting, 48, 50

P
particle swarm optimization, 323-326
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perceptron training algorithm, 13, 22
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automatic Merging-PCM, 173
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203, 204

R
radial basis function, 61, 63-69, 73-76
random search, blind, 217
selection

elitist, 222

proportional, 222

strong, 222
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recurrent neural network, 77, 93
recursive prediction error method, 281-284
robots (evolving), 320
Rosenblatt’s neuron, 10, 12
Rosenblatt’s perceptron, 9, 12, 35



S
selection methods, 243-246
linear ranking, 244-245
plus/comma, 243-244
proportional, 244
tournament, 244
self-adaptation
covariance, 261
probabilities of operators, 262—-263
real-valued, 260-261
self-organizing feature map, 196
sigmoid function, 28-30, 57, 95
single-layer neural network, 7, 11, 35
stability, 44, 88, 93-95, 97-100
Sugeno fuzzy integral, 188-190, 193, 194,
198, 203-205
Sunspot prediction example, 288-290

symbolic (tree-based) expressions, 249-250.

314

T

test problem, 14, 16, 17, 19

traveling salesman problem, 233-238,
330-331

truck backer-upper example, 312-314

U

uncertainty, 101, 104, 117, 124, 135, 136,
139, 155, 174, 178, 183

underfitting, 48

universal approximation theorem, 36, 37,
69

A\
variation operators, 246-255
multiparent, 247
real-valued, 247
variable-length structures, 248
video games, 318-320
Pac-man, 320
unreal, 320
visual assessment of tendency (VAT), 147,
152

W
word recognition, 196-198

X
XOR problem, 53-58, 70, 75, 76
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