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Preface	to	The	Fourth	Edition
There	are	two	major	additions	to	this	fourth	edition.	First,	this	version
supports	both	the	TM4C	and	the	MSP432	architectures.	The	material
for	 the	LM3S	series	has	been	removed.	Volumes	1	and	2	focused	on
the	hardware	and	software	aspects	I/O	interfacing.	In	this	volume	we
provide	a	set	of	low	level	device	drivers	allowing	this	volume	to	focus
on	 real-time	 operating	 systems,	 digital	 signal	 processing,	 control
systems,	and	the	 internet	of	 things.	The	second	addition	 is	Bluetooth
Low	 Energy	 (BLE),	 which	 will	 be	 implemented	 by	 interfacing	 a
CC2650,	 in	 a	 similar	 manner	 with	 which	 IEEE802.11b	 wifi	 is
implemented	in	this	book	using	the	CC3100.	Running	on	the	CC2650
will	 be	 an	 application	 programmer	 interface	 called	 Simple	 Network
Processor	(SNP).	SNP	allows	the	TM4C123/MSP432	microcontroller
to	implement	BLE	using	a	simple	set	of	UART	messaging.	Offloading
the	BLE	functions	to	the	CC2650	allows	the	target	microcontroller	to
implement	system	level	functions	without	the	burden	of	satisfying	the
real-time	communication	required	by	Bluetooth.

	



Preface	to	Volume	3
Embedded	systems	are	a	ubiquitous	component	of	our	everyday	lives.
We	 interact	 with	 hundreds	 of	 tiny	 computers	 every	 day	 that	 are
embedded	 into	our	houses,	our	 cars,	our	 toys,	 and	our	work.	As	our
world	 has	 become	 more	 complex,	 so	 have	 the	 capabilities	 of	 the
microcontrollers	 embedded	 into	 our	 devices.	 The	 ARM	 Cortex-M
family	 represents	 the	 new	 class	 of	 microcontrollers	 much	 more
powerful	than	the	devices	available	ten	years	ago.	The	purpose	of	this
book	is	to	present	the	design	methodology	to	train	young	engineers	to
understand	the	basic	building	blocks	that	comprise	devices	like	a	cell
phone,	 an	MP3	 player,	 a	 pacemaker,	 antilock	 brakes,	 and	 an	 engine
controller.
This	 book	 is	 the	 third	 in	 a	 series	 of	 three	 books	 that	 teach	 the
fundamentals	of	embedded	systems	as	applied	to	the	ARM	Cortex-M
family	of	microcontrollers.	This	third	volume	is	primarily	written	for
senior	 undergraduate	 or	 first-year	 graduate	 electrical	 and	 computer
engineering	students.	It	could	also	be	used	for	professionals	wishing	to
design	or	deploy	a	real-time	operating	system	onto	an	ARM	platform.
The	 first	 book	 Embedded	 Systems:	 Introduction	 to	 ARM	Cortex-M
Microcontrollers	 is	 an	 introduction	 to	 computers	 and	 interfacing
focusing	on	assembly	language	and	C	programming.	The	second	book
Embedded	 Systems:	 RealTime	 Interfacing	 to	 ARM	 Cortex-M
Microcontrollers	 focuses	 on	 interfacing	 and	 the	 design	 of	 embedded
systems.	This	 third	book	 is	 an	advanced	book	 focusing	on	operating
systems,	high-speed	interfacing,	control	systems,	and	robotics.		
An	embedded	system	is	a	system	that	performs	a	specific	task	and	has
a	 computer	 embedded	 inside.	A	 system	 is	 comprised	 of	 components
and	 interfaces	 connected	 together	 for	 a	 common	purpose.	This	 book
presents	 components,	 interfaces	 and	 methodologies	 for	 building
systems.	Specific	topics	include	microcontrollers,	design,	verification,
hardware/software	 synchronization,	 interfacing	 devices	 to	 the
computer,	 timing	 diagrams,	 real-time	 operating	 systems,	 data
collection	and	processing,	motor	control,	analog	filters,	digital	filters,
and	real-time	signal	processing.
In	general,	the	area	of	embedded	systems	is	an	important	and	growing
discipline	within	electrical	and	computer	engineering.	In	the	past,	the



educational	 market	 of	 embedded	 systems	 has	 been	 dominated	 by
simple	microcontrollers	like	the	PIC,	the	9S12,	and	the	8051.	This	is
because	 of	 their	 market	 share,	 low	 cost,	 and	 historical	 dominance.
However,	 as	 problems	 become	more	 complex,	 so	 must	 the	 systems
that	solve	them.	A	number	of	embedded	system	paradigms	must	shift
in	order	to	accommodate	this	growth	in	complexity.	First,	the	number
of	 calculations	 per	 second	 will	 increase	 from	 millions/sec	 to
billions/sec.	Similarly,	the	number	of	lines	of	software	code	will	also
increase	 from	 thousands	 to	 millions.	 Thirdly,	 systems	 will	 involve
multiple	 microcontrollers	 supporting	 many	 simultaneous	 operations.
Lastly,	the	need	for	system	verification	will	continue	to	grow	as	these
systems	are	deployed	 into	safety	critical	applications.	These	changes
are	more	than	a	simple	growth	in	size	and	bandwidth.	These	systems
must	employ	parallel	programming,	high-speed	synchronization,	real-
time	 operating	 systems,	 fault	 tolerant	 design,	 priority	 interrupt
handling,	 and	 networking.	 Consequently,	 it	 will	 be	 important	 to
provide	our	students	with	these	types	of	design	experiences.	The	ARM
platform	is	both	low	cost	and	provides	the	high	performance	features
required	 in	 future	 embedded	 systems.	 Although	 the	 ARM	 market
share	is	large	and	will	continue	to	grow.	Furthermore,	students	trained
on	the	ARM	will	be	equipped	to	design	systems	across	 the	complete
spectrum	from	simple	to	complex.	The	purpose	of	writing	these	three
books	 at	 this	 time	 is	 to	 bring	 engineering	 education	 into	 the	 21st
century.
This	book	employs	many	approaches	to	learning.	It	will	not	include	an
exhaustive	 recapitulation	 of	 the	 information	 in	 data	 sheets.	 First,	 it
begins	with	basic	fundamentals,	which	allows	the	reader	to	solve	new
problems	 with	 new	 technology.	 Second,	 the	 book	 presents	 many
detailed	 design	 examples.	 These	 examples	 illustrate	 the	 process	 of
design.	There	are	multiple	structural	components	 that	assist	 learning.
Checkpoints,	 with	 answers	 in	 the	 back,	 are	 short	 easy	 to	 answer
questions	 providing	 immediate	 feedback	 while	 reading.	 Homework
problems,	which	typically	are	simpler	than	labs,	provide	more	learning
opportunities.	 The	 book	 includes	 an	 index	 and	 a	 glossary	 so	 that
information	can	be	searched.	The	most	important	learning	experiences
in	 a	 class	 like	 this	 are	 of	 course	 the	 laboratories.	More	 detailed	 lab
descriptions	are	available	on	the	web.	Specifically	for	Volume	1,	look
at	the	lab	assignments	for	EE319K.	For	Volume	2	refer	to	the	EE445L



labs,	 and	 for	 this	 volume,	 look	 at	 the	 lab	 assignments	 for
EE445M/EE380L.6.
There	 is	 a	 web	 site	 accompanying	 this	 book
http://users.ece.utexas.edu/~valvano/arm.	 Posted	 here	 are	 ARM
Keil™	 uVision®	 and	 Texas	 Instruments	 Code	 Composer	 Studio™
projects	for	each	of	the	example	programs	in	the	book.	You	will	also
find	data	sheets	and	Excel	spreadsheets	relevant	to	the	material	in	this
book.
The	 book	 will	 cover	 embedded	 systems	 for	 ARM ® 	 Cortex™-M
microcontrollers	with	 specific	 details	 on	 the	TM4C123,	TM4C1294,
and	MSP432.	Most	of	the	topics	can	be	run	on	any	Texas	Instruments
Cortex	 M	 microcontroller.	 In	 these	 books	 the	 terms	MSP432	 and
TM4C	 will	 refer	 to	 any	 of	 the	 Texas	 Instruments	 ARM	 Cortex-M
based	 microcontrollers.	 Although	 the	 solutions	 are	 specific	 for	 the
MSP432	and	TM4C	 families,	 it	will	 be	 possible	 to	 use	 these	 books
for	other	ARM	derivatives.



Acknowledgements
I	owe	a	wonderful	debt	of	gratitude	to	Daniel	Valvano.	He	wrote	and
tested	most	of	the	software	examples	found	in	these	books.	Secondly,
he	 maintains	 the	 example	 web	 site,
http://users.ece.utexas.edu/~valvano/arm.	 Lastly,	 he	 meticulously
proofread	this	manuscript.
Many	shared	experiences	contributed	to	the	development	of	this	book.
First	 I	 would	 like	 to	 acknowledge	 the	 many	 excellent	 teaching
assistants	 I	 have	 had	 the	 pleasure	 of	 working	 with.	 Some	 of	 these
hard-working,	 underpaid	 warriors	 include	 Pankaj	 Bishnoi,	 Rajeev
Sethia,	Adson	da	Rocha,	Bao	Hua,	Raj	Randeri,	Santosh	Jodh,	Naresh
Bhavaraju,	Ashutosh	Kulkarni,	Bryan	Stiles,	V.	Krishnamurthy,	Paul
Johnson,	 Craig	 Kochis,	 Sean	 Askew,	 George	 Panayi,	 Jeehyun	 Kim,
Vikram	 Godbole,	 Andres	 Zambrano,	 Ann	 Meyer,	 Hyunjin	 Shin,
Anand	Rajan,	Anil	Kottam,	Chia-ling	Wei,	Jignesh	Shah,	Icaro	Santos,
David	 Altman,	 Nachiket	 Kharalkar,	 Robin	 Tsang,	 Byung	Geun	 Jun,
John	 Porterfield,	 	 Daniel	 Fernandez,	 	 Deepak	 Panwar,	 Jacob	 Egner,
Sandy	 Hermawan,	 Usman	 Tariq,	 Sterling	 Wei,	 Seil	 Oh,	 Antonius
Keddis,	 Lev	 Shuhatovich,	 Glen	 Rhodes,	 Geoffrey	 Luke,	 Karthik
Sankar,	Tim	Van	Ruitenbeek,	Raffaele	Cetrulo,	Harshad	Desai,	Justin
Capogna,	Arindam	Goswami,	 Jungho	 Jo,	Mehmet	Basoglu,	Kathryn
Loeffler,	 Evgeni	 Krimer,	 Nachiappan	 Valliappan,	 Razik	 Ahmed,
Sundeep	 Korrapati,	 Song	 Zhang,	 	 Zahidul	 Haq,	 Matthew	 Halpern,
Cruz	 Monrreal	 II,	 Pohan	Wu,	 Saugata	 Bhattacharyya,	 Dayo	 Lawal,
Abhishek	 Agarwal,	 Sparsh	 Singhai,	 Nagaraja	 Revanna,	 Mahesh
Srinivasan,	 Victoria	 Bill,	 Alex	 Hsu,	 Dylan	 Zika,	 Chun-Kai	 Chang,
Zhao	 Zheng,	 Ce	 Wei,	 Kelsey	 Taylor	 Ball,	 Brandon	 Nguyen,	 Turan
Vural,	Schuyler	Christensen,	Danny	Vo,	Justin	Nguyen,	Danial	Rizvi,
Armand	Behroozi,	Vivian	 Tan,	Anthony	Bauer,	 	 Jun	Qi	 Lau,	 Corey
Cormier,	Cody	Horton,	Youngchun	Kim,	Ryan	Chow,	Cody	Horton,
Corey	 Cormier,	 and	 Dylan	 Zika.	 These	 teaching	 assistants	 have
contributed	greatly	to	the	contents	of	this	book	and	particularly	to	its
laboratory	 assignments.	 Since	 1981,	 I	 estimate	 I	 have	 taught
embedded	systems	to	over	5000	students.	My	students	have	recharged
my	energy	each	semester	with	their	enthusiasm,	dedication,	and	quest
for	 knowledge.	 I	 have	 decided	 not	 to	 acknowledge	 them	 all
individually.	 However,	 they	 know	 I	 feel	 privileged	 to	 have	 had	 this



opportunity.

Next,	 I	 appreciate	 the	 patience	 and	 expertise	 of	 my	 fellow	 faculty
members	here	at	 the	University	of	Texas	at	Austin.	From	a	personal
perspective	 Dr.	 John	 Pearce	 provided	 much	 needed	 encouragement
and	 support	 throughout	 my	 career.	 Over	 the	 last	 few	 years,	 I	 have
enjoyed	 teaching	 embedded	 systems	 with	 Drs.	 Ramesh	 Yerraballi,
Mattan	 Erez,	 Andreas	 Gerstlauer,	 and	 William	 Bard.	 Bill	 has
contributed	 to	 both	 the	 excitement	 and	 substance	 of	 our	 laboratory
based	 on	 this	 book.	 Many	 of	 the	 suggestions	 and	 corrections	 from
Chris	 Shore	 and	 Drew	 Barbier	 of	 ARM	 about	 Volume	 1	 applied
equally	 to	 this	 volume.	Austin	Blackstone	 created	 and	debugged	 the
Code	Composer	StudioTM	versions	of	the	example	programs	posted	on
the	web.	Austin	also	taught	me	how	to	run	the	CC3000	and	CC3100
Wifi	examples	on	the	LaunchPad.
Ramesh	Yerraballi	 and	 I	 have	 created	 two	MOOCs,	which	have	had
over	 110,000	 students,	 and	 delivered	 to	 110	 countries.	 The	 new
material	 in	 this	 book	 was	 developed	 under	 the	 watchful	 eye	 of
Professor	Yerraballi.	It	has	been	an	honor	and	privilege	to	work	with
such	a	skilled	and	dedicated	educator.
Andreas	Gerstlauer	 has	 taught	 a	 course	 based	 on	 this	 book	multiple
times,	and	 I	have	 incorporated	many	of	his	 ideas	 into	 this	edition	of
the	 book.	 Furthermore,	 you	 will	 find	 a	 rich	 set	 of	 material	 if	 you
search	with	these	keywords	Gerstlauer	RTOS	utexas.
Sincerely,	 I	 appreciate	 the	 valuable	 lessons	 of	 character	 and
commitment	 taught	 to	 me	 by	my	 parents	 and	 grandparents.	 I	 recall
how	hard	my	parents	 and	grandparents	worked	 to	make	 the	world	 a
better	place	for	the	next	generation.	Most	significantly,	I	acknowledge
the	love,	patience	and	support	of	my	wife,	Barbara,	and	my	children,
Ben	Dan	and	Liz.	 In	particular,	Dan	designed	and	tested	most	of	 the
MSP432	and	TM4C	software	presented	in	this	book.
By	 the	 grace	 of	 God,	 I	 am	 truly	 the	 happiest	 man	 on	 the	 planet,
because	I	am	surrounded	by	these	fine	people.
Jonathan	W.	Valvano
Good	luck



1.	Computer	Architecture
	

Chapter	1	objectives	are	to:
•	Present	a	brief	review	of	computer	architecture
•	 Overview	 the	 ARM ® Cortex™ -M	 processor	 including
assembly	 language	 •	 Introduce	 the	 Texas	 Instruments
MSP432/TM4C	family	of	microcontrollers
	

The	overall	objective	of	this	book	is	to	teach	the	design	of	real-
time	 operating	 systems	 for	 embedded	 systems.	 We	 define	 a
system	as	real	time	if	there	is	a	small	and	bounded	delay	between
the	time	when	a	task	should	be	completed	and	when	it	is	actually
completed.	 We	 will	 present	 both	 fundamental	 principles	 and
practical	 solutions.	 Interfacing	 to	 the	 microcontroller	 was
presented	 in	 detail	 in	 Volume	 2	 and	 reviewed	 in	 the	 first	 two
chapters	of	this	book.	The	overlap	allows	this	book	to	stand	alone
as	 a	 text	 to	 teach	 embedded	 real	 time	 operating	 systems.	 This
first	chapter	will	review	the	architecture	of	the	Texas	Instruments
MSP432/TM4C	 family	 of	 microcontrollers.	 When	 designing
operating	 systems,	 we	 need	 to	 understand	 the	 details	 of	 the
architecture.	 In	 particular,	 we	 must	 perform	 many	 functions	 in
assembly	language.	Furthermore,	managing	memory	will	require
an	intimate	understanding	of	how	the	processor	accesses	memory
at	the	most	basic	level.

	



1.1.	Introduction	to	RealTime	Operating
Systems

1.1.1.	Real-time	operating	systems
A	computer	system	has	many	types	of	resources	such	as	memory,	I/O,
data,	 and	 processors.	 A	 real-time	 operating	 system	 (RTOS)	 is
software	 that	 manages	 these	 resources,	 guaranteeing	 all	 timing
constraints	are	satisfied.	Figure	1.1	illustrates	the	relationship	between
hardware	 and	 software.	 On	 the	 left	 is	 a	 basic	 system	 without	 an
operating	system.	Software	is	written	by	a	single	vendor	for	a	specific
microcontroller.	 As	 the	 system	 becomes	 more	 complex	 (middle
figure),	an	operating	system	facilitates	the	integration	of	software	from
multiple	vendors.	By	providing	a	hardware	abstraction	layer	(HAL)
an	 operating	 system	 simplifies	 porting	 application	 code	 from	 one
microcontroller	 to	 another.	 In	 order	 to	 provide	 additional	 processing
power,	 embedded	 systems	 of	 the	 future	 will	 require	 multiple
microcontrollers,	 processors	 with	 specialized	 coprocessors	 and/or	 a
microcontroller	with	multiple	cores	(right	figure).	Synchronization	and
assigning	tasks	across	distributed	processors	are	important	factors.	As
these	systems	become	more	complex,	the	role	of	the	operating	system
will	be	increasingly	important.

Figure	1.1.	An	operating	system	is	a	software	layer	between	the
application	software	and	the	hardware.

	
The	RTOS	must	manage	resources	 like	memory,	processor	and	I/O.
The	 RTOS	 will	 guarantee	 strict	 timing	 constraints	 and	 provide



reliable	 operation.	 The	 RTOS	 will	 support	 synchronization	 and
communication	 between	 tasks.	 As	 complex	 systems	 are	 built	 the
RTOS	 manages	 the	 integration	 of	 components.	 Evolution	 is	 the
notion	 of	 a	 system	 changing	 to	 improve	 performance,	 features	 and
reliability.	 The	 RTOS	must	manage	 change.	When	 designing	 a	 new
system,	it	is	good	design	practice	to	build	a	new	system	by	changing
an	existing	system.	The	notion	of	portability	is	the	ease	at	which	one
system	can	be	changed	or	adapted	to	create	another	system.
The	 response	 time	 or	 latency	 is	 the	 delay	 from	 a	 request	 to	 the
beginning	of	the	service	of	that	request.	There	are	many	definitions	of
bandwidth.	 In	 this	 book	 we	 define	 bandwidth	 as	 the	 number	 of
information	 bytes/sec	 that	 can	 be	 transferred	 or	 processed.	 We	 can
compare	 and	 contrast	 regular	 operating	 systems	 with	 real-time
operating	systems.

Regular	OS Real-time	OS
Complex Simple
Best	effort Guaranteed	response
Fairness Strict	timing	constraints
Average	bandwidth Minimum	and	maximum

limits
Unknown	components Known	components
Unpredictable	behavior Predictable	behavior
Plug	and	play Upgradable

Table	1.1.	Comparison	of	regular	and	real-time	operating	systems.
From	Table	1.1	we	see	that	real-time	operating	systems	have	to	be	simple
so	 they	 may	 be	 predictable.	 While	 traditional	 operating	 systems	 gauge
their	 performance	 in	 terms	 of	 response	 time	 and	 fairness,	 real-time
operating	systems	target	strict	timing	constraints	and	upper,	lower	bounds
on	bandwidth.	One	can	expect	to	know	all	the	components	of	the	system
at	design	time	and	component	changes	happen	much	more	infrequently.

Checkpoint	1.1:	What	does	real	time	mean?			

1.1.2.	Embedded	Systems
An	embedded	system	 is	 a	 smart	 device	with	 a	 processor	 that	 has	 a
special	 and	 dedicated	 purpose.	 The	 user	 usually	 does	 not	 or	 cannot



upgrade	the	hardware/software	or	change	what	the	system	does.	Real
time	means	that	the	embedded	system	must	respond	to	critical	events
within	a	strictly	defined	time,	called	the	deadline.	A	guarantee	to	meet
all	deadlines	can	only	be	made	if	the	behavior	of	the	operating	system
can	 be	 predicted.	 In	 other	 words	 the	 timing	 must	 be	 deterministic.
There	are	five	 types	of	software	functions	 the	processor	can	perform
in	an	embedded	system.	Similar	to	a	general-purpose	computer,	it	can
perform	 mathematical	 and/or	 data	 processing	 operations.	 It	 can
analyze	 data	 and	 make	 decisions	 based	 on	 the	 data.	 A	 second	 type
involves	 handling	 and	 managing	 time:	 as	 an	 input	 (e.g.,	 measure
period),	 an	 output	 (e.g.,	 output	 waveforms),	 and	 a	 means	 to
synchronize	 tasks	 (e.g.,	 run	 1000	 times	 a	 second).	 A	 third	 type
involves	 real-time	 input/output	 for	 the	 purpose	 of	 measurement	 or
control.	 The	 fourth	 type	 involves	 digital	 signal	 processing	 (DSP),
which	 are	 mathematical	 calculations	 on	 data	 streams.	 Examples
include	audio,	video,	radar,	and	sonar.	The	last	type	is	communication
and	 networking.	As	 embedded	 systems	 become	more	 complex,	 how
the	 components	 are	 linked	 together	 will	 become	 increasingly
important.
There	are	two	classifications	of	embedded	systems	as	shown	in	Figure
1.2.	 A	 transformative	 system	 collects	 data	 from	 inputs,	 makes
decisions,	and	affects	its	environment	by	driving	actuators.	The	robot
systems	 presented	 in	 Chapter	 10	 are	 examples	 of	 transformative
systems.	A	reactive	system	collects	data	in	a	continuous	fashion	and
produce	outputs	also	in	a	continuous	fashion.	Digital	signal	processing
algorithms	presented	in	Chapter	6	are	examples	of	reactive	systems.

Figure	1.2.	Embedded	systems	can	transform	or	react	to	the
environment.

Six	constraints	typify	an	embedded	system.	First,	they	are	small	size.



For	 example,	 many	 systems	 must	 be	 handheld.	 Second,	 they	 must
have	 low	weight.	 If	 the	 device	 is	 deployed	 in	 a	 system	 that	moves,
e.g.,	 attached	 to	 a	 human,	 aircraft	 or	 vehicle,	 then	weight	 incurs	 an
energy	cost.	Third,	they	often	must	be	low	power.	For	example,	they
might	need	 to	operate	 for	 a	 long	 time	on	battery	power.	Low	power
also	impacts	the	amount	of	heat	they	are	allowed	to	generate.	Fourth,
embedded	 systems	often	must	 operate	 in	harsh	environments,	 such
as	heat,	pressure,	vibrations,	and	shock.	They	may	be	subject	to	noisy
power,	 RF	 interference,	 water,	 and	 chemicals.	 Fifth,	 embedded
systems	are	often	used	in	safety	critical	systems.	Real-time	behavior
is	 essential.	 For	 these	 systems	 they	 must	 function	 properly	 at
extremely	 high	 levels	 of	 reliability.	 Lastly,	 embedded	 systems	 are
extremely	sensitive	 to	 cost.	Most	 applications	 are	 profit-driven.	 For
high-volume	 systems	 a	 difference	 in	 pennies	 can	 significantly	 affect
profit.

Checkpoint	1.2:	What	is	an	embedded	system?			
Checkpoint	1.3:	List	the	six	constraints	typically	found	in	an
embedded	system?			



1.2.	Computer	Architecture

1.2.1.	Computers,	processors,	and	microcontrollers
Given	that	an	operating	system	is	a	manager	of	resources	provided	by
the	 underlying	 architecture,	 it	 would	 serve	 the	 reader	 well	 to	 get
acquainted	with	the	architecture	the	OS	must	manage.	In	this	section
we	 will	 delve	 into	 these	 details	 of	 the	 building	 blocks	 of	 computer
architecture,	 followed	 by	 the	 specifics	 of	 the	 ARM	 Cortex	 M4
processor	architecture,	 in	particular	TI’s	implementation	of	the	ARM
ISA	found	on	the	TM4C	and	MSP432.
A	computer	combines	a	central	processing	unit	(CPU),	random	access
memory	 (RAM),	 read	 only	 memory	 (ROM),	 and	 input/output	 (I/O)
ports.	 The	 common	 bus	 in	 Figure	 1.3	 defines	 the	 von	 Neumann
architecture.	 	 Software	 is	 an	 ordered	 sequence	 of	 very	 specific
instructions	that	are	stored	in	memory,	defining	exactly	what	and	when
certain	tasks	are	to	be	performed.
	

Figure	1.3.	The	basic	components	of	a	computer	system	include
processor,	memory	and	I/O.

The	 CPU	 or	 processor	 executes	 the	 software	 by	 retrieving	 (from
memory)	 and	 interpreting	 these	 instructions	one	 at	 a	 time.	An	ARM
Cortex-M	 microcontroller	 includes	 a	 processor,	 memory	 and
input/output.	 The	 processor,	 memory	 and	 peripherals	 are	 connected



via	multiple	buses.	Because	instructions	are	fetched	via	the	ICode	bus
and	data	are	fetched	via	the	System	bus,	the	Cortex	M	is	classified	as	a
Harvard	architecture.	Having	multiple	busses	allows	the	system	to	do
several	 things	 simultaneously.	 For	 example,	 the	 processor	 could	 be
reading	 an	 instruction	 from	 ROM	 using	 the	 ICode	 bus	 and	 writing
data	to	RAM	using	the	System	bus.
The	 ARM	 Cortex-M	 processor	 has	 four	 major	 components,	 as
illustrated	in	Figure	1.4.	There	are	bus	interface	units	(BIU)	that	read
data	 from	 the	 bus	 during	 a	 read	 cycle	 and	 write	 data	 onto	 the	 bus
during	a	write	cycle.	The	BIU	always	drives	 the	address	bus	and	the
control	 signals	 of	 the	 bus.	 The	 effective	 address	 register	 (EAR)
contains	 the	 memory	 address	 used	 to	 fetch	 the	 data	 needed	 for	 the
current	 instruction.	 Cortex-M	 microcontrollers	 execute	 Thumb
instructions	extended	with	Thumb-2	technology.	An	overview	of	these
instructions	 will	 be	 presented	 in	 Section	 1.5.	 Many	 functions	 in	 an
operating	 system	 will	 require	 detailed	 understanding	 of	 the
architecture	and	assembly	language.
The	control	unit	 (CU)	orchestrates	the	sequence	of	operations	in	the
processor.	 The	CU	 issues	 commands	 to	 the	 other	 three	 components.
The	instruction	register	(IR)	contains	the	operation	code	(or	op	code)
for	the	current	instruction.	When	extended	with	Thumb-2	technology,
op	codes	are	either	16	or	32	bits	wide.
The	 arithmetic	 logic	 unit	 (ALU)	 performs	 arithmetic	 and	 logic
operations.	 Addition,	 subtraction,	 multiplication	 and	 division	 are
examples	of	arithmetic	operations.	Examples	of	 logic	operations	are,
and,	 or,	 exclusive-or,	 and	 shift.	Many	 processors	 used	 in	 embedded
applications	 support	 specialized	 operations	 such	 as	 table	 lookup,
multiply	and	accumulate,	and	overflow	detection.

	
Figure	1.4.	The	four	basic	components	of	a	processor.

A	 very	 small	 microcomputer,	 called	 a	microcontroller,	 contains	 all



the	 components	 of	 a	 computer	 (processor,	memory,	 I/O)	 on	 a	 single
chip.	 	 The	 Atmel	 ATtiny	 and	 the	 TI	 TM4C123	 are	 examples	 of
microcontrollers.		Because	a	microcomputer	is	a	small	computer,	this
term	can	be	confusing	because	it	 is	used	to	describe	a	wide	range	of
systems	 from	 a	 6-pin	ATtiny4	 running	 at	 1	MHz	with	 512	 bytes	 of
program	memory	 to	 a	 personal	 computer	with	 state-of-the-art	 64-bit
multicore	processor	running	at	multi-GHz	speeds	having	terabytes	of
storage.	
An	application-specific	integrated	circuit	(ASIC)	is	digital	logic	that
solves	 a	 very	 specific	 problem.	 See	 Figure	 1.5.	 A	 field-
programmable	 gate	 array	 (FPGA)	 is	 one	 approach	 to	 ASIC
prototyping,	allowing	you	to	program	and	reprogram	the	digital	logic.
Verilog	 and	 VHDL	 are	 example	 FPGA	 programming	 environments.
ASIC	 design	 is	 appropriate	 for	 problems	 defined	 with	 logic	 and/or
numerical	 equations.	 On	 the	 other	 hand,	 microcontrollers	 are
appropriate	 for	 problems	 solved	 with	 algorithms	 or	 sequential
processes.	 Mature	 problems	 with	 high	 volume	 can	 create	 ASIC
solutions	 directly	 as	 digital	 logic	 integrated	 circuits.	 On	 the	 other
hand,	microcontrollers	can	be	used	for	low-volume	problems	and	have
the	 advantage	 of	 having	 a	 shorter	 time	 to	 market.	Microcontrollers,
because	 they	 are	 programmed	 with	 software,	 allow	 a	 flexibility	 to
upgrade	 features,	 provide	 user-tailored	 performance,	 and	 solve
problems	 with	 uncertain	 or	 changing	 requirements.	 Some	 systems
have	both	microcontrollers	and	ASICs.

Figure	1.5.	A	system	implemented	with	an	ASIC	and	I/O.

In	 an	 embedded	 system	 the	 software	 is	 converted	 to	machine	 code,
which	is	a	list	of	instructions,	and	stored	in	nonvolatile	flash	ROM.	As
instructions	 are	 fetched,	 they	 are	 placed	 in	 a	 pipeline.	 This	 allows
instruction	 fetching	 to	 run	 ahead	 of	 execution.	 Instructions	 on	 the
Cortex-M	 processor	 are	 fetched	 in	 order	 and	 executed	 in	 order.
However,	it	can	execute	one	instruction	while	fetching	the	next.	Many



high-speed	 processors	 allow	 out	 of	 order	 execution,	 support	 parallel
execution	on	multiple	cores,	and	employ	branch	prediction.
On	the	ARM	Cortex-M	processor,	an	instruction	may	read	memory	or
write	 memory,	 but	 does	 not	 read	 and	 write	 memory	 in	 the	 same
instruction.	Each	of	the	phases	may	require	one	or	more	bus	cycles	to
complete.	Each	bus	cycle	reads	or	writes	one	piece	of	data.	Because	of
the	multiple	bus	architecture,	most	instructions	execute	in	one	or	two
cycles.	For	more	information	on	the	time	to	execute	instructions,	see
Table	3.1	in	the	Cortex-M	Technical	Reference	Manual.
Figure	 1.6	 shows	 a	 simplified	 block	 diagram	 of	 a	 microcontroller
based	on	the	ARM	Cortex-M	processor.	It	is	a	Harvard	architecture
because	it	has	separate	data	and	instruction	buses.

Figure	1.6.	Harvard	architecture	of	an	ARM	Cortex-M-based
microcontroller.

The	instruction	set	combines	the	high	performance	typical	of	a	32-bit
processor	 with	 high	 code	 density	 typical	 of	 8-bit	 and	 16-bit
microcontrollers.	 Instructions	 are	 fetched	 from	 flash	ROM	using	 the
ICode	bus.	Data	are	exchanged	with	memory	and	I/O	via	 the	system
bus	 interface.	 There	 are	 many	 sophisticated	 debugging	 features
utilizing	 the	 DCode	 bus.	 An	 interrupt	 is	 a	 hardware-triggered
software	 function,	 which	 is	 extremely	 important	 for	 real-time
embedded	 systems.	 The	 latency	 of	 an	 interrupt	 service	 is	 the	 time
between	 hardware	 trigger	 and	 software	 response.	 Some	 internal
peripherals,	 like	 the	 nested	 vectored	 interrupt	 controller	 (NVIC),
communicate	directly	with	the	processor	via	the	private	peripheral	bus
(PPB).	The	 tight	 integration	of	 the	processor	and	 interrupt	controller



provides	 fast	 execution	 of	 interrupt	 service	 routines	 (ISRs),
dramatically	reducing	the	interrupt	latency.
Checkpoint	1.4:	Why	do	you	suppose	the	Cortex	M	has	so	many
busses?			
Checkpoint	1.5:	Notice	the	debugger	exists	on	the	DCode	bus.
Why	is	this	a	good	idea?			

1.2.2.	Memory
One	kibibyte	(KiB)	equals	1024	bytes	of	memory.	The	TM4C123	has
256	kibibytes	(218	bytes)	of	flash	ROM	and	32	kibibytes	(215	bytes)	of
RAM.	The	MSP432	also	has	256	kibibytes	(218	bytes)	of	flash	ROM
but	 has	 64	 kibibytes	 (216	 bytes)	 of	 RAM.	We	 view	 the	 memory	 as
continuous	 virtual	 address	 space	 with	 the	 RAM	 beginning	 at
0x2000.0000,	and	the	flash	ROM	beginning	at	0x0000.0000.
The	microcontrollers	in	the	Cortex-M	family	differ	by	the	amount	of
memory	 and	 by	 the	 types	 of	 I/O	 modules.	 There	 are	 hundreds	 of
members	 in	 this	 family;	 some	 of	 them	 are	 listed	 in	 Table	 1.2.	 The
memory	maps	 of	 TM4C123	 and	MSP432	 are	 shown	 in	 Figure	 1.7.
Although	 this	 course	 focuses	 on	 two	 microcontrollers	 from	 Texas
Instruments,	 all	 ARM	 Cortex-M	 microcontrollers	 have	 similar
memory	maps.	In	general,	Flash	ROM	begins	at	address	0x0000.0000,
RAM	 begins	 at	 0x2000.0000,	 the	 peripheral	 I/O	 space	 is	 from
0x4000.0000	 to	 0x5FFF.FFFF,	 and	 I/O	 modules	 on	 the	 private
peripheral	bus	exist	from	0xE000.0000	to	0xE00F.FFFF.	In	particular,
the	only	differences	 in	 the	memory	map	 for	 the	various	members	of
the	Cortex-M	family	are	the	ending	addresses	of	the	flash	and	RAM.

Part	number RAM Flash I/O I/O	modules
MSP432P401RIPZ 64 256 84 floating	point,	DMA
TM4C123GH6PM 32 256 43 floating	 point,	 CAN,

DMA,	USB,	PWM
TM4C1294NCPDT 256 1024 90 floating	point,	CAN,

DMA,	USB,	PWM,
Ethernet

STM32F051R8T6 8 64 55 DAC,	 Touch	 sensor,
DMA,	I2S,	HDMI,	PWM



MKE02Z64VQH2 4 64 53 PWM
	 KiB KiB pins 	
Table	1.2.	Memory	and	I/O	modules	(all	have	SysTick,	RTC,	timers,	UART,
I2C,	SSI,	and	ADC).

Having	multiple	buses	means	the	processor	can	perform	multiple	tasks
in	 parallel.	 On	 the	 TM4C123,	 general	 purpose	 input/output	 (GPIO)
ports	can	be	accessed	using	either	the	PPB	or	AHPB.	The	following	is
some	of	 the	 tasks	 that	 can	occur	 in	parallel	 ICode	bus	Fetch	 opcode
from	ROM
DCode	bus	Read	constant	data	from	ROM
System	bus	Read/write	data	 from	RAM	or	I/O,	 fetch	opcode	from
RAM
PPB	Read/write	data	from	internal	peripherals	like	the	NVIC
AHPB	Read/write	data	from	internal	peripherals	like	the	USB

Instructions	 and	 data	 are	 accessed	 using	 a	 common	 bus	 on	 a	 von
Neumann	machine.	The	Cortex-M	processor	is	a	Harvard	architecture
because	 instructions	 are	 fetched	on	 the	 ICode	bus	 and	data	 accessed
on	 the	 system	 bus.	 The	 address	 signals	 on	 the	 ARM	 Cortex-M
processor	include	32	lines,	which	together	specify	the	memory	address
(0x0000.0000	to	0xFFFF.FFFF)	that	 is	currently	being	accessed.	The
address	specifies	both	which	module	 (input,	output,	RAM,	or	ROM)
as	well	 as	which	 cell	within	 the	module	will	 communicate	with	 the
processor.	 The	 data	 signals	 contain	 the	 information	 that	 is	 being
transferred	and	also	include	32	bits.	However,	on	the	system	bus	it	can
also	 transfer	 8-bit	 or	 16-bit	 data.	 The	 control	 signals	 specify	 the
timing,	the	size,	and	the	direction	of	the	transfer.



Figure	1.7.	Memory	map	of	the	TM4C123	with	256k	ROM	and
32k	RAM	and	the	MSP432	with	256k	ROM	and	64k	RAM.

Checkpoint	1.6:	What	do	we	put	in	RAM	and	what	do	we	put	in
ROM?			
Checkpoint	1.7:	Can	software	write	into	the	ROM	of	our
microcontroller?			

The	ARM	Cortex-M	processor	uses	bit-banding	 to	 allow	 read/write
access	to	individual	bits	in	RAM	and	some	bits	in	the	I/O	space.	There
are	two	parameters	that	define	bit-banding:	the	address	and	the	bit	you
wish	 to	 access.	 Assume	 you	 wish	 to	 access	 bit	 b	 of	 RAM	 address
0x2000.0000+n,	where	b	 is	a	number	0	 to	7.	The	aliased	address	 for
this	bit	will	be	0x2200.0000	+	32*n	+	4*b	Reading	 this	address	will
return	 a	 0	 or	 a	 1.	Writing	 a	 0	 or	 1	 to	 this	 address	 will	 perform	 an
atomic	read-modify-write	modification	to	the	bit.
If	we	consider	32-bit	word-aligned	data	in	RAM,	the	same	bit-banding
formula	still	applies.	Let	the	word	address	be	0x2000.0000+n.	n	starts
at	0	and	increments	by	4.	In	this	case,	we	define	b	as	the	bit	from	0	to
31.	In	little-endian	format,	bit	1	of	the	byte	at	0x2000.0001	is	the	same
as	 bit	 9	 of	 the	word	 at	 0x2000.0000.The	 aliased	 address	 for	 this	 bit
will	 still	 be	 0x2200.0000	 +	 32*n	 +	 4*b	 Examples	 of	 bit-banded
addressing	are	listed	in	Table	1.3.	Writing	a	1	to	location	0x2200.0018
will	 set	 bit	 6	 of	 RAM	 location	 0x2000.0000.	 Reading	 location
0x2200.0024	will	 return	a	0	or	1	depending	on	 the	value	of	bit	1	of
RAM	location	0x2000.0001.

RAM
address

Offset
n

Bit	b Bit-banded
alias

0x2000.0000 0 0 0x2200.0000
0x2000.0000 0 1 0x2200.0004
0x2000.0000 0 2 0x2200.0008
0x2000.0000 0 3 0x2200.000C
0x2000.0000 0 4 0x2200.0010
0x2000.0000 0 5 0x2200.0014
0x2000.0000 0 6 0x2200.0018
0x2000.0000 0 7 0x2200.001C
0x2000.0001 1 0 0x2200.0020



0x2000.0001 1 1 0x2200.0024
Table	1.3.	Examples	of	bit-banded	addressing.

Checkpoint	1.8:	What	address	do	you	use	to	access	bit	3	of	the
byte	at	0x2000.1010?
Checkpoint	1.9:	What	address	do	you	use	to	access	bit	22	of	the
word	at	0x2001.0000?

The	 other	 bit-banding	 region	 is	 the	 I/O	 space	 from	 0x4000.0000
through	 0x400F.FFFF.	 In	 this	 region,	 let	 the	 I/O	 address	 be
0x4000.0000+n,	and	let	b	represent	the	bit	0	to	7.	The	aliased	address
for	this	bit	will	be	0x4200.0000	+	32*n	+	4*b	Checkpoint	1.10:	What
address	do	you	use	to	access	bit	7	of	the	byte	at	0x4000.0030?
	



1.3.	Cortex-M	Processor	Architecture

1.3.1.	Registers
The	registers	on	an	ARM	Cortex-M	processor	are	depicted	in	Figure
1.8.	R0	to	R12	are	general	purpose	registers	and	contain	either	data	or
addresses.	Register	R13	(also	called	the	stack	pointer,	SP)	points	to	the
top	 element	 of	 the	 stack.	Actually,	 there	 are	 two	 stack	 pointers:	 the
main	 stack	pointer	 (MSP)	and	 the	process	 stack	pointer	 (PSP).	Only
one	 stack	 pointer	 is	 active	 at	 a	 time.	 In	 a	 high-reliability	 operating
system,	we	could	activate	the	PSP	for	user	software	and	the	MSP	for
operating	 system	 software.	 This	 way	 the	 user	 program	 could	 crash
without	 disturbing	 the	 operating	 system.	 Most	 of	 the	 commercially
available	 real-time	operating	systems	available	on	 the	Cortex	M	will
use	 the	PSP	for	user	code	and	MSP	for	OS	code.	Register	R14	(also
called	 the	 link	 register,	 LR)	 is	 used	 to	 store	 the	 return	 location	 for
functions.	 The	 LR	 is	 also	 used	 in	 a	 special	 way	 during	 exceptions,
such	as	interrupts.	Register	R15	(also	called	the	program	counter,	PC)
points	 to	 the	 next	 instruction	 to	 be	 fetched	 from	 memory.	 The
processor	fetches	an	instruction	using	the	PC	and	then	increments	the
PC	by	the	length	(in	bytes)	of	the	instruction	fetched.	
	Checkpoint	1.11:	How	are	registers	R13	R14	and	R15	special?			

	



Figure	1.8.	The	registers	on	the	ARM	Cortex-M	processor.

The	ARM	Architecture	Procedure	Call	Standard,	AAPCS,	part	of
the	ARM	Application	Binary	Interface	(ABI),	uses	registers	R0,	R1,
R2,	and	R3	to	pass	input	parameters	into	a	C	function	or	an	assembly
subroutine.	Also	according	 to	AAPCS	we	place	 the	return	parameter
in	 Register	 R0.	 The	 standard	 requires	 functions	 to	 preserve	 the
contents	of	R4-R11.	 In	other	words,	 functions	save	R4-R11,	use	R4-
R11,	and	then	restore	R4-R11	before	returning.	Another	restriction	is
to	keep	the	stack	aligned	to	64	bits,	by	pushing	and	popping	an	even
number	of	registers.
There	 are	 three	 status	 registers	 named	 Application	 Program	 Status
Register	 (APSR),	 the	 Interrupt	 Program	 Status	 Register	 (IPSR),	 and
the	 Execution	 Program	 Status	 Register	 (EPSR)	 as	 shown	 in	 Figure
1.9.		These	registers	can	be	accessed	individually	or	in	combination	as
the	Program	Status	Register	(PSR).

	
Figure	1.9.	The	program	status	register	of	the	ARM	Cortex-M
processor.

The	N,	 Z,	 V,	 C,	 and	Q	 bits	 signify	 the	 status	 of	 the	 previous	 ALU
operation.	Many	instructions	set	these	bits	to	signify	the	result	of	the
operation.	 In	general,	 the	N	bit	 is	 set	 after	 an	arithmetical	or	 logical
operation	 signifying	whether	 or	 not	 the	 result	 is	 negative.	 Similarly,
the	Z	bit	is	set	if	the	result	is	zero.	The	C	bit	means	carry	and	is	set	on
an	unsigned	overflow,	and	the	V	bit	signifies	signed	overflow.	The	Q
bit	 is	 the	 sticky	 saturation	 flag,	 indicating	 that	 “saturation”	 has
occurred,	and	is	set	by	the SSAT and USAT 	instructions.
The	T	bit	will	always	be	1,	indicating	the	ARM	Cortex-M	processor	is
executing	Thumb	 instructions.	The	 ICI/IT	bits	are	used	by	 interrupts



and	 by	 IF-THEN	 instructions.	 The	 ISR_NUMBER	 indicates	 which
interrupt	if	any	the	processor	is	handling.	Bit	0	of	the	special	register
PRIMASK	 is	 the	 interrupt	 mask	 bit,	 or	 I	 bit.	 If	 this	 bit	 is	 1	 most
interrupts	and	exceptions	are	not	allowed.	If	the	bit	is	0,	then	interrupts
are	 allowed.	Bit	 0	 of	 the	 special	 register	FAULTMASK	 is	 the	 fault
mask	bit.	If	this	bit	is	1	all	interrupts	and	faults	are	disallowed.	If	the
bit	 is	 0,	 then	 interrupts	 and	 faults	 are	 allowed.	 The	 nonmaskable
interrupt	 (NMI)	 is	 not	 affected	 by	 these	 mask	 bits.	 The	BASEPRI
register	 defines	 the	 priority	 of	 the	 executing	 software.	 It	 prevents
interrupts	 with	 lower	 or	 equal	 priority	 from	 interrupting	 the	 current
execution	 but	 allows	 higher	 priority	 interrupts.	 For	 example	 if
BASEPRI	equals	3,	then	requests	with	level	0,	1,	and	2	can	interrupt,
while	requests	at	levels	3	and	higher	will	be	postponed.	The	details	of
interrupt	processing	will	be	presented	in	detail,	later	in	the	book.
Checkpoint	1.12:	Where	is	the	I	bit	and	what	does	it	mean?			

1.3.2.	Stack
The	stack	is	a	last-in-first-out	temporary	storage.	Managing	the	stack
is	an	important	function	for	the	operating	system.	To	create	a	stack,	a
block	of	RAM	 is	 allocated	 for	 this	 temporary	 storage.	On	 the	ARM
Cortex-M	 processor,	 the	 stack	 always	 operates	 on	 32-bit	 data.	 The
stack	pointer	(SP)	points	to	the	32-bit	data	on	the	top	of	the	stack.	The
stack	 grows	 downwards	 in	 memory	 as	 we	 push	 data	 on	 to	 it	 so,
although	we	refer	to	the	most	recent	item	as	the	“top	of	the	stack”	it	is
actually	 the	 item	 stored	 at	 the	 lowest	 address!	 To	push	 data	 on	 the
stack,	the	stack	pointer	is	first	decremented	by	4,	and	then	the	32-bit
information	is	stored	at	the	address	specified	by	SP.	To	pop	data	from
the	stack,	the	32-bit	information	pointed	to	by	SP	is	first	retrieved,	and
then	the	stack	pointer	 is	 incremented	by	4.	SP	points	 to	 the	 last	 item
pushed,	which	will	also	be	the	next	item	to	be	popped.	The	processor
allows	 for	 two	 stacks,	 the	 main	 stack	 and	 the	 process	 stack,	 with
independent	 copies	 of	 the	 stack	 pointer.	 	 The	 boxes	 in	 Figure	 1.10
represent	 32-bit	 storage	 elements	 in	 RAM.	 The	 grey	 boxes	 in	 the
figure	 refer	 to	 actual	 data	 stored	 on	 the	 stack,	 and	 the	 white	 boxes
refer	to	locations	in	memory	that	do	not	contain	stack	data.	This	figure
illustrates	how	the	stack	is	used	to	push	the	contents	of	Registers	R0,
R1,	 and	R2	 in	 that	 order.	Assume	Register	R0	 initially	 contains	 the



value	 1,	 R1	 contains	 2	 and	 R2	 contains	 3.	 The	 drawing	 on	 the	 left
shows	the	initial	stack.	The	software	executes	these	six	PUSH	{R0}

PUSH	{R1}
PUSH	{R2}
POP	{R3}
POP	{R4}
POP	{R5}
	

Figure	1.10.	Stack	picture	showing	three	numbers	first	being
pushed,	then	three	numbers	being	popped.

We	can	push	and	pop	multiple	registers;	these	six	instructions	could	be
replaced	with
	

PUSH	{R0-R2}
POP		{R3-R5}
	

The	instruction PUSH	{R0} 	saves	the	value	of	R0	on	the	stack.	It	first
decrements	 SP	 by	 4,	 and	 then	 it	 stores	 the	 contents	 of	 R0	 into	 the
memory	location	pointed	to	by	SP.	The	right-most	drawing	shows	the
stack	after	the	push	occurs	three	times.	The	stack	contains	the	numbers
1	2	and	3,	with	3	on	top.	The	instruction POP{R3} 	retrieves	data	from
the	stack.	It	first	moves	the	value	from	memory	pointed	to	by	SP	into
R3,	and	then	it	 increments	SP	by	4.	After	 the	pop	occurs	three	times
the	 stack	 reverts	 to	 its	 original	 state	 and	 registers	 R3,	 R4	 and	 R5
contain	3	2	1	respectively.	We	define	the	32-bit	word	pointed	to	by	SP
as	 the	 top	 entry	 of	 the	 stack.	 If	 it	 exists,	 we	 define	 the	 32-bit	 data
immediately	below	the	top,	at	SP+4,	as	next	to	top.	Proper	use	of	the
stack	requires	following	these	important	rules	1.	Functions	should
have	an	equal	number	of	pushes	and	pops



2.	Stack	accesses	(push	or	pop)	should	not	be	performed
outside	the	allocated	area
3.	Stack	reads	and	writes	should	not	be	performed	within
the	free	area
4.	Stack	push	should	first	decrement	SP,	then	store	the	data
5.	Stack	pop	should	first	read	the	data,	and	then	increment
SP
	

Functions	 that	 violate	 rule	 number	 1	 will	 probably	 crash	 when
incorrect	data	are	popped	off	at	a	later	time.	Violations	of	rule	number
2	 can	be	 caused	by	 a	 stack	underflow	or	overflow.	Overflow	occurs
when	the	number	of	elements	became	larger	than	the	allocated	space.
Stack	underflow	is	caused	when	there	are	more	pops	than	pushes,	and
is	always	the	result	of	a	software	bug.	A	stack	overflow	can	be	caused
by	two	reasons.	If	the	software	mistakenly	pushes	more	than	it	pops,
then	the	stack	pointer	will	eventually	overflow	its	bounds.	Even	when
there	is	exactly	one	pop	for	each	push,	a	stack	overflow	can	occur	if
the	stack	is	not	allocated	large	enough.	The	processor	will	generate	a
bus	fault	when	the	software	tries	read	from	or	write	to	an	address	that
doesn’t	exist.	 If	valid	RAM	exists	below	the	stack	 then	further	stack
operations	will	corrupt	data	in	this	memory.
First,	we	will	consider	 the	situation	where	 the	allocated	stack	area	 is
placed	 at	 the	 beginning	 of	 RAM.	 For	 example,	 assume	 we	 allocate
4096	bytes	 for	 the	 stack	 from	0x2000.0000	 to	0x2000.0FFF;	 see	 the
left	side	of	Figure	1.11.	The	SP	is	initialized	to	0x2000.1000,	and	the
stack	is	considered	empty.	If	the	SP	becomes	less	than	0x2000.0000	a
stack	 overflow	 has	 occurred.	 The	 stack	 overflow	 will	 cause	 a	 bus
fault	because	there	is	nothing	at	address	0x1FFF.FFFC.	If	the	software
tries	 to	 read	 from	 or	 write	 to	 any	 location	 greater	 than	 or	 equal	 to
0x2000.1000	 then	a	stack	underflow	has	occurred.	At	 this	point	 the
stack	 and	 global	 variables	 exist	 at	 overlapping	 addresses.	 Stack
underflow	 is	 a	 very	 difficult	 bug	 to	 recognize,	 because	 the	 first
consequence	 will	 be	 unexplained	 changes	 to	 data	 stored	 in	 global
variables.



Figure	1.11.	Drawings	showing	two	possible	ways	to	allocate	the
stack	area	in	RAM.

Next,	we	will	consider	the	situation	where	the	allocated	stack	area	is
placed	at	the	end	of	RAM.	The	TM4C123	has	32	KiB	of	RAM	from
0x2000.0000	 to	 0x2000.7FFF.	 So	 in	 this	 case	 we	 allocate	 the	 4096
bytes	for	 the	stack	from	0x2000.7000	to	0x2000.7FFF,	shown	on	the
right	side	of	Figure	1.11.	The	SP	is	initialized	to	0x2000.8000,	and	the
stack	is	considered	empty.	If	the	SP	becomes	less	than	0x2000.7000	a
stack	overflow	has	occurred.	The	stack	overflow	will	not	cause	a	bus
fault	 because	 there	 is	 memory	 at	 address	 0x2000.6FFC.	 Stack
overflow	in	this	case	is	a	very	difficult	bug	to	recognize,	because	the
first	consequence	will	be	unexplained	changes	to	data	stored	below	the
stack	region.	If	the	software	tries	to	read	from	or	write	to	any	location
greater	 than	 or	 equal	 to	 0x2000.8000	 then	 a	 stack	 underflow	 has
occurred.	In	this	case,	stack	underflow	will	cause	a	bus	fault.
Executing	 an	 interrupt	 service	 routine	 will	 automatically	 push	 eight
32-bit	words	ontothe	stack.	Since	interrupts	are	triggered	by	hardware
events,	 exactly	 when	 they	 occur	 is	 not	 under	 software	 control.
Therefore,	 violations	 of	 rules	 3,	 4,	 and	5	will	 cause	 erratic	 behavior
when	 operating	 with	 interrupts.	 Rules	 4	 and	 5	 are	 followed
automatically	by	the PUSH and POP 	instructions.

1.3.3.	Operating	modes
The	 ARM	 Cortex-M	 processor	 has	 two	 privilege	 levels	 called
privileged	 and	 unprivileged.	Bit	 0	 of	 the	CONTROL	 register	 is	 the
thread	mode	privilege	level	(TPL).	If	TPL	is	1	the	processor	level	is
privileged.	If	the	bit	is	0,	then	processor	level	is	unprivileged.	Running
at	the	unprivileged	level	prevents	access	to	various	features,	including
the	system	timer	and	the	interrupt	controller.	Bit	1	of	the	CONTROL



register	is	the	active	stack	pointer	selection	(ASPSEL).	If	ASPSEL	is
1,	the	processor	uses	the	PSP	for	its	stack	pointer.	If	ASPSEL	is	0,	the
MSP	is	used.	When	designing	a	high-reliability	operating	system,	we
will	run	the	user	code	at	an	unprivileged	level	using	the	PSP	and	the
OS	code	at	the	privileged	level	using	the	MSP.
The	processor	knows	whether	it	is	running	in	the	foreground	(i.e.,	the
main	program)	or	in	the	background	(i.e.,	an	interrupt	service	routine).
ARM	defines	the	foreground	as	thread	mode,	and	the	background	as
handler	mode.	Switching	between	 thread	and	handler	modes	occurs
automatically.	 The	 processor	 begins	 in	 thread	 mode,	 signified	 by
ISR_NUMBER=0.	Whenever	it	is	servicing	an	interrupt	it	switches	to
handler	mode,	 signified	 by	 setting	 ISR_NUMBER	 to	 specify	which
interrupt	 is	 being	 processed.	All	 interrupt	 service	 routines	 run	 using
the	 MSP.	 In	 particular,	 the	 context	 is	 saved	 onto	 whichever	 stack
pointer	is	active,	but	during	the	execution	of	the	ISR,	the	MSP	is	used.
For	a	high	reliability	operation	all	interrupt	service	routines	will	reside
in	the	operating	system.	User	code	can	be	run	under	interrupt	control
by	 providing	 hooks,	 which	 are	 function	 pointers.	 The	 user	 can	 set
function	 pointers	 during	 initialization,	 and	 the	 operating	 system	will
call	the	function	during	the	interrupt	service	routine.
	
Observation:	Processor	modes	and	the	stack	are	essential
components	of	building	a	reliable	operating	system.	In	particular
the	processor	mode	is	an	architectural	feature	that	allows	the
operating	system	to	restrict	access	to	critical	system	resources.

1.3.4.	Reset
A	reset	occurs	immediately	after	power	is	applied	and	can	also	occur
by	pushing	the	reset	button	available	on	most	boards.	After	a	reset,	the
processor	 is	 in	 thread	mode,	 running	at	a	privileged	 level,	 and	using
the	MSP	 stack	 pointer.	 The	 32-bit	 value	 at	 flash	ROM	 location	 0	 is
loaded	into	the	SP.	All	stack	accesses	are	word	aligned.	Thus,	the	least
significant	two	bits	of	SP	must	be	0.	A	reset	also	loads	the	32-bit	value
at	 location	 4	 into	 the	 PC.	 This	 value	 is	 called	 the	 reset	 vector.	 All
instructions	are	halfword	aligned.	Thus,	the	least	significant	bit	of	PC
must	be	0.	However,	the	assembler	will	set	the	least	significant	bit	in
the	reset	vector,	so	the	processor	will	properly	initialize	the	Thumb	bit



(T)	in	the	PSR.	On	the	Cortex-M	processor,	the	T	bit	should	always	be
set	to	1.	On	reset,	the	processor	initializes	the	LR	to	0xFFFFFFFF.

1.3.5.	Clock	system
Normally,	 the	execution	speed	of	a	microcontroller	 is	determined	by
an	external	crystal.	The	Texas	Instruments	MSP-EXP432P401R	board
has	a	48	MHz	crystal.	The	Texas	Instruments	EK-TM4C123GXL	and
EK-TM4C1294-XL	 boards	 have	 a	 16	 MHz	 crystal.	 The	 TM4C
microcontrollers	 have	 a	 phase-lock-loop	 (PLL)	 that	 allows	 the
software	to	adjust	the	execution	speed	of	the	computer.	Typically,	the
choice	of	frequency	involves	the	tradeoff	between	software	execution
speed	 and	 electrical	 power.	 In	 other	 words,	 slowing	 down	 the	 bus
clock	 will	 require	 less	 power	 to	 operate	 and	 generate	 less	 heat.
Speeding	up	the	bus	clock	obviously	allows	for	more	calculations	per
second.
The	default	bus	speed	of	 the	MSP432	and	TM4C	microcontrollers	 is
that	of	 the	 internal	oscillator.	For	example,	 the	default	bus	 speed	 for
the	MSP432	 is	 3	MHz	±0.5%.	The	default	 bus	 speed	 for	 the	TM4C
internal	 oscillator	 is	 16	 MHz	 ±1%.	 The	 internal	 oscillator	 is
significantly	 less	 precise	 than	 the	 crystal,	 but	 it	 requires	 less	 power
and	 does	 not	 need	 an	 external	 crystal.	 This	 means	 for	 most
applications	we	will	 activate	 the	main	 oscillator	 using	 the	 crystal	 so
we	can	have	a	stable	bus	clock.	We	will	call	library	functions	to	select
the	clock	source	and	bus	frequency.	In	this	book,	we	will	assume	the
MSP432	is	running	at	48	MHz,	the	TM4C123	is	running	at	80	MHz,
and	 the	TM4C1294	 is	 running	at	120	MHz.	For	more	details	on	 the
clock	systems	refer	to	Volume	2	of	this	series.



1.4.	Texas	Instruments	Cortex-M
Microcontrollers

1.4.1.	Introduction	to	I/O
I/O	is	an	 important	part	of	embedded	systems	in	general.	One	of	 the
important	features	of	an	operating	system	is	to	manage	I/O.	Input	and
output	are	the	means	of	an	embedded	system	to	interact	with	its	world.
The	 external	 devices	 attached	 to	 the	 microcontroller	 provide
functionality	 for	 the	 system.	 These	 devices	 connect	 to	 the
microcontroller	 through	 ports.	 A	 pin	 is	 a	 specific	 wire	 on	 the
microcontroller	 through	 which	 we	 perform	 input	 or	 output.	 A
collection	of	pins	grouped	by	common	functionality	 is	called	a	port.
An	 input	 port	 is	 hardware	 on	 the	 microcontroller	 that	 allows
information	about	 the	external	world	 to	enter	 into	 the	computer.	The
microcontroller	 also	 has	 hardware	 called	 an	 output	 port	 to	 send
information	 out	 to	 the	 external	 world.	 The	 GPIO	 (General	 Purpose
Input	Output)	pins	on	a	microcontroller	are	programmable	to	be	digital
input,	 digital	 output,	 analog	 input	 or	 complex	 and	 protocol	 (like
UART	etc.)	specific.
Microcontrollers	 use	 most	 of	 their	 pins	 for	 I/O	 (called	 GPIO),	 see
Figure	1.12.	Only	a	 few	pins	are	not	used	 for	 I/O.	Examples	of	pins
not	 used	 for	 I/O	 include	 power,	 ground,	 reset,	 debugging,	 and	 the
clock.	More	specifically,	the	TM4C123	uses	43	of	its	64	pins	for	I/O.
The	TM4C1294	uses	90	of	its	128	pins	for	I/O.	Similarly,	the	MSP432
uses	84	of	its	100	pins	for	I/O.	



Figure	1.12.	Most	of	the	pins	on	the	microcontroller	can	perform
input/output.

An	 interface	 is	 defined	 as	 the	 collection	 of	 the	 I/O	 port,	 external
electronics,	 physical	 devices,	 and	 the	 software,	 which	 combine	 to
allow	 the	 computer	 to	 communicate	 with	 the	 external	 world.	 An
example	of	an	input	 interface	is	a	switch,	where	the	operator	 toggles
the	 switch,	 and	 the	 software	 can	 recognize	 the	 switch	 position.	 An
example	of	an	output	interface	is	a	light-emitting	diode	(LED),	where
the	 software	 can	 turn	 the	 light	 on	 and	 off,	 and	 the	 operator	 can	 see
whether	or	not	the	light	is	shining.		There	is	a	wide	range	of	possible
inputs	and	outputs,	which	can	exist	in	either	digital	or	analog	form.	In
general,	 we	 can	 classify	 I/O	 interfaces	 into	 four	 categories
Parallel/Digital	-	binary	data	are	available	simultaneously	on
a	group	of	lines
Serial	-	binary	data	are	available	one	bit	at	a	time	on	a
single	line
Analog	-	data	are	encoded	as	an	electrical	voltage,	current
or	power
Time	-	data	are	encoded	as	a	period,	frequency,	pulse
width	or	phase	shift
	

In	a	system	with	memory-mapped	I/O,	as	shown	in	Figure	1.13,	the
I/O	 ports	 are	 connected	 to	 the	 processor	 in	 a	 manner	 similar	 to
memory.	 I/O	ports	are	assigned	addresses,	 and	 the	 software	accesses
I/O	 using	 reads	 and	 writes	 to	 the	 specific	 I/O	 addresses.	 	 These
addresses	 appear	 like	 regular	 memory	 addresses,	 except	 accessing
them	results	in	manipulation	of	a	functionality	of	the	mapped	I/O	port,
hence	the	term	memory-mapped	I/O.	As	a	result,	 the	software	inputs
from	an	 input	port	using	 the	same	 instructions	as	 it	would	 if	 it	were
reading	from	memory.	Similarly,	the	software	outputs	from	an	output
port	 using	 the	 same	 instructions	 as	 it	 would	 if	 it	 were	 writing	 to
memory.



Figure	1.13.	Memory-mapped	input/output.

Most	 pins	 on	 Cortex	 M	 microcontrollers	 can	 be	 used	 for	 general
purpose	 I/O	 (GPIO)	 called	 regular	 functions	 or	 for	 more	 complex
functions	 called	 alternate	 functions.	 For	 example,	 port	 pins	PA1	 and
PA0	on	 the	TM4C123	 can	be	 either	 regular	 parallel	 port	 pins,	 or	 an
asynchronous	 serial	 port	 called	 universal	 asynchronous
receiver/transmitter	(UART).
Some	of	the	alternative	functions	used	in	this	book	are:

•		UART	Universal	asynchronous	receiver/transmitter
•		SSI	or	SPI	Synchronous	serial	interface	or	serial	peripheral
interface
•		I2C	Inter-integrated	circuit	•		Timer	Periodic	interrupts
•		PWM	Pulse	width	modulation
•		ADC	Analog	to	digital	converter,	measurement	analog	signals
	

The	UART	can	be	used	for	serial	communication	between	computers.
It	is	asynchronous	and	allows	for	simultaneous	communication	in	both
directions.	 The	 SSI	 (also	 called	 SPI)	 is	 used	 to	 interface	 medium-
speed	I/O	devices.	In	this	class,	we	will	use	SSI	to	interface	a	graphics
display.	I2C	is	a	simple	I/O	bus	that	we	will	use	to	interface	low	speed
peripheral	devices.	In	this	class	we	use	I2C	to	interface	a	light	sensor
and	 a	 temperature	 sensor.	 We	 will	 use	 the	 timer	 modules	 to	 create
periodic	 interrupts.	 PWM	 outputs	 could	 be	 used	 to	 apply	 variable
power	 to	 motor	 interfaces.	 However,	 in	 this	 class	 we	 use	 PWM	 to
adjust	the	volume	of	the	buzzer.	The	ADC	will	be	used	to	measure	the
amplitude	of	analog	signals,	and	will	be	important	in	data	acquisition



systems.	 In	 this	 class	we	will	 connect	 the	microphone,	 joystick	 and
accelerometer	to	the	ADC.	
Joint	Test	Action	Group	(JTAG),	standardized	as	the	IEEE	1149.1,	is
a	 standard	 test	 access	 port	 used	 to	 program	 and	 debug	 the
microcontroller	board.	Each	microcontroller	uses	four	port	pins	for	the
JTAG	interface.
Checkpoint	1.13:	What	is	the	difference	between	a	pin	and	a
port?			
Checkpoint	1.14:	List	four	types	of	input/output.			

1.4.2.	Texas	Instruments	TM4C123	LaunchPad
I/O	pins

Figure	 1.14	 draws	 the	 I/O	 port	 structure	 for	 the	 TM4C123GH6PM.
This	 microcontroller	 is	 used	 on	 the	 EK-TM4C123GXL	 LaunchPad.
Pins	on	the	TM4C	family	can	be	assigned	to	as	many	as	eight	different
I/O	 functions.	 	 Pins	 can	 be	 configured	 for	 digital	 I/O,	 analog	 input,
timer	I/O,	or	serial	I/O.	For	example	PB4	can	be	a	digital	I/O,	ADC,
SSI,	PWM,	timer	or	CAN	pin.	There	are	two	buses	used	for	I/O.	The
digital	I/O	ports	are	connected	to	both	the	advanced	peripheral	bus	and
the	 advanced	 high-performance	 bus	 (runs	 faster).	 Because	 of	 the
multiple	 buses,	 the	 microcontroller	 can	 perform	 I/O	 bus	 cycles
simultaneous	 with	 instruction	 fetches	 from	 flash	 ROM.	 The
TM4C123GH6PM	 has	 eight	 UART	 ports,	 four	 SSI	 ports,	 four	 I2C
ports,	two	12-bit	ADCs,	twelve	timers,	two	PWMs,	a	CAN	port,	and	a
USB	interface.	There	are	43	I/O	lines.	There	are	twelve	ADC	inputs;
each	ADC	can	convert	up	 to	1M	samples	per	second.	Table	1.4	 lists
the	regular	and	alternate	names	of	the	port	pins.
Each	pin	has	one	configuration	bit	 in	 the	GPIOAMSEL	register.	We
set	this	bit	 to	connect	the	port	pin	to	the	ADC	or	analog	comparator.
For	 digital	 functions,	 each	 pin	 also	 has	 four	 bits	 in	 the	 GPIOPCTL
register,	which	we	set	to	specify	the	alternative	function	for	that	pin	(0
means	 regular	 I/O	 port).	 Not	 every	 pin	 can	 be	 connected	 to	 every
alternative	function.	See	Table	1.4.
Pins	 PC3	 –	PC0	were	 left	 off	Table	 1.4	 because	 these	 four	 pins	 are
reserved	 for	 the	 JTAG	debugger,	 and	 should	not	 be	used	 for	 regular



I/O.	Notice,	most	 alternate	 function	modules	 (e.g.,	U0Rx)	only	exist
on	one	pin	 (PA0).	While	other	 functions	could	be	mapped	 to	 two	or
three	pins	(CAN0Rx	could	be	mapped	to	PB4,	PE4	or	PF3.)	The	 two
pins	PD7	and	PF0	are	associated	with	NMI;	these	two	pins	are	initially
locked.	This	means	 if	 you	plan	 to	use	PD7	or	PF0	you	will	 need	 to
unlock	 it	 by	 first	writing	 0x4C4F434B	 to	 the	 lock	 register	 and	 then
setting	bits	in	the	commit	register.	This	code	unlocks	PF0

		GPIO_PORTF_LOCK_R	=	0x4C4F434B;			//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;											//	allow	changes	to	PF4-0

	

Figure	1.14.	I/O	port	pins	for	the	TM4C123GH6PM
microcontroller.

For	example,	 if	we	wished	 to	use	UART7	on	pins	PE0	and	PE1,	we
would	set	bits	1,0	 in	 the	digital	enable	 register	 (enable	digital),	clear
bits	1,0	 in	 the GPIO_PORTE_AMSEL_R 	 register	 (disable	 analog)
and	set	 the	PMCx	bits	 in	 the	 	 for	PE0	PE1	to	0001	(enable	alternate
function)	 in	 the GPIO_PORTE_PCTL_R 	 register.	 If	we	wished	 to



sample	an	analog	 signal	on	PD0,	we	would	clear	bit	0	 in	 the	digital
enable	 register	 (disable	 digital),	 and	 set	 bit	 0	 in	 the	 GPIOAMSEL
(enable	analog),	and	activate	one	of	the	ADCs	to	sample	channel	7.
The	 TM4C	LaunchPad	 evaluation	 board	 (Figure	 1.15)	 is	 a	 low-cost
development	board	available	as	part	number	EK-TM4C123GXL	from
www.ti.com	 and	 from	 regular	 electronic	 distributors	 like	 Digikey,
Mouser,	and	Avnet.	The	kit	provides	an	integrated	Stellaris	In-Circuit
Debug	Interface	(ICDI),	which	allows	programming	and	debugging	of
the	 onboard	 TM4C	microcontroller.	 One	 USB	 cable	 is	 used	 by	 the
debugger	(ICDI),	and	the	other	USB	allows	the	user	to	develop	USB
applications	(device).	The	user	can	select	board	power	 to	come	from
either	the	debugger	(ICDI)	or	the	USB	device	(device)	by	setting	the
Power	selection	switch.
	
The	 LaunchPad	 board	 can	 also	 be	 used	 as	 a	 JTAG	 debugger	 for
another	target	by	removing	the	VDD	jumper	and	connecting	the	target
to	PC0=TCK,	PC1=TMS,	PC2=TDI,	and	PC3=TDO
	

IO Ain 0 1 2 3 4 5 6 7 8
PA0 	 Port U0Rx 	 	 	 	 	 	 CAN1Rx
PA1 	 Port U0Tx 	 	 	 	 	 	 CAN1Tx
PA2 	 Port 	 SSI0Clk 	 	 	 	 	 	
PA3 	 Port 	 SSI0Fss 	 	 	 	 	 	
PA4 	 Port 	 SSI0Rx 	 	 	 	 	 	
PA5 	 Port 	 SSI0Tx 	 	 	 	 	 	
PA6 	 Port 	 	 I2C1SCL 	 M1PWM2 	 	 	
PA7 	 Port 	 	 I2C1SDA 	 M1PWM3 	 	 	
PB0 USB0ID Port U1Rx 	 	 	 	 	 T2CCP0 	
PB1 USB0VBUS Port U1Tx 	 	 	 	 	 T2CCP1 	
PB2 	 Port 	 	 I2C0SCL 	 	 	 T3CCP0 	
PB3 	 Port 	 	 I2C0SDA 	 	 	 T3CCP1 	
PB4 Ain10 Port 	 SSI2Clk 	 M0PWM2 	 	 T1CCP0 CAN0Rx
PB5 Ain11 Port 	 SSI2Fss 	 M0PWM3 	 	 T1CCP1 CAN0Tx
PB6 	 Port 	 SSI2Rx 	 M0PWM0 	 	 T0CCP0 	
PB7 	 Port 	 SSI2Tx 	 M0PWM1 	 	 T0CCP1 	
PC4 C1- Port U4Rx U1Rx 	 M0PWM6 	 IDX1 WT0CCP0 U1RTS
PC5 C1+ Port U4Tx U1Tx 	 M0PWM7 	 PhA1 WT0CCP1 U1CTS
PC6 C0+ Port U3Rx 	 	 	 	 PhB1 WT1CCP0 USB0epen
PC7 C0- Port U3Tx 	 	 	 	 	 WT1CCP1 USB0pflt
PD0 Ain7 Port SSI3Clk SSI1Clk I2C3SCL M0PWM6 M1PWM0 	 WT2CCP0 	



PD1 Ain6 Port SSI3Fss SSI1Fss I2C3SDA M0PWM7 M1PWM1 	 WT2CCP1 	
PD2 Ain5 Port SSI3Rx SSI1Rx 	 M0Fault0 	 	 WT3CCP0 USB0epen
PD3 Ain4 Port SSI3Tx SSI1Tx 	 	 	 IDX0 WT3CCP1 USB0pflt
PD4 USB0DM Port U6Rx 	 	 	 	 	 WT4CCP0 	
PD5 USB0DP Port U6Tx 	 	 	 	 	 WT4CCP1 	
PD6 	 Port U2Rx 	 	 M0Fault0 	 PhA0 WT5CCP0 	
PD7 	 Port U2Tx 	 	 	 	 PhB0 WT5CCP1 NMI
PE0 Ain3 Port U7Rx 	 	 	 	 	 	 	
PE1 Ain2 Port U7Tx 	 	 	 	 	 	 	
PE2 Ain1 Port 	 	 	 	 	 	 	 	
PE3 Ain0 Port 	 	 	 	 	 	 	 	
PE4 Ain9 Port U5Rx 	 I2C2SCL M0PWM4 M1PWM2 	 	 CAN0Rx
PE5 Ain8 Port U5Tx 	 I2C2SDA M0PWM5 M1PWM3 	 	 CAN0Tx
PF0 	 Port U1RTS SSI1Rx CAN0Rx 	 M1PWM4 PhA0 T0CCP0 NMI
PF1 	 Port U1CTS SSI1Tx 	 	 M1PWM5 PhB0 T0CCP1 	
PF2 	 Port 	 SSI1Clk 	 M0Fault0 M1PWM6 	 T1CCP0 	
PF3 	 Port 	 SSI1Fss CAN0Tx 	 M1PWM7 	 T1CCP1 	
PF4 	 Port 	 	 	 	 M1Fault0 IDX0 T2CCP0 USB0epen

Table	1.4.	PMCx	bits	in	the	GPIOPCTL	register	on	the	LM4F/TM4C
specify	alternate	functions.	PB1,	PB0,	PD4	and	PD5	are	hardwired	to	the
USB	device.	PA0	and	PA1	are	hardwired	to	the	serial	port.	PWM	is	not
available	on	LM4F120.

Figure	1.15.	Tiva	TM4C123	Launchpad	Evaluation	Board	based
on	the	TM4C123GH6PM.

Pins	 PA1	 –	 PA0	 create	 a	 serial	 port,	 which	 is	 linked	 through	 the
debugger	cable	to	the	PC.	The	serial	link	is	a	physical	UART	as	seen
by	the	TM4C	and	mapped	to	a	virtual	COM	port	on	the	PC.	The	USB
device	interface	uses	PD4	and	PD5.	The	JTAG	debugger	requires	pins



PC3	–	PC0.	The	LaunchPad	connects	PB6	to	PD0,	and	PB7	to	PD1.	If
you	wish	 to	use	both	PB6	and	PD0	you	will	need	 to	 remove	 the	R9
resistor.	Similarly,	to	use	both	PB7	and	PD1	remove	the	R10	resistor.
The	TM4C123	LaunchPad	evaluation	board	has	two	switches	and	one
3-color	 LED.	 See	 Figure	 1.16.	 The	 switches	 are	 negative	 logic	 and
will	 require	 activation	 of	 the	 internal	 pull-up	 resistors.	 In	 particular,
you	 will	 set	 bits	 0	 and	 4in GPIO_PORTF_PUR_R 	 register.	 The
LED	interfaces	on	PF3	–	PF1	are	positive	logic.	To	use	the	LED,	make
the	PF3	–	PF1	pins	an	output.	To	activate	the	red	color,	output	a	one	to
PF1.	The	 blue	 color	 is	 on	PF2,	 and	 the	 green	 color	 is	 controlled	 by
PF3.	The	0-Ω	resistors	(R1,	R2,	R11,	R12,	and	R13)	can	be	removed
to	disconnect	the	corresponding	pin	from	the	external	hardware.
The	LaunchPad	has	four	10-pin	connectors,	 labeled	as	J1	J2	J3	J4	in
Figures	1.15	and	1.17,	to	which	you	can	attach	your	external	signals.
The	top	side	of	these	connectors	has	male	pins	and	the	bottom	side	has
female	 sockets.	 The	 intent	 is	 to	 stack	 boards	 together	 to	 make	 a
layered	 system	 see	 Figure	 1.17.	 Texas	 Instruments	 also	 supplies
Booster	Packs,	which	are	pre-made	external	devices	that	will	plug	into
this	40-pin	connector.	The	Booster	Packs	for	the	MSP430	LaunchPad
are	 compatible	 (one	 simply	 plugs	 these	 20-pin	 connectors	 into	 the
outer	two	rows)	with	this	board.	The	inner	10-pin	headers	(connectors
J3	 and	 J4)	 are	 not	 intended	 to	 be	 compatible	 with	 other	 TI
LaunchPads.	J3	and	J4	apply	only	to	Tiva	Booster	Packs.
There	are	a	number	of	good	methods	to	connect	external	circuits	to	the
LaunchPad.	One	method	is	to	purchase	a	male	to	female	jumper	cable
(e.g.,	 item	number	826	at	www.adafruit.com).	A	second	method	is	to
solder	a	solid	wire	into	a	female	socket	(e.g.,	Hirose	DF11-2428SCA)
creating	a	male	to	female	jumper	wire.



Figure	1.16.	Switch	and	LED	interfaces	on	the	Texas	Instruments
TM4C123	LaunchPad	Evaluation	Board.	The	zero	ohm	resistors
can	be	removed	so	the	corresponding	pin	can	be	used	for	its
regular	purpose.

Figure	1.17.	Interface	connectors	on	the	Texas	Instruments
TM4C123	LaunchPad	Evaluation	Board.

1.4.3.	Texas	Instruments	TM4C1294	Connected
LaunchPad	I/O	pins

Figure	 1.18	 shows	 the	 90	 I/O	 pins	 available	 on	 the
TM4C1294NCPDT,	 which	 is	 the	 microcontroller	 used	 on	 the
Connected	LaunchPad.	Pins	on	the	TM4C	family	can	be	assigned	to	as
many	 as	 seven	 different	 I/O	 functions,	 see	 Table	 1.5.	 Pins	 can	 be
configured	 for	digital	 I/O,	 analog	 input,	 timer	 I/O,	or	 serial	 I/O.	For
example	PA0	can	be	digital	I/O,	serial	input,	I2C	clock,	Timer	I/O,	or
CAN	 receiver.	 There	 are	 two	 buses	 used	 for	 I/O.	 Unlike	 the
TM4C123,	 the	 digital	 I/O	 ports	 are	 only	 connected	 to	 the	 advanced



high-performance	 bus.	 The	 microcontroller	 can	 perform	 I/O	 bus
cycles	 simultaneous	 with	 instruction	 fetches	 from	 flash	 ROM.	 The
TM4C1294NCPDT	 has	 eight	 UART	 ports,	 four	 SSI	 ports,	 ten	 I2C
ports,	two	12-bit	ADCs,	eight	timers,	two	CAN	ports,	a	USB	interface,
8	PWM	outputs,	and	an	Ethernet	port.	Of	the	90	I/O	lines,	twenty	pins
can	be	used	for	analog	inputs	to	the	ADC.	The	ADC	can	convert	up	to
1M	 samples	 per	 second.	 Table	 1.5	 lists	 the	 regular	 and	 alternate
functions	of	the	port	pins.

Figure	1.18.	I/O	port	pins	for	the	TM4C1294NCPDT
microcontroller.

Figure	 1.19	 shows	 the	 pin	 locations	 of	 the	 two	 Booster	 Pack
connectors.	There	are	three	methods	to	connect	external	circuits	to	the
Connected	LaunchPad.	One	method	uses	male	to	female	jumper	cable
(e.g.,	 item	 number	 826	 at	 www.adafruit.com)	 or	 solder	 a	 solid	wire
into	a	female	socket	(e.g.,	Hirose	DF11-2428SCA)	creating	a	male-to-
female	jumper	wire.	In	this	method,	you	connect	the	female	socket	to
the	 top	 of	 the	 LaunchPad	 and	 the	 male	 pin	 into	 a	 solderless
breadboard.	The	 second	method	 uses	male-to-male	wires	 interfacing
to	 the	 bottom	 of	 the	 LaunchPad.	 The	 third	method	 uses	 two	 49-pin



right-angle	 headers	 so	 the	 entire	 LaunchPad	 can	 be	 plugged	 into	 a
breadboard.	You	will	need	one	each	of	Samtec	parts	TSW-149-09-L-
S-RE	 and	 TSW-149-08-L-S-RA.	 This	 configuration	 is	 shown	 in
Figure	 1.20,	 and	 directions	 can	 be	 found	 at
http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf
The	Connected	LaunchPad	has	 two	switches	and	 four	LEDs.	Switch
SW1	is	connected	to	pin	PJ0,	and	SW2	is	connected	to	PJ1.	These	two
switches	 are	 negative	 logic	 and	 require	 enabling	 the	 internal	 pull	 up
(PUR).	A	reset	switch	will	reset	the	microcontroller	and	your	software
will	 start	when	you	 release	 the	 switch.	Positive	 logic	LEDs	D1,	D2,
D3,	and	D4	are	connected	to	PN1,	PN0,	PF4,	and	PF0	respectively.	A
power	LED	indicates	that	3.3	volt	power	is	present	on	the	board.	R19
is	 a	 0	Ω	 resistor	 connecting	 PA3	 and	 PQ2.	 Similarly,	 R20	 is	 a	 0	Ω
resistor	connecting	PA2	and	PQ3.	You	need	to	remove	R19	if	you	plan
to	use	both	PA3	and	PQ2.	You	need	to	remove	R20	if	you	plan	to	use
both	PA2	and	PQ3.	See	Figures	1.20	and	1.21.

Figure	1.19.	Interface	connectors	on	the	EK-TM4C1294-XL
LaunchPad	Evaluation	Board.



Figure	1.20.	EK-TM4C1294-XL	Connected	LaunchPad.

Jumper	 JP1	 has	 six	 pins	 creating	 three	 rows	 of	 two.	 Exactly	 one
jumper	should	be	connected	in	the	JP1	block,	which	selects	the	power
source.	 The	 top	 position	 is	 for	 BoosterPack	 power.	 The	 middle
position	draws	power	 from	the	USB	connector,	 labeled	OTG,	on	 the
left	side	of	 the	board	near	 the	Ethernet	 jack.	We	recommend	placing
the	JP1	jump	in	the	bottom	position	so	power	is	drawn	from	the	ICDI
(Debug)	USB	connection.	Under	normal	conditions,	you	should	place
jumpers	 in	 both	 J2	 and	 J3.	 Jumpers	 J2	 and	 J3	 facilitate	 measuring
current	to	the	microcontroller.	We	recommend	you	place	JP4	and	JP5
in	the	“UART”	position	so	PA1	and	PA0	are	connected	to	the	PC	as	a
virtual	 COM	 port.	 Your	 code	 runs	 on	 the	 128-pin	 TM4C1294
microcontroller.	 There	 is	 a	 second	 TM4C	 microcontroller	 on	 the
board,	 which	 acts	 as	 the	 JTAG	 debugger	 for	 your	 TM4C1294.	 You
connect	 the	 Debug	 USB	 to	 a	 PC	 in	 order	 to	 download	 and	 debug
software	on	the	board.	The	other	USB	is	for	user	applications.

Pin Analog 1 2 3 5 6 7 11 13
PA0

-
U0Rx I2C9SCL T0CCP0

- -
CAN0Rx

- -

PA1

-
U0Tx I2C9SDA T0CCP1

- -
CAN0Tx

- -

PA2 U4Rx I2C8SCL T1CCP0



- - - - - -

PA3

-
U4Tx I2C8SDA T1CCP1

- - - - -

PA4

-
U3Rx I2C7SCL T2CCP0

- - - - -

PA5

-
U3Tx I2C7SDA T2CCP1

- - - - -

PA6

-
U2Rx I2C6SCL T3CCP0 USB0EPEN

- - -
SSI0XDAT2

PA7

-
U2Tx I2C6SDA T3CCP1 USB0PFLT

- -
USB0EPEN SSI0XDAT3

PB0 USB0ID U1Rx I2C5SCL T4CCP0

- -
CAN1Rx

- -

PB1 USB0VBUS U1Tx I2C5SDA T4CCP1

- -
CAN1Tx

- -

PB2

- -
I2C0SCL T5CCP0

- - - - -

PB3

- -
I2C0SDA T5CCP1

- - - - -

PB4 AIN10 U0CTS I2C5SCL

- - - - - -

PB5 AIN11 U0RTS I2C5SDA

- - - - - -

PC4 C1- U7Rx

- - - - - - -

PC5 C1+ U7Tx

- - - -
RTCCLK

- -



PC6 C0+ U5Rx

- - - - - - -

PC7 C0- U5Tx

- - - - - - -

PD0 AIN15

-
I2C7SCL T0CCP0 C0o

- - - -

PD1 AIN14

-
I2C7SDA T0CCP1 C1o

- - - -

PD2 AIN13

-
I2C8SCL T1CCP0 C2o

- - - -

PD3 AIN12

-
I2C8SDA T1CCP1

- - - - -

PD4 AIN7 U2Rx

-
T3CCP0

- - - - -

PD5 AIN6 U2Tx

-
T3CCP1

- - - - -

PD6 AIN5 U2RTS

-
T4CCP0 USB0EPEN

- - - -

PD7 AIN4 U2CTS

-
T4CCP1 USB0PFLT

- - - -

PE0 AIN3 U1RTS

- - - - - - -

PE1 AIN2 U1DSR

- - - - - - -

PE2 AIN1 U1DCD

- - - - - - -

PE3 AIN0 U1DTR



- - - - - - -

PE4 AIN9 U1RI

- - - - - - -

PE5 AIN8

- - - - - - - -

PF0

- - - -
EN0LED0 M0PWM0

- - -

PF1

- - - -
EN0LED2 M0PWM1

- - -

PF2

- - - - -
M0PWM2

- - -

PF3

- - - - -
M0PWM3

- - -

PF4

- - - -
EN0LED1 M0FAULT0

- - -

PG0

- -
I2C1SCL

-
EN0PPS M0PWM4

- - -

PG1

- -
I2C1SDA

- -
M0PWM5

- - -

PH0

-
U0RTS

- - - - - - -

PH1

-
U0CTS

- - - - - - -

PH2

-
U0DCD

- - - - - - -

PH3

-
U0DSR

- - - - - - -



PJ0

-
U3Rx

- -
EN0PPS

- - - -

PJ1

-
U3Tx

- - - - - - -

PK0 AIN16 U4Rx

- - - - - - -

PK1 AIN17 U4Tx

- - - - - - -

PK2 AIN18 U4RTS

- - - - - - -

PK3 AIN19 U4CTS

- - - - - - -

PK4

- -
I2C3SCL

-
EN0LED0 M0PWM6

- - -

PK5

- -
I2C3SDA

-
EN0LED2 M0PWM7

- - -

PK6

- -
I2C4SCL

-
EN0LED1 M0FAULT1

- - -

PK7

-
U0RI I2C4SDA

-
RTCCLK M0FAULT2

- - -

PL0

- -
I2C2SDA

- -
M0FAULT3

- - -

PL1

- -
I2C2SCL

- -
PhA0

- - -

PL2

- - - -
C0o PhB0

- - -

PL3 C1o IDX0



- - - - - - -

PL4

- - -
T0CCP0

- - - - -

Pin Analog 1 2 3 5 6 7 11 13
PL5

- - -
T0CCP1

- - - - -

PL6 USB0DP

- -
T1CCP0

- - - - -

PL7 USB0DM

- -
T1CCP1

- - - - -

PM0

- - -
T2CCP0

- - - - -

PM1

- - -
T2CCP1

- - - - -

PM2

- - -
T3CCP0

- - - - -

PM3

- - -
T3CCP1

- - - - -

PM4 TMPR3 U0CTS

-
T4CCP0

- - - - -

PM5 TMPR2 U0DCD

-
T4CCP1

- - - - -

PM6 TMPR1 U0DSR

-
T5CCP0

- - - - -

PM7 TMPR0 U0RI

-
T5CCP1

- - - - -

PN0 U1RTS



- - - - - - - -

PN1

-
U1CTS

- - - - - - -

PN2

-
U1DCDU2RTS

- - - - - -

PN3

-
U1DSR U2CTS

- - - - - -

PN4

-
U1DTR U3RTS I2C2SDA

- - - - -

PN5

-
U1RI U3CTS I2C2SCL

- - - - -

PP0 C2+ U6Rx

- - - - - - -

PP1 C2- U6Tx

- - - - - - -

PP2

-
U0DTR

- - - - - - -

PP3

-
U1CTS U0DCD

- - -
RTCCLK

- -

PP4

-
U3RTS U0DSR

- - - - - -

PP5

-
U3CTS I2C2SCL

- - - - - -

PQ0

- - - - - - - - -

PQ1

- - - - - - - - -



PQ2

- - - - - - - - -

PQ3

- - - - - - - - -

PQ4

-
U1Rx

- - - -
DIVSCLK

- -

Table	1.5.	PMCx	bits	in	the	GPIO_PORTx_PCTL_R	register	on	the
TM4C1294	specify	alternate	functions.	PD7	can	be	NMI	by	setting	PCTL
bits	31-28	to	8.	PL6	and	PL7	are	hardwired	to	the	USB.

Each	pin	has	one	configuration	bit	in	the	AMSEL	register.	We	set	this
bit	 to	 connect	 the	 port	 pin	 to	 the	 ADC	 or	 analog	 comparator.	 For
digital	 functions,	 each	 pin	 also	 has	 four	 bits	 in	 the	 PCTL	 register,
which	we	set	to	specify	the	alternative	function	for	that	pin	(0	means
regular	I/O	port).	Table	1.5	shows	the	4-bit	PCTL	configuration	used
to	connect	each	pin	to	its	alternate	function.	For	example,	column	“3”
means	set	4-bit	field	in	PCTL	to	0011.
Pins	 PC3	 –	PC0	were	 left	 off	Table	 1.5	 because	 these	 four	 pins	 are
reserved	 for	 the	 JTAG	debugger	 and	 should	 not	 be	 used	 for	 regular
I/O.	Notice,	some	alternate	 function	modules	 (e.g.,	U0Rx)	only	exist
on	 one	 pin	 (PA0),	while	 other	 functions	 could	 be	mapped	 to	 two	or
three	 pins.	 For	 example,	 	 T0CCP0	 could	 be	 mapped	 to	 one	 of	 the
following:	PA0,	PD0,	or	PL4.
The	PCTL	bits	in	Table	1.5	can	be	tricky	to	understand.	For	example,
if	we	wished	to	use	UART6	on	pins	PP0	and	PP1,	we	would	set	bits
1,0	in	the	DEN	register	(enable),	clear	bits	1,0	in	the	AMSEL	register
(disable),	write	a	0001,0001	to	bits	7–0	in	the	PCTL	register	(UART)
GPIO_PORTP_PCTL_R	 =
(GPIO_PORTP_PCTL_R&0xFFFFFFFF)+0x00000011;	 and	 set
bits	 1,0	 in	 the	 AFSEL	 register	 (enable	 alternate	 function).	 If	 we
wished	to	sample	an	analog	signal	on	PD0,	we	would	set	bit	0	in	the
alternate	 function	 select	 register	 AFSEL,	 clear	 bit	 0	 in	 the	 digital
enable	 register	DEN	 (disable	 digital),	 set	 bit	 0	 in	 the	 analog	 mode
select	register	AMSEL	(enable	analog),	and	activate	one	of	the	ADCs
to	sample	channel	15.



Jumpers	JP4	and	JP5	select	whether	the	serial	port	on	UART0	(PA1	–
PA0)	or	on	UART2	(PD5	–	4)	is	linked	through	the	debugger	cable	to
the	PC.	The	serial	link	is	a	physical	UART	as	seen	by	the	TM4C1294
and	 is	 mapped	 to	 a	 virtual	 COM	 port	 on	 the	 PC.	 The	 USB	 device
interface	uses	PL6	and	PL7.	The	JTAG	debugger	requires	pins	PC3	–
PC0.

Figure	1.21.	Switch	and	LED	interfaces	on	the	Connected
LaunchPad	Evaluation	Board.	The	zero	ohm	resistors	can	be
removed	so	all	the	pins	can	be	used.	See	Chapter	9	for	Ethernet
connections.

To	use	 the	negative	 logic	switches,	make	 the	pins	digital	 inputs,	and
activate	 the	 internal	 pull-up	 resistors.	 In	 particular,	 you	will	 activate
the	Port	J	clock,	clear	bits	0	and	1in GPIO_PORTJ_DIR_R 	register,
set	bits	0	and	1in GPIO_PORTJ_DEN_R 	register,	and	set	bits	0	and
1in GPIO_PORTJ_PUR_R 	register.	The	LED	interfaces	are	positive
logic.	To	 use	 the	LEDs,	make	 the	PN1,	PN0,	PF4,	 and	PF0	pins	 an
output.	 You	 will	 activate	 the	 Port	 N	 clock,	 set	 bits	 0	 and
1in GPIO_PORTN_DIR_R 	 register,	 and	 set	 bits	 0	 and
1in GPIO_PORTN_DEN_R 	 register.	 You	 will	 activate	 the	 Port	 F
clock,	set	bits	0	and	4in GPIO_PORTF_DIR_R 	register,	and	set	bits
0	and	4in GPIO_PORTF_DEN_R 	register.
	

1.4.4.	Texas	Instruments	MSP432	LaunchPad	I/O



pins
Figure	1.22	draws	the	I/O	port	structure	for	the	MSP432P401R.	This
microcontroller	is	used	on	the	MSP-EXP432P401R	LaunchPad.		Pins
can	be	configured	for	digital	I/O,	analog	input,	timer	I/O,	or	serial	I/O.
For	example	P1.2	can	be	digital	I/O	or	serial	receive	input.
Because	 of	 the	 multiple	 buses,	 the	 microcontroller	 can	 perform	 I/O
bus	cycles	simultaneous	with	instruction	fetches	from	flash	ROM.	The
MSP432P401R	has	four	UART	ports,	eight	SPI	ports,	four	I2C	ports,
a	14-bit	ADC,	and	 four	 timers.	There	are	84	 I/O	 lines.	There	are	24
ADC	 inputs,	 and	 the	ADC	 can	 convert	 up	 to	 1	million	 samples	 per
second.

Figure	1.22.	I/O	port	pins	for	the	MSP432P401R	microcontroller.
(Six	pins	on	Port	J	not	shown).

The	MSP432	LaunchPad	evaluation	board	(Figure	1.23)	is	a	low-cost



development	 board	 available	 as	 part	 number	 MSP-EXP432P401R
from	 www.ti.com	 and	 from	 regular	 electronic	 distributors	 like
Digikey,	Mouser,	element14,	and	Avnet.	The	board	includes	XDS110-
ET,	an	open-source	onboard	debugger,	which	allows	programming	and
debugging	of	the	MSP432	microcontroller.	The	USB	interface	is	used
by	the	debugger	and	includes	a	serial	channel.	

Figure	1.23.	LaunchPad	based	on	the	MSP432P401RIPZ.

The	MSP432	LaunchPad	 evaluation	 board	 has	 two	 switches,	 one	 3-
color	LED	and	one	red	LED,	as	shown	in	Figure	1.24.	The	switches
are	 negative	 logic	 and	will	 require	 activation	 of	 the	 internal	 pull-up
resistors.	 In	 this	class	we	will	not	use	 the	switches	and	LEDs	on	 the
LaunchPad,	but	 rather	 focus	on	 the	hardware	provided	by	 the	MK-II
BoosterPack.

Figure	1.24.	Switch	and	LED	interfaces	on	the	LaunchPad
Evaluation	Board.	The	jumpers	can	be	removed	so	the
corresponding	pin	can	be	used	without	connection	to	the	external



circuits.

The	LaunchPad	has	four	10-pin	connectors,	 labeled	as	J1	J2	J3	J4	in
Figure	 1.25,	 to	which	 you	 can	 attach	 your	 external	 signals.	 The	 top
side	of	these	connectors	has	male	pins,	and	the	bottom	side	has	female
sockets.

Figure	1.25.	Interface	connectors	on	the	MSP432	LaunchPad
Evaluation	Board,	67	I/O	pins.

1.4.5.	Interfacing	to	a	LaunchPad
The	LaunchPad	ecosystem	allows	boards	to	stack	together	to	make	a
layered	 system,	 see	 Figure	 1.26.	 The	 engineering	 community	 has
developed	 BoosterPacks,	 which	 are	 pre-made	 external	 devices	 that
will	plug	 into	 this	40-pin	connector.	 In	addition	 to	 the	40-pin	header
on	 all	 LaunchPads,	 the	 MSP432	 and	 TM4C1294	 LaunchPads	 have
additional	headers	on	the	end.
	

Figure	1.26.	An	embedded	system	with	MSP432	LaunchPad	and	a
Grove	BoosterPack	from	Seeedstudio.



There	are	a	number	of	good	methods	to	connect	external	circuits	to	the
LaunchPad.	One	method	is	to	purchase	a	male	to	female	jumper	cable
(e.g.,	 item	number	826	at	www.adafruit.com).	A	second	method	is	to
solder	a	solid	wire	into	a	female	socket	(e.g.,	Hirose	DF11-2428SCA)
creating	 a	 male	 to	 female	 jumper	 wire.	 The	 third	 method	 is	 to	 use
BoosterPacks,	so	you	will	not	need	to	connect	individual	wires	to	the
LaunchPad.	 Figure	 1.27	 shows	 the	 MSP432	 with	 a	 CC2650
BoosterPack.

Figure	1.27.	A	MSP432	LaunchPad	with	a	BOOSTXL-CC2650MA
BoosterPack.



1.5.	ARM	Cortex-M	Assembly	Language
This	section	focuses	on	the	ARM	Cortex-M	assembly	language.	There
are	 many	 ARM	 processors,	 and	 this	 book	 focuses	 on	 Cortex-M
microcontrollers,	 which	 executes	 Thumb	 instructions	 extended	 with
Thumb-2	 technology.	 This	 section	 does	 not	 present	 all	 the	 Thumb
instructions.	Rather,	we	present	a	few	basic	instructions.	In	particular,
we	will	 show	only	 twelve	 instructions,	which	will	be	both	necessary
and	sufficient	 to	construct	your	operating	system.	For	further	details,
please	 refer	 to	 the	 appendix	 or	 to	 the	 ARM	 Cortex-M	 Technical
Reference	Manual.

1.5.1.	Syntax
Assembly	instructions	have	four	fields	separated	by	spaces	or	tabs	as
illustrated	in	Figure	1.28.
Labels:	The	label	field	is	optional	and	starts	in	the	first	column	and	is
used	to	identify	the	position	in	memory	of	the	current	instruction.	You
must	choose	a	unique	name	for	each	label.
Opcodes	or	 pseudo-ops:	The	opcode	 field	 specifies	which	processor
command	 to	 execute.	 The	 twelve	 op	 codes	 we	 will	 present	 in	 this
bookare LDR	STR	MOV	PUSH	POP	B	BL	BXADD 	SUB	CPSID
and CPSIE .	If	there	is	a	label	there	must	be	at	least	one	space	or	one
tab	between	 the	 label	 and	 the	opcode.	 If	 there	 is	no	 label	 then	 there
must	 be	 at	 least	 one	 space	 or	 one	 tab	 at	 the	 beginning	 of	 the	 line.
There	are	also	pseudo-ops	that	 the	assembler	uses	to	control	features
of	the	assembly	process.	Examples	of	pseudo-ops	you	will	encounter
in	 this	 class	 are AREA	EQU	IMPORT	EXPORT and ALIGN .	 An
op	 code	 generates	 machine	 instructions	 that	 get	 executed	 by	 the
processor	at	run	time,	while	a	pseudo-op	code	generates	instructions	to
the	assembler	that	get	interpreted	at	assembly	time.	
Operands:	 The	 operand	 field	 specifies	 where	 to	 find	 the	 data	 to
execute	 the	 instruction.	Thumb	 instructions	 have	 0,	 1,	 2,	 3,	 or	more
operands,	separated	by	commas.
Comments:	 The	 comment	 field	 is	 optional	 and	 is	 ignored	 by	 the



assembler,	but	allows	you	to	describe	the	software,	making	it	easier	to
understand.	 You	 can	 add	 optional	 spaces	 between	 operands	 in	 the
operand	 field.	However,	 a	 semicolon	must	 separate	 the	 operand	 and
comment	 fields.	 Good	 programmers	 add	 comments	 to	 explain	 what
you	are	doing,	why	you	 are	doing	 it,	 how	 it	was	 tested,	 and	how	 to
change	it	in	the	future.	Everything	after	the	semicolon	is	a	comment.

Figure	1.28.	Assembly	instructions	have	four	fields:	labels,
opcodes,	operands,	and	comments.

The	 assembler	 translates	 assembly	 source	 code	 into	 object	 code,
which	 are	 the	 machine	 instructions	 executed	 by	 the	 processor.	 All
object	code	is	halfword-aligned.	With	Thumb-2,	instructions	can	be	16
or	32	bits	wide,	and	the	program	counter	bit	0	will	always	be	0.	The
listing	is	a	text	file	containing	a	mixture	of	the	object	code	generated
by	the	assembler	together	with	our	original	source	code.

Address											Object	code						Label		Opcode		Operand																	comment
0000006A		F100	0001		Incr	ADD			R0,R0,#1			;	increment	the	count
0000006E		4770												BX				LR										;	return

	
When	 we	 build	 a	 project	 all	 files	 are	 assembled	 or	 compiled,	 then
linked	together.	The	address	values	shown	in	the	listing	are	the	relative
to	the	particular	file	being	assembled.	When	the	entire	project	is	built,
the	 files	are	 linked	 together,	and	 the	 linker	decides	exactly	where	 in
memory	 everything	 will	 be.	 After	 building	 the	 project,	 it	 can	 be
downloaded,	which	programs	the	object	code	into	flash	ROM.
In	general,	the	assembler	creates	for	each	label	an	entry	in	the	symbol
table	 that	maps	 the	 symbolic	 label	 to	 the	 address	 in	memory	of	 that
line	of	 code.	The	exception	 to	 this	 rule	 is	when	a	 label	 is	used	with
the EQU pseudo-op.	The	result	of	an EQU 	pseudo-op	 is	 to	place	an
entry	in	the	symbol	table	mapping	the	symbolic	label	with	the	value	of



the	operand.
	

1.5.2.	Addressing	modes	and	operands
A	fundamental	issue	in	software	design	is	the	differentiation	between
data	 and	 addresses.	 Another	 name	 for	 address	 is	 pointer.	 It	 is	 in
assembly	language	programming	in	general	and	addressing	modes	 in
specific	 that	 this	 differentiation	 becomes	 clear.	 When	 we	 put	 the
number	1000	into	Register	R0,	whether	this	is	data	or	address	depends
on	how	the	1000	is	used.
The	addressing	mode	is	the	format	the	instruction	uses	to	specify	the
memory	 location	 to	 read	 or	 write	 data.	We	will	 see	 five	 addressing
modes	in	this	class:	Immediate	Data	within	the	instruction	MOV
R0,#1

Indexed	Data	pointed	to	by	register	LDR	R0,[R1]
Indexed	with	offset	Data	pointed	to	by	register	LDR	R0,[R1,#4]
PC-relative	Location	is	offset	relative	to	PC	BL		Incr
Register-list	List	of	registers	PUSH	{R4,LR}

	
No	addressing	mode:Some	instructions	operate	completely	within	the
processor	and	require	no	memory	data	fetches.	For	example,	the ADD
R1,R2,R3 	instruction	performs	R2+R3	and	stores	the	sum	into	R1.	
Immediate	 addressing	 mode:If	 the	 data	 is	 found	 in	 the	 instruction
itself,	 likeMOV	 R0,#1 ,	 the	 instruction	 uses	 immediate	 addressing
mode.
Indexed	 addressing	 mode:	 A	 register	 that	 contains	 the	 address	 or
location	 of	 data	 is	 called	 a	 pointer	 or	 index	 register.	 Indexed
addressingmode	 uses	 a	 register	 pointer	 to	 access	memory.	There	 are
many	variations	of	indexed	addressing.	In	this	class,	you	will	use	two
types	 of	 indexed	 addressing.	 The	 form [Rx] 	 uses	 Register	Rx	 as	 a
pointer,	where	Rxis	any	of	the	Registers	from	R0	to	R12.	The	second
type	 you	 will	 need	 is	 called	 indexed	 with	 offset,	 which	 has	 the
form [Rx,#n] ,	 where	 n	 is	 a	 number	 from	 -255	 to	 4095.	 This
addressing	mode	will	access	memory	at	Rx+n,	without	modifying	Rx.



PC-relative	addressing	mode:	The	addressing	mode	 that	uses	 the	PC
as	 the	 pointer	 is	 called	 PC-relative	 addressing	 mode.	 It	 is	 used	 for
branching,	for	calling	functions,	and	accessing	constant	data	stored	in
ROM.	The	addressing	mode	is	called	PC-relative	because	the	machine
code	 contains	 the	 address	 difference	 between	 where	 the	 program	 is
now	and	the	address	to	which	the	program	will	access.
There	 are	 many	 more	 addressing	 modes,	 but	 for	 now,	 these	 few
addressing	modes,	as	illustrated	below,	are	enough	to	get	us	started.
Checkpoint	1.15:	What	does	the	addressing	mode	specify?			
Checkpoint	1.16:	How	does	the	processor	differentiate	between
data	and	addresses?			

1.5.3.	List	of	twelve	instructions
We	will	only	need	12	assembly	instructions	in	order	to	design	our	own
real-time	 operating	 system.	 The	 following	 lists	 the	 load	 and	 store
instructions	we	will	need.

			LDR	Rd,	[Rn]						;	load	32-bit	memory	at	[Rn]	to	Rd
			STR		Rt,	[Rn]						;	store	Rt	to	32-bit	memory	at	[Rn]
			LDR	Rd,	[Rn,	#n]	;	load	32-bit	memory	at	[Rn+n]	to	Rd
			STR	Rt,	[Rn,	#n]	;	store	Rt	to	32-bit	memory	at	[Rn+n]
	

Let	M	be	 the	32-bit	value	specified	by	 the	12-bit	 constant	#imm12 .
When Rd 	 is	 absent	 for	 add	 and	 subtract,	 the	 result	 is	 placed	 back
in Rn .	The	following	lists	a	few	more	instructions	we	will	need.

			MOV			Rd,	Rn									;Rd	=	Rn				
			MOV			Rd,	#imm12					;Rd	=	M
			ADD			Rd,	Rn,	Rm					;Rd	=	Rn	+	Rm				
			ADD			Rd,	Rn,	#imm12	;Rd	=	Rn	+	M
			SUB			Rd,	Rn,	Rm					;Rd	=	Rn	-	Rm				
			SUB			Rd,	Rn,	#imm12	;Rd	=	Rn	-	M
			CPSID	I														;disable	interrupts,	I=1				
			CPSIE	I														;enable	interrupts,	I=0

	
Normally	 the	 computer	 executes	 one	 instruction	 after	 another	 in	 a
linear	fashion.	In	particular,	the	next	instruction	to	execute	is	typically



found	 immediately	 following	 the	 current	 instruction.	We	 use	 branch
instructions	to	deviate	from	this	straight	line	path.	These	branches	use
PC-relative	addressing.

			B					label					;branch	to	label		
			BX				Rm								;branch	indirect	to	location	specified	by	Rm
			BL				label					;branch	to	subroutine	at	label		

	
These	are	the	push	and	pop	instructions	we	will	need

			PUSH	{Rn,Rm}			;	push	Rn	and	Rm	onto	the	stack
			PUSH		{Rn-Rm}			;	push	all	registers	from	Rn	to	Rm	onto	stack
			POP			{Rn,Rm}			;	pop	two	32-bit	numbers	off	stack	into	Rn,	Rm
			POP			{Rn-Rm}		;	pop	multiple	32-bit	off	stack	to	Rn	-	Rm

	
When	pushing	and	popping	multiple	 registers,	 it	 does	not	matter	 the
order	 specified	 in	 the	 instruction.	 Rather,	 the	 registers	 are	 stored	 in
memory	such	that	the	register	with	the	smaller	number	is	stored	at	the
address	 with	 a	 smaller	 value.	 For	 example,	 consider	 the	 execution
of PUSH 	 {R1,R4-R6} .	 Assume	 the	 registers	 R1,	 R4,	 R5,	 and	 R6
initially	 contain	 the	 values	 1,	 4,	 5,	 and	 6	 respectively.	 Figure
1.29shows	 the	 value	 from	 lowest-numbered	 R1	 is	 positioned	 at	 the
lowest	 stack	 address.	 If	 four	 entries	 are	 popped	 with	 the POP
{R0,R2,R7,R9} 	instruction,	the	value	from	the	lowest	stack	address	is
loaded	into	the	lowest-numbered	R0.
Observation:	To	push	32-bit	data	on	the	stack,	first	the	SP	is
decremented	by	4,	and	then	the	data	are	stored	from	a	register	to	the
RAM	location	pointed	to	by	SP.
Observation:	To	pop	32-bit	data	from	the	stack,	first	the	data	are
read	from	the	RAM	location	pointed	to	by	the	SP	into	a	register,
and	then	the	SP	is	incremented	by	4.
	



Figure	1.29.	Stack	drawings	showing	how	multiple	registered	are
pushed	and	popped.

Checkpoint	1.17:	How	is	the	SP	modified	by	the	PUSH	{R1,R4-
R6}	instruction?

1.5.4.	Accessing	memory
One	of	 the	basic	operations	we	must	perform	 is	 reading	and	writing
global	variables.	Since	all	calculations	are	performed	in	registers,	we
must	first	bring	the	value	into	a	register,	modify	the	register	value,	and
then	 store	 the	 new	 value	 back	 into	 memory.	 Consider	 a	 simple
operation	 of	 incrementing	 a	 global	 variable	 in	 both	C	 and	 assembly
language.	 Variables	 can	 exist	 anywhere	 in	 RAM,	 however	 for	 this
illustration	 assume	 the	 variable count is	 located	 in	 memory	 at
0x20000100.	The	first LDR 	instruction	gets	a	pointer	to	the	variable
in	R0	as	illustrated	in	Figure	1.30.	This	means	R0	will	have	the	value
0x20000100.	This	value	is	a	pointer	to	the	variable count .	The	way	it
actually	works	is	the	assembler	places	a	constant	0x20000100	in	code
spaceand	 translates	 the =count into	 the	 correct	 PC-relative	 access	 to
the	constant	(e.g., LDR	R0,[PC,#28] ).	The	second LDR dereferences
the	 pointer	 to	 fetch	 the	 value	 of	 the	 variable	 into	 R1.	 More
specifically,	 the	 second LDR will	 read	 the	 32-bit	 contents	 at
0x20000100	 and	 put	 it	 in	 R1.	 The ADD instruction	 increments	 the
value,	 and	 the STR instruction	 writes	 the	 new	 value	 back	 into	 the
global	variable.	More	specifically,	 the STR 	 instruction	will	store	 the
32-bit	value	from	R1	into	at	memory	at	0x20000100.



			LDR	R0,=count	;address	of
count
			LDR	R1,[R0]		;value	of	count
			ADD	R1,R1,#1
			STR	R1,[R0]		;store	new	value

	
count	=	count+1;

	

		Figure	1.30.	Indexed	addressing	using	R0	as	a	register	pointer
to	access	memory.	Data	is	moved	into	R1.	Code	space	is	where	we
place	programs,	and	data	space	is	where	we	place	variables.	The
dotted	arrows	in	this	figure	represent	the	motion	of	information,
and	the	solid	arrow	is	a	pointer.

Let’s	work	 through	code	 similar	 to	what	we	will	 use	 in	Chapter	3as
part	 of	 our	 operating	 system.	 The	 above	 example	 used	 indexed
addressing	with	an	implicit	offset	of	0.	However,	you	will	also	need	to
understand	indexed	addressing	with	an	explicit	offset.	In	this	example,
assume RunPt 	points	to	a	linked	list	as	shown	in	Figure	1.31.	A	node
of	the	list	is	a	structure	(struct	in	C)	with	multiple	entries	of	different
types.	A	 linked	 list	 is	a	set	of	nodes	where	one	of	 the	entries	of	 the
node	 is	 a	 pointer	 or	 link	 to	 another	 node	 of	 the	 same	 type.	 In	 this
example,	the	second	entry	of	the	list	is	a	pointer	to	the	next	node	in	the
list.	Figure	1.31	shows	three	of	many	nodes	that	are	strung	together	in
a	sequence	defined	by	their	pointers.



Figure	1.31.	A	linked	list	where	the	second	entry	is	a	pointer	to
the	next	node.	Arrows	are	pointers	or	links,	and	dotted	lines	are
used	to	label	components	in	the	figure.

As	 our	 operating	 system	 runs	 it	 will	 need	 to	 traverse	 the
list. RunPt will	always	points	to	a	node	in	the	list.	However,	we	may
wish	to	change	it	to	point	to	the	next	node	in	the	list.	In	C,	we	would
execute RunPt=RunPt->next; 	 However,	 in	 assembly	 this	 translates
to	LDR			R1,=RunPt				;	R1	points	to	variable	RunPt,	PC-rel

						LDR			R0,[R1]						;	R0=	value	of	variable	RunPt
						LDR			R2,[R0,#4]			;	next	entry
						STR			R2,[R1]						;	update	RunPt

Figure	 1.32draws	 the	 action	 caused	 by	 above	 the	 four	 instructions.
Assume	 initially RunPt points	 to	 the	 middle	 node	 of	 the	 list.	 Each
entry	 of	 the	 node	 is	 32	 bits	 or	 four	 bytes	 of	memory.	 The	 first	 two
instructions	 read	 the	 value	 of RunPt into	R0.	 Since RunPt points	 to
the	middle	node	in	the	linked	list	in	this	figure,	R0	will	also	point	to
this	node.	Since	each	entry	is	4	bytes,	R0+4	points	to	the	second	entry,
which	 is	 the	next	pointer.	The	 instruction LDR	R2,[R0,#4] will	 read
the	32-bit	value	pointed	to	by	R0+4	and	place	it	 in	R2.	Even	though
the	memory	address	is	calculated	as	R0+4,	the	Register	R0	itself	is	not
modified	by	this	instruction.	R2	now	points	to	the	right-most	node	in
the	 list.	 The	 last	 instruction	 updates RunPt 	 so	 it	 now	 points	 to	 the
right-most	node	shown	in	the	Figure	1.32.



Figure	1.32.	An	example	of	indexed	addressing	mode	with	offset,
data	is	in	memory.	Arrows	in	this	figure	represent	pointers	(not
the	motion	of	information).

A	really	 important	concept.	We	use	 the LDR instruction	 to	 load	data
from	RAM	to	a	register	and	the STR 	instruction	to	store	data	from	a
register	 to	RAM.	 In	 real	 life,	when	we	move	 a	box	 to	 the	basement,
push	a	broom	across	the	floor,	load	bags	into	the	trunk,	store	spoons	in
a	drawer,	pop	a	candy	into	your	mouth,	or	transfer	employees	to	a	new
location,	there	is	a	physical	object	and	the	action	changes	the	location
of	 that	 object.	 Assembly	 language	 uses	 these	 same	 verbs,	 but	 the
action	will	be	different.	In	most	cases,	the	processor	creates	a	copy	of
the	data	and	places	the	copy	at	the	new	location.	In	other	words,	since
the	original	data	still	exists	in	the	previous	location,	there	are	now	two
copies	 of	 the	 information.	 The	 exception	 to	 this	 memory-access-
creates-two-copies-rule	 is	 a	 stack	 pop.	When	 we	 pop	 data	 from	 the
stack,	it	no	longer	exists	on	the	stack	leaving	us	just	one	copy.	Having
the	information	in	two	places	will	create	a	very	tricky	problem	that	our
operating	system	must	handle.
Let’s	revisit	the	simple	example	of	incrementing	a	global	variable.	In
C,	 the	 code	 would	 be count=count+1; 	 In	 assembly,	 the	 compiler
creates	code	like	this:	LDR	R0,=count	;address	of	count

		LDR	R1,[R0]			;value	of	count
;two	copies	of	count:	in	memory	and	in	R1



			ADD	R1,#1
;two	copies	of	count	with	different	values
		STR	R1,[R0]		;store	new	value
	

The	 instruction LDR	 R1,[R0] 	 	 loads	 the	 contents	 of	 the
variable count 	into	R1.	At	this	point,	there	are	two	copies	of	the	data,
the	original	 in	RAM	and	the	copy	in	R1.	After	 the	ADD	instruction,
the	 two	 copies	 have	 different	 values.	 When	 designing	 an	 operating
system,	we	will	take	special	care	to	handle	shared	information	stored
in	 global	RAM,	making	 sure	we	 access	 the	 proper	 copy.	 In	 Section
2.2.4,	 we	 will	 discuss	 in	 detail	 the	 concept	 of	 race	 conditions	 and
critical	 sections.	 These	 very	 important	 problems	 arise	 from	 the
problem	 generated	 by	 this	 concept	 of	 having	 multiple	 copies	 of
information.

1.5.5.	Functions
Subroutines,	 procedures,	 and	 functions	 are	 programs	 that	 can	 be
called	 to	perform	specific	 tasks.	They	are	 important	conceptual	 tools
because	 they	 allow	 us	 to	 develop	 modular	 software.	 	 The
programming	 languages	 Pascal,	 FORTRAN,	 and	 Ada	 distinguish
between	functions,	which	return	values,	and	procedures,	which	do	not.
On	the	other	hand,	the	programming	languages	C,	C++,	Java,	and	Lisp
do	 not	 make	 this	 distinction	 and	 treat	 functions	 and	 procedures	 as
synonymous.	 Object-oriented	 programming	 languages	 use	 the	 term
method	 to	 describe	 functions	 that	 are	 part	 of	 classes;	Objects	 being
instantiation	 of	 classes.	 In	 assembly	 language,	 we	 use	 the	 term
subroutine	 for	 all	 subprograms	 whether	 or	 not	 they	 return	 a	 value.
Modular	 programming	 allows	 us	 to	 build	 complex	 systems	 using
simple	components.	In	this	section	we	present	a	short	introduction	on
the	syntax	for	defining	assembly	subroutines.	We	define	a	subroutine
by	giving	it	a	name	in	the	label	field,	followed	by	instructions,	which
when	 executed,	 perform	 the	 desired	 effect.	 The	 last	 instruction	 in	 a
subroutine	 will	 be BX	 LR ,	 which	 we	 use	 to	 return	 from	 the
subroutine.
The	function	in	Program	1.1	and	Figure	1.33will	increment	the	global
variable count .	 The AREA	 DATA directive	 specifies	 the	 following
lines	 are	 placed	 in	 data	 space	 (typically	 RAM).	 The SPACE	 4



pseudo-op	allocates4	uninitialized	bytes.	The AREA	CODE directive
specifies	 the	 following	 lines	 are	 placed	 in	 code	 space	 (typically
ROM).	The |.text| connects	 this	 program	 to	 the	C	 code	generated	by
the	compiler. ALIGN=2 	will	force	the	machine	code	to	be	halfword-
aligned	as	required.
In	 assembly	 language,	 we	 will	 use	 the BL instruction	 to	 call	 this
subroutine.	 At	 run	 time,	 the BL 	 instruction	 will	 save	 the	 return
address	 in	 the	 LR	 register.	 The	 return	 address	 is	 the	 location	 of	 the
instruction	 immediately	 after	 the BL instruction.	 At	 the	 end	 of	 the
subroutine,	the BX	LR 	instruction	will	get	the	return	address	from	the
LR	 register,	 returning	 the	 program	 to	 the	 place	 from	 which	 the
subroutine	 was	 called.	 More	 precisely,	 it	 returns	 to	 the	 instruction
immediately	 after	 the	 instruction	 that	 performed	 the	 subroutine	 call.
The	comments	specify	the	order	of	execution.	The	while-loop	causes
instructions	4–10	to	be	repeated	over	and	over.

Figure	1.33.	A	flowchart	of	a	simple	function	that	adds	1	to	a
global	variable.

					AREA		DATA
count	SPACE	4		;	32-bit	data
	 	 	 	 	 AREA	
|.text|,CODE,READONLY,ALIGN=2
function
						LDR	R0,=count	;5
						LDR	R1,[R0]		;6	value	of	count
						ADD	R1,#1					;7
						STR	R1,[R0]	;8	store	new	value
					BX	LR								;9
Start	LDR	R0,=count	;1
						MOV	R1,#0					;2
						STR	R1,[R0]	;3	store	new	value

	
uint32_t	count
	
void	function(void){
		count++;	//	5,6,7,8
}										//	9
	
	
int	main(void){
		count	=	0;	//	1,2,3
		while(1){
			function();	//	4
		}												//	10



loop		BL		function		;4
						B			loop						;10

}

Program	1.1.	Assembly	and	C	versions	that	initialize	a	global
array	of	ten	elements.	The	numbers	illustrate	the	execution
sequence.

While	 using	 a	 register	 (LR)	 to	 store	 the	 return	 address	 is	 very
effective,	it	does	pose	a	problem	if	one	function	were	to	call	a	second
function.	 In	 Program	 1.2 someother calls function .	 Because	 the
return	 address	 is	 saved	 in	 the	 LR,	 if	 one	 function	 calls	 another
function	it	must	save	the	LR	before	calling	and	restore	the	LR	after	the
call.	 In	 Program	 1.2,	 the	 saving	 and	 restoring	 is	 performed	 by
the PUSH and POP 	instructions.

function

;	.......

;	.......

							BX				LR	
someother
;	.......
							PUSH		{R4,LR}
							BL				function
							POP			{R4,LR}

;	.......

							BX				LR													

void	function(void){
		//	.......
		//	.......

}

	
void	someother(void){
		//	.......
				function();
		//	.......

}

Program	1.2.	Assembly	and	C	versions	that	define	a	simple
function.

Checkpoint	1.18:	When	software	calls	a	function	(subroutine),
where	is	the	return	address	saved?			

1.5.6.	ARM	Cortex	Microcontroller	Software



Interface	Standard
	

The	ARM	Architecture	Procedure	Call	Standard,	AAPCS,	part	of
the	ARM	Application	Binary	Interface	(ABI),	uses	registers	R0,	R1,
R2,	and	R3	to	pass	input	parameters	into	a	C	function.	R0	is	the	first
parameter,	R2	is	the	second,	etc.	Functions	must	preserve	the	values	of
registers	 R4–R11.	 Also	 according	 to	 AAPCSwe	 place	 the	 return
parameter	in	Register	R0.	AAPCS	requires	we	push	and	pop	an	even
number	of	 registers	 to	maintain	an	8-byte	alignment	on	 the	 stack.	 In
this	book,	the	SP	will	always	be	the	main	stack	pointer	(MSP),	not	the
Process	 Stack	 Pointer	 (PSP).	 Recall	 that	 all	 object	 code	 is	 halfword
aligned,	 meaning	 bit	 0	 of	 the	 PC	 is	 always	 clear.	 When
the BL instruction	 is	 executed,	 bits	 31–1	 of	 register	 LR	 are	 loaded
with	the	address	of	the	instruction	after	the BL ,	and	bit	0	is	set	to	one.
When	the BX	LR 	instruction	is	executed,	bits	31–1	of	register	LR	are
put	back	into	the	PC,	and	bit	0	of	LR	goes	into	the	T	bit.	On	the	ARM
Cortex-M	 processor,	 the	 T	 bit	 should	 always	 be	 1,	 meaning	 the
processor	is	always	in	the	Thumb	state.	Normally,	the	proper	value	of
bit	0	is	assigned	automatically.
ARM’s	Cortex	Microcontroller	Software	Interface	Standard	(CMSIS)
is	 a	 standardized	 hardware	 abstraction	 layer	 for	 the	 Cortex-M
processor	series.	The	purpose	of	the	CMSIS	initiative	is	to	standardize
a	 fragmented	 industry	 on	 one	 superior	 hardware	 and	 software
microcontroller	architecture.
The	CMSIS	enables	 consistent	 and	 simple	 software	 interfaces	 to	 the
processor	 and	 core	 MCU	 peripherals	 for	 silicon	 vendors	 and
middleware	 providers,	 simplifying	 software	 re-use,	 reducing	 the
learning	 curve	 for	 new	microcontroller	 developers,	 and	 reducing	 the
time	 to	 market	 for	 new	 devices.	 Learn	 more	 about	 CMSIS	 directly
from	ARM	at	www.onarm.com.
The	CMSIS	 is	 defined	 in	 close	 cooperation	with	various	 silicon	 and
software	 vendors	 and	 provides	 a	 common	 approach	 to	 interface	 to
peripherals,	real-time	operating	systems,	and	middleware	components.
The	 CMSIS	 is	 intended	 to	 enable	 the	 combination	 of	 software
components	 from	 multiple	 middleware	 vendors.	 The	 CMSIS
components	 are:	 CMSIS-CORE:	 API	 for	 the	 Cortex-M	 processor
core	and	peripherals.	It	provides	at	standardized	interface	for	Cortex-



M0,	 Cortex-M3,	 Cortex-M4,	 SC000,	 and	 SC300.	 Included	 are	 also
SIMD	intrinsic	functions	for	Cortex-M4	SIMD	instructions.
CMSIS-DSP:	 DSP	 Library	 Collection	 with	 over	 60	 Functions	 for
various	 data	 types:	 fixed-point	 (fractional	 q7,	 q15,	 q31)	 and	 single
precision	 floating-point	 (32-bit).	 The	 library	 is	 available	 for	Cortex-
M0,	 Cortex-M3,	 and	 Cortex-M4.	 The	 Cortex-M4	 implementation	 is
optimized	for	the	SIMD	instruction	set.
CMSIS-RTOS	API:	Common	API	 for	RealTime	operating	systems.
It	 provides	 a	 standardized	 programming	 interface	 that	 is	 portable	 to
many	 RTOS	 and	 enables	 software	 templates,	 middleware,	 libraries,
and	other	components	that	can	work	across	supported	RTOS	systems.
CMSIS-SVD:	System	View	Description	for	Peripherals.	Describes	the
peripherals	 of	 a	 device	 in	 an	 XML	 file	 and	 can	 be	 used	 to	 create
peripheral	 awareness	 in	 debuggers	 or	 header	 files	 with	 peripheral
register	and	interrupt	definitions.
Checkpoint	1.19:	What	is	the	purpose	of	AAPCS?			

1.5.7.	Conditional	execution
If-then-else	 control	 structures	 are	 commonly	 found	 in	 computer
software.	 If	 the BHS or	 the BGE 	 were	 to	 branch,	 the	 instruction
pipeline	would	 have	 to	 be	 flushed	 and	 refilled.	 In	 order	 to	 optimize
execution	 speed	 for	 short	 if-then	 and	 if-then-else	 control	 structures,
the	 ARM	 Cortex-M	 processoremploys	 conditional	 execution.	 The
conditional	execution	begins	with	the IT 	 instruction,	which	specifies
the	 number	 of	 instructions	 in	 the	 control	 structure	 (1	 to	 4)	 and	 the
conditional	for	the	first	instruction.	The	syntax	is	IT{x{y{z}}}	cond

	

where x 	y and z 	specify	the	existence	of	the	optional	second,	third,	or
fourth	 conditional	 instruction	 respectively.	 We	 can	 specify	 x
y and z as T for	execute	 if	 true	or E for	else.	The cond 	 field	 choices
are	listed	in	Table	1.6.
	

Suffix Flags Meaning
EQ Z	=	1 Equal



NE Z	=	0 Not	equal
CS or 	HS C	=	1 Higher	or	same,	unsigned	≥
CC or
LO

C	=	0 Lower,	unsigned	<

MI N	=	1 Negative
PL N	=	0 Positive	or	zero
VS V	=	1 Overflow
VC V	=	0 No	overflow
HI C	=	1	and	Z	=	0 Higher,	unsigned	>
LS C	=	0	or	Z	=	1 Lower	or	same,	unsigned	≤
GE N	=	=	V Greater	than	or	equal,	signed	≥
LT N	!=	V Less	than,	signed	<
GT Z	 =	 0	 and	N	 =

V
Greater	than,	signed	>

LE Z	=	1	or	N	!=	V Less	than	or	equal,	signed	≤
AL Can	 have	 any

value
Always.	 This	 is	 the	 default	 when	 no
suffix	is	specified.

Table	1.6.	Condition	code	suffixes	used	to	optionally	execution	instruction.
The	 conditional	 suffixes	 for	 the	 1	 to	 4	 following	 instruction	 must
match	 the	 conditional	 field	 of	 the IT instruction.	 In	 particular,	 the
conditional	for	the	true	instructions	exactly	match	the	conditional	for
the IT 	 instruction.	 Furthermore,	 the	 else	 instructions	must	 have	 the
logical	complement	conditional.	If	the	condition	is	true	the	instruction
is	executed.	If	the	condition	is	false,	the	instruction	is	fetched,	but	not
executed.	 The	 following	 illustrates	 the	 use	 of	 if-then	 conditional
execution.	The	two	T’s	in ITT 	means	there	are	two	true	instructions.

Change	LDR			R1,=Num			;	R1	=	&Num
							LDR			R0,[R1]			;	R0	=	Num
							CMP			R0,#25600
							ITT			LO
							ADDLO	R0,R0,#1		;	if(R0<25600)	R0	=	Num+1
							STRLO	R0,[R1]			;	if(R0<25600)	Num	=	Num+1
						BX				LR								;	return

The	 following	 illustrates	 the	 use	 of	 if-then-else	 conditional
execution.The	one	T	and	one	E	 in ITE 	means	 there	 is	one	 true	 and
one	false	instruction.



Change	LDR			R1,=Num		;	R1	=	&Num
							LDR			R0,[R1]			;	R0	=	Num
							CMP			R0,#100
							ITE			LT
							ADDLT	R0,R0,#1		;	if(R0<	100)	R0	=	Num+1
							MOVGE	R0,#-100		;	if(R0>=100)	R0	=	-100
							STR			R0,[R1]			;	update	Num
							BX				LR								;	return

The	following	assembly	converts	one	hex	digit	(0–15)	in	R0	to	ASCII
in	R1.	The	one	T	and	one	E	in ITE 	means	there	is	one	true	and	one
else	instruction.

							CMP			R0,#9					;	Convert	R0	(0	to	15)	into	ASCII	
							ITE			GT								;	Next	2	are	conditional
							ADDGT	R1,R0,#55	;	Convert	0xA	->	'A'
							ADDLE	R1,R0,#48	;	Convert	0x0	->	'0'
	

By	 themselves,	 the	 conditional	 branch	 instructions	 do	 not	 require	 a
preceding IT instruction.	However,	 a	 conditional	 branch	 can	be	used
as	the	last	instruction	of	an IT 	block.	There	are	a	lot	of	restrictions	on
IT.	For	more	details,	refer	to	the	programming	reference	manual.
This	 macro	 creates	 a	 new	 assembly	 instruction	 that	 is	 faster
thanMUL .	This	approach	can	be	used	to	multiply	by	any	constant	in
the	form	of	2n±1.	If	x	is	a	variable,	then	15x	=	(x<<4)-x.
				MACRO
				MUL15	$Rd,$Rn																
				RSB			$Rd,$Rn,$Rn,LSL	#4
				MEND
	

This	approach	can	also	be	used	to	multiply	by	any	constant	in	the	form
of	1±2-n.	For	example,	 to	multiply	by	7/8	we	 implement	x	 -	 (x>>3).
ThemacroMUL7_8 is	unsigned	multiply	by	7/8.
				MACRO
				MUL7_8	$Rd,$Rn																
				SUB			$Rd,$Rn,$Rn,LSR	#3
				MEND



1.5.8.	Stack	usage
The	stack	can	be	used	to	store	temporary	information.	If	a	subroutine
modifies	a	register,	it	is	a	matter	of	programmer	style	as	to	whether	or
not	 it	 should	 save	 and	 restore	 the	 register.	 According	 to	 AAPCS	 a
subroutine	can	freely	change	R0–R3	and	R12,	but	save	and	restore	any
other	register	it	changes.	In	particular,	if	one	subroutine	calls	another
subroutine,	then	it	must	save	and	restore	the	LR.	AAPCS	also	requires
pushing	 and	 popping	 multiples	 of	 8	 bytes,	 which	 means	 an	 even
number	 of	 registers.	 In	 the	 following	 example,	 assume	 the	 function
modifies	 register	 R0,	 R4,	 R7,	 R8	 and	 calls	 another	 function.	 The
programming	 style	 dictates	 registers	 R4	 R7	 R8	 and	 LR	 be	 saved.
Notice	the	return	address	is	pushed	on	the	stack	as	LR,	but	popped	off
into	PC.	When	multiple	registers	are	pushed	or	popped,	the	data	exist
in	 memory	 with	 the	 lowest	 numbered	 register	 using	 the	 lowest
memory	 address.	 In	 other	 words,	 the	 registers	 in	 the	 {	 }	 can	 be
specified	 in	 any	 order.	Of	 course	 remember	 to	 balance	 the	 stack	 by
having	the	same	number	of	pops	as	pushes.
	

Func			PUSH	{R4,R7,R8,LR}	;	save	registers	as	needed
							;	body	of	the	function
							POP		{R4,R7,R8,PC}		;	restore	registers	and	return

The	ARM	processor	has	a	lot	of	registers,	and	we	appropriately	should
use	 them	for	 temporary	 information	such	as	 function	parameters	and
local	variables.	However,	when	there	are	a	 lot	of	parameters	or	 local
variables	we	can	place	them	on	the	stack.		Program	1.3	allocates	a	40-
byte	localbuffer	on	the	stack.	The SUB 	instruction	allocates	10	words
on	 the	 stack.	 Figure	 1.34shows	 the	 stack	 before	 and	 after	 the
allocation.	 The	 SP	 points	 to	 the	 first	 location	 of data .	 The	 local
variable i 	 is	 held	 in	 R0.	 The	 flexible	 second	 operand	 for	 the	 STR
instruction	 uses	 SP	 as	 the	 base	 pointer,	 and	 R0*4	 as	 the	 offset.
The ADD 	 instruction	 deallocates	 the	 local	 variable,	 balancing	 the
stack.

//	C	language	implementation
	
void	Set(void){
uint32_t	data[10];
int	i;



		for(i=0;	i<10;	i++){
				data[i]	=	i;

}

}

Set			SUB			sp,sp,#0x28		;allocate
						MOVS		r0,#0x00					;i=0
						B					test
loop		STR			r0,[sp,r0,LSL	#2]
						ADDS		r0,r0,#1					;i++
test		CMP			r0,#0x0A
						BLT			loop
						ADD			sp,sp,#0x28		;deallocate
						BX				LR

Program	1.3.	Assembly	and	C	versions	that	initialize	a	local
array	of	ten	elements.

	

Figure	1.34.	A	stack	picture	showing	a	local	array	of	ten	elements
(40	bytes).

	
We	 will	 also	 use	 the	 stack	 to	 save	 program	 state	 during	 interrupt
processing.

1.5.9.	Floating-point	math		
If	the	range	of	numbers	is	unknown	or	large,	then	the	numbers	must	be
represented	 in	 a	 floating-point	 format.	Conversely,	we	 can	use	 fixed



point	 when	 the	 range	 of	 values	 is	 small	 and	 known.	 The	 IEEE
Standard	for	Binary	Floating-Point	Arithmetic	or	ANSI/IEEE	Std	754-
1985	is	the	most	widely-used	format	for	floating-point	numbers.	There
are	 three	 common	 IEEE	 formats:	 single-precision	 (32-bit),	 double-
precision	(64-bit),	and	double-extended	precision	(80-bits).	The	32-bit
short	real	format	as	implemented	by	the	TM4C	is	presented	here.	The
floating-point	format,	f,	for	the	single-precision	data	type	is	shown	in
Figure	1.35.	Computers	use	binary	floating	point	because	it	is	faster	to
shift	than	it	is	to	multiply/divide	by	10.
Bit	31	Mantissa	sign,	s=0	for	positive,	s=1	for	negative	Bits	30:23	8-bit
biased	binary	exponent	0	≤	e	≤	255
Bits	22:0	24-bit	mantissa,	m,	expressed	as	a	binary	fraction,	A	binary	1
as	the	most	significant	bit	is	implied.
m	=	1.m1m2m3...m23
	

	
Figure	1.35.	32-bit	single-precision	floating-point	format.

The	value	of	a	single-precision	floating-point	number	is

f	=	(-1)s	•	2e-127•	m	The	range	of	values	that	can	be	represented	in	the
single-precision	format	is	about	±10-38	 to	±10+38.	The	24-bit	mantissa
yields	a	precision	of	about	7	decimal	digits.	The	floating-point	value	is
zero	 if	both	e	and	m	 are	zero.	Because	of	 the	 sign	bit,	 there	are	 two
zeros,	 positive	 and	 negative,	 which	 behave	 the	 same	 during
calculations.
	

There	 are	 some	 special	 cases	 for	 floating-point	 numbers.	When	 e	 is
255,	 the	 number	 is	 considered	 as	 plus	 or	 minus	 infinity,	 which
probably	 resulted	 from	an	overflow	during	calculation.	When	e	 is	0,
the	number	is	considered	as	denormalized.	The	value	of	the	mantissa
of	a	denormalized	number	is	less	than	1.	A	denormalized	short	result
number	has	the	value,	f	=	(-1)s	•	2-126•	m	where	m	=	0.m1m2m3...m23

Observation:	The	floating-point	zero	is	stored	in	denormalized
format.

When	two	floating-point	numbers	are	added	or	subtracted,	the	smaller
one	 is	 first	 unnormalized.	 The	 mantissa	 of	 the	 smaller	 number	 is
shifted	 right	 and	 its	 exponent	 is	 incremented	 until	 the	 two	 numbers



have	the	same	exponent.	Then,	the	mantissas	are	added	or	subtracted.
Lastly,	 the	 result	 is	 normalized.	 To	 illustrate	 the	 floating-point
addition,	 consider	 the	 case	 of	 10+0.1.	 First,	 we	 show	 the	 original
numbers	 in	 floating-point	 format.	 The	 mantissa	 is	 shown	 in	 binary
format.
							10.0	=	(-1)0	•23	•	1.01000000000000000000000
						+	0.1	=	(-1)0	•2-4•	1.10011001100110011001101
	
Every	time	the	exponent	is	incremented	the	mantissa	is	shifted	to	the
right.	 Notice	 that	 7	 binary	 digits	 are	 lost.	 The	 0.1	 number	 is
unnormalized,	 but	 now	 the	 two	 numbers	 have	 the	 same	 exponent.
Often	 the	 result	 of	 the	 addition	 or	 subtraction	 will	 need	 to	 be
normalized.	In	this	case	the	sum	did	not	need	normalization.
							10.0	=	(-1)0	•23	•	1.01000000000000000000000
						+	0.1	=	(-1)0	•23	•	0.00000011001100110011001	1001101
							10.1	=	(-1)0	•23	•	1.01000011001100110011001
	

When	 two	 floating-point	 numbers	 are	multiplied,	 their	mantissas	 are
multiplied	and	their	exponents	are	added.	When	dividing	two	floating-
point	 numbers,	 their	 mantissas	 are	 divided	 and	 their	 exponents	 are
subtracted.	After	multiplication	and	division,	the	result	is	normalized.
Roundoff	is	the	error	that	occurs	as	a	result	of	an	arithmetic	operation.
For	example,	the	multiplication	of	two	64-bit	mantissas	yields	a	128-
bit	product.	The	final	result	is	normalized	into	a	normalized	floating-
point	number	with	a	64-bit	mantissa.	Roundoff	is	the	error	caused	by
discarding	 the	 least	 significant	 bits	 of	 the	 product.	 Roundoff	 during
addition	 and	 subtraction	 can	 occur	 in	 two	 places.	 First,	 an	 error	 can
result	when	the	smaller	number	is	shifted	right.	Second,	when	two	n-
bit	numbers	are	added	the	result	is	n+1	bits,	so	an	error	can	occur	as
the	n+1	sum	is	squeezed	back	into	an	n-bit	result.
Truncation	is	the	error	that	occurs	when	a	number	is	converted	from
one	 format	 to	 another.	 For	 example,	 when	 an	 80-bit	 floating-point
number	is	converted	to	32-bit	floating-point	format,	40	bits	are	lost	as
the	64-bit	mantissa	is	truncated	to	fit	into	the	24-bit	mantissa.	Recall,
the	 number	 0.1	 could	 not	 be	 exactly	 represented	 as	 a	 short	 real
floating-point	 number.	 This	 is	 an	 example	 of	 truncation	 as	 the	 true
fraction	was	truncated	to	fit	into	the	finite	number	of	bits	available.



If	the	range	is	known	and	small	and	a	fixed-point	system	can	be	used,
then	 a	 32-bit	 fixed-point	 number	 system	 will	 have	 better	 resolution
than	a	32-bit	 floating-point	 system.	For	a	 fixed	 range	of	values	 (i.e.,
one	with	a	constant	exponent),	a	32-bit	floating-point	system	has	only
23	bits	of	precision,	while	a	32-bit	fixed-point	system	has	9	more	bits
of	precision.
Figure	 1.36	 shows	 the	 floating-point	 registers	 on	 the	 Cortex	 M4.
Software	can	access	 these	 registers	 in	any	combination	of	32	single-
precision	 registers	named	S0	 to	S31	or	16	double-precision	 registers
D0	to	D15.	In	particular,	registers	S0	and	S1	are	the	same	as	register
D0.	 This	 section	 will	 focus	 on	 single	 precision	 floating-point
operations.

Figure	1.36.	The	TM4C	has	32	single-precision	floating-point
registers	that	overlap	with	16	double-precision	floating-point
registers.

The	 following	 lists	 the	 general	 form	 for	 some	 of	 the	 load	 and	 store
instructions.	 Because	 the	 constant	 is	 stored	 into	 memory,	 and	 the
assembly	creates	a	PC	relative	access,	the	constant	can	be	any	single-
precision	floating-point	value.	St	Sd	Sn	and	Sm	 represent	any	of	 the
32	 single-precision	 floating-point	 registers.	Rn	 and	 Rd	 are	 regular
integer	registers.

			VLDR.F32	Sd,	[Rn]						;	load	32-bit	float	at	[Rn]	to	Sd
			VSTR.F32	St,	[Rn]						;	store	32-bit	St	to	memory	at	[Rn]
			VLDR.F32	Sd,	[Rn,	#n]	;	load	32-bit	memory	at	[Rn+n]	to	Sd
			VSTR.F32	St,	[Rn,	#n]	;	store	32-bit	St	to	memory	[Rn+n]



			VLDR.F32	Sd,	=constant	;	load	32-bit	constant	into	Sd
	
The	move	 instructions	get	 their	data	 from	the	machine	 instruction	or
from	 within	 the	 processor	 and	 do	 not	 require	 additional	 memory
access	 instructions.	 The	 immediate	 value	 is	 any	 number	 that	 can	 be
expressed	as	±n*2-r,	where	16	≤	n	≤	31,	and	0	≤	r	≤	7.

			VMOV.F32	Sd,	Sn				;	set	Sd	equal	to	the	value	in	Sn
			VMOV.F32	Sd,	#imm		;	set	Sd	equal	to	imm
			VMOV				Rd,	Sn				;	set	Rd	equal	to	the	value	in	Sn
			VMOV					Sd,	Rn				;	set	Sd	equal	to	the	value	in	Rn

	
These	 are	 some	 of	 the	 arithmetic	 operations,	 which	 operate	 on	 the
floating-point	 registers.	 Arithmetic	 operations	 can	 cause	 overflow,
underflow,	divide	by	zero	floating-point	exceptions.	In	particular,	bits
in	 the SYSEXC_RIS_R 	 register	 will	 get	 set	 if	 there	 is	 a	 floating-
point	error.
	

			VADD.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn+Sm
			VSUB.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn-Sm
			VMUL.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn*Sm
			VDIV.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn/Sm
			VNEG.F32	Sd,	Sm								;	set	Sd	equal	to	-Sm
			VABS.F32	Sd,	Sm								;	set	Sd	equal	to	the	absolute	value	of	Sm
			VSQRT.F32	Sd,	Sm							;	set	Sd	equal	to	the	square	root	of	Sm

	
The	 following	 example	 implements	 a	 digital	 60	Hz	 notch	 filter	 (see
Section	6.4).	The	new	ADC	input	is	passed	by	value	in	register	S0	and
the	filter	outputis	returned	by	value	also	in	register	S0.	In	C,	we	define
a	single-precision	floating-point	variable	using float .

float	y,y1,y2;	//	outputs
float	x,x1,x2;	//	input
//	fs	=	1000	Hz
//	cutoff	60	Hz
//	alpha	=	0.99
float	Notch60Hz(float	in){
		x2	=	x1;	x1	=	x;	x	=	in;
		y2	=	y1;	y1	=	y;
		y	=	x
						-	1.8595529717765*x1
						+	x2



						+	1.84095744205874*y1
						-	0.9801*y2;
		return	y;

}

						AREA				DATA,	ALIGN=2
y				SPACE			4		;	current	filter	output
y1			SPACE			4		;	filter	output	1ms	ago
y2			SPACE			4		;	filter	output	2ms	ago
x				SPACE			4		;	current	filter	input
x1				SPACE			4		;	input	1ms	ago
x2			SPACE			4		;	input	2ms	ago
						AREA	|.text|,CODE,READONLY,ALIGN=2
						THUMB
;	Input:	S0	is	new	input
;	Output:	S0	is	filter	output
Notch60Hz
					LDR						R0,=x
					VLDR.F32	S1,[R0,#4]	;read	previous	x1
					VSTR.F32	S1,[R0,#8]	;S1	is	x2
					VLDR.F32	S2,[R0,#0]	;read	previous	x
					VSTR.F32	S2,[R0,#4]	;S2	is	x1
					VSTR.F32	S0,[R0,#0]	;S0	is	x	=	in
					LDR						R1,=y
					VLDR.F32	S3,[R1,#4]	;read	previous	y1
					VSTR.F32	S3,[R1,#8]	;S3	is	y2
					VLDR.F32	S4,[R1,#0]	;read	previous	y
					VSTR.F32	S4,[R1,#4]	;S4	is	y1
					VLDR.F32	S5,=-1.8595529717765
					VMUL.F32	S2,S2,S5
					VADD.F32	S0,S0,S2	;-1.8595529717765*x1
					VADD.F32	S0,S0,S1	;+x2
					VLDR.F32	S5,=1.84095744205874
					VMUL.F32	S4,S4,S5
					VADD.F32	S0,S0,S4;+1.84095744205874*y1
					VLDR.F32	S5,=-0.9801
					VMUL.F32	S3,S3,S5
					VADD.F32	S0,S0,S3	;	-0.9801*y2
					VSTR.F32	S0,[R1,#0]	;set	y
					BX		LR

Program	1.4.	Floating-point	function	to	a	60	Hz	IIR	digital	filter
(assembly	program	executes	in	43	cycles).

	
Observation:	If	you	are	implementing	digital	signal	processing
using	floating	point	math,	we	strongly	recommend	implement	the
functions	in	assembly	so	you	can	specify	exactly	how	the	floating
point	hardware	is	to	be	used.



1.5.10.	Keil	assembler	directives
We	 use	 assembler	 directives	 to	 assist	 and	 control	 the	 assembly
process.	 The	 following	 directives	 change	 the	 way	 the	 code	 is
assembled.

AREA	CODE	;places	code	in	code	space	(flash	ROM)
AREA	DATA	;places	objects	in	data	space	(RAM)
THUMB	;uses	Thumb	instructions			
ALIGN	;skips	0	to	3	bytes	to	make	next	word	aligned
END	;end	of	file	 	

	

The	following	directives	can	add	variables	and	constants.
DCB	expr{,expr}	;places	8-bit	byte(s)	into	memory		
DCW	expr{,expr}	;places	16-bit	halfword(s)	into	memory		
DCD	expr{,expr}	;places	32-bit	word(s)	into	memory			
SPACE	size	;reserves	size	bytes,	uninitialized

	
The EQU directive	 gives	 a	 symbolic	 name	 to	 a	 numeric	 constant,	 a
register-relative	 value	 or	 a	 program-relative	 value.	 *	 is	 a	 synonym
for EQU .	We	will	 use	 it	 to	 define	 I/O	port	 addresses.	 For	 example,
these	four	definitions	will	be	used	to	initialize	and	operate	Port	D.
GPIO_PORTD_DATA_R	equ	0x400073FC
GPIO_PORTD_DIR_R	equ	0x40007400
GPIO_PORTD_DEN_R	equ	0x4000751C
SYSCTL_RCGCGPIO_R	equ	0x400FE608

	
In	 order	 for	 another	 file	 to	 access	 a	 variable	 or	 function	 in	 this
assembly	 file	 we	 use	 the EXPORT directive.	 	 In	 order	 for	 this
assembly	 file	 to	 access	 a	 variable	 or	 function	 in	 another	 file	we	use
the IMPORT 	 directive.All	 C	 public	 functions	 and	 global	 variables
(no	 static)	 are	 available	 to	 be	 imported	 into	 assembly.	 To	 import	 a
function	 into	 a	 C	 file,	 we	 define	 a	 prototype.	 To	 import	 a	 global
variable	into	a	C	file,	we	define	it	with	an extern .

uint32_t	v2;	//	global
extern	uint32_t	v1;
	



						AREA			
DATA,	ALIGN=2
						EXPORT		v1
						EXPORT		f1
						IMPORT		v2

v1			SPACE		
4		;	global	AREA
|.text|,CODE,READONLY,ALIGN=2

						THUMB
f1				LDR		R1,=v2
						LDR		R2,[R1]	;	contents
						ADD		R0,R0,R2
						BX			LR

uint32_t	f1(uint32_t	in);
	
void	f2(void){
		v1	=	f1(v1);

}

	

	



1.6.	Pointers	in	C

1.6.1.	Pointers
At	 the	 assembly	 level,	 we	 implement	 pointers	 using	 indexed
addressing	mode.	For	example,	a	register	contains	an	address,	and	the
instruction	 reads	 or	 writes	 memory	 specified	 by	 that	 address.
Basically,	 we	 place	 the	 address	 into	 a	 register,	 then	 use	 indexed
addressing	mode	to	access	the	data.	In	this	case,	the	register	holds	the
pointer.	Figure	1.37illustrates	 three	 examples	 that	 utilize	 pointers.	 In
this	figure, Pt 	SP 	GetPt 	PutPt 	are	pointers,	where	the	arrows	show
to	where	they	point,	and	the	shaded	boxes	represent	data.	An	array	or
string	 is	a	simple	structure	containing	multiple	equal-sized	elements.
We	set	a	pointer	to	the	address	of	the	first	element,	then	use	indexed
addressing	mode	 to	 access	 the	 elements	 inside.	We	 have	 introduced
the	stack	previously,	and	it	is	an	important	component	of	an	operating
system.	The	stack	pointer	(SP)	points	to	the	top	element	on	the	stack.
A	linked	list	contains	some	elements	that	are	pointers	themselves.	The
pointers	 are	 used	 to	 traverse	 the	 data	 structure.	 Linked	 lists	 will	 be
used	through	this	bookto	maintain	the	states	of	threads	in	our	RTOS.
The	 first	 in	 first	 out	 (FIFO)	queue	 is	 an	 important	 data	 structure	 for
I/O	programming	because	it	allows	us	to	pass	data	from	one	module	to
another.	One	module	puts	data	into	the	FIFO	and	another	module	gets
data	out	of	the	FIFO.	There	is	a GetPt that	points	to	the	oldest	data	(to
be	removed	next)	and	a PutPt 	that	points	to	an	empty	space	(location
to	be	 stored	 into	next).	The	FIFO	queue	will	 be	used	 excessively	 in
this	book.

Figure	1.37.	Examples	of	data	structures	that	utilize	pointers.



We	 will	 illustrate	 the	 use	 of	 pointers	 with	 some	 simple	 examples.
Consider	that	we	have	a	global	variable	called Count .	This	creates	a
32-bit	space	in	memory	to	contain	the	value	of	this	variable.	The int
declaration	means	“is	a	signed	32-bit	integer”.
int	Count;
There	are	three	phases	to	using	pointers:	creation,	initialization,	usage.
To	create	a	pointer,	we	define	a	variable	placing	the * before	its	name.
As	a	convention,	we	will	use	“p”,	“pt”,	or	“ptr”	in	the	variable	name	to
signify	 it	 is	 a	 pointer	 variable.	 The	 *	 means	 “is	 a	 pointer	 to”.
Therefore, int	* 	means	“is	a	pointer	to	a	signed	32-bit	integer”.
int	*cPt;
To	initialize	a	pointer,	we	must	set	it	to	point	to	something.	Whenever
we	make	 an	 assignment	 in	C,	 the	 type	 of	 the	 value	must	match	 the
type	of	 the	variable.	The	 following	 executable	 code	makes cPt point
to Count .	We	 see	 the	 type	 of Count is	 signed	 32-bit	 integer,	 so	 the
type	of&Count 	is	a	pointer	to	a	signed	32-bit	integer.
	 	 cPt 	=	&Count;	 Assume	 we	 have	 another	 variable	 called x ,	 and
assume	 the	 value	 of Count is	 42.	 Using	 the	 pointer	 is	 called
dereferencing.	 If	 we	 place	 a *cPt inside	 an	 expression,	 then *cPt is
replaced	with	 the	 value	 at	 that	 address.	 So	 this	 operation	will	 set x
equal	to	42.
		x	=	(*cPt);
If	we	place	a *cPt as	the	assignment,	then	the	value	of	the	expression
is	 stored	 into	 the	 memory	 at	 the	 address	 of	 the	 pointer.	 So,	 this
operation	will	set Count 	equal	to	5;	(*cPt)	=	5;
We	can	use	 the	dereferencing	operator	 in	both	 the	expression	and	as
the	assignment.	These	operations	will	increment Count .

		(*cPt)	=	(*cPt)	+	1;
		(*cPt)	+=	1;
		(*cPt)++;
	

Functions	that	require	data	to	be	passed	by	the	value	they	hold	are	said
to	use	call-by-value	parameter	passing.	With	an	input	parameter	using
call	by	value,	the	data	itself	is	passed	into	the	function.	For	an	output
parameter	using	return	by	value,	the	result	of	the	function	is	a	value,



and	 the	 value	 itself	 is	 returned.	According	 to	AAPCS,	 the	 first	 four
input	parameters	are	passed	 in	R0	 to	R3	and	 the	output	parameter	 is
returned	in	R0.	Alternatively,	if	you	pass	a	pointer	to	the	data,	rather
than	 the	 data	 itself,	 we	 will	 be	 able	 to	 pass	 large	 amounts	 of	 data.
Passing	a	pointer	 to	data	 is	classified	as	call-by-reference.	For	 large
amounts	of	data,	call	by	reference	is	faster,	because	the	data	need	not
be	 copied	 from	 calling	 program	 to	 the	 called	 subroutine.	 In	 call	 by
reference,	the	one	copy	of	the	data	exists	in	the	calling	program,	and	a
pointer	 to	 it	 is	 passed	 to	 the	 subroutine.	 In	 this	way,	 the	 subroutine
actually	 performs	 read/write	 access	 to	 the	 original	 data.	 Call	 by
reference	 is	 also	 a	 convenient	 mechanism	 to	 return	 data	 as	 well.
Passing	a	pointer	to	an	object	allows	this	object	(a	primitive	data	type
like	char,	 int,	or	a	collection	like	an	array,	or	a	composite	struct	data
type)	to	be	an	input	parameter	and	an	output	parameter.
Our	 real-time	 operating	 system	will	make	 heavy	 use	 of	 pointers.	 In
this	 example,	 the	 function	 is	 allowed	 to	 read	 and	 write	 the	 original
data:

void	Increment(int	*cpt){
		(*cpt)	=	(*cpt)+1;

}

We	will	also	use	pointers	 for	arrays,	 linked-lists,	 stacks,	and	 first-in-
first-out	queues.	If	your	facility	with	pointers	is	weak,	we	suggest	you
review	pointers.
Checkpoint	1.20:	What	are	pointers	and	why	are	they	important?			

1.6.2.	Arrays
Figure	1.38	shows	an	array	of	the	first	ten	prime	numbers	stored	as	32-
bit	integers,	we	could	allocate	the	structure	in	ROM	using

int	const	Primes[10]={1,2,3,5,7,11,13,17,19,23};



Figure	1.38.	Array	of	ten	32-bit	values.

By	convention,	we	define Primes[0] as	the	first	element, Primes[1] as
the	second	element,	etc.	The	address	of	the	first	element	can	be	written
as &Primes[0] or	just Prime .	In	C,	if	we	want	the	5thelement,	we	use
the	expression Primes[4] 	to	fetch	the	7	out	of	the	structure.	In	C	the
following	two	expressions	are	equivalent,	both	of	which	will	fetch	the
contents	from	the	5th	element.
Primes[4]
*(Primes+4)
In	C,	we	define	a	pointer	to	a	signed	32-bit	constant	as

int	const	*Cpt;
In	 this	case,	 the const 	does	not	 indicate	 the	pointer	 is	 fixed.	Rather,
the	 pointer	 refers	 to	 constant	 16-bit	 data	 in	 ROM.	We	 initialize	 the
pointer	at	run	time	using	Cpt	=		Primes;						//	Cpt	points	to	Primes

or
	 	Cpt	=		&Primes[0];			//	Cpt	points	to	Primes

Figure	1.39.	Cpt	is	a	pointer	to	an	array	of	ten	32-bit	values.

When	 traversing	an	array,	we	often	wish	 to	 increment	 the	pointer	 to
the	next	element.	To	move	the	pointer	to	the	next	element,	we	use	the
expression Cpt++ .	 In	 C, Cpt++ ,	 which	 is	 the	 same	 thing	 as Cpt	 =
Cpt+1; 	 actually	 adds	 four	 to	 the	 pointer	 because	 it	 points	 to	 32-bit
words.	 	 If	 the	 array	 contained	 8-bit	 data,	 incrementing	 the	 pointer
would	 add	 1.	 If	 the	 array	 contained	 16-bit	 data,	 incrementing	 the



pointer	 adds	 2.	 The	 pointers	 themselves	 are	 always	 32-bits	 on	 the
ARM,	but	the	data	could	be	1,	2,	4,	8	…	bytes.
As	an	example,	consider	 the	situation	where	we	wish	 to	pass	a	 large
amount	 of	 data	 into	 the	 function BubbleSort .	 In	 this	 case,	we	 have
one	or	more	buffers,	defined	in	RAM,	which	initially	contains	data	in
an	 unsorted	 fashion.	 The	 buffers	 shown	 here	 are	 uninitialized,	 but
assume	 previously	 executed	 software	 has	 filled	 these	 buffers	 with
corresponding	voltage	and	pressure	data.	In	C,	we	could	have	uint8_t
VBuffer[100];			//	voltage	data

uint8_t	PBuffer[200];			//	pressure	data
	

Since	the	size	of	these	buffers	is	more	than	will	fit	in	the	registers,	we
will	 use	 call	 by	 reference.	 In	 C,	 to	 declare	 a	 parameter	 call	 by
reference	we	use	the	*.

void	BubbleSort(uint8_t	*pt,	uint32_t	size){
uint32_t	i,j;	uint8_t	data,*p1,*p2;
		for(i=1;	i<size;	i++){
				p1	=	pt;		//	pointer	to	beginning
				for(j=0;	j<size-i;	j++){
						p2	=	p1+1;			//	p2	points	to	the	element	after	p1
						if((*p1)	>	(*p2)){
								data	=	(*p1);	//	swap
								(*p1)	=	(*p2);
								(*p2)	=	data;

}

						p1++;

}

}

}

To	invoke	a	function	using	call	by	reference	we	pass	a	pointer	to	the
object.	 These	 two	 calling	 sequences	 are	 identical,	 because	 in	 C	 the
array	name	is	equivalent	 to	a	pointerto	its	first	element	( VBuffer 	 is
equivalent	to	&VBuffer[0] ).	Recall	that	the& 	operator	is	used	to	get



the	address	of	a	variable.
void	main(void){	void	main(void){
		BubbleSort(Vbuffer,100);			BubbleSort(&VBuffer[0],100);				
		BubbleSort(Pbuffer,200);					BubbleSort(&PBuffer[0],200);		
}	}

One	advantage	of	call	by	reference	in	this	example	is	the	same	buffer
can	be	used	also	as	the	return	parameter.	In	particular,	this	sort	routine
re-arranges	the	data	in	the	same	original	buffer.	Since	RAM	is	a	scarce
commodity	 on	 most	 microcontrollers,	 not	 having	 to	 allocate	 two
buffers	will	reduce	RAM	requirements	for	the	system.
From	a	security	perspective,	call	by	reference	is	more	vulnerable	than
call	by	value.	If	we	have	important	information,	then	a	level	of	trust	is
required	 to	 pass	 a	 pointer	 to	 the	 original	 data	 to	 a	 subroutine.	 Since
call	 by	 value	 creates	 a	 copy	 of	 the	 data	 at	 the	 time	 of	 the	 call,	 it	 is
slower	 but	 more	 secure.	 With	 call	 by	 value,	 the	 original	 data	 is
protected	from	subroutines	that	are	called.
Checkpoint	1.21:	If	an	array	has	10	elements,	what	is	the	range	of
index	values	used	to	access	the	data?			

1.6.3.	Linked	lists
The	 linked	 list	 is	 an	 important	 data	 structure	 used	 in	 operating
systems.	Each	element	 (node)	contains	data	and	a	pointer	 to	another
element	 as	 shown	 in	 Figure	 1.40.	 Given	 that	 a	 node	 in	 the	 list	 is	 a
composite	of	data	and	a	pointer,	we	use struct 	to	declare	a	composite
data	 type.	 A	 composite	 data	 type	 can	 be	made	 up	 of	 primitive	 data
type,	pointers	and	also	other	composite	data-types.

struct	Node{
		struct	Node	*Next;
		int	Data;

};

typedef	struct	Node	NodeType;
	

In	this	simple	example,	the	Data	field	is	just	a	32-bit	number,	we	will
expand	our	node	to	contain	multiple	data	fields	each	storing	a	specific



attribute	of	the	node.	There	is	a	pointer	to	the	first	element,	called	the
head	pointer.	The	last	element	in	the	list	has	a	null	pointer	in	its	next
field	to	indicate	the	end	of	the	list.

Figure	1.40.	A	linked	list	with	5	nodes.

We	can	create	lists	statically	or	dynamically.	A	statically	created	list	is
created	at	compile	 time	and	does	not	change	during	 the	execution	of
the	program.

NodeType	theList[8]	={
		{&theList[1],	1},
		{&theList[2],	10},
		{&theList[3],	100},
		{&theList[4],	1000},
		{&theList[5],	10000},
		{&theList[6],	100000},
		{&theList[7],	1000000},
		{0,											10000000}};
NodeType	*HeadPt	=	theList;			//	points	to	first	element

	
The	following	function	searches	the	list	to	see	if	a	data	value	exists	in
the	list.

int	Search(int	x){	NodeType	*pt;
		pt	=	HeadPt;	//	start	at	beginning
		while(pt){
				if(pt->Data	==	x)	return	1;	//	found
				pt	=	pt->Next;

}

		return	0;	//	not	found

}

	
This	 example	 created	 the	 linked-list	 statically.	 The	 compiler	 will
generate	 code	 prior	 to	 running	 main	 (called	 premain)	 that	 will



initialize	 the	 eight	 nodes.	 To	 do	 this	 initialization,	 there	will	 be	 two
copies	of	the	structure:	the	initial	copy	in	ROM	used	during	premain,
and	 the	 RAM	 copy	 used	 by	 the	 program	 during	 execution.	 If	 the
program	needs	 to	change	 this	structure	during	execution	 then	having
two	 copies	 is	 fine.	 However,	 if	 the	 program	 does	 not	 change	 the
structure,	then	you	could	put	a	single	copy	in	ROM	by	adding const to
the	definition.	In	this	case, HeadPt 	will	be	in	RAM	but	the	linked	list
will	be	in	ROM.

const	struct	Node{
		const	struct	Node	*Next;
		int	Data;

};

typedef	const	struct	Node	NodeType;
NodeType	theList[8]	={
		{&theList[1],	1},
		{&theList[2],	10},
		{&theList[3],	100},
		{&theList[4],	1000},
		{&theList[5],	10000},
		{&theList[6],	100000},
		{&theList[7],	1000000},
		{0,											10000000}};
NodeType	*HeadPt	=	theList;			//	points	to	first	element
	

It	 is	possible	 to	create	a	 linked	 list	dynamically	and	grow/shrink	 the
list	 as	 a	 program	 executes.	 However,	 in	 keeping	 with	 our	 goal	 to
design	 a	 simple	 RTOS,	 we	 will	 refrain	 from	 doing	 any	 dynamic
allocation,	 which	 would	 require	 the	management	 of	 a	 heap.	 	 	Most
real-time	 systems	 do	 not	 allow	 the	 heap	 (malloc	 and	 free)	 to	 be
accessed	by	the	application	programmer,	because	the	use	of	the	heap
could	lead	to	nondeterministic	behavior	(the	activity	of	one	program
affects	the	behavior	of	another	completely	unrelated	program).
Checkpoint	1.22:	What	is	a	linked	list	and	in	what	ways	is	it	better
than	an	array?	In	what	ways	is	are	arrays	better?			



1.7.	Memory	Management

1.7.1.	Use	of	the	heap
In	 the	 previous	 two	volumes,	we	 have	 seen	 two	 types	 of	 allocation:
permanent	 allocation	 in	 global	 variables	 and	 temporary	 allocation	 in
local	variables.	When	we	allocate	local	variables	in	registers	or	on	the
stack	 these	 variables	must	 be	 private	 to	 the	 function	 and	 cannot	 be
shared	 with	 other	 functions.	 Furthermore,	 each	 time	 the	 function	 is
invoked	 new	 local	 variables	 are	 created,	 and	 data	 from	 previous
instantiations	are	not	available.	This	behavior	is	usually	exactly	what
we	want	to	happen	with	local	variables.	However,	we	can	use	the	heap
(or	memory	manager)	 to	have	 temporary	allocation	 in	a	way	 that	 is
much	more	flexible.	In	particular,	we	will	be	able	to	explicitly	define
when	data	are	allocated	and	when	they	are	deallocated	with	 the	only
restriction	being	we	first	allocate,	next	we	use,	and	then	we	deallocate.
Furthermore,	we	can	control	the	scope	of	the	data	in	a	flexible	manner.
The	use	of	the	heap	involves	two	system	functions:malloc and free .
When	we	wish	to	allocate	space,we	callmalloc and	specify	how	many
bytes	we	need. malloc will	 return	a	pointer	 to	 the	new	object,	which
we	 must	 store	 in	 a	 pointer	 variable.	 If	 the	 heap	 has	 no	 more
space, malloc will	 return	 a	 0,	 which	 means	 null	 pointer.	 The	 heap
implements	temporary	allocation,	so	when	we	are	done	with	the	data,
we	return	it	to	the	heap	by	calling free .	Consider	the	following	simple
example	with	three	functions.

int32_t	*Pt;
void	Begin(void){
		Pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words

}

void	Use(void){	int32_t	i;
		for(i	=	0;	i	<	20;	i++)
				Pt[i]	=	i;	//	put	data	into	array

}



void	End(void){
		free(Pt);

}

	
The	pointer Pt 	 is	permanently	allocated.	The	left	side	of	Figure	1.41
shows	that	initially,	even	though	the	pointer	exists,	it	does	not	point	to
anything.	More	specifically,	the	compiler	will	initialize	it	to	0;	this	0	is
defined	 as	 a	 nullpointer,	 meaning	 it	 is	 not	 valid.	 When malloc is
called	 the	 pointer	 is	 now	 valid	 and	 points	 to	 a	 20-word	 array.	 The
array	 is	 inside	 the	 heap	 and Pt points	 to	 it.	Any	 time	 aftermalloc is
called	and	before free 	 is	 called,the	 array	exists	 and	can	be	 accessed
via	the	pointer Pt .	After	you	call free ,	the	pointer	has	the	same	value
as	before.	However,	the	array	itself	does	not	exist.	I.e.,	these	80	bytes
do	 not	 belong	 to	 your	 program	 anymore.	 In	 particular,	 after	 you
call free ,	 the	 heap	 is	 allowed	 to	 allocate	 these	 bytes	 to	 some	 other
program.	 Weird	 and	 crazy	 errors	 will	 occur	 if	 you	 attempt	 to
dereference	 the	 pointer	 before	 the	 array	 is	 allocated,	 or	 after	 it	 is
released.

Figure	1.41.	The	heap	is	used	to	dynamically	allocate	memory.

This	 array	 exists	 and	 the	 pointer	 is	 valid	 from	 when	 you
callmalloc up	 until	 the	 time	 you	 call free .	 In	 C,	 the	 heap	 does	 not
manage	 the	 pointers	 to	 allocated	 block;	 your	 program	 must.	 If	 you
callmalloc ten	times	in	a	row,	you	must	keep	track	of	the	ten	pointers
you	received.	The	scope	of	this	array	is	determined	by	the	scope	of	the
pointer, Pt .	If Pt is	public,	then	the	array	is	public.	If	static	were	to	be
added	to	the	definition	of Pt ,	then	the	scope	of	the	array	is	restricted
to	software	within	this	file.	In	the	following	example,	the	scope	of	the
array	 is	 restricted	 to	 the	 one	 function.	Within	 one	 execution	 of	 the
function,	the	array	is	allocated,	used,	and	then	deallocated,	just	like	a
local	variable.



void	Function(void){	int32_t	i;
int32_t	*pt;
		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words
		for(i	=	0;	i	<	20;	i++)
				pt[i]	=	i;	//	put	data	into	array
		free(pt);

}

A	memory	leakoccurs	if	software	uses	the	heap	to	allocate	space	but
forgets	to	deallocate	the	space	when	it	is	finished.	The	following	is	an
example	of	a	memory	leak.	Each	time	the	function	is	called,	a	block	of
memory	 is	 allocated.	 The	 pointer	 to	 the	 block	 is	 stored	 in	 a	 local
variable.	When	 the	 function	 returns,	 the	pointer pt 	 no	 longer	 exists.
This	means	the	allocated	block	in	the	heap	exists,	but	the	program	has
no	 pointer	 to	 it.	 In	 other	 words,	 each	 time	 this	 function	 returns	 80
bytes	from	the	heap	are	permanently	lost.

void	LeakyFunction(void){	int32_t	i;
int32_t	*pt;
		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words
		for(i	=	0;	i	<	20;	i++)
				pt[i]	=	i;	//	put	data	into	array

}

	
Internal	fragmentation	is	storage	that	is	allocated	for	the	convenient
of	 the	 operating	 system	 but	 contains	 no	 information.	 This	 space	 is
wasted.	 Often	 this	 space	 is	 wasted	 in	 order	 to	 improve	 speed	 or
provide	 for	 a	 simpler	 implementation.	 The	 fragmentation	 is	 called
"internal"	 because	 the	 wasted	 storage	 is	 inside	 the	 allocated	 region.
External	 fragmentation	 exists	when	 the	 largest	memory	 block	 that
can	be	allocated	is	less	than	the	total	amount	of	free	space	in	the	heap.
External	 fragmentation	 occurs	 in	 simple	 memory	managers	 because
memory	 is	 allocated	 in	 contiguous	 blocks.	 External	 fragmentation
occurs	 over	 time	 as	 free	 storage	 becomes	 divided	 into	 many	 small
pieces.	 It	 is	 a	 particular	 problem	when	 an	 application	 allocates	 and
deallocates	 blocks	 of	 storage	 of	 varying	 sizes.	 The	 result	 is	 that
although	free	storage	is	available,	it	is	effectively	unusable	because	it



is	divided	into	pieces	that	are	too	small	to	satisfy	the	demands	of	the
application.	 The	 term	 "external"	 refers	 to	 the	 fact	 that	 the	 unusable
storage	is	outside	the	allocated	regions.
Checkpoint	1.23:	Depending	on	the	microcontroller	architecture,	it
may	be	faster	to	access	variables	allocated	on	either	a	16-bit	word
or	32-bit	boundary.	If	the	compiler	skips	memory	cells	in	order	to
align	variables,	is	this	internal	or	external	fragmentation?	

1.7.2.	Simple	fixed-size	heap
In	general,	the	heap	manager	allows	the	program	to	allocate	a	variable
block	 size,	 but	 in	 this	 section	 we	 will	 develop	 a	 simplified	 heap
manager	handles	just	fixed	sizeblocks.	In	this	example,	the	block	size
is	 specified	 by	 the	 constant SIZE .	 The	 initialization	 will	 create	 a
linked	list	of	all	the	free	blocks	(Figure	1.42).

Figure	1.42.	The	initial	state	of	the	heap	has	all	of	the	free	blocks
linked	in	a	list.

Program	1.5ashows	 the	 global	 structures	 for	 the	 heap.	 These	 entries
are	defined	in	RAM.	 SIZE is	the	number	of	8-bit	bytes	in	each	block.
All	blocks	allocated	and	released	with	this	memory	manager	will	be	of
this	fixed	size. NUM is	the	number	of	blocks	to	be	managed. FreePt
points	to	the	first	free	block.

	
#define	SIZE	80					
#define	NUM	5					
#define	NULL	0		//	empty	pointer
int8_t	*FreePt;
int8_t	Heap[SIZE*NUM];

Program	1.5a.	Private	global	structures	for	the	fixed-block
memory	manager.

Initialization	must	be	performed	before	the	heap	can	be	used.	Program
1.5bshows	 the	software	 that	partitions	 the	heap	 into	blocks	and	 links
them	together. FreePt 	points	to	a	linear	linked	list	of	free	blocks.



void	Heap_Init(void){
int8_t	*pt;
		FreePt	=	&Heap[0];
		for(pt=&Heap[0];	pt!=&Heap[SIZE*(NUM-1)];	pt=pt+SIZE)
{
				(int32_t	)pt	=(int32_t)(pt+SIZE);

}

		(int32_t)pt	=	NULL;

}

Program	1.5b.	Functions	to	initialize	the	heap.

Initially	 these	 free	 blocks	 are	 contiguous	 and	 in	 order,	 but	 as	 the
manager	is	used	the	positions	and	order	of	the	free	blocks	can	vary.	It
will	 be	 the	 pointers	 that	 will	 thread	 the	 free	 blocks	 together.	 To
allocate	a	block	to	manager	just	removes	one	block	from	the	free	list.
Program	 1.5c	 shows	 the	 allocate	 and	 release	 functions.
The Heap_Allocate function	will	 fail	 and	 return	 a	null	 pointer	when
the	 heap	 becomes	 empty.	 The Heap_Release 	 returns	 a	 block	 to	 the
free	list.	This	system	does	not	check	to	verify	a	released	block	actually
was	previously	allocated.

void	Heap_Allocate(void){int8_t	pt;
		pt	=	FreePt;
		if	(pt	!=	NULL){
				FreePt	=	(int8_t*)	(int8_t*)pt;

}

		return(pt);

}

void	Heap_Release(void	pt){int8_t	oldFreePt;
		oldFreePt	=	FreePt;
		FreePt	=	(int8_t*)pt;
		(int32_t	)pt	=	(int32_t)oldFreePt;



}

Program	1.5c.	Functions	to	allocate	and	release	memory	blocks.

Checkpoint	1.24:	There	are	5	blocks	in	this	simple	heap.	How
could	the	memory	manager	determine	if	block	I	(where	0	≤	I	≤	4)	is
allocated	or	free?	
Checkpoint	1.25:	Using	this	memory	manager,	write	a	malloc	and
free	functions	such	that	the	size	is	restricted	to	a	maximum	of	100
bytes.	I.e.,	you	may	assume	the	user	never	asks	for	more	than	100
bytes	at	a	time.

1.7.3.	Memory	manager:	malloc	and	free
The	 heapis	 a	 large	 piece	 of	 memory,	 managed	 by	 the	 operating
system,	 used	 for	 temporary	 allocation.	 The	memory	manager	 has	 at
least	three	functions:	one	for	initialization	( Heap_Init ),	one	function
for	 allocation	 and	 a	 third	 function	 for	 deallocation.	Most	 compilers
support	 memory	 management,	 implementing malloc and free .
However,	 in	 this	 example	 we	 develop	 an	 equivalent	 solution,	 with
names Heap_Malloc and Heap_Free .	You	can	download	a	version	of
the	memory	manager	described	in	this	section	at	the	book	web	site.	It
is	called	Heap_xxx	and	was	developed	by	Jacob	Egner	as	an	example
to	 illustrate	 programming	 style.	 It	 runs	on	 the	TM4C	compiled	with
the	ARM	Keil	 uVision,	 but	 should	 operate	without	 change	 on	 other
microcontrollers	 and	 other	 compilers.	 The	 heap	 itself	 is	 statically
allocated	 storage	 assigned	 by	 the	 compiler.	 For	 a	 32-bit
microcontroller	 we	 could	 define	 the	 2000-byte	 heap	 using	 static
int32_t	Heap[500];

	
Typically,	 the	 operating	 system	 calls Heap_Init 	 during	 the
initialization	process.	The	initial	heap	is	one	large	free	block,	as	shown
in	Figure	1.43.	The	initial	heap	has	498	words	of	allocatable	space	and
2	words	of	overhead.



Figure	1.43.	An	initial	heap	of	2000	bytes	is	one	block	of	498
words	(each	box	is	32	bits).

The	 proper	 usage	 of	 the	 dynamic	 memory	 manager	 follows	 three
phases:	 allocation,	 use,	 and	 deallocation.	 The	 user	 or	 OS	 itself
calls Heap_Malloc 	when	it	needs	a	contiguous	block	of	memory.	It	is
good	 design	 practice	 to	 store	 the	 pointer	 to	 the	 allocated	 space	 in
permanent	 memory.	 For	 example,	 if	 a	 20-byte	 buffer	 is	 needed,
initially,	we	could	call	int8_t	*Pt;

void	UserStart(void){		//	called	at	the	beginning
		Pt	=	Heap_Malloc(20);

}

	
The	second	phase	is	for	the	system	to	use	the	20-byte	array

void	UserBody(void){	//	called	in	the	middle
		for(int	i=0;	i<20;	i++){
			(*Pt)	=		0;		//	access	the	data	via	Pt

}

		//	rest	of	user	programs

}

	
When	 the	 program	 is	 finished	 with	 the	 block,	 it	 is	 released	 by
calling Heap_Free .

void	UserFinish(void){	//	called	at	the	end



		Heap_Free(Pt);

}

	
Checkpoint	1.26:	What	happens	if	a	function	allocates	a	block,
stores	a	pointer	to	the	block	in	a	local	variable,	and	then	returns
from	the	function	without	deallocating	the	block?		

Saving	 the	pointer	 to	 an	 allocated	block	 in	 a	 local	variable	does	not
make	 sense.	 If	 the	 memory	 is	 needed	 for	 the	 duration	 of	 just	 one
function	call,	the	block	should	be	allocated	on	the	stack.	For	example,
if	 a	20-byte	buffer	 is	needed,	we	could	call	void	User(void){	 int8_t
buffer[20];

//	use	20-byte	buffer

}

	
The	heap	is	divided	into	blocks	of	variable	size.	As	shown	in	Figure
1.44,	there	are	two	copies	of	the	block	size,	one	counter	stored	at	the
beginning	(Header)	and	other	copy	of	the	counter	stored	at	the	end	of
the	 block	 (Trailer).	 These	 two	 counters	will	 be	 classified	 as	 internal
fragmentation	because	they	exist	for	the	convenience	of	the	operating
system.	If	 the	counter	 is	positive	 the	block	 is	being	used	(previously
allocated).	If	the	counter	is	negative	the	block	is	free.	The	value	of	the
counter	determines	the	size	of	the	block	in	32-bit	words,	not	including
the	two	counters	themselves.	If	the	counter	is	implemented	as	a	32-bit
signed	 number	 ( int32_t ),	 then	 a	 heap	 of	 up	 to	 231*4	 bytes	 (2
gibibytes)	 can	 be	managed.	The	 number	 of	 bytes	 in	 a	 block	will	 be
divisible	by	four.	 	 I.e.,	blocks	are	aligned	 to	32-bit	word	boundaries.
For	example,	if	the	user	asks	for	a	block	with	17	bytes,	20	bytes	will
be	 allocated.	 These	 3	 wasted	 bytes	 are	 a	 form	 of	 internal
fragmentation.	Furthermore,	the	block	with	5	words	of	data	actually
requires	7	words	of	memory.



Figure	1.44.	Each	block	has	a	header	and	a	trailer.

When	allocating	blocks	we	can	use	a	number	of	algorithms	to	choose
which	 block	 to	 allocate.	 Let	 nbe	 the	 number	 of	 bytes	 requested
by Heap_Malloc .

First	 fit	 uses	 the	 first	 free	 block	 with	 a	 size	 greater	 than	 or
equal	to	n.
Best	fit	uses	the	smallest	free	block	with	a	size	greater	than	or
equal	to	n.
Worst	fit	uses	the	largest	free	block	with	a	size	greater	than	or
equal	to	n.

Depending	on	 the	allocation	pattern	of	 the	user	program,	 these	 three
allocation	 methods	 will	 have	 differing	 levels	 of	 external
fragmentation.	The	implementation	on	the	book	web	site	as	Heap_xxx
uses	first	fit.
Checkpoint	1.27:	How	would	you	change	the	way	free	blocks	are
organized	to	implement	best	fit?		

When	a	block	is	allocated,	a	free	block	is	divided	to	two	parts.	Figure
1.45illustrates	the	process	of	allocating	a	20-word	block	using	a	100-
word	free	block.	In	this	example,	80	bytes	is	20	words.	The	100-word
free	 block	 is	 divided	 into	 a	 20-word	 block	 and	 a	 78-word	 block.	A
pointer	to	the	20-word	block	is	returned	by Heap_Malloc .
When	allocating	 a	block,	 the	 free	block	may	not	be	 large	 enough	 to
split	in	two.	For	example,	if	the	user	were	to	have	asked	for	392	bytes
(98	words)	in	Figure	1.45,	it	would	be	better	to	give	the	user	the	entire
100-word	block,	because	the	8	bytes	(2	words)	are	too	small	to	create
a	 useful	 block.	 These	 extra	 8	 bytes	 allocated	 to	 the	 user	 constitute
internal	fragmentation.



Figure	1.45.	Example,	the	user	calls	Pt=Heap_Malloc(80).

Checkpoint	1.28:	In	Figure	1.45,	why	does	the	sum	of	the	parts	not
equal	the	whole?	In	particular,	20+78	does	not	equal	100.		

When	 deallocating	 a	 block,	 there	 are	 four	 cases:	 no	 merge,	 merge
above,	merge	below	and	merge	both	 above	 and	below.	 If	 the	blocks
immediately	above	and	 immediately	below	 the	deallocated	block	are
used,	 no	 merging	 is	 needed	 and	 the	 manager	 simply	 changes	 the
counters	from	positive	to	negative,	as	shown	Figure	1.46.

Figure	1.46.	Example,	the	user	calls	Heap_Free(Pt).

If	the	block	immediately	above	is	free	and	immediately	below	is	used,
a	merge	 above	 is	 needed	 and	 the	manager	will	 combine	 two	 blocks
into	one	big	free	block,	as	shown	Figure	1.47.	There	are	 two	special
cases	when	deallocating	blocks.	 If	 the	block	 is	 the	 first	 block	 in	 the
heap,	you	cannot	merge	it	above,	and	if	the	block	is	the	last	block	in
the	heap,	you	cannot	merge	it	below.



Figure	1.47.	Two	blocks	are	merged	during	a	call	to	Heap_Free.

Checkpoint	1.29:	What	happens	if	you	continue	to	access	a
memory	block	after	the	block	is	deallocated?		

The	 Knuth	 buddy	 allocation	 maintains	 the	 heap	 as	 a	 collection	 of
blocks	each	with	a	size	of	2m.	When	the	user	requests	a	block	of	size	n,
it	will	find	the	smallest	block	with	2m	greater	 than	or	equal	 to	n.	For
example,	 if	 the	 smallest	 block	 is	 size	 1024,	 and	 the	 user	 requests	 a
block	of	100	bytes,	the	1024-byte	block	will	be	divided	into	two	128-
byte	 blocks,	 one	 256-byte	 block	 and	 one	 512-byte	 blocks.	 The	 user
will	be	given	the	128-byte	block.	The	28	extra	bytes	allocated	to	 the
user	is	internal	fragmentation.



1.8.	Introduction	to	debugging
Microcontroller-related	problems	often	 require	 the	use	of	 specialized
equipment	 to	 debug	 the	 system	 hardware	 and	 software.	 Useful
hardware	tools	include	a	logic	probe,	an	oscilloscope,	a	logic	analyzer,
and	 a	 JTAG	 debugger.	 A	 logic	 probe	 is	 a	 handheld	 device	with	 an
LED	 or	 buzzer.	 You	 place	 the	 probe	 on	 your	 digital	 circuit	 and
LED/buzzer	 will	 indicate	 whether	 the	 signal	 is	 high	 or	 low.	 An
oscilloscope,	 or	 scope,	 graphically	 displays	 information	 about	 an
electronic	 circuit,	 where	 the	 voltage	 amplitude	 versus	 time	 is
displayed.	A	scope	has	one	or	two	channels,	with	many	ways	to	trigger
or	capture	data.	A	scope	is	particularly	useful	when	interfacing	analog
signals	 using	 an	 ADC	 or	 DAC.	 The	 PicoScope	 2104	 (from
http://www.picotech.com/)	 is	 a	 low-cost	 but	 effective	 tool	 for
debugging	microcontroller	 circuits.	A	 logic	analyzer	 is	 essentially	 a
multiple	channel	digital	storage	scope	with	many	ways	to	trigger.	As
shown	 in	 Figure	 1.48,	 we	 can	 connect	 the	 logic	 analyzer	 to	 digital
signals	 that	 are	 part	 of	 the	 system,	 or	 we	 can	 connect	 the	 logic
analyzer	channels	to	unused	microcontroller	pins	and	add	software	to
toggle	those	pins	at	strategic	times/places.	As	a	troubleshooting	aid,	it
allows	the	experimenter	to	observe	numerous	digital	signals	at	various
points	in	time	and	thus	make	decisions	based	upon	such	observations.
One	 problem	 with	 logic	 analyzers	 is	 the	 massive	 amount	 of
information	that	it	generates.	To	use	an	analyzer	effectively	one	must
learn	 proper	 triggering	 mechanisms	 to	 capture	 data	 at	 appropriate
times	eliminating	the	need	to	sift	through	volumes	of	output.	The	logic
analyzer	 figures	 in	 this	 book	 were	 collected	 with	 a	 logic	 analyzer
Digilent	 (from	 http://www.digilentinc.com/).	 The	 Analog	 Discovery
combines	a	logic	analyzer	with	an	oscilloscope,	creating	an	extremely
effective	debugging	tool.



Figure	1.48.	A	logic	analyzer	and	example	output.	P4.1	and	P4.0
are	extra	pins	just	used	for	debugging.

Figure	 1.49	 shows	 a	 logic	 analyzer	 output,	 where	 signals	 SSI	 are
outputs	 to	 the	 LCD,	 and	 UART	 is	 transmission	 between	 two
microcontrollers.	 However	 P3.3	 and	 P3.1	 are	 debugging	 outputs	 to
measuring	timing	relationships	between	software	execution	and	digital
I/O.	The	rising	edge	of	P3.1	is	used	to	trigger	the	data	collection.

Figure	1.49.	Analog	Discovery	logic	analyzer	output
(www.digilentinc.com).

An	 emulator	 is	 a	 hardware	 debugging	 tool	 that	 recreates	 the
input/output	 signals	 of	 the	 processor	 chip.	 To	 use	 an	 emulator,	 we
remove	the	processor	chip	and	insert	the	emulator	cable	into	the	chip
socket.	 In	most	 cases,	 the	 emulator/computer	 system	operates	 at	 full
speed.	 The	 emulator	 allows	 the	 programmer	 to	 observe	 and	modify
internal	registers	of	the	processor.	Emulators	are	often	integrated	into
a	 personal	 computer,	 so	 that	 its	 editor,	 hard	 drive,	 and	 printer	 are
available	for	the	debugging	process.
The	only	disadvantage	of	the	in-circuit	emulator	is	its	cost.	To	provide



some	of	 the	benefits	of	 this	high-priced	debugging	equipment,	many
microcontrollers	 use	 a	 JTAG	 debugger.	 The	 JTAG	 hardware	 exists
both	on	the	microcontroller	chip	itself	and	as	an	external	interface	to	a
personal	 computer.	 Although	 not	 as	 flexible	 as	 an	 ICE,	 JTAG	 can
provide	 the	 ability	 to	 observe	 software	 execution	 in	 real-time,	 the
ability	 to	 set	 breakpoints,	 the	 ability	 to	 stop	 the	 computer,	 and	 the
ability	to	read	and	write	registers,	I/O	ports	and	memory.
Debugging	is	an	essential	component	of	embedded	system	design.	We
need	to	consider	debugging	during	all	phases	of	the	design	cycle.	It	is
important	 to	 develop	 a	 structure	 or	 method	 when	 verifying	 system
performance.	This	section	will	present	a	number	of	 tools	we	can	use
when	 debugging.	 Terms	 such	 as	 program	 testing,	 diagnostics,
performance	 debugging,	 functional	 debugging,	 tracing,	 profiling,
instrumentation,	visualization,	optimization,	verification,	performance
measurement,	and	execution	measurement	have	specialized	meanings,
but	 they	 are	 also	 used	 interchangeably,	 and	 they	 often	 describe
overlapping	 functions.	 For	 example,	 the	 terms	 profiling,	 tracing,
performance	measurement,	or	execution	measurement	may	be	used	to
describe	the	process	of	examining	a	program	from	a	time	viewpoint.	
But,	tracing	is	also	a	term	that	may	be	used	to	describe	the	process	of
monitoring	 a	 program	 state	 or	 history	 for	 functional	 errors,	 or	 to
describe	the	process	of	stepping	through	a	program	with	a	debugger.	
Usage	of	these	terms	among	researchers	and	users	vary.
Black-box	testing	is	simply	observing	the	inputs	and	outputs	without
looking	inside.	Black-box	testing	has	an	important	place	in	debugging
a	module	 for	 its	 functionality.	On	 the	other	hand,	white-box	 testing
allows	you	to	control	and	observe	the	internal	workings	of	a	system.	A
common	mistake	made	by	new	engineers	is	to	just	perform	black	box
testing.	 Effective	 debugging	 uses	 both.	 One	 must	 always	 start	 with
black-box	 testing	 by	 subjecting	 a	 hardware	 or	 software	 module	 to
appropriate	test-cases.	Once	we	document	the	failed	test-cases,	we	can
use	 them	 to	 aid	 us	 in	 effectively	 performing	 the	 task	 of	 white-box
testing.	 Unit	 testing	 involves	 evaluating	 each	 module	 separately
before	combining	the	components	into	the	larger	system.	Integration
testing	occurs	when	multiple	components	are	integrated	together.
We	define	a	debugging	instrument	as	software	code	that	is	added	to
the	 program	 for	 the	 purpose	 of	 debugging.	 A	 print	 statement	 is	 a



common	 example	 of	 an	 instrument.	 Using	 the	 editor,	 we	 add	 print
statements	 to	 our	 code	 that	 either	 verify	 proper	 operation	 or	 display
runtime	errors.
Nonintrusiveness	 is	 the	 characteristic	 or	 quality	 of	 a	 debugger	 that
allows	 the	 software/hardware	 system	 to	 operate	 normally	 as	 if	 the
debugger	 did	 not	 exist.	 Intrusiveness	 is	 used	 as	 a	 measure	 of	 the
degree	 of	 perturbation	 caused	 in	 program	 performance	 by	 the
debugging	instrument	itself.	Let	t	be	the	time	required	to	execute	the
instrument,	and	let	Δt	be	the	average	time	in	between	executions	of	the
instrument.	One	quantitative	measure	of	intrusiveness	is	t/Δt,	which	is
the	 fraction	 of	 available	 processor	 time	 used	 by	 the	 debugger.	 For
example,	 a	 print	 statement	 added	 to	 your	 source	 code	may	 be	 very
intrusive	because	it	might	significantly	affect	the	real-time	interaction
of	the	hardware	and	software.	Observing	signals	that	already	exist	as
part	 of	 the	 system	 with	 an	 oscilloscope	 or	 logic	 analyzer	 is
nonintrusive,	 meaning	 the	 presence	 of	 the	 scope/analyzer	 has	 no
effect	 on	 the	 system	 being	 measured.	 A	 debugging	 instrument	 is
classified	 as	minimally	 intrusive	 if	 it	 has	 a	 negligible	 effect	 on	 the
system	being	debugged.	In	a	real	microcontroller	system,	breakpoints
and	 single-stepping	 are	 also	 intrusive,	 because	 the	 real	 hardware
continues	to	change	while	the	software	has	stopped.	When	a	program
interacts	with	 real-time	 events,	 the	 performance	 can	 be	 significantly
altered	when	using	intrusive	debugging	tools.	To	be	effective	we	must
employ	nonintrusive	or	minimally	intrusive	methods.
Checkpoint	1.30:	What	does	it	mean	for	a	debugging	instrument	to
be	minimally	intrusive?	Give	both	a	general	answer	and	a	specific
criterion.			

Although,	a	wide	variety	of	program	monitoring	and	debugging	tools
are	 available	 today,	 in	 practice	 it	 is	 found	 that	 an	 overwhelming
majority	 of	 users	 either	 still	 prefer	 or	 rely	mainly	 upon	 “rough	 and
ready”	manual	methods	 for	 locating	 and	 correcting	 program	 errors.	
These	methods	 include	 desk-checking,	 dumps,	 and	 print	 statements,
with	print	statements	being	one	of	the	most	popular	manual	methods.	
Manual	 methods	 are	 useful	 because	 they	 are	 readily	 available,	 and
they	 are	 relatively	 simple	 to	 use.	 	 But,	 the	 usefulness	 of	 manual
methods	 is	 limited:	 they	 tend	 to	be	highly	 intrusive,	and	 they	do	not
provide	 adequate	 control	over	 repeatability,	 event	 selection,	or	 event



isolation.	 A	 real-time	 system,	 where	 software	 execution	 timing	 is
critical,	 usually	 cannot	 be	 debugged	 with	 simple	 print	 statements,
because	 the	 print	 statement	 itself	 will	 require	 too	 much	 time	 to
execute.
The	first	step	of	debugging	is	to	stabilize	the	system.	In	the	debugging
context,	we	stabilize	 the	problem	by	creating	a	 test	routine	that	fixes
(or	stabilizes)	all	 the	 inputs.	 In	 this	way,	we	can	reproduce	 the	exact
inputs	over	and	over	again.	Once	stabilized,	if	we	modify	the	program,
we	 are	 sure	 that	 the	 change	 in	 our	 outputs	 is	 a	 function	 of	 the
modification	we	made	in	our	software	and	not	due	to	a	change	in	the
input	parameters.
Acceleration	means	we	will	 speed	up	 the	 testing	process.	When	we
are	 testing	 one	 module	 we	 can	 increase	 how	 fast	 the	 functions	 are
called	 in	an	attempt	 to	expose	possible	faults.	Furthermore,	since	we
can	control	the	test	environment,	we	will	vary	the	test	conditions	over
a	wide	range	of	possible	conditions.	Stress	testing	means	we	run	the
system	beyond	the	requirements	to	see	at	what	point	it	breaks	down.
When	a	system	has	a	small	number	of	possible	inputs	(e.g.,	less	than	a
million),	it	makes	sense	to	test	them	all.	When	the	number	of	possible
inputs	is	large	we	need	to	choose	a	set	of	inputs.	Coverage	defines	the
subset	of	possible	inputs	selected	for	testing.	A	corner	case	is	defined
as	 a	 situation	 at	 the	 boundary	 where	 multiple	 inputs	 are	 at	 their
maximum,	like	the	corner	of	a	3-D	cube.	At	the	corner	small	changes
in	input	may	cause	lots	of	internal	and	external	changes.	In	particular,
we	need	 to	 test	 the	cases	we	 think	might	be	difficult	 (e.g.,	 the	clock
output	increments	one	second	from	11:59:59	PM	December	31,	1999.)
There	are	many	ways	to	decide	on	the	coverage.	We	can	select	values:
•	Near	the	extremes	and	in	the	middle
•	Most	typical	of	how	our	clients	will	properly	use	the
system
•	Most	typical	of	how	our	clients	will	improperly	use	the
system
•	That	differ	by	one
•	You	know	your	system	will	find	difficult
•	Using	a	random	number	generator



Maintenance	Tip:	First,	find	the	things	that	will	break	you.
Second,	break	them.

To	stabilize	the	system	we	define	a	fixed	set	of	inputs	to	test,	run	the
system	on	these	inputs,	and	record	the	outputs.	Debugging	is	a	process
of	 finding	patterns	 in	 the	differences	between	 recorded	behavior	and
expected	 results.	The	 advantage	of	modular	programming	 is	 that	we
can	 perform	modular	 debugging.	 We	 make	 a	 list	 of	 modules	 that
might	 be	 causing	 the	 bug.	We	 can	 then	 create	 new	 test	 routines	 to
stabilize	these	modules	and	debug	them	one	at	a	time.	Unfortunately,
sometimes	 all	 the	 modules	 seem	 to	 work,	 but	 the	 combination	 of
modules	 does	 not.	 In	 this	 case	 we	 study	 the	 interfaces	 between	 the
modules,	 looking	for	 intended	and	unintended	(e.g.,	unfriendly	code)
interactions.
Common	error:	Sometimes	the	original	system	operates	properly,
and	the	debugging	code	has	bugs.



1.9.	Exercises
1.1	 	There	are	 two	R13s.	What	 is	 special	about	R13?	Why	are	 there
two	of	them?	What	is	the	initial	value	in	R13	after	a	reset?
1.2		What	is	in	R14	when	a	function	is	called?	How	do	you	write	code
so	that	function	calls	can	be	nested?	What	 is	 the	 initial	value	in	R14
after	a	reset?
1.3	 	What	 is	 in	Register	 15?	Why	 is	 bit	 0	 of	Register	 15	 always	0?
What	happens	when	you	load	a	value	into	Register	15	with	bit	0	set?
What	is	the	initial	value	in	R15	after	a	reset?
1.4		Why	are	there	so	many	buses	on	the	ARM	Cortex-M	processor?
1.5	 	Write	C	 code	 that	 sets	 bit	 30	 of	memory	 location	 0x2000.4000
using	bit-banding.
1.6		Write	C	code	that	clears	bit	15	of	memory	location	0x2000.1000
using	bit-banding.
1.7	 	Write	 C	 code	 that	 sets	 bit	 5	 of	 memory	 location	 0x4000.4400
using	bit-banding.	What	effect	does	this	operation	have?
1.8	 	Write	C	code	 that	clears	bit	3	of	memory	 location	0x4000.7400
using	bit-banding.	What	effect	does	this	operation	have?
1.9	 	Where	 is	 the	 interrupt	enable	bit	on	ARM	Cortex-M	processor?
Which	value	enables	interrupts:	0	or	1?
1.10Does	the	associative	principle	hold	for	signed	integer	multiply	and
divide?	Assume Out1	Out2	A	B	C are	all	the	same	precision	(e.g.,	32
bits).	 In	 particular	 do	 these	 two	 C	 calculations	 always	 achieve
identical	outputs?	If	not,	give	an	example.
Out1	=	(A*B)/C;	Out2	=	A*(B/C);
	
1.11Does	the	associative	principle	hold	for	signed	integer	addition	and
subtraction?	Assume Out3	Out4	A	 B	C 	 are	 all	 the	 same	 precision
(e.g.,	32	bits).	In	particular	do	these	two	C	calculations	always	achieve
identical	outputs?	If	not,	give	an	example.
Out3	=	(A+B)-C;	Out4	=	A+(B-C);
	



1.12	 	 According	 to	AAPCS,	which	 registers	must	 be	 preserved	 and
which	registers	are	free	to	modify	by	a	function?
1.13	 	A	C	function	has	 this	prototype, void	MyProg(int	a,	 int	b,	 int
c) .	If	one	placed	a	breakpoint	at	the	beginning	of	this	function,	where
would	you	find	the	parameters	a,	b,	and	c?
1.14	 	Write	 two	assembly	 functions	 that	 return	R0	equal	 to	31	 times
the	 input.	One	 function	 uses	 the	multiply	 function	 and	 one	 uses	 the
shift	and	reverse	subtract.	Make	the	functions	comply	with	AAPC,	so
R0	is	the	input	and	R0	is	the	output.
1.15		Let	R0	and	R1	be	 two	unsigned	 integers.	Write	assembly	code
that	makes	R0	 the	 larger	 of	 the	 two	 using	 the	 conditional	 assembly
instruction IT .
1.16	 	Consider	 a	 software	 system	 that	 allocates	 memory	 block	 i	 of
Sizei	in	the	order	of	i	=	0,	1,	2,	...		In	this	system,	blocks	will	always	be
deallocated	in	the	opposite	order.	Prove	that	the	memory	manage	will
never	 result	 in	 fragmentation	 (two	 free	blocks	 that	are	not	adjacent.)
Write	 three	 functions	 (init,	malloc,	 and	 free)	 that	 implement	 a	 heap
used	in	this	manner.

#define	SIZE	1000
uint8_t	Heap[SIZE];

	

	



2.	Microcontroller	Input/Output
Chapter	2	objectives	are	to:
•	Overview	digital	I/O	on	the	MSP432	and	TM4C
•	Review	interrupt	synchronization
•	Introduce	timer	and	edge-triggered	interrupts
•	Define	 simple	 serial	 communication	 using	 the	UART	and
SPI
•	Present	timer	I/O	with	input	capture	and	PWM
•	Overview	analog	I/O	using	a	DAC	and	an	ADC
	

The	overall	objective	of	this	book	is	to	teach	the	design	of	real-
time	operating	systems	for	embedded	systems.	This	chapter	will
review	 interfacing	 to	 the	 Texas	 Instruments	 MSP432/TM4C
family	 of	 microcontrollers.	 Hardware	 and	 software	 aspects	 of
interfacing	 to	 the	 microcontroller	 were	 presented	 in	 detail	 in
Volume	 2.	 In	 particular,	 this	 chapter	 is	 an	 abridged	 version	 of
Volume	2	summarizing	I/O	interfacing	concepts,	presenting	some
reference	material.	 The	 reader	 can	 refer	 to	 Volume	 2	 for	 more
details	including	more	design	examples.



2.1.	Parallel	I/O
On	 most	 embedded	 microcontrollers,	 the	 I/O	 ports	 are	 memory
mapped.	 This	 means	 the	 software	 can	 access	 an	 input/output	 port
simply	 by	 reading	 from	 or	 writing	 to	 the	 appropriate	 address.	 It	 is
important	to	realize	that	even	though	I/O	operations	“look”	like	reads
and	writes	to	memory	variables,	the	I/O	ports	often	DO	NOT	act	like
memory.	For	 example,	 some	bits	 are	 read-only,	 some	are	write-only,
some	can	only	be	cleared,	others	can	only	be	set,	and	some	bits	cannot
be	 modified.	 To	 make	 our	 software	 more	 readable	 we	 include
symbolic	definitions	for	the	I/O	ports.	We	set	the	direction	register	to
specify	which	pins	are	input	and	which	are	output.	Individual	port	pins
can	be	general	purpose	I/O	(GPIO)	or	have	an	alternate	function.
With	 a	 parallel	 input	 software	 reads	 a	 binary	 one	 if	 the	 input	 pin	 is
high.	The	software	reads	a	binary	zero	if	the	input	pin	is	low.	With	a
parallel	output,	when	the	software	writes	a	1,	the	output	pin	goes	high.
When	 the	 software	 writes	 a	 0,	 the	 output	 pin	 goes	 low.
Microcontrollers	allow	parallel	I/O	to	8	or	16	pins	at	a	time,	hence	the
classification	as	parallel	I/O.

2.1.1.	TM4C	I/O	programming
Pins	 have	 a	 regular	 (GPIO)	 or	 can	 have	 one	 of	 multiple	 alternate
functions.	 By	 default,	 the	 alternate	 function	 register
(e.g., GPIO_PORTD_AFSEL_R )	 is	 zero,	 specifying	 the
corresponding	 bits	 are	 regular	 GPIO	 pins.	 We	 will	 set	 bits	 in	 the
alternative	 function	 register	 when	 we	 wish	 to	 activate	 the	 functions
listed	 in	Tables	1.4,	and	1.5.	Typically,	we	write	 to	 the	direction	and
alternate	function	registers	once	during	the	initialization	phase.	We	use
the	 data	 register(e.g., GPIO_PORTD_DATA_R )	 to	 perform
input/output	 on	 the	 port.	 Conversely,	 we	 read	 and	 write	 the	 data
register	multiple	times	to	perform	input	and	output	respectively	during
the	running	phase.	The	only	differences	among	the	TM4C	family	are
the	number	of	ports	and	available	pins	in	each	port.	For	example,	the
TM4C1294	 has	 fifteen	 digital	 I/O	 ports	 A	 (8	 bits),	 B	 (6	 bits),	 C	 (8
bits),	D	(8	bits),	E	(6	bits),	F	(5	bits),	G	(2	bits),	H	(4	bits),	J	(2	bits),	K



(8	 bits),	 L	 (8	 bits),	M	 (8	 bits),	N(6	 bits),	 P	 (6	 bits),	 and	Q	 (5	 bits).
Furthermore,	the	TM4C1294	has	different	addresses	for	ports.	Refer	to
the	 file	 tm4c1294ncpdt.h	 or	 to	 the	 data	 sheet	 for	more	 the	 specific
addresses	of	its	I/O	ports.
To	 initialize	an	 I/O	port	 for	general	use	we	perform	seven	steps,	 see
Program	 2.1.	 We	 will	 skip	 steps	 three	 four	 and	 six	 in	 this	 chapter
because	the	default	state	after	a	reset	is	to	disable	analog	function	and
disable	alternate	function.	First,	we	activate	 the	clock	for	 the	port	by
setting	the	corresponding	bit	in	RCGCGPIO	register.	Because	it	takes
time	for	the	clock	to	stabilize,	we	next	will	wait	for	its	status	bit	in	the
PRGPIO	to	be	true.	Second,	we	unlock	the	port;	unlocking	is	needed
only	for	pins	PD7,	and	PF0	on	 the	TM4C123.	The	only	pin	needing
unlocking	 on	 the	 TM4C1294	 is	 PD7.	 Third,	 we	 disable	 the	 analog
function	of	 the	pin,	because	we	will	be	using	 the	pin	 for	digital	 I/O.
Fourth,	we	clear	bits	 in	 the	PCTL	 (Tables	1.4,	1.5)	 to	 select	 regular
digital	 function.	 Fifth,	 we	 set	 its	 direction	 register.	 The	 direction
register	specifies	bit	 for	bit	whether	 the	corresponding	pins	are	 input
or	output.	A	bit	in	DIR	set	to	0	means	input	and	1	means	output.	Sixth,
we	clear	bits	in	the	alternate	function	register,	and	lastly,	we	enable	the
digital	 port.	 Turning	 on	 the	 clock	 must	 be	 first.	 If	 the	 pin	 needs
unlocking	 that	 must	 be	 second.	 However,	 the	 other	 five	 steps	 can
occur	in	any	order.

	 void	PortF_Init(void){	//	TM4C123	has	PortF	bits	4-0
		SYSCTL_RCGCGPIO_R	|=	0x00000020;		//	1)	activate	clock	for	Port	F
		while((SYSCTL_PRGPIO_R&0x00000020)	==	0){};//	wait	for	stabilization
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;			//	2)	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;											//	allow	changes	to	PF4-0
		GPIO_PORTF_AMSEL_R	=	0x00;								//	3)	disable	analog	on	PF
		GPIO_PORTF_PCTL_R	=	0x00000000;			//	4)	PCTL	GPIO	on	PF4-0
		GPIO_PORTF_DIR_R	=	0x0E;										//	5)	PF4,PF0	in,	PF3-1	out
		GPIO_PORTF_AFSEL_R	=	0x00;								//	6)	disable	alt	funct	on	PF4-0
		GPIO_PORTF_PUR_R	=	0x11;										//	enable	pull-up	on	PF0	and	PF4
		GPIO_PORTF_DEN_R	=	0x1F;										//	7)	enable	digital	I/O	on	PF4-0

}

uint32_t	PortF_Input(void){
		return	(GPIO_PORTF_DATA_R&0x11);		//	read	PF4,PF0	inputs



}

void	PortF_Output(uint32_t	data){
		GPIO_PORTF_DATA_R	=	data;						//	write	PF3-PF1	outputs

}

Program	2.1.	A	set	of	functions	using	PF4,	PF0	as	inputs	and
PF3 –PF1	as	outputs.
Address 7 6 5 4 3 2 1 0 Name
$400F.E608

- -
GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 1 1 1 1 1 1 1 1 GPIO_PORTA_CR_R
$4000.4528 0 0 0 0 0 0 0 0 GPIO_PORTA_AMSEL_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.5510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_PUR_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R
$4000.5524 1 1 1 1 1 1 1 1 GPIO_PORTB_CR_R
$4000.5528 0 0 AMSEL AMSEL 0 0 0 0 GPIO_PORTB_AMSEL_R
$4000.63FC DATA DATA DATA DATA JTAG JTAG JTAG JTAG GPIO_PORTC_DATA_R
$4000.6400 DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_DIR_R
$4000.6420 SEL SEL SEL SEL JTAG JTAG JTAG JTAG GPIO_PORTC_AFSEL_R
$4000.6510 PUE PUE PUE PUE JTAG JTAG JTAG JTAG GPIO_PORTC_PUR_R
$4000.651C DEN DEN DEN DEN JTAG JTAG JTAG JTAG GPIO_PORTC_DEN_R
$4000.6524 1 1 1 1 JTAG JTAG JTAG JTAG GPIO_PORTC_CR_R
$4000.6528 AMSEL AMSEL AMSEL AMSEL JTAG JTAG JTAG JTAG GPIO_PORTC_AMSEL_R
$4000.73FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTD_DATA_R
$4000.7400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTD_DIR_R
$4000.7420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTD_AFSEL_R
$4000.7510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTD_PUR_R
$4000.751C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTD_DEN_R
$4000.7524 CR 1 1 1 1 1 1 1 GPIO_PORTD_CR_R
$4000.7528 0 0 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTD_AMSEL_R
$4002.43FC 	 	 DATA DATA DATA DATA DATA DATA GPIO_PORTE_DATA_R



$4002.4400 	 	 DIR DIR DIR DIR DIR DIR GPIO_PORTE_DIR_R
$4002.4420 	 	 SEL SEL SEL SEL SEL SEL GPIO_PORTE_AFSEL_R
$4002.4510 	 	 PUE PUE PUE PUE PUE PUE GPIO_PORTE_PUR_R
$4002.451C 	 	 DEN DEN DEN DEN DEN DEN GPIO_PORTE_DEN_R
$4002.4524 	 	 1 1 1 1 1 1 GPIO_PORTE_CR_R
$4002.4528 	 	 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTE_AMSEL_R
$4002.53FC 	 	 	 DATA DATA DATA DATA DATA GPIO_PORTF_DATA_R
$4002.5400 	 	 	 DIR DIR DIR DIR DIR GPIO_PORTF_DIR_R
$4002.5420 	 	 	 SEL SEL SEL SEL SEL GPIO_PORTF_AFSEL_R
$4002.5510 	 	 	 PUE PUE PUE PUE PUE GPIO_PORTF_PUR_R
$4002.551C 	 	 	 DEN DEN DEN DEN DEN GPIO_PORTF_DEN_R
$4002.5524 	 	 	 1 1 1 1 CR GPIO_PORTF_CR_R
$4002.5528 	 	 	 0 0 0 0 0 GPIO_PORTF_AMSEL_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.552C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTB_PCTL_R
$4000.652C PMC7 PMC6 PMC5 PMC4 0x1 0x1 0x1 0x1 GPIO_PORTC_PCTL_R
$4000.752C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTD_PCTL_R
$4002.452C 	 	 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTE_PCTL_R
$4002.552C 	 	 	 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTF_PCTL_R
$4000.6520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTC_LOCK_R
$4000.7520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTD_LOCK_R
$4002.5520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTF_LOCK_R

Table	2.1.	Some	TM4C123	parallel	ports.	Each	register	is	32	bits	wide.	For
PMCx	bits,	see	Tables	1.4	and	1.5.	JTAG	means	do	not	use	these	pins	and
do	not	change	any	of	these	bits.

To	 use	 a	 port	 we	 first	 must	 activate	 its	 clock	 in
the SYSCTL_RCGCGPIO_R register.	To	make	Port	F	pins	4,0	input
and	pins	3–1	output,	we	set	the	direction	register	to	0x0E,	as	shown	in
Program	2.1.	When	the	software	reads	from	location	0x400253FC	the
bottom	5	bits	are	returned	with	the	current	values	on	Port	F.	The	top
27	bits	are	returned	zero.	The	input	pins	show	the	current	digital	state,
and	 the	 output	 pins	 show	 the	 value	 last	 written	 to	 the	 port.	 The
function PortF_Input 	will	read	from	the	two	input	pins	and	return	a
value,	0x00	0x01,	0x10	or	0x11,	depending	on	the	current	status	of	the
inputs.	The	function PortF_Output 	will	write	new	values	to	the	three
output	pins.
In	Program	2.1	the	assumption	was	the	software	module	had	access	to
all	of	Port	F.	In	other	words,	this	software	owned	all	five	pins	of	Port
F.	In	most	cases,	a	software	module	needs	access	to	only	some	of	the



port	 pins.	 If	 two	 or	more	 software	modules	 access	 the	 same	 port,	 a
conflict	 will	 occur	 if	 one	 module	 changes	 modes	 or	 output	 values
owned	by	another	module.	It	is	good	software	design	to	write	friendly
software,	which	 only	 affects	 the	 individual	 pins	 as	 needed.	 Friendly
software	 does	 not	 change	 the	 other	 bits	 in	 a	 shared	 register.
Conversely,	unfriendly	software	modifies	more	bits	of	a	register	than
it	needs	to.	The	difficulty	of	unfriendly	code	is	each	module	will	run
properly	when	tested	by	itself,	but	weird	bugs	result	when	two	or	more
modules	are	combined.
Consider	 the	 problem	 that	 a	 software	module	 need	 to	 output	 to	 just
Port	F	bit	1.	After	enabling	the	clock	for	Port	F,	we	use	read-modify-
write	software	to	initialize	just	pin	1

		SYSCTL_RCGCGPIO_R	|=	0x00000020;	//	activate	clock	for	Port	F
		while((SYSCTL_PRGPIO_R&0x00000020)	==	0){};//	clock	stabilization
		GPIO_PORTF_AMSEL_R	&=	~0x02;						//	disable	analog	on	PF1
		GPIO_PORTF_PCTL_R	&=	~0x000000F0;	//	PCTL	GPIO	on	PF1
		GPIO_PORTF_DIR_R	|=	0x02;									//	PF1	is	an	output
		GPIO_PORTF_AFSEL_R	&=	~0x02;						//	regular	port	function
		GPIO_PORTF_DEN_R	|=	0x02;									//	PF1	is	enabled	as	a	digital	port
	

There	is	no	conflict	if	two	or	more	modules	enable	the	clock	for	Port
F.	 There	 are	 two	 ways	 on	 the	 Cortex-M	 microcontroller	 to	 access
individual	 port	 bits.	 The	 first	 method	 is	 to	 use	 read-modify-write
software	to	change	just	pin	1.		A	read-or-write	sequence	can	be	used	to
set	one	or	more	bits.

		GPIO_PORTF_DATA_R	|=	0x02;							//	make	PF1	high
	

A	read-and-write	sequence	can	be	used	to	clear	one	or	more	bits.
		GPIO_PORTF_DATA_R	&=	~0x02;						//	make	PF1	low
	

The	second	method	uses	the	bit-specific	addressing.	The	TM4C	family
implements	 a	 more	 flexible	 way	 to	 access	 port	 pins	 than	 the	 bit-
banding.	 This	 bit-specific	 addressing	 doesn’t	 work	 for	 all	 the	 I/O
registers,	 just	 the	parallel	port	data	 registers.	This	mechanism	allows
collective	access	to	1	to	8	bits	in	a	data	port.	We	define	eight	address
offset	constants	in	Table	2.2.	Basically,	if	we	are	interested	in	bit	b,	the
constant	 is	 4*2b.	 There	 256	 possible	 bit	 combinations	 we	 might	 be



interested	 in	 accessing,	 from	 all	 of	 them	 to	 none	 of	 them.	 Each
possible	 bit	 combination	 has	 a	 separate	 address	 for	 accessing	 that
combination.	 For	 each	 bit	 we	 are	 interested	 in,	 we	 add	 up	 the
corresponding	constants	from	Table	2.2	and	then	add	that	sum	to	the
base	address	for	the	port.	The	base	addresses	for	the	data	ports	can	be
found	in	GPIO	chapter	of	the	microcontroller	data	sheet.	For	example,
assume	we	are	interested	in	Port	A	bits	1,	2,	and	3.	The	base	address
for	Port	A	is	0x4000.4000,	and	the	constants	are	0x0020,	0x0010	and
0x008.	 The	 sum	 of	 0x4000.4000+0x0020+0x0010+0x008	 is	 the
address	0x4000.4038.	If	we	read	from	0x4000.4038	only	bits	1,	2,	and
3	will	be	returned.	If	we	write	to	this	address	only	bits	1,	2,	and	3	will
be	modified.

If	we	wish	to	access
bit

Constant

7 0x0200
6 0x0100
5 0x0080
4 0x0040
3 0x0020
2 0x0010
1 0x0008
0 0x0004

Table	2.2.	Address	offsets	used	to	specify	individual	data	port	bits.
The	base	address	 for	Port	F	 is	0x4002.5000.	 If	we	want	 to	 read	and
write	 all	 8	 bits	 of	 this	 port,	 the	 constants	 will	 add	 up	 to	 0x03FC.
Notice	 that	 the	 sum	of	 the	base	 address	 and	 the	 constants	yields	 the
0x4002.53FC	address	used	in	tm4c123gh6pm.h.	In	other	words,	read
and	write	operations	to	0x4002.53FC	will	access	all	bits	of	Port	F.	If
we	 are	 interested	 in	 just	 bit	 1	 of	 Port	 F,	 we	 add	 0x0008	 to
0x4002.5000,	to	get		0x4002.5008.	Now,	a	simple	write	operation	can
be	used	to	set PF1 .	The	following	macros	are	friendly	because	it	does
not	modify	the	other	bits	of	Port	F.	A	read	from PF1 	will	return	0x02
or	0x00	depending	on	whether	the	pin	is	high	or	low,	respectively.	The
PF1	and	PF2	macros	are	not	critical	with	respect	each	other.

#define	PF1			(*((volatile	uint32_t	*)0x40025008))
#define	SetPF1()				(PF1	=	0x02)						



#define	ClearPF1()		(PF1	=	0x00)						
#define	TogglePF1()(PF1	=	PF1^0x02)

#define	PF2			(*((volatile	uint32_t	*)0x40025010))
#define	SetPF2()				(PF2	=	0x04)						
#define	ClearPF2()		(PF2	=	0x00)						

#define	TogglePF2()	(PF2	=	PF2^0x04)		

2.1.2.	MSP432	I/O	programming
We	will	set/clear	bits	 in	 the	select	 registers	 (e.g., P1SEL1	P1SEL0 )
when	we	wish	to	activate	the	alternate	functions	listed	in	Table	2.3.	To
use	 a	 pin	 as	GPIO,	we	must	 clear	 the	 corresponding	bits	 in	 the	 two
select	registers.	Typically,	we	write	to	the	direction	and	select	registers
once	 during	 the	 initialization	 phase.	 We	 use	 the	 data
registers(e.g., P1IN	P1OUT )	 to	 perform	 the	 actual	 input/output	 on
the	port.	Table	2.4	shows	the	parallel	port	registers	for	Ports	1	and	2,
but	 there	are	similar	registers	for	other	ports	3	–	10.	Each	register	 in
Table	2.4	is	8	bits	wide.
To	 make	 a	 pin	 an	 output,	 we	 set	 the	 corresponding	 bit	 in	 the
PxDIRregister	to	1.	In	addition,	we	can	also	set	the	corresponding	bit
in	 the	 drive	 strength	 register	 (e.g., P2DS )	 to	 increase	 the	maximum
IOL	 and	 IOH	 of	 the	 pin	 to	 20	 mA.	 Normal	 strength	 is	 DS=0,	 and
increased	strength,	called	high	drive,	is	DS=1.	High-drive	with	DS=1
is	available	only	on	P2.0	–	P2.3.

Pin PxSEL1=0,
PxSEL0=0

PxSEL1=0,	PxSEL0=1 PxSEL1=1,	PxSEL0=0 PxSEL1=1,
PxSEL0=1

P1.0 Port UCA0STE 	 	
P1.1 Port UCA0CLK 	 	
P1.2 Port UCA0RXD/UCA0SOMI 	 	
P1.3 Port UCA0TXD/UCA0SIMO 	 	
P1.4 Port UCB0STE 	 	
P1.5 Port UCB0CLK 	 	
P1.6 Port UCB0SIMO/UCB0SDA 	 	
P1.7 Port UCB0SOMI/UCB0SCL 	 	
P2.0 Port UCA1STE 	 	
P2.1 Port UCA1CLK 	 	
P2.2 Port UCA1RXD/UCA1SOMI 	 	
P2.3 Port UCA1TXD/UCA1SIMO 	 	
P2.4 Port TA0.CCI1Aa	/	TA0.1b 	 	



P2.5 Port TA0.CCI2Aa	/	TA0.2b 	 	

P2.6 Port TA0.CCI3Aa	/	TA0.3b 	 	

P2.7 Port TA0.CCI4Aa	/	TA0.4b 	 	

P3.0 Port UCA2STE 	 	
P3.1 Port UCA2CLK 	 	
P3.2 Port UCA2RXD/UCA2SOMI 	 	
P3.3 Port UCA2TXD/UCA2SIMO 	 	
P3.4 Port UCB2STE 	 	
P3.5 Port UCB2CLK 	 	
P3.6 Port UCB2SIMO/UCB2SDA 	 	
P3.7 Port UCB2SOMI/UCB2SCL 	 	
P4.0 Port 	 	 A13
P4.1 Port 	 	 A12
P4.2 Port ACLKb TA2CLKa A11

P4.3 Port MCLKb RTCCLKb A10

P4.4 Port HSMCLKb SVMHOUTb A9

P4.5 Port 	 	 A8
P4.6 Port 	 	 A7
P4.7 Port 	 	 A6
P5.0 Port 	 	 A5
P5.1 Port 	 	 A4
P5.2 Port 	 	 A3
P5.3 Port 	 	 A2
P5.4 Port 	 	 A1
P5.5 Port 	 	 A0
P5.6 Port TA2.CCI1Aa	/	TA2.1b 	 VREF+,	VeREF+,

C1.7
P5.7 Port TA2.CCI2Aa	/	TA2.2b 	 VREF-,	VeREF-,

C1.6
P6.0 Port 	 	 A15
P6.1 Port 	 	 A14
P6.2 Port UCB1STE 	 C1.5
P6.3 Port UCB1CLK 	 C1.4
P6.4 Port UCB1SIMO/UCB1SDA 	 C1.3
P6.5 Port UCB1SOMI/UCB1SCL 	 C1.2
P6.6 Port TA2.CCI3Aa	/	TA2.3b UCB3SIMO/UCB3SDA C1.1

P6.7 Port TA2.CCI4Aa	/	TA2.4b UCB3SOMI/UCB3SCL C1.0

P7.0 Port DMAE0a	/	SMCLKb 	 	

P7.1 Port TA0CLKa	/	C0OUTb 	 	

P7.2 Port TA1CLKa	/	C1OUTb 	 	

P7.3 Port TA0.CCI0Aa	/	TA0.0b 	 	

P7.4 Port TA1.CCI4Aa	/	TA1.4b 	 C0.5



P7.5 Port TA1.CCI3Aa	/	TA1.3b 	 C0.4

P7.6 Port TA1.CCI2Aa	/	TA1.2b 	 C0.3

P7.7 Port TA1.CCI1Aa	/	TA1.1b 	 C0.2

P8.0 Port UCB3STE TA1.CCI0Aa	/	TA1.0b C0.1

P8.1 Port UCB3CLK TA2.CCI0Aa	/	TA2.0b C0.0

Pin PxSEL1=0,
PxSEL0=0

PxSEL1=0,	PxSEL0=1 PxSEL1=1,	PxSEL0=0 PxSEL1=1,
PxSEL0=1

P8.2 Port TA3.CCI2Aa	/	TA3.2b 	 A23

P8.3 Port TA3CLKa 	 A22

P8.4 Port 	 	 A21
P8.5 Port 	 	 A20
P8.6 Port 	 	 A19
P8.7 Port 	 	 A18
P9.0 Port 	 	 A17
P9.1 Port 	 	 A16
P9.2 Port TA3.CCI3Aa	/	TA3.3b 	 	

P9.3 Port TA3.CCI4Aa	/	TA3.4b 	 	

P9.4 Port UCA3STE 	 	
P9.5 Port UCA3CLK 	 	
P9.6 Port UCA3RXD/UCA3SOMI 	 	
P9.7 Port UCA3TXD/UCA3SIMO 	 	
P10.0 Port UCB3STE 	 	
P10.1 Port UCB3CLK 	 	
P10.2 Port UCB3SIMO/UCB3SDA 	 	
P10.3 Port UCB3SOMI/UCB3SCL 	 	
P10.4 Port TA3.CCI0Aa	/	TA3.0b 	 C0.7

P10.5 Port TA3.CCI1Aa	/	TA3.1b 	 C0.6

Table	2.3.	SEL1	and	SEL0	bits	on	the	MSP432	specify	alternate	functions.
P1.2	and	P1.3	are	hardwired	to	the	serial	port.	a	means	DIR	register	is	zero,
b	means	DIR	register	is	one.
	

To	make	a	pin	an	input,	we	clear	the	corresponding	bit	in	the	PxDIR
register	 to	 0.	 In	 addition,	 we	 can	 activate	 a	 pull	 up	 or	 pull	 down
resistor	 on	 an	 input	 pin.	 To	 activate	 a	 pull	 up	 resistor,	 we	 set
PxREN=1	 and	PxOUT=1.	 To	 activate	 a	 pull	 down	 resistor,	 we	 set
PxREN=1	 and	 clear	 PxOUT=0.	 The	 equalivalent	 resistance	 of	 the
pull	up	or	pull	down	resistor	is	about	20	–	50	kΩ.

Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 DATA DATA DATA DATA DATA DATA DATA DATA P1IN



0x4000.4C02 DATA DATA DATA DATA DATA DATA DATA DATA P1OUT
0x4000.4C04 DIR DIR DIR DIR DIR DIR DIR DIR P1DIR
0x4000.4C06 REN REN REN REN REN REN REN REN P1REN
0x4000.4C08 DS DS DS DS DS DS DS DS P1DS
0x4000.4C0A SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P1SEL0
0x4000.4C0C SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P1SEL1
0x4000.4C01 DATA DATA DATA DATA DATA DATA DATA DATA P2IN
0x4000.4C03 DATA DATA DATA DATA DATA DATA DATA DATA P2OUT
0x4000.4C05 DIR DIR DIR DIR DIR DIR DIR DIR P2DIR
0x4000.4C07 REN REN REN REN REN REN REN REN P2REN
0x4000.4C09 DS DS DS DS DS DS DS DS P2DS
0x4000.4C0B SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P2SEL0
0x4000.4C0D SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P2SEL1

Table	2.4.	MSP432	parallel	ports	1	and	2.	Each	register	is	8	bits	wide.	For
SEL	bits,	see	Table	2.3.

	

Table	2.5	lists	the	possible	ways	to	configure	a	GPIO	pin.	To	initialize
an	 I/O	port	 for	general	use	we	perform	three	steps.	First,	we	specify
GPIO	writing	 zeros	 to	 the	PxSEL0	 and	 	PxSEL1	 registers.	 Second,
we	set	its	direction	register.	The	direction	register	specifies	bit	for	bit
whether	the	corresponding	pins	are	input	or	output,	0	means	input	and
1	means	output.	Third,	for	 inputs	we	can	add	a	pull	up	or	pull	down
resistor.	For	outputs	we	can	specify	drive	strength	using	P2DS	on	P2.0
–	P2.3.
	

PxDIR PxOut PxDS PxREN Functionality
0 X X 0 Regular	GPIO	input
0 0 X 1 GPIO	 input	 with	 pull

down
0 1 X 1 GPIO	 input	 with	 pull

up
1 0 0 X Regular	 GPIO	 output

low
1 1 0 X Regular	 GPIO	 output

high
1 0 0 1 High	 drive	 GPIO

output	low
1 1 0 1 High	 drive	 GPIO

output	high



Table	2.5.	MSP432	GPIO	functions,	assuming	PxSEL0	and	PxSEL1	are
zero.	The	little	x	specifies	port	1	–	10.	The	big	X	means	don’t	care.
	

A	 16-bit	 read	 access
from	 address	 0x40004C00	 (defined	 as	 PAIN)	 will	 return	 the	 input
values	from	both	Ports	1	and	2	as	one	16-bit	result.	Since	the	ARM	is
little	endian,	Port	1	will	be	in	least	significant	bits	and	Port	2	will	be	in
the	most	 significant	 bits.	 Similarly,	 a	 16-bit	 write	 access	 to	 address
0x40004C02	 (defined	as	PAOUT)	will	 set	 the	output	 values	 to	both
Ports	1	and	2	in	one	16-bit	operation.	In	fact,	we	have	16-bit	names	for
each	set	of	adjacent	8-bit	ports.	16-bit	port	definitions	are	available	for
Ports	A	–	E.	Definitions	for	Port	A	are	shown	below.

#define	PAIN			(HWREG16(0x40004C00))	//	Input
#define	PAOUT		(HWREG16(0x40004C02))	//	Output
#define	PADIR		(HWREG16(0x40004C04))	//	Direction
#define	PAREN		(HWREG16(0x40004C06))	//	Resistor
#define	PADS			(HWREG16(0x40004C08))	//	Strength
#define	PASEL0	(HWREG16(0x40004C0A))	//	Select	0
#define	PASEL1	(HWREG16(0x40004C0C))	//	Select	1
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Port
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In	this	first	example,	we	will	initialize	the	LaunchPad	so	we	can	read
from	the	two	switches	and	output	to	the	3-color	LED.	In	particular,	we
will	make	P1.4	 and	P1.1	GPIO	 inputs,	 and	we	will	make	P2.2-P2.0
GPIO	outputs,	as	shown	in	Program	2.2.	To	run	 this	example	on	 the
LaunchPad,	we	also	set	bits	in	the	P1REN	register	for	the	two	switch



inputs	 to	have	an	 internal	pull-up	resistor,	equivalent	 to	20	–	50	kΩ.
To	make	the	resistor	a	pull	up	to	3.3V,	the	initialization	software	sets
the	corresponding	bits	in	the	P1OUT	register.
When	the	software	performs	an	8-bit	read	from	location	0x40004C00,
the	 8	 bits	 are	 returned	 with	 the	 values	 currently	 on	 Port	 1.	 When
reading	an	I/O	port,	the	input	pins	report	the	high/low	state	currently
on	 the	 input,	 and	 the	 output	 pins	 show	 the	 value	 last	written	 to	 the
port.	The	function Port1_Input 	will	 read	from	all	eight	Port	1	pins,
and	return	a	value	depending	on	the	status	of	the	pins	at	the	time	of	the
read.
When	writing	 to	an	 I/O	port,	 the	 input	pins	are	not	affected,	and	 the
output	 pins	 are	 changed	 to	 the	 value	written	 to	 the	 port.	 That	 value
remains	 until	 written	 again.	 The	 function Port2_Output will	 write
new	 values	 to	 the	 output	 pins.	 The #include will	 define	 symbolic
names	 for	 all	 the	 I/O	 ports	 for	 that	 microcontroller.
Themsp432p401r.h 	 file	 comes	 with	 the	 compiler	 installation.	 Use
the	proper	one	for	your	microcontroller.	Program	2.2	writes	all	bits	of
the	 port	 registers,	 and	 this	 is	 an	 inappropriate	 method	 of	 I/O
programming.	In	general,	it	is	better	to	set/clear	bits	on	an	individual
basis.
Observation:	High	drive	strength	(DS=1)	is	only	available	on	P2.0
P2.1	P2.2	and	P2.3.	Setting	DS=1	does	not	make	the	current	20
mA,	rather	makes	it	possible	for	the	pin	to	drive	up	to	20	mA	if
needed.

void	Port1_Init(void){
		P1SEL0	&=	~0x12;
		P1SEL1	&=	~0x12;				//	1)	configure	P1.4	and	P1.1	as	GPIO
		P1DIR	&=	~0x12;					//	2)	make	P1.4	and	P1.1	in
		P1REN	|=	0x12;						//	3)	enable	pull	resistors	on	P1.4	and	P1.1
		P1OUT	|=	0x12;						//				P1.4	and	P1.1	are	pull-up

}

uint8_t	Port1_Input(void){
		return	(P1IN&0x12);			//	read	P1.4,P1.1	inputs

}



void	Port2_Init(void){
		P2SEL0	&=	~0x07;
		P2SEL1	&=	~0x07;				//	1)	configure	P2.2-P2.0	as	GPIO
		P2DIR	|=	0x07;						//	2)	make	P2.2-P2.0	out
		P2DS	|=	0x07;							//	3)	activate	increased	drive	strength
		P2OUT	&=	~0x07;				//				all	LEDs	off

}

void	Port2_Output(uint8_t	data){	//	write	three	outputs	bits	of	P2
		P2OUT	=	(P2OUT&0xF8)|data;

}

Program	2.2.	A	set	of	functions	using	P1.4,P1.1	as	inputs	and
P2.2-0	as	outputs	(InputOutput_MSP432).

Checkpoint	2.1:	Does	the	entire	port	need	to	be	defined	as	input	or
output,	or	can	some	pins	be	input	while	others	are	output?

In	Program	2.2	the	assumption	was	the	software	module	did	not	have
access	to	all	of	Port	2.	In	other	words,	this	software	owned	only	P1.4,
P1.1,	 P2.2,	 P2.1,	 and	 P2.0.	 Good	 design	 practice	 clearly	 specifies
which	pins	belong	to	which	software	modules.	If	two	or	more	software
modules	 access	 the	 same	 port,	 a	 conflict	 will	 occur	 if	 one	 module
changes	modes	or	output	values	owned	by	another	module.	It	is	good
software	 design	 to	 write	 friendly	 software,	 which	 only	 affects	 the
individual	pins	as	needed.	Friendly	software	does	not	change	the	other
bits	 in	 a	 shared	 register.	 Conversely,	 unfriendly	 software	 modifies
more	 bits	 of	 a	 register	 than	 it	 needs	 to.	 The	 difficulty	 of	 unfriendly
code	is	each	module	will	run	properly	when	tested	by	itself,	but	weird
bugs	result	when	two	or	more	modules	are	combined.	A	read-or-write
sequence	 can	 be	 used	 to	 set	 one	 or	 more	 bits.	 A	 read-and-write
sequence	can	be	used	to	clear	one	or	more	bits.
The	second	method	uses	the	bit-banding.	In	this	example,	assume	P1.0
is	 an	 output	 connected	 to	 the	 LED.	 The	 regular	 8-bit	 access	 for
P1OUT	 	 is	 0x40004C02.	 For	 bit-banding	 of	 bit	 0	 of	 this	 address,
n=0x4C01	 and	b	 =0.	The	 address	 for	 this	 bit	will	 be	0x42000000	 +
32*n	+	4*b	=	0x42000000	+	32*0x4C02	+	4*0	=	0x42098040



In	C	we	can	create	an	I/O	port	label	for	just	bit	0	of	Port	1	output.
#define	LEDOUT	(*((volatile	uint8_t	*)(0x42098040)))	
With	 this	 bit-banded	 definition,	 accessing	 P1.0	 is	 much	 simpler.
Writing	a	1	to	a	bit-banded	address	sets	that	bit,	and	writing	a	0	clears
that	bit	(without	affecting	the	other	7	bits).

#define	LED_On()	(LEDOUT	=	0x01)
#define	LED_Off()	(LEDOUT	=	0x00)

We	can	also	create	bit-banded	addresses	 for	 the	 two	switches	on	 the
LaunchPad.	Reading	a	bit-banded	address	returns	0	or	1	depending	on
if	the	bit	is	clear	or	set.	SW2	is	Port	1	bit	4	and	SW1	is	Port	1	bit	1.
The	address	of	P1IN	is	0x40004C00.	For	bit-banding	of	this	address,
n=0x4C00.	The	aliased	addresses	for	bits	4	and	1	will	be	0x42000000
+	32*0x4C00	+	4*4	=	0x42098010
0x42000000	+	32*0x4C00	+	4*1	=	0x42098004
In	C	we	can	create	I/O	port	label	for	SW1	and	SW2	input.
#define	SW2IN	(*((volatile	uint8_t	*)(0x42098010)))	
#define	SW1IN	(*((volatile	uint8_t	*)(0x42098004)))	

	
The	switches	are	negative	logic.	Using SW2IN will	return	a	1	if	P1.4
is	1	(SW2	switch	not	pressed),	and	will	return	a	0	if	P1.4	is	0	(SW2
switch	 pressed).	 Using SW1IN 	 will	 return	 a	 1	 if	 P1.1	 is	 1	 (SW1
switch	 not	 pressed),	 and	 will	 return	 a	 0	 if	 P1.1	 is	 0	 (SW1	 switch
pressed).
Bit-banding	only	works	for	individual	bits.	It	cannot	be	used	to	access
more	 than	one	bit	at	a	 time.	Recall	 the	3-color	LED	is	 interfaced	on
P2.2	P2.1	and	P2.0.	There	is	no	bit-banded	address	to	allow	us	to	set
all	three	bits	in	one	operation.	We	could	use	bit-banding	to	access	the
colors	on	P2.2	P2.1	and	P2.0	individually.
#define	BLUELED		(*((volatile	uint8_t	*)(0x42098068)))	
#define	GREENLED	(*((volatile	uint8_t	*)(0x42098064)))	
#define	REDLED			(*((volatile	uint8_t	*)(0x42098060)))
	
To	make	the	LED	yellow,	we	turn	on	red,	turn	on	green,	and	turn	off
blue:
REDLED			=	1;	



GREENLED	=	1;	
BLUELED		=	0;	



2.2.	Interrupts
Another	concept	we	need	the	reader	to	have	a	thorough	understanding
of	 is	 an	 Interrupt.	 An	 interrupt	 is	 a	 hardware/software	 triggered
software	action,	see	Figure	2.1.	In	this	class	we	will	see	three	types	of
interrupts.	 A	 software	 interrupt	 is	 triggered	 by	 software.	 Executing
the SVC 	(supervisor	call)	instruction	will	generate	an	interrupt.	There
is	another	software	interrupt	on	the	Cortex	M	called	PendSV,	which	is
also	triggered	by	software.	We	will	see	a	third	mechanism	for	software
interrupt	 in	 this	chapter	where	 the	software	executes	explicit	code	 to
trigger	a	SysTick	timer	interrupt.
The	second	type	of	interrupt	is	a	periodic	interrupt,	which	is	triggered
periodically	 by	 a	 hardware	 timer.	 The	 MSP432/TM4C
microcontrollers	 have	 SysTick	 and	 Timer	 interrupts.	 The	 ISR	 will
perform	an	action	we	wish	to	perform	on	a	regular	basis.	For	example,
a	data	acquisition	system	needs	to	read	the	ADC	at	a	regular	rate.
The	third	type	of	interrupt	is	triggered	by	input/output	events.	With	an
input	device,	the	hardware	will	request	an	interrupt	when	input	device
has	 new	data.	The	 software	 interrupt	 service	 routine	 (ISR)	will	 read
from	 the	 input	 device	 and	 save	 (put)	 the	 data	 into	 a	 data	 structure
located	in	shared	memory,	see	Figure	2.1.	When	the	system	wishes	to
process	 the	data,	 it	will	 check	 the	 status	of	 the	data	 structure,	 and	 if
there	 is	 some	 data	 it	 will	 get	 it	 from	 the	 data	 structure	 located	 in
shared	memory.
With	an	output	device,	the	hardware	will	request	an	interrupt	when	the
output	 device	 is	 idle.	 The	 ISR	 will	 get	 data	 from	 a	 data	 structure
located	 in	 shared	 memory,	 and	 then	 write	 to	 the	 device.	 When	 the
system	 wishes	 to	 output	 data,	 it	 will	 check	 the	 status	 of	 the	 data
structure,	and	if	there	is	room	in	the	data	structure,	software	will	write
(put)	its	data.
Interrupts	are	an	important	synchronization	mechanism	in	a	real-time
operating	system	because	 there	will	be	multiple	 tasks	 to	perform.	To
achieve	 real-time	 response	 interrupt-based	 synchronization	 serves	 as
an	important	tool.



Figure	2.1.	Flowcharts	illustrating	the	use	of	interrupts	for	input
and	for	output.

2.2.1.	NVIC
On	the	ARM	Cortex-M	processor,	exceptions	include	resets,	software
interrupts	 and	hardware	 interrupts.	Each	 exception	has	 an	 associated
32-bit	 vector	 that	 points	 to	 the	memory	 location	where	 the	 ISR	 that
handles	 the	 exception	 is	 located.	 Vectors	 are	 stored	 in	 ROM	 at	 the
beginning	 of	 memory.	 Program	 2.3	 shows	 the	 first	 few	 vectors	 as
defined	 in	 the	 startup_TM4C123.s	 file	 for	 the	 TM4C123	 and	 the
startup_msp432.sfile	for	the	MSP432. DCD 	is	an	assembler	pseudo-
op	that	defines	a	32-bit	constant.	ROM	location	0x0000.0000	has	the
initial	 stack	 pointer,	 and	 location	 0x0000.0004	 contains	 the	 initial
program	counter,	which	is	called	the	reset	vector.		It	holds	the	address
of	a	function	called	the	reset	handler,	which	is	the	first	thing	executed
following	reset.	There	are	hundreds	of	possible	 interrupt	sources	and
their	 32-bit	 vectors	 are	 listed	 in	 order	 starting	 with	 location
0x0000.0008.	From	a	programming	perspective,	we	can	attach	ISRs	to
interrupts	 by	writing	 the	 ISRs	 as	 regular	 assembly	 subroutines	 or	C
functions	 with	 no	 input	 or	 output	 parameters	 and	 editing	 the
startup_TM4C123.s	 or	 startup_msp432.s	 file	 to	 specify	 those
functions	for	the	appropriate	interrupt.	In	this	class,	we	will	write	our
ISRs	using	standard	function	names	so	that	 the	startup	files	need	not
be	 edited.	 For	 example,	 we	 will	 simply	 name	 the	 ISRfor	 SysTick
periodic	interrupt	as SysTick_Handler .	The	ISR	for	this	interrupt	is	a
32-bit	 pointer	 located	 at	 ROM	 address	 0x0000.003C.	 Because	 the
vectors	are	in	ROM,	this	linkage	is	defined	at	compile	time	and	not	at
run	time.	After	the	first	16	vectors,	each	processor	will	be	different	so



check	the	data	sheet.
							EXPORT		__Vectors
__Vectors																													;	address				ISR
								DCD					StackMem	+	Stack						;	0x00000000	Top	of	Stack
								DCD					Reset_Handler									;	0x00000004	Reset	Handler
								DCD					NMI_Handler											;	0x00000008	NMI	Handler
								DCD					HardFault_Handler					;	0x0000000C	Hard	Fault	Handler
								DCD					MemManage_Handler					;	0x00000010	MPU	Fault	Handler
								DCD					BusFault_Handler						;	0x00000014	Bus	Fault	Handler
								DCD					UsageFault_Handler				;	0x00000018	Usage	Fault	Handler
								DCD					0																					;	0x0000001C	Reserved
								DCD					0																					;	0x00000020	Reserved
								DCD					0																					;	0x00000024	Reserved
								DCD					0																					;	0x00000028	Reserved
								DCD					SVC_Handler											;	0x0000002C	SVCall	Handler
								DCD					DebugMon_Handler						;	0x00000030	Debug	Monitor	Handler
								DCD					0																					;	0x00000034	Reserved
								DCD					PendSV_Handler								;	0x00000038	PendSV	Handler
								DCD					SysTick_Handler							;	0x0000003C	SysTick	Handler
Program	2.3.	Software	syntax	to	set	the	interrupt	vectors	for	the
first	16	vectors	on	the	Cortex	M	processor.

Table	2.6	lists	the	interrupt	sources	we	will	use	on	the	TM4C123	and
Table	2.7	shows	similar	interrupts	on	the	MSP432.	Interrupt	numbers
0	 to	 15	 contain	 the	 faults,	 software	 interrupts	 and	 SysTick;	 these
interrupts	will	be	handled	differently	from	interrupts	16	to	154.

Vector
address

Number IRQ ISR	name	in	Startup.s NVIC	priority Priority
bits

0x00000038 14 -2 PendSV_Handler SYS_PRI3 23	–	21
0x0000003C 15 -1 SysTick_Handler SYS_PRI3 31	–	29
0x000001E0 120 104 WideTimer5A_Handler NVIC_PRI26_R 7	–	5

Table	2.6.	Some	of	the	interrupt	vectors	for	the	TM4C	(goes	to	number	154
on	the	M4).
	
Vector
address

Number IRQ ISR	name	in	Startup.s NVIC	priority Priority
bits

0x00000038 14 -2 PendSV_Handler SYS_PRI3 23	–	21
0x0000003C 15 -1 SysTick_Handler SYS_PRI3 31	–	29
0x000000A4 41 25 T32_INT1_IRQHandler NVIC_IPR6 15	–	13



Table	2.7.	Some	of	the	interrupt	vectors	for	the	MSP432	(goes	to	number
154	on	the	M4).

Interrupts	 on	 the	 Cortex-M	 are	 controlled	 by	 the	 Nested	 Vectored
Interrupt	Controller	 (NVIC).	To	activate	an	 interrupt	source	we	need
to	set	its	priority	and	enable	that	source	in	the	NVIC.	SysTick	interrupt
only	requires	arming	 the	SysTick	module	for	 interrupts	and	enabling
interrupts	on	 the	processor	 (I=0	 in	 the	PRIMASK).	Other	 interrupts
require	 additional	 initialization.	 In	 addition	 to	 arming	 and	 enabling,
we	 will	 set	 bit	 8	 in	 the	 NVIC_EN3_R	 to	 activate	WideTimer5A
interrupts	 on	 the	 TM4C123.	 Similarly,	 we	 will	 set	 bit	 25	 in	 the
NVIC_ISER0	to	activate	T32_INT1	interrupts	on	the	MSP432.	This
activation	is	in	addition	to	the	arm	and	enable	steps.
Each	 interrupt	 source	 has	 an	 8-bit	 priority	 field.	 However,	 on	 the
TM4C123	and	MSP432	microcontrollers,	only	the	top	three	bits	of	the
8-bit	 field	 are	 used.	 This	 allows	 us	 to	 specify	 the	 interrupt	 priority
level	for	each	device	from	0	to	7,	with	0	being	the	highest	priority.	The
priority	 of	 the	 SysTick	 interrupt	 is	 found	 in	 bits	 31	 –	 29	 of
the SYS_PRI3 	 register.	Other	 interrupts	have	corresponding	priority
registers.	The	interrupt	number	(number	column	in	Tables	2.6	and	2.7)
is	 loaded	 into	 the	IPSR	 register	when	an	 interrupt	 is	being	 serviced.
The	servicing	of	interrupts	does	not	set	the	I	bit	in	the	PRIMASK,	so
a	 higher	 priority	 interrupt	 can	 suspend	 the	 execution	 of	 a	 lower
priority	ISR.	If	a	request	of	equal	or	lower	priority	is	generated	while
an	 ISR	 is	 being	 executed,	 that	 request	 is	 postponed	 until	 the	 ISR	 is
completed.	 In	 particular,	 those	 devices	 that	 need	 prompt	 service
should	be	given	high	priority.
Figure	2.2	shows	the	context	switch	from	executing	in	the	foreground
to	running	a	SysTick	periodic	interrupt.	The	I	bit	in	the	PRIMASK	is
0	 signifying	 interrupts	 are	 enabled.	 Initially,	 the	 interrupt	 number
(ISRNUM)	 in	 the	 IPSR	 register	 is	 0,	 meaning	 we	 are	 running	 in
Thread	 mode	 (i.e.,	 the	 main	 program,	 and	 not	 an	 ISR).	 Handler
mode	 is	 signified	 by	 a	 nonzero	 value	 in	 IPSR.	 When	 BASEPRI
register	is	zero,	all	interrupts	are	allowed	and	the	BASEPRI	register	is
not	active.
When	 a	 SysTick	 interrupt	 is	 triggered,	 the	 current	 instruction	 is
finished.	 (a)	Eight	 registers	are	pushed	on	 the	 stack	with	R0	 on	 top.
These	 registers	 are	 pushed	 onto	 the	 stack	 using	 whichever	 stack



pointer	 is	 active:	 either	 the	MSP	 or	PSP.	 (b)	 The	 vector	 address	 is
loaded	 into	 the	PC	 (“Vector	address”	column	in	Tables	2.6	and	2.7).
(c)	The	IPSR	register	is	set	to	15	(“Number”	column	in	Tables	2.6	and
2.7)	 (d)	 The	 top	 24	 bits	 of	LR	 are	 set	 to	 0xFFFFFF,	 signifying	 the
processor	 is	 executing	an	 ISR.	The	bottom	eight	bits	 specify	how	 to
return	from	interrupt.
		0xE1	Return	to	Handler	mode	MSP	(using	floating	point
state)
		0xE9	Return	to	Thread	mode	MSP	(using	floating	point
state)
		0xED	Return	to	Thread	mode	PSP	(using	floating	point
state)
		0xF1	Return	to	Handler	mode	MSP
		0xF9	Return	to	Thread	mode	MSP		←	we	will	mostly	be
using	this	one
		0xFD	Return	to	Thread	mode	PSP
	

After	pushing	the	registers,	 the	processor	always	uses	the	main	stack
pointer	(MSP)	during	the	execution	of	the	ISR.	Events	b,	c,	and	d	can
occur	simultaneously.

Figure	2.2.	Stack	before	and	after	an	interrupt,	in	this	case	a
SysTick	periodic	interrupt.

To	return	 from	an	 interrupt,	 the	 ISR	executes	 the	 typical	 function
return	statement: BX	LR .	However,	 since	 the	 top	24	bits	of	LR	 are
0xFFFFFF,	 it	 knows	 to	 return	 from	 interrupt	 by	 popping	 the	 eight
registers	off	the	stack.	Since	the	bottom	eight	bits	of	LR	 in	 this	case
are	0b11111001,	it	returns	to	thread	mode	using	the	MSP	as	its	stack
pointer.	 Since	 the	 IPSR	 is	 part	 of	 the	 PSR	 that	 is	 popped,	 it	 is



automatically	reset	to	its	previous	state.

A	nested	 interrupt	occurs	when	a	higher	priority	 interrupt	 suspends
an	ISR.	The	lower	priority	interrupt	will	finish	after	the	higher	priority
ISR	completes.	When	one	interrupt	preempts	another,	the	LR	is	set	to
0xFFFFFFF1,	 so	 it	 knows	 to	 return	 to	 handler	mode.	Tail	 chaining
occurs	 when	 one	 ISR	 executes	 immediately	 after	 another.
Optimization	 occurs	 because	 the	 eight	 registers	 need	 not	 be	 popped
only	to	be	pushed	once	again.	If	an	interrupt	is	triggered	and	is	in	the
process	 of	 stacking	 registers	 when	 a	 higher	 priority	 interrupt	 is
requested,	this	late	arrival	interrupt	will	be	executed	first.
On	 the	Cortex-M4,	 if	 an	 interrupt	 occurs	while	 in	 the	 floating	 point
state,	an	additional	18	words	are	pushed	on	the	stack.	These	18	words
will	save	the	state	of	 the	floating	point	processor.	Bits	7-4	of	 the	LR
will	be	0b1110	 (0xE),	 signifying	 it	was	 interrupted	during	a	 floating
point	state.	When	the	ISR	returns,	it	knows	to	pull	these	18	words	off
the	stack	and	restore	the	state	of	the	floating	point	processor.	We	will
not	use	floating	point	in	this	class.
Priority	determines	 the	 order	 of	 service	when	 two	or	more	 requests
are	made	simultaneously.	Priority	also	allows	a	higher	priority	request
to	suspend	a	lower	priority	request	currently	being	processed.	Usually,
if	 two	 requests	 have	 the	 same	 priority,	 we	 do	 not	 allow	 them	 to
interrupt	 each	 other.	 NVIC	 assigns	 a	 priority	 level	 to	 each	 interrupt
trigger.	 This	mechanism	 allows	 a	 higher	 priority	 trigger	 to	 interrupt
the	 ISR	 of	 a	 lower	 priority	 request.	 Conversely,	 if	 a	 lower	 priority
request	occurs	while	running	an	ISR	of	a	higher	priority	trigger,	it	will
be	postponed	until	the	higher	priority	service	is	complete.
Program	 2.4	 shows	 two	 functions	 that	 can	 be	 used	 to	 enable	 and
disable	interrupts.

DisableInterrupts
								CPSID		I
								BX					LR
EnableInterrupts
								CPSIE		I
								BX					LR

Program	2.4.	Assembly	functions	needed	for	interrupt	enabling
and	disabling.



2.2.2.	SysTick	periodic	interrupts
The	 SysTick	 Timer	 is	 a	 core	 device	 on	 the	 Cortex	 M	 architecture,
which	 is	most	 commonly	 used	 as	 a	 periodic	 timer.	When	 used	 as	 a
periodic	timer	one	can	setup	the	countdown	to	zero	event	to	cause	an
interrupt.	 By	 setting	 up	 an	 initial	 reload	 value	 the	 timer	 is	 made	 to
periodically	 interrupt	 at	 a	 predetermined	 rate	 decided	 by	 the	 reload
value.	Periodic	timers	as	an	interfacing	technique	are	required	for	data
acquisition	 and	 control	 systems,	 because	 software	 servicing	must	 be
performed	at	accurate	time	intervals.	For	a	data	acquisition	system,	it
is	 important	 to	 establish	 an	 accurate	 sampling	 rate.	 The	 time	 in
between	ADC	 samples	must	 be	 equal	 (and	 known)	 in	 order	 for	 the
digital	 signal	 processing	 to	 function	 properly.	 Similarly,	 for
microcontroller-based	control	systems,	it	is	important	to	maintain	both
the	 input	 rate	 of	 the	 sensors	 and	 the	 output	 rate	 of	 the	 actuators.
Periodic	 events	 are	 so	 important	 that	 most	 microcontrollers	 have
multiple	 ways	 to	 generate	 periodic	 interrupts.	 In	 this	 book	 our
operating	system	will	use	periodic	interrupts	to	schedule	threads.
Assume	we	have	a	1-ms	periodic	 interrupt.	This	means	 the	 interrupt
service	 routine	 (ISR)	 is	 triggered	 to	 run	 1000	 times	 per	 second.	Let
Count	be	a	global	variable	that	is	incremented	inside	the	ISR.	Figure
2.3	shows	how	to	use	the	interrupt	to	run	Task	1	every	N	ms	and	run
Task	2	every	M	ms.

Figure	2.3.	Using	a	1-ms	periodic	interrupt	to	run	Task	1	every	N



ms	and	run	Task	2	every	M	ms.

The	SysTick	 timer	 exists	on	all	Cortex-M	microcontrollers,	 so	using
SysTick	 means	 the	 system	 will	 be	 easy	 to	 port	 to	 other
microcontrollers.	Table	2.8	shows	the	register	definitions	for	SysTick.
The	 basis	 of	 SysTick	 is	 a	 24-bit	 down	 counter	 that	 runs	 at	 the	 bus
clock	frequency.	To	configure	SysTick	for	periodic	interrupts	we	first
clear	 the	ENABLE	 bit	 to	 turn	 off	 SysTick	 during	 initialization,	 see
Program	 2.5.	 Second,	 we	 set	 the	 STRELOAD	 register.	 Third,	 we
write	 any	 value	 to	 the	STCURRENT,	 which	will	 clear	 the	 counter
and	 the	 flag.	 Lastly,	we	write	 the	 desired	 clock	mode	 to	 the	 control
register	STCTRL,	also	setting	the	INTEN	bit	to	enable	interrupts	and
enabling	 the	 timer	 (ENABLE).	 We	 establish	 the	 priority	 of	 the
SysTick	 interrupts	 using	 the	 TICK	 field	 in	 the	 SYSPRI3	 register.
When	the	STCURRENT	value	counts	down	from	1	to	0,	the	COUNT
flag	 is	 set.	On	 the	next	 clock,	 the	STCURRENT	 is	 loaded	with	 the
STRELOAD	value.	In	this	way,	the	SysTick	counter	(STCURRENT)
is	continuously	decrementing.		If	the	STRELOAD	value	is	n,	then	the
SysTick	counter	operates	at	modulo	n+1:	…n,	n-1,	n-2	…	1,	0,	n,	n-1,
…
In	other	words,	it	rolls	over	every	n+1	counts.	Thus,	the	COUNT	flag
will	be	configured	to	trigger	an	interrupt	every	n+1	counts.	The	main
program	will	enable	interrupts	in	the	processor	after	all	variables	and
devices	are	initialized.

Address 31-
24

23-
17

16 15-
3

2 1 0 Name

0xE000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE STCTRL
0xE000E014 0 24-bit	RELOAD	value STRELOAD
0xE000E018 0 24-bit	CURRENT	value	of	SysTick	counter STCURRENT

	
Address 31-29 28-

24
23-21 20-

8
7-5 4-0 Name

0xE000ED20 TICK 0 PENDSV 0 DEBUG 0 SYSPRI3

Table	2.8.	SysTick	registers.
The	SysTick	counter	decrements	every	bus	cycle.	So	it	is	important	to
know	the	bus	frequency	when	using	SysTick.	TM4C123	projects	run
at	 16	 MHz	 until	 the	 system	 calls	 a	 PLL	 function	 to	 change	 the
frequency.	 MSP432	 projects	 run	 at	 3	 MHz	 until	 the	 system	 calls	 a
clock	function	to	change	the	frequency.	We	will	assume	the	MSP432



has	been	configured	to	run	at	its	fastest	speed	of	48	MHz.	In	general,
if	 the	period	of	 the	core	bus	 clock	 is	 t	 time	units,	 then	 the	COUNT
flag	will	be	set	every	(n+1)t	time	units.	Reading	the 	STCTRL	control
register	will	return	the	COUNT	flag	in	bit	16,	and	then	clear	the	flag.
Also,	writing	 any	 value	 to	 the	STCURRENT	 register	will	 reset	 the
counter	to	zero	and	clear	the	COUNT	flag.	The	COUNT	flag	is	also
cleared	automatically	as	the	interrupt	service	routine	is	executed.
Let	fBUS	be	the	frequency	of	the	bus	clock,	and	let	n	be	the	value	of	the
STRELOAD	register.	The	frequency	of	the	periodic	interrupt	will	be
fBUS/(n+1)	#define	Profile_Toggle	PC5^=0x20

void	SysTick_Init(uint32_t	period){
		Profile_Init();					//	make	PC5	is	an	output
		Counts	=	0;
		STCTRL	=	0;									//	disable	SysTick	during	setup
		STRELOAD	=	period-1;//	reload	value
		STCURRENT	=	0;						//	any	write	to	current	clears	it
		SYSPRI3	=	(SYSPRI3&0x00FFFFFF)|0x40000000;	//	priority	2								
		STCTRL	=	0x07;						//	enable,	core	clock,	interrupts

}

void	SysTick_Handler(void){	//	Executed	every	(bus	cycle)*(period)
		Profile_Toggle();									//	toggle	bit
		Profile_Toggle();									//	toggle	bit
		Counts	=	Counts	+	1;
		Profile_Toggle();									//	toggle	bit

}

int	main(void){													//	TM4C123	bus	clock	at	16	MHz
		SysTick_Init(1600000);			//	SysTick	timer	interrupts	every	100	ms
		EnableInterrupts();
		while(1){
		}		//	do	nothing	foreground

}

Program	2.5.	Implementation	of	a	periodic	interrupt	using



SysTick	(SysTickInts_xxx).

Checkpoint	2.2:	If	the	MSP432	bus	clock	is	48	MHz,	what	reload
value	yields	a	100	Hz	(10ms)	periodic	interrupt?

2.2.3.	Periodic	timer	interrupts
Because	time	is	a	precious	commodity	for	embedded	systems	there	is
a	rich	set	of	features	available	to	manage	time.	If	you	connect	a	digital
input	 to	 the	 microcontroller	 you	 could	 measure	 its	 Period,	 time
from	one	edge	to	the	next
Frequency,	number	of	edges	in	a	fixed	amount	of	time
Pulse	width,	time	the	signal	is	high,	or	time	the	signal	is
low
	

If	 there	 are	 multiple	 digital	 inputs,	 then	 you	 can	 measure	 more
complicated	 parameters	 such	 as	 frequency	 difference,	 period
difference	or	phase.
Alternately,	you	can	create	a	digital	output	and	have	the	software	set
its

Period
Frequency
Duty	cycle	(pulse-width	modulation)
	

If	 there	 are	 multiple	 digital	 outputs,	 then	 you	 can	 create	 more
complicated	patterns	that	are	used	in	stepper	motor	and	brushless	DC
motor	controllers.	For	examples	of	projects	 that	manage	 time	on	 the
TM4C123	 see	 examples	 at
http://users.ece.utexas.edu/~valvano/arm/#Timer

http://edx-org-
utaustinx.s3.amazonaws.com/UT601x/ValvanoWareTM4C123.zip
For	all	the	example	projects	on	the	TM4C123/MSP432	download	and
unzip	these	projects:

http://edx-org-



utaustinx.s3.amazonaws.com/UT601x/ValvanoWare.zip
However,	 in	 this	 section,	 we	 present	 the	 basic	 principles	 needed	 to
create	periodic	interrupts	using	the	timer.	We	begin	by	presenting	five
hardware	components	needed	as	shown	in	Figure	2.4.

Figure	2.4.	Fundamental	hardware	components	used	to	create
periodic	interrupts.

The	central	component	for	creating	periodic	interrupts	is	a	hardware
counter.	The	counter	may	be	16,	24,	32,	48,	or	64	bits	wide.	Let	N	be
the	number	of	bits	in	the	counter.	When	creating	periodic	interrupts,	it
doesn’t	 actually	 matter	 if	 the	 module	 counts	 up	 or	 counts	 down.
However,	most	 of	 the	 software	 used	 in	 this	 class	will	 configure	 the
counter	to	decrement.
Just	like	SysTick,	as	the	counter	counts	down	to	0,	it	sets	a	trigger	flag
and	reloads	the	counter	with	a	new	value.	The	second	component	will
be	the	reload	value,	which	is	the	N-bit	value	loaded	into	the	counter
when	it	rolls	over.	Typically,	the	reload	value	is	a	constant	set	once	by
the	software	during	initialization.	Let	R	be	this	constant	value.
The	third	component	is	the	trigger	flag,	which	is	set	when	the	counter
reaches	0.	This	flag	will	be	armed	to	request	an	interrupt.	Software	in
the	ISR	will	execute	code	to	acknowledge	or	clear	this	flag.
The	fourth	component	will	be	 the	base	clock	with	which	we	control
the	entire	hardware	system.	On	the	TM4C123,	we	will	select	 the	80-
MHz	 system	 clock.	 On	 the	 MSP432,	 we	 will	 select	 the	 12-MHz
SMCLK.	 In	 both	 cases,	 these	 clocks	 are	 derived	 from	 the	 crystal;
hence	 timing	 will	 be	 both	 accurate	 and	 stable.	 Let	 fbase	 be	 the
frequency	 of	 the	 base	 clock	 (80	 MHz	 or	 12	 MHz)	 and	 tbase	 be	 the
period	of	this	clock	(12.5	ns	or	about	83.33	ns).
The	fifth	component	will	be	a	prescaler,	which	sits	between	the	base
clock	 and	 the	 clock	 used	 to	 decrement	 the	 counter.	 Most	 systems



create	 the	prescaler	using	a	modulo—M	 counter,	where	M	 is	greater
than	 or	 equal	 to	 1.	This	way,	 the	 frequency	 and	 period	 of	 the	 clock
used	to	decrement	the	counter	will	be	fclk	=	fbase	/M	tclk	=	tbase	*M

Software	 can	 configure	 the	 prescaler	 to	 slow	 down	 the	 counting.
However,	 the	 interrupt	 period	 will	 be	 an	 integer	 multiple	 of	 tclk.	 In
addition,	 the	 interrupt	 period	 must	 be	 less	 than	 2N	 *	 tclk.	 Thus,	 the
smaller	 the	 prescale	 M	 is,	 the	 finer	 control	 the	 software	 has	 in
selecting	the	interrupt	period.	On	the	other	hand,	the	larger	prescale	M
is,	 the	 longer	 the	 interrupt	 could	 be.	 Thus,	 the	 prescaler	 allows	 the
software	 to	 control	 the	 tradeoff	 between	 maximum	 interrupt	 period
and	the	fine-tuning	selection	of	the	interrupt	period.
Because	 the	counter	goes	from	the	reload	value	down	to	0,	and	 then
back	 to	 the	 reload	 value,	 an	 interrupt	 will	 be	 triggered	 every	 R+1
counts.	 Thus	 the	 interrupt	 period,	P,	will	 be	P	 =	 tbase	 *M	 *	 (R	 +	 1)
Solving	 this	 equation	 for	 R,	 if	 we	 wish	 to	 create	 an	 interrupt	 with
period	P,	we	make	R	=	(P	/(tbase	*M	))	–	1

Remember	 R	 must	 be	 an	 integer	 less	 than	 2N.	 Most	 timers	 have	 a
limited	choice	for	the	prescale	M.	Luckily,	most	microcontrollers	have
a	larger	number	of	timers.	The	TM4C123	has	six	32-bit	timers	and	six
64-bit	 timers.	 The	 MSP432	 has	 four	 16-bit	 timers	 and	 two	 32-bit
timers.	 The	 board	 support	 package,	 presented	 in	 the	 next	 section,
provides	support	for	two	independent	periodic	interrupts.	Initialization
software	follows	these	steps.

0)	Activate	the	base	clock	for	the	timer
1)	Disable	timer	during	initialization
2)	Set	the	timer	mode	to	continuous	down	counting	with
automatic	reload
3)	Set	the	reload	value,	R
4)	Set	the	prescale,	M
5)	Arm	the	trigger	flag	in	the	timer
6)	Arm	the	timer	in	the	NVIC
7)	Set	the	priority	in	the	NVIC
8)	Clear	trigger	flag
9)	Enable	timer	after	timer	is	completely	configured



10)	Enable	interrupts	(I=0),	typically	done	after	all
initializations	are	complete
	

For	more	details	on	the	timers	for	the	TM4C123	or	MSP432,	see	the
corresponding	 Volume	 2.	 However,	 we	 present	 one	 simple	 solution
that	executes	a	user	 task	at	a	periodic	rate	with	units	of	µs.	 	We	will
generate	 a	 periodic	 interrupt	 and	 call	 the	 user	 task	 from	 the	 ISR.
Assuming	an	80	MHz	bus	clock,	we	disable	the	prescale,	meaning	the
timer	 counts	 every	 12.5ns.	 To	 define	 the	 user	 task,	we	will	 create	 a
private	global	variable	containing	a	pointer	to	the	user’s	function.	We
will	set	 the	variable	during	 initialization	and	call	 that	 function	at	 run
time.	Another	name	for	a	dynamically	set	function	pointer	is	a	hook.
The	maximum	possible	value	for period 	is	12.5ns*232,	which	is	about
53	seconds.	Simple	solutions	for	the	TM4C	and	MSP432	are	shown	in
Program	2.6.	You	will	find	many	more	on	the	book	web	site.

void	(*PeriodicTask)(void);		//	user	function
void	Timer0B_Init(void(*task)(void),	uint32_t	period){
		SYSCTL_RCGCTIMER_R	|=	0x0001;				//	0)	activate	timer0
		PeriodicTask	=	task;													//	user	function
		TIMER0_CTL_R	&=	~0x00000100;					//	1)	disable	timer0B	during	setup
		TIMER0_CFG_R	=	0x00000000;							//	2)	configure	for	32-bit	timer	mode
		TIMER0_TBMR_R	=	0x00000002;						//			configure	for	periodic	mode
		TIMER0_TBILR_R	=	period-1;							//	3)	reload	value
		TIMER0_TBPR_R	=	0;														//	4)	no	prescale,	12.5ns	clock
		TIMER0_IMR_R	|=	0x00000100;						//	5)	arm	timeout	interrupt
		NVIC_EN0_R	=	(1<<20);										//	6)	enable	interrupt	20	in	NVIC
		NVIC_PRI5_R	=	(NVIC_PRI5_R&0xFFFFFF00)|0x00000040;	//	7)
priority	2
		TIMER0_ICR_R	=	0x00000100;							//	8)	clear	timer0B	timeout	flag
		TIMER0_CTL_R	|=	0x00000100;						//	9)	enable	timer0B

}

void	Timer0B_Handler(void){
		TIMER0_ICR_R	=	0x00000100;							//	acknowledge	timer0B	timeout
		(*PeriodicTask)();															//	execute	user	task

}



Program	2.6a.	Implementation	of	a	periodic	interrupt	using
Timer0B	(see	PeriodicTimer0AInts_xxx).

	
void	TimerA0_Init(void(*task)(void),	uint16_t	period){
		PeriodicTask	=	task;												//	user	function
		TA0CTL	&=	~0x0030;														//	1)	halt	Timer	A0
		TA0CTL	=	0x0202;																//	2)	compare	mode
		TA0CCTL0	=	0x0010;
		TA0CCR0	=	(period	-	1);									//	3)	compare	match	value
		TA0EX0	&=	~0x0007;														//	4)	input	clock	divider	/1
		NVIC_ISER0	=	0x00000100;								//	6)	enable	interrupt	8	in	NVIC
		NVIC_IPR2	=	(NVIC_IPR2&0xFFFFFF00)|0x00000040;	//	7)	priority	2
		TA0CCTL0	&=	~0x0001;						//	8)	clear	interrupt	flag	0
		TA0CTL	|=	0x0014;									//	5,9)	reset	and	start	Timer	A0	in	up	mode

}

void	TA0_0_IRQHandler(void){
		TA0CCTL0	&=	~0x0001;									//	acknowledge	capture/compare	interrupt	0
		(*PeriodicTask)();											//	execute	user	task

}

Program	2.6b.	Implementation	of	a	periodic	interrupt	using
Timer0B	(see	PeriodicTimerA0Ints_xxx).

2.2.4.	Critical	sections
An	 important	 consequence	 of	multithreading	 is	 the	 potential	 for	 the
threads	to	manipulate	(read/write)	a	shared	object.	With	this	potential
comes	 the	possibility	of	 inconsistent	updates	 to	 the	 shared	object.	A
race	condition	occurs	in	a	multithreaded	environment	when	there	is	a
causal	 or	 timing	 dependency	 between	 two	 or	more	 threads.	 In	 other
words,	different	behavior	occurs	depending	on	the	order	of	execution
of	 two	 threads.	 Consider	 a	 simple	 example	 of	 a	 race	 condition
occurring	where	 two	 thread	 initialize	 the	 same	port	 in	 an	 unfriendly
manner.	 	 Thread1	 initializes	 Port	 4	 bits	 3	 –	 0	 to	 be	 output	 using
P4DIR	=	0x0F;	Thread2	initializes	Port	4	bits	6	–	4	to	be	output	using



P4DIR	=	0x70;	 In	particular,	 if	Thread1	runs	 first	and	Thread2	runs
second,	 then	 Port	 4	 bits	 3	 –	 0	 will	 be	 set	 to	 inputs.	 Conversely,	 if
Thread2	runs	first	and	Thread1	runs	second,	then	Port	4	bits	6	–	4	will
be	 set	 to	 inputs.	This	 is	 a	 race	 condition	 caused	by	unfriendly	 code.
The	 solution	 to	 this	 problem	 is	 to	 write	 the	 two	 initializations	 in	 a
friendly	manner,	and	make	both	initializations	atomic.
In	a	second	example	of	a	race	condition,	assume	two	threads	are	trying
to	get	data	from	the	same	input	device.	Both	call	the	input	function	to
receive	data	from	the	input	device.	When	data	arrives	at	the	input,	the
thread	that	executes	first	will	capture	the	data.
In	general,	if	two	threads	access	the	same	global	memory	and	one	of
the	accesses	is	a	write,	then	there	is	a	causal	dependency	between	the
execution	 of	 the	 threads.	 Such	 dependencies	 when	 not	 properly
handled	cause	unpredictable	behavior	where	the	execution	order	may
affect	the	outcome.	Such	scenarios	are	referred	to	as	race	conditions.
While	shared	global	variables	are	important	in	multithreaded	systems
because	they	are	required	to	pass	data	between	threads,	they	result	in
complex	behavior	 (and	hard	 to	 find	 bugs).	Therefore,	 a	 programmer
must	pay	careful	attention	to	avoid	race	conditions.
A	program	segment	is	reentrant	if	it	can	be	concurrently	executed	by
two	 (or	 more)	 threads.	 Note	 that,	 to	 run	 concurrently	 means	 both
threads	are	ready	to	run	though	only	one	thread	is	currently	running.
To	implement	reentrant	software,	we	place	variables	in	registers	or	on
the	 stack,	 and	 avoid	 storing	 into	 global	 memory	 variables.	 When
writing	 in	 assembly,	 we	 use	 registers,	 or	 the	 stack	 for	 parameter
passing	 to	 create	 reentrant	 subroutines.	 Typically,	 each	 thread	 will
have	its	own	set	of	registers	and	stack.	A	nonreentrant	subroutine	will
have	a	section	of	code	called	a	vulnerable	window	or	critical	section.
A	critical	 section	may	exist	when	 two	different	 functions	access	and
modify	the	same	memory-resident	data	structure.	E.g.,	1)	One	thread
calls	a	nonreentrant	function
2)	It	is	executing	in	the	critical	section	when	interrupted	by
a	second	thread
3)	The	second	thread	calls	the	same	nonreentrant	function.

There	 are	 a	 number	 of	 scenarios	 that	 can	 happen	 next.	 In	 the	 most
common	 scenario,	 the	 second	 thread	 is	 allowed	 to	 complete	 the
execution	of	 the	 function,	control	 is	 then	 returned	 to	 the	 first	 thread,



and	 the	 first	 thread	 finishes	 the	 function.	 This	 first	 scenario	 is	 the
usual	 case	 with	 interrupt	 programming.	 In	 the	 second	 scenario,	 the
second	 thread	executes	part	of	 the	critical	 section,	 is	 interrupted	and
then	reentered	by	a	third	thread,	the	third	thread	finishes,	the	control	is
returned	 to	 the	 second	 thread	 and	 it	 finishes,	 lastly	 the	 control	 is
returned	 to	 the	 first	 thread	 and	 it	 finishes.	 This	 second	 scenario	 can
happen	 in	 interrupt	 programming	 if	 the	 second	 interrupt	 has	 higher
priority	than	the	first.
Program	 2.7shows	 two	C	 functions	 and	 the	 corresponding	 assembly
codes.	 These	 functions	 have	 critical	 sections	 because	 of	 their	 read-
modify-write	 nonatomic	 access	 to	 the	 global	 variable, count .	 If	 an
interrupt	 were	 to	 occur	 just	 before	 or	 just	 after	 the ADD or SUB
instruction,	and	the	ISR	called	the	other	function,	then	count	would	be
in	error.

count				SPACE		4			

Producer	 LDR	 	 r1,[pc,#116]	 ;

R0=	&count	 	 	 	 	 	 	 	 	 	 LDR	 	 r0,
[r1]						;	R0=count	ADD		r0,r0,#1
									STR		r0,[r1]						;	update
									BX			lr

Consumer	 LDR	 	 r1,
[pc,#96]	 	 ;	 R0=	 &count	 LDR	 	 r0,
[r1]						;	R0=count
									SUB		r0,r0,#1
									STR		r0,[r1]						;	update
									BX			lr
									DCD		num				

int32_t	volatile	count;			
void	Producer(void){	
		//	other	stuff	
		count	=	count	+	1;
		//	other	stuff

}

void	Consumer(void){
		//	other	stuff
		count	=	count	–	1;
		//	other	stuff

}

Program	2.7.	These	functions	are	nonreentrant	because	of	the
read-modify-write	access	to	a	global.	The	critical	section,	pointed
to	by	arrows,	is	just	before	and	just	after	the	ADD	and	SUB
instructions.

Assume	 there	 are	 two	 concurrentthreads,	 where	 the	 main	 program
calls Producer and	 a	 background	 ISR	 calls Consumer .	 Concurrent
means	 that	 both	 threads	 are	 ready	 to	 run.	Because	 there	 is	 only	 one
computer,	exactly	one	thread	will	be	running	at	a	time.	Typically,	the



operating	 system	 switches	 execution	 control	 back	 and	 forth	 using
interrupts.	There	are	two	places	in	the	assembly	code	of Producer at
which	 if	 an	 interrupt	 were	 to	 occur	 and	 the	 ISR	 called
the Consumer function,	 the	 end	 value	 of	 count	will	 be	 inconsistent.
Assume	 for	 this	 example count 	 is	 initially	 4.	 An	 error	 occurs	 if:
1.The	main	program	calls Producer
2.The	main	executes LDR 	 r0,[r1]making	R0	=	4
3.	The	OS	suspends	the	main	(using	an	interrupt)	and	starts
the	ISR
4.	The	ISR	calls Consumer
				Executes count=count-1; making count 	equal	to	3
5.	The	OS	returns	control	back	to	the	main	program
				R0	is	back	to	its	original	value	of	4
6.	The	producer	finishes	(adding	1	to	R0)
				Making count 	equal	to	5

	
The	 expected	 behavior	 with	 the	 producer	 and	 consumer	 executing
once	 is	 that	 count	 would	 remain	 at	 4.	 However,	 the	 race	 condition
resulted	in	an	inconsistency	manifesting	as	a	lost	consumption.	As	the
reader	 may	 have	 observed,	 the	 cause	 of	 the	 problem	 is	 the
nonatomicity	of	 the	 read-modify-write	operation	 involved	 in	 reading
and	writing	to	the	count	( count=count+1 or count=count-1)	variable.
An	atomic	operation	 is	one	that	once	started	is	guaranteed	to	finish.
In	 most	 computers,	 once	 an	 assembly	 instruction	 has	 begun,	 the
instruction	 must	 be	 finished	 before	 the	 computer	 can	 process	 an
interrupt.	 The	 same	 is	 not	 the	 case	 with	 C	 instructions	 which
themselves	 translate	 to	 multiple	 assembly	 instructions.	 In	 general,
nonreentrant	code	can	be	grouped	into	three	categories	all	involving	1)
nonatomic	 sequences,	 2)	 writes	 and	 3)	 global	 variables.	 We	 will
classify	 I/O	ports	as	global	variables	 for	 the	consideration	of	critical
sections.	 We	 will	 group	 registers	 into	 the	 same	 category	 as	 local
variables	because	each	thread	will	have	its	own	registers	and	stack.

The	first	group	is	the	read-modify-write	sequence:	1.	The	software
reads	the	global	variable	producing	a	copy	of	the	data
2.	The	software	modifies	the	copy	(original	variable	is	still



unmodified)
3.	The	software	writes	the	modification	back	into	the
global	variable.

	
In	 the	 second	 group,	we	 have	 a	write	 followed	by	 read,	 where	 the
global	 variable	 is	 used	 for	 temporary	 storage:	 1.	 The	 software
writes	to	the	global	variable	(only	copy	of	the	information)
2.	The	software	reads	from	the	global	variable	expecting
the	original	data	to	be	there.						

	
In	the	third	group,	we	have	a	nonatomic	multistep	write	to	a	global
variable:	 1.	 The	 software	 writes	 part	 of	 the	 new	 value	 to	 a
global	variable
2.	The	software	writes	the	rest	of	the	new	value	to	a	global
variable.

	
Observation:	When	considering	reentrant	software	and	vulnerable
windows	we	classify	accesses	to	I/O	ports	the	same	as	accesses	to
global	variables.
Observation:	Sometimes	we	store	temporary	information	in	global
variables	out	of	laziness.	This	practice	is	to	be	discouraged	because
it	wastes	memory	and	may	cause	the	module	to	not	be	reentrant.

Sometimes	 we	 can	 have	 a	 critical	 section	 between	 two	 different
software	 functions	 (one	 function	 called	 by	 one	 thread,	 and	 another
function	called	by	a	different	thread).	In	addition	to	above	three	cases,
a	 nonatomic	 multistep	 read	 will	 be	 critical	 when	 paired	 with	 a
multistep	write.	 	For	example,	 assume	a	data	 structure	has	multiple
components	(e.g.,	hours,	minutes,	and	seconds).	In	this	case,	the	write
to	the	data	structure	will	be	atomic	because	it	occurs	in	a	high	priority
ISR.	The	critical	section	exists	in	the	foreground	between	steps	1	and
3.	 In	 this	 case,	 a	 critical	 section	 exists	 even	 though	no	 software	 has
actually	been	reentered.

Foreground	thread 				
1.	The	main	reads	some	of	the

Background	thread 				
	



data
	
3.	The	main	 reads	 the	 rest	 of
the	data

2.	 ISR	 writes	 to	 the	 data
structure

In	a	similar	case,	a	nonatomic	multistep	write	will	be	critical	when
paired	 with	 a	multistep	 read.	 Again,	 assume	 a	 data	 structure	 has
multiple	components.	In	this	case,	the	read	from	the	data	structure	will
be	atomic	because	it	occurs	in	a	high	priority	ISR.	The	critical	section
exists	in	the	foreground	between	steps	1	and	3.

Foreground	thread 				
1.	The	main	writes	some	of	the
data
	
3.	The	main	writes	 the	 rest	 of
the	data

Background	thread 				
	
2.	 ISR	reads	from	the	data
structure

	
When	multiple	 threads	are	active,	 it	 is	possible	for	 two	threads	to	be
executing	the	same	program.	For	example,	the	system	may	be	running
in	the	foreground	and	calls	a	function.	Part	way	through	execution	of
the	 function,	 an	 interrupt	 occurs.	 If	 the	 ISR	 also	 calls	 the	 same
function,	two	threads	are	simultaneously	executing	the	function.
If	critical	sections	do	exist,	we	can	either	eliminate	them	by	removing
the	 access	 to	 the	 global	 variable	 or	 implement	 mutual	 exclusion,
which	simply	means	only	one	thread	at	a	time	is	allowed	to	execute	in
the	critical	section.	In	general,	if	we	can	eliminate	the	global	variables,
then	the	subroutine	becomes	reentrant.	Without	global	variables	there
are	no	“vulnerable”	windows	because	each	thread	has	its	own	registers
and	 stack.	Sometimes	one	must	 access	global	memory	 to	 implement
the	 desired	 function.	 Remember	 that	 all	 I/O	 ports	 are	 considered
global.	 Furthermore,	 global	 variables	 are	 necessary	 to	 pass	 data
between	threads.	Program	2.8	shows	two	functions	that	can	be	used	to
implement	mutual	exclusion.

;***********	StartCritical	************************
;	make	a	copy	of	previous	I	bit,	disable	interrupts															
;	inputs:		none	voutputs:	previous	I	bit															
StartCritical
								MRS				R0,	PRIMASK		;	save	old	status



								CPSID		I												;	mask	all	(except	faults)
								BX					LR
;***********	EndCritical	************************
;	using	the	copy	of	previous	I	bit,	restore	I	bit	to	previous	value															
;	inputs:		previous	I	bit		outputs:	none														
EndCritical																								
								MSR				PRIMASK,	R0
								BX					LR
Program	2.8.	Assembly	functions	needed	to	implement	mutual
exclusion.

A	simple	way	 to	 implement	mutual	exclusion	 is	 to	disable	 interrupts
while	executing	the	critical	section.	It	is	important	to	disable	interrupts
for	 as	 short	 a	 time	 as	 possible,	 so	 as	 to	minimize	 the	 effect	 on	 the
dynamic	performance	of	the	other	threads.	While	we	are	running	with
interrupts	disabled,	 time-critical	events	like	power	failure	and	danger
warnings	cannot	be	processed.	The	assembly	code	of	Program	2.8	is	in
the	 startup	 file	 in	 our	 projects	 that	 use	 interrupts.	 Program	 2.9
illustrates	 how	 to	 implement	 mutual	 exclusion	 and	 eliminate	 the
critical	section.

	
When	making	 code	 atomic	with	 this	 simple	method,	make	 sure	 one
critical	section	is	not	nested	inside	another	critical	section.
	
uint32_t	volatile	count;	//	number	of	elements	
//	simple	option	
void	Producer(void){
		DisableInterrupts();	
		count	=	count	+	1;
		EnableInterrupts();	

}

void	Consumer(void){
		DisableInterrupts();	
		count	=	count	-	1;
		EnableInterrupts();	

}	

//	safer	option
void	Producer(void){
long	sr;
		sr	=	StartCritical();	
		count	=	count	+	1;

void	Consumer(void){
long	sr;
		sr	=	StartCritical();	
		count	=	count	-	1;



		EndCritical(sr);	

}

		EndCritical(sr);

}

Program	2.9.	These	functions	are	reentrant	because	of	the	read-
modify-write	access	to	the	global	is	atomic.	Use	the	simple	option
only	if	one	critical	section	is	not	nested	inside	another	critical
section.

Checkpoint	2.3:	Although	disabling	interrupts	does	remove	critical
sections,	it	will	add	latency	and	jitter	to	real-time	systems.	Explain
how	latency	and	jitter	are	affected	by	the	DisableInterrupts()	and
EnableInterrupts()	functions.	
Checkpoint	2.4:	Consider	the	situation	of	nested	critical	sections.
For	example,	a	function	with	a	critical	section	calls	another	function
that	also	has	a	critical	section.	What	would	happen	if	you	simply
added	disable	interrupts	at	the	beginning	and	a	re-enable	interrupts
at	the	end	of	each	critical	section?	

2.2.5.	Executing	periodic	tasks
The	timers	provide	a	simple	way	to	execute	periodic	tasks.	A	periodic
task	 is	 one	 that	 is	 performed	 on	 a	 fixed	 time	 basis.	 This	 interfacing
technique	is	required	for	data	acquisition	and	control	systems,	because
software	servicing	must	be	performed	at	accurate	time	intervals.	For	a
data	 acquisition	 system,	 it	 is	 important	 to	 establish	 an	 accurate
sampling	rate.	The	time	in	between	ADC	samples	must	be	equal	(and
known)	in	order	for	the	digital	signal	processing	to	function	properly.
Similarly,	for	microcontroller-based	control	systems,	it	is	important	to
maintain	both	the	ADC	and	DAC	timing.	The	general	purpose	timers
can	 also	 create	 periodic	 interrupts.	 The	 operating	 system	 will	 use
periodic	interrupts	to	schedule	threads.
Another	 application	 of	 periodic	 interrupts	 is	 called	 “intermittent
polling”	or	“periodic	polling”.	Figure	2.5	shows	busy	wait	side	by	side
with	periodic	polling.	In	busy-wait	synchronization,	the	main	program
polls	 the	 I/O	 devices	 continuously.	 With	 periodic	 polling,	 the	 I/O
devices	 are	 polled	 on	 a	 regular	 basis	 (established	 by	 the	 periodic



interrupt.)	If	no	device	needs	service,	then	the	interrupt	simply	returns.
If	the	polling	period	is	Δt,	then	on	average	the	interface	latency	will	be
½Δt,	 and	 the	 worst	 case	 latency	 will	 be	 Δt.	 Periodic	 polling	 is
appropriate	for	low	bandwidth	devices	where	real-time	response	is	not
necessary.	This	method	frees	the	main	program	from	the	I/O	tasks.
We	use	periodic	polling	if	the	following	two	conditions	apply:

1.	The	I/O	hardware	cannot	generate	interrupts	directly
2.	We	wish	to	perform	the	I/O	functions	in	the	background
	

	
Figure	2.5.	An	ISR	flowchart	that	implements	periodic	polling.

2.2.6.	Software	interrupts
When	 the	 user	 code	 is	 not	 compiled	 and	 linked	 together	 with	 the
operating	 system,	 the	 user	 code	 can	 invoke	 the	 OS	 using	 the
supervisor	 call	 instruction,	 SVC .	 A	 software	 interrupt,	 or	 trap,	 is	 a
software-triggered	 interrupt.	 In	 the	 user	 code,	 various	 OS	 functions
can	be	invoked	with	specifying	a	trap	number	to	the SVC 	instruction
OS_Sleep

		SVC		#2



		BX			LR
	
OS_Time
		SVC	#3
		BX		LR
	

On	 the	 Cortex	 M,	 the SVC 	 instruction	 will	 invoke	 a	 software
interrupt,	which	is	similar	to	hardware	interrupts	in	that	8	registers	are
pushed	on	the	stack	and	the	PC	is	loaded	with	the	corresponding	ISR
vector	 address.	 Within	 the	 OS,	 the	 SVC	 handler	 will	 look	 into	 the
object	code	of	the SVC 	instruction	to	extract	the	trap	number,	which
will	be	 the	 least	significant	8	bits	of	 the	16-bit	 instruction.	 If	 the	OS
function	 has	 input	 or	 output	 parameters	 they	 will	 be	 passed	 and
returned	on	the	stack,	rather	than	in	registers.

SVC_Handler
				LDR		R12,[SP,#24]		;	Return	address
				LDRH	R12,[R12,#-2]	;	SVC	instruction	is	2	bytes
				BIC		R12,#0xFF00			;	Extract	trap	number	in	R12
				LDM		SP,{R0-R3}				;	Get	any	parameters
				…
				BL	OS_xxx										;	Call	OS	routine	by	number
				…
				STR		R0,[SP]							;	Store	return	value
				BX			LR												;	Return	from	exception
	

PendSV	is	similar	to	SVC	in	that	the	interrupt	is	invoked	by	software
and	not	hardware.	To	trigger	a	PendSV	interrupt	we	write	a	1	to	bit	28
of	the	interrupt	control	register.	PendSV	does	not	have	a	trap	number,
so	we	typically	use	it	for	just	one	dedicated	purpose.

		INTCTRL	=	0x10000000;	//	trigger	PendSV
	

Similarly,	software	can	trigger	a	SysTick	interrupt	by	writing	a	1	to	bit
26.

		INTCTRL	=	0x04000000;	//	trigger	SysTick



2.3.	First	in	First	Out	(FIFO)	Queues
The	 first	 in	 first	 out	 (FIFO)	queue	 is	 an	 important	 data	 structure	 for
I/O	programming	because	it	allows	us	to	pass	data	from	one	module	to
another.	One	module	puts	data	into	the	FIFO	and	another	module	gets
data	out	of	the	FIFO.	Programs	2.10	and	2.11	define	macros	allowing
us	to	create	as	many	FIFOs	as	we	need.	These	FIFO	implementations
are	meant	for	embedded	systems	without	an	operating	system,	hence
they	do	not	include	semaphore	synchronization.

//	macro	to	create	a	pointer	FIFO
#define	AddPointerFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\
TYPE	volatile	*NAME	##	PutPt;				\
TYPE	volatile	*NAME	##	GetPt;				\
TYPE	static	NAME	##	Fifo	[SIZE];								\
void	NAME	##	Fifo_Init(void){											\
		NAME	##	PutPt	=	NAME	##	GetPt	=	&NAME	##	Fifo[0];	\

}																																							\

int	NAME	##	Fifo_Put	(TYPE	data){							\
		TYPE	volatile	*nextPutPt;													\
		nextPutPt	=	NAME	##	PutPt	+	1;								\
		if(nextPutPt	==	&NAME	##	Fifo[SIZE]){	\
				nextPutPt	=	&NAME	##	Fifo[0];							\

}																																					\

		if(nextPutPt	==	NAME	##	GetPt	){						\
				return(FAIL);																							\

}																																					\

		else{																																	\
				*(	NAME	##	PutPt	)	=	data;										\
				NAME	##	PutPt	=	nextPutPt;										\
				return(SUCCESS);																				\



}																																					\

}																																							\

int	NAME	##	Fifo_Get	(TYPE	*datapt){				\
		if(	NAME	##	PutPt	==	NAME	##	GetPt	){	\
				return(FAIL);																							\

}																																					\

		*datapt	=	*(	NAME	##	GetPt	##	++);				\
		if(	NAME	##	GetPt	==	&NAME	##	Fifo[SIZE]){	\
				NAME	##	GetPt	=	&NAME	##	Fifo[0];			\

}																																					\

		return(SUCCESS);																						\

}

Program	2.10.	Two-pointer	macro	implementation	of	a	FIFO.

To	 create	 a	 20-element	 FIFO	 storing	 unsigned	 16-bit	 numbers	 that
returns	1	on	success	and	0	on	failure	we	invoke

AddPointerFifo(Rx,	20,	uint16_t,	1,	0)
	

creating	 the	 three	 functions
RxFifo_Init() , RxFifo_Get() ,and RxFifo_Put() .
Program	2.11	is	a	macro	we	can	use	to	create	two-index	FIFOs.

	
//	macro	to	create	an	index	FIFO
#define	AddIndexFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\
uint32_t	volatile	NAME	##	PutI;				\
uint32_t	volatile	NAME	##	GetI;				\
TYPE	static	NAME	##	Fifo	[SIZE];								\
void	NAME	##	Fifo_Init(void){											\
		NAME	##	PutI	=	NAME	##	GetI	=	0;						\

}																																							\



int	NAME	##	Fifo_Put	(TYPE	data){							\
		if((	NAME	##	PutI	-	NAME	##	GetI	)	&	~(SIZE-1)){		\
				return(FAIL);						\

}																				\

		NAME	##	Fifo[	NAME	##	PutI	&(SIZE-1)]	=	data;	\
		NAME	##	PutI	##	++;		\
		return(SUCCESS);					\

}																						\

int	NAME	##	Fifo_Get	(TYPE	*datapt){		\
		if(	NAME	##	PutI	==	NAME	##	GetI	){	\
				return(FAIL);						\

}																				\

		*datapt	=	NAME	##	Fifo[	NAME	##	GetI	&(SIZE-1)];		\
		NAME	##	GetI	##	++;		\
		return(SUCCESS);					\

}																						\

uint16_t	NAME	##	Fifo_Size	(void){		\
return	((uint16_t)(	NAME	##	PutI	-	NAME	##	GetI	));		\

}

Program	2.11.	Macro	implementation	of	a	two-index	FIFO.	The
size	must	be	a	power	of	two.

To	 create	 a	 32-element	 FIFO	 storing	 signed	 32-bit	 numbers	 that
returns	0	on	success	and	1	on	failure	we	invoke

AddIndexFifo(Tx,	32,	int32_t,	0,	1)
	

creating	 the	 four	 functions	 TxFifo_Init() ,	 TxFifo_Get() ,
TxFifo_Put() ,and TxFifo_Size() .	We	can	use	the	following	macro	to
collect	 histogram	 data.	 Basically,	 we	 can	 add Collect() 	 to	 places
where	data	are	added	to	the	FIFO.



	
#define	Collect()	(Histogram[TxFifo_Size()]++;)



2.4.	Edge-triggered	Interrupts

2.4.1.	Edge-triggered	interrupts	on	the	TM4C123
Synchronizing	 software	 to	 hardware	 events	 requires	 the	 software	 to
recognize	when	the	hardware	changes	states	from	busy	to	done.	Many
times	 the	 busy	 to	 done	 state	 transition	 is	 signified	 by	 a	 rising	 (or
falling)	edge	on	a	status	signal	 in	 the	hardware.	For	 these	situations,
we	connect	this	status	signal	to	an	input	of	the	microcontroller,	and	we
use	edge-triggered	 interfacing	 to	configure	 the	 interface	 to	 set	 a	 flag
on	 the	 rising	 (or	 falling)	 edge	 of	 the	 input.	 Using	 edge-triggered
interfacing	 allows	 the	 software	 to	 respond	quickly	 to	 changes	 in	 the
external	 world.	 If	 we	 are	 using	 busy-wait	 synchronization,	 the
software	waits	for	the	flag.	If	we	are	using	interrupt	synchronization,
we	 configure	 the	 flag	 to	 request	 an	 interrupt	 when	 set.	 Each	 of	 the
digital	 I/O	 pins	 on	 the	 TM4C	 family	 can	 be	 configured	 for	 edge
triggering.	Table	2.9	lists	some	the	registers	available	for	Port	A.	For
more	details,	 refer	 to	 the	datasheet	 for	your	 specific	microcontroller.
Any	or	all	of	digital	I/O	pins	can	be	configured	as	an	edge-triggered
input.		When	writing	C	code	using	these	registers,	include	the	header
file	for	your	particular	microcontroller	(e.g.,	tm4c123gh6pm.h).
To	 use	 any	 of	 the	 features	 for	 a	 digital	 I/O	 port,	 we	 first	 enable	 its
clock	in	the	SYSCTL_RCGCGPIO_R.	For	each	bit	we	wish	to	use
we	must	set	the	corresponding	DEN	(Digital	Enable)	bit.	To	use	a	pin
as	 regular	 digital	 input	 or	 output,	 we	 clear	 its	 AFSEL	 (Alternate
Function	Select)	bit.	Setting	the	AFSEL	will	activate	the	pin’s	special
function	(e.g.,	UART,	I2C,	CAN	etc.)	For	regular	digital	input/output,
we	clear	DIR	(Direction)	bits	to	make	them	input,	and	we	set	DIR	bits
to	make	them	output.

Address 7 6 5 4 3 2 1 0 Name
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4404 IS IS IS IS IS IS IS IS GPIO_PORTA_IS_R
$4000.4408 IBE IBE IBE IBE IBE IBE IBE IBE GPIO_PORTA_IBE_R
$4000.440C IEV IEV IEV IEV IEV IEV IEV IEV GPIO_PORTA_IEV_R
$4000.4410 IME IME IME IME IME IME IME IME GPIO_PORTA_IM_R



$4000.4414 RIS RIS RIS RIS RIS RIS RIS RIS GPIO_PORTA_RIS_R
$4000.4418 MIS MIS MIS MIS MIS MIS MIS MIS GPIO_PORTA_MIS_R
$4000.441C ICR ICR ICR ICR ICR ICR ICR ICR GPIO_PORTA_ICR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4500 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 GPIO_PORTA_DR2R_R
$4000.4504 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 GPIO_PORTA_DR4R_R
$4000.4508 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 GPIO_PORTA_DR8R_R
$4000.450C ODE ODE ODE ODE ODE ODE ODE ODE GPIO_PORTA_ODR_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.4514 PDE PDE PDE PDE PDE PDE PDE PDE GPIO_PORTA_PDR_R
$4000.4518 SLR SLR SLR SLR SLR SLR SLR SLR GPIO_PORTA_SLR_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 CR CR CR CR CR CR CR CR GPIO_PORTA_CR_R
$4000.4528 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTA_AMSEL_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.4520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTA_LOCK_R

Table	2.9.	Port	A	registers	for	the	TM4C.
We	clear	bits	 in	 the	AMSEL	 register	 to	 use	 the	port	 for	 digital	 I/O.
AMSEL	bits	exist	for	those	pins	which	have	analog	functionality.	We
set	 the	 alternative	 function	 using	 both	AFSEL	 and	PCTL	 registers.
On	the	TM4C123,	we	need	to	unlock	PD7	and	PF0	if	we	wish	to	use
them.	On	the	TM4C1294,	only	PD7	needs	unlocking.	Because	PC3-0
implements	 the	JTAG	debugger,	we	will	never	unlock	 these	pins.	To
unlock	a	pin,	we	first	write	0x4C4F434B	to	 the	LOCK	 register,	and
then	we	write	zeros	to	the	CR	register.
To	 configure	 an	 edge-triggered	pin,	we	 first	 enable	 the	 clock	on	 the
port	and	configure	the	pin	as	a	regular	digital	input.	We	can	trigger	on
the	rising,	falling,	or	both	edges,	as	listed	in	Table	2.10.	Clearing	the
IS	(Interrupt	Sense)	bit	configures	the	bit	for	edge	triggering.	If	the	IS
bit	were	to	be	set,	the	trigger	occurs	on	the	level	of	the	pin.

DIR AFSEL IS IBE IEV IME Port	mode
0 0 0 0 0 0 Input,	 falling	 edge	 trigger,

busy	wait
0 0 0 0 1 0 Input,	 rising	 edge	 trigger,

busy	wait
0 0 0 1

-
0 Input,	 both	 edges	 trigger,

busy	wait



0 0 0 0 0 1 Input,	 falling	 edge	 trigger,
interrupt

0 0 0 0 1 1 Input,	 rising	 edge	 trigger,
interrupt

0 0 0 1
-

1 Input,	 both	 edges	 trigger,
interrupt

Table	2.10.	Edge-triggered	modes.
Since	 most	 busy	 to	 done	 conditions	 are	 signified	 by	 edges,	 we
typically	trigger	on	edges	rather	than	levels.	Next	we	write	to	the	IBE
(Interrupt	 Both	 Edges)	 and	 IEV	 (Interrupt	 Event)	 bits	 to	 define	 the
active	edge.	We	clear	the	IME	(Interrupt	Mask	Enable)	bits	if	we	are
using	 busy-wait	 synchronization,	 and	 we	 set	 the	 IME	 bits	 to	 use
interrupt	synchronization.
The	 hardware	 sets	 an	 RIS	 (Raw	 Interrupt	 Status)	 bit	 (called	 the
trigger)	and	the	software	clears	it	(called	the	acknowledgement).	The
triggering	event	listed	in	Table	2.10	will	set	the	corresponding	RISbit
in	 the GPIO_PORTA_RIS_R 	 register	 regardless	 of	whether	 or	 not
that	 bit	 is	 allowed	 to	 request	 a	 controller	 interrupt.	 In	 other	 words,
clearing	an	IME	bit	disables	 the	corresponding	pin’s	 interrupt,	but	 it
will	still	set	the	corresponding	RIS	bit	when	the	interrupt	would	have
occurred.	The	software	can	acknowledge	the	event	by	writing	ones	to
the	 corresponding	 IC(Interrupt	 Clear)	 bit	 in
the GPIO_PORTA_IC_R 	 register.	 The	 RISbits	 are	 read	 only,
meaning	if	 the	software	were	to	write	to	this	registers,	 it	would	have
no	 effect.	 For	 example,	 to	 clear	 bits	 2,	 1,	 and	 0	 in
the GPIO_PORTA_RIS_R register,	 we	 write	 a	 0x07	 to
the GPIO_PORTA_IC_R 	register.	Writing	zeros	into	IC	bits	will	not
affect	the	RIS	bits.
For	input	signals	we	have	the	option	of	adding	either	a	pull-up	resistor
or	 a	 pull-down	 resistor.	 If	 we	 set	 the	 corresponding	 PUE	 (Pull-Up
Enable)	bit	on	an	input	pin,	the	equivalent	of	a	50	to	110	kΩ	resistor	to
+3.3	V	power	is	internally	connected	to	the	pin.	Similarly,	if	we	set	the
corresponding	 PDE	 (Pull-Down	 Enable)	 bit	 on	 an	 input	 pin,	 the
equivalent	of	a	55	to	180	kΩ	resistor	to	ground	is	internally	connected
to	 the	pin.	We	cannot	have	both	pull-up	and	a	pull-down	resistor,	 so
setting	a	bit	in	one	register	automatically	clears	the	corresponding	bit



in	the	other	register.

A	typical	application	of	pull-up	and	pull-down	mode	is	the	interface	of
simple	 switches.	 Using	 these	 modes	 eliminates	 the	 need	 for	 an
external	 resistor	when	 interfacing	a	switch.	The	switch	 interfaces	 for
the	 two	switches	on	 the	LaunchPad	are	 illustrated	 in	Figure	2.6.	The
Port	 F	 interfaces	 employ	 software-configured	 internal	 resistors,
implementing	negative	logic	inputs.
Checkpoint	2.5:	What	do	negative	logic	and	positive	logic	mean	in
the	context	of	interfacing	switches?

Figure	2.6.	Edge-triggered	interfaces	can	generate	interrupts	on
a	switch	touch.	These	negative	logic	switches	require	internal
pull-up	resistors.	R1	and	R13	are	0-ohm	resistors	can	could	be
desoldered	to	disconnect	the	switches	from	the	microcontroller.

Checkpoint	2.6:	What	values	to	you	write	into	DIR,	AFSEL,	PUE,
and	PDE	to	configure	the	switch	interfaces	of	PF4	and	PF0	in
Figure	2.6?

Using	 edge	 triggering	 to	 synchronize	 software	 to	 hardware	 centers
around	 the	operation	of	 the	 trigger	 flags,	RIS.	A	busy-wait	 interface
will	 read	 the	appropriate	RIS	bit	over	and	over,	until	 it	 is	set.	When
the	RIS	bit	is	set,	the	software	will	clear	the	RIS	bit	(by	writing	a	one
to	 the	corresponding	 IC	 bit)	 and	 perform	 the	 desired	 function.	With
interrupt	synchronization,	 the	initialization	phase	will	arm	the	trigger
flag	by	setting	the	corresponding	IME	bit.	In	this	way,	the	active	edge
of	the	pin	will	set	the	RIS	and	request	an	interrupt.	The	interrupt	will
suspend	the	main	program	and	run	a	special	 interrupt	service	routine
(ISR).	 This	 ISR	 will	 clear	 the	 RIS	 bit	 and	 perform	 the	 desired
function.	 At	 the	 end	 of	 the	 ISR	 it	 will	 return,	 causing	 the	 main
program	 to	 resume.	 In	 particular,	 five	 conditions	 must	 be
simultaneously	 true	for	an	edge-triggered	interrupt	 to	be	requested:	•
The	trigger	flag	bit	is	set	(RIS)



•	The	arm	bit	is	set	(IME)
•	The	level	of	the	edge-triggered	interrupt	must	be	less
than	BASEPRI
•	The	edge-triggered	interrupt	must	be	enabled	in	the
NVIC_EN0_R
•	The	edge-triggered	interrupt	must	be	disabled	in	the
NVIC_DIS0_R
•	Bit	0	of	the	special	register	PRIMASK	is	0
	

Table	2.9	listed	the	registers	for	Port	A.	The	other	ports	have	similar
registers.	We	will	begin	with	a	simple	example	that	counts	the	number
of	 falling	edges	on	Port	F	bits	4,0	 (Program	2.12).	The	 initialization
requires	many	 steps.	 (a)	The	clock	 for	 the	port	must	be	enabled.	 (b)
The	 global	 variables	 should	 be	 initialized.	 (c)	 The	 appropriate	 pins
must	be	enabled	as	inputs.	(d)	We	must	specify	whether	to	trigger	on
the	rise,	the	fall,	or	both	edges.	In	this	case,	we	will	trigger	on	the	fall
of	 PF4,PF0.	 (e)	 It	 is	 good	 design	 to	 clear	 the	 trigger	 flag	 during
initialization	 so	 that	 the	 first	 interrupt	 occurs	 due	 to	 the	 first	 rising
edge	after	the	initialization	has	been	run.	We	do	not	wish	to	trigger	on
a	falling	edge	that	might	have	occurred	during	the	power	up	phase	of
the	system.	(f)	We	arm	the	edge-trigger	by	setting	 the	corresponding
bits	in	the	IMregister.	(g)	We	establish	the	priority	of	Port	F	by	setting
bits	 23	 –	 21	 in	 the NVIC_PRI7_R 	 register.	 We	 activate	 Port	 F
interrupts	 in	 the	 NVIC	 by	 writing	 a	 one	 to	 bit	 30	 in
the NVIC_EN0_R 	 register	 (“IRQ	 number”).	 In	 most	 systems	 we
would	 not	 enable	 interrupts	 in	 the	 device	 initialization.	 Rather,	 it	 is
good	 design	 to	 initialize	 all	 devices	 in	 the	 system,	 and	 then	 enable
interrupts.
Checkpoint	2.7:	If	both	switches	are	touched	simultaneously,	what
will	happen?	How	many	interrupts	are	generated?

int32_t	Count1,Count2	=	0;
void	Switch_Init(void){
		SYSCTL_RCGCGPIO_R	|=	0x20;						//	(a)	activate	clock	for	Port	F
		Count1=	Count2	=	0;													//	(b)	initialize	counters
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;	//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;									//	allow	changes	to	PF4-0
		GPIO_PORTF_DIR_R	=	0x02;								//	(c)	make	PF4,PF0	in	and	PF1	is	out



		GPIO_PORTF_DEN_R	|=	0x13;							//		enable	digital	I/O	on	PF4,PF0,	PF1
		GPIO_PORTF_PUR_R	|=	0x11;							//	pullups	on	PF4,PF0
		GPIO_PORTF_IS_R	&=	~0x11;							//	(d)	PF4,PF0	are	edge-sensitive
		GPIO_PORTF_IBE_R	&=	~0x11;						//					PF4,PF0	are	not	both	edges
		GPIO_PORTF_IEV_R	&=	~0x11;						//					PF4,PF0	falling	edge	event
		GPIO_PORTF_ICR_R	=	0x11;								//	(e)	clear	flags
		GPIO_PORTF_IM_R	|=	0x11;								//	(f)	arm	interrupt	on	PF4,PF0
	 	 NVIC_PRI7_R	 =	 (NVIC_PRI7_R&0xFF00FFFF)|0x00A00000;	 //	 (g)
priority	5
		NVIC_EN0_R	=	0x40000000;								//	(h)	enable	interrupt	30	in	NVIC

}

void	GPIOPortF_Handler(void){
		if(GPIO_PORTF_RIS_R&0x10){		//	poll	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4
				Count1++;																//	event	occurred

}

		if(GPIO_PORTF_RIS_R&0x01){		//	poll	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0
				Count2++;																//	event	occurred

}

}

Program	2.12.	Interrupt-driven	edge-triggered	input	that	counts
falling	edges	of	PF4,PF0.

2.4.2.	Edge-triggered	Interrupts	on	the	MSP432
Synchronizing	 software	 to	 hardware	 events	 requires	 the	 software	 to
recognize	when	the	hardware	changes	states	from	busy	to	done.	Many
times	 the	 busy	 to	 done	 state	 transition	 is	 signified	 by	 a	 rising	 (or
falling)	edge	on	a	status	signal	 in	 the	hardware.	For	 these	situations,
we	connect	this	status	signal	to	an	input	of	the	microcontroller,	and	we
use	edge-triggered	 interfacing	 to	configure	 the	 interface	 to	 set	 a	 flag



on	 the	 rising	 (or	 falling)	 edge	 of	 the	 input.	 Using	 edge-triggered
interfacing	 allows	 the	 software	 to	 respond	quickly	 to	 changes	 in	 the
external	 world.	 If	 we	 are	 using	 busy-wait	 synchronization,	 the
software	waits	for	the	flag.	If	we	are	using	interrupt	synchronization,
we	 configure	 the	 flag	 to	 request	 an	 interrupt	 when	 set.	 Each	 of	 the
digital	I/O	pins	on	ports	P1	–	P6	can	be	configured	for	edge	triggering.
Table	 2.11	 shows	 many	 of	 the	 registers	 available	 for	 Port	 1.	 The
differences	 between	 members	 of	 the	 MSP432	 family	 include	 the
number	of	ports	(e.g.,	the	MSP432P401	has	ports	1	–	10),	which	pins
can	interrupt	(e.g.,	the	MSP432P401	can	interrupt	on	ports	1	–	6)	and
the	number	of	pins	in	each	port	(e.g.,	the	MSP432P401	has	pins	6	–	0
on	Port	10).	For	more	details,	refer	to	the	datasheet	for	your	specific
microcontroller.
Each	of	the	pins	on	Ports	1	–	6	on	the	MSP432P401	can	be	configured
as	an	edge-triggered	input.	When	writing	C	code	using	these	registers,
include	 the	 header	 file	 for	 your	 particular	 microcontroller	 (e.g.,
msp432p401r.h).	To	use	 a	pin	 as	 regular	 digital	 input	 or	 output,	we
clear	 its	 SEL0	 and	 SEL1	 bits.	 For	 regular	 digital	 input/output,	 we
clear	DIR	(Direction)	bits	to	make	them	input,	and	we	set	DIR	bits	to
make	them	output.

Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 DATA DATA DATA DATA DATA DATA DATA DATA P1IN
0x4000.4C02 DATA DATA DATA DATA DATA DATA DATA DATA P1OUT
0x4000.4C04 DIR DIR DIR DIR DIR DIR DIR DIR P1DIR
0x4000.4C06 REN REN REN REN REN REN REN REN P1REN
0x4000.4C08 DS DS DS DS DS DS DS DS P1DS
0x4000.4C0A SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P1SEL0
0x4000.4C0C SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P1SEL1
0x4000.4C0E 	 	 	 P1IV P1IV
0x4000.4C18 IES IES IES IES IES IES IES IES P1IES
0x4000.4C1A IE IE IE IE IE IE IE IE P1IE
0x4000.4C1C IFG IFG IFG IFG IFG IFG IFG IFG P1IFG

Table	2.11.	MSP432	Port	1	registers.	SEL0	SEL1	bits,	see	Table	2.3.	All
except	PxIV	are	8	bits	wide.

To	 configure	 an	 edge-triggered	 pin,	 we	 first	 configure	 the	 pin	 as	 a
regular	 digital	 input.	Most	 busy	 to	 done	 conditions	 are	 signified	 by
edges,	 and	 therefore	 we	 trigger	 on	 edges	 of	 those	 signals.	 Next	 we
write	to	the	IES	(Interrupt	Edge	Select)	to	define	the	active	edge.	We
can	 trigger	 on	 the	 rising	or	 falling	 edge,	 as	 listed	 in	Table	 2.12.	We



clear	 the	 IE	 (Interrupt	 Enable)	 bits	 if	 we	 are	 using	 busy-wait
synchronization,	 and	 we	 set	 the	 IE	 bits	 to	 use	 interrupt
synchronization.	For	input	signals	we	have	the	option	of	adding	either
a	pull-up	resistor	or	a	pull-down	resistor.	If	we	set	the	corresponding
REN	(Resistor	Enable)	bit	on	an	input	pin,	we	internally	connect	the
equivalent	 of	 a	 20	 –	 50	 kΩ	 resistor	 to	 the	 pin.	 As	 previously
mentioned	 we	 choose	 pull	 up	 by	 setting	 the	 corresponding	 bit	 in
P1OUT	to	1.	We	choose	pull	down	by	clearing	the	corresponding	bit
in	P1OUT	to	0.
The	16-bit	P1IV	 (Interrupt	Vector)	register	specifies	a	number	of	the
highest	 priority	 flag	 that	 is	 set	 in	 the	P1IFG	 register.	 The	 value	 is
0x00	 if	 no	 flag	 is	 set.	 Pin	 0	 is	 the	 highest	 priority	 and	 Pin	 7	 is	 the
lowest.	If	pin	n	is	the	highest	priority	flag	that	is	set,	then	P1IV	will	be
2*(n+1),	meaning	 it	 will	 be	 one	 of	 these	 values:	 0x02,	 0x04,	 0x06,
0x08,	0x0A,	0x0C,	0x0E,	or	0x10.
The	hardware	sets	an	IFG	(Interrupt	Flag)	bit	(called	the	trigger)	and
the	 software	 clears	 it	 (called	 the	 acknowledgement).	 The	 triggering
event	 listed	 in	 Table	 2.12	 will	 set	 the	 corresponding	 IFGbit	 in
the P1IFG 	register	regardless	of	whether	or	not	that	bit	is	allowed	to
request	 an	 interrupt.	 In	 other	 words,	 clearing	 an	 IE	 bit	 disables	 the
corresponding	 pin’s	 interrupt,	 but	 it	 will	 still	 set	 the	 corresponding
IFG	 bit	 when	 the	 interrupt	 would	 have	 occurred.	 To	 use	 interrupts,
clear	the	IE	bit,	configure	 the	bits	 in	Table	2.11,	and	then	set	 the	IE
bit.	The	 software	can	acknowledge	 the	event	by	writing	zeros	 to	 the
corresponding	IFG	 bitsin	 the P1IFG 	 register.	 For	 example,	 to	 clear
bit	2in	the P1IFG 	register,	we	simply	execute	P1IFG	&=	(~0x04);
However,	 this	 mechanism	 has	 a	 critical	 section,	 and	 should	 not	 be
used	 if	 there	 are	 multiple	 interrupts	 active	 on	 a	 single	 port.	 The
example	will	illustrate	using	P1IV	to	acknowledge.

DIR SEL0
SEL1

IE IES Port	mode

0 00 0 0 Input,	rising	edge	trigger
0 00 0 1 Input,	falling	edge	trigger
0 00 1 0 Input,	 rising	 edge	 trigger,

interrupt
0 00 1 1 Input,	 falling	 edge	 trigger,

interrupt



Table	2.12.	Edge-triggered	modes.
A	typical	application	of	pull-up	and	pull-down	mode	is	the	interface	of
simple	 switches.	 Using	 these	 modes	 eliminates	 the	 need	 for	 an
external	 resistor	 when	 interfacing	 a	 switch.	 The	 P1.1	 and	 P1.4
interfaces	will	use	software-configured	internal	resistors.	The	P1.1	and
P1.4	interfaces	in	Figure	2.7	implement	negative	logic	switch	inputs.		

Figure	2.7.	Edge-triggered	interfaces	can	generate	interrupts	on
a	switch	touch.	These	negative	logic	switches	require	internal
pull-up	resistors.

Using	 edge	 triggering	 to	 synchronize	 software	 to	 hardware	 centers
around	 the	operation	of	 the	 trigger	 flags,	IFG.	A	busy-wait	 interface
will	read	the	appropriate	IFG	bit	over	and	over,	until	 it	 is	set.	When
the	IFG	bit	is	set,	the	software	will	clear	the	bit	by	writing	a	zero	to	it
and	perform	the	desired	function.	With	interrupt	synchronization,	 the
initialization	 phase	 will	 arm	 the	 trigger	 flag	 by	 setting	 the
corresponding	IE	bit.	 In	 this	way,	 the	active	edge	of	 the	pin	will	 set
the	IFG	and	request	an	interrupt.	The	interrupt	will	suspend	the	main
program	 and	 run	 a	 special	 interrupt	 service	 routine	 (ISR).	 This	 ISR
will	clear	the	IFG	bit	and	perform	the	desired	function.	At	the	end	of
the	 ISR	 it	 will	 return,	 causing	 the	 main	 program	 to	 resume.	 In
particular,	 five	 conditions	 must	 be	 simultaneously	 true	 for	 an	 edge-
triggered	 interrupt	 to	 be	 requested:	 • 	 The	 trigger	 flag	 bit	 is	 set
(IFG)
• 	The	arm	bit	is	set	(IE)
• 	The	level	of	the	edge-triggered	interrupt	must	be	less
than	BASEPRI
• 	The	edge-triggered	interrupt	must	be	enabled	in	the
NVIC_ISER1
• 	Bit	0	of	the	special	register	PRIMASK	is	0

In	 Volumes	 1	 and	 2,	 we	 developed	 blind-cycle	 and	 busy-wait
solutions.	However,	in	this	section	we	will	redesign	the	systems	using



interrupt	synchronization.	Table	2.11	lists	the	registers	for	Port	1.	The
other	 ports	 have	 similar	 registers.	 However,	 only	 Ports	 1	 –	 6	 can
request	 interrupts.	We	will	 begin	with	 a	 simple	 example	 that	 counts
the	number	of	falling	edges	on	Port	1	bits	1	and	4	(Program	2.13).	The
initialization	 requires	 many	 steps.	 We	 enable	 interrupts
( EnableInterrupts() )	only	after	all	devices	are	initialized.
(a)	The	global	variables	should	be	initialized.
(b)	The	appropriate	pins	must	be	enabled	as	inputs.
(c)	 We	 must	 specify	 whether	 to	 trigger	 on	 the	 rising	 or	 the	 falling
edge.	We	will	 trigger	on	 the	 falling	of	 either	P1.1	or	P1.4.	A	 falling
edge	occurs	whenever	we	touch	either	SW1	or	SW2.
(d)	 It	 is	 good	design	 to	 clear	 the	 trigger	 flag	 during	 initialization	 so
that	 the	 first	 interrupt	 occurs	 due	 to	 the	 first	 falling	 edge	 after	 the
initialization	has	been	run.	We	do	not	wish	to	trigger	on	a	rising	edge
that	might	have	occurred	during	the	power	up	phase	of	the	system.
(e)	We	arm	the	edge-trigger	by	setting	the	corresponding	bits	in	the	IE
register.
(f)	 We	 establish	 the	 priority	 of	 Port	 1	 by	 setting	 bits	 31	 –	 29	 in
the NVIC_IPR8 	register.
(g)	 We	 activate	 Port	 1	 interrupts	 in	 the	 NVIC	 by	 setting	 bit	 3	 in
the NVIC_ISER1 register.
The	 proper	way	 to	 poll	 the	 interrupt	 is	 to	 use	P1IV.	 If	 the	 software
reads	P1IV	it	will	get	the	number	(2*(n+1))	where	n	is	the	pin	number
of	the	lowest	bit	with	a	pending	interrupt.	This	access	will	clear	only
flag	n.

int32_t	Count1,Count2	=	0;
void	Switch_Init(void){							
		Count1	=	Count2	=	0;									//	(a)	initialize	counters
		P1SEL1	&=	~0x12;														//	(b)	configure	P1.1,	P1.4	as	GPIO
		P1SEL0	&=	~0x12;														//					built-in	Buttons	1	and	2
		P1DIR	&=	~0x12;															//					make	P1.1,	P1.4	in
		P1REN	|=	0x12;																//					enable	pull	resistors
		P1OUT	|=	0x12;																//					P1.1,	P1.4	is	pull-up
		P1IES	|=	0x12;																//	(c)	P1.1,	P1.4	is	falling	edge	event
		P1IFG	&=	~0x12;															//	(d)	clear	flag1	and	flag4
		P1IE	|=	0x12;																	//	(e)	arm	interrupt	on	P1.1,	P1.4



		NVIC_IPR8	=	(NVIC_IPR8&0x00FFFFFF)|0x40000000;	//	(f)	priority	2
		NVIC_ISER1	=	0x00000008;						//	(g)	enable	interrupt	35	in	NVIC

}

void	PORT1_IRQHandler(void){	uint8_t	status;
		status	=	P1IV;	//	4	for	P1.1	and	10	for	P1.4
		if(status	==	4){
				Count1++;																//	event	occurred

}

		if(status	==	10){
				Count2++;																//	event	occurred

}

}

Program	2.13.	Interrupt-driven	edge-triggered	input	that	counts
falling	edges	of	P1.4	and	P1.1.



2.5.	UART	Interface
In	 this	 section	 we	 will	 develop	 a	 simple	 device	 driver	 using	 the
Universal	 Asynchronous	 Receiver/Transmitter	 (UART).	 This	 serial
port	allows	the	microcontroller	 to	communicate	with	devices	such	as
other	 computers,	 printers,	 input	 sensors,	 and	 LCDs.	 	 Serial
transmission	 involves	 sending	 one	 bit	 a	 time,	 such	 that	 the	 data	 is
spread	out	over	time.	The	total	number	of	bits	transmitted	per	second
is	called	the	baud	rate.	The	reciprocal	of	the	baud	rate	is	the	bit	time,
which	is	the	time	to	send	one	bit.	Most	microcontrollers	have	at	least
one	UART.	The	details	of	the	UART	operation	on	the	MSP432/TM4C
can	be	 found	 in	Volume	2.	 In	 this	book,	we	present	general	 features
common	to	all	devices,	and	also	include	interrupt	driven	drivers.	Each
UART	will	have	a	baud	 rate	control	 register,	which	we	use	 to	 select
the	transmission	rate.	Each	device	is	capable	of	creating	its	own	serial
clock	with	a	transmission	frequency	approximately	equal	to	the	serial
clock	in	the	computer	with	which	it	is	communicating.	A	frame	is	the
smallest	 complete	 unit	 of	 serial	 transmission.	 Figure	 2.8	 plots	 the
signal	 versus	 time	 on	 a	 serial	 port,	 showing	 a	 single	 frame,	 which
includes	 a	 start	bit	 (which	 is	 0),	 8	 bits	 of	 data	 (least	 significant	 bit
first),	and	a	stop	bit	(which	is	1).		There	is	always	only	one	start	bit,
but	the	UARTs	allow	us	to	select	the	5	to	8	data	bits	and	1	or	2	stop
bits.	The	UART	can	add	even,	odd,	or	no	parity	bit.	However,	we	will
employ	the	typical	protocol	of	1	start	bit,	8	data	bits,	no	parity,	and	1
stop	bit.	This	protocol	is	used	for	both	transmitting	and	receiving.	The
information	 rate,	or	bandwidth,	 is	 defined	 as	 the	 amount	 of	 data	 or
useful	 information	 transmitted	 per	 second.	 From	 Figure	 2.8,	 we	 see
that	 10	 bits	 are	 sent	 for	 every	 byte	 of	 usual	 data.	 Therefore,	 the
bandwidth	of	 the	serial	channel	(in	bytes/second)	is	 the	baud	rate	(in
bits/sec)	divided	by	10.

Figure	2.8.	A	serial	data	frame	with	8-bit	data,	1	start	bit,	1	stop
bit,	and	no	parity	bit.



Checkpoint	2.8:	Assuming	the	protocol	drawn	in	Figure	2.8	and	a
baud	rate	of	115200	bits/sec,	what	is	the	bandwidth	in	bytes/sec?

Table	2.13	shows	the	three	most	commonly	used	RS232	signals.	The
RS232	standard	uses	a	DB25	connector	that	has	25	pins.	The	EIA-574
standard	uses	RS232	voltage	levels	and	a	DB9	connector	that	has	only
9	pins.	 	The	most	commonly	used	signals	of	the	full	RS232	standard
are	available	with	 the	EIA-574	protocols.	 	Only	TxD,	RxD,	and	SG
are	required	to	implement	a	simple	bidirectional	serial	channel	(Figure
2.9).	We	define	the	data	terminal	equipment	(DTE)	as	the	computer
or	a	terminal	and	the	data	communication	equipment	(DCE)	as	 the
modem	or	printer.

DB25
Pin

RS232
Name

DB9
Pin

EIA-
574
Name

Signal Description True DTE DCE

2 BA 3 103 TxD Transmit	Data -12V out in
3 BB 2 104 RxD Receive	Data -12V in out
7 AB 5 102 SG Signal	Ground 	 	 	

Table	2.13.	The	commonly-used	signals	on	the	RS232	and	EIA-574
protocols.

Figure	2.9.	Hardware	interface	implementing	an	asynchronous
RS232	channel.	The	TM4C123	and	TM4C1294	have	eight	UART
ports.



Observation:	Most	MSP432/TM4C	development	kits	connect	the
UART0	channel	through	the	USB	cable,	so	the	circuit	shown	in
Figure	2.9	will	not	be	needed.	On	the	PC	side	of	the	cable,	the	serial
channel	becomes	a	virtual	COM	port.		

RS232	is	a	non-return-to-zero	(NRZ)	protocol	with	true	signified	as	a
voltage	between	-5	and	‑15	V.	False	is	signified	by	a	voltage	between
+5	 and	 +15	 V.	 A	 MAX3232	 converter	 chip	 is	 used	 to	 translate
between	the	+5.5/-5.5	V	RS232	levels	and	the	0/+3.3	V	digital	levels,
as	 shown	 in	 Figure	 2.9.	 The	 capacitors	 in	 this	 circuit	 are	 important,
because	 they	 form	 a	 charge	 pump	 used	 to	 create	 the	 ±5.5	 voltages
from	the	+3.3	V	supply.	The	RS232	timing	is	generated	automatically
by	the	UART.	During	transmission,	the	Maxim	chip	translates	a	digital
high	 on	microcontroller	 side	 to	 -5.5V	 on	 the	RS232/EIA‑574	 cable,
and	a	digital	low	is	translated	to	+5.5V.	During	receiving,	the	Maxim
chip	translates	negative	voltages	on	RS232/EIA‑574	cable	to	a	digital
high	on	the	microcontroller	side,	and	a	positive	voltage	is	translated	to
a	digital	low.	The	computer	is	classified	as	DTE,	so	its	serial	output	is
pin	3	in	the	EIA‑574	cable,	and	its	serial	input	is	pin	2	in	the	EIA‑574
cable.	When	connecting	a	DTE	to	another	DTE,	we	use	a	cable	with
pins	2	and	3	crossed.	I.e.,	pin	2	on	one	DTE	is	connected	to	pin	3	on
the	other	DTE	and	pin	3	on	one	DTE	is	connected	to	pin	2	on	the	other
DTE.	 	When	connecting	a	DTE	 to	a	DCE,	 then	 the	cable	passes	 the
signals	 straight	 across.	 In	 all	 situations,	 the	 grounds	 are	 connected
together	using	the	SG	wire	 in	 the	cable.	This	channel	 is	classified	as
full	 duplex,	 because	 transmission	 can	 occur	 in	 both	 directions
simultaneously.
Figure	2.10	shows	a	data	flow	graph	with	buffered	input	and	buffered
output.	First	 in	 first	out	 (FIFO)	queues	are	statically	allocated	global
structures.	 The	 producer	 puts	 into	 the	 FIFO	 and	 the	 consumer	 gets
from	the	FIFO.	Because	they	are	global	variables,	 it	means	they	will
exist	permanently	and	can	be	carefully	shared	by	the	foreground	and
background	 threads.	 The	 advantage	 of	 using	 a	 FIFO	 structure	 for	 a
data	flow	problem	is	that	we	can	decouple	the	producer	and	consumer
threads.	Without	 the	 FIFO	 we	 would	 have	 to	 produce	 one	 piece	 of
data,	 then	 process	 it,	 produce	 another	 piece	 of	 data,	 then	 process	 it.
With	 the	 FIFO,	 the	 producer	 thread	 can	 continue	 to	 produce	 data
without	 having	 to	 wait	 for	 the	 consumer	 to	 finish	 processing	 the
previous	 data.	 This	 decoupling	 can	 significantly	 improve	 system



performance.	

Figure	2.10.	A	data	flow	graph	showing	two	FIFOs	that	buffer
data	between	producers	and	consumers.

Checkpoint	2.9:	What	does	it	mean	if	the	RxFifo	in	Figure	2.10	is
empty?	
Checkpoint	2.10:	What	does	it	mean	if	the	TxFifo	in	Figure	2.10	is
empty?

2.5.1.	Transmitting	in	asynchronous	mode
We	will	begin	with	transmission,	because	it	is	simple.	The	transmitter
portion	 of	 the	 UART	 includes	 a	 data	 output	 pin,	 with	 digital	 logic
levels	 as	 drawn	 in	 Figure	 2.11.	 The	 TM4C	 transmitter	 has	 a	 16-
element	 FIFO	 and	 a	 10-bit	 shift	 register,	 which	 cannot	 be	 directly
accessed	by	 the	programmer	 (Figure	2.11).	The	MSP432	 simply	has
the	data	 register	and	shift	 register.	The	data	 register,	FIFO,	and	shift
register	 in	 the	 transmitter	 are	 separate	 from	 the	 data	 register,	 FIFO,
and	shift	register	associated	with	the	receiver.	To	output	data	using	the
UART,	 the	 software	 will	 first	 check	 to	make	 sure	 the	 transmit	 data
register	 is	 not	 fulland	 then	 write	 to	 the	 transmit	 data	 register
(e.g., UART0_DR_R	UCA0TXBUF ).	The	bits	are	shifted	out	in	this
order:	start,	b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then	stop,	where	b0	is	the
LSB	and	b7	is	the	MSB.	The	transmit	data	register	is	write	only,	which
means	 the	 software	 can	write	 to	 it	 (to	 start	 a	 new	 transmission)	 but
cannot	 read	 from	 it.	 Even	 though	 the	 transmit	 data	 register	 is	 at	 the
same	address	as	the	receive	data	register,	the	transmit	and	receive	data
registers	are	two	separate	registers.



Figure	2.11.	Data	and	shift	registers	implement	the	serial
transmission.

On	 the	 TM4C,	 we	 will	 interrupt	 when	 the	 transmit	 FIFO	 is	 almost
empty.	The	ISR	will	pass	data	from	the	software	FIFO	to	the	hardware
FIFO.	The	use	of	FIFOs	separates	the	data	production	(software)	from
the	data	consumption	(UART	hardware).
On	 the	MSP432,	we	will	 interrupt	when	 the	 transmit	data	 register	 is
empty.	The	ISR	will	pass	one	byte	of	data	from	the	software	FIFO	to
the	hardware	UART.
In	all	cases,	we	will	disarm	the	UART	transmitter	when	the	software
FIFO	is	empty,	and	rearm	it	when	new	data	are	available.

2.5.2.	Receiving	in	asynchronous	mode
Receiving	data	frames	is	a	little	trickier	than	transmission	because	we
have	to	synchronize	the	receive	shift	register	with	the	incoming	data.
The	 receiver	 portion	 of	 the	 UART	 includes	 an	RXD	 data	 input	 pin
with	 digital	 logic	 levels.	 At	 the	 input	 of	 the	microcontroller,	 true	 is
3.3V	and	false	is	0V.	The	TM4C	microcontrollers	have	a	16-element
FIFO	to	buffer	 the	 incoming	frames.	All	microcontrollers	have	a	10-
bit	shift	register	and	a	data	register.	The	FIFO	and	shift	register	cannot
be	 directly	 accessed	 by	 the	 programmer	 (Figure	 2.12).	 Again	 the
receive	 hardware	 is	 separate	 from	 the	 transmitter	 hardware.	 The
receive	 data	 register, UART0_DR_R	 UCA0RXBUF ,	 is	 read	 only,
which	means	write	 operations	 to	 this	 address	 have	 no	 effect	 on	 this
register	(recall	write	operations	activate	the	transmitter).	The	receiver
obviously	cannot	start	a	transmission,	but	it	recognizes	a	new	frame	by
its	 start	 bit.	 The	 bits	 are	 shifted	 in	 using	 the	 same	 order	 as	 the
transmitter	shifted	them	out:	start,	b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then
stop.



Figure	2.12.	Data	register	shift	registers	implement	the	receive
serial	interface.

The	receiver	waits	for	the	1	to	0	edge	signifying	a	start	bit,	then	shifts
in	10	bits	of	data	one	at	a	time	from	the	RXD	line.	The	start	and	stop
bits	are	removed	(checked	for	framing	errors).	The	8	bits	of	data	are
available	to	be	read	from	the	receive	data	register.	On	the	TM4C,	the
FIFO	 implements	 hardware	buffering	 so	data	 can	be	 safely	 stored	 if
the	software	is	performing	other	tasks.	
We	will	interrupt	when	the	receive	UART	has	data.	The	ISR	will	pass
data	from	the	UART	hardware	to	the	software	FIFO.	The	use	of	FIFOs
separates	 the	 data	 production	 (UART	 hardware)	 from	 the	 data
consumption	 (software).	 We	 will	 arm	 the	 UART	 receiver	 at
initialization	 and	 it	 will	 remain	 armed	 throughout.	 If	 there	 are	 no
incoming	 frames,	 there	will	 be	 no	 interrupts	 and	 the	 software	 FIFO
will	eventually	become	empty.	The	system	will	remain	in	the	idle	state
until	new	data	arrives.	You	can	find	UART	examples	on	the	book	web
site	as	UART_xxx	and	UARTints_xxx.

2.5.3.	Interrupt-driven	UART	on	the	TM4C123
The	TM4C	microcontrollers	 have	 one	 to	 eight	UARTs.	 The	 specific
port	 pins	 used	 to	 implement	 the	 UARTs	 vary	 from	 one	 chip	 to	 the
next.	To	find	which	pins	your	microcontroller	uses,	you	will	need	 to
consult	 its	 datasheet.	Table	 2.14	 shows	 some	of	 the	 registers	 for	 the
UART0.	 If	 the	 microcontroller	 has	 multiple	 UARTs,	 the	 register
names	will	replace	the	0	with	a	1	–	7.	For	the	exact	register	addresses,
you	 should	 include	 the	 appropriate	 header	 file	 (e.g.,
tm4c1294ncpdt.h).	To	activate	a	UART	you	will	need	to	turn	on	the
UART	 clock	 in	 the	SYSCTL_RCGCUART_R	 register.	You	 should
also	 turn	 on	 the	 clock	 for	 the	 digital	 port	 in	 the
SYSCTL_RCGCGPIO_R	 register.	You	 need	 to	 enable	 the	 transmit



and	 receive	pins	as	digital	 signals.	The	alternative	 function	 for	 these
pins	must	also	be	selected.
The	OE,	BE,	PE,	and	FE	are	error	flags	associated	with	the	receiver.
You	can	see	these	flags	in	two	places:	associated	with	each	data	byte
in UART0_DR_R or	as	a	separate	error	register	in UART0_RSR_R .
The	overrun	error	(OE)	 is	set	 if	data	has	been	lost	because	 the	 input
driver	 latency	 is	 too	 long.	 BE	 is	 a	 break	 error,	 meaning	 the	 other
device	has	sent	a	break.	PE	is	a	parity	error	(however,	we	will	not	be
using	parity).	The	framing	error	(FE)	will	get	set	if	the	baud	rates	do
not	match.	The	software	can	clear	these	four	error	flags	by	writing	any
value	to UART0_RSR_R .
The	 status	 of	 the	 two	 FIFOs	 can	 be	 seen	 in	 the UART0_FR_R
register.	The	BUSY	 flag	 is	 set	while	 the	 transmitter	 still	 has	 unsent
bits.	It	will	become	zero	when	the	transmit	FIFO	is	empty	and	the	last
stop	 bit	 has	 been	 sent.	 If	 you	 implement	 busy-wait	 output	 by	 first
outputting	then	waiting	for	BUSY	 to	become	0,	then	the	routine	will
write	 new	 data	 and	 return	 after	 that	 particular	 data	 has	 been
completely	transmitted.
The UART0_CTL_R 	 control	 register	 contains	 the	 bits	 that	 turn	 on
the	 UART.	 TXE	 is	 the	 Transmitter	 Enable	 bit,	 and	 RXE	 is	 the
Receiver	Enable	bit.	We	set	TXE,	RXE,	and	UARTEN	equal	to	1	in
order	 to	 activate	 the	 UART	 device.	 	 However,	 we	 should	 clear
UARTEN	during	the	initialization	sequence.

	 31–
12

11 10 9 8 7–0 Name

$4000.C000 	 OE BE PE FE DATA UART0_DR_R
	 	 	 	 	 	 	 	 	 	
	 31–3 3 2 1 0 	
$4000.C004 	 OE BE PE FE UART0_RSR_R
	 	 	 	 	 	 	 	 	 	
	 31–

8
7 6 5 4 3 2–0 	

$4000.C018 	 TXFE RXFF TXFF RXFE BUSY 	 UART0_FR_R
	 	 	 	 	 	 	 	 	 	
	 31–

16
15–0 	

$4000.C024 	 DIVINT UART0_IBRD_R
	 	 	 	 	 	 	 	 	 	
	 31–6 5–0 	
$4000.C028 	 DIVFRAC UART0_FBRD_R



	 	 	 	 	 	 	 	 	 	

	 31–
8

7 6	–	5 4 3 2 1 0 	

$4000.C02C 	 SPS WLEN FEN STP2 EPS PEN BRK UART0_LCRH_R
	 	 	 	 	 	 	 	 	 	
	 31–

10
9 8 7 6–3 2 1 0 	

$4000.C030 	 RXE TXE LBE 	 SIRLP SIREN UARTEN UART0_CTL_R
	 	 	 	 	 	 	 	 	 	
	 31–6 5-3 2-0 	
$4000.C034 	 RXIFLSEL TXIFLSEL UART0_IFLS_R
	 	 	 	 	 	 	 	 	 	
	 31-

11
10 9 8 7 6 5 4 	 	

$4000.C038 	 OEIM BEIM PEIM FEIM RTIM TXIM RXIM 	 UART0_IM_R
$4000.C03C 	 OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS 	 UART0_RIS_R
$4000.C040 	 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS 	 UART0_MIS_R
$4000.C044 	 OEIC BEIC PEIC FEIC RTIC TXIC RXIC 	 UART0_ICR_R

Table	2.14.	Some	UART	registers.	Each	register	is	32	bits	wide.	Shaded	bits
are	zero.
	

The UART0_IBRD_R 	and	UART0_FBRD_R 	 registers	 specify	 the
baud	rate.	The	baud	rate	divider	 is	 a	22-bit	binary	 fixed-point	value
with	a	resolution	of	2-6.	The	Baud16	clock	is	created	from	the	system
bus	 clock,	 with	 a	 frequency	 of	 (Bus	 clock	 frequency)/divider.	 The
baud	rate	is	16	times	slower	than	Baud16
Baud	 rate	 =	Baud16/16	 =	 (Bus	 clock	 frequency)/(16*divider)	 For
example,	if	the	bus	clock	is	8	MHz	and	the	desired	baud	rate	is	19200
bits/sec,	then	the	divider	should	be	8,000,000/16/19200	or	26.04167.
As	a	binary	 fixed-point	number,	 this	number	 is	about	11010.000011.
We	 can	 establish	 this	 baud	 rateby	 putting	 the	 11010
into UART0_IBRD_R and	 the	 000011	 into UART0_FBRD_R .	 In
reality,	 11010.000011	 is	 equal	 to	 1667/64	 or	 26.046875.	 The	 baud
rates	 in	 the	 transmitter	 and	 receiver	 must	 match	 within	 5%	 for	 the
channel	to	operate	properly.	The	error	for	this	example	is	0.02%.
The	 three	 registers UART0_LCRH_R , UART0_IBRD_R ,
and UART0_FBRD_R form	 an	 internal	 30-bit	 register.	 This	 internal
register	 is	 only	 updated	 when	 a	 write	 operation
to UART0_LCRH_R is	 performed,	 so	 any	 changes	 to	 the	 baudrate
divisor	must	be	followed	by	a	write	to	the UART0_LCRH_R 	register



for	 the	changes	 to	 take	effect.	Out	of	 reset,	 both	FIFOs	are	disabled
and	 act	 as	 1-byte-deep	 holding	 registers.	 The	 FIFOs	 are	 enabled	 by
setting	the	FENbit	in UART0_LCRH_R .
To	use	interrupts,	we	will	enable	the	FIFOs	by	setting	the	FENbit	 in
the UART0_LCRH_R 	 register.	 RXIFLSEL	 specifies	 the	 receive
FIFO	level	that	causes	an	interrupt.	TXIFLSEL	specifies	the	transmit
FIFO	level	that	causes	an	interrupt.
RXIFLSEL	RX	FIFO	Set	RXMIS	interrupt	trigger	when	0x0	≥	⅛	full
Receive	FIFO	goes	from	1	to	2	characters
0x1	≥	¼	full	Receive	FIFO	goes	from	3	to	4	characters
0x2	≥	½	full	Receive	FIFO	goes	from	7	to	8	characters
0x3	≥	¾	full	Receive	FIFO	goes	from	11	to	12	characters
0x4	≥	⅞	full	Receive	FIFO	goes	from	13	to	14	characters
	
TXIFLSEL	 TX	 FIFO	 Set	 TXMIS	 interrupt	 trigger	 when	 0x0	 ≤	 ⅞
empty	Transmit	FIFO	goes	from	15	to	14	characters
0x1	≤	¾	empty	Transmit	FIFO	goes	from	13	to	12	characters
0x2	≤	½	empty	Transmit	FIFO	goes	from	9	to	8	characters
0x3	≤	¼	empty	Transmit	FIFO	goes	from	5	to	4	characters
0x4	≤	⅛	empty	Transmit	FIFO	goes	from	3	to	2	characters
	
There	 are	 seven	 possible	 interrupt	 trigger	 flags	 that	 are	 in	 the
UART0_RIS_R 	register.	The	setting	of	the	TXRIS	and	RXRIS	flags
is	defined	above.	The	OERIS	flag	is	set	on	an	overrun,	new	incoming
frame	received	but	the	receive	FIFO	is	full.	The	BERIS	flag	is	set	on
a	break	error.	The	PERIS	flag	is	set	on	a	parity	error.	The	FERIS	flag
is	set	on	a	framing	error	(stop	bit	is	not	high).	The	RTRISis	set	on	a
receiver	timeout,	which	is	when	the	receiver	FIFO	is	not	empty	and	no
incoming	frames	have	occurred	 in	a	32-bit	 time	period.	 	Each	of	 the
seven	trigger	flags	has	a	corresponding	arm	bit	in	the UART0_IM_R
register.	A	bit	in	the	UART0_MIS_R register	set	if	the	trigger	flag	is
both	 set	 and	 armed.	 To	 acknowledge	 an	 interrupt	 (make	 the	 trigger
flag	 become	 zero),	 software	 writes	 a	 1	 to	 the	 corresponding	 bit
in UART0_IC_R .
The	UART	system	has	two	channels,	one	for	input	and	one	for	output,
and	 each	 channel	 employs	 a	 separate	 FIFO	 queue.	 Program	 2.14
shows	the	interrupt-driven	UART	device	driver.	During	initialization,



Port	A	pins	0	and	1	are	enabled	as	alternate	 function	digital	 signals.
The	two	software	FIFOs	are	initialized.		The	baud	rate	is	set	at	115200
bits/sec,	and	the	hardware	FIFOs	are	enabled.	A	transmit	interrupt	will
occur	as	the	transmit	FIFO	goes	from	2	elements	down	to	1	element.
Not	waiting	until	 the	hardware	FIFO	is	completely	empty	allows	the
software	to	refill	the	hardware	FIFO	and	maintain	a	continuous	output
stream,	achieving	maximum	bandwidth.	There	are	two	conditions	that
will	request	a	receive	interrupt.	First,	if	the	receive	FIFO	goes	from	2
to	3	elements	a	receive	interrupt	will	be	requested.	At	this	time	there	is
still	13	free	spaces	in	the	receive	FIFO	so	the	latency	requirement	for
this	 real-time	 input	 will	 be	 130	 bit	 times	 (about	 1	 ms).	 The	 other
potential	 source	 of	 receiver	 interrupts	 is	 the	 receiver	 time	 out.	 This
trigger	will	occur	if	the	receiver	becomes	idle	and	there	are	data	in	the
receiver	 FIFO.	 This	 trigger	will	 allow	 the	 interface	 to	 receive	 input
data	when	it	comes	just	one	or	two	frames	at	a	time.	In	the	NVIC,	the
priority	 is	 set	 at	 2	 and	UART0	 (IRQ=5)	 is	 activated.	Normally,	 one
does	 not	 enable	 interrupts	 in	 the	 individual	 initialization	 functions.
Rather,	 interrupts	 should	 be	 enabled	 in	 the	 main	 program,	 after	 all
initialization	functions	have	completed.
When	 the	 main	 thread	 wishes	 to	 output	 it	 calls UART_OutChar ,
which	 will	 put	 the	 data	 into	 the	 software	 FIFO.	 FIFOs	 will	 be
presented	 in	detail	 later	 in	Section	4.3.	Next,	 it	 copies	 as	much	data
from	 the	 software	 FIFO	 into	 the	 hardware	 FIFO	 and	 arms	 the
transmitter.	The	transmitter	interrupt	service	will	also	get	as	much	data
from	 the	 software	 FIFO	 and	 put	 it	 into	 the	 hardware	 FIFO.
The copySoftwareToHardware function	has	 a	 critical	 section	and	 is
called	by	both UART_OutChar 	and	the	ISR.	To	remove	the	critical
section,the	 transmitter	 is	 temporarily	 disarmed	 in
the UART_OutChar function	 when copySoftwareToHardware 	 is
called.	This	helper	function	guarantees	data	is	transmitted	in	the	same
order	it	was	produced.	When	input	frames	are	received	they	are	placed
into	 the	 receive	 hardware	 FIFO.	 If	 this	 FIFO	 goes	 from	 2	 to	 3
elements,	 or	 if	 the	 receiver	 becomes	 idle	 with	 data	 in	 the	 FIFO,	 a
receive	 interrupt	 occurs.	 The	 helper
function copyHardwareToSoftware will	 get	 from	 the	 receive
hardware	 FIFO	 and	 put	 into	 the	 receive	 software	 FIFO.	 When	 the
main	 thread	 wished	 to	 input	 data	 it	 calls UART_InChar .	 This
function	simply	gets	from	the	software	FIFO.	If	 the	receive	software



FIFO	is	empty,	it	will	spin.
#define	FIFOSIZE			16									//	size	of	the	FIFOs	(must	be	power	of	2)
#define	FIFOSUCCESS	1									//	return	value	on	success
#define	FIFOFAIL				0									//	return	value	on	failure
AddIndexFifo(Rx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
AddIndexFifo(Tx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
void	UART_Init(void){
		SYSCTL_RCGCUART_R	|=	0x01;	//	activate	UART0
		SYSCTL_RCGCGPIO_R	|=	0x01;	//	activate	port	A
		RxFifo_Init();		TxFifo_Init();								//	initialize	empty	FIFOs
		UART0_CTL_R	&=	~UART_CTL_UARTEN;						//	disable	UART
		UART0_IBRD_R	=	3;			//	IBRD=int(6,000,000/(16*115,200))	=	int(3.2552)
		UART0_FBRD_R	=	16;		//	FBRD	=	round(0.2552	*	64)	=	16
		UART0_LCRH_R	=	(UART_LCRH_WLEN_8|UART_LCRH_FEN);	//	8-
bit,	FIFOs
		UART0_IFLS_R	&=	~0x3F;	//	TX	FIFO	<=	1/8	full,	RX	FIFO	>=	1/8	full
	 	 UART0_IFLS_R	 +=	 (UART_IFLS_TX1_8|UART_IFLS_RX1_8);//	 and
RX	timeout
	 	 UART0_IM_R	 |=
(UART_IM_RXIM|UART_IM_TXIM|UART_IM_RTIM);
		UART0_CTL_R	|=	0x0301;																//	enable	RXE	TXE	UARTEN
		GPIO_PORTA_AFSEL_R	|=	0x03;											//	enable	alt	funct	on	PA1-0
		GPIO_PORTA_DEN_R	|=	0x03;													//	enable	digital	I/O	on	PA1-0
	 	 NVIC_PRI1_R	 =	 (NVIC_PRI1_R&0xFFFF00FF)|0x00004000;	 //
UART0=priority	2
		NVIC_EN0_R	=	NVIC_EN0_INT5;									//	enable	interrupt	5	in	NVIC
		EnableInterrupts();

}

//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
//	stop	when	hardware	RX	FIFO	is	empty	or	software	RX	FIFO	is	full
void	static	copyHardwareToSoftware(void){		char	letter;
	 	 while(((UART0_FR_R&UART_FR_RXFE)==0)&&(RxFifo_Size()	 <
(FIFOSIZE-1))){
				letter	=	UART0_DR_R;
				RxFifo_Put(letter);

}



}

//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO
//	stop	when	software	TX	FIFO	is	empty	or	hardware	TX	FIFO	is	full
void	static	copySoftwareToHardware(void){		char	letter;
		while(((UART0_FR_R&UART_FR_TXFF)	==	0)	&&	(TxFifo_Size()	>	0)){
				TxFifo_Get(&letter);
				UART0_DR_R	=	letter;

}

}

//	input	ASCII	character	from	UART
//	spin	if	RxFifo	is	empty
char	UART_InChar(void){
		char	letter;
		while(RxFifo_Get(&letter)	==	FIFOFAIL){};
		return(letter);

}

//	output	ASCII	character	to	SCI
//	spin	if	TxFifo	is	full
void	UART_OutChar(char	data){
		while(TxFifo_Put(data)	==	FIFOFAIL){};
		UART0_IM_R	&=	~UART_IM_TXIM;										//	disable	TX	FIFO	interrupt
		copySoftwareToHardware();
		UART0_IM_R	|=	UART_IM_TXIM;											//	enable	TX	FIFO	interrupt

}

//	at	least	one	of	three	things	has	happened:
//	hardware	TX	FIFO	goes	from	3	to	2	or	less	items
//	hardware	RX	FIFO	goes	from	1	to	2	or	more	items
//	UART	receiver	has	timed	out
void	UART0_Handler(void){
		if(UART0_RIS_R&UART_RIS_TXRIS){		 	 	 	 	 	 //	hardware	TX	FIFO	<=	2
items
				UART0_ICR_R	=	UART_ICR_TXIC;								//	acknowledge	TX	FIFO



				//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO
				copySoftwareToHardware();
				if(TxFifo_Size()	==	0){													//	software	TX	FIFO	is	empty
						UART0_IM_R	&=	~UART_IM_TXIM;						//	disable	TX	FIFO	interrupt

}

}

	 	if(UART0_RIS_R&UART_RIS_RXRIS){							//	hardware	RX	FIFO	>=	2
items
				UART0_ICR_R	=	UART_ICR_RXIC;								//	acknowledge	RX	FIFO
				//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
				copyHardwareToSoftware();

}

		if(UART0_RIS_R&UART_RIS_RTRIS){							//	receiver	timed	out
				UART0_ICR_R	=	UART_ICR_RTIC;								//	acknowledge	receiver	time
out
				//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
				copyHardwareToSoftware();

}

}

Program	2.14.	Interrupt-driven	device	driver	for	the	UART	uses
two	FIFOs	to	buffer	data	(UARTints_xxx).

2.5.4.	Interrupt-driven	UART	on	the	MSP432
Table	2.15	shows	the	device	registers	used	for	UART	I/O.	The	system
has	two	channels,	one	for	input	and	one	for	output,	and	each	channel
employs	 a	 separate	 FIFO	 queue.	 Program	 2.15	 shows	 the	 interrupt-
driven	UART	device	driver.	During	initialization,	Port	1	pins	2	and	3
are	 enabled	 as	 alternate	 function	 digital	 signals.	 The	 two	 software
FIFOs	are	initialized.	The	baud	rate	is	set	at	115200	bits/sec,	and	the
UART	is	enabled.	A	transmit	 interrupt	will	occur	 if	 the	transmit	data



register	is	empty.	A	receive	interrupt	will	occur	if	there	is	data	in	the
receive	 data	 register.	 In	 the	 NVIC,	 the	 priority	 is	 set	 at	 2	 and	 the
UART	 (eUSCI_A,	 module	 0,	 IRQ=16)	 is	 activated.	 Normally,	 one
does	 not	 enable	 interrupts	 in	 the	 individual	 initialization	 functions.
Rather,	 interrupts	 should	 be	 enabled	 in	 the	 main	 program,	 after	 all
initialization	functions	have	completed.
We	will	employ	TXIFG	and	RXIFG	interrupt	trigger	flags,	located	in
the	UCA0IFG	register.	The	arm	bits	TXIE	and	RXIE	are	 located	 in
the	UCA0IE	 register.	 	 TXIFG	 is	 set	 when	 the	 TXBUF	 is	 empty
meaning	 it	 is	 safe	 to	 start	 another	 output.	 Writing	 to	 TXBUF
automatically	 clears	 TXIFG,	 acknowledging	 the	 transmit	 interrupt.
RXIFG	is	set	when	the	RXBUF	is	full	meaning	it	is	time	to	read	the
RXBUF.	 Reading	 RXBUF	 automatically	 clears	 RXIFG,
acknowledging	 the	 receive	 interrupt.	 The	 Interrupt	 Enable	 Registers
UCAxIE	 and	UCBxIE	 are	 reset	 after	 a	 hardware	 reset	 or	when	 the
USCI	module	is	in	reset	(bit	0	of	UCxxCTLW0	is	1).
When	 the	 main	 thread	 wishes	 to	 output	 it	 calls UART_OutChar ,
which	will	put	the	data	into	the	software	TxFifo.	Next,	it	enables	the
transmit	interrupts.	The	UART	ISR	will	copy	data	from	the	TxFifo	to
the	TXBUF.	 The	 use	 of	 the	 FIFO	 guarantees	 data	 is	 transmitted	 in
order.	When	 the	TxFifo	 becomes	 empty	 it	 will	 disarm	 the	 transmit
interrupts.

	 15 14 13 12 11 10 9 8 	
0x40001000 PEN PAR MSB 7BIT SPB MODEx SYNC UCAxCTLW0
	 7 6 5 4 3 2 1 0 	
	 SSELx RXEIE BRKIE DORM TXADDR TXBRK SWRST UCAxCTLW0
	 	 	 	 	 	 	 	 	 	
	 15	–	0 	
0x40001006 UCBRx UCAxBRW
	 	 	 	 	 	 	 	 	 	
	 15	–	8 7	–	4 3	–	1 0 	
0x40001008 BRSx BRFx 	 UCOS16 UCAxMCTLW
	 	 	 	 	 	 	 	 	 	
	 7 6 5 4 3 2 1 0 	
0x4000100A LISTEN FE OE PE BRK RXERR IDLE BUSY UCAxSTATW
	 	 	 	 	 	 	 	 	 	
	 15	–	8	 7	–	0 	
0x4000100C 	 RXBUFx UCAxRXBUF
	 	 	 	 	 	 	 	 	 	
	 15	–	8	 7	–	0 	



0x4000100E 	 TXBUFx UCAxTXBUF

	 	 	 	 	 	 	 	 	 	
	 15	–	4 3 2 1 0 	
0x4000101A 	 TXCPTIE STTIE TXIE RXIE UCAxIE
	 	 	 	 	 	 	 	 	 	
	 15	–	4 3 2 1 0 	
0x4000101C 	 TXCPTIFG STTIFG TXIFG RXIFG UCAxIFG

Table	2.15.	UART	registers.	Each	register	is	16	bits	wide.	Shaded	bits	are
zero.

When	 an	 input	 frame	 is	 received	 it	 is	 placed	 into	 the	 receive	 data
register	RXBUF,	and	a	receive	interrupt	occurs.	The	ISR	will	read	the
data	from	RXBUF	and	put	it	in	the	software	FIFO	RxFifo.	The	ISR	is
not	allowed	to	spin.	So	if	RxFifobecomes	full	data	are	lost.	When	the
main	 thread	 wishes	 to	 input	 data	 it	 calls UART_InChar .	 This
function	simply	gets	 from	the	software	FIFO.	In	contrast	 to	 the	ISR,
the	 foreground	 is	 allowed	 to	 spin.	 So	 if	 the	 main	 program
calls UART_InChar 	and	the	RxFifo	is	empty,	it	will	spin.
	

#define	FIFOSIZE			16									//	size	of	the	FIFOs	(must	be	power	of	2)
#define	FIFOSUCCESS	1									//	return	value	on	success
#define	FIFOFAIL				0									//	return	value	on	failure
AddIndexFifo(Rx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
AddIndexFifo(Tx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
void	UART_Init(void){		//	should	be	called	only	once
		RxFifo_Init();							//	initialize	FIFOs
		TxFifo_Init();
		UCA0CTLW0	=	0x0001;		//	hold	the	USCI	module	in	reset	mode
	 	UCA0CTLW0	=	 0x00C1;	 	 //	UART,SMCLK,	 8bit,	 1	 stop,no	parity,	LSB
first
		UCA0BRW	=	26;								//	UCBR	=	baud	rate	=	3000000/115200	=	26.0417
		UCA0MCTLW	=	0x0000;		//	clear	first	and	second	modulation,	UCOS16=0
		P1SEL0	|=	0x0C;
		P1SEL1	&=	~0x0C;						//	P1.3	and	P1.2	as	primary	module	function
		NVIC_IPR4	=	(NVIC_IPR4&0xFFFFFF00)|0x00000040;	//	priority	2
		NVIC_ISER0	=	0x00010000;	//	enable	interrupt	16	in	NVIC
		UCA0CTLW0	&=	~0x0001;				//	enable	the	USCI	module
		UCA0IE	=	0x0001;					//	enable	interrupts	on	receive	full



																							//	disable	interrupts	on	transmit,	start,	complete
}																						//	must	modify	UCxxIE	while	USCI	module	not	reset
//	input	ASCII	character	from	UART
//	spin	if	RxFifo	is	empty
char	UART_InChar(void){
		char	letter;
		while(RxFifo_Get(&letter)	==	FIFOFAIL){};
		return(letter);

}

//	output	ASCII	character	to	UART
//	spin	if	TxFifo	is	full
void	UART_OutChar(char	data){
		while(TxFifo_Put(data)	==	FIFOFAIL){};	//	spin	if	full
		UCA0IE	=	0x0003;											//	enable	interrupts	on	transmit	empty

}

//	interrupt	16	occurs	on	either:
//	UCTXIFG	TX	data	register	is	empty
//	UCRXIFG	RX	data	register	is	full
//	vector	at	0x00000080	in	startup_msp432.s
void	EUSCIA0_IRQHandler(void){	char	data;
		if(UCA0IFG&0x02){													//	TX	data	register	empty
				if(TxFifo_Get(&data)	==	FIFOFAIL){
						UCA0IE	=	0x0001;								//	disable	interrupts	on	transmit	empty
				}else{
						UCA0TXBUF	=	data;									//	send	data,	acknowledge	interrupt

}

}

		if(UCA0IFG&0x01){													//	RX	data	register	full
				RxFifo_Put((char)UCA0RXBUF);//	clears	UCRXIFG

}

}



Program	2.15.	Interrupt-driven	device	driver	for	the	UART	uses
two	software	FIFOs	to	buffer	data	(UARTint_MSP432).



2.6.	Synchronous	Transmission	and	Receiving
using	the	SSI

SSI	 allows	 microcontrollers	 to	 communicate	 synchronously	 with
peripheral	 devices	 and	 other	 microcontrollers.	 The	 SSI	 system	 can
operate	as	a	master	or	as	a	slave.	The	channel	can	have	one	master	and
one	slave,	or	it	can	have	one	master	and	multiple	slaves.	With	multiple
slaves,	the	configuration	can	be	a	star	(centralized	master	connected	to
each	slave),	or	a	ring	(each	node	has	one	receiver	and	one	transmitter,
where	the	nodes	are	connected	in	a	circle.)	The	master	initiates	all	data
communication.	Figure	2.13	shows	the	I/O	port	 locations	of	some	of
the	 synchronous	 serial	 ports	 on	 the	 Texas	 Instruments
microcontrollers.

Figure	2.13.	Synchronous	serial	port	pins	on	four	MSP432/TM4C
microcontrollers.

Texas	 Instruments	microcontrollers	 have	0	 to	8	Synchronous	 Serial
Interface	 or	 SSI	modules.	Another	 name	 for	 this	 protocol	 is	Serial
Peripheral	Interface	 or	 SPI.	The	 fundamental	 difference	 between	 a
UART,	which	implements	an	asynchronous	protocol,	and	a	SSI,	which
implements	a	synchronous	protocol,	is	the	manner	in	which	the	clock
is	implemented.	Two	devices	communicating	with	asynchronous	serial
interfaces	(UART)	operate	at	the	same	frequency	(baud	rate)	but	have



two	 separate	 clocks.	With	 a	UART	 protocol,	 the	 clock	 signal	 is	 not
included	 in	 the	 interface	cable	between	devices.	Two	UART	devices
can	 communicate	 with	 each	 other	 as	 long	 as	 the	 two	 clocks	 have
frequencies	 within	 ±5%	 of	 each	 other.	 Two	 devices	 communicating
with	synchronous	serial	interfaces	(SSI)	operate	from	the	same	clock
(synchronized).	With	a	SSI	protocol,	the	clock	signal	is	included	in	the
interface	 cable	between	devices.	Typically,	 the	master	device	 creates
the	clock,	and	the	slave	device(s)	uses	the	clock	to	latch	the	data	(in	or
out.)	 The	 SSI	 protocol	 includes	 four	 I/O	 lines.	 The	 slave	 select
SSI0Fss/STE	is	an	optional	negative	logic	control	signal	from	master
to	 slave	 signal	 signifying	 the	 channel	 is	 active.	 The	 second	 line,
SCK/CLK,	 is	 a	50%	duty	cycle	 clock	generated	by	 the	master.	The
SSI0Tx/SIMO	(master	out	slave	in,	MOSI)	is	a	data	line	driven	by	the
master	and	received	by	the	slave.	The	SSI0Rx/SOMI	(master	in	slave
out,	 MISO)	 is	 a	 data	 line	 driven	 by	 the	 slave	 and	 received	 by	 the
master.	 In	 order	 to	 work	 properly,	 the	 transmitting	 device	 uses	 one
edge	of	 the	clock	to	change	 its	output,	and	 the	receiving	device	uses
the	other	edge	to	accept	the	data.

Figure	2.14.	A	synchronous	serial	interface	between	a



microcontroller	and	an	I/O	device.

The	interface	is	classified	as	synchronous	because	the	hardware	clock
is	 shared	between	devices,	 see	Figure	2.14.	 	On	 the	TM4C	 the	 shift
register	can	be	configured	from	4	to	16	bits.	On	the	MSP432	the	shift
register	 can	 be	 configured	 as	 7	 or	 8	 bits.	 The	 shift	 register	 in	 the
master	 and	 the	 shift	 register	 in	 the	 slave	 are	 linked	 to	 form	 a
distributed	 register.	 Figure	 2.14	 illustrates	 communication	 between
master	 and	 slave.	 Typically,	 the	 microcontroller	 and	 the	 I/O	 device
slave	are	so	physically	close	we	do	not	use	interface	logic.	The	SSI	on
the	TM4C	employs	two	hardware	FIFOs.	Both	FIFOs	are	8	elements
deep	 and	 4	 to	 16	 bits	 wide,	 depending	 on	 the	 selected	 data	 width.
When	 performing	 I/O	 the	 software	 puts	 into	 the	 transmit	 FIFO	 by
writing	 to	 the	 SSI0_DR_R/UCxTXBUF	 register	 and	 gets	 from	 the
receive	FIFO	by	reading	from	the	SSI0_DR_R/UCxRXBUF	register.
When	designing	with	SSI,	you	will	need	to	consult	the	data	sheets	for
your	 specific	 microcontroller.	 There	 are	 many	 SSI	 examples	 on	 the
book	web	site.



2.7.	Input	Capture	or	Input	Edge	Time	Mode

2.7.1.	Basic	principles
The	Texas	Instruments	microcontrollers	have	timers	 that	are	separate
and	distinct	from	SysTick,	see	Figure	2.15.	Input	edge	time	mode	(or
input	 capture	 mode)	 is	 used	 to	 make	 time	 measurements	 on	 input
signals.	 	 We	 can	 use	 input	 capture	 to	 measure	 the	 period	 or	 pulse
width	 of	 digital-level	 signals.	 The	 input	 capture	 system	 can	 also	 be
used	 to	 trigger	 interrupts	 on	 rising	 or	 falling	 transitions	 of	 external
signals.	Each	timer	input	capture	module	has	An	external	input	pin,
e.g.,	CCP0/TAx.y
A	clock,	with	prescale,	used	to	measure	time
Control	registers	to	set	the	mode
Flag	register	that	indicate	status
Arm	and	enable	registers	to	implement	interrupts
A	capture	register,	e.g.,	TAR/TAxCCRy

	
The	various	members	of	the	MSP432/TM4C	family	have	from	zero	to
twenty	 input	 capture	 pins,	 and	 the	 pins	 are	 grouped	 into	 modules.
Figure	 2.15	 shows	 the	 port	 pins	 and	 timer	 modules	 used	 for	 input
capture	 on	 the	 MSP432	 and	 TM4C123.	 On	 the	 TM4C,	 the	 input
capture	 and	 output	 compare	 pins	 are	 labeled	 TxCCPy.	 On	 the
MSP432,	 the	 input	 capture	 and	 output	 compare	 pins	 are	 labeled
TAx.y.	 Some	 timer	 modules	 are	 not	 attached	 to	 any	 I/O	 pins.	 For
example,	the	TM4C1294	has	eight	timers,	but	Timer	6	and	Timer	7	do
not	 have	 I/O	 pins.	 Timers	 without	 pins	 can	 be	 used	 to	 generate
periodic	 interrupts,	 but	 not	 for	 input	 capture.	 Tables	 1.4,	 and	 1.5
describe	how	to	attach	I/O	pins	to	the	timer	modules.
In	this	book	we	use	the	term	arm	to	describe	the	bit	that	allows/denies
a	 specific	 flag	 from	 requesting	 an	 interrupt.	 The	 Texas	 Instruments
manuals	refer	to	this	bit	as	a	mask.	I.e.,	the	device	is	armed	when	the
mask	bit	is	1.	Typically,	there	is	a	separate	arm	bit	for	every	flag	that
can	request	an	 interrupt.	An	external	 input	signal	 is	connected	 to	 the



input	capture	pin.

Figure	2.15.	Input	capture	pins	on	the	MSP432,	and	the
TM4C123.

During	 initialization	we	specify	whether	 the	rising	or	 falling	edge	of
the	external	signal	will	trigger	an	input	capture	event.	The	timers	can
have	16,	24,	32,	48,	or	64	bits.	The	n-bit	counter	decrements	at	the	rate
of	the	bus	clock,	when	it	hits	0,	it	automatically	rolls	over	to	all	ones
and	continues	to	count	down	(Figure	2.16).

	

Figure	2.16.	Rising	or	falling	edge	of	the	input	causes	the	counter
to	be	latched	into	a	register,	setting	a	flag.

Two	or	three	actions	result	from	an	input	capture	event:	1)	the	current



timer	 value	 is	 copied	 into	 the	 input	 capture	 register,	 2)	 the	 input
capture	flag	is	set	and	3)	an	interrupt	is	requested	if	armed.	This	means
an	 interrupt	 can	 be	 requested	 on	 a	 capture	 event.	 When	 using	 the
prescaler	on	the	TM4C,	the	16-bit	counter	is	extended	to	24	bits.	The
MSP432	counters	are	16	bits.	The	input	capture	mechanism	has	many
uses.	Three	of	common	applications	are:	1.	An	ISR	is	executed	on
the	active	edge	of	the	external	signal
2.	Perform	two	rising	edge	input	captures	and	subtract	the
two	to	get	period
3.	Perform	a	rising	edge	and	then	a	falling	edge	capture
and

subtract	the	two	measurements	to	get	pulse
width

2.7.2.	Period	measurement	on	the	TM4C123
Next	 we	 will	 overview	 the	 specific	 input	 capture	 functions	 on	 the
TM4C	 family.	 This	 section	 is	 intended	 to	 supplement	 rather	 than
replace	 the	 data	 sheets.	When	designing	 systems	with	 input	 capture,
please	refer	 to	 the	reference	manual	of	your	specific	microcontroller.
Table	 2.16	 shows	 some	 of	 the	 registers	 for	 Timer	 0.	 We	 begin
initialization	by	enabling	the	clock	for	the	timer	and	for	the	digital	port
we	will	be	using.	We	enable	 the	digital	pin	 and	 select	 its	 alternative
function.	We	will	disable	the	timer	during	initialization	by	clearing	the
TAEN	(or	TBEN)	bit	in	the TIMER0_CTL_R 	register.	To	use	16-bit
mode,	 we	 set	 GPTMCFG	 field	 to	 4.	 We	 clear	 the	 TAAMS	 (or
TBAMS)	bit	for	capture	mode.	We	set	the	TACMR	(or	TBCMR)	bit
for	input	edge	time	mode.	The	TAMR	(or	TBMR)	field	is	set	to	3	for
capture	 mode.	 In	 summary,	 we	 write	 a	 0x0007	 to
the TIMER0_TAMR_R 	register	to	select	input	capture	mode.	Table
2.17	 lists	 the	 edge	 capture	 modes	 for	TAEVENT	 (or	TBEVENT.)
When	 we	 are	 measuring	 time	 with	 prescaler,	 such	 as	 period
measurement	and	pulse	width	measurement,	we	set	 the	24-bit	 reload
value	to	0xFFFFFF.	In	this	way,	the	24-bit	subtraction	of	two	capture
events	yields	the	time	difference	between	events.	In	particular,	we	will
initialize TIMER0_TAILR_R 	 to	 0xFFFF	 and TIMER0_TAPR_R
to	0xFF.	We	arm	the	input	capture	by	setting	the	CAEIM	(or	CBEIM)



bit	 in	 the TIMER0_IMR_R 	 register.	 It	 is	good	practice	 to	clear	 the
trigger	flag	in	the	initialization	so	that	the	first	interrupt	occurs	do	to
actions	 occurring	 after	 the	 initialization,	 and	 not	 due	 to	 edges	 that
might	 have	 occurred	 during	 power	 up.	 The	 trigger	 flags	 are	 in
the TIMER0_RIS_R 	register.	These	flags	are	cleared	by	writing	1’s
into	 corresponding	 bits	 in	 the TIMER0_ICR_R 	 register.	 After	 all
configuration	 bits	 are	 set,	 the	 Timer	 can	 be	 enabled	 by	 setting	 the
TAEN	(or	TBEN)	bit	in	the TIMER0_CTL_R 	register.	If	interrupts
are	required,	then	the	NVIC	must	be	configured	by	setting	the	priority
and	enabling	the	appropriate	interrupt	number.	
There	 is	 an	 8-bit	 prescaler	 defined	 for	 each	 submodules	 A	 and
B: TIMER0_TAPMR_R and 	TIMER0_TBPMR_R .	The	prescalers
on	 the	 TM4C	 are	 used	 to	 extend	 the	 16-bit	 timer	 to	 24	 bits.	 The
TAEVENTbits	 of TIMER0_CTL_R 	 register	 specify	 whether	 the
rising	or	falling	edge	of	CCP0	will	 trigger	an	input	capture	event	on
Timer	0A.	Two	or	three	actions	result	from	an	input	capture	event:	1)
the	 current	 timer	 value	 is	 copied	 into	 the	 input	 capture
register, TIMER0_TAR_R ,	 2)	 the	 input	 capture	 flag	 (CAERIS)	 is
set,	and	3)	an	interrupt	is	requested	if	the	mask	bit	(CAEIM)	is	1.		The
CAERIS	 and	CBERIS	 flag	bitsin	 the TIMER0_RIS_R 	 register	 do
not	 behave	 like	 a	 regular	 memory	 location.	 In	 particular,	 the	 flag
cannot	be	set	by	software.	Rather,	an	input	capture	or	output	compare
hardware	event	will	set	the	flag.

	
	 31–3 2–0
$4003.0000 	 GPTMCFG
	 	 	 	 	 	 	 	 	
	 31–4 3 2 1-0
$4003.0004 	 TAAMS TACMR TAMR
	 	 	 	 	 	 	 	 	
	 31–4 3 2 1-0
$4003.0008 	 TBAMS TBCMR TBMR
	 	 	 	 	 	 	 	 	
	 14 13 11-10 8 6 5 3-2 0
$4003.000C TBPWML TBOTE TBEVENT TBEN TAPWML TAOTE TAEVENT TAEN
	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0
$4003.0018 	 CBEIM CBMIM TBTOIM 	 CAEIM CAMIM TATOIM
	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0



$4003.001C 	 CBERIS CBMRIS TBTORIS 	 CAERIS CAMRIS TATORIS
	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0
$4003.0020 	 CBEMIS CBMMIS TBTOMIS 	 CAEMIS CAMMIS TATOMIS
	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0
$4003.0020 	 CBECINT CBMCINT TBTOCINT 	 CAECINT CAMCINT TATOCINT
	 	 	 	 	 	 	 	 	
	 31–16 15–0
$4003.0028 TAILRH TAILRL
	 	 	
	 31–16 15–0
$4003.002C 	 TBILRL
	 	 	
	 31–16 15–0
$4003.0030 TAMRH TAMRL
	 	 	
	 31–16 15–0
$4003.0034 	 TBMRL
	 	 	 	 	 	 	 	 	
	 31–8 7-0
$4003.0038 	 TAPSR
	 	 	
	 31–8 7-0
$4003.003C 	 TBPSR
	 	 	
	 31–8 7-0
$4003.0040 	 TAPSMR
	 	 	
	 31–8 7-0
$4003.0044 	 TBPSMR
	 	 	 	 	 	 	 	 	
	 31–16 15-0
$4003.0048 TARH TARL
	 	 	
	 31–16 15-0
$4003.004C 	 TBRL

Table	2.16.	Timer0	registers.	Each	register	is	32	bits	wide.	Shaded	bits	are
zero.	The	bits	shown	in	bold	will	be	used	in	this	section.	Timers	1,	2,	…
have	the	same	formats.

	
The	other	peculiar	behavior	of	the	flag	is	that	the	software	must	write
a	one	to	the TIMER0_ICR_R 	register	in	order	to	clear	the	flag.	If	the



software	writes	 a	 zero	 to	 the	TIMER0_ICR_R 	 register,	 no	 change
will	occur.	From	Table	2.16,	we	see	the	CAERIStrigger	flag	is	in	bit	2
of	the TIMER0_RIS_R 	register.	The	proper	way	to	clear	this	trigger
flag	is	TIMER0_ICR_R	=	0x0004;

	
Writes	the TIMER0_RIS_R 	register	have	no	effect.	No	effect	occurs
in	the	bits	to	which	we	write	a	zero	in	the TIMER0_ICR_R 	register.

TAEVENT Active	edge
00 Capture	on	rising
01 Capture	on	falling
10 Reserved
11 Capture	on	both	rising	and	falling

Table	2.17.	Two	control	bits	define	the	active	edge	used	for	input	capture
(TBEVENT	is	the	same).

Before	one	implements	a	system	that	measures	period,	it	is	appropriate
to	 consider	 the	 issues	 of	 resolution,	 precision	 and	 range.	 The
resolution	of	a	period	measurement	is	defined	as	the	smallest	change
in	period	that	can	reliably	be	detected.	In	the	following	example,	 the
TM4C123	bus	clock	is	80	MHz.	This	means,	if	the	period	increases	by
12.5	 ns,	 then	 there	 will	 be	 one	more	 Timer	 clock	 between	 the	 first
rising	 edge	 and	 the	 second	 rising	 edge.	 In	 this	 situation,	 the	 24-bit
subtraction	 will	 increase	 by	 1,	 therefore	 the	 period	 measurement
resolution	 is	 12.5	 ns.	 The	 resolution	 is	 the	 smallest	 measurable
change.	Resolution	definesthe	units	 of	 the	measurement.	 In	 this	 first
example,	 if	 the	 calculation	 of Period 	 results	 in	 1000,	 then	 it
represents	 a	 period	of	 1000•12.5ns	 or	 12.5µs.	 	The	precision	 of	 the
period	 measurement	 is	 defined	 as	 the	 number	 of	 separate	 and
distinguishable	measurements.		If	the	24-bit	counter	is	used,	there	are
about	 16	 million	 different	 periods	 that	 can	 be	 measured.	 We	 can
specify	 the	precision	 in	alternatives,	e.g.,	224,	or	 in	bits,	e.g.,	24	bits.
The	 last	 issue	 to	 consider	 is	 the	 range	 of	 the	 period	 measurement,
which	 is	 defined	 as	 the	 minimum	 and	 maximum	 values	 that	 can
reliably	be	measured.	We	are	concerned	what	happens	if	the	period	is
too	small	or	too	large.	A	good	measurement	system	should	be	able	to
detect	 overflows	 and	underflows.	 In	 addition,	we	would	not	 like	 the
system	 to	 crash,	 or	 hang-up	 if	 the	 input	 period	 is	 out	 of	 range.
Similarly,	 it	 is	 desirable	 if	 the	 system	 can	 detect	 when	 there	 is	 no



period.	 For	 edge	 detection,	 the	 input	 must	 be	 high	 for	 at	 least	 two
system	clock	periods	and	low	for	at	least	two	system	clock	periods.
In	 this	 example,	 the	 digital	 input	 signal	 is	 connected	 to	 an	 input
capture	pin.	If	the	motor	shaft	rotates	once	there	will	be	N	rising	edges
on	 the	 pin.	 Each	 rising	 edge	 will	 cause	 an	 input	 capture	 interrupt
(Figure	2.17).

Figure	2.17.	To	measure	period	we	connect	the	external	signal	an
input	capture.

The	period	is	calculated	as	the	difference	in TIMER0_TAR_R 	latch
values	 from	one	 rising	edge	 to	 the	other.	 If	N=100,	and	 the	motor	 is
spinning	 at	 300	 RPM,	 then	 the	 period	 will	 be
[(60000ms/min)/(300RPM)/100edges/rotation)],	 which	 will	 be	 2.00
ms/edge,	as	shown	in	Figure	2.18.
For	example,	if	the	period	is	2000	µs,	the	Timer0A	interrupts	will	be
requested	 every	 160,000	 cycles,	 and	 the	 24-bit	 difference
between TIMER0_TAR_R 	 latch	 values	 will	 be	 160,000.	 This
subtraction	 remains	 valid	 even	 if	 the	 timer	 reaches	 zero	 and	 wraps
around	in	between	Timer0A	interrupts.	On	the	other	hand,	this	method
will	 not	 operate	 properly	 if	 the	 period	 is	 larger	 than	 224	 cycles,	 or
about	209	ms.
	

Figure	2.18.	Timing	example	showing	counter	rollover	during	24-



bit	period	measurement.
	

The	resolution	is	12.5	ns	because	the	period	must	increase	by	at	least
this	 amount	 before	 the	 difference	 between	 Timer0A	 measurements
will	 reliably	 change.	 Even	 though	 a	 24-bit	 counter	 is	 used,	 the
precision	 is	a	 little	 less	 than	24	bits,	because	 the	shortest	period	 that
can	 be	 handled	with	 this	 interrupt-driven	 approach	 is	 about	 1	 µs.	 It
takes	 about	 1	 µs	 to	 complete	 the	 context	 switch,	 execute	 the	 ISR
software,	 and	 return	 from	 interrupt.	 This	 factor	 is	 determined	 by
experimental	measurement.	In	other	words,	as	the	period	approaches	1
µs,	 a	 higher	 and	 higher	 percentage	 of	 the	 computer	 execution	 is
utilized	just	in	the	handler	itself.	For	example,	if	you	wanted	to	limit
execution	 time	 in	 this	 ISR	 to	5%,	 then	 the	 shorted	period	you	could
measure	would	be	20	µs.
Because	the	input	capture	interrupt	has	a	separate	vector	the	software
does	 not	 poll.	 An	 interrupt	 is	 requested	 on	 each	 rising	 edge	 of	 the
input	 signal.	 In	 this	 situation	 we	 count	 all	 the	 cycles	 required	 to
process	the	interrupt.	The	period	measurement	system	written	for	the
TM4C123	 is	 presented	 in	 Program	 2.16.	 The	 24-bit	 subtraction	 is
produced	by	ANDing	the	difference	with	0x0FFFFFF,	calculating	the
number	 of	 bus	 clocks	 between	 rising	 edges.	 The	 first	 period
measurement	will	be	incorrect	and	should	be	neglected.
	

uint32_t	Period;														//	24-bit,	12.5	ns	units
uint32_t	static	First;								//	Timer0A	first	edge,	12.5	ns	units
int32_t	Done;																//	mailbox	status	set	each	rising
void	PeriodMeasure_Init(void){
		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0
		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B
		First	=	0;																							//	first	will	be	wrong
		Done	=	0;																								//	set	on	subsequent
		GPIO_PORTB_DIR_R	&=	~0x40;							//	make	PB6	input
		GPIO_PORTB_AFSEL_R	|=	0x40;						//	enable	alt	funct	on	PB6
		GPIO_PORTB_DEN_R	|=	0x40;								//	configure	PB6	as	T0CCP0
	 	 GPIO_PORTB_PCTL_R	 =
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x07000000;
		TIMER0_CTL_R	&=	~0x00000001;					//	disable	timer0A	during	setup
		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	capture	mode



		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	rising	edge	event
		TIMER0_CTL_R	&=	~0x0000000C;					//	rising	edge
		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value
		TIMER0_TAPR_R	=	0xFF;												//	activate	prescale,	creating	24-bit
		TIMER0_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt
		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	match	flag
		TIMER0_CTL_R	|=	0x00000001;						//	timer0A	24-b,	+edge,	interrupts
	 	 NVIC_PRI4_R	 =	 (NVIC_PRI4_R&0x00FFFFFF)|0x40000000;
//Timer0A=priority	2
		NVIC_EN0_R	=	1<<19;												//	enable	interrupt	19	in	NVIC
		EnableInterrupts();

}

void	Timer0A_Handler(void){
		TIMER0_ICR_R	=	0x00000004;							//	acknowledge	timer0A	capture
		Period	=	(First	-	TIMER0_TAR_R)&0x00FFFFFF;	//	12.5ns	resolution
		First	=	TIMER0_TAR_R;											//	setup	for	next
		Done	=	1;																								//	set	semaphore

}

Program	2.16.	24-bit	period	measurement	(PeriodMeasure_xxx).

2.7.3.	Period	measurement	on	the	MSP432
Next	 we	 will	 overview	 the	 specific	 input	 capture	 functions	 on	 the
MSP432	 family.	 This	 section	 is	 intended	 to	 supplement	 rather	 than
replace	 the	 data	 sheets.	When	designing	 systems	with	 input	 capture,
please	refer	 to	 the	reference	manual	of	your	specific	microcontroller.
Table	 2.18	 shows	 the	 registers	 for	 Timer	 A0.	 Similar	 registers	 are
available	for	the	A1,	A2,	and	A3	timers.	The	first	decision	is	to	select
a	 clock	 using	 the	 TASSEL	 bits.	 When	 measuring	 frequency	 or
counting	events	we	can	connect	an	input	signal	to	TAxCLK	and	use
this	 input	 to	count	 the	counter.	We	will	use	ACLK	when	measuring
times	on	the	order	of	seconds	or	minutes.	On	the	MSP432,	the	ACLK
can	be	10	kHz,	32.768	kHz,	or	100	kHz.	We	will	use	the	high	speed
SMCLK	for	most	examples	in	this	book	because	it	provides	the	best
time	 resolution.	 The	 INCLK	 is	 an	 internal	 signal	 that	 could	 be



selected.	One	example	of	INCLK	 is	 the	analog	comparator,	where	a
clock	 edge	 is	 generated	 when	 an	 analog	 input	 crosses	 a	 predefined
threshold.	 Table	 2.19	 shows	 how	 to	 select	 the	 timer	 clock,	 which
affects	measurement	resolution.
The	 second	 decision	 is	 to	 specify	 the	 prescaler.	The	 first	 prescale	 is
ID,	 see	 Table	 2.20.	 The	 second	 prescale	 is	 TAIDEX+1.	 When
measuring	 time	events	 like	period	and	pulse	width,	 the	 resolution	of
the	measurement	is	 the	period	of	 the	selected	clock,	T,	multiplied	by
the	prescale.
Resolution	=	T	*	2ID	*	(TAIDEX+1)

	 15-10 9-8 7-6 5-4 3 2 1 0 Name
$4000.0000 	 TASSEL ID MC 	 TACLR TAIE TAIFG 	TA0CTL
	 	 	 	 	 	 	 	 	 	
	 15-

14
13-12 11 10 9 8 7-5 4 3 2 1 0 	

$4000.0002 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL0
$4000.0004 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL1
$4000.0006 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL2
$4000.0008 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL3
$4000.000A CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL4
$4000.000C CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL5
$4000.000E CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL6
	 	 	 	 	 	 	 	 	 	
	 15–0 	
$4000.0010 16-bit	counter 	TA0R
$4000.0012 16-bit	Capture/Compare	0	Register 	TA0CCR0
$4000.0014 16-bit	Capture/Compare	1	Register 	TA0CCR1
$4000.0016 16-bit	Capture/Compare	2	Register 	TA0CCR2
$4000.0018 16-bit	Capture/Compare	3	Register 	TA0CCR3
$4000.001A 16-bit	Capture/Compare	4	Register 	TA0CCR4
$4000.001C 16-bit	Capture/Compare	5	Register 	TA0CCR5
$4000.001E 16-bit	Capture/Compare	6	Register 	TA0CCR6
	 	 	 	
	 15-3 2-0 	
$4000.0020 	 TAIDEX 	TA0EX0
	 	 	 	
	 15-0 	
$4000.002E TAIV 	TA0IV

Table	2.18.	Timer	A0	registers.	Each	register	is	16	bits	wide.	Shaded	bits
are	reserved.	The	bits	shown	in	bold	will	be	used	in	this	section.	Timers	1,
2,	and	3	have	the	same	formats.



	

TASSEL Selected	Clock
00 TAxCLK
01 ACLK
10 SMCLK
11 INCLK

Table	2.19.	Two	TASSEL	bits	specify	the	clock	used	to	count	the	counter.
	

ID Prescale
00 /1
01 /2
10 /4
11 /8

Table	2.20.	Two	ID	bits	specify	the	first	prescaler	which	can	be	used	to	slow
down	the	clock.

The	largest	elapsed	time	we	can	measure	will	be	the	resolution	times
65536	(size	of	the	counter).	For	example,	using	ACLK	counting	at	10
kHz	 with	 a	 /64	 prescale,	 the	 resolution	 will	 be	 6.4	 ms,	 the	 16-bit
counter	will	roll	over	after	7	minutes.
The	MC	bits	specify	the	clock	mode,	as	shown	in	Table	2.21.	We	will
use	“up	mode”	to	create	periodic	interrupts.	We	will	use	“continuous
mode”	 when	 measuring	 period	 or	 pulse	 width.	 In	 this	 mode	 the
counter	keeps	 track	of	 time	and	 the	 input	edge	on	TAx.y	 latches	 the
current	time	into	the	TAxCCRy	register.	We	will	use	“up/down	mode”
to	create	PWM	outputs.

MC Mode	control
00 Stop
01 Up	mode:	Timer	counts	up	to	TAxCCR0
10 Continuous	mode:	Timer	counts	up	to	0xFFFF
11 Up/down	mode:	Timer	counts	up	to	TAxCCR0

then	down	to	0x0000
Table	2.21.	Two	ID	bits	specify	the	first	prescaler	which	can	be	used	to	slow
down	the	clock.

Writing	a	1	 to	 the	TACLR	bit	will	 reset	 the	 timer	and	automatically



clear	the	TACLR	bit.	The	TAIFG	flag	bit	is	set	when	the	timer	rolls
over.	Its	associated	arm	bit	is	TAIE.	To	clear	this	interrupt	trigger,	the
software	writes	a	0	to	TAIFG.
As	 mentioned	 earlier	 for	 each	 timer	 there	 are	 seven	 associated
submodules.	Five	of	the	submodules	have	a	pin	that	could	be	used	as
an	 input	 to	 measure	 time	 events	 or	 as	 an	 output	 to	 generate
waveforms.	 Table	 2.22	 lists	 the	 three	 choices	 for	 selecting	 the	 edge
that	 will	 cause	 an	 input	 capture	 event.	 A	 capture	 event	 copies	 the
TAxR	 counter	 into	TAxCCRy	 register	 and	 sets	 the	CCIFG	 flag.	 If
armed	(CCIE)	 this	 flag	will	 interrupt.	To	acknowledge	 the	 interrupt,
the	 software	 writes	 a	 zero	 into	 the	 flag.	 These	 are	 the	 steps	 to
configure	an	input	capture:	1)	Connect	the	input	signal	to	one	of
the	TAx.y	timer	pins
2)	Specify	the	timer	function	in	its	PxSEL1	and	PxSEL0
register	3)	Specify	it	as	an	input	by	clearing	the	direction
bit	in	PxDIR
4)	Halt	the	timer	during	initialization	(MC=00)
5)	Select	the	clock	source	and	prescaler
6)	Specify	the	rising,	falling	or	both	edges	in	the	CM	bits
(Table	2.22)
				Set	CCIS	to	00	to	select	the	input	pin
				Set	SCS	to	1	to	synchronize	input	pin	to	the	clock
(prevents	glitches)
				Set	CAP	to	1	for	capture	mode
				Set	CCIE	to	arm	the	CCIFG	capture	flag	7)	Set	the
interrupt	priority	in	the	NVIC
8)	Arm	the	interrupt	in	the	NVIC
9)	Reset	and	start	the	timer,	placing	it	in	continuous	mode

	

CM Capture	mode
00 No	capture
01 Capture	on	rising	edge
10 Capture	on	falling	edge
11 Capture	on	both	rising	and	falling	edges



Table	2.22.	Two	CM	bits	specify	which	edge	on	the	TAx.y	input	causes	the
input	capture.

The	 basic	 idea	 of	 period	 measurement	 is	 to	 generate	 two	 input
captures	on	the	same	edge	(both	rise	or	both	fall),	record	the	times	of
each	 edge,	 and	 calculate	 period	 as	 the	 difference	 between	 those	 two
times.	 Before	 one	 implements	 a	 system	 that	 measures	 period,	 it	 is
appropriate	 to	 consider	 the	 issues	of	 resolution,	 precision	 and	 range.
The	 resolution	 of	 a	 period	 measurement	 is	 defined	 as	 the	 smallest
change	 in	 period	 that	 can	 reliably	 be	 detected.	 In	 Example	 6.2,	 the
SMCLK	clock	is	12	MHz.	This	means,	if	the	period	increases	by	83.3
ns,	 then	 there	will	 be	one	more	Timer	 clock	between	 the	 first	 rising
edge	 and	 the	 second	 rising	 edge.	 In	 this	 situation,	 the	 16-bit
subtraction	 will	 increase	 by	 1,	 therefore	 the	 period	 measurement
resolution	 is	 83.3	 ns.	 The	 resolution	 is	 the	 smallest	 measurable
change.	Resolution	definesthe	units	 of	 the	measurement.	 In	 this	 first
example,	 if	 the	 calculation	 of Period 	 results	 in	 1000,	 then	 it
represents	 a	 period	of	 1000•83.3ns	 or	 83.3µs.	 	The	precision	 of	 the
period	 measurement	 is	 defined	 as	 the	 number	 of	 separate	 and
distinguishable	measurements.		If	the	16-bit	counter	is	used,	there	are
about	65,536	different	periods	 that	can	be	measured.	We	can	specify
the	precision	in	alternatives,	e.g.,	216,	or	in	bits,	e.g.,	16	bits.	The	last
issue	 to	 consider	 is	 the	 range	 of	 the	 period	measurement,	 which	 is
defined	 as	 the	 minimum	 and	 maximum	 values	 that	 can	 reliably	 be
measured.	We	are	concerned	what	happens	if	the	period	is	too	small	or
too	 large.	 A	 good	 measurement	 system	 should	 be	 able	 to	 detect
overflows	and	underflows.	In	addition,	we	would	not	like	the	system
to	crash,	or	hang-up	if	the	input	period	is	out	of	range.	Similarly,	it	is
desirable	 if	 the	 system	can	detect	when	 there	 is	 no	period.	For	 edge
detection,	the	input	must	be	high	for	at	least	two	system	clock	periods
and	low	for	at	least	two	timer	clock	periods.
In	 this	 example,	 the	 digital	 input	 signal	 is	 connected	 to	 an	 input
capture	 pin,	 P7.3/TA0.0.	 The	 diodes,	 47k,	 and	 220nF	 create	 a	 0	 to
3.3V	signal	on	V1.	The	10k-4.7k	create	a	reference	voltage	Vt,	and	the
10k	positive	feedback	resistor	removes	glitches.	V2	is	a	squarewave	at
the	same	frequency	as	the	input.	Let	N	be	the	number	of	rising	edges
as	the	shaft	rotates	once.	We	will	set	the	timer	period	to	5.33µs.	Each
rising	edge	will	cause	Timer	A0	to	generate	an	input	capture	interrupt
(Figure	2.19).



	
Figure	2.19.	To	measure	period,	we	connect	the	external	signal	an
input	capture,	P7.3	on	the	MSP432.

	

The	period	 is	 calculated	as	 the	difference	 in	TA0CCR0	 latch	values
from	one	rising	edge	to	the	other.	If	N=100,	and	the	motor	is	spinning
at	 300	 RPM,	 then	 the	 period	 will	 be
[(60000ms/min)/(300RPM)/100edges/rotation)],	 which	 will	 be	 2.00
ms/edge,	see	Figure	2.20.

Figure	2.20.	Timing	example	showing	counter	rollover	during	16-
bit	period	measurement.

	

For	 example,	 if	 the	 period	 is	 2000	µs,	 the	 capture	 interrupts	will	 be
requested	 every	 2	ms,	 which	will	 be	 every	 2000/5.333	 =	 375	 timer
clocks.	The	16-bit	difference	between	TA0CCR0	latch	values	will	be
375.	This	subtraction	remains	valid	even	if	the	timer	reaches	0xFFFF
and	 wraps	 around	 in	 between	 interrupts.	 On	 the	 other	 hand,	 this
method	will	not	operate	properly	if	the	period	is	larger	than	216	timer
clock	periods,	or	about	349	ms.
The	resolution	is	5.33µs	because	the	period	must	increase	by	at	 least
this	 amount	 before	 the	 difference	 between	 Timer	 A0	 measurements
will	 reliably	 change.	 Even	 though	 a	 16-bit	 counter	 is	 used,	 the
precision	 is	a	 little	 less	 than	16	bits,	because	 the	shortest	period	 that
can	be	handled	with	 this	 interrupt-driven	approach	 is	about	10	µs.	 It
takes	on	the	order	of	10	µs	to	complete	the	context	switch,	execute	the



ISR	software,	and	return	from	interrupt.	This	factor	is	determined	by
experimental	measurement.	 In	other	words,	as	 the	period	approaches
10	 µs,	 a	 higher	 and	 higher	 percentage	 of	 the	 computer	 execution	 is
utilized	just	in	the	handler	itself.
Because	 the	 TA0.0	 input	 capture	 interrupt	 has	 a	 separate	 vector	 the
software	does	not	poll.	An	interrupt	is	requested	on	each	rising	edge	of
the	 input	 signal.	 In	 this	 situation	we	 count	 all	 the	 cycles	 required	 to
process	the	interrupt.	The	period	measurement	system	written	for	the
MSP432	 is	 presented	 in	 Program	 2.17.	 The	 16-bit	 subtraction	 is
produced	 by	 defining	 the	 variables	 as	 16-bit	 unsigned	 integers.	 The
first	period	measurement	will	be	incorrect	and	should	be	neglected.

uint16_t	Period;														//	16-bit,	5.33us	units
uint16_t	static	First;								//	Timer	A0	first	edge,	5.33us	units
int32_t	Done;																//	mailbox	status	set	each	rising
void	PeriodMeasure_Init(void){
		Clock_Init48MHz();		//	48	MHz	bus	clock;	12	MHz	SMCLK
		P7SEL0	|=	0x08;					//	2)	configure	P7.3	as	TA0CCP0
		P7SEL1	&=	~0x08;			
		P7DIR	&=	~0x08;					//	3)	make	P7.3	in
		TA0CTL	&=	~0x0030;		//	4)	halt	Timer	A0
		TA0CTL	=	0x02C0;				//	5)	SMCLK,	divide	by	8
		TA0EX0	|=	0x0007;			//				clock	divide	by	8,	12MHz/64	=	187.5kHz
		TA0CCTL0	=	0x4910;		//	6)	rising,	capture,	sync,	arm
		NVIC_IPR2	=	(NVIC_IPR2&0xFFFFFF00)|0x00000040;	//	7)	priority	2
		NVIC_ISER0	=	0x00000100;	//	8)	enable	interrupt	8	in	NVIC
		TA0CTL	|=	0x0024;							//	9)	reset	and	start	in	continuous	mode
		EnableInterrupts();

}

void	TA0_0_IRQHandler(void){
		TA0CCTL0	&=	~0x0001;							//	acknowledge	TA0.0	capture
		Period	=	TA0CCR0	-	First;	//	5.33us	resolution
		First	=	TA0CCR0;											//	setup	for	next
		Done	=	1;																		//	set	semaphore

}



Program	2.17.	16-bit	period	measurement
(PeriodMeasure_MSP432).

2.7.4.	Pulse	width	measurement
The	 basic	 idea	 of	 pulse	 width	 measurement	 is	 to	 cause	 an	 input
capture	event	on	both	 the	rising	and	falling	edges	of	an	 input	signal.
Each	edge	captures	a	 timer	value.	The	difference	between	 these	 two
captured	times	will	be	the	pulse	width.	Just	like	period	measurement,
the	 resolution	 is	 determined	 by	 the	 rate	 at	 which	 the	 timer	 is
decremented.	 The	maximum	 pulse	width	 is	 224	 times	 the	 resolution,
and	is	limited	by	the	24-bit	timer.
The	 difficulty	with	 pulse	width	measurement	 using	 one	 timer	 is	 the
need	 to	switch	 from	rising	 to	 falling	edge	during	each	measurement.
However,	 to	 handle	 shorter	 pulses	 we	 will	 need	 to	 use	 two	 input
capture	pins.	One	pin	measures	the	time	of	the	rise	and	the	other	pin
measures	the	time	of	the	fall.	In	order	for	input	capture	to	operate,	the
input	must	be	high	for	at	least	two	bus	clocks	and	low	for	at	least	two
bus	clocks.	Otherwise	 the	minimum	pulse	width	does	not	depend	on
software	execution	 time	or	 interrupt	 latency.	However,	 the	minimum
period	will	depend	on	software	speed.

2.7.5.	Ultrasonic	distance	measurement
One	 method	 to	 measure	 the	 distance	 between	 two	 objects	 is	 to
transmit	an	ultrasonic	wave	from	one	object	at	the	other	and	listen	for
the	reflection	(Figure	2.21).	The	instrument	must	be	able	 to	generate
the	sound	pulse,	hear	the	echo	and	measure	the	time,	tin,	between	pulse
and	echo.	If	the	speed	of	sound,	c,	is	known,	then	the	distance,	d,	can
be	calculated.	Our	microcontrollers	also	have	mechanisms	to	measure
the	pulse	width	tin.

d	=	c	tin	/	2



Figure	2.21.	An	ultrasonic	pulse-echo	transducer	measures	the
distance	to	an	object,	Ping))).



2.8.	Pulse	Width	Modulation
Generating	output	waves	is	an	essential	task	for	real-time	systems,	so
the	 microcontrollers	 have	 multiple	 methods	 to	 create	 output	 waves.
Pulse	 width	 modulation	 (PWM)	 is	 an	 effective	 and	 thus	 popular
mechanism	 for	 the	 embedded	 microcontrollers	 to	 control	 external
devices.	Typically,	the	period	of	a	PWM	output	is	fixed,	and	the	duty
cycle	 is	varied.	The	output	 is	one	 for	High	 cycles	 and	 then	 zero	 for
Low	 cycles.	 To	 make	 the	 period	 constant	 we	 will	 configure	 it	 so
High+Low	is	a	constant.

	

2.8.1.	Pulse	width	modulation	on	the	TM4C123
PWM	 outputs	 are	 so	 important,	 the	 TM4C	 has	 a	 dedicated	 PWM
modules.	 The	 number	 of	 PWMs	 and	 associated	 pins	 vary	 from	 one
microcontroller	to	the	next,	see	Figure	2.22.

Figure	2.22.	PWM	pins.	The	TM4C123	has	two	PWM	modules,
each	with	four	PWM	generator	blocks	and	a	control	block
(sixteen	total	outputs),	and	the	TM4C1294	has	one	PWM	module,
with	four	PWM	generator	blocks	and	a	control	block	(eight	total



outputs).

The	 PWM0	 block	 produces	 the	 PWM0	 and	 PWM1	 outputs,	 the
PWM1	 block	 produces	 the	 PWM2	 and	 PWM3	 outputs,	 and	 the
PWM2	block	produces	the	PWM4	and	PWM5	outputs.	The	design	of
a	PWM	system	considers	three	factors.	The	first	factor	is	period	of	the
PWM	 output.	 Most	 applications	 choose	 a	 period,	 initialize	 the
waveform	at	 that	period,	 and	adjust	 the	duty	cycle	dynamically.	The
second	 factor	 is	 precision,	which	 is	 the	 total	 number	 of	 duty	 cycles
that	 can	 be	 created.	 A	 16-bit	 channel	 can	 potentially	 create	 up	 to
65536	 different	 duty	 cycles.	 However,	 since	 the	 duty	 cycle	 register
must	be	 less	 than	or	equal	 to	 the	period	register,	 the	precision	of	 the
system	is	determined	by	 the	value	written	 to	 the	period	register.	The
last	consideration	is	the	number	of	channels.	Different	members	of	the
TM4C	 family	 have	 from	 zero	 to	 sixteen	 PWM	outputs	 (refer	 to	 the
data	sheet	for	your	specific	microcontroller.)	Program	2.18	shows	the
initialization	 on	 a	 TM4C123	 for	 generating	 a	 PWM	 on	 the
PB6/PWM0A	 pin.	 1)	 First,	 we	 activate	 the	 clock	 for	 the	 PWM
module.	 2)	 Second,	we	 activate	 the	 output	 pin	 as	 a	 digital	 alternate
function.	3)	Next,	we	select	the	clock	to	be	used	for	the	PWM	in	RCC
register.	If	we	do	not	use	the	PWM	divider,	then	it	is	clocked	from	the
bus	clock.	With	the	divider	we	can	choose	2,	4,	8,	16,	32,	or	64.	If	the
TM4C123	 is	 running	 at	 50	 MHz,	 this	 program	 specifies	 the	 PWM
clock	 to	 be	 25	MHz.	 4)	We	 set	 the	 PWM	 to	 countdown	mode.	We
specify	in	the PWM_0_GENA_R 	register	that	the	comparator	action
is	 to	set	 to	one,	and	 the	 load	action	 is	 set	 to	zero.	5)	We	specify	 the
period	 in	 the	 PWM_0_LOAD_R 	 register.	 6)	 We	 specify	 the	 duty
cycle	 in	 the	 PWM_0_CMPA_R 	 register.	 7)	 Lastly,	 we	 start	 and
enable	the	PWM.
We	 call PWM0A_Init once	 to	 turn	 it	 on,	 and	 then
call PWM0A_Duty to	adjust	the	duty	cycle.	Assume	the	bus	clock	is
50	 MHz,	 we	 call PWM0A_Init(25000,12500); 	 to	 create	 a	 1	 ms
period	50	%	duty	cycle	output	on	PWM0A	(PB6).

//	period	is	16-bit	number	of	PWM	clock	cycles	in	one	period	(3<=period)
//	duty	is	number	of	PWM	clock	cycles	output	is	high		(2<=duty<=period-1)
//	PWM	clock	rate	=	processor	clock	rate/SYSCTL_RCC_PWMDIV
//																=	BusClock/2
void	PWM0A_Init(uint16_t	period,	uint16_t	duty){



		SYSCTL_RCGCPWM_R	|=	0x00000001;		//	1)	activate	clock	for	PWM0
																																			//	allow	time	to	finish	activating
		while((SYSCTL_PRPWM_R&0x00000001)==0){};
		SYSCTL_RCGCGPIO_R	|=	0x00000002;	//	activate	clock	for	Port	B
																																			//	allow	time	to	finish	activating
		while((SYSCTL_PRGPIO_R&0x00000002)==0){};
		GPIO_PORTB_AFSEL_R	|=	0x40;						//	2)	enable	alt	funct	on	PB6
		GPIO_PORTB_ODR_R	&=	~0x40;							//				disable	open	drain	on	PB6
		GPIO_PORTB_DEN_R	|=	0x40;								//				enable	digital	I/O	on	PB6
		GPIO_PORTB_AMSEL_R	&=	~0x40;	 	 	 	 	 //	 	 	 	disable	analog	function	on
PB6
																																			//				configure	PB6	as	PWM
	 	 GPIO_PORTB_PCTL_R	 =
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x04000000;
		SYSCTL_RCC_R	=	0x00100000	|									//	3)	use	PWM	divider
				((SYSCTL_RCC_R	&	(~0x000E0000))	+	//				clear	PWM	divider	field
				0x00000000);																					//				configure	for	/2	divider
		PWM0_0_CTL_R	=	0;																//	4)	reloading	down-counting	mode
																																			//				PB6	goes	low	on	LOAD
		PWM0_0_GENA_R	=	0x000000C8;						//				PB6	goes	high	on	CMPA	down
		PWM0_0_LOAD_R	=	period	-	1;						//	5)	cycles	needed	to	count	down	to	0
		PWM0_0_CMPA_R	=	duty	-	1;								//	6)	count	value	when	output	rises
		PWM0_0_CTL_R	|=	0x00000001;						//	7)	start	PWM0	Generator	0
		PWM0_ENABLE_R	|=	0x00000001;					//				enable	PWM0	Generator	0

}

//	change	duty	cycle
//	duty	is	number	of	PWM	clock	cycles	output	is	high		(2<=duty<=period-1)
void	PWM0A_Duty(uint16_t	duty){
		PWM0_0_CMPA_R	=	duty	-	1;								//	6)	count	value	when	output	rises

}

Program	2.18.	Implementation	of	a	16-bit	PWM	output
(PWM_xxx).

2.8.2.	Pulse	width	modulation	on	the	MSP432



On	 the	MSP432	each	Timer	A	module	 can	 create	one	 to	 four	PWM
outputs	by	using	 submodule	0	 to	define	 the	period	 and	using	one	 to
four	 of	 the	 other	 submodules	 to	 create	 the	 output	 and	 set	 the	 duty
cycle.	 	 In	 this	 example	 Timer	 A0	 is	 set	 to	 up/down	 mode.	 PWM
outputs	can	also	be	created	with	up	mode,	but	in	this	section	we	will
describe	up/down	mode.
In	 this	 example,	 we	will	 set	TA0CCR0	 to	 10,	 and	TA0CCR1	 to	 7
creating	a	70%	duty	 cycle	PWM	output	on	P2.4/TA0.1.	 In	 up/down
mode,	the	TA0R	timer	will	count	0,	1,	2,	…	9,	10,	9,	…,	2,	1,	0,	1,	2,
…	over	and	over.	We	will	use	toggle/reset	mode	to	control	the	output
on	P2.4/TA0.1.	 When	 the	 timer	 matches	TA0CCR0=10	 the	TA0.1
output	 is	 cleared	 and	 the	CCIFG	 flag	 in	TA0CCR0	 register	 is	 set.
Each	 time	 the	 TA0R	 matches	 TA0CCR1=7	 the	 TA0.1	 output	 is
toggled	and	the	CCIFG	flag	in	TA0CCR1	register	is	set.	The	output
is	reset	when	the	timer	is	at	maximum,	so	the	first	time	it	matches	the
timer	 is	 counting	 down.	 So,	 the	 output	 goes	 high	 when	 the	 timer
matches	TA0CCR1	on	the	way	down,	and	is	cleared	when	it	matches
on	 the	 way	 up,	 see	 Figure	 2.23.	 The	 period	 of	 the	 wave	 will	 be
2*TA0CCR0,	and	the	time	it	 is	high	will	be	2*TA0CCR1,	therefore
the	duty	cycle	will	be	TA0CCR1/TA0CCR0.	Output	compare	events
will	again	be	requested	at	a	 rate	 twice	as	 fast	as	 the	resulting	square
wave	frequency.	One	event	is	required	for	the	rising	edge	and	another
for	the	falling	edge.	In	the	examples	below,	we	make	High plus Low
be	a	constant.	By	adjusting	the	ratio	of	High 	and	Low 	 the	software
can	control	the	duty	cycle.

Figure	2.23.	The	PWM	output	with	timer	in	up-down	mode	and
output	compare	in	toggle-reset	mode.

This	 implementation	 occurs	 in	 hardware	 and	 does	 not	 require
interrupts.	Therefore,	 it	 can	generate	waves	close	 to	0	or	100%	duty
cycle.	Figure	2.24	shows	a	system	using	two	PWM	outputs	to	control
two	DC	motors.	The	interface	driver	will	be	shown	in	Section	10.2.



	

Figure	2.24.	The	PWM	output	can	adjust	the	power	to	two	DC
motors.

Program	 2.19configures	 Timer	 A0	 for	 two	 PWM	 outputs.	 The	 user
calls PWM_Init once	 to	 turn	 it	 on,	 and	 then	 calls PWM_Duty 	 to
adjust	the	duty	cycle.

void	PWM_Init(uint16_t	period,	uint16_t	duty1,	uint16_t	duty2){										
		Clock_Init48MHz();						//	48	MHz	HFXTCLK,	SMCLK	=	12	MHz
		P2DIR	|=	0x30;										//	P2.4,	P2.5	output
		P2SEL0	|=	0x30;									//	P2.4,	P2.5	TimerA0	functions
		P2SEL1	&=	~0x30;								//	P2.4,	P2.5	TimerA0	functions
		TA0CCTL0	=	0x0080;						//	CCI0	toggle
		TA0CCR0	=	period;							//	Period	is	2*period*8*83.33ns	is	1.333*period
		TA0EX0	=	0x0000;								//				divide	by	1
		TA0CCTL1	=	0x0040;						//	CCR1	toggle/reset
		TA0CCR1	=	duty1;								//	CCR1	duty	cycle	is	duty1/period
		TA0CCTL2	=	0x0040;						//	CCR2	toggle/reset
		TA0CCR2	=	duty2;								//	CCR2	duty	cycle	is	duty2/period
		TA0CTL	=	0x02F0;								//	SMCLK=12MHz,	divide	by	8,	up-down	mode

}

void	PWM_Duty1(uint16_t	duty1){	
		TA0CCR1	=	duty1;								//	CCR1	duty	cycle	is	duty1/period

}

void	PWM_Duty2(uint16_t	duty2){	
		TA0CCR2	=	duty2;								//	CCR2	duty	cycle	is	duty2/period



}

Program	2.19.	Software	to	generate	a	PWM	output	using	Timer
A0	(TimerA0PWM_MSP432).

Checkpoint	2.11:	When	does	an	output	compare	event	occur	when
in	PWM	mode?
Checkpoint	2.12:	What	happens	during	an	output	compare	event	in
PWM	mode?

Divide	by	8	slows	down	the	12	MHz	SMCLK	to	count	the	timer	every
666.7ns.	Figure	2.25	 shows	 the	 logic	 analyzer	output	when	Program
2.19is	 called	 with PWM_Init(10,7,2) 	 creating	 a	 70%	 duty	 cycle
PWM	on	P2.4	and	a	20%	duty	cycle	PWM	on	P2.5.	Just	 like	Figure
2.11	the	timer	counts	0	to	10,	and	then	9	to	1,	so	there	are	20	counts
per	wave.	20	counts	times	666.7ns	creates	the	13.33μs	period	for	P2.4
and	P2.5.	When	the	timer	is	7,	P2.4	is	toggled,	and	when	the	timer	is
2,	P2.5	is	toggled.

Figure	2.25.	The	PWM	output	with	13.33us	period	and	70%	on
P2.4	and	20%	on	P2.5.

With	 the	 counter	 in	 up	 mode,	 we	 can	 use	 OUTMOD=7	 (reset/set)
mode	to	create	PWM	outputs.	In	this	mode	the	period	of	the	wave	will
be	TA0CCR0+1,	and	the	time	it	is	high	will	be	TA0CCR1,	therefore
the	 duty	 cycle	will	 once	 again	 be	TA0CCR1/(TA0CCR0+1).	When
creating	PWMs	with	this	approach	all	outputs	will	go	high	at	the	same
time.
	



2.9.	Analog	Output
A	 digital	 to	 analog	 convertor	 (DAC)	 converts	 digital	 signals	 into
analog	form	as	illustrated	in	Figure	2.26.	Although	one	can	interface	a
DAC	to	a	regular	output	port,	most	DACs	are	 interfaced	using	high-
speed	 synchronous	 protocols.	 The	 DAC	 output	 can	 be	 current	 or
voltage.	 Additional	 analog	 processing	 may	 be	 required	 to	 filter,
amplify	 or	 modulate	 the	 signal.	 We	 can	 also	 use	 DACs	 to	 design
variable	gain	or	variable	offset	analog	circuits.
The	 DAC	 precision	 is	 the	 number	 of	 distinguishable	 DAC	 outputs
(e.g.,	1024	alternatives,	10	bits).	The	DAC	range	is	the	maximum	and
minimum	 DAC	 output	 (volts,	 amps).	 The	 DAC	 resolution	 is	 the
smallest	distinguishable	change	in	output.	The	units	of	resolution	are
in	volts	or	amps	depending	on	whether	the	output	is	voltage	or	current.
The	 resolution	 is	 the	 change	 in	 output	 that	 occurs	when	 the	 digital
input	changes	by	1.
Range(volts)	=	Precision(alternatives)	 •	Resolution(volts)	The	DAC
accuracy	 is	 (Actual	 -	 Ideal)	 /	 Ideal	 where	 Ideal	 is	 referred	 to	 the
National	 Institute	 of	 Standards	 and	 Technology	 (NIST).	 One	 can
choose	the	full	scale	range	of	 the	DAC	to	simplify	 the	use	of	fixed-
point	math.	For	example,	if	an	8-bit	DAC	had	a	full	scale	range	of	0	to
2.55	volts,	 then	 the	 resolution	would	 be	 exactly	 10	mV.	This	means
that	if	the	DAC	digital	input	were	12310,	then	the	DAC	output	voltage
would	be	1.23	volts.



Figure	2.26.	A	10-bit	DAC	provides	analog	output.	A	10-bit	ADC
provides	analog	input.

A	DAC	gain	error	is	a	shift	in	the	slope	of	the	Vout	versus	digital	input
static	response.	A	DAC	offset	error	is	a	shift	in	the	Vout	versus	digital
input	 static	 response.	 The	 DAC	 transient	 response	 has	 three
components:	 delay	 phase,	 slewing	 phase,	 ringing	 phase.	 During	 the
delay	phase,	the	input	has	changed	but	the	output	has	not	yet	begun	to
change.	During	the	slewing	phase,	the	output	changes	rapidly.	During
the	ringing	phase,	the	output	oscillates	while	it	stabilizes.	For	purposes
of	linearity,	let	m,	n	be	digital	inputs,	and	let	f(n)	be	the	analog	output
of	the	DAC,	see	Figure	2.27.	One	quantitative	measure	of	linearity	is
the	 correlation	 coefficient	 of	 a	 linear	 regression	 fit	 of	 the	 f(n)
responses.	 If	 ∆	 is	 the	 DAC	 resolution,	 it	 is	 linear	 if	 f(n+1)-f(n)	 =
f(m+1)-f(m)		=	∆	for	all	n,	m	The	DAC	is	monotonic	if
sign(f(n+1)-f(n))	 =	 sign(f(m+1)-f(m))	 for	 all	 n,	 m	 Conversely,	 the
DAC	is	nonlinear	if
f(n+1)-f(n)	≠	f(m+1)-f(m)	for	some	n,	m	Practically	speaking	all	DACs
are	 nonlinear,	 but	 the	 worst	 nonlinearity	 is	 nonmonotonicity.	 	 The
DAC	 is	 nonmonotonic	 if	 sign(f(n+1)-f(n))	 ≠	 sign(f(m+1)-f(m))	 for



some	n,	m	

Figure	2.27.	Nonlinear	and	nonmonotonic	DACs.
Many	manufacturers,	 like	Analog	Devices,	Texas	 Instruments,	Sipex
and	 Maxim	 produce	 DACs.	 These	 DACs	 have	 a	 wide	 range	 of
performance	 parameters	 and	 come	 in	 many	 configurations.	 The
following	 paragraphs	 discuss	 the	 various	 issues	 to	 consider	 when
selecting	a	DAC.	Although	we	assume	the	DAC	is	used	to	generate	an
analog	 waveform,	 these	 considerations	 will	 generally	 apply	 to	most
DAC	applications.
Precision/range/resolution.	 These	 three	 parameters	 affect	 the	 quality
of	the	signal	that	can	be	generated	by	the	system.	The	more	bits	in	the
DAC	the	finer	the	control	the	system	has	over	the	waveform	it	creates.
As	 important	 as	 this	 parameter	 is,	 it	 is	 one	 of	 the	 more	 difficult
specifications	 to	 establish	 a	priori.	Multiple	versions	of	 the	 software
(e.g.,	 4-bit,	 8-bit,	 10-bit,	 and	 12-bit	 DAC)	 are	 used	 to	 see
experimentally	 the	 effect	 of	 DAC	 precision	 on	 the	 overall	 system
performance.	 Figure	 2.28	 illustrates	 how	 DAC	 precision	 affects	 the
quality	of	the	generated	waveform.	DAC	parameters	of	noise	include
signal	 to	 noise	 ratio	 (SNR),	 signal	 to	 noise	 ratio	 plus	 distortion
(SINAD),	 and	 total	 harmonic	 distortion	 (THD)	

Figure	2.28.	The	waveform	on	the	top	uses	a	4-bit	DAC,	while	on
one	on	the	bottom	uses	a	12-bit	DAC.

Channels.	Even	though	multiple	channels	could	be	implemented	using



multiple	DAC	chips,	 it	 is	usually	more	efficient	 to	design	a	multiple
channel	 system	 using	 a	multiple	 channel	DAC.	 Some	 advantages	 of
using	a	DAC	with	more	channels	than	originally	conceived	are	future
expansion,	 automated	 calibration,	 and	 automated	 testing.	A	multiple
channel	DAC	allows	you	to	update	all	channels	at	the	same	time.
Configuration.	 DACs	 can	 have	 voltage	 or	 current	 outputs.	 Current
output	 DACs	 can	 be	 used	 in	 a	 wide	 spectrum	 of	 applications	 (e.g.,
adding	gain	and	filtering),	but	do	require	external	components.	DACs
can	have	internal	or	external	references.	An	internal	reference	DAC	is
easier	to	use	for	standard	digital	input/analog	output	applications,	but
the	 external	 reference	 DAC	 can	 often	 be	 used	 in	 variable	 gain
applications	 (multiplying	 DAC).	 Sometimes	 the	 DAC	 generates	 a
unipolar	output,	while	other	times	the	DAC	produces	bipolar	outputs.
Power.	 There	 are	 three	 power	 issues	 to	 consider.	 The	 first
consideration	 is	 the	 type	 of	 power	 required.	 Older	 devices	 require
three	 power	 voltages	 (e.g.,	 +5	 and	 -5	 V),	 while	 most	 devices	 will
operate	 on	 a	 single	 voltage	 supply	 (e.g.,	 +2.7,	 +3.3,	 or	 +5	 V.)	 If	 a
single	 supply	 can	 be	 used	 to	 power	 all	 the	 digital	 and	 analog
components,	then	the	overall	system	costs	will	be	reduced.	The	second
consideration	 is	 the	 amount	 of	 power	 required.	 Some	 devices	 can
operate	on	less	than	0.1	mW	and	are	appropriate	for	battery-operated
systems	 or	 for	 systems	 where	 excess	 heat	 is	 a	 problem.	 The	 last
consideration	 is	 the	need	 for	 a	 low-power	 sleep	mode.	Some	battery
operated	 systems	 need	 the	 DAC	 only	 intermittently.	 In	 these
applications,	we	wish	 to	 give	 a	 shutdown	 command	 to	 the	DAC,	 so
that	it	draws	less	current	when	not	needed.
Speed.	There	are	a	couple	of	parameters	manufacturers	use	to	specify
the	dynamic	behavior	of	the	DAC.	The	most	common	is	settling	time,
another	is	maximum	output	rate.	When	operating	the	DAC	in	variable
gain	mode,	we	are	also	interested	in	the	gain/bandwidth	product	of	the
analog	amplifier.	When	comparing	specifications	reported	by	different
manufacturers	 it	 is	 important	 to	 consider	 the	 exact	 situation	 used	 to
collect	 the	 parameter.	 In	 other	 words,	 one	manufacturer	may	 define
settling	time	as	the	time	to	reach	0.1%	of	the	final	output	after	a	full
scale	change	in	input	given	a	certain	load	on	the	output,	while	another
manufacturer	may	define	settling	time	as	the	time	to	reach	1%	of	the
final	output	after	a	1	volt	change	in	input	under	a	different	load.	The



speed	 of	 the	DAC	 together	with	 the	 speed	 of	 the	 computer/software
will	 determine	 the	 effective	 frequency	 components	 in	 the	 generated
waveforms.	Both	the	software	(rate	at	which	the	software	outputs	new
values	 to	 the	DAC)	and	 the	DAC	speed	must	be	 fast	enough	for	 the
given	application.	In	other	words,	 if	 the	software	outputs	new	values
to	the	DAC	at	a	rate	faster	than	the	DAC	can	respond,	then	errors	will
occur.	 Figure	 2.29	 illustrates	 the	 effect	 of	 DAC	 output	 rate	 on	 the
quality	of	the	generated	waveform.	According	to	the	Nyquist	Theorem
states	 the	 digital	 data	 rate	must	 be	 greater	 than	 twice	 the	maximum
frequency	component	of	the	desired	analog	waveform.	However,	both
waveforms	in	Figure	2.29	satisfy	the	Nyquist	Theorem,	but	increasing
the	output	rate	by	eight	improves	the	signal	to	noise	ratio	by	eight.	31
dB	is	a	ratio	of	about	35	to	1,	and	49	dB	is	a	ratio	of	about	281	to	1.	If
the	 goal	 is	 to	 create	 a	 sine	 wave	 at	 a	 fixed	 frequency,	 we	 could
improve	the	SNR	greatly	by	using	an	analog	low	pass	filter.

Experimental	data	of	a	32-output	523	Hz	sinewave	 	 	 	 	 	Experimental	data	of	a
256-output	523	Hz	sinewave

									
Signal/noise	ratio	is	31	dB	(3dB-	-28dB)	Signal/noise	ratio	is	49	dB	(3dB-
-46dB)
	
Figure	2.29.	The	waveform	on	the	right	was	created	by	a	system
with	eight	times	the	output	rate	than	the	left.	Voltage	versus	time
data	on	top	and	the	Fourier	Transform	(frequency	spectrum	dB
versus	kHz)	of	the	data	on	the	bottom.	There	is	a	point	in	the
spectrum	at	0,	which	is	the	DC	component.	However,	the	signal	is



the	523	Hz	bump	with	a	magnitude	of	3dB,	representing	the	sine
wave.	The	noise	are	all	the	other	points	not	at	0	or	523	Hz.	The
largest	noise	on	the	left	is	-28	dB.	The	largest	noise	on	the	right	is
-46	dB.

Interface.	 Three	 approaches	 exist	 for	 interfacing	 the	 DAC	 to	 the
computer.	 In	 a	 digital	 logic	 or	 parallel	 interface,	 the	 individual	 data
bits	are	connected	to	a	dedicated	computer	output	port.	For	example,	a
12-bit	 DAC	 requires	 a	 12-bit	 output	 port	 bits	 to	 interface.	 The
software	 simply	 writes	 to	 the	 parallel	 port(s)	 to	 change	 the	 DAC
output.	 The	 second	 approach	 is	 called	 µP-bus	 or	 microprocessor-
compatible.	 These	 devices	 are	 intended	 to	 be	 interfaced	 onto	 the
address/data	 bus	 of	 an	 expanded	 mode	 microcontroller.	 The	 third
approach	is	a	high-speed	serial	interface	like	I2C	or	SPI.	This	approach
requires	 the	 fewest	 number	 of	 I/O	 pins.	 Even	 if	 the	microcontroller
does	 not	 support	 the	 SPI	 interface	 directly,	 these	 devices	 can	 be
interfaced	to	regular	I/O	pins	via	the	bit-banging	software	approach.
Package.	 DIP	 packages	 are	 convenient	 for	 creating	 and	 testing	 an
original	prototype.	On	the	other	hand,	surface	mount	packages	require
less	 board	 space.	 Because	 surface	 mount	 packages	 do	 not	 require
holes	in	the	PC	board,	circuits	with	these	devices	are	easier/cheaper	to
produce.
Cost.	Cost	is	always	a	factor	in	engineering	design.	Beside	the	direct
costs	 of	 the	 individual	 components	 in	 the	 DAC	 interface,	 other
considerations	that	affect	cost	include:	1)	power	supply	requirements;
2)	manufacturing	costs;	3)	the	labor	involved	in	individual	calibration
if	required;	and	4)	software	development	costs.



2.10.	Analog	Input

2.10.1.	ADC	Parameters
An	analog	 to	digital	 converter	 (ADC)	converts	an	analog	signal	 into
digital	 form.	The	 input	signal	 is	usually	an	analog	voltage	 (Vin),	 and
the	output	 is	 a	binary	number.	The	ADC	precision	 is	 the	number	of
distinguishable	 ADC	 inputs	 (e.g.,	 4096	 alternatives,	 12	 bits).	 The
ADC	range	is	the	maximum	and	minimum	ADC	input	(volts,	amps).
The	ADC	resolution	 is	 the	 smallest	 distinguishable	 change	 in	 input
(volts,	 amps).	 The	 resolution	 is	 the	 change	 in	 input	 that	 causes	 the
digital	output	to	change	by	1.
Range(volts)	=	Precision(alternatives)	 •	Resolution(volts)	Normally
we	 don’t	 specify	 accuracy	 for	 just	 the	ADC,	 but	 rather	we	 give	 the
accuracy	 of	 the	 entire	 system	 (including	 transducer,	 analog	 circuit,
ADC	 and	 software).	 Therefore,	 accuracy	 is	 defined	 as	 part	 of	 the
systems	approach	to	data	acquisition	systems.	An	ADC	is	monotonic
if	 it	has	no	missing	codes.	This	means	 if	 the	analog	signal	 is	a	 slow
rising	voltage,	 then	 the	digital	output	will	hit	 all	values	 sequentially.
The	ADC	is	linear	if	the	resolution	is	constant	through	the	range.	Let
f(x)	 be	 the	 input/output	 ADC	 transfer	 function.	 One	 quantitative
measure	 of	 linearity	 is	 the	 correlation	 coefficient	 of	 a	 linear
regression	 fit	 of	 the	 f(x)	 responses.	 The	 ADC	 speed	 is	 the	 time	 to
convert,	called	tc.	The	ADC	cost	is	a	function	of	the	number	and	price
of	internal	components.	There	are	four	common	encoding	schemes	for
an	ADC.	Table	2.23	shows	two	encoding	schemes	for	a	12-bit	unipolar
ADC.

Unipolar
Codes

Straight	Binary Complementary
Binary

+Vmax 1111,1111,1111 0000,0000,0000
+Vmax/2 1000,0000,0000 0001,1111,1111
+Vmax/1024 0000,0000,0001 1111,1111,1110
+0.00 0000,0000,0000 1111,1111,1111



Table	2.23.	Unipolar	codes	for	a	12-bit	ADC	with	a	range	of	0	to	+Vmax.
	

The	ADCs	on	the	MSP432	(14	bits)	and	TM4C	(12	bits)	families	use
straight	binary.	The	MSP432	has	a	range	of	0	to	2.5V,	and	the	TM4C
has	 a	 range	 of	 0	 to	 3.3	 V.	 To	 convert	 between	 straight	 binary	 and
complementary	binary	we	simply	complement	(change	0	to	1,	change
1	 to	 0)	 all	 the	 bits.	 To	 convert	 between	 offset	 binary	 and	 2’s
complement,	 we	 complement	 just	 the	 most	 significant	 bit.	 The
exclusive-or	operation	can	be	used	to	complement	bits.
Just	like	the	DAC,	one	can	choose	the	full	scale	range	to	simplify	the
use	of	fixed-point	math.	For	example,	if	a	10-bit	ADC	had	a	full	scale
range	of	0	to	1.023	volts,	then	the	resolution	would	be	exactly	1	mV.
This	means	 that	 if	 the	ADC	input	voltage	were	0.234	volts,	 then	 the
result	would	be	23410.		

The	total	harmonic	distortion	(THD)	of	a	signal	is	a	measure	of	the
harmonic	distortion	present	and	 is	defined	as	 the	 ratio	of	 the	sum	of
the	 powers	 of	 all	 harmonic	 components	 to	 the	 power	 of	 the
fundamental	 frequency.	 Basically,	 it	 is	 a	 measure	 of	 all	 the	 noise
processes	in	an	ADC	and	usually	is	given	in	dB	full	scale.	A	similar
parameter	is	signal-to-noise	and	distortion	ratio	(SINAD),	which	 is
measured	by	placing	a	pure	sine	wave	at	the	input	of	the	ADC	(signal)
and	measuring	 the	ADC	output	 (signal	plus	noise).	We	can	compare
precision	in	bits	to	signal-to-noise	ratio	in	dB	using	the	relation	dB	=
20	log10(2n).	For	example,	the	12-bit	MAX1247	ADC	has	a	SINAD	of
73	 dB.	 Notice	 that	 20	 log10(212)	 is	 72	 dB.	 The	 ADCs	 on	 most
microcontrollers	use	the	successive	approximation	technique.
For	a	discussion	of	ADC	techniques,	see	Chapter	8	of	Volume	2.

2.10.2.	Internal	ADC	on	TM4C
Table	2.24	shows	 the	ADC	register	bits	 required	 to	perform	periodic
sampling	on	a	single	channel.	For	more	complex	configurations	refer
to	the	specific	data	sheet.	The	TM4C123	and	TM4C1294	can	sample
up	to	1	million	samples	per	second,	see	Table	2.25.	Running	the	ADC
slower	will	make	it	more	accurate,	and	use	less	power.

Address 31-2 1 0 Name



$400F.E638 	 ADC1 ADC0 SYSCTL_RCGCADC_R

	 	 	 	 	 	 	 	 	 	
	 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0 	
$4003.8020 	 SS3 	 SS2 	 SS1 	 SS0 ADC0_SSPRI_R
	 	 	 	 	 	 	 	 	 	
	 31-16 15-12 11-8 7-4 3-0 	
$4003.8014 	 EM3 EM2 EM1 EM0 ADC0_EMUX_R
	 	 	 	 	 	 	 	 	 	
	 31-4 3 2 1 0 	
$4003.8000 	 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.8028 	 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 	 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 	 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 	 Speed ADC0_PC_R
$4003.800C 	 IN3 IN2 IN1 IN0 ADC0_ISC_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4003.8040 MUX7 MUX6 MUX5 MUX4 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX0_R
	 	 	 	 	 	 	 	 	 	
	 31-16 15-12 11-8 7-4 3-0 	
$4003.8060 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX1_R
$4003.8080 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX2_R
$4003.80A0 	 	 	 	 MUX0 ADC0_SSMUX3_R
	 	 	 	 	 	 	 	 	 	
	 31 30 29 28 27 26 … 8 7 6 5 4 3 2 1 0 	
$4003.8044 TS7IE7END7D7TS6IE6 … D2TS1 IE1 END1D1TS0 IE0 END0D0ADC0_SSCTL0_R
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 	
$4003.8064 TS3IE3END3D3TS2IE2END2D2TS1 IE1 END1D1TS0 IE0 END0D0ADC0_SSCTL1_R
$4003.8084 TS3IE3END3D3TS2IE2END2D2TS1 IE1 END1D1TS0 IE0 END0D0ADC0_SSCTL2_R
$4003.80A4 	 	 	 	 	 	 	 	 	 	 	 	 TS0 IE0 END0D0ADC0_SSCTL3_R
	 	 	 	 	 	 	 	 	 	
	 31-10 11-0 	
$4003.8048 	 DATA ADC0_SSFIFO0_R
$4003.8068 	 DATA ADC0_SSFIFO1_R
$4003.8088 	 DATA ADC0_SSFIFO2_R
$4003.80A8 	 DATA ADC0_SSFIFO3_R

Table	2.24.	Some	of	the	ADC	registers.	Each	register	is	32	bits	wide.	



	
The	ADC	has	four	sequencers,	but	we	will	use	only	sequencer	3.	We
set	 the	ADC_SSPRI_R	 register	 to	 0x3210	 to	make	 sequencer	 3	 the
lowest	priority.	Because	we	are	using	just	one	sequencer,	we	just	need
to	make	sure	each	sequencer	has	a	unique	priority.	We	set	bits	15–12
(EM3)	in	the	ADC_EMUX_R	register	to	specify	how	the	ADC	will
be	 triggered.	 Table	 2.26	 shows	 the	 various	ways	 to	 trigger	 an	ADC
conversion.	In	this	section	we	will	use	timer	triggering	(EM3=0x5).	If
we	 specify	 software	 start	 (EM3=0x0),	 then	 the	 software	writes	 an	8
(SS3)	to	the	ADC_PSSI_R	to	initiate	a	conversion	on	sequencer	3.	Bit
3	(INR3)	in	the	ADC_RIS_R	register	will	be	set	when	the	conversion
is	complete.
We	can	enable	and	disable	the	sequencers	using	the	ADC_ACTSS_R
register.	There	are	four	sequencers	on	the	TM4C123.	Which	channel
we	sample	is	configured	by	writing	to	the	ADC_SSMUX3_R	register.
The	 ADC_SSCTL3_R	 register	 specifies	 the	 mode	 of	 the	 ADC
sample.	We	set	TS0	to	measure	temperature	and	clear	it	to	measure	the
analog	voltage	on	the	ADC	input	pin.	We	set	IE0	so	that	the	INR3	bit
is	set	on	ADC	conversion,	and	clear	it	when	no	flags	are	needed.	We
will	set	IE0	 for	 both	 interrupt	 and	busy-wait	 synchronization.	When
using	sequencer	3,	there	is	only	one	sample,	so	END0	will	always	be
set,	signifying	 this	sample	 is	 the	end	of	 the	sequence.	We	set	 the	D0
bit	 to	 activate	 differential	 sampling,	 such	 as	 measuring	 the	 analog
difference	between	ADC1	and	ADC0	pins.	 In	our	example,	we	clear
D0	to	sample	a	single-ended	analog	input.	The	ADC_RIS_R	register
has	 flags	 that	are	set	when	 the	conversion	 is	complete,	assuming	 the
IE0	 bit	 is	 set.	 The	ADC_IM_R	 register	 has	 interrupt	 arm	 bits.	 The
ADC_ISC_R	 register	 has	 interrupt	 trigger	 bits.	 The	 IN3	 bit	 is	 set
when	both	INR3	and	MASK3	are	set.	We	clear	the	INR3	and	IN3	bits
by	writing	an	8	to	the	ADC_ISC_R	register.	The	interrupt	vector	for
ADC	sequencer	3	is	at	0x00000084.

Value Description
0x7 1M	samples/second
0x5 500K	samples/second
0x3 250K	samples/second
0x1 125K	samples/second

Table	2.25.	The	Speed	bits	in	the	ADC0_PC_R	register.



	
Value Event
0x0 Software	start
0x1 Analog	Comparator	0
0x2 Analog	Comparator	1

0x3,	0x9-0x0E Reserved
0x4 External	(GPIO	PB4)
0x5 Timer
0x6 PWM0
0x7 PWM1
0x8 PWM2
0xF Always	(continuously

sample)
Table	2.26.	The	ADC	EM3,	EM2,	EM1,	and	EM0	bits	in	the
ADC_EMUX_R	register.
	

There	are	13	steps	to	configure	the	ADC	to	sample	a	single	channel	at
a	periodic	rate.	The	most	accurate	sampling	method	is	timer-triggered
sampling	(EM3=0x5).	On	 the	TM4C123,	 the	MUX	 fields	 are	 4	 bits
wide,	allowing	us	to	specify	channels	0	to	11.	On	the	TM4C1294,	the
channel	 ranges	 from	0	 to	19.	See	Tables	1.4	and	1.5	 to	see	mapping
from	pin	to	channel.
Step	1.	We	 enable	 the	ADC	 clock	 in	 the	SYSCTL_RCGCADC_R
register.
Step	2.	Bits	3	–	0	of	the	ADC0_PC_R	register	specify	the	maximum
sampling	 rate	 of	 the	 ADC.	 In	 this	 example,	 we	 will	 sample	 slower
than	125	kHz,	so	the	maximum	sampling	rate	is	set	at	125	kHz.	This
will	 require	 less	 power	 and	 produce	 a	 longer	 sampling	 time	 as
described	the	S/H	section,	creating	a	more	accurate	conversion.
Step	3.	We	will	set	the	priority	of	each	of	the	four	sequencers.	In	this
case,	we	are	using	just	one	sequencer,	so	the	priorities	are	irrelevant,
except	 for	 the	 fact	 that	 no	 two	 sequencers	 should	 have	 the	 same
priority.	The	 default	 configuration	 has	 Sample	Sequencer	 0	with	 the
highest	priority,	and	Sample	Sequencer	3	as	the	lowest	priority.



Step	 4.	Next,	 we	 need	 to	 configure	 the	 timer	 to	 run	 at	 the	 desired
sampling	frequency.	We	enable	the	Timer0	clock	by	setting	bit	0	of	the
SYSCTL_RCGCTIMER_R	 register.	This	 initialization	 is	 similar	 to
Program	 2.6	 with	 two	 changes.	 First	 we	 set	 bit	 5	 of	 the
TIMER0_CTL_R	register	to	activate	TAOTE,	which	is	the	Timer	A
output	trigger	enable.	Secondly,	we	do	not	arm	any	Timer0	interrupts.
The	 rate	 at	 which	 the	 timer	 rolls	 over	 determines	 the	 sampling
frequency.	Let	prescale	be	the	value	loaded	into	TIMER0_TAPR_R,
and	 let	period	be	 the	value	 loaded	 into	TIMER0_TAILR_R.	 	 If	 the
period	of	the	bus	clock	frequency	is	Δt,	then	the	ADC	sampling	period
will	be	Δt	*(prescale	 +	 1)*(period	 +	 1)	 The	 fastest	 sampling	 rate	 is
determined	by	the	speed	of	the	processor	handling	the	ADC	interrupts
and	by	 the	 speed	of	 the	main	program	consuming	 the	data	 from	 the
FIFO.	If	the	bus	clock	is	80	MHz,	the	slowest	possible	sampling	rate
for	 this	 example	 is	 80MHz/232,	 which	 is	 about	 0.018	 Hz,	 which	 is
every	53	seconds.
Step	5.	Before	 configuring	 the	 sequencer,	we	 need	 to	 disable	 it.	 To
disable	 sequencer	 3,	 we	 write	 a	 0	 to	 bit	 3	 (ASEN3)	 in	 the
ADC0_ACTSS_R	 register.	 Disabling	 the	 sequencer	 during
programming	prevents	erroneous	execution	if	a	 trigger	event	were	to
occur	during	the	configuration	process.
Step	6.	We	configure	the	trigger	event	for	the	sample	sequencer	in	the
ADC0_EMUX_R	register.		For	this	example,	we	write	a	0101	to	bits
15–12	(EM3)	specifying	timer	trigger	mode.
Step	 7.	 For	 each	 sample	 in	 the	 sample	 sequence,	 configure	 the
corresponding	 input	 source	 in	 the	ADC0_SSMUXn	 register.	 	 In	 this
example,	we	write	the	channel	number	(0,	1,	2,	or	3)	to	bits	3–0	in	the
ADC0_SSMUX3_R	register.
Step	 8.	 For	 each	 sample	 in	 the	 sample	 sequence,	 we	 configure	 the
sample	 control	 bits	 in	 the	 corresponding	 nibble	 in	 the
ADC0_SSCTLn	 register.	When	programming	 the	 last	nibble,	ensure
that	the	END	bit	is	set.	Failure	to	set	the	END	bit	causes	unpredictable
behavior.	Sequencer	3	has	only	one	sample,	so	we	write	a	0110	to	the
ADC0_SSCTL3_R	 register.	 	 Bit	 3	 is	 the	TS0	 bit,	 which	 we	 clear
because	we	are	not	measuring	temperature.	Bit	2	is	the	IE0	bit,	which
we	 set	 because	we	want	 to	 request	 an	 interrupt	when	 the	 sample	 is
complete.	Bit	1	is	 the	END0	bit,	which	is	set	because	 this	 is	 the	 last



(and	only)	sample	in	the	sequence.	Bit	0	is	the	D0	bit,	which	we	clear
because	we	do	not	wish	to	use	differential	mode.
Step	 9.	 If	 interrupts	 are	 to	 be	 used,	 write	 a	 1	 to	 the	 corresponding
mask	bit	in	the	ADC0_IM_R	register.	We	want	an	interrupt	to	occur
when	the	conversion	is	complete	(set	bit	3,	MASK3).
Step	10.	We	enable	the	sample	sequencer	 logic	by	writing	a	1	to	the
corresponding	ASENn.	To	enable	sequencer	3,	we	write	a	1	 to	bit	3
(ASEN3)	in	the	ADC0_ACTSS_R	register.
Step	11.	The	priority	of	 the	ADC0	sequencer	3	 interrupts	are	 in	bits
13–15	of	the	NVIC_PRI4_R	register.
Step	 12.	 Since	 we	 are	 requesting	 interrupts,	 we	 need	 to	 enable
interrupts	 in	 the	NVIC.	ADC	 sequencer	 3	 interrupts	 are	 enabled	 by
setting	bit	17	in	the	NVIC_EN0_R	register.
Step	13.	Lastly,	we	must	enable	interrupts	in	the	PRIMASK	register.
The	 timer	starts	 the	conversion	at	a	regular	rate.	Bit	3	(INR3)	 in	 the
ADC0_RIS_R	register	will	be	set	when	the	conversion	is	done.	This
bit	is	armed	and	enabled	for	interrupting,	so	conversion	complete	will
trigger	an	interrupt.	The	IN3	bit	in	the	ADC0_ISC_R	register	triggers
the	interrupt.		The	ISR	acknowledges	the	interrupt	by	writing	a	1	to	bit
3	 (IN3).	 The	 12-bit	 result	 is	 read	 from	 the	 ADC0_SSFIFO3_R
register.	The	book	web	site	for	has	example	code.	In	order	 to	reduce
latency	of	other	interrupt	requests	in	the	system,	this	ISR	simply	stores
the	 12-bit	 conversion	 in	 a	 FIFO,	 to	 be	 processed	 later	 in	 the	 main
program.	Program	2.20	 shows	 the	 initialization	 and	 interrupt	 service
routine	to	affect	the	periodic	sampling.	For	the	port	pin,	we	disable	its
DEN,	clear	its	DIR,	set	its	AFSEL	and	enable	its	AMSEL	bit.

void	ADC0_InitTimer0ATriggerSeq3PD3(uint32_t	period){
		volatile	uint32_t	delay;
		SYSCTL_RCGCADC_R	|=	0x01;					//	1)	activate	ADC0
		SYSCTL_RCGCGPIO_R	|=	0x08;				//	Port	D	clock
		delay	=	SYSCTL_RCGCGPIO_R;				//	allow	time	for	clock	to	stabilize
		GPIO_PORTD_DIR_R	&=	~0x08;				//	make	PD3	input
		GPIO_PORTD_AFSEL_R	|=	0x08;			//	enable	alternate	function	on	PD3
		GPIO_PORTD_DEN_R	&=	~0x08;				//	disable	digital	I/O	on	PD3
		GPIO_PORTD_AMSEL_R	|=	0x08;			//	enable	analog	functionality	on	PD3
		ADC0_PC_R	=	0x01;													//	2)	configure	for	125K	samples/sec



		ADC0_SSPRI_R	=	0x3210;								//	3)	seq	0	is	highest,	seq	3	is	lowest
		SYSCTL_RCGCTIMER_R	|=	0x01;			//	4)	activate	timer0
		delay	=	SYSCTL_RCGCGPIO_R;
		TIMER0_CTL_R	=	0x00000000;				//	disable	timer0A	during	setup
		TIMER0_CTL_R	|=	0x00000020;			//	enable	timer0A	trigger	to	ADC
		TIMER0_CFG_R	=	0;													//	configure	for	32-bit	timer	mode
		TIMER0_TAMR_R	=	0x00000002;			//	configure	for	periodic	mode
		TIMER0_TAPR_R	=	0;												//	prescale	value	for	trigger
		TIMER0_TAILR_R	=	period-1;				//	start	value	for	trigger
		TIMER0_IMR_R	=	0x00000000;				//	disable	all	interrupts
		TIMER0_CTL_R	|=	0x00000001;			//	enable	timer0A	32-b,	periodic
		ADC0_ACTSS_R	&=	~0x08;								//	5)	disable	sample	sequencer	3
		ADC0_EMUX_R	=	(ADC0_EMUX_R&0xFFFF0FFF)+0x5000;	//	6)	timer
trigger
		ADC0_SSMUX3_R	=	4;												//	7)	PD3	is	analog	channel	4
		ADC0_SSCTL3_R	=	0x06;									//	8)	set	flag	and	end	after	first
sample																					
		ADC0_IM_R	|=	0x08;												//	9)	enable	SS3	interrupts
		ADC0_ACTSS_R	|=	0x08;									//	10)	enable	sample	sequencer	3
		NVIC_PRI4_R	=	(NVIC_PRI4_R&0xFFFF00FF)|0x00004000;	//
11)priority	2
		NVIC_EN0_R	=	1<<17;											//	12)	enable	interrupt	17	in	NVIC
		EnableInterrupts();											//	13)	enable	interrupts

}

void	ADC0Seq3_Handler(void){
		ADC0_ISC_R	=	0x08;								//	acknowledge	ADC	sequence	3	completion
		Fifo_Put(ADC0_SSFIFO3_R);		//	pass	to	foreground

}

Program	2.20.	Software	to	sample	data	using	the	ADC
(ADCT0ATrigger_xxx).

The	 above	 example	 only	 samples	 one	 analog	 input.	 The
ADCSWTriggerTwoChan_xxx	 project	 samples	 two	 channels	 using
software	start.



2.10.3.	Internal	ADC	on	MSP432
Table	2.27	shows	the	ADC	register	bits	required	to	perform	sampling
on	 a	 single	 channel.	 For	 more	 complex	 configurations	 refer	 to	 the
specific	 data	 sheet.	When	 converting	 from	 analog	 to	 digital	 we	 can
select	speed	(how	fast	it	runs),	power	(how	much	energy	it	takes)	and
accuracy	 (the	 number	 of	 bits	 in	 the	 result).	 For	 example,	 to	 reduce
power	we	can	run	slower	or	reduce	the	number	of	bits.	Bits	4	–	0	in
ADC14MCTL0	specify	 the	channel	 to	convert.	See	Table	2.3	 to	see
the	mapping	between	I/O	pins	and	the	ADC	analog	input	channel.	For
example,	channel	6	exists	on	pin	P4.7.	On	the	MSP432,	we	will	need
to	set	bits	in	the	SEL0	SEL1	bits	to	11	to	activate	the	analog	interface.
Most	of	the	ADC	control	bits	can	only	be	set	when	ADC14ENC	=	0,
so	clearing	this	bit	will	occur	first	during	initialization.

	 31-30 29-27 26 25 24-
22

21-19 18-17 16 	

0x40012000 PDIV SHSx SHP ISSH DIVx SSELx CONSx BUSY ADC14CTL0
	 15-12 11-8 7 6-5 4 3-2 1 0 	
	 SHT1x SHT0x MSC 	 ON 	 ENC SC ADC14CTL0
	 	 	 	 	 	 	 	 	 	
	 31-28 27	–	24 22 21 20-16 	
0x40012004 	 CH3MAP	–	CH0MAP BATmap 	 CStartAdr ADC14CTL1
	 15-6 5	–	4 3 2 1-0 	
	 	 RES DF REFBURST PWRMD ADC14CTL1
	 	 	 	 	 	 	 	 	 	
	 31-16 15 14 13 12 11-8 	
0x40012018 	 WINCTH WINC DIF 	 VRSEL ADC14MCTL0
	 7 6 5 4	–	0 	
	 EOS 	 	 ADC14INCHx ADC14MCTL0
	 	 	 	 	 	 	 	 	 	
	 31	–	16 15	–	0 	
0x40012098 	 Conversion_Results ADC14MEM0
	 	 	 	 	 	 	 	 	 	
	 31 	 5 4 3 2 1 0 	
0x4001213C IE31 … IE5 IE4 IE3 IE2 IE1 IE0 ADC14IER0
	 	 	 	 	 	 	 	 	 	
	 31 	 5 4 3 2 1 0 	
0x40012144 IFG31 … IFG5 IFG4 IFG3 IFG2 IFG1 IFG0 ADC14IFGR0

Table	2.27.	The	MSP432	ADC	registers.	Each	register	is	32	bits	wide.	
The	PDIV	field	selects	a	ADC	clock	divider	(00	is	divide	by	1,	01	is
divide	by	4,	10	is	divide	32,	and	11	is	divide	by	64).	Running	with	a



slower	 clock	 increases	 accuracy	 but	will	 take	 longer	 to	 convert.	We
will	 set	 the	SHSx	 field	 to	000	 to	 select	 the	ADC14SC	 signal	 as	 the
sample	 and	 hold	 source.	 SHP	 is	 the	 sample	 and	 hold	 pulse	 mode
select.	With	SHP=0	the	ADC	runs	faster.	The	ISSH	bit	can	be	used	to
invert	the	sample	and	hold	pulse.	We	will	clear	this	bit.	We	use	the	3-
bit	DIVx	field	to	select	another	ADC	clock	divider.	If	the	value	of	this
field	 is	 n,	 then	 there	 will	 be	 a	 divide	 by	 n+1.	 Again	 this	 defines	 a
tradeoff	between	accuracy	and	speed.	The	3-bit	 field	SSELx	defines
the	clock	source.	We	will	set	it	to	100	to	select	the	SMCLK.	For	other
choices	see	Table	2.28.

Value ADC	Clock	Source
000 MODCLK
001 SYSCLK
010 ACLK
011 MCLK
100 SMCLK
101 HSMCLK

Table	2.28.	The	ADC	clock	selection	SSELx		bits.
The	ADC	has	a	sample	and	hold	module	(SHM)	at	its	input.	The	first
ADC	conversion	step	is	to	put	the	SHM	in	sample	mode	during	which
time	 the	 analog	 signal	 is	 connected	 to	 a	 sampling	 capacitor.	Current
flows	as	 the	voltage	on	 the	capacitor	 rises	or	 falls	 to	 equalize	 to	 the
analog	 input	 voltage.	The	 second	 step	 is	 to	 disconnect	 the	 capacitor
from	the	analog	input,	hold	mode.	The	ADC	converts	 the	voltage	on
the	capacitor	to	digital	form.	The	longer	the	sampling	phase,	the	more
accurate	 will	 be	 the	 conversion.	 The	 SHT1x	 and	 SHT0x	 are	 4-bit
fields	 defining	 the	 length	 of	 the	 sampling	 period.	 SHT0x	 controls
registers	ADC14MEM0	 to	ADC14MEM7	 and	 ADC14MEM24	 to
ADC14MEM31.	 Since	 we	 will	 be	 using	 ADC14MEM0,	 we	 set
SHT0x.	Table	2.29	lists	the	sampling	periods	available.

Value Sampling	Period
0000 4	ADC14CLK	periods
0001 8	ADC14CLK	periods
0010 16	ADC14CLK	periods
0011 32	ADC14CLK	periods
0100 64	ADC14CLK	periods



0101 96ADC14CLK	periods
0110 128	ADC14CLK

periods
0110 192	ADC14CLK

periods
Table	2.29.	The	SHT0x	SHT1x	fields	define	the	sampling	period.
	

The	MSC	bit	selects	single	or	multiple	conversions.	We	will	clear	this
bit	so	when	 the	software	starts	conversion	 it	 takes	sample	and	stops.
We	set	the	ON	bit	to	apply	power	to	the	ADC.	We	set	the	ENC	bit	to
enable	 the	 ADC.	 As	mentioned	 earlier	 we	 clear	 the	ENC	 bit	 while
configuring	the	ADC.	The	software	will	set	the	SC	bit	to	start	an	ADC
conversion.	 Software	 writes	 one	 to	 SC	 but	 this	 bit	 is	 automatically
cleared.
There	 are	 32	 ADC14MEMx	 registers,	 x	 =	 0	 –	 31,	 similar	 to
ADC14MEM0	 and	 32	 ADC14MCTLx	 registers	 similar	 to
ADC14MCTL0	 shown	 in	 Table	 2.27.	 The	 5-bit	 CStartAdr	 field
specifies	the	conversion	start	address.	These	bits	select	which	ADC14
conversion	memory	register	is	used	for	a	single	conversion	or	for	the
first	 conversion	 in	 a	 sequence.	 The	 value	 of	 CStartAdr	 is	 0	 to	 31,
corresponding	 to	 ADC14MEM0	 to	 ADC14MEM31.	 We	 will	 use
ADC14MEM0	 and	 ADC14MCTL0	 in	 our	 example	 by	 setting
CStartAdr	to	0.
The	RES	 field	specifies	 the	ADC	resolution.	Again	we	can	 trade	off
accuracy	for	speed.	Set	RES	to	00	for	8-bit	conversion,	set	RES	to	01
for	10	bits,	set	RES	to	10	for	12	bits	and	set	it	to	11	for	14	bits.	We	set
the	REFBURST	bit	if	we	desire	to	turn	off	the	reference	when	not	in
use.	 In	 our	 example,	we	will	 clear	 this	 bit	 to	 have	 the	 reference	 on
continuously.
The	PWRMD	field	defines	the	power	modes.	Setting	it	to	00	will	use
the	most	power	but	allow	for	14-bit	conversions	at	the	highest	speed.
We	set	PWRMD	to	10	for	low-power	mode	and	can	be	used	for	12-bit,
10-bit	and	8-bit	resolutions.
We	perform	the	following	steps	to	timer-trigger	the	ADC	and	sample
data	 periodically	 using	 interrupt	 synchronization,	 see	 Program	 2.21.
This	method	has	no	sampling	jitter.



Step	1.	Halt	the	timer	during	initialization
Step	2.	We	enable	the	timer	to	use	SMCLK,	divide	by	1,	stop	mode,
and	 disable	 interrupts.	 Interrupts	 will	 be	 generated	 by	 the	 ADC
module	when	 the	conversion	 is	 complete	and	not	by	 the	 timer	when
the	conversion	is	started.
Step	 3.	 We	 configure	 the	 timer	 to	 start	 the	 ADC	 conversion
periodically.	 In	 particular,	 bits	 15-10	 are	 0	 because	we	 do	 not	 need
capture	events.	Bit	8	is	zero	to	use	compare	mode.	Bits	7-5	are	011	to
create	 set/reset	 output	 mode,	 which	 will	 be	 a	 squarewave	 created
automatically	by	the	timer	and	sent	to	the	ADC.	The	frequency	of	this
squarewave	 will	 set	 the	 ADC	 sampling	 rate.	 An	 analog-to-digital
conversion	 is	 initiated	 with	 a	 rising	 edge	 of	 the	 timer	 squarewave
output.	Bit	4	is	clear	because	the	timer	does	not	create	interrupts.
Step	4.	 In	 this	 step	we	set	 the	sampling	period.	 If	 the	SMCLKis	12
MHz,	 then	 1	 ms	 period	 output	 will	 be	 created	 if	 we	 write	 a	 5999
into TA0CCR1 	and	we	write	a	11999	into TA0CCR0 .
Step	5.	This	step	configures	the	timer	clock	as	divide	by	1.
Step	6.	Before	 configuring	 the	 analog	 reference,	we	make	 sure	 it	 is
idle.
Step	7.	Bits	5-4	(REFVSEL)	set	 to	1,1	 to	select	 the	2.5V	reference.
This	defines	the	ADC	range	to	be	0	to	2.5V.	Bit	3	(REFTCOFF	 )	 is
set	 to	 disable	 the	 temperature	 sensor.	 Disabling	 the	 sensor	 saves
power.	Bit	1	(REFOUT)	is	clear	to	disconnect	the	reference	from	P5.6
.Bit	0	(REFON)	is	set	to	enable	the	reference.
Step	 8.	 After	 configuring	 the	 analog	 reference,	 we	 wait	 for	 it	 to
stabilize.
Step	 9.	Before	 configuring	 the	 ADC,	 we	 disable	 it.	 Clearing	 bit	 1
(ADC14ENC)	allows	us	to	program	the	ADC	modes.
Step	10.	Before	configuring	the	ADC,	we	make	sure	it	is	idle.
Step	 11.	We	 write	 to	 the ADC14CTL0 	 register	 to	 set	 the	 ADC
conversion	 mode.	 	 Bits	 31-30	 (PDIV)	 are	 set	 to	 0,0	 to	 specify	 a
predivide	by	1.	Bits	29-27	(SHSx)	are	set	 to	0,0,1	 to	select	TA0_C1
output	 as	 the	ADC	 trigger	 source.	Again,	 a	 rising	 edge	 of	 the	 timer
output	will	initiate	an	ADC	conversion.	We	set	bit	26	(SHP)	to	make
the	 sample/hold	 use	 pulse	 mode.	 We	 clear	 bit	 25	 	 (ISSH)	 so	 the
sample-and-hold		is	not	inverted.	We	set	bits	24-22	(DIVx)	to	0,0,0	to
the	clock	divider	to	1.	We	set	bits	21-19	(SSELx)	to	1,0,0	to	select	the
SMCLK	to	run	the	ADC.	We	set	bits	18-17	(CONSEQx)	to	1,0	to	set
the	ADC	mode	to	Repeat-single-channel.	We	will	set	both	bits	15-12



(SHT1x)	and	bits	11-8	(SHT0x)	to	select	32	clocks	each	for	sample-
and-hold	times	1	and	0.	The	longer	we	sample	the	more	accurate	the
result,	 but	 the	 longer	 it	 takes	 to	 do	 the	 conversion.	 We	 clear	 bit	 7
(MSC)	so	there	is	one	sample	per	rising	edge	of	the	trigger.	Set	bit	4
(ON)	to	power	up	the	ADC.
Step	12.	We	write	to	the ADC14CTL1 	register	to	set	additional	ADC
modes.	 	 We	 set	 bits	 20-16	 (STARTADDx)	 to	 0,0,0,0,0	 to	 use
ADC14MEM0	as	the	starting	address.	We	set	bits	5-4	(RES)	to	1,1	to
select	 14-bit	 conversion	 requiring	 16	 clocks.	 Clearing	 bit	 3	 (DF)
specifies	 binary	 unsigned	 mode.	 Clearing	 bit	 2	 (REFBURST)	 will
power	 the	 reference	 continuously.	 Clearing	 bits	 1-0	 (PWRMD)
specifies	regular	power	mode.	It	takes	more	power	to	leave	the	power
on,	but	the	results	will	be	more	accurate.
Step	 13.	Writing	 to	 the ADC14MCTL0 	 register	 the	 range	 and	 the
channel.	We	clear	bit	14			(WINC)	to	disable	the	comparator.	We	clear
bit	13	(DIF)	to	specify	single-ended	mode.	We	set	bits	11-8	(VRSEL)
to	 0,0,0,1	 to	 set	 the	 positive	 reference	 to	 VREF	 (2.5V)	 and	 the
negative	reference	to	ground.	We	set	bit	7	(EOS)	to	activate	an	end	of
sequence	event.	Bits	4-0	 (INCHx)	set	 the	 input	channel.	Writing	a	6
specifies	channel	6,	which	is	P4.7.
Step	14.	 In	 this	 step	we	 arm	 the	 IFG0	 for	 interrupts	 and	disarm	 the
other	flags.
Step	15.	We	set	 the	SEL0	and	SEL1	bits	 for	P4.7	 to	 specify	analog
input.
Step	16.	we	set	the	ENC	bit	to	enable	the	ADC.
Step	17.	We	 specify	 the	 priority	 of	 the	ADC	 interrupt.	 Because	 the
trigger	occurs	in	hardware	this	interrupt	priority	needs	to	high	enough
so	 the	 ISR	 is	 run	 within	 1	 ms	 (before	 another	 sample	 would	 be
triggered).
Step	18.	We	enable	ADC	interrupts	in	the	NVIC
Step	 19.	Lastly,	 we	 activate	 the	 timer	 to	 begin	 sampling.	 Interrupts
will	be	enabled	in	the	main	program	after	all	devices	initialized	void
ADC0_InitTA0TriggerCh6(uint16_t	period){

		TA0CTL	&=	~0x0030;	//	1)	halt	Timer	A0
		TA0CTL	=	0x0200;			//	2)SMCLK,	stop	mode,	divide	by	one,	no	interrupt
		TA0CCTL1	=	0x0060;	//	3)	no	capture,	compare	mode,	set/reset
		TA0CCR1	=	(period-1)/2;		//	4)	specify	sampling	period
		TA0CCR0	=	(period	-	1);							



		TA0EX0	&=	~0x0007;	//	5)	configure	for	input	clock	divider	/1
		while(REFCTL0&0x0400){};	//	6)	wait	for	the	reference	to	be	idle
		REFCTL0	=	0x0039;		//	7)	configure	reference	for	static	2.5V
		while((REFCTL0&0x1000)	==	0){};		//	8)	wait	for	reference	to	stabilize
		ADC14CTL0	&=	~0x00000002;								//	9)	allow	programming
		while(ADC14CTL0&0x00010000){};			//	10)	wait	for	BUSY	to	be	zero
		ADC14CTL0	=	0x0C243310;					//	11)	ADC	mode
		ADC14CTL1	=	0x00000030;					//	12)	ADC14MEM0,	14-bit,	ref	on,	regular
		ADC14MCTL0	=	0x00000186;				//	13)	0	to	2.5V,	channel	6
		ADC14IER0	=	0x00000001;					//	14)	enable	ADC14IFG0	interrupt
		ADC14IER1	=	0;														//				disable	these	interrupts
		P4SEL1	|=	0x80;													//	15)	analog	mode	on	A6,	P4.7
		P4SEL0	|=	0x80;
		ADC14CTL0	|=	0x00000002;				//	16)	enable
		NVIC_IPR6	=	(NVIC_IPR6&0xFFFFFF00)|0x00000040;	//	17)	priority	2
		NVIC_ISER0	=	0x01000000;				//	18)	enable	interrupt	24	in	NVIC
		TA0CTL	|=	0x0014;											//	19)	reset	and	start	Timer	A0	in	up	mode

}

void	ADC14_IRQHandler(void){	uint16_t	result;
		if((ADC14IFGR0&0x00000001)	==	0x00000001){
				Fifo_Put(ADC14MEM0);}	//	pass	to	foreground

}

Program	2.21.	Software	to	sample	data	using	the	ADC
(ADCTA0Trigger_MSP432).

Checkpoint	2.13:	If	the	input	voltage	is	1.0V,	what	value,	in	14-bit
unsigned	binary	mode,	will	the	MSP432	ADC	return	(assuming	0	to
2.5V	range)?	What	will	a	TM4C	with	a	12-bit	ADC	return
(assuming	0	to	3.3V	range)?

The	 above	 example	 only	 samples	 one	 analog	 input.	 The
ADCSWTriggerTwoChan_MSP432	 project	 samples	 two	 channels
using	software	start.

2.10.4.	IR	distance	measurement



A	nonmonotonic	 response	 is	 an	 input/output	 function	 that	 does	 not
have	a	mathematical	inverse.	For	example,	if	two	or	more	input	values
yield	 the	 same	 output	 value,	 then	 the	 transducer	 is	 nonmonotonic.
Software	 will	 have	 a	 difficult	 time	 correcting	 a	 nonmonotonic
transducer.	For	example,	the	Sharp	GP2Y0A21YK	IR	distance	sensor
has	 a	 transfer	 function	 as	 shown	 in	 Figure	 2.30.	 If	 you	 read	 a
transducer	voltage	of	2	V,	you	cannot	tell	if	the	object	is	3	cm	away	or
12	cm	away.

Figure	2.30.	The	Sharp	IR	distance	sensor	exhibits	nonmonotonic
behavior.
	

The	 transducer	 in	Figure	2.17	uses	 IR	 light	 to	measure	distance	 to	a
reflecting	 object.	 These	 sensors	 require	 a	 nonuniform	 power,	 so
placing	 a	 10	 µF	 near	 the	 power	 line	 of	 the	 sensor	 reduces	 noise	 on
other	 components.	 If	 the	 object	 is	more	 than	 6	 cm	 away,	 the	 output
voltage	 is	 inversely	related	 to	voltage.	 If	N	 is	 the	ADC	sample,	 then
distance	can	be	calculated	as	d	=	c/N	where	c	is	a	calibration	constant
Figure	2.31	shows	this	sensor	has	a	significant	amount	of	noise.	The
nonlinear	median	 filter,	 presented	 in	 Chapter	 6,	 is	 a	 good	 choice	 to



improve	signal	to	noise	ratio.

Figure	2.31.	Noise	on	a	GP2Y0A21YK	IR	distance	sensor	shows
large	periodic	spikes.



2.11.	OS	Considerations	for	I/O	Devices

2.11.1	Board	Support	Package
The	entire	book	deals	with	interfacing	I/O	devices	to	build	embedded
systems.	However,	in	this	section	we	will	study	two	considerations	of
how	the	OS	can	manage	I/O.	It	is	good	design	practice	to	provide	an
abstraction	 for	 the	 I/O	 layer.	 Names	 for	 this	 abstraction	 include
hardware	 abstraction	 layer	 (HAL),	 device	 driver,	 and	 board	 support
package	(BSP).	From	an	operating	system	perspective,	the	goal	is	the
make	 it	 easier	 to	 port	 the	 system	 from	 one	 hardware	 platform	 to
another.	The	system	becomes	more	portable	if	we	create	a	BSP	for	our
hardware	 devices.	 A	 BSP	 could	 allow	 you	 to	 encapsulate	 the
following:	Timer	initialization
ISR	Handlers
LED	output	functions
Switch	input	functions
Setting	up	the	interrupt	controller
Setting	up	communication	channel
CAN,	I2C,	ADC,	DAC,	SPI,	serial,	graphics

	
	

Example	2.1.	Design	a	BSP	for	using	a	periodic	interrupt.
Solution:	 In	 any	 abstraction,	 we	 need	 to	 separate	 what	 the	 system
does	from	how	it	does	it.	What	we	use	a	periodic	interrupt	for	is	to	run
a	task	at	a	fixed	rate.	How	we	do	it	on	the	microcontroller	is	to	enable
the	 SysTick	 timer	 and	 configure	 it	 to	 interrupt	 periodically,	 as
presented	previously	 in	Section	2.2.2.	What	 the	user	needs	 is	 an	OS
function	that	he	or	she	can	call	specifying	their	task	and	how	often	it
should	run.
We	 can	 abstract	 the	 periodic	 interrupt,	 by	 defining	 the	 function	 in
Program	2.22,	which	is	essentially	Program	2.5	with	the	flexibility	to
specify	 the	 task	 to	 run	and	 the	period	with	which	 to	 run	 it.	We	have



hidden	 from	 the	 user	 the	 details	 of	 the	 microcontroller.	 To	 run	 the
function Task once	 a	 second,	 the	 user
calls OS_AddPeriodicTask(1000,&Task);	 uint32_t	 static	 volatile
Count;

uint32_t	static	Period;
void	(*CallBack)(void);		//	call	back	function
void	SysTick_Handler(void){
		Count++;
		if(Count==Period){
				Count	=	0;
				(*CallBack)();						//	execute	call	back	process

}

}

//---------------------	OS_AddPeriodicTask	---------------------
//	Input:	thePeriod	is	a	time	period	in	ms
//								fp	is	a	function	to	be	executed	at	this	period
//	Output:	none
//	Example:	to	toggle	PD0	once	a	second,	we	can
//			void	toggle(void){PORTD0	^=	0x01;}
//			OS_AddPeriodicTask(1000,&toggle);
void	OS_AddPeriodicTask(uint32_t	thePeriod,	void(*fp)(void)){
		DisableInterrupt();						//	make	initialization	ritual	atomic
		Period	=	thePeriod;
		CallBack	=	fp;
		Count		=	0;
		NVIC_ST_CTRL_R	=	0;									//	disable	SysTick	during	setup
		NVIC_ST_RELOAD_R	=	49999;			//	reload	value,	1ms
		NVIC_ST_CURRENT_R	=	0;						//	any	write	to	current	clears	it
	 	NVIC_SYS_PRI3_R	=	 (NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000;
//priority	2															
		NVIC_ST_CTRL_R	=	0x00000007;//	enable	with	core	clock	and	interrupts
		EnableInterrupts();

}

Program	2.22.	RTOS	function	to	run	a	periodic	task.



	
	

Example	2.2.	Design	a	BSP	for	the	LEDs.
Solution:	Again,	we	need	to	separate	what	the	system	does	from	how
it	 does	 it.	We	 can	 turn	 LEDs	 on	 and	 off.	 In	 this	 example,	 the	 four
LEDs	constitute	one	4-bit	device,	so	we	will	organize	the	solution	in
that	manner,	as	shown	in	Program	2.23.	Again,	we	have	hidden	from
the	user	the	fact	that	we	are	running	on	a	TM4C	using	Port	D.

#define	LEDS		(*((volatile	uint32_t	*)0x4000703C))
//---------------------	OS_LEDInit	---------------------
//	Initialize	the	set	of	4	LEDs
//	Input:	none
//	Output:	none
void	OS_LEDInit(void){	volatile	uint32_t	delay;
		SYSCTL_RCGCGPIO_R	|=	0x08;			//	activate	port	D
		delay	=	SYSCTL_RCGCGPIO_R;		//	allow	time	for	clock	to	stabilize
		GPIO_PORTD_DIR_R	|=	0x0F;				//	make	PD3-0	out
		GPIO_PORTD_AFSEL_R	&=	~0x0F;	//	regular	port	function
		GPIO_PORTD_DEN_R	|=	0x0F;				//	enable	digital	I/O	on	PD3-0

}

//---------------------	OS_LED_Out	---------------------
//	Output	to	the	4	LEDs
//	Input:	number	from	0	to	15,	specifying	which	LEDs	are	on	and	off
//	Output:	none
void	OS_LEDOut(uint32_t	number){
		LEDS	=	number;	//	friendly	access

}

Program	2.23.	BSP	for	four	LEDs.
	

2.11.2	Path	Expression
Path	expression	is	a	formal	mechanism	to	specify	the	correct	calling



order	in	a	group	of	related	functions.	Consider	a	UART	device	driver
with	4	functions,	the	prototypes	are	void	UART_Init(void);	 	 	 	 	 	 	 	 	 //
Initialize	Serial	port

char	UART_InChar(void);							//	Wait	for	new	serial	port	input
void	UART_OutChar(char	data);	//	Output	8-bit	to	serial	port
void	UART_Close(void);								//	Shut	down	serial	port
	

It	 is	 obvious	 that	 you	 should	 not	 attempt	 to	 input/output	 until	 the
UARTis	 initialized.	 In	 this	 problem,	we	will	 go	 further	 and	 actually
prevent	 the	 user	 from
executing UART_InChar and UART_OutChar before
executing UART_Init .	 A	 directed	 graph	 is	 a	 general	 method	 to
specify	the	valid	calling	sequences	(Figure	2.32).	An	arrow	represents
a	 valid	 calling	 sequence	 within	 the	 path	 expression.	 The	 system
“state”	 is	determined	by	 the	function	 it	called	 last.	For	 this	example,
we	begin	 in	 the	closed	state,	because	 the	UART	is	 initially	disabled.
The	tail	of	an	arrow	touches	the	function	we	called	last,	and	the	head
of	an	arrow	points	to	a	function	that	we	are	allowed	to	call	next.	In	this
method,	a	calling	sequence	 is	valid	 if	 there	 is	 sequence	of	arrows	 to
define	it.	For	example,	these	calling	sequences	are	valid	Init	InChar
InChar	OutChar	Close	d	b	e	i	j
Init	OutChar	OutChar	OutChar	OutChar	d	c	g	g	g
Init	Close	Init	InChar	Close	d	a	d	b	h
	

On	the	other	hand,	the	following	calling	sequences	are	illegal	because
each	has	no	representative	sequence	of	arrows
Init	InChar	Init	OutChar	Close	Can’t	initialize	twice
Close	Can’t	close	because	already	disabled
OutChar	OutChar	OutChar	Can’t	output	without
initialization

	



Figure	2.32.	Directed	graph	showing	path	expression	for	the
serial	port	driver.

A	fast,	but	memory	 inefficient	method,	 to	 represent	 a	directed	graph
uses	a	square	matrix.	Since	there	are	four	functions,	the	matrix	will	be
4	 by	 4.	The	 row	number	 (0,1,2,3)	will	 specify	 the	 current	 state	 (the
function	called	last),	and	the	column	number	(0,1,2,3)	will	specify	the
function	 that	 might	 be	 called	 next.	 The	 values	 in	 the	 matrix	 are
true(1)/false(0)	 specifying	 whether	 or	 not	 the	 next	 function	 call	 is
legal.	 Since	 there	 are	 10	 arrows	 in	 the	 directed	 graph,	 there	will	 be
exactly	 10	 true	 values	 in	 the	 matrix,	 one	 for	 each	 arrow.	 The
remaining	 values	 will	 be	 false(0).	 Program	 2.24	 shows	 the	 data
structure	 for	 the	directed	graph.	At	 the	beginning	of	each	call	 to	 the
serial	port	driver,	 the	OS	checks	 to	verify	 the	user	has	permission	 to
execute	 that	 function.	 Theglobal	 variable 	 State 	 defines	 the	 current
state.	 For	 example,	 Path[3][0] will	 be	 true	 signifying	 it	 is	 OK	 to
call UART_Init 	 if	 the	 UART	 is	 disabled.	 Weassume	 there	 is	 an
operating	system	function	called OS_Kill() ,	which	should	be	called	if
a	thread	makes	an	illegal	function	call,	destroying	the	thread	because	it
has	made	a	serious	programming	error.

	
int	State=3;		//	start	in	the	Closed	state
int	Path[4][4]={	/*			Init		InChar		OutChar			Close	*/
/*											column				0						1								2								3			*/
/*	Init				row	0*/	{			0	,				1			,				1			,				1		},
/*	InChar		row	1*/	{			0	,				1			,				1			,				1		},
/*	OutChar	row	2*/	{			0	,				1			,				1			,				1		},
/*	Close			row	3*/	{			1	,				0			,				0			,				0		}}
void	UART_Init(void){
		if(Path[State][0]==0)	OS_Kill();		//	kill	if	illegal
		State	=	0;																								//	perform	valid	Init



		SYSCTL_RCGCUART_R	|=	0x0001;	//	activate	UART0
		SYSCTL_RCGCGPIO_R	|=	0x0001;	//	activate	port	A
		UART0_CTL_R	&=	~0x0001;						//	disable	UART
		UART0_IBRD_R	=	3;	//	int(6,000,000	/	(16*115,200))	=	int(3.2552)
		UART0_FBRD_R	=	16;//	int(0.2552	*	64	+	0.5)	=	16
		UART0_LCRH_R	=	0x0070;							//	8-bit	word	length,	enable	FIFO
		UART0_CTL_R	=	0x0301;								//	enable	RXE,	TXE	and	UART
		GPIO_PORTA_AFSEL_R	|=	0x03;		//	enable	alt	funct	on	PA1-0
		GPIO_PORTA_DEN_R	|=	0x03;				//	enable	digital	I/O	on	PA1-0

}

char	UART_InChar(void){
		if(Path[State][1]==0)	OS_Kill();		//	kill	if	illegal
		State	=	1;																								//	perform	valid	InChar
		while((UART0_FR_R&0x0010)	!=	0);	//	wait	until	RXFE	is	0
		return((char)(UART0_DR_R&0xFF));

}

void	UART_OutChar(char	data){
		if(Path[State][2]==0)	OS_Kill();		//	kill	if	illegal
		State	=	2;																								//	perform	valid	OutChar
		while((UART0_FR_R&0x0020)	!=	0);		//	wait	until	TXFF	is	0
		UART0_DR_R	=	data;

}

void	UART_Close(void){
		if(Path[State][3]==0)	OS_Kill();		//	kill	if	illegal
		State	=	3;																								//	perform	valid	Close
		UART0_CTL_R	&=	~0x0001;						//	disable	UART

}

Program	2.24.	Directed	graph	showing	path	expression	for	the
serial	port	driver.



2.12.	Debugging

2.12.1.	Functional	Debugging
Functional	 debugging	 involves	 the	 verification	 of	 input/output
parameters.	It	is	a	static	process	where	inputs	are	supplied,	the	system
is	run,	and	the	outputs	are	compared	against	the	expected	results.	We
will	present	seven	methods	of	functional	debugging.
1.	 Single	 Stepping	 or	 Trace.	Many	 debuggers	 allow	 you	 to	 set	 the
program	counter	to	a	specific	address	then	execute	one	instruction	at	a
time.	StepOver	will	execute	one	instruction,	unless	that	instruction	is
a	 subroutine	call,	 in	which	case	 the	 simulator	will	 execute	 the	entire
subroutine	 and	 stop	 at	 the	 instruction	 following	 the	 subroutine	 call.
StepOut	 assumes	 the	 execution	 has	 already	 entered	 a	 function	 and
will	 finish	 execution	 of	 the	 function	 and	 stop	 at	 the	 instruction
following	the	function	call.
2.	 Breakpoints	 without	 filtering.	 The	 first	 step	 of	 debugging	 is	 to
stabilize	 the	 system	 with	 the	 bug.	 In	 the	 debugging	 context,	 we
stabilize	the	problem	by	creating	a	test	routine	that	fixes	(or	stabilizes)
all	the	inputs.	In	this	way,	we	can	reproduce	the	exact	inputs	over	and
over	 again.	Once	 stabilized,	 if	we	modify	 the	 program,	we	 are	 sure
that	 the	 change	 in	 our	 outputs	 is	 a	 function	 of	 the	modification	 we
made	in	our	software	and	not	due	to	a	change	in	the	input	parameters.
A	breakpoint	 is	 a	 mechanism	 to	 tag	 places	 in	 our	 software,	 which
when	executed	will	cause	the	software	to	stop.
3.	Conditional	breakpoints.	One	of	 the	problems	with	breakpoints	 is
that	sometimes	we	have	to	observe	many	breakpoints	before	the	error
occurs.	 One	 way	 to	 deal	 with	 this	 problem	 is	 the	 conditional
breakpoint.	Add	a	global	variable	called count 	and	initialize	it	to	zero
in	 the	 ritual.	 Add	 the	 following	 conditional	 breakpoint	 to	 the
appropriate	location,	and	run	the	system	again	(you	can	change	the	32
to	match	the	situation	that	causes	the	error).

		if(++count==32){
				breakpoint();					//	<=	place	breakpoint	here



}

Notice	 that	 the	 breakpoint	 occurs	 only	 on	 the	 32nd	 time	 the	 break	 is
encountered.	Any	appropriate	condition	can	be	substituted.
4.	 Instrumentation:	print	statements.	The	use	of	print	statements	 is	a
popular	and	effective	means	 for	 functional	debugging.	The	difficulty
with	print	statements	in	embedded	systems	is	that	a	standard	“printer”
may	 not	 be	 available.	 Another	 problem	 with	 printing	 is	 that	 most
embedded	 systems	 involve	 time-dependent	 interactions	 with	 its
external	environment.	The	print	statement	itself	may	so	slow	that	the
debugging	 instrument	 itself	 causes	 the	 system	 to	 fail.	 Therefore,	 the
print	statement	is	usually	intrusive.	One	exception	to	this	rule	is	if	the
printing	 channel	 occurs	 in	 the	 background	 using	 interrupts,	 and	 the
time	 between	 print	 statements	 (t2)	 is	 large	 compared	 to	 the	 time	 to
execution	 one	 print	 (t1),	 then	 the	 print	 statements	will	 be	minimally
intrusive.	 Nevertheless,	 this	 book	 will	 focus	 on	 debugging	 methods
that	do	not	rely	on	the	availability	of	a	printer.
5.	 Instrumentation:	 dump	 into	 array	 without	 filtering.	 One	 of	 the
difficulties	 with	 print	 statements	 is	 that	 they	 can	 significantly	 slow
down	 the	 execution	 speed	 in	 real-time	 systems.	 Many	 times	 the
bandwidth	 of	 the	 print	 functions	 cannot	 keep	 pace	 with	 data	 being
generated	 by	 the	 debugging	 process.	 For	 example,	 our	 system	 may
wish	to	call	a	function	1000	times	a	second	(or	every	1	ms).	If	we	add
print	statements	to	it	that	require	50	ms	to	perform,	the	presence	of	the
print	statements	will	significantly	affect	 the	system	operation.	In	 this
situation,	 the	 print	 statements	 would	 be	 considered	 extremely
intrusive.	 Another	 problem	 with	 print	 statements	 occurs	 when	 the
system	is	using	the	same	output	hardware	for	its	normal	operation,	as
is	 required	 to	 perform	 the	 print	 function.	 In	 this	 situation,	 debugger
output	and	normal	system	output	are	intertwined.	To	solve	both	these
situations,	 we	 can	 add	 a	 debugger	 instrument	 that	 dumps	 strategic
information	 into	arrays	 at	 run	 time.	Assume P1 is	 an	 input	 and P2 is
an	 output	 port	 that	 are	 strategic	 to	 the	 system.	 The	 first	 step	 when
instrumenting	 a	 dump	 is	 to	 define	 a	 buffer	 in	 RAM	 to	 save	 the
debugging	measurements.		The Debug_Cnt will	be	used	to	index	into
the	 buffers. Debug_Cnt 	 must	 be	 initialized	 to	 zero,	 before	 the
debugging	begins.	The	debugging	instrument,	shown	in	Program	2.25,
saves	 the	 strategic	 data	 into	 the	 buffer.	 We	 can	 then	 observe	 the



contents	of	the	array	at	a	later	time.	One	of	the	advantages	of	dumping
is	 that	 the	 JTAG	 debugging	 allows	 you	 to	 visualize	 memory	 while
running.

#define	SIZE	100
uint8_t	Debug_Buffer[SIZE][2];
unsigned	int	Debug_Cnt=0;
void	Debug_Dump(void){	//	dump	P1IN	and	P2OUT
		if(Debug_Cnt	<	SIZE){
				Debug_Buffer[Debug_Cnt][0]	=	P1IN;
				Debug_Buffer[Debug_Cnt][1]	=	P2OUT;
				Debug_Cnt++;

}

}

Program	2.25.	Instrumentation	dump	without	filtering.

Next,	you	add Debug_Dump(); 	statements	at	strategic	places	within
the	system.	You	can	either	use	 the	debugger	 to	display	 the	results	or
add	 software	 that	 prints	 the	 results	 after	 the	 program	 has	 run	 and
stopped.	 In	 this	way,	 you	 can	 collect	 information	 in	 the	 exact	 same
manner	you	would	if	you	were	using	print	statements.
6.	Instrumentation:	dump	into	array	with	filtering.	One	problem	with
dumps	is	that	they	can	generate	a	tremendous	amount	of	information.
If	you	 suspect	 a	 certain	 situation	 is	 causing	 the	error,	you	can	add	a
filter	 to	 the	 instrument.	A	filter	 is	a	software/hardware	condition	 that
must	be	true	in	order	to	place	data	into	the	array.	In	this	situation,	if	we
suspect	the	error	occurs	when	the	pointer	nears	the	end	of	the	buffer,
we	could	add	a	filter	that	saves	in	the	array	only	when	data	matches	a
certain	 condition.	 In	 the	 example	 shown	 in	 Program	 2.26,	 the
instrument	 saves	 the	 strategic	 variables	 into	 the	 buffer	 only
when P1.7 	is	high.

#define	SIZE	100
uint8_t	Debug_Buffer[SIZE][2];
unsigned	int	Debug_Cnt=0;
void	Debug_FilteredDump(void){	//	dump	P1IN	and	P2OUT
		if((P1IN&0x80)&&(Debug_Cnt	<	SIZE)){



				Debug_Buffer[Debug_Cnt][0]	=	P1IN;
				Debug_Buffer[Debug_Cnt][1]	=	P2OUT;
				Debug_Cnt	++;

}

}

Program	2.26.	Instrumentation	dump	with	filter.

7.	Monitor	using	the	LED	heartbeat.	Another	tool	that	works	well	for
real-time	 applications	 is	 the	 monitor.	 A	monitor	 is	 an	 independent
output	process,	somewhat	similar	 to	 the	print	statement,	but	one	 that
executes	much	faster	and	thus	is	much	less	intrusive.	An	LCD	can	be
an	 effective	 monitor	 for	 small	 amounts	 of	 information	 if	 the	 time
between	 outputs	 is	 much	 larger	 than	 the	 time	 to	 output.	 Another
popular	 monitor	 is	 the	 LED.	 You	 can	 place	 one	 or	 more	 LEDs	 on
individual	otherwise	unused	output	bits.	Software	toggles	these	LEDs
to	let	you	know	what	parts	of	the	program	are	running.	An	LED	is	an
example	 of	 a	 Boolean	 monitor	 or	 heartbeat.	 	 Assume	 an	 LED	 is
attached	to	MSP432	Port	1	bit	0.	Program	2.27	will	toggle	the	LED.

#define	LEDOUT	(*((volatile	uint8_t	)(0x42000000+320x4C02+4*0)))
#define	Debug_HeartBeat()	(LEDOUT	^=	0x01)
Program	2.27.	An	LED	monitor,	written	as	a	C	macro.

Next,	 you	 add Debug_HeartBeat(); 	 statements	 at	 strategic	 places
within	the	system.	Port	1	must	be	initialized	so	that	bit	0	is	an	output
before	the	debugging	begins.		You	can	either	observe	the	LED	directly
or	 look	at	 the	LED	control	signals	with	a	high-speed	oscilloscope	or
logic	analyzer.	When	using	LED	monitors,	 it	 is	better	 to	modify	 just
the	 one	 bit,	 leaving	 the	 other	 7	 as	 is.	 In	 this	 way,	 you	 can	 have
multiple	monitors	on	one	port.
Checkpoint	2.14:	Write	a	debugging	instrument	that	toggles	Port	1
bit	3	(MSP432)	or	toggles	Port	A	bit	3	(TM4C123).	
Observation:	For	safety-critical	systems	we	place	debugging
instruments	into	the	system	during	testing.	Once	the	system	is
certified	functional,	we	deliver	the	system	with	the	instruments	still
included.	If	we	were	to	remove	the	debugging	instruments	we



would	be	obligated	to	retest	the	changed	system.

2.12.2.	Performance	Debugging	(FFT	analysis)
Performance	debugging	involves	the	verification	of	timing	behavior	of
our	system.	It	 is	a	dynamic	process	where	the	system	is	run,	and	the
dynamic	 behavior	 of	 the	 system	 is	 compared	 against	 the	 expected
results.	We	will	present	three	methods	of	performance	debugging,	then
apply	the	techniques	to	measure	execution	speed.
1.	 Counting	 bus	 cycles.	 For	 simple	 programs	 with	 little	 and	 no
branching	 and	 for	 simple	 microcontrollers,	 we	 can	 estimate	 the
execution	 speed	by	 looking	 at	 the	 assembly	 code	 and	 adding	up	 the
time	to	execute	each	instruction.
2.	Instrumentation	measuring	with	an	independent	counter.	SysTick	is
a	 24-bit	 counter	 decremented	 every	 bus	 clock.	 It	 automatically	 rolls
over	 when	 it	 gets	 to	 0.	 If	 we	 are	 sure	 the	 execution	 speed	 of	 our
function	 is	 less	 than	224	 bus	 cycles,	we	 can	 use	 this	 timer	 to	 collect
timing	information	with	only	a	minimal	amount	of	intrusiveness.
3.	Instrumentation	Output	Port.	Another	method	to	measure	real-time
execution	 involves	 an	 output	 port	 and	 an	 oscilloscope.	 Connect	 a
microcontroller	output	bit	 to	your	scope.	Add	debugging	instruments
that	set/clear	these	output	bits	at	strategic	places.	Remember	to	set	the
port’s	 direction	 register	 to	1.	 	Assume	an	oscilloscope	 is	 attached	 to
TM4C123	Port	F	bit	2.	Program	2.28	can	be	used	to	set	and	clear	the
bit.

#define	PF2			(*((volatile	uint32_t	*)0x40025010))
#define	Debug_Set()			(PF2	=	0x04)
#define	Debug_Clear()	(PF2	=	0x00)
Program	2.28.	Instrumentation	output	port,	written	as	C	macros.

Next,	 you	 add Debug_Set(); and Debug_Clear(); 	 statements	 before
and	after	the	code	you	wish	to	measure.	Port	F	must	be	initialized	so
that	bit	2	is	an	output	before	the	debugging	begins.		You	can	observe
the	signal	with	a	high-speed	oscilloscope	or	logic	analyzer.

Debug_Set();
Stuff();		//	User	code	to	be	measured
Debug_Clear();



	
To	illustrate	these	methods,	we	will	consider	measuring	the	execution
time	 of	 a	 1024-element	 integer	 FFT	 function	 written	 by
STMicroelectronics.	For	details	on	the	FFT,	see	Section	6.5.

grouploop		ADD								butternbr,butternbr,index,LSL#
(16-2)
butterloop	BUTFLY4_V7		pssX,index,pssX,14,pssK
											SUBS								butternbr,butternbr,	#1<<16
											BGE									butterloop
											ADD									tmp,	index,	index,	LSL#1
											ADD									pssX,	pssX,	tmp
											DEC									butternbr
										MOVS								tmp2,	butternbr,	LSL#16
											IT										NE
											SUBNE							pssK,	pssK,	tmp
											BNE									grouploop

85
1024
1024
1024
85
85
85
85
85
85
85

Program	2.29.	A	section	of	the	FFT	assembly	listing	and	the
number	of	times	each	instruction	was	executed.

The	first	method	is	to	count	bus	cycles	using	the	assembly	listing.	This
approach	is	only	appropriate	for	very	short	programs.	Counting	cycles
becomes	 difficult	 for	 long	 programs	 with	 many	 conditional	 branch
instructions	and	macro	expansions.	The	time	to	execute	each	assembly
instruction	 can	 be	 found	 in	 the	 Cortex-M	 Technical	 Reference
Manuals.	Because	of	the	complexity	of	the	ARM	Cortex-M	processor,
this	method	 is	only	approximate.	For	example,	 the	 time	 to	execute	a
divide	depends	on	the	data,	and	the	time	to	execute	a	branch	depends
on	the	alignment	of	the	instruction	pipeline.	A	portion	of	the	assembly
output	generated	by	 the	ARM	Keil	uVision	compiler	 is	presented	on
the	left	side	of	Program	2.29,	and	on	the	right	is	the	number	of	times
each	 instruction	 is	 executed.	 For	 most	 programs	 it	 is	 actually	 very
difficult	to	get	an	accurate	time	measurement	using	this	technique.
The	second	method	uses	an	internal	timer	called	SysTick.	The	24-bit
SysTick	register	( STCURRENT )	 that	 is	automatically	decremented
at	 the	 bus	 frequency.	 When	 the	 counter	 hits	 zero,	 it	 is	 reloaded	 to
0xFFFFFF	and	continues	 to	count	down.	 If	we	are	 sure	 the	 function
will	complete	in	a	time	less	than	224	bus	cycles,	then	the	internal	timer
can	 be	 used	 to	 measure	 execution	 speed	 empirically.	 The	 code	 in



Program	2.30	 first	 reads	 the	 SysTick	 counter,	 executes	 the	 function,
and	 then	 reads	 the	 SysTick	 counter	 again.	 The	 elapsed	 time	 is	 the
difference	 in	 the	counter	before	and	after.	Since	 the	execution	 speed
may	be	 dependent	 on	 the	 input	 data,	 it	 is	 often	wise	 to	measure	 the
execution	speed	for	a	wide	range	of	input	parameters.	There	is	a	slight
overhead	in	the	measurement	process	itself.	To	be	accurate,	you	could
measure	 this	overhead	and	subtract	 it	off	your	measurements.	 In	 this
case,	a	constant	6	is	subtracted	so	that	if	the	call	to	the	function	were
completely	removed	the	elapsed	time	would	return	0.	 	Notice	 that	 in
this	example,	the	total	time	including	parameter	passing	is	measured.
Results	 show	 that	 this	 1024-element	 FFT	 executes	 in	 97,872	 bus
cycles.	

uint32_t	Before,	Elapsed;		//	assume	SysTick	is	initialized
int32_t	x[1024],	y[1024];		//	assume	x	is	filled	with	data
void	FFT(void){
		Before	=	STCURRENT;
		cr4_fft_1024_stm32(y,	x,	1024);	//	complex	FFT	of	1024	values
		Elapsed	=	(Before	-	STCURRENT	–	6)&0x00FFFFFF;

}

Program	2.30.	Empirical	measurement	of	dynamic	efficiency
(ProfileFFTxxx).

The	 third	 technique	 can	 be	 used	 in	 situations	 where	 a	 timer	 is
unavailable	 or	 where	 the	 execution	 time	 might	 be	 larger	 than	 224
counts.	In	this	empirical	technique	we	attach	an	unused	output	pin	to
an	oscilloscope	or	to	a	logic	analyzer.	We	will	set	the	pin	high	before
the	call	 to	 the	function	and	set	 the	pin	 low	after	 the	function	call.	 In
this	way	a	pulse	is	created	on	the	digital	output	with	duration	equal	to
the	execution	time	of	the	function.	We	assume	Port	F	is	available,	and
bit	2	is	connected	to	the	scope.	By	placing	the	function	call	in	a	loop,
the	scope	can	be	triggered.	With	a	storage	scope	or	logic	analyzer,	the
function	 need	 be	 called	 only	 once.	Together	with	 an	 oscilloscope	 or
logic	 analyzer,	 Program	 2.31measures	 the	 execution	 time	 of	 the
function cr4_fft_1024_stm32 	 (Figure	2.33).	We	stabilize	 the	system
by	calling	it	over	and	over.	Using	the	scope,	we	can	measure	the	width
of	the	pulse	on	PF2,	which	will	be	execution	time	of	the	FFT.	Running
at	16	MHz,	it	 takes	about	6.08	ms	to	execute cr4_fft_1024_stm32(y,



x,	1024) ,	which	is	about	97,300	bus	cycles.
int	main(void){	int32_t	x[1024],	y[1024];	
		PortF_Init();							//	Make	PF2	output
		while(1){
				Debug_Set();						//	set	PF2	high
				cr4_fft_1024_stm32(y,	x,	1024);	//	1024	length	FFT
				Debug_Clear();				//	clear	PF2	low

}

}

Program	2.31.	Another	empirical	measurement	of	dynamic
efficiency	(ProfileFFTxxx).

Figure	2.33.	Oscilloscope	output	measured	from	Program	2.31
using	a	PicoScope	2104,	running	at	16	MHz.

2.12.3.	Debugging	heartbeat
A	 debugging	 heartbeat	 would	 allow	 us	 to	 see	 if	 and	 when	 the	 ISR
runs.	 If	 we	 toggle	 a	 pin	 once,	 we	 can	 measure	 when	 the	 interrupt
occurred.	 If	we	 toggle	 it	 three	 times,	 like	 Program	 2.5,	we	 can	 also
measure	the	execution	time	of	the	ISR.	The	first	and	second	edges	of
PC5	signify	the	start	of	the	ISR.	The	third	edgeoccurs	at	the	end	of	the
ISR.	The PC5^=0x20; 	takes	4	instructions	or	7	cycles	480D						LDR	
r0,[pc,#52]		;	pointer	to	PC5

6BC0						LDR		r1,[r0]						;	read	PC5
F0800020		EOR		r1,r1,#0x20		;	toggle
63C8						STR		r1,[r0]						;	write	PC5



	
These	 three	 debugging	 instruments	 add	 21	 bus	 cycles	 to	 each	 ISR.
Thus,	 if	 the	 time	 between	 interrupts	 is	 large	 compared	 to	 these	 21
cycles,	this	heartbeat	will	be	minimally	intrusive.
Figure	 2.34	 shows	 a	 zoomed	 in	 view	 of	 the	 profile	 pin	 measured
during	one	execution	of	the	SysTick	ISR.	The	first	two	toggles	signify
the	ISR	has	started.	The	time	from	second	to	third	toggle	illustrates	the
body	of	the	ISR	takes	1.2	µs	of	execution	time.

Figure	2.34.	Profile	of	a	single	execution	of	the	SysTick	ISR
measured	on	a	TM4C123	running	at	16	MHz.

Figure	 2.35	 shows	 a	 zoomed	 out	 view	 of	 the	 profile	 pin	 measured
during	 multiple	 executions	 of	 the	 SysTick	 ISR.	 This	 measurement
verifies	 the	 ISR	 runs	 every	 100	ms.	 Because	 of	 the	 time	 scale,	 the
three	 toggles	appear	as	a	 single	 toggle.	This	 triple-toggle	 technique
(TTT)	allows	us	to	measure	both	the	time	to	execution	of	one	instance
of	the	ISR	and	to	measure	the	time	between	ISR	executions.



Figure	2.35.	Profile	of	multiple	executions	of	the	SysTick	ISR	on	a
TM4C123	running	at	16	MHz.

2.12.4.	Profiling
Profiling	 is	 a	 type	 of	 performance	 debugging	 that	 collects	 the	 time
history	of	program	execution.	Profiling	measures	where	and	when	our
software	executes.	It	could	also	include	what	data	is	being	processed.
For	example,	 if	we	could	collect	 the	 time-dependent	behavior	of	 the
program	 counter,	 then	 we	 could	 see	 the	 execution	 patterns	 of	 our
software.
Profiling	 using	 a	 software	 dump	 to	 study	 execution	 pattern.	 In	 this
section,	we	will	discuss	software	instruments	that	study	the	execution
pattern	 of	 our	 software.	 In	 order	 to	 collect	 information	 concerning
execution	we	will	 add	debugging	 instruments	 that	 save	 the	 time	and
location	 in	 arrays	 (Program	 2.32).	 By	 observing	 these	 data,	 we	 can
determine	both	a	time	profile	(when)	and	an	execution	profile	(where)
of	the	software	execution.	Running	this	profile	revealed	the	sequence
of	places	as	0,	1,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	and	3.	Each
call	 to Debug_Profile	 requires	 32	 cycles	 to	 execute.	 Therefore,	 this
instrument	is	a	lot	less	intrusive	than	a	print	statement.

uint32_t	Debug_time[20];
uint8_t	Debug_place[20];
uint32_t	n;
void	Debug_Profile(uint8_t	p){



		if(n	<	20){
				Debug_time[n]	=	STCURRENT;	//	record	current	time
				Debug_place[n]	=	p;
				n++;

}

}

uint32_t	sqrt(uint32_t	s){
uint32_t	t;							//	t*t	becomes	s
int	n;												//	loop	counter
		Debug_Profile(0);
		t	=	s/10+1;				//	initial	guess
		Debug_Profile(1);
		for(n	=	16;	n;	--n){		//	will	finish
				Debug_Profile(2);
				t	=	((t*t+s)/t)/2;	

}

		Debug_Profile(3);
		return	t;

}	

Program	2.32.	A	time/position	profile	dumping	into	a	data	array.



2.13.	Exercises
	

2.1	Draw	a	 flowchart	 for	 a	 line-tracking	 robot.	There	are	 two	 inputs
from	the	 line	sensors	on	 the	bottom,	 labeled	Right	and	Left.	 If	 both
sensors	are	true,	then	the	robot	is	on	the	line.	If	Right	is	true	and	Left
is	false,	 the	robot	 is	veering	off	 the	left.	If	Right	 is	false	and	Left	 is
true,	the	robot	is	veering	off	the	right.	If	both	are	false,	the	robot	is	off
the	 line.	 There	 are	 two	 outputs	 to	 the	motors	 labeled	GoRight	 and
GoLeft.	If	both	outputs	are	true,	the	robot	will	go	straight.	If	GoRight
is	true	and	GoLeft	is	false,	the	robot	will	turn	left.	If	GoRight	is	false
and	GoLeft	 is	 true,	 the	robot	will	 turn	 left.	 If	both	outputs	are	 false,
then	the	robot	will	stop.
2.2	A	digital	 output	 of	 one	microcontroller	 is	 connected	 to	 a	 digital
input	of	another	microcontroller.	The	output	 is	configured	with	2mA
drive.	The	two	microcontrollers	share	a	common	ground.
a)	When	 the	 output	 is	 high,	which	way	 does	 current	 flow	 along	 the
wire	between	the	pins?
b)	When	 the	 output	 is	 high,	which	way	 does	 current	 flow	 along	 the
wire	between	the	pins?
c)	When	the	output	is	high	how	much	current	flows?	(less	than	2µA,
exactly	2µA,	between	exactly	2µA	and	2mA,	 exactly	2mA,	or	more
than	2mA).
d)	When	the	output	 is	 low	how	much	current	flows?	(less	 than	2µA,
exactly	2µA,	between	exactly	2µA	and	2mA,	 exactly	2mA,	or	more
than	2mA).
2.3	Consider	the	situation	in	which	the	output	of	one	digital	circuit	is
connected	to	the	inputs	of	two	other	digital	circuits.	There	are	no	other
connections	on	 this	 signal,	 i.e.,	one	output	 is	 tied	 to	 two	 inputs.	The
output	specifications	of	the	first	circuit	are	VOH,	VOL,	IOH,	and	IOL.	The
input	 specifications	of	 the	 second	 and	 third	 circuits	 are	VIH,	VIL,	 IIH,



and	 IIL.	 These	 are	 the	 specifications,	 like	 you	 would	 find	 in	 a	 data
sheet,	not	actual	measurements	of	voltage	and	current	like	you	would
measure	in	lab	with	a	DVM.	Give	the	four	inequalities	relating	these
eight	parameters	(VOH,	VOL,	IOH,	IOL,	VIH,	VIL,	IIH,	and	IIL.)	that	must	be
true	in	order	for	the	interface	to	operate	properly.	It	may	be	necessary
to	also	add	numbers	to	these	inequalities.
2.4	Interface	an	LED	to	the	microcontroller.	Show	the	interface	circuit,
the	initialization	software,	and	two	functions:	one	to	turn	it	on	and	one
to	 turn	 it	 off.	 Make	 the	 initialization	 friendly	 and	 use	 bit-specific
addressing	on	the	two	functions.
a)	The	LED	parameters	are	Id=1.5mA	and	Vd	=	1.6V
b)	The	LED	parameters	are	Id=2.5mA	and	Vd	=	1.7V
c)	The	LED	parameters	are	Id=25mA	and	Vd	=	1.8V

2.5	Write	 software	 that	maintains	 hours	 (0	 to	 23),	minutes	 (0	 to	 59)
and	seconds	(0	to	59).
2.6	Rewrite	the	code	in	Program	2.5,	so Counts 	is	incremented	every
1	second.	Assume	the	bus	clock	is	50	MHz.
2.7	Rewrite	 the	code	 in	Program	2.5,	 so SysTick_Init 	 takes	another
input	 parameter,	 a	 call-by-reference	 to	 a	 function.	 This	 user	 defined
function	will	be	called	in	the	ISR.
2.8	Write	 a	 formula	 relating	 baud	 rate	 (in	 bits/sec)	 to	 bandwidth	 (in
bytes/sec)	for	a	UART.
2.9	 Sketch	 the	 step	 response	 of	 the	 following	 circuit.	 In	 particular
draw	 the	 output	 wave	 as	 the	 input	 signal	 goes	 from	 0	 to	 3.3	 V.
1nF*10kΩ	is	10	µsec.

	
2.10	Consider	the	situation	in	which	a	software	FIFO	queue	is	used	to
buffer	 data	 between	 a	main	 program	 and	 an	 output	UART	 interrupt
service	 routine	 (like	 Section	 2.4).	 The	 main	 program
calls UART_OutChar ,	which	 in	 turn	 puts	 one	 byte	 into	 a	 software
FIFO.	The	ISR	is	triggered	when	the	UART	hardware	FIFO	is	not	full.



The	UART	 ISR	gets	 data	 from	 the	 software	FIFO	and	puts	 it	 to	 the
hardware	 FIFO.	 Experimental	 measurements	 show	 that	 the	 rate	 at
which UART_OutChar 	 is	 called	 varies	 over	 time	 with	 an	 average
rate	of	1,000	 times/sec.	What	does	 it	mean?	Choose	A-F	and	briefly
justify	your	selection.
A)	The	system	could	work,	but	the	system	is	CPU	bound
		B)	The	system	does	not	work,	but	could	be	corrected	by	increasing
software	FIFO	size	C)	The	system	could	work,	but	 the	system	is	I/O
bound
D)	 The	 system	does	 not	work,	 but	 could	 be	 corrected	 by	 increasing
baud	rate

E)	The	system	works,	but	 the	software	FIFO	is	not	needed	and
could	 be	 replaced	 by	 a	 global	 variable	 F)	 The	 system	 could
work,	but	interrupts	are	not	needed	in	this	system

a)	The	UART	baud	rate	is	5,000	bits/sec.
b)	The	UART	baud	rate	is	100,000	bits/sec.
2.11	UART	 interrupts	 are	 armed	 so	 that	 interrupts	 occur	 when	 new
data	 arrives	 into	 the	microcontroller	 (like	 Section	 2.4).	Consider	 the
situation	 in	which	 a	 FIFO	 queue	 is	 used	 to	 buffer	 data	 between	 the
receiverISR	 and	 the	 main	 program.	 The UART0_Handler
reads UART0_DR_R 	 and	 saves	 the	 data	 by	 calling RxFifo_Put .
When	 the	main	program	wants	 input	 it	 calls UART_InChar ,	which
in	 turn	 calls RxFifo_Get .	 Experimental	 observations	 show	 the
software	 FIFO	 is	 usually	 empty,	 and	 has	 at	 most	 3	 elements.	What
does	it	mean?	Choose	A-F	and	briefly	justify	your	selection.
A)	The	system	is	CPU	bound
	 	B)	Bandwidth	 could	be	 increased	by	 increasing	 the	 software	FIFO
size	C)	The	system	is	I/O	bound
D)	The	software	FIFO	could	be	replaced	by	a	global	variable
E)	The	latency	is	small	and	bounded
F)	Interrupts	are	not	needed	in	this	system
2.12	The	main	program	synthesizes	a	waveform	(defines	a	 sequence
of	DAC	output	 values)	 and	 a	 periodic	 output	 compare	 interrupt	will
output	the	data	to	the	DAC	separated	by	a	fixed	time.	A	software	FIFO
queue	 is	 used	 to	 buffer	 data	 between	 a	 main	 program	 (e.g.,	 main
program	 calls DAC_Out ,	 which	 in	 turn	 calls Fifo_Put ).	 A	 timer
interrupt	 service	 routine	 calls Fifo_Get 	 and	 actually	 writes	 to	 the
DAC.	At	 the	 beginning	 of	 the	 ISR,	 experimental	 observations	 show



this	software	FIFO	is	usually	empty,	and	has	at	most	3	elements.	What
does	it	mean?	Choose	A-F.

	 	 	 	 	A)	The	system	not	operating	properly	because	it	 is	CPU
bound	B)	 The	 system	 not	 operating	 properly	 but	 could	 be
fixed	by	increasing	software	FIFO	size	C)	The	system	is	not
operating	properly	because	 it	 is	 I/O	bound	D)	The	system	is
operating	properly,	but	 the	 software	FIFO	could	be	 replaced
by	a	global	variable	E)	The	system	is	operating	properly,	but
bandwidth	 could	 be	 increased	 by	 increasing	 the	 timer
interrupt	 rate	 F)	 The	 system	 is	 operating	 properly,	 but
interrupts	are	not	needed	in	this	system	2.13	Assume	you	are
outputting	 a	 sin	 wave	 using	 an	 n-bit	 DAC.	 What	 is	 the
maximum	table	size	you	could	use,	such	that	if	you	increased
the	size	of	the	table	beyond	that	size,	there	would	be	no	more
improvements	in	waveform	quality?

2.14	You	wish	to	record	sound.	The	frequency	components	you	wish
to	 analyze	 are	 200	 to	 2000	 Hz.	 The	 signal	 to	 noise	 ratio	 of	 your
microphone	is	50	dB.	What	ADC	precision	and	sampling	rate	would
you	choose?	Justify	your	answer.
2.15	 You	 wish	 to	 measure	 pressure	 from	 0	 to	 300	 mmHg	 with	 a
resolution	 of	 0.1	 mmHg.	 The	 frequency	 components	 you	 wish	 to
analyze	 are	 0	 to	 200	 Hz.	 What	 ADC	 precision	 and	 sampling	 rate
would	you	choose?	Justify	your	answer.
2.16	You	wish	to	measure	distance	(0	to	1	cm)	using	the	10-bit	ADC
on	the	microcontroller.	The	sampling	rate	is	1000	Hz.	The	frequencies
of	interest	are	0	to	100	Hz.	The	ADC	range	is	0	to	3V.	The	sensitivity
of	the	transducer	and	amplifier	is	3V/cm.	The	signal	to	noise	ratio	of
your	 analog	 circuit	 is	 45	 dB.	Which	 of	 the	 following	 changes	 will
improve	the	quality	of	the	system	the	most?	Justify	your	answer.
A)	increasing	the	ADC	precision
B)	increasing	the	ADC	sampling	rate
C)	increasing	the	gain	of	the	amplifier
D)	changing	the	transducer	to	one	with	less	noise
2.17	Most	ADC	codes	are	linear	(Figure	2.26).	Under	what	conditions
would	 it	 be	 better	 to	 design	 a	 nonlinear	 ADC?	 Give	 an	 example
application	needing	a	nonlinear	ADC.
2.18	 Define	 ADC	 sampling	 jitter.	 Estimate	 the	 sampling	 jitter	 of



sampling	in	Program	2.20.
2.19	Write	a	busy-wait	function	that	samples	ADC	channels	1,	2,	and
3.	Show	the	initialization	routine	and	the	input	function	that	returns	all
three	samples.	Design	in	such	a	way	that	it	could	operate	concurrently
with	Program	2.20	sampling	channel	0	in	the	background.
2.20	Write	an	interrupting	system	that	samples	ADC	channel	1	at	200
Hz.	 Show	 the	 initialization	 routine	 and	 the	 ISR.	 Data	 should	 be
spooled	 into	 a	 software	 FIFO.	 Design	 in	 such	 a	 way	 that	 it	 could
operate	 concurrently	 with	 Program	 2.20	 sampling	 channel	 0	 in	 the
background.	Channel	0	is	not	being	sampled	at	200	Hz.
2.21	Write	 a	 busy-wait	 function	 that	 collects	 1000	 samples	 of	ADC
channel	 0	 at	 500	kHz.	 	Show	 the	 initialization	 routine	 and	 the	 input
function	that	collects	the	1000	samples.	Assume	there	are	no	interrupts
active	and	this	is	the	only	ADC	task.	Assume	the	bus	clock	is	50	MHz.
2.22	Consider	the	following	BSP	function	that	outputs	an	8-bit	number
to	a	port.	Add	debugging	dumps	that	record	the	last	32	data	values	to
the	port.

//	MSP432	version
void	BSP_Out(uint8_t	data){
		P2OUT	=	data;

}

//	TM4C	version
void	BSP_Out(uint8_t	data){
		GPIO_PORTB_DATA_R	=
data;

}

Write	the	debugging	instruments	in	such	a	way	that	data	need	not	be
shifted.	 For	 example,if I is	 the	 index	 at	 which	 the	 last	 value	 was
written	( I ranges	from	0	to	31),	then (I-n)&0x1F 	will	be	the	index	of
the	nth	previous	data.



3.	Thread	Management
Chapter	3	objectives	are	to:
•	Introduce	real-time	operating	systems
•	Discuss	memory	management	and	show	solution	to	manage
a	heap
•	Define	threads	and	discuss	multithreading
•	 Use	 spinlock	 semaphores	 to	 implement	 thread
synchronization
•	 Present	 debugging	 techniques	 applicable	 for	 real-time
systems

	
	
This	 chapter	 introduces	 real-time	 operating	 systems.	 The
operating	 system	 must	 manage	 system	 resources	 and	 in	 this
chapter	we	will	 begin	with	memory	 and	 the	 processor.	We	will
develop	a	heap	to	provide	dynamic	memory	allocation.	Our	first
simple	OS	will	employ	a	round	robin	preemptive	scheduler.



3.1.	Introduction	to	RTOS

3.1.1.	Motivation
Consider	a	system	with	one	input	task,	one	output	tasks	and	two	non
I/O	 tasks,	 as	 shown	 in	 Figure	 3.1.	 The	 non-I/O	 tasks	 are	 called
function3	and	function4.		Here	are	two	possible	ways	of	structuring	a
solution	to	the	problem.	The	left	side	of	the	figure	shows	a	busy-wait
solution,	 where	 a	 single	 main	 program	 runs	 through	 the	 tasks	 by
checking	 to	 see	 if	 the	conditions	 for	 running	 the	 task	have	occurred.
Busy-wait	 solution	 is	 appropriate	 for	 problems	 where	 the	 execution
patterns	for	 tasks	are	fixed	and	well-known,	and	the	tasks	are	 tightly
coupled.	An	alternative	to	busy-wait	 is	 to	assign	one	thread	per	 task.
Interrupt	synchronization	 is	appropriate	for	I/O	even	if	 the	execution
pattern	for	I/O	is	unknown	or	can	dynamically	change	at	run	time.	The
difficultly	 with	 the	 single-foreground	 multiple-background	 threaded
solutions	 developed	 without	 an	 operating	 system	 stems	 from
answering,	“How	to	handle	complex	systems	with	multiple	foreground
tasks	 that	 are	 loosely	 coupled?”	 A	 real-time	 operating	 system
(RTOS)	with	a	thread	scheduler	allows	us	to	run	multiple	foreground
threads,	as	shown	on	the	right	side	of	the	figure.	As	a	programmer	we
simply	 write	 multiple	 programs	 that	 all	 “look”	 like	main	 programs.
Once	we	have	an	operating	system,	we	write	Task1,	Task2,	Task3,	and
Task4	such	that	each	behaves	like	a	main	program.	One	of	the	features
implemented	 in	 an	RTOS	 is	 a	 thread	scheduler,	 which	will	 run	 all
threads	in	a	manner	that	satisfies	the	constraints	of	the	system.



Figure	3.1.	Flowcharts	of	a	system	with	four	loosely	coupled
tasks.

3.1.2.	Parallel,	distributed	and	concurrent
programming

Many	 problems	 cannot	 be	 implemented	 using	 the	 single-threaded
execution	 pattern.	 Parallel	 programming	 allows	 the	 computer	 to
execute	multiple	 threads	 at	 the	 same	 time.	 State-of-the	 art	multicore
processors	can	execute	a	separate	program	in	each	of	its	cores.	Fork
and	join	are	the	fundamental	building	blocks	of	parallel	programming.
After	a	fork,	two	or	more	software	threads	will	be	run	in	parallel.	I.e.,
the	 threads	 will	 run	 simultaneously	 on	 separate	 processors.	 Two	 or
more	simultaneous	software	threads	can	be	combined	into	one	using	a
join,	 see	Figure	3.2.	Software	execution	after	 the	 join	will	wait	until
all	threads	above	the	join	are	complete.
As	an	analogy,	if	I	want	to	dig	a	big	hole	in	my	back	yard,	I	will	invite
three	 friends	 over	 and	 give	 everyone	 a	 shovel.	 The	 fork	 operation



changes	 the	 situation	 from	me	working	 alone	 to	 four	 of	 us	 ready	 to
dig.	The	four	digging	tasks	are	run	in	parallel.	When	the	overall	task	is
complete,	 the	 join	operation	causes	 the	friends	 to	go	away,	and	I	am
working	 alone	 again.	 A	 complex	 system	 may	 employ	 multiple
computers,	 each	 running	 its	 own	 software.	 We	 classify	 this
configuration	as	distributed	programming.

	
Figure	3.2.	Flowchart	symbols	to	describe	parallel,	distributed,
and	concurrent	programming.

Concurrent	programming	 allows	 the	 computer	 to	 execute	multiple
threads,	 but	 only	 one	 at	 a	 time.	 Interrupts	 are	 one	 mechanism	 to
implement	 concurrency	 on	 real-time	 systems.	 Interrupts	 have	 a
hardware	 trigger	 and	 a	 software	 action.	An	 interrupt	 is	 a	 parameter-
less	 subroutine	 call,	 triggered	 by	 a	 hardware	 event.	 The	 flowchart
symbols	 for	 interrupts	are	also	 shown	 in	Figure	3.2.	The	 trigger	 is	 a
hardware	 event	 signaling	 it	 is	 time	 to	 do	 something.	 Examples	 of
interrupt	triggers	we	will	see	in	this	book	include	new	input	data	has
arrived,	 output	 device	 is	 idle,	 and	 periodic	 event.	 The	 second
component	of	an	interrupt-driven	system	is	the	software	action	called
an	interrupt	service	routine	(ISR).	The	foreground	thread	is	defined	as
the	 execution	 of	 the	main	 program,	 and	 the	 background	 threads	 are
executions	of	the	ISRs.
Consider	the	analogy	of	a	farmer	plowing	a	field.	Plowing	the	field	is
like	executing	the	main	program	in	the	foreground.	You	start	plowing
at	one	end	of	 the	 field	and	 travel	back	and	forth	across	 the	 land	and
basically	plowing	one	parcel	of	land	at	a	time	in	a	sequential	fashion.
You	might	drive	the	tractor	back	to	the	barn,	get	some	gas,	then	drive
back	 to	 the	 field	 and	 continue	 plowing	where	 you	 left	 off,	which	 is
analogous	to	a	function	call.	Similarly,	because	of	rocks	or	stumps	you
might	 have	 to	 plow	a	 section	over	 and	over	 to	 get	 it	 right,	which	 is
analogous	to	a	program	loop.	Even	though	you	don’t	always	drive	in	a



straight	 line,	 you	 drive	 the	 tractor	 in	 a	 logical	 and	 well-defined
sequence.	 How	 you	 drive	 the	 tractor	while	 plowing	 the	 field	 is	 one
process,	defined	by	one	algorithm.	Conversely,	if	the	chickens	escape
from	 their	 coop,	 you	 shut	 off	 the	 tractor,	 and	 race	 over	 to	 the	 coop.
This	 is	 a	 real-time	event,	because	you	have	a	 limited	 time	 to	 collect
the	 chickens	 before	 they	 are	 lost	 or	 injured.	When	 you	 are	 finished
putting	all	the	chickens	back	in	the	pen	and	fixing	their	fence,	you	get
back	on	the	tractor	and	continue	plowing	the	field	where	you	left	off.
The	squawking	of	 the	chickens	 is	analogous	 to	hardware	 trigger	and
the	 chicken	 collection	 is	 like	 executing	 the	 ISR.	 Interrupts	 are
hardware	events	that	require	software	action.	Understanding	interrupts
is	critical	 for	both	designing	a	real-time	operating	system,	as	well	as
using	one.
Continuing	the	farmer	analogy,	 the	farmer	must	perform	many	tasks,
such	as	buying	seed,	plowing	 the	 field,	planting	 the	 seed,	harvesting
the	grain,	and	selling	the	grain.	There	may	be	many	fields	to	manage,
and	each	field	may	be	in	a	different	stage.	If	there	is	one	farmer,	he	or
she	can	only	do	one	task	at	a	time.	He	or	she	must	develop	a	schedule
so	all	 tasks	are	completed	 in	an	effective	manner.	This	scheduling	 is
like	 the	 one	 in	 a	 real-time	 operating	 system	 (RTOS).	 The	 RTOS	 is
given	many	foreground	tasks	to	perform	and	the	rate	to	execute	them.
To	be	effective	and	efficient,	 just	 like	the	farmer,	 the	RTOS	needs	to
know	how	long	each	task	requires	to	run,	and	what	the	relative	priority
is	 between	 tasks.	 The	 farm	 with	 many	 workers	 is	 analogous	 to	 an
RTOS	 running	 on	multiple	 processors.	 In	 this	 case,	 synchronization
and	communication	are	critical	parts	of	the	solution.

3.1.3.	Introduction	to	threads
A	program	 is	a	 sequence	of	 software	commands	connected	 together
to	affect	a	desired	outcome.	Programs	perform	input,	make	decisions,
record	 information,	 and	 generate	 outputs.	 Programmers	 generate
software	 using	 an	 editor	with	 a	 keyboard	 and	 display.	 Programs	 are
compiled	and	downloaded	into	the	flash	ROM	of	our	microcontroller.
Programs	 themselves	 are	 static	 and	 lifeless	 entities.	 However,	 when
we	 apply	 power	 to	 the	 microcontroller,	 the	 processor	 executes	 the
machine	 code	 of	 the	 programs	 in	 the	ROM.	A	 thread	 is	 defined	 as
either	 execution	 itself	 or	 the	 action	 caused	 by	 the	 execution.	 Either



way	we	see	that	threads	are	dynamic,	and	thus	it	is	threads	that	breathe
life	 into	 our	 systems.	 A	 thread	 therefore	 is	 a	 program	 in	 action,
accordingly,	in	addition	to	the	program	(instructions)	to	execute	it	also
has	the	state	of	the	program.	The	thread	state	is	captured	by	the	current
contents	 of	 the	 registers	 and	 the	 local	 variables,	 both	 of	 which	 are
stored	on	the	thread’s	stack.
For	 example,	 Figure	 3.3	 shows	 a	 system	 with	 four	 programs.	 We
define	Thread1	as	the	execution	of	Task1.	Another	name	for	thread	is
lightweight	 process.	 Multiple	 threads	 typically	 cooperate	 to
implement	 the	 desired	 functionality	 of	 the	 system.	 We	 could	 use
hardware-triggered	 interrupts	 to	create	multiple	 threads.	However,	 in
this	class	the	RTOS	will	create	the	multiple	threads	that	make	up	our
system.	 Figure	 3.3	 shows	 the	 threads	 having	 separate	 programs.	All
threads	do	have	a	program	to	execute,	but	it	is	acceptable	for	multiple
threads	 to	 run	 the	 same	 program.	 Since	 each	 thread	 has	 a	 separate
stack,	its	 local	variables	are	private,	which	means	it	alone	has	access
to	its	own	local	variables.

	

Figure	3.3.	Each	thread	has	its	own	registers	and	stack.

It	 looks	 like	 in	 Figure	 3.3	 that	 threads	 have	 physically	 separate
registers.	The	stacks	will	be	physically	separate,	but	in	reality	there	is
just	 one	 set	 of	 registers	 that	 is	 switched	 between	 the	 threads	 as	 the
thread	scheduler	operates.	The	thread	switcher	will	suspend	one	thread
by	pushing	all	the	registers	on	its	stack,	saving	the	SP,	changing	the	SP
to	 point	 to	 the	 stack	 of	 the	 next	 thread	 to	 run,	 then	 pulling	 all	 the
registers	off	the	new	stack.
Since	threads	interact	for	a	common	goal,	they	do	share	resources	such
as	global	memory,	and	I/O	devices	(Figure	3.4).		However,	to	reduce



complexity	it	is	the	best	to	limit	the	amount	of	sharing.	It	is	better	to
use	a	well-controlled	means	to	pass	data	and	synchronize	threads.

Figure	3.4.	Threads	share	global	memory	and	I/O	ports.

Some	simple	examples	of	multiple	threads	are	the	interrupt-driven	I/O.
In	 each	 of	 these	 examples,	 the	 background	 thread	 (interrupt	 service
routine)	executes	when	the	I/O	device	is	done	performing	the	required
I/O	 operation.	 A	 single	 foreground	 thread	 (main	 program)	 executes
during	the	times	when	no	interrupts	are	needed.	A	global	data	structure
is	used	to	communicate	between	threads.	Notice	that	data	stored	on	the
stack	or	in	registers	by	one	thread	are	not	accessible	by	another	thread.
Checkpoint	3.1:	What	is	the	difference	between	a	program	and	a
thread?	
Checkpoint	3.2:	Why	can’t	threads	pass	parameters	to	each	other
on	the	stack	like	regular	functions	do?		How	do	threads
communicate	with	each	other?

One	way	to	classify	threads	is	according	to	how	often	they	are	run.	A
periodic	 thread	 is	 one	 that	 runs	 at	 a	 fixed	 time	 interval.	 ADC
sampling,	DAC	outputs,	and	digital	control	are	examples	of	periodic
tasks.	 The	 RTOS	 is	 responsible	 for	 scheduling	 periodic	 threads.	 An
aperiodic	 thread	 is	one	 that	 runs	often,	but	 the	 times	when	 it	needs
run	 cannot	 be	 anticipated.	 Threads	 that	 are	 attached	 to	 human	 input
will	 fall	 into	 this	 category.	 A	 sporadic	 thread	 is	 one	 that	 runs
infrequently	 or	maybe	 never	 at	 all,	 but	 is	 often	 of	 great	 importance.
Examples	of	sporadic	threads	that	have	real-time	requirements	include
power	 failure,	 CO	 warning,	 temperature	 overheating,	 and	 computer
hardware	faults.
A	 second	 way	 to	 classify	 threads	 is	 according	 to	 the	 activity	 that
triggers	 the	 thread’s	 execution.	 An	 event	 thread	 is	 triggered	 by	 an
external	event	like	the	hardware	timer,	input	device	or	output	device.	
The	 external	 event	 creates	 the	 thread,	 the	 thread	 services	 that	 need,



and	 then	 the	 thread	 is	 dismissed.	 A	 typical	 event	 thread	 is	 the
execution	 of	 an	 interrupt	 service	 routine.	 A	 periodic	 thread	 can	 be
classified	as	an	event	 thread	triggered	by	a	timer.	A	main	thread	on
the	 other	 hand	 is	 like	 a	 main	 program,	 it	 runs	 for	 a	 long	 time
performing	 tasks	 like	 input,	 storage,	 decisions,	 and	 output.	 Main
threads	 can	be	 thought	 of	 as	 cycle-stealing	 threads	because	 they	 run
when	there	are	no	events	to	service.

3.1.4.	States	of	a	main	thread
A	main	thread	can	be	in	one	of	four	states,	as	shown	in	Figure	3.5.	The
arrows	 in	 Figure	 3.5	 describe	 the	 condition	 causing	 the	 thread	 to
change	states.	In	this	chapter,	threads	oscillate	between	the	active	and
run	 states.	 To	 simplify	 the	 OS,	 we	 will	 create	 all	 main	 threads	 at
initialization	and	these	main	threads	will	never	block,	sleep,	or	die.
A	 main	 thread	 is	 in	 the	 run	 state	 if	 it	 currently	 executing.	 On	 a
microcontroller	with	a	single	processor	like	the	Cortex	M,	there	can	be
at	most	one	thread	running	at	a	time.	As	computational	requirements
for	 an	 embedded	 system	 rise,	we	 can	 expect	microcontrollers	 in	 the
future	 to	 have	 multicore	 processors,	 like	 the	 ones	 seen	 now	 in	 our
desktop	PC.	For	a	multicore	processor,	there	can	be	multiple	threads	in
the	run	state.	
A	main	thread	is	in	the	active	state	if	it	ready	to	run	but	waiting	for	its
turn.	A	 simple	OS	does	not	have	 sleeping	or	blocking;	 there	will	 be
one	running	thread	and	the	other	threads	are	active.
Sometimes	 a	main	 thread	 needs	 to	wait	 for	 a	 fixed	 amount	 of	 time.
The	OS	will	not	run	a	main	thread	if	it	is	in	the	sleep	state.	After	the
prescribed	amount	of	time,	the	OS	will	make	the	thread	active	again.
Sleeping	would	be	used	for	tasks	that	are	not	real-time.	Sleeping	will
be	presented	later	in	Section	4.4.
A	main	 thread	 is	 in	 the	 blocked	 state	 when	 it	 is	 waiting	 for	 some
external	 event	 like	 input/output	 (keyboard	 input	 available,	 printer
ready,	I/O	device	available.)	We	will	 implement	blocking	 in	 the	next
chapter.



Figure	3.5.	A	main	thread	can	be	in	one	of	four	states.

The	OS	manages	 the	execution	of	 threads.	An	 important	 situation	 to
manage	 is	 when	 a	 thread	 is	 stuck	 and	 cannot	 make	 progress.	 For
example,	a	thread	may	need	data	from	another	thread,	a	thread	may	be
waiting	on	I/O,	or	a	thread	may	need	to	wait	for	a	specified	amount	of
time.	To	be	more	efficient,	when	a	thread	is	waiting	because	it	cannot
make	progress	it	will	block,	meaning	it	will	not	run	until	the	time	at
which	it	can	make	progress.	Similarly,	to	improve	efficiency,	when	a
thread	 needs	 to	 wait	 for	 a	 prescribed	 amount	 of	 time,	 it	 will	 sleep,
meaning	 it	 will	 not	 run	 until	 the	 elapsed	 wait	 time	 has	 passed.
Blocking	 and	 sleeping	 will	 free	 up	 the	 processor	 to	 perform	 actual
work.	A	 simple	OS	without	 blocking	 and	 sleeping	must	 simply	 spin
while	 the	 thread	 is	 waiting	 on	 an	 event.	 A	 thread	 that	 is	 spinning
remains	 in	 the	 active	 state,	 and	wastes	 its	 entire	 time	 slice	 checking
the	condition	over	and	over.

3.1.5.	Real-time	systems
Designing	a	RTOS	requires	many	decisions	to	be	made.	Therefore,	it
is	 important	 to	have	performance	criteria	with	which	to	evaluate	one
alternative	 to	 another.	 A	 common	 performance	 criterion	 used	 in
RealTime	 Systems	 is	 Deadline,	 a	 timing	 constraint	 with	 many
definitions	in	the	literature.	In	this	class	we	will	define	specific	timing
constraints	 that	apply	 to	design	of	embedded	systems.	Bandwidth	 is
defined	as	the	information	rate.	It	specifies	the	amount	of	actual	data
per	unit	time	that	are	input,	processed,	or	output.
In	 a	 real-time	 system	 operations	 performed	 must	 meet	 logical
correctness	 and	 also	 be	 completed	 on	 time	 (i.e.,	 meet	 timing
constraints).	 Non	 real-time	 systems	 require	 logical	 correctness	 but



have	 no	 timing	 requirements.	 The	 tolerance	 of	 a	 real-time	 system
towards	 failure	 to	meet	 the	 timing	 requirements	 determines	whether
we	classify	it	as	hard	real	time,	firm	real	time,	or	soft	real	time.	If
missing	a	timing	constraint	is	unacceptable,	we	call	it	a	hard	real-time
system.	 In	 a	 firm	 real-time	 system,	 the	 value	 of	 an	 operation
completed	 past	 its	 timing	 constraint	 is	 considered	 zero	 but	 not
harmful.	 In	 a	 soft	 real-time	 system,	 the	 value	 of	 an	 operation
diminishes	the	further	it	completes	after	the	timing	constraint.
Hard	 real	 time:	 For	 example,	 if	 the	 pressure	 inside	 a	 module	 in	 a
chemical	plant	 rises	above	a	 threshold,	 failure	 to	 respond	 through	an
automated	 corrective	 operation	of	 opening	 a	 pressure	 valve	within	 a
timing	 constraint	 can	 be	 catastrophic.	 The	 system	 managing	 the
operations	in	such	a	scenario	is	a	hard	real-time	operating	system.
Firm	real	time:	An	example	of	a	firm	real-time	system	is	a	streaming
multimedia	communication	system	where	failure	 to	render	one	video
frame	on	time	in	a	30	frames	per	second	stream	can	be	perceived	as	a
loss	of	quality	but	does	not	affect	the	user	experience	significantly.
Soft	real	time:	An	example	of	a	soft	real-time	system	is	an	automated
stock	 trading	 system	 where	 excessive	 delay	 in	 formulating	 an
automated	response	to	buy/sell	may	diminish	the	monetary	value	one
can	gain	from	the	trade.	The	delivery	of	email	is	usually	soft	real	time,
because	the	value	of	the	information	reduces	the	longer	it	takes.				
Observation:	Please	understand	that	the	world	has	not	reached
consensus	of	the	definitions	of	hard,	firm	and	soft.	Rather	than
classify	names	to	the	real-time	system,	think	of	this	issue	is	as	a
continuum.	There	is	a	continuous	progression	of	the	consequence	of
missing	a	deadline:	catastrophic	(hard)	→	zero	effect	and	no	harm
(firm)	→	still	some	good	can	come	from	finishing	after	deadline
(soft).	Similarly:	there	is	a	continuous	progression	for	the	value	of
missing	a	deadline:	negative	value	(hard),	zero	value	(firm)	and
some	but	diminishing	positive	value	(soft).

To	 better	 understand	 real-time	 systems,	 timing	 constraints	 can	 be
classified	into	two	types.	The	first	type	is	event-response.	The	event
is	 a	 software	 or	 hardware	 trigger	 that	 signifies	 something	 important
has	 occurred	 and	 must	 be	 handled.	 The	 response	 is	 the	 system’s
reaction	 to	 that	 event.	 Examples	 of	 event-response	 tasks	 include:
Operator	pushes	a	button	->	Software	performs	action



Temperature	is	too	hot	->	Turn	on	cooling	fan
Supply	voltage	is	too	low	->	Activate	back	up	battery
Input	device	has	new	data	->	Read	and	process	input	data
Output	device	is	idle	->	Perform	another	output
	

The	specific	timing	constraint	for	this	type	of	system	is	called	latency,
which	 is	 the	 time	 between	 the	 event	 and	 the	 completion	 of	 the
response.	Let	Ei	be	the	times	that	events	occur	in	our	system,	and	Ti	be
the	times	these	events	are	serviced.	Latency	is	defined	as	Δi	=	Ti	–	Ei
for	i	=	0,	1,	2,	…,	n-1
where	 n	 is	 the	 number	 of	 measurements	 collected.	 The	 timing
constraint	is	the	maximum	value	for	latency,	Δi,	that	is	acceptable.	In
most	 cases,	 the	 system	 will	 not	 be	 able	 to	 anticipate	 the	 event,	 so
latency	for	this	type	of	system	will	always	be	positive.
A	 second	 type	 of	 timing	 constraint	 occurs	with	prescheduled	 tasks.
For	example,	we	could	schedule	a	task	to	run	periodically.	If	we	define
fs	as	the	desired	frequency	of	a	periodic	task,	then	the	desired	period	is
Δt	=	1/fs.	Examples	of	prescheduled	tasks	include:	Every	30	seconds
->	Software	checks	for	smoke
At	22	kHz	->	Output	new	data	to	DACs	creating	sound
At	1	week,	1	month,	1	year	->	Perform	system
maintenance
At	300	Hz	->	Input	new	data	from	ADC	measuring	EKG
At	6	months	of	service	->	Deactivate	system	because	it	is
at	end	of	life
	

For	periodic,	 the	desired	 time	 to	 run	 the	 i’th	periodic	 instance	of	 the
task	is	given	as
Di	=	T0	+i*Δt	for	i	=	0,	1,	2,	…,	n-1

where	T0	 is	 the	 starting	 time	 for	 the	 system.	For	prescheduled	 tasks,
we	 define	 jitter	 as	 the	 difference	 between	 desired	 time	 a	 task	 is
supposed	to	run	and	the	actual	time	it	is	run.	Let	Ti	be	the	actual	times
the	task	is	run,	so	in	this	case	jitter	is	δti	=	Ti	–	Di	for	i	=	0,	1,	2,	…,	n-1



Notice	 for	 prescheduled	 tasks	 the	 jitter	 can	 be	 positive	 (late)	 or
negative	(early),	see	Figure	3.6.	For	some	situations	running	the	task
early	 is	 acceptable	 but	 being	 late	 is	 unacceptable.	 If	 I	 have	 the
newspaper	delivered	to	my	door	each	morning,	I	do	not	care	how	early
the	paper	comes,	as	 long	as	 it	arrives	before	I	wake	up.	 In	 this	case,
the	 timing	 constraint	 is	 the	 maximum	 value	 for	 jitter	 δti	 that	 is
acceptable.

Figure	3.6.	Effect	of	jitter	on	sampled	data.	True	input	is	a
sinusoidal.	Blue	lines	depict	when	the	voltage	should	be	sampled.
Red	lines	depict	when	the	voltage	was	actually	sampled.	There	is
time	jitter	such	that	every	other	sample	is	early	and	every	other
sample	is	late.	In	the	zoomed	in	portion	this	sample	is	late;	the
consequence	of	being	late	is	the	actual	sampled	data	is	lowered
than	the	correct	value.	Sampling	jitter	causes	noise	in	the	data.

On	the	other	hand,	for	some	situations,	 it	 is	unacceptable	 to	be	early
and	 it	 is	 acceptable	 to	 be	 late.	 For	 example,	 with	 tasks	 involving
DACs	 and	ADCs,	 as	 shown	 in	 Figure	 3.6,	we	 can	 correlate	 voltage
error	in	the	signal	to	time	jitter.	If	dV/dt	is	the	slew	rate	(slope)	of	the
voltage	signal,	 then	the	voltage	error	(noise)	caused	by	jitter	 is	δVi	=
δti		*	dV/dt	for	i	=	0,	1,	2,	…,	n-1

The	error	occurs	because	we	typically	store	sampled	data	in	a	simple
array	 and	 assume	 it	was	 sampled	 at	 fs	 =	1/Δt.	 I.e.,	we	 do	 not	 record
exactly	when	the	sample	was	actually	performed.
	
For	cases	where	the	starting	time,	T0,	does	not	matter,	we	can	simplify
the	analysis	by	 looking	at	 time	differences	between	when	 the	 task	 is



run,	ΔTi	=		(Ti	–	Ti-1).	In	this	case,	jitter	is	simply	δti	=	ΔTi	-	Δt	for	i	=	0,
1,	2,	…,	n-1
We	will	classify	a	system	with	periodic	tasks	as	real-time	if	the	jitter	is
always	 less	 than	 a	 small	 but	 acceptable	 value.	 In	 other	 words,	 the
software	 task	 always	meets	 its	 timing	 constraint.	 	More	 specifically,
we	must	be	able	to	place	an	upper	bound,	k,	on	the	time	jitter.
-k	≤	δti	≤	+k		for	all	i	For	a	hard	real-time	system,	we	are	interested	in
the	worst	case.	So	we	measure

Min	=	minimum	δti	for	all	measurements	i	Max	=	maximum	δti
for	all	measurements	i	Jitter	=	Max	-	Min	=	(maximum	δti	–	minimum
δti)	In	most	situations,	the	time	jitter	will	be	dominated	by	the	time	the
microcontroller	runs	with	interrupts	disabled.	For	lower	priority	interrupts,
it	is	also	affected	by	the	length	and	frequency	of	higher	priority	interrupt
requests.

To	further	clarify	 this	situation,	we	must	clearly	 identify	 the	 times	at
which	the	Ti	measurements	are	collected.	We	could	define	this	time	as
when	the	task	is	started	or	when	the	task	is	completed.	When	sampling
an	 ADC,	 the	 important	 time	 is	 when	 the	 ADC	 sampling	 is	 started.
More	 specifically,	 it	 is	 the	 time	 the	 ADC	 sample/hold	 module	 is
changed	from	sample	to	hold	mode.	This	is	because	the	ADC	captures
or	 latches	 the	 analog	 input	 at	 the	moment	 the	 sample/hold	 is	 set	 to
hold.	For	 tasks	with	a	DAC,	 the	 important	 time	 is	when	 the	DAC	is
updated.	More	specifically,	it	is	the	time	the	DAC	is	told	to	update	its
output	voltage.
In	 this	class,	we	use	 the	 term	real-time	and	hard	real-time	 to	mean
the	same	thing.	Real-time	for	event-response	 tasks	means	 the	system
has	small	and	bounded	latency.	Real-time	for	periodic	tasks	means	the
system	 has	 small	 and	 bounded	 jitter.	 	 In	 other	 words,	 a	 real-time
operating	 system	 (RTOS)	 is	 one	 that	 guarantees	 that	 the	 difference
between	when	 tasks	 are	 supposed	 to	 run	and	when	 they	actually	 are
run	is	short	and	bounded.
Checkpoint	3.3:	Consider	a	task	that	inputs	data	from	the	serial
port.	When	new	data	arrives	the	serial	port	triggers	an	event.	When
the	software	services	that	event,	it	reads	and	processes	the	new	data.
The	serial	port	has	hardware	to	store	incoming	data	(2	on	the
MSP432,	16	on	the	TM4C123)	such	that	if	the	buffer	is	full	and



more	data	arrives,	the	new	data	is	lost.	Is	this	system	hard,	firm,	or
soft	real	time?
Checkpoint	3.4:	Consider	a	hearing	aid	that	inputs	sounds	from	a
microphone,	manipulates	the	sound	data,	and	then	outputs	the	data
to	a	speaker.	The	system	usually	has	small	and	bounded	jitter,	but
occasionally	other	tasks	in	the	hearing	aid	cause	some	data	to	be
late,	causing	a	noise	pulse	on	the	speaker.	Is	this	system	hard,	firm
or	soft	real	time?
Checkpoint	3.5:	Consider	a	task	that	outputs	data	to	a	printer.
When	the	printer	is	idle	the	printer	triggers	an	event.	When	the
software	services	that	event,	it	sends	more	data	to	the	printer.	Is	this
system	hard,	firm	or	soft	real	time?

3.1.6.	Producer/Consumer	problem	using	a
mailbox

One	 of	 the	 classic	 problems	 our	 operating	 system	 must	 handle	 is
communication	between	threads.	We	define	a	producer	thread	as	one
that	 creates	 or	 produces	 data.	 A	 consumer	 thread	 is	 a	 thread	 that
consumes	 (and	 removes)	 data.	 The	 communication	 mechanism	 we
will	use	 in	 this	chapter	 is	a	mailbox	(Figure	3.7).	The	mailbox	has	a
Data	 field	 and	 a	 Status	 field.	Mailboxes	 will	 be	 statically	 allocated
global	structures.	Because	they	are	global	variables,	it	means	they	will
exist	permanently	and	can	be	carefully	shared	by	more	than	one	task.
The	 advantage	 of	 using	 a	 structure	 like	 a	 mailbox	 for	 a	 data	 flow
problem	is	 that	we	can	decouple	 the	producer	and	consumer	 threads.
In	the	next	chapter,	we	will	replace	the	mailbox	with	a	first	in	first	one
(FIFO)	 queue.	 The	 use	 of	 a	 FIFO	 can	 significantly	 improve	 system
performance.	

Figure	3.7.	The	mailbox	is	used	to	send	data	from	the	producer



thread	to	the	consumer	thread.

There	 are	 many	 producer/consumer	 applications	 in	 the	 field	 of
embedded	systems.	In	Table	3.1	the	threads	on	the	left	are	producers
that	 create	 data,	 while	 the	 threads	 on	 the	 right	 are	 consumers	 that
process	data.

Source/Producer Sink/Consumer
Keyboard	input Program	that	interprets
Software	that	has	data Printer	output
Software	 sends
message

Software	 receives
message

Microphone	and	ADC Software	 that	 saves
sound	data

Software	 that	 has
sound	data

DAC	and	speaker

Table	3.1.	Producer	consumer	examples.
	

Figure	 3.8	 shows	 how	one	 could	 use	 a	mailbox	 to	 pass	 data	 from	 a
background	 thread	 (interrupt	 service	 routine)	 to	 a	 foreground	 thread
(main	program)	if	there	were	no	operating	system.

Figure	3.8.		Use	of	a	mailbox	without	an	operating	system.

Checkpoint	3.6:	What	happens	if	the	ISR	in	Figure	3.8	runs	twice
before	the	main	program	has	a	chance	to	read	and	process	the	Mail?

3.1.7.	Scheduler



A	 scheduler	 is	 an	 OS	 function	 that	 gives	 threads	 the	 notion	 of
Concurrent	processing	where	multiple	threads	are	active.	If	we	look
from	 a	 distance	 (zoom	 out	 in	 time)	 it	 appears	 they	 are	 running
simultaneously,	when	 in	 fact	only	one	 thread	 is	 running	at	any	 time.
On	 the	Cortex-M	with	one	processor	only	a	 single	 thread	can	 run	at
any	given	time	while	other	ready	threads	contend	for	processing.	The
scheduler	 therefore	 runs	 the	 ready	 threads	 one	 by	 one,	 switching
between	 them	 to	 give	 us	 the	 illusion	 that	 all	 are	 running
simultaneously.
In	 this	 class,	 the	 OS	 will	 schedule	 both	 main	 threads	 and	 event
threads.	 However,	 in	 this	 section	 we	 will	 discuss	 scheduling	 main
threads.	To	envision	a	scheduler,	we	first	list	the	main	threads	that	are
ready	to	run.	When	the	processor	is	free,	the	scheduler	will	choose	one
main	 thread	from	the	ready	 list	and	cause	 it	 to	 run.	 In	a	preemptive
scheduler,	 main	 threads	 are	 suspended	 by	 a	 periodic	 interrupt,	 the
scheduler	 chooses	 a	 new	 main	 thread	 to	 run,	 and	 the	 return	 from
interrupt	will	 launch	 this	 new	 thread.	 In	 this	 situation,	 the	OS	 itself
decides	when	a	 running	 thread	will	be	 suspended,	 returning	 it	 to	 the
active	 state.	 In	Program	3.1,	 there	 exist	 four	 threads	 as	 illustrated	 in
Figure	3.9.	The	preemptive	scheduler	in	the	RTOS	runs	the	four	main
threads	 concurrently.	 In	 reality,	 the	 threads	 are	 run	 one	 at	 time	 in
sequence.

void	Task1(void){
		Init1();
		while(1){
				if(Status1())
						Input1();

}

}

void	Task2(void){
		Init2();
		while(1){
				if(Status2())
						Output2();

}

}

void	Task3(void){
		Init3();
		while(1){
				function3();

}

}

void	Task4(void){
		Init4();
		while(1){
				function4();

}

}

Program	3.1.	Four	main	threads	run	concurrently	using	a
preemptive	scheduler.



Figure	3.9.	Four	main	threads.

In	 a	 cooperative	 or	 nonpreemptive	 scheduler,	 the	 main	 threads
themselves	 decide	 when	 to	 stop	 running.	 This	 is	 typically
implemented	 by	 having	 a	 thread	 call	 a	 function	 like OS_Suspend .
This	function	will	suspend	the	running	thread	(putting	 the	old	 thread
in	the	Active	state),	run	the	scheduler	(which	chooses	a	new	thread),
and	 launch	 the	new	thread.	The	new	thread	 is	now	in	 the	Run	 state.
Although	 easy	 to	 implement	 because	 it	 doesn’t	 require	 interrupts,	 a
cooperative	 scheduler	 is	 not	 appropriate	 for	 real-time	 systems.	 In
Program	3.2,	the	cooperative	scheduler	runs	the	four	main	threads	in	a
cyclic	manner.

void	Task1(void){
		Init1();
		while(1){
				if(Status1()){
						Input1();

}

				OS_Suspend();

}

}

void	Task2(void){
		Init2();
		while(1){
				if(Status2()){
						Output2();

}

				OS_Suspend();

}

}

void	Task3(void){
		Init3();
		while(1){
				function3();
				OS_Suspend();

}

}

void	Task4(void){
		Init4();
		while(1){
				function4();
				OS_Suspend();

}

}

Program	3.2.	Four	threads	run	in	a	cooperative	manner.

There	are	many	scheduling	algorithms	one	can	use	to	choose	the	next
thread	to	run.	A	round	robin	scheduler	simply	runs	the	ready	threads
in	circular	fashion,	giving	each	the	same	amount	of	time	to	execute.	A



weighted	 round	 robin	 scheduler	 runs	 the	 ready	 threads	 in	 circular
fashion,	but	gives	threads	unequal	weighting.	One	way	to	implement
weighting	is	to	vary	the	time	each	thread	is	allowed	to	run	according
to	 its	 importance.	 Another	 way	 to	 implement	 weighting	 is	 to	 run
important	threads	more	often.	E.g.,	assume	there	are	three	threads	1	2
3,	 and	 thread	 1	 is	more	 important.	We	 could	 run	 the	 threads	 in	 this
repeating	pattern:	1,	2,	1,	3,	1,	2,	1,	3…	Notice	 that	very	other	 time
slice	 is	given	 to	 thread	1.	 In	 this	 simple	 example,	Thread	1	 receives
50%	of	the	processor	time,	and	threads	2	and	3	each	receive	25%.	A
priority	scheduler	assigns	each	thread	a	priority	number	(e.g.,	1	is	the
highest).	Two	or	more	threads	can	have	the	same	priority.	A	priority-2
thread	is	run	only	if	no	priority-1	threads	are	ready	to	run.	Similarly,
we	run	a	priority-3	thread	only	if	no	priority-1	or	priority-2	threads	are
ready.	If	all	threads	have	the	same	priority,	then	the	scheduler	reverts
to	 a	 round-robin	 system.	 The	 advantage	 of	 priority	 is	 that	 we	 can
reduce	the	latency	(response	time)	for	important	tasks	by	giving	those
tasks	a	high	priority.	The	disadvantage	 is	 that	on	a	busy	system,	 low
priority	threads	may	never	be	run.	This	situation	is	called	starvation.
Schedulers	 for	 real-time	 systems	 may	 use	 other	 metrics	 to	 decide
thread	 importance/priority.	 	 A	 deadline	 is	 when	 a	 task	 should
complete	relative	to	when	it	 is	ready	to	run.	The	time	to	deadline	 is
the	 time	between	now	and	 the	deadline.	 If	 you	have	a	paper	due	on
Friday,	and	it	is	Tuesday,	the	time-to-deadline	is	3	days.	Furthermore,
we	define	 slack	time	 as	 the	 time-to-deadline	minus	 the	 how	 long	 it
will	take	to	complete	the	task.	If	you	have	a	paper	due	on	Friday,	it	is
Tuesday	 and	 it	will	 take	 you	 one	 day	 to	write	 the	 paper,	 your	 slack
time	is	2	days.	Once	the	slack	time	becomes	negative,	you	will	miss
your	deadline.	There	are	many	other	ways	to	assign	priority:

Minimize	latency	for	real-time	tasks
Assign	a	dollar	cost	for	delayed	service	and	minimize
cost
Give	priority	to	I/O	bound	tasks	over	CPU	bound
tasks
Give	priority	to	tasks	that	need	to	run	more
frequently
Smallest	time-to-deadline	first



Least	slack	time	first
	

A	 thread’s	 priority	 may	 be	 statically	 assigned	 or	 can	 be	 changed
dynamically	 as	 the	 system	 progresses.	 An	 exponential	 queue	 is	 a
dynamic	scheduling	algorithm,	with	varying	priorities	and	time	slices.
If	a	thread	blocks	on	I/O,	its	priority	is	increased	and	its	time	slice	is
halved.	If	it	runs	to	completion	of	a	time	slice,	its	priority	is	decreased
and	its	time	slice	is	doubled.
Another	 dynamic	 scheduling	 algorithm	 uses	 the	 notion	 of	 aging	 to
solve	 starvation.	 In	 this	 scheme,	 threads	 have	 a	 permanent	 fixed
priority	 and	 a	 temporary	working	priority.	The	permanent	 priority	 is
assigned	 according	 the	 rules	 of	 the	 previous	 paragraph,	 but	 the
temporary	 priority	 is	 used	 to	 actually	 schedule	 threads.	 Periodically
the	OS	increases	the	temporary	priority	of	threads	that	have	not	been
run	in	a	long	time.	Once	a	thread	is	run,	its	temporary	priority	is	reset
back	to	its	permanent	priority.
Assigning	priority	to	tasks	according	to	how	often	they	are	required	to
run	(their	periodicity)	is	called	a	Rate	Monotonic	Scheduler.	Assume
we	have	m	tasks	that	are	periodic,	running	with	periods	Tj	(0	≤	j	≤	m-
1).	We	assign	priorities	according	to	these	periods	with	more	frequent
tasks	 having	 higher	 priorities.	 Furthermore,	 let	 Ej	 be	 the	 maximum
time	to	execute	each	task.	Assuming	there	is	little	interaction	between
tasks,	 the	 Rate	 Monotonic	 Theorem	 can	 be	 used	 to	 predict	 if	 a

scheduling	solution	exists.	Tasks	can	be	scheduled	if	
and

				
What	this	means	is,	as	long	as	the	total	utilization	of	the	set	of	tasks	is
below	69.32%	(ln(2)	≈	0.6932)	RMS	will	guarantee	to	meet	all	timing
constraints.	The	practical	application	of	the	Rate	Monotonic	Theorem
is	 extremely	 limited	 because	most	 systems	 exhibit	 a	 high	 degree	 of
coupling	between	tasks.	Nevertheless,	it	does	motivate	a	consideration
that	 applies	 to	 all	 real-time	 operating	 systems.	Let	Ej	 be	 the	 time	 to
execute	each	 task,	and	 let	Tj	be	 the	 time	between	executions	of	each
task.	 In	general,	Ej/Tj	will	 be	 the	percentage	of	 time	Task	 j	 needs	 to



run.	The	sum	of	these	percentages	across	all	tasks	yields	a	parameter
that	estimates	processor	utilization.

Average	Utilization	≡

Maximum	Utilization	≡
If	 utilization	 is	 over	 100%	 there	will	 be	no	 solution.	 If	 utilization	 is
below	 5%,	 the	 processor	 may	 be	 too	 fast	 for	 your	 problem.	 The
solution	could	be	to	slow	down	the	clock	and	save	power.	As	the	sum
goes	over	50%	and	begins	to	approach	100%,	it	will	be	more	and	more
difficult	 to	 schedule	 all	 tasks.	 The	 solution	 will	 be	 to	 use	 a	 faster
processor	or	simplify	the	tasks.	An	effective	system	will	operate	in	the
5	to	50%	range.
Checkpoint	3.7:	What	happens	if	the	average	utilization	is	over	1?
Checkpoint	3.8:	What	happens	if	the	average	utilization	is	less
than	1,	but	the	maximum	utilization	is	over	1?



3.2.	Function	pointers
As	 we	 work	 our	 way	 towards	 constructing	 an	 OS	 there	 are	 some
advanced	programming	concepts	we	require	the	reader	to	be	familiar
with.	 One	 such	 concept	 is	 “function	 pointers”.	 Normally,	 when
software	in	module	A	wishes	to	invoke	software	in	module	B,	module
A	 simply	 calls	 a	 function	 in	 module	 B.	 The	 function	 in	 module	 B
performs	 some	 action	 and	 returns	 to	A.	At	 this	 point,	 typically,	 this
exchange	is	complete.	A	callback	 is	a	mechanism	through	which	the
software	in	module	B	can	call	back	a	preset	function	in	module	A	at	a
later	 time.	 Another	 name	 for	 callback	 is	 hook.	 To	 illustrate	 this
concept,	let	module	A	be	the	user	code	and	module	B	be	the	operating
system.	 To	 setup	 a	 callback,	 we	 first	 write	 a	 user	 function
(e.g., CallMe ),	and	then	the	user	calls	the	OS	passing	this	function	as
a	parameter.

int	count;
void	CallMe(void){
		count++;

}

	
The	 OS	 immediately	 returns	 to	 the	 user,	 but	 at	 some	 agreed	 upon
condition,	the	OS	can	invoke	a	call	back	to	the	user	by	executing	this
function.
As	we	initialize	the	operating	system,	the	user	code	must	tell	the	OS	a
list	of	 tasks	 that	 should	be	 run.	More	specifically,	 the	user	code	will
pass	into	the	operating	system	pointers	to	user	functions.	In	C	on	the
Cortex	M,	 all	 pointers	 are	 32-bit	 addresses	 regardless	 of	 the	 type	of
pointer.	A	 function	pointer	 is	 simply	a	pointer	 to	a	 function.	 In	 this
book,	all	tasks	or	threads	will	be	defined	as	void-void	functions,	like
CallMe.	In	other	words,	threads	take	no	inputs	and	return	no	output.
There	are	 three	operations	we	can	perform	on	function	pointers.	The
first	 is	 declaring	 a	 function	pointer	variable.	 Just	 like	other	pointers,
we	specify	the	type	and	add	*	in	front	of	the	name.	We	think	it	is	good
style	to	include p , pt ,	or ptr 	in	pointer	names.	The	syntax	looks	like



this	void	(*TaskPt)(void);			
	

Although	 the	above	 line	 looks	a	 little	bit	 like	a	prototype,	 it	 is	not	a
prototype.	Rather	this	line	creates	a	variable	of	type	function	pointer.
We	can	read	this	declaration	as TaskPt 	is	a	pointer	to	a	function	that
takes	no	input	and	returns	no	output.
Just	like	other	variables,	we	need	to	set	its	value	before	using	it.	To	set
a	 function	 pointer	 we	 assign	 it	 a	 value	 of	 the	 proper	 type.	 In	 this
case, TaskPt 	is	a	pointer	to	a	void-void	function,	so	we	assign	it	the
address	of	a	void-void	function	by	executing	this	code	at	run	time.

		TaskPt	=	&CallMe;		//	TaskPt	points	to	CallMe
	

Just	 like	 other	 pointers	 (to	 variables),	 to	 access	 what	 a	 pointer	 is
pointing	to,	we	dereference	it	using	*.	In	this	case,	to	run	the	function
we	execute	*TaskPt();			//	call	the	function	to	which	it	points

	
As	an	example,	 let’s	 look	at	one	of	 the	features	 in	 the	BSP	package.
The	function BSP_PeriodicTask_Init 	will	initialize	a	timer	so	a	user
function	will	run	periodically.	Notice	the	user	function	is	called	from
inside	the	interrupt	service	routine.

void	(*PeriodicTask)(void);				//	user	function
void	BSP_PeriodicTask_Init(void(*task)(void),		//	user	function
																											uint32_t	freq,						//	frequency	in	Hz
																											uint8_t	priority){		//	priority
//	.	.	.
		PeriodicTask	=	task;													//	user	function
//	.	.	.

}

void	T32_INT1_IRQHandler(void){
		TIMER32_INTCLR1	=	0x00000001;				//	acknowledge	Timer	1	interrupt
		(*PeriodicTask)();															//	execute	user	task

}

The	 user	 code	 creates	 a	 void-void	 function	 and



calls	 BSP_PeriodicTask_Init 	 to	attach	 this	 function	 to	 the	periodic
interrupt:	BSP_PeriodicTask_Init(&checkbuttons,	10,	2);
Another	application	of	 function	pointers	 is	a	hook.	A	hook	 is	an	OS
feature	that	allows	the	user	to	attach	functions	to	strategic	places	in	the
OS.	 Examples	 of	 places	 we	 might	 want	 to	 place	 hooks	 include:
whenever	 the	 OS	 has	 finished	 initialization,	 the	 OS	 is	 running	 the
scheduler,	or	whenever	a	new	thread	is	created.	To	use	a	hook,	the	user
writes	 a	 function,	 calls	 the	OS	 and	 passes	 a	 function	 pointer.	When
that	event	occurs,	the	OS	calls	the	user	function.	Hooks	are	extremely
useful	for	debugging.
The	compiler	resolves	addresses	used	in	function	calls	during	linking.
Once	you	download	the	code,	you	cannot	change	it	unless	you	reedit
source	code,	recompile	and	redownload.	Callbacks	are	a	mechanism	to
change	which	function	gets	called	dynamically,	at	run	time.	In	a	more
complex	system,	 the	OS	and	the	user	code	might	not	be	compiled	at
the	same	 time.	One	could	compile	and	 load	 the	OS	onto	 the	system.
Later,	one	compiles	and	loads	the	user	code	onto	the	same	system.	The
two	modules	are	then	linked	together	using	function	pointers.	For	an
example	 of	 this	 typeof	 linking,	 see OS_AddThreads 	 later	 in	 the
chapter.



3.3.	Thread	Management

3.3.1.	Two	types	of	threads
A	 fundamental	 concept	 in	 operating	 systems	 is	 the	 notion	 of	 an
execution	context	referred	to	as	a	thread.	We	introduced	threads	and
their	 components	 in	Section	 3.1.3,	we	will	 now	 look	 at	 the	 types	 of
threads	and	how	they	are	treated	differently	in	the	OS.	We	define	two
types	of	threads	in	this	book.	Event	threads	are	attached	to	hardware
and	should	execute	on	changes	in	hardware	status.	Examples	include
periodic	threads	that	should	be	executed	at	a	fixed	rate	(for	example,
data	 acquisition	 and	 control),	 input	 threads	 that	 should	 be	 executed
when	 new	 data	 are	 available	 at	 the	 input	 device	 (like	 the	 operator
pushed	a	button),	and	output	threads	that	should	be	executed	when	the
output	device	 is	 idle	and	new	data	are	available	for	output.	They	are
typically	defined	as void-void 	functions.	The	time	to	execute	an	event
thread	 should	 be	 short	 and	 bounded.	 In	 other	 words,	 event	 threads
must	 execute	 and	 return.	 The	 time	 to	 execute	 an	 event	 thread	must
always	be	less	than	a	small	value	(e.g.,	10µs).	In	an	embedded	system
without	an	OS,	event	threads	are	simply	the	interrupt	service	routines
(ISRs).	 However,	 with	 a	 RTOS,	 we	 will	 have	 the	 OS	 manage	 the
processor	 and	 I/O,	 and	 therefore	 the	OS	will	manage	 the	 ISRs.	 The
user	will	write	 the	 software	executed	as	an	event	 thread,	but	 the	OS
will	 manage	 the	 ISR	 and	 call	 the	 appropriate	 event	 thread.
Communication	 between	 threads	 will	 be	 managed	 by	 the	 OS.	 For
example,	threads	could	use	a	FIFO	to	pass	data.

void	periodicThread(void){	//	called	periodically
		PerformTask();

}

void	inputThread(void){	//	new	input	is	available
		data	=	ReadInput();	//	input	data	from	hardware
		Send(data);									//	pass	data	to	other	software

}



void	outputThread(void){	//	output	is	idle
		data	=	Recv();						//	get	data	from	other	software
		WriteOutput(data);		//	output	data	to	hardware

}

The	 second	 type	 of	 thread	 is	 a	 main	 thread.	 Without	 an	 OS,
embedded	systems	typically	have	one	main	program	that	 is	executed
on	start	up.	This	main	initializes	the	system	and	defines	the	high	level
behavior	of	the	system.	In	an	OS	however,	we	will	have	multiple	main
threads.	Main	 threads	 execute	 like	main	 programs	 that	 never	 return.
These	 threads	 execute	 an	 initialization	 once	 and	 then	 repeatedly
execute	a	sequence	of	steps	within	a	while	loop.	Here	in	this	chapter,
we	will	specify	all	the	main	threads	at	initialization	and	these	threads
will	exist	 indefinitely.	However,	 in	 later	chapters	we	will	allow	main
threads	to	be	created	during	execution,	and	we	will	allow	main	threads
to	be	destroyed	dynamically.

void	mainThread(void){
		Init();
		while(1){
				Body();

}

}

Table	 3.2	 compares	 event	 and	main	 threads.	 For	 now,	main	 threads
will	run	indefinitely,	but	later	in	the	class	we	will	allow	main	threads
to	be	terminated	if	their	task	is	complete.	It	will	be	simpler	if	we	will
create	all	the	main	threads	statically	at	the	time	the	OS	launches.	To	be
more	 dynamic	 we	 will	 allow	 the	 user	 to	 create	 main	 threads
dynamically	at	run	time.

Event	Thread Main	Thread
Triggered	by	hardware
Must	return

Created	when	OS
launches

Runs	indefinitely
Short	execution	time Unbounded	execution



time
No	waiting Allowed	to	wait
Finite	number	of	loops

(definite)
Indefinite	or	infinite

loops
Table	3.2.	Comparison	of	event	and	main	threads.

3.3.2.	Thread	Control	Block	(TCB)
Figure	 3.10	 shows	 three	 threads.	 Each	 thread	 has	 a	 thread	 control
block	(TCB)	encapsulating	the	state	of	the	thread.	For	now,	a	thread’s
TCB	we	will	only	maintain	a	link	to	its	stack	and	a	link	to	the	TCB	of
the	next	thread.

Figure	3.10.	Three	threads	have	their	TCBs	in	a	circular	linked
list.

The RunPt 	points	to	the	TCB	of	the	thread	that	is	currently	running.
The	next	 field	 is	 a	 pointer	 chaining	 all	 three	 TCBs	 into	 a	 circular
linked	 list.	 Each	 TCB	 has	 an	 sp	 field.	 If	 the	 thread	 is	 running	 it	 is
using	the	real	SP	for	its	stack	pointer.	However,	the	other	threads	have
their	 stack	 pointers	 saved	 in	 this	 field.	 Other	 fields	 that	 define	 a
thread’s	 state	 such	 as,	 status,	 Id,	 sleeping,	 age,	 and	 priority	 will	 be
added	later.	However,	for	your	first	RTOS,	the	sp	and	next	fields	will
be	sufficient.	The	scheduler	 traverses	 the	 linked	 list	of	TCBs	 to	 find
the	next	thread	to	run.
In	Figure	3.11we	illustrate	how	a	round	robin	thread	scheduler	works.



In	 this	example	 there	are	 three	 threads	 in	a	circular	 linked	 list.	Each
thread	 runs	 for	 a	 fixed	 amount	 of	 time,	 and	 a	 periodic	 interrupt
suspends	the	running	thread	and	switches RunPt 	to	the	next	thread	in
the	circular	list.	The	scheduler	then	launches	the	next	thread.
The	Thread	Control	Block	 (TCB)	will	store	 the	 information	private
to	 each	 thread.	 There	will	 be	 a	 TCB	 structure	 and	 a	 stack	 for	 each
thread.	While	a	thread	is	running,	it	uses	the	actual	Cortex	M	hardware
registers	 (Figure	3.11).	Program	3.3	 shows	a	TCB	structure	with	 the
necessary	components	 for	 three	 threads:	1.	A	pointer	so	it	can	be
chained	into	a	linked	list
2.	The	value	of	its	stack	pointer
	

In	 addition	 to	 these	 necessary	 components,	 the	 TCB	 might	 also
contain:
3.	Status,	showing	resources	that	this	thread	has	or	wants
4.	A	sleep	counter	used	to	implement	sleep	mode
5.	Thread	number,	type,	or	name
6.	Age,	or	how	long	this	thread	has	been	active
7.	Priority	(not	used	in	a	round	robin	scheduler)
	

#define	NUMTHREADS		3							//	maximum	number	of	threads
#define	STACKSIZE			100						//	number	of	32-bit	words	in	stack
struct	tcb{
		int32_t	*sp;							//	pointer	to	stack,	valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer

};

typedef	struct	tcb	tcbType;
tcbType	tcbs[NUMTHREADS];
tcbType	*RunPt;
int32_t	Stacks[NUMTHREADS][STACKSIZE];
Program	3.3.	TCBs	for	up	to	3	threads,	each	stack	is	400	bytes.



Figure	3.11.	The	running	thread	uses	the	actual	registers,	while
the	other	threads	have	their	register	values	saved	on	the	stack.
For	the	running	thread	the	sp	field	is	not	valid,	while	the	sp	field
on	other	threads	points	to	the	top	of	its	stack.

3.3.3.	Creation	of	threads
Program	 3.4	 shows	 how	 to	 create	 three	 TCBs	 that	 will	 run	 three
programs.	First,	 the	three	TCBs	are	linked	in	a	circular	list.	Next	the
initial	stack	for	each	thread	is	created	in	such	a	way	that	it	looks	like	it
has	 been	 running	 already	 and	 has	 been	 previously	 suspended.	 The
PSR	 must	 have	 the	 T-bit	 equal	 to	 1	 because	 the	 Arm	 Cortex	 M
processor	 always	 runs	 in	 Thumb	 mode.	 The	 PC	 field	 on	 the	 stack
contains	the	starting	address	of	each	thread.	The	initial	values	for	the
other	 registers	 do	not	matter,	 so	 they	have	been	 initialized	 to	 values
that	will	assist	in	debugging.	This	idea	came	from	the	os_cpu_c.c	file
in	Micrium	µC/OS-II.	The	allocation	of	the	stack	areas	must	be	done
such	that	the	addresses	are	double-word	aligned.

void	SetInitialStack(int	i){
		tcbs[i].sp	=	&Stacks[i][STACKSIZE-16];	//	thread	stack	pointer
		Stacks[i][STACKSIZE-1]	=	0x01000000;			//	Thumb	bit
		Stacks[i][STACKSIZE-3]	=	0x14141414;			//	R14
		Stacks[i][STACKSIZE-4]	=	0x12121212;			//	R12
		Stacks[i][STACKSIZE-5]	=	0x03030303;			//	R3
		Stacks[i][STACKSIZE-6]	=	0x02020202;			//	R2
		Stacks[i][STACKSIZE-7]	=	0x01010101;			//	R1
		Stacks[i][STACKSIZE-8]	=	0x00000000;			//	R0



		Stacks[i][STACKSIZE-9]	=	0x11111111;			//	R11
		Stacks[i][STACKSIZE-10]	=	0x10101010;		//	R10
		Stacks[i][STACKSIZE-11]	=	0x09090909;		//	R9
		Stacks[i][STACKSIZE-12]	=	0x08080808;		//	R8
		Stacks[i][STACKSIZE-13]	=	0x07070707;		//	R7
		Stacks[i][STACKSIZE-14]	=	0x06060606;		//	R6
		Stacks[i][STACKSIZE-15]	=	0x05050505;		//	R5
		Stacks[i][STACKSIZE-16]	=	0x04040404;		//	R4

}

int	OS_AddThreads(void(*task0)(void),	void(*task1)(void),
																	void(*task2)(void)){
int32_t	status;
		status	=	StartCritical();
		tcbs[0].next	=	&tcbs[1];	//	0	points	to	1
		tcbs[1].next	=	&tcbs[2];	//	1	points	to	2
		tcbs[2].next	=	&tcbs[0];	//	2	points	to	0
		SetInitialStack(0);	Stacks[0][STACKSIZE-2]	=	(int32_t)(task0);	//	PC
		SetInitialStack(1);	Stacks[1][STACKSIZE-2]	=	(int32_t)(task1);	//	PC
		SetInitialStack(2);	Stacks[2][STACKSIZE-2]	=	(int32_t)(task2);	//	PC
		RunPt	=	&tcbs[0];							//	thread	0	will	run	first
		EndCritical(status);
		return	1;															//	successful

}

Program	3.4.	OS	code	used	to	create	three	active	threads.

Even	 though	 the	 thread	 has	 not	 yet	 been	 run,	 it	 is	 created	 with	 an
initial	 stack	 that	 “looks	 like”	 it	 had	been	previously	 suspended	by	 a
SysTick	 interrupt.	 Notice	 that	 the	 initial	 value	 loaded	 into	 the	 PSR
when	 the	 thread	 runs	 for	 the	 first	 time	has	T=1.	Program	3.5	 shows
simple	 user	 software	 that	 can	 be	 run	 on	 this	 RTOS.	 Each	 thread
increments	 a	 counter	 and	 toggles	 an	 output	 pin.	 The	 three	 counters
should	 be	 approximately	 equal.	 Profile	 bit	 0	 toggles	 quickly	 while
thread	0	is	running.	Profile	bits	1	and	2	toggle	when	running	threads	1
and	2	respectively.

void	Task0(void){



		Count0	=	0;
		while(1){
				Count0++;
				Profile_Toggle0();				//	toggle	bit

}

}

void	Task1(void){
		Count1	=	0;
		while(1){
				Count1++;
				Profile_Toggle1();				//	toggle	bit

}

}

void	Task2(void){
		Count2	=	0;
		while(1){
				Count2++;
				Profile_Toggle2();				//	toggle	bit

}

}

#define	THREADFREQ	500		//	frequency	in	Hz
int	main(void){							
		OS_Init();												//	initialize,	disable	interrupts
		Profile_Init();							//	enable	digital	I/O	on	profile	pins
		OS_AddThreads(&Task0,	&Task1,	&Task2);
		OS_Launch(BSP_Clock_GetFreq()/THREADFREQ);	//	interrupts	enabled
		return	0;													//	this	never	executes

}

Program	3.5.	Example	user	code	with	three	threads.



3.3.4.	Launching	the	OS
SysTick	will	be	used	to	perform	the	preemptive	thread	switching.	We
will	 set	 the	 SysTick	 to	 the	 lowest	 level	 so	 we	 know	 it	 will	 only
suspend	foreground	threads	(Program	3.6).

void	OS_Init(void){	
		DisableInterrupts();
		BSP_Clock_InitFastest();//	set	processor	clock	to	desired	speed

}

Program	3.6.	RTOS	initialization.

To	start	the	RTOS,	we	write	code	that	arms	the	SysTick	interrupts	and
unloads	 the	 stack	 as	 if	 it	were	 returning	 from	 an	 interrupt	 (Program
3.7).	The	units	of	theTimeSlice	are	in	bus	cycles.	The	bus	cycle	time
on	the	TM4C123	is	12.5ns,	and	on	the	MSP432	the	bus	cycle	time	is
20.83ns.

void	OS_Launch(uint32_t	theTimeSlice){
		STCTRL	=	0;																//	disable	SysTick	during	setup
		STCURRENT	=	0;															//	any	write	to	current	clears	it
		SYSPRI3	=(SYSPRI3&0x00FFFFFF)|0xE0000000;	//	priority	7
		STRELOAD	=	theTimeSlice	-	1;	//	reload	value
		STCTRL	=	0x00000007;									//	enable,	core	clock	and	interrupt	arm
		StartOS();																		//	start	on	the	first	task

}

Program	3.7.	RTOS	launch.

The StartOS 	 is	 written	 in	 assembly	 (Program	 3.8).	 In	 this	 simple
implementation,	 the	 first	user	 thread	 is	 launched	by	setting	 the	 stack
pointer	to	the	value	of	the	first	thread,	then	pulling	all	the	registers	off
the	 stack	 explicitly.	 The	 stack	 is	 initially	 set	 up	 like	 it	 had	 been
running	 previously,	 was	 interrupted	 (8	 registers	 pushed),	 and	 then
suspended	(another	8	 registers	pushed).	When	 launch	 the	first	 thread
for	 the	 first	 time	we	do	not	 execute	 a	 return	 from	 interrupt	 (we	 just
pull	 16	 registers	 from	 its	 stack).	 	 Thus,	 the	 state	 of	 the	 thread	 is
initialized	and	is	now	ready	to	run.



StartOS
				LDR					R0,	=RunPt		;	currently	running	thread
				LDR					R1,	[R0]					;	R1	=	value	of	RunPt
				LDR					SP,	[R1]					;	new	thread	SP;	SP	=	RunPt->sp;
				POP					{R4-R11}					;	restore	regs	r4-11
				POP					{R0-R3}					;	restore	regs	r0-3
				POP					{R12}
				ADD					SP,	SP,	#4		;	discard	LR	from	initial	stack
				POP					{LR}									;	start	location
				ADD					SP,	SP,	#4		;	discard	PSR
				CPSIE			I											;	Enable	interrupts	at	processor	level
				BX						LR										;	start	first	thread
Program	3.8.	Assembly	code	for	the	thread	switcher.

3.3.5.	Switching	threads
The	SysTick	ISR,	written	in	assembly,	performs	the	preemptive	thread
switch	 (Program	3.9).	SysTick	 interrupts	will	 be	 triggered	at	 a	 fixed
rate	(e.g.,	every	2	ms	in	this	example.	Because	SysTick	is	priority	7,	it
cannot	preempt	any	background	threads.	This	means	SysTick	can	only
suspend	 foreground	 threads.	 1)	 The	 processor	 automatically	 saves
eight	 registers	 (R0-R3,R12,	 LR,PC	 and	 PSR)	 on	 the	 stack	 as	 it
suspends	 execution	 of	 the	 main	 program	 and	 launches	 the	 ISR.	 2)
Since	the	thread	switcher	has	read-modify-write	operations	to	the	SP
and	to RunPt ,	we	need	to	disable	interrupts	to	make	the	ISR	atomic.
3)	Here	we	 explicitly	 save	 the	 remaining	 registers	 (R4-R11).	Notice
the	16	registers	on	the	stack	match	exactly	the	order	of	the	16	registers
established	 by	 the 	 OS_AddThreads function.	 4)	 Register	 R1	 is
loaded	 with RunPt ,	 which	 points	 to	 the	 TCB	 of	 the	 thread	 in	 the
process	 of	 being	 suspended.	 5)	By	 storing	 the	 actual	 SP	 into	 the	 sp
field	of	the	TCB,	we	have	finished	suspending	the	thread.	To	repeat,	to
suspend	a	thread	we	push	all	its	registers	on	its	stack	and	save	its	stack
pointer	 in	 its	TCB.	6)	To	 implement	 round	 robin,	we	 simply	 choose
the	next	 thread	in	the	circular	 linked	list	and	update RunPt 	with	 the
new	value.	The	#4	is	used	because	the	next	field	is	the	second	entry	in
the	 TCB.	 We	 will	 change	 this	 step	 later	 to	 implement	 sleeping,
blocking,	 and	 priority	 scheduling.	 7)	 The	 first	 step	 of	 launching	 the
new	thread	is	to	establish	its	stack	pointer.	8)	We	explicitly	pull	eight



registers	 from	 the	 stack.	 9)	We	 enable	 interrupts	 so	 the	 new	 thread
runs	 with	 interrupts	 enabled.	 10)	 The	 LR	 contains	 0xFFFFFFF9
because	a	main	program	using	MSP	was	suspended	by	SysTick.	The
BX	 LR	 instruction	 will	 automatically	 pull	 the	 remaining	 eight
registers	 from	 the	 stack,	 and	 now	 the	 processor	will	 be	 running	 the
new	thread.
The	first	time	a	thread	runs,	the	only	registers	that	must	be	set	are	PC,
SP,	 the	 T-bit	 in	 the	 PSR	 (T=1),	 and	 the	 I-bit	 in	 the	 PSR	 (I=0).	 For
debugging	purposes,	we	do	initialize	the	other	registers	the	first	 time
each	 thread	 is	 run,	 but	 these	 other	 initial	 values	 do	 not	 matter.	We
learned	 this	 trick	 of	 setting	 the	 initial	 register	 value	 to	 the	 register
number	 (e.g.,	 R5	 is	 initially	 0x05050505)	 from	Micrium	 uC/OS-II.
Notice	 in	 this	 simple	 example,	 the	 first	 time	Task0	 runs	 it	 will	 be
executed	 as	 a	 result	 of	StartOS.	However,	 the	 first	 time	Task1	 and
Task2	 are	 run,	 it	 will	 be	 executed	 as	 a	 result	 of	 running	 the
SysTick_Handler.	In	particular,	the	initial	LR	and	PSR	for	Task0	are
set	explicitly	in	StartOS,	while	the	initial	LR	and	PSR	for	Task1	and
Task2	 are	 defined	 in	 the	 initial	 stack	 set	 in	 SetInitialStack.	 An
alternative	approach	to	launching	would	have	been	to	set	the	SP	to	the
R4	field	of	its	stack,	set	the	LR	to	0xFFFFFFF9	and	jump	to	line	8	of
the	 scheduler.	Most	 commercial	RTOS	 use	 this	 alternative	 approach
because	 it	makes	 it	 easier	 to	 change.	But	we	decided	 to	 present	 this
StartOS	because	we	feel	it	is	easier	to	understand	the	steps	needed	to
launch.	 Figure	 3.12	 shows	 three	 threads	 running	 in	 a	 round	 robin
fashion.



Figure	3.12.	Three	threads	have	their	TCBs	in	a	circular	linked
list.	“**sp**”	means	this	field	is	invalid	for	the	one	thread	that	is
actually	running.

SysTick_Handler																;	1)	Saves	R0-R3,R12,LR,PC,PSR
				CPSID			I																		;	2)	Prevent	interrupt	during	switch
				PUSH				{R4-R11}											;	3)	Save	remaining	regs	r4-11
				LDR					R0,	=RunPt									;	4)	R0=pointer	to	RunPt,	old	thread
				LDR					R1,	[R0]											;				R1	=	RunPt
				STR					SP,	[R1]											;	5)	Save	SP	into	TCB
				LDR					R1,	[R1,#4]								;	6)	R1	=	RunPt->next
				STR					R1,	[R0]											;				RunPt	=	R1
				LDR					SP,	[R1]											;	7)	new	thread	SP;	SP	=	RunPt->sp;
				POP					{R4-R11}											;	8)	restore	regs	r4-11
				CPSIE			I																		;	9)	tasks	run	with	interrupts	enabled
				BX						LR																;	10)	restore	R0-R3,R12,LR,PC,PSR
Program	3.9.	Assembly	code	for	the	thread	switcher.

3.3.6.	Profiling	the	OS
You	can	find	this	simple	RTOS	in	the	starter	projects	as	RTOS_xxx,
where	xxx	refers	to	the	specific	microcontroller	on	which	the	example
was	 tested.	 Figures	 3.13	 and	 3.14	 show	 profiles	 of	 this	 RTOS	 at
different	 time	 scales.	We	 can	 estimate	 the	 thread	 switch	 time	 to	 be
about	0.8	µs,	because	of	the	gap	between	the	last	edge	on	one	pin	to
the	 first	edge	on	 the	next	pin.	 In	 this	case	because	 the	 thread	switch
occurs	 every	 2	 ms,	 the	 0.8-µs	 thread-switch	 overhead	 is	 not
significant.



Figure	3.13.	The	RTOS	runs	three	threads	by	giving	each	a	2ms,
measured	in	simulator	for	the	TM4C123.

Figure	3.14.	Profile	showing	the	thread	switch	time	is	about	0.8
µs,	measured	in	simulator	for	the	TM4C123.

3.3.7.	Linking	assembly	to	C
One	 of	 the	 limitations	 of	 the	 previous	 scheduler	 is	 that	 it’s	 written
entirely	in	assembly.	Although	fast,	assembly	programming	is	hard	to
extend	and	hard	to	debug.	One	simple	way	to	extend	this	round	robin
scheduler	 is	 to	have	 the	 assembly	SysTick	 ISR	call	 a	C	 function,	 as
shown	 in	Program	3.10.	The	purpose	of	 the	C	 function	 is	 to	 run	 the



scheduler	and	update	the	RunPt	with	the	thread	to	run	next.	You	can
find	this	simple	RTOS	as	RoundRobin_xxx,	where	xxx	refers	 to	 the
specific	microcontroller	on	which	the	example	was	tested.
void	Scheduler(void){
		RunPt	=	RunPt->next;				//	Round	Robin

}

Program	3.10.	Round	robin	scheduler	written	in	C.

The	 new	SysTick	 ISR	 calls	 the	C	 function	 in	 order	 to	 find	 the	 next
thread	to	run,	Program	3.11.	We	must	save	R0	and	LR	because	these
registers	 will	 not	 be	 preserved	 by	 the	 C	 function. IMPORT 	 is	 an
assembly	 pseudo-op	 to	 tell	 the	 assembler	 to	 find	 the	 address	 of
Scheduler	 from	 the	 linker	 when	 all	 the	 files	 are	 being	 stitched
together.	 Since	 this	 is	 an	 ISR,	 recall	 that	LR	 contains	 0xFFFFFFF9,
signifying	 we	 are	 running	 an	 ISR.	 We	 had	 to	 save	 the	 LR	 before
calling	 the	 function	 because	 the	 BL	 instruction	 uses	 LR	 to	 save	 its
return	 address.	 The	 POP	 instruction	 restores	 LR	 to	 0xFFFFFFF9.
According	 to	 AAPCS,	 we	 need	 to	 push/pop	 an	 even	 number	 of
registers	 (8-byte	 alignment)	 and	 functions	 are	 allowed	 to	 freely
modify	 R0-R3,	 R12.	 For	 these	 two	 reasons,	 we	 also	 pushed	 and
popped	R0.	Note	that	the	other	registers,	R1,R2,R3	and	R12	are	of	no
consequence	to	us,	so	we	don’t	bother	saving	them.

				IMPORT	Scheduler
SysTick_Handler																;	1)	Saves	R0-R3,R12,LR,PC,PSR
				CPSID			I																		;	2)	Prevent	interrupt	during	switch
				PUSH				{R4-R11}											;	3)	Save	remaining	regs	r4-11
				LDR					R0,	=RunPt									;	4)	R0=pointer	to	RunPt,	old	thread
				LDR					R1,	[R0]											;				R1	=	RunPt
				STR					SP,	[R1]											;	5)	Save	SP	into	TCB
;				LDR					R1,	[R1,#4]								;	6)	R1	=	RunPt->next
;				STR					R1,	[R0]											;				RunPt	=	R1
				PUSH				{R0,LR}
				BL						Scheduler
				POP					{R0,LR}
				LDR					R1,	[R0]											;	6)	R1	=	RunPt,	new	thread
				LDR					SP,	[R1]											;	7)	new	thread	SP;	SP	=	RunPt->sp;



				POP					{R4-R11}											;	8)	restore	regs	r4-11
				CPSIE			I																		;	9)	tasks	run	with	interrupts	enabled
				BX						LR																;	10)	restore	R0-R3,R12,LR,PC,PSR
Program	3.11.	Assembly	code	for	the	thread	switcher	with	call	to
the	scheduler	written	in	C.

In	this	implementation,	we	are	running	the	C	function	Scheduler	with
interrupts	disabled.	On	one	hand	this	is	good	because	all	read-modify-
write	 operations	 to	 shared	 globals	 will	 execute	 atomically,	 and	 not
create	 critical	 sections.	 On	 the	 other	 hand,	 since	 interrupts	 are
disabled,	 it	will	 delay	other	 possibly	more	 important	 interrupts	 from
being	 served.	Running	with	 interrupts	 disabled	will	 cause	 time	 jitter
for	periodic	threads	and	latency	for	event-response	threads.	A	way	to
minimize	 jitter	 is	 to	 run	 the	 periodic	 tasks	 inside	 this	 Scheduler
function	itself.

3.3.8.	Periodic	tasks
A	very	appropriate	feature	of	a	RTOS	is	scheduling	periodic	tasks.	If
the	 number	 of	 periodic	 tasks	 is	 small,	 the	 OS	 can	 assign	 a	 unique
periodic	 hardware	 timer	 for	 each	 task.	Another	 simple	 solution	 is	 to
run	the	periodic	tasks	in	the	scheduler.	For	example,	assume	the	thread
switch	 is	 occurring	 every	 1	 ms,	 and	 we	 wish	 to	 run	 the
function PeriodicUserTask() 	every	10	ms,	then	we	could	modify	the
scheduler	as	shown	in	Figure	3.15	and	Program	3.12.	Assume	the	OS
initialized	 the	 counter	 to	0.	 In	order	 for	 this	OS	 to	 run	properly,	 the
time	to	execute	the	periodic	task	must	be	very	short	and	always	return.
These	periodic	tasks	cannot	spin	or	block.
This	 approach	 has	 very	 little	 time	 jitter	 because	 SysTick	 interrupts
occur	 at	 a	 fixed	 and	 accurate	 rate.	 The	 SysTick	 ISR	 calls	 the
Scheduler,	 and	 then	 the	Scheduler	 calls	 the	user	 task.	The	execution
delay	 from	 the	 SysTick	 trigger	 to	 the	 running	 of	 the	 user	 task	 is	 a
constant,	so	the	time	between	executions	of	the	user	task	is	fixed	and
exactly	equal	to	the	SysTick	trigger	period.
	



Figure	3.15.	Simple	mechanism	to	implement	periodic	event
threads	is	to	run	them	in	the	scheduler.

uint32_t	Counter;
#define	NUM	10
void	(*PeriodicTask1)(void);	//	pointer	to	user	function
void	Scheduler(void){
		if((++Counter)	==	NUM){
				(*PeriodicTask1)();						//	runs	every	NUM	ms
				Counter	=	0;

}

		RunPt	=	RunPt->next;							//	Round	Robin	scheduler

}

Program	3.12.	Round	robin	scheduler	with	periodic	tasks.

If	 there	are	multiple	 real-time	periodic	 tasks	 to	 run,	 then	you	 should
schedule	at	most	one	of	them	during	each	SysTick	ISR	execution.	This
way	the	time	to	execute	one	periodic	task	will	not	affect	the	time	jitter
of	 the	other	periodic	tasks.	For	example,	assume	the	thread	switch	is
occurring	every	1	ms,	and	we	wish	to	run PeriodicUserTask1() every
10	 ms,	 and	 run PeriodicUserTask2() 	 every	 25	 ms.	 In	 this	 simple
approach,	 the	 period	 of	 each	 task	 must	 be	 a	 multiple	 of	 the	 thread
switch	period.	I.e.,	the	periodic	tasks	must	be	multiples	of	1	ms.	First,



we	find	the	least	common	multiple	of	10	and	25,	which	is	50.	We	let
the	counter	run	from	0	to	49,	and	schedule	the	two	tasks	at	the	desired
rates,	but	at	non-overlapping	times	as	illustrated	in	Program	3.13.
uint32_t	Counter;
void	Scheduler(void){
		Counter	=	(Counter+1)%50;	//	0	to	49
		if((Counter%10)	==	1){				//	1,	11,	21,	31	and	41
				PeriodUserTask1();

}

		if((Counter%25)	==	0){				//	0	and	25
				PeriodUserTask2();

}

		RunPt	=	RunPt->next;						//	Round	Robin	scheduler

}

Program	3.13.	Round	robin	scheduler	with	two	periodic	tasks.

Consider	a	more	difficult	example,	where	we	wish	to	run	Task0	every
1	ms,	Task1	 every	 1.5	ms	 and	Task2	 every	 2	ms.	 In	 order	 to	 create
non-overlapping	executions,	we	will	need	a	thread	switch	period	faster
than	1	kHz,	so	we	don’t	have	to	run	Task0	every	interrupt.	So,	let’s	try
working	 it	out	 for	2	kHz,	or	0.5	ms.	The	common	multiple	of	1,	1.5
and	2	is	6	ms.	So	we	use	a	counter	from	0	to	11,	and	try	to	schedule
the	 three	 tasks.	Start	with	Task0	running	every	other,	and	 then	 try	 to
schedule	Task1	running	every	third.	There	is	a	conflict	at	4	and	10.

Task0:	runs	every	1	ms	at	counter	values	0,	2,	4,	6,	8,	and	10
Task1:	runs	every	1.5	ms	at	counter	values	1,	4,	7,	and	10
	
So,	 let’s	 try	 running	 faster	 at	4	kHz	or	 every	0.25	ms.	The	common
multiple	is	still	6	ms,	but	now	the	counter	goes	from	0	to	23.	We	can
find	a	solution	Task0:	runs	every	1	ms	at	counter	values	0,	4,	8,
12,	16,	and	20



Task1:	runs	every	1.5	ms	at	counter	values	1,	7,	13,	and	19
Task2:	runs	every	2	ms	at	counter	values	2,	10,	and	18
	
In	 order	 this	 system	 to	 operate,	 the	maximum	 time	 to	 execute	 each
task	must	be	very	short	compared	to	the	period	used	to	switch	threads.



3.4.	Semaphores
Remember	 that	 when	 an	 embedded	 system	 employs	 a	 real-time
operating	 system	 to	manage	 threads,	 typically	 this	 system	 combines
multiple	hardware/software	objects	to	solve	one	dedicated	problem.	In
other	 words,	 the	 components	 of	 an	 embedded	 system	 are	 tightly
coupled.	For	example,	in	lab	all	threads	together	implement	a	personal
fitness	 device.	 The	 fact	 that	 an	 embedded	 system	 has	 many
components	 that	 combine	 to	 solve	 a	 single	 problem	 leads	 to	 the
criteria	that	threads	must	have	mechanisms	to	interact	with	each	other.
The	fact	that	an	embedded	system	may	be	deployed	in	safety-critical
environments	 also	 implies	 that	 these	 interactions	 be	 effective	 and
reliable.
We	 will	 use	 semaphores	 to	 implement	 synchronization,	 sharing	 and
communication	between	threads.	A	semaphore	is	a	counter	with	three
functions:	 OS_InitSemaphore,	 OS_Wait,	 and	 OS_Signal.
Initialization	occurs	once	at	the	start,	but	wait	and	signal	are	called	at
run	time	to	provide	synchronization	between	threads.	Other	names	for
wait	are	pend	and	P	 (derived	 from	 the	Dutch	word	proberen,	which
means	 to	 test).	Other	names	for	signal	are	post	and	V	 (derived	from
the	Dutch	word	verhogen,	which	means	to	increment).
The	 concept	 of	 a	 semaphore	was	 originally	 conceived	 by	 the	Dutch
computer	scientist	Edsger	Dijkstra	in	1965.	He	received	many	awards
including	 the	 1972	 Turing	 Award.	 He	 was	 the	 Schlumberger
Centennial	Chair	of	Computer	Sciences	at	The	University	of	Texas	at
Austin	 from	 1984	 until	 2000.	 Interestingly	 he	 was	 one	 of	 the	 early
critics	of	the	GOTO	instruction	in	high-level	languages.	Partly	due	to
his	passion,	structured	programming	languages	like	C,	C++	and	Java
have	 almost	 completely	 replaced	 non-structured	 languages	 like
BASIC,	COBOL,	and	FORTRAN.
In	 this	 book	we	will	 develop	 three	 implementations	 of	 semaphores,
but	we	will	begin	with	the	simplest	implementation	called	“spinlock”
(Figure	 3.16).	 Each	 semaphore	 has	 a	 counter.	 If	 the	 thread
calls OS_Wait 	 with	 the	 counter	 equal	 to	 zero	 it	 will	 “spin”	 (do
nothing)	until	 the	counter	goes	above	zero	(Program	3.14).	Once	 the
counter	is	greater	than	zero,	the	counter	is	decremented,	and	the	wait



function	 returns.	 In	 this	 simple	 implementation,	 the OS_Signal just
increments	 the	 counter.	 In	 the	 context	 of	 the	 previous	 round	 robin
scheduler,	a	thread	that	is	“spinning”	will	perform	no	useful	work,	but
eventually	will	be	 suspended	by	 the	SysTick	handler,	 and	 then	other
threads	will	execute.	It	is	important	to	allow	interrupts	to	occur	while
the	 thread	 is	 spinning	 so	 that	 the	 software	 does	 not	 hang.	The	 read-
modify-write	operations	on	the	counter, s ,	is	a	critical	section.	So	the
read-modify-write	 sequence	 must	 be	 made	 atomic,	 because	 the
scheduler	might	 switch	 threads	 in	 between	 any	 two	 instructions	 that
execute	with	the	interrupts	enabled.	Program	3.14	shows	the	spinlock
implementation	of	semaphores.
	
	

Figure	3.16.	Flowcharts	of	a	spinlock	counting	semaphore.

In	the	C	implementation	of	spinlock	semaphores,	the	tricky	part	is	to
guarantee	all	read-modify-write	sequences	are	atomic.	The	while-loop
reads	the	counter,	which	is	always	run	with	interrupts	disabled.	If	the
counter	 is	 greater	 than	 0,	 it	 will	 decrement	 and	 store,	 such	 that	 the
entire	read-modify-write	sequence	is	run	with	interrupts	disabled.	The
while-loop	 must	 spend	 some	 time	 with	 interrupts	 enabled	 to	 allow
other	 threads	 an	 opportunity	 to	 run,	 giving	 other	 threads	 an
opportunity	to	call	signal.
	

void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		while((*s)	==	0){



				EnableInterrupts();				//	<-	interrupts	can	occur	here
DisableInterrupts();

}

		(*s)	=	(*s)	-	1;
		EnableInterrupts();

}																		

void	OS_Signal(int32_t	*s){
		DisableInterrupts();
		(*s)	=	(*s)	+	1;
		EnableInterrupts();

}

Program	3.14.	A	spinlock	counting	semaphore.
Checkpoint	3.9:What	happens	if	we	remove	just
the EnableInterrupts 	DisableInterrupts	operations	from	while-
loop	of	the	spinlock OS_Wait ?
Checkpoint	3.10:What	happens	if	we	remove	all
the DisableInterrupts	EnableInterrupts operations	from	the
spinlock OS_Wait ?	

In	 Program	 3.15,	 Register	 R0	 points	 to	 the	 semaphore	 counter.	 The
LDREX	 STREXcombination	 is	 a	 read-modify-write	 sequence	 that
implements	mutual	 exclusion.	During	 a	 potential	 race	 condition,	 the
first	 thread	 to	 execute	 LDREX	 captures	 exclusive	 access	 to	 the
counter.	When	the	thread	with	exclusive	access	performs	STREX	then
the	 actual	 store	 will	 occur,	 and	 then	 the	 counter	 is	 considered	 free
again.	 If	 a	 second	 thread	 executes	 LDREX	 during	 the	 period	 of
exclusive	access	of	another	thread,	it	will	capture	an	invalid	version	of
the	 counter.	 However,	 when	 this	 second	 thread	 attempts	 STREX,	 it
will	 not	 store.	 In	 this	 case,	 the	 assembly	 instruction STREXPL
R2,R1,[R0] 	attempts	 to	store	 the	value	 in	R1	 through	 the	pointer	 in
R0.	R2	 is	 loaded	with	0	 if	 the	store	was	allowed	because	 this	 thread
had	 exclusive	 access.	On	 the	 other	 hand,	R2	 is	 loaded	with	 1	 if	 the
store	 did	 not	 happen	 because	 another	 thread	 had	 ownership.	 In	 this



example,	if	R2	is	nonzero,	it	will	try	it	again.

OS_Wait													;R0	points	to	counter
			LDREX			R1,	[R0]	;	counter
			SUBS				R1,	#1			;	counter	-1,
			ITT					PL							;	ok	if	>=	0
			STREXPL	R2,R1,[R0]		;	try	update
			CMPPL			R2,	#0			;	succeed?
			BNE					OS_Wait		;	no,	try	again
			BX						LR
OS_Signal	;	R0	points	to	counter
			LDREX			R1,	[R0]		;	counter
			ADD					R1,	#1				;	counter	+	1
			STREX			R2,R1,[R0]		;	try	update
			CMP					R2,	#0				;	succeed?
			BNE					OS_Signal	;no,	try	again
			BX						LR

Program	3.15.	A	spinlock	counting	semaphore	that	does	not
require	disabling	interrupts.

Observation:	If	the	semaphores	can	be	implemented	without
disabling	interrupts,	then	the	latency	in	response	to	external	events
will	be	improved.

Spinlock	 semaphores	 are	 inefficient,	 wasting	 processor	 time	 when
they	spin	on	a	counter	with	a	value	of	zero.	In	the	subsequent	chapters
we	 will	 develop	 more	 complicated	 schemes,	 like	 cooperation	 and
blocking,	to	recover	this	lost	time.



3.5.	Thread	Synchronization

3.5.1.	Resource	sharing,	nonreentrant	code	or
mutual	exclusion

This	 section	 can	 be	 used	 in	 two	 ways.	 First	 it	 provides	 a	 short
introduction	 to	 the	 kinds	 of	 problems	 that	 can	 be	 solved	 using
semaphores.	 In	other	words,	 if	you	have	a	problem	similar	 to	one	of
these	 examples,	 then	 you	 should	 consider	 a	 thread	 scheduler	 with
semaphores	 as	 one	 possible	 implementation.	 Second,	 this	 section
provides	the	basic	approach	to	solving	these	particular	problems.
When	 we	 use	 a	 semaphore,	 we	 usually	 can	 assign	 a	 meaning	 or
significance	to	the	counter	value.	In	the	first	application	we	could	use
a	 semaphore	 as	 a	 lock	 so	 only	 one	 thread	 at	 a	 time	 has	 access	 to	 a
shared	object.	Another	name	for	this	semaphore	is	mutex,	because	 it
provides	mutual	exclusion.	If	the	semaphore	is	1	it	means	the	object	is
free.	If	 the	semaphore	is	0	it	means	the	object	 is	busy	being	used	by
another	thread.	For	this	application	the	initial	value	of	the	semaphore
( x )	is	1,	because	the	object	is	initially	free.	A	thread	calls	OS_Wait
to	 capture	 the	 object	 (decrement	 counter)	 and	 that	 same	 thread	 calls
OS_Signal	to	release	the	object	(increment	counter).

void	Thread1(void){
		Init1();
		while(1){
				OS_Wait(&x);

					//	exclusive	access
OS_Signal(&x);
					//	other	processing

}

}

void	Thread2(void){
		Init2();
		while(1){
				OS_Wait(&x);
					//	exclusive	access
	
				OS_Signal(&x);
					//	other	processing

}

}

	



The	objective	of	this	example	is	to	share	a	common	resource	on	a	one
at	a	 time	basis,	also	referred	 to	as	“mutually	exclusive”	fashion.	The
critical	section	(or	vulnerable	window)	of	nonreentrant	software	is	that
region	 that	 should	 only	 be	 executed	 by	 one	 thread	 at	 a	 time.	As	 an
example,	 the	 common	 resource	we	will	 consider	 is	 a	 display	 device
(LCD).	Mutual	exclusion	in	this	context	means	that	once	a	thread	has
begun	 executing	 a	 set	 of	 LCD	 functions,	 then	 no	 other	 thread	 is
allowed	to	use	the	LCD.	See	Program	3.16.	In	other	words,	whichever
thread	 starts	 to	 output	 to	 the	 LCD	 first	 will	 be	 allowed	 to	 finish
outputting.	The	thread	that	arrives	second	will	simply	wait	for	the	first
to	 finish.	Both	will	 be	 allowed	 to	output	 to	 the	LCD,	however,	 they
will	do	so	on	a	one	at	a	 time	basis.	The	mechanism	to	create	mutual
exclusion	is	 to	 initialize	 the	semaphore	 to	1,	execute OS_Wait at	 the
start	of	the	critical	section,	and	then	execute OS_Signal 	at	the	end	of
the	critical	section.	In	this	way,	the	information	sent	to	one	part	of	the
LCD	is	not	mixed	with	information	sent	to	another	part	of	the	LCD.
Initially,	the	semaphore	is	1.	If 	LCDmutex 	is	1,	it	means	the	LCDis
free.	 If LCDmutex 	 is	0,	 it	means	 the	LCD	is	busy	and	no	 thread	 is
waiting.	In	this	chapter,	a	thread	that	calls OS_Wait 	on	a	semaphore
already	0	will	wait	until	the	semaphore	becomes	greater	than	0.	For	a
spinlock	semaphore	in	this	application,	the	possible	values	are	only	0
(busy)	 or	 1	 (free).	 A	 semaphore	 that	 can	 only	 be	 0	 or	 1	 is	 called	 a
binary	semaphore.

void	Task5(void){
		Init5();
		while(1){
				Unrelated5();
				OS_Wait(&LCDmutex);
				BSP_LCD_SetCursor(5,		0);
				BSP_LCD_OutUDec4(Time/10,COLOR);
				BSP_LCD_SetCursor(5,		1);
				BSP_LCD_OutUDec4(Steps,COLOR);
				BSP_LCD_SetCursor(16,	0);
				BSP_LCD_OutUFix2_1(TempData,COLOR);
				BSP_LCD_SetCursor(16,	1);
				BSP_LCD_OutUDec4(SoundRMS,COLOR);
				OS_Signal(&LCDmutex);	

}

}



void	Task2(void){
		Init2();
		while(1){
				Unrelated2();
				OS_Wait(&LCDmutex);
				BSP_LCD_PlotPoint(Data,COLOR);
				BSP_LCD_PlotIncrement();
				OS_Signal(&LCDmutex);

}

}

Program	3.16.	Semaphores	used	to	implement	mutual	exclusion.

3.5.2.	Condition	variable
In	second	application	we	could	use	a	semaphore	for	synchronization.
One	 example	 of	 this	 synchronization	 is	 a	 condition	variable.	 If	 the
semaphore	is	0	it	means	an	event	has	not	yet	happened,	or	things	are
not	yet	ok.	If	the	semaphore	is	1	it	means	the	event	has	occurred	and
things	are	ok.	For	this	application	the	initial	value	of	the	semaphore	is
0,	because	 the	event	 is	yet	 to	occur.	A	 thread	calls	OS_Wait	 to	wait
for	the	event	(decrement	counter)	and	another	thread	calls	OS_Signal
to	signal	that	the	event	has	occurred	(increment	counter).	Let	event	be
a	semaphore	with	initial	value	of	0.

void	Thread1(void){
		Init1();

		OS_Wait(&event);
//	wait	for	event	to	occur
		while(1){
					//	other	processing

}

}

void	Thread2(void){
		Init2();
//	the	event	has	occurred
		OS_Signal(&event);	
		while(1){
					//	other	processing

}

}

3.5.3.	Thread	communication	between	two	threads



using	a	mailbox
The	objective	 of	 this	 example	 is	 to	 communicate	 between	 two	main
threads	using	a	mailbox.	In	this	first	implementation	both	the	producer
and	 consumer	 are	 main	 threads,	 which	 are	 scheduled	 by	 the	 round
robin	 thread	 scheduler	 (Program	 3.17).	 The	 producer	 first	 generates
data,	and	then	it	calls SendMail ().	Consumer	first	calls RecvMail (),
and	then	it	processes	the	data.	Mail	is	a	shared	global	variable	that	is
written	by	a	producer	 thread	and	read	by	a	consumer	 thread.	 	 In	 this
way,	 data	 flows	 from	 the	 producer	 to	 the	 consumer.	 The	 Send
semaphore	allows	 the	producer	 to	 tell	 the	consumer	 that	new	mail	 is
available.	The	Ack	semaphore	is	a	mechanism	for	the	consumer	to	tell
the	producer,	the	mail	was	received.		If	Send	is	0,	it	means	the	shared
global	 does	 not	 have	 valid	 data.	 If	 Send	 is	 1,	 it	 means	 the	 shared
global	does	have	valid	data.	If	Ack	is	0,	it	means	the	consumer	has	not
yet	read	 the	global.	 If	Ack	 is	1,	 it	means	 the	consumer	has	read	 the
global.	 The	 sequence	 of	 operation	 depends	 on	 which	 thread	 arrives
first.	Initially,	semaphores	Send	and	Ack	are	both	0.	Consider	the	case
where	the	producer	executes	first.

Execution 											 	Mail 	 Send 		 Ack 			 Comments	Initially	none		
0			0
Producer	sets	Mail	valid			0			0	Producer	gets	here	first	Producer
signals	Send	valid			1			0
Producer	waits	on	Ack	valid			1			0	Producer	spins	because	Ack
=0
Consumer	waits	on	Send	valid			0			0	Returns	immediately
because	Send	was	1
Consumer	reads	Mail	none			0			0	Reading	once	means	Mail	not
valid	Consumer	signals	Ack	none			0			1	Consumer	continues	to
execute	Producer	finishes	wait	none			0			0	Producer	continues	to
execute	Next,	consider	the	case	where	the	consumer	executes	first.
Execution 											 	Mail 	 Send 		 Ack 			 Comments	Initially	none		
0			0
Consumer	waits	on	send	none			0			0	Consumer	spins	because
Send	=0



Producer	sets	Mail	valid			0			0	Producer	gets	here	second
Producer	signals	Send	valid			1			0
Producer	waits	on	Ack	valid			1			0	Producer	spins	because	Ack
=0
Consumer	finishes	wait	valid			0			0	Consumer	continues	to
execute	Consumer	reads	Mail	none			0			0	Reading	once	means
Mail	not	valid	Consumer	signals	Ack	none			0			1	Consumer
continues	to	execute	Producer	finishes	wait	none			0			0	Producer
continues	to	execute	There	are	two	semaphores	and	one	shared	global
data.

uint32_t	Mail;		//	shared	data
int32_t	Send=0;	//	semaphore
int32_t	Ack=0;		//	semaphore
	

The	 basic	 idea	 of	 this	 example	 is	 for	 one	 thread	 to	 send	 data	 to
another.	 The	 producer	 calls SendMail and	 the	 consumer
calls RecvMail .

void	SendMail(uint32_t	data){
		Mail	=	data;

	
OS_Signal(&Send);

	
OS_Wait(&Ack);

}

void	Producer(void){
		Init1();
		while(1){	uint32_t	int	myData;
				myData	=	MakeData();
				SendMail(myData);
				Unrelated1();

}

}

uint32_t	RecvMail(void){
uint32_t	theData;
		OS_Wait(&Send);
		theData	=	Mail;		//	read	mail
		OS_Signal(&Ack);
		return	theData;

}

void	Consumer(void){
		Init2();
		while(1){	uint32_t	thisData;
				thisData	=	RecvMail();
				Unrelated2();

}

}



Program	3.17.	Semaphores	used	to	implement	a	mailbox.	Both
Producer	and	Consumer	are	main	threads.

Remember	 that	 only	 main	 threads	 can	 call OS_Wait ,	 so	 the	 above
implementation	 works	 only	 if	 both	 the	 producer	 and	 consumer	 are
main	threads.
If	 producer	 is	 an	 event	 thread,	 it	 cannot	 call OS_Wait .	 For	 this
scenario,	we	must	remove	the	Ack	semaphore	and	only	use	the	Send
semaphore	 (Program	 3.18).	 Initially,	 the	 Send	 semaphore	 is	 0.	 If
Sendis	 already	 1	 at	 the	 beginning	 of	 the	 producer,	 it	means	 there	 is
already	unread	data	in	the	mailbox.	In	this	situation,	data	will	be	lost.
In	 this	 implementation,	 the	 error	 count, Lost ,	 is	 incremented	 every
time	the	producer	calls SendMail() 	whenever	the	mailbox	is	already
full.

uint32_t	Lost=0;

void
SendMail(uint32_t	data){
		Mail	=	data;
		if(Send){
				Lost++;
		}else{
				OS_Signal(&Send);

}

}

void	Producer(void){
		uint32_t	int	myData;
		myData	=	MakeData();
		SendMail(myData);
		Unrelated1();

}

uint32_t	RecvMail(void){
		OS_Wait(&Send);
		return	Mail;		//	read	mail

}

	
	
	
	
void	Consumer(void){
		Init2();
		while(1){	uint32_t	thisData;
				thisData	=	RecvMail();
				Unrelated2();

}

}

Program	3.18.	Semaphores	used	to	implement	a	mailbox.



Producer	is	an	event	thread	and	Consumer	is	a	main	thread.

Checkpoint	3.11:	There	are	many	possible	ways	to	handle	the	case
where	data	is	lost	in	Program	3.18.	The	code	as	written	will	destroy
the	old	data,	and	the	consumer	will	skip	processing	the	old	lost
data.	Modify	Program	3.18	such	that	the	system	destroys	the	new
data,	and	the	consumer	will	skip	processing	the	new	data.

A	 mailbox	 forces	 the	 producer	 and	 consumer	 to	 execute	 lock-step
{producer,	consumer,	producer,	consumer,…}.	It	also	suffers	from	the
potential	to	lose	data.	Both	of	these	limitations	will	motivate	the	first
in	first	out	(FIFO)	queue	presented	in	the	next	chapter.



3.6.	Process	Management
One	 of	 the	 requirements	 of	 a	 thread	 manager	 was	 that	 threads	 be
tightly	coupled,	 sharing	a	common	objective.	 In	 this	context,	 tightly
coupled	is	categorized	by	threads	that	share	global	data	and	share	I/O
devices.	However,	if	we	have	multiple	software	tasks	that	are	loosely
coupled	 then	 we	 require	 a	 more	 complex	 scheduler.	 Again	 in	 this
context,	 loosely	 coupled	 means	 that	 they	 do	 not	 share	 data	 or	 I/O
devices.	 We	 define	 processes	 as	 software	 tasks	 that	 are	 loosely
coupled.	 Each	 process	 has	 its	 own	 stack,	 code,	 data	 (globals),	 and
heap.	The	stack,	code,	data,	and	I/O	of	one	process	are	not	shared	with
other	processes.	See	Figure	3.17.

Figure	3.17.	Comparison	of	threads	and	processes.

In	Unix,	a	new	process	is	created	using	the	fork()	command.	To	load
and	 execute	 a	 process,	 the	 Unix	 command	 is	 exec().	 An	 existing
process	can	be	initialized	with	the	init()	command.	The	function	exit()
will	 terminate	 the	 process,	 and	 the	 OS	 will	 recover	 all	 resources
(memory,	 I/O).	 The	 function	 exit()	 is	 automatically	 called	when	 the
main()	 program	 returns.	 In	 Windows	 the	 CreateProcess()	 function
will	create	a	new	process	and	 load	 the	program	 image.	The	 function
ExitProcess()	will	terminate	the	process	and	recover	the	resources.
The	OS	will	 provide	mechanisms	 for	 the	 processes	 to	 communicate
with	 each	 other,	 but	 in	 general,	 processes	 do	 not	 have	 a	 shared
objective.	The	OS	handles	the	loading	of	processes	into	memory.	On	a



microcontroller,	the	memory	image	will	have	multiple	segments:	code,
stack,	heap	and	data.
On	a	more	sophisticated	processor,	the	OS	will	configure	the	memory
protection	 unit	 to	 prevent	 one	 process	 from	 accessing	 the	 memory
space	of	another,	see	Figure	3.18.	The	Cortex	M	microcontrollers	do
not	have	this	type	of	memory	protection.

Figure	3.18.	Loading	processes	into	physical	memory	of	a
microcontroller.



3.7.	Dynamic	loading	and	linking
The	 Executable	 and	 Linking	 Format	 (ELF)	 standard	 simplifies
software	 development	 by	 providing	 with	 a	 set	 of	 binary	 interface
definitions	 that	 apply	 to	 multiple	 environments.	 For	 example,	 code
created	with	one	compiler	can	be	combined	with	code	created	with	a
second	 compiler	 and	 these	 two	 software	 objects	 can	 be	 executed
together.	 The	 standard	 reduces	 the	 need	 for	 compiling	 all	 software
objects	into	one	project.
After	we	compile	and	before	we	execute	code	onto	a	microcontroller,
the	 various	 software	 modules	 must	 be	 combined	 (linked)	 and	 then
loaded	 (programmed	 into	 ROM).	 The	 following	 lists	 some	 of	 the
sections	used	by	the	Keil	IDE

Linking:	sections
Object	files	->	executables
Code	(RO	/	.text)
Data	(RW	/	.data)
Zero	data	(ZI	/	.bss)
String/symbol	table

	
Object	 files	 are	 binary	 representations	 of	 software	 created	 by	 the
compiler	 and	 linker	 that	 can	 be	 executed	 by	 the	 processor.	 For
convenience	there	are	two	parallel	views	of	the	same	object	file.	The
linker	 interacts	 using	 the	 Linking	 View	 and	 the	 operating	 system
interacts	using	the	Executable	View	at	 run	 time,	as	shown	in	Figure
3.19.



Figure	3.19.	Object	file	format.

The	 ELF	 header	 describes	 the	 organization	 of	 the	 file.	 The	 sections
contain	object	file	information	such	as	instructions,	data,	symbol	table,
and	relocation	information.	The	program	header	table	explains	how	to
create	the	image.	If	the	file	is	used	to	create	an	executable	image,	then
it	will	 have	 a	 program	header	 table.	Relocatable	 files	 do	 not	 need	 a
program	header	table.	The	section	header	table	describes	the	sections,
including	section	name,	size,	and	type.	Files	used	during	linking	must
have	a	section	header	table,	and	files	used	during	execution	need	not
have	a	 section	header	 table.	The	 figure	 implies	an	order	 for	 sections
and	 segments,	 however	 only	 the	 ELF	 header	 has	 a	 fixed	 position,
while	sections	and	segments	have	no	order.
On	 a	 microcontroller	 like	 the	 Cortex	 M	 there	 are	 three	 types	 of
memory	 segments.	 See	 Figure	 3.20.	 Typically,	we	 place	 instructions
and	fixed	constants	in	ROM.	Keil	labels	this	segment	as	RO	or	.text.
As	we	can	see	the	compiler	creates	an	image	where	this	RO	segment
begins	 at	 0x00000000.	 However,	 when	 this	 segment	 is	 loaded	 into
memory,	 it	 is	 combined	 with	 other	 ROM	 segments	 and	 possibly
moved	 to	 another	 position	 in	 ROM	 other	 than	 0x00000000.	 The
second	type	of	segment	is	RW	or	.data	segment.	This	segment	contains
global	 variables	 that	 have	 initial	 values.	 The	 compiler	 creates	 an
image	where	this	RW	segment	begins	at	0x20000000.	However,	when
this	 segment	 is	 loaded	 into	 memory,	 it	 is	 combined	 with	 other	 RW
segments	and	possibly	moved	to	another	position	in	RAM	other	than



0x20000000.	The	ZI	segment	also	contains	global	variables;	however,
these	variables	are	 initialized	 to	0.	Again,	when	 the	ZI	 segments	are
loaded,	these	too	may	be	moved	to	other	positions	in	RAM.	Loading
is	the	process	of	placing	all	these	segments	into	appropriate	places	in
memory.	Linking	is	defined	as	the	process	of	combining	the	segments
and	 fixing	 up	 all	 cross	 referenced	 addresses.	 The	 executable	 image
also	includes	a	starting	location	for	execution.

Figure	3.20.	Loading	and	linking	takes	compiler	output	and
makes	it	ready	to	run.

For	simple	projects,	the	entire	compile,	link	and	load	operations	occur
statically	 when	 one	 issues	 a	 build/download	 command	 to	 the	 Keil
IDE.	For	more	complex	projects,	we	could	compile	a	process	into	its
ELF	format	and	the	dynamically	load/link	the	process	at	run	time.	To
facilitate	 dynamic	 linking	 we	 compile	 the	 program	 into	 position
independent	code	(PIC).	Another	name	for	object	code	that	will	run
regardless	of	its	position	in	memory	is	relocatable	code.	Most	ARM
object	 code	 is	 relocatable	 because	 the	 branch	 instructions	 use	 PC-
relative	 addressing.	 Branches	 using	 the BX instruction	 will	 not	 be
relocatable.	 Function	 pointers	 typically	 use	 the BX 	 instruction,	 so
they	will	be	trickier	to	link.
Dynamic	 linking	 to	 global	 data	 can	 be	 achieved	 with	 a	 static	 base
register,	called	position-independent	data.	In	the	following	example,
R9	 points	 to	 the	 beginning	 of	 the	 global	 variable	 space	 for	 this
program.	 R9	 is	 set	 dynamically	 by	 the	 loader/linker.	 All	 global
variables	have	a	fixed	offset	from	this	base	register.

;	regular	access	to	global
v1			SPACE			4		;	global
	
f1				LDR		R1,=v1
						LDR		R2,[R1]	;	contents	of	v1

uint32_t	v2;	//	global
;R9	points	to	global	space
;ofs	is	offset	of	this	variable
		LDR		R2,[R9,#ofs]

	



With	dynamic	 linking	 and	 loading	we	need	 a	mechanism	 to	 call	OS
functions	 that	are	not	compiled	with	 the	user	program.	The	 typically
solution	for	linking	to	OS	functions	is	to	use	the SVC 	or	software	trap
instruction.	 The	 implementation	 of	 software	 trap	 was	 described	 in
Section	2.2.6.
For	 a	 detailed	 description	 of	 the	 ELF	 format,	 search	 “ELF”	 on
http://infocenter.arm.com



3.8.	Exercises
3.1	 In	 16	 words	 or	 less	 for	 each,	 give	 definitions	 of	 the	 following
terms:	jitter,	real-time,	call	back,	profile,	semaphore,	and	scheduler.
3.2	Compare	and	contrast	thread	and	process.
3.3	Compare	and	contrast	event	thread	and	main	thread.
3.4	 Compare	 and	 contrast	 parallel,	 distributed	 and	 concurrent
programming.
3.5	 Compare	 and	 contrast	 hard,	 firm	 and	 soft	 real	 time.	 Give	 an
example	of	each	different	from	the	ones	in	the	chapter.
3.6	 Please	 name	 the	 following	 schedulers	 (round	 robin,	 rate
monotonic,	 priority,	 cooperative,	 and	 exponential	 queue):	 A.	 A
dynamic	scheduler	that	shifts	importance	depending	on	if	the
thread	ran	to	the	completion	of	its	time	slice.
B.	Run	the	ready	threads	in	circular	fashion,	giving	each
the	same	amount	of	time	to	execute
C.	Assign	importance	according	to	these	periods	with	more
frequent	tasks	having	higher	importance.
D.	Threads	themselves	decide	when	to	stop	running
E.	Run	the	most	important	ready	threads	first,	running	less
important	threads	only	if	there	are	no	important	threads
ready
	

3.7	 We	 can	 use	 semaphores	 to	 limit	 access	 to	 resources.	 In	 the
following	 example	 both	 threads	 need	 access	 to	 a	 printer	 and	 an	 SPI
port.	The	binary	semaphore	sPrint	 provides	mutual	exclusive	access
to	 the	 printer	 and	 the	 binary	 semaphore	 sSPI	 provides	 mutual
exclusive	 access	 to	 the	 SPI	 port.	Consider	 the	 following	 scenario	 to
see	if	it	has	any	bugs.

Thread	1
bwait(&sPrint);
bwait(&sSPI);

Thread	2
bwait(&sSPI);
bwait(&sPrint);



OutSPI(4);
printf("Hasta	luego");
OutSPI(6);
bsignal(&sPrint);
bsignal(&sSPI);

OutSPI(5);
printf("tchau");
OutSPI(7);
bsignal(&sSPI);
bsignal(&sPrint);

If	there	is	a	bug,	show	the	correction
3.8	You	have	three	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute
and	runs	every	10	ms.	Task	2	takes	a	maximum	of	0.5	ms	to	execute
and	runs	every	1	ms.	Task	3	takes	a	maximum	of	1	ms	to	execute	and
runs	every	100	ms.	Is	there	a	possible	scheduling	algorithm	for	these
three	tasks?
3.9	You	have	four	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute
and	 runs	every	5	ms.	Task	2	 takes	a	maximum	of	0.5	ms	 to	execute
and	runs	every	2	ms.	Task	3	takes	a	maximum	of	1	ms	to	execute	and
runs	 every	20	ms.	Task	4	 takes	 a	maximum	of	 6	ms	 to	 execute	 and
runs	 every	10	ms.	 Is	 there	 a	possible	 scheduling	 algorithm	 for	 these
three	tasks?
3.10	You	have	four	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute
and	 runs	every	5	ms.	Task	2	 takes	a	maximum	of	0.5	ms	 to	execute
and	runs	every	2	ms.	Task	3	takes	a	maximum	of	1	ms	to	execute	and
runs	 every	20	ms.	Task	4	 takes	 a	maximum	of	 5	ms	 to	 execute	 and
runs	every	10	ms.		Do	you	think	a	scheduling	algorithm	exists?	Justify
your	answer.

	
	



4.	Time	Management
Chapter	4	objectives	are	to:
•	Implement	cooperation	using	OS_Suspend
•	Design	and	implement	blocking	semaphores
•	Implement	data	flow	with	first	in	first	out	(FIFO)	queues
•	Implement	sleeping
•	Employ	periodic	interrupts	to	manage	periodic	tasks
	

An	important	aspect	of	real-time	systems	is	managing	time,	more
specifically	 minimizing	 wastage	 of	 time	 through	 an	 idle	 busy-
wait.	 Such	 busy-wait	 operations	 were	 used	 in	 our	 simple
implementation	of	semaphores	in	the	last	chapter.	In	this	chapter
we	will	see	how	we	can	recover	this	wasted	time.



4.1.	Cooperation

4.1.1.	Spinlock	semaphore	implementation	with
cooperation

Sometimes	the	OS	or	the	thread	knows	the	thread	can	no	longer	make
progress.	 If	 a	 thread	 wishes	 to	 cooperatively	 release	 control	 of	 the
processor	it	can	call	OS_Suspend,	which	will	halt	this	thread	and	run
another	thread.	Because	all	the	threads	work	together	to	solve	a	single
problem,	 adding	 cooperation	 at	 strategic	 places	 allows	 the	 system
designer	 to	 greatly	 improve	 performance.	 When	 threads	 wish	 to
suspend	themselves,	they	call OS_Suspend .	Again,	 the	SysTick	ISR
must	be	configured	as	a	priority	7	interrupt	so	that	it	does	not	attempt
to	suspend	any	hardware	ISRs	that	may	be	running.	OS_Suspend 	can
only	 be	 called	 by	 a	main	 thread.	 Note	 that	 it	 is	 possible	 to	 force	 a
SysTick	interrupt	by	bypassing	the	normal	“count	to	zero”	event	that
causes	it.	To	do	this,	we	write	a	1	to	bit	26	of	the	INTCTRL	register,
which	causes	the	SysTick	interrupt.	Writing	zeros	to	the	other	bits	of
this	 register	 has	 no	 effect.	 This	 operation	 will	 set	 the	Countflag	 in
SysTick	 and	 the	 ISR	 will	 suspend	 the	 current	 thread,	 runs	 the
SysTick_Handler	(which	calls	the	scheduler),	and	then	launch	another
thread.	In	this	first	implementation,	we	will	not	reset	the	SysTick	timer
from	 interrupting	 normally	 (count	 to	 zero).	 Rather	we	 simply	 inject
another	execution	of	the	ISR.	If	we	were	75%	through	the	1-ms	time
slice	 when OS_Suspend 	 is	 called,	 this	 operation	 will	 suspend	 the
current	thread	and	grant	the	remaining	0.25-ms	time	to	the	next	thread.
One	way	 to	make	 a	 spinlock	 semaphore	more	 efficient	 is	 to	 place	 a
suspend	 in	 the	while	 loop	as	 it	 is	 spinning,	as	shown	on	 the	 right	of
Figure	 4.1	 and	 as	 Program	 4.1.	 This	 way,	 if	 the	 semaphore	 is	 not
available,	the	thread	stops	running.	If	there	are	n	other	running	threads
and	the	time	slice	is	Δt,	then	the	semaphore	is	checked	every	n*Δt,	and
very	 little	 processor	 time	 is	wasted	 on	 the	 thread	which	 cannot	 run.
One	way	to	suspend	a	thread	is	to	trigger	a	SysTick	interrupt.



Figure	4.1.	Regular	and	efficient	implementations	of	spinlock
wait.

void	OS_Suspend(void){
		INTCTRL	=	0x04000000;	//	trigger	SysTick

}

void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		while((*s)	==	0){
				EnableInterrupts();
				OS_Suspend();	//	run	thread	switcher
				DisableInterrupts();

}

		(*s)	=	(*s)	-	1;
		EnableInterrupts();

}

Program	4.1.	A	cooperative	thread	switch	will	occur	if	the
software	explicitly	triggers	a	thread	switch.

Checkpoint	4.1:	Assume	the	thread	scheduler	switches	threads
every	1	ms	without	cooperation,	and	there	are	5	total	threads	in	the
scheduler.	If	a	thread	needs	to	wait	1	second	for	its	semaphore	to	be
incremented,	how	much	time	will	spinlock	implementation	waste,



spinning	in	OS_Wait	doing	no	useful	work?
Checkpoint	4.2:	Assume	the	thread	scheduler	switches	threads
every	1	ms,	one	thread	is	spinning	in	OS_Wait	because	its
semaphore	is	0,	and	there	are	4	other	running	threads	that	are	not
spinning.	Assuming	OS_Wait	is	implemented	like	Program	4.1	with
cooperation,	how	often	is	the	loop	in	OS_Wait	run?

The	implementation	in	Program	4.1	did	not	reset	the	SysTick	counter
on	 a	 cooperative	 thread	 switch.	 So	 it	 is	 unfair	 for	 the	 thread	 that
happens	 to	 be	 run	 next.	 However,	 in	 this	 implementation,	 since
SysTick	interrupts	are	still	triggered	every	1	ms,	SysTick	can	be	used
to	perform	periodic	tasks.	Once	we	shift	the	running	of	periodic	tasks
to	another	timer	ISR,	we	will	be	able	to	use	this	fair	implementation	of
suspend:	void	OS_Suspend(void){

		STCURRENT	=	0;								//	reset	counter
		INTCTRL	=	0x04000000;	//	trigger	SysTick

}

Using	 this	version	of	 suspend,	 if	we	are	75%	through	 the	1-ms	 time
slice	 when OS_Suspend 	 is	 called,	 this	 operation	 will	 suspend	 the
current	thread	and	grant	a	full	1-ms	time	to	the	next	thread.	We	will	be
able	 to	use	 this	version	of	suspend	once	we	move	the	periodic	event
threads	away	from	SysTick	and	onto	another	timer	interrupt.
One	way	to	handle	periodic	event	threads	is	to	use	a	separate	periodic
interrupt	(not	the	same	SysTick	that	is	used	for	thread	switching.)This
means	the	accurate	running	of	event	 threads	will	not	be	disturbed	by
resetting	 the	 SysTick	 timer.	 Although	 you	 could	 use	 either	 version
of OS_Suspend ,	resetting	the	counter	will	be	fairer.

4.1.2.	Cooperative	Scheduler
In	 this	 section	 we	 will	 develop	 a	 3-thread	 cooperative	 round-robin
scheduler	 by	 letting	 the	 tasks	 suspend	 themselves	 by	 triggering	 a
SysTick	interrupt.
You	 can	 find	 this	 cooperative	 OS	 as	Cooperative_xxx,	 where	 xxx
refers	to	the	specific	microcontroller	on	which	the	example	was	tested,
Program	4.2.	Figure	4.2	shows	a	profile	of	 this	OS.	We	can	estimate



the	 thread	switch	 time	 to	be	about	1	µs,	because	of	 the	gap	between
the	last	edge	on	one	pin	to	the	first	edge	on	the	next	pin.	In	this	case,
because	the	thread	switch	occurs	every	1.3	µs,	the	1-µs	thread-switch
overhead	is	significant.	Even	though	SysTick	interrupts	are	armed,	the
SysTick	 hardware	 never	 triggers	 an	 interrupt.	 Instead,	 each	 thread
voluntarily	suspends	itself	before	the	1-ms	interval.

void	Task0(void){
		Count0	=	0;
		while(1){
				Count0++;
				Profile_Toggle0();				//	toggle	bit
				OS_Suspend();

}

}

void	Task1(void){
		Count1	=	0;
		while(1){
				Count1++;
				Profile_Toggle1();				//	toggle	bit
				OS_Suspend();

}

}

void	Task2(void){
		Count2	=	0;
		while(1){
				Count2++;
				Profile_Toggle2();				//	toggle	bit
				OS_Suspend();

}

}



Program	4.2.	User	threads	that	use	a	cooperative	scheduler.

Figure	4.2.	The	OS	runs	three	threads;	each	thread	volunteers	to
suspend	running	in	simulation	mode	on	the	TM4C123.	The	three
profile	pins	from	Program	4.2	are	measured	versus	time	using	a
logic	analyzer.

We	must	 use	 a	 separate	 periodic	 interrupt	 to	manage	 periodic	 tasks
when	 running	a	cooperative	 scheduler,	 so	 that	 the	 timing	of	periodic
events	would	be	regular.



4.2.	Blocking	semaphores

4.2.1.	The	need	for	blocking
The	basic	 idea	of	a	blocking	semaphore	will	be	 to	prevent	a	 thread
from	running	(we	say	the	thread	is	blocked)	when	the	thread	needs	a
resource	 that	 is	 unavailable.	There	 are	 three	 reasons	we	will	 replace
spinlock	semaphores	with	blocking	semaphores.	The	first	reason	is	an
obvious	inefficiency	in	having	threads	spin	while	there	is	nothing	for
them	to	do.	Blocking	semaphores	will	be	a	means	to	recapture	this	lost
processing	time.	Essentially,	with	blocking	semaphores,	a	thread	will
not	 run	 unless	 it	 has	 useful	 work	 it	 can	 accomplish.	 Even	 with
spinlock/cooperation	it	is	wasteful	to	launch	a	thread	you	know	can’t
run,	only	to	suspend	itself	10	μs	later.
The	 second	 problem	 with	 spinlock	 semaphores	 is	 a	 fairnessissue.
Consider	 the	 case	 with	 threads	 1	 2	 3	 running	 in	 round	 robin	 order.
Assume	 thread	 1	 is	 the	 one	 calling Signal ,	 and	 threads	 2	 and	 3
callWait .	 If	 threads	 2	 and	 3	 are	 both	 spinning	 waiting	 on	 the
semaphore,	and	then	thread	1	signals	the	semaphore,	which	thread	(2
or	3)	will	be	allowed	to	run?	Because	of	its	position	in	the	1	2	3	cycle,
thread	2	will	always	capture	the	semaphore	ahead	of	thread	3.	It	seems
fair	when	the	status	of	a	resource	goes	from	busy	to	available,	that	all
threads	waiting	on	 the	 resource	get	 equal	 chance.	A	similar	problem
exists	 in	 non-computing	 scenarios	 where	 fairness	 is	 achieved	 by
issuing	 numbered	 tickets,	 creating	 queues,	 or	 having	 the	 customers
sign	a	log	when	they	enter	the	business	looking	for	service.	E.g.,	when
waiting	 for	 a	 checkout	 clerk	at	 the	grocery	 store,	we	know	 to	get	 in
line,	and	we	think	it	is	unfair	for	pushy	people	to	cut	in	line	in	front	of
us.	We	define	bounded	waiting	as	the	condition	where	once	a	thread
begins	 to	 wait	 on	 a	 resource	 (the	 call	 to OS_Wait 	 does	 not	 return
right	away),	there	are	a	finite	number	of	threads	that	will	be	allowed	to
proceed	before	this	thread	is	allowed	to	proceed.Bounded	waiting	does
not	 guarantee	 a	 minimum	 time	 before OS_Wait 	 will	 return;	 it	 just
guarantees	a	finite	number	of	other	threads	will	go	before	this	thread.
For	example,	it	is	holiday	time,	I	want	to	mail	a	package	to	my	mom,	I
walk	into	the	post	office	and	take	a	number,	the	number	on	the	ticket



is	251,	I	look	up	at	the	counter	and	the	display	shows	212,	and	I	know
there	are	39	people	ahead	of	me	in	line.	We	could	implement	bounded
waiting	with	blocking	semaphores	by	placing	the	blocked	threads	on	a
list,	 which	 is	 sorted	 by	 the	 order	 in	 which	 they	 blocked.	When	 we
wake	 up	 a	 thread	 off	 the	 blocked	 list,	we	wake	 up	 the	 one	 that	 has
been	 waiting	 the	 longest.	 	 We	 introduce	 the	 concept	 of	 bounded
waiting	because	it	is	a	feature	available	in	most	commercial	operating
systems.
The	third	reason	to	develop	blocking	semaphores	will	be	the	desire	to
implement	a	priority	thread	scheduler.	With	a	round-robin	scheduler
we	 assume	 each	 thread	 has	 equal	 importance.	 With	 a	 priority
scheduler	we	will	 run	the	highest	priority	 thread	that	 is	ready	to	run.
For	example,	if	we	have	one	high	priority	thread	that	is	ready,	we	will
run	it	over	and	over	regardless	of	whether	or	not	there	are	any	lower
priority	threads	ready.	We	will	discuss	the	issues	of	starvation,	aging,
inversion	and	inheritance	in	the	next	chapter.	A	priority	scheduler	will
require	the	use	of	blocking	semaphores.	I.e.,	we	cannot	use	a	priority
scheduler	with	spinlock	semaphores.

4.2.2.	The	blocked	state
A	thread	is	in	the	blocked	state	when	it	 is	waiting	for	some	external
event	 like	 input/output	 (keyboard	 input	 available,	 printer	 ready,	 I/O
device	 available.)	 We	 will	 use	 semaphores	 to	 implement
communication	 and	 synchronization,	 and	 it	 is	 semaphore
function OS_Wait 	 that	 will	 block	 a	 thread	 if	 it	 needs	 to	 wait.	 For
example,	 if	 a	 thread	communicates	with	other	 threads	 then	 it	 can	be
blocked	waiting	for	an	input	message	or	waiting	for	another	thread	to
be	ready	to	accept	its	output	message.	If	a	thread	wishes	to	output	to
the	 display,	 but	 another	 thread	 is	 currently	 outputting,	 then	 it	 will
block.	If	a	 thread	needs	 information	from	a	FIFO	(calls	Get),	then	it
will	be	blocked	 if	 the	FIFO	 is	empty	 (because	 it	 cannot	 retrieve	any
information.)	 Also,	 if	 a	 thread	 outputs	 information	 to	 a	 FIFO	 (calls
Put),	then	it	will	be	blocked	if	the	FIFO	is	full	(because	it	cannot	save
its	 information.)	 The	 semaphore	 function OS_Signal 	 will	 be	 called
when	it	is	appropriate	for	the	blocked	thread	to	continue.	For	example,
if	 a	 thread	 is	blocked	because	 it	wanted	 to	print	 and	 the	printer	was
busy,	it	will	be	signaled	when	the	printer	is	free.	If	a	thread	is	blocked



waiting	on	a	message,	it	will	be	signaled	when	a	message	is	available.
Similarly,	if	a	thread	is	blocked	waiting	on	an	empty	FIFO,	it	will	be
signaled	when	new	data	are	put	into	the	FIFO.	If	a	thread	is	blocked
because	it	wanted	to	put	into	a	FIFO	and	the	FIFO	was	full,	it	will	be
signaled	when	another	thread	calls	Get,	freeing	up	space	in	the	FIFO.
Figure	 4.3	 shows	 five	 threads.	 In	 this	 simple	 implementation	 of
blocking	we	add	a	 third	 field,	 called blocked ,	 to	 the	TCB	structure,
defining	the	status	of	the	thread.	The RunPt points	to	the	TCB	of	the
thread	that	is	currently	running.	The next field	is	a	pointer	chaining	all
five	TCBs	 into	 a	 circular	 linked	 list.	Each	TCB	has	 a StackPt field.
Recall	that,	if	the	thread	is	running	it	is	using	the	real	SP	for	its	stack
pointer.	However,	the	other	threads	have	their	stack	pointers	saved	in
this	field.	The	third	field	is	a blocked field.	If	the blocked field	is	null,
there	 are	 no	 resources	 preventing	 the	 thread	 from	 running.	 On	 the
other	hand,	if	a	thread	is	blocked,	the 	blocked 	field	contains	a	pointer
to	 the	 semaphore	on	which	 this	 thread	 is	blocked.	 In	Figure	4.3,	we
see	 threads	2	and	4	are	blocked	waiting	 for	 the	 resource	 (semaphore
free).	All	five	threads	are	in	the	circular	linked	list	although	only	three
of	them	will	be	run.

Figure	4.3.	Threads	0,	1	and	3	are	being	run	by	the	scheduler.
Threads	2	and	4	are	blocked	on	free	and	will	not	run	until	some



thread	signals	free.

In	 this	 simple	 approach,	 a	main	 thread	 can	 only	 be	 blocked	 on	 one
resource.	 In	 other	 words,	 when	 a	 thread	 calls OS_Wait 	 on	 a
semaphore	 with	 value	 0	 or	 less,	 that	 thread	 is	 blocked	 and	 stops
running.	Therefore,	once	blocked	on	one	semaphore,	 it	 cannot	block
on	 a	 second	 semaphore.	 Figure	 4.3	 shows	 just	 one	 semaphore,	 but
even	 when	 there	 are	 multiple	 semaphores,	 we	 need	 only
one blocked field	 in	 the	 TCB.	 Since	 C	 considers	 zero	 as	 false	 and
nonzero	 as	 true,	 the blocked 	 field	 can	 also	 be	 considered	 as	 a
Boolean,	specifying	whether	or	not	the	thread	is	blocked.		This	simple
solution	is	adequate	for	systems	with	a	small	number	of	threads	(e.g.,
less	than	20).
Notice	 in	 this	 simple	 implementation	we	 do	 not	maintain	 a	 separate
linked	list	of	threads	blocked	on	a	specific	semaphore.	In	particular,	in
Figure	 4.3	we	 know	 threads	 2	 and	 5	 are	 blocked	 on	 the	 semaphore
free,	but	we	do	not	know	which	thread	blocked	first.	The	advantage	of
this	implementation	using	one	circular	linked	list	data	structure	to	hold
the	TCBs	of	all	the	threads	will	be	speed	and	simplicity.	Note	that,	we
need	 to	 add	 threads	 to	 the	TCB	 list	 only	when	 created,	 and	 remove
them	from	the	TCB	list	if	the	thread	kills	itself.	If	a	thread	cannot	run
(blocked)	we	 can	 signify	 this	 event	 by	 setting	 its blocked 	 field	 like
Figure	4.3	to	point	to	the	semaphore	on	which	the	thread	is	blocked.
In	 order	 to	 implement	 bounded	waiting,	 we	would	 have	 to	 create	 a
separate	 blocked	 linked	 list	 for	 each	 reason	 why	 the	 thread	 cannot
execute.	 For	 example,	 we	 could	 have	 one	 blocked	 list	 for	 threads
waiting	 for	 the	output	display	 to	be	 free,	one	 list	 for	 threads	waiting
because	 a	 FIFO	 is	 full,	 and	 one	 lists	 for	 threads	 waiting	 because
another	FIFO	is	empty.	In	general,	we	will	have	one	blocked	list	with
each	reason	a	 thread	might	not	be	able	 to	run.	This	approach	will	be
efficient	 for	 systems	with	many	 threads	 (e.g.,	more	 than	 20).	 These
linked	lists	contain	threads	sorted	in	order	of	how	long	they	have	been
waiting.	To	implement	bounded	waiting,	when	we	signal	a	semaphore,
we	wake	up	the	thread	that	has	been	waiting	the	longest.
In	 this	 more	 complex	 implementation,	 we	 unchain	 a	 TCB	 from	 the
ready	 circular	 linked	 list	 when	 it	 is	 blocked.	 In	 this	 way	 a	 blocked
thread	will	never	run.	We	place	the	blocked	TCBs	on	a	 linear	 linked
list	associated	with	the	semaphore	(the	reason	it	was	blocked).	We	can



implement	bounded	waiting	by	putting	blocked	TCBs	at	the	end	of	the
list	and	waking	up	 threads	 from	the	 front	of	 the	 list.	There	will	be	a
separate	linked	list	for	every	semaphore.	This	method	is	efficient	when
there	 are	many	 threads	 that	will	 be	 blocked	 at	 one	 time.	The	 thread
switching	will	 be	 faster	 because	 the	 scheduler	will	 only	 see	 threads
that	could	run,	and	not	have	to	look	at	blocked	threads	in	the	circular
linked	 list.	Most	 commercial	 operating	 systems	 implement	 blocking
by	unchaining	blocked	threads	because	they	need	to	operate	efficiently
with	dozens	of	threads.
However,	 for	 simple	 operating	 systems	 that	 manage	 less	 than	 10
threads	 it	 will	 be	 faster	 and	 easier	 to	 not	 implement	 unchaining.
Rather,	 simple	 schedulers	 can	 skip	 threads	 with	 a	 nonzero blocked
field.

4.2.3.	Implementation
We	 will	 present	 a	 simple	 approach	 for	 implementing	 blocking
semaphores.	 Notice	 in	 Figure	 4.4	 that	 wait	 always	 decrements	 and
signal	 always	 increments.	 This	 means	 the	 semaphore	 can	 become
negative.	 In	 the	example	of	using	a	 semaphore	 to	 implement	mutual
exclusion,	 if	 free	 is	 1,	 it	means	 the	 resource	 is	 free.	 If	 free	 is	 0,	 it
means	the	resource	is	being	used.	If	free	is	-1,	it	means	one	thread	is
using	the	resource	and	a	second	thread	is	blocked,	waiting	to	use	it.	If
free	 is	 -2,	 it	 means	 one	 thread	 is	 using	 the	 resource	 and	 two	 other
threads	are	blocked,	waiting	to	use	it.

Figure	4.4.	Flowcharts	of	a	blocking	counting	semaphore.



In	this	simple	implementation,	the	semaphore	is	a	signed	integer.	This
implementation	of	blocking	 is	appropriate	 for	 systems	with	 less	 than
20	 threads.	 In	 this	 implementation,	 a blocked 	 field	 is	 added	 to	 the
TCB.	 The	 type	 of	 this	 field	 is	 a	 pointer	 to	 a	 semaphore.	 The
semaphore	 itself	 remains	 a	 signed	 integer.	 If blocked is	 null,	 the
thread	 is	 not	 blocked.	 If	 the blocked 	 field	 contains	 a	 semaphore
pointer,	 it	 is	 blocked	 on	 that	 semaphore.	 The	 “Block	 this	 thread”
operation	will	 set	 the blocked 	 field	 to	 point	 to	 the	 semaphore,	 then
suspend	the	thread.

void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		(*s)	=	(*s)	-	1;
		if((*s)	<	0){
				RunPt->blocked	=	s;	//	reason	it	is	blocked
				EnableInterrupts();
				OS_Suspend();							//	run	thread	switcher

}

		EnableInterrupts();

}

	
The	“Wakeup	one	thread”	operation	will	be	to	search	all	the	TCBs	for
first	one	that	has	a blocked 	field	equal	to	the	semaphore	and	wake	it
up	by	setting	its blocked 	field	to	zero	void	OS_Signal(int32_t	*s){

		tcbType	*pt;
		DisableInterrupts();
		(*s)	=	(*s)	+	1;
		if((*s)	<=	0){
				pt	=	RunPt->next;		//	search	for	one	blocked	on	this
				while(pt->blocked	!=	s){
						pt	=	pt->next;

}

				pt->blocked	=	0;			//	wakeup	this	one



}

		EnableInterrupts();

}

	
Notice	 in	 this	 implementation,	 calling	 the	 signal	 will	 not	 invoke	 a
thread	switch.	During	the	thread	switch,	 the	OS	searches	the	circular
linked-list	for	a	thread	with	a blocked 	field	equal	to	zero	(the	woken
up	thread	is	a	possible	candidate).	This	simple	implementation	will	not
allow	 you	 to	 implement	 bounded	 waiting.	Notice	 that	 this	 solution
does	not	implement	bounded	waiting.

void	Scheduler(void){
		RunPt	=	RunPt->next;		//	run	next	thread	not	blocked
		while(RunPt->blocked){	//	skip	if	blocked
				RunPt	=	RunPt->next;

}				

}

	
Checkpoint	4.3:		Assume	the	RTOS	is	running	with	a	preemptive
thread	switch	every	1	ms.	Assume	there	are	8	threads	in	the	TCB
circular	list,	and	5	of	the	threads	are	blocked.	Assume	the	while
loop	in	the	above	Scheduler	function	takes	12	assembly
instructions	or	150ns	to	execute	each	time	through	the	loop.	What	is
the	maximum	time	wasted	in	the	scheduler	looking	at	threads	that
are	blocked?	In	other	words,	how	much	time	could	be	saved	by
unchaining	blocked	threads	from	the	TCB	list?

4.2.4.	Thread	rendezvous
The	 objective	 of	 this	 example	 is	 to	 synchronize	 Threads	 1	 and	 2
(Program	4.3).	In	other	words,	whichever	thread	gets	to	this	part	of	the
code	 first	will	wait	 for	 the	other.	 Initially	 semaphores S1 and S2 	are
both	0.	The	two	threads	are	said	to	rendezvous	at	the	code	following
the	 signal	 and	 wait	 calls.	 The	 rendezvous	 will	 cause	 thread	 1	 to



execute Stuff1 at	 the	 same	 time	 (concurrently)	 as	 thread	 2	 executes
its Stuff2 .

void	Task1(void){	//	Thread	1
		Init1();
		while(1){
				Unrelated1();

			
OS_Signal(&S1);
OS_Wait(&S2);
				Stuff1();

}

}

void	Task2(void){	//
Thread2
		Init2();
		while(1){
				Unrelated2();
				OS_Signal(&S2);
				OS_Wait(&S1);
				Stuff2();

}

}

Program	4.3.	Semaphores	used	to	implement	rendezvous.

There	 are	 three	 scenarios	 the	 semaphores	 may	 experience	 and	 their
significance	is	listed	below:

S1	S2	Meaning
	0	0	Neither	thread	has	arrived	at	the	rendezvous	location	or

both	have	passed
-1	+1	Thread	2	arrived	first	and	Thread	2	is	blocked	waiting

for	Thread	1
+1	-1	Thread	1	arrived	first	and	Thread	1	is	blocked	waiting

for	Thread	2



4.3.	First	In	First	Out	Queue
We	 introduced	 first	 in	 first	 out	 circular	 queues	 (FIFO)	 back	 in
Chapter	2	when	we	presented	interrupts.	However,	 in	this	section	we
will	 delve	 deeper	 and	 investigate	 how	 operating	 systems	 use	 this
important	 data	 structure.	 A	 common	 scenario	 in	 embedded	 systems
has	producers	that	generate	data	and	consumers	that	process	data.	To
decouple	 the	producers	and	consumers	 from	having	 to	work	 in	 lock-
step,	 a	 buffer	 is	 used	 to	 store	 the	 data,	 so	 a	 producer	 thread	 can
produce	when	it	can.	All	is	fine	as	long	as	there	is	room	in	the	buffer
to	store	the	produced	data.	Similarly,	the	consumer	thread	can	process
data	when	 it	 can.	 Similarly,	 all	 is	 fine	 as	 long	 as	 the	 buffer	 is	 non-
empty.	A	common	implementation	of	such	a	buffer	is	the	FIFO	queue,
which	 preserves	 the	 order	 of	 data,	 so	 that	 the	 first	 piece	 of	 data
generated	is	the	first	consumed.

4.3.1.	Producer/Consumer	problem	using	a	FIFO
The	FIFO	 is	 quite	 useful	 for	 implementing	 a	 buffered	 I/O	 interface
(Figure	 4.5).	 The	 function	Put	 will	 store	 data	 in	 the	 FIFO,	 and	 the
function	Get	will	remove	data.	It	operates	in	a	first	in	first	out	manner,
meaning	the	Get	function	will	return/remove	the	oldest	data.	It	can	be
used	 for	 both	 buffered	 input	 and	 buffered	 output.	 This	 order-
preserving	data	structure	temporarily	saves	data	created	by	the	source
(producer)	before	it	is	processed	by	the	sink	(consumer).	The	class	of
FIFOs	 studied	 in	 this	 section	 will	 be	 statically	 allocated	 global
structures.	Because	they	are	global	variables,	it	means	they	will	exist
permanently	and	can	be	carefully	shared	by	more	 than	one	program.
The	 advantage	of	 using	 a	FIFO	 structure	 for	 a	 data	 flow	problem	 is
that	we	can	decouple	the	producer	and	consumer	threads.	Without	the
FIFO	we	would	 have	 to	 produce	 one	 piece	 of	 data,	 then	 process	 it,
produce	 another	 piece	 of	 data,	 then	 process	 it.	 With	 the	 FIFO,	 the
producer	 thread	can	continue	 to	produce	data	without	having	 to	wait
for	 the	 consumer	 to	 finish	 processing	 the	 previous	 data.	 This
decoupling	can	significantly	improve	performance.



Figure	4.5.	The	FIFO	is	used	to	buffer	data	between	the	producer
and	consumer.	The	number	of	data	stored	in	the	FIFO	varies
dynamically,	where	Put	adds	one	data	element	and	Get
removes/returns	one	data	element.

Another	name	for	the	FIFO	is	bounded	buffer.	For	example,	a	FIFO	is
used	 while	 streaming	 audio	 from	 the	 Internet.	 As	 sound	 data	 are
received	 from	 the	 Internet	 they	 are	 stored	 (calls	 Put)	 into	 a	 FIFO.
When	 the	 sound	board	needs	data	 it	 calls	Get.	As	 long	as	 the	FIFO
never	 becomes	 full	 or	 empty,	 the	 sound	 is	 played	 in	 a	 continuous
manner.	A	FIFO	is	also	used	when	you	ask	the	computer	to	print	a	file.
Rather	 than	 waiting	 for	 the	 actual	 printing	 to	 occur	 character	 by
character,	 the	print	command	will	put	 the	data	 in	a	FIFO.	Whenever
the	printer	is	free,	it	will	get	data	from	the	FIFO.	The	advantage	of	the
FIFO	 is	 it	 allows	 you	 to	 continue	 to	 use	 your	 computer	 while	 the
printing	 occurs	 in	 the	 background.	 To	 implement	 this	 magic,	 our
RTOS	 must	 be	 able	 to	 manage	 FIFOs.	 There	 are	 many
producer/consumer	applications,	as	we	previously	listed	in	Table	3.1,
where	the	processes	on	the	left	are	producers	that	create	or	input	data,
while	 the	 processes	 on	 the	 right	 are	 consumers	 which	 process	 or
output	data.

4.3.2.	Little’s	Theorem
In	this	section	we	introduce	some	general	theory	about	queues.	Let	N
be	the	average	number	of	data	packets	in	the	queue	plus	the	one	data
packet	currently	being	processed	by	the	consumer.	Basically,	N	is	the
average	number	of	packets	in	the	system.	Let	L	be	the	average	arrival
rate	in	packets	per	second	(pps).	Let	R	be	the	average	response	time	of
a	packet,	which	 includes	 the	 time	waiting	 in	 the	queue	plus	 the	 time
for	 the	consumer	 to	process	 the	packet.	Little’s	Theorem	 states	N	=
L*R
As	 long	 as	 the	 system	 is	 stable,	 this	 result	 is	 not	 influenced	 by	 the



probability	distribution	of	the	producer,	the	probability	distribution	of
the	consumer	or	the	service	order.	Let	S	be	the	mean	service	time	for	a
packet.	Thus,	C=1/S	is	defined	as	the	system	capacity	(pps).	Stable	in
this	 context	 means	 the	 packet	 arrival	 rate	 is	 less	 than	 the	 system
capacity	 (L<C).	 This	means,	 in	most	 cases,	 the	 queue	 length	 can	 be
chosen	so	the	queue	never	fills	and	no	data	are	 lost.	 In	 this	case,	 the
arrival	rate	L	is	also	the	output	rate	T,	or	throughput	of	the	system.	We
can	use	Little’s	Theorem	to	estimate	average	response	time,	R	=	N/T
In	general,	we	want	T	to	be	high	and	R	to	be	low.	To	handle	these	two
conflicting	 goals,	we	 develop	 the	 concept	 of	 a	 power	metric	 for	 the
queue.	We	can	define	utilization	factor	as	the	throughput	divided	by
the	capacity,	which	is	a	normalized	throughput,	U	=	T/C
U	 defines	 the	 loading	 of	 the	 queue,	 because	 it	 is.	 We	 can	 define
normalized	mean	response	time,	R/S.	We	next	define	power	metric
P	as	utilization	factor	divided	by	normalized	mean	response	time,	P	=
U/(R/S)	=	(T*S)/(R/S)
Substituting	Little’s	Theorem	(R=N/T),	we	can	write

P	=	U2/N
The	goal	of	the	operating	system	is	to	maximize	P.
	

4.3.3.	FIFO	implementation
FIFOs	 can	 be	 statically	 allocated,	 where	 the	 buffer	 size	 is	 fixed	 at
compile	 time,	 Figure	 4.6.	 This	 means	 the	 maximum	 number	 of
elements	that	can	be	stored	in	the	FIFO	at	any	one	time	is	determined
at	 design	 time.	 Alternately,	 FIFOs	 can	 be	 dynamically	 allocated,
where	 the	 OS	 allows	 the	 buffer	 to	 grow	 and	 shrink	 in	 size
dynamically.	To	allow	a	buffer	to	grow	and	shrink,	the	system	needs	a
memory	 manager	 or	 heap.	 A	 heap	 allows	 the	 system	 to	 allocate,
deallocate,	 and	 reallocate	 buffers	 in	 RAM	 dynamically.	 There	 are
many	memory	managers	(heaps),	but	the	usual	one	available	in	C	has
these	three	functions.	The	function	malloc 	creates	a	new	buffer	of	a
given	 size.	 The	 function	 free 	 deallocates	 a	 buffer	 that	 is	 no	 longer
needed.	The	function	realloc allocates	a	new	buffer,	copies	data	from
a	 previous	 buffer	 into	 the	 new	 buffer	 of	 different	 size,	 and	 then



deallocates	 the	 previous	 buffer. realloc 	 is	 the	 function	 needed	 to
increase	 or	 decrease	 the	 allocated	 space	 for	 the	 FIFO	 statically-
allocated	 FIFOs	 might	 result	 in	 lost	 data	 or	 reduced	 bandwidth
compared	to	dynamic	allocation.

Figure	4.6.	With	static	allocation,	the	maximum	number	of
elements	stored	in	the	FIFO	is	fixed	at	compile	time.	With
dynamic	allocation,	the	system	can	call	realloc	when	the	FIFO	is
almost	full	to	grow	the	size	of	the	FIFO	dynamically.	Similarly,	if
the	FIFO	is	almost	empty,	it	can	shrink	the	size	freeing	up
memory.

A	system	is	considered	to	be	deterministic	if	when	the	system	is	run
with	the	same	set	of	inputs,	it	produces	identical	responses.	Most	real-
time	systems	often	require	deterministic	behavior,	because	testing	can
be	 used	 to	 certify	 performance.	 Dynamically-allocated	 FIFOs	 cause
the	behavior	of	one	 subsystem	 (that	might	 allocate	 large	 amounts	of
RAM	from	the	heap)	to	affect	behavior	in	another	unrelated	subsystem
(our	FIFO	that	wishes	to	increase	buffer	size).	It	is	better	for	real-time
systems	to	be	reliable	and	verifiable	than	to	have	higher	performance.
As	the	heap	runs,	it	can	become	fragmented;	meaning	the	free	memory
in	the	heap	has	many	little	pieces,	rather	than	a	few	big	pieces.	Since
the	 time	 to	 reallocate	 a	 buffer	 can	 vary	 tremendously,	 depending	 on
the	fragmentation	of	the	heap,	it	will	be	difficult	to	predict	execution
time	 for	 the	 FIFO	 functions.	 Since	 a	 statically	 allocated	 FIFO	 is
simple,	 we	 will	 be	 able	 to	 predict	 execution	 behavior.	 For	 these
reasons,	we	will	restrict	FIFO	construction	to	static	allocation.	In	other
words,	you	should	not	use	malloc	and	free	in	your	RTOS.
There	 are	 many	 ways	 to	 implement	 a	 statically-allocated	 FIFO.	We
can	 use	 either	 two	 pointers	 or	 two	 indices	 to	 access	 the	 data	 in	 the
FIFO.	We	can	either	use	or	not	use	a	counter	that	specifies	how	many
entries	 are	 currently	 stored	 in	 the	 FIFO.	 There	 are	 even	 hardware



implementations.	 For	 non-OS	 implementations	 of	 the	 FIFO,	 see
Section	 2.3.	 In	 this	 section	 we	 will	 present	 three	 implementations
using	semaphores.

4.3.4.	Three-semaphore	FIFO	implementation
The	first	scenario	we	will	solve	is	where	there	are	multiple	producers
and	 multiple	 consumers.	 In	 this	 case	 all	 threads	 are	 main	 threads,
which	are	scheduled	by	 the	OS.	The	FIFO	is	used	 to	pass	data	 from
the	producers	to	the	consumers.	In	this	situation,	the	producers	do	not
care	 to	which	consumer	 their	data	are	passed,	 and	 the	consumers	do
not	care	from	which	producer	the	data	arrived.	These	are	main	threads,
so	we	will	block	producers	when	 the	FIFO	is	 full	and	we	will	block
consumers	when	the	FIFO	is	empty.

Figure	4.7.	FIFO	used	to	pass	data	from	multiple	producers	to
multiple	consumers.	All	threads	are	main	threads.

The	producer	puts	data	into	the	FIFO.	If	the	FIFO	is	full	and	the	user
calls Fifo_Put ,	 there	 are	 two	 responses	 we	 could	 employ.	 The	 first
response	 would	 be	 for	 the Fifo_Put routine	 to	 block	 assuming	 it	 is
unacceptable	 to	 discard	 data.	 The	 second	 response	 would	 be	 for
the Fifo_Put 	 routine	 to	 discard	 the	 data	 and	 return	 with	 an	 error
value.	 In	 this	 subsection	we	will	 block	 the	producer	on	 a	 full	FIFO.
This	implementation	can	be	used	if	the	producer	is	a	main	thread,	but
cannot	be	used	if	the	producer	is	an	event	thread	or	ISR.
The	consumer	removes	data	from	the	FIFO.	For	most	applications,	the
consumer	will	be	a	main	thread	that	calls Fifo_Get when	it	needs	data
to	process.	After	a	get,	the	particular	information	returned	from	the	get
routine	is	no	longer	saved	in	the	FIFO.	If	 the	FIFO	is	empty	and	the



user	 tries	 to	get,	 the Fifo_Get routine	will	 block	because	we	assume
the	 consumer	 needs	 data	 to	 proceed.	 The	 FIFO	 is	 order	 preserving,
such	that	 the	 information	returned	by	repeated	calls	 to Fifo_Get give
data	in	the	same	order	as	the	data	saved	by	repeated	calls	of Fifo_Put .
The	 two-pointer	 implementation	 has,	 of	 course,	 two	 pointers.	 If	 we
were	to	have	infinite	memory,	a	FIFO	implementation	is	easy	(Figure
4.8). GetPt points	 to	 the	 data	 that	 will	 be	 removed	 by	 the	 next	 call
to Fifo_Get ,	and PutPt	points	to	the	empty	space	where	the	data	will
stored	by	the	next	call	to Fifo_Put ,	see	Program	4.4.

Figure	4.8.	The	FIFO	implementation	with	infinite	memory.

uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
void	Fifo_Put(uint32_t	data){						//	call	by	value
		*PutPt	=	data;			//	Put
		PutPt++;									//	next

}

uint32_t	Fifo_Get(void){	uint32_t	data;
		data	=	*GetPt;			//	return	by	reference
		GetPt++;									//	next
		return	data;				//	true	if	success

}

Program	4.4.	Code	fragments	showing	the	basic	idea	of	a	FIFO.

There	are	four	modifications	that	are	required	to	the	above	functions.
If	 the	FIFO	 is	 full	when Fifo_Put 	 is	 called,then	 the	 function	should
block.	Similarly,	 if	 the	FIFO	 is	 empty	when Fifo_Get is	 called,	 then
the	function	should	block. PutPt	must	be	wrapped	back	up	to	the	top
when	it	reaches	the	bottom	(Figure	4.9).



	

Figure	4.9.	The	FIFOFifo_Put 	operation	showing	the	pointer
wrap.

	
The GetPt 	must	also	be	wrapped	back	up	to	the	top	when	it	reaches
the	bottom	(Figure	4.10).

Figure	4.10.	The	FIFOFifo_Get 	operation	showing	the	pointer
wrap.

We	will	deploy	two	semaphores	to	describe	the	status	of	the	FIFO,	see
Program	 4.5.	 In	 this	 FIFO,	 each	 element	 is	 a	 32-bit	 integer.	 The
maximum	number	of	elements, FIFOSIZE ,	is	determined	at	compile
time.	 In	 other	 words,	 to	 increase	 the	 allocation,	 we	 first
change FIFOSIZE ,	and	then	recompile.
The	 first	 semaphore,	CurrentSize,	 specifies	 the	 number	 of	 elements
currently	in	the	FIFO.	This	semaphore	is	initialized	to	zero,	meaning
the	FIFO	 is	 initially	 empty,	 it	 is	 incremented	 by Fifo_Put signifying
one	more	element,	and	decremented	by Fifo_Get 	signifying	one	less
element.



The	 second	 semaphore,	 RoomLeft,	 specifies	 the	 how	 many	 more
elements	 could	 be	 put	 into	 the	 FIFO.	 This	 semaphore	 is	 initialized
to FIFOSIZE ,	 it	 is	 decremented	 by Fifo_Put signifying	 there	 is
space	 for	one	 less	element,	and	 incremented	by Fifo_Get 	 signifying
there	 is	 space	 for	 one	 more	 element.	 When	RoomLeft	 is	 zero,	 the
FIFO	is	full.
Race	conditions	and	critical	 sections	are	 important	 issues	 in	 systems
using	interrupts.	If	there	are	more	than	one	producer	or	more	than	one
consumer,	access	to	the	pointers	represent	a	critical	section,	and	hence
we	will	need	to	protect	the	pointers	using	a	FIFOmutex	semaphore.

#define	FIFOSIZE	10							//	can	be	any	size
uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
uint32_t	static	Fifo[FIFOSIZE];
int32_t	CurrentSize;						//	0	means	FIFO	empty
int32_t	RoomLeft;									//	0	means	FIFO	full
int32_t	FIFOmutex;							//	exclusive	access	to	FIFO
//	initialize	FIFO
void	OS_Fifo_Init(void){
		PutPt	=	GetPt	=	&Fifo[0];	//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		OS_InitSemaphore(&RoomLeft,	FIFOSIZE);
		OS_InitSemaphore(&FIFOmutex,	1);

}

void	OS_Fifo_Put(uint32_t	data){
		OS_Wait(&RoomLeft);
		OS_Wait(&FIFOmutex);
		*(PutPt)	=	data;				//	Put
		PutPt++;												//	place	to	put	next
		if(PutPt	==	&Fifo[FIFOSIZE]){
				PutPt	=	&Fifo[0];		//	wrap

}

		OS_Signal(&FIFOmutex);
		OS_Signal(&CurrentSize);



}

uint32_t	OS_Fifo_Get(void){	uint32_t	data;
		OS_Wait(&CurrentSize);
		OS_Wait(&FIFOmutex);
		data	=	*(GetPt);						//	get	data
		GetPt++;														//	points	to	next	data	to	get
		if(GetPt	==	&Fifo[FIFOSIZE]){
				GetPt	=	&Fifo[0];			//	wrap

}

		OS_Signal(&FIFOmutex);
		OS_Signal(&RoomLeft);
		return	data;

}

Program	4.5.	Two-pointer	three-semaphore	implementation	of	a
FIFO.	This	implementation	is	appropriate	when	producers	and
consumers	are	main	threads.

Checkpoint	4.4:On	average	over	the	long	term,	what	is	the
relationship	between	the	number	of	timesWait is	called	compared
to	the	number	of	times Signal 	is	called?	
Checkpoint	4.5:On	average	over	the	long	term,	what	is	the
relationship	between	the	number	of	times Put is	successfully	called
compared	to	the	number	of	times Get 	is	successfully	called?		To
answer	this	question,consider	a	successful	call	to Put as	a	called
that	correctly	stored	data,	and	a	successful	call	to Get 	as	a	call	that
correctly	returned	data.

4.3.5.	Two-semaphore	FIFO	implementation
If	there	is	one	producer	as	an	event	thread	coupled	with	one	or	more
consumers	 as	 main	 threads	 (Figure	 4.11),	 the	 FIFO	 implementation
shown	 in	 the	 previous	 section	must	 be	 changed,	 because	we	 cannot
block	or	 spin	an	event	 thread.	 If	 the	FIFO	 is	 full	when	 the	producer



calls	Put,	then	that	data	will	be	lost.	The	number	of	times	we	lose	data
is	recorded	in LostData .	The	Put	function	returns	an	error	(-1)	if	the
data	 was	 not	 saved	 because	 the	 FIFO	 was	 full.	 This	 Putfunction
cannot	 be	 called	 by	multiple	 producers	 because	 of	 the	 read-modify-
write	sequence	to PutPt .	See	Program	4.6.	To	tell	if	the	FIFO	is	full,
we	 simply	 compare	 the	CurrentSize	 with	 its	 maximum.	 This	 is	 a
statically	allocated	FIFO,	so	the	maximum	size	is	a	constant.

Figure	4.11.	FIFO	used	to	pass	data	from	a	single	producer	to
multiple	consumers.	The	producer	is	an	event	thread	and	the
consumers	are	main	threads.

#define	FIFOSIZE	10							//	can	be	any	size
uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
uint32_t	static	Fifo[FIFOSIZE];
int32_t	CurrentSize;						//	0	means	FIFO	empty
int32_t	FIFOmutex;							//	exclusive	access	to	FIFO
uint32_t	LostData;
//	initialize	FIFO
void	OS_Fifo_Init(void){
		PutPt	=	GetPt	=	&Fifo[0];	//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		OS_InitSemaphore(&FIFOmutex,	1);
		LostData=0;

}

int	OS_FIFO_Put(uint32_t	data){
		if(CurrentSize	==	FIFOSIZE){
				LostData++;										//	error



				return	-1;

}

		*(PutPt)	=	data;							//	Put
		PutPt++;															//	place	for	next
		if(PutPt	==	&Fifo[FIFOSIZE]){
				PutPt	=	&Fifo[0];			//	wrap

}

		OS_Signal(&CurrentSize);
		return	0;

}

uint32_t	OS_FIFO_Get(void){uint32_t	data;
		OS_Wait(&CurrentSize);	//	block	if	empty
		OS_Wait(&FIFOmutex);
		data	=	*(GetPt);						//	get	data
		GetPt++;														//	points	to	next	data	to	get
		if(GetPt	==	&Fifo[FIFOSIZE]){
				GetPt	=	&Fifo[0];			//	wrap

}

		OS_Signal(&FIFOmutex);
		return	data;

}

Program	4.6.	Two-pointer	two-semaphore	implementation	of	a
FIFO.	This	implementation	is	appropriate	when	a	single	producer
is	running	as	an	event	thread	and	multiple	consumers	are	running
as	main	threads.

Note	 that,	 in	 this	 solution	 we	 no	 longer	 need	 the RoomLeft
semaphore,which	 was	 used	 to	 protect	 the	 multiple	 changes
to PutPt that	multiple	producers	would	entail.	A	single	producer	does
not	 have	 this	 problem.	 We	 still	 need	 the CurrentSize semaphore



because	 we	 have	 multiple	 consumers	 that	 can	 change
the GetPt pointer.	The FIFOmutex 	 semaphore	 is	 needed	 to	 prevent
two	consumers	from	reading	the	same	data.

4.3.6.	One-semaphore	FIFO	implementation
If	there	is	one	producer	as	an	event	thread	coupled	with	one	consumer
as	a	main	thread	(Figure	4.12),	we	can	remove	the	mutex	semaphore.
This	Getfunction	cannot	be	called	by	multiple	consumers	because	of
the	 read-modify-write	 sequence	 to GetI .	 In	 the	 previous	 FIFO
implementations,	we	used	pointers,	but	in	this	example	we	use	indices,
see	Program	4.7.	Whether	you	use	pointers	versus	indices	is	a	matter
of	 style,	and	our	advice	 is	 to	use	 the	mechanism	you	understand	 the
best.	As	 long	 as	 there	 is	 one	 event	 thread	 calling	Put	 and	one	main
thread	 calling	Get,	 this	 implementation	 does	 not	 have	 any	 critical
sections.

Figure	4.12.	FIFO	used	to	pass	data	from	a	single	producer	to	a
single	consumer.	The	producer	is	an	event	thread	and	the
consumer	is	a	main	thread.

#define	FIFOSIZE	10	//	can	be	any	size
uint32_t	PutI;						//	index	of	where	to	put	next
uint32_t	GetI;						//	index	of	where	to	get	next
uint32_t	Fifo[FIFOSIZE];
int32_t	CurrentSize;	//	0	means	FIFO	empty,	FIFOSIZE	means	full
uint32_t	LostData;			//	number	of	lost	pieces	of	data
void	OS_FIFO_Init(void){
		PutI	=	GetI	=	0;			//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		LostData	=	0;

}



int	OS_FIFO_Put(uint32_t	data){
		if(CurrentSize	==	FIFOSIZE){
				LostData++;
				return	-1;		//	full
		}	else{
				Fifo[PutI]	=	data;							//	Put
				PutI	=	(PutI+1)%FIFOSIZE;
				OS_Signal(&CurrentSize);
				return	0;			//	success

}

}

uint32_t	OS_FIFO_Get(void){uint32_t	data;
		OS_Wait(&CurrentSize);				//	block	if	empty
		data	=	Fifo[GetI];								//	get
		GetI	=	(GetI+1)%FIFOSIZE;	//	place	to	get	next
		return	data;

}

Program	4.7.	Two-index	one-semaphore	implementation	of	a
FIFO.	This	implementation	is	appropriate	when	a	single	producer
is	running	as	an	event	thread	and	a	single	consumer	is	running	as
a	main	thread.

The	use	of	indexes	rather	than	pointers	also	means	all	index	arithmetic
is	a	simple	modulo	the	size	of	the	FIFO	to	implement	the	wraparound.
Checkpoint	4.6:	Notice	in	Program	4.7	that	there	are	two
conditions	that	result	in	PutI	equaling	GetI.	One	condition	is	the
FIFO	is	empty	and	the	other	condition	is	the	FIFO	is	full.	How	does
the	software	distinguish	between	these	two	conditions?
Checkpoint	4.7:	How	might	you	optimize	Program	4.7	if	the	size
of	the	FIFO	were	a	power	of	2?

4.3.7.	Kahn	Process	Networks



Gilles	Kahn	first	 introduced	 the	Kahn	Process	Network	 (KPN).	We
use	KPNs	 to	model	 distributed	 systems	 as	well	 as	 signal	 processing
systems.	 Each	 node	 represents	 a	 computation	 block	 communicating
with	 other	 nodes	 through	 unbounded	 FIFO	 channels.	 The	 circles	 in
Figure	4.13	are	computational	blocks	and	the	arrows	are	FIFO	queues.
The	 resulting	 process	 network	 exhibits	 deterministic	 behavior	 that
does	not	depend	on	the	various	computation	or	communication	delays.
As	such,	KPNs	have	found	many	applications	in	modeling	embedded
systems,	 high-performance	 computing	 systems,	 and	 computational
tasks.

Figure	4.13.	A	Kahn	Process	Network	consists	of	process	nodes
linked	by	unbounded	FIFO	queues.

For	 each	 FIFO,	 only	 one	 process	 puts,	 and	 only	 one	 process	 gets.
Figure	 4.13	 shows	 a	 KPN	 with	 four	 processes	 and	 three	 edges
(communication	 channels).	 Processes	 P1	 and	 P2	 are	 producers,
generating	 data	 into	 channels	 A	 and	 B	 respectively.	 Process	 P3
consumes	one	token	from	channel	A	and	another	from	channel	B	(in
either	order)	and	then	produces	one	token	into	channel	C.	Process	P4	is
a	consumer	because	it	consumes	tokens.
We	 can	 use	 a	 KPN	 to	 describe	 signal	 processing	 systems	 where
infinite	 streams	 of	 data	 are	 transformed	 by	 processes	 executing	 in
sequence	 or	 parallel.	 Streaming	 data	means	we	 input/analyze/output
one	data	packet	at	a	time	without	the	desire	to	see	the	entire	collection
of	 data	 all	 at	 once.	 Despite	 parallel	 processes,	 multitasking	 or
parallelism	 are	 not	 required	 for	 executing	 this	 model.	 In	 a	 KPN,
processes	communicate	via	unbounded	FIFO	channels.	Processes	read
and	write	 atomic	 data	 elements,	 or	 alternatively	 called	 tokens,	 from
and	 to	channels.	The	 read	 token	 is	 equivalent	 to	 a	FIFO	get	 and	 the
write	 token	 is	 a	 FIFO	 put.	 In	 a	 KPN,	 writing	 to	 a	 channel	 is
nonblocking.	This	means	we	expect	the	put	FIFO	command	to	always
succeed.	 In	 other	 words,	 the	 FIFO	 never	 becomes	 full.	 From	 a
practical	perspective,	we	can	use	KPN	modeling	for	situations	where
the	 FIFOs	 never	 actually	 do	 become	 full.	 Furthermore,	 the



approximate	behavior	of	a	system	can	be	still	be	deemed	for	systems
where	 FIFO	 full	 errors	 are	 infrequent.	 For	 these	 approximations	we
could	 discard	 data	 with	 the	 FIFO	 becomes	 full	 on	 a	 put	 instead	 of
waiting	for	there	to	be	free	space	in	the	FIFO.
On	 the	 other	 hand,	 reading	 from	 a	 channel	 requires	 blocking.	 A
process	 that	 reads	 from	 an	 empty	 channel	 will	 stall	 and	 can	 only
continue	 when	 the	 channel	 contains	 sufficient	 data	 items	 (tokens).
Processes	 are	 not	 allowed	 to	 test	 an	 input	 channel	 for	 existence	 of
tokens	without	consuming	them.	Given	a	specific	input	(token)	history
for	 a	 process,	 the	 process	 must	 be	 deterministic	 so	 that	 it	 always
produces	 the	 same	 outputs	 (tokens).	 Timing	 or	 execution	 order	 of
processes	 must	 not	 affect	 the	 result	 and	 therefore	 testing	 input
channels	for	tokens	is	forbidden.
In	 order	 to	 optimize	 execution	 some	 KPNs	 do	 allow	 testing	 input
channels	for	emptiness	as	long	as	it	does	not	affect	outputs.	It	can	be
beneficial	and/or	possible	to	do	something	in	advance	rather	than	wait
for	a	channel.	In	the	example	shown	in	Figure	4.13,	process	P3	must
get	from	both	channel	A	and	channel	B.	The	left	side	of	Program	4.8
shows	the	process	stalls	if	the	AFifo	is	empty	(even	if	there	is	data	in
the	BFifo).	 If	 the	 first	 FIFO	 is	 empty,	 it	might	 be	 efficient	 to	 see	 if
there	is	data	in	the	other	FIFO	to	save	time	(right	side	of	Program	4.8).

void	Process3(void){
int32_t	inA,	inB,	out;
		while(1){
				while(AFifo_Get(&inA)){};
				while(BFifo_Get(&inB)){};
				out	=	compute(inA,inB);
				CFifo_Put(out);

}

}

	

void	Process3(void){
int32_t	inA,	inB,	out;
		while(1){
				if(AFifo_Size()==0){
						while(BFifo_Get(&inB)){};
						while(AFifo_Get(&inA)){};
				}	else{
						while(AFifo_Get(&inA)){};
						while(BFifo_Get(&inB)){};

}

				out	=	compute(inA,inB);
				CFifo_Put(out);

}



}

Program	4.8.	Two	C	implementations	of	a	process	on	a	KPN.	The
one	on	the	right	is	optimized.

Processes	of	a	KPN	are	deterministic.	For	the	same	input	history,	they
must	 always	 produce	 exactly	 the	 same	 output.	 Processes	 can	 be
modeled	 as	 sequential	 programs	 that	 do	 reads	 and	writes	 to	 ports	 in
any	order	or	quantity	as	long	as	the	determinism	property	is	preserved.
KPN	 processes	 are	 monotonic,	 which	 means	 that	 they	 only	 need
partial	 information	 of	 the	 input	 stream	 in	 order	 to	 produce	 partial
information	of	the	output	stream.	Monotonicity	allows	parallelism.	In
a	KPN	there	is	a	total	order	of	events	inside	a	signal.	However,	there	is
no	order	relation	between	events	in	different	signals.	Thus,	KPNs	are
only	partially	ordered,	which	classifies	them	as	an	untimed	model.



4.4.	Thread	sleeping
Sometimes	a	thread	needs	to	wait	for	a	fixed	amount	of	time.	We	will
implement	an OS_Sleep 	function	that	will	make	a	thread	dormant	for
a	 finite	 time.	 A	 thread	 in	 the	 sleep	 state	 will	 not	 be	 run.	 After	 the
prescribed	amount	of	time,	the	OS	will	make	the	thread	active	again.
Sleeping	would	be	used	for	tasks	which	are	not	real-time.	In	Program
4.9,	the PeriodicStuff 	is	run	approximately	once	a	second.

void	Task(void){
		InitializationStuff();
		while(1){
				PeriodicStuff();
				OS_Sleep(ONE_SECOND);	//	go	to	sleep	for	1	second

}

}

Program	4.9.	This	thread	uses	sleep	to	execute	its	task
approximately	once	a	second.

To	implement	the	sleep	function,	we	could	add	a	counter	to	each	TCB
and	call	it Sleep .	If Sleep is	zero,	the	thread	is	not	sleeping	and	can	be
run,	meaning	it	is	either	in	the	run	or	active	state.	If Sleep is	nonzero,
the	thread	is	sleeping.	We	need	to	change	the	scheduler	so	that RunPt
is	 updated	 with	 the	 next	 thread	 to	 run	 that	 is	 not	 sleeping	 and	 not
blocked,	see	Program	4.10.

void	Scheduler(void){
		RunPt	=	RunPt->next;					//	skip	at	least	one
		while((RunPt->Sleep)||(RunPt-> 	blocked)){					
				RunPt	=	RunPt->next;			//	find	one	not	sleeping	and	not	blocked

}

}

Program	4.10.	Round-robin	scheduler	that	skips	threads	if	they



are	sleeping	or	blocked.

Any	 thread	 with	 a	 nonzero Sleep counter	 will	 not	 be	 run.	 The	 user
must	be	careful	not	to	let	all	the	threads	go	to	sleep,	because	doing	so
would	crash	this	implementation.	Next,	we	need	to	add	a	periodic	task
that	 decrements	 the Sleep 	 counter	 for	 any	 nonzero	 counter.	When	 a
thread	 wishes	 to	 sleep,	 it	 will	 set	 its Sleep 	 counter	 and	 invoke	 the
cooperative	 scheduler.	 The	 period	 of	 this	 decrementing	 task	 will
determine	the	resolution	of	the	parameter time .
Notice	that	this	implementation	is	not	an	exact	time	delay.	When	the
sleep	parameter	is	decremented	to	0,	the	thread	is	not	immediately	run.
Rather,	when	the	parameter	reaches	0,	the	thread	is	signified	ready	to
run.	If	there	are	n	other	threads	in	the	TCB	list	and	the	thread	switch
time	is	Δt,	then	it	may	take	an	additional	n*Δt	time	for	the	thread	to	be
launched	after	it	awakens	from	sleeping.



4.5.	Deadlocks
One	of	the	drawbacks	of	semaphores	is	a	deadlock.	With	a	deadlock
there	 is	 a	 circle	 of	 threads	 blocked	 (or	 spinning)	 because	 they	 are
waiting	 on	 each	 other.	 There	 are	 four	 necessary	 conditions	 for	 a
deadlock	to	occur.

Mutual	exclusion
Hold	and	wait
No	preemption	of	resources
Circular	waiting

	
Mutual	exclusion	means	 one	 thread	will	 have	 exclusive	 access	 to	 a
resource	and	other	threads	will	have	to	wait	if	they	wish	access	to	the
resource.	 Hold	 and	 wait	 means	 a	 thread	 is	 allowed	 to	 hold	 one
resource	will	it	waits	for	another.	A	deadlock	could	be	resolved	if	the
operating	 system	 could	 detect	 the	 deadlock	 is	 about	 to	 occur	 and
preempt	 resources	 by	 killing	 threads	 and	 recovering	 the	 resources
attached	 to	 that	 thread.	 So,	 we	 say	 a	 necessary	 condition	 for	 a
deadlock	 to	 occur	 is	 that	 the	 OS	 does	 not	 support	 preemption	 of
resources.	The	last	and	most	obvious	condition	for	a	deadlock	to	occur
is	circular	waiting.	Program	4.11	shows	three	threads	that	share	three
resources	 SDC,	 LCD,	 and	 CAN.	 To	 use	 a	 resource,	 a	 thread	 first
requests	the	resource	by	waiting	on	its	semaphore,	uses	the	resource,
and	then	releases	the	resource	by	signaling	its	semaphore.

Thread	A
		wait(&bLCD);
		//1
		wait(&bSDC);		
//4
			use	LCD	and
SDC
	
signal(&bSDC);
	
signal(&bLCD);

Thread	B
		wait(&bSDC);		
//2
		wait(&bCAN);	
//5
			use	CAN	and
SDC
	
signal(&bCAN);
	
signal(&bSDC);

Thread	C
		wait(&bCAN);
		//3
		wait(&bLCD);	
//6
			use	CAN	and
LCD
	
signal(&bLCD);
	
signal(&bCAN);



Program	4.11.	A	deadlock	will	occur	if	the	execution	sequence
follows	1-2-3.

One	 way	 to	 visualize	 a	 deadlock	 is	 to	 draw	 a	 resource	 allocation
graph.	Another	name	for	this	graph	is	a	wait-for	graph.	Threads	are
drawn	 as	 circles	 and	 resources	 (binary	 semaphores)	 are	 drawn	 as
rectangles.	 In	 these	 examples	 the	 resources	 are	 single	 instance.	 For
example,	these	is	only	one	CAN,	one	LCD,	and	one	SDC.	This	means
the	mutual	exclusive	access	is	controlled	by	three	binary	semaphores.
There	are	two	types	of	arrows	in	a	resource	allocation	graph.	The	steps
1,2,3	in	Program	4.11	all	successfully	return	from	a	wait	on	a	binary
semaphore.	 We	 signify	 a	 thread	 possessing	 a	 resource	 using	 an
assignment	arrow	from	the	resource	to	the	thread.	The	steps	4,5,6	in
Program	 4.11	 all	 execute	 a	wait	 on	 a	 binary	 semaphore,	 but	 do	 not
return	because	the	resource	is	unavailable.	We	signify	a	thread	waiting
for	a	resource	using	a	request	arrow	from	the	thread	to	the	resource.
Notice	that	a	thread	can	have	at	most	one	request	arrow,	because	once
it	 is	 spinning	 or	 blocked	 on	 a	 semaphore	 it	 will	 not	 continue	 to
execute.	A	closed	path	in	a	single-instance	resource	allocation	graph	is
an	 indication	 that	 a	 deadlock	 has	 occurred.	 Figure	 4.14	 plots	 the
resource	 allocation	 graph	 occurring	 if	 the	 example	 in	 Program	 4.11
executes	steps	1,2,3,4,5,6.

Figure	4.14.	A	resource	allocation	graph	can	be	used	to	visualize
a	deadlock.

One	way	to	prevent	deadlocks	is	to	remove	one	of	the	four	necessary
conditions	 required	 to	 have	 a	 deadlock.	 We	 could	 remove	 mutual
exclusion	 by	 eliminating	 the	 semaphores	 all	 together.	However,	 this
usually	 impractical.	One	simple	way	to	eliminate	hold	and	wait	 is	 to
request	 all	 resources	 at	 the	 same	 time.	 The	 OS	 will	 either	 grant	 a



thread	 all	 its	 resources	 or	 block	 it	 until	 the	 resources	 are	 available.
Notice	 in	 Program	 4.12	 that	 a	 new	 wait	 function	 is	 needed	 that
supports	 multiple	 simultaneous	 requests.	 One	 disadvantage	 of	 this
solution	 is	 the	 efficiency	 of	 requesting	 a	 resource	 before	 it	 may	 be
needed.

Thread	A
	
wait(&bLCD,&bSDC);	
			use	LCD	and	SDC
	
signal(&bLCD,&bSDC);

Thread	B
		wait(&bSDC,&bCAN);
			use	CAN	and	SDC
	
signal(&bSDC,&bCAN);

Thread	C
		wait(&bCAN,&bLCD);
			use	CAN	and	LCD
	
signal(&bCAN,&bLCD);

Program	4.12.	A	deadlock	will	not	occur	because	there	is	no	hold
and	wait.

Another	 way	 to	 prevent	 deadlocks	 is	 to	 remove	 the	 possibility	 of
circular	waiting.	In	this	solution	all	resources	are	ordered	numerically.
A	 thread	must	 request	 resources	 in	 this	 numerical	 order.	 If	 a	 thread
needs	 resources	3,	 6,	 and	15,	 the	 thread	 first	 asks	 for	3,	 then	6,	 and
finally	asks	for	15.		This	solution	like	the	first	may	cause	a	thread	to
request	a	resource	before	it	is	needed.	In	Program	4.13	we	arbitrarily
assign	the	LCD	to	1,	the	SDC	to	2,	and	the	CAN	to	3.	In	particular,	we
simply	 swap	 the	 order	 of	 requesting	 in	 Thread	 3	 to	 conform	 to	 the
numerical	order	and	the	possibility	of	deadlock	is	removed.

Thread	A
		wait(&bLCD);
	
wait(&bSDC);		
			use	LCD	and
SDC
	
signal(&bSDC);
	
signal(&bLCD);

Thread	B
	
wait(&bSDC);		
		wait(&bCAN);	
			use	CAN	and
SDC
	
signal(&bCAN);
	
signal(&bSDC);

Thread	C
		wait(&bLCD);
	
wait(&bCAN);				
				use	CAN	and
LCD
		signal(&bLCD);
		signal(&bCAN);

Program	4.13.	A	deadlock	will	not	occur	because	there	is	no
circular	waiting.

Deadlock	 prevention	 often	 puts	 severe	 restrictions	 on	 the	 operating



system	 resulting	 in	 efficiencies.	 A	 similar	 approach	 with	 far	 less
restrictions	 is	 deadlock	 avoidance.	 With	 deadlock	 avoidance	 every
time	a	thread	requests	a	resource,	it	lists	all	the	additional	resources	it
might	need	to	finish.	If	there	is	at	least	one	safe	sequence	that	allows
all	 threads	 to	 complete,	 then	 the	 resource	 is	 granted.	 If	 no	 safe
sequence	can	be	found,	the	request	would	be	denied.	Referring	back	to
Program	4.11	an	operating	system	implementing	deadlock	avoidance
would	 have	 denied	 Thread	 3	 at	 step	 3	 when	 it	 requests	 the	 CAN
(knowing	it	also	would	need	the	LCD).	It	is	a	little	inefficient	to	block
thread	 3	 on	 the	 CAN	 even	 though	 the	 CAN	 was	 free.	 For	 more
information	 about	 deadlock	 avoidance,	 search	 the	 term	 “Banker’s
Algorithm”.
Another	 approach	 is	 to	 implement	 preemption.	An	 operating	 system
could	 use	 a	 resource	 allocation	 graph	 to	 detect	 that	 a	 deadlock	 has
occurred.	At	this	point,	the	OS	would	choose	the	least	critical	thread	to
kill	 that	breaks	 the	cycle.	The	 resources	would	be	 recovered	and	 the
killed	 thread	 could	 be	 restarted.	 Another	 approach	 is	 to	 kill	 all	 the
threads	in	the	cycle	and	to	restart	them	all.
A	very	effective	approach	 to	deadlock	 is	 to	add	 timeouts	 to	 the	wait
function.	 For	 each	 wait,	 the	 thread	 specifies	 a	 maximum	 time	 it	 is
willing	 to	wait	 for	 a	 resource.	 If	 the	 timeout	 is	 triggered,	 the	 thread
either	skips	that	task	or	attempts	to	solve	the	task	in	another	way.



4.6.	Monitors
Semaphores	 are	 rich	 but	 low-level	 mechanism	 for	 synchronization.
Semaphores	 are	 powerful,	 but	when	 used	 incorrectly	 they	 can	 cause
deadlocks	 and	 crashes.	 Monitors	 are	 a	 higher-level	 synchronization
mechanism	 because	 proper	 use	 is	 enforced.	 Monitors	 can	 be
developed	 to	 solve	 any	of	 the	 applications	presented	 in	 the	previous
section.
Semaphores	 are	 essentially	 shared	 global	 variables,	 which	 can	 be
accessed	 anywhere	 in	 the	 software	 system	by	 calling	wait	 or	 signal.
There	 is	 no	 formal	 connection	 between	 the	 semaphore	 and	 the	 data
being	controlled	by	the	semaphore.	Semaphores	enforce	no	control	or
have	any	guarantee	of	proper	usage.	A	monitor	will	 encapsulate	 the
data	with	 synchronization	mechanisms	 to	access	 the	data.	A	monitor
defines	 a	 lock	 and	 zero	 or	 more	 condition	 variables	 for	 managing
concurrent	access	to	shared	data.	The	monitor	uses	the	lock	to	insure
that	only	a	single	thread	is	active	in	the	monitor	at	any	instance.	The
lock	 also	 provides	 mutual	 exclusion	 for	 shared	 data.	 Condition
variables	 enable	 threads	 to	 go	 to	 sleep	 inside	 of	 critical	 sections,	 by
releasing	their	lock	at	the	same	time	it	puts	the	thread	to	sleep.
A	monitor	encapsulates	protected	data	with	synchronization.	A	thread
acquires	 the	mutex	 at	 the	 start	 by	 accessing	 the	 lock.	 Once	 granted
acquiring	the	lock,	the	thread	operates	on	the	shared	data.	If	the	thread
cannot	 complete,	 it	 will	 temporarily	 release	 the	 mutex,	 leaving	 the
data	 in	 a	 consistent	 state.	 It	 will	 need	 to	 reacquire	 when	 it	 can
continue.	When	complete	 the	 thread	releases	 the	mutex	and	exits	 the
monitor.
A	 condition	 variable	 is	 a	 queue	 of	 threads	 waiting	 for	 something
inside	a	critical	section.	Condition	variables	support	three	operations:
Wait , Signal and Broadcast .	 Although	 monitors	 use	 functions
calledWait and Signal ,	 these	 are	 not	 the	 same	 operations	 as
semaphores.	The	Wait 	function	takes	a	lock	parameter.	In	an	atomic
fashion	it	will	either	acquire	the	lock	or	go	to	sleep.	When	the	process
wakes	up,	it	attempts	to	reacquire	the	lock.The Signal 	function	wakes
up	 a	 waiting	 thread,	 if	 one	 exists.	 Otherwise,	 it	 does
nothing.The Broadcast 	 function	will	wake	up	all	waiting	 threads.	A



thread	must	hold	the	lock	when	doing	condition	variable	operations.
To	 illustrate	 the	concept,	we	will	design	a	FIFO	using	a	monitor	 for
synchronization.	 This	 implementation	 handles	 the	 empty	 condition,
but	 assumes	 the	 FIFO	 is	 never	 full.This	 FIFO	 has	 two	 public
functions, Put() ,	which	enters	data	into	the	FIFO,	and Get() ,	which	is
used	 to	 extract	 data	 from	 the	 FIFO.	 There	 is	 a	 private	 lock,	 called
Lock.	 Private	 means	 the	 lock	 cannot	 be	 accessed	 outside	 of	 the
monitor.	The	FIFO	of	course	also	has	private	data,	which	is	the	queue.
All	access	to	the	FIFO	requires	capturing	the	lock.	If	a	thread	finds	the
lock	 unavailable	 it	 will	 spin	 or	 block	 or	 sleep.	 It	 will	 attempt	 to
reacquirethe	 lock.	 After	 acquiring	 the	 lock,	 the Put operation	 will
enter	the	item	onto	the	queue,	signal	the	conditionVar,	and	then	release
the	 lock.	The conditionVar->Signal operation	will	wake	 up	 a	 thread
currently	 sleeping	 on	 the conditionVar .	 If	 there	 areno	 sleeping
threads,	 then Signal has	 no	 action.	 Compare	 this	 to	 a
semaphore Signal ,	 which	 will	 increment	 its	 counter	 regardless	 of
whether	 or	 not	 any	 consumer	 threads	 are	 waiting	 for	 data.	 The
operation Get 	 must	 all	 acquire	 the	 lock	 before	 proceeding.	 If	 the
FIFO	is	empty,	the	thread	will	wait	for	data	by	releasing	the	lock	and
go	to	sleep.	Notice	that	this	thread	is	not	holding	any	resources	will	it
waits.	When	the	sleeping	thread	awakens,	it	must	attempt	to	reacquire
the	lock	before	proceeding	to	step	3	where	data	is	removed	from	the
queue.

Put(item)
1)	lock->Acquire();
2)	put	item	on	queue;
3)	conditionVar->Signal();
4)	lock->Release();

Get()
1)	lock->Acquire();
2)	while	queue	is	empty
			conditionVar->Wait(lock);
3)	remove	item	from	queue;
4)	lock->Release();
5)	return	item;

	
Condition	variables	do	not	have	any	history,	but	semaphores	do.	When
Signal 	is	executed,	if	no	thread	is	waiting,	the	signal	is	a	no-op.	If	a
thread	 executes	Wait ,	 it	 waits.	 The	 wait	 and	 signal	 functions	 of	 a
semaphore	 are	 commutative;	 the	 result	 is	 the	 same	 regardless	 of	 the
order	 of	 execution.	 In	 other	 words,	 if	 one	 thread	 calls	 a	 semaphore
wait	and	another	thread	calls	a	semaphore	signal,	the	result	is	the	same
regardless	 of	 the	 order	 of	 execution.	 Condition	 variables	 are	 not



commutative.	 In	 other	 words,	 the	 order	 of	 execution	 matters.
Therefore,	all	 access	 to	 the	Signal	and	Wait	 functions	of	a	condition
variable	must	require	acquiring	a	lock.
There	 are	 two	 flavors	 of	 monitors	 that	 differ	 in	 the	 scheduling
semantics	 of	 the	 function	 signal.	With	 a	Hoare	monitor	 the	 signal
function	immediately	switches	from	the	thread	that	called	signal	 to	a
waiting	thread.	The	condition	that	the	waiting	thread	was	anticipating
is	 guaranteed	 to	 hold	when	waiting	 thread	 executes.	The	 thread	 that
called	Signal	must	make	 sure	 the	data	 is	 in	 a	 consistent	 state	before
signaling.	With	a	Mesa	monitor,	as	implemented	in	Java,	the	function
signal	places	a	thread	on	the	ready	queue,	but	thread	that	called	signal
continues	 inside	 monitor.	 This	 means	 when	 the	 awaken	 thread
eventually	 runs,	 the	 condition	 is	 not	 necessarily	 true.	 In	 a	 Mesa
monitor	after	returning	from	a	wait,	the	thread	only	knows	something
as	changed.

Hoare	wait
if(FIFO	empty)
		wait(condition)

Mesa	wait
while(FIFO	empty)
		wait(condition)



4.7.	Fixed	Scheduling
In	the	round	robin	scheduler	of	the	previous	chapter,	the	threads	were
run	one	at	a	time	and	each	was	given	the	same	time	slice.	When	using
semaphores	 the	 thread	 scheduler	 dynamically	 runs	 or	 blocks	 threads
depending	on	conditions	at	 that	 time.	There	 is	another	application	of
thread	 scheduling	 sometimes	 found	 in	 real-time	 embedded	 systems,
which	 involves	 a	 fixed	 scheduler.	 	 In	 this	 scheduler,	 the	 thread
sequence	and	the	allocated	timeslices	are	determined	a	priori,	during
the	design	phase	of	the	project.	This	class	of	problems	is	like	creating
the	 city	 bus	 schedule,	 managing	 a	 construction	 project,	 or	 routing
packages	 through	 a	 warehouse.	 Because	 of	 this	 analogy,	 one	 would
expect	 fundament	 principles	 of	managing	 a	 construction	project	will
apply	 to	 the	 design	 of	 a	 fixed	 scheduler.	 It	 is	 important	 to	 have
accurate	data	 about	 the	 tasks	 in	 advance;	we	 should	build	 slack	 into
the	 plan	 expecting	 delays	 and	 anticipating	 problems;	 “just	 in	 time”
where	 tasks	 are	 performed	when	 they	 are	 actually	 needed.	 First,	we
create	 a	 list	 of	 tasks	 to	 perform	1.	Assigning	 a	 priority	 to	 each
task,
2.	Defining	the	resources	required	for	each	task,
3.	Determining	how	often	each	task	is	to	run,	and
4.	Estimating	how	long	each	task	will	require	to	complete.
	

Next,	 we	 compare	 resources	 required	 to	 run	 versus	 the	 available
resources	 at	 each	 point.	 Since	 this	 chapter	 deals	 with	 time
management,	 the	 only	 resource	 we	 will	 consider	 here	 is	 processor
cycles.		In	more	complex	systems,	we	could	consider	other	resources
like	memory,	necessary	data,	and	I/O	channels.	For	real-time	tasks	we
want	 to	 guarantee	 performance,	 so	we	must	 consider	 the	worst	 case
estimate	 of	 how	 long	 each	 task	 will	 take,	 so	 the	 schedule	 can	 be
achieved	100%	of	 the	 time.	On	 the	other	 hand,	 if	 it	 is	 acceptable	 to
meet	the	scheduling	requirement	most	of	the	time,	we	could	consider
the	average	time	it	takes	to	perform	each	task.	Lastly,	we	schedule	the
run	 times	 for	 each	 tasks	 by	 assigning	 times	 for	 the	 highest	 priority
tasks	first,	then	shuffle	the	assignments	like	placing	pieces	in	a	puzzle



until	 all	 real-time	 tasks	are	 scheduled	as	 required.	The	 tasks	 that	 are
not	real-time	can	be	scheduled	in	the	remaining	slots.	If	all	real-time
tasks	 cannot	 be	 scheduled,	 then	 a	 faster	 microcontroller	 will	 be
required.	The	design	of	this	type	of	fixed	scheduler	is	illustrated	with	a
design	example,	Figure	4.15.

Figure	4.15.	Real-time	specifications	for	these	three	tasks.

The	goal	of	this	design	example	is	to	schedule	three	real-time	tasks:	a
finite	 state	 machine	 ( FSM ),	 a	 proportional-integral-derivative
controller	 ( PID ),	 and	a	data	 acquisition	 system	 ( DAS ).	There	will
also	be	one	nonreal-time	task, PAN ,	which	will	input/output	with	the
front	panel.	Figure	4.15	shows	that	each	real-time	task	in	the	example
has	a	required	period	of	execution,	a	maximum	execution	time,	and	a
minimum	execution	time.
Because	we	wish	to	guarantee	tasks	will	always	be	started	on	time,	we
will	consider	the	maximum	times.	If	a	solution	were	to	exist,	then	we
will	be	able	find	one	with	a	repeating	6000-µs	pattern,	because	6000	is
the	 least	 common	 multiple	 of	 2000,	 1000,	 and	 1500.	 The	 basic
approach	 to	scheduling	periodic	 tasks	 is	 to	 time-shift	 the	second	and
third	 tasks	 so	 that	 when	 the	 three	 tasks	 are	 combined,	 there	 are	 no
overlaps,	 as	 shown	 in	 Figure	 4.16.	We	 start	 with	 the	most	 frequent
task,	which	in	this	example	is	the	PID	controller,	and	then	we	schedule
the	FSM	task	immediately	after	it.	In	this	example,	about	41%	of	the
time	is	allocated	to	real-time	tasks.	A	solution	is	possible	for	this	case
because	 the	 number	 of	 tasks	 is	 small,	 and	 there	 is	 a	 simple	 1/1.5/2
relationship	between	the	required	periods.	Then,	we	schedule	non	real-
time	tasks	in	the	remaining	intervals.



Figure	4.16.	Repeating	pattern	to	schedule	these	three	real-time
tasks.

Program	 4.14shows	 the	 four	 threads	 for	 this	 system.	 The	 real-time
threads	 execute OS_Suspend when	 it	 completes	 its	 task,	 which	will
suspend	the	thread	and	run	the	nonreal-time	thread.	In	this	way,	each
thread	 will	 run	 one	 time	 through	 the for 	 loop	 at	 the	 period
requirement	 specified	 in	 Figure	 4.15.	 When	 the	 treads	 explicitly
release	 control	 (in	 this	 case	 by	 calling OS_Suspend ),	 the	 system	 is
called	 cooperative	 multitasking.	 The	 nonreal-time	 thread	 ( PAN )
will	 be	 suspended	 by	 the	 timer	 interrupt,	 in	 a	manner	 similar	 to	 the
preemptive	schedule	described	earlier	in	Section	4.1.

void	FSM(void){	StatePtr	Pt;			uint8_t	in;
		Pt	=	SA;																	//	Initial	State
		for(;;)	{
				OS_Suspend();										//	Runs	every	2ms
				Port_Out(Pt->Out);					//	Output	depends	on	the	current	state
				in	=	Port_In();
				Pt	=	Pt->Next[in];					//	Next	state	depends	on	the	input

}

}

void	PID(void){	uint8_t	speed,power;		
		PID_Init();														//	Initialize
		for(;;)	{
				OS_Suspend();										//	Runs	every	1ms
				speed	=	PID_In();						//	read	tachometer
				power	=	PID_Calc(speed);
				PID_Out(power);								//	adjust	power	to	motor

}



}

void	DAS(void){	uint8_t	raw;		
		DAS_Init();												//	Initialize
		for(;;)	{
				OS_Suspend();								//	Runs	every	1.5ms
				raw	=	DAS_In();						//	read	ADC
				Result	=	DAS_Calc(raw);

}

}

void	PAN(void){	uint8_t	input;		
		PAN_Init();												//	Initialize
		for(;;)	{
				input	=	PAN_In();				//	front	panel	input
				if(input){
						PAN_Out(input);				//	process

}

}

}

Program	4.14.	Four	user	threads	(FixedScheduler_xxx).

Program	4.15	creates	the	four	thread	control	blocks.	In	this	system	the
TCBs	are	not	linked	together,	but	rather	exist	as	a	table	of	four	entries,
one	for	each	thread.	Each	thread	will	have	a	total	of	396bytes	of	stack,
and	the	stack	itself	exists	inside	the	TCB.	The RunPt 	will	point	to	the
TCB	of	the	currently	running	thread.

struct	TCB{
		uint32_t	*StackPt;							//	Stack	Pointer
		uint32_t	MoreStack[83];		//	396	bytes	of	stack
		uint32_t	InitialReg[14];	//	R4-R11,R0-R3,R12,R14
		uint32_t	InitialPC;						//	pointer	to	program	to	execute
		uint32_t	InitialPSR;					//	0x01000000



};

typedef	struct	TCB	TCBType;
TCBType	*RunPt;												//	thread	currently	running
#define	TheFSM	&sys[0]					//	finite	state	machine
#define	ThePID	&sys[1]					//	proportional-integral-derivative
#define	TheDAS	&sys[2]					//	data	acquisition	system
#define	ThePAN	&sys[3]					//	front	panel
TCBType	sys[4]={
		{	&sys[0].InitialReg[0],{	0},	(uint32_t)	FSM,	0x01000000},
		{	&sys[1].InitialReg[0],{	0},	(uint32_t)	PID,	0x01000000},
		{	&sys[2].InitialReg[0],{	0},	(uint32_t)	DAS,	0x01000000},
		{	&sys[3].InitialReg[0],{	0},	(uint32_t)	PAN,	0x01000000}

};

Program	4.15.	The	thread	control	blocks	(FixedScheduler_xxx).

	
Program	4.16	defines	 the	data	 structure	 containing	 the	details	 of	 the
fixed	 scheduler.	 This	 structure	 is	 a	 circular	 linked	 list,	 because	 the
schedule	 repeats.	 In	 particular,	 the	 22	 entries	 explicitly	 define	 the
schedule	 drawn	 in	 Figure	 4.16.	 The	 front	 panel	 thread	 ( PAN )	 is
assigned	 to	 run	 in	 the	 gaps	 when	 no	 real-time	 thread	 requires
execution.

struct	Node{
		struct	Node	*Next;								//	circular	linked	list
		TCBType	*ThreadPt;								//	which	thread	to	run
		uint32_t	TimeSlice;	//	how	long	to	run	it

};

typedef	struct	Node	NodeType;
NodeType	*NodePt;
NodeType	Schedule[22]={
{	&Schedule[1],	ThePID,	300},	//	interval					0,		300
{	&Schedule[2],	TheFSM,	100},	//	interval			300,		400
{	&Schedule[3],	TheDAS,		50},	//	interval			400,		450
{	&Schedule[4],	ThePAN,	550},	//	interval			450,	1000



{	&Schedule[5],	ThePID,	300},	//	interval		1000,	1300
{	&Schedule[6],	ThePAN,	600},	//	interval		1300,	1900
{	&Schedule[7],	TheDAS,		50},	//	interval		1900,	1950
{	&Schedule[8],	ThePAN,		50},	//	interval		1950,	2000
{	&Schedule[9],	ThePID,	300},	//	interval		2000,	2300
{	&Schedule[10],TheFSM,	100},	//	interval		2300,	2400
{	&Schedule[11],ThePAN,	600},	//	interval		2400,	3000
{	&Schedule[12],ThePID,	300},	//	interval		3000,	3300
{	&Schedule[13],ThePAN,	100},	//	interval		3300,	3400
{	&Schedule[14],TheDAS,		50},	//	interval		3400,	3450
{	&Schedule[15],ThePAN,	550},	//	interval		3450,	4000
{	&Schedule[16],ThePID,	300},	//	interval		4000,	4300
{	&Schedule[17],TheFSM,	100},	//	interval		4300,	4400
{	&Schedule[18],ThePAN,	500},	//	interval		4400,	4900
{	&Schedule[19],TheDAS,		50},	//	interval		4900,	4950
{	&Schedule[20],ThePAN,		50},	//	interval		4950,	5000
{	&Schedule[21],ThePID,	300},	//	interval		5000,	5300
{	&Schedule[0],	ThePAN,	700}		//	interval		5300,	6000

};

Program	4.16.	The	scheduler	defines	both	the	thread	and	the
duration	(FixedScheduler_xxx.zip).

A	simple	solution	for	 the	 thread	scheduler	can	be	found	on	 the	book
web	 site	 as	 FixedScheduler_xxx.	 An OS_Suspend 	 creates	 the
cooperative	multitasking,	 and	 is	 used	 by	 the	 real-time	 threads	when
their	task	is	complete.	In	this	example,	there	is	only	one	nonreal-time
thread,	 but	 it	would	 be	 straight	 forward	 to	 implement	 a	 round-robin
scheduler	for	these	threads	in	the	software	interrupt	handler.
We	 could	 have	 attempted	 to	 implement	 this	 system	 with	 regular
periodic	 interrupts.	 In	 particular,	 we	 could	 have	 created	 three
independent	periodic	interrupts	and	performed	each	task	in	a	separate
ISR.	Unfortunately,	there	would	be	situations	when	one	or	more	tasks
would	overlap.	In	other	words,	one	interrupt	might	be	requested	while
we	are	executing	one	of	the	other	two	ISRs.	Although	all	tasks	would
run,	some	would	be	delayed.	This	delay	is	called	time-jitter,	which	is
defined	 as	 the	 difference	 between	when	 a	 thread	 is	 supposed	 to	 run
(see	comments	of	Program	4.16)	and	when	it	does	run.	According	to



the	Rate	Monotonic	Theorem	we	 should	have	been	 able	 to	 schedule

these	tasks	because	



4.8.	Exercises
4.1	For	each	of	 the	 following	 terms	give	a	definition	 in	16	words	or
less

a)	active
b)	atomic
c)	blocked
d)	bounded	buffer
e)	bounded	waiting
f)	critical	section

g)	deadlock
h)	hook
i)	nonreentrant
j)	path	expression
k)	sleeping
l)	normalized	mean
response	time

m)	preemptive
scheduler
n)	producer-consumer
o)	reentrant
p)	rendezvous
q)	round	robin
scheduler
r)	spin	lock

	
4.2	Consider	the	queue	of	people	waiting	in	line	at	the	bank.	How	can
Little’s	Theorem	be	used	to	measure	the	average	time	a	person	spends
in	the	bank	(time	waiting	plus	time	being	served).
	
4.3	Consider	situation	of	cars	traveling	across	a	bridge.	Typically,	10
cars/sec	 arrive	 at	 the	 bridge.	On	 a	 sunny	 day	 it	 takes	 10	 seconds	 to
cross	 the	 bridge.	 Use	 Little’s	 Theorem	 explain	 what	 happens	 on	 a
rainy	day	when	now	it	takes	100	seconds	to	cross	the	bridge.
	
4.4	Use	Little’s	Theorem	to	explain	why	a	fast	food	restaurant	requires
a	smaller	dining	room	than	a	regular	restaurant	even	though	they	the
same	customer	arrival	rate.
	
4.5	If	a	thread	is	blocked	because	the	output	display	is	not	available,
when	should	you	wake	it	up	(signal	it)?
	
4.6	You	have	three	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute
and	runs	every	10	ms.	Task	2	takes	a	maximum	of	0.5	ms	to	execute
and	runs	every	1	ms.	Task	3	takes	a	maximum	of	1	ms	to	execute	and
runs	 every	 100	 ms.	 Do	 you	 think	 a	 scheduling	 algorithm	 exists?
Justify	your	answer.
	
4.7	Consider	 a	 problem	of	 running	 three	 foreground	 threads	 using	 a
preemptive	 scheduler	 with	 semaphore	 synchronization.	 Each	 thread



has	a	central	body()	containing	code	that	should	be	executed	together.
The	 basic	 shell	 of	 this	 system	 is	 given.	 Define	 one	 or	 more
semaphores,	then	add	semaphore	function	calls	to	implement	a	three-
thread	rendezvous.	Basically,	 each	 time	 through	 the	while	 loop,	 the
first	two	threads	to	finish	their	start()	code	will	wait	for	the	last	thread
to	finish	its	start()	code.	Then,	all	 three	 threads	will	be	active	at	 the
same	 time	as	 they	execute	 their	corresponding	body().	You	may	call
any	if	the	semaphore	functions	defined	in	this	book.	You	will	allocate
one	 or	 more	 semaphores	 and	 add	 calls	 to	 semaphore	 functions,
otherwise	 no	 other	 changes	 are	 allowed.	 	You	may	 assume	 thread1
runs	first.	For	each	semaphore	you	add,	explain	what	it	means	to	be	0,
1	etc.
	

void	thread1(void){
init1();		
while(1){
			start1();
			body1();
			end1();

}

}

void	thread2(void){
init2();		
while(1){
			start2();
			body2();
			end2();

}

}

void	thread3(void){
init3();		
while(1){
			start3();
			body3();
			end3();

}

}

	
4.8	Consider	 a	problem	of	deadlocks	 that	 can	occur	with	 semaphore
synchronization.	The	following	is	a	classic	example	that	might	occur
if	two	threads	need	both	the	disk	and	the	printer.	In	this	example,	the
disk	 has	 a	 binary	 semaphore DiskFree ,	 which	 is	 1	 if	 the	 disk	 is
available,	 and	 similarly	 the	 printer	 has	 a	 binary
semaphore PrinterFree ,	 which	 is	 1	 if	 the	 printer	 is	 available.	 A
deadlock	occurs	 if	each	thread	gets	one	resource	then	waits	(on	each
other)	for	the	other	resource.	In	this	example,	we	assume	there	is	one
disk	and	one	printer.

void	thread1(void){
		OS_bWait(&DiskFree);
		OS_bWait(&PrinterFree);
	
//	use	disk	and	printer

void	thread2(void){
		OS_bWait(&PrinterFree);
		OS_bWait(&DiskFree);
	
//	use	printer	and	disk



	
		OS_bSignal(&DiskFree);
		OS_bSignal(&PrinterFree);

}

	
		OS_bSignal(&PrinterFree);
		OS_bSignal(&DiskFree);

}

	
In	this	problem	we	will	develop	a	graphical	method	(called	a	resource
allocation	 graph)	 to	 visualize/recognize	 the	 deadlock.	 Draw	 each
thread	 in	 your	 system	 as	 an	 oval,	 and	 each	 binary	 semaphore	 as	 a
rectangle.	If	a	thread	calls OS_bWait 	and	returns,	then	draw	an	arrow
(called	 an	 allocation	 edge)	 from	 the	 semaphore	 to	 the	 thread.	 An
arrow	 from	 a	 semaphore	 to	 a	 thread	 means	 that	 thread	 owns	 the
resource.	 If	 a	 thread	 calls OS_bSignal ,	 then	 erase	 the	 previously
drawn	 allocation	 edge.	 If	 a	 thread	 calls OS_bWait 	 and	 spins	 or
blocks	because	the	semaphore	is	not	free,	then	draw	an	arrow	from	the
thread	 to	 the	 semaphore	 (called	 a	 request	 edge).	 An	 arrow	 from	 a
thread	 to	 a	 semaphore	means	 that	 thread	 is	waiting	 for	 the	 resource
associated	with	the	semaphore.
a)	Draw	 the	 resource	 allocation	 graph	 that	 occurs	with	 the	 deadlock
sequence
1)	 thread1	 executes OS_bWait(&DiskFree);	 2)	 thread2
executes OS_bWait(&PrinterFree);	 3)	 thread2
executes OS_bWait(&DiskFree);	 4)	 thread1
executes OS_bWait(&PrinterFree);	 b)	 This	 method	 can	 be
generalized	 to	 detect	 that	 a	 deadlock	 has	 occurred	with	 an	 arbitrary
number	of	binary	semaphores	and	threads.	What	shape	in	the	resource
allocation	graph	defines	a	deadlock?	In	other	words,	generalize	the	use
of	 this	method	 such	 that	 you	 can	 claim	“There	 is	 a	 deadlock	 if	 and
only	if	the	resource	allocation	graph	contains	a	shape	in	the	form	of	a
______________________”.
c)	 Justify	 your	 answer	 by	 giving	 a	 deadlock	 example	 with	 three
threads	and	three	binary	semaphores.	In	particular,	give	1)	the	C	code;
2)	the	execution	sequence;	3)	the	resource	allocation	graph	4.9	You	are
given	three	identical	I/O	ports	to	manage	on	the	LM3S/TM4C,	PortF,
PortG,	 and	 PortH.	 	 You	 may	 assume	 there	 is	 a	 preemptive	 thread
scheduler	and	blocking	semaphores.
a)	Look	up	the	address	of	each	port	and	its	direction	register.
b)	Create	 a	 data	 structure	 to	 hold	 an	 address	 of	 the	 port	 and	 the



address	of	the	data	direction	register.	Assume	the	type	of	this	structure
is	called PortType .
c)	Design	and	implement	a	manager	that	supports	two	functions.	The
first	 function	 is	 called NewPort .	 Its	 prototype	 is	 PortType
*NewPort(void);
If	a	port	 is	available	when	a	thread	calls NewPort ,	 then	a	pointer	 to
the	structure,	defined	in	part	b)	is	returned.	If	no	port	is	available,	then
the	thread	will	block.	When	a	port	becomes	available	this	thread	will
be	awakened	and	the	pointer	to	the	structure	will	be	returned.	You	may
define	 and	 use	 blocking	 semaphores	 without	 showing	 the
implementation	of	the	semaphore	or	scheduler.	The	second	function	is
called FreePort ,	and	its	prototype	is	void	FreePort(PortType	*pt);
This	function	returns	a	port	so	that	it	can	be	used	by	the	other	threads.
Include	a	function	that	initializes	the	system,	where	all	five	ports	are
free.	 Hint:	 the	 solution	 is	 very	 similar	 to	 the	 FIFO	 queue	 example
shown	in	Section	4.3.
	
4.10	Consider	a	system	with	two	LCD	message	displays	in	the	context
of	a	preemptive	thread	schedulerwith	blocking	semaphores.	To	display
a	 message,	 the	 OS	 can	 call
either LCD1_OutString or LCD2_OutString passing	 it	 an	 ASCII
string.	 These	 routines	 have	 critical	 sections	 but	 must	 run	 with
interrupts	 enabled.	 The	 foreground	 threads	 will	 not
call LCD1_OutString or LCD2_OutString directly;	 rather,	 the
threads	call	a	generic	OS	routine OS_Display .	 If	an	LCD	is	free,the
OS	passes	 the	message	 to	 the	 free	LCD.	 If	both	LCDs	are	busy,	 the
thread	 will	 block.	 	 There	 are	 many	 threads	 that	 wish	 to	 display
messages,	and	the	threads	do	not	care	or	know	onto	which	LCD	their
message	 will	 be	 displayed.	 	 You	 are	 given
the LCD1_OutString or LCD2_OutString 	 routines,	 the	OS	and	 the
blocking	semaphores	with	the	following	prototypes.

void	LCD1_OutString(char	*string);	//	up	to	20ms	to	complete
void	LCD2_OutString(char	*string);	//	up	to	20ms	to	complete
int	OS_InitSemaphore(Sema4Type	*semaPt,	int16_t	value);
void	OS_Wait(Sema4Type	*semaPt);
void	OS_Signal(Sema4Type	*semaPt);

a)	 List	 the	 semaphores	 and	 private	 global	 variables	 needed	 for	 your
solution.	 For	 each	 semaphore	 define	what	 it	means	 and	what	 initial
value	 it	 should	 have.	 Give	 the	 meaning	 and	 initial	 values	 for	 any



private	global	variables	you	need.	The	threads	will	not	directly	access
these	semaphores	or	variables.
b)	Write	 the	 generic	OS	 display	 routine	 that	 the	 foreground	 threads
will	 call	 (you	may	 not	 disable	 interrupts	 or	 call	 any	 other	 functions
other	 than	 the	 five	 functions	 shown	 above)	 void	 OS_Display(char
*string){
	



5.	Real-time	Systems
Chapter	5	objectives	are	to:
•	Review	real-time	applications	that	require	priority
•	Implement	a	priority	scheduler
•	Use	the	operating	system	to	debounce	switches
•	Run	event	threads	as	high	priority	main	threads
•	Review	of	other	real-time	operating	systems

	
The	key	concept	in	this	chapter	is	the	introduction	of	“priority”,
which	captures	the	relative	importance	of	tasks	in	a	system.	Real-
time	 systems	 in	 general	 and	 operating	 systems	 for	 real-time
systems	in	particular	use	priority	as	a	means	to	achieve	effective
performance.	First	we	motivate	the	need	for	priority	and	then	we
will	 show	 how	 priority	 can	 be	 incorporated	 into	 our	 simple
RTOS.	 We	 will	 conclude	 by	 reviewing	 how	 priority	 is
implemented	in	some	of	the	RTOS	schedulers	in	popular	use.



5.1.	Data	Acquisition	Systems
To	motivate	 the	 need	 for	 priority	we	will	 discuss	 some	 classic	 real-
time	 system	 scenarios	 like	Data	Acquisition	 systems,	 Digital	 Signal
Processing	(DSP),	and	RealTime	Control	systems.	The	level	of	detail
provided	here	is	not	needed	for	the	course,	but	we	believe	it	will	give
you	 a	 context	 for	 the	 kinds	 of	 systems	 you	 may	 encounter	 as	 a
practitioner	in	the	RTOS	domain.

5.1.1.	Approach
Figure	 5.1	 illustrates	 the	 integrated	 approach	 to	 data	 acquisition
systems.	In	this	section,	we	begin	with	the	clear	understanding	of	the
problem.	We	can	use	the	definitions	in	this	section	to	clarify	the	design
parameters	as	well	as	to	report	the	performance	specifications.
The	measurand	 is	 the	 physical	 quantity,	 property,	 or	 condition	 that
the	 instrument	 measures.	 See	 Figure	 5.2.	 The	 measurand	 can	 be
inherent	 to	 the	 object	 (like	 position,	mass,	 or	 color),	 located	 on	 the
surface	 of	 the	 object	 (like	 the	 human	EKG,	 or	 surface	 temperature),
located	within	the	object	(e.g.,	fluid	pressure,	or	internal	temperature),
or	 separated	 from	 the	 object	 (like	 emitted	 radiation.)	

Figure	5.1.	Individual	components	are	integrated	into	a	data



acquisition	system.

Figure	5.2.	Signal	paths	for	a	data	acquisition	system	without	an
actuator;	the	control	system	includes	an	actuator	so	the	system
can	use	feedback	to	drive	the	real-world	parameter	to	a	desired
state.

In	general,	a	transducer	converts	one	energy	type	into	another.	In	the
context	of	this	section,	the	transducer	converts	the	measurand	into	an
electrical	 signal	 that	 can	 be	 processed	 by	 the	 microcontroller-based
instrument.	Typically,	a	transducer	has	a	primary	sensing	element	and
a	variable	conversion	element.	The	primary	sensing	element	interfaces
directly	 to	 the	 object	 and	 converts	 the	 measurand	 into	 a	 more
convenient	 energy	 form.	 The	 output	 of	 the	 variable	 conversion
element	 is	 an	 electrical	 signal	 that	 depends	 on	 the	 measurand.	 For
example,	 the	primary	sensing	element	of	a	pressure	 transducer	 is	 the
diaphragm,	which	converts	pressure	into	a	displacement	of	a	plunger.
The	 variable	 conversion	 element	 is	 a	 strain	 gauge	 that	 converts	 the
plunger	 displacement	 into	 a	 change	 in	 electrical	 resistance.	 If	 the
strain	gauge	is	placed	in	a	bridge	circuit,	the	voltage	output	is	directly
proportional	 to	 the	 pressure.	 Some	 transducers	 perform	 a	 direct
conversion	 without	 having	 a	 separate	 primary	 sensing	 element	 and
variable	conversion	element.	The	system	contains	signal	processing,
which	manipulates	the	transducer	signal	output	 to	select,	enhance,	or
translate	 the	 signal	 to	 perform	 the	 desired	 function,	 usually	 in	 the
presence	 of	 disturbing	 factors.	The	 signal	 processing	 can	 be	 divided
into	stages.	The	analog	signal	processing	consists	of	instrumentation
electronics,	 isolation	amplifiers,	amplifiers,	analog	filters,	and	analog
calculations.	 The	 first	 analog	 processing	 involves	 calibration	 signals



and	 preamplification.	 Calibration	 is	 necessary	 to	 produce	 accurate
results.	An	example	of	a	calibration	signal	is	the	reference	junction	of
a	 thermocouple.	 The	 second	 stage	 of	 the	 analog	 signal	 processing
includes	 filtering	 and	 range	 conversion.	 The	 analog	 signal	 range
should	 match	 the	 ADC	 analog	 input	 range.	 Examples	 of	 analog
calculations	 include:	 RMS	 calculation,	 integration,	 differentiation,
peak	 detection,	 threshold	 detection,	 phase	 lock	 loops,	 AM	 FM
modulation/demodulation,	and	the	arithmetic	calculations	of	addition,
subtraction,	 multiplication,	 division,	 and	 square	 root.	 When	 period,
pulse	width,	 or	 frequency	measurement	 is	 used,	we	 typically	 use	 an
analog	comparator	to	create	a	digital	logic	signal	to	measure.	Whereas
the	Figure	5.1	outlined	design	components,	Figure	5.2	shows	the	data
flow	 graph	 for	 a	 data	 acquisition	 system	 or	 control	 system.	 The
control	system	uses	an	actuator	to	drive	a	parameter	in	the	real	world
to	 a	 desired	 value	while	 the	 data	 acquisition	 system	has	 no	 actuator
because	it	simply	measures	the	parameter	in	a	nonintrusive	manner.
The	data	 conversion	 element	 performs	 the	 conversion	 between	 the
analog	 and	 digital	 domains.	 This	 part	 of	 the	 instrument	 includes:
hardware	 and	 software	 computer	 interfaces,	 ADC,	 DAC,	 and
calibration	references.	The	analog	to	digital	converter	(ADC)	converts
the	analog	signal	into	a	digital	number.	The	digital	to	analog	converter
(DAC)	converts	a	digital	number	to	an	analog	output.
In	 many	 systems	 the	 input	 could	 be	 digital	 rather	 than	 analog.	 For
these	 systems	 measuring	 period,	 pulse	 width,	 and/or	 frequency
provides	a	low-cost	high-precision	alternative	to	the	traditional	ADC.
Similarly,	the	output	of	the	system	could	be	digital.	The	pulse	width
modulator	 (PWM)	 is	 a	 digital	 output	 with	 a	 constant	 period,	 but
variable	duty	cycle.	The	software	can	adjust	the	output	of	the	actuator
by	setting	the	duty	cycle	of	the	PWM	output.
The	digital	signal	processing	includes:	data	acquisition	(sampling	the
signal	 at	 a	 fixed	 rate),	 data	 formatting	 (scaling,	 calibration),	 data
processing	 (filtering,	 curve	 fitting,	 FFT,	 event	 detection,	 decision
making,	 analysis),	 control	 algorithms	 (open	 or	 closed	 loop).	 The
human	interface	 includes	 the	 input	and	output	which	 is	available	 to
the	human	operator.	The	advantage	of	computer-based	instrumentation
is	 that,	devices	 that	 are	 sophisticated	but	 easy	 to	use	and	understand
are	possible.	The	inputs	to	the	instrument	can	be	audio	(voice),	visual



(light	 pens,	 cameras),	 or	 tactile	 (keyboards,	 touch	 screens,	 buttons,
switches,	joysticks,	roller	balls).	The	outputs	from	the	instrument	can
be	numeric	displays,	CRT	screens,	graphs,	buzzers,	bells,	 lights,	 and
voice.

5.1.2.	Performance	Metrics
Before	 designing	 a	 data	 acquisition	 system	 (DAS)	 we	 must	 have	 a
clear	understanding	of	 the	system	goals.	We	can	classify	system	as	a
Quantitative	DAS,	 if	 the	 specifications	 can	 be	 defined	 explicitly	 in
terms	 of	 desired	 range	 (rx),	 resolution	 (∆x),	 precision	 (nx),	 and
frequencies	of	 interest	 (fmin	 to	 fmax).	 If	 the	 specifications	 are	more
loosely	 defined,	 we	 classify	 it	 as	 a	Qualitative	DAS.	 Examples	 of
qualitative	 systems	 include	 those	 which	 mimic	 the	 human	 senses
where	 the	specifications	are	defined	using	 terms	 like	“sounds	good”,
“looks	pretty”,	and	“feels	right.”	Other	qualitative	systems	involve	the
detection	of	events.	We	will	consider	two	examples,	a	burglar	detector,
and	 an	 instrument	 to	 diagnose	 cancer.	 	 For	 binary	detection	 systems
like	 the	 presence/absence	 of	 a	 burglar	 or	 the	 presence/absence	 of
cancer,	we	define	a	true	positive	(TP)	when	the	condition	exists	(there
is	a	burglar)	and	the	system	properly	detects	 it	 (the	alarm	rings.)	We
define	a	false	positive	(FP)	when	the	condition	does	not	exist	(there	is
no	burglar)	but	 the	 system	 thinks	 there	 is	 (the	 alarm	 rings.)	 	A	 false
negative	(FN)	occurs	when	the	condition	exists	(there	is	a	burglar)	but
the	system	does	not	think	there	is	(the	alarm	is	silent.)		A	true	negative
(TN)	occurs	when	 the	 condition	does	 not	 exist	 (the	 patient	 does	 not
have	 cancer)	 and	 the	 system	properly	 detects	 it	 (the	 instrument	 says
the	 patient	 is	 normal.)	 Prevalence	 is	 the	 probability	 the	 condition
exists,	sometimes	called	pre-test	probability.	In	the	case	of	diagnosing
the	disease,	prevalence	tells	us	what	percentage	of	the	population	has
the	disease.	 	Sensitivity	 is	the	fraction	of	properly	detected	events	(a
burglar	 comes	 and	 the	 alarm	 rings)	 over	 the	 total	 number	 of	 events
(number	 of	 robberies.)	 It	 is	 a	 measure	 of	 how	well	 our	 system	 can
detect	an	event.	For	the	burglar	detector,	a	sensitivity	of	1	means	when
a	burglar	breaks	in	the	alarm	will	go	off.	For	the	diagnostic	instrument,
a	 sensitivity	 of	 1	 means	 every	 sick	 patient	 will	 get	 treatment.
Specificity	 is	 the	 fraction	 of	 properly	 handled	 non-events	 (a	 patient
doesn’t	have	cancer	and	 the	 instrument	claims	 the	patient	 is	normal)



over	the	total	number	of	non-events	(the	number	of	normal	patients.)
A	 specificity	of	1	means	no	people	will	 be	 treated	 for	 a	 cancer	 they
don’t	 have.	The	positive	predictive	value	 of	 a	 system	 (PPV)	 is	 the
probability	 that	 the	 condition	 exists	 when	 restricted	 to	 those	 cases
where	 the	 instrument	says	 it	exists.	 It	 is	a	measure	of	how	much	we
believe	the	system	is	correct	when	it	says	it	has	detected	an	event.	A
PPV	of	1	means	when	the	alarm	rings,	the	police	will	come	and	arrest
a	burglar.	Similarly,	a	PPV	of	1	means	if	our	instrument	says	a	patient
has	 the	 disease,	 then	 that	 patient	 is	 sick.	 The	 negative	 predictive
value	of	a	system	(NPV)	is	the	probability	that	the	condition	does	not
exists	 when	 restricted	 to	 those	 cases	 where	 the	 instrument	 says	 it
doesn’t	 exist.	 A	 NPV	 of	 1	 means	 if	 our	 instrument	 says	 a	 patient
doesn’t	have	cancer,	 then	that	patient	 is	not	sick.	Sometimes	the	true
negative	condition	doesn’t	really	exist	(how	many	times	a	day	does	a
burglar	 not	 show	 up	 at	 your	 house?)	 If	 there	 are	 no	 true	 negatives,
only	sensitivity	and	PPV	are	relevant.

Prevalence	=		(TP	+	FN)	/	(TP	+	TN	+	FP	+	FN)
Sensitivity	=	TP	/	(TP	+	FN)
Specificity	=	TN	/	(TN	+	FP)
PPV	=	TP	/	(TP	+	FP)
NPV	=	TN	/	(TN	+	FN)

	
There	 are	 two	 errors	 introduced	 by	 the	 sampling	 process.	 	Voltage
quantizing	 is	 caused	 by	 the	 finite	 word	 size	 of	 the	 ADC.	 The
precision	is	determined	by	the	number	of	bits	in	the	ADC.	If	the	ADC
has	n	bits,	 then	 the	number	of	 distinguishable	 alternatives	 is	nz	 =	 2n
Time	 quantizing	 is	 caused	 by	 the	 finite	 discrete	 sampling	 interval.
The	Nyquist	Theorem	 states	 that	 if	 the	 signal	 is	 sampled	at	 fs,	 then
the	digital	samples	only	contain	frequency	components	from	0	to	0.5
fs.	Conversely,	if	the	analog	signal	does	contain	frequency	components
larger	than	½	fs,	then	there	will	be	an	aliasing	error.		Aliasing	is	when
the	 digital	 signal	 appears	 to	 have	 a	 different	 frequency	 than	 the
original	 analog	 signal.	 Simply	 put,	 if	 one	 samples	 a	 sine	wave	 at	 a
sampling	rate	of	fs,	V(t)	=	A	sin(2πft	+	φ)	is	it	possible	to	determine	A	f
and	 φ	 from	 the	 digital	 samples?	 	 Nyquist	 Theory	 says	 that	 if	 fs	 is
strictly	greater	than	twice	f,	then	one	can	determine	A	f	and	φ	from	the
digital	 samples.	 	 In	 other	 words,	 the	 entire	 analog	 signal	 can	 be



reconstructed	from	the	digital	samples.	But	if	fs	less	than	or	equal	to	f,
then	 one	 cannot	 determine	 A	 f	 and	 φ.	 	 In	 this	 case,	 the	 apparent
frequency,	 as	 predicted	 by	 analyzing	 the	 digital	 samples,	 will	 be
shifted	to	a	frequency	between	0	and	½	fs.

In	 Figure	 5.3,	 the	 sampling	 rate	 is	 fixed	 at	 1600	Hz	 and	 the	 signal
frequency	 is	 varied.	When	 sampling	 rate	 is	 exactly	 twice	 the	 input
frequency,	 the	 original	 signal	 may	 or	 may	 not	 be	 properly
reconstructed.	In	this	specific	case,	it	is	frequency	shifted	(aliased)	to
DC	 and	 lost.	 When	 sampling	 rate	 is	 slower	 than	 twice	 the	 input
frequency,	 the	 original	 signal	 cannot	 be	 properly	 reconstructed.	 It	 is
frequency	shifted	(aliased)	to	a	frequency	between	0	and	½	fs.	In	this
case	the	1500	Hz	wave	was	aliased	to	100	Hz.

	
100	Hz	sine	wave	(properly	sampled)	400	Hz	sine	wave	(properly	sampled)

	
800	Hz	sine	wave	(aliased)	1500	Hz	sine	wave	(aliased)

Figure	5.3.	Aliasing	does	not	occur	when	the	sampling	rate	is
more	than	twice	the	signal	frequency.

The	choice	of	sampling	rate,	fs,	is	determined	by	the	maximum	useful
frequency	contained	in	the	signal.	One	must	sample	at	least	twice	this
maximum	useful	frequency.	Faster	sampling	rates	may	be	required	to



implement	a	digital	filter	and	other	digital	signal	processing.
fs	>	2	fmax	Even	though	the	largest	signal	frequency	of	interest	is	fmax,
there	may	be	significant	signal	magnitudes	at	frequencies	above	fmax.
These	 signals	 may	 arise	 from	 the	 input	 x,	 from	 added	 noise	 in	 the
transducer	 or	 from	 added	 noise	 in	 the	 analog	 processing.	 Once	 the
sampling	 rate	 is	 chosen	 at	 fs,	 then	 a	 low	 pass	 analog	 filter	 may	 be
required	to	remove	frequency	components	above	½fs.	 	A	digital	filter
cannot	be	used	to	remove	aliasing.
An	 interesting	 question	 arises:	 how	 do	 we	 determine	 the	 maximum
frequency	 component	 in	 our	 input?	 If	 we	 know	 enough	 about	 our
system,	 we	 might	 be	 able	 to	 derive	 an	 equation	 to	 determine	 the
maximum	frequency.	For	example,	if	a	mechanical	system	consists	of
a	mass,	friction	and	a	spring,	then	we	can	write	a	differential	equation
relating	the	applied	force	to	the	position	of	the	object.	The	second	way
to	find	the	maximum	frequency	component	in	our	signal	is	to	measure
it	with	a	spectrum	analyzer.

Valvano	Postulate:	If	fmax	is	the	largest	frequency
component	of	the	analog	signal,	then	you	must	sample
more	than	ten	times	fmax	in	order	for	the	reconstructed
digital	samples	to	look	like	the	original	signal	when	plotted
on	a	voltage	versus	time	graph.
	

The	choice	of	the	ADC	precision	is	a	compromise	of	various	factors.	
The	desired	 resolution	of	 the	data	acquisition	system	will	dictate	 the
number	of	ADC	bits	required.		If	the	transducer	is	nonlinear,	then	the
ADC	 precision	 must	 be	 larger	 than	 the	 precision	 specified	 in	 the
problem	statement.	 	For	example,	 let	y	be	 the	 transducer	output,	and
let	 x	 be	 the	 real	 world	 signal.	 Assume	 for	 now,	 that	 the	 transducer
output	is	connected	to	the	ADC	input.	Let	the	range	of	x	be	rx.	Let	the
range	of	y	be	ry.		Let	the	required	precision	of	x	be	nx.	The	resolutions
of	x	and	y	are	∆x	and	∆y	respectively.		Let	the	following	describe	the
nonlinear	transducer.

y	=	f(x)
The	required	ADC	precision,	ny,	(in	alternatives)	can	be	calculated	by:



∆x	=rx/nx	

∆y	=	min	 {f(x+∆x)-f(x)}	 for	all	 x	 in	 rx	ny	=	 ry/∆y	 In	 general,	 we
wish	 the	 analog	 signal	 processing	 to	map	 the	 full	 scale	 range	 of	 the
transducer	into	the	full	scale	range	of	the	ADC.	If	the	ADC	precision	is
N=2n	in	alternatives,	and	the	output	impedance	of	the	transducer	is	Rout,
then	we	need	an	 input	 impedance	 larger	 than	N*Rout	 to	avoid	 loading
the	 signal.	 We	 need	 the	 analog	 circuit	 to	 pass	 the	 frequencies	 of
interest.	When	 considering	 noise,	we	 determine	 the	 signal	 equivalent
noise.	For	example,	consider	a	system	that	measures	temperature.	If	we
wish	 to	 consider	 noise	 on	 signal	 Vout,	 we	 calculate	 the	 relationship
between	 input	 temperature	T	 and	 the	 signal	Vout.	 Next,	we	 determine
the	sensitivity	of	the	signal	to	temperature,	dVout/dT.	If	the	noise	is	Vn,
then	 the	 temperature	 equivalent	 noise	 is	Tn=Vn/(dVout/dT).	 In	 general,
we	wish	all	equivalent	noises	to	be	less	than	the	system	resolution.
An	analog	 low	pass	 filter	may	 be	 required	 to	 remove	 aliasing.	The
cutoff	of	 this	analog	 filter	 should	be	 less	 than	½fs.	Some	transducers
automatically	 remove	 these	 unwanted	 frequency	 components.	 For
example,	a	thermistor	is	 inherently	a	low	pass	device.	Other	types	of
filters	 (analog	and	digital)	may	be	used	 to	 solve	 the	data	acquisition
system	objective.	One	useful	filter	is	a	60	Hz	bandreject	filter.
In	order	to	prevent	aliasing,	one	must	know	the	frequency	spectrum	of
the	 ADC	 input	 voltage.	 This	 information	 can	 be	 measured	 with	 a
spectrum	analyzer.	Typically,	a	spectrum	analyzer	samples	the	analog
signal	 at	 a	 very	 high	 rate	 (>1	 MHz),	 performs	 a	 Discrete	 Fourier
Transform	(DFT),	and	displays	the	signal	magnitude	versus	frequency.
We	define	z(t)	as	the	input	to	the	ADC.	Let	|Z(f)|	be	the	magnitude	of
the	ADC	input	voltage	as	a	function	of	frequency.	There	are	3	regions
in	the	magnitude	versus	frequency	graph	shown	in	Figure	5.4.	We	will
classify	any	signal	with	amplitude	less	than	the	ADC	resolution,	∆z,	to
be	undetectable.	This	 region	 is	 labeled	“Undetectable”.	Undetectable
signals	 cannot	 cause	 aliasing	 regardless	 of	 their	 frequency.	 	We	will
classify	any	signal	with	amplitude	 larger	 than	 the	ADC	resolution	at
frequencies	 less	 than	 ½fs	 to	 be	 properly	 sampled.	 This	 region	 is
labeled	 “Properly	 sampled”.	 It	 is	 information	 in	 this	 region	 that	 is
available	 to	 the	 software	 for	 digital	 processing.	 The	 last	 region
includes	 signals	 with	 amplitude	 above	 the	 ADC	 resolution	 at



frequencies	greater	than	or	equal	to	½fs.	Signals	in	this	region	will	be
aliased,	 which	means	 their	 apparent	 frequencies	will	 be	 shifted	 into
the	0	to	½fs	range.	

Figure	5.4.	To	prevent	aliasing	there	should	be	no	measurable
signal	above	½	fs.

Most	spectrum	analyzers	give	the	output	in	decibels	full	scale	(dBFS).
For	an	ADC	system	with	a	range	of	0	to	3.3V,	the	full	scale	peak-to-
peak	 amplitude	 for	 any	AC	 signal	 is	 3.3	V.	 If	V	 is	 the	 DFT	 output
magnitude	 in	 volts	 dBFS	 =	 20	 log10(V/3.3)	 Table	 5.1	 calculates	 the
ADC	 resolution	 in	 dBFS.	 For	 a	 real	 ADC,	 the	 resolution	 will	 be	 a
function	of	other	factors	other	than	bits.	For	example,	the	MAX1246
12-bit	 ADC	 has	 a	 minimum	 Signal-to-Noise+Distortion	 Ratio
(SINAD)	of	70	dB,	meaning	it	is	not	quite	12	bits.	The	typical	SINAD
is	73	dB,	which	is	slightly	better	than	12	bits.

Bits dBFS
8 -48.2
9 -54.2
10 -60.2
11 -66.2
12 -72.2
13 -78.3
14 -84.3

Table	5.1.	ADC	resolution	in	dBFS,	assuming	full	scale	is	defined	as	peak-
to-peak	voltage.

	
Aliasing	 will	 occur	 if	 |Z|	 is	 larger	 than	 the	 ADC	 resolution	 for	 any
frequency	larger	than	or	equal	to	½fs.	In	order	to	prevent	aliasing,	|Z|



must	 be	 less	 than	 the	 ADC	 resolution.	 Our	 design	 constraint	 will
include	 a	 safety	 factor	 of	 α	≤	 1.	 Thus,	 to	 prevent	 aliasing	 we	 will
make:	 |Z|	 <	α	∆z	 for	 all	 frequencies	 larger	 than	 or	 equal	 to	½fs	 This
condition	usually	be	can	be	satisfied	by	increasing	the	sampling	rate	or
increasing	the	number	of	poles	in	the	analog	low	pass	filter.	We	cannot
remove	aliasing	with	a	digital	 low	pass	 filter,	because	once	 the	high
frequency	signals	are	shifted	into	the	0	to	½fs	range,	we	will	be	unable
to	separate	the	aliased	signals	from	the	regular	ones.	To	determine	α,
the	sum	of	all	errors	(e.g.,	ADC,	aliasing,	and	noise)	must	be	less	than
the	desired	resolution.
To	measure	resolution,	we	use	the	student’s	t-test	to	determine	if	the
system	is	able	to	detect	the	change.	To	use	the	student’s	t	test	we	need
to	 make	 the	 following	 assumptions:	 1)	 Errors	 in	 one	 data	 set	 are
independent,	not	correlated	to	errors	in	the	other	data	set;
2)	Errors	in	each	data	sample	are	independent,	not	correlated	to	errors
within	that	set;
3)	Errors	are	normally	distributed;
4)	Variance	is	unknown;
5)	Variances	in	the	two	sets	are	equal.
	
We	measure	the	input	N	times	with	the	input	fixed	at	x	(X0i).	Then,	we
measure	it	N	more	times	with	the	input	fixed	at	x+Δx	(X1i).		See	Figure
5.5.	We	employ	a	test	statistic	to	test	the	hypothesis	H0:	µ0=	µ1.	First,
we	estimate	the	means	and	variances	of	the	data	(assuming	equal	sized

samples)	

	

	

	

	



From	these,	we	calculate	the	test	statistic	t:

	
	

Figure	5.5.	Resolution	means	if	the	input	increases	by Δ x,	the
system	will	probably	notice.

The	two	sets	of	data,	together,	have	2N-2	degrees	of	freedom.	If	N=10,
the	number	in	the	df=18	row,	confidence=99%	column	is	2.878.	This
means	 if	H0	 is	 true,	 then	 the	 probability	 that	 t	 is	 less	 than	 -2.878	 =
0.005	 	 and	 the	 probability	 that	 	 t	 is	 greater	 than	 2.878	 =	 0.005.
Therefore,	 the	probability	of	 	-2.878	<	t	<	2.878	=	0.99	 	 (confidence
interval	 of	 99%)	If	we	 collect	 data	 and	 calculate	 t	 such	 that	 the	 test
statistic	t	is	greater	than	2.878	or	less	than	‑2.878,	then	we	claim	“we
reject	the	hypothesis	H0”.	 	If	the	test	statistic	 t	is	between	-2.878	and
2.878	we	do	not	claim	 the	hypothesis	 to	be	 true.	 In	other	words,	we
have	 not	 proven	 the	means	 to	 be	 equal.	 Rather,	we	 say	 “we	 do	 not
reject	the	hypothesis	H0”.	If	t	is	greater	than	2.878	or	less	than	‑2.878,
then	we	claim	the	resolution	of	the	system	is	less	than	or	equal	to	Δx.

5.1.3.	Audio	Input/Output
A	microphone	 is	 a	 type	 of	 displacement	 transducer.	 Sound	 waves,
which	 are	 pressure	 waves	 travelling	 in	 air,	 cause	 a	 diaphragm	 to
vibrate,	 and	 the	 diaphragm	 motion	 causes	 the	 distance	 between
capacitor	plates	to	change.	This	variable	capacitance	creates	a	voltage,
which	 can	 be	 amplified	 and	 recorded.	 The	 electret	 condenser



microphone	(ECM)	is	an	inexpensive	choice	for	converting	sound	to
analog	 voltage.	 Electret	 microphones	 are	 used	 in	 consumer	 and
communication	audio	devices	because	of	their	low	cost	and	small	size.
For	 applications	 requiring	 high	 sensitivity,	 low	 noise,	 and	 linear
response,	we	could	use	the	dynamic	microphone,	like	the	ones	used	in
high-fidelity	audio	recording	equipment.	The	ECM	capsule	acts	as	an
acoustic	 resonator	 for	 the	 capacitive	 electret	 sensor	 shown	 in	Figure
5.6.	The	ECM	has	a	Junction	Field	Effect	Transistor	(JFET)	 inside
the	 transducer	 providing	 some	 amplification.	 This	 JFET	 requires
power	as	supplied	by	 the	R1	resistor.	This	 local	amplification	allows
the	ECM	to	function	with	a	smaller	capsule	than	typically	found	with
other	 microphones.	 ECM	 devices	 are	 cylindrically	 shaped,	 have	 a
diameter	ranging	from	3	to	10	mm,	and	have	a	thickness	ranging	from
1	to	5	mm.

Figure	5.6.	Physical	and	electrical	view	of	an	ECM	with	JFET
buffer	(Vcc	depends	on	microphone)

An	 ECM	 consists	 of	 a	 pre-charged,	 non-conductive	 membrane
between	two	plates	that	form	a	capacitor.	The	backplate	is	fixed,	and
the	 other	 plate	 moves	 with	 sound	 pressure.	 Movement	 of	 the	 plate
results	 in	 a	 capacitance	 change,	which	 in	 turn	 results	 in	 a	 change	 in
voltage	 due	 to	 the	 non-conductive,	 pre-charged	 membrane.	 An
electrical	representation	of	such	an	acoustic	sensor	consists	of	a	signal
voltage	 source	 in	 series	with	 a	 source	 capacitor.	 The	most	 common
method	of	interfacing	this	sensor	is	a	high-impedance	buffer/amplifier.
A	single	JFET	with	its	gate	connected	to	the	sensor	plate	and	biased	as
shown	 in	 Figure	 5.7	 provides	 buffering	 and	 amplification.	 The



capacitor	C	 provides	high-pass	 filtering,	 so	 the	voltage	 at	 the	output
will	be	less	than	±100	mV	for	normal	voice.	Audio	microphones	need
additional	amplification	and	bandpass	 filtering.	Typical	audio	signals
exist	from	100	Hz	to	10	kHz.	The	presence	of	the	R1	resistor	is	called
"phantom	 biasing".	 The	 electret	 has	 two	 connections:	 Gnd	 and
Signal/bias.	Typically,	the	metallic	capsule	is	connected	to	Gnd.

Figure	5.7.	An	electret	microphone	can	be	used	to	record	sound.

Many	electret	data	sheets	suggest	an	R1	of	2	kΩ,	but	signal-to-noise
ratio	can	be	improved	by	using	a	10	kΩ	resistor.	The	series	capacitor
C1	creates	a	high	pass	filter.	Because	 the	output	of	a	high	pass	filter
would	normally	include	positive	and	negative	voltages,	we	will	need	a
way	 to	 offset	 the	 circuit	 so	 all	 voltages	 exist	 from	 0	 to	 +3.3	 V,
allowing	the	use	of	a	single	supply	and	rail-to-rail	op	amps.	R2	and	R3
provide	an	offset	for	the	high	pass	filter,	so	the	signal	V2	will	be	the
sound	 signal	 plus	 a	 fixed	 offset	 of	 1.65	V.	 The	 effective	 impedance
from	V2	to	ground	is	11	kΩ,	so	the	HPF	cutoff	is	1/(2π*0.22µF*11kΩ)
=	66	Hz.	The	gain	of	the	system	is	1+R6/R5,	which	will	be	101.	The
capacitor	C2	will	make	the	signal	V3	be	the	amplified	sound	plus	1.65
V.	The	gain	is	selected	so	the	V3	signal	is	1.65	±1	V	for	the	sounds	we
wish	 to	 record.	The	 capacitor	C3	 provides	a	 little	 low	pass	 filtering,
causing	 the	 amplifier	 gain	 to	 drop	 to	 one	 for	 frequencies	 above
1/(2π*220pF*100kΩ)	 =	 7.2	 kHz.	 A	 better	 LPF	 would	 be	 to	 add	 an
active	 LPF.	 The	 active	 LPF	would	 also	 need	 a	 1.65	V	 offset.	 If	we
wish	to	process	sound	with	frequency	components	from	100	to	5	kHz,
then	we	should	sample	at	or	above	10	kHz.	The	analog	system	must
pass	 the	 signals	 of	 interest,	 but	 reject	 signals	 above	½	 the	 sampling
rate.	 One	 of	 the	 cost	 savings	 tradeoffs	 is	 to	 use	 a	 less	 analog	 filter
(fewer	poles)	and	increase	the	sampling	rate,	adding	digital	filtering.	If



we	sampled	sound	with	a	12-bit	ADC,	we	should	select	a	12-bit	DAC
to	output	the	sound.	We	could	improve	signal	to	noise	by	replacing	the
+3.3	 V	 connected	 to	 R1	 and	 R2	 in	 Figure	 5.7	 with	 a	 LM4041
adjustable	reference	and	create	a	low	noise	3.0V	voltage.
	
The	 LM4041CILP	 is	 a	 shunt	 reference	 used	 to	 make	 the	 analog
reference	 required	 by	 the	 MAX5353	 12-bit	 DAC.	 This	 DAC	 was
previously	 interfaced	 in	 Example	 7.2	 of	 Volume	 2.	 The	 MC34119
audio	 amp	 can	 be	 used	 to	 amplify	 the	 DAC	 output	 providing	 the
current	needed	to	drive	a	typical	8-Ω	speaker	(Figure	5.8).	The	gain	of
the	audio	amplifier	 is	2*R11/R10,	which	 for	 this	 circuit	will	 be	 one.
This	means	a	2-V	peak-to-peak	signal	out	of	the	DAC	will	translate	to
a	2-V	peak-to-peak	 signal	on	 the	 speaker.	The	maximum	power	 that
the	MC34119	can	deliver	 to	 the	speaker	 is	250	mW,	so	 the	software
should	 limit	 the	 sound	 signal	 below	 1.4	Vrms	when	 driving	 an	 8-Ω
speaker.	The	quality	 of	 sound	 can	be	 increased	by	 selecting	 a	 better
speaker	 and	 placing	 the	 speaker	 into	 an	 enclosure.	 For	 more
information	on	how	to	design	a	speaker	box,	perform	a	web	search	on
“speaker	enclosure”.
Software	 in	 Program	 7.2	 (Volume	 2)	 can	 be	 used	 to	 interface	 the
MAX5353	12-bit	DAC.	 	 	Program	5.1	performs	 the	sound	 input	and
output.	 The	 sampling	 rate	 is	 10	 kHz.	 The	ADC	 code	was	 presented
earlier	in	Chapter	2.

void	ADC3_Handler(void){	int16_t	data;						
		ADC_ISC_R	=	ADC_ISC_IN3;		//	acknowledge	ADC	sequence	3
completion
		data	=	(ADC_SSFIFO3_R&ADC_SSFIFO3_DATA_M)-512;		//	10-bit
sound
//	process,	filter,	record	etc.
		DAC_Out(data);				

}

void	main(void){
		PLL_Init();																										//	now	running	at	80	MHz	
		ADC_	InitTimer0ATriggerSeq3PD3(7999);	//	sample	at	10	kHz
		DAC_Init(2048);																							//	Volume	2,	Program	7.2	



		while(1){	};

}

Program	5.1.		Real-time	sound	output	input/output.	

Figure	5.8.	A	DAC	and	an	audio	amplifier	allow	the
microcontroller	to	output	sound.

	



5.2.	Priority	scheduler

5.2.1.	Implementation
To	implement	priority,	we	add	another	field	to	the	TCB,	see	Program
5.2.	In	this	system	we	define	0	as	the	highest	priority	and	254	as	the
lowest.	 In	 some	 operating	 systems,	 each	 thread	 must	 have	 unique
priority,	but	in	this	chapter	multiple	threads	can	have	the	same	priority.
If	we	have	multiple	 threads	with	equal	priority,	 these	 threads	will	be
run	in	a	round	robin	fashion.	The	strategy	will	be	to	find	the	highest
priority	 thread,	 which	 is	 neither	 blocked	 nor	 sleeping	 and	 run	 it	 as
shown	in	Figure	5.9.

struct	tcb{
		int32_t	*sp;							//	pointer	to	stack	(valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer
		int32_t	*BlockPt;		//	nonzero	if	blocked	on	this	semaphore
		uint32_t	Sleep;				//	nonzero	if	this	thread	is	sleeping
		uint8_t	Priority;		//	0	is	highest,	254	lowest

};

Program	5.2.	TCB	for	the	priority	scheduler.



Figure	5.9.	Priority	scheduler	finds	the	highest	priority	thread.

Observation:	Normally,	we	add	priority	to	a	system	that
implements	blocking	semaphores	and	not	to	one	that	uses	spinlock
semaphores.

If	 there	 are	 multiple	 threads	 at	 that	 highest	 priority	 that	 are	 not
sleeping	 nor	 blocked,	 then	 the	 scheduler	 will	 run	 them	 in	 a	 round
robin	fashion.	The	statement, pt	=	pt->next 	guarantees	that	the	same
higher	priority	task	is	not	picked	again.

void	Scheduler(void){		//	every	time	slice
		uint32_t	max	=	255;		//	max
		tcbType	*pt;
		tcbType	*bestPt;
		pt	=	RunPt;				//	search	for	highest	thread	not	blocked	or	sleeping
		do{
				pt	=	pt->next;	//	skips	at	least	one
				if((pt->Priority	<	max)&&((pt->BlockPt)==0)&&((pt->Sleep)==0)){
						max	=	pt->Priority;
						bestPt	=	pt;

}



		}		while(RunPt	!=	pt);	//	look	at	all	possible	threads
		RunPt	=	bestPt;

}

Program	5.3.	One	possible	priority	scheduler.

Checkpoint	5.1:	If	there	are	N	threads	in	the	TCB	list,	how	many
threads	must	the	scheduler	in	Program	5.3	consider	before	choosing
the	thread	the	next	thread	to	run?		In	other	words,	how	many	times
does	the	do-while	loop	run?

There	are	many	approaches	to	assigning	priority.	If	the	system	is	I/O
centric	then	we	can	assign	high	priority	to	I/O	bound	threads	and	low
priority	to	CPU	bound	threads.	Another	approach	is	to	define	a	cost	to
various	 performance	 metrics	 like	 lateness,	 and	 bandwidth,	 and	 then
assign	priorities	that	minimize	cost.	A	dynamic	scheduler	is	one	that
adjusts	priority	at	run	time.	Examples	 include	earliest	deadline	first
(EDF)	and	least	slack	time	first	(LST)	(EDF)

5.2.2.	Multi-level	Feedback	Queue
The	 priority	 scheduler	 in	 the	 previous	 section	 will	 be	 inefficient	 if
there	 are	 a	 lot	 of	 threads.	 Because	 the	 scheduler	 must	 look	 at	 all
threads,	the	time	to	run	the	scheduler	grows	linearly	with	the	number
of	threads.	One	implementation	that	is	appropriate	for	priority	systems
with	many	threads	 is	called	 the	multi-level	feedback	queue	(MLFQ).
MLFQ	was	 introduced	 in	1962	by	Corbato	et	al.	 and	has	 since	been
adopted	in	some	form	by	all	the	major	operating	systems,	BSD	Unix
and	 variants,	 Solaris	 and	 Windows.	 Its	 popularity	 stems	 from	 its
ability	to	optimize	performance	with	respect	to	two	metrics	commonly
used	 in	 traditional	Operating	Systems.	These	metrics	 are	 turnaround
time,	 and	 response	 time.	 Turnaround	 time	 is	 the	 time	 elapsed	 from
when	a	thread	arrives	till	it	completes	execution.	Response	time	is	the
time	elapsed	from	when	a	thread	arrives	till	 it	starts	execution.	Let	S
be	the	average	time	to	service	a	request,	and	R	be	the	average	response
time	(waiting+service).	One	nondimensional	metric	for	response	time
is	 normalized	 mean	 response	 time,	 R/S.	 Preemptive	 scheduling
mechanisms	 like	 Shortest	 Time-to-completion	 First	 (STCF)	 and



RoundRobin	 (RR)	are	optimal	at	minimizing	 the	average	 turnaround
time	and	response	time	respectively.		However,	both	perform	well	on
only	 one	 of	 these	 metrics	 and	 show	 very	 poor	 performance	 with
respect	 to	 the	other.	MLFQ	fairs	 equally	well	on	both	 these	metrics.
As	 the	 name	 indicates,	MLFQ	has	multiple	 queues,	 one	 per	 priority
level,	 with	 multiple	 threads	 operating	 at	 the	 same	 priority	 level.	 In
keeping	 with	 our	 description	 of	 priority,	 we	 assume	 level	 0	 is	 the
highest	priority	and	higher	levels	imply	lower	priority.	There	will	be	a
finite	 number	 of	 priority	 levels	 from	 0	 to	n-1,	 see	 Figure	 5.10.	 The
rules	that	govern	the	processing	of	these	queues	by	the	scheduler	are
as	follows:

1.	 Startup:	All	threads	start	at	the	highest	priority.	Start	in
queue	at	level	0.

2.	 Highest	runs:	If	Priority(Ti)	<	Priority(Tj)	then	Ti	is
scheduled	to	run	before	Tj.

3.	 Equals	take	turns:	If	Priority(Ti)	=	Priority(Tj)	then	Ti	and
Tj	are	run	in	RR	order.

4.	 True	accounting:	If	a	thread	uses	up	its	timeslice	at
priority	m	then	its	priority	is	reduced	to	m+1.	It	is	moved
to	the	corresponding	queue.

5.	 Priority	Boost:	The	scheduler	does	a	periodic	reset,	where
all	threads	are	bumped	to	the	highest	priority.

Figure	5.10.	The	shaded	task	in	this	figure	begins	in	the	level	0
(highest)	priority	queue.	If	it	runs	to	the	end	of	its	10-ms	time
slice	(timeout),	it	is	bumped	to	level	1.	If	it	again	runs	to	the	end
of	its	10-ms	time	slice,	it	is	bumped	to	level	2.	Eventually,	a
thread	that	does	not	sleep	or	block	will	end	up	in	the	lower
priority	queue.	Periodically	the	system	will	reset	and	place	all



threads	back	at	level	0.

An	 obvious	 precondition	 to	 choosing	 a	 thread	 is	 to	 make	 sure	 it	 is
“ready”,	that	is,	it	is	not	blocked	on	a	resource	or	sleeping.	This	rule	is
implicit	and	hence	not	listed	here.	Rules	2,	and	3	are	self-explanatory
as	MLFQ	attempts	to	schedule	the	highest	priority	ready	thread	at	any
time.		Rule	1	makes	sure	that	every	thread	gets	a	shot	at	executing	as
quickly	as	possible,	the	first	time	it	enters	the	system.	Rule	4	is	what
determines	when	a	thread	is	moved	from	one	level	to	another.	Further,
whether	 a	 thread	 uses	 up	 its	 timeslice	 at	 one	 shot	 or	 over	 multiple
runs,	true	accounting	requires	that	the	accumulated	time	for	the	thread
at	 a	given	priority	 level	be	considered.	There	are	versions	of	MLFQ
that	let	a	thread	remain	at	a	priority	level	with	its	accrued	time	towards
the	timeslice	reset	to	zero,	if	it	blocked	on	a	resource.	These	versions
allowed	 the	 possibility	 of	 gaming	 the	 scheduler.	 	 Without	 rule	 5,
MLFQ	 eventually	 reduces	 to	 RR	 after	 running	 for	 a	 while	 with	 all
threads	operating	at	the	lowest	priority	level.	By	periodically	boosting
all	 threads	to	the	highest	priority,	rule	5	causes	a	scheduler	reset	 that
lets	the	scheduler	adapt	to	changes	in	thread	behavior.

5.2.3.	Starvation	and	aging
One	disadvantage	of	a	priority	scheduler	on	a	busy	system	is	that	low
priority	threads	may	never	be	run.	This	situation	is	called	starvation.
For	example,	if	a	high	priority	thread	never	sleeps	or	blocks,	then	the
lower	priority	threads	will	never	run.	It	is	the	responsibility	of	the	user
to	 assign	 priorities	 to	 tasks.	 As	 mentioned	 earlier,	 as	 processor
utilization	 approaches	 one,	 there	will	 not	 be	 a	 solution.	 	 In	 general,
starvation	is	not	a	problem	of	the	RTOS	but	rather	a	result	of	a	poorly
designed	user	code.
One	solution	to	starvation	is	called	aging.	In	this	scheme,	threads	have
a	 permanent	 fixed	 priority	 and	 a	 temporary	 working	 priority,	 see
Program	5.4.	The	permanent	priority	is	assigned	according	to	the	rules
of	 the	 previous	 paragraph,	 but	 the	 temporary	 priority	 is	 used	 to
actually	schedule	threads.	Periodically	the	OS	increases	the	temporary
priority	of	threads	that	have	not	been	run	in	a	long	time.	For	example,
the	Age	 field	 is	 incremented	 once	 every	 1ms	 if	 the	 thread	 is	 not
blocked	or	not	sleeping.	For	every	10	ms	the	thread	has	not	been	run,



its	WorkingPriority	 is	 reduced.	Once	 a	 thread	 is	 run,	 its	 temporary
priority	is	reset	back	to	its	permanent	priority.	When	the	thread	is	run,
the	 Age	 field	 is	 cleared	 and	 the	 FixedPriority	 is	 copied	 into	 the
WorkingPriority.

struct	tcb{
		int32_t	*sp;							//	pointer	to	stack	(valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer
		int32_t	*BlockPt;		//	nonzero	if	blocked	on	this	semaphore
		uint32_t	Sleep;				//	nonzero	if	this	thread	is	sleeping
		uint8_t	WorkingPriority;	//	used	by	the	scheduler
		uint8_t	FixedPriority;			//	permanent	priority
		uint32_t	Age;												//	time	since	last	execution

};

Program	5.4.	TCB	for	the	priority	scheduler.

5.2.4.	Priority	inversion	and	inheritance	on	Mars
Pathfinder

Another	 problem	 with	 a	 priority	 scheduler	 is	 priority	 inversion,	 a
condition	where	a	high-priority	thread	is	waiting	on	a	resource	owned
by	a	low-priority	thread.	For	example,	consider	the	case	where	both	a
high	priority	and	low	priority	thread	need	the	same	resource.	Assume
the	low-priority	 thread	asks	for	and	is	granted	the	resource,	and	then
the	high-priority	thread	asks	for	it	and	blocks.	During	the	time	the	low
priority	 thread	 is	 using	 the	 resource,	 the	 high-priority	 thread
essentially	becomes	 low	priority.	The	 scenario	 in	Figure	5.11	begins
with	a	 low	priority	meteorological	 task	asking	 for	and	being	granted
access	 to	 a	 shared	memory	 using	 themutex semaphore.	 The	 second
step	 is	 a	medium	 priority	 communication	 task	 runs	 for	 a	 long	 time.
Since	communication	 is	higher	priority	 than	 the	meteorological	 task,
the	communication	task	runs	but	the	meteorological	task	does	not	run.
Third,	 a	 very	 high	 priority	 task	 starts	 but	 also	 needs	 access	 to	 the
shared	 memory,	 so	 it	 calls	 wait	 on mutex .	 This	 high	 priority	 task,
however,	 will	 block	 becausemutex 	 is	 0.	 Notice	 that	 while	 the
communication	task	is	running,	this	high	priority	task	effectively	runs
at	 low	 priority	 because	 it	 is	 blocked	 on	 a	 semaphore	 captured



previously	by	the	low	priority	task.

Figure	5.11.	Priority	inversion	as	occurred	with	Mars	Pathfinder.

http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
One	 solution	 to	 priority	 inversion	 is	 priority	 inheritance.	 With
priority	inheritance,	once	a	high-priority	thread	blocks	on	a	resource,
the	thread	holding	that	resource	is	granted	a	temporary	priority	equal
to	 the	 priority	 of	 the	 high-priority	 blocked	 thread.	 Once	 the	 thread
releases	the	resource,	its	priority	is	returned	to	its	original	value.
A	 second	 approach	 is	 called	 priority	 ceiling.	 In	 this	 protocol	 each
semaphore	 is	 assigned	a	priority	ceiling,	which	 is	 a	priority	equal	 to
the	highest	priority	of	any	task	which	may	block	on	a	semaphore	for
that	resource.	With	priority	ceiling,	once	a	high-priority	thread	blocks
on	a	resource,	the	thread	holding	that	resource	is	granted	a	temporary
priority	 equal	 to	 the	 priority	 of	 the	 priority	 ceiling.	 Just	 like
inheritance,	 once	 the	 thread	 releases	 the	 resource,	 its	 priority	 is
returned	to	its	original	value.
	



5.3.	Debouncing	a	switch

5.3.1.	Approach	to	debouncing
One	 of	 the	 problems	 with	 switches	 is	 called	 switch	 bounce.	 Many
inexpensive	 switches	 will	 mechanically	 oscillate	 for	 up	 to	 a	 few
milliseconds	 when	 touched	 or	 released.	 It	 behaves	 like	 an
underdamped	oscillator.	These	mechanical	oscillations	cause	electrical
oscillations	 such	 that	 a	 port	 pin	 will	 oscillate	 high/low	 during	 the
bounce.
Contact	bounce	is	a	typical	problem	when	interfacing	switches.	Figure
5.12	 shows	 an	 actual	 voltage	 trace	 occurring	when	 a	 negative	 logic
switch	is	touched.	On	both	a	touch	and	release,	there	can	be	from	0	to
2	ms	of	extra	edges,	called	switch	bounce.	However,	sometimes	there
is	no	bounce.
This	bounce	is	a	problem	when	the	system	uses	the	switch	to	trigger
important	 events.	 There	 are	 two	 problems	 to	 solve:	 1)	 remove	 the
bounce	so	there	is	one	software	event	attached	to	the	switch	touch;	2)
remove	the	bounce	in	such	a	way	that	there	is	low	latency	between	the
physical	touch	and	the	execution	of	the	associated	software	task.

Figure	5.12.	Because	of	the	mass	and	spring	some	switches
bounce.

In	 some	 cases,	 this	 bounce	 should	 be	 removed.	 To	 remove	 switch
bounce	we	can	ignore	changes	in	a	switch	that	occur	within	10	ms	of
each	 other.	 In	 other	 words,	 recognize	 a	 switch	 transition,	 disarm
interrupts	for	10ms,	and	then	rearm	after	10	ms.
Alternatively,	we	could	record	the	time	of	the	switch	transition.	If	the



time	 between	 this	 transition	 and	 the	 previous	 transition	 is	 less	 than
10ms,	 ignore	 it.	 If	 the	 time	 is	 more	 than	 10	 ms,	 then	 accept	 and
process	the	input	as	a	real	event.
Another	 method	 for	 debouncing	 the	 switch	 is	 to	 use	 a	 periodic
interrupt	with	a	period	greater	than	the	bounce,	but	less	than	the	time
the	switch	is	held	down.	Each	interrupt	we	read	the	switch,	if	the	data
is	 different	 from	 the	 previous	 interrupt	 the	 software	 recognizes	 the
switch	event.
Checkpoint	5.2:	Consider	the	periodic	interrupt	method	for
debouncing	a	switch.	Assume	the	interrupt	period	is	20	ms.	What
are	the	maximum	and	average	latencies	(time	between	switch	touch
and	execution	of	the	task)?	

5.3.2.	Debouncing	a	switch	on	TM4C123
If	we	have	a	RTOS	we	can	use	a	semaphore	to	debounce	a	switch.	In
order	to	run	the	user	task	immediately	on	touch	we	will	configure	the
GPIO	input	to	trigger	an	interrupt	on	both	edges.	However,	there	can
be	multiple	falling	and	rising	edges	on	both	a	touch	and	a	release,	see
Figure	 5.13.	 A	 main	 thread	 will	 wait	 on	 that	 semaphore,	 sleep	 for
10ms	and	then	read	the	switch.	The	interrupt	occurs	at	the	start	of	the
bouncing,	 but	 the	 reading	 of	 the	 switch	 occurs	 at	 a	 time	 when	 the
switch	state	is	stable.	We	will	disarm	the	interrupt	during	the	ISR,	so
the	semaphore	is	incremented	once	per	touch	and	once	per	release.	We
will	rearm	the	interrupt	at	the	stable	time.	Program	5.5	and	Figure	5.14
show	 one	 possible	 solution	 that	 executes	 Touch1	 when	 the	 switch
SW1	is	touched,	and	it	executes	Touch2	when	switch	SW2	is	touched.
We	 can	 set	 the	 priorities	 of	 the	 hardware	 interrupt	 and	main	 threads
depending	 on	 the	 importance	 of	 the	 software	 event.	 If	 the	 edge-
triggered	 interrupt	 has	 high	 priority,	 the	 semaphore	will	 be	 signaled
immediately	 after	 a	 hardware	 touch/release	 event.	 Furthermore,	 the
main	threads	also	have	high	priority,	the	software	responses	will	also
be	 run	 immediately.	Notice	 the OS_Suspend() call	 at	 the	 end	 of	 the
ISR.	This	will	run	the	scheduler.



Figure	5.13.	Touch	and	release	both	cause	the	ISR	to	run.	The
port	is	read	during	the	stable	time

int32_t	SW1,SW2;
uint8_t	last1,last2;
void	Switch_Init(void){
		SYSCTL_RCGCGPIO_R	|=	0x20;						//	activate	clock	for	Port	F
		OS_InitSemaphore(&SW1,0);							//	initialize	semaphores
		OS_InitSemaphore(&SW2,0);
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;	//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;									//	allow	changes	to	PF4-0			
		GPIO_PORTF_DIR_R	&=	~0x11;						//	make	PF4,PF0	in
		GPIO_PORTF_DEN_R	|=	0x11;							//	enable	digital	I/O	on	PF4,PF0
		GPIO_PORTF_PUR_R	|=	0x11;							//	pullup	on	PF4,PF0
		GPIO_PORTF_IS_R	&=	~0x11;							//	PF4,PF0	are	edge-sensitive
		GPIO_PORTF_IBE_R	|=	0x11;							//	PF4,PF0	are	both	edges
		GPIO_PORTF_ICR_R	=	0x11;								//	clear	flags
		GPIO_PORTF_IM_R	|=	0x11;								//	arm	interrupts	on	PF4,PF0
		NVIC_PRI7_R	=	(NVIC_PRI7_R&0xFF00FFFF)|0x00200000;	//	priority	1
		NVIC_EN0_R	=	0x40000000;								//	enable	interrupt	30	in	NVIC

}

void	GPIOPortF_Handler(void){
		if(GPIO_PORTF_RIS_R&0x10){		//	poll	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4
				OS_Signal(&SW1);										//	signal	SW1	occurred
				GPIO_PORTF_IM_R	&=	~0x10;	//	disarm	interrupt	on	PF4

}



		if(GPIO_PORTF_RIS_R&0x01){		//	poll	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0
				OS_Signal(&SW2);										//	signal	SW2	occurred
				GPIO_PORTF_IM_R	&=	~0x81;	//	disarm	interrupt	on	PF0

}

		OS_Suspend();}
void	Switch1Task(void){	//	high	priority	main	thread
		last1	=	GPIO_PORTF_DATA_R&0x10;
		while(1){
				OS_Wait(&SW1);	//	wait	for	SW1	to	be	touched/released
				if(last1){					//	was	previously	not	touched
						Touch1();				//	user	software	associated	with	touch
				}else{
						Release1();		//	user	software	associated	with	release

}

				OS_Sleep(10);		//	wait	for	bouncing	to	be	over
				last1	=	GPIO_PORTF_DATA_R&0x10;
				GPIO_PORTF_IM_R	|=	0x10;		//	rearm	interrupt	on	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4

}

}

void	Switch2Task(void){	//	high	priority	main	thread
		last2	=	GPIO_PORTF_DATA_R&0x01;
		while(1){
				OS_Wait(&SW2);		//	wait	for	SW2	to	be	touched/released
				if(last2){						//	was	previously	not	touched
						Touch2();					//	user	software	associated	with	touch
				}else{
						Release2();			//	user	software	associated	with	release

}

				OS_Sleep(10);			//	wait	for	bouncing	to	be	over



				last2	=	GPIO_PORTF_DATA_R&0x01;
				GPIO_PORTF_IM_R	|=	0x01;		//	rearm	interrupt	on	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0

}

}

Program	5.5.	Interrupt-driven	edge-triggered	input	that	calls
Touch1()	on	the	falling	edge	of	PF4,	calls	Release1()	on	the
rising	edge	of	PF4,	calls	Touch2()	on	the	falling	edge	of	PF0	and
calls	Release2()	on	the	rising	edge	of	PF0.

Figure	5.14.	Flowchart	of	a	RTOS-solution	to	switch	bounce.
Switch1Task	is	a	high-priority	main	thread.	Notice	that	Release1
is	executed	immediately	after	a	release,	and	Touch1	is	executed
immediate	after	the	switch	is	touched.	However	the	global
variable	Last	is	set	at	a	time	the	switch	is	guaranteed	to	be	stable.

5.3.3.	Debouncing	a	switch	on	MSP432
If	we	have	a	RTOS	we	can	perform	a	similar	sequence.	In	particular,
we	 will	 use	 Program	 5.6	 to	 signal	 a	 semaphore.	 Even	 though	 we
armed	the	interrupt	for	fall,	there	can	be	multiple	falling	edges	on	both
a	 touch	 and	 a	 release.	A	 high	 priority	main	 thread	will	wait	 on	 that
semaphore,	 sleep	 for	 10ms	 and	 then	 read	 the	 switch.	 The	 interrupt



occurs	at	the	start	of	the	bouncing,	but	the	reading	of	the	switch	occurs
at	a	time	when	the	switch	state	is	stable.	We	will	disarm	the	interrupt
during	 the	 ISR,	 so	 the	 semaphore	 is	 incremented	 once	 per	 touch	 or
once	 per	 release.	 We	 will	 rearm	 the	 interrupt	 at	 the	 stable	 time.
Program	5.6	and	Figure	5.15	show	one	possible	solution	that	executes
Touch1	 when	 the	 switch	 SW1	 is	 touched,	 and	 it	 executes	 Touch2
when	switch	SW2	is	touched.

Figure	5.15.	Flowchart	of	a	RTOS-solution	to	switch	bounce.
Switch1Task	is	a	high-priority	main	thread.	Notice	that	Release1
is	executed	immediately	after	a	release,	and	Touch1	is	executed
immediate	after	the	switch	is	touched.	However,	the	global
variable	Last	is	set	at	a	time	the	switch	is	guaranteed	to	be	stable.

int32_t	SW1,SW2;
uint8_t	last1,last2;
void	Switch_Init(void){							
		SW1	=	SW2	=	0;																//	initialize	semaphores
		P1SEL1	&=	~0x12;														//	configure	P1.1,	P1.4	as	GPIO
		P1SEL0	&=	~0x12;														//	built-in	Buttons	1	and	2
		P1DIR	&=	~0x12;															//	make	P1.1,	P1.4	in
		P1REN	|=	0x12;																//	enable	pull	resistors
		P1OUT	|=	0x12;																//	P1.1,	P1.4	is	pull-up
		P1IES	|=	0x12;																//	P1.1,	P1.4	is	falling	edge	event
		P1IFG	&=	~0x12;															//	clear	flag1	and	flag4
		P1IE	|=	0x12;																	//	arm	interrupt	on	P1.1,	P1.4



		NVIC_IPR8	=	(NVIC_IPR8&0x00FFFFFF)|0x20000000;	//	(f)	priority	1
		NVIC_ISER1	=	0x00000008;}					//	enable	interrupt	35	in	NVIC
void	PORT1_IRQHandler(void){	uint8_t	status;
		status	=	P1IV;	//	4	for	P1.1	and	10	for	P1.4
		if(status	==	4){
				OS_Signal(&SW1);	//	SW1	occurred
			P1IE	&=	~0x02;}		//	disarm	interrupt	on	P1.2
		if(status	==	10){
				OS_Signal(&SW2);	//	SW2	occurred
			P1IE	&=	~0x10;}		//	disarm	interrupt	on	P1.4
		OS_Suspend();}
void	Switch1Task(void){	//	high	priority	main	thread
		last1	=	P1IN&0x02;
		while(1){
				OS_Wait(&SW1);		//	wait	for	SW1	to	be	touched/released
				if(last1){					//	was	previously	not	touched
						Touch1();				//	user	software	associated	with	touch
				}else{
						Release1();}	//	user	software	associated	with	release
				OS_Sleep(10);
				last1	=	P1IN&0x02;
				if(last1){
						P1IES	|=	0x02;		//	next	will	be	falling	edge
				}else{
						P1IES	&=	~0x02;	//	next	will	be	rising	edge

}

				P1IE	|=	0x02;				//	rearm	interrupt	on	P1.1
			P1IFG	&=	~0x02;		//	clear	flag1

}

}

void	Switch2Task(void){	//	high	priority	main	thread
		last2	=	P1IN&0x10;
		while(1){
				OS_Wait(&SW2);		//	wait	for	SW2	to	be	touched/released



				if(last2){						//	was	previously	not	touched
						Touch2();					//	user	software	associated	with	touch
				}else{
						Release2();			//	user	software	associated	with	release

}

				OS_Sleep(10);
				last2	=	P1IN&0x10;
				if(last2){
						P1IES	|=	0x10;		//	next	will	be	falling	edge
				}else{
						P1IES	&=	~0x10;}//	next	will	be	rising	edge
			P1IE	|=	0x10;					//	rearm	interrupt	on	P1.4
			P1IFG	&=	~0x10;			//	clear	flag4

}

}

Program	5.6.	Interrupt-driven	edge-triggered	input	that	calls
Touch1()	on	the	falling	edge	of	P1.1,	calls	Release1()	on	the
rising	edge	of	P1.1,	calls	Touch2()	on	the	falling	edge	of	P1.4	and
calls	Release2()	on	the	rising	edge	of	P1.4.



5.4.	Running	event	threads	as	high	priority
main	threads

In	 the	 previous	 chapters,	 we	 ran	 time-critical	 tasks	 (event	 tasks)
directly	from	the	interrupt	service	routine.	Now	that	we	have	a	priority
scheduler,	 we	 can	 place	 time-critical	 tasks	 as	 high	 priority	 main
threads.	We	will	 block	 these	 time-critical	 tasks	waiting	 on	 an	 event
(semaphore),	 and	 when	 the	 event	 occurs	 we	 signal	 its	 semaphore.
Because	we	now	have	a	high	priority	thread	not	blocked,	the	scheduler
will	run	it	 immediately.	In	Program	5.7,	we	have	a	periodic	interrupt
that	 simply	 signals	 a	 semaphore	 and	 invokes	 the	 scheduler.	 If	 we
assign	the	program Task0 	as	a	high	priority	main	thread,	it	will	be	run
periodically	with	very	little	jitter.		
It	may	seem	like	a	lot	of	trouble	to	run	a	periodic	task.	One	might	ask
why	not	just	put	the	time-critical	task	in	the	interrupt	service	routine.
A	 priority	 scheduler	 is	 flexible	 in	 two	 ways.	 First,	 because	 it
implements	priority	we	can	have	 layers	of	 important,	very	 important
and	very	very	 important	 tasks.	Second,	we	can	use	 this	approach	for
any	 triggering	 event,	 hardware	 or	 software.	 We	 simply	 make	 that
triggering	 event	 call	 OS_Signal	 	 and	 OS_Suspend.	 One	 of	 the
advantages	 of	 this	 approach	 is	 the	 separation	 of	 the	 user/application
code	from	the	OS	code.	The	OS	simply	signals	the	semaphore	on	the
appropriate	event	and	the	user	code	runs	as	a	main	thread.

int32_t	TakeSoundData;	//	binary	semaphore
void	RealTimeEvents(void){
		OS_Signal(&TakeSoundData);
		OS_Suspend();

}

void	Task0(void){
		while(1){
				OS_Wait(&TakeSoundData);	//	signaled	every	1ms
				TExaS_Task0();					//	toggle	virtual	logic	analyzer
				Profile_Toggle0();	//	viewed	by	logic	analyzer	to	know	Task0	started
//	time-critical	software



}

}

int	main(void){
		OS_Init();
//	other	initialization
		OS_InitSemaphore(&TakeSoundData,0);
		OS_AddThreads(&Task0,0,&Task1,1,&Task2,2,	&Task3,3,
																&Task4,3,	&Task5,3,	&Task6,3,	&Task7,4);
		BSP_PeriodicTask_InitC(&RealTimeEvents,1000,0);
		TExaS_Init(LOGICANALYZER,	1000);	//	initialize	the	logic	analyzer
		OS_Launch(BSP_Clock_GetFreq()/THREADFREQ);	//	doesn't	return
		return	0;													//	this	never	executes

}

Program	5.7.	Running	time-critical	tasks	as	high	priority	event
threads.



5.5.	Available	RTOS

5.5.1.	Micrium	uC/OS-II
We	 introduced	 several	 concepts	 that	 common	 in	 real-time	 operating
systems	 but	 ones	 we	 don’t	 implement	 in	 our	 simple	 RTOS.	 	 To
complete	this	discussion,	we	explore	some	of	the	popular	RTOSs	(for
the	ARM	Cortex-M)	in	commercial	use	and	how	they	implement	some
of	the	features	we	covered.
Micrium	μC/OS-II	is	a	portable,	ROMable,	scalable,	preemptive,	real-
time	 deterministic	 multitasking	 kernel	 for	 microprocessors,
microcontrollers	 and	 DSPs	 (for	 more	 information,	 see
http://micrium.com/rtos/ucosii/overview/).	Portable	means	user	and
OS	 code	 written	 on	 one	 processor	 can	 be	 easily	 shifted	 to	 another
processor.	 ROMable	 is	 a	 standard	 feature	 of	 most	 compilers	 for
embedded	 systems,	meaning	 object	 code	 is	 programmed	 into	ROM,
and	variables	are	positioned	in	RAM.	Scalable	means	applications	can
be	developed	on	this	OS	for	10	threads,	but	the	OS	allows	expansion
to	 255	 threads.	 Like	most	 real-time	 operating	 systems,	 high	 priority
tasks	 can	 preempt	 lower	 priority	 tasks.	 Because	 each	 thread	 in
Micrium	μC/OS-II	 has	 a	 unique	 priority	 (no	 two	 threads	 have	 equal
priority),	the	threads	will	run	in	a	deterministic	pattern,	making	it	easy
to	 certify	 performance.	 In	 fact,	 the	 following	 lists	 the	 certifications
available	for	Micrium	μC/OS-II

MISRA-C:1998
DO178B	Level	A	and	EUROCAE	ED-12B
Medical	FDA	pre-market	notification	(510(k))	and	pre-
market	approval	(PMA)														
SIL3/SIL4	IEC	for	transportation	and	nuclear	systems
IEC-61508

As	 of	 December	 2016,	 Micrium	 μC/OS-II	 is	 available	 for	 over	 50
processor	 architectures,	 including	 the	 Cortex	 M3	 and	 Cortex	 M4F.
Ports	 are	 available	 for	 download	 on	 http://micrium.com.	 Micrium
μC/OS-II	 manages	 up	 to	 255	 application	 tasks.	 μC/OS-II	 includes:



semaphores;	event	flags;	mutual-exclusion	semaphores	 that	eliminate
unbounded	priority	 inversions;	message	mailboxes	 and	queues;	 task,
time	 and	 timer	 management;	 and	 fixed	 sized	 memory	 block
management.
Micrium	μC/OS-II’s	footprint	can	be	scaled	(between	5	kibibytes	to	24
kibibytes)	 to	 only	 contain	 the	 features	 required	 for	 a	 specific
application.	The	execution	time	for	most	services	provided	by	μC/OS-
II	is	both	constant	and	deterministic;	execution	times	do	not	depend	on
the	number	of	tasks	running	in	the	application.
To	provide	for	stability	and	protection,	this	OS	runs	user	code	with	the
PSP	 and	 OS	 code	 with	 the	 MSP.	 The	 way	 in	 which	 the	 Micrium
μC/OS	supports	many	processor	architectures	is	to	be	layered.	Only	a
small	 piece	 of	 the	OS	 code	 is	 processor	 specific.	 It	 also	 provides	 a
Board	Support	Package	(BSP)	so	the	user	code	can	also	be	layered,
see	Figure	5.16.	

Figure	5.16.	Block	diagram	of	the	Micrium	uC/OSII.



To	 illustrate	 the	operation	of	Micrium	μC/OS-II,	Program	5.8	 shows
the	thread-switch	code.	PendSV	is	an	effective	method	for	performing
context	 switches	 with	 Cortex-M	 because	 the	 Cortex-M	 saves	 R0-
R3,R12,LR,PC,PSW	 on	 any	 exception,	 and	 restores	 the	 same	 on
return	 from	 exception.	 	 So	 only	 saving	 of	 R4-R11	 is	 required	 and
fixing	 up	 the	 stack	 pointers.	 	Using	 the	 PendSV	 exception	 this	way
means	 that	 context	 saving	 and	 restoring	 is	 identical	 whether	 it	 is
initiated	from	a	thread	or	occurs	due	to	an	interrupt	or	exception.	On
entry	into	PendSV	handler	1)	xPSR,	PC,	LR,	R12,	R0-R3	have	been
saved	on	 the	 process	 stack	 (by	 the	 processor);	 2)	Processor	mode	 is
switched	to	Handler	mode	(from	Thread	mode);	3)	The	stack	 is	now
the	Main	stack	 (switched	 from	Process	stack);	3) OSTCBCur points
to	 the OS_TCB of	 the	 task	 to	 suspend;	 and	 4) OSTCBHighRdy 	
points	 to	 the OS_TCB 	 of	 the	 task	 to	 resume.	 There	 nine	 steps	 for
switching	a	thread:	1.	 	 	 	 	Get	the	process	SP,	if	0	then	go	to	step	4.	the
saving	part	(first	switch);	2.					Save	remaining	regs	R4-R11	on	process
stack;	 3.	 	 	 	 	 Save	 the	 process	 SP	 in	 its	 TCB, OSTCBCur-
>OSTCBStkPtr	=	SP;	4.	 	 	 	 	Call OSTaskSwHook();	5.	 	 	 	 	Get	current
high	priority, OSPrioCur	=	OSPrioHighRdy;	6.	 	 	 	 	Get	current	ready
thread	TCB, OSTCBCur	=	OSTCBHighRdy;	7.	 	 	 	 	Get	new	process
SP	from	TCB,	SP	= OSTCBHighRdy->OSTCBStkPtr;	8.	 	 	 	 	Restore
R4-R11	from	new	process	stack;	9.	 	 	 	 	Perform	exception	return	which
will	restore	remaining	context.

	
OS_CPU_PendSVHandler
				CPSID			I															;	Prevent	interruption	during	context	switch
				MRS					R0,	PSP									;	PSP	is	process	stack	pointer
				CBZ					R0,	OS_CPU_PendSVHandler_nosave					;	Skip	first	time
				SUBS				R0,	R0,	#0x20		;	Save	remaining	regs	R4-11	on	process	stack
				STM					R0,	{R4-R11}
				LDR				R1,	=OSTCBCur			;	OSTCBCur->OSTCBStkPtr	=	SP;
				LDR					R1,	[R1]
				STR					R0,	[R1]								;	R0	is	SP	of	process	being	switched	out
	
;	At	this	point,	entire	context	of	process	has	been	saved
OS_CPU_PendSVHandler_nosave
				PUSH				{R14}													;	Save	LR	exc_return	value
				LDR					R0,	=OSTaskSwHook	;	OSTaskSwHook();



				BLX					R0
				POP					{R14}
				LDR					R0,	=OSPrioCur		;	OSPrioCur	=	OSPrioHighRdy;
				LDR					R1,	=OSPrioHighRdy
				LDRB				R2,	[R1]
				STRB				R2,	[R0]
				LDR					R0,	=OSTCBCur			;	OSTCBCur		=	OSTCBHighRdy;
				LDR					R1,	=OSTCBHighRdy
				LDR					R2,	[R1]
				STR					R2,	[R0]
				LDR					R0,	[R2]		;	R0	is	new	PSP;	SP	=	OSTCBHighRdy-
>OSTCBStkPtr;
				LDM					R0,	{R4-R11}				;	Restore	R4-11	from	new	process	stack
				ADDS				R0,	R0,	#0x20
				MSR					PSP,	R0									;	Load	PSP	with	new	process	SP
				ORR					LR,	LR,	#0x04		;	Ensure	exception	return	uses	process	stack
				CPSIE			I
				BX						LR										;	Exception	return	will	restore	remaining	context
Program	5.8.	Thread	switch	code	on	the	Micrium	uC/OSII.

Since	PendSV	is	set	to	lowest	priority	in	the	system,	we	know	that	it
will	 only	 be	 run	when	 no	 other	 exception	 or	 interrupt	 is	 active,	 and
therefore	safe	to	assume	that	context	being	switched	out	was	using	the
process	 stack	 (PSP).	 Micrium	 μC/OS-II	 provides	 numerous	 hooks
within	the	OS	to	support	debugging,	profiling,	and	feature	expansion.
An	example	of	a	hook	is	the	call	to OSTaskSwHook() .	The	user	can
specify	the	action	invoked	by	this	call.
Micrium	 µC/OS-III	 extends	 this	 OS	 with	 many	 features	 as	 more
threads,	 round-robin	 scheduling,	 enhanced	 messaging,	 extensive
performance	measurements,	and	time	stamps.

5.5.2.	Texas	Instruments	RTOS
TI-RTOS	 scales	 from	 a	 real-time	 multitasking	 kernel	 to	 a	 complete
RTOS	 solution	 including	 additional	 middleware	 components	 and
device	 drivers.	 TI-RTOS	 is	 provided	 with	 full	 source	 code	 and
requires	 no	 up-front	 or	 runtime	 license	 fees.	 TI-RTOS	 Kernel	 is
available	on	most	TI	microprocessors,	microcontrollers	and	DSPs.	TI-



RTOS	 middleware,	 drivers	 and	 board	 initialization	 components	 are
available	on	select	ARM®	Cortex™-M4	Tiva-C,	C2000™	dual	core
C28x	 +	 ARM	 Cortex-M3,	 MSP430	 microcontrollers,	 and	 the
SimpleLink™	 WiFi®	 CC3200.	 	 For	 more	 information,	 see
http://www.ti.com/tool/ti-rtos	 or	 search	 RTOS	 on	www.ti.com.	 TI-
RTOS	 combines	 a	 real-time	 multitasking	 kernel	 with	 additional
middleware	components	including	TCP/IP	and	USB	stacks,	a	FAT	file
system,	 and	device	drivers,	 see	Figure	5.17	 and	Table	5.2.	TI-RTOS
provides	 a	 consistent	 embedded	 software	 platform	 across	 TI’s
microcontroller	devices,	making	it	easy	to	port	legacy	applications	to
the	latest	devices.

Figure	5.17.	Block	diagram	of	the	Texas	Instruments	RTOS.

TI-RTOS
Module

Description

TI-RTOS	Kernel TI-RTOS	Kernel	provides	deterministic
preemptive	multithreading	and
synchronization	services,	memory
management,	and	interrupt	handling.	TI-
RTOS	Kernel	is	highly	scalable	down	to	a
few	KBs	of	memory.

TI-RTOS
Networking

TI-RTOS	Networking	provides	an	IPv4	and
IPv6-compliant	TCP/IP	stack	along	with
associated	network	applications	such	as
DNS,	HTTP,	and	DHCP.

TI-RTOS	File TI-RTOS	File	System	is	a	FAT-compatible

http://www.ti.com


System file	system	based	on	the	open	source	Fatfs
product.

TI-RTOS	USB TI-RTOS	USB	provides	both	USB	Host	and
Device	stacks,	as	well	as	MSC,	CDC,	and
HID	class	drivers.	TI-RTOS	USB	uses	the
proven	TivaWare	USB	stack.

TI-RTOS	IPC The	TI-RTOS	IPC	provides	efficient
interprocessor	communication	in	multicore
devices.

TI-RTOS
Instrumentation

TI-RTOS	Instrumentation		allows
developers	to	include	debug	instrumentation
in	their	application	that	enables	runtime
behavior,	including	context-switching,	to	be
displayed	by	system-level		analysis	tools.

TI-RTOS	Drivers
and	Board
Initialization	

TI-RTOS	Drivers	and	Board	Initialization
provides	a	set	of	device	driver	APIs,	such	as
Ethernet,	UART	and	IIC,	that	are	standard
across	all	devices,	as	well	as	initialization
code	for	all	supported	boards.	All	driver	and
board	initialization	APIs	are	built	on	the
TivaWare,	MWare,	or	MSP430Ware
libraries.

Table	5.2.	Components	of	the	TI	RTOS.

5.5.3.	ARM	RTX	RealTime	Operating	System
The	 Keil	 RTX	 is	 a	 royalty-free,	 deterministic	 RealTime	 Operating
System	 designed	 for	 ARM	 and	 Cortex-M	 devices.	 For	 more
information,	 search	RTX	RTOS	on	www.arm.com.	 It	 allows	 you	 to
create	 programs	 that	 simultaneously	 perform	multiple	 functions	 and
helps	to	create	applications	which	are	better	structured	and	more	easily
maintained.	 RTX	 is	 available	 royalty-free	 and	 includes	 source	 code.
RTX	is	deterministic.	It	has	flexible	scheduling	including	round-robin,
preemptive,	 and	 collaborative.	 It	 operates	 at	 high	 speed	 with	 low
interrupt	latency.	It	has	a	small	footprint.	It	supports	unlimited	number
of	tasks	each	with	254	priority	levels.	It	provides	an	unlimited	number



of	mailboxes,	semaphores,	mutex,	and	timers.	 It	 includes	support	for
multithreading	and	thread-safe	operation.	There	is	debugging	support
in	 MDK-ARM.	 It	 has	 a	 dialog-based	 setup	 using	 µVision
Configuration	Wizard.
RTX	allows	up	to	250	active	tasks.	The	priority	scheduler	supports	up
to	254	priority	levels.	The	OS	will	dynamically	check	for	valid	stacks
for	 running	 tasks.	 It	 implements	 timeouts,	 interval	 timing,	 and	 user
timers.	Synchronization	and	inter-task	communication	are	handled	by	
signals/events,	 semaphores,	 mutexes,	 and	 mailboxes.	 A	 task	 switch,
the	Cortex	M3	version	shown	as	Program	5.9,	requires	192	bus	cycles.
The STMDB instruction	 saves	 the	 current	 thread	 and	 the LDMIA
instruction	restores	the	context	for	the	next	thread.

__asm	void	PendSV_Handler	(void)	{
								BL						__cpp(rt_pop_req)			;	choose	next	thread	to	run
								LDR					R3,=__cpp(&os_tsk)
								LDM					R3,{R1,R2}														;	os_tsk.run,	os_tsk.new
								CMP					R1,R2
								BEQ					Sys_Exit
								PUSH				{R2,R3}
								MOV					R3,#0
								STRB				R3,[R1,#TCB_RETUPD]					;	os_tsk.run->ret_upd	=	0
								MRS					R12,PSP																	;	Read	PSP
								STMDB			R12!,{R4-R11}											;	Save	Old	context
								STR					R12,[R1,#TCB_TSTACK]				;	Update	os_tsk.run->tsk_stack
								BL						rt_stk_check												;	Check	for	Stack	overflow
								POP					{R2,R3}
								STR					R2,[R3]																	;	os_tsk.run	=	os_tsk.new
								LDR					R12,[R2,#TCB_TSTACK]				;	os_tsk.new->tsk_stack
								LDMIA			R12!,{R4-R11}											;	Restore	New	Context
								MSR					PSP,R12																	;	Write	PSP
								LDRB				R3,[R2,#TCB_RETUPD]					;	Update	ret_val?
								CBZ					R3,Sys_Exit
								LDRB				R3,[R2,#TCB_RETVAL]					;	Write	os_tsk.new->ret_val
								STR					R3,[R12]
Sys_Exit	MVN				LR,#:NOT:0xFFFFFFFD					;	set	EXC_RETURN	value
								BX						LR																						;	Return	to	Thread	Mode

}



Program	5.9.	Thread	switch	code	on	the	ARM	RTX	RTOS	(see	file
HAL_CM3.c).

ARM’s	Cortex	Microcontroller	Software	Interface	Standard	(CMSIS)
is	 a	 standardized	 hardware	 abstraction	 layer	 for	 the	 Cortex-M
processor	series.	The	CMSIS-RTOS	API	is	a	generic	RTOS	interface
for	 Cortex-M	 processor-based	 devices.	 You	 will	 find	 details	 of	 this
standard	 as	 part	 of	 the	 Keil	 installation	 at
Keil\ARM\CMSIS\Documentation\RTOS\html.	 CMSIS-RTOS
provides	 a	 standardized	 API	 for	 software	 components	 that	 require
RTOS	 functionality	 and	 gives	 therefore	 serious	 benefits	 to	 the	 users
and	the	software	industry.

CMSIS-RTOS	provides	basic	features	that	are	required	in	many
applications	or	technologies	such	as	UML	or	Java	(JVM).
The	 unified	 feature	 set	 of	 the	 CMSIS-RTOS	 API	 simplifies
sharing	of	software	components	and	reduces	learning	efforts.
Middleware	 components	 that	 use	 the	 CMSIS-RTOS	 API	 are
RTOS	agnostic.	CMSIS-RTOS	compliant	middleware	 is	 easier
to	adapt.
Standard	 project	 templates	 (such	 as	 motor	 control)	 of	 the
CMSIS-RTOS	 API	 may	 be	 shipped	 with	 freely	 available
CMSIS-RTOS	implementations.

5.5.4.	FreeRTOS
FreeRTOS	is	a	class	of	RTOS	that	 is	designed	to	be	small	enough	to
run	on	a	microcontroller.	FreeRTOS	only	provides	 the	core	real-time
scheduling	 functionality,	 inter-task	 communication,	 timing	 and
synchronization	primitives.	This	means	it	is	more	accurately	described
as	a	real-time	kernel,	or	real-time	executive.	FreeRTOS	is	available	for
35	processor	architectures,	with	millions	of	product	deployments.	For
more	 information	 on	 FreeRTOS,	 see	 their	 web	 site	 at
http://www.freertos.org/RTOS-Cortex-M3-M4.html.	 The	 starter
project	for	the	LM3S811	can	be	easily	recompiled	to	run	an	any	of	the
Texas	Instruments	Cortex	M	microcontrollers.
FreeRTOS	 is	 licensed	 under	 a	 modified	 GPL	 and	 can	 be	 used	 in
commercial	applications	under	this	license	without	any	requirement	to



expose	 your	 proprietary	 source	 code.	 An	 alternative	 commercial
license	option	is	also	available	in	cases	that:	You	wish	to	receive	direct
technical	support.	You	wish	to	have	assistance	with	your	development.
You	require	 legal	protection	or	other	assurances.	Program	5.10shows
the	 PendSV	handler	 that	 implements	 the	 context	 switch.	Notice	 that
this	 thread	 switch	 does	 not	 disable	 interrupts.	 Rather,
the ISB instruction	 acts	 as	 an	 instruction	 synchronization	 barrier.	 It
flushes	the	pipeline	of	the	processor,	so	that	all	instructions	following
the ISB are	 fetched	 from	 cache	 or	 memory	 again,	 after	 the ISB
instruction	 has	 been	 completed.	 Similar	 to	 Micrium	 μC/OS-II	 and
ARM	 RTX,	 the	 FreeRTOS	 does	 run	 user	 threads	 with	 the	 process
stack	pointer	(PSP).

__asm	void	xPortPendSVHandler(	void	){
extern	uxCriticalNesting;
extern	pxCurrentTCB;
extern	vTaskSwitchContext;
PRESERVE8
mrs	r0,	psp
isb
ldr	r3,	=pxCurrentTCB	/*	Get	the	location	of	current	TCB.	*/
ldr	r2,	[r3]
stmdb	r0!,	{r4-r11}	/*	Save	the	remaining	registers.	*/
str	r0,	[r2]	/*	Save	the	new	top	of	stack	into	the	TCB.	*/
stmdb	sp!,	{r3,	r14}
mov	r0,	#configMAX_SYSCALL_INTERRUPT_PRIORITY
msr	basepri,	r0
bl	vTaskSwitchContext
mov	r0,	#0
msr	basepri,	r0
ldmia	sp!,	{r3,	r14}
ldr	r1,	[r3]
ldr	r0,	[r1]	/*	first	item	in	pxCurrentTCB	is	task	top	of	stack.	*/
ldmia	r0!,	{r4-r11}	/*	Pop	registers	and	critical	nesting	count.	*/
msr	psp,	r0
isb
bx	r14
nop



}

Program	5.10.	Thread	switch	code	on	FreeRTOS	also	uses
PendSV	for	the	Cortex	M3.

5.5.5.	Other	Real	Time	Operating	Systems
Other	real	time	operating	systems	available	for	the	Cortex	M	are	listed
in	Table	5.3

Provider Product
CMX	Systems CMX-RTX,CMX-

Tiny
Expresslogic ThreadX

Green	Hills Integrity®,	µVelOSity
Mentor
Graphics

Nucleus+®

Micro	Digital SMX®
RoweBots Unison
SEGGER embOS

Table	5.3	Other	RTOS	for	the	Cortex	M	(http://www.ti.com/lsds/ti/tools-
software/rtos.page#arm)

Deployed	in	over	1.5	billion	devices,	VxWorks®	by	Wind	River®	is
the	world’s	leading	real-time	operating	system	(RTOS).	It	is	listed	here
in	 the	other	category	because	 it	 is	deployed	on	 such	architectures	as
the	X86,	ARM	Cortex-A	series,	and	Freescale	QorIQ,	but	not	on	the
Cortex	M	microcontrollers	like	the	TM4C123.	VxWorks	delivers	hard
real-time	 performance,	 determinism,	 and	 low	 latency	 along	with	 the
scalability,	 security,	 and	 safety	 required	 for	 aerospace	 and	 defense,
industrial,	 medical,	 automotive,	 consumer	 electronics,	 networking,
and	other	industries.	VxWorks	has	become	the	RTOS	of	choice	when
certification	 is	 required.	 VxWorks	 supports	 the	 space,	 time,	 and
resource	partitioning	required	for	IEC	62304,	IEC	61508,	IEC	50128,
DO-178C,	 and	 ARINC	 653	 certification.	 VxWorks	 customers	 can
design	their	systems	to	the	required	level	of	security	by	picking	from	a
comprehensive	 set	 of	 VxWorks	 security	 features.	 VxWorks	 is	 an
important	play	in	providing	solutions	for	the	Internet	of	Things	(IoT),

http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=91
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=100
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=164
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=9098


where	 connectivity,	 scalability,	 and	 security	 are	 required.	 For	 more
information,	see	http://www.windriver.com/products/vxworks/



5.6.	Exercises
5.1	For	each	of	 the	 following	 terms	give	a	definition	 in	16	words	or
less

a)	aging
b)	certification
c)	starvation

d)	least	slack	time	first
e)	exponential	queue
f)	maximum	latency

g)	rate	monotonic
h)	Kahn	Process
Network
i)	monitor

	
5.2	Select	the	best	term	from	the	book	that	describes	each	definition.
a)	A	 technique	 to	periodically	 increase	 the	priority	of	 low-priority
threads	 so	 that	 low	 priority	 threads	 occasionally	 get	 run.	 The
increase	is	temporary.
b)	A	situation	that	can	occur	in	a	priority	thread	scheduler	where	a
low-priority	thread	never	runs.
c)	The	 condition	where	 thread	 1	 is	waiting	 for	 a	 unique	 resource
held	by	thread	2,	and	thread	2	is	waiting	for	a	unique	resource	held
by	thread	1.
d)	The	 condition	where	 a	 thread	 is	 not	 allowed	 to	 run	 because	 it
needs	something	that	is	unavailable.
e)	 The	 condition	 where	 once	 a	 thread	 blocks,	 there	 are	 a	 finite
number	of	threads	that	will	be	allowed	to	proceed	before	this	thread
is	allowed	to	proceed.
f)	 An	 operation	 that	 once	 started	 will	 run	 to	 completion	 without
interruption
g)	An	implementation	using	a	FIFO	or	mailbox	that	separates	data
input	from	data	processing.
h)	 A	 technique	 that	 could	 be	 used	 to	 prevent	 the	 user	 from
executing	 I/O	on	a	driver	until	 after	 the	user	 calls	 the	 appropriate
initialization.
i)	A	 scheduling	 algorithm	 that	 assigns	 priority	 linearly	 related	 to
how	often	a	thread	needs	to	run.	Threads	needing	to	run	more	often
have	a	higher	priority.
j)	An	OS	feature	that	allows	the	user	to	run	user-defined	software	at
specific	 places	 within	 the	 OS.	 These	 programs	 are	 extra	 for	 the
user’s	convenience	and	not	required	by	the	OS	itself.
k)	An	OS	 feature	 that	 allows	 you	 to	 use	 the	OS	 in	 safety-critical



applications.
l)	A	scheduling	algorithm	with	round	robin	order	but	varying	time
slice.	If	a	thread	blocks	on	I/O,	its	time	slice	is	reduced.	If	it	runs	to
completion	of	a	time	slice,	its	time	slice	is	increased.
m)	The	condition	where	at	most	one	 thread	 is	allowed	access	 to	a
resource	that	cannot	be	shared.	If	a	second	thread	wishes	access	to
the	 resource	while	 the	 first	 thread	 is	using	 it,	 the	second	 thread	 is
made	to	wait	until	the	first	thread	is	finished.
n)	The	condition	a	function	has	that	allows	it	to	be	simultaneously
executed	by	multiple	threads.
o)	A	 thread	 scheduling	 algorithm	 that	 has	 the	 threads	 themselves
decide	when	the	thread	switches	should	occur.
p)	A	situation	that	can	occur	in	a	priority	thread	scheduler	where	a
high-priority	 thread	 is	 waiting	 on	 a	 resource	 owned	 by	 a	 low-
priority	thread.
q)	A	type	of	semaphore	implemented	with	a	busy-wait	loop.
r)	A	type	of	 thread	scheduler	where	each	thread	has	equal	priority
and	all	threads	are	executed	in	a	circular	sequence.

	
5.3	 In	 this	 problem	 you	 will	 extend	 the	 preemptive	 scheduler	 to
support	priority.	This	system	should	support	three	levels	of	priority	"1"
will	be	the	highest.	You	can	solve	this	problem	using	either	assembly
or	C.
a)	 Redesign	 the	 TCB	 to	 include	 a	 32-bit	 integer	 for	 the	 priority
(although	 the	 values	 will	 be	 restricted	 to	 1,2,3).	 	 Show	 the	 static
allocation	 for	 the	 three	 threads	 from	 the	 example	 in	 this	 chapter
assuming	the	first	two	are	priority	2	and	the	last	is	priority	3.	There	are
no	priority	1	threads	in	this	example,	but	there	might	be	in	the	future.
b)	Redesign	the	scheduler	to	support	this	priority	scheme.
c)	 In	 the	 book	 it	 said	 "Normally,	 we	 add	 priority	 to	 a	 system	 that
implements	 blocking	 semaphores	 and	 not	 to	 one	 that	 uses	 spinlock
semaphores."	What	specifically	will	happen	here	if	 the	system	is	run
with	spinlock	semaphores?
d)	 Even	 when	 the	 system	 supports	 blocking	 semaphores,	 starvation
might	 happen	 to	 the	 low	 priority	 threads.	 Describe	 the	 sequence	 of
events	that	cause	starvation.
e)	Suggest	a	solution	to	the	starvation	problem.
	
5.4	 This	 problem	 investigates	 the	 design	 of	 an	 adaptive	 priority



scheduler	 with	 exponential	 time	 slices.	 This	 is	 also	 called	 an
exponential	Queue	or	multi-level	 feedback	 queue.	 The	CTSS	 system
(MIT,	early	1960's)	was	the	first	to	use	exponential	queues.	One	of	the
difficulties	 in	 a	 priority	 scheduler	 is	 the	 assignment	 of	 priority.
Typically,	 one	wishes	 to	 assign	 a	 high	 priority	 to	 threads	 doing	 I/O
(which	block	a	 lot)	 so	 that	 the	 response	 to	 I/O	 is	 short,	and	assign	a
low	 priority	 to	 threads	 not	 doing	 I/O	 (which	 do	 not	 block	 a	 lot).
However,	 in	 a	 complex	 system	 a	 particular	 thread	 may	 sometimes
exhibit	I/O	bound	behavior,	but	later	exhibit	CPU	bound	behavior.	An
adaptive	 scheduler	 will	 adjust	 the	 priority	 according	 to	 the	 current
activity	of	the	thread.		Priority	1	threads	will	run	with	a	time	slice	of
4000	(1ms),	priority	2	threads	will	run	with	a	time	slice	of	8000	(2ms),
and	 priority	 3	 threads	 will	 run	 with	 a	 time	 slice	 of	 16000	 (4ms).
Consider	 this	 blocking	 round-robin	 scheduler,	with	 two	 new	 entries,
shown	in	bold,	added	to	the	TCB.
struct	TCB{
		struct	TCB	*Next;				//	Link	to	Next	TCB
		int32_t	*StackPt;				//	Stack	Pointer
		Sema4Type	*BlockPt;		//	0	if	not	blocked,	pointer	if	blocked
		int16_t	Priority;				//	1	(highest),	2,	or	3	(lowest)
		uint16_t	TimeSlice;	//	4000,8000,	or	16000
		int32_t	Stack[100];	//	stack,	size	determined	at	runtime

};

typedef	struct	TCB	TCBType;
typedef	TCBType	*	TCBPtr;
a)	Rewrite	 the	OS_Wait	 function	 so	 that	 if	 a	 priority	 2	 or	 3	 thread
blocks,	 its	priority	will	be	 raised	 (decrement	by	1)	and	 its	 time	slice
will	be	halved.	No	changes	to	OS_Signal	will	be	needed.
	
b)	Rewrite	 the threadSwitch 	 ISR	 so	 that	 if	 a	 priority	 1	 or	 2	 thread
runs	 to	 the	end	of	 its	 time	slice	without	blocking,	 its	priority	will	be
lowered	 (increment	 by	 1)	 and	 its	 time	 slice	 will	 be	 doubled.	 In
addition,	implement	priority	scheduling	with	variable	time	slices.
	
5.5Consider	 the	 implementation	 of OS_AddThreads ,	 shown	 in
Program	3.4.	Redesign	the	system	so	that	if	the	user	program	finishes,
the	 OS	 will	 run	 the	 user	 program	 again.	 For	 example,	 this	 user



function	executes stuff1 , stuff2 and stuff3 	once	and	quits.
void	user(void){	stuff1();	stuff2();	stuff3();}
If	 the	 user	 calls	 this	 system	 function	 to	 activate user ,
OS_AddThreads(&user);
then	 with	 your	 updated	 system stuff1 , stuff2 and stuff3 will	 be
repeated	 over	 and	 over	 again.	 You	 are	 allowed	 to	 make	 changes	 to
the struct 	 and	 to	 OS_AddThreads ,	 but	 not	 to user or	 other	 OS
functions.	You	can	however	add	additional	OS	functions.	In	particular,
show	 changes	 to	 the struct and	 rewrite	 OS_AddThreads 	 in	 its
entirety.

	
	



6.	Digital	Signal	Processing
Chapter	6	objectives	are	to:
• Introduce	basic	principles	involved	in	digital	filtering
• Define	 the	 Z	 Transform	 and	 use	 it	 to	 design	 and	 analyze	 digital
filters

•	Present	the	discrete	Fourier	Transform	and	use	it	to	design
digital	filters
• Develop	digital	filter	implementations
•	Present	an	audio	input/output	example

	 The	 goal	 of	 this	 chapter	 is	 to	 provide	 a	 brief	 introduction	 to
digital	 signal	 processing	 (DSP).	 DSP	 includes	 a	 wide	 range	 of
operations	 such	 as	 digital	 filtering,	 event	 detection,	 frequency
spectrum	 analysis	 and	 signal	 compression/decompression.
Similar	to	the	goal	of	analog	filtering,	a	digital	filter	will	be	used
to	improve	the	signal	to	noise	ratio	in	our	data.	The	difference	is
that	 a	 digital	 filter	 is	 performed	 in	 software	 on	 the	 digital	 data
sampled	by	the	ADC	converter.	The	particular	problem	addressed
in	a	couple	of	ways	in	this	chapter	is	removing	60	Hz	noise	from
the	signal.		Like	the	control	systems	and	communication	systems
discussed	elsewhere	in	these	volumes,	we	will	provide	just	a	brief
discussion	to	the	richly	developed	discipline	of	DSP.	Again,	this
chapter	 focuses	mostly	on	 the	 implementation	on	 the	embedded
microcomputer.	Event	detection	is	 the	process	of	identifying	the
presence	or	absence	of	particular	patterns	in	our	data.	Examples
of	 this	 type	 of	 processing	 include	 optical	 character	 readers,
waveform	 classification,	 sonar	 echo	 detection,	 infant	 apnea
monitors,	 heart	 arrhythmia	 detectors	 and	 burglar	 alarms.
Frequency	 spectrum	 analysis	 requires	 the	 calculation	 of	 the
Discrete	Fourier	Transform	(DFT).	A	fast	algorithm	to	calculate
the	 DFT	 is	 called	 the	 Fast	 Fourier	 Transform,	 FFT.	 Like	 the
regular	 Fourier	 Transform,	 the	 DFT	 converts	 a	 time-dependent
signal	 into	 the	 frequency	 domain.	 The	 difference	 a	 regular
Fourier	 Transform	 and	 the	 DFT	 is	 that	 the	 DFT	 performs	 the
conversion	on	a	finite	number	of	discrete	time	digital	samples	to



give	a	finite	number	of	points	at	discrete	frequencies.	We	will	use
the	DFT	in	this	chapter	as	a	flexible	way	to	design	digital	filters.
Data	 compression	 and	 decompression	 are	 important	 aspects	 in
high-speed	 communication	 systems.	 Although	 we	 will	 not
specifically	 address	 the	 problems	 of	 event	 detection,	 DFT	 and
compression/decompression	 in	 this	 book,	 these	 DSP	 operations
are	implemented	using	similar	techniques	as	the	digital	filters	that
are	 presented	 in	 this	 chapter.	 The	 goal	 of	 this	 chapter	 is	 to
demonstrate	 that	 fairly	 powerful	 digital	 signal	 processing
techniques	can	be	implemented	on	most	microcontrollers	.



6.1.	Basic	Principles
	

The	objective	of	this	section	is	to	introduce	simple	digital	filters.	Let
xc(t)	be	the	continuous	analog	signal	to	be	digitized.	xc(t)	is	the	analog
input	to	the	ADC	converter.	If	fs	is	the	sample	rate,	then	the	computer
samples	 the	 ADC	 every	T	 seconds.	 (T	 =	 1/fs).	 Let	 ...,x(n),...	 be	 the
ADC	output	sequence,	where	x(n)	=	xc(nT)	with -∞	< n 	<	+∞.

	
There	 are	 two	 types	of	 approximations	 associated	with	 the	 sampling
process.	Because	of	the	finite	precision	of	the	ADC,	amplitude	errors
occur	 when	 the	 continuous	 signal,	 xc(t),	 is	 sampled	 to	 obtain	 the
digital	sequence,	x(n).	The	second	type	of	error	occurs	because	of	the
finite	sampling	frequency.	The	Nyquist	Theorem	states	that	the	digital
sequence,	 x(n),	 properly	 represents	 the	 DC	 to	 ½fs	 frequency
components	 of	 the	 original	 signal,	 xc(t).	 There	 are	 two	 important
assumptions	 that	 are	 necessary	 to	 make	 when	 using	 digital	 signal
processing:	1.	We	assume	the	signal	has	been	sampled	at	a	fixed	and
known	rate,	fs	2.	We	assume	aliasing	has	not	occurred.

	
We	can	guarantee	 the	 first	 assumption	by	using	 a	hardware	 clock	 to
start	the	ADC	at	a	fixed	and	known	rate.	A	less	expensive	but	not	as
reliable	method	is	to	implement	the	sampling	routine	as	a	high	priority
periodic	interrupt	process.	If	the	time	jitter	is	δt	then	we	can	estimate
the	voltage	error	by	multiplying	the	time	jitter	by	the	slew	rate	of	the
input,	∂V∂t*δt.	By	establishing	a	high	priority	of	the	interrupt	handler,
we	 can	 place	 an	 upper	 bound	 on	 the	 interrupt	 latency,	 guaranteeing
that	ADC	sampling	is	occurring	at	an	almost	fixed	and	known	rate.	We
can	observe	 the	ADC	 input	with	 a	 spectrum	analyzer	 to	prove	 there
are	no	significant	signal	components	above	½fs.	“No	significant	signal
components”	is	defined	as	having	an	ADC	input	voltage	|Z|	less	than
the	ADC	resolution,	∆z,	 |Z|	≤	∆z	 	 	 	 	 for	all	 f	≥	½fs	A	causal	digital
filter	calculates	y(n)	 from	y(n-1),	y(n-2),...	 and	x(n),	x(n-1),	 x(n‑2),...
Simply	 put,	 a	 causal	 filter	 cannot	 have	 a	 nonzero	 output	 until	 it	 is



given	 a	 nonzero	 input.	 	 The	 output	 of	 a	 causal	 filter,	 y(n),	 cannot
depend	 on	 future	 data	 (e.g.,	 y(n+1),	 x(n+1)	 etc.)	 A	 linear	 filter	 is
constructed	 from	a	 linear	 equation.	A	nonlinear	 filter	 is	 constructed
from	 a	 nonlinear	 equation.	 An	 example	 of	 a	 nonlinear	 filter	 is	 the
median.	To	calculate	the	median	of	three	numbers,	one	first	sorts	the
numbers	 according	 to	 magnitude,	 then	 chooses	 the	 middle	 value.
Other	 simple	 nonlinear	 filters	 include	 maximum,	 minimum,	 and
square.
A	 finite	 impulse	 response	 filter	 (FIR)	 relates	 y(n)	 only	 in	 terms	 of
x(n),	x(n-1),	x(n‑2),...	 If	 the	sampling	rate	 is	360	Hz,	 this	simple	FIR
filter	will	remove	60	Hz	noise:	y(n)	=	(x(n)+x(n-3))/2

	
An	infinite	impulse	response	filter	(IIR)	relates	y(n)	in	terms	of	both
x(n),	 x(n-1),...,	 and	 y(n‑1),	 y(n-2),...	 This	 simple	 IIR	 filter	 has
averaging	or	low-pass	behavior:	y(n)	=	(x(n)+y(n-1))/2
One	way	to	analyze	linear	filters	is	the	Z-Transform.	The	definition	of
the	Z-Transform	is:

X(z)		=		Z[x(n)]		≡	sum(x(n)*z-n)	for	n=	-∞	to	+∞
		

The	Z-transform	is	similar	to	other	transforms.	In	particular,	consider
the	 Laplace	 Transform,	 which	 converts	 a	 continuous	 time-domain
signal,	x(t),	 into	the	frequency	domain,	X(s).	In	the	same	manner,	the
Z-Transform	 converts	 a	 discrete	 time	 sequence,	 x(n),	 into	 the
frequency	domain,	X(z).	See	Figure	6.1.

Figure	6.1.	A	transform	is	used	to	study	a	signal	in	the	frequency
domain.

The	 input	 to	 both	 the	 Laplace	 and	 Z	 Transforms	 are	 infinite	 time
signals,	 having	 values	 at	 times	 from	 -∞	 to	 +	 ∞.	 The	 frequency



parameters,	s	and	z,	are	complex	numbers,	having	real	and	imaginary
parts.	In	both	cases	we	apply	the	transform	to	study	linear	systems.	In
particular,	we	can	describe	the	behavior	(gain	and	phase)	of	an	analog
system	using	its	transform,	H(s)	=	Y(s)/X(s).	In	this	same	way	we	will
use	 the	H(z)	 transform	 of	 a	 digital	 filter	 to	 determine	 its	 gain	 and
phase	response.	See	Figure	6.2.

Figure	6.2.	A	transform	can	also	be	used	to	study	a	system	in	the
frequency	domain.

For	 an	 analog	 system	 we	 can	 calculate	 the	 gain	 by	 taking	 the
magnitude	of	H(s)	at	s	=	 j	2πf,	 for	all	 frequencies,	 f,	 from	-∞	to	+∞.
The	phase	will	be	the	angle	of	H(s)	at	s	=	j	2πf.	If	we	were	to	plot	the
H(s)	in	the	s	plane,	the	s	=	j	2πf	curve	is	the	entire	y-axis.	For	a	digital
system	we	will	calculate	the	gain	and	phase	by	taking	the	magnitude
and	 angle	 of	H(z).	 Because	 of	 the	 finite	 sampling	 interval,	 we	 will
only	 be	 able	 to	 study	 frequencies	 from	 DC	 to	 ½fs	 in	 our	 digital
systems.	 	 If	 we	 were	 to	 plot	 the	 H(z)	 in	 the	 z	 plane,	 the	 z	 curve
representing	 the	 DC	 to	 ½fs	 frequencies	 will	 be	 the	 unit	 circle,	 z	 ≡
ej2πf/fs.
We	 will	 begin	 by	 developing	 a	 simple,	 yet	 powerful	 rule	 that	 will
allow	us	to	derive	the	H(z)	transforms	of	most	digital	filters.	Let	m	be
an	integer	constant.	 	We	can	use	the	definition	of	the	Z-Transform	to
prove	that:	Z[x(n-m)]		=	sum(x(n-m)*z-n)				for	n=	-∞	to	+∞
=		sum(x(p)*z-p-m)			let	p=n-m,	n=p+m	=		z-m	*	sum(x(p)*z-p)	because
m	 is	 a	 constant	 =	 z-m	 Z[x(n)]	 by	 definition	 of	 Z-Transform	 For
example,	 if	X(z)	 is	 the	Z-Transform	 of	 x(n),	 then	 	 z-3•X(z)	 is	 the	 Z-
Transform	of	x(n-3).	To	find	 the	Z–Transform	of	a	digital	 filter,	 take
the	transform	of	both	sides	of	the	linear	equation	and	solve	for	H(z)	≡



Y(z)	/	X(z)
	

To	find	the	response	of	the	filter,	let	z	be	a	complex	number	on	the	unit
circle	z	=	ej2 π f/fs		= cos(2π f/fs ) 	+	j	sin(2π f/fs ) 								for	0	≤	f	<	½fs
Let	H(f)	=	a	+	bj,	where	a	and	b	 are	 real	numbers.	The	gain	of	 the
filter	is	the	complex	magnitude	of	H(z)	as	f	varies	from	0	to	½fs.

Gain	≡	|H(f)|	=	sqrt(	a2	+	b2)		
	

The	phase	response	of	the	filter	is	the	angle	of	H(z)	as	f	varies	from	0
to	½fs.

Phase	≡	angle[H(f)]	=		tan-1	(b/a)	Another
way	to	analyze	digital	filters	is	to	consider	the	filter
response	to	particular	input	sequences.	Two	typical
sequences	are	the	step	and	the	impulse	(Figure	6.3).

step	...,	0,	0,	0,	1,	1,	1,	1,	...
impulse	...,	0,	0,	0,	1,	0,	0,	0,	...

The	impulse	is	defined	as:
i(n) ≡ 	1	for	n	=	0
0	for	n	≠	0
	

The	step	is	defined	as:
s(n) ≡ 	0	for	n	<	0
1	for	n	≥	0

Figure	6.3.	Step	and	impulse	inputs.

The	 step	 signal	 represents	 a	 sharp	 change	 (like	 an	 edge	 in	 a
photograph).	We	will	 analyze	 three	 digital	 filters.	The	FIR	 is	y(n)	 =
(x(n)+x(n-1))/2.	The	IIR	is	y(n)	=	(x(n)+y(n-1))/2.	The	nonlinear	filter
is	y(n)	=	median(x(n),	x(n-1),	x(n-2)).	 	The	median	can	be	performed
on	any	odd	number	of	data	points	by	sorting	the	data	and	selecting	the



middle	 value.	 	 The	 median	 filter	 can	 be	 performed	 recursively	 or
nonrecursively.	A	nonrecursive	3-wide	median	filter	is	implemented	in
Program	6.1.

uint8_t	Median(uint8_t	u1,uint8_t	u2,uint8_t	u3){
uint8_t	result;
		if(u1>u2)
				if(u2>u3)					result	=	u2;			//	u1>u2,u2>u3							u1>u2>u3
						else
								if(u1>u3)	result	=	u3;			//	u1>u2,u3>u2,u1>u3	u1>u3>u2
								else						result	=	u1;			//	u1>u2,u3>u2,u3>u1	u3>u1>u2
		else
				if(u3>u2)					result	=	u2;			//	u2>u1,u3>u2							u3>u2>u1
						else
								if(u1>u3)	result	=	u1;			//	u2>u1,u2>u3,u1>u3	u2>u1>u3
								else						result	=	u3;			//	u2>u1,u2>u3,u3>u1	u2>u3>u1
		return(result);

}

Program	6.1:	The	median	filter	is	an	example	of	a	nonlinear
filter.

For	 a	 nonrecursive	 median	 filter,	 the	 original	 data	 points	 are	 not
modified.	For	 example,	 a	5-wide	nonrecursive	median	 filter	 takes	 as
the	 filter	 output	 the	median	 of	 {x(n),	 x(n-1),	 x(n-2),	 x(n–3),	 x(n-4)}	
On	the	other	hand,	a	recursive	median	filter	replaces	the	sample	point
with	 the	filter	output.	 	For	example,	a	5-wide	recursive	median	filter
takes	 as	 the	 filter	 output	 the	median	 of	 {x(n),	 y(n-1),	 y(n-2),	 y(n-3),
y(n-4)}	 where	 y(n-1),	 y(n-2),...	 are	 the	 previous	 filter	 outputs.	 A
median	filter	can	be	applied	 in	systems	 that	have	 impulse	or	speckle
noise.	For	example,	the	noise	every	once	in	a	while	causes	one	sample
to	be	very	different	than	the	rest	(like	a	speck	on	a	piece	of	paper)	then
the	median	 filter	will	 completely	 eliminate	 the	noise.	Except	 for	 the
delay,	the	median	filter	passes	a	step	without	error.	The	step	responses
of	the	three	filters	are	(Figure	6.4):	FIR	...,	0,	0,	0,	0.5,	1,	1,	1,	...

IIR	...,	0,	0,	0,	0.5,	0.75,	0.88,	0.94,	0.97,	0.98,	0.99,	...
median	...,	0,	0,	0,	0,	1,	1,	1,	1,	1,	...



Figure	6.4.	Step	response	of	three	simple	digital	filters.

The	impulse	represents	a	noise	spike	(like	spots	on	a	Xerox	copy).	The
impulse	 response	 of	 a	 filter	 is	 defined	 as	 h(n).	 The	 median	 filter
completely	 removes	 the	 impulse.	The	 impulse	 responses	of	 the	 three
filters	are	(Figure	6.5):	FIR	...,	0,	0,	0,	0.5,	0.5,	0,	0,	0,	...

IIR	...,	0,	0,	0,	0.5,	0.25,	0.13,	0.06,	0.03,	0.02,	0.01,	...
median	...,	0,	0,	0,	0,	0,	0,	0,	0,	...

Figure	6.5.	Impulse	response	of	three	simple	digital	filters.

Note	that	the	median	filter	preserves	the	sharp	edges	and	removes	the
spike	 or	 impulsive	 noise.	The	median	 filter	 is	nonlinear,	 and	 hence
H(z)	 and	h(n)	 are	 not	 defined	 for	 this	 particular	 class	 of	 filters.	 For
linear	 filters,	 the	 impulse	 response,	 h(n),	 can	 also	 be	 used	 as	 an
alternative	 to	 the	 transfer	 function	H(z).	h(n)	 is	sometimes	called	 the
direct	form.	A	causal	filter	has	h(n)	=	0	for	n	less	than	0.	For	a	casual
filter.

						H(z)	=sum(h(n)*z-n)		for	n=0	to	+∞			
For	a	finite	impulse	response	(FIR)	filter,	h(n)	=	0	for	n	≥	N	for	some
finite	N.	Thus,	H(z)	=	sum(h(n)*z-n)		for	n=0	to	N-1		



	
The	 output	 of	 a	 filter	 can	 be	 calculated	 by	 convolving	 the	 input
sequence,	x(n),	with	h(n).	For	an	infinite	impulse	response	filter:	y(n)
=		sum(h(n)*x(n-k))		for	n=0	to	+∞	
For	a	finite	impulse	response	(FIR)	filter:

y(n)	=		sum(h(n)*x(n-k))		for	n=0	to	N-1			



6.2.	Multiple	Access	Circular	Queue
A	multiple	access	circular	queue	(MACQ)	is	used	for	data	acquisition
and	control	systems.	A	MACQ	is	a	fixed	length	order	preserving	data
structure,	 see	 Figure	 6.6.	 The	 source	 process	 (ADC	 sampling
software)	 places	 information	 into	 the	 MACQ.	 Once	 initialized,	 the
MACQ	 is	always	 full.	The	oldest	data	 is	discarded	when	 the	newest
data	is	Put	into	a	MACQ.		The	sink	process	can	read	any	of	the	data
from	 the	MACQ.	The	Read	 function	 is	 non-destructive.	This	means
that	the	MACQ	is	not	changed	by	the	Read	operation.	In	this	MACQ,
the	newest	sample,	x(n),	 is	stored	in	element x[0] .	x(n1),	 is	stored	 in
element x[1] .

Figure	6.6.	When	data	is	put	into	a	multiple	access	circular
queue,	the	oldest	data	is	lost.

To	Put	 data	 into	 this	MACQ,	 four	 steps	 are	 followed,	 as	 shown	 in
Figure	6.6.	First,	the	data	is	shifted	down	(steps	1,	2,	3),	and	then	the
new	data	is	entered	into	the	x[0] 	position	(step	4).
The	drawing	in	Figure	6.6	shows	the	position	in	memory	of	x(n),	x(n-
1),…	does	not	move	when	one	data	sample	is	added.	Notice	however,
the	data	itself	does	move.	As	time	passes	the	data	gets	older,	the	data
moves	down	in	the	MACQ.
A	 simple	 application	 of	 the	 MACQ	 is	 the	 real-time	 calculation	 of
derivative.	Also	 assume	 the	ADC	 sampling	 is	 triggered	 every	 1	ms.
x(n)	will	refer	to	the	current	sample,	and	x(n-1)	will	be	 the	sample	1
ms	 ago.	 There	 are	 a	 couple	 of	 ways	 to	 implement	 a	 discrete	 time
derivative.	The	simple	approach	is	d(n)	=	(x(n)-x(n-1))/∆t
In	practice,	 this	 first	order	equation	 is	quite	 susceptible	 to	noise.	An
approach	generating	less	noise	calculates	the	derivative	using	a	higher



order	equation	like	d(n)	=	(x(n)+3x(n-1)-3x(n-2)-x(n-3))/∆t
The	 C	 implementation	 of	 this	 discrete	 derivative	 uses	 a	 MACQ
(Program	6.2).	Since	∆t	is	1	ms,	we	simply	consider	the	derivative	to
have	units	mV/ms	and	not	actually	execute	the	divide	by	∆t	operation.
Signed	arithmetic	is	used	because	the	slope	may	be	negative.

int32_t	x[4];	//	MACQ	(mV)
int32_t	d;				//	derivative(V/s)
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion
		x[3]	=	x[2];		//	shift	data
		x[2]	=	x[1];		//	units	of	mV
		x[1]	=	x[0];
		x[0]	=	(3000*ADC_SSFIFO3_R)>>12;	//	in	mV
		d	=	x[0]+3*x[1]-3*x[2]-x[3];					//	in	V/s
		Fifo_Put(d);		//	pass	to	foreground

}

Program	6.2.	Software	implementation	of	first	derivative	using	a
multiple	access	circular	queue.

When	the	MACQ	holds	many	data	points,	it	can	be	implemented	using
a	pointer	or	index	to	the	newest	data.	In	this	way,	the	data	need	not	be
shifted	 each	 time	 a	 new	 sample	 is	 added.	 The	 disadvantage	 of	 this
approach	 is	 that	 address	 calculation	 is	 required	 during	 the	 Read
access.	 For	 example,	 we	 could	 implement	 a	 16-element	 averaging
filter.	More	 specifically,	we	will	 calculate	 the	 average	 of	 the	 last	 16
samples,	see	Program	6.3.
Entering	 data	 into	 this	 MACQ	 is	 a	 three	 step	 process	 (Figure	 6.7).
First,	the	pointer	is	decremented.	If	necessary,	the	pointer	is	wrapped
such	that	it	is	always	pointing	to	elements x[0] through x[15] .	Second,
new	 data	 is	 stored	 into	 the	 location	 of	 the	 pointer.	 Third,	 a	 second
copy	of	the	new	data	is	stored	16	elements	down	from	the	pointer.
Because	 the	 pointer	 is	 maintained	 within	 the	 first	 16
elements, *Pt to *(Pt+15) 	will	 always	point	 to	 valid	 data	within	 the
MACQ.	Let	m	 be	 an	 integer	 from	 0	 to	 15.	 In	 this	MACQ,	 the	 data
element	x(n-m)can	be	found	using *(Pt+m) .



	

Figure	6.7.	When	data	is	put	into	a	multiple	access	circular
queue,	the	oldest	data	is	lost.

Figure	6.7	shows	the	labels	x(n),	x(n1),…	moving	from	before	to	after.
Notice	 however,	 the	 data	 itself	 does	 not	 move.	 What	 moves	 is	 the
significance	 (or	meaning)	 of	 the	 data.	 The	 data	 grows	 older	 as	 time
passes.	The	passage	of	time	is	produced	by	decrementing	the	pointer.
Having	two	copies	of	the	data	makes	reading	the	data	faster,	because
the	operation	 *(Pt+m) 	never	needs	wrapping.
Observation:	It	is	possible	to	implement	a	pointer-based	MACQ
that	keeps	just	one	copy	of	the	data.	Time	to	access	data	would	be



slower,	but	half	as	much	storage	would	be	needed.	
uint16_t	x[32];					//	two	copies
uint16_t	*Pt;						//	pointer	to	current
uint16_t	Sum;							//	sum	of	the	last	16	samples
void	LPF_Init(void){
		Pt	=	&x[0];	Sum	=	0;

}

//	calculate	one	filter	output,	called	at	sampling	rate
//	Input:	new	ADC	data			Output:	filter	output,	DAC	data
uint16_t	LPF_Calc(uint16_t	newdata){
		Sum	=	Sum	-	*(Pt+16);					//	subtract	the	one	16	samples	ago
		if(Pt	==	&x[0]){
				Pt	=	&x[16];											//	wrap
		}	else{
				Pt--;																	//	make	room	for	data

}

		Pt	=	(Pt+16)	=	newdata;	//	two	copies	of	the	new	data
		return	Sum/16;

}

Program	6.3.	Digital	low	pass	filter	implemented	by	averaging
the	previous	16	samples	(cutoff	=	fs/32).



6.3.	Using	the	Z-Transform	to	Derive	Filter
Response

In	 this	 section,	we	will	use	 the	Z-Transform	 to	determine	 the	digital
filter	 response	 (gain	 and	 phase)	 given	 the	 filter	 equation.	 The	 first
example	is	the	average	of	the	current	sample	with	the	sample	3	times
ago.	Program	6.4	shows	the	implementation.

y(n)	=	(x(n)+x(n-3))/2
	

The	first	step	is	to	take	the	Z-Transform	of	both	sides	of	the	equation.
The	Z-Transform	of	y(n)	is	Y(z),	the	Z–Transform	of	x(n)	is	X(z),	and
the	Z-Transform	of	x(n-3)	is	z-3X(z).	Since	the	Z-Transform	is	a	linear
operator,	we	can	write:	Y(z)	=	(X(z)	+	z-3X(z))/2

	
The	next	step	is	to	rewrite	the	equation	in	the	form	of	H(z)≡Y(z)/X(z).

H(z)		≡		Y(z)/X(z)		=	½	(1	+	z-3)	We	plug	in	z	≡	ej2πf/fs	calculate	the	gain	and	phase
response,	see	Figures	6.8	and	6.9.
H(f)	=	½	(1	+	e-j6πf/fs)	=		½	(1	+	cos(6πf/fs)	-	j	sin(6πf/fs)	)	Gain	≡	|H(f)|	=		½
sqrt((1	+	cos(6πf/fs))2	+	sin(6πf/fs)2	))	Phase	≡		angle(H(f))	=		tan-1(-sin(6πf/fs)/(1
+	cos(6πf/fs))	int32_t	x[4];	//	MACQ
void	ADC3_Handler(void){	int32_t	y;
		ADC_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion
		x[3]	=	x[2];		//	shift	data
		x[2]	=	x[1];		//	units,	ADC	sample	0	to	4095
		x[1]	=	x[0];		//	see	chapter	1	for	details	on	the	ADC
		x[0]	=	ADC_SSFIFO3_R;	//	0	to	4095
		y	=	(x[0]+x[3])/2;				//	filter	output
		Fifo_Put(y);										//	pass	to	foreground

}

Program	6.4.	If	the	sampling	rate	is	360	Hz,	this	filter	rejects	60
Hz.

Checkpoint	6.1:	If	the	sampling	rate	in	Program	6.4	is	360	Hz,	use



the	Z	transform	to	prove	the	60	Hz	gain	is	zero.
Observation:	Program	6.4	is	double	notch	filter	rejecting	1/6	and
1/2	fs.

The	 second	 example	 is	 the	 average	 of	 the	 current	 sample	 with	 the
previous	filter	output.	Program	6.5	shows	the	implementation

y(n)	=	(x(n)+y(n-1))/2
	

The	first	step	is	to	take	the	Z-Transform	of	both	sides	of	the	equation.
The	Z-Transform	of	y(n)	is	Y(z),	the	Z–Transform	of	x(n)	is	X(z),	and
the	Z-Transform	of	y(n-1)	is	z-1Y(z).	Since	the	Z-Transform	is	a	linear
operator,	we	can	write:	Y(z)	=	(X(z)	+	z-1Y(z))/2

	
The	next	step	is	to	rewrite	the	equation	in	the	form	of	H(z)	≡	Y(z)/X(z).

H(z)	≡	Y(z)/X(z)	=	1/(2	-	z-1)	We	plug	in	z	≡	ej2πf/fs	calculate	the	gain	and	phase
response,	see	Figures	6.8	and	6.9.													
H(f)	=	1/(2	–	e-j2πf/fs)	=		1/(2	-	cos(2πf/fs)	+	j	sin(2πf/fs)	)	Gain	≡	|H(f)|
Phase	≡	angle(H(f))	int32_t	y;
void	ADC3_Handler(void){	int32_t	x;
		ADC_ISC_R	=	0x08;		//	acknowledge	ADC	sequence	3	completion
		x	=	ADC_SSFIFO3_R;	//	0	to	4095
		y	=	(x+y)/2;							//	filter	output
		Fifo_Put(y);							//	pass	to	foreground

}

Program	6.5.	Implementation	of	an	IIR	low	pass	digital	filter.

Checkpoint	6.2:	For	f	between	0	and	0.2	fs,	the	filter	in	Program
6.5	has	a	gain	larger	than	1	(see	Figure	6.8).	What	does	that	mean?

The	gain	of	 four	 linear	digital	 filters	 is	plotted	 in	Figure	6.8	and	 the
phase	response	is	plotted	in	Figure	6.9.



Figure	6.8.	Gain	versus	frequency	response	for	four	simple	digital
filters.

Figure	6.9.	Phase	versus	frequency	response	for	four	simple
digital	filters.

A	linear	phase	versus	frequency	response	is	desirable	because	a	linear
phase	 causes	 minimal	 waveform	 distortion.	 Conversely,	 a	 nonlinear
phase	 response	 will	 distort	 shape	 or	 morphology	 of	 the	 signal.	 In
general,	 if	 fs	 is	 2•k•fc	 Hz	 (where	 k	 is	 any	 integer	 k≥2),	 then	 the
following	is	a	fc	notch	filter:	y(n)	=(x(n)	+	x(n-k)	)/2	

	
Averaging	 the	 last	 k	 samples	 will	 perform	 a	 low-pass	 filter	 with
notches.	Let	fc	be	the	frequency	we	wish	to	reject.	We	will	choose	the
sampling	at	 a	multiple	of	 this	notch.	 I.e.,	we	choose	 fs	 to	 be	 k•fc	Hz



(where	 k	 is	 any	 integer	 k≥2),	 then	 the	 k-sample	 average	 filter	 will
reject	fc	and	its	harmonics:	2fc,	3fc...	If	the	number	of	terms	k	is	large,
the	 straight	 forward	 implementation	 of	 average	 will	 run	 slowly.
Fortunately,	this	averaging	filter	can	be	rewritten	as	a	function	of	the
current	sample	x(n),	 the	sample	k	 times	ago	x(n-k),	and	 the	 last	 filter
output	y(n-1).	This	filter	with	k=16	was	implemented	in	Program	6.3.
y(n)	=	(1/k)*sum(	x(n	–	i)	)	for	i	=	0	to	k-1	
=	(x(n)	–	x(n-k)	)/k	+	y(n-1)	The	second	formulation	looks	like	an	IIR
filter,	but	it	is	a	FIR	filter	because	the	equations	are	identical.	The	H(z)
transfer	function	for	this	k-term	averaging	filter	is	H(z)	=	(1/k)*(1—z-
k)/(1—z-1)
This	 class	of	digital	 low-pass	 filters	 can	be	 implemented	with	 a	k+1
multiple	access	circular	queue,	and	a	simple	calculation.	The	gain	of
this	class	of	filter	is	shown	in	Figure	6.10	for	a	sampling	rate	of	100
Hz.

Figure	6.10.	Gain	versus	frequency	plot	of	four	averaging	low-
pass	filters.



6.4.	IIR	Filter	Design	Using	the	Pole-Zero
Plot

The	objective	of	 this	 section	 is	 to	 show	 the	 IIR	 filter	design	method
using	 pole-zero	 plots.	 One	 starts	 with	 a	 basic	 shape	 in	 mind,	 and
places	poles	and	zeros	to	generate	the	desired	filter.	Consider	again	the
analogy	 between	 the	 Laplace	 and	 Z	 Transforms.	 When	 the	 H(s)
transform	is	plotted	in	the	s	plane,	we	look	for	peaks	(places	where	the
amplitude	H(s)	 is	 high)	 and	 valleys	 (places	 where	 the	 amplitude	 is
low.)	 In	particular,	we	usually	 can	 identify	 zeros	 (H(s)=0)	 and	poles
(H(s)=∞).	A	zero	 is	 a	 place	where	H(s)=0.	A	pole	 is	 a	 place	where
H(s)=∞.	 In	 the	 same	 way	 we	 can	 plot	 the	H(z)	 in	 the	 z	 plane	 and
identify	the	poles	and	zeros.	Table	6.1	lists	the	filter	design	strategies.

Analog	condition Digital	condition Consequence
zero	near	s=j2πf	line zero	near	z=ej2πf/fs low	gain	at	the	f	near

the	zero
pole	near	s=j2πf	line pole	near	z=ej2πf/fs high	gain	at	the	f	near

the	pole
zeros	 in	 complex
conjugate	pairs

zeros	 in	 complex
conjugate	pairs

the	output	y(t)	is	real

poles	 in	 complex
conjugate	pairs

poles	 in	 complex
conjugate	pairs

the	output	y(t)	is	real

poles	in	left	half	plane poles	inside	unit	circle stable	system
poles	 in	 right	 half
plane

poles	 outside	 unit
circle

unstable	system

pole	near	a	zero pole	near	a	zero high	Q	response
pole	away	from	a	zero pole	away	from	a	zero low	Q	response
Table	6.1.	Analogies	between	the	analog	and	digital	filter	design	rules.

	

Once	the	poles	and	zeros	are	placed,	the	transform	of	the	filter	can	be
written



where	zi	 are	 the	 zeros	 and	pi	 are	 the	poles	The	 first	 example	 of	 this
method	 will	 be	 a	 digital	 notch	 filter.	 60	 Hz	 noise	 is	 a	 significant
problem	in	most	data	acquisition	systems.	The	60	Hz	noise	reduction
can	be	accomplished:	1)	Reducing	the	noise	source,	e.g.,	shut	off	large
motors

2)	Shielding	the	transducer,	cables,	and	instrument
3)	Implement	a	60	Hz	analog	notch	filter
4)	Implement	a	60	Hz	digital	notch	filter
	

The	digital	notch	filter	will	be	more	effective	and	less	expensive	than
an	analog	notch	filter.	The	signal	is	sampled	at	fs.	We	wish	to	place	the
zeros	(gain=0)	at	60	Hz,	thus	θ 	=	±	2π	•	60/fs
The	zeros	are	located	on	the	unit	circle	at	60	Hz

z1	=	cos(θ)	+	j	sin(θ)	z2	=	cos(θ)	-	j	sin(θ)
To	implement	a	flat	pass	band	away	from	60	Hz	the	poles	are	placed
next	to	the	zeros,	just	inside	the	unit	circle.	Let	α	define	the	closeness
of	the	poles	where	0	<	α	<1	(Figure	6.11).

p1	=	α	z1	p2	=	α	z2
	

Figure	6.11.	Pole-zero	plot	of	a	60	Hz	digital	notch	filter.

The	transfer	function	is

which	 can	 be	 put	 in	 standard	 form	 (i.e.,	 with	 terms	 1,	 z-1,	 z-2	 ...)	



The	digital	filter	can	be	derived	by	taking	the	inverse	Z-transform	of
the	H(z)	equation	y(n)	=	x(n)	-	2cos(θ)x(n1)	+	x(n2)	+	2αcos(θ)y(n1)	-
α2y(n2)													

	
Sometimes	 we	 can	 choose	 fs	 and/or	 α	 to	 simplify	 the	 digital	 filter
equation.	 For	 example,	 if	we	 choose	 fs	 =	 240	Hz,	 then	 the	 “cos(θ)”
terms	become	zero.	If	we	choose	α	=	7/8	 then	the	fixed-point	digital
filter	becomes:	y(n)	=	x(n)	+	x(n2)		-(49*y(n2))/64

	
Another	consideration	for	this	type	of	filter	is	the	fact	that	the	gain	in
the	pass	bands	is	greater	than	one.	The	DC	gain	can	be	determined	two
ways.	The	first	method	is	to	use	the	H(z)	transfer	equation	and	set	z=1.
The	H(z)	transfer	equation	for	the	filter	is	H(z)	=	(1+z-2)(1	+	(49/64)z-2)
At	z=1	this	reduces	to

DC	Gain		=(2)(1	+	(49/64))			=			128/113
	

The	 second	 method	 to	 calculate	 DC	 gain	 operates	 on	 the	 filter
equation	directly.	In	the	first	step,	we	set	all	x(n-k)	terms	in	the	filter	to
a	 single	 variable	 “x”	 and	 all	 y(n-k)	 terms	 in	 the	 filter	 to	 a	 single
variable	“y”.	Next	we	solve	for	the	DC	gain,	which	is	y/x.	

y	=	x		+	x	–	(49y)/64
	

This	method	also	calculates	the	DC	gain	to	be	128/113.	We	can	adjust
the	 digital	 filter	 so	 that	 the	DC	 gain	 is	 exactly	 1,	 by	 prescaling	 the
input	terms	(x(n),	x(n1),	x(n2),...)	by	113/128.

y(n)	=	(113•x(n)	+	113•x(n2)		-		98•y(n2))/128
	
int32_t	x[3];	//	MACQ	for	the	ADC	input	data
int32_t	y[3];	//	MACQ	for	the	digital	filter	output
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;			//	acknowledge	ADC	sequence	3	completion
		x[2]	=	x[1];	x[1]	=	x[0];		//	shift	data
		y[2]	=	y[1];	y[1]	=	y[0];	
		x[0]	=	ADC_SSFIFO3_R;																	//	0	to	4095



		y[0]	=	(113*(x[0]+x[2])-98*y[2])/128;	//	filter	output
		Fifo_Put((int16_t)y[0]);													//	pass	to	foreground

}

Program	6.6.	If	the	sampling	rate	is	240	Hz,	this	filter	rejects	60
Hz.

Since	 the	 gain	 of	 this	 filter	 is	 always	 less	 than	 or	 equal	 to	 one,	 the
filter	 outputs	 will	 fit	 into	 16-bit	 variables.However	 the	 intermediate
term 113*(x[0]+x[2]) 	 could	 be	 as	 large	 as	 113*(1023+1023)	 =
231,198,	so	32-bit	calculations	are	performed.	The	gain	of	this	filter	is
shown	in	Figure	6.12.
The	“Q”	of	a	digital	notch	filter	is	defined	to	be
Q		≡	fc/Δf		

where	fc	is	the	center	or	notch	frequency,	and	∆f	frequency	range	where
is	gain	is	below	0.707	of	the	DC	gain.	For	the	filter	in	Figure	6.12	the
gains	at	55	and	65	Hz	are	about	0.707,	so	its	Q	is	6.
Checkpoint	6.3:	Use	Figure	6.12	to	compare	the	filter	Q	of
Program	6.4	with	the	filter	Q	of	Program	6.6.	Next,	compare	the
execution	speed	of	the	two	implementations.	If	you	wished	to
remove	60	Hz	and	pass	all	other	frequencies,	which	filter	would
you	choose?

	



Figure	6.12.	Gain	versus	frequency	response	of	two	60	Hz	digital
notch	filters.

In	this	second	example,	we	will	design	a	bandpass	filter	that	passes	50
to	 100	 Hz.	 In	 this	 example,	 signals	 exist	 from	 0	 to	 240	 Hz,	 so	 the
sampling	 rate	will	 be	480	Hz.	Figure	6.13	 shows	one	possible	pole-
zero	plot.	First,	we	place	the	zeros	so	50	to	100	Hz	is	passed	and	other
frequencies	are	rejected.	As	we	increase	the	number	of	zeros,	we	can
reduce	 the	 gain	 in	 places	 we	 wish	 to	 make	 the	 gain	 low,	 but	 the
complexity	of	the	filter	increases.	This	filter	with	8	zeros	will	have	8
x(n-k)	terms	in	the	equation.	The	idea	is	not	to	place	any	zeros	in	50	to
100	Hz	range,	but	place	 them	around	 in	 the	0	 to	50,	and	100	 to	240
regions.	 On	 the	 web	 site,	 there	 is	 a	 spreadsheet
(DigitalFilterDesign.xls	 )	 that	 you	 can	 manipulate	 to	 see	 how	 the
filter	shape	responds	to	the	placement	of	poles	and	zeros.

Figure	6.13.	Pole-zero	plot	of	a	50	to	100	Hz	digital	bandpass
filter.

Next,	we	place	the	poles.	In	this	example,	 there	will	also	be	8	poles.
Placing	 the	pole	near	 a	 zero	causes	 the	gain	 to	 rise	 and	 fall	quickly.
Placing	 the	 pole	 away	 from	 a	 zero	 flattens	 the	 response.	 In	 this
example,	the	zeros	near	50	and	100	Hz	have	poles	near	them,	and	the
others	are	away.	The	farthest	away	will	be	 to	place	 the	poles	at	z=0.
The	 transfer	 function	 is	

The	steps	to	derive	the	filter	are	the	same	as	the	last	example.	First,	we



multiply	 out	 the	 top	 and	 bottom	 expressions.	 Because	 the	 zeros	 are
either	at	z=1,	z=-1,	or	occur	in	complex	conjugate	pairs,	the	numerator
will	 have	 real	 coefficients.	 Similarly,	 because	 the	 poles	 are	 either	 at
z=0	 or	 occur	 in	 complex	 conjugate	 pairs,	 the	 denominator	will	 also
have	 real	 coefficients.	Next,	we	multiply	 the	 top	 and	 bottom	 by	 z-8,
placing	 the	 transfer	 function	 in	 standard	 form.	 Next,	 we	 take	 the
inverse	transform	to	get	the	digital	filter:	y(n)	=	a0 • x(n)	+	a1 • x(n1)	+
a2 • x(n2)	+	a3 • x(n3)	+	a4 • x(n4)	+	a5 • x(n5)	+	a6 • x(n6)	+	a7 • x(n7)	+
a8 • x(n8)		+	b0 • y(n1)	+	b1 • y(n2)	+	b2 • y(n3)	+	b3 • y(n4)	Figure	6.14
plots	 the	 gain	 of	 this	 filter.	 The	 details	 of	 these	 calculations	 can	 be
found	in	the	spreadsheet	DigitalFilterDesign.xls.	The	coefficients	are
converted	to	binary	fixed-point	and	implemented	in	Program	6.7.

Figure	6.14.	Gain	versus	frequency	of	a	50	to	100	Hz	digital
bandpass	filter.

Typically,	we	design	an	IIR	filter	with	an	equal	number	of	poles	and
zeros.	If	there	are	more	zeros	than	poles,	then	filter	is	noncausal.	For
example,	H(z)=z	has	one	zero	and	no	poles.	The	filter	will	be	y(n)	=
x(n+1),	 which	 is	 noncausal.	 If	 there	 are	more	 poles	 than	 zero,	 then
filter	will	have	a	time	delay	or	a	very	large	gain.	For	example,	H(z)=z-1
has	one	pole	and	no	zeros.	The	filter	will	be	y(n)	=	x(n1).

const	int32_t	a[9]={2521,-1589,-617,-2296,0,2296,617,1589,-2521};
const	int32_t	b[4]={20220,-14068,9908,-3934};
int32_t	x[9];	//	MACQ	for	the	ADC	input	data
int32_t	y[5];	//	MACQ	for	the	digital	filter	output
	
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;			//	acknowledge	ADC	sequence	3	completion



		x[8]	=	x[7];	x[7]	=	x[6];	x[6]	=	x[5];	x[5]	=	x[4];
		x[4]	=	x[3];	x[3]	=	x[2];	x[2]	=	x[1];	x[1]	=	x[0];		//	shift	data
		y[4]	=	y[3];	y[3]	=	y[2];	y[2]	=	y[1];	y[1]	=	y[0];	
		x[0]	=	ADC_SSFIFO3_R;					//	0	to	4095
		y[0]	=	(a[0]*x[0]+	a[1]*x[1]+	a[2]*x[2]+	a[3]*x[3]+	/*	a[4]*x[4]+	*/
										a[5]*x[5]+	a[6]*x[6]+	a[7]*x[7]+	a[8]*x[8]+
										b[0]*y[1]+	b[1]*y[2]+	b[2]*y[3]+	b[3]*y[4])/16384;
		Fifo_Put((int16_t)y[0]);							//	pass	to	foreground

}

Program	6.7.	If	the	sampling	rate	is	480	Hz,	this	bandpass	filter
passes	50	to	100	Hz.



6.5.	Discrete	Fourier	Transform
The	Discrete	 Fourier	 Transform	 (DFT)	 converts	 data	 in	 the	 time
domain	 to	 data	 in	 the	 frequency	 domain.	 We	 can	 use	 the	 DFT	 to
measure	SNR,	to	identify	noise	type,	and	to	design	FIR	digital	filters.
In	fact,	the	spectrum	analyzer	is	simply	a	high-speed	data	acquisition
system	 followed	 by	 a	 DFT.	 The	 Fast	 Fourier	 Transform	 (FFT)	 is	 a
technique	 to	 calculate	 the	 DFT	 with	 fewer	 additions	 and
multiplications.	There	are	four	important	parameters	when	employing
the	DFT.	The	first	parameter	is	sampling	rate,	fs.	While	the	DFT	deals
only	with	samples	and	bins	with	no	concept	of	volts,	seconds,	and	Hz,
when	applying	it	 to	real	data,	we	assume	the	samples	have	units,	are
bound	 by	 physical	 limits,	 and	 are	 evenly	 spaced	 at	 time	 intervals
T=1/fs.	 The	 second	 parameter	 is	 sequence	 length,	N.	 The	 other	 two
parameters	are	input	resolution	and	range.	In	real	systems,	input	data
come	 from	 the	ADC	or	 input	 capture,	 and	 the	 output	 data	 go	 to	 the
DAC	 or	 PWM.	 Therefore,	 the	 performance	 of	 the	 DFT	 will	 be
affected	by	the	range	and	resolution	of	the	input.	The	input	to	the	DFT
will	be	N	samples	versus	time,	and	the	output	will	be	N	points	in	the
frequency	domain.

Input:	{an}	=	{a0,a1,a2,…,aN-1}
Output:	{Ak}	=	{A0,A1,A2,…,AN-1}
	

The	definition	of	the	DFT	is

where	

and		k=0,1,2,…,N-1
The	DFT	output	Ak	at	 index	k	 represents	 the	amplitude	and	phase	of
the	input	at	frequency	k*fS/N	(in	Hz).	The	DFT	resolution	in	Hz/bin	is
the	 reciprocal	 of	 the	 total	 time	 spent	 gathering	 time	 samples;	 i.e.,
1/(N*T).	The	Inverse	Discrete	Fourier	Transform	 (IDFT)	 converts
data	in	the	frequency	domain	to	data	in	the	time	domain.	The	input	to



the	IDFT	will	be	N	points	in	the	frequency	domain,	and	the	output	will
be	N	samples	in	the	time	domain.

Input:	{Ak}={A0,A1,A2,…,AN-1}
Output:	{an}={a0,a1,a2,…,aN-1}
	

The	definition	of	the	IDFT	is

where

and		n=0,1,2,…,N-1
When	 presenting	 frequency	 data,	 we	 can	 use	 a	 log	 scale,	making	 it
easier	 to	 visualize	 frequency	 components	 with	 widely	 varying
amplitudes.	 Because	 the	 system	 has	 physical	 limits,	 we	 use	 those
limits	 to	define	 full	 scale.	Assume	 the	audio	system	 in	Section	5.1.3
samples	sound	as	a	voltage	from	0	to	3	V.	For	this	system,	we	would
define	full	scale	VFS	as	3	V.	In	particular,	if	V	is	a	DFT	output	in	volts,
we	 can	 convert	 it	 to	 dB	 full	 scale	 using	 dBFS	 =	 20*log10(V/VFS)
STMicroelectronics	 published	 integer	 FFT	 code	 has	 part	 of	 their
STM32F10x_DSP_Lib	 library.	 There	 are	 three	 separate	 FFT
implementations	for	sizes	64,	256	or	1024	optimized	for	the	Cortex	M.
The	input	to	the	FFT	is	64,	256	or	1024	complex	samples.	Each	input
is	 16-bit	 signed	 integer	 containing	 the	 real	 and	 imaginary	 parts.	 For
most	applications	we	will	set	the	ADC	data	into	the	real	part	and	we
will	write	zeros	into	the	imaginary	part.	In	Program	6.8	and	Table	6.2
assume	we	will	 fill	 the	 input	array	with	constant	data	 from	an	array.
After	calculating	the	DFT,	the	program	will	calculate	the	magnitude	at
each	 frequency.	 Let	 N	 be	 the	 size	 of	 the	 array,	 and	 assume	 the
sampling	rate	is	fs,	then	the	meaning	of	index	k	is	fs/N.

typedef	struct{
		int16_t	real,imag;
}Complex_t;
//	data	for	FFT
Complex_t	x[1024],y[1024];	//	input	and	output	arrays	for	FFT
int32_t	mag[512];										//	magnitude	versus	frequency	of	the	output						



void	cr4_fft_1024_stm32(Complex_t	,	Complex_t	,	unsigned	short);
int	main(void){	int32_t	t,k,	real,	imag;
		for(t=0;	t<1024;	t=t+1){			//	t	means	1/fs
				x[t].imag	=	0;											//	imaginary	part	is	zero
				x[t].real	=	sinewave[t];	//	fill	real	part	with	data

}

		cr4_fft_1024_stm32(y,	x,	1024);	//	complex	FFT	of	1024	values
		for(k=0;	k<512;	k=k+1){									//	k	means	fs/1024
				real	=	y[k].real;													//	real	is	bottom	16	bits
				imag	=	y[k].imag;													//	imag	is	top	16	bits
				mag[k]	=	Sqrt(real*real+imag*imag);

}

		while(1){};

}

Program	6.8.	Calculation	of	the	FFT	(ProfileFFTxxx).

N Cycles Time(ms)
64 3535 0.22
256 20072 1.25
1024 97870 6.12

Table	6.2.	Execution	time	of	the	FFT	varies	with	N*log2(N)



6.6.	FIR	Filter	Design
In	 this	 section	we	will	 use	 the	DFT	 as	 a	 general	 tool	 to	 design	FIR
filters.	We	begin	by	choosing	the	sampling	rate,	which	must	be	larger
than	two	times	the	largest	signal	frequency	we	wish	to	process.	After
we	have	chosen	the	sampling	rate	(e.g.,	10	kHz),	we	will	choose	a	FIR
filter	 length	 (e.g.,	N=51).	The	 ratio	 fs/N	 (e.g.,	 10	 kHz/51	 =	 196	Hz)
will	determine	 the	 frequency	 resolution	of	 the	FIR	 filter	design.	The
larger	the	N,	the	more	gain	points	we	can	specify	in	the	filter	response,
but	the	slower	the	filter	will	execute.	Next,	we	plot	or	print	the	desired
gain/phase	 versus	 frequency	 response.	 The	 magnitude	 of	 H(k)	 is
selected	to	implement	the	desired	gain	versus	frequency	response.	I.e.,
|H(k)|	will	be	the	filter	gain	at	k*fS/N.	The	angle	of	H(k)	is	selected	to
implement	 the	 desired	 phase	 versus	 frequency	 response.	 I.e.,
angle[H(k)]	will	 be	 the	 filter	 phase	 at	 k*fS/N.	 For	 frequencies	 above
½fs,	we	must	make	H(k)	 be	 the	 complex	 conjugate	 of	 the	N-k	 term.
This	 will	 guarantee	 that	 the	 inverse	 DFT	 of	 H(k)	 will	 yield	 real
results.	 	Let	x(n)	 be	 the	 input	 (read	 from	 the	ADC)	 and	X(k)	 be	 the
input	 in	 the	frequency	domain.	Let	y(n)	be	 the	FIR	filter	output,	and
let	Y(k)	be	the	FIR	filter	output	in	the	frequency	domain.

		Y(k)	=	H(k)	X(k)
		y(n)	=	IDFT	{	H(z)	DFT{x(t)}	}
	

We	 take	 IDFT	 of	 the	 H(k)	 to	 get	 N	 FIR	 filter	 coefficients.
Multiplication	in	the	frequency	domain	is	equivalent	to	convolution	in
the	time	domain.	The	FIR	filter	is	the	convolution	of	the	data	with	the
inverse	transform	of	the	desired	filter.
		y(n)	=	h(n)	x(n)		=	x(n)	h(n)			;			*			means	convolution	here	y(n)	=
sum(h(i)	 ·	 x(n-i))	 for	 i=-∞	 to	 +∞;	 	 	 	 ·	 	 	 means	 multiplication	 here
Because	there	are	a	finite	number	of	h(n)	 terms,	 the	convolution	is	a
finite	 sum	 y(n)	 =	 sum(h(i)	 ·	 x(n-i))	 for	 i=0	 to	 N-1;	 	 	 	 ·	 	 	 means
multiplication	here	Example	6.1.	Design	a	digital	 filter	 for	a	hearing
aid	 that	 accentuates	 high	 frequencies.	 The	 input	 is	 audio	 with
frequency	components	from	100	Hz	to	5	kHz.	In	particular,	make	the
gain	 equal	 to	 5	 for	 frequencies	 2	 to	 5	 kHz.	 For	 the	 lower	 audio
frequencies	make	the	gain	equal	to	1.



Solution:	 We	 choose	 the	 sampling	 rate	 at	 twice	 the	 maximum
frequency	of	the	input	or	fs	=	10	kHz.	Next	we	choose	a	filter	size.	The
larger	N,	 the	 better	 the	 actual	 filter	will	match	our	 desired	 response,
but	the	slower	it	will	execute.	For	this	solution,	we	could	have	chosen
any	 size	 from	 32	 to	 64	 and	 obtained	 similar	 results.	 In	 order	 to
preserve	 the	 shape	 of	 the	 audio	 signals,	 we	 will	 implement	 linear
phase.	The	desired	filter	gain	is	shown	as	Figure	6.15	and	Table	6.3.
The	lines	in	the	figure	are	the	desired	filter	gain,	and	the	dots	will	be
the	 actual	 gain	 as	 implemented	 by	 the	 fixed-point	math	 in	 Program
6.9.

Figure	6.15.	Desired	and	actual	filter	responses.	This	is	H.
The	H(N-k)	values	must	be	the	complex	conjugates	of	H(k).	Because
the	 negative	 frequencies	 in	Table	 6.3	 are	 complex	 conjugates	 of	 the
positive	frequencies,	h(n)	will	be	real.	Next,	we	scale	the	h(n)values	to
make	 51	 fixed-point	 coefficients h[51] .	 For	 example,	 the	 first	 term
h(1)	 is	 -0.000457,	 which	 will	 be	 approximated	 in	 fixed-point	 as
-7/16384.	 In	 summary,	 the h[51] 	 coefficients	 are	 the	 IDFT	 of	 the
values	in	Table	6.2	multiplied	by	16384	and	rounded	to	an	integer.

const	int32_t	h[51]={0,-7,-45,-64,5,78,-46,-355,-482,-138,329,
					177,-722,-1388,-767,697,1115,-628,-2923,-2642,1025,4348,1820,-8027,
					-19790,56862,-19790,-8027,1820,4348,1025,-2642,-2923,-628,1115,697,
					-767,-1388,-722,177,329,-138,-482,-355,-46,78,5,-64,-45,-7,0};
	
k f	(Hz) Mag(H(k)) Angle(H(k)) 	 k f	(Hz) Mag(H(k)) Angle(H(k))
0 0.00 0.00 0.00 	 13 2549.02 5.00 -40.04



1 196.08 0.50 -3.08 	 14 2745.10 5.00 -43.12
2 392.16 1.00 -6.16 	 15 2941.18 5.00 -46.20
3 588.24 1.00 -9.24 	 16 3137.25 5.00 -49.28
4 784.31 1.00 -12.32 	 17 3333.33 5.00 -52.36
5 980.39 1.00 -15.40 	 18 3529.41 5.00 -55.44
6 1176.47 1.00 -18.48 	 19 3725.49 5.00 -58.52
7 1372.55 1.00 -21.56 	 20 3921.57 5.00 -61.60
8 1568.63 1.00 -24.64 	 21 4117.65 5.00 -64.68
9 1764.71 2.00 -27.72 	 22 4313.73 5.00 -67.76
10 1960.78 4.00 -30.80 	 23 4509.80 5.00 -70.84
11 2156.86 5.00 -33.88 	 24 4705.88 5.00 -73.92
12 2352.94 5.00 -36.96 	 25 4901.96 5.00 -77.00

Table	6.3.	Desired	filter	response.	This	is	H.
	

Program	6.9	shows	an	implementation	of	this	FIR	filter.	There	are	100
µs	 for	 each	 sample	 (ADC,	 filter,	 and	DAC).	We	will	 implement	 the
MACQ	using	two	copies	of	the	data,	similar	to	Program	6.3.	We	could
add	this	filter	to	the	audio	system	developed	in	Program	5.1.

int16_t	Data[102];		//	two	copies
int16_t	*Pt;		//	pointer	to	current
void	Filter_Init(void){
		Pt	=	&Data[0];

}

//	calculate	one	filter	output
//	called	at	sampling	rate
//	Input:	new	ADC	data
//	Output:	filter	output,	DAC	data
int16_t	Filter_Calc(int16_t	newdata){
int	i;	int32_t	sum;	int16_t	pt,apt;
		if(Pt	==	&Data[0]){
					Pt	=	&Data[50];	//	wrap
		}	else{
				Pt--;												//	make	room	for	data

}



		Pt	=	(Pt+51)	=	newdata;	//	two	copies
		pt	=	Pt;		//	copy	of	data	pointer
		apt	=	h;		//	pointer	to	coefficients
		sum	=	0;
		for(i=51;	i;	i--){
				sum	+=	(*pt)*(*apt);
				apt++;
				pt++;

}

		return	sum/16384;

}

Program	6.9.	51-term	FIR	filter
	

Checkpoint	6.4:	How	can	we	prove	the	software	in	Program	6.9
cannot	overflow?
Checkpoint	6.5:	Can	you	think	of	a	way	to	reduce	the	number	of
multiplies	in	Program	6.9	while	still	performing	the	exact	same
filter?



6.7.	Direct-Form	Implementations.
The	general	form	for	the	transfer	function	for	an	IIR	filter	is

	
This	converts	to	the	standard	difference	equation

y(n)	=	a0x(n)	+		a1x(n-1)	+		a2x(n-2)	+	...+		aMx(n-M)		-	b1y(n-1)		-	b2y(n-2)	...	-
bNy(n-N)	 The	 direct-form	 calculation	 of	 this	 filter	 requires	 with	 two	 multiple
access	circular	queues	with	lengths	M	and	N.	There	are	(M+N-1)	multiplies	and
(M+N-2)	 additions.	 Figure	 6.16	 flow	 picture	 illustrates	 the	 standard
implementation.

Figure	6.16.	General	filter	design	using	a	direct-form	calculation.

For	the	next	implementation	we	specify	the	filter	with	N=M.	We	can
do	this	without	loss	of	generality	by	letting	some	of	the	coefficients	be
zero.	 An	 alternative	 implementation,	 called	 the	 direct-form	 II
realization,	requires	only	one	multiple	access	circular	queue	of	length
N.	There	are	still	(2N-1)	multiplies	and	(2N-2)	additions.	Figure	6.17
illustrates	the	implementation.



Figure	6.17.	General	filter	design	using	a	direct-form	II
calculation.



6.8.	Exercises
6.1	For	each	term	give	a	definition	in	32	words	or	less.
		a)	Aliasing
		b)	Filter	Q
		c)	Impulse	response	of	a	digital	filter
		d)	Complex	conjugate
		e)	MACQ
		f)	Overflow
	
6.2	For	each	term	give	the	equation	definition
		a)	Z	transform
		b)	DFT
		c)	IDFT
		d)	Relationship	between	time	jitter	and	voltage	error
		e)	Filter	gain	given	input	frequency	f
		f)	Convolution	between	x	and	h
	
6.3.	Consider	the	use	of	the	Z-transform	in	the	design	and	analysis	of
digital	filters.
		a)	State	the	definition	of	the	Z-transform.
		b)	Why	can’t	we	use	the	Z-transform	on	a	median	filter?	
	 	 c)	Use	 the	Z-transform	 to	determine	 the	DC	gain	and	phase	of	 the
following	digital	filter:
y(n)	=x(n)-x(n-2)+y(n-1)
	
6.4	List	the	four	parameters	we	need	to	decide	when	implementing	a
DFT.
	
6.5	For	each	pair	of	terms	compare	and	contrast	in	32	words	or	less.
		a)	Causal	versus	noncausal	filter
		b)	Linear	versus	nonlinear	filter
		c)	FIR	versus	IIR	filter
		d)	Laplace	transform	versus	the	Z	transform
		e)	A	pole	versus	a	zero
		f)	A	complex	versus	an	imaginary	number
	



6.6	256	 data	 points	 are	 sampled	 at	 10	 kHz	with	 a	 12-bit	ADC.	The
ADC	range	is	0	to	3.0	V.	A	DFT	is	performed	on	the	data.	What	is	the
frequency	resolution?	What	range	of	frequencies	is	represented	in	the
DFT	output?
	
6.7	 For	 each	 situation,	 specify	 whether	 you	 expect	 the	 gain	 at
frequency	f	to	increase,	decrease	or	not	change	much	at	all.
		a)	A	zero	is	moved	closer	to	frequency	f	on	the	z-plane.
		b)	A	pole	is	moved	closer	to	frequency	f	on	the	z-plane.
		c)	A	zero	already	near	frequency	f	on	the	z-plane	is	replaced	with	a
double	zero.
		d)	A	pole	already	near	frequency	f	on	the	z-plane	is	replaced	with	a
double	pole.
		e)	A	pole	currently	near	frequency	f	on	the	z-plane	is	moved	to	the
origin.
		f)	A	pole	currently	near	frequency	f	on	the	z-plane	is	outside	the	unit
circle.
	
	
6.8	For	 each	 filter	 specify	 whether	 it	 is	 linear	 or	 nonlinear.	 If	 it	 is
linear	specify	whether	it	is	FIR	or	IIR.
		a)	y(n)	=	x(n)2	+	2x(n)	+1
		b)	y(n)	=	x(n)/4	+	y(n-1)	–x(n-4)/4
		c)	y(n)	=	min{x(n),x(n-1)}
		d)	y(n)	=	(x(n+1)+x(n-1))/2
	
6.9	Let	the	input	be	the	sum	of	two	sine	waves:	x(t)	=	A1sin(2πf1t)	+
A2sin(2πf2t).	Assume	the	digital	filter	will	pass	both	these	frequencies
with	a	gain	of	1.	This	filter	implements	a	linear	phase	response.	What
can	 you	 say	 about	 the	 output	 of	 the	 filter?	 	 I.e.,	 derive	 an	 equation
describing	the	output	as	a	function	of	time.
	
6.10	Consider	the	following	digital	filter:	y(n)	=	(x(n)	–	x(n-2))/2
		a)	Using	the	Z-transform	derive	general	expressions	for	the	gain	and
phase	of	the	filter.
		b)	Using	the	general	expressions	from	part	a),	calculate	the	gain	and
phase	of	the	filter	at	DC	and	60	Hz	if	the	sampling	rate	is	240	Hz.
	



6.11	 Design	 a	 10	Hz	 digital	 low	 pass	 filter	 with	 a	 sampling	 rate	 of
1000Hz.	 Make	 the	 gain	 at	 DC	 equal	 to	 one,	 and	 the	 gain	 at	 10Hz
0.707.
		a)	Show	the	pole/zero	plot	of	your	filter.
		b)	Show	the	H(z)	transform.
		c)	Show	the	floating-point	version	of	the	digital	filter.
		d)	Show	the	fixed-point	version	of	the	digital	filter.

6.12	 Design	 a	 digital	 filter	 that	 rejects	 both	 60	 Hz	 and	 120Hz
assuming	the	sampling	rate	is	480	Hz.	Apply	gain	scaling	so	the	DC
gain	is	1.	Give	the	filter	in	a	form	that	can	be	implemented	with	fixed-
point	math.
	
6.13	Consider	the	simple	sliding	average	filter	for	a	general	sampling
rate	of	1000	Hz.	This	filter	is	a	low-pass	filter,	as	shown	in	Figure	6.10

What	value	of	k	should	we	use	to	make	a	gain	of	about	0.7	at	10	Hz?
	
6.14	 We	 defined	 time-jitter,	 δt,	 as	 the	 difference	 between	 when	 a
periodic	 task	 is	 supposed	 to	be	 run,	and	when	 it	 is	actually	 run.	The
goal	of	a	real-time	DAS	is	to	start	the	ADC	at	a	periodic	rate,	Δt.	Let	tn
be	the	nth	time	the	ADC	is	started.	In	particular,	the	goal	to	make	tn–tn-
1	=	Δt.	The	jitter	is	defined	as	the	constant,	δt,	such	that	Δt-δt	<	ti	–	ti-1
<	Δt+δt		for	all	i.
Assume	 the	 ADC	 input	 can	 be	 described	 as	 V(t)	 =	 A+Bsin(2πft),
where	A,	B,	f	are	constants.
	 	a)	Derive	an	estimate	of	the	maximum	voltage	error,	δV,	caused	by
time-jitter.	 Basically,	 solve	 for	 the	 largest	 possible	 value	 of	 δV	 as	 a
function	of	δt,	A,	B,	 and	 f	b)	 Consider	 the	 situation	where	 this	 time
jitter	 is	 unacceptably	 large.	 Which	 modification	 to	 the	 system	 will
reduce	the	error	the	most?		Justify	your	selection.

A)	Run	the	ADC	in	continuous	mode
B)	Convert	from	spinlock	semaphores	to	blocking	semaphores
C)	Change	from	round	robin	to	priority	thread	scheduling
D)	 Reduce	 the	 amount	 of	 time	 the	 system	 runs	 with	 interrupts

disabled.
E)		Increase	the	size	of	the	DataFifo



7.	High-Speed	Interfacing
Chapter	7	objectives	are	to:
•	Discuss	applications	requiring	high	bandwidth
•	Present	concepts	related	to	high-speed	interfacing
•	List	fundamental	approaches	to	high-speed	interfacing
•	 Introduce	 and	 describe	 direct	memory	 addressing	 (DMA)
on	the	TM4C123
	

Embedded	 system	 designers	 will	 not	 need	 direct	 memory
accessing	to	solve	most	of	their	problems.	However,	future	trends
point	to	systems	with	increased	memory,	multiple	processors	and
higher	 bandwidth.	 Therefore,	 it	 is	 appropriate	 to	 learn	 these
advanced	 topics.	 Latency,	 bandwidth,	 synchronization,	 and
reliability	are	important	factors	for	all	types	of	interfacing.	In	this
chapter	 we	 will	 discuss	 shared	 memory,	 hardware	 FIFOs,	 and
direct	 memory	 addressing	 (DMA).	 DMA	 is	 an	 important	 yet
complicated	 interfacing	 process.	 As	 the	 performance
requirements	of	our	embedded	system	grow,	there	comes	a	point
when	 the	 simple	 methods	 of	 I/O	 interfacing	 are	 not	 adequate.
This	chapter	introduces	a	number	of	techniques	that	produce	high
bandwidth	and	low	latency.



7.1.	The	Need	for	Speed
Bandwidth,	latency,	and	priority	are	quantitative	parameters	we	use	to
evaluate	the	performance	of	an	I/O	interface.	The	basic	function	of	an
input	 interface	 is	 to	 transfer	 information	 about	 the	 external
environment	into	the	computer.	In	a	similar	way,	the	basic	function	of
an	output	interface	is	to	transfer	information	from	the	computer	to	the
external	 environment.	 The	 bandwidth	 is	 the	 number	 of	 bytes
transferred	 per	 second.	 The	 bandwidth	 can	 be	 expressed	 as	 a
maximum	 or	 peak	 that	 involves	 short	 bursts	 of	 I/O	 communication.
On	the	other	hand,	the	overall	performance	can	be	represented	as	the
average	 bandwidth.	 The	 latency	 of	 the	 hardware/software	 is	 the
response	 time	 of	 the	 interface.	 It	 is	 measured	 in	 different	 ways
depending	on	the	situation.	For	an	input	device,	the	interface	latency
is	 the	 time	between	when	new	 input	 is	available,	and	 the	 time	when
the	data	is	transferred	into	memory.	We	can	also	define	device	latency
as	 the	 response	 time	 of	 the	 external	 I/O	 device.	 For	 example,	 if	we
request	 that	 a	 certain	 sector	 be	 read	 from	 a	 disk,	 then	 the	 device
latency	 is	 the	 time	 it	 take	 to	 find	 the	 correct	 track	 and	 spin	 the	disk
(seek)	so	 the	proper	sector	 is	positioned	under	 the	 read	head.	For	an
output	 device,	 the	 interface	 latency	 is	 the	 time	 between	 when	 the
output	device	is	idle,	and	the	time	when	the	interface	writes	new	data.	
A	 real-time	 system	 is	 one	 that	 can	 guarantee	 worst	 case	 interface
latency.	Table	7.1	illustrates	specific	ways	to	calculate	latency.	In	each
case,	however,	latency	is	the	time	between	when	the	need	arises	to	the
time	the	need	is	satisfied.

The	 time	 a	 need
arises

The	 time	 the	 need	 is
satisfied

New	 input	 is
available

The	input	data	is	read

New	 input	 is
available

The	 input	 data	 is
processed

Output	 device	 is
idle

New	 output	 data	 is
written

Sample	 time
occurs

ADC	 is	 triggered,
input	data



Periodic	 time
occurs

Output	 data,	 DAC	 is
triggered

Control	 point
occurs

Control	 system
executed

Table	7.1.	Interface	latency	is	a	measure	of	the	response	time	of	the
computer	to	a	hardware	event.
	

If	we	consider	 the	busy/done	 I/O	states,	 the	 latency	 is	 the	 time	from
busy	 to	 done	 state	 transition	 to	 the	 time	 of	 the	 done	 to	 busy	 state
transition.		Sometimes	we	are	interested	in	the	worst	case	(maximum)
latency	and	sometimes	 in	 the	average.	 If	we	can	put	an	upper	bound
on	 the	 latency,	 then	we	define	 the	 system	as	 real-time.	A	number	of
applications	 involve	 performing	 I/O	 functions	 on	 a	 fixed	 interval
basis.	 In	 a	 data	 acquisition	 system,	 the	 ADC	 is	 triggered	 (a	 new
sample	is	requested)	at	the	desired	sampling	rate.
Checkpoint	7.1:	What	is	the	difference	between	bandwidth	and
latency?	



7.2.	High-Speed	I/O	Applications
Before	introducing	the	various	solutions	to	a	high-speed	I/O	interface,
we	will	begin	by	presenting	some	typical	applications.
Mass	 Storage.	 The	 first	 application	 is	 mass	 storage	 including	 flash
disk,	hard	disk,	CD,	and	DVD.	Writing	data	to	disk	with	these	systems
involves

1.	 Establishing	the	physical	location	to	write,	record	head	at	the	proper
block,	sector,	track	etc.

2.	 Specifying	the	block	size
3.	 Waiting	for	the	physical	location	to	arrive	under	the	record	head
4.	 Transmitting	the	data

Reading	data	from	disk	with	these	systems	is	similar	and	involves
1.	 Establishing	 the	physical	 location	 to	 read,	 read	head	at	 the	proper

block,	sector,	track	etc.
2.	 Specifying	the	block	size
3.	 Waiting	for	the	physical	location	to	arrive	under	the	read	head
4.	 Receiving	the	data

Under	most	 situations	 the	 size	of	 the	data	block	 transferred	 is	 fixed.
The	 bandwidth	 depends	 on	 the	 rotation	 speed	 of	 the	 disk	 and	 the
information	density	on	the	medium.	A	10,000	RPM	SATA	hard	drive
can	sustain	about	157	Mebibyte/sec.	However,	drives	costing	less	than
$100	 typically	 generate	 100	 Mebibytes/sec.	 The	 time	 to	 locate	 the
physical	 location	 is	 called	 the	 seek	 time.	 Although	 seek	 time	 has	 a
significant	 impact	 on	 the	 disk	 performance,	 it	 does	 not	 affect	 the
latency	 or	 bandwidth	 parameters.	 An	 nX	 CD-ROM	 has	 a	 peak
bandwidth	 of	 n*150	 kibibytes/sec.	 There	 is	 a	 wide	 range	 of	 disk
speeds,	 but	 it	 is	 important	 to	 note	 that	 for	most	 situations,	 the	 disk
bandwidth	will	be	 less	 than	 the	computer	bus	bandwidth,	but	greater
than	the	maximum	bandwidth	that	a	software-controlled	interface	can
achieve.	 If	 the	disk	 interface	 is	not	buffered,	 then	 the	 interface	must
respond	to	each	data	byte	at	a	rate	faster	than	the	peak	disk	bandwidth.
For	 example,	 in	 a	 disk	 read,	 once	 the	 data	 becomes	 available,	 the
interface	must	capture	 it	and	store	 it	 in	memory	before	 the	next	data
becomes	available.	If	we	do	not	meet	the	response	time	requirement	in



the	disk	 interface,	 the	rotation	speed	will	have	 to	be	reduced.	Notice
because	of	the	seek	time	(time	for	the	physical	location	to	arrive	under
the	head),	the	average	and	peak	bandwidth	will	be	quite	different.	Also
notice	 that	without	buffering,	 the	maximum	 interface	 latency	will	be
inversely	related	to	the	peak	bandwidth.
Checkpoint	7.2:	What	happens	if	we	are	reading	data	off	a	hard
drive	but	do	not	satisfy	the	latency	requirement?	In	other	words,	the
read	data	is	ready,	but	we	do	not	capture	it	in	time.

High-Speed	 Data	 Acquisition.	 Examples	 of	 high-speed	 data
acquisition	 are	 CD-quality	 sound	 recording	 (16-bit,	 2	 channel,	 44
kHz),	 real-time	 digital	 image	 recording	 and	 digital	 scopes	 (8-bit	 1
GHz).	Sound	recording	actually	has	two	high-speed	data	channels:	one
for	recording	into	memory,	and	a	second	for	storing	the	memory	data
on	 hard	 disk	 or	 CD.	 Similarly,	 a	 digital	 scope	 has	 two	 high-speed
channels:	 one	 for	 the	 recording	 of	 voltage	 versus	 time	 input,	 and	 a
second	for	displaying	graphical	results.	A	spectrum	analyzer	combines
the	 high-speed	 data	 acquisition	 of	 a	 digital	 scope	 with	 the	 discrete
Fourier	 Transform	 to	 visualize	 the	 collected	 data	 in	 the	 frequency
domain.	In	the	context	of	this	chapter,	we	will	define	a	high-speed	data
acquisition	 as	 one	 that	 samples	 faster	 than	 a	 software-controlled
interface	 would	 allow.	 Typically,	 this	 will	 mean	 more	 than	 100,000
samples	per	second.
Checkpoint	7.3:	What	happens	to	the	sound	recording	if	data	is
missed?		Is	this	hard,	firm,	or	soft	real	time?

Video	displays.	Real-time	generation	of	TV	or	video	 images	requires
an	 enormous	 data	 bandwidth.	 Consider	 the	 information	 bandwidth
required	to	maintain	an	image	on	a	graphics	display.	A	VGA	image	is
256	colors	(8-bit),	480	rows,	640	columns	and	is	refreshed	at	about	60
Hz.	 Calculating	 the	 bandwidth	 in	 bytes/sec,	 we	 get	 1*480*640*60,
which	is	18,432,000	bytes/sec.	Luckily,	we	don’t	have	to	communicate
each	 pixel	 for	 each	 image,	 but	 rather	 can	 just	 transmit	 the	 changes
from	the	previous	image.	In	order	to	achieve	the	necessary	bandwidth,
video	 interface	 hardware	 will	 use	 a	 combination	 of	 DMA	 and	 dual
port	 memories.	With	 larger	 displays	 and	 3-D	 images	 the	 bandwidth
requirements	are	even	higher.
High	 Speed	 Signal	 Generation.	 Examples	 of	 high	 speed	 signal
generation	are	CD-quality	sound	playback	(16-bit,	2	channel,	44	kHz)



and	real-time	waveform	generation.	Sound	playback	also	has	two	high
speed	 data	 channels:	 one	 for	 loading	 sound	 data	 into	memory	 from
CD,	and	a	second	for	playing	the	memory	data	out	to	the	speakers.
Network	 Communications.	 For	 many	 networks	 the	 communication
bandwidth	 of	 the	 physical	 channel	 will	 exceed	 the	 ability	 of	 the
software	 to	 accept	 or	 transmit	 messages.	 For	 these	 high	 speed
applications,	 we	 will	 look	 for	 ways	 to	 decouple	 the	 software	 that
creates	outgoing	messages	and	processes	incoming	messages	from	the
hardware	 that	 is	 involved	 in	 the	 transmission	 and	 reception	 of
individual	 bits.	 Because	 the	 network	 load	 will	 vary,	 the	 average
bandwidth	 (determined	 by	 how	 fast	 the	 transmission	 software	 can
create	 outgoing	 messages	 and	 the	 reception	 software	 can	 process
incoming	 messages)	 will	 be	 slower	 than	 the	 peak/maximum
bandwidth	 that	 is	 achieved	 by	 the	 network	 hardware	 during
transmission.	This	mismatch	allows	one	network	to	be	shared	among
multiple	potential	nodes.
Checkpoint	7.4:	What	happens	in	a	communication	system	when
packets	are	lost?	



7.3.	General	Approaches	to	High-Speed
Interfaces

7.3.1.	Hardware	FIFO
If	the	software-controlled	interface	can	handle	the	average	bandwidth
but	 fails	 to	 satisfy	 the	 latency	 requirements,	 then	a	hardware	FIFO
can	 be	 placed	 between	 the	 I/O	 device	 and	 the	 computer.	Assume	 in
this	 situation,	 the	 average	 serial	 bandwidth	 is	 low	 enough	 for	 the
software	to	read	the	data	from	the	serial	port	and	write	it	to	memory.
Without	the	hardware	FIFO,	the	latency	requirement	of	a	serial	input
port	 is	 the	 time	 it	 takes	 to	 transmit	 one	 data	 frame.	 To	 reduce	 this
latency	 requirement	 (without	 changing	 the	 average	 bandwidth
requirement)	we	can	add	a	hardware	FIFO	between	 the	 receive	 shift
register	and	the	receive	data	register,	as	illustrated	in	Figure	7.1.	Many
of	 the	I/O	devices	on	the	Texas	Instruments	microcontrollers	employ
hardware	FIFOs.

Figure	7.1.	High-speed	I/O	devices	employ	hardware	FIFOs	to
reduce	the	latency	requirement	of	the	interface.



Observation:	With	a	serial	port	that	has	a	shift	register,	a	FIFO	of
size	n,	and	one	data	register,	the	latency	requirement	of	the	input
interface	is	the	time	it	takes	to	transmit	n+1	data	frames.		

A	 hardware	 FIFO,	 placed	 between	 the	 output	 data	 register	 and	 the
transmit	 shift	 register,	 allows	 the	 software	 to	write	multiple	bytes	of
data	to	the	interface	and	then	perform	other	tasks	while	the	frames	are
being	sent.

7.3.2.	Dual	Port	Memory
One	 approach	 that	 allows	 a	 large	 amount	 of	 data	 to	 be	 transmitted
from	the	software	to	the	hardware	is	the	dual	port	memory,	Figure	7.2.
A	 dual	 port	 memory	 allows	 shared	 access	 to	 the	 same	 memory
between	 the	 software	 and	 hardware.	 For	 example,	 the	 software	 can
create	 a	 graphics	 image	 in	 the	 dual	 port	 memory	 using	 standard
memory	 write	 operations.	 At	 the	 same	 time	 the	 video	 graphics
hardware	can	fetch	information	out	of	the	same	memory	and	display	it
on	the	computer	monitor.	In	this	way,	the	data	need	not	be	explicitly
transmitted	 from	 the	 computer	 to	 the	 graphics	 display	 hardware.	 To
implement	 a	dual	 port	memory,	 there	must	be	 a	way	 to	 arbitrate	 the
condition	 when	 both	 the	 software	 and	 hardware	 wish	 to	 access	 the
device	 simultaneously.	 One	 mechanism	 to	 arbitrate	 simultaneous
requests	 is	 to	 halt	 the	 processor	 using	 a	 MRDY	 signal	 so	 that	 the
software	 temporarily	waits	while	 the	 video	hardware	 fetches	what	 it
needs.	Once	the	video	hardware	is	done,	the	MRDY	signal	is	released
and	the	software	resumes.	Most	microcontroller	memory	interfaces	do
not	 support	 this	 sort	 of	 hardware	 initiated	 cycle	 stretching.	 If	 both
processors	wish	 to	 access	 the	memory	 at	 the	 same	 time,	 one	 of	 the
processors	is	delayed.	Notice	that	except	for	the	access	conflict,	both
the	software	and	graphics	hardware	can	operate	simultaneously	at	full
speed.



Figure	7.2.	A	dual	port	memory	can	be	accessed	by	two	different
modules.

Checkpoint	7.5:	Explain	how	the	bidirectional	tristate	buffers
connected	to	the	memory	data	lines	in	Figure	7.2	work.	
	

7.3.3.	Bank-Switched	Memory
Another	 approach	 similar	 to	 the	 dual	 port	 memory	 is	 the	 bank-
switched	 memory,	 see	 Figure	 7.3.	 A	 bank-switched	 memory	 also
allows	 shared	 access	 to	 the	 same	memory	between	 the	 software	 and
hardware.	The	difference	between	bank-switched	and	dual	port	is	the
bank-switched	 memory	 has	 two	 modes.	 In	 one	 mode	 (M=1),	 the
computer	 has	 access	 to	 memory	 bank	 A,	 and	 the	 I/O	 hardware	 has
access	to	memory	bank	B.	In	the	other	mode	(M=0),	the	computer	has
access	to	memory	bank	B,	and	the	I/O	hardware	has	access	to	memory
bank	A.	Because	access	is	restricted	in	this	way,	there	are	no	conflicts
to	resolve.



Figure	7.3.	A	bank-switched		memory	can	be	accessed	by	two
different	modules,	one	at	a	time.	

Observation:	With	a	bank-switched	memory,	the	latency
requirement	of	the	software	is	the	time	it	takes	the	hardware	to	fill
(or	empty)	one	memory	bank.		

Graphics	controllers	use	bank	switching.	One	processor	transfers	data
from	the	front	buffer	and	displays	it	on	the	screen.	A	second	processor
builds	 the	next	 image	 in	 the	back	buffer.	To	create	 the	video	output,
the	 buffers	 are	 switched	 at	 a	 regular	 rate.	 Many	 high	 speed	 data
acquisition	 systems	 all	 employ	 bank	 switching.	 The	 ADC	 hardware
can	 write	 into	 one	 bank	 while	 the	 computer	 software	 processes
previously	 collected	 data	 in	 the	 other.	 When	 the	 ADC	 sampling
hardware	fills	a	bank,	the	memory	mode	is	switched,	and	the	software
and	 hardware	 swap	 access	 rights	 to	 the	memory	 banks.	 In	 a	 similar
way,	 a	 real-time	waveform	 generator	 or	 sound	 playback	 system	 can
use	 the	 bank-switched	 approach.	 The	 software	 creates	 the	 data	 and
stores	 it	 into	one	bank,	while	 the	hardware	reads	data	from	the	other
bank	that	was	previously	filled.	Again,	when	the	hardware	is	finished,
then	the	memory	bank	mode	is	switched.
Checkpoint	7.6:	How	would	you	redesign	the	bank-switched
memory	in	Figure	7.3	if	the	communication	channel	were	simplex
(data	flows	left	to	right	only)?	



7.4.	Fundamental	Approach	to	DMA
With	 a	 software-controlled	 interface	 (busy-wait	 or	 interrupts)	 if	 we
wish	 to	 transfer	data	 from	an	 input	device	 into	RAM,	you	must	 first
transfer	 it	 from	 input	 to	 the	 processor,	 then	 from	 the	 processor	 into
RAM.	 In	 addition,	 this	 transfer	 is	 explicitly	 controlled	 by	 executing
software.	 In	 order	 to	 improve	 performance,	 we	 will	 transfer	 data
directly	from	input	to	RAM	or	RAM	to	output	using	Direct	Memory
Access,	DMA.	 	Because	DMA	bandwidth	 can	be	 as	high	 as	 the	bus
bandwidth,	 we	 will	 use	 this	 method	 to	 interface	 high	 bandwidth
devices	 like	 disks,	 digital	 scopes,	 cameras,	 and	 networks.	 Similarly,
because	the	latency	of	this	type	of	interface	depends	only	on	hardware
and	 is	 usually	 just	 a	 couple	 of	 bus	 cycles,	 we	 will	 use	 DMA	 for
situations	 that	 require	 a	 very	 fast	 response.	 On	 the	 other	 hand,
software-controlled	 interfaces	 have	 the	 potential	 to	 perform	 more
complex	operations	than	simply	transferring	the	data	to/from	memory.
For	example,	the	software	could	perform	error	checking,	convert	from
one	 format	 to	 another,	 implement	 compression/decompression,	 and
detect	 events.	These	more	 complex	 I/O	operations	may	preclude	 the
usage	of	DMA.

7.4.1.	DMA	Cycles
During	a	DMA	read	cycle,	the	processor	can	still	access	flash	memory
and	ROM,	while	hardware	automatically	transfers	data	from	RAM	to
the	 output	 device	 (Figure	 7.4).	 The	 address	 on	 the	 bus	 specifies	 the
RAM	location	from	which	to	read	the	data.	The	µDMA	controller	on
the	TM4C	has	many	different	 configuration	options	 to	burst	 transfer
data	to	and	from	arbitrary	locations.	For	example,	it	may	automatically
increment	 the	 RAM	 source	 address	 to	 stream	 an	 array	 to	 an	 output
device.	The	TM4C	series	does	not	support	DMA	transfers	with	flash
memory	or	ROM	because	they	are	on	a	separate	internal	bus.



Figure	7.4.	A	DMA	read	cycle	copies	data	from	RAM	to	an	output
device.

During	 a	 DMA	 write	 cycle,	 the	 processor	 can	 still	 access	 flash
memory	and	ROM,	while	hardware	automatically	transfers	data	from
the	input	device	to	RAM	(Figure	7.5).	The	address	on	the	bus	specifies
the	RAM	location	 to	which	 to	write	 the	data.	A	useful	configuration
mode	could	be	to	have	the	µDMA	controller	automatically	increment
the	RAM	destination	address	to	stream	data	from	an	input	device.	In
some	DMA	 interfaces,	 two	DMA	 cycles	 are	 required	 to	 transfer	 the
data.	The	first	DMA	cycle	brings	data	from	the	source	into	the	DMA
module,	and	the	second	DMA	cycle	sends	the	data	to	its	destination.

Figure	7.5.		A	DMA	write	cycle	copies	data	from	the	input	device
into	RAM.



7.4.2.	DMA	Initiation
We	can	classify	DMA	operations	according	to	the	event	that	initiates
the	 transfer.	 A	 software	 initiated	 transfer	 begins	 with	 the	 program
setting	 up	 and	 starting	 the	 DMA	 operation.	 Using	 DMA	 to	 transfer
data	from	one	memory	block	to	another	greatly	speeds	up	the	function.
The	efficiency	of	memory	block	 transfers	 is	very	 important	 in	 larger
computer	 systems.	 	 Benchmarks	 on	most	 computers	 show	 that	 even
for	small	blocks,	it	is	faster	to	initialize	a	DMA	channel	and	perform
the	 transfer	 in	 hardware	 than	 it	 is	 to	 transfer	 the	 data	 block	 using
software.	 As	 the	 block	 size	 increases	 the	 performance	 advantage	 of
DMA	hardware	over	traditional	software	becomes	more	dramatic.
Most	DMA	applications	involve	a	hardware	initiated	DMA	transfer.
For	an	input	device,	the	DMA	is	triggered	on	new	data	available.	For
an	 output	 device,	 the	 DMA	 is	 triggered	 on	 output	 device	 idle.	 For
periodic	events,	like	data	acquisition	and	signal	generation,	the	DMA
is	triggered	by	a	periodic	timer.	These	are	the	exact	issues	involved	in
busy-wait	 loop	 and	 interrupt	 synchronization.	 The	 difference	 with
DMA	 is	 that	 the	 servicing	of	 the	 I/O	need	will	 be	performed	by	 the
DMA	 controller	 hardware	 without	 software	 having	 to	 explicitly
transfer	each	byte.	An	interrupt	is	typically	triggered	at	the	end	of	the
block	transfer.

7.4.3.	Burst	versus	Single	Cycle	DMA
When	 the	 desired	 I/O	 bandwidth	 matches	 the	 computer	 bus
bandwidth,	 then	 the	 computer	 can	 be	 completely	 halted,	 while	 the
block	of	data	is	transferred	all	at	once,	see	Figure	7.6.	Once	an	input
block	is	ready,	a	burst	mode	DMA	is	requested,	the	computer	is	halted,
and	the	block	is	transferred	into	memory.

Figure	7.6.	An	input	block	is	transferred	all	at	once	during	burst
mode	DMA.

Figure	7.6	describes	an	input	interface,	but	the	same	timing	occurs	on



an	output	 interface	using	burst	mode	DMA.	For	 an	output	 interface,
the	DMA	is	requested	when	the	interface	needs	another	block	of	data.
During	 the	 burst	mode	DMA,	 the	 computer	 is	 halted,	 and	 an	 entire
block	is	transferred	from	memory	to	the	output	device.
If	the	I/O	bandwidth	is	less	than	the	computer	bus	bandwidth,	then	the
DMA	hardware	will	steal	cycles	and	transfer	the	data	a	single	cycle	at
a	time,	see	Figure	7.7.	In	single	cycle	mode,	the	software	continues	to
run,	although	a	little	bit	slower.	In	either	case	the	processor	is	halted
during	the	DMA	cycles.

Figure	7.7.	Each	time	an	input	byte	is	ready	it	is	transferred	to
memory	using	single	cycle	DMA.

Figure	7.7	describes	an	input	interface,	but	the	same	timing	occurs	on
an	 output	 interface	 using	 cycle	 steal	 mode	 DMA.	 For	 an	 output
interface,	the	DMA	is	requested	when	the	interface	needs	another	byte
of	 data.	 During	 the	 single	 cycle	 DMA,	 one	 byte/halfword/word	 is
transferred	from	RAM	to	the	output	device.
Observation:	Some	computers	must	finish	the	instruction	before
allowing	a	burst-DMA.	In	this	situation,	the	latency	will	be	higher
than	single	cycle	DMA,	which	does	not	need	to	finish	the	current
instruction.		

Since	 most	 I/O	 bandwidths	 are	 indeed	 less	 than	 the	 memory
bandwidth,	 one	 technique	 to	 enhance	 speed	 is	 I/O	 buffering.	 In	 this
approach	 a	 dedicated	 I/O	memory	 buffer	 exists	 in	 the	 I/O	 interface
hardware.	 This	 buffer	 is	 like	 the	 bank-switched	 memory	 discussed
earlier.	 For	 example,	 on	 a	 hard	 disk	 read	 block	 operation,	 raw	 data
comes	off	the	disk	and	into	the	buffer.	During	this	time	the	processor
is	not	halted.	When	the	buffer	is	full,	burst	DMA	is	used	to	transfer	the
data	 into	 the	 system	memory.	 Similarly,	 on	 a	 hard	 disk	 write	 block
operation,	 the	 software	 initiates	 a	 burst	 DMA	 to	 transfer	 data	 from
system	memory	 into	 the	 I/O	 buffer.	Once	 full,	 the	 I/O	 interface	 can
write	the	data	onto	the	disk.
Checkpoint	7.7:	What	is	the	maximum	latency	in	a	single	cycle



DMA	system?	

7.4.4.	Single	Address	versus	Dual	Address	DMA
Some	 computer	 systems	 allow	 the	 transfer	 of	 data	 between	 the
memory	and	I/O	interface	to	occur	in	one	bus	cycle,	while	others	need
two	bus	cycles	to	complete	the	transfer.
In	a	single	address	DMA	cycle,	the	address	and	R/W	line	dictate	the
memory	 function	 to	 be	 performed	 and	 the	 I/O	 interface	 is
sophisticated	enough	 to	know	 it	 should	participate	 in	 the	 transfer.	 In
this	single	address	example,	the	disk	interface	is	reading	bytes	from	a
disk,	as	shown	in	Figure	7.8.	During	the	transfer,	the	bus	address	is	the
memory	address,	Figure	7.9.

	

Figure	7.8.	Block	diagram	showing	the	modules	involved	in	a	disk
read.
	



Figure	7.9.	Timing	diagram	of	a	single	address	DMA-controlled
floppy	disk	read.

Single	cycle	mode	will	be	used	because	the	disk	bandwidth	is	slower
than	the	bus.	When	a	new	byte	is	available,	Request	will	be	asserted
and	 this	will	 request	a	DMA	cycle	 from	the	DMA	controller	 (Figure
7.9).	The	DMA	controller	will	temporarily	suspend	the	processor	and
drive	the	address	bus	with	the	memory	address	and	the	R/W	to	write.
During	 this	 cycle	 the	 DMA	 controller	 will	 respond	 to	 the	 floppy
interface	 by	 asserting	 the	Ack.	 The	 disk	 uses	 the	Ack	 (ignoring	 the
address	bus	and	R/W)	to	know	when	to	drive	its	data	on	the	bus.
Observation:	Most	microcontrollers	including	the	MSP432	and	the
TM4C	do	not	support	single	address	DMA.		
	

In	a	dual	address	DMA	cycle,	two	bus	cycles	are	required	to	achieve
the	transfer.	In	the	first	cycle,	the	data	is	read	from	the	source	address
and	copied	 in	 the	DMA	controller.	During	 the	first	cycle	 the	address
bus	 contains	 the	 source	 address	 and	 R/W	 signifies	 read.	 The
information	from	the	data	bus	is	saved	in	the	Temp	register	within	the
DMA	 controller.	 In	 the	 second	 cycle,	 the	 data	 is	 transferred	 to	 the
destination	address.	During	the	second	cycle,	the	address	bus	contains
the	 destination	 address,	 the	 data	 bus	 has	 the	 Temp	 data,	 and	 R/W
signifies	 write.	 In	 this	 dual	 address	 example,	 the	 SPI	 interface	 is
receiving	 bytes	 from	 a	 synchronous	 serial	 network	 (Figure	 7.10).



Single	cycle	mode	will	be	used	because	the	SPI	bandwidth	is	slower
than	the	bus.	When	a	new	byte	is	available,	Request	will	be	asserted
and	 this	will	 request	a	DMA	cycle	 from	the	DMA	controller	 (Figure
7.11).	The	DMA	controller	will	temporarily	suspend	the	processor	and
first	 drive	 the	 address	 bus	 with	 the	 SPI	 data	 register	 address
(R/W=read),	 then	 in	 the	 second	cycle	 the	DMA	controller	will	drive
the	 address	 bus	 with	 the	 memory	 address	 (R/W=write).	 The	 SPI
knows	 it	 has	 been	 serviced,	 because	 its	 data	 register	 has	 been	 read.
The	single	address	DMA	is	twice	as	fast	as	dual	address	DMA.

Figure	7.10.	Block	diagram	showing	the	modules	involved	in	a
SPI	read.

	
Observation:	The	dual	address	DMA	can	be	used	with	I/O	devices
not	configured	to	support	DMA.			Basically,	we	can	transfer	data
between	any	I/O	register	and/or	memory	location.

	



Figure	7.11.	Timing	diagram	of	a	dual	address	DMA-controlled
SPI	read.

7.4.5.	DMA	programming	on	the	TM4C123
Although	DMA	programming	varies	considerably	from	one	system	to
another,	there	are	a	few	initialization	steps	that	most	require.	Example
projects	using	DMA	can	be	found	in	the	TivaWare	projects.	Table	7.2
lists	the	mode	parameters	that	must	be	set	to	utilize	DMA.	There	are
two	 categories	 of	DMA	programming:	 initialization	 and	 completion.
During	 initialization,	 the	 software	 sets	 the	DMA	parameters,	 so	 that
the	DMA	will	begin.

	
Parameter Possible	choices
What	initiates	the
DMA

Software	 trigger,	 input	 device,	 output	 device,
periodic	timer

Type Burst	versus	single
Autoinitialization
mode

Single	event	or	continuous	transfer

Precision 8-bit	byte,	16-bit	halfword	or	32-bit	word
Mode Single	address	or	dual	address
Priority Default	 or	 high	 priority;	 lower	 channel	 numbers

are	higher	priority	to	break	a	tie
Synchronization Set	 busy-wait	 flag,	 or	 interrupt	 on	 block	 transfer

complete
Table	7.2.	DMA	initialization	usually	involves	specifying	these	parameters.
	

At	 the	 end	 of	 a	 block	 transfer,	 a	 done	 flag	 is	 set	 and	 a	 number	 of
additional	actions	may	occur.	If	the	system	is	armed,	an	interrupt	can
be	generated.	At	 the	end	of	a	block	 transfer	 in	a	continuous	 transfer
DMA,	the	controller	automatically	switches	between	the	primary	and
alternate	control	structures	and	continues	transferring.	At	this	point,	a
little	bit	of	software	attention	is	required	to	allow	the	DMA	process	to
continue	indefinitely.	An	interrupt	is	requested,	the	DMA	controller	is
finished	with	one	control	 structure	 so	 that	one	 is	 stopped,	and	 it	has
moved	on	to	the	other	control	structure,	which	is	running.In	this	case,



software	must	 look	 at	 the XFERMODE 	 field	 of	 the	DMA	Channel
Control	 Word	 register	 of	 both	 the	 primary	 and	 alternate	 control
structures.	 If	 this	 field	 is	 zero,	 the	 corresponding	control	 structure	 is
stopped	and	must	be	re-initialized	before	the	active	one	finishes.	The
TM4C	calls	this	ping-pong	mode.	Table	7.3	lists	additional	parameters
we	will	need	to	initialize.

	

Parameter Definition
Source	 address
end	pointer

Last	 address	 of	 the	module	 (RAM	or	 input)	 that
generates	the	data,	inclusive

Destination
address	end	ptr.

Last	address	of	the	module	(RAM	or	output)	that
accepts	the	data,	inclusive

Destination
address	incr.

Automatically	 increment	 the	 destination	 address
by	8,	16,	32,	or	0
The	 address	 increment	 bit	 field	 value	must	 be	 ≥
data	size	bit	field	value

Destination	 data
size

8-,	16-,	or	32-bit	data	size
Destination	data	size	must	be	the	same	as	source
data	size

Source	 address
increment

Automatically	increment	the	source	address	by	8,
16,	32,	or	0
The	 address	 increment	 bit	 field	 value	must	 be	 ≥
data	size	bit	field	value

Source	data	size 8-,	16-,	or	32-bit	data	size
Source	data	size	must	be	 the	same	as	destination
data	size

Arbitration	size Number	 of	 DMA	 transfers	 before	 the	 controller
re-arbitrates	channel	priority
This	 arbitration	 is	 among	 DMA	 channels	 only;
DMA	never	blocks	processor
Size	can	be	thought	of	as	the	maximum	burst	size
Should	 equal	 what	 peripheral	 can	 accommodate
on	burst	request
Must	be	a	power	of	2,	but	no	arbitration	occurs	if
≥	1,024

Transfer	 size
(minus	1)

Number	of	transfers	to	be	made
Maximum	 bit	 field	 value	 of	 1,023	 representing
maximum	of	1,024	transfers



Updated	 by	 hardware	 at	 arbitration	 to	 contain
number	of	transfers	remaining

Next	useburst If	 the	number	of	 transfers	 remaining	 is	 less	 than
the	 arbitration	 size,	 setting	 this	 bit	 uses	 a	 burst
transfer	 to	 get	 all	 of	 them;	 otherwise	 use	 single
transfers	 Used	 exclusively	 for	 the	 peripheral
scatter-gather	operation

Transfer	mode Configure	 the	 DMA	 transfer	 mode	 according	 to
desired	operation	of	system

Table	7.3.	DMA	initialization	parameters	from	the	control	structure	located
in	RAM.

	
Checkpoint	7.8:	What	is	the	maximum	latency	in	a	dual-address
burst	DMA	system?
	
Checkpoint	7.9:	What	is	the	maximum	bandwidth	in	a	dual-
address	burst-DMA	system?

The	web	 site	 contains	 four	 examples	 of	DMA	 transfer:	 RAM-RAM
block	 transfer	 (DMASoftware_4C123),	 continuous	 output	 to	 DAC
(DMASPI_4C123)	 effectively	 playing	 a	 continuous	 audio	 track,
continuous	 input	 from	 a	GPIO	port	 (DMATimer_4C123)	 creating	 a
logic	 analyzer,	 and	 continuous	 output	 to	 a	 port
(DMATimerPortWrite_4C123.)	 To	 illustrate	 the	 use	 of	 DMA	 a
simple	memory	to	memory	block	transfer	will	be	shown.	There	are	32
DMA	 channels	 available	 on	 the	 TM4C123,	 and	 channel	 30	 is
dedicated	 to	 software	 triggered	memory	 to	memory	 transfers.	 There
are	some	configurations	that	occur	just	once,	and	can	be	placed	in	the
initialization	 code.	 See	 Program	 7.1.	 The	 clock	 is	 enabled	 in
the SYSCTL_RCGCDMA_R register.	The	MASTENbit	is	turned	on
it	 the UDMA_CFG_R register	 to	 activate	 the	 μDMA	 device.
Configuring	 the	 DMA	 transfer	 centers	 around	 the	 Channel	 Control
Structure,	 see	Table	 7.4.	There	 is	 a	 3-word	 entry	 in	 this	 structurefor
each	of	the	32	DMA	channels.	The UDMA_CTLBASE_R register	is
configured	to	point	to	the	Channel	Control	Structures.	The	first	half	of
the	table	contains	32	entries	specifying	the	primary	command	for	each
channel	 and	 the	 second	 half	 is	 another	 32	 entries	 specifying	 the
alternate	 commands.	This	memory	 to	memory	 transfer	only	uses	 the



primary	command.	The	command	entry	for	channel	30	exists	in	words
120,	121,	and	122	within	this	table.	Each	entry	is	aligned	to	a	4-word
boundary	 by	 skipping	 one	 word.We	 set	 bit	 30	 in	 the
UDMA_PRIOCLR_R register	to	specify	default	priority.	Conversely,
if	we	were	 to	 set	 bit	 30	 in	 the UDMA_PRIOSET_R 	 register,	 then
this	channel	would	have	high	priority	over	other	DMA	channels.	We
set	bit	30	in	the 	UDMA_ALTCLR_R register	to	disable	the	alternate
control	 table,	 using	 just	 the	 primary	 entries.	 There	 are	 two	 types	 of
DMA	 transfer	 single	 cycle	 and	 burst.	 We	 set	 bit	 30	 in	 the
UDMA_USEBURSTCLR_R 	register	to	allow	both	single	cycle	and
burst	DMA.	This	example	will	burst	8	transfers	at	a	time.	By	setting
bit	 30	 of	 the UDMA_REQMASKCLR_R register	 we	 activate
channel	30.
Each	time	a	DMA	transfer	is	started,	the	software	must	configure	the
three	words	in	the	μDMA	Channel	Control	Structure.	For	each	channel
there	 are	 three	 words:	 source	 address,	 destination	 address,	 and	 a
channel	control	word.	More	 specifically,	we	will	place	 the	addresses
of	 the	 last	 memory	 locations	 to	 be	 transferred	 into	 the	 source	 and
destination	 fields.	 There	 are	 eight	 fields	 in	 the	 control	 word.	 The
DSTINC	and	SRCINC	specify	if	the	source	and	destination	addresses
should	be	incremented	(0	means	+1,	1	means	+2,	2	means	+4,	and	3
means	 no	 increment).	 In	 this	 example	 we	 set	 both	 DSTINC	 and
SRCINC	 to	 2	 so	 +4	 is	 added	 to	 the	 addresses	 after	 each	 word	 is
transferred.	The	DSTSIZE	and	SRCSIZE	specify	the	data	size	of	the
source	and	destination	(0	means	byte,	1	means	halfword,	and	2	means
word).	In	this	example	we	set	both	DSTSIZE	and	SRCSIZE	 to	2	 to
specify	 the	 transfer	of	32-bit	data.	The	ARBSIZE	 field	 specifies	 the
size	of	 the	bursts	used	during	 transfer.	By	 setting	 this	 field	 to	3,	 the
controller	will	burst	8	words	then	look	to	see	if	another	module	wishes
to	use	the	bus.	The	XFERSIZEfield	specifies	the	number	of	items	to
transfer.	By	setting	this	field	to cnt-1,	 the	controller	will	 transfer cnt
words.	The	NXTUSEBURST	field	is	not	used	in	memory	to	memory
transfer.	 We	 set	 the	 XFERMODE	 bits	 to	 2	 to	 select	 auto-request
mode.	We	 set	 bit	 30	 in	 the 	 UDMA_ENASET_R register	 to	 enable
channel	30.	By	setting	bit	30	of	 the UDMA_SWREQ_R register	 the
transfer	is	initiated.	There	are	three	possible	mechanisms	to	determine
when	 the	 transfer	 is	 complete.	 First,	 when	 complete,	 bit	 30	 ofthe
UDMA_ENASET_R 	 register	 will	 become	 zero.	 Alternately,	 we



could	 poll	 the	 XFERMODE	 bits	 in	 the	 channel	 control	 structure;
these	 bits	 will	 also	 go	 zero	 when	 the	 transfer	 is	 complete.	 A	 third
mechanism	 uses	 interrupts.	 If	 we	 arm	 interrupt	 number	 46	 in	 the
NVIC,	 which	 is	 vector	 62	 at	 address	 0x0000.00F8,	 then	 a	 µDMA
Software	interrupt	will	be	generated	on	completion.

Address	of	the	last	byte	of	the	source	buffer
Address	of	the	last	byte	of	the	destination	buffer
DSTINC DSTSIZE SRCINC SRCSIZE 	 ARBSIZE XFERSIZE NXTUSE XFERMODE

	
Table	7.4.	Structure	of	an	entry	in	the	channel	control	structure.
//	The	ucControlTable	table	must	be	aligned	to	a	1024	byte	boundary.
uint32_t	ucControlTable[256]	__attribute__	((aligned(1024)));
#define	CH30	(30*4)
#define	BIT30	0x40000000
//	************DMA_Init*****************
//	Initialize	the	memory	to	memory	transfer
//	This	needs	to	be	called	once	before	requesting	a	transfer
//	Inputs:		none
//	Outputs:	none
void	DMA_Init(void){	
		volatile	uint32_t	delay;
	 	 SYSCTL_RCGCDMA_R	 =	 0x01;	 	 	 //	 µDMA	Module	 Run	Mode	 Clock
Gating	Control
		delay	=	SYSCTL_RCGCDMA_R;		//	allow	time	to	finish
		UDMA_CFG_R	=	0x01;									//	MASTEN	Controller	Master	Enable
		UDMA_CTLBASE_R	=	(uint32_t)ucControlTable;
		UDMA_PRIOCLR_R	=	BIT30;				//	default,	not	high	priority
		UDMA_ALTCLR_R	=	BIT30;					//	use	primary	control
		UDMA_USEBURSTCLR_R	=	BIT30;	//	responds	to	both	burst	and	single
	 	 UDMA_REQMASKCLR_R	 =	 BIT30;	 	 //	 allow	 controller	 to	 recognize
requests

}

//	************DMA_Xfr	*****************
//	Called	to	transfer	words	from	source	to	destination
//	This	needs	to	be	called	once	before	requesting	a	transfer



//	Inputs:		src	is	a	pointer	to	the	first	element	of	the	original	data
//										dest	is	a	pointer	to	a	place	to	put	the	copy
//										cnt	is	the	number	of	words	to	transfer	(max	is	1024	words)
//	Outputs:	none
//	This	routine	does	not	wait	for	completion
void	DMA_Xfr(uint32_t	src,	uint32_t	dest,	uint32_t	cnt){
		ucControlTable[CH30]			=	(uint32_t)src+cnt*4-1;		//	last	address
		ucControlTable[CH30+1]	=	(uint32_t)dest+cnt*4-1;		//	last	address
		ucControlTable[CH30+2]	=	0xAA00C002+((cnt-1)<<4);						//	Control	Word
/*	DMACHCTL										Bits				Value	Description
			DSTINC												31:30			2					32-bit	destination	address	increment
			DSTSIZE											29:28			2					32-bit	destination	data	size
			SRCINC												27:26			2					32-bit	source	address	increment
			SRCSIZE											25:24			2					32-bit	source	data	size
			reserved										23:18			0					Reserved	
			ARBSIZE											17:14			3					Arbitrates	after	8	transfers
			XFERSIZE										13:4		cnt-1			Transfer	cnt	items
			NXTUSEBURST							3							0					N/A	for	this	transfer	type
			XFERMODE										2:0					2					Use	Auto-request	transfer	mode

*/

		UDMA_ENASET_R	=	BIT30;		//	µDMA	Channel	30	is	enabled.
		UDMA_SWREQ_R	=	BIT30;			//	software	start,

}

Program	7.1.	Memory	to	memory	transfer	using	DMA
(DMASoftware_4C123).

In	 this	 next	 example,	 the	 user	 initializes	 the	 SPI	 port,	 initializes	 the
DMA,	 enables	 interrupts	 and	 starts	 the	 DMA	 transfer	 by	 passing	 a
pointer	to	a	data	array.The	array SinTable 	contains	a	256-entry	12-bit
sine	wave.	The	data	must	be	stored	 in	RAM,	because	we	cannot	use
DMA	 to	 transfer	 to	 or	 from	 ROM.	 The	 main	 program	 is	 shown	 in
Program	7.2.

uint16_t	SinTable[256]	=	{	
2048,2097,2146,2195,2244,2293,2341,2390,2438,2486,2534,2581,2629,2675,2722,2768,
2813,2858,2903,2947,2991,3034,3076,3118,3159,3200,3239,3278,3317,3354,3391,3427,
3462,3496,3530,3562,3594,3625,3654,3683,3711,3738,3763,3788,3812,3834,3856,3876,



3896,3914,3931,3947,3962,3976,3988,3999,4010,4019,4026,4033,4038,4043,4046,4047,
4048,4047,4046,4043,4038,4033,4026,4019,4010,3999,3988,3976,3962,3947,3931,3914,
3896,3876,3856,3834,3812,3788,3763,3738,3711,3683,3654,3625,3594,3562,3530,3496,
3462,3427,3391,3354,3317,3278,3239,3200,3159,3118,3076,3034,2991,2947,2903,2858,
2813,2768,2722,2675,2629,2581,2534,2486,2438,2390,2341,2293,2244,2195,2146,2097,
2048,1999,1950,1901,1852,1803,1755,1706,1658,1610,1562,1515,1467,1421,1374,1328,
1283,1238,1193,1149,1105,1062,1020,978,937,896,857,818,779,742,705,669,634,600,
566,534,502,471,442,413,385,358,333,308,284,262,240,220,200,182,165,149,134,120,
108,97,86,77,70,63,58,53,50,49,48,49,50,53,58,63,70,77,86,97,108,120,134,149,165,
182,200,220,240,262,284,308,333,358,385,413,442,471,502,534,566,600,634,669,705,
742,779,818,857,896,937,978,1020,1062,1105,1149,1193,1238,1283,1328,1374,1421,
1467,1515,1562,1610,1658,1706,1755,1803,1852,1901,1950,1999};
int	main(void){		
		PLL_Init();										//	now	running	at	80	MHz
		DAC_Init(0x1000);				//	initialize	with	command:	Vout	=	Vref
		DMA_Init(625);							//	DMA	channel	8	for	Timer5A,	every	7.8125us
		EnableInterrupts();		//	Timer5A	interrupt	on	completion,	every	2ms
		DMA_Start(SinTable,	SSI0_DR,	256);	//7.8125us*256=	2ms	period	sine	wave
		while(1){

}

}

Program	7.2.	Main	program	to	create	a	continuous	sin	wave
using	DMA	(DMASPI_4C123).

The	low-level	driver	is	presented	in	Program	7.3.	Every	7.8125	µs	16
bits	from	the	SinTable	are	copied	from	RAM	to	the	SSI0	data	register.
This	 is	 a	 cycle-steal	 DMA	 with	 one	 bus	 cycle	 used	 to	 read	 from
the SinTable and	a	second	bus	cycle	to	write	to SSI0_DR .	After	256
transfers,	which	will	be	every	2	ms,	a	Timer	5	interrupts	occurs,	and
the	process	continues	using	ping-pong	mode.	As	long	as	the	interrupt
Timer	5	ISR	is	run	within	2	ms	of	its	trigger,	this	system	is	real-time
with	virtually	no	output	jitter.	DMA	requests	can	occur	in	the	middle
of	instructions,	and	will	occur	regardless	of	processor	state.	The	only
events	that	can	stall	a	DMA	are	another	higher	priority	DMA	requests.

//	The	control	table	used	by	the	uDMA	controller.	
uint32_t	ucControlTable[256]	__attribute__	((aligned(1024)));
//	Timer5A	uses	uDMA	channel	8	encoding	3
//	channel	8	is	at	indices		32,	33,	34	(primary	source,destination,control)	and
//														at	indices	160,161,162	(alternate	source,destination,control)
#define	CH8	(8*4)
#define	CH8ALT	(8*4+128)
#define	BIT8	0x00000100
//	*****************	Timer5A_Init	****************



//	Activate	Timer5A	trigger	DMA	periodically
//	Inputs:		period	in	12.5nsec
//	Outputs:	none
void	Timer5A_Init(uint16_t	period){	volatile	uint32_t	Delay;
		SYSCTL_RCGCTIMER_R	|=	0x20;						//	0)	activate	timer5
		Delay	=	0;																							//	wait	for	completion
		TIMER5_CTL_R	&=	~0x00000001;					//	1)	disable	timer5A	during	setup
		TIMER5_CFG_R	=	0x00000004;							//	2)	configure	for	16-bit	timer	mode
		TIMER5_TAMR_R	=	0x00000002;						//	3)	configure	for	periodic	mode,
		TIMER5_TAILR_R	=	period-1;							//	4)	reload	value
		TIMER5_TAPR_R	=	0;															//	5)	12.5ns	timer5A
		TIMER5_ICR_R	=	0x00000001;							//	6)	clear	timer5A	timeout	flag
		TIMER5_IMR_R	|=	0x00000001;						//	7)	arm	timeout	interrupt
		NVIC_PRI23_R	=	(NVIC_PRI23_R&0xFFFFFF00)|0x00000040;	//	8)	priority	2
//	interrupts	enabled	in	the	main	program	after	all	devices	initialized
//	vector	number	108,	interrupt	number	92

}

//	************DMA_Init*****************
//	Initialize	the	buffer	to	port	transfer,	triggered	by	timer	5A
//	This	needs	to	be	called	once	before	requesting	a	transfer
//	The	source	address	increments	by	2,	destination	address	is	fixed
//	Call	DMA_Start	to	begin	continuous	transfer,	call	DMA_Stop	to	halt
//	Inputs:		period	in	12.5nsec	Outputs:	none
void	DMA_Init(uint16_t	period){int	i;	volatile	uint32_t	delay;
		for(i=0;	i<256;	i++){
				ucControlTable[i]	=	0;

}

		SYSCTL_RCGCDMA_R	=	0x01;				//	µDMA	Module	Run	Mode	Clock	Gating	Control
		delay	=	SYSCTL_RCGCDMA_R;			//	allow	time	to	finish
		UDMA_CFG_R	=	0x01;										//	MASTEN	Controller	Master	Enable
		UDMA_CTLBASE_R	=	(uint32_t)ucControlTable;
		UDMA_CHMAP1_R	=	(UDMA_CHMAP1_R&0xFFFFFFF0)|0x00000003;		//	timer5A
		UDMA_PRIOCLR_R	=	BIT8;					//	default,	not	high	priority
		UDMA_ALTCLR_R	=	BIT8;						//	use	primary	control
		UDMA_USEBURSTCLR_R	=	BIT8;	//	responds	to	both	burst	and	single	requests
		UDMA_REQMASKCLR_R	=	BIT8;		//	allow	the	µDMA	controller	to	recognize	requests
		Timer5A_Init(period);

}

uint16_t	*SourcePt;										//	last	address	of	source	buffer,	inc	by	2
volatile	uint32_t	*DestinationPt;		//	fixed	address
uint32_t	Count;																				//	number	of	halfwords	to	transmit
//	private	function	used	to	reprogram	regular	channel	control	structure
void	static	setRegular(void){
		ucControlTable[CH8]			=	(uint32_t)SourcePt;									//	first	and	last	address



		ucControlTable[CH8+1]	=	(uint32_t)DestinationPt;				//	last	address
		ucControlTable[CH8+2]	=	0xD5000003+((Count-1)<<4);		//	DMA	Channel	Control	Word
/*	DMACHCTL										Bits				Value	Description
			DSTINC												31:30			11				no	destination	address	increment
			DSTSIZE											29:28			01				16-bit	destination	data	size
			SRCINC												27:26			01				16-bit	source	address	increment,	+2
			SRCSIZE											25:24			01				16-bit	source	data	size
			reserved										23:18			0					Reserved	
			ARBSIZE											17:14			0					Arbitrates	after	1	transfer
			XFERSIZE										13:4		count-1	Transfer	count	items
			NXTUSEBURST							3							0					N/A	for	this	transfer	type
			XFERMODE										2:0					011			Use	ping-pong	transfer	mode		*/

}

//	private	function	used	to	reprogram	alternate	channel	control	structure
void	static	setAlternate(void){																								//	same	as	regular
		ucControlTable[CH8ALT]			=	(uint32_t)SourcePt;						//	first	and	last	address
		ucControlTable[CH8ALT+1]	=	(uint32_t)DestinationPt;		//	last	address
		ucControlTable[CH8ALT+2]	=	0xD5000003+((Count-1)<<4);	//	DMA	Channel	Control

}

//	************DMA_Start*****************
//	Called	to	transfer	halfwords	from	source	to	destination
//	The	source	address	is	incremented	by	two	each	16-bit	xfer,	destination	fixed
//	Inputs:		source	is	a	pointer	to	a	RAM	buffer	containing	waveform	to	output
//										destination	is	a	pointer	to	32-bit	DAC	device	(SSI0_DR_R),
//										count	is	the	number	of	halfwords	to	transfer	(max	is	1024	halfwords)
//	Outputs:	none
//	This	routine	does	not	wait	for	completion,	runs	continuously
void	DMA_Start(uint16_t	source,	volatile	uint32_t	destination,	uint32_t	count){
		SourcePt	=	source+count-1;		//	last	address	of	source	buffer
		DestinationPt	=	destination;
		Count	=	count;													//	number	of	halfwords	to	transmit
		setRegular();	
		setAlternate();	
		NVIC_EN2_R	=	0x10000000;									//	9)	enable	interrupt	92	in	NVIC
		//	vector	number	108,	interrupt	number	92
		TIMER5_CTL_R	|=	0x00000001;						//	10)	enable	timer5A
		UDMA_ENASET_R	|=	BIT8;		//	µDMA	Channel	8	is	enabled
		//	bits	2:0	ucControlTable[CH8+2]	become	clear	when	regular	structure	done
		//	bits	2:0	ucControlTable[CH8ALT+2]	become	clear	when	alternate	structure	done

}

uint32_t	NumberOfBuffersSent=0;
//	************DMA_Status*****************
//	Can	be	used	to	check	the	status	of	the	continuous	DMA	transfer
//	Inputs:		none



//	Outputs:	the	number	of	buffers	transferred
uint32_t	DMA_Status(void){
		return	NumberOfBuffersSent;

}

void	Timer5A_Handler(void){	//	interrupts	after	each	block	is	transferred
		TIMER5_ICR_R	=	TIMER_ICR_TATOCINT;	//	acknowledge	timer5A	timeout
		NumberOfBuffersSent++;
		if((ucControlTable[CH8+2]&0x0007)==0){					//	regular	buffer	complete
				setRegular();																												//	rebuild	channel	control	structure

}

		if((ucControlTable[CH8ALT+2]&0x0007)==0){		//	Alternate	buffer	complete
				setAlternate();																										//	rebuild	channel	control	structure

}

}

//	************DMA_Stop*****************
//	Stop	the	transfer	halfwords	from	source	to	destination
//	Inputs:		none	Outputs:	none
void	DMA_Stop(void){
		UDMA_ENACLR_R	=	BIT8;		//	µDMA	Channel	8	is	disabled
		NVIC_DIS2_R	=	0x10000000;									//	9)	disable	interrupt	92	in	NVIC
		TIMER5_CTL_R	&=	~0x00000001;						//	10)	disable	timer5A

}

Program	7.3.	Memory	to	DAC	transfer	using	DMA
(DMASPI_4C123).



7.6.	Exercises
7.1	For	each	term	give	a	definition	in	32	words	or	less.
		a)	Latency
		b)	Real-time
		c)	DMA
		d)	Seek	time
		e)	Bandwidth
		f)	Dual-port	memory
		g)	Bank-switched	memory
		h)	Double	buffer
	
7.2	For	each	pair	of	 terms,	explain	 the	similarities	and	differences	 in
32	words	or	less	a)	Burst	versus	cycle-steal	DMA
		b)	Single	address	versus	dual	address	DMA
		c)	Back	buffer	versus	front	buffer
		d)	Write	data	required	versus	write	data	available
	
7.3	The	objective	of	this	problem	is	to	interface	various	devices	to	the
computer	 using	 DMA	 synchronization.	 You	 may	 assume	 the	 bus
bandwidth	 is	 at	 least	 8	 million	 bytes/sec.	 For	 each	 device	 you	 are
asked	to	select	the	most	appropriate	DMA	mode.	Assume	the	devices
support	single	address	DMA.	The	16-bit	address	of	the	memory	buffer
used	in	each	case	is	0x1234.	Fill	in	the	table	with	the	most	appropriate
mode	 for	 each	 Device	Write	 Tape	 Drive	 Each	 tape	 block	 is	 256
bytes.	When	a	 tape	head	 is	 ready,	 the	controller	will	 signal	 that	 it	 is
ready	 to	accept	all	256	bytes.	At	 this	 time,	 the	 tape	 interface	chip	 is
ready	 to	 transfer	 as	 fast	 as	 possible	 all	 256	 bytes	 from	 the	memory
buffer	at	0x1234	to	the	tape.
Sound	 Input	The	 sound	 waveform	 buffer	 is	 located	 in	 memory	 at
0x1234.	Your	interface	will	read	the	8-bit	ADC	1024	times	at	22	kHz
and	store	the	data	in	the	buffer.	Your	software	will	be	smart	enough	to
create	 two	512	byte	buffers	out	of	 the	1024	bytes	 (double	buffer)	 so
that	 it	 can	 process	 one	 buffer	 while	 the	 ADC	 data	 is	 being	 stored
automatically	under	DMA	control	into	the	other	buffer.	I.e.,	when	the
1024	byte	wave	buffer	has	been	filled,	the	DMA	system	should	repeat
and	fill	it	up	again.



Read	 Hard	 Drive	 There	 is	 a	 256-byte	 buffer	 at	 0x1234	 that	 your
DMA	system	will	fill	with	data	from	the	hard	disk.	When	a	hard	drive
read	head	 is	 ready,	 the	controller	will	signal	 that	 it	has	 the	next	byte
from	the	disk.	It	takes	10ms	for	the	read	head	to	be	ready,	then	the	256
bytes	of	data	can	be	transferred	from	the	disk	to	memory	at	2	million
bytes/sec.

	 Tape Sound Disk
Cycle	Steal	or	Block	Transfer 	 	 	
Read	or	Write	Transfer 	 	 	
Autoinitialization	(Yes	or	No) 	 	 	
Address	increment	or	decrement 	 	 	
DMA	Address	register	value 	 	 	
DMA	Count	register	value 	 	 	

	
7.4	When	a	256-byte	block	 is	written	 to	a	 floppy	disk,	 there	are	256
separate	single-address	DMA	cycles	in	cycle	steal	mode.	This	question
deals	with	just	one	of	these	DMA	transfers.	There	are	14	events	listed
below.	First	you	will	eliminate	the	events	that	do	not	occur	during	the
DMA	 cycle	 that	 saves	 one	 byte	 on	 the	 disk.	 In	 particular,	 list	 the
events	 that	 will	 not	 occur.	 Second,	 you	 will	 list	 the	 events	 that	 do
occur	in	the	proper	sequence.
a)	An	interrupt	is	requested.
b)	Registers	are	pulled	from	the	stack.
c)	Registers	are	pushed	on	the	stack.
d)	The	DMAC	asks	the	processor	to	halt	by	activating	its	Halt	signal.
e)	The	DMAC	deactivates	its	Halt	request	to	the	processor.
f)	The	DMAC	tells	the	FDC	interface	that	a	DMA	cycle	is	occurring
by	activating	 its	Ack	 signal;	 the	DMA	Controller	 drives	 the	 address
bus	with	the	FDC	address;	the	DMAC	drives	the	control	bus	to	signify
a	write	cycle	(e.g.,	R/W=0);	the	memory	drives	the	data	bus;	the	FDC
accepts	the	data.
g)	The	DMAC	tells	the	FDC	interface	that	a	DMA	cycle	is	occurring
by	activating	 its	Ack	 signal;	 the	DMAC	drives	 the	 address	bus	with
the	memory	 address;	 the	DMAC	 drives	 the	 control	 bus	 to	 signify	 a
memory	read	cycle	(e.g.,	R/W=1);	the	memory	drives	the	data	bus;	the
FDC	accepts	the	data.
h)	The	FDC	deactivates	its	DMA	Request	signal	to	the	DMAC.
i)	 The	 FDC	 requests	 a	 DMA	 cycle	 to	 the	 DMAC	 by	 activating	 its



Request	signal.
j)	The	interrupt	service	routine	is	executed.
k)	The	write	head	is	properly	positioned	over	the	place	on	the	disk.
l)	The	processor	address	and	control	lines	float;	the	processor	responds
to	the	DMAC	that	it	is	halted	by	activating	its	HaltAck	signal.
m)	The	processor	resumes	software	execution.
n)	Wait	until	the	current	instruction	is	finished	executing.
	
	



8.	File	system	management
Chapter	8	objectives	are	to:
•	Present	the	fundamentals	of	file	system	management
•	Develop	a	detailed	solution	of	a	simple	file	system
•	Define	basic	components	of	a	FAT	system
•	Describe	how	to	program	internal	flash	memory
•	Present	interfacing	methods	to	a	secure	digital	card	(SDC)
	

	
In	 this	 chapter,	 we	 present	 approaches	 for	 managing	 large
amounts	 of	 data	 on	 an	 embedded	 system.	 We	 present	 two
methods	to	save	and	retrieve	data:	internal	flash	and	an	external
secure	digital	card.	 In	particular,	we	will	define	data	as	abstract
elements	(files)	and	then	create	a	mapping	from	the	logical	to	the
physical.	 We	 will	 present	 methods	 for	 creating	 directory,
accessing	data,	and	managing	free	space.
We	will	begin	this	chapter	with	an	introduction	of	file	systems.	In
particular,	we	briefly	present	what	is	a	file	system,	discuss	how	it
will	be	used,	develop	performance	metrics,	present	 fundamental
concepts,	and	then	conclude	with	a	couple	of	simple	examples.
Embedded	 applications	 that	 might	 require	 disk	 storage	 include
data	 acquisition,	 database	 systems,	 and	 signal	 generation
systems.	You	can	also	use	a	disk	 in	an	embedded	system	to	 log
debugging	information.



8.1.	Performance	Metrics

8.1.1.	Usage
A	 file	 system	 allows	 the	 software	 to	 store	 data	 and	 to	 retrieve
previously	stored	data,	see	Figure	8.1.	Typically,	the	size	of	the	stored
data	 exceeds	 available	 memory	 of	 the	 computer.	 In	 general,	 file
systems	allow	for	these	operations:

Create	a	new	file
Write	data	to	the	file	(append	to	end	or	insert	at
arbitrary	location)
Read	data	from	the	file	(read	sequential	or	read	at
arbitrary	location)
Erase	the	file

Each	 file	will	 have	 a	 name	or	 a	 number,	with	which	we	will	 use	 to
access	 the	 data	 in	 that	 file.	 In	 general,	 we	 can	 organize	 files	 into
directories.	However,	 in	 this	 chapter,	we	will	 restrict	 our	 file	 system
implementations	to	a	single	directory	containing	all	files.

Figure	8.1.	A	file	system	is	used	to	store	data.

When	designing	a	file	system,	it	 is	important	to	know	how	it	will	be
used.	 We	 must	 know	 if	 files	 will	 be	 erased.	 In	 particular,	 we	 can
simplify	how	the	disk	is	organized	if	we	know	files,	once	created,	will
never	be	destroyed.
For	example,	when	recording	and	playing	back	sound	and	images,	the
data	will	be	written	and	read	in	a	sequential	manner.	We	call	this	use
pattern	as	sequential	access.	If	we	are	logging	or	recording	data,	then
we	will	need	to	append	data	at	the	end	of	a	file	but	never	change	any
data	once	 logged.	Conversely,	an	editor	produces	more	of	a	random



access	 pattern	 for	 data	 reading	 and	 writing.	 Furthermore,	 an	 editor
requires	data	insertion	and	removal	anywhere	within	the	file.	If	the	file
is	used	as	a	data	base,	then	the	positions	in	the	file	where	we	read	will
be	 random	(random	access	 reading).	However,	 the	data	base	may	be
static,	in	other	words,	it	may	only	need	to	be	written	once.
The	reliability	of	the	storage	medium	and	the	cost	of	lost	information
will	also	affect	 the	design	of	a	 file	system.	For	an	embedded	system
we	 can	 improve	 reliability	 by	 selecting	 a	 more	 reliable	 storage
medium	or	by	deploying	redundancy.	For	example,	we	could	write	the
same	data	into	three	independent	disks,	and	when	reading	we	read	all
three	and	return	the	median	of	the	three	data	values.
So	in	general,	we	should	first	study	the	use	cases	in	our	system	before
choosing	or	designing	the	file	system.	In	this	chapter,	we	will	develop
in	detail	a	file	system	for	data	logging,	where	both	writing	and	reading
will	be	done	sequentially,	and	files	will	never	be	deleted.

8.1.2.	Specifications
There	 are	 many	 organizational	 approaches	 when	 designing	 a	 file
system.	 As	 we	 make	 design	 decisions,	 it	 is	 appropriate	 to	 consider
both	 quantitative	 and	 qualitative	 parameters.	 We	 can	 measure	 the
effectiveness	of	a	file	system	by

Maximum	file	size
Maximum	number	of	files
Speed	to	read	data	at	a	random	position	in	the	file
Speed	to	read	data	in	a	sequential	fashion
Speed	to	write	data	into	the	file

8.1.3.	Fragmentation
Internal	 fragmentation	 is	 storage	 that	 is	 allocated	 for	 the
convenience	of	the	operating	system	but	contains	no	information.	This
space	is	wasted.	Often	this	space	is	wasted	in	order	to	improve	speed
or	 to	 provide	 for	 a	 simpler	 implementation.	 The	 fragmentation	 is
called	 "internal"	 because	 the	 wasted	 storage	 is	 inside	 the	 allocated
region,	 see	 Figure	 8.2.	 In	most	 file	 systems,	whole	 sectors	 (or	 even



clusters	 of	 sectors)	 are	 allocated	 to	 individual	 files,	 because	 this
simplifies	 organization	 and	makes	 it	 easier	 to	 grow	 files.	Any	 space
left	over	between	the	last	byte	of	the	file	and	the	first	byte	of	the	next
sector	 is	 a	 form	 of	 internal	 fragmentation	 called	 file	 slack	 or	 slack
space.	 A	 small	 file	 holding	 m	 bytes	 is	 allocated	 an	 entire	 sector
capable	of	storing	n	bytes	of	data.	However,	only	m	of	those	locations
contains	data,	so	 the	remaining	n-m	bytes	can	be	considered	 internal
fragmentation.	The	pointers	 and	counters	used	by	 the	OS	 to	manage
the	file	are	not	considered	internal	fragmentation,	because	even	though
the	locations	do	not	contain	data,	the	space	is	not	wasted.	Whether	or
not	to	count	the	OS	pointers	and	counters	as	internal	fragmentation	is
a	 matter	 of	 debate.	 As	 is	 the	 case	 with	 most	 definitions,	 it	 is
appropriate	 to	 document	 your	 working	 definition	 of	 internal
fragmentation	whenever	presenting	performance	specifications	to	your
customers.

Figure	8.2.	The	large	block	is	the	entire	disk.	There	are	multiple
files	(rectangles)	on	this	disk.	The	rectangle	on	the	left	represents
one	file.	Within	the	allocated	space	for	this	file	there	is	data,	and
there	is	some	space	in	the	allocated	area	that	is	not	data.	The
space	within	the	allocated	area	not	used	for	data	is	internal
fragmentation.

Many	compilers	will	align	variables	on	a	32-bit	boundary,	even	though
memory	 is	 byte-addressable.	 If	 the	 size	 of	 a	 data	 structure	 is	 not
divisible	by	32	bits,	it	will	skip	memory	bytes	so	the	next	variable	is
aligned	 onto	 a	 32-bit	 boundary.	 This	 wasted	 space	 is	 also	 internal
fragmentation.
Checkpoint	8.1:	If	the	sector	size	is	n	and	the	size	of	the	files	is
randomly	distributed,	what	is	the	average	internal	fragmentation	per
file?



External	 fragmentation	 exists	 when	 the	 largest	 file	 that	 can	 be
allocated	 is	 less	 than	 the	 total	 amount	 of	 free	 space	 on	 the	 disk.
External	 fragmentation	 occurs	 in	 systems	 that	 require	 contiguous
allocation,	 like	 a	 memory	 manager.	 External	 fragmentation	 would
occur	 within	 a	 file	 system	 that	 allocates	 disk	 space	 in	 contiguous
sectors.	 Over	 time,	 free	 storage	 becomes	 divided	 into	 many	 small
pieces,	see	Figure	8.3.	It	 is	a	particular	problem	when	an	application
allocates	 and	 deallocates	 regions	 of	 storage	 of	 varying	 sizes.	 The
result	 is	 that,	 although	 free	 storage	 is	 available,	 it	 is	 effectively
unusable	because	it	is	divided	into	pieces	that	are	too	small	to	satisfy
the	demands	of	the	application.	The	term	"external"	refers	to	the	fact
that	the	unusable	storage	is	outside	the	allocated	regions.

Figure	8.3.	There	are	four	files	on	this	disk,	and	there	are	five
sections	of	free	space.	The	largest	free	space	is	less	than	the	total
free	space,	which	is	defined	as	external	fragmentation,	assuming
the	file	system	requires	contiguous	allocation.

For	 example,	 assume	 we	 have	 a	 file	 system	 employing	 contiguous
allocation.	 A	 new	 file	 with	 five	 sectors	might	 be	 requested,	 but	 the
largest	contiguous	chunk	of	free	disk	space	is	only	three	sectors	long.
Even	if	there	are	ten	free	sectors,	those	free	sectors	may	be	separated
by	allocated	files,	one	still	cannot	allocate	the	requested	file	with	five
sectors,	 and	 the	 allocation	 request	 will	 fail.	 This	 is	 external
fragmentation	because	there	are	ten	free	sectors	but	the	largest	file	that
can	be	allocated	is	three	sectors.
Checkpoint	8.2:	Consider	this	analogy.	You	are	given	a	piece	of
wood	that	is	10	meters	long,	and	you	are	asked	to	cut	it	because	you
need	one	piece	that	is	2	meters	long.	What	is	the	best	way	to	cut	the
wood	so	there	is	no	external	fragmentation?	Think	of	another	way
the	wood	could	have	been	cut	so	the	largest	piece	of	free	wood	is
smaller	than	the	total	free	wood,	creating	external	fragmentation?



8.2.	File	System	Allocation
There	 are	 three	 components	 of	 the	 file	 system:	 the	 directory,
allocation,	 and	 free-space	 management.	 This	 section	 introduces
fundamental	 concepts	 and	 the	 next	 two	 sections	 present	 simple	 file
systems.	In	this	chapter,	we	define	sector	as	a	unit	of	storage.	Whole
sectors	will	be	allocated	to	a	file.	In	other	words,	we	will	not	combine
data	from	multiple	files	into	a	single	sector.
We	consider	information	in	a	file	as	a	simple	linear	array	of	bytes.	The
“logical”	address	is	considered	as	the	index	into	this	array.	However,
data	must	be	placed	at	a	“physical”	location	on	the	disk.		An	important
task	of	the	file	system	is	to	translate	the	logical	address	to	the	physical
address	(Figure	8.4).

Figure	8.4.	A	file	system	must	translate	from	a	logical	address	to
the	physical	address.

8.2.1.	Contiguous	allocation
Contiguous	 allocation	 places	 the	 data	 for	 each	 file	 at	 consecutive
sectors	 on	 the	 disk,	 as	 shown	 in	 Figure	 8.5.	 Each	 directory	 entry
contains	the	file	name,	the	sector	number	of	the	first	sector,	the	length
in	sectors.	This	method	has	similar	theory	as	a	memory	manager.	You
could	 choose	 first-fit,	 best-fit,	 or	 worst-fit	 algorithms	 to	 manage
storage.	First	fit	is	an	algorithm	that	searches	the	available	free	space
and	selects	the	first	area	it	fits	that	is	large	enough	for	the	file	needs.
This	algorithm	executes	quickly.	Best	fit	is	an	algorithm	that	looks	at
all	 available	 free	 space	 and	 chooses	 the	 smallest	 area	 that	 is	 large
enough	for	the	file	needs.	Best-fit	may	limit	external	fragmentation	for
contiguous	allocation	schemes.		Worst	fit	is	an	algorithm	that	looks	at
all	 available	 free	 space	 and	 chooses	 the	 largest	 area,	 assuming	 that
area	is	large	enough	for	the	file	needs.
If	the	file	can	increase	in	size,	either	you	can	leave	no	extra	space,	and



copy	 the	 file	 elsewhere	 if	 it	 expands,	 or	 you	 can	 leave	 extra	 space
when	 creating	 a	 new	 file.	 Assuming	 the	 directory	 is	 in	 memory,	 it
takes	 only	 one	 disk	 sector	 read	 to	 access	 any	 data	 in	 the	 file.	 A
disadvantage	of	 this	method	 is	 you	need	 to	 know	 the	maximum	 file
size	when	a	file	is	created,	and	it	will	be	difficult	to	grow	the	file	size
beyond	its	initial	allocation.

Figure	8.5.	A	simple	file	system	with	contiguous	allocation.
Notice	all	the	sectors	of	a	file	are	physically	next	to	each	other.

Checkpoint	8.3:	The	disk	in	Figure	8.5	has	32	sectors	with	the
directory	occupying	sector	0.	The	disk	sector	size	is	512	bytes.
What	is	the	largest	new	file	that	can	be	created?	
Checkpoint	8.4:	You	wish	to	allocate	a	new	file	requiring	1	sector
on	the	disk	in	Figure	8.5.	Using	first-fit	allocation,	where	would
you	put	the	file?		Using	best-fit	allocation,	where	would	you	put	the
file?	Using	worst-fit	allocation,	where	would	you	put	the	file?

One	of	the	tasks	the	file	system	must	manage	is	free	space.	One	simple
scheme	 for	 free	 space	management	 is	 a	bit	 table.	 If	 the	 disk	 has	 n
sectors,	then	we	will	maintain	a	table	with	n	bits,	assigning	one	bit	for
each	sector.	If	the	bit	is	1,	the	corresponding	sector	is	free,	and	if	the
bit	 is	 0,	 the	 sector	 is	 used.	 Figure	 8.5	 shows	 a	 simple	 disk	with	 32
sectors.	 For	 this	 disk	 we	 could	 manage	 free	 space	 with	 one	 32-bit
number.
Checkpoint	8.5:	Assume	the	sector	size	is	4096	bytes	and	the	disk
is	one	gibibyte.	How	many	bytes	would	it	take	to	maintain	a	bit



table	for	the	free	space?

8.2.2.	Linked	allocation
Linked	 allocation	 places	 a	 sector	 pointer	 in	 each	 data	 sector
containing	the	address	of	the	next	sector	in	the	file,	as	shown	in	Figure
8.6.	Each	directory	entry	contains	a	file	name	and	the	sector	number	of
the	first	sector.		There	needs	to	be	a	way	to	tell	the	end	of	a	file.	The
directory	could	contain	the	file	size,	each	sector	could	have	a	counter,
or	there	could	be	an	end-of-file	marker	in	the	data	itself.	Sometimes,
there	is	also	a	pointer	to	the	last	sector,	making	it	faster	to	add	to	the
end	 of	 the	 file.	Assuming	 the	 directory	 is	 in	memory	 and	 the	 file	 is
stored	in	N	sectors,	it	takes	on	average	N/2	disk-sector	reads	to	access
any	random	piece	of	data	on	the	disk.	Sequential	reading	and	writing
are	efficient,	and	it	also	will	be	easy	to	append	data	at	the	end	of	the
file.	Linked	allocation	has	no	external	fragmentation.

Figure	8.6.	A	simple	file	system	with	linked	allocation.

Checkpoint	8.6:	If	the	disk	holds	2	Gibibytes	of	data	broken	into
512-byte	sectors,	how	many	bits	would	it	take	to	store	the	sector
address?
Checkpoint	8.7:	If	the	disk	holds	2	Gibibytes	of	data	broken	into
32k-byte	sectors,	how	many	bits	would	it	take	to	store	the	sector
address?
Checkpoint	8.8:	The	disk	in	Figure	8.6	has	32	sectors	with	the
directory	occupying	sector	0.	The	disk-sector	size	is	512	bytes.
What	is	the	largest	new	file	that	can	be	created?		Is	there	external
fragmentation?
Checkpoint	8.9:	How	would	you	handle	the	situation	where	the
number	of	bytes	stored	in	a	file	is	not	an	integer	multiple	of	the



number	of	data	bytes	that	can	be	stored	in	each	sector?	
We	can	also	use	the	links	to	manage	the	free	space,	as	shown	in	Figure
8.7.	 If	 the	 directory	 were	 lost,	 then	 all	 file	 information	 except	 the
filenames	 could	 be	 recovered.	 Putting	 the	 number	 of	 the	 last	 sector
into	the	directory	with	double-linked	pointers	improves	recoverability.
If	one	data	sector	were	damaged,	then	remaining	data	sectors	could	be
rechained,	limiting	the	loss	of	information	to	the	one	damaged	sector.

Figure	8.7.	A	simple	file	system	with	linked	allocation	and	free
space	management.

8.2.3.	Indexed	allocation
Indexed	allocation	uses	an	index	table	to	keep	track	of	which	sectors
are	assigned	to	which	files.	Each	directory	entry	contains	a	file	name,
an	index	for	the	first	sector,	and	the	total	number	of	sectors,	as	shown
in	 Figure	 8.8.	 One	 implementation	 of	 indexed	 allocation	 places	 all
pointers	for	all	 files	on	 the	disk	 together	 in	one	 index	 table.	Another
implementation	 allocates	 a	 separate	 index	 table	 for	 each	 file.	Often,
this	table	is	so	large	it	is	stored	in	several	disk	sectors.	For	example,	if
the	sector	number	 is	a	16-bit	number	and	 the	disk	sector	 size	 is	512
bytes,	then	only	256	index	values	can	be	stored	in	one	sector.	Also	for
reliability,	 we	 can	 store	 multiple	 copies	 of	 the	 index	 on	 the	 disk.
Typically,	the	entire	index	table	is	loaded	into	memory	while	the	disk
is	 in	 use.	 The	 RAM	 version	 of	 the	 table	 is	 stored	 onto	 the	 disk
periodically	and	when	the	system	is	shut	down.	Indexed	allocation	is
faster	than	linked	allocation	if	we	employ	random	access.	If	the	index
table	is	in	RAM,	then	any	data	within	the	file	can	be	found	with	just
one	 sector	 read.	 One	 way	 to	 improve	 reliability	 is	 to	 employ	 both



indexed	 and	 linked	 allocation.	 The	 indexed	 scheme	 is	 used	 for	 fast
access,	 and	 the	 links	 can	be	used	 to	 rebuild	 the	 file	 structure	 after	 a
disk	failure.	Indexed	allocation	has	no	external	fragmentation.
Checkpoint	8.10:	If	the	sector	number	is	a	16-bit	number	and	the
sector	size	is	512	bytes,	what	is	the	maximum	disk	size?	
Checkpoint	8.11:	A	disk	with	indexed	allocation	has	2	GiB	of
storage.	Each	file	has	a	separate	index	table,	and	that	index
occupies	just	one	sector.	The	disk	sector	size	is	1024	bytes.	What	is
the	largest	file	that	can	be	created?	Give	two	ways	to	change	the	file
system	to	support	larger	files.	
Checkpoint	8.12:	This	disk	in	Figure	8.8	has	32	sectors	with	the
directory	occupying	sector	0	and	the	index	table	in	sector	1.	The
disk-sector	size	is	512	bytes.	What	is	the	largest	new	file	that	can	be
created?		Is	there	external	fragmentation?
	

Figure	8.8.	A	simple	file	system	with	indexed	allocation.

8.2.4.	File	allocation	table	(FAT)
The	 file	 allocation	 table	 (FAT)	 is	 a	 mixture	 of	 indexed	 and	 linked
allocation,	as	shown	in	Figure	8.9.	Each	directory	entry	contains	a	file
name	and	the	sector	number	of	the	first	sector.	



Figure	8.9.	A	simple	file	system	with	a	file	allocation	table.

The	FAT	is	just	a	table	containing	a	linked	list	of	sectors	for	each	file.
Figure	 8.9	 shows	 file	A	 in	 sectors	 10,	 3,	 and	 12.	 The	 directory	 has
sector	10,	which	is	the	initial	sector.	The	FAT	contents	at	index	10	is	a
3,	so	3	is	the	second	sector.	The	FAT	contents	at	index	3	is	a	12,	so	12
is	 the	 third	 sector.	 The	FAT	 contents	 at	 index	 12	 is	 a	NULL,	which
means	there	are	no	more	sectors	in	the	file.	A	FAT	allocation	schemes
have	no	external	fragmentation.
Many	 scientists	 classify	 FAT	 as	 a	 “linked”	 scheme,	 because	 it	 has
links.	However,	other	scientists	call	it	an	“indexed”	scheme,	because	it
has	 the	 speed	 advantage	of	 an	 “indexed”	 scheme	when	 the	 table	 for
the	entire	disk	is	kept	in	main	memory.	If	the	directory	and	FAT	are	in
memory,	it	takes	just	one	disk	read	to	access	any	data	in	a	file.	If	the
disk	is	very	large,	the	FAT	may	be	too	large	to	fit	in	main	memory.	If
the	FAT	is	stored	on	the	disk,	then	it	will	take	2	or	3	disk	accesses	to
find	 an	 element	within	 the	 file.	 The	 -	 	 	 in	 Figure	 8.9	 represent	 free
sectors.	 In	 Figure	 8.10,	 we	 can	 chain	 them	 together	 in	 the	 FAT	 to
manage	free	space.
Checkpoint	8.13:	This	disk	in	Figure	8.10	has	32	sectors	with	the
directory	occupying	sector	0	and	the	FAT	in	sector	1.	The	disk
sector	size	is	512	bytes.	What	is	the	largest	new	file	that	can	be
created?	Is	there	an	external	fragmentation?	



Figure	8.10.	The	simple	file	system	with	a	file	allocation	table
showing	the	free-space	management.

Observation:	In	this	section	we	use	0	to	mean	null	pointer.	Later	in
the	chapter	we	will	use	255	to	mean	null	pointer.	We	use	0	in	this
section	because	this	discussion	is	similar	to	the	standard	FAT16.
However,	for	EEPROM-based	systems,	we	need	to	use	255	because
255	is	the	value	that	occurs	when	the	flash	memory	is	erased.

	



8.3.	Solid	State	Disk

8.3.1.	Flash	memory
In	 general,	 we	 can	 divide	 memory	 into	 volatile	 and	 nonvolatile
categories.	Volatile	means	it	loses	its	data	when	power	is	removed	and
restored.		Nonvolatile	means	it	retains	its	data	when	power	is	removed
and	 restored.	There	 are	many	 types	of	memory,	 but	here	 are	 four	of
them

Volatile	memory
Static	random	access	memory,	SRAM
Dynamic	random	access	memory,	DRAM

Nonvolatile	memory
Flash	electrically	erasable	programmable	read

only	memory,	EEPROM
Ferroelectric	random	access	memory,	FRAM

	
As	 you	 know	 data	 and	 the	 stack	 are	 allocated	 in	 RAM,	 because	 it
needs	read/write	access.	DRAM	has	fewer	transistors/bit	compared	to
SRAM	 because	 it	 does	 require	 periodic	 refreshing.	Most	 Cortex	M
microcontrollers	 use	 SRAM	 because	 of	 its	 simple	 technology	 and
ability	 to	 operate	 on	 a	 wide	 range	 of	 bus	 frequencies.	 For	 random
access	 memories,	 there	 is	 a	 size	 above	 which	 DRAM	 is	 more	 cost
effective	 than	 SRAM.	Dynamic	 random	 access	memory	 (DRAM)	 is
the	 type	 of	 memory	 found	 in	 most	 personal	 computers.	 Embedded
devices	like	the	Beaglebone	and	Raspberry	Pi	also	use	DRAM.
Ferroelectric	RAM	 (FRAM)	 is	 a	 random	access	memory	 similar	 to
DRAM	but	uses	a	ferroelectric	layer	instead	of	a	dielectric	layer.	The
ferroelectric	 layer	 provides	 the	 nonvolatility	 needed	 for	 program
storage.	 Some	 new	 lines	 of	 microcontrollers	 use	 FRAM	 instead	 of
flash	 EEPROM	 for	 their	 nonvolatile	 storage.	 The	 MSP430FRxx
microcontrollers	from	Texas	Instruments	use	FRAM	to	store	programs
and	data	in	one	shared	memory	object.	Other	companies	that	produce
FRAM	 microcontrollers	 include	 Fujitsu	 and	 Silicon	 Labs.	 	 FRAM



requires	 less	 power	 usage,	 has	 a	 faster	write,	 and	 provides	 a	 greater
maximum	 number	 of	 write-erase	 cycles	 when	 compared	 to	 flash.
When	 compared	 to	 flash,	 FRAMs	 have	 lower	 storage	 densities,
smaller	sizes,	and	higher	cost.
Solid-state	disks	can	be	made	from	any	nonvolatile	memory,	such	as
battery-backed	RAM,	FRAM,	or	flash	EEPROM.	Personal	computers
typically	 use	 disks	 made	 with	 magnetic	 storage	 media	 and	 moving
parts.	 While	 this	 magnetic-media	 technology	 is	 acceptable	 for	 the
personal	computer	because	of	its	large	storage	size	(>	1	Tibibyte)	and
low	cost	(<$100	OEM),	it	is	not	appropriate	for	an	embedded	system
because	 of	 its	 physical	 dimensions,	 electrical	 power	 requirements,
noise,	sensitivity	to	motion,	and	weight.
Secure	digital	(SD)	cards	use	Flash	EEPROM	together	with	interface
logic	to	read	and	write	data.	For	an	embedded	system	we	could	create
a	 file	 system	 using	 an	 SD	 card	 or	 using	 the	 internal	 flash	 of	 the
microcontroller	 itself.	 SD	 cards	 are	 an	 effective	 approach	when	 file
storage	 needs	 exceed	 128	 kibibytes,	 because	 of	 the	 low	 cost	 and
simple	synchronous	serial	interface.	If	we	use	the	internal	flash	of	the
microcontroller	 itself,	 there	will	be	no	additional	costs	 to	developing
this	file	system.
Smart	phones,	tablets,	and	cameras	currently	employ	solid-state	disks
because	 of	 their	 small	 physical	 size	 and	 low	 power	 requirements.
Unfortunately,	solid-state	disks	have	smaller	storage	sizes	and	higher
cost/bit	 than	 the	 traditional	 magnetic	 storage	 disk.	 A	 typical	 64-
Gibibyte	SD	card	costs	 less	 than	$20.	The	cost/bit	 is	 therefore	about
$300/Tibibyte.	In	contrast,	an	8-Tibibyte	hard	drive	costs	about	$200
or	$25/Tibibyte.	The	cost/bit	of	flash	storage	is	expensive	as	compared
to	a	traditional	hard	drive.	However,	there	is	a	size	point	(e.g.,	below
128	Gibibyte),	below	which	the	overall	cost	of	flash	will	be	less	than	a
traditional	magnetic/motorized	drive.
A	 flash	 memory	 cell	 uses	 two	 transistors;	 the	 gates	 of	 the	 two
transistors	are	positioned	gate	to	gate	separated	by	an	insulation	layer
as	 shown	 in	 Figure	 8.11.	 Because	 each	 flash	 bit	 has	 only	 two
transistors,	the	microcontroller	can	pack	more	flash	bits	into	the	chip
as	compared	to	SRAM	or	FRAM	bits.	A	normal	transistor	has	an	input
gate	that	is	used	to	control	conductance	between	the	source	and	drain.
However,	 in	a	 flash	memory	cell,	one	of	 the	gates	 is	 floating,	which



means	 it	 is	 not	 connected	 to	 anything.	 	 If	 we	 trap	 charge	 on	 this
floating	 gate,	 we	 define	 this	 state	 as	 value	 0.	 If	 there	 is	 no	 trapped
charge,	we	define	the	state	as	a	1.	There	are	three	operations	we	can
perform	on	the	cell.

Figure	8.11.	The	floating	gate	in	a	flash	memory	cell	creates	the
storage.

If	we	place	a	large	voltage	on	the	control	gate	(Vcg),	we	can	get	all	the
trapped	 charge	 to	 flow	 from	 the	 floating	 gate	 to	 the	 source	 below,
hence	erasing	the	cell,	making	its	value	equal	to	1.
Conversely	if	we	place	a	large	voltage	of	the	opposite	polarity	on	the
control	gate,	we	can	add	charge	to	the	floating	gate,	programming	its
value	equal	to	0.	On	the	TM4C123	the	smallest	granularity	with	which
we	can	erase	is	1024	bytes.	On	the	MSP432	we	erase	flash	in	blocks
of	 4096	 bytes.	However,	we	 can	 program	 individual	words	 on	most
flash	memories	including	the	TM4C123	and	MSP432.	Once	erased	to
a	1	or	programmed	to	a	0,	the	charge	or	lack	of	charge	remains	on	the
floating	gate	even	 if	power	 is	 removed	 from	 the	system.	Hence,	 this
memory	 is	 nonvolatile.	 Data	 in	 the	 TM4C123	 and	 MSP432	 flash
memories	will	remain	valid	for	20	years,	and	the	memory	will	operate
up	 to	 100,000	 erase/program	 cycles.	 Erasing	 and	 programming
operations	 take	 a	 very	 long	 time	 compared	 to	 writing	 static	 RAM
(SRAM).	For	example,	it	takes	8	to	15	ms	to	erase	an	entire	1024-byte
page	on	the	TM4C123.	In	contrast,	writing	256	words	in	RAM	on	an
80-MHz	Cortex-M	takes	5	cycles/loop,	which	adds	up	to	1280	cycles
or	16	µs.
To	read	the	value	from	flash,	the	control	gate	is	activated.	There	is	a
threshold	voltage	for	the	control	gate	at	which	source-drain	current	(Id)
flows	 if	 the	 bit	 is	 0	 and	will	 not	 flow	 if	 the	 bit	 is	 1.	 The	 threshold



voltage	is	depicted	as	the	dotted	line	in	Figure	8.12.

Figure	8.12.	The	trapped	charge	in	the	floating	gate	affects	the
relationship	between	control	gate	voltage	and	drain	current.

For	 more	 information	 on	 flash	 see
http://computer.howstuffworks.com/flash-memory.htm
For	 information	 on	 RAM	 memory	 see
http://computer.howstuffworks.com/ram.htm
In	summary:

Flash	memory	cells	have	two	transistors,	so	it	is	has
very	high	density
Nonvolatile	behavior	implemented	as	trapped/no
charge	on	the	floating	gate
We	can	erase	an	entire	block	(1k	or	4k),	making	all
bits	1
We	can	program	individual	bytes/words,	making	bits
0	as	needed
Both	erasing	and	programming	are	very	slow
compared	to	reading

8.3.2.	Flash	device	driver
One	 inexpensive	 approach	 to	 developing	 a	 file	 system	 is	 to	 use	 the
internal	 flash	storage	of	 the	microcontroller.	Both	 the	TM4C123	and
MSP432	have	256	kibibytes	of	internal	flash,	existing	from	addresses
0	 to	 0x0003FFFF.	 Normally,	 we	 use	 the	 internal	 flash	 to	 save	 the
machine	 code	 of	 our	 software.	 However,	 in	 this	 chapter	 we	 will
allocate	half	of	the	flash,	which	is	128	kibibytes,	to	create	a	solid	state
disk.	We	divide	the	disk	into	sectors	and	operate	on	a	sector	by	sector



basis.	Typically,	 the	sector	size	 is	a	power	of	2;	 let	each	sector	be	2p
bytes.	This	means	we	will	partition	 the	217-byte	disk	 into	2m	 sectors,
where	m+p=17.	 In	 general,	 there	 are	 three	 operations:	we	 can	 erase
(set	 bits	 to	 1),	 program	 (set	 bits	 to	 0),	 and	 read.	 The	 physical	 layer
functions	 provide	 these	 basic	 operations.	 Program	 8.1	 shows	 the
prototypes	for	the	TM4C123.	We	do	not	need	physical	layer	functions
to	 read	 the	 flash,	 because	 once	 erased	 and	 programmed,	 software
simply	 reads	 from	 the	 memory	 address	 in	 the	 usual	 manner.	 The
TM4C123	 is	 optimized	 for	 programming	 up	 to	 128-byte	 (32-word)
aligned	“mass	writes”	or	“fast	writes”.	The	MSP432	implements	this
feature	for	up	to	64-byte	(16-word)	arrays.	The	smallest	block	that	we
can	erase	on	 the	TM4C123	 is	1024	bytes.	On	 the	MSP432	we	erase
flash	in	blocks	of	4096	bytes.

	
//------------Flash_Erase------------
//	Erase	1	KB	block	of	flash	on	TM4C123,	4KB	on	MSP432
//	Input:	addr	1-KB	aligned	flash	memory	address	to	erase
//	Output:	0	if	successful,	1	if	fail
int	Flash_Erase(uint32_t	addr);
	
//------------Flash_Write------------
//	Write	32-bit	data	to	flash	at	given	address.
//	Input:	addr	4-byte	aligned	flash	memory	address	to	write
//								data	32-bit	data
//	Output:	0	if	successful,	1	if	fail
int	Flash_Write(uint32_t	addr,	uint32_t	data);
	
//------------Flash_WriteArray	(TM4C123	only)	------------
//	Write	an	array	of	32-bit	data	to	flash	starting	at	given	address.
//	Input:	source	pointer	to	array	of	32-bit	data
//								addr			4-byte	aligned	flash	memory	address	to	start	writing
//								count		number	of	32-bit	writes
//	Output:	number	of	successful	writes;	return	value	==	count	if	ok
//	Note:	at	80	MHz,	it	takes	678	usec	to	write	10	words
int	Flash_WriteArray(uint32_t	*source,	uint32_t	addr,	uint16_t	count);
Program	8.1.	Prototypes	for	the	physical	layer	functions	to
manage	the	flash	(4-k	erase	for	MSP432).



8.3.3.	eDisk	device	driver
We	will	add	an	abstraction	level	above	the	physical	layer	to	create	an
object	that	behaves	like	a	disk.	In	particular,	we	will	use	128	kibibytes
of	 flash	at	 addresses	0x00020000	 to	0x0003FFFF	 to	create	 the	 solid
state	disk	and	partition	the	disk	into	512-byte	sectors.	This	abstraction
will	allow	us	to	modify	the	physical	layer	without	modifying	the	file
system	 code.	 For	 example,	we	might	 change	 the	 physical	 layer	 to	 a
secure	digital	card,	to	a	battery-backed	RAM,	to	an	FRAM,	or	even	to
network	storage.
On	most	disks,	there	is	physical	partitioning	of	the	storage	into	blocks
in	order	to	optimize	for	speed.	For	example,	the	smallest	block	on	the
MSP432	 that	we	 can	 erase	 is	 4	 kibibytes,	 and	 on	 the	TM4C123	 the
block	size	is	1	kibibyte.	We	will	use	the	term	block	to	mean	a	physical
partition	created	by	the	hardware,	and	use	the	term	sector	(which	can
be	 1	 or	more	 blocks)	 as	 a	 logical	 partition	 defined	 by	 the	 operating
system.	 In	 a	 file	 system,	we	will	 partition	 the	 disk	 into	 sectors	 and
allocate	whole	sectors	to	a	single	file.	In	other	words,	we	will	not	store
data	from	two	files	into	the	same	sector.	This	all	or	nothing	allocation
scheme	 is	 used	 by	 most	 file	 systems,	 because	 it	 simplifies
implementation.
If	we	were	to	implement	a	file	system	that	allows	users	to	erase,	move,
insert	(grow)	or	remove	(shrink)	data	in	the	files,	then	we	would	need
to	 erase	 blocks	 dynamically.	 Because	 the	 smallest	 block	 on	 the
MSP432	that	we	can	erase	is	4096	bytes,	we	would	have	to	choose	a
sector	size	that	is	an	integer	multiple	of	4k.		On	the	TM4C123	smallest
sector	size	would	be	1k.	Unfortunately,	a	disk	made	from	the	128k	of
the	 flash	 with	 4k-sectors	 would	 only	 have	 32	 sectors.	 32	 is	 such	 a
small	number	the	file	system	would	be	quite	constrained.
The	 philosophy	 of	 this	 book	 has	 been	 to	 implement	 the	 simplest
system	that	still	exposes	the	fundamental	concepts.	Therefore,	in	this
chapter	we	will	develop	a	simple	 file	system	that	does	not	allow	 the
user	to	delete,	move,	grow,	or	shrink	data	in	the	files.	It	does	however
allow	 users	 to	 create	 files	 and	 write	 data	 to	 a	 file	 in	 increments	 of
sectors.	More	specifically,	when	writing	we	will	always	append	data	to
the	end	of	the	file.	We	call	 this	simple	approach	as	a	write-once	file
system.	We	will	erase	the	128k	flash	once,	and	then	program	0’s	into
the	flash	memory	dynamically	as	it	runs.	Data	logging	and	storage	of



debug	 information	 are	 applications	 of	 a	 write-once	 file	 system.	 For
this	simple	file	system,	we	can	choose	the	sector	size	to	be	any	size,
because	the	flash	is	erased	only	once,	and	data	is	programmed	as	the
user	creates	and	writes	sectors	to	the	file.	The	size	of	the	disk	is	128
kibibytes,	i.e.,		217	bytes.	If	the	sector	size	is	2n,	then	there	will	be	217—n

sectors.	For	this	system,	if	we	were	to	use	the	fast	write	capabilities	of
the	TM4C123	we	could	partition	the	128	kibibyte	disk	as	1024	sectors
with	128	bytes	in	each	sector.	Conversely,	if	we	use	the	regular	write
function	( Flash_WriteArray )	then	we	could	choose	any	sector	size.
In	 Section	 8.5,	 we	will	 partition	 the	 disk	 into	 256	 sectors	 with	 512
bytes	per	sector	creating	a	file	system	where	the	sector	address	is	an	8-
bit	number.
Program	 8.2	 shows	 the	 prototypes	 of	 the	 disk-level
functions. eDisk_Init() 	has	no	operations	to	perform	in	this	system.	It
was	 added	 because	 other	 disks,	 like	 the	 SD	 card,	 will	 need
initialization.	 You	 shouldhave 	 eDisk_Init 	 return	 zero	 if	 the	 drive
parameter	is	0	and	return	1	if	the	drive	parameter	is	not	zero,	because
there	is	only	one	drive.
Reading	 a	 sector	 requires	 an	 address	 translation.	 The
function eDisk_ReadSector 	will	copy	512	bytes	from	flash	to	RAM.
The	start	of	the	disk	is	at	flash	address	0x00020000.	Each	sector	is	512
bytes	long,	so	the	starting	address	of	the	sector	is	simply	0x00020000
+	512*sector
Writing	 a	 sector	 requires	 the	 same	 address	 translation.	 The
function eDisk_WriteSector	will	program	512	bytes	from	RAM	into
flash.	 In	 particular,	 it	 will	 do	 the	 address	 translation	 and	 call	 the
function Flash_WriteArray .	 512	 bytes	 is	 128	 words,	 so	 the	 count
parameter	will	be	128.
	

//***************	eDisk_Init	***********
//	Initialize	the	interface	between	microcontroller	and	disk
//	Inputs:	drive	number	(only	drive	0	is	supported)
//	Outputs:	status
//		RES_OK								0:	Successful
//		RES_ERROR					1:	Drive	not	initialized
enum	DRESULT	eDisk_Init(uint32_t	drive);
	



	
//***************	eDisk_ReadSector	***********
//	Read	1	sector	of	512	bytes	from	the	disk,	data	goes	to	RAM
//	Inputs:	pointer	to	an	empty	RAM	buffer
//									sector	number	of	disk	to	read:	0,1,2,...255
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
enum	DRESULT	eDisk_ReadSector(
				uint8_t	*buff,					//	Pointer	to	a	RAM	buffer	into	which	to	store
				uint8_t	sector);			//	sector	number	to	read	from
	
//***************	eDisk_WriteSector	***********
//	Write	1	sector	of	512	bytes	of	data	to	the	disk,	data	comes	from	RAM
//	Inputs:	pointer	to	RAM	buffer	with	information
//									sector	number	of	disk	to	write:	0,1,2,...,255
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
enum	DRESULT	eDisk_WriteSector(
				const	uint8_t	*buff,		//	Pointer	to	the	data	to	be	written
				uint8_t	sector);						//	sector	number			
Program	8.2.	Header	file	for	the	solid	state	disk	device	driver.

8.3.4.	Secure	digital	card	interface
The	Secure	Digital	Memory	Card	 (SDC)	 is	 a	 popular	 standard	 for
data	storage	in	embedded	systems.	The	SDC	is	an	example	of	a	high-
speed	 I/O	 device,	 and	 normally	 we	 would	 interface	 the	 SDC	 using
DMA	 synchronization.	 However,	 when	 interfacing	 to	 the
TM4C/MSP432,	 we	 will	 use	 busy-wait	 synchronization	 with	 the
understanding	that	peak	bandwidth	will	be	limited	by	software	and	not



SDC	performance.	If	we	wished	to	improve	performance,	then	DMA
synchronization	 could	 be	 used.	 The	 SDC	 is	 upward-compatible	 to
MULTIMEDIA	CARD	(MMC)	so	 that	 the	SDC-compliant	 interfaces
can	 also	 use	 an	 MMC	 with	 an	 appropriate	 adapter.	 There	 are	 also
smaller	 versions,	 such	 as	 MINISD	 and	 MICROSD,	 where	 the
differences	are	in	the	connector	rather	than	the	electrical	specification.
The	 card	 itself	 has	 a	 microcontroller	 in	 it.	 The	 flash	 memory
operations,	such	as	erasing,	reading,	and	writing,	are	performed	on	this
microcontroller.	The	data	is	transferred	between	the	memory	card	and
the	 host	 controller	 as	 512-byte	 blocks.	 In	 this	way,	 the	 SDC	 can	 be
viewed	 like	 a	 generic	 hard	 disk	 drive.	 In	 other	words,	 the	 low-level
drivers	perform	block	 reads	 and	writes.	A	2-gibibyte	SDC	will	 have
over	4	million	(231/29)	blocks,	and	the	low-level	driver	will	allow	you
to	 read	 or	write	 any	 of	 these	 blocks.	 Program	 8.3	 shows	 a	 possible
header	 file	 for	 such	 a	 low-level	 software	 interface.	 The
implementation	of	this	SDC	driver	can	be	found	on	the	book	web	site
as	SDC_xxx.	 The	 file	 system,	 written	 as	 a	 higher	 level	 driver,	 will
format	 and	 partition	 this	 storage	 in	 a	 logical	 manner.	 You	 can
download	 from	 the	 internet	 full-functioning	SDC	drivers	 and	FAT16
file	 system	 for	 most	 microcontrollers.	 The	 FAT16	 file	 system	 will
allow	 data	 exchange	 between	 the	 microcontroller	 and	 a	 personal
computer.	The	FAT32	is	defined	for	only	high	capacity	(>=	4G)	cards.
However,	this	section	will	serve	as	an	introduction	providing	the	basic
ideas	and	fundamental	theories.	The	file	systems	described	in	the	next
section	will	be	a	lot	simpler	than	FAT16.
The	SDC	software	driver	is	similar	to	the	driver	for	the	internal	flash
memory	presented	in	the	last	section.	The eDisk_Init function	must	be
called	once. eDisk_ReadBlock is	used	to	read	512	bytes	of	data	from
the	SDC	into	RAM.	 eDisk_WriteBlock 	is	used	to	write	512	bytes	of
data	from	RAM	into	the	SDC.		The	write	block	function	will	perform
the	two	step	operating	of	erasing	and	then	programming.

//***************	eDisk_Init	***********
//	Initialize	the	interface	between	microcontroller	and	the	SD	card
//	Inputs:	drive	number	(only	drive	0	is	supported)
//	Outputs:	status
//		STA_NOINIT			0x01			Drive	not	initialized
//		STA_NODISK			0x02			No	medium	in	the	drive
//		STA_PROTECT		0x04			Write	protected



//	since	this	program	initializes	the	disk,	it	must	run	with
//				the	disk	periodic	task	operating
DSTATUS	eDisk_Init(BYTE	drive);
	
//***************	eDisk_ReadBlock	***********
//	Read	1	block	of	512	bytes	from	the	SD	card		(write	to	RAM)
//	Inputs:	pointer	to	an	empty	RAM	buffer
//									sector	number	of	SD	card	to	read:	0,1,2,...
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
DRESULT	eDisk_ReadBlock	(
				BYTE	*buff,						//	Pointer	to	the	data	buffer	into	which	to	store
				DWORD	sector);			//	sector	number	to	read	from
	
//***************	eDisk_WriteBlock	***********
//	Write	1	block	of	512	bytes	of	data	to	the	SD	card	(read	from	RAM)
//	Inputs:	pointer	to	RAM	buffer	with	information
//									sector	number	of	SD	card	to	write:	0,1,2,...
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
DRESULT	eDisk_WriteBlock	(
				const	BYTE	*buff,			//	Pointer	to	the	data	to	be	written
				DWORD	sector);						//	sector	number			
Program	8.3.	Header	file	for	the	SDC	driver	(SDC_xxx).

With	a	32-bit	sector	number	we	could	support	disk	up	to	232*29	bytes
or	2	tibibytes.
Figure	8.13	shows	the	connector	pin-out	and	interface.	The	SDC	has	9
to	12	contact	pads,	including	four	pins	that	comprise	the	synchronous
serial	interface.	MOSI	MISO	and	Sclk	are	the	usual	SPI	signals,	and



CS	 line	can	be	 implemented	with	any	 regular	output	pin.	 	The	 three
contacts	 are	 assigned	 for	 power	 supply.	 The	 SDC	 works	 at	 supply
voltages	from	2.7	to	3.6	V,	The	current	consumption	can	reach	up	to
15	 mA	 in	 standby	 and	 50	 mA	 during	 operation.	 Some	 SD	 card
connectors	provide	an	additional	pin	to	let	the	software	know	whether
or	not	a	SDC	is	inserted	into	the	slot.

Figure	8.13.	MicroSD	connector(Digikey	WM3288CT-ND)	and
TM4C	interface.

There	 are	 three	 possible	 modes	 to	 interface	 the	 SD	 card:	 SD	 4-bit
mode,	SD	1-bit	mode,	and	SPI	mode.	The	communication	protocol	for
the	SPI	mode	is	simple	compared	to	the	native	SD	modes.	Therefore,
the	SPI	mode	 is	 suitable	 for	 low-cost	embedded	applications.	 In	SPI
mode,	the	pin	7	DO	is	always	an	output	of	the	SDC,	and	pin	2	DI	is
always	an	 input.	Data	are	 transferred	 in	a	byte-oriented	 synchronous
serial	 fashion.	 The	 command	 frame	 from	 the	microcontroller	 to	 the
SDC	is	a	fixed-length,	six-byte	packet	shown	in	Figure	8.14.	When	a
command	frame	is	transmitted	to	the	card,	a	response	to	the	command
(R1,	 R2,	 or	 R3)	 will	 eventually	 come	 from	 the	 card.	 The
microcontroller	must	continue	to	send	0xFF	frames	to	DI	and	receive
frames	 from	DO,	 until	 it	 receives	 a	 valid	 response.	 The	 command
response	 time	is	0	 to	8	SPI	frames	(labeled	as	NCR	 in	Figure	8.14).
The	 CS	 signal	 must	 be	 held	 low	 during	 the	 entire	 transaction
(command,	response,	and	data	transfer	if	exist).	The	7-bit	CRC	field	is
optional	 in	 SPI	mode,	 but	 it	 is	 required	 as	 a	 bit	 field	 to	 compose	 a



command	frame.	The	DI	signal	must	be	kept	high	during	read	transfer.

Figure	8.14.	SDC	command	frame.

In	SPI	mode,	data	shift	and	data	 latch	are	done	opposite	clock	edges
respectively.	 There	 is	 an	 advantage	 that	 when	 shift	 and	 latch
operations	are	separated,	critical	timing	between	two	operations	can	be
avoided.	 Therefore,	 timing	 consideration	 for	 IC	 design	 and	 board
design	can	be	relieved.	The	SD	card	uses	CPOL=0,	CPHA=0	mode	as
shown	in	Figure	8.15.

Figure	8.15.	SPI	CPOL=	0,	SPHA=0	mode.

There	are	many	SD	commands,	some	of	which	are	shown	in	Table	8.1.
For	 details	 on	 all	 commands,	 please	 refer	 to	 the	 SDA	 -	 SD	 Card
Association	 at	 http://www.sdcard.org/.	 There	 are	 three	 command
response	formats:	R1,	R2,	and	R3,	depending	on	the	command	index.
Response	R1	 is	8	bits	 long	and	 is	 returned	 for	most	commands.	The
R1	 response	 has	 seven	 status	 bits,	 and	 a	 value	 of	 0x00	 means
successful.	Bit	6	is	a	parameter	error,	bit	5	is	an	address	error,	bit	4	is
an	erase	sequence	error,	bit	3	is	a	communication	CRC	error,	bit	2	is
an	illegal	command,	bit	1	is	an	erase	reset,	and	bit	0	means	the	SDC	is
in	 the	 idle	 state.	Most	 cards	 cannot	 change	 the	 block	 size,	 and	 it	 is
fixed	at	512	bytes.

	
Index Argument Response Data Description
0 None R1 No Software	reset



1	or
41

None R1 No Initiate	initialization
process

16 Block
length[31:0]

R1 No Change	R/W	block	size

17 Address[31:0] R1 Yes Read	a	block
18 Address[31:0] R1 Yes Read	multiple	blocks
24 Address[31:0] R1 Yes Write	a	block
25 Address[31:0] R1 Yes Write	multiple	blocks
58 None R3 No Read	OCR
Table	8.1.	SD	commands.
	

After	power	on	reset,	the	SDC	enters	its	native	operating	mode.	To	put
the	 SDC	 in	 SPI	mode,	 the	 following	 procedure	must	 be	 performed.
After	the	supply	voltage	reaches	at	least	2.2	V,	wait	at	least	one	more
millisecond.	To	initialize	we	need	to	set	DI	and	CS	high	and	send	74
or	more	clock	pulses	to	Sclk.	After	this,	the	card	will	become	ready	to
accept	native	commands.	We	set	 the	SPI	clock	rate	between	100	and
400	kHz	and	then	send	an	Index=0	command	with	CS	low	to	reset	the
card.	The	card	samples	the	CS	signal	when	an	Index=0	command	 is
received.	If	the	CS	signal	is	low,	the	card	enters	SPI	mode.	Since	the
Index=0	command	must	be	sent	as	a	native	command,	the	CRC	field
must	 have	 a	 valid	 value.	 Once	 the	 card	 enters	 SPI	 mode,	 the	 CRC
feature	is	disabled,	and	the	CRC	is	not	checked,	so	that	the	command
transmission	routine	can	be	written	with	the	hardcoded	CRC	value	that
is	 valid	 for	 only	 this	 command.	When	 the	 Index=0	 is	 accepted,	 the
card	will	 enter	 idle	 state	 and	 sends	 an	R1	 response	with	 the	 idle	 bit
(0x01).
In	idle	state,	the	card	accepts	only	commands	with	index	values	of	0,
1,	 41,	 and	 58.	 Any	 other	 commands	 will	 be	 rejected.	 Command
Index=58	 allows	you	 to	check	 the	working	voltage	 range.	Response
R3	is	an	R1	plus	 information	about	 the	supply	voltage.	 If	 the	supply
voltage	 is	 out	of	 range,	 the	 card	must	be	 rejected.	The	 card	 initiates
initialization	when	a	command	with	Index=41	is	received.	To	poll	end
of	 the	 initialization,	 the	 host	 controller	 must	 repeatedly	 send
commands	with	Index=41	until	the	idle	bit	goes	low.	When	the	card	is
initialized	successfully,	the	idle	bit	in	the	R1	response	is	cleared.	That
is,	the	R1	response	will	change	from	0x01	to	0x00.	The	initialization



process	can	take	hundreds	of	milliseconds	and	large	cards	make	take
longer.	After	the	idle	bit	is	cleared,	read/write	commands	can	be	sent.
Command	Index=41	 is	 recommended	 instead	 of	 Index=1	 for	SDC.
Index=1	 initiation	 can	 be	 tried	 if	 Index=41	 is	 rejected.	 After
initialization,	 the	 SPI	 clock	 rate	 can	 be	 increased	 to	 optimize	 the
read/write	 performance.	 Most	 SD	 cards	 can	 handle	 SPI	 rates	 of	 25
MHz.	The	speed	will	be	dominated	by	software	transferring	data	with
the	 SPI	 port.	 To	 achieve	 higher	 bandwidth,	 you	 could	 use	 a	 DMA
interface	available	on	many	high-performance	microcontrollers.

Figure	8.15.	SD	data	packets.

In	 a	 transaction	with	data	 transfer,	 one	or	more	data	packets	will	 be
sent/received	 after	 command	 response.	 See	 Figure	 8.16.	 The	 data
block	 is	 transferred	 as	 a	 data	 packet	 that	 consists	 of	 Token,	 Data
Block,	 and	CRC.	The	 token	 for	 command	 indices	 17,	 18,	 and	 24	 is
$FE.	The	token	for	command	index	25	is	$FC.	A	logic	analyzer	trace
for	a	single-block	read	is	shown	in	Figure	8.16.	The	resolution	on	the
plot	is	not	enough	to	see	all	the	Sclk	pulses.	However,	we	see	the	CS
line	 (labeled	 PA4	 SS)	 goes	 low	 and	 remains	 low	 for	 the	 entire
transaction.	The	microcontroller	begins	by	sending	an	Index=17	read
block	 command.	 The	 argument	 for	 this	 command	will	 be	 the	 sector
address	from	which	to	read.	The	command	response	will	be	R1	with	a
value	 of	 0x00,	 which	 means	 okay.	 Next,	 the	 microcontroller	 sends
many	 frames	 (300	µs	on	 this	 system)	waiting	 for	 the	SDC.	The	 last
half	 of	 the	 transfer	 is	 a	 data	 packet	 being	 sent	 from	 the	SDC	 to	 the
microcontroller	containing	the	512	bytes	read	from	that	sector.	On	this
system,	it	took	535	µs	to	read	one	block.	If	any	error	occurred	during
the	 read	 operation,	 an	 error	 token	 will	 be	 returned	 instead	 of	 data
packet.



Figure	8.16.	Single	block	read	packet.

To	 write	 a	 block,	 the	 controller	 sends	 a	 write	 command.	 If	 the
response	R1	 is	 0x00,	 the	microcontroller	 sends	 a	 data	 packet	 to	 the
card	 after	 an	 eight-clock	 pause.	 The	write	 data	 packet	 has	 the	 same
format	as	read	data	packet.	The	CRC	field	can	have	any	value	unless
the	CRC	function	 is	 enabled.	When	a	data	packet	has	been	 sent,	 the
card	responds	a	Data	Response	immediately	following	the	data	packet.
Original	CD	drives	could	read	data	at	150	kilobytes	per	second,	and	as
faster	drives	arrived,	manufacturers	referred	 to	 their	 read	speeds	as	a
multiple	of	 the	original	 speed,	 referred	 to	as	X.	Therefore,	a	2X	CD
drive	reads	data	at	300	kilobytes/sec.	For	DVDs	the	speeds	are	9	times
faster	than	CDs.	I.e.,	a	1X	DVD	can	read/write	at	1,385,000	bytes/sec.
Therefore,	a	16X	DVD	can	transfer	at	16	times	faster	than	a	1X	DVD.
SD	Cards	and	SDHC	Cards	have	Speed	Class	Ratings	defined	by	the
SD	Association.	 The	 SD	 Speed	Class	 Ratings	 specify	 the	 following
minimum	write	speeds	based	on	"the	best	fragmented	state	where	no
memory	 unit	 is	 occupied":	 (www.	 SDCard.org).	 Because	 of	 the
software	overhead	in	the	microcontroller,	the	transfer	rates	to	the	SDC
will	 be	 much	 slower	 than	 the	 maximum.	 Table	 8.2	 shows	 example
transfer	 rates	 or	 bandwidth	 for	 various	mass-storage	 devices.	 Under
most	situations	the	size	of	the	data	block	transferred	is	fixed.	The	time
to	locate	the	physical	location	is	called	the	seek	time.	Although	seek
time	 has	 a	 significant	 impact	 on	 the	 disk	 performance,	 it	 does	 not
affect	the	latency	or	bandwidth	parameters.	The	bandwidth	depends	on
the	 rotation	 speed	 of	 the	 disk	 and	 the	 information	 density	 on	 the
medium.	The	transfer	rates	vary	according	to	the	physics	of	the	drive.

Drive	type Bandwidth	in
mebibytes/sec

SATA	channel 300
7200	 RPM	 hard
drive

70



16X	DVD 22
52X	CD-ROM 7.8
Class	2	SD	card 2
Class	4	SD	card 4
Class	6	SD	card 6
1X	CD-ROM 0.15

Table	8.2.	Bandwidth	for	various	mass	storage	devices.
Because	 the	 SDC	 driver	 functions	 posted	 on	 the	 book	web	 site	 use
busy-wait	 synchronization,	 actually	 speeds	 for	 this	 systems	 using
these	drivers	will	be	much	slower	than	the	transfer	rates	presented	in
the	above	table.



8.4.	Simple	File	System
In	this	section,	we	develop	a	file	system	that	would	be	appropriate	for
implementation	 with	 an	 SD	 card	 used	 for	 storage.	 	 In	 order	 to
implement	 this	 file	 system,	 you	 would	 need	 to	 have	 physical	 layer
eDisk	driver	functions	for	the	SD	card.	There	are	a	couple	of	projects
for	 the	 TM4C123	 that	 have	 implementations	 for	 this	 physical	 layer.
The	second	example	includes	both	a	low-level	eDisk	and	a	high-level
FAT16	file	system	for	the	SD	card.

http://users.ece.utexas.edu/~valvano/arm/SDC_4C123.zip
http://users.ece.utexas.edu/~valvano/arm/SDCFile_4C123.zip

8.4.1.	Directory
The	first	component	of	 the	 file	 system	 is	 the	directory,	 as	 shown	 in
Figure	 8.17.	 In	 this	 system,	 the	 sector	 size	 is	 512	 bytes.	 In	 order	 to
support	disks	larger	than	32	Mebibytes,	32-bit	sector	pointers	will	be
used.	 The	 directory	 contains	 a	 mapping	 between	 the	 symbolic
filename	 and	 the	 physical	 address	 of	 the	 data.	 Specific	 information
contained	 in	 the	directory	might	 include	 the	filename,	 the	number	of
the	first	sector	containing	data,	and	the	total	number	of	bytes	stored	in
the	file.	One	possible	implementation	places	the	directory	in	sector	0.
In	this	simple	system,	all	files	are	listed	in	this	one	directory	(there	are
no	subdirectories).	There	is	one	fixed-size	directory	entry	for	each	file.
A	 filename	 is	 stored	 as	 an	ASCII	 string	 in	 an	 8-byte	 array.	 A	 null-
string	(first	byte	0)	means	no	file.	Since	the	directory	itself	is	located
in	 sector	 0,	 zero	 can	 be	 used	 as	 a	 null-sector	 pointer.	 In	 this	 simple
scheme,	 the	 entire	 directory	 must	 fit	 into	 sector	 0,	 the	 maximum
number	 of	 files	 can	 be	 calculated	 by	 dividing	 the	 sector	 size	 by	 the
number	 of	 bytes	 used	 for	 each	 directory	 entry.	 In	 Figure	 8.17,	 each
directory	entry	is	16	bytes,	so	there	can	be	up	to	512/16	=	32	files.	We
will	need	one	directory	entry	to	manage	the	free	space	on	the	disk,	so
this	disk	format	can	have	up	to	31	files.



Figure	8.17.	Linked	file	allocation	with	512-byte	sectors.

Other	information	that	one	often	finds	in	a	directory	entry	includes	a
pointer	to	the	last	sector	of	the	file,	access	rights,	date	of	creation,	date
of	last	modification,	and	file	type.

8.4.2.	Allocation
The	 second	 component	 of	 the	 file	 system	 is	 the	 logical-to-physical
address	translation.	Logically,	the	data	in	the	file	are	addressed	in	a
simple	linear	fashion.	The	logical	address	ranges	from	the	first	to	the
last.	There	are	many	algorithms	one	could	use	to	keep	track	of	where
all	 the	 data	 for	 a	 file	 belongs.	 This	 simple	 file	 system	 uses	 linked
allocation	 as	 illustrated	 in	 Figure	 8.17.	 Recall	 that	 the	 directory
contains	 the	 sector	number	of	 the	 first	 sector	containing	data	 for	 the
file.	The	start	of	every	sector	contains	a	link	(the	sector	number)	of	the
next	sector,	and	a	byte	count	(the	number	of	data	bytes	in	this	sector).
If	the	link	is	zero,	this	is	last	sector	of	the	file.	If	the	byte	count	is	zero,
this	sector	is	empty	(contains	no	data).	Once	the	sector	is	full,	the	file
must	request	a	free	sector	(empty	and	not	used	by	another	file)	to	store
more	 data.	 Linked	 allocation	 is	 effective	 for	 systems	 that	 employ
sequential	 access.	 Sequential	 read	 access	 involves	 two	 functions
similar	 to	 a	magnetic	 tape:	 rewind	 (start	 at	 beginning)	 and	 read	 the
next	data.	Sequential	write	access	simply	 involves	appending	data	 to
the	end	of	the	file.	Figure	8.17	assumes	the	sector	size	is	512	bytes	and
the	filename	has	up	to	7	characters.	The	null-terminated	ASCII	string
is	 allocated	 8	 bytes	 regardless	 of	 the	 size	 of	 the	 string.	 The	 sector
pointer	 and	 the	 size	 entry	 (e.g.,	 file	 ‘Ramesh’	 has	 519	 bytes)	 each
require	4	bytes	(32	bits).	Since	each	data	sector	has	a	4-byte	link	and	a
2-byte	counter,	each	sector	can	store	up	to	506	bytes	of	data.



8.4.3.	Free	space	management
The	 third	 component	 of	 the	 file	 system	 is	 free-space	management.
Initially,	all	sectors	except	the	one	used	for	the	directory	are	free	and
available	for	files	to	store	data.	To	store	data	into	a	file,	sectors	must
be	allocated	to	the	file.	When	a	file	is	deleted,	its	sectors	must	be	made
available	 again.	 One	 simple	 free-space	 management	 technique	 uses
linked	allocation,	similar	to	the	way	data	is	stored.	Assume	there	are
N	sectors	numbered	from	0	to	N-1.	An	empty	file	system	is	shown	in
Figure	8.18.	Sector	0	contains	the	directory,	and	sectors	1	to	N-1	are
free.	 You	 could	 assign	 the	 last	 directory	 entry	 for	 free-space
management.	This	entry	is	hidden	from	the	user.	E.g.,	this	free-space
file	cannot	be	opened,	printed,	or	deleted.	It	doesn't	use	any	of	the	byte
count	fields,	but	it	does	use	the	links	to	access	all	of	the	free	sectors.
Initially,	 all	 of	 the	 sectors	 (except	 the	 directory	 itself)	 are	 linked
together,	with	the	special	directory	entry	pointing	to	the	first	one	and
the	last	one	having	a	null	pointer.

Figure	8.18.	Free-space	management.

When	a	file	requests	a	sector,	 it	 is	unlinked	 from	the	free	space	and
linked	to	the	file.	When	a	file	is	deleted,	all	of	its	sectors	are	linked	to
the	free	space	again.
Checkpoint	8.14:	If	the	directory	shown	in	Figures	8.17	and	8.18
allocated	6	bytes	for	the	filename	instead	of	10,	how	many	files
could	it	support?	



8.5.	Write-once	File	System

8.5.1.	Usage
Even	 though	 the	 previous	 approaches	 were	 indeed	 simple,	 we	 can
simplify	 the	 file	 system	 even	more	 if	we	make	 the	 following	 usage
restrictions/specifications:

The	128k	flash	memory	is	erased	only	once;
The	act	of	erasing	the	entire	flash	is	equivalent	to
“formatting”	the	disk;
The	disk	is	partitioned	into	256	sectors	of	512
bytes/sector;
We	can	append	data	to	a	file	but	cannot	delete	data	or
files;
We	append	data	to	a	file	in	chunks	of	512	bytes;
We	will	read	data	in	a	sequential	fashion;
We	assign	file	names	as	single	8-bit	numbers	(0	to
254);
We	limit	the	file	system	to	a	maximum	of	255	files;
We	will	mount	(initialize	the	driver)	the	file	system
on	startup;
We	will	call	flush	(backup	to	disk)	the	file	system
before	powering	down.

	
One	 sector	will	 be	 reserved	 for	 the	 operating	 system	 to	manage	 the
directory	and	allocation	scheme	and	the	other	255	sectors	will	contain
data.	Depending	 on	 the	 debugger	 settings,	 loading	 the	 program	 into
flash	may	erase	the	entire	flash.Alternately,	you	could	explicitly	erase
the	 flash	 in	 the	 debugger,	 or	 you	 could	 call	 the OS_File_Format
function.		These	erase	events	will	serve	to	“format”	the	disk.	All	255
data	 sectors	 will	 be	 free	 and	 the	 file	 system	 will	 have	 no	 files.
However,	 hitting	 the	 reset	 button	 or	 powering	 up	 the	 system	 should



not	erase	the	disk.
While	 using	 this	 disk	we	 could	 have	 255	 individual	 files,	 each	with
one	sector.	We	could	have	51	files	each	with	5	sectors.	Alternately,	we
could	 have	 one	 file	 with	 255	 sectors.	 Any	 combination	 is	 possible
where	 the	number	of	 files	 is	 less	 than	or	 equal	 to	255,	 and	 the	 total
allocated	sectors	is	also	less	than	or	equal	to	255.
There	 will	 be	 a	 function, OS_File_New ,	 which	 will	 return	 the	 file
number	of	an	empty	file.	This	 function	will	 fail	 if	 there	are	no	more
files	left,	because	there	are	already	254	files	created,	or	if	there	are	no
free	sectors,	because	the	disk	is	full.

//********OS_File_New*************
//	Returns	a	file	number	of	a	new	file	for	writing
//	Inputs:	none
//	Outputs:	number	of	a	new	file
//	Errors:	return	255	on	failure	or	disk	full
uint8_t	OS_File_New(void);
	

To	check	the	status	of	a	file,	we	can	call OS_File_Size .	This	function
returns	the	number	of	sectors	allocated	to	this	file.	If	the	size	is	zero,
this	is	an	empty	file.

//********OS_File_Size*************
//	Check	the	size	of	this	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//	Outputs:	0	if	empty,	otherwise	the	number	of	sectors
//	Errors:		none
uint8_t	OS_File_Size(uint8_t	num);
	

To	write	data	to	an	existing	file	we	need	to	specify	the	file	number	into
which	 we	 will	 store	 the	 data.	 The	 write	 data	 function	 will	 allocate
another	sector	to	the	file	and	append	512	bytes	of	new	data	to	the	file.
The	input	parameters	to OS_File_Append 	are	the	file	number	and	a
sector	of	512	bytes	of	data	to	write.	This	function	will	fail	if	there	are
no	free	sectors	(disk	full).

//********OS_File_Append*************
//	Save	512	bytes	into	the	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//										buf,	pointer	to	512	bytes	of	data



//	Outputs:	0	if	successful
//	Errors:		255	on	failure	or	disk	full
uint8_t	OS_File_Append(uint8_t	num,	uint8_t	buf[512]);
	

To	read	data	from	a	file	we	call OS_File_Read .	The	three	parameters
to	 this	 function	 are	 the	 file	 number,	 the	 location,	 and	 a	 pointer	 to
RAM.	The location parameter	defines	 the	 logical	address	of	 the	data
in	a	file.	Location	0	will	access	the	first	sector	of	the	file.	For	example,
if	a	file	has	5	sectors,	the location 	parameter	could	be	0,	1,	2,	3,	or	4.
The	read	data	function	will	copy	512	bytes	of	data	from	the	file	 into
the	RAM	buffer.	This	function	will	fail	if	this	file	does	not	have	data	at
this	location.

//********OS_File_Read*************
//	Read	512	bytes	from	the	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//										location,	logical	address,	0	to	254
//										buf,	pointer	to	512	empty	spaces	in	RAM
//	Outputs:	0	if	successful
//	Errors:		255	on	failure	because	no	data
uint8_t	OS_File_Read(uint8_t	num,	uint8_t	location,
																					uint8_t	buf[512]);

	
We	will	 load	 into	RAM	versions	of	 the	directory	and	 the	FAT	when
the	 system	 starts.	When	we	 call OS_File_Flush 	 the	 RAM	 versions
will	be	stored	onto	the	disk.	Notice	that	due	to	the	nature	of	how	this
file	 system	 is	 designed,	 bits	 in	 the	 directory	 and	 FAT	 never	 switch
from	0	to	1.	We	can	either	call	this	function	periodically	or	call	it	once
just	before	power	is	removed	from	the	system.

//********OS_File_Flush*************
//	Update	working	buffers	onto	the	disk
//	Power	can	be	removed	after	calling	flush
//	Inputs:		none
//	Outputs:	0	if	success
//	Errors:		255	on	disk	write	failure
uint8_t	OS_File_Flush(void);

Depending	on	the	debugger	settings,	downloading	software	may	erase
the	 flash.	When	 the	 flash	 is	 erased,	 the	disk	 in	essence	 is	 formatted,
because	we	defined	the	all	ones	state	as	empty.	However,	if	one	wishes



to	 erase	 the	 entire	 disk	 removing	 all	 data	 and	 all	 files,	 one	 could
call OS_File_Format .	 This	 function	 will	 erase	 the	 flash	 from
0x00020000	 to	0x0003FFFF.	Program	8.4	shows	 the	 implementation
for	 the	 TM4C123.	 It	 simply	 erases	 all	 blocks	 from	 0x00020000	 to
0x0003FFFF.	 Notice	 that	 this	 implementation	 skips	 the	 eDisk	 layer
and	directly	calls	the	physical	layer.

//********OS_File_Format*************
//	Erase	all	files	and	all	data
//	Inputs:		none
//	Outputs:	0	if	success
//	Errors:		255	on	disk	write	failure
uint8_t	OS_File_Format(void){
		uint32_t	address;
		address	=	0x00020000;		//	start	of	disk
		while(address	<=	0x00040000){
				Flash_Erase(address);	//	erase	1k	block
				address	=	address+1024;

}

}

Program	8.4.	TM4C123	version	of	formatting.

Checkpoint	8.15:	The	physical	block	size	on	the	MSP432	is	4096
bytes.	How	would	you	modify	OS_File_Format	for	the	MSP432?	

8.5.2.	Allocation
There	 are	 many	 possible	 solutions,	 but	 we	 chose	 FAT	 allocation
because	it	supports	appending	to	an	existing	file.	FAT	supports	many
small	files	or	one	large	file.	Because	there	are	256	sectors	we	will	use
8-bit	 sector	 addresses.	 Because	 we	 will	 define	 a	 completely	 erased
flash	as	“formatted”,	we	will	use	the	sector	address	255=0xFF	to	mean
null-pointer,	and	use	sector	number	255	as	the	directory.	To	implement
a	FAT	with	this	disk,	we	would	need	only	255	bytes.	Since	the	sector
is	512	bytes	we	can	use	256	bytes	for	the	directory	and	the	other	256
bytes	for	the	FAT.	Notice	that	sectors	are	allocated	to	files,	but	never
released.	This	means	we	can	update	 the	FAT	multiple	 times	because



bits	are	all	initially	one	(erased)	and	programmed	to	0	once,	and	never
need	to	be	erased	again.
Since	 the	 files	 are	 identified	by	number	 and	not	 name,	 the	directory
need	not	store	the	name.	Rather,	the	directory	is	a	simple	list	of	255	8-
bit	 numbers,	 containing	 the	 sector	 number	 of	 its	 first	 sector.	 Notice
there	is	exactly	one	directory	entry	for	each	possible	file.	If	this	sector
number	is	255,	this	file	is	empty.	Similarly,	the	FAT	is	another	simple
list	of	255	8-bit	numbers.	However,	a	255	in	the	FAT	may	mean	a	free
sector	or	the	last	sector	of	a	file.	Notice	there	is	one	entry	in	the	FAT
for	 each	 data	 sector	 on	 the	 disk.	 Figure	 8.19	 shows	 the	 disk	 after
formatting.	 Each	 rectangle	 in	 the	 disk	 figure	 represents	 a	 512-byte
data	 sector.	The	directory	 and	FAT	are	 both	 stored	 in	 sector	 number
255.
	

Figure	8.19.	Empty	disk	on	the	write-once	file	system.

If	we	ask	for	a	new	file,	the	system	will	return	a	number	from	0	to	254
of	a	file	that	has	not	been	written.	In	other	words, OS_File_New will
return	the	number	of	an	empty	file.	If	we	execute	the	following	when
the	disk	 is	 empty, OS_File_New will	 return	a	0	 (n=0),	 and	 the	eight
calls	 to OS_File_Append 	 will	 store	 eight	 sectors	 on	 the	 disk,	 see
Figure	8.20.

n	=	OS_File_New();



OS_File_Append(n,buf0);
OS_File_Append(n,buf1);
OS_File_Append(n,buf2);
OS_File_Append(n,buf3);
OS_File_Append(n,buf4);
OS_File_Append(n,buf5);
OS_File_Append(n,buf6);
OS_File_Append(n,buf7);

	
In	 this	 example,the	 variables n,m,p are	 simple	 global	 variables
containing	 the	 file	 numbers	 we	 are	 using.	 The	 parameters buf0-
buf9 , dat0-dat4 , arr0—2 	represent	RAM	buffers	with	512	bytes	of
data.		Having	18	buffers	we	not	to	imply	we	needed	a	separate	RAM
buffer	 for	 every	 sector	 on	 the	 disk,	 but	 rather	 to	 differentiate	where
data	is	stored	on	the	disk.	In	other	words,	the	use	of	18	different	RAM
buffers	was	meant	 to	associate	 the	18	calls	 to	OS_File_Append	with
the	corresponding	18	sectors	used	on	the	disk.	Because	of	the	limited
RAM	 on	 the	microcontroller,	 normally	 we	will	 limit	 the	 number	 of
RAM	buffers.

Figure	8.20.	A	disk	with	one	file,	this	file	has	8	sectors.



	
If	we	were	to	continue	this	example	and	execute	the	following,	there
would	 now	 be	 3	 files	 on	 the	 disk	 occupying	 18	 sectors.	 See	 Figure
8.21.

m	=	OS_File_New();
OS_File_Append(m,dat0);
OS_File_Append(m,dat1);
OS_File_Append(m,dat2);
OS_File_Append(m,dat3);
p	=	OS_File_New();
OS_File_Append(p,arr0);
OS_File_Append(p,arr1);
OS_File_Append(n,buf8);
OS_File_Append(n,buf9);
OS_File_Append(p,arr2);
OS_File_Append(m,dat4);

Figure	8.21.	A	disk	with	three	files,	file	0	has	10	sectors,	file	1
has	5	sectors	and	file	2	has	3	sectors.

Notice	that	we	limit	usage	to	adding	data	to	the	disk	is	chunks	of	512
bytes.	As	mentioned	 earlier	we	will	 never	 delete	 a	 file,	 nor	will	we



delete	 parts	 of	 a	 file	 previously	 written.	 Furthermore,	 we	 always
append	to	the	end	of	a	file,	which	means	we	never	move	data	of	a	file
from	one	place	on	the	disk	to	another.

8.5.3.	Directory
We	will	read	the	directory/FAT	into	RAM	on	startup.		We	need	to	be
able	to	write	the	directory	to	the	disk	multiple	times.	We	will	write	the
directory/FAT	each	 time	we	close	a	 file	 and	before	 removing	power.
Figure	 8.22	 shows	 one	 possible	 implementation	 of	 the	 process	 to
create	a	new	file.	This	function	will	return	the	file	number	(0	to	254)
of	a	file	not	yet	written	to.
Since	files	are	never	deleted,	this	function	will	return	file	numbers	in	a
0,	1,	2,	…	order.	Once	 there	are	255	files	on	 the	disk,	no	more	 files
can	be	created.

Figure	8.22.	Software	flowchart	for	OS_File_New.	Returning	with
a	255	means	fail	because	the	disk	already	has	254	files.	The	only
way	for	this	function	to	fail	is	if	the	disk	has	254	files,	and	each
file	is	one	sector.

This	 simple	 file	 system	 assumes	 you	 append	 some	 data	 after	 you
create	 a	 new	 file	 and	 before	 you	 create	 a	 second	 new	 file.	 The
following	 shows	 a	 proper	 use	 case	 of	 creating	 multiple	 files:	 n	 =
OS_File_New();								//	create	a	new	file



OS_File_Append(n,stuff);		//	add	to	n
m	=	OS_File_New();								//	second	file
OS_File_Append(m,other);		//	add	to	m
	

If	 you	 violate	 this	 assumption	 and	 execute	 the	 following	 code,	 then
files	n	and	m	will	be	one	file.	I.e.,	n	will	equal	m.

n	=	OS_File_New();								//	create	a	new	file
m	=	OS_File_New();								//	second	file
OS_File_Append(n,stuff);		//	add	to	n
OS_File_Append(m,other);		//	add	to	m

8.5.4.	Append
Figure	 8.23	 shows	 one	 possible	 implementation	 of	 the	 function	 that
appends	a	data	buffer	to	an	existing	file.

Figure	8.23.	Software	flowchart	for	OS_File_Append.	Returning
with	a	255	means	fail	because	there	are	no	free	sectors	on	the
disk.

Figure	8.24	shows	the	helper	function	that	appends	the	sector	number
(n)	to	the	FAT	link	associated	with	file	(num).



Figure	8.24.	Software	flowchart	for	the	helper	function	appendfat.

8.5.5.	Free	space	management
An	entry	in	the	FAT	of	255	means	that	sector	is	free	or	that	is	the	last
sector	of	a	 file.	However,	 since	 files	are	never	deleted	or	 reduced	 in
size,	there	will	be	no	external	fragmentation	and	all	free	sectors	exist
in	 one	 contiguous	 chunk.	 In	 particular,	 if	we	 search	 the	FAT	 for	 the
last	sector	of	each	file,	find	the	maximum	of	these	numbers,	the	first
free	sector	is	this	maximum+1.	The	last	free	sector	is	254.	Figure	8.25
shows	the	helper	function	that	finds	a	free	sector	on	the	disk.

Figure	8.25.	Software	flowchart	for	the	helper	function
findfreesector.

Figure	8.26	shows	the	helper	function	that	finds	the	last	sector	of	file



that	starts	at	sector.

Figure	8.26.	Software	flowchart	for	the	helper	function	lastsector.



8.6.	Readers-Writers	Problem
When	 threads	 within	 an	 OS	 share	 a	 common	 file	 system,
synchronization	will	be	 required	 to	prevent	corrupted	or	 inconsistent
data,	see	Figure	8.27.	Multiple	readers	are	allowed	concurrent	access
to	 the	 file	 system	because	 readers	do	not	modify	 the	data.	Table	8.3
shows	a	reader	will	open	a	file	for	reading,	access	the	data,	and	then
close	the	file.	On	the	other	hand,	only	one	writer	is	allowed	access	to
the	data	 at	 a	 time.	A	writer	 thread	will	 open	 the	 file	with	 read/write
permission,	read	and	write	to	the	file,	and	then	close	the	file.

Reader	Threads
1)	Execute	ROpen(file)
2)	Read	information	from	file
3)	Execute	RClose(file)

Writer	Threads
1)	Execute	WOpen(file)
2)	Read/write	information	from/to
file
3)	Execute	WClose(file)

Table	8.3.	Sequence	of	action	employed	by	readers	and	writers.

Figure	8.27.	A	file	system	can	have	multiple	readers	and	multiple
writers.

The	 solution	 to	 the	 readers-writers	 problem	 uses	 three	 objects:	 a
numerical	 counter	 called ReadCount ,	 a	 binary	 semaphore
called mutex ,	 and	 another	 binary	 semaphorecalled wrt .
The ReadCount defines	 how	many	 reader	 threads	 are	 accessing	 the
file	system	and	this	counter	 is	 initialized	 to	0.	Themutex semaphore
is	 used	 to	 create	 mutually	 exclusive	 access	 to	 shared	 information
in ReadCount ,	 and mutex is	 initialized	 to	 1.	 The wrt semaphore
allows	just	one	writer	to	access	the	file	system	and wrt 	 is	 initialized
to	1.	Program	8.5shows	the	synchronization	required	to	open	and	close
files.	If	a	reader	thread	is	first,	 it	will	prevent	writers	from	access	by
executing	 a	 wait	 on wrt .	 Once	 all	 readers	 are	 finished,	 the wrt
semaphore	 is	 signaled.	 If	 a	 writer	 thread	 is	 first,	 it	 will	 prevent	 all
other	threads	from	accessing	the	file	system.



ROpen
		wait(&mutex);
		ReadCount++;
	
if(ReadCount==1)
{
				wait(&wrt);

}

		signal(&mutex);

RClose
		wait(&mutex);
		ReadCount--;
	
if(ReadCount==0)
{
				signal(&wrt);

}

		signal(&mutex);

WOpen
		wait(&wrt);

WClose
		signal(&wrt);
	

Program	8.5.	Semaphore	synchronization	used	to	solve	the
readers-writers	problem.



8.7.	Exercises
8.1	For	each	term	give	a	definition	in	32	words	or	less.
a)	Free-space	management	b)	Linked	allocation	c)	Indexed	allocation
d)	 FAT	 e)	 Internal	 fragmentation	 f)	 External	 fragmentation	 8.2
Consider	 a	 file	 system	 that	uses	contiguous	allocation	 to	define	 the
set	of	blocks	allocated	to	each	file,	as	shown	in	Figure	8.28.	There	are
8192	bytes	on	this	disk	made	up	of	256	blocks,	where	each	block	is	32
bytes.	 This	 file	 system	 is	 used	 to	 record	 important	 “black	 box”
information.	Therefore,	the	file	system	is	initialized	to	empty	when	the
device	is	manufactured.	Each	time	the	system	is	turned	on,	a	new	file
is	 created.	 While	 running	 important	 data	 are	 stored	 into	 that	 file
(create	 new	 file,	 append	 data	 at	 the	 end,	 close	 file).	 Files	 are	 never
deleted.	 Once	 a	 file	 is	 closed,	 it	 can	 be	 opened	 for	 reading,	 but	 it
cannot	be	opened	again	for	writing.	Block	0	contains	the	directory	and
not	 available	 for	 data.	 Each	 directory	 entry	 has	 three	 fields:	 name,
block	number	of	the	first	block,	and	total	number	of	bytes	stored.	The
example	 in	 Figure	 8.28	 shows	 file	 A	with	 3	 allocated	 blocks	 (1,2,3
containing	32,32,8	bytes),	 file	B	with	2	blocks	(4,5	containing	32,32
bytes),	 and	 file	 C	 with	 7	 blocks	 (6,7,8,9,10,11,12	 containing
32,32,32,32,32,32,8).	All	32	bytes	of	each	data	block	can	contain	data
for	the	file.
a)	Does	this	file	system	have	any	external	fragmentation?	Justify	your
answer.
b)	Assume	a	file	has	n	data	blocks.	It	takes	one	block	read	to	fetch	the
directory.	On	average,	 how	many	more	block	 reads	does	 it	 take	 to
read	 a	 single	 byte	 at	 a	 random	 position	 in	 the	 file?	 What	 is	 the
maximum	 number	 of	 additional	 block	 reads	 that	 it	 takes	 to	 read	 a
single	byte	in	the	file	(worst	case)?
c)	Describe	a	simple	mechanism	to	manage	free	blocks	in	this	system.
Be	as	explicit	as	possible,	describing	how	many	bytes	in	the	directory
are	 needed	 to	 manage	 the	 free	 space.	 Describe	 what	 the	 free	 space
looks	 like	 after	 the	 disk	 is	 erased/formatted.	 Describe	what	 the	 free
space	looks	like	when	the	disk	is	full.
d)	File	names	are	a	 single	character.	How	many	 files	can	be	stored?
Justify	your	answer.
e)	Assume	you	 have	n	 files	 each	with	 of	 random	 size.	Quantify	 the



number	 of	 wasted	 bytes	 due	 to	 internal	 fragmentation.	 You	 may
assume	n	is	less	than	the	number	determined	in	part	d).

Figure	8.28.	File	system	for	Exercise	8.2.

8.3	 Consider	 a	 file	 system	 that	 uses	 contiguous	 allocation,	 as
illustrated	 by	 Figure	 8.29.	 The	 block	 size	 is	 32	 bytes	 and	 all	 256
blocks	 can	 be	 used	 to	 store	 data.	 The	 directory	 is	 not	 stored	 on	 the
disk.	Each	directory	entry	contains	 the	 file	name	 (e.g.,	A,	B,	C),	 the
start	 block	 (e.g.,	File	B	 starts	 at	 block	4),	 and	 the	number	of	 blocks
used	in	the	file	(e.g.,	File	C	has	5	blocks).	The	file	sizes	are	always	a
multiple	of	32	bytes.	I.e.,	a	file	can	contain	only	32,	64,	96,	…,	8192
bytes.	For	example,	File	A	is	3*32=96	bytes,	File	B	is	2*32=62	bytes
and	 File	 C	 is	 5*32=160	 bytes.	 	 Does	 this	 system	 have	 internal
fragmentation?	Explain	your	answer.

Figure	8.29.	File	system	for	Exercise	8.3.



	
8.4	 Consider	 a	 file	 system	 that	 manages	 a	 16	Megabyte	 (224	 bytes)
EEPROM	 storage	 for	 a	 battery-powered	 embedded	 system.	You	 are
free	 to	 select	 from	 a	 range	 of	 EEPROM	 chips	 with	 different	 block
sizes.	The	block	size	can	be	any	power	of	2	from	1	to	224	bytes.	Chipn
has	 a	 total	 of	 16	 Megabytes	 with	 block	 size	 2n	 bytes.	 Chipn	 can
perform	a	2n	 byte	 block-write	 operation	 in	 1	ms	 regardless	 of	 block
size.	 For	 bandwidth	 reasons,	 therefore,	 you	 wish	 to	 choose	 a	 large
block	size.	A	block	will	be	completed	allocated	to	a	file	(you	are	not
allowed	to	split	one	block	between	two	files).	16	bytes	of	each	block
are	 used	 by	 the	 file	 system	 to	manage	 pointers,	 type,	 size,	 and	 free
space.	However,	 if	 the	 file	were	 to	 contain	 1	 byte	 of	 data,	 an	 entire
block	 would	 be	 allocated,	 and	 the	 remaining	 2n-17	 bytes	 would	 be
wasted.	File	sizes	in	this	system	are	uniformly	distributed	from	50,000
to	 150,000	 bytes	 (this	 means	 any	 file	 size	 from	 50,000	 to	 150,000
bytes	is	equally	likely	with	an	average	size	of	100,000	bytes).	You	are
asked	to	choose	the	largest	block	size	with	the	constraint	that	the
average	internal	fragmentation	be	less	5%	of	the	total	number	of
bytes	stored.	Show	your	work.

	
	
	

D8.5	One	way	 to	manage	 free-space	on	a	disk	 is	 to	 implement	a	bit
vector.	 Each	 block	 is	 32	 bytes	 long,	 and	 there	 are	 256	 blocks.	 For
each	block	on	our	8-kibibyte	disk,	there	will	be	a	single	bit	specifying
whether	the	block	is	free	(1)	or	allocated.	In	C,	we	can	define	256	bits
as	a	byte-array	with	32	entries.

uint8_t	BitVector[32];		//	256	bits
Similar	to	the	directory,	the	BitVector	will	exist	both	in	RAM,	as	the
above	C	definition,	and	on	the	disk	as	block	1.	The	format	operation
will	initialize	254	of	these	bits	to	1,	performing:	BitVector[0]	=	0x3F;
//	blocks	0,1	used	(directory,	BitVector)

		for(i=1;i<32;i++)	BitVector[i]=0xFF;	//	blocks	8-255	are	free
		eDisk_WriteBlock(BitVector,1);							//	update	disk	copy
	

a)	Write	a	helper	function	that	allocates	a	free-block	updating	the	disk
copy	of	BitVector.



//	allocate	a	free	block,	returns	a	block	number	of	a	free	block
//	Output:	block	number	2	to	255	if	successful	and	0	if	full
uint8_t	AllocateBlock(void){
		eDisk_ReadBlock(BitVector,1);								//	fresh	RAM	copy

b)	Write	a	helper	 function	 that	deallocates	a	block	updating	 the	disk
copy	of	BitVector.

//	deallocate	a	free	block
//	Input:	block	number	2	to	255
void	DeallocateBlock(uint8_t	blockNum){
		eDisk_ReadBlock(BitVector,1);								//	fresh	RAM	copy
	

8.6	Consider	a	file	system	that	uses	a	file	translation	table	(FTT)	 to
define	the	set	of	blocks	allocated	to	each	file.	There	are	65536	bytes
on	 this	 disk	made	up	of	 256	blocks,	where	 each	block	 is	 256	bytes.
Block	0	contains	the	directory	and	is	not	available	for	data.	Each	file
has	 its	 own	FTT,	 which	 is	 a	 null-terminated	 list	 of	 block	 numbers
assigned	to	the	file.	Figure	8.30	shows	a	file	with	4	allocated	blocks,
with	the	first	block	at	12,	and	the	last	block	at	22.	The	directory	entry
includes	 the	 file	 name,	 the	 total	 number	 of	 bytes,	 and	 the	 block
number	of	its	FTT.	All	256	bytes	of	each	data	block	can	contain	data
for	 the	 file.	For	example,	 the	 figure	 shows	a	 file	with	1024	bytes	of
data,	stored	in	5	blocks	(FTT	and	4	data	blocks).
a)	Does	this	file	system	have	any	external	fragmentation?	Justify	your
answer.
b)	Assume	a	file	has	n	data	blocks.	It	takes	one	block	read	to	fetch	the
FTT.	On	average,	how	many	more	block	reads	does	it	take	to	read	a
single	 byte	 at	 a	 random	position	 in	 the	 file?	What	 is	 the	maximum
number	of	additional	block	reads	that	it	takes	to	read	a	single	byte	in
the	file	(worst	case)?
c)	Consider	the	linked	allocation	scheme.		Assume	the	directory	is	in
memory	and	the	file	has	n	data	blocks.	On	average,	how	many	block
reads	does	it	take	to	read	a	single	byte	at	a	random	position	in	the	file?
What	 is	 the	maximum	number	of	block	reads	 that	 it	 takes	 to	 read	 a
single	byte	in	the	file	(worst	case)?
d)	Assume	you	are	given	the	following	function	that	reads	a	256-byte
block	 from	 disk	 int	 eDisk_ReadBlock(uint8_t	 *pt,	 	 //	 result
returned	by	reference

		uint8_t	blockNum);														//	which	block	to	read



Write	a	C	function	that	returns	a	byte	from	a	file	at	a	random	location.
Do	 not	 worry	 about	 error	 handling	 (e.g., eDisk_ReadBlock error	 or
address	 too	big).	The	 inputs	 to	 the	function	are numFTT 	 (the	block
number	of	the	file’s	FTT)	and address 	(the	byte	address,	where	0	is
the	first	byte,	1	means	second	byte	etc.).	You	can	use	two	buffers.

uint8_t	FTTbuf[256];		//	place	to	store	FTT
uint8_t	Databuf[256];	//	place	to	store	data

The	prototype	of	the	C	function	you	have	to	write	is
uint8_t	eFile_Read(uint8_t	numFTT,	uint16_t	address);

Figure	8.30.	File	system	for	Exercise	8.6.

	
	
	



9.	Communication	Systems
Chapter	9	objectives	are	to:
•	Introduce	basic	concepts	of	networks
•	Describe	the	controller	area	network	(CAN)	protocol
•	 Present	 fundamentals	 and	 implementation	 of	 Bluetooth
Low	Energy	(BLE)
•	Introduce	Ethernet,	Wireless,	and	the	Internet	of	Things

The	 goal	 of	 this	 chapter	 is	 to	 provide	 a	 brief	 introduction	 to
communication	 systems.	 Communication	 theory	 is	 a	 richly
developed	discipline,	 and	much	of	 the	communication	 theory	 is
beyond	 the	 scope	 of	 this	 book.	 Nevertheless,	 the	 trend	 in
embedded	 systems	 is	 to	 employ	 multiple	 intelligent	 devices,
therefore	 the	 interconnection	 will	 be	 a	 strategic	 factor	 in	 the
performance	of	 the	system.	These	devices	will	be	developed	by
different	 manufacturers,	 thus	 the	 interconnection	 network	 must
be	 flexible,	 robust,	 and	 reliable.	 Consequently,	 this	 chapter
focuses	on	implementing	communication	systems	appropriate	for
embedded	 systems.	 The	 components	 of	 an	 embedded	 system
typically	combined	to	solve	a	common	objective,	thus	the	nodes
on	 the	 communication	 network	 will	 cooperate	 towards	 that
shared	goal.	 In	particular,	 requirements	of	an	embedded	system,
in	general,	involve	relatively	low	bandwidth,	static	configuration,
and	a	 low	probability	of	 corrupted	data.	 In	Volume	2,	networks
designed	 with	 serial	 ports	 and	 ZigBee	 were	 presented.	 In	 this
chapter	we	will	discuss	CAN,	Bluetooth,	and	Ethernet.



9.1.	Fundamentals

9.1.1.	The	network
A	network	 is	a	collection	of	 interfaces	that	share	a	physical	medium
and	a	data	protocol.		A	network	allows	software	tasks	in	one	computer
to	 communicate	 and	 synchronize	 with	 software	 tasks	 running	 on
another	 computer.	 For	 an	 embedded	 system,	 the	 network	 provides	 a
means	for	distributed	computing.	The	 topology	of	a	network	defines
how	 the	components	are	 interconnected.	Example	 topologies	 include
rings,	busses	and	multi-hop.	Figure	9.1	shows	a	ring	network	of	three
microcontrollers.	The	advantage	of	 this	 ring	network	 is	 low	cost	and
can	be	implemented	on	any	microcontroller	with	a	serial	port.	Notice
that	 the	 microcontrollers	 need	 not	 be	 the	 same	 type	 or	 speed.	 The
CAN	 network,	 presented	 in	 Section	 9.2,	 is	 an	 example	 of	 a	multi-
drop	bus.
The	 ZigBee	wireless	 network	 described	 in	Volume	 2	 is	 a	multi-hop
network	(duplicated	 in	Figure	9.2).	Notice	 that	 there	can	be	multiple
paths	with	which	to	route	packets.
	

Figure	9.1.	A	simple	ring	network	with	three	nodes,	linked	using
the	serial	ports.



Figure	9.2.	ZigBee	wireless	networks	communicate	by	hopping
between	nodes.

In	Chapter	11	of	Volume	2,	we	considered	networks	with	one	or	two
layers.	In	this	chapter,	we	will	build	on	those	ideas	and	introduce	the
concepts	of	networks	with	more	layers	and	higher	bandwidths.
A	 communication	 network	 includes	 both	 the	 physical	 channel
(hardware)	 and	 the	 logical	 procedures	 (software)	 that	 allow	users	 or
software	 processes	 to	 communicate	 with	 each	 other.	 The	 network
provides	 the	 transfer	 of	 information	 as	 well	 as	 the	 mechanisms	 for
process	synchronization.	It	is	convenient	to	visualize	the	network	in	a
hierarchical	fashion	as	shown	in	Figure	9.3.

	

Figure	9.3.	A	layered	approach	to	communication	systems.

Most	 networks	 provide	 an	 abstraction	 that	 hides	 low-level	 details
from	 high-level	 operations.	 This	 abstraction	 is	 often	 described	 as
layers.	 	 The	 International	 Standards	Organization	 (ISO)	 defines	 a	 7-



layer	 model	 called	 the	 Open	 Systems	 Interconnection	 (OSI),	 as
shown	 in	Figure	 9.4.	 It	 provides	 a	 standard	way	 to	 classify	 network
components	and	operations.

Figure	9.4.	The	Open	Systems	Interconnection	model	has	seven
layers.

The	Physical	 layer	 includes	 connectors,	 bit	 formats,	 and	 a	means	 to
transfer	 energy.	 Examples	 include	 RS232,	 controller	 area	 network
(CAN),	 modem	 V.35,	 T1,	 10BASE-T,	 100BASE-TX,	 DSL,	 and
802.11a/b/g/n	PHY.	The	Data	link	 layer	 includes	error	detection	and
control	 across	 a	 single	 link	 (single	 hop).	 Examples	 include	 802.3
(Ethernet),	 802.11a/b/g/n	 MAC/LLC,	 PPP,	 and	 Token	 Ring.	 The
Network	layer	defines	end-to-end	multi-hop	data	communication.	The
Transport	 layer	 provides	 connections	 and	 may	 optimize	 network
resources.	 The	 Session	 layer	 provides	 services	 for	 end-user
applications	 such	 as	 data	 grouping	 and	 check	 points.	 The
Presentation	layer	includes	data	formats,	transformation	services.	The
Application	layer	provides	an	interface	between	network	and	end-user
programs.
Observation:	Communication	systems	often	specify	bandwidth	in
total	bits/sec,	but	the	important	parameter	is	the	data	transfer	rate.	



Observation:	Often	the	bandwidth	is	limited	by	the	software	and
not	the	hardware	channel.	

Many	embedded	systems	 require	 the	communication	of	command	or
data	information	to	other	modules	at	either	a	near	or	a	remote	location.
A	full	duplex	channel	allows	data	to	transfer	in	both	directions	at	the
same	 time.	 Ethernet,	 SPI,	 and	 UART	 implement	 full	 duplex
communication.	 In	 a	 half	 duplex	 system,	 data	 can	 transfer	 in	 both
directions	but	only	 in	one	direction	at	a	 time.	Half	duplex	 is	popular
because	it	is	less	expensive	and	allows	the	addition	of	more	devices	on
the	channel	without	change	to	the	existing	nodes.	CAN,	I2C,	and	most
wireless	protocols	 implement	half-duplex	communication.	A	simplex
channel	allows	data	to	flow	in	only	one	direction.
Checkpoint	9.1:	In	which	manner	to	most	people	communicate:
simplex,	half	duplex	or	full	duplex?

9.1.2.	Physical	Channel
Information,	such	as	text,	sound,	pictures	and	movies,	can	be	encoded
in	digital	 form	and	 transmitted	across	a	channel,	 as	 shown	 in	Figure
9.5.	Channel	 capacity	 is	 defined	 as	 the	 maximum	 information	 per
second	 it	 can	 transmit.	 In	 order	 to	 improve	 the	 effective	 bandwidth
many	 communication	 systems	 will	 compress	 the	 information	 at	 the
source,	transmit	the	compressed	version,	and	then	decompress	the	data
at	 the	 destination.	 Compression	 essentially	 removes	 redundant
information	 in	 such	 a	 way	 that	 the	 decompressed	 data	 is	 identical
(lossless)	or	slightly	altered	but	similar	enough	(lossy).	For	example,	a
400	pixels/inch	photo	compressed	using	the	JPEG	algorithm	will	be	5
to	30	 times	smaller	 than	 the	original.	A	guided	medium	 focuses	 the
transmission	energy	into	a	well-defined	path,	such	as	current	flowing
along	 copper	wire	 of	 a	 twisted	 pair	 cable,	 or	 light	 traveling	 along	 a
fiber	optic	cable.		Conversely,	an	unguided	medium	has	no	focus,	and
the	energy	field	diffuses	as	in	propagates,	such	as	sound	or	EM	fields
in	air	or	water.	In	general,	for	communication	to	occur,	the	transmitter
must	encode	information	as	energy,	the	channel	must	allow	the	energy
to	move	from	transmitter	to	receiver,	and	the	receiver	must	decode	the
energy	 back	 into	 the	 information,	 see	 Figure	 9.5.	 In	 an	 analog
communication	 system,	 energy	 can	 vary	 continuously	 in	 amplitude
and	time.	A	digital	communication	signal	exists	at	a	finite	number	of



energy	levels	for	discrete	amounts	of	time.	Along	the	way,	the	energy
may	be	lost	due	to	attenuation.	For	example,	a	simple	V=I*R	voltage
drop	is	 in	actuality	a	 loss	of	energy	as	electrical	energy	converted	 to
thermal	 energy.	 A	 second	 example	 of	 attenuation	 is	 an	 RF	 cable
splitter.	For	each	splitter,	there	will	be	50%	attenuation,	where	half	the
energy	 goes	 left	 and	 the	 other	 half	 goes	 right	 through	 the	 splitter.
Unguided	 media	 will	 have	 attenuation	 as	 the	 energy	 propagates	 in
multiple	 directions.	 Attenuation	 causes	 the	 received	 energy	 to	 be
lower	in	amplitude	than	the	transmitted	energy.
A	 second	 problem	 is	distortion.	 The	 transfer	 gain	 and	 phase	 in	 the
channel	may	be	function	of	frequency,	 time,	or	amplitude.	Distortion
causes	 the	 received	energy	 to	be	different	 shape	 than	 the	 transmitted
energy.
A	 third	 problem	 is	 noise.	 The	 noise	 energy	 is	 combined	 with	 the
information	energy	to	create	a	new	signal.	White	noise	is	an	inherent
or	internally	generated	noise	caused	by	thermal	fluctuations.	EM	field
noise	is	externally	generated	and	is	coupled	or	added	into	the	system.
Crosstalk	 is	a	problem	where	energy	 in	one	wire	causes	noise	 in	an
adjacent	wire.	 	We	quantify	noise	with	 signal-to-noise	 ratio	 (SNR),
which	is	the	ratio	of	the	information	signal	power	to	noise	power.

	

Figure	9.5.	Information	is	encoded	as	energy,	and	errors	can
occur	during	transmission.

Checkpoint	9.2:	Why	do	we	measure	SNR	as	power	and	not
voltage?
Checkpoint	9.3:	Why	do	we	always	have	a	ratio	of	two	signals



whenever	we	use	the	log10	to	calculate	the	amplitude	of	a	signal?

Observation:	Whenever	we	use	the	log10	to	calculate	the	amplitude
of	a	signal,	we	multiply	by	10	if	we	have	a	ratio	of	two	power
signals	or	energy	signals,	and	we	multiply	by	20	if	we	have	a	ratio
of	two	voltage	signals	or	current	signals.

We	 can	 make	 an	 interesting	 analogy	 between	 time	 and	 space.	 A
communication	system	allows	us	transfer	information	from	position	A
to	position	B.	A	digital	storage	system	allows	us	transfer	information
from	 time	 A	 to	 time	 B.	 Many	 of	 the	 concepts	 (encoding/decoding
information	as	energy,	signal	to	noise	ratio,	error	detection/correction,
security,	and	compression)	apply	in	an	analogous	manner	to	both	types
of	systems.
Checkpoint	9.4:	We	measure	the	performance	of	a	communication
system	as	bandwidth	in	bits/sec.	What	is	the	analogous	performance
measure	of	a	digital	storage	system?		

Errors	 can	 occur	 when	 communicating	 through	 a	 channel	 with
attenuation,	distortion	and	added	noise.	If	the	receiver	detects	an	error,
it	 can	 send	 a	 negative	 acknowledgement	 so	 the	 transmitter	 will
retransmit	the	data.	The	CAN,	ZigBee,	and	Bluetooth	protocols	handle
this	 detection-retransmission	 process	 automatically.	 Networks	 based
on	 the	 UARTs	 could	 define	 and	 implement	 error	 detection.	 For
example,	 we	 can	 add	 an	 additional	 bit	 to	 the	 serial	 frame	 for	 the
purpose	of	detecting	errors.	With	even	parity,	the	sum	of	the	data	bits
plus	 the	parity	bit	will	 be	 an	 even	number.	The	 framing	error	 in	 the
UART	 can	 also	 be	 used	 to	 signify	 the	 data	 may	 be	 corrupted.	 The
CAN	network	sends	a	 longitudinal	redundancy	check,	LRC,	which
is	the	exclusive	or	of	the	bytes	in	the	frame.	The	ZigBee	network	adds
a	checksum,	which	is	the	sum	of	all	the	data.	The	Network	Processor
Interface	(NPI)	later	in	this	chapter	uses	LRC.
There	are	many	ways	to	improve	transmission	in	the	channel,	reducing
the	probability	of	errors.	The	first	design	choice	is	the	selection	of	the
interface	 driver.	 For	 example,	 RS422	 is	 less	 likely	 to	 exhibit	 errors
than	RS232.	Of	course	having	a	driver	will	be	more	reliable	than	not
having	 a	 driver.	 The	 second	 consideration	 is	 the	 cable.	 Proper
shielding	can	improve	SNR.	For	example,	Cat6	Ethernet	cables	have	a
separator	 between	 the	 four	 pairs	 of	 twisted	 wire,	 which	 reduce	 the



crosstalk	between	lines	as	compared	to	Cat5e	cable.	If	we	can	separate
or	 eliminate	 the	 source	 of	 added	 noise,	 the	 SNR	 will	 improve.
Reducing	 the	distance	 and	 reducing	 the	bandwidth	often	will	 reduce
the	probability	of	error.	If	we	must	transmit	long	distances,	we	can	use
a	repeater,	which	accepts	the	input	and	retransmits	the	data	again.			
Error	 correcting	 codes	 are	 beyond	 the	 scope	 of	 this	 book.	However,
we	 can	 present	 two	 simple	 error	 correcting	 codes.	 The	 first	 error
correcting	 code	 involves	 sending	 three	 copies	 of	 each	 data.	 The
receiver	will	 compare	 the	 three	 versions	 received	 and	majority	 vote
will	 decide	which	value	 to	 use.	A	 second	 error	 correcting	 code	uses
both	 parity	 and	 LRC.	 For	 example,	 assume	 we	 wished	 to	 send	 the
message	“Ciao”.	Encoded	as	ASCII	characters	the	data	are	$43,	$69,
$61,	and	$6F.	The	first	step	is	to	display	the	binary	data	in	2-D.

	 Byte
0

Byte
1

Byte
2

Byte
3

Bit	7 0 0 0 0
Bit	6 1 1 1 1
Bit	5 0 1 1 1
Bit	4 0 0 0 0
Bit	3 0 1 0 1
Bit	2 0 0 0 1
Bit	1 1 0 0 1
Bit	0 1 1 1 1

	
The	second	step	is	to	add	an	even	parity	to	each	byte	and	add	a	LRC	at
the	end.

	 Byte
0

Byte
1

Byte
2

Byte
3

LRC

Parity 1 0 1 0 0
Bit	7 0 0 0 0 0
Bit	6 1 1 1 1 0
Bit	5 0 1 1 1 1
Bit	4 0 0 0 0 0
Bit	3 0 1 0 1 0
Bit	2 0 0 0 1 1



Bit	1 1 0 0 1 0
Bit	0 1 1 1 1 0

Notice	 that	 the	 even	 parity	 is	 the	 exclusive	 OR	 of	 each	 bit	 in	 the
vertical	 column	 and	 the	LRC	 is	 the	 exclusive	OR	of	 each	 bit	 in	 the
horizontal	 row.	 The	 parity	 bit	 for	 the	 LRC	 (or	 the	 LRC	 bit	 for	 the
parity)	will	be	the	exclusive	OR	of	all	the	data	bits.
Now,	 if	 any	one	bit	 in	 this	9-row	by	5-column	matrix	 is	 flipped,	we
can	determine	which	byte	is	in	error	by	the	parity	and	which	bit	is	in
error	 by	 the	LRC.	Rather	 than	 asking	 for	 retransmission,	we	 simply
correct	 the	 error.	 These	 are	 very	 simple	 error	 correcting	 codes,	 but
they	illustrate	 that	we	can	send	more	bits	 than	the	minimum	and	use
those	extra	bits	in	a	creative	way	to	either	detect	or	correct	errors.
RS422,	 RS485,	 Ethernet,	 and	 CAN	 are	 high-speed	 communication
channels.	This	means	 the	bandwidth	and	slew	rate	on	 the	signals	are
higher	than	RS232.	There	is	a	correspondence	between	rise	time	(t)	of
a	digital	signal	and	equivalent	sinusoidal	frequency	(f).	The	derivative
of	 A∙sin(2πft)	 is	 2πf∙A∙cos(2πft).	 The	 maximum	 slew	 rate	 of	 this
sinusoid	 is	 2πf∙A.	 Approximating	 the	 slew	 rate	 as	 A/t,	 we	 get	 a
correspondence	between	f	and	t	f=	1/ 	t	For	example,	if	the	rise	time	is
5	ns,	the	equivalent	frequency	is	200	MHz.	Notice	that	this	equivalent
frequency	is	independent	of	baud	rate.	So	even	at	1000	bits/sec,	if	the
rise	 time	 is	 5	 ns,	 then	 the	 signal	 has	 a	 strong	 200	MHz	 frequency
component!	To	deal	with	this	issue,	the	RS232	protocol	limits	the	slew
rate	to	a	maximum	of	30V/µs.	This	means	it	will	take	about	400	ns	for
a	 signal	 to	 rise	 from	 -6	 to	 +6	V.	Consequently,	 RS232	 signals	 have
frequency	 components	 less	 than	2	MHz.	However,	 to	 transmit	 faster
than	RS232,	the	protocol	must	have	faster	rise	times.	Electrical	signals
travel	at	about	0.6	to	0.9	times	the	speed	of	light.	This	velocity	factor
(VF)	 is	 a	 property	 of	 the	 cable.	 For	 example,	 VF	 for	 RG-6/U	 coax
cable	is	0.75,	whereas	VF	is	only	0.66	for	RG-58/U	coax	cable.	Using
the	 slower	 0.66	 estimate,	 the	 speed	 is	 v	 =	 2∙108	 m/s.	 According	 to
wave	theory,	the	wavelength	is	l	=	v/f.	Estimating	the	frequency	from
rise	 time,	 we	 get	 l = v 	 *t	 In	 our	 example,	 a	 rise	 time	 of	 5	 ns	 is
equivalent	to	a	wavelength	of	about	1	m.	As	a	rule	of	thumb,	we	will
consider	the	channel	as	a	transmission	line	if	the	length	of	the	wire	is
greater	than	l/4.	Another	requirement	is	for	the	diameter	of	the	wire	to
be	 much	 smaller	 than	 the	 wavelength.	 In	 a	 transmission	 line,	 the



signals	 travel	 down	 the	 wires	 as	 waves	 according	 to	 the	 wave
equation.	Analysis	 of	 the	wave	 equation	 is	 outside	 the	 scope	 of	 this
book.	However,	you	need	to	know	that	when	a	wave	meets	a	change	in
impedance,	some	of	the	energy	will	transmit	(a	good	thing)	and	some
of	 the	 energy	 will	 reflect	 (a	 bad	 thing).	 Reflections	 are	 essentially
noise	on	the	signal,	and	if	 large	enough,	 they	will	cause	bit	errors	 in
transmission.	 We	 can	 reduce	 the	 change	 in	 impedance	 by	 placing
terminating	 resistors	on	both	ends	of	a	 long	high-speed	cable,	which
are	 needed	 for	 both	 CAN	 and	 Ethernet.	 These	 resistors	 reduce
reflections;	hence	they	improve	signal	to	noise	ratio.

9.1.3.	Wireless	Communication
The	 details	 of	 exactly	 how	 wireless	 communication	 operates	 are
beyond	 the	 scope	 of	 this	 book.	 Nevertheless,	 the	 interfacing
techniques	presented	in	this	book	are	sufficient	to	implement	wireless
communication	by	selecting	a	wireless	module	and	interfacing	it	to	the
microcontroller.	 In	 general,	 one	 considers	 bandwidth,	 distance,
topology	 and	 security	when	 designing	 a	wireless	 link.	Bandwidth	 is
the	fundamental	performance	measure	for	a	communication	system.	In
this	 book,	 we	 define	 bandwidth	 of	 the	 system	 as	 the	 information
transfer	 rate.	 However,	 when	 characterizing	 the	 physical	 channel,
bandwidth	can	have	many	definitions.	In	general,	 the	bandwidth	of	a
channel	 is	 the	 range	 of	 frequencies	 passed	 by	 the	 channel
(Communication	 Networks	 by	 Leon-Garcia).	 Let	 Gx(f)	 be	 the	 gain
versus	 frequency	 of	 the	 channel.	 When	 considering	 EM	 fields
transmitted	 across	 space,	we	 can	 define	absolute	 bandwidth	 as	 the
frequency	 interval	 that	contains	all	of	 the	 signal’s	 frequencies.	Half-
power	bandwidth	 is	 the	 interval	between	frequencies	at	which	Gx(f)
has	dropped	to	half	power	(‑3dB).	Let	fc	be	the	carrier	frequency,	and
Px	 be	 the	 total	 signal	 power	 over	 all	 frequencies.	 The	 equivalent
rectangular	 bandwidth	 is	Px/Gx(fc).	 The	null-to-null	 bandwidth	 is
the	 frequency	 interval	 between	 first	 two	 nulls	 of	 Gx(f).	 The	 FCC
defines	fractional	power	containment	bandwidth	as	 the	bandwidth
with	0.5%	of	signal	power	above	and	below	the	band.	The	bounded
power	spectral	density	is	the	band	defined	so	that	everywhere	outside
Gx(f)	must	have	 fallen	 to	a	given	 level.	The	purpose	of	 this	 list	 is	 to



demonstrate	 to	 the	 reader	 that,	 when	 quoting	 performance	 data,	 we
must	give	both	definition	of	 the	parameter	and	 the	data.	 If	we	know
the	 channel	 bandwidth	 W	 in	 Hz	 and	 the	 SNR,	 we	 can	 use	 the
Shannon–Hartley	 Channel	 Capacity	 Theorem	 to	 estimate	 the
maximum	data	 transfer	 rate	C	 in	 bits/s:	C	=	W	 *log2(1	 +	 SNR)	 For
example,	consider	a	telephone	line	with	a	bandwidth	W	of	3.4	kHz	and
SNR	 of	38	dB.	The	dimensionless	SNR	=	10(38/10)	 =	 6310.	Using	 the
Channel	 Capacity	 Theorem,	 we	 calculate	 C	 =
3.4	kHz	*	log2(1	+	6310)	=	43	kbits/s.

9.1.4.	Radio
Figure	9.6	shows	a	rough	image	of	various	electromagnetic	waves	that
exist	from	radio	waves	to	gamma	rays.	Visible	light	constitutes	a	very
small	 fraction,	 ranging	 from	 430–770	 THz.	 Bluetooth.	 ZigBee,	 and
WiFi	use	an	even	narrower	range	from	2.40	to	2.48	GHz,	which	exists
in	the	microwave	spectrum.

Figure	9.6.	Bluetooth	communication	occurs	in	the	microwave
band	at	about	2.4	GHz.

Table	 9.1	 shows	 some	 general	 descriptions	 of	 the	 three	 major
communication	standards	operating	in	this	2.4	GHz	band.
	

Standard Description
WiFi Up	to	600	Mbits/sec

Fixed	wide	frequency	channels
Requires	lots	of	power
Support	for	2.4	and	5	GHz	channels
Extensive	security	features

Bluetooth/BLE Very	low	power



BT	up	to	2	Mbps
Massive	deployed	base
Frequency	hopping
Good	performance	in	congested/noisy
environment
Ease	of	use,	no	roaming

ZigBee Very	low	power
Fixed	channels
Complex	mesh	network
250	kbps	bandwidth

Table	9.1.	Comparison	between	Wi-Fi,	Bluetooth,	and	ZigBee.
Bluetooth	LE	could	use	any	of	the	40	narrow	bands	(LL	0	to	39)	at	2.4
GHz;	these	bands	are	drawn	as	bumps	in	Figure	9.7.	This	figure	also
shows	 the	 WiFi	 channels,	 which	 exist	 as	 three	 wide	 bands	 of
frequencies,	 called	 channel	 1,	 6	 and	 11.	Because	BLE	 coexists	with
regular	Bluetooth	and	WiFi,	BLE	will	avoid	 the	frequencies	used	by
other	communication	devices.	LL	channels	37,	38	and	39	are	used	to
advertise,	 and	LL	channels	9-10,	21-23	and	33-36	are	used	 for	BLE
communication.	 BLE	 has	 good	 performance	 in	 congested/noisy
environments	 because	 it	 can	 hop	 from	 one	 frequency	 to	 another.
Frequency	Hopping	Spread	Spectrum	(FHSS)	rapidly	switches	the
carrier	 among	 many	 frequency	 channels,	 using	 a	 pseudorandom
sequence	 known	 to	 both	 transmitter	 and	 receiver.	 This	 way,
interference	will	only	affect	some	but	not	all	communication.

Figure	9.7.	The	2.4	GHz	spectrum	is	divided	into	40	narrow



bands,	numbered	LL	0	to	39.	Each	band	is	±1	MHz.

Figure	9.8	illustrated	the	inverted	F	shape	of	the	2.4	GHz	antenna	used
on	the	CC2650	LaunchPad.	For	more	information	on	antenna	layout,
see	http://www.ti.com/lit/an/swra351a/swra351a.pdf	

Figure	9.8.		One	possible	layout	of	the	2.4	GHz	antenna.



9.2.	Controller	Area	Network	(CAN)

9.2.1.	The	Fundamentals	of	CAN
In	 this	 section,	 we	 will	 design	 and	 implement	 a	 Controller	 Area
Network	(CAN).	CAN	is	a	high-integrity	serial	data	communications
bus	that	is	used	for	real-time	applications.	It	can	operate	at	data	rates
of	 up	 to	 1	 Mbits/second,	 having	 excellent	 error	 detection	 and
confinement	 capabilities.	 The	 CAN	 was	 originally	 developed	 by
Robert	Bosch	for	use	in	automobiles,	and	is	now	extensively	used	in
industrial	automation	and	control	applications.	The	CAN	protocol	has
been	 developed	 into	 an	 international	 standard	 for	 serial	 data
communication,	specifically	the	ISO	11989.
Figure	9.9	shows	the	block	diagram	of	a	CAN	system,	which	can	have
up	 to	 112	nodes.	There	 are	 four	 components	 of	 a	CAN	system.	The
first	part	is	the	CAN	bus	consisting	of	two	wires	(CANH,	CANL)	with
120-Ω	 termination	 resistors	 on	 each	 end.	 The	 second	 part	 is	 the
Transceiver,	 which	 handles	 the	 voltage	 levels	 and	 interfacing	 the
separate	receive	(RxD)	and	transmit	(TxD)	signals	onto	the	CAN	bus.
The	third	part	is	the	CAN	controller,	which	is	hardware	built	into	the
microcontroller,	 and	 it	 handles	 message	 timing,	 priority,	 error
detection,	and	retransmission.	The	last	part	is	software	that	handles	the
high-level	functions	of	generating	data	to	transmit	and	processing	data
received	from	other	nodes.

	



Figure	9.9.		Block	Diagram	of	a	TM4C-Based	CAN
communication	system

Each	 node	 consists	 of	 a	 microcontroller	 (with	 an	 internal	 CAN
controller),	and	a	transceiver	that	interfaces	the	CAN	controller	to	the
CAN	 bus.	 A	 transceiver	 is	 a	 device	 capable	 of	 transmitting	 and
receiving	on	 the	same	channel.	The	CAN	is	based	on	 the	“broadcast
communication	 mechanism”,	 which	 follows	 a	 message-based
transmission	protocol	rather	than	an	address-based	protocol.	The	CAN
provides	two	communication	services:	the	sending	of	a	message	(data
frame	 transmission)	 and	 the	 requesting	 of	 a	 message	 (remote
transmission	 request).	 All	 other	 services	 such	 as	 error	 signaling,
automatic	 retransmission	 of	 erroneous	 frames	 are	 user-transparent,
which	 implies	 that	 the	 CAN	 interface	 automatically	 performs	 these
functions.	 	 Both	 the	 TM4C123	 and	 the	 TM4C1294	 have	 two	 CAN
devices.	However,	 the	MSP432	does	not	have	a	CAN	 interface.	The
physical	channel	consists	of	two	wires	containing	in	differential	mode
one	digital	logic	bit.	Because	multiple	outputs	are	connected	together,
there	 must	 be	 a	 mechanism	 to	 resolve	 simultaneous	 requests	 for
transmission.	 In	 a	 manner	 similar	 to	 open	 collector	 logic,	 there	 are
dominant	and	recessive	states	on	the	transmitter,	as	shown	in	Figure
9.10.	The	outputs	follow	a	wired-and	mechanism	in	such	a	way	that	if
one	or	more	nodes	are	sending	a	dominant	state,	 it	will	override	any
nodes	attempting	to	send	a	recessive	state.



Figure	9.10.	Voltage	specifications	for	the	recessive	and	dominant
states.

Checkpoint	9.5:	What	are	the	dominant	and	recessive	states	in
open	collector	logic?

The	CAN	transceiver	is	a	high-speed,	fault-tolerant	device	that	serves
as	 the	 interface	 between	 a	 CAN	 protocol	 controller	 (located	 in	 the
microcontroller)	 and	 the	 physical	 bus.	 The	 transceiver	 is	 capable	 of
driving	 the	 large	 current	 needed	 for	 the	CAN	bus	 and	 has	 electrical
protection	against	defective	stations.	Typically,	each	CAN	node	must
have	 a	 device	 to	 convert	 the	 digital	 signals	 generated	 by	 a	 CAN
controller	 to	 signals	 suitable	 for	 transmission	 over	 the	 bus	 cabling.
The	transceiver	also	provides	a	buffer	between	the	CAN	controller	and
the	 high-voltage	 spikes	 than	 can	 be	 generated	 on	 the	 CAN	 bus	 by
outside	sources.	Examples	of	CAN	transceiver	chips	include	the	Texas
Instruments	 SN65HVD1050D,	 AMIS-30660	 high	 speed	 CAN
transceiver,	 ST	 Microelectronics	 L9615	 transceiver,	 Philips
Semiconductors	 AN96116	 transceiver,	 and	 the	Microchip	MCP2551
transceiver.	These	transceivers	have	similar	characteristics	and	would
be	equally	suitable	for	implementing	a	CAN	system.
In	a	CAN	system,	messages	are	identified	by	their	contents	rather	by
addresses.	Each	message	sent	on	the	bus	has	a	unique	identifier,	which
defines	both	the	content	and	the	priority	of	the	message.	This	feature
is	especially	important	when	several	stations	compete	for	bus	access,	a
process	 called	 bus	 arbitration.	 As	 a	 result	 of	 the	 content-oriented
addressing	 scheme,	 a	 high	 degree	 of	 system	 and	 configuration
flexibility	 is	 achieved.	 It	 is	 easy	 to	 add	 stations	 to	 an	 existing	CAN
network.
Four	 message	 types	 or	 frames	 can	 be	 sent	 on	 a	 CAN	 bus.	 These
include	the	Data	Frame,	the	Remote	Frame,	the	Error	Frame,	and
the	Overload	 Frame.	 This	 section	 will	 focus	 on	 the	 Data	 Frame,
where	 the	 parts	 in	 standard	 format	 are	 shown	 in	 Figure	 9.11.	 The



Arbitration	Field	determines	the	priority	of	the	message	when	two	or
more	nodes	are	contending	for	the	bus.	For	the	Standard	CAN	2.0A,	it
consists	of	an	11-bit	identifier.	For	the	Extended	CAN	2.0B,	there	is	a
29-bit	Identifier.	The	identifier	defines	the	type	of	data.	The	Control
Field	contains	the	DLC,	which	specifies	the	number	of	data	bytes.	The
Data	 Field	 contains	 zero	 to	 eight	 bytes	 of	 data.	 The	 CRC	 Field
contains	 a	 15-bit	 checksum	 used	 for	 error	 detection.	 Any	 CAN
controller	that	has	been	able	to	correctly	receive	this	message	sends	an
Acknowledgement	bit	at	the	end	of	each	message.	This	bit	is	stored	in
the	Acknowledge	slot	in	the	CAN	data	frame.	The	transmitter	checks
for	 the	 presence	 of	 this	 bit	 and	 if	 no	 acknowledge	 is	 received,	 the
message	is	retransmitted.	To	transmit	a	message,	the	software	must	set
the	11-bit	 Identifier,	 set	 the	4-bit	DLC,	 and	give	 the	0	 to	 8	 bytes	 of
data.	 The	 receivers	 can	 define	 filters	 on	 the	 identifier	 field,	 so	 only
certain	message	 types	will	be	accepted.	When	a	message	 is	 received
the	software	can	read	the	identifier,	length,	and	data.
The	Intermission	Frame	Space	 (IFS)	 separates	 one	 frame	 from	 the
next.	 	There	are	 two	factors	 that	affect	 the	number	of	bits	 in	a	CAN
message	frame.	The	ID	(11	or	29	bits)	and	the	Data	fields	(0,	8,	16,	24,
32,	 40,	 48,	 56,	 or	 64	 bits)	 have	 variable	 length.	 The	 remaining
components	 (36	 bits)	 of	 the	 frame	 have	 fixed	 length	 including	 SOF
(1),	 RTR	 (1),	 IDE/r1	 (1),	 r0	 (1),	 DLC	 (4),	 CRC	 (15),	 and
ACK/EOF/intermission	 (13).	 For	 example,	 a	 Standard	 CAN	 2.0A
frame	 with	 two	 data	 bytes	 has	 11+16+36	 =	 63	 bits.	 Similarly,	 an
Extended	CAN	2.0B	frame	with	 four	data	bytes	has	29+32+36	=	97
bits.
If	a	long	sequence	of	0’s	or	a	long	sequence	of	1’s	is	being	transferred,
the	 data	 line	 will	 be	 devoid	 of	 edges	 that	 the	 receiver	 needs	 to
synchronize	its	clock	to	the	transmitter.	In	this	case,	measures	must	be
taken	 to	 ensure	 that	 the	maximum	permissible	 interval	 between	 two
signal	edges	is	not	exceeded.		Bit	Stuffing	can	be	utilized	by	inserting
a	complementary	bit	after	five	bits	of	equal	value.	Some	CAN	systems
add	 stuff	 bits,	 where	 the	 number	 of	 stuff	 bits	 depends	 on	 the	 data
transmitted.	 	Assuming	n	 is	 the	number	of	data	bytes	 (0	 to	8),	CAN
2.0A	may	add	3+n	stuff	bits	and	a	CAN	2.0B	may	add	5+n	stuff	bits.
Of	course,	the	receiver	has	to	un-stuff	these	bits	to	obtain	the	original
data.



	

Figure	9.11.		CAN	Standard	Format	Data	Frame.

The	urgency	of	messages	to	be	transmitted	over	the	CAN	network	can
vary	 greatly	 in	 a	 real-time	 system.	 Typically,	 there	 are	 one	 or	 two
activities	that	require	high	transmission	rates	or	quick	responses.	Both
bandwidth	 and	 response	 time	 are	 affected	 by	message	 priority.	 Low
priority	messages	may	have	 to	wait	 for	 the	bus	 to	be	 idle.	There	are
two	 priorities	 occurring	 as	 the	 CANs	 transmit	 messages.	 The	 first
priority	 is	 the	 11-bit	 identifier,	 which	 is	 used	 by	 all	 the	 CAN
controllers	 wishing	 to	 transmit	 a	 message	 on	 the	 bus.	 Message
identifiers	 are	 specified	 during	 system	 design	 and	 cannot	 be	 altered
dynamically.	The	11-bit	 identifier	with	 the	 lowest	binary	number	has
the	highest	priority.	In	order	to	resolve	a	bus	access	conflict,	each	node
in	 the	network	observes	 the	bus	 level	bit	by	bit,	 a	process	known	as
bit-wise	arbitration.	In	accordance	with	the	wired-and-mechanism,	the
dominant	state	overwrites	the	recessive	state.	All	nodes	with	recessive
transmission	 but	 dominant	 observation	 immediately	 lose	 the
competition	for	bus	access	and	become	receivers	of	the	message	with
the	higher	priority.	They	do	not	attempt	 transmission	until	 the	bus	 is
available	again.	Transmission	requests	are	hence	handled	according	to
their	importance	for	the	system	as	a	whole.	The	second	priority	occurs
locally,	within	each	CAN	node.	When	a	node	has	multiple	messages
ready	to	be	sent,	it	will	send	the	highest	priority	messages	first.
Observation:	It	is	confusing	when	designing	systems	that	use	a
sophisticated	I/O	interface	like	the	CAN	to	understand	the
difference	between	those	activities	automatically	handled	by	the
CAN	hardware	module	and	those	activities	your	software	must
perform.	The	solution	to	this	problem	is	to	look	at	software
examples	to	see	exactly	the	kinds	of	tasks	your	software	must
perform.



9.2.2.	Texas	Instruments	TM4C	CAN
A	 device	 driver	 for	 the	 CAN	 network	 is	 divided	 into	 three
components:	 initialization,	 transmission,	 and	 reception.	 There	 is	 a
CAN	driver	available	in	TivaWare®.	In	this	section,	we	will	use	this
driver	 to	 develop	 a	 simple	 system	 that	 exchanges	 4-byte	 messages
between	two	microcontrollers.	Each	node	generates	an	interrupt	when
they	receive	a	CAN	message,	and	the	interrupt	handler	dumps	the	data
either	into	a	mailbox.		In	this	example,	the	transmission	doesn’t	block,
just	 returns	a	 failure	 if	 it	 can’t	put,	 so	 it	will	not	block	or	 spin.	This
example	was	written	 using	 the	 TivaWare®	driverlib	 library.	 Figure
9.12	 shows	 the	 data	 flow.	 There	 are	 two	 IDs	 used	 in	 this	 example:
#define	RCV_ID	2

#define	XMT_ID	4
The	CAN	ID	numbers	must	be	reversed	on	the	other	microcontroller.
Otherwise,	the	software	functions	on	the	two	nodes	are	identical.

Figure	9.12.	Data	flow	for	a	simple	CAN	network.

Transmission	 uses	 busy-wait	 synchronization.	 However,	 receiving
messages	 is	 interrupt	 driven,	 and	data	 is	 passed	 from	 the	 ISR	 to	 the
user	application	using	a	simple	mailbox:	uint8_t	static	RCVData[4];

int	static	MailFlag;			//	set	when	new	data	arrives
	



The	 TM4C	CAN	 receiver	 supports	 up	 to	 32	message	 objects.	 Each
message	to	be	sent	occupies	a	unique	message	object	in	the	32-object
memory	of	the	CAN	controller	and	each	receive	object	matches	one	of
the	transmit	objects,	just	on	the	opposite	board.	Although	this	example
has	only	two	message	objects	it	could	easily	be	extended	to	up	to	32
objects,	but	not	beyond	32.	In	this	code	there	are	two	message	objects;
the	transmission	object	on	one	is	connected	to	a	receive	object	on	the
other.	The	following	helper	function	sets	up	one	of	these	32	message
objects,	which	can	be	a	TX	object	or	an	RX	object	type.

void	static	CAN0_Setup_Message_Object(	uint32_t	MessageID,
					uint32_t	MessageFlags,	uint32_t	MessageLength,
					uint8_t	*	MessageData,	uint32_t	ObjectID,	tMsgObjType	eMsgType){
		tCANMsgObject	xTempObject;
		xTempObject.ulMsgID	=	MessageID;										//	11	or	29	bit	ID
		xTempObject.ulMsgLen	=	MessageLength;
		xTempObject.pucMsgData	=	MessageData;
		xTempObject.ulFlags	=	MessageFlags;
		CANMessageSet(CAN0_BASE,	ObjectID,	&xTempObject,	eMsgType);}

The	initialization	software	first	configures	Port	E	bits	4,5	to	be	CAN0.
From	Table	1.4	we	see	PE4	is	CAN0Rx,	and	PE5	is	CAN0Tx.	Next,	it
initializes	 the	 baudrate	 to	 1,000,000	 bps.It	 arms	 CAN	 interrupts	 on
error	and	status	change.	A	status	change	will	occur	when	an	incoming
frame	 is	 successively	 received.
The CAN0_Setup_Message_Object function	 will	 configure	 one	 of
the	32	message	objects.	Basically,	 it	will	 set	a	 filter	 to	allow	receive
frames	with	 this RCV_ID 	 ID.	An	 interrupt	will	 be	 generated	when
receiving	 this	 type	 of	 frame,	 but	 other	CAN	 traffic	will	 be	 ignored.
This	function	also	specifies	the	expected	size	in	bytes	of	the	payload.
Lastly,	 the	 CAN	 module	 is	 armed	 in	 the	 NVIC.	 Interrupts	 will	 be
enabled	in	the	main	program	after	all	devices	are	initialized.

void	CAN0_Open(void){uint32_t	volatile	delay;
		MailFlag	=	false;
		SYSCTL_RCGCCAN_R	|=	0x00000001;		//	CAN0	enable	bit	0
		SYSCTL_RCGCGPIO_R	|=	0x00000010;		//	PortE	enable	bit	4
		for(delay=0;	delay<10;	delay++){};
		GPIO_PORTE_AFSEL_R	|=	0x30;	//PORTE	AFSEL	bits	5,4
		GPIO_PORTE_PCTL_R	=
(GPIO_PORTE_PCTL_R&0xFF00FFFF)|0x00880000;



		GPIO_PORTE_DEN_R	|=	0x30;
		GPIO_PORTE_DIR_R	|=	0x20;				
		CANInit(CAN0_BASE);
		CANBitRateSet(CAN0_BASE,	80000000,	CAN_BITRATE);
		CANEnable(CAN0_BASE);
	
CANIntEnable(CAN0_BASE,CAN_INT_MASTER|CAN_INT_ERROR|CAN_INT_STATUS);
		CAN0_Setup_Message_Object(RCV_ID,	MSG_OBJ_RX_INT_ENABLE,
4,	NULL,
					RCV_ID,	MSG_OBJ_TYPE_RX);
		NVIC_EN1_R	=	(1	<<	(INT_CAN0	-	48));	//	IntEnable(INT_CAN0);
		return;

}

Again,	an	interrupt	is	generated	when	a	frame	of	the	appropriate	ID	is
received.	The	ISR	will	search	the	32	possible	message	objects	for	the
one	that	caused	the	interrupt.

void	CAN0_Handler(void){uint8_t	data[4];	int	i;
		uint32_t	ulIntStatus,ulIDStatus;	tCANMsgObject	xTempMsgObject;	
		xTempMsgObject.pucMsgData	=	data;
		ulIntStatus	=	CANIntStatus(CAN0_BASE,	CAN_INT_STS_CAUSE);	//
cause?
		if(ulIntStatus	&	CAN_INT_INTID_STATUS){		//	receive?
				ulIDStatus	=	CANStatusGet(CAN0_BASE,	CAN_STS_NEWDAT);
				for(i	=	0;	i	<	32;	i++){				//	test	every	bit	of	the	mask
						if(	(0x1	<<	i)	&	ulIDStatus){		//	if	active,	get	data
								CANMessageGet(CAN0_BASE,	(i+1),	&xTempMsgObject,	true);
								if(xTempMsgObject.ulMsgID	==	RCV_ID){
										RCVData[0]	=	data[0];	RCVData[1]	=	data[1];
										RCVData[2]	=	data[2];	RCVData[3]	=	data[3];
										MailFlag	=	true;			//	new	mail

}

}

}



}

		CANIntClear(CAN0_BASE,	ulIntStatus);		//	acknowledge

}

When	 the	 user	 code	 wishes	 to	 receive	 a	 message,	 it
calls CAN0_GetMailNonBlock ,	which	is	a	simple	mailbox	receiver.
This	function	is	nonblocking,	meaning	if	there	is	no	message	it	returns
false.	If	there	is	a	message,	it	copies	the	payload	of	4	bytes	and	returns
true.	If	the	RTOS	were	available,	the	MailFlag	could	be	replaces	with
a	semaphore.	The	ISR	would	signal	 the	semaphore	on	new	data,	and
the	user	code	could	wait	on	that	semaphore.

int	CAN0_GetMailNonBlock(uint8_t	data[4]){
		if(MailFlag){
				data[0]	=	RCVData[0];
				data[1]	=	RCVData[1];
				data[2]	=	RCVData[2];
				data[3]	=	RCVData[3];
				MailFlag	=	false;
				return	true;

}

		return	false;

}

int	CAN0_CheckMail(void){
		return	MailFlag;

}

When	 the	 user	 code	 wishes	 to	 transmit	 data	 it	 calls	 this	 function,
which	 configures	 a	 new	 message	 object.	 This	 function	 will	 send	 4
bytes	of	data	to	other	microcontroller.

void	CAN0_SendData(uint8_t	data[4]){
	
CAN0_Setup_Message_Object(XMT_ID,NULL,4,data,XMT_ID,MSG_OBJ_TYPE_TX);



}

The UserTask 	 ISR	 periodically	 reads	 its	 switches	 and	 creates	 a
transmit	 object.	 Because	 the	 transmission	 rate	 is	 slower	 than	 the
network,	 the	 transmitter	does	not	wait.	 It	simply	creates	 the	message
object	 ( CAN0_SendData )	 and	 schedules	 it	 for	 transmission.	When
received	by	the	other	microcontroller	an	interrupt	is	generated	and	the
data	 is	 put	 in	 a	 mailbox.	 The	 main	 program	 on	 the	 other
microcontroller	reads	the	mail	and	writes	the	data	out	to	its	LED.	Data
flows	 in	 both	 directions.	 Remember	 to	 reverse	 the XMT_ID
RCV_ID 	values	on	the	two	microcontrollers.

uint8_t	XmtData[4];
uint8_t	RcvData[4];
uint32_t	RcvCount=0;
uint8_t	sequenceNum=0;	
void	UserTask(void){
		XmtData[0]	=	PF0<<1;		//	0	or	2
		XmtData[1]	=	PF4>>2;		//	0	or	4
		XmtData[2]	=	0;							//	unassigned	field
		XmtData[3]	=	sequenceNum;		//	sequence	count
		CAN0_SendData(XmtData);
		sequenceNum++;

}

int	main(void){
		PLL_Init(Bus80MHz);														//	bus	clock	at	80	MHz
		SYSCTL_RCGCGPIO_R	|=	0x20;							//	activate	port	F
		while((SYSCTL_PRGPIO_R&0x20)	==	0){};
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;		//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0xFF;										//	allow	changes	to	PF4-0
		GPIO_PORTF_DIR_R	=	0x0E;									//	make	PF3-1	output
		GPIO_PORTF_AFSEL_R	=	0;										//	disable	alt	funct
		GPIO_PORTF_DEN_R	=	0x1F;									//	enable	digital	I/O	on	PF4-0
		GPIO_PORTF_PUR_R	=	0x11;									//	enable	pullup	on	inputs
		GPIO_PORTF_PCTL_R	=	0x00000000;
		GPIO_PORTF_AMSEL_R	=	0;										//	disable	analog	functionality	on	PF
		CAN0_Open();
		Timer3_Init(&UserTask,	1600000);	//	initialize	timer3	(10	Hz)



		EnableInterrupts();
		while(1){
				if(CAN0_GetMailNonBlock(RcvData)){
						RcvCount++;
						PF1	=	RcvData[0];
						PF2	=	RcvData[1];
						PF3	=	RcvCount;			//	heartbeat

}

}

}

Program	9.1.	Very	simple	CAN	network	example.

In	 this	 simple	 example,	 there	 is	 just	 one	 transmit	 ID	 type	 and	 one
receive	ID	type,	but	you	could	rewrite	the	transmitter	and	receiver	to
allow	multiple	ID	types.	In	this	case,	the	message	ID	(11-bit	ID)	and
the	object	ID	(0	to	31)	are	the	same.	In	general,	 there	could	be	2048
IDs,	 but	 in	 this	 example	 only	 the	 first	 32	 can	be	 used.	The	 transmit
messages	 are	 sent	 without	 interrupts,	 but	 the	 receive	 messages	 will
trigger	 an	 interrupt.	 It	 would	 take	 three	 steps	 to	 expand	 to	 more
receive	 IDs.	 First,	 we	 would	 call CAN0_Setup_Message_Object
multiple	times	during	initialization,	once	for	each	type	of	message	we
wish	 to	 receive	 (obviously,	 giving	 each	 a	 unique	 ID,	 up	 to	 32).
Second,	 for	 each	 possible	 ID,	 we	 would	 duplicate	 the
	 if(xTempMsgObject.ulMsgID==RCV_ID){} test	 in	 the	 ISR	 to
check	if	a	desired	message	has	been	received.	Third,	each	message	ID
would	need	its	own	mailbox	or	FIFO.	This	way	the	user	tasks	could	be
signaled	when	the	appropriate	data	is	available.	Expanding	the	system
to	 support	 more	 transmit	 message	 IDs	 is	 simple.	 We	 simple
duplicate CAN0_SendData 	function	for	each	message	ID	we	wish	to
send.



9.3.	Embedded	Internet
This	 section	 provides	 a	 brief	 introduction	 to	 the	 Internet	 as	 well	 as
present	 low-level	 details	 of	 the	 Ethernet	 controller	 on	 a	 Tiva
microcontroller.	 For	 an	 excellent	 description	 of	 the	 TCP/IP
(Transmission	Control	Protocol/Internet	Protocol)	protocol	 the	reader
is	referred	to	W.	Richard	Stevens,	TCP/IP	Illustrated,	Volume	1:	The
Protocols.	 For	 a	 general	 description	 of	 the	 internet	 of	 things,	 see
Vasseur	 and	Dunkels,	 Interconnecting	 Smart	Objects	with	 IP.	 These
two	books	provide	good	overviews	of	network	technologies	used	for
connecting	devices.

9.3.1.	Abstraction
In	a	manner	similar	to	ZigBee,	TCP/IP	packets	hop	from	one	network
to	another	as	 they	 travel	 from	source	 to	destination,	see	Figure	9.13.
The	 network	 schedules	 communication	 and	 provides	 routing	 from
source	to	destination.	Communication	channels	such	as	USB	and	CAN
have	 scheduling	mechanisms	 to	 guarantee	 real-time	 performance.	 In
particular,	USB	allows	for	prenegotiated	bandwidth,	so	important	data
can	 be	 sent	 in	 real	 time.	 Because	 of	 the	 priority,	 important	 CAN
messages	will	have	bounded	latency.	TCP/IP	although	fast	and	reliable
has	no	built-in	guarantees	of	timing.	Nevertheless,	the	use	of	TCP/IP
is	growing	 in	 the	embedded	world.	Often	TCP/IP	 is	 fast	enough	and
reliable	 enough	 for	 embedded	 applications,	 even	 if	 response	 time	 is
uncertain.

	



Figure	9.13.	Packets	on	the	internet	hop	from	one	network	to
another.

	
When	faced	with	a	complex	problem,	one	could	develop	a	solution	on
one	 powerful	 and	 centralized	 computer	 system.	 Alternatively	 a
distributed	 solution	 could	 be	 employed	 using	 multiple	 computers
connected	by	a	network.	The	processing	elements	in	Figure	9.14	may
be	 a	 powerful	 computer,	 a	 microcontroller,	 an	 ASIC,	 or	 a	 smart
sensor/actuator.	 Another	 name	 given	 for	 an	 embedded	 system
connected	 to	 the	 internet	 is	 smart	 object.	 Smart	 objects	 include
sensors	to	collect	data,	processing	to	detect	events	and	make	decisions,
and	actuators	to	manipulate	the	local	environment.
Table	9.2	lists	some	existing	applications	and	the	things	they	sense	or
control.	 There	 are	 many	 reasons	 to	 consider	 a	 distributed	 solution
(network)	 over	 a	 centralized	 solution.	 Often	 multiple	 simple
microcontrollers	 can	 provide	 a	 higher	 performance	 at	 lower	 cost
compared	to	one	computer	powerful	enough	to	run	the	entire	system.
Some	 embedded	 applications	 require	 input/output	 activities	 that	 are
physically	 distributed.	 For	 real-time	 operation	 there	 may	 not	 be
enough	time	to	allow	communication	between	a	remote	sensor	and	a
central	 computer.	 Another	 advantage	 of	 distributed	 system	 is
improved	 debugging.	 For	 example,	 we	 could	 use	 one	 node	 in	 a
network	to	monitor	and	debug	the	others.	Often,	we	do	not	know	the
level	of	complexity	of	our	problem	at	design	time.	Similarly,	over	time
the	 complexity	 may	 increase	 or	 decrease.	 A	 distributed	 system	 can
often	be	deployed	that	can	be	scaled.	For	example,	as	the	complexity
increases	 more	 nodes	 can	 be	 added,	 and	 if	 the	 complexity	 were	 to
decrease	nodes	could	be	removed.

Industrial	Automation	Factories,	machines,	shipping
Environment	Weather,	pollution,	public	safety
Smart	Grid	Electric	power,	energy	delivery
Smart	Cities	Transportation,	hazards,	public	services
Social	Networks	Ideas,	politics,	sales,	and	communication
Home	Networks	Lighting,	heat,	security,	information
Building	Networks	Energy,	hazards,	security,	maintenance



Structural	Monitors	Bridges,	roads,	building
Health	Care	Heart	function,	medical	data,	remote	care
Law	enforcement	Crime,	public	safety

Table	9.2.		Applications	of	smart	objects.
	

Figure	9.14.	The	internet	of	things	places	input,	output	and
processing	at	multiple	locations	connected	together	over	the
internet.

	
The	TCP/IP	model	 of	 the	 Internet	 does	 not	 adhere	 to	 such	 a	 strict
layered	 structure,	 but	does	 recognize	 four	broad	 layers:	 scope	of	 the
software	 application;	 the	 end-to-end	 transport	 connection;	 the
internetworking	 range;	 and	 the	 direct	 links	 as	 shown	on	 the	 right	 of
Figure	 9.15.	 Examples	 of	 applications	 include	 Telnet,	 FTP	 (File
Transfer	 Protocol),	 and	 SMTP	 (Simple	 Mail	 Transfer	 Protocol).
Examples	 of	 transport	 include	 TCP	 (Transmission	Control	 Protocol)
and	UDP	 (User	Datagram	 Protocol).	 TCP	 provides	 reliable,	 ordered
delivery	 of	 data	 from	 a	 software	 task	 on	 one	 computer	 to	 another
software	 task	 running	 on	 another	 computer.	 For	 applications	 that	 do
not	 require	 reliable	 data	 stream	 service	 UDP	 can	 be	 used.	 UDP
provides	 a	 datagram	 service	 that	 emphasizes	 reduced	 latency	 over
reliability.	Examples	of	network	include	IP	(Internet	Protocol),	ICMP
(Internet	 Control	 Message	 Protocol)	 and	 IGMP	 (Internet	 Group
Management	Protocol).	Ethernet	is	the	physical	link	explored	later	in
this	section.	In	this	section	we	will	develop	projects	at	the	application
layer.	 The	 communication	 of	 bits	 happens	 at	 the	 physical	 layer,



frames	 at	 the	data	 link	 layer,	packets	 or	datagrams	 at	 the	 network
layer,	segments	at	the	transport	layer,	and	messages	at	the	application
layer.

Figure	9.15.	The	TCP/IP	model	has	four	layers.

9.3.2.	Message	Protocols
The	 layered	 format	 can	 be	 seen	 in	 the	 message	 packet	 formats,	 as
overviewed	 in	 Figure	 9.16.	At	 the	 lowest	 level	 are	 Ethernet	 frames,
which	contain	a	header,	46	to	1500	bytes	of	payload,	and	a	trailer.	The
header	 includes	 address,	 type	 and	 length	 information.	 If	 the	 there	 is
less	than	46	bytes	of	Ethernet	data,	zeros	are	added	(padding)	to	make
the	 Ethernet	 payload	 at	 least	 46	 bytes.	 The	 trailer	 includes	 error
checking	 (CRC).	 At	 the	 IP	 level,	 packets	 include	 a	 header	 and
payload.	The	header	of	 an	 IP	packet	 includes	a	32-bit	destination	 IP
address,	 typically	 shown	 as	 four	 8-bit	 numbers	 (e.g.,	 176.31.244.1).
Some	 of	 these	 IP	 addresses	 are	 reserved	 for	 communicating	 within
nodes	on	a	local	network.	The	Domain	Name	System	(DNS)	host	can
be	 used	 to	 translate	 domain	 names	 to	 IP	 addresses.	 Computers	 that
communicate	only	with	each	other	via	TCP/IP,	but	are	not	connected
to	 the	 Internet,	 need	 not	 have	 globally	 unique	 IP	 addresses.	 IP
addresses	 for	 private	 networks	 are	 listed	 in	 Table	 9.3.	 These	 IP
addresses	could	be	used	for	systems	that	use	TCP/IP	to	communicate,
but	are	not	connected	to	the	internet.



Start End Number	of
addresses

10.0.0.0 10.255.255.255 224

172.16.0.0 172.31.255.255 220

192.168.0.0 192.168.255.255 216

Table	9.3.	Private	IP	addresses.
	

Because	of	the	growth	of	the	internet,	 the	32-bit	IP	address	(IPv4)	is
being	 replaced	with	a	128-bit	address	 (IPv6),	which	will	provide	 for
about	3∙1038	addresses.

Figure	9.16.	Overview	of	message	packets	used	at	various	layers.

9.3.3.	Ethernet	Physical	Layer
The	 goal	 of	 Ethernet	 is	 to	 provide	 reliable	 communication	 over	 an
unreliable	medium.	The	Ethernet	physical	layer	has	evolved	over	time
and	 includes	many	 physical	media	 interfaces.	 Ethernet	 speed	 ranges
over	 2	 orders	 of	 magnitude.	 The	 most	 common	 forms	 used	 are
10BASE-T,	100BASE-TX,	and	1000BASE-T.	All	three	utilize	twisted
pair	cables	and	8P8C	modular	connectors.	They	run	at	10	Mbit/s,	100
Mbit/s,	 and	 1	 Gbit/s,	 respectively.	 Fiber	 optic	 variants	 of	 Ethernet



offer	 high	 performance,	 electrical	 isolation	 and	 distance	 (tens	 of
kilometers	 with	 some	 versions).	 In	 general,	 network	 protocol	 stack
software	will	work	 similarly	 on	 all	 varieties.	The	 left	 side	 of	Figure
9.17	 shows	 two	 processing	 elements	 connected	 with	 Ethernet.	 The
transmitter	of	one	element	is	connected	to	the	receiver	of	the	other.	If
more	than	two	processing	elements	are	connected	to	the	same	physical
medium,	then	collisions	could	occur.	One	solution	to	reduce	collisions
is	to	use	an	Ethernet	switch	(right	side	of	Figure	9.17).

Figure	9.17.	Ethernet	has	a	bus-based	topology.

Hubs	 and	 switches	 allow	 multiple	 devices	 to	 exist	 on	 the	 same
network.	They	differ	in	the	way	that	they	pass	the	network	traffic	that
they	 receive.	 A	 hub	 repeats	 incoming	 frames	 to	 all	 nodes	 on	 the
network.	If	there	are	a	small	number	of	nodes	and	the	traffic	is	light,
this	simple	approach	is	adequate.	A	switch	learns	the	addresses	of	the
nodes	connected	to	it;	this	way,	an	incoming	frame	is	sent	only	to	the
proper	node.	 If	 there	are	a	 lot	of	nodes,	 this	 selective	 retransmission
provides	 a	 significant	 improvement	 in	 performance	 over	 a	 hub.	 A
router	 sits	 between	 two	 networks	 and	 passes	 frames	 from	 one
network	to	another,	see	Figure	9.13.
Packets	from	one	element	are	sent	to	the	appropriate	destination.	If	a
collision	were	to	occur	(sending	packets	to	the	same	destination	at	the
same	 time),	 then	 the	 switch	 will	 delay	 one	 packet	 to	 avoid	 the
collision.	From	 the	viewpoint	of	 the	nodes,	 the	network	 looks	 like	a
bus-based	 topology.	For	 example,	 if	 processing	 element	A	wishes	 to
send	a	packet	 to	processing	element	C,	 it	 transmits	 the	packet	 that	 is
addressed	to	C	onto	the	bus,	and	the	C	receives	it.
Table	9.4	shows	the	pin	assignments	in	the	8-wire	568-B	connectors.
The	568-A	connector	has	the	transmit	and	receive	pins	reversed.	These
two	 connector	 configurations	 are	 similar	 to	 the	 data	 terminal
equipment	(DTE)	and	the	data	communication	equipment	(DCE)	of
RS232	 described	 in	 Section	 4.9	 of	 Volume	 2.	 When	 connecting	 a
processing	 element	 to	 a	 switch,	 a	 568-B	 connector	 is	 used	 on	 the
processing	element	and	a	568-A	connector	is	used	on	the	switch.	This



way	a	straight-through	8-wire	cable	can	be	used	(Figure	9.18).	When
connecting	 two	 processing	 element	 to	 each	 other,	 both	 elements	 use
568-B	connectors.	For	this	situation	the	pairs	2	and	3	are	reversed	in
the	cable	can	be	used	(Figure	9.19	and	Table	9.5).

Pin Color Pair Description
1 white/orange 2 TxData	+
2 orange 2 TxData	-
3 white/green 3 RecvData	+
4 blue 1 Unused
5 white/blue 1 Unused
6 green 3 RecvData	-
7 white/brown 4 Unused
8 brown 4 Unused

Table	9.4.	Pin	assignments	on	a	568-B	Ethernet	connector.

Figure	9.18.	Ethernet	cable	between	a	microcontroller	and	a
switch.



Figure	9.19.	Ethernet	cable	between	two	microcontrollers.

Pin Left	color Left
signal

Cable Right	color Right	signal

1 white/orange TxData	+ 	 white/green TxData	+
2 orange TxData	- 	 green TxData	-
3 white/green RecvData

+
	 white/orange RecvData	+

4 blue Unused 	 blue Unused
5 white/blue Unused 	 white/blue Unused
6 green RecvData

-
	 orange RecvData	-

7 white/brown Unused 	 white/brown Unused
8 brown Unused 	 brown Unused

Table	9.5.	Pin	assignments	for	a	crossover	Ethernet	cable.

9.3.4.	Ethernet	on	the	TM4C1294
The	 Ethernet	 Controller	 consists	 of	 a	 fully	 integrated	 media	 access
controller	(MAC)	and	network	physical	(PHY)	interface.	The	Ethernet
Controller	 conforms	 to	 IEEE802.3	 specifications	 and	 fully	 supports
10BASE-T	 and	 100BASE-TX	 standards.	 To	 fully	 understand	 this
section,	you	must	read	the	TM4C1294	datasheet.	In	other	words,	this
section	is	meant	to	supplement,	rather	than	replace	the	datasheet.
As	 shown	 in	 Figure	 9.20,	 the	 Ethernet	 Controller	 is	 functionally
divided	into	two	layers:	the	Media	Access	Controller	(MAC)	layer	and
the	Network	Physical	(PHY)	layer.	These	layers	correspond	to	the	OSI
model	 layers	 2	 and	 1.	 The	 microcontroller	 accesses	 the	 Ethernet
Controller	via	the	MAC	layer.	The	MAC	layer	provides	transmit	and
receive	processing	for	Ethernet	frames.	The	MAC	layer	also	provides
the	 interface	 to	 the	 PHY	 layer	 via	 an	 internal	 Media	 Independent
Interface	(MII).	The	PHY	layer	communicates	with	the	Ethernet	bus.



Figure	9.20.	The	Ethernet	port	on	the	microcontroller	implements
the	MAC	and	PHY	layers.

Figure	9.21	shows	the	hardware	interface	between	the	TM4C1294	and
the	Ethernet	cable	as	it	is	implemented	on	the	Connected	LaunchPad.
The	 data	 is	 coupled	 onto	 the	 bus	 via	 transform	 coupling.	 The
transforms	 are	 connected	 to	 the	 RJ45	 jack.	 Only	 four	 of	 the	 eight
wires	are	used	and	there	are	no	ground	pins	in	the	cable.	There	are	two
activity	LEDs.	By	default,	 these	pins	are	configured	as	GPIO	signals
(PF3	and	PF2).	For	the	PHY	layer	to	drive	these	signals,	they	must	be
reconfigured	to	their	alternate	function.	When	configured	for	Ethernet
operation,	LEDs	D4	(PF0)	and	D3	(PF4)	on	the	connected	LaunchPad
are	 controlled	 by	 the	 Ethernet	 MAC	 to	 indicate	 connection	 and
transmit/receive	status.

Figure	9.21.	Electrical	interface	between	the	microcontroller	and
the	Ethernet	cable.

An	 Ethernet	 data	 packet	 is	 called	 a	 frame	 (Figure	 9.22).	 A	 frame
begins	 with	 preamble	 and	 start	 frame	 delimiter,	 followed	 by	 an
Ethernet	 header	 featuring	 destination	 and	 source	 MAC	 addresses.
Whether	 the	Length/Type	 field	 is	a	 length	or	a	 type	depends	on	 the
numeric	 value.	 If	 the	 value	 of	 the	 Length/Type	 field	 is	 less	 than	 or



equal	 to	 1500	 decimal,	 it	 indicates	 the	 number	 of	MAC	 client	 data
bytes.	If	the	value	of	this	field	is	greater	than	or	equal	to	1536	decimal,
then	it	is	type	interpretation.	The	meaning	of	this	field	when	the	value
is	between	1500	and	1536	decimal	is	unspecified.	The	middle	section
of	the	frame	consists	of	payload	data	including	any	headers	for	other
protocols	(e.g.,	Internet	Protocol)	carried	in	the	frame.	The	minimum
frame	 size	 is	 46	 bytes.	 If	 the	 frame	 size	 is	 too	 small,	 the	 Ethernet
Controller	automatically	appends	extra	bytes	(a	pad)	to	make	it	at	least
46	bytes.	The	frame	ends	with	a	frame	check	sequence	(FCS)	is	a	32-
bit	cyclic	redundancy	check	(CRC),	which	is	used	to	detect	corruption
of	data	in	transit.	The	CRC	is	computed	over	the	destination	address,
source	address,	 length/type,	and	data	(including	pad)	fields	using	the
CRC-32	algorithm.	For	transmitted	frames,	this	field	is	automatically
inserted	by	the	MAC	layer,	unless	disabled	by	clearing	the	CRC	bit	in
the	 MACTCTL	 register.	 For	 received	 frames,	 this	 field	 is
automatically	 checked.	 If	 the	 FCS	 does	 not	 pass,	 the	 frame	 is	 not
placed	in	the	RX	FIFO,	unless	the	FCS	check	is	disabled	by	clearing
the	BADCRC	bit	in	the	MACRCTL	register.

Figure	9.22.	An	Ethernet	frame	can	hold	46	to	1500	bytes.

Autonegotiation	 is	 the	 procedure	 by	 which	 two	 connected	 devices
choose	 common	 transmission	 parameters,	 such	 as	 speed	 and	 duplex
mode.	Autonegotiation	was	first	introduced	as	an	optional	feature	for
100BASE-TX,	 but	 it	 is	 also	 backward	 compatible	 with	 10BASE-T.
Autonegotiation	is	mandatory	for	1000BASE-T.
Example	 software	 for	 this	 Ethernet	 link	 can	 be	 found	 in	 TI’s
TivaWare.

enet_io	Ethernet-based	I/O	Control
enet_lwip	Ethernet	with	a	Lightweight	TCP/IP	stack	(lwIP)
enet_uip	Ethernet	with	uIP	TCP/IP	Stack
enet_weather	Ethernet	with	lwIP	Weather	Application
	

For	 more	 information	 on	 lwIP,	 see



http://savannah.nongnu.org/projects/lwip/



9.4.	Internet	of	Things

9.4.1.	Basic	Concepts
With	the	proliferation	of	embedded	systems	and	the	pervasiveness	of
the	internet,	it	is	only	natural	to	connect	the	two.	The	internet	of	things
(IoT)	is	the	combination	of	embedded	systems,	which	have	sensors	to
collect	data	and	actuators	 to	 affect	 the	 surrounding,	 and	 the	 internet,
which	provides	for	ubiquitous	remote	and	secure	communication.	This
section	will	 not	 describe	 how	 the	 internet	works,	 but	 rather	we	will
discuss	 both	 the	 general	 and	 specific	 approaches	 for	 connecting
embedded	systems	to	the	internet.		(References	for	internet	in	general
and	 IoT	 in	 specific	 see:	 W.	 Richard	 Stevens,	 TCP/IP	 Illustrated,
Volume	 1:	 The	 Protocols	 and	 Vasseur	 and	 Dunkels,	 Interconnecting
Smart	Objects	with	IP).
Challenges.	 On	 a	 local	 scale,	 the	 design	 of	 smart	 objects	 faces	 the
same	 challenges	 existing	 in	 all	 embedded	 systems:	 power,	 size,
reliability,	 longevity,	 and	cost.	Luckily	 the	deployment	of	billions	of
microcontrollers	 into	 the	 market	 has	 created	 a	 technology	 race	 to
reduce	power,	size	and	cost	while	increasing	the	performance.	At	the
microcontroller	 level	 things	 are	 getting	 smaller,	 but	 at	 the	 network
level,	complexity	is	 increasing	and	protocols	are	constantly	changing
as	 the	 world’s	 thirst	 for	 information	 and	 communication	 rapidly
grows.
Standardization.	The	existence	of	standards	allows	for	a	wide	variety
of	objects	to	communicate	with	each	other.	Adhering	to	a	standard	will
increase	 the	 acceptance	 of	 our	 device	 by	 customers,	 and	 allow	 our
customers	to	apply	our	device	to	solve	problems	we	never	envisioned.
uIP	 is	 a	 lightweight	 implementation	 of	 the	 IP	 stack	 specifically
designed	 to	 operate	 with	 the	 available	 memory	 resources	 of	 smart
objects.	 In	 this	 section	we	will	 start	with	 a	microcontroller	with	 the
hardware	and	software	to	implement	TCP/IP	protocols,	and	build	our
application	on	top	of	this	standard.
Interoperability	means	our	device	can	function	with	a	wide	range	of
other	 devices	 made	 with	 different	 technologies,	 sold	 by	 different



vendors,	and	produced	by	different	companies.

Evolution	is	the	process	of	how	new	technologies	are	introduced	into
the	market.	If	there	is	one	constant	in	this	world,	it	is	that	things	will
change.	 Every	 thousand	 years,	 one	 big	 discovery	 fundamentally
changes	how	we	operate	(fire,	language,	metal	tools).	More	frequently,
change	is	 introduced	gradually	such	that	 those	technologies	that	give
us	a	competitive	advantage	survive.	If	we	build	our	business	model	on
the	 premise	 evolutionary	 change,	 then	 we	 can	 be	 nimble	 to	 deploy
new	 technology	 when	 it	 provides	 lower	 cost	 and/or	 better
performance.
Stability.	 Even	 though	 technology	 will	 advance,	 our	 customers
demand	products	that	work	reliably,	for	a	long	time,	and	in	a	manner
with	which	 they	are	comfortable.	Over	 the	 last	50	years,	 automotive
technology	has	drastically	improved,	but	the	driving	experience,	how
we	drive,	has	remained	almost	constant.
Abstraction.	 You	 will	 notice	 the	 approach	 in	 this	 section	 differs
widely	 from	 the	 other	 examples	 in	 this	 book.	 The	 rest	 of	 the	 book
deploys	a	bottom	up	approach.	With	bottom-up	education,	the	details
are	first	explained,	so	there	is	no	magic,	and	then	abstraction	occurs	by
encapsulating	 that	 we	 fully	 understand.	 In	 this	 section	 we	 will
purchase	 hardware	 and	 software	 with	 capabilities	 to	 communicate
with	the	internet,	and	use	this	abstraction	without	fully	understanding
how	some	of	the	lower	levels	operate.
Scalability.	ARM	reports	over	50	million	devices	with	an	ARM	core
have	been	shipped	from	1993	to	2013,	and	predicts	another	50	billion
before	the	end	of	 this	decade.	In	order	 to	be	effective	and	profitable,
we	need	to	develop	systems	that	can	scale.
Security.	 Because	 embedded	 systems	 are	 deployed	 in	 life-critical
situations,	 and	 because	 the	 quality	 of	 service	 affect	 our	 profits,	 we
must	protect	the	system	from	a	determined	adversary.	A	chain	is	only
as	 strong	 as	 its	weakest	 link.	Security	 cannot	 be	obtained	 simply	by
operating	in	secret,	because	once	the	secret	is	out,	the	system	will	be
extremely	 vulnerable.	 “Security	 by	 obscurity”	 is	 a	 very	 poor	 design
method.	 Security	 involves	 more	 than	 encrypting	 the	 data.	 The	 first
aspect	of	security	is	confidentiality.	We	must	decide	what	it	means	to
view/change	 the	 data	 and	 who	 has	 the	 right	 to	 read/write.
Authentication	 is	 the	 means	 to	 ensure	 the	 identity	 of	 the	 sender	 is



correct.	 Confidentiality	 will	 require	 both	 logical	 and	 physical
measures	to	protect	against	an	attack.	Encryption	makes	it	harder	for
an	unauthorized	party	 to	 view	 a	message.	The	 second	 aspect	 is	 data
integrity.	 For	 most	 of	 the	 applications	 listed	 in	 Table	 9.2	 it	 is
important	that	data	reach	the	rightful	recipient	in	an	unaltered	fashion.
To	 support	 network	 integrity,	 we	 need	 techniques	 that	 support	 both
detection	 and	 prevention.	 The	 third	 aspect	 is	 availability.	 A	 secure
communication	not	only	requires	the	correct	data	arrive	at	the	correct
place,	but	also	at	 the	correct	 time.	A	Denial	of	Service	 (DoS)	attack
attempts	to	breach	the	availability	of	the	network.	For	wired	networks,
we	 can	 reroute	 traffic	 along	multiple	 paths.	With	wireless	 networks,
we	 can	 channel	 hop	 by	 switching	 channels	 on	 a	 pseudorandom
fashion,	making	it	harder	for	an	attacker	to	jam.	For	more	information
on	security,	see	Frank	Stajano,	Security	for	Ubiquitous	Computing.

9.4.2.	UDP	and	TCP	Packets
The	UDP	header	 is	8	bytes	and	contains	 the	 source	port,	destination
port,	 length,	 and	 checksum,	 see	 Table	 9.6	 and	 Figure	 9.23.	 The	 IP
address	specifies	 the	node,	and	ports	are	addresses	within	 the	source
and	destination	nodes.

Source	port:	16-bit	number	of	the	process	that	sent	the
packet,	could	be	zero
Destination	port:	16-bit	number	of	the	process	to	receive
the	packet.
Length:	16-bit	number	specifying	the	size	in	bytes	of	the
data	to	follow
Checksum:	16-bit	modulo	addition	of	all	data,	UDP
header,	and	IP	header

Table	9.6.	UDP	header	format.
The	 TCP	 header	 is	 20	 bytes	 with	 the	 possibility	 of	 additional	 and
optional	 information,	 see	 Table	 9.7.	 The	 sequence	 and
acknowledgment	numbers	allow	the	receiver	to	properly	sort	segments
of	 data	 that	 were	 received	 out	 of	 order.	 The	 flags	 specify	 different
modes	of	the	TCP	communication.	The	SYN	flag	means	the	first	of	a
sequence	of	packets,	 and	 the	FIN	 flag	means	 the	 last.	The	RST	 flag



terminates	 a	 connection.	 The	 URG	 flag	 means	 the	 urgent	 pointer
specifies	a	piece	of	data	the	application	urgently	needs.

Figure	9.23.	Overview	of	message	packets	used	at	various	layers.

Source	port:	16-bit	number	of	the	process	that	sent	the
packet,	could	be	zero
Destination	port:	16-bit	number	of	the	process	to	receive
the	packet.
Sequence	number:	32-bit	number	defining	the	position	of
this	data
Acknowledgement:	32-bit	number	of	the	next	data
expected	to	be	received
Hlen:	4-bit	field	of	the	header	size	(including	options)
divided	by	4
Flags:	6-bit	field	with	FIN,	SYN,	RST,	PSH,	ACK,	and
URG
Window:	16-bit	number	specifying	the	number	of	bytes	the
receiver	can	accept
Checksum:	16-bit	modulo	addition	of	all	data,	TCP	header,
and	IP	header
Urgent	pointer:	16-bit	field	pointing	to	a	place	in	the



stream	urgently	needed
Table	9.7.	TCP	header	format.

9.4.3.	Web	server
This	first	application	creates	a	web	server	 that	maintains	a	web	page
displaying	 local	data,	 see	Figures	9.24	and	9.25.	The	components	of
the	 system	 are	 a	 sensor	 and	 sensor	 interface,	 an	 EK-TM4C1294XL
LaunchPad,	 Texas	 Instruments	 TivaWare,	 and	 a	 router	 connected	 to
the	 Internet.	 The	 Dynamic	 Host	 Configuration	 Protocol	 server
provides	 an	 IP	 address,	 and	 is	 typically	 initiated	 via	 a	 DHCP
broadcast,	 when	 it	 connects.	 DHCP	 provided	 the	 address
192.168.0.107,	a	local	address	on	its	network.	This	example	was	built
on	top	of	the	uIP	stack	delivered	as	part	of	TivaWare.	First,	you	need
to	 download	 TivaWare.	 I	 first	 ran	 the	 enet_uipexample	 found	 in
the TivaWare_C_Series-2.1.0.12573\examples\boards\ek-
tm4c1294xl\enet_uip 	folder.	I	copied	this	example,	and	changed	the
web	server	as	shown	in	Program	9.2.
	

Figure	9.24.	The	thermistor	measures	temperature	and	the
LaunchPad	serves	pages	to	the	internet.



Figure	9.25.	The	thermistor	measures	temperature	and	the
LaunchPad	serves	pages	to	the	internet.

Program	9.2shows	the	code	you	need	to	modify	to	create	your	own	remote
sensor	smart	object.	When	another	node	sends	a	request	to	this	server,	this
node	will	respond	with	html	code	to	render	the	page.	The	page	is	divided
into	 three	 parts.	 The	 first	 part	 ( default_page_buf1of3 )and	 last	 part
( default_page_buf3of3 )are	 fixed.	 The	 application	 callback
function, httpd_appcall ,	is	invoked	when	the	web	page	is	requested.	This
callback	 function	 calls	 our	 application	 function Board_Update which
collects	sensor	data	from	the	thermistor	and	rebuilds	the	middle	part	of	the
html	 code	 ( default_page_buf2of3 ).	 The	 meta	 code	 automatically
refreshes	every	5	seconds.

const	char	default_page_buf1of3[]	=
		"HTTP/1.0	200	OK\r\n"
		"Server:	UIP/1.0	(http://www.sics.se/~adam/uip/)\r\n"
		"Content-type:	text/html\r\n\r\n"
		"<!DOCTYPE	HTML	PUBLIC	\"-//W3C//DTD	HTML	4.01	Transitional//EN"
		"http://www.w3.org/TR/html4/loose.dtd\">"
		"<html>	<head>"
		"<meta	http-equiv=\"refresh\"	content=\"5\">"
		"<title>Embedded	Systems</title></head>"
		"<body>	<center>"
		"<h1>Embedded	Systems:	RealTime	Interfacing"
		"to	ARM	Cortex	M	Microcontrollers</h1>"
		"<p>This	is	an	example	from	the	book,	Section	11.4	Internet	of	Things</p>"
		"<p>	For	more	information	see	"
		"<a	href=\"http://users.ece.utexas.edu/~valvano/arm/outline.htm\">"
		"<b>the	book	web	site</b>	</a>."
		"<hr	width=\"75%\">"
		"<p>A	thermistor	is	configured	for	temperature	measurement,	"



		"with	a	range	from	0	to	50C.	"
		"For	details	of	analog	circuit	see	the	book	Figure	9.21.	"
		"The	analog	signal	is	sampled	on	PE3/Ain0.		"
		"The	12-bit	digital	sample	is	converted	to	temperature	using	table	lookup	"
		"and	linear	interpolation.</p>		"
		"<p>The	temperature	is	";
uint32_t	const	buf1of3_Size	=	(sizeof(default_page_buf1of3)	-	1);
char	default_page_buf2of3[]	=	"12.01";
uint32_t	buf2of3_Size	=	(sizeof(default_page_buf2of3)	-	1);
const	char	default_page_buf3of3[]	=
		"	C.</p>"
		"<hr	width=\"75%\">"
		"<p>This	web	page	is	served	by	a	small	web	server	running	on	top	of	"
		"the	<a	href=\"http://www.sics.se/~adam/uip/\"><b>&micro;IP	embedded	TCP/IP	"
		"stack</b></a>.</center>	</body>	</html>";
uint32_t	const	buf3of3_Size	=	(sizeof(default_page_buf3of3)	-	1);
void	Board_Update(void){uint32_t	data,temperature;
		data	=	ADC0_InSeq3();																						//	12-bit	ADC,	0	to	4095
		temperature	=	ADC2Temperature(data);							//	temperature,	0.01C
		Fix2Str(temperature,default_page_buf2of3);	//	5	ASCII	characters
		buf2of3_Size	=	5;	//	in	this	case	it	is	fixed	size	(but	it	could	vary)

}

Program	9.2.	The	thermistor	measures	temperature	and	the
LaunchPad	serves	pages	to	the	internet.

To	 run	 the	 internet	 examples	described	 in	 this	 section	download	and
unzip	 the	 IoT	 examples	 into	 examples\boards	 so	 the	 directory	 path
looks	like	this	TivaWare_C_Series-2.1.0.12573

examples
boards

CC31xxxx
ek-tm4c1294xl-enet_uip_temperature
ek-tm4c123gxl-boost-

cc3100_basic_wifi_UDP
ek-tm4c123gxl-boost-cc3100_starter
ek-tm4c1294xl-boost-cc3100_starter

9.4.4.	UDP	communication	over	WiFi
The	approach	for	 implementing	a	smart	object	over	WiFi	 is	 to	begin
with	a	hardware/software	platform	that	implements	IEEE801.11	WiFi.
The	 CC3100BOOST	 is	 a	 BoosterPack	 that	 can	 be	 used	 with	 the



MSP430	 LaunchPad,	 the	 TM4C123	 LaunchPad,	 the	 TM4C1294
LaunchPad,	 or	with	 a	CC31XXEMUBOOST	 emulation	module,	 see
Figure	9.26.	The	emulation	module	can	be	used	early	 in	a	project	 to
develop	wireless	applications	using	a	“generic”	microcontroller.	After
a	prototype	is	configured,	the	project	can	select	a	microcontroller	and
design	the	actual	smart	object.	In	this	design	we	will	use	either	of	the
two	 TM4C	 LaunchPads	 and	 develop	 a	 solution	 that	 transmits	 UDP
packets	 from	one	 smart	 object	 to	 another.	UDP	 is	 simpler	 than	TCP
and	 appropriate	 for	 applications	 requiring	 simplicity	 and	 speed.
Furthermore,	 to	use	UDP	 the	application	must	 tolerate	 lost	or	out	of
order	packets.	UDP	provides	a	best-effort	datagram	delivery	service.

Figure	9.26.		The	CC3100	booster	packet	provides	IEEE802.11
wireless	connectivity.

The	actual	TCP/IP	software	stack	 resides	 in	 firmware	on	 the	booster
pack	 itself.	Therefore,	when	using	any	of	 the	wireless	booster	packs
the	 first	 step	 is	 to	 upgrade	 the	 firmware.	 One	 way	 to	 upgrade	 the
firmware	is	to	use	the	CC31XXEMUBOOST	emulation	module.	The
examples	 of	 this	 section	 ran	 on	 version	 3.3	 booster	 packs	 without
needing	to	upgrade	the	firmware.
Program	9.3	shows	 the	client	 software,	which	samples	 the	ADC	and
sends	UDP	packets.	Line	1	specifies	the	name	of	the	access	point	(AP)
to	 which	 the	 node	 will	 connect.	 There	 is	 a	 mechanism	 using
SmartConfig	to	automate	this	discovery,	but	in	this	example	I	named
the	AP	Valvano	so	I	used	a	manual	method	to	define	 the	connection



between	 the	 node	 and	AP.	The	UDP	payload	will	 have	 a	 type	 field,
which	is	defined	in	line	2.	The	destination	IP	address	is	hardcoded	in
line	 3.	 For	 this	 application,	 the	 server	 was	 at	 IP	 address	 at
192.168.0.101,	which	in	hex	is	C0.A8.00.65.	The	port	number,	which
is	a	16-bit	value	defining	which	process	 in	 the	server	should	 receive
the	data,	is	specified	in	line	4.	There	are	a	long	list	of	registered	port
numbers	 that	have	 special	purposes,	 so	 I	 chose	a	port	number	 larger
than	 1024	 to	 avoid	 selecting	 any	 of	 these	 special	 purpose	 port
numbers.	Lines	5	and	6	define	the	payload	for	the	UDP	packet.	Line
15	sets	the	bus	clock	to	50	MHz.	The	PLL	needs	to	be	active	for	the
ADC	 to	operate.	 	Line	16	 initializes	 the	ADC	channel	7	using	PD0.
Line	 17	 initializes	 the	 CC3100.	 After	 executing	 line	 18	 we	 will	 be
connected	 and	 have	 IP	 address.	 Line	 19	 will	 return	 the	 network
configuration.	 	Lines	21-24	define	 the	address	and	port	 to	which	 the
USP	packet	will	be	sent.	Line	25	defines	and	opens	a	socket.	 In	 this
example	we	leave	the	socket	open,	but	it	is	ok	to	close	the	socket,	go
into	low-power	mode,	and	reopen	the	connection	after	sleeping.	Lines
26-29	will	sample	the	ADC	and	create	a	new	message.	Line	30	sends
the	UDP	packet	through	the	open	socket.	The	wait	in	line	32	defines
the	 rate	 at	 which	 packets	 are	 sent.	 Each	 of	 the	WiFi	 functions	 will
return	a	success	flag	(error	code).	In	this	simple	program	we	ignored
the	return	values,	assuming	it	was	ok.	In	the	version	on	the	web,	the
process	is	restarted	on	error.
	

#define	SSID_NAME			"Valvano"			//	AP	to	connect	to																1
#define	ATYPE							'a'									//	analog	data	type																2
#define	IP_ADDR					0xC0A80065		//	server	IP																							3
#define	PORT_NUM				5001								//	Port	number	to	be	used										4
#define	BUF_SIZE				12										//																																	5														
UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload														6
int	main(void){
		UINT8													IsDHCP	=	0;
		NetCfgIpV4Argst	ipV4;
		SlSockAddrIn_t				Addr;
		UINT16												AddrSize	=	0;
		INT16													SockID	=	0;
		UINT32												data;
		unsigned	char					len	=	sizeof(NetCfgIpV4Argst);



		initClk();									//	PLL	50	MHz,	ADC	needs	PPL	active										15
		ADC0_InitSWTriggerSeq3(7);		//	Ain7	is	on	PD0																			16
		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												17
		WlanConnect();					//	connect	to	AP																													18
		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,							//
19
															(unsigned	char	*)&ipV4);																								//	20
		Addr.sin_family	=	SL_AF_INET;																							//										21
		Addr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//										22
		Addr.sin_addr.s_addr	=	sl_Htonl((UINT32)IP_ADDR);			//										23
		AddrSize	=	sizeof(SlSockAddrIn_t);																		//										24
		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);				//										25
		while(1){
				uBuf[0]	=	ATYPE;						//	analog	data	type																					26
				uBuf[1]	=	'=';								//																																						27
				data	=	ADC0_InSeq3();	//	0	to	4095,	Ain7	is	on	PD0												28
				Int2Str(data,(char*)&uBuf[2]);	//	6	digit	number														29
				sl_SendTo(SockID,	uBuf,	BUF_SIZE,	0,								//																30
																									(SlSockAddr_t	*)&Addr,	AddrSize);	//					31
				ROM_SysCtlDelay(ROM_SysCtlClockGet()	25);	/	40ms											32

}

}

Program	9.3.	Client	software	that	measures	ADC	data	and	sends
UDP	packets.

Program	9.4	 shows	 the	 server	 software,	which	 accepts	UDP	packets
and	plots	 the	data	on	an	ST7735	graphics	LCD.	Line	1	specifies	 the
name	 of	 the	 access	 point	 (AP)	 to	which	 the	 node	will	 connect.	 The
client	and	server	use	the	same	AP,	which	I	named	Valvano,	so	I	used
the	manual	method	to	define	the	connection	between	the	node	and	AP.
The	UDP	payload	will	 have	 a	 type	 field,	which	 is	defined	 in	 line	2.
Lines	16,	22-25	configure	the	WiFi	connection	in	a	similar	way	as	the
client.	Lines	17-20	initialize	the	ST7735	LCD	and	output	a	welcome
message.	Line	21	configures	the	LCD	graphics	routines	specifying	the
range	on	the	y-axis	of	the	plot.	Raw	ADC	data	will	be	plotted	versus
time.	Lines	26-29	define	an	IP	address	and	port	to	use.	Line	31	defines



and	opens	a	socket,	and	lines	32-33	bind	the	port	to	that	socket.	Lines
34-35	receive	a	UDP	packet.	Just	 like	the	client,	we	leave	the	socket
open.	If	we	wished	to	save	power,	we	could	close	the	socket,	go	into
low-power	mode,	and	reopen	the	connection	after	sleeping.	Lines	36-
51	decode	the	packet	and	plot	the	data	on	the	LCD.

#define	SSID_NAME			"Valvano"			//	AP	to	connect	to																1
#define	ATYPE							'a'									//	analog	data	type																2
#define	IP_ADDR					0xC0A80065		//	server	IP																							3
#define	PORT_NUM				5001								//	Port	number	to	be	used										4
#define	BUF_SIZE				12										//																																	5														
UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload														6
int	main(void){
		UINT8													IsDHCP	=	0;
		NetCfgIpV4Argst	ipV4;
		SlSockAddrIn_t				Addr,	LocalAddr;
		UINT16												AddrSize	=	0;
		INT16													SockID	=	0;
		INT16													Status	=	1;		//	ok
		UINT32												data;
		unsigned	char					len	=	sizeof(NetCfgIpV4Argst);
		initClk();								//	PLL	50	MHz,	ADC	needs	PPL	active											16
		ST7735_InitR(INITR_REDTAB);																		//	Initialize						17
		ST7735_OutString("Internet	of	Things\n");				//																	18
		ST7735_OutString("Embedded	Systems\n");						//																	19
		ST7735_OutString("Vol.	2,	Valvano");									//																	20
		ST7735_PlotClear(0,4095);		//	range	from	0	to	4095														21
		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												22
		WlanConnect();					//	connect	to	AP																													23
		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,			//				
24
															(unsigned	char	*)&ipV4);																				//					25
		LocalAddr.sin_family	=	SL_AF_INET;																							//					26
		LocalAddr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//					27
		LocalAddr.sin_addr.s_addr	=	0;																											//					28
		AddrSize	=	sizeof(SlSockAddrIn_t);																							//					29
		while(1){
			SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);							//					31		
				Status	=	sl_Bind(SockID,	(SlSockAddr_t	*)&LocalAddr,			//					32



																							AddrSize);																										//					33
				Status	=	sl_RecvFrom(SockID,	uBuf,	BUF_SIZE,	0,								//					34
										(SlSockAddr_t	*)&Addr,	(SlSocklen_t*)&AddrSize	);//					35
				if((uBuf[0]==ATYPE)&&(uBuf[1]==	'=')){																	//					36
						int	i,bOk;	uint32_t	place;																											//					37
						data	=	0;	bOk	=	1;																																			//					38
						i=4;		//	ignore	possible	negative	sign																						39
						for(place	=	1000;	place;	place	=	place/10){										//					40
								if((uBuf[i]&0xF0)==0x30){	//	ignore	spaces																41
										data	+=	place*(uBuf[i]-0x30);																				//					42
								}else{																																													//					43
										if((uBuf[i]&0xF0)!=	'	'){																								//					44
												bOk	=	0;																																							//					45
										}																																																//					46
								}																																																		//					47
								i++;																																															//					48
						}																																																				//					49
						if(bOk){																																													//					50
								ST7735_PlotLine(data);																													//					51
								ST7735_PlotNextErase();																												//					51

}

}

}

}

Program	9.4.	Server	software	that	receives	UDP	packets	and
plots	results	on	the	LCD.

Since	 UDP	 transmission	 is	 “best	 effort”	 we	 could	 lose	 packets	 or
receive	packets	out	of	order.	In	this	simple	example	we	will	not	know
if	 either	 of	 these	 errors	were	 to	 occur.	 If	we	wished	 to	 have	 a	more
reliable	 transmission,	 we	 could	 have	 used	 TCP.	 Program	 9.4	 line
31would	 have	 specified	 a	 socket	 stream	 instead	 of	 a	 datagram.	 To
create	 a	 TCP	 communication,	 use	 the	 example	 software	 in
the tcp_socket 	folder.



		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_STREAM,	0);				//		TCP
socket

9.4.5.	Other	CC3100	Applications
This	 section	 lists	 the	 sample	 applications	 are	 also	 provided	 for
MSP430F5739,	 TM4C123GH6PM	 and	 SimpleLink	 Studio.	 The
source	code	for	these	examples	can	be	found	in	the	examples	directory
after	 downloading	 CC3100SDK,	 the	 SimpleLink	 Wi-Fi	 CC3100
Software	 Development	 Kit	 (SDK)	 from	 the	 TI	 website.	 For	 more
details	 on	 each	 example,	 see	 the	 docs	 folder	 included	 in	 the
CC3100SDK	download.	The	CC3100	comes	preloaded	with	CC3100
BoosterPack	comes	preloaded	with	Out	of	Box	HTML	pages.	Out	of
box	 demo	 highlights	 the	 following	 features:	 Simple	 WLAN
Connection	 Using	 Smart	 Config,	 and	 easy	 access	 to	 CC3100	 using
mDNS	and	HTTP	Server.
Antenna	Selection.	This	 is	 a	 reference	 implementation	 for	 antenna-
selection	scheme	running	on	the	host	MCU,	to	enable	improved	radio
performance	 inside	 buildings	Connection	 Policies.	 This	 application
demonstrates	 the	 usage	 of	 the	 CC3100	 profiles	 and	 connection-
policies.
Send	Email.	This	application	sends	an	email	using	SMTP	to	a	user-
configurable	email	address	at	the	push	of	a	button.
Enterprise	Network	Connection.	This	 application	demonstrates	 the
procedure	for	connecting	the	CC3100	to	an	enterprise	network.
File	Download.	This	 application	 demonstrates	 file	 download	 from	a
cloud	server	to	the	on	board	serial	Flash.
File	System.	This	application	demonstrates	the	use	of	the	file	system
API	to	read	and	write	files	from	the	serial	Flash.
Get	Time.	 This	 application	 connects	 to	 an	 SNTP	 cloud	 server	 and
receives	the	accurate	time.
Get	Weather.	This	application	connects	to	‘Open	Weather	Map’	cloud
service	and	receives	weather	data.
Getting	 Started	 in	 AP	 Mode.	 This	 application	 configures	 the
CC3100	 in	 AP	 mode.	 It	 verifies	 the	 connection	 by	 pinging	 the



connected	client.
Getting	 Started	 in	 Station	 Mode.	 This	 application	 configures	 the
CC3100	 in	 STA	 mode.	 It	 verifies	 the	 connection	 by	 pinging	 the
connected	Access	Point.
HTTP	Server.	This	application	demonstrates	using	the	on-chip	HTTP
Server	APIs	to	enable	static	and	dynamic	web	page	content.
IP	Configuration.	This	application	demonstrates	how	to	enable	static
IP	configuration	instead	of	using	DHCP.
mDNS.	This	application	registers	the	mDNS	service	for	broadcasting
and	 attempts	 to	 get	 the	 service	 by	 the	 name	 broadcasted	 by	 another
device.
Mode	 Configuration.	 This	 application	 demonstrates	 switching
between	STA	and	AP	modes.
NWP	Filters.	This	application	demonstrates	the	configuration	of	Rx-
filtering	to	reduce	the	amount	of	traffic	transferred	to	the	host,	and	to
achieve	lower	power	consumption.
NWP	Power	Policy.	This	 application	 shows	how	 to	 enable	different
power	policies	to	reduce	power	consumption	based	on	use	case	in	the
station	mode.
P2P	 (Wi-Fi	 Direct).	 This	 application	 configures	 the	 device	 in	 P2P
(Wi-Fi	 Direct)	 mode	 and	 demonstrates	 how	 to	 communicate	 with	 a
remote	peer	device.
Provisioning	 AP.	 This	 application	 demonstrates	 the	 use	 of	 the	 on
Chip	HTTP	server	for	Wi-Fi	provisioning	in	AP	Mode,	building	upon
example	application	7.8	above.
Provisioning	 with	 SmartConfig.	 This	 application	 demonstrates	 the
usage	of	TI's	SmartConfig™	Wi-Fi	provisioning	technology.	The	Wi-
Fi	 Starter	 Application	 for	 iOS	 and	 Android	 is	 required	 to	 use	 this
application.	 It	 can	 be	 downloaded	 from	 following	 link:
http://www.ti.com/tool/wifistarter	 or	 from	 the	 Apple	 App	 store	 and
Google	Play.
Provisioning	with	WPS.	This	application	demonstrates	 the	usage	of
WPS	Wi-Fi	provisioning	with	CC3100.
Scan	Policy.	The	application	demonstrates	the	scan-policy	settings	in



CC3100.

SPI	 Diagnostics	 Tool.	 This	 is	 a	 diagnostics	 application	 for
troubleshooting	the	host	SPI	configuration.
SSL/TLS.	The	application	demonstrates	the	usage	of	certificates	with
SSL/TLS	 for	 application	 traffic	 privacy	 and	 device	 or	 user
authentication	 TCP	 Socket.	 The	 application	 demonstrates	 simple
connection	with	TCP	traffic.
Transceiver	 Mode.	 The	 application	 demonstrates	 the	 CC3100
transceiver	mode	of	operation.
UDP	 Socket.	 The	 application	 demonstrates	 simple	 connection	 with
UDP	traffic.
XMPP	Client.	The	application	demonstrates	instant	messaging	using
a	cloud	based	XMPP	server.
These	 were	 the	 steps	 I	 used	 to	 create	 the	 UDP	 communication
example.	 I	 began	 with	 the	 starter	 application, ek-tm4c123gxl-boost-
cc3100_starter .	 I	 first	 changed SSID_NAME 	 to	 match	 our	 access
point	#define	SSID_NAME			"Valvano"			//	AP	to	connect	to
	
Next,	 I	 compiled,	 downloaded	 and	 ran	 this	 application	 onto	 two
LaunchPad+CC3100	systems,	observing	the	operating	on	PuTTy.	The
interpreter	 output	 should	 show	 it	 has	 connected	 and	 shows	 the	 IP
assigned	to	these	two	nodes	by	the	AP.	I	could	run	the	ping	command
to	check	the	WiFi	connection	to	my	AP.
Once	 I	 was	 sure	 my	 two	 LaunchPad+CC3100	 systems	 could
communicate	with	my	AP,	I	made	a	copy	of	the	starter	application	by
copy-pasting	 the	 entire	 folder.	 I	 renamed	 this	 new	 folder	 to ek-
tm4c123gxl-boost-cc3100_basic_wifi_UDP .	I	opened	the	new	project
in	 the	 compiler	 IDE	 and	 opened	 the	 main.cfrom	 the udp_socket
example	 folder.	 I	 added	 and/or	 merged	 the	 source	 code	 from
main.cof udp_socket 	 into	 starter.cof	 the	 new	 project.	 The	 event
handlers	 and	 the	 main	 project	 needed	 merging,	 but
the BsdUdpClient and BsdUdpServer 	functions	were	simply	added.
I	changed	the	IP	address	to	match	the	address	given	to	the	server.

#define	IP_ADDR									0xC0A80068	
	



I	 then	 loaded	 a	 version	 that	 called	 the	 client	 (send	 UDP)	 on	 one
system

			while(1){	BsdUdpClient(PORT_NUM)};	
	

and	loaded	a	version	that	called	the	server	(receive	UDP)	on	the	other
system

			while(1){	BsdUdpServer(PORT_NUM)};	
I	ran	the	two	systems	in	the	debugger	to	see	that	packets	were	being
sent.	I	did	not	use	SmartConfig,	because	I	knew	the	name	of	the	AP.
The	last	step	was	to	modify	the	client	and	server	so	the	client	collects
data	and	the	server	displays	it.



9.4.	Bluetooth	Fundamentals
Bluetooth	 is	 wireless	 medium	 and	 a	 data	 protocol	 that	 connects
devices	 together	 over	 a	 short	 distance.	 Examples	 of	 Bluetooth
connectivity	 include	 headset	 to	 phone,	 speaker	 to	 computer,	 and
fitness	 device	 to	 phone/computer.	 Bluetooth	 is	 an	 important
component	 of	 billions	 of	 products	 on	 the	 market	 today.	 Bluetooth
operates	from	1	to	100	meters,	depending	on	the	strength	of	the	radio.
Most	 Bluetooth	 devices	 operate	 up	 to	 a	 maximum	 of	 10	 meters.
However,	 in	 order	 to	 improve	 battery	 life,	many	 devices	 reduce	 the
strength	 of	 the	 radio,	 and	 therefore	 save	 power	 by	 operating	 across
distances	shorter	than	10	meters.	If	the	computer	or	phone	provides	a
bridge	 to	 the	 internet,	a	Bluetooth-connected	device	becomes	part	of
the	Internet	of	Things	(IoT).
Bluetooth	is	classified	as	a	personal	area	network	(PAN)	because	it
implements	communication	within	the	range	of	an	individual	person.
Alternatively,	devices	within	a	Bluetooth	network	are	usually	owned
or	 controlled	 by	 one	 person.	When	 two	 devices	 on	 the	 network	 are
connected,	we	often	say	the	devices	are	paired.
At	the	highest	level,	we	see	Bluetooth	devices	implement	profiles.	A
profile	 is	 a	 suite	 of	 functionalities	 that	 support	 a	 certain	 type	 of
communication.	 For	 example,	 the	 Advanced	 Audio	 Distribution
Profile	 (A2DP)	 can	 be	 used	 to	 stream	 data.	 The	 Health	 Device
Profile	 (HDP)	 is	 a	 standard	 profile	 for	 medical	 devices.	 There	 are
profiles	 for	 remote	 controls,	 images,	 printers,	 cordless	 telephones,
health	devices,	hands	free	devices,	and	intercoms.	The	profile	we	will
use	in	this	chapter	is	the	generic	attribute	protocol	(GATT).	Within
the	GATT	there	can	be	once	or	more	services.	Table	9.8	shows	some
of	the	services	that	have	been	developed.

Specification	Name Assigned	Number
Alert	 Notification
Service

0x1811

Automation	IO 0x1815
Battery	Service 0x180F
Blood	Pressure 0x1810



Body	Composition 0x181B
Bond	Management 0x181E
Continuous	 Glucose
Monitoring

0x181F

Current	Time	Service 0x1805
Cycling	Power 0x1818
Cycling	 Speed	 and
Cadence

0x1816

Device	Information 0x180A
Environmental
Sensing

0x181A

Generic	Access 0x1800
Generic	Attribute 0x1801
Glucose 0x1808
Health	Thermometer 0x1809
Heart	Rate 0x180D
HTTP	Proxy 0x1823
Human	 Interface
Device

0x1812

Immediate	Alert 0x1802
Indoor	Positioning 0x1821
Internet	 Protocol
Support

0x1820

Link	Loss 0x1803
Location	 and
Navigation

0x1819

Next	 DST	 Change
Service

0x1807

Object	Transfer 0x1825
Phone	 Alert	 Status
Service

0x180E

Pulse	Oximeter 0x1822
Reference	 Time
Update	Service

0x1806

Running	 Speed	 and 0x1814



Cadence
Scan	Parameters 0x1813
Transport	Discovery 0x1824
Tx	Power 0x1804
User	Data 0x181C
Weight	Scale 0x181D

Table	9.8.	Adopted	GATT	services,
https://www.bluetooth.com/specifications/gatt/services

Within	 a	 service	 there	 may	 be	 one	 or	 more	 characteristics.	 A
characteristic	is	user	or	application	data	that	is	transmitted	from	one
device	 to	 another	 across	 the	 network.	 One	 of	 the	 attributes	 of	 a
characteristic	 is	whether	 it	 is	 readable,	writeable,	 or	 both.	We	will
use	the	notify	indication	to	stream	data	from	the	embedded	object	to
the	smart	phone.	Characteristics	have	a	universally	unique	identifier
(UUID),	which	is	a	128-bit	(16-byte)	number	that	is	unique.	BLE	can
use	either	16-bit	or	32-bit	UUIDs.	A	specific	UUID	is	used	within	the
network	to	identify	a	specific	characteristic.	Often	a	characteristic	has
one	 or	 more	 descriptors.	 Descriptors	 may	 be	 information	 like	 its
name	and	its	units.	We	will	also	see	handles,	which	are	a	mechanism
to	identify	characteristics	within	the	device.	A	handle	is	a	pointer	to	an
internal	 data	 structure	 within	 the	 GATT	 that	 contains	 all	 the
information	 about	 that	 characteristic.	 Handles	 are	 not	 passed	 across
the	 Bluetooth	 network;	 rather,	 handles	 are	 used	 by	 the	 host	 and
controller	to	keep	track	of	characteristics.	UUIDs	are	passed	across	the
network.	 Figure	 9.27	 shows	 a	 GATT	 service	 with	 seven
characteristics.



Figure	9.27.	A	GATT	profile	implements	services,	and	a	service
has	one	or	more	characteristics.

9.4.1.	Bluetooth	Protocol	Stack
The	BLE	protocol	stack	includes	a	controller	and	a	host,	as	shown	in
Figure	9.28.	Bluetooth	BR	(basic	rate),	Bluetooth	EDR	(enhanced	data
rate),	 and	Bluetooth	 LE	 (low	 energy)	 all	 separate	 the	 controller	 and
host	as	different	layers	and	are	often	implemented	separately.	The	user
application	 and	 operating	 system	 sit	 on	 top	 of	 the	 host	 layer.	 This
section	 is	 a	 brief	 overview	 of	 BLE.	 For	 more	 information	 on	 HCI,
www.ti.com/ble-wiki	and	www.ti.com/ble-stack.



Figure	9.28.	The	BLE	stack.	These	layers	are	implemented	inside
the	CC2650.	The	physical	layer	includes	the	antenna,	which	is
outside	the	CC2650.

The	 physical	 layer	 (PHY)	 is	 a	 1Mbps	 adaptive	 frequency-hopping
GFSK	 (Gaussian	 Frequency-Shift	 Keying)	 radio	 operating	 in	 the
unlicensed	2.4	GHz	ISM	(Industrial,	Scientific,	and	Medical)	band.
The	 link	 layer	 (LL)	 controls	 the	 radiofrequency	 state	 of	 the	 device.
The	device	can	be	in	one	of	five	states:	standby,	advertising,	scanning,
initiating,	or	connected.	Advertisers	 transmit	data	without	being	in	a
connection,	 while	 scanners	 listen	 for	 advertisers.	 An	 Initiator	 is	 a
device	that	is	responding	to	an	Advertiser	with	a	connection	request.	If
the	 Advertiser	 accepts,	 both	 the	 advertiser	 and	 initiator	 will	 enter	 a
connected	state.	When	a	device	is	in	a	connection,	it	will	be	connected
in	 one	 of	 two	 roles	 master	 or	 slave.	 The	 device	 that	 initiated	 the
connection	 becomes	 the	 master,	 and	 the	 device	 that	 accepted	 the
request	becomes	the	slave.	In	Lab	6,	the	embedded	system	will	be	an
advertiser	and	the	smart	phone	will	be	the	initiator.
The	 host	 control	 interface	 (HCI)	 layer	 provides	 a	 means	 of
communication	 between	 the	 host	 and	 controller	 via	 a	 standardized
interface.	 Standard	 HCI	 commands	 and	 events	 are	 specified	 in	 the
Bluetooth	Core	Spec.	The	HCI	 layer	 is	a	 thin	 layer	which	 transports
commands	and	events	between	 the	host	and	controller.	 In	Lab	6,	 the



HCI	 is	 implemented	 has	 function	 calls	 and	 callbacks	 within	 the
CC2650	controller.
The	 link	 logical	 control	 and	 adaption	 protocol	 (L2CAP)	 layer
provides	data	encapsulation	services	to	the	upper	layers,	allowing	for
logical	 end-to-end	 communication	 of	 data.	 The	 security	 manager
(SM)	 layer	defines	 the	methods	 for	pairing	and	key	distribution,	and
provides	functions	for	the	other	layers	of	the	protocol	stack	to	securely
connect	 and	 exchange	 data	with	 another	 device.	The	generic	 access
protocol	 (GAP)	 layer	 handles	 the	 connection	 and	 security.	 In	 this
simple	 example,	 we	 configure	 the	 GAP	 to	 setup	 and	 initiate
advertisement.	We	will	use	the	GAP	to	connect	our	embedded	system
to	a	smart	phone.
The	overriding	theme	of	Bluetooth	communication	is	the	exchange	of
data	 between	 paired	 devices.	A	 service	 is	 a	mechanism	 to	 exchange
data.	 A	 collection	 of	 services	 is	 a	 profile.	 The	 generic	 attribute
profile	 (GATT)	 handles	 services	 and	 profiles.	The	 attribute	 protocol
(ATT)	 layer	 protocol	 allows	 a	 device	 to	 expose	 “attributes”	 to	 other
devices.	All	data	communications	that	occur	between	two	devices	in	a
BLE	connection	are	handled	through	the	GATT.
The	first	step	for	our	embedded	device	to	perform	is	to	configure	and
start	advertisement,	see	Figure	9.29.	In	advertisement	mode	the	device
sends	out	periodic	notifications	of	its	existence	and	its	willingness	to
connect.	 Another	 device,	 such	 as	 a	 smart	 phone,	 scans	 the	 area	 for
possible	devices.	If	desired	this	device	can	request	a	connection.	If	the
advertiser	 accepts,	 both	 devices	 enter	 a	 connected	 phase,	 where	 the
embedded	device	will	be	the	slave	(server)	and	the	initiator	becomes
the	master	(client).



Figure	9.29.	BLE	connection	steps.

In	order	to	save	power,	the	device	spends	most	the	time	sleeping.	The
master	sends	out	periodic	requests	to	communicate.	If	the	slave	wishes
to	communicate,	 the	master	and	slave	will	exchange	data	during	 this
connection	 event.	 Figure	 9.30	 plots	 the	 device	 current	 verses	 time.
This	 graph	 shows	 most	 of	 the	 current	 draw	 occurs	 during	 the
connection	events.	The	embedded	device	can	save	power	by	reducing
the	period	of	the	connection	events	or	by	choosing	not	to	participate	in
all	the	events.

Figure	9.30.	CC2650	current	verses	time,	showing	the	connection
events.

For	 example,	 you	 will	 see	 the	 advertising	 interval	 settings	 as
parametersin	 the NPI_StartAdvertisement 	 message.	 In	 particular,



the	example	projects	set	the	advertising	interval	to	62.5ms.

9.4.2.	Client-server	Parad	igm
The	client-server	paradigm	 is	 the	 dominant	 communication	 pattern
for	 network	 protocols,	 see	 Figure	 9.31.	 In	 general,	 the	 embedded
system	will	be	the	server,	and	the	smart	phone	will	be	the	client.	The
client	can	request	 information	from	the	server,	or	 the	client	can	send
data	to	the	server.	With	Bluetooth	this	exchange	of	data	is	managed	by
the	services	and	profiles,	discussed	in	the	next	section.	There	are	four
main	profile	types.
A	 peripheral	 device	 has	 sensors	 and	 actuators.	 On	 startup	 it
advertises	 as	 connectable,	 and	 once	 connected	 it	 acts	 as	 a	 slave.	 In
general,	the	embedded	device	will	be	a	peripheral.
A	central	device	has	intelligence	to	manage	the	system.	On	startup	it
scans	for	advertisements	and	initiates	connections.	Once	connected	it
acts	 as	 the	 master.	 In	 general,	 the	 smart	 phone	 in	 will	 be	 a	 central
device.
A	 broadcaster	 has	 sensors	 collecting	 information	 that	 is	 generally
relevant.	On	startup	it	advertises	but	is	not	connectable.	Other	devices
in	 the	 vicinity	 can	 read	 this	 information	 even	 though	 they	 cannot
connect	to	the	broadcaster.	An	example	is	a	thermometer.
An	 observer	 can	 scan	 for	 advertisements	 but	 cannot	 initiate	 a
connection.	 An	 example	 is	 a	 temperature	 display	 device	 that	 shows
temperatures	measured	by	broadcasters.

Figure	9.31.	Client-server	Paradigm.



Read	 indication.	 When	 the	 client	 wishes	 to	 know	 the	 value	 of	 a
characteristic,	it	will	issue	a	read	indication.	Inside	the	request	will	be
a	 universally	 unique	 identifier	 (UUID)	 that	 specifies	 which
characteristic	 is	 desired.	 The	 server	 will	 respond	 with	 the	 value	 by
returning	a	read	confirmation.	The	data	may	be	one	or	more	bytes.
For	large	amounts	of	data,	the	response	could	be	broken	into	multiple
messages.	 In	 the	 example	 projects,	 the	 data	 will	 be	 1,	 2	 or	 4	 bytes
long.	 The	 size	 of	 the	 data	 is	 determined	 during	 initialization	 as	 the
characteristic	is	configured.
Write	 indication.	 When	 the	 client	 wishes	 to	 set	 the	 value	 of	 a
characteristic,	it	will	issue	a	write	indication.	This	request	will	include
data.	 The	 request	 will	 also	 include	 a	 UUID	 that	 specifies	 to	 which
characteristic	the	data	should	be	written.	The	server	will	respond	with
an	acknowledgement,	called	a	write	confirmation.
Notify	request.	When	the	client	wishes	to	keep	up	to	data	on	a	certain
value	in	the	server,	it	will	issue	a	notify	request.	The	request	includes	a
UUID.	The	 server	will	 respond	with	 an	 acknowledgement,	 and	 then
the	server	will	stream	data.	This	streaming	could	occur	periodically,	or
it	 could	occur	whenever	 the	value	 changes.	 In	 the	 example	projects,
notify	indication	messages	are	sent	from	server	to	client	periodically.
The	client	can	start	notification	(listen	command	on	the	phone)	or	stop
notifications.



9.5.	CC2650	Solutions

9.5.1.	CC2650	Microcontroller
There	are	three	controllers	on	the	CC2650:	a	main	CPU,	an	RF	core,
and	a	sensor	controller.	Together,	 these	combine	 to	create	a	one-chip
solution	for	Bluetooth	applications.	The	main	CPU	includes	128kB	of
flash,	20kB	of	SRAM,	and	a	 full	 range	of	peripherals.	Typically,	 the
ARM	 Cortex-M3	 processor	 handles	 the	 application	 layer	 and	 BLE
protocol	stack.	However,	in	this	chapter,	we	will	place	the	application
layer	 on	 another	 processor	 and	 use	 the	 CC2560	 just	 to	 implement
Bluetooth.
The	RF	Core	 contains	an	ARM	Cortex-M0	processor	 that	 interfaces
the	analog	RF	and	base-band	circuitries,	handles	data	to	and	from	the
system	 side,	 and	 assembles	 the	 information	 bits	 in	 a	 given	 packet
structure.	The	RF	core	offers	a	high	level,	command-based	API	to	the
main	 CPU.	 The	 RF	 core	 is	 capable	 of	 autonomously	 handling	 the
time-critical	 aspects	 of	 the	 radio	 protocols	 (802.15.4	 RF4CE	 and
ZigBee,	 Bluetooth	 Low	 Energy)	 thus	 offloading	 the	main	 CPU	 and
leaving	more	 resources	 for	 the	user	 application.	The	RF	core	has	 its
own	 RAM	 and	 ROM.	 The	 ARM	 Cortex-M0	 ROM	 is	 not
programmable	by	 customers.	The	basic	 circuit	 implementing	 the	2.4
GHz	antenna	is	shown	in	Figure	9.32.

Figure	9.32.		The	CC2650	includes	a	main	CPU,	a	suite	of	I/O



devices,	an	RF	core,	and	a	sensor	controller.
	
The	 Sensor	 Controller	 block	 provides	 additional	 flexibility	 by
allowing	autonomous	data	acquisition	and	control	independent	of	the
main	 CPU,	 further	 extending	 the	 low-power	 capabilities	 of	 the
CC2650.	 The	 Sensor	 Controller	 is	 set	 up	 using	 a	 PC-based
configuration	 tool,	 called	 Sensor	 Controller	 Studio,	 and	 example
interfaces	include:	•	Analog	sensors	using	integrated	ADC
•	Digital	sensors	using	GPIOs,	bit-banged	I2C,	and	SPI
•	UART	communication	for	sensor	reading	or	debugging
•	Capacitive	sensing
•	Waveform	generation
•	Pulse	counting
•	Keyboard	scan
•	Quadrature	decoder	for	polling	rotation	sensors
•	Oscillator	calibration

The	CC2650	uses	a	radiofrequency	(RF)	link	to	implement	Bluetooth
Low	Energy	(BLE).	As	illustrated	in	Figure	9.33,	the	CC2650	can	be
used	 as	 a	 bridge	 between	 any	microcontroller	 and	Bluetooth.	 It	 is	 a
transceiver,	meaning	data	can	flow	across	the	link	in	both	directions.

Figure	9.33.		Block	diagram	of	a	wireless	link	between	two
microcontroller	systems.

	
Figure	 9.34	 shows	 a	 CC2650	 BoosterPack.	 This	 board	 comes
preprogrammed	 with	 the	 simple	 network	 processor	 described	 in	 the
next	 section.	With	 a	 JTAG	 debugger,	 other	 programs	 can	 be	 loaded
onto	 this	 CC2650.	 For	 more	 information,	 see
http://www.ti.com/tool/boostxl-cc2650ma



Figure	9.34.		CC2650	BoosterPack	(BOOSTXL-CC2650MA).
	
Figure	9.35	shows	a	CC2650	LaunchPad.	The	top	part	of	the	PCB	is
the	 debugger	 and	 the	 bottom	 part	 implements	 the	 CC2650	 target
system.	 To	 see	 the	 pin	 connections,	 see
http://www.ti.com/ww/en/launchpad/launchpads-connected-
launchxl-cc2650.html

Figure	9.35.		CC2650	LaunchPad	(LAUNCHXL-CC2650).

9.5.2.	Single	Chip	Solution,	CC2650	LaunchPad
The	 CC2650	 microcontroller	 is	 a	 complete	 System-on-Chip	 (SoC)
Bluetooth	 solution,	 as	 shown	 in	 Figure	 9.36.	 One	 could	 deploy	 the
application,	the	Bluetooth	stack,	and	the	RF	radio	onto	the	CC2650.



Figure	9.36.		Block	diagram	of	a	wireless	link	between	two
single-chip	embedded	systems.



9.6.	Network	Processor	Interface	(NPI)

9.6.1.	Overview
Simple	Network	 Processor	 (SNP)	 is	 TI’s	 name	 for	 the	 application
that	 runs	 on	 the	 CC2650	 when	 using	 the	 CC2650	 with	 another
microcontroller	 such	 as	 the	 MSP432	 or	 TM4C123.	 In	 this
configuration	the	controller	and	host	are	implemented	together	on	the
CC2650,	 while	 the	 profiles	 and	 application	 are	 implemented	 on	 an
external	 MCU.	 The	 application	 and	 profiles	 communicate	 with	 the
CC2650	 via	 the	 Application	 Programming	 Interface	 (API)	 that
simplifies	 the	management	 of	 the	BLE	network	 processor.	The	SNP
API	communicates	with	the	BLE	device	using	the	Network	Protocol
Interface	 (NPI)	 over	 a	 serial	 (SPI	 or	 UART)	 connection.	 	 In	 this
chapter,	we	will	use	a	UART	interface	as	shown	in	Figure	9.37.	This
configuration	 is	 useful	 for	 applications	 that	 wish	 to	 add	 Bluetooth
functionality	 to	 an	 existing	 device.	 In	 this	 paradigm,	 the	 application
runs	 on	 the	 existing	microcontroller,	 and	BLE	 runs	 on	 the	CC2650.
For	 a	 description	 of	 the	 Simple	 Network	 Processor,	 refer	 to	 SNP
http://processors.wiki.ti.com/index.php/CC2640_BLE_Network_Processor

Developer	guide	http://www.ti.com/lit/ug/swru393c/swru393c.pdf
TI	wiki	page	http://processors.wiki.ti.com/index.php/NPI

	
In	 this	 chapter,	 our	 TM4C123/MSP432	 LaunchPad	 will	 be	 the
application	 processor	 (AP)	 and	 the	 CC2650	 will	 be	 the	 network
processor	 (NP).	There	 are	7	wires	between	 the	AP	and	 the	NP.	Two
wires	 are	 power	 and	 ground,	 one	wire	 is	 a	 negative	 logic	 reset,	 two
wires	 are	 handshake	 lines,	 and	 two	 wires	 are	 UART	 transmit	 and
receive.



Figure	9.37.	Hardware	interface	between	the	LaunchPad	AP	and
the	CC2650	NP.

To	initialize	Bluetooth,	the	master	(AP)	first	resets	the	slave	(NP).	The
reset	line	is	a	GPIO	output	of	the	AP	and	is	the	hardware	reset	line	on
the	NP.	There	are	two	handshake	lines:	master	ready	and	slave	ready.
Master	ready	(MRDY)	is	a	GPIO	output	of	the	AP	and	a	GPIO	input
to	 the	NP.	Slave	 ready	 (SRDY)	 is	 a	 GPIO	 output	 of	 the	 NP	 and	 a
GPIO	input	of	the	AP.	If	the	AP	wishes	to	reset	the	NP,	it	sets	MRDY
high	and	pulses	reset	low	for	10	ms,	Figure	9.38.	Normally,	the	reset
operation	occurs	once,	and	thereafter	the	reset	line	should	remain	high.

Figure	9.38.	The	LaunchPad	AP	can	reset	the	CC2650	NP.

There	 are	 two	 types	 of	 communication.	Messages	 can	 be	 sent	 from
master	to	slave,	or	from	slave	to	master.	If	the	master	(AP)	wishes	to
send	a	message	to	the	slave	(NP),	it	follows	5	steps,	Figure	9.39.	First,
the	master	 sets	MRDY	 low	 (Master:	 “I	wish	 to	 send”).	 Second,	 the
slave	 responds	 with	 SRDY	 low	 (Slave:	 “ok,	 I	 am	 ready”).	 The
communication	 is	 handshaked	 because	 the	 master	 will	 wait	 for
SRDY	 to	 go	 low.	 Third,	 the	 master	 will	 transmit	 a	 message	 on	 its
UART	output	(Rx	input	to	slave).		The	format	of	this	message	will	be
described	 later.	 Fourth,	 after	 the	 message	 has	 been	 sent,	 the	 master
pulls	 MRDY	 high	 (Master:	 “I	 am	 done”).	 Fifth,	 the	 slave	 pulls	 its
SRDY	high	(Slave:	“ok”).	Again,	the	handshaking	requires	the	master
to	wait	for	SRDY	to	go	high.

Figure	9.39.	The	LaunchPad	AP	can	send	a	message	to	the
CC2650	NP.	Handshake	means	the	steps	1	–	5	always	occur	in
this	sequence.



If	 the	slave	(NP)	wishes	 to	send	a	message	to	 the	master	(AP),	 there
are	also	5	steps,	Figure	9.40.	First,	the	slave	sets	SRDY	low	(Slave:	“I
wish	to	send”).	Second,	the	master	responds	with	MRDY	low	(Master:
“ok,	 I	 am	 ready”).	 You	will	 notice	 in	 the	 example	 projects	 that	 the
master	will	periodically	check	to	see	if	 the	SRDY	line	has	gone	low,
and	 if	 so	 it	 will	 receive	 a	message.	 Third,	 the	 slave	will	 transmit	 a
message	on	 its	UART	output	(Tx	output	from	slave).	 	The	format	of
this	 message	 will	 be	 the	 same	 for	 all	 messages.	 Fourth,	 after	 the
message	 has	 been	 sent,	 the	 slave	 pulls	 SRDY	 high	 (Slave:	 “I	 am
done”).	The	master	will	wait	 for	SRDY	to	go	high.	Fifth,	 the	master
pulls	its	MRDY	high	(Master:	“ok”).

Figure	9.40.	The	CC2650	NP	can	send	a	message	to	the
LaunchPad	AP.	Handshake	means	the	steps	1	–	5	always	occur	in
this	sequence.

The	format	of	the	message	is	shown	in	Figure	9.41.	The	boxes	in	the
figure	represent	UART	frames.	Each	UART	frame	contains	1	start	bit,
8	data	bits,	and	1	stop	bit,	sent	at	115,200	bits/sec.	All	messages	begin
with	 a	 start	 of	 frame	 (SOF),	 which	 is	 a	 254	 (0xFE).	 The	 next	 two
bytes	 are	 the	 payload	 length	 in	 little	 endian	 format.	 Since	 all	 the
payloads	in	this	chapter	are	less	than	256	bytes,	the	second	byte	is	the
length,	L,	 and	 the	 third	 byte	 is	 0.	 The	 fourth	 and	 fifth	 bytes	 are	 the
command.	 Most	 commands	 have	 a	 payload,	 which	 contains	 the
parameters	of	the	command.	Some	commands	do	not	have	a	payload.
All	messages	 end	with	 a	 frame	check	 sequence	 (FCS).	The	FCS	 is
the	8-bit	 exclusive	or	 of	 all	 the	data,	 not	 including	 the	SOF	and	 the
FCS	itself.



Figure	9.41.	The	format	of	an	NPI	message.

The	following	steps	occur	in	this	order

1.	Initialize	GATT	(add	services,	characteristics,	CCCD’s);
2.	Initialize	GAP	(advertisement	data,	connection
parameters);
3.	Advertise	and	optionally	wait	for	a	connection;
4.	Respond	to	GATT	requests	and	send	notifications	/
indications	as	desired.

9.6.2.	Services	and	Characteristics
After	 the	 CC2650	 is	 reset,	 the	 next	 step	 is	 to	 services	 and
characteristics.	In	the	example	projects	we	will	define	one	service	with
multiple	characteristics.	To	create	a	service,	the	master	first	issues	an
Add	 Service	 command	 (0x35,0x81).	 For	 each	 characteristic,	 the
master	sends	an	Add	Characteristic	Value	 (0x35,0x82)	and	an	Add
Characteristic	 Description	 (0x35,0x83)	 message.	 Once	 all	 the
characteristics	 are	 defined,	 the	 master	 sends	 a	 Register	 Service
command	 (0x35,0x84).	 Each	 of	 the	 commands	 has	 an
acknowledgement	 response.	 The	 debugger	 output	 for	 a	 service	with
one	 characteristic	 is	 shown	 in	 Figure	 9.42.	 The	 detailed	 syntax	 of
these	messages	can	be	found	in	the	TI	CC2640	Bluetooth	low	energy
Simple	Network	Processor	API	Guide.

Add	service
		LP->SNP	FE,03,00,35,81,01,F0,FF,B9
		SNP->LP	FE,01,00,75,81,00,F5
Add	CharValue1
		LP->SNP	FE,08,00,35,82,03,0A,00,00,00,02,F1,FF,BA
		SNP->LP	FE,03,00,75,82,00,1E,00,EA
Add	CharDescriptor1
		LP->SNP	FE,0B,00,35,83,80,01,05,00,05,00,44,61,74,61,00,0C
		SNP->LP	FE,04,00,75,83,00,80,1F,00,6D
Register	service
		LP->SNP	FE,00,00,35,84,B1
		SNP->LP	FE,05,00,75,84,00,1C,00,29,00,C1

Figure	9.42.	TExaSdisplay	output	as	the	device	sets	up	a	service
with	one	characteristic.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.



Figures	 9.43	 through	 9.46	 show	 the	 four	messages	 used	 to	 define	 a
service	with	one	characteristic.	The	add	service	creates	a	service.	The
add	 characteristic	 value	 declaration	 defines	 the	 read/write/notify
properties	 of	 a	 characteristic	 in	 that	 service.	 The	 response	 to	 this
message	 includes	 the	 handle.	 The	 add	 characteristic	 description
declaration	 defines	 the	 name	 of	 the	 characteristic.	When	we	 create
services	 with	 multiple	 characteristics,	 we	 simply	 repeat	 the	 “add
characteristic	value”	and	“add	characteristic	description”	declarations
for	each.	The	register	service	makes	that	service	active.

Figure	9.43.	Add	service	message	from	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.44.	Add	characteristic	value	declaration	message	from
the	VerySimpleApplicationProcessor_xxx	project.



Figure	9.45.	Add	characteristic	declaration	message	from	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.46.	Register	service	message	from	the
VerySimpleApplicationProcessor_xxx	project.

9.6.3.	Advertising
After	 all	 the	 services	 and	characteristics	 are	defined,	 the	master	will
setup	and	 initiate	advertising.	The	master	will	send	four	messages	 to
set	 up	 advertising.	 The	 debugger	 output	 for	 advertising	 is	 shown	 in
Figure	 9.47.	 Each	 message	 will	 be	 acknowledged	 by	 the	 NP.	 A
0x35,0x85	message	will	set	the	device	name.	There	are	two	0x55,0x43
messages	 to	 configure	 the	 parameters	 of	 the	 advertising.	 The
0x55,0x42	 message	 will	 start	 advertising.	 Again,	 detailed	 syntax	 of
these	messages	can	be	found	in	the	TI	CC2640	Bluetooth	low	energy
Simple	Network	Processor	API	Guide.	Figure	9.48	shows	the	C	code



to	define	a	Set	Device	Name	message.
	

GATT	Set	DeviceName
			LP->SNP	FE,12,00,35,8C,01,00,00,53,68,61,70,65,20,74,68,65,20,57,6F,72,6C,64,DE
			SNP->LP	FE,01,00,75,8C,00,F8
SetAdvertisement1
			LP->SNP	FE,0B,00,55,43,01,02,01,06,06,FF,0D,00,03,00,00,EE
			SNP->LP	FE,01,00,55,43,00,17
SetAdvertisement2
			LP->SNP	FE,1B,00,55,43,00,10,09,53,68,61,70,65,20,74,68,65,20,57,6F,...,00,0C
			SNP->LP	FE,01,00,55,43,00,17
StartAdvertisement
			LP->SNP	FE,0E,00,55,42,00,00,00,64,00,00,00,00,01,00,00,00,C5,02,BB
			SNP->LP	FE,03,00,55,05,08,00,00,5B

Figure	9.47.	TExaSdisplay	output	as	the	device	sets	up
advertising.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.48.	A	set	device	name	message	from	the
VerySimpleApplicationProcessor_xxx	project.

9.6.4.	Read	and	Write	Indications
Figure	9.49	shows	the	message	exchange	when	the	client	issues	a	read
request.	 The	 NP	 sends	 a	 read	 indication	 to	 the	 AP,	 containing	 the
connection	and	handle	of	 the	characteristic.	The	AP	 responds	with	a
read	confirmation	containing	status,	connection,	handle,	and	the	data.



Figure	9.49.	TExaSdisplay	output	occurring	when	the	client
issues	a	read	request.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.

Figure	 9.50	 shows	 the	 message	 exchange	 when	 the	 client	 issues	 a
write	request.	The	NP	sends	a	write	indication	 to	the	AP,	containing
the	connection,	handle	of	the	characteristic,	and	the	data	to	be	written.
The	 AP	 responds	 with	 a	 write	 confirmation	 containing	 status,
connection,	and	handle.

Figure	9.50.	TExaSdisplay	output	occurring	when	the	client
issues	a	write	request.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.



9.7.	Application	Layer	Protocols	for
Embedded	Systems

9.7.1.	CoAP
The	 Constrained	 Application	 Protocol	 (CoAP)	 was	 specifically
developed	to	allow	resource-constrained	devices	to	communicate	over
the	Internet	using	UDP	instead	of	TCP.	In	particular,	many	embedded
devices	have	 limited	memory,	processing	power,	and	energy	storage.
Developers	can	interact	with	any	CoAP-enabled	device	the	same	way
they	 would	 with	 a	 device	 using	 a	 traditional	 Representational	 state
transfer	(REST)	based	API	like	HTTP.	CoAP	is	particularly	useful	for
communicating	with	 low-power	 sensors	 and	 devices	 that	 need	 to	 be
controlled	via	the	Internet.
CoAP	is	a	simple	request/response	protocol	very	similar	to	HTTP,	that
follows	a	traditional	client/server	model.	Clients	can	make	GET,	PUT,
POST,	and	DELETE	requests	to	resources.	CoAP	packets	use	bitfields
to	 maximize	 memory	 efficiency,	 and	 they	 make	 extensive	 usage	 of
mappings	 from	 strings	 to	 integers	 to	 keep	 the	 data	 packets	 small
enough	to	transport	and	interpret	on-device.	A	CoAP	message	header
is	only	4-bytes	long	with	most	control	messages	being	just	that	length.
Most	 optional	 fields	 in	 the	 message	 format	 are	 in	 binary	 with	 the
payload	 restricted	 in	 size	 so	 all	 CoAP	 messages	 fit	 inside	 a	 UDP
datagram.	
TCP	 is	 a	 connection	oriented	protocol,	which	means	 the	 server,	 or	 a
client,	will	open	a	 socket	and	establish	a	connection	with	 the	 server.
And	the	communication	is	done	over	a	connection.	For	the	duration	of
the	communication,	 the	connection	 is	on.	Whereas,	COAP	works	on
UDP,	which	means	that	it's	connectionless.	And	it	allows	what	we	call
as	a	disconnected	operation,	which	means	that	the	client	and	the	server
are	 not	 connected	 to	 each	 other.	 And	 therefore,	 they	 can	 act
asynchronously.
Aside	from	the	extremely	small	packet	size,	another	major	advantage
of	CoAP	is	its	usage	of	UDP;	using	datagrams	allows	for	CoAP	to	be



run	on	top	of	packet-based	technologies	like	SMS.	There	is	a	one-to-
one	mapping	between	CoAP	and	HTTP	effectively	providing	a	bridge
between	 the	 all	 popular	 HTTP	 protocol	 to	 the	 emerging	 CoAP
protocol.
All	 CoAP	 messages	 can	 be	 marked	 as	 either	 “confirmable”	 or
“nonconfirmable,”	 serving	 as	 an	 application-level	Quality	of	Service
(QoS)	to	provide	reliability.	While	SSL/TLS	encryption	isn’t	available
over	 UDP,	 CoAP	makes	 use	 of	 Datagram	 Transport	 Layer	 Security
(DTLS),	which	 is	analogous	 to	 the	TCP	version	of	TLS.	The	default
level	of	encryption	is	equivalent	to	a	3,072-bit	RSA	key.	Even	with	all
of	this,	CoAP	is	designed	to	work	on	microcontrollers	with	as	little	as
10KB	of	RAM.
One	 of	 the	 downsides	 of	 CoAP:	 It's	 a	 one-to-one	 protocol.	 Though
extensions	 that	 make	 group	 broadcasts	 possible	 are	 available,
broadcast	 capabilities	 are	 not	 inherent	 to	 the	 protocol.	 Arguably,	 an
even	more	 important	disadvantage	 is	 the	need	for	both	devices	 to	be
simultaneously	 powered,	 so	 when	 one	 sends	 a	 UDP,	 the	 other	 can
receive	it.	In	summary,	the	highlights	of	CoAP	include:	Small	4-byte
header
Option	fields	in	binary
Messages	fit	into	one	UDP	datagram	(no	fragmentation)
Works	with	SMS	(text	messaging)
Connectionless
Needs	less	than	10	kB	of	RAM

http://www.infoworld.com/article/2972143/internet-of-things/real-
time-protocols-for-iot-apps.html

9.7.2	MQTT
Message	 Queue	 Telemetry	 Transport	 (MQTT)	 is	 a	 publish-
subscribe	 messaging	 protocol,	 abbreviated	 as	 pub-sub.	 The	 MQTT
name	was	 inherited	 from	 a	 project	 at	 IBM.	Similar	 to	CoAP,	 it	was
built	 with	 resource-constrained	 devices	 in	 mind.	 MQTT	 has	 a
lightweight	packet	structure	designed	to	conserve	both	memory	usage
and	 power.	 A	 connected	 device	 subscribes	 to	 a	 topic	 hosted	 on	 an
MQTT	broker.	Every	time	another	device	or	service	publishes	data	to



a	 topic,	 all	 of	 the	 devices	 subscribed	 to	 it	will	 automatically	 get	 the
updated	information.
Figure	9.51	shows	the	basic	idea	of	the	pub-sub	model.	MQTT	uses	an
intermediary,	 which	 is	 called	 a	 broker.	 There	 are	 clients,	 or
publishers,	which	produce	data.	The	MQTT	protocol	calls	this	data	a
topic,	and	each	topic	must	have	a	unique	identifier.	The	figure	shows	a
temperature	 sensor,	 which	 is	 an	 embedded	 device	 with	 a	 sensor
attached,	 and	 it	 periodically	 publishes	 the	 topic	 “temperature”.	 To
publish	 a	 topic	means	 to	 send	 data	 to	 the	 broker.	 The	 broker	 keeps
track	 of	 all	 the	 published	 information.	 Subscribers	 are	 devices
consumers,	which	are	interested	in	the	data.	What	the	subscribers	do	is
they	 express	 their	 interest	 in	 a	 topic	 by	 sending	 a	 subscription
message.	 In	 this	 figure	we	have	 two	devices	 that	have	 subscribed	 to
the	 topic	 “temperature”.	Whenever	 new	data	 is	 available,	 the	 broker
will	serve	it	to	both	subscribers.

Figure	9.51.	With	MQTT,	the	broker	acts	as	an	intermediary
between	producers	and	consumers.

The	fundamental	advantage	of	a	pub/sub	model	for	communication	in
contrast	 with	 a	 client-server	 model	 is	 the	 decoupling	 of	 the
communicating	 entities	 in	 space,	 time	 and	 synchronization.	 That	 is,
the	publisher	and	subscribed	do	not	need	to	know	each	other,	they	do
not	 run	 at	 the	 same	 time	 and	 they	 can	 act	 asynchronously.	 Other
advantages	 of	 MQTT	 are	 the	 use	 of	 a	 publish-subscribe	 message
queue	 and	 the	 many-to-many	 broadcast	 capabilities.	 Using	 a	 long-
lived	 outgoing	 TCP	 connection	 to	 the	 MQTT	 broker,	 sending
messages	 of	 limited	 bandwidth	 back	 and	 forth	 is	 simple	 and
straightforward.
The	downside	of	having	an	always-on	connection	is	 that	 it	 limits	 the



amount	of	 time	 the	devices	can	be	put	 to	sleep.	 If	 the	device	mostly
sleeps,	then	another	MQTT	protocol	can	be	used:	MQTT-SN,	which	is
an	 extension	 of	 MQTT	 for	 sensor	 networks,	 originally	 designed	 to
support	ZigBee.	MQTT-S	 is	another	extension	 that	allows	 the	use	of
UDP	instead	of	TCP	as	the	transport	protocol,	with	support	for	peer-
to-peer	messaging	and	multicasting.
Another	disadvantage	of	MQTT	is	 the	lack	of	encryption	in	the	base
protocol.	 MQTT	 was	 designed	 to	 be	 a	 lightweight	 protocol,	 and
incorporating	encryption	would	add	a	significant	amount	of	overhead
to	 the	 connection.	 One	 can	 however,	 use	 Transport	 Layer
Security(TLS)	 extensions	 to	 TCP,	 or	 add	 custom	 security	 at	 the
application	level.
References:
http://www.hivemq.com/blog/mqtt-essentials/
http://www.infoworld.com/article/2972143/internet-of-things/real-
time-protocols-for-iot-apps.html



9.8.	Exercises
9.1	Consider	a	wired	communication	system	(like	UART	or	CAN).
a)	Assume	the	signal	has	a	rise	time	of	25	us.	What	is	the	approximate
highest	frequency	component	of	this	signal?
b)	Assuming	 a	 VF	 of	 0.7,	 what	 is	 the	 wavelength	 of	 this	 highest
frequency?
c)	Over	what	cable	length	would	you	have	to	consider	this	system	as	a
transmission	line?
	
9.2	Consider	 a	 communication	with	 a	 channel	 bandwidth	 of	 10	kHz
and	 an	 SNR	of	 60	 dB.	What	 is	 the	maximum	possible	 data	 transfer
rate	in	bits/sec?
	
9.3	What	are	there	so	many	frequency	bands	for	Bluetooth	and	WiFi?
	
9.4	Consider	bit-stuffing
a)	Define	bit-stuffing
b)	Why	do	Ethernet	and	CAN	implement	bit-stuffing?
c)	UART	does	not	 implement	bit-stuffing.	How	does	 the	 lack	of	bit-
stuffing	limit	the	UART?
d)	 SPI	 does	 not	 implement	 bit-stuffing.	 Why	 does	 the	 lack	 of	 bit-
stuffing	not	 limit	 the	SPI	 transmission	 in	 the	 same	way	 as	UART	 is
limited?
	
9.5		Consider	how	the	ACK	bit	is	used	in	a	CAN	network.
a)	What	do	the	receivers	do	during	the	ACK	bit?
b)	What	does	it	mean	if	the	ACK	bit	is	dominant?
c)	What	does	it	mean	if	the	ACK	bit	is	recessive?
	
9.6	 If	 the	CAN	channel	 is	noisy,	 it	 is	possible	 that	some	bits	will	be
transmitted	in	error.	Assume	there	are	four	nodes,	one	is	transmitting
and	 three	 are	 receiving.	What	 happens	 if	 a	 data	 bit	 is	 flipped	 in	 the
channel	due	to	noise	being	added	into	the	channel?
	
9.7	Consider	 a	 situation	 where	 two	 microcontrollers	 are	 connected
with	 a	 CAN	 network.	 Computer	 1	 generates	 8-bit	 data	 packets	 that



must	 be	 sent	 to	 computer	 2,	 and	 computer	 2	 generates	 8-bit	 data
packets	that	must	be	sent	to	computer	1.	The	packets	are	generated	at
random	times,	and	the	goal	is	to	minimize	the	latency	between	when	a
data	packet	is	generated	on	one	computer	to	when	it	is	received	on	the
other.	Describe	the	CAN	protocol	you	would	use:	11-bit	versus	29-bit
ID,	number	of	bytes	of	data,	and	bandwidth.	Clearly	describe	what	is
in	the	ID	and	how	the	data	is	formatted.
	
9.8	A	CAN	system	has	a	baud	rate	of	100,000	bits/sec,	29-bit	ID,	and
three	bytes	of	data	per	frame.	Assuming	there	is	no	bit-stuffing,	what
is	the	maximum	bandwidth	of	this	network,	in	bytes/s.
	
9.9	A	CAN	system	has	a	baud	rate	of	200,000	bits/sec,	11-bit	ID,	and
five	bytes	of	data	per	frame.	Assuming	there	is	no	bit-stuffing,	what	is
the	maximum	bandwidth	of	this	network,	in	bytes/s.
	
9.10	 Consider	 a	 situation	 where	 4	 microcontrollers	 are	 connected
together	 using	 a	 CAN	 network.	 Assume	 for	 this	 question	 that	 each
frame	contains	100	bits.	Also	assume	the	baud	rate	is	100,000	bits/sec,
therefore	 it	 takes	1ms	 to	send	a	 frame.	 Initially,	 the	CAN	controllers
are	 initialized	 (i.e.,	 all	 computers	 have	 previously
executed CAN_Open ).
At	time	=	0	computer	A	calls CAN_Send 	with	ID=1000
At	time	=	300	µs	computer	B	calls CAN_Send 	with	ID=800
At	time	=	500	µs	computer	C	calls CAN_Send 	with	ID=900
At	time	=	700	µs	computer	D	calls CAN_Send 	with	ID=600
Specify	the	time	sequence	in	which	the	four	frames	occur	on	the	CAN
network.	Clearly	define	the	begin	and	end	times	when	each	message	is
visible	on	the	CAN	network.
	
9.11	 In	a	CAN	network,	what	 is	 the	purpose	of	 the	CRC	 field?	 I.e.,
what	is	CRC	used	for?
	
9.12	Why	 is	 BLE	 considered	 a	 personal	 area	 network,	 and	WiFi	 is
not?
	
9.13	How	does	BLE	achieve	low	energy?
	
9.14	Define	the	following	terms	in	16	words	or	 less	as	 they	apply	to



BLE.
a)	Service	b)	Characteristic	c)	Advertising	d)	Client	e)	Server	f)	Profile
g)	Stack	g)	UUID	h)	Handle	i)	Read	indication	j)	Write	indication	k)
Notify	indication



10.	Robotic	Systems
Chapter	10	objectives	are	to:
•	Introduce	the	general	approach	to	digital	control	systems
•	 Design	 and	 implement	 some	 simple	 closed-loop	 control
systems
•	Develop	a	methodology	for	designing	PID	control	systems
•	Present	 the	 terminology	and	give	examples	of	 fuzzy	 logic
control	system
	

Throughout	 all	 three	 volumes	 of	 this	 series	 of	 books,	 we
developed	 systems	 that	 collected	 information	 concerning	 the
external	environment.	A	typical	application	of	embedded	systems
is	 to	 use	 this	 information	 in	 order	 to	 control	 the	 external
environment.	To	build	 this	microcontroller-based	control	system
we	 will	 need	 an	 output	 device	 that	 the	 computer	 can	 use	 to
manipulate	 the	external	environment.	Control	systems	originally
involved	 just	 analog	 electronic	 circuits	 and	mechanical	 devices.
With	 the	 advent	 of	 inexpensive	 yet	 powerful	 microcontrollers,
implementing	the	control	algorithm	in	software	provided	a	lower
cost	 and	more	 powerful	 product.	 The	 goal	 of	 this	 chapter	 is	 to
provide	 a	 brief	 introduction	 to	 this	 important	 application	 area.
Control	theory	is	a	richly	developed	discipline,	and	most	of	this
theory	 is	 beyond	 the	 scope	 of	 this	 book.	 Consequently,	 this
chapter	focuses	more	on	implementing	the	control	system	with	an
embedded	 computer	 and	 less	 on	 the	 design	 of	 the	 control
equations.



10.1.	Introduction	to	Digital	Control	Systems
A	control	system	is	a	collection	of	mechanical	and	electrical	devices
connected	 for	 the	purpose	of	 commanding,	directing,	or	 regulating	a
physical	 plant	 (see	 Figure	 10.1).	 The	 real	 state	 variables	 are	 the
properties	of	 the	physical	plant	 that	are	 to	be	controlled.	The	sensor
and	state	estimator	comprise	a	data	acquisition	system.	The	goal	of
this	data	acquisition	system	is	to	estimate	the	state	variables.	A	closed-
loop	control	system	uses	the	output	of	the	state	estimator	in	a	feedback
loop	 to	 drive	 the	 errors	 to	 zero.	 The	 control	 system	 compares	 these
estimated	state	variables,	X'(t),	to	the	desired	state	variables,	X*(t),
in	 order	 to	 decide	 appropriate	 action,	 U(t).	 The	 actuator	 is	 a
transducer	 that	 converts	 the	 control	 system	 commands,	 U(t),	 into
driving	forces,	V(t),	that	are	applied	to	the	physical	plant.		In	general,
the	 goal	 of	 the	 control	 system	 is	 to	 drive	 the	 real	 state	 variables	 to
equal	 the	 desired	 state	 variables.	 In	 actuality	 though,	 the	 controller
attempts	to	drive	the	estimated	state	variables	to	equal	the	desired	state
variables.	 It	 is	 important	 to	have	an	accurate	state	estimator,	because
any	differences	between	the	estimated	state	variables	and	the	real	state
variables	will	translate	directly	into	controller	errors.		If	we	define	the
error	 as	 the	 difference	 between	 the	 desired	 and	 estimated	 state
variables:	e(t)	=	X*(t)-	X’(t)

	
then	the	control	system	will	attempt	 to	drive	e(t)	 to	zero.	 	 In	general
control	theory,	X(t),	X’(t),	X*(t),	U(t),	V(t)	and	e(t)	refer	to	vectors,	but
the	 examples	 in	 this	 chapter	 control	 only	 a	 single	 parameter.	 Even
though	this	chapter	shows	one-dimensional	systems,	and	it	should	be
straightforward	to	apply	standard	multivariate	control	 theory	to	more
complex	problems.	We	usually	evaluate	the	effectiveness	of	a	control
system	by	determining	 three	properties:	 steady	 state	 controller	 error,
transient	response,	and	stability.	The	steady	state	controller	error	 is
the	average	value	of	e(t).	The	transient	response	is	how	long	does	the
system	 take	 to	 reach	99%	of	 the	 final	output	 after	X*	 is	 changed.	A
system	is	stable	 if	steady	state	(smooth	constant	output)	 is	achieved.
The	 error	 is	 small	 and	 bounded	 on	 a	 stable	 system.	 An	 unstable
system	oscillates,	or	it	may	saturate.



Figure	10.1.	Block	diagram	of	a	microcomputer-based	closed-
loop	control	system.

	
An	open-loop	control	system	does	not	 include	a	state	estimator.	 It	 is
called	 open	 loop	 because	 there	 is	 no	 feedback	 path	 providing
information	about	the	state	variable	to	the	controller.	It	will	be	difficult
to	use	open-loop	with	the	plant	that	is	complex	because	the	disturbing
forces	will	have	a	 significant	 effect	on	controller	 error.	On	 the	other
hand,	if	 the	plant	is	well-defined	and	the	disturbing	forces	have	little
effect,	then	an	open-loop	approach	may	be	feasible.	Because	an	open-
loop	 control	 system	 does	 not	 know	 the	 current	 values	 of	 the	 state
variables,	large	errors	can	occur.	Stepper	motors	are	often	used	in	open
loop	fashion.



10.2.	Binary	Actuators

10.2.1.	Electrical	Interface
Relays,	solenoids,	and	DC	motors	are	grouped	together	because	their
electrical	 interfaces	are	similar.	We	can	add	speakers	 to	 this	group	 if
the	 sound	 is	 generated	with	 a	 square	wave.	 	 In	 each	 case,	 there	 is	 a
coil,	 and	 the	 computer	must	 drive	 (or	 not	 drive)	 current	 through	 the
coil.	To	interface	a	coil,	we	consider	voltage,	current	and	inductance.
We	need	a	power	supply	at	the	desired	voltage	requirement	of	the	coil.
If	 the	 only	 available	 power	 supply	 is	 larger	 than	 the	 desired	 coil
voltage,	we	 use	 a	 voltage	 regulator	 (rather	 than	 a	 resistor	 divider	 to
create	 the	 desired	 voltage.)	 We	 connect	 the	 power	 supply	 to	 the
positive	terminal	of	the	coil,	shown	as	+V	in	Figure	10.2.	We	will	use
a	transistor	device	to	drive	the	negative	side	of	the	coil	to	ground.	The
computer	 can	 turn	 the	 current	 on	 and	 off	 using	 this	 transistor.	 The
second	consideration	is	current.	In	particular,	we	must	however	select
the	 power	 supply	 and	 an	 interface	 device	 that	 can	 support	 the	 coil
current.	The	7406	is	an	open	collector	driver	capable	of	sinking	up	to
40	 mA.	 The	 2N2222	 is	 a	 bipolar	 junction	 transistor	 (BJT),	 NPN
type,	 with	 moderate	 current	 gain.	 The	 TIP120	 is	 a	 Darlington
transistor,	 also	 NPN	 type,	 which	 can	 handle	 larger	 currents.	 The
IRF540	 is	 a	MOSFET	 transistor	 that	 can	handle	even	more	current.
BJT	 and	 Darlington	 transistors	 are	 current-controlled	 (meaning	 the
output	 is	 a	 function	 of	 the	 input	 current),	 while	 the	 MOSFET	 is
voltage-controlled	 (output	 is	 a	 function	 of	 input	 voltage).	 When
interfacing	a	coil	to	the	microcontroller,	we	use	information	like	Table
10.1	 to	 select	 an	 interface	 device	 capable	 the	 current	 necessary	 to
activate	the	coil.	It	is	a	good	design	practice	to	select	a	driver	with	a
maximum	 current	 at	 least	 twice	 the	 required	 coil	 current.	When	 the
digital	Port	output	is	high,	the	interface	transistor	is	active	and	current
flows	 through	 the	 coil.	 When	 the	 digital	 Port	 output	 is	 low,	 the
transistor	is	not	active	and	no	current	flows	through	the	coil.

Device Type Maximum	current
TM4C CMOS 8	 mA	 (set	 bits	 in



DR8R)
MSP432 CMOS 20	 mA	 (DS=1,	 P2.0

–	P2.3)
7406 TTL	logic 40	mA
PN2222 BJT	NPN 150	mA
2N2222 BJT	NPN 500	mA
TIP120 Darlington	NPN 5	A
IRF540 power	MOSFET 28	A

Table	10.1.	Four	possible	devices	that	can	be	used	to	interface	a	coil	to	the
microcontroller.

Figure	10.2.	Binary	interface	to	EM	relay,	solenoid,	DC	motor	or
speaker.

The	third	consideration	is	inductance	in	the	coil.	The	1N914	diode	in
Figure	 10.1	 provides	 protection	 from	 the	back	 emf	 generated	when
the	switch	is	turned	off,	and	the	large	dI/dt	across	the	inductor	induces
a	 large	 voltage	 (on	 the	 negative	 terminal	 of	 the	 coil),	 according	 to
V=L∙dI/dt.	For	example,	if	you	are	driving	0.1A	through	a	0.1	mH	coil
(Port	output	=	1)	using	a	2N2222,	then	disable	the	driver	(Port	output
=	0),	the	2N2222	will	turn	off	in	about	20ns.	This	creates	a	dI/dt	of	at
least	 5·106	 A/s,	 producing	 a	 back	 emf	 of	 500	V!	 The	 1N914	 diode
shorts	 out	 this	 voltage,	 protecting	 the	 electronics	 from	 potential
damage.	The	1N914	is	called	a	snubber	diode.
Observation:	It	is	important	to	realize	that	many	devices	cannot	be
connected	directly	up	to	the	microcontroller.	In	the	specific	case	of
motors,	we	need	an	interface	that	can	handle	the	voltage	and	current



required	by	the	motor.

If	you	are	sinking	16	mA	(IOL)	with	the	7406,	the	output	voltage	(VOL)
will	be	0.4V.	However,	when	the	IOL	of	the	7406	equals	40	mA,	its	VOL
will	be	0.7V.	40	mA	 is	not	a	 lot	of	current	when	 it	 comes	 to	 typical
coils.	 However,	 the	 7406	 interface	 is	 appropriate	 to	 control	 small
relays.
Checkpoint	10.1:	A	relay	is	interfaced	with	the	7406	circuit	in
Figure	10.2.	The	positive	terminal	of	the	coil	is	connected	to	+5V
and	the	coil	requires	40	mA.	What	will	be	the	voltage	across	the
coil	when	active?

When	designing	an	interface,	we	need	to	know	the	desired	coil	voltage
(Vcoil)	and	coil	current	 	 (Icoil).	Let	Vbe	be	 the	base-emitter	voltage	 that
activates	the	NPN	transistor	and	let	hfe	be	the	current	gain.	There	are
three	steps	when	interfacing	an	N-channel	(right	side	of	Figure	10.2.)
1)	Choose	the	interface	voltage	V	equal	to	Vcoil	(since	VCE	is	close	to
zero)	2)	Calculate	the	desired	base	current	Ib	=	Icoil	/hfe	(since	IC	equals
Icoil)	3)	Calculate	 the	 interface	 resistor	 	Rb	≤	 (VOH	 -	Vbe)/	 Ib	 (choose	 a
resistor	2	 to	5	 times	 smaller)	With	 an	N-channel	 switch,	 like	 Figure
10.2,	 current	 is	 turned	 on	 and	 off	 by	 connecting/disconnecting	 one
side	of	the	coil	to	ground,	while	the	other	side	is	fixed	at	the	voltage
supply.	A	second	 type	of	binary	 interface	uses	P-channel	switches	 to
connect/disconnect	one	side	of	the	coil	to	the	voltage	supply,	while	the
other	side	fixed	at	ground,	as	shown	in	Figure	10.3.	In	other	to	activate
a	PNP	transistor	(e.g.,	PN2907	or	TIP125),	there	must	be	a	VEB	greater
than	 0.7	 V.	 In	 order	 to	 deactivate	 a	 PNP	 transitory,	 the	VEB	 voltage
must	be	0.	Because	the	transistor	is	a	current	amplifier,	there	must	be	a
resistor	into	the	base	in	order	to	limit	the	base	current.



Figure	10.3.	PNP	interface	to	EM	relay,	solenoid,	DC	motor	or
speaker.

To	 understand	 how	 the	 PNP	 interface	 on	 the	 right	 of	 Figure	 10.3
operates,	 consider	 the	 behavior	 for	 the	 two	 cases:	 the	 Port	 output	 is
high	and	 the	Port	output	 is	 low.	 If	 the	Port	output	 is	high,	 its	output
voltage	will	be	between	2.4	and	3.3	V.	This	will	cause	current	to	flow
into	the	base	of	the	PN2222,	and	its	Vbe	will	saturate	to	0.7	V.	The	base
current	 into	 the	 PN2222	 could	 be	 from	 (2.4-0.7)/1000	 to	 (3.3-
0.7)/1000,	or	1.7	to	2.6	mA.	The	microcontroller	will	be	able	to	source
this	current.	This	will	saturate	 the	PN2222	and	its	VCE	will	be	0.3	V.
This	will	cause	current	to	flow	out	of	the	base	of	the	PN2907,	and	its
VEB	will	saturate	to	0.7	V.	If	the	supply	voltage	is	V,	then	the	PN2907
base	current	is	(V-0.7-0.3)/Rb.	Since	the	PNP	transistor	is	on,	VEC	will
be	small	and	current	will	flow	from	the	supply	to	the	coil.	If	the	port
output	is	low,	the	voltage	output	will	be	between	0	and	0.4V.	This	not
high	enough	to	activate	the	PN2222,	so	the	NPN	transistor	will	be	off.
Since	 there	 is	 no	 IC	 current	 in	 the	PN2222,	 the	 10k	 and	Rb	 resistors
will	place	+V	at	the	base	of	the	PN2907.	Since	the	VEB	of	the	PN2907
is	0,	this	transistor	will	be	off,	and	no	current	will	flow	into	the	coil.
MOSFETs	 can	 handle	 significantly	 more	 current	 than	 BJT	 or
Darlington	transistors.	MOSFETs	are	voltage	controlled	switches.	The
difficulty	with	interfacing	MOSFETs	to	a	microcontroller	is	the	large
gate	voltage	needed	to	activate	it.	The	left	side	of	Figure	10.4	is	an	N-
channel	 interface.	 The	 IRF540	 N-channel	 MOSFET	 can	 sink	 up	 to
28A	when	the	gate-source	voltage	is	above	7V.	This	circuit	is	negative
logic.	When	 the	 port	 pin	 is	 high,	 the	 2N2222	 is	 active	 making	 the



MOSFET	gate	voltage	0.3V	(VCE	of	the	PN2222).	A	VGS	of	0.3V	turns
off	the	MOSFET.	When	the	port	pin	is	low,	the	2N2222	is	off	making
the	MOSFET	gate	voltage	+V	(pulled	up	through	the	10kΩ	resistor).
The	VGS	is	+V,	which	turns	the	MOSFET	on.	

The	right	side	of	Figure	10.4	shows	a	P-channel	MOSFET	interface.
The	 IRF9540	 P-channel	 MOSFET	 can	 source	 up	 to	 20A	 when	 the
source-gate	voltage	is	above	7V.	The	FQP27P06	P-channel	MOSFET
can	source	up	to	27A	when	the	source-gate	voltage	is	above	6V.	This
circuit	 is	 positive	 logic.	 When	 the	 port	 pin	 is	 high,	 the	 2N2222	 is
active	making	the	MOSFET	gate	voltage	0.3V.	This	makes	VSG	equal
to	+V-0.3,	which	turns	on	the	MOSFET.	When	the	port	pin	is	low,	the
2N2222	 is	 off.	 Since	 the	 2N2222	 is	 off,	 the	 10kΩ	 pull-up	 resistor
makes	the	MOSFET	gate	voltage	+V.	In	this	case	VSG	equals	0,	which
turns	off	the	MOSFET.

Figure	10.4.	MOSFET	interfaces	to	EM	relay,	solenoid,	DC	motor
or	speaker.

An	 H-bridge	 combines	 P-channel	 and	 N-channel	 devices	 allowing
current	to	flow	in	either	direction.	Figures	4.26	and	4.27		in	Volume	2
show	applications	of	the	L293	H-bridge,	while	Figure	10.5	shows	one
of	 the	H-bridge	circuits	 internal	 to	 the	L293.	 If	1A	 is	high,	Q1	 is	 on
and	Q2	is	off.	If	1A	is	low,	Q1	is	off	and	Q2	is	on.	2A	controls	Q3	and
Q4	in	a	similar	fashion.	If	1A	is	high	and	2A	is	low,	then	Q1	Q4	are	on
and	 current	 flows	 left	 to	 right	 across	 coil	A.	 If	 1A	 is	 low	and	2A	 is
high,	then	Q2	Q3	are	on	and	current	flows	right	to	left	across	coil	A.



Figure	10.5.	An	H-bridge	can	drive	current	in	either	direction
(the	actual	L293	uses	all	N-channel	devices).

10.2.2.	DC	Motor	Interface	with	PWM
Similar	to	the	solenoid	and	EM	relay,	the	DC	motor	has	a	frame	that
remains	 motionless,	 and	 an	 armature	 that	 moves.	 In	 this	 case,	 the
armature	moves	in	a	circular	manner	(shaft	rotation).
In	 the	 previous	 interfaces	 the	 microcontroller	 was	 able	 to	 control
electrical	power	to	a	device	in	a	binary	fashion:	either	all	on	or	all	off.
Sometimes	it	is	desirable	for	the	microcontroller	to	be	able	to	vary	the
delivered	power	in	a	variable	manner.	One	effective	way	to	do	this	is
to	use	pulse	width	modulation	(PWM).	The	basic	idea	of	PWM	is	to
create	 a	 digital	 output	 wave	 of	 fixed	 frequency,	 but	 allow	 the
microcontroller	to	vary	its	duty	cycle.	The	system	is	designed	in	such
a	way	 that	High+Low	 is	 constant	 (meaning	 the	 frequency	 is	 fixed).
The	duty	cycle	 is	defined	as	 the	 fraction	of	 time	 the	 signal	 is	high:	

Hence,	duty	cycle	varies	from	0	to	1.	We	interface	this	digital	output
wave	 to	 an	 external	 actuator	 (like	 a	 DC	motor),	 such	 that	 power	 is
applied	to	the	motor	when	the	signal	is	high,	and	no	power	is	applied
when	the	signal	is	low.	We	purposely	select	a	frequency	high	enough
so	 the	DC	motor	 does	 not	 start/stop	with	 each	 individual	 pulse,	 but
rather	responds	to	the	overall	average	value	of	the	wave.	The	average
value	 of	 a	 PWM	 signal	 is	 linearly	 related	 to	 its	 duty	 cycle	 and	 is
independent	of	 its	 frequency.	Let	P	 (P=V*I)	be	 the	power	 to	 the	DC
motor,	 Figures	 10.2	 -	 10.5,	 when	 the	 PWM	 signal	 is	 high.	 Under
conditions	of	constant	speed	and	constant	load,	the	delivered	power	to



the	motor	is	linearly	related	to	duty	cycle.

Delivered	Power	=

Unfortunately,	as	speed	and	torque	vary,	the	developed	emf	will	affect
delivered	power.	Nevertheless,	PWM	is	 a	very	 effective	mechanism,
allowing	the	microcontroller	to	adjust	delivered	power.
A	 DC	 motor	 has	 an	 electromagnet	 as	 well.	 When	 current	 flows
through	the	coil,	a	magnetic	force	is	created	causing	a	rotation	of	the
shaft.	Brushes	positioned	between	the	frame	and	armature	are	used	to
alternate	 the	 current	 direction	 through	 the	 coil,	 so	 that	 a	DC	current
generates	 a	 continuous	 rotation	 of	 the	 shaft.	 When	 the	 current	 is
removed,	the	magnetic	force	stops,	and	the	shaft	is	free	to	rotate.	The
resistance	in	the	coil	(R)	comes	from	the	long	wire	that	goes	from	the
+	 terminal	 to	 the	–	 terminal	of	 the	motor.	The	 inductance	 in	 the	coil
(L)	arises	from	the	fact	that	the	wire	is	wound	into	coils	to	create	the
electromagnetics.	 The	 coil	 itself	 can	 generate	 its	 own	 voltage	 (emf)
because	of	the	interaction	between	the	electric	and	magnetic	fields.	If
the	coil	is	a	DC	motor,	then	the	emf	is	a	function	of	both	the	speed	of
the	motor	and	the	developed	torque	(which	in	turn	is	a	function	of	the
applied	load	on	the	motor.)	Because	of	the	internal	emf	of	the	coil,	the
current	will	depend	on	the	mechanical	load.	For	example,	a	DC	motor
running	with	no	load	might	draw	50	mA,	but	under	load	(friction)	the
current	may	jump	to	500	mA.
There	 are	 lots	 of	 motor	 driver	 chips,	 but	 they	 are	 fundamentally
similar	 to	 the	 circuits	 shown	 in	 Figure	 10.2.	 For	 the	 2N2222	 and
TIP120	NPN	transistors,	if	the	port	output	is	low,	no	current	can	flow
into	the	base,	so	the	transistor	is	off,	and	the	collector	current,	IC,	will
be	zero.	If	the	port	output	is	high,	current	does	flow	into	the	base	and
VBE	goes	above	VBEsat	turning	on	the	transistor.	The	transistor	is	in	the
linear	 range	 if	 VBE	 ≤	 VBEsat	 and	 Ic	 =	 hfe·Ib.	 The	 transistor	 is	 in	 the
saturated	mode	if	VBE	≥	VBEsat,	VCE	=	0.3V	and	Ic	<	hfe·Ib.	We	select	the
resistor	 for	 the	 NPN	 transistor	 interfaces	 to	 operate	 right	 at	 the
transition	between	linear	and	saturated	mode.	We	start	with	the	desired
coil	current,	Icoil	(the	voltage	across	the	coil	will	be	+V-VCE	which	will
be	 about	 +V-0.3V).	 	Next,	we	 calculate	 the	 needed	 base	 current	 (Ib)



given	the	current	gain	of	the	NPN
Ib	=	Icoil	/hfe	knowing	the	current	gain	of	the	NPN	(hfe),	see	Table	10.2.
Finally,	 given	 the	 output	 high	 voltage	 of	 the	microcontroller	 (VOH	 is
about	3.3	V)	 and	base-emitter	 voltage	of	 the	NPN	 (VBEsat)	 needed	 to
activate	the	transistor,	we	can	calculate	the	desired	interface	resistor.
Rb	≤	(VOH	-	VBEsat)/	Ib	=		hfe	*(VOH	-	VBEsat)/	Icoil	The	inequality	means	we
can	choose	a	smaller	resistor,	creating	a	 larger	Ib.	Because	 the	of	 the
transistors	can	vary	a	 lot,	 it	 is	a	good	design	practice	 to	make	the	Rb
resistor	 about	 ½	 the	 value	 shown	 in	 the	 above	 equation.	 Since	 the
transistor	 is	 saturated,	 the	 increased	 base	 current	 produces	 the	 same
VCE	and	thus	the	same	coil	current.	

Parameter PN2222
(IC=150mA)

2N2222
(IC=500mA)

TIP120
(IC=3A)

hfe 100 40 1000
hie 60	Ω 250	to	8000	Ω 70	to	7000	Ω
VBEsat 0.6 2 2.5	V
VCE	 at
saturation

0.3 1 2	V

Table	10.2.	Design	parameters	for	the	2N2222	and	TIP120.
The	 IRF540	 MOSFET	 is	 a	 voltage-controlled	 device,	 if	 the	 Port
output	 is	 high,	 the	 2N2222	 is	 on,	 the	MOSFET	 is	 off,	 and	 the	 coil
current	will	be	zero.	If	the	Port	output	is	low,	the	2N2222	is	off,	the
gate	voltage	of	the	MOSFET	will	be	+V,	the	MOSFET	is	on,	and	the
VDS	will	be	very	close	to	0.	The	IRF540	needs	a	large	gate	voltage	(>
10V)	to	fully	turn	so	the	drain	will	be	able	to	sink	up	to	28	A.
Because	of	the	resistance	of	the	coil,	there	will	not	be	significant	dI/dt
when	the	device	is	turned	on.	Consider	a	DC	motor	as	shown	in	Figure
10.2	with	V=	12V,	R	=	50	Ω	and	L	=	100	µH.	Assume	we	are	using	a
2N2222	with	a	VCE	of	1	V	at	saturation.	Initially	the	motor	is	off	(no
current	to	the	motor).	At	time	t=0,	the	digital	port	goes	from	0	to	+3.3
V,	 and	 transistor	 turns	 on.	 	Assume	 for	 this	 section,	 the	 emf	 is	 zero
(motor	has	no	external	 torque	applied	 to	 the	shaft)	and	 the	 transistor
turns	on	instantaneously,	we	can	derive	an	equation	for	the	motor	(Ic)
current	as	a	function	of	 time.	The	voltage	across	both	LC	 together	 is



12VCE	 =	 11	 V	 at	 time	 =	 0+.	 At	 time	 =	 0+,	 the	 inductor	 is	 an	 open
circuit.	Conversely,	at	time	=	∞,	the	inductor	is	a	short	circuit.	The	Ic
at	time	0-	is	0,	and	the	current	will	not	change	instantaneously	because
of	 the	 inductor.	 Thus,	 the	 Ic	 is	 0	 at	 time	 =	 0+.	The	 Ic	 is	 11V/50Ω	 =
220mA	at	time	=	∞.
11	V	=	Ic	*R	+L*d	Ic/dt	General	solution	to	this	differential	equation	is

Ic	=	I0	+	I1e-t/T						d	Ic/dt	=	-	(I1/T)e-t/T

We	 plug	 the	 general	 solution	 into	 the	 differential	 equation	 and
boundary	conditions.
11	V	=	(I0	+	I1e-t/T)*R	-L*(I1/T)e-t/T

To	solve	the	differential	equation,	the	time	constant	will	be	T	=	L/R	=
2	 µsec.	 Using	 initial	 conditions,	 we	 get	 Ic	 =	 220mA*(1-e-t/2µs)
Example	 10.4.	 Design	 an	 interface	 for	 two	 +12V	 1A	 geared	 DC
motors.	 These	 two	 motors	 will	 be	 used	 to	 propel	 a	 robot	 with	 two
independent	drive	wheels.
Solution:	We	will	use	two	copies	of	the	TIP120	circuit	in	Figure	10.6
because	the	TIP120	can	sink	at	least	three	times	the	current	needed	for
this	motor.	We	select	a	+12V	supply	and	connect	 it	 to	 the	+V	in	 the
circuit.	The	needed	base	current	is	Ib	=	Icoil	/hfe	=	1A/1000	=	1mA	The
desired	interface	resistor.
Rb	≤	(VOH	-	Vbe)/	Ib	=	(3.3-2.5)/1mA	=	800	Ω

To	cover	the	variability	in	hfe,	we	will	use	a	330	Ω	resistor	instead	of
the	800	Ω.	The	actual	voltage	on	the	motor	when	active	will	be	+12-2
=	10V.	The	coils	and	transistors	can	vary	a	lot,	so	it	is	appropriate	to
experimentally	 verify	 the	 design	 by	 measuring	 the	 voltages	 and
currents.	Two	PWM	outputs	are	used	to	control	the	robot.	The	period
of	 the	 PWM	output	 is	 chosen	 to	 be	 about	 10	 times	 shorter	 than	 the
time	constant	of	the	motor.	The	electronic	driver	will	turn	on	and	off	at
this	 rate,	 but	 the	 motor	 only	 responds	 to	 the	 average	 level.	 The
software	sets	the	duty	cycle	of	the	PWM	to	adjust	the	delivered	power.
When	 active,	 the	 interface	 will	 drive	 +10	 V	 across	 the	 motor.	 The
current	will	be	a	function	of	the	friction	applied	to	the	shaft.



	
Figure	10.6.	DC	motor	interface.
	

Similar	to	the	solenoid	and	EM	relay,	the	DC	motor	has	a	frame	that
remains	motionless	 (called	 the	 stator),	 and	 an	 armature	 that	 moves
(called	the	rotor),	see	Figure	10.7.

Figure	10.7.	A	brushed	DC	motor	uses	a	commutator	to	flip	the
coil	current.

A	brushed	DC	motor	has	an	electromagnetic	coil	as	well,	located	on
the	rotor,	and	the	rotor	is	positioned	inside	the	stator.	In	Figure	10.7,



North	and	South	refer	to	a	permanent	magnet,	generating	a	constant	B
field	 from	 left	 to	 right.	 In	 this	 case,	 the	 rotor	 moves	 in	 a	 circular
manner.	 When	 current	 flows	 through	 the	 coil,	 a	 magnetic	 force	 is
created	 causing	 a	 rotation	 of	 the	 shaft.	 A	 brushed	 DC	 motor	 uses
commutators	to	flip	the	direction	of	the	current	in	the	coil.	In	this	way,
the	coil	on	 the	 right	 always	has	 an	up	 force,	 and	 the	one	on	 the	 left
always	 has	 a	 down	 force.	 Hence,	 a	 constant	 current	 generates	 a
continuous	 rotation	 of	 the	 shaft.	 When	 the	 current	 is	 removed,	 the
magnetic	 force	stops,	and	 the	shaft	 is	 free	 to	 rotate.	 In	a	pulse-width
modulated	DC	motor,	the	computer	activates	the	coil	with	a	current	of
fixed	magnitude	but	varies	the	duty	cycle	in	order	to	adjust	the	power
delivered	to	the	motor.



10.3.	Sensors
Tachometers	can	be	used	to	measure	rotational	speed	of	a	motor.	Some
tachometers	 produce	 a	 sine	 wave	 with	 a	 frequency	 and	 amplitude
proportional	to	motor	speed.	To	use	input	capture,	we	need	to	convert
the	 sine	wave	 into	 a	 corresponding	 square	wave	of	 the	 same	period.
We	 can	 use	 a	 voltage	 comparator	 to	 detect	 events	 in	 an	 analog
waveform.	The	input	voltage	range	is	determined	by	the	analog	supply
voltages	of	the	comparator.	The	output	is	takes	on	two	values,	shown
an	 Vh	 and	 Vl	 in	 Figure	 10.8.	 To	 reduce	 noise,	 a	 comparator	 with
hysteresis	 has	 two	 thresholds,	 Vt+	 and	 Vt-.	 In	 both	 the	 positive	 and
negative	 logic	cases	 the	 threshold	(Vt+	or	Vt-)	depends	on	 the	present
value	of	the	output.

Figure	10.8.	Input/output	response	of	voltage	converters	with
hysteresis.

Hysteresis	prevents	small	noise	spikes	from	creating	a	false	trigger.	
Performance	Tip:	In	order	to	eliminate	false	triggering,	we	select	a
hysteresis	level	(Vt+-Vt-)	greater	than	the	noise	level	in	the	signal.

In	 Figure	 10.9,	 a	 rail-to-rail	 op	 amp	 is	 used	 to	 design	 a	 voltage
comparator.	 Since	 the	 output	 swings	 from	 0	 to	 3.3	 V,	 it	 can	 be
connected	directly	to	an	input	pin	of	the	microcontroller.	On	the	other
hand,	since	+3.3	and	0	are	used	to	power	the	op	amp,	the	analog	input
must	 remain	 in	 the	 0	 to	 +3.3	 V	 range.	 The	 hysteresis	 level	 is
determined	by	the	amplitude	of	the	output	and	the	R1/(R1+R2)	ratio.	If
the	output	is	at	0V,	the	voltage	at	the	+terminal	is	Vin*R2/(R1+R2).	The
output	switches	when	the	voltage	at	the	+terminal	goes	above	1.65.	By
solving	 for	 Vin*200k/(10k+200k)=1.65,	 we	 see	 Vin	 must	 go	 above
+1.73	for	the	output	to	switch.	Similarly,	if	the	output	is	at	+3.3	V,	the



voltage	at	the	+terminal	can	be	calculated	as	Vin+(3.3Vin)*R1/(R1+R2).
The	 output	 switches	 back	 when	 the	 voltage	 at	 the	 +terminal	 goes
below	1.65.	By	 solving	 for	Vin+(3.3Vin)*R1/(R1+R2)=1.65,	we	 see	Vin
go	below	+1.57	before	the	+terminal	of	the	op	amp	falls	below	1.65	V.
In	linear	mode	circuits	we	should	not	use	the	supply	voltage	to	create
voltage	 references,	 but	 in	 a	 saturated	 mode	 circuit,	 power	 supply
ripple	will	have	little	effect	on	the	response.

Figure	10.9.	A	voltage	comparator	with	hysteresis	using	a	rail	to
rail	op	amp.



10.4.	Odometry
Odometry	 is	 a	method	 to	predict	position	 from	wheel	 rotations.	We
assume	the	wheels	do	not	slip	along	the	ground.	If	one	wheel	moves
but	the	other	does	not,	it	will	rotate	about	a	single	contact	point	of	the
wheel	 to	 the	 ground.	 If	 one	wheel	moves	more	 than	 the	 other,	 then
there	will	 be	both	 a	motion	 and	 a	 rotation	 about	 a	 point	 somewhere
along	line	defined	by	 the	axle	connecting	 the	 two	wheels.	We	define
the	robot	center	of	gravity	(cog)	as	a	point	equidistant	from	the	pivot
points.	 The	 robot	 position	 is	 defined	 as	 the	 (x,y)	 location	 and	 the
compass	direction,	or	yaw	angle	θ,	of	the	cog.	See	Figure	10.10.
	

Figure	10.10.	A	robot	with	two	drive	wheels	is	defined	by	the
wheel	base	and	wheel	diameter.

Constants
Number	of	slots/rotation,	n=32
Wheel	diameter,	d	=	886	(0.01cm)

										
Figure	10.11.	To	measure	wheel	motion	we	used	an	encoder	on



each	wheel.

Wheelbase	(distance	between	wheels),	w	=	1651	(0.01cm)
Wheel	circumference,	c	=	πd	=	2783	(0.01cm)	Measurements

LCount	the	number	of	slots	of	left	wheel	in	349.5ms.	RCount	the	number	of
slots	of	right	wheel	in	349.5ms.	At	150	RPM,	there	will	be	28	counts
in	349.5	ms.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Some	simple	cases	are	found	in	Table	10.3,
where	m	is	any	number	from	‑28	to	+28.
LCount RCount Motion
m m straight	line	motion	in	the	current

direction
0 m pivot	about	stopped	left	motor
m 0 pivot	about	stopped	right	motor
m -m pure	rotation	about	cog

Table	10.3.	Example	measurements,	relationship	between	counts	and
motion.
Derivations
Lr	 =	 LCount	 *c/n	 the	 arc	 distance	 traveled	 by	 the	 left	 wheel	 (0.01cm)	 Rr	 =
RCount*c/n	 the	 arc	 distance	 traveled	 by	 the	 right	 wheel	 (0.01cm)	

Figure	10.12.	Motions	occurring	during	a	left	turn.

Using	similar	 triangles,	we	can	find	the	new	pivot	point.	 	Assuming	Rr	and	Lr
are	both	positive	and	Rr>Lr,	we	get	L/Lr	=	(L+w)/Rr

L/Lr	-	L/Rr	=	w/Rr
L	Rr	-	L	Lr	=	w	Lr
L	=	w	Lr/(Rr	-	Lr)

	
Notice	also	the	change	in	yaw,	dθ,	is	the	same	angle	as	the	sector	created	by	the
change	in	axle.	The	change	in	angle	is
dθ	=	Lr/L	=	Rr/(L+w)	We	can	divide	the	change	in	position	into	two



components

Figure	10.13.	Geometry	of	a	left	turn.

The	exact	calculation	for	position	change	is
dz	=	(L+w/2)*tan(dθ/2)	but	if	dθ	is	small,	we	can	approximate	dz	by	the	arc
length.
dz	=	dθ/2*(L+w/2)	Initialize
We	initialize	the	system	by	specifying	the	initial	position	and	yaw.
(x,	 y,	 θ)	 (0.01cm,	 0.01cm,	 0.01	 radian)	 Calculations	 (run	 this	 periodically,
measuring	LCount	RCount)	Lr	=	LCount	*c/n	 (0.01cm)	Rr	=	RCount	*c/n	 (0.01cm)	L	=
(w*Lr)/(Rr	-	Lr)	(0.01cm)
dθ	 =	 (100*Lr)/L	 (0.01	 radian)	 dz	 =	 ((dθ/2)*(L+w/2))/100	 (0.01cm)
approximation	or	dz	=	(tan(dθ/2)*(L+w/2))/100	(0.01cm)	more	accurate	x	=	x	+
dz*cos(θ)	(0.01cm)	y	=	y+	dz*sin(θ)	 	 (0.01cm)	 	 first	part	of	move	θ	=	θ	+	dθ
(0.01	radian)
x	=	x	+	dz*cos(θ)	(0.01cm)	y	=	y+	dz*sin(θ)		(0.01cm)		second	part	of	move



10.5.	Simple	Closed-Loop	Control	Systems	.
A	 bang-bang	 controller	 uses	 a	 binary	 actuator,	 meaning	 the
microcontroller	 output	 can	 be	 on	 or	 off.	 Other	 names	 for	 this
controller	are	binary	controller,	two-position	controller,	and	on/off
controller.	It	is	a	closed-loop	control	system,	because	there	is	a	sensor
that	 measures	 the	 status	 of	 the	 system.	 This	 signal	 is	 called	 the
measurand	 or	 state	 variable.	 Assume	 when	 the	 actuator	 is	 on	 the
measurand	 increases,	 and	 when	 the	 actuator	 is	 off,	 the	 measurand
decreases.	There	is	a	desired	point	for	the	measurand.	The	bang-bang
controller	 is	 simple.	 If	 the	 measurand	 is	 too	 small,	 the	 actuator	 is
turned	on,	and	if	the	measurand	is	too	large	the	actuator	is	turned	off.
This	 digital	 control	 system	 applies	 heat	 to	 the	 room	 in	 order	 to
maintain	 the	 temperature	 as	 close	 to	 the	 desired	 temperature	 as
possible	(Figure	10.14).	This	is	a	closed-loop	control	system	because
the	control	signals	(heat)	depend	on	the	state	variables	(temperature).	
In	this	application,	the	actuator	has	only	two	states:	on	that	warms	up
the	 room	 and	 off	 that	 does	 not	 apply	 heat.	 For	 this	 application	 to
function	 properly,	 there	must	 be	 a	 passive	 heat	 loss	 that	 lowers	 the
room	temperature	when	the	heater	is	turned	off.	On	a	hot	summer	day,
this	 heater	 system	will	 not	 be	 able	 to	 keep	 the	 house	 cool.	A	 bang-
bang	controller	turns	on	the	power	if	the	measured	temperature	is	too
low	 and	 turns	 off	 the	 power	 if	 the	 temperature	 is	 too	 high.	 	 To
implement	hysteresis,	 we	 need	 two	 set-point	 temperatures,	Thigh	 and
Tlow.	 The	 controller	 turns	 on	 the	 power	 (activate	 relay)	 if	 the
temperature	goes	below	Tlow	and	turns	off	the	power	(deactivate	relay)
if	the	temperature	goes	above	Thigh.	The	difference	Thigh	-	Tlow	is	called
hysteresis.	The	hysteresis	extends	the	life	of	the	relay	by	reducing	the
number	of	times	the	relay	opens	and	closes.



Figure	10.14.	Flowchart	of	a	Bang-Bang	Temperature	Controller
Assume	 the	 function SE ()	 returns	 the	 estimated	 temperature	 as	 a
binary	 fixed-point	number	with	a	 resolution	of	0.5	 ºC.	Program	10.1
uses	a	periodic	 interrupt	 so	 that	 the	bang-bang	controller	 runs	 in	 the
background.	 The	 interrupt	 period	 is	 selected	 to	 be	 about	 the	 same
asthe	 time	 constant	 of	 the	 physical	 plant.	 The	 temperature
variables Tlow , Thigh and T 	could	be	 in	any	format,	as	 long	as	 the
three	formats	are	the	same.
Checkpoint	10.2:What	happens	if Tlow and Thigh are	too	close
together?		What	happens	if Tlow and Thigh 	are	too	far	apart?	
Observation:	Bang-bang	control	works	well	with	a	physical	plant
with	a	very	slow	response.

	
int32_t	Tlow,Thigh;					//	controller	set	points,	0.5	C
void	Timer0A_Handler(void){
int32_t	T=SE();								//	estimated	temperature,	0.5	C
		if(T	<	Tlow){
				TurnOn();}							//	too	cold	so	turn	on	heat
		else	if	(T	>	Thigh){
				TurnOff();								//	too	hot	so	turn	off	heat
		}																		//	leave	as	is	if	Tlow<T<Thigh
		TIMER0_ICR_R	=	0x01;//	acknowledge	timer0A	periodic	timer

}

Program	10.1.	Bang-bang	temperature	control	software.

An	incremental	control	system	uses	an	actuator	with	a	finite	number
of	discrete	output	states.	For	example,	 the	actuator	might	be	a	PWM



output	with	249	possibilities	from	2,	3,	4,	…	249	(0	to	100%).		It	is	a
closed-loop	control	system,	because	there	is	a	sensor	that	measures	the
state	 variable.	 Assume	 when	 the	 actuator	 increases	 the	 measurand
increases,	and	when	the	actuator	decreases,	the	measurand	decreases.
There	is	a	desired	point	for	the	measurand.	The	incremental	controller
is	simple.	If	the	measurand	is	too	small,	the	actuator	is	increased,	and
if	the	measurand	is	too	large,	the	actuator	is	decreased.	It	is	important
to	choose	the	rate	to	run	the	controller	properly.	A	good	rule	of	thumb
is	to	run	the	controller	about	10	times	faster	than	the	time	constant	of
the	 plant.	 The	 control	 system	 should	 make	 sure	 the	 actuator	 signal
remains	 in	 the	appropriate	range.	E.g.,	you	do	not	want	 to	 increment
an	 actuator	 output	 of	 255	 and	 get	 0!	 The	 incremental	 controller	 is
usually	slow,	but	it	has	good	accuracy	and	is	very	stable.
The	 objective	 of	 this	 incremental	 control	 system	 is	 to	 control	 the
speed,	X,	 of	 a	 DC	motor	 shown	 in	 Figure	 10.15.	 The	 actuator	 uses
PWM	to	apply	variable	power	 to	 the	motor.	A	 tachometer	 is	used	 to
measure	speed,	X’.

Figure	10.15.	Flowchart	of	a	position	controller	implemented
using	incremental	control.

An	incremental	control	algorithm	simply	adds	or	subtracts	a	constant
from	U	depending	on	the	sign	of	the	error.	In	other	words,	if	X	is	too
slow	then	U	is	incremented	and	if	X	is	too	fast	then	U	is	decremented.
It	 is	 important	 to	 choose	 the	 proper	 rate	 at	 which	 the	 incremental
control	 software	 is	 executed.	 If	 it	 is	 executed	 too	 many	 times	 per
second,	 then	 the	 actuator	 will	 saturate	 resulting	 in	 a	 Bang-Bang
system.	 If	 it	 is	 not	 executed	 often	 enough	 then	 the	 system	 will	 not



respond	quickly	to	changes	in	the	physical	plant	or	changes	in	X*.	In
this	 incremental	 controller	we	 add	or	 subtract	 "1"	 from	 the	 actuator,
but	a	value	larger	than	"1"	would	have	a	faster	response	at	the	expense
of	introducing	oscillations.
Common	error:	An	error	will	occur	if	the	software	does	not	check
for	overflow	and	underflow	after	U	is	changed.	
Observation:	If	the	incremental	control	algorithm	is	executed	too
frequently,	then	the	resulting	system	behaves	like	a	simple	bang-
bang	controller.
Observation:	Many	control	systems	operate	well	when	the	control
equations	are	executed	about	10	times	faster	than	the	step	response
time	of	the	physical	plant.

Assume	the	function SE() 	returns	measured	speed.	Program	10.2	uses
a	 periodic	 interrupt	 so	 that	 the	 incremental	 controller	 runs	 in	 the
background.	 The	 interrupt	 period	 is	 selected	 to	 be	 about	 10	 times
smaller	 than	 the	 time	 constant	 of	 the	 physical	 plant.	 The	 optimal
controller	rate	depends	on	the	significance	of	the	±1	value	added	to	U.
Experimental	 testing	may	be	 required	 to	 select	 an	optimal	 controller
rate,	 trading	off	 response	 time	for	stability.	Even	 though	 the	position
variables X and Xstar may	 be	 unsigned,	 the	 error	 calculation E 	 will
be	signed.

int32_t	X,Xstar,E;								//	speed,	fixed-point	in	the	same	format
int32_t	U;
void	Timer0A_Handler(void){
		X	=	SE();												//	estimated	speed
		E	=	Xstar-X;									//	error
		if(E	<	-10)					U--;	//	decrease	if	too	fast
		else	if(E	>	10)	U++;	//	increase	if	too	slow
																								//	leave	as	is	if	close	enough
		if(U<2)		U=2;							//	underflow	(minimum	PWM)
		if(U>249)	U=249;					//	overflow	(maximum	PWM)
		PWM0A_Duty(U);								//	output	to	actuator,	Section	2.8
		TIMER0_ICR_R	=	0x01;		//	acknowledge	timer0A	periodic	timer

}

Program	10.2.	Incremental	control	software	for	a	DC	motor.



Checkpoint	10.3:In	what	ways	would	the	controller	behave
differently	if -10 and +10 were	to	be	changed	to 0 ?	
Checkpoint	10.4:	What	happens	if	the	interrupt	period	is	too	small
(i.e.,	executes	too	frequently)?	
Observation:	It	is	a	good	debugging	strategy	to	observe	the
assembly	listing	generated	by	the	compiler	when	performing
calculations	on	variables	of	mixed	types	(signed/unsigned,
char/short).
Observation:	Incremental	control	will	work	moderately	well
(accurate	and	stable)	for	an	extremely	wide	range	of	applications.
Its	only	short-coming	is	that	the	controller	response	time	can	be
quite	slow.



10.6.	PID	Controllers

10.6.1.	General	Approach	to	a	PID	Controller
The	 simple	 controllers	 presented	 in	 the	 last	 section	 are	 easy	 to
implement,	 but	 will	 have	 either	 large	 errors	 or	 very	 slow	 response
times.	In	order	to	make	a	faster	and	more	accurate	system,	we	can	use
linear	control	theory	to	develop	the	digital	controller.	There	are	three
components	of	a	proportional	integral	derivative	PID	controller.

The	 error,	E(t),	 is	 defined	 as	 the	 present	 set-point,	X*(t),	 minus	 the
measured	value	of	the	controlled	variable,	X’(t).	See	Figure	10.16.
		E(t)=X*(t)-	X’(t)
	

Figure	10.16.	Block	diagram	of	a	linear	control	system	in	the
frequency	domain.

The	PID	controller	calculates	its	output	by	summing	three	terms.	The
first	term	is	proportional	to	the	error.	The	second	is	proportional	to	the
integral	of	the	error	over	time,	and	the	third	is	proportional	to	the	rate
of	change	(first	derivative)	of	the	error	term.	The	values	of	Kp,	Ki	and
Kd	are	design	parameters	and	must	be	properly	chosen	in	order	for	the
control	system	to	operate	properly.	The	proportional	 term	of	 the	PID
equation	 contributes	 an	 amount	 to	 the	 control	 output	 that	 is	 directly
proportional	 to	 the	 current	 process	 error.	 The	 gain	 term	 Kp	 adjusts
exactly	 how	 much	 the	 control	 output	 response	 should	 change	 in



response	to	a	given	error	level.	The	larger	the	value	of	Kp,	the	greater
the	system	reaction	to	differences	between	the	set-point	and	the	actual
state	variable.	However,	if	Kp	is	too	large,	the	response	may	exhibit	an
undesirable	 degree	 of	 oscillation	 or	 even	 become	 unstable.	 On	 the
other	hand,	if	Kp	is	too	small,	the	system	will	be	slow	or	unresponsive.
An	 inherent	disadvantage	of	proportional-only	 control	 is	 its	 inability
to	eliminate	the	steady	state	errors	(offsets)	that	occur	after	a	set-point
change	or	a	sustained	load	disturbance.
The	integral	term	converts	the	first	order	proportional	controller	into	a
second	order	system	capable	of	tracking	process	disturbances.	It	adds
to	 the	 controller	 output	 a	 factor	 that	 takes	 corrective	 action	 for	 any
changes	in	the	load	level	of	the	system.	This	integral	term	is	scaled	to
the	sum	of	all	previous	process	errors	in	the	system.	As	long	as	there
is	 a	 process	 error,	 the	 integral	 term	will	 add	more	 amplitude	 to	 the
controller	 output	 until	 the	 sum	 of	 all	 previous	 errors	 is	 zero.
Theoretically,	as	long	as	the	sign	of	Ki	is	correct,	any	value	of	Ki	will
eliminate	 offset	 errors.	 But,	 for	 extremely	 small	 values	 of	 Ki,	 the
controlled	variables	will	return	to	the	set-point	very	slowly	after	a	load
upset	or	set-point	change	occurs.	On	the	other	hand,	if	Ki	is	too	large,
it	 tends	to	produce	oscillatory	response	of	 the	controlled	process	and
reduces	system	stability.	The	undesirable	effects	of	too	much	integral
action	can	be	avoided	by	proper	tuning	(adjusting)	the	controller	or	by
including	derivative	action	which	tends	to	counteract	the	destabilizing
effects.
The	derivative	action	of	a	PID	controller	adds	a	term	to	the	controller
output	 scaled	 to	 the	 slope	 (rate	 of	 change)	 of	 the	 error	 term.	 The
derivative	 term	 “anticipates”	 the	 error,	 providing	 a	 greater	 control
response	when	the	error	term	is	changing	in	the	wrong	direction	and	a
dampening	 response	 when	 the	 error	 term	 is	 changing	 in	 the	 correct
direction.	The	derivative	term	tends	to	improve	the	dynamic	response
of	 the	controlled	variable	by	decreasing	 the	process	 setting	 time,	 the
time	 it	 takes	 the	 process	 to	 reach	 steady	 state.	 But	 if	 the	 process
measurement	 is	 noisy,	 that	 is,	 if	 it	 contains	 high-frequency	 random
fluctuations,	then	the	derivative	of	the	measured	(controlled)	variable
will	change	wildly,	and	derivative	action	will	amplify	the	noise	unless
the	measurement	is	filtered.
Checkpoint	10.5:	What	happens	in	a	PID	controller	if	the	sign	of



Ki	is	incorrect?	

We	 can	 also	 use	 just	 some	 of	 the	 terms.	 For	 example	 a
proportional/integrator	 (PI)	 controller	 drops	 the	 derivative	 term.	We
will	 analyze	 the	digital	 control	 system	 in	 the	 frequency	domain.	Let
X(s)	be	the	Laplace	transform	of	the	state	variable	x(t).	 	Let	X*(s)	be
the	Laplace	 transform	of	 the	desired	 state	variable	x*(t).	Let	E(s)	 be
the	Laplace	transform	of	the	error	E(s)	=	X*(s)	-	X(s)
Let	G(s)	 be	 the	 transfer	 equation	 of	 the	 PID	 linear	 controller.	 PID
controllers	are	unique	in	this	aspect.	In	other	words,	we	cannot	write	a
transfer	 equation	 for	 a	 bang-bang,	 incremental	 or	 fuzzy	 logic
controller.

Let	H(s)	be	 the	 transfer	equation	of	 the	physical	plant.	 If	we	assume
the	physical	plant	(e.g.,	a	DC	motor)	has	a	simple	single	pole	behavior,
then	we	 can	 specify	 its	 response	 in	 the	 frequency	 domain	with	 two
parameters.		m	 is	the	DC	gain	and	 t	 is	 its	 time	constant.	The	transfer
function	of	this	simple	motor	is	H(s)	=	m/(1+ts)
The	overall	gain	of	the	control	system	is

	
Theoretically	 we	 can	 choose	 controller	 constants,	 Kp	Ki	 and	Kd,	 to
create	the	desired	controller	response.	Unfortunately	it	can	be	difficult
to	estimate	m	and	t.	If	a	load	is	applied	to	the	motor,	then	m	and	t	will
change.
To	simplify	the	PID	controller	implementation,	we	break	the	controller
equation	 into	 separate	 proportion,	 integral	 and	 derivative	 terms.	 I.e.,
let	U(t)	=	P(t)	+	I(t)	+	D(t)
where	 U(t)is	 the	 actuator	 output,	 and 	 P(t),	 I(t)	 and	 D(t)	 are	 the
proportional,	 integral	 and	 derivative	 components	 respectively.	 The
proportional	 term	 makes	 the	 actuator	 output	 linearly	 related	 to	 the
error.	Using	a	proportional	 term	creates	a	control	system	that	applies
more	 energy	 to	 the	 plant	when	 the	 error	 is	 large.	 To	 implement	 the
proportional	term,	we	simply	convert	it	to	discrete	time.



where	the	index	“n”	refers	to	the	discrete	time	input	of	E(n)	and	output
of	P(n).
Observation:	In	order	to	develop	digital	signal	processing
equations,	it	is	imperative	that	the	control	system	be	executed	on	a
regular	and	periodic	rate.
Common	error:		If	the	sampling	rate	varies,	then	controller	errors
will	occur.	

The	integral	 term	makes	the	actuator	output	related	to	 the	integral	of
the	 error.	Using	 an	 integral	 term	often	will	 improve	 the	 steady	 state
error	 of	 the	 control	 system.	 If	 a	 small	 error	 accumulates	 for	 a	 long
time,	 this	 term	 can	 get	 large.	 Some	 control	 systems	 put	 upper	 and
lower	bounds	on	this	term,	called	anti-reset-windup,	to	prevent	it	from
dominating	 the	other	 terms.	The	 implementation	of	 the	 integral	 term
requires	 the	 use	 of	 a	 discrete	 integral	 or	 sum.	 If	 I(n)	 is	 the	 current
control	output,	and	I(n-1)	is	the	previous	calculation,	the	integral	term

is	simply	
where	∆t	is	the	sampling	rate	of	E(n).
The	derivative	term	makes	the	actuator	output	related	to	the	derivative
of	the	error.	This	term	is	usually	combined	with	either	the	proportional
and/or	 integral	 term	 to	 improve	 the	 transient	 response	of	 the	 control
system.	The	proper	value	of	Kd	will	 provide	 for	 a	quick	 response	 to
changes	 in	 either	 the	 set	 point	 or	 loads	 on	 the	 physical	 plant.	 An
incorrect	value	may	create	an	overdamped	(very	slow	response)	or	an
underdamped	 (unstable	 oscillations)	 response.	 There	 are	 a	 couple	 of
ways	to	implement	the	discrete	time	derivative.	The	simple	approach

is	
In	 practice,	 this	 first	 order	 equation	 is	 quite	 susceptible	 to	 noise.
Figure	10.17	shows	a	sequence	of	E(n)	with	some	added	noise.	Notice
that	 huge	 errors	 occur	when	 the	 above	 equation	 is	 used	 to	 calculate
derivative.



Figure	10.17.	Illustration	of	the	effect	noise	plays	on	the
calculation	of	discrete	derivative.

In	most	practical	control	systems,	the	derivative	is	calculated	using	the
average	of	two	derivatives	calculated	across	different	time	spans.	For

example	
that	simplifies	to

Linear	regression	through	multiple	points	can	yield	the	slope	and	yet
be	immune	to	noise.
Checkpoint	10.6:	How	is	the	continuous	integral	related	to	the
discrete	integral?	
Checkpoint	10.7:	How	is	the	continuous	derivative	related	to	the
discrete	derivative?	

10.6.2.	Design	Process	for	a	PID	Controller
The	 first	 design	 step	 is the	 analysis	 phase,	 where	 we	 determine
specifications	such	as	range,	accuracy,	stability,	and	response	time	for
our	proposed	control	system.	A	data	acquisition	system	will	be	used	to
estimate	 the	 state	 variables.	 Thus,	 its	 range,	 accuracy	 and	 response
time	 must	 be	 better	 than	 the	 desired	 specifications	 of	 the	 control
system.	 We	 can	 use	 time-based	 techniques	 using	 input	 capture,	 or
develop	an	ADC-based	state	estimator.	In	addition,	we	need	to	design
an	actuator	to	manipulate	the	state	variables.	It	too	must	have	a	range
and	 response	 time	 better	 than	 the	 controller	 specifications.	 The
actuator	 resolution	 is	 defined	 as	 the	 smallest	 reliable	 change	 in
output.	 For	 example,	 a	 100	Hz	 PWM	output	 generated	 by	 a	 1	 µsec
clock	 has	 10,000	 different	 outputs.	 For	 this	 actuator,	 the	 actuator
resolution	 is	 MaxPower/10000.	 We	 wish	 to	 relate	 the	 actuator



performance	to	the	overall	objective	of	controller	accuracy.	Thus,	we
need	to	map	the	effect	on	the	state	variable	caused	a	change	in	actuator
output.	This	change	in	state	variable	should	be	less	than	or	equal	to	the
desired	controller	accuracy.
After	the	state	estimator	and	actuator	are	implemented,	the	controller
settings	 (KP,	 KI	 and	 KD)	 must	 be	 adjusted	 so	 that	 the	 system
performance	 is	 satisfactory.	This	 activity	 is	 referred	 to	 as	controller
tuning	or	 field	tuning.	 If	you	perform	controller	 tuning	by	guessing
the	 initial	 setting	 then	 adjusting	 them	 by	 trial	 and	 error,	 it	 can	 be
tedious	and	time	consuming.	Thus,	it	is	desirable	to	have	good	initial
estimates	of	controller	settings.	A	good	first	setting	may	be	available
from	 experience	 with	 similar	 control	 loops.	 Alternatively,	 initial
estimates	 of	 controller	 settings	 can	 be	 derived	 from	 the	 transient
response	of	the	physical	plant.	A	simple	open-loop	method,	called	the
process	 reaction	 curve	 approach,	 was	 first	 proposed	 by
Ziegler/Nichols	and	Cohen/Coon	in	1953.	In	this	discussion,	the	term
“process”	as	defined	by	Ziegler/Nichols	means	the	same	thing	as	the
“physical	 plant”	 described	 earlier	 in	 this	 chapter.	 This	 open-loop
method	 requires	 only	 that	 a	 single	 step	 input	 be	 imposed	 on	 the
process.	 The	 process	 reaction	 method	 is	 based	 on	 a	 single
experimental	test	that	is	made	with	the	controller	in	the	manual	mode.
A	small	step	change,	ΔU,	in	the	controller	output	is	introduced	and	the
measured	process	response	is	recorded,	as	shown	in	Figure	10.18.	To
obtain	 parameters	 of	 the	 process,	 a	 tangent	 is	 drawn	 to	 the	 process
reaction	curve	at	its	point	of	maximum	slope	(at	the	inflection	point).
This	 slope	 is	 R,	 which	 is	 called	 the	 process	 reaction	 rate.	 The
intersection	 of	 this	 tangent	 line	 with	 the	 original	 base	 line	 gives	 an
indication	of	L,	 the	process	 lag.	 	L	 is	 really	a	measure	of	equivalent
dead	time	for	the	process.		If	the	tangent	drawn	at	the	inflection	point
is	extrapolated	to	a	vertical	axis	drawn	at	the	time	when	the	step	was
imposed,	the	amount	by	which	this	value	is	below	the	horizontal	base
line	will	be	represented	by	the	product	L*R.	Δ T 	 is	 the	 time	step	for
the	 digital	 controller.	 It	 is	 recommended	 to	 run	 P	 and	 PI	 controllers
with	Δ T	=	0.1L ,	and	a	PID	controller	at	a	rate	20	times	faster	(Δ T	=
0.05L .)	Using	 these	 parameters,	Ziegler	 and	Nichol	 proposed	 initial
controller	settings	as	Proportional	Controller

Kp= Δ U/(L*R)	Proportional-Integral	Controller



Kp	 =	 0.9 Δ U/(L*R)	 Ki	 =	 Kp	 /(3.33L)	 Proportional-Integral-
Derivative	Controller

Kp	=	1.2 Δ U/(L*R)	Ki	=	0.5	Kp	/L
Kd	=	0.5	Kp	L

Figure	10.18.		A	process	reaction	curve	used	to	determine
controller	settings.

	
Checkpoint	10.8:	Are	the	Ziegler/Nichol	equations	consistent	from
a	dimensional	analysis	perspective?		In	other	words,	are	the	units
correct?	

The	response	time	 is	the	delay	after	X*	 is	changed	for	the	system	to
reach	 a	 new	 constant	 state.	 Steady	 state	 controller	 accuracy	 is
defined	 as	 the	 average	 difference	 between	X*	 and	X’.	Overshoot	 is
defined	 as	 the	 maximum	 positive	 error	 that	 occurs	 when	 X*	 is
increased.	Similarly,	undershoot	is	defined	as	the	maximum	negative
error	that	occurs	when	X*	is	decreased.		During	the	testing	phase,	it	is
appropriate	 to	 add	 minimally	 intrusive	 debugging	 software	 that
specifically	measures	performance	parameters,	such	as	response	time,
accuracy,	 overshoot,	 and	 undershoot.	 In	 addition,	 we	 can	 add
instruments	that	allow	us	to	observe	the	individual	P(n),	I(n)	and	D(n)
components	of	 the	PID	equation	and	their	 relation	 to	controller	error
E(n).
Once	 the	 initial	 parameters	 are	 selected,	 a	 simple	 empirical	 method
can	be	used	to	fine-tune	the	controller.	This	empirical	approach	starts



with	proportional	term	(Kp).	As	the	proportional	term	is	adjusted	up	or
down,	 evaluate	 the	 quickness	 and	 smoothness	 of	 the	 controller
response	to	changes	in	set-point	and	to	changes	in	the	load.		Kp	is	 too
big	if	the	actuator	saturates	both	at	the	maximum	and	minimum	after
X*	is	changed.	The	next	step	is	to	adjust	the	integral	term	(Ki)	a	little
at	 a	 time	 to	 improve	 the	 steady	 state	 controller	 accuracy	 without
adversely	affecting	the	response	time.	Don’t	change	both	Kp	and	Ki	at
once.	Rather,	you	should	vary	them	one	at	a	time.	If	the	response	time,
overshoot,	undershoot	and	accuracy	are	within	acceptable	limits,	then
a	 PI	 controller	 is	 adequate.	 On	 the	 other	 hand,	 if	 accuracy	 and
response	 are	 OK	 but	 overshoot	 and	 undershoot	 are	 unacceptable,
adjust	 the	 derivative	 term	 (Kd)	 to	 reduce	 the	 overshoots	 and
undershoots.	
We	 will	 design	 a	 proportional-integral	 motor	 control	 system.	 The
overall	objective	is	to	control	the	speed	of	an	object	with	an	accuracy
of	0.1	RPM	and	a	range	of	0	to	100	RPM	as	shown	in	Figure	10.1.	Let
X*	be	the	desired	state	variable.		In	this	example,	X*	will	be	a	decimal
fixed-point	 number	 and	 is	 set	 by	 the	 main	 program.	 Let	 X’	 be	 the
estimated	 state	 variable	 that	 comes	 from	 the	 state	 estimator,	 which
encodes	the	current	position	as	the	period	of	a	squarewave,	interfaced
to	 an	 input	 capture	 pin.	 The	 period	 output	 of	 the	 sensor	 is	 linearly
related	to	the	position	X	with	a	fixed	offset.	The	accuracy	of	the	state
estimator	needs	to	match	the	0.1	RPM	specification	of	the	controller.
If	p	is	the	measured	period	in	0.1	ms	and	X’	is	the	estimated	speed	in
0.1	RPM,	the	state	estimator	measures	the	period	and	calculates	X’.

X’	=	p-100
	

Let	U	 be	 the	 actuator	 control	 variable	 (100≤U≤19900).	 This	 system
uses	pulse	width	modulation	with	a	100	Hz	squarewave	that	applies
energy	to	 the	physical	plant	as	shown	in	Figure	10.19.	U	will	be	 the
number	of	clock	cycles	(out	of	20000)	that	the	output	is	high.	There	is
an	 external	 friction	 force	 slowing	 down	 on	 the	 motor.	 The	 PWM
output	 from	 the	 computer	 creates	 a	 force	 causing	 the	motor	 to	 spin
faster.



Figure	10.19.	Pulse	width	modulated	actuator	signals.

The	 process	 reaction	 curve	 shown	 previously	 in	 Figure	 10.18	 was
measured	for	 this	system	after	 the	actuator	was	changed	from	250	to
2000,	thus	ΔU	is	1750	(units	of	clock	cycles).	From	Figure	10.18,	the
lag	L	 is	 4.0	 sec	 and	 the	 process	 reaction	 rate	R	 is	 7.5RPM/sec.	 The
controller	rate	is	selected	to	be	about	10	times	faster	than	the	lag	L,	so
Δ T=	0.4	sec .	In	this	way,	the	controller	runs	at	a	rate	faster	than	the
physical	plant.		We	calculate	the	initial	PI	controller	settings	using	the
Ziegler/Nichol	equations.

Kp=	0.9 Δ U/(L•R)	=	0.9*1750/(4.0*7.5)	=	52.5	cycles/RPM
Ki	=	Kp	/(3.33L)	=	52.5/(3.33*4.0)	=	3.94144	cycles/RPM/sec	We	will

execute	 the	 PI	 control	 equation	 once	 every	 0.4	 second.	 X*	 and	 X’	 are
decimal	fixed-point	numbers	with	a	resolution	of	0.1	RPM.	The	constant
52.5	 is	 expressed	 as	 105/2.	 The	 extra	 divide	 by	 10	 handles	 the	 decimal
fixed-point	representation	of	X*	and	X’.

P(n)	=	Kp	•(X*-X’)/10	=	105•(X*-X’)/20

We	 will	 also	 execute	 the	 integral	 control	 equation	 once	 every	 0.4
second.	Binary	fixed-point	is	used	to	approximate	1.57658	as	101/64.
I(n)	=	I(n-1)	+	Ki	•(X*-X’)•	Δ T /10
								=	I(n-1)	+	3.94144	•(X*-X’)•0.4/10		=	I(n-1)	+	101•(X*-X’)/640

	
Program	 10.3	 shows	 an	 interrupt	 service	 handler,	 which	 runs	 at10
kHz.	 The	 handler	 will	 establish	 the	 current Time 	 in	 0.1	 ms.	 After
4000	interrupts	(0.4	second),	the	control	algorithm	is	implemented.

uint32_t	Time;	//	Time	in	0.1	msec
int32_t	X;													//	Estimated	speed	in	0.1	RPM,	0	to	1000
int32_t	Xstar;									//	Desired	speed	in	0.1	RPM,	0	to	1000
int32_t	E;													//	Speed	error	in	0.1	RPM,	-1000	to	+1000
int32_t	U,I,P;									//	Actuator	duty	cycle,	100	to	19900	cycles
uint32_t	Cnt;		//	incremented	every	0.1	msec
uint32_t	Told;	//	used	to	measure	period
void	Timer0A_Handler(void){



		Time++;												//	used	to	measure	period
		if((Cnt++)==4000){	//	every	0.4	sec
				Cnt	=	0;									//	0<X<100,	0<Xstar<100,	100<U<19900
				E	=	Xstar-X;	
				P	=	(105*E)/20;
				I	=	I+(101*E)/640;
				if(I	<	-500)	I=-500;		//	anti-reset	windup
				if(I	>	4000)	I=4000;
				U	=	P+I;													//	PI	controller	has	two	parts
				if(U	<	100)	U=100;			//	Constrain	actuator	output
				if(U>19900)	U=19900;
				PWM0A_Duty(U);							//	output	to	actuator,	Section	2.8

}

		TIMER0_ICR_R	=	0x01;			//	acknowledge	timer0A	periodic	timer

}

Program	10.3.	PI	control	software.

Checkpoint	10.9:	What	is	the	output	U	of	the	controller	if	the
speed	X	is	much	greater	than	the	set-point	X*?		In	this	situation,
what	does	the	object	do?
Observation:	PID	control	will	work	extremely	well	(fast,	accurate
and	stable)	if	the	physical	plant	can	be	described	with	a	set	of	linear
differential	equations.



10.7.	Fuzzy	Logic	Control
There	 are	 a	 number	 of	 reasons	 to	 consider	 fuzzy	 logic	 approach	 to
control.	 It	 is	 much	 simpler	 than	 PID	 systems.	 It	 will	 require	 less
memory	and	execute	faster.	In	other	words,	an	8-bit	fuzzy	system	may
perform	as	well	(same	steady	state	error	and	response	time)	as	a	16-bit
PID	 system.	When	 complete	 knowledge	 about	 the	 physical	 plant	 is
known,	then	a	good	PID	controller	can	be	developed.	Since	the	fuzzy
logic	 control	 is	 more	 robust	 (still	 works	 even	 if	 the	 parameter
constants	are	not	optimal),	then	the	fuzzy	logic	approach	can	be	used
when	complete	knowledge	about	the	plant	is	not	known	or	can	change
dynamically.	Choosing	the	proper	PID	parameters	requires	knowledge
about	the	plant.	The	fuzzy	logic	approach	is	more	intuitive,	following
more	 closely	 to	 the	way	 a	 “human”	would	 control	 the	 system.	 It	 is
easy	to	modify	an	existing	fuzzy	control	system	into	a	new	problem.
The	framework	allows	rapid	prototyping.
Fuzzy	logic	was	conceived	in	the	mid-1960s	by	Lotfi	Zadeh	while	at
the	 University	 of	 California	 at	 Berkeley.	 However,	 the	 first
commercial	application	didn’t	come	until	1987,	when	 the	Matsushita
Industrial	Electric	used	it	to	control	the	temperature	in	a	shower	head.
Named	 after	 the	 nineteenth-century	 mathematician	 George	 Boole,
Boolean	logic	is	an	algebra	where	values	are	either	true	or	false.	This
algebra	includes	operations	of	AND	OR	and	NOT.	Fuzzy	logic	is	also
an	algebra,	but	where	conditions	may	exist	in	the	continuum	between
true	 and	 false.	 While	 Boolean	 logic	 defines	 two	 states,	 8-bit	 fuzzy
logic	 consists	 of	 256	 states	 all	 the	 way	 from	 “not	 at	 all”	 (0)	 to
“definitely	true”	(255).	“128”	means	half	way	between	true	and	false.
The	fuzzy	logic	algebra	also	includes	the	operations	of	AND	OR	and
NOT.	A	fuzzy	membership	set,	a	fuzzy	variable,	and	a	fuzzy	set	all
refer	 to	 the	 same	 entity,	which	 is	 a	 software	 variable	 describing	 the
level	 of	 correctness	 for	 a	 condition	within	 fuzzy	 logic.	 If	we	have	 a
fuzzy	membership	set	for	the	condition	“hungry”,	then	as	the	value	of
hungry	moves	 from	0	 to	255,	 the	condition	“hungry”	becomes	more
and	more	true.

		....0.....32.....64.....96.....128.....160.....192.....224.....255
							Not	at	all					...					a	little	bit				...				somewhat						...						mostly				...				pretty



much			...					definitely
	

The	 design	 process	 for	 a	 fuzzy	 logic	 controller	 solves	 the	 following
eight	components.	These	components	are	listed	in	the	order	we	would
draw	a	data	 flow	graph,	starting	with	 the	state	variables,	progressing
through	the	controller,	and	ending	with	the	actuator	output.

•	The	Physical	plant	has	real	state	variables.
•	The	Data	Acquisition	System	monitors	 these	 signals	 creating	 the	 estimated
state	variables.
•	The	Preprocessor	may	calculate	relevant	parameters	called	crisp	inputs.
•	Fuzzification	will	convert	crisp	inputs	into	input	fuzzy	membership	sets.
•	The	Fuzzy	Logic	is	a	set	of	rules	that	calculate	output	fuzzy	membership	sets.
•	Defuzzification	will	convert	output	sets	into	crisp	outputs.
•	The	Postprocessor	modify	crisp	outputs	into	a	more	convenient	format.
•	The	Actuator	System	affects	the	Physical	plant	based	on	these	output.

We	 will	 work	 through	 the	 concepts	 of	 fuzzy	 logic	 by	 considering
examples	of	how	we	as	humans	control	 things	like	driving	a	car	at	a
constant	 speed.	During	 the	 initial	 stages	 of	 the	 design,	we	 study	 the
physical	 plant	 and	 decide	 which	 state	 variables	 to	 consider.	 For
example,	if	we	wish	to	control	speed,	then	speed	is	obviously	a	state
variable,	but	it	might	be	also	useful	to	know	other	forces	acting	on	the
object	such	as	gravity	(e.g.,	going	up	and	down	hills),	wind	speed	and
friction	(e.g.,	rain	and	snow	on	the	roadway).	The	purpose	of	the	data
acquisition	system	is	to	accurately	measure	the	state	variables.	It	is	at
this	 stage	 that	 the	 system	 converts	 physical	 signals	 into	 binary
numbers	to	be	processed	by	the	software	controller.	We	have	seen	two
basic	approaches	in	this	book	for	this	conversion:	the	measurement	of
period/frequency	 using	 input	 capture	 and	 the	 analog	 to	 digital
conversion	using	an	ADC.	The	preprocessor	calculates	crisp	 inputs,
which	 are	 variables	 describing	 the	 input	 parameters	 in	 our	 software
having	units	(like	miles/hr).	For	example,	if	we	measured	speed,	then
some	crisp	 inputs	we	might	calculate	would	 include	speed	error,	and
acceleration.	 Just	 like	 the	 PID	 controller,	 the	 accuracy	 of	 the	 data
acquisition	 system	 must	 be	 better	 than	 the	 desired	 accuracy	 of	 the
control	system	as	a	whole.
The	 next	 stage	 of	 the	 design	 is	 to	 consider	 the	 actuator	 and
postprocessor.	It	is	critical	to	be	able	to	induce	forces	on	the	physical
plant	 in	a	precise	and	fast	manner.	The	step	 response	of	 the	actuator



itself	(time	from	software	command	to	the	application	of	force	on	the
plant)	must	be	faster	than	the	step	response	of	the	plant	(time	from	the
application	of	force	to	the	change	in	state	variable.)	Consider	the	case
where	we	wish	 to	 control	 the	 temperature	 of	 a	 pot	 of	water	 using	 a
stove.	The	speed	of	the	actuator	is	the	time	between	turning	the	stove
on	and	the	time	when	heat	is	applied	to	the	pot.	The	actuator	on	a	gas
stove	 is	 much	 faster	 than	 the	 actuator	 on	 an	 electric	 stove.	 The
resolution	of	an	actuator	is	the	smallest	change	in	output	it	can	reliably
generate.	 Just	 like	 the	 PID	 controller,	 the	 resolution	 of	 the	 actuator
(converted	into	equivalent	units	on	the	input)	must	be	smaller	than	the
desired	accuracy	of	the	control	system	as	a	whole.	A	crisp	output	is	a
software	variable	describing	 the	output	parameters	having	units	 (like
watts,	Newtons,	dynes/cm2	etc.).	The	postprocessor	converts	the	crisp
output	 into	 a	 form	 that	 can	 be	 directly	 output	 to	 the	 actuator.	 	 The
postprocessor	can	verify	the	output	signals	are	within	the	valid	range
of	 the	 actuator.	 One	 of	 the	 advantages	 of	 fuzzy	 logic	 design	 is	 the
usage	of	human	intuition.	Think	carefully	about	how	you	control	 the
actuator	(gas	pedal)	when	attempting	to	drive	a	car	at	a	constant	speed.
There	 is	 no	parameter	 in	your	brain	 specifying	 the	 exact	 position	of
the	pedal	(e.g.,	50%	pressed,	65%	pressed	etc.),	unless	of	course	you
are	 city	 taxicab	 driver	 (where	 your	 brain	 allows	 two	 actuator	 states:
full	 gas	 and	 full	 brake.)	 Rather,	 what	 your	 brain	 creates	 as	 actuator
commands	 are	 statements	 like	 “press	 the	 pedal	 little	 harder”	 and
“press	 the	 pedal	 a	 lot	 softer.”	 	 So,	 the	 crisp	 output	 of	 fuzzy	 logic
controller	 might	 be	 change	 in	 pedal	 pressure	 ΔU,	 and	 the
postprocessor	would	calculate	U	=	U+ΔU,	then	check	to	make	sure	U
is	within	an	acceptable	range.
We	 continue	 the	 design	 of	 a	 fuzzy	 logic	 controller	 by	 analyzing	 its
crisp	inputs.	As	a	design	step,	we	create	a	list	of	true/false	conditions
that	 together	 describe	 the	 current	 state	 of	 the	 physical	 plant.	 In
particular,	we	define	 input	fuzzy	membership	sets,	which	are	 fuzzy
logic	variables	describing	conditions	related	to	the	state	of	the	physical
plant.	 These	 fuzzy	 variables	 do	 not	 need	 to	 be	 orthogonal.	 In	 other
words,	it	is	acceptable	to	have	variables	that	are	related	to	each	other.
When	 designing	 a	 speed	 controller,	 we	 could	 define	 multiple	 fuzzy
variables	referring	to	similar	conditions,	such	asWayTooFast , Fast ,
and LittleBitFast .	Given	the	scenario	where	we	are	driving	too	fast,
there	should	be	generous	overlap	in	conditions,	such	that	two	or	even



three	fuzzy	sets	are	simultaneously	partially	true.	On	the	other	hand,	it
is	important	that	the	entire	list	of	input	membership	fuzzy	sets,	when
considered	as	an	ensemble,	form	a	complete	definition	of	the	status	of
the	physical	plant.	For	example,	if	we	are	attempting	to	drive	a	car	at	a
constant	 speed,	 then SlowingUp , GoingSteady ,	 and SpeedingUp
might	 be	 input	 fuzzy	 variables	 describing	 the	 car’s	 acceleration.
Fuzzification	is	the	mathematical	step	converting	the	crisp	inputs	into
input	 fuzzy	 membership	 sets.	 When	 implementing	 fuzzy	 logic
explicitly	with	C	 code,	we	will	 have	 available	 the	 full	 set	 of	AND,
OR,	NOT	fuzzy	logic	operations.
The	heart	of	a	fuzzy	logic	controller	is	the	fuzzy	logic	itself,	which	is
set	 of	 logic	 equations	 that	 calculate	 fuzzy	 outputs	 as	 a	 function	 of
fuzzy	 inputs.	 An	 output	 fuzzy	 membership	 setis	 a	 fuzzy	 logic
variable	 describing	 a	 condition	 related	 to	 the
actuator. QuickStop , SlowDown , JustRight ,MorePower ,
andMaxPower 	are	examples	of	output	fuzzy	variables	that	might	be
used	 to	 describe	 the	 action	 to	 perform	 on	 the	 gas	 pedal.	 Like	 input
fuzzy	 variables,	 output	 fuzzy	 variables	 exist	 in	 the	 continuum	 from
definitely	 false	 (0)	 to	 definitely	 true	 (1).	 Just	 like	 the	 input
specification,	it	is	also	important	to	create	a	list	of	output	membership
fuzzy	 sets,	 when	 considered	 as	 an	 ensemble,	 form	 a	 complete
characterization	of	what	we	wish	to	be	able	to	do	with	the	actuator.	We
write	 fuzzy	 logic	 equations	 using	AND	 and	OR	 functions	 in	 a	way
similar	 to	 Boolean	 logic.	 The	 fuzzy	 logic	 AND	 is	 calculated	 as	 the
minimum	value	of	the	two	inputs,	and	the	fuzzy	logic	OR	is	calculated
as	the	maximum	value	of	the	two	inputs.	The	design	of	the	rules,	like
the	other	aspects	of	fuzzy	control,	follows	the	human	intuition.

	
SlowDown	 =	 WayTooFast	 +	 SpeedingUp*LittleBitFast	 Checkpoint
10.10:IfWayTooFast is	 50,	 SpeedingUp is	 40,	 and LittleBitFast is	 60,	 then
what	would	be	the	calculated	value	for SlowDown ?

The	defuzzification	 stage	of	 the	controller	converts	 the	output	 fuzzy
variables	into	crisp	outputs.	Although	any	function	could	be	used,	an
effective	 approach	 is	 to	 use	 a	 weighted	 average.	 Consider	 the	 case
where	the	pedal	pressure	U	varies	from	0	to	100,	thus	the	crisp	output
ΔUcan	take	on	values	from	-100	to	+100.	We	think	about	what	crisp
output	we	want	 if	 just QuickStop 	were	 to	 be	 true.	 In	 this	 case,	we
wish	 to	 make	ΔUequal	 to	 -100.	We	 then	 define	 crisp	 output	 values



for SlowDown , JustRight ,MorePower ,	andMaxPower 	as	 -10,	0,
+10,	and	+100	respectfully.	We	can	combine	 the	five	factors	using	a
weighted	average.

	
Because	the	fuzzy	controller	 is	modular,	we	begin	by	testing	each	of
the	 modules	 separately.	 The	 system-level	 testing	 of	 a	 fuzzy	 logic
controller	 follows	 a	 procedure	 similar	 to	 the	 PID	 controller	 tuning.
Debugging	instruments	can	be	added	to	record	the	crisp	inputs,	fuzzy
inputs,	fuzzy	outputs,	and	crisp	outputs	during	the	real-time	operation
of	the	system.	Fuzzification	parameters	are	adjusted	so	that	the	status
of	the	plant	is	captured	in	the	set	of	values	contained	in	the	fuzzy	input
variables.	Next,	 the	 rules	 are	 adjusted	 so	 that	 fuzzy	 output	 variables
properly	 describe	what	we	want	 to	 do	with	 the	 actuator.	 Lastly,	 the
defuzzification	parameters	are	adjusted	so	the	proper	crisp	outputs	are
created.
Next	we	will	design	a	fuzzy	logic	motor	controller.	The	actuator	 is	a
PWM	(Figure	10.2).	The	power	to	the	motor	is	controlled	by	varying
the	 8-bit	 PWM	 duty	 cycle.	 The	 motor	 speed	 is	 estimated	 with	 a
tachometer	connected	to	an	input	capture	pin.

	
Our	system	has:
•	two	control	inputs
S*	the	desired	motor	speed	in	RPM
S’	the	current	estimated	motor	speed	RPM
•	one	control	output
N	the	digital	value	that	we	write	to	the	PWM
To	 utilize	 8-bit	 math,	 we	 change	 the	 units	 of	 speed	 to
1000/256=3.90625	RPM.
T*	=(256•S*)/1000	the	desired	motor	speed	in	3.9	RPM
T’	=(256•S’)/1000	the	current	estimated	motor	speed	3.9	RPM
For	example,	 if	 the	desired	 speed	 is	500	RPM,	 then	T*	will	be	128.
Notice	that	 the	estimated	speed,	T’,	 is	measured	by	the	input	capture
pin.	 In	 other	 words,	 the	 control	 system	 functions	 (estimate	 state
variables,	 control	 equation	 calculations,	 and	 actuator	 output)	 are
performed	on	a	 regular	 and	periodic	basis,	 every	∆t	 time	units.	This



allows	signal	processing	techniques	to	the	used.	We	will	let	T’(n)	refer
to	 the	 current	 measurement	 and	 T’(n-1)	 refer	 to	 the	 previous
measurement,	i.e.,	the	one	measured	∆t	time	ago.
In	the	fuzzy	logic	approach,	we	begin	by	considering	how	a	“human”
would	 control	 the	motor.	 Assume	 your	 hand	were	 on	 a	 joystick	 (or
your	 foot	 on	 a	 gas	 pedal)	 and	 consider	 how	 you	 would	 adjust	 the
joystick	 to	 maintain	 a	 constant	 speed.	 We	 select	 crisp	 inputs	 and
outputs	to	base	our	control	system	on.	It	is	logical	to	look	at	the	error
and	the	change	in	speed	when	developing	a	control	system.	Our	fuzzy
logic	system	will	have	two	crisp	inputs	E	=	T*-T’	 the	error	 in	motor
speed	in	3.9rpm
D	=	T’(n)-T’(n-1)	the	change	in	motor	speed	in	3.9rpm/time
Notice	that	if	we	perform	the	calculations	of	D	on	periodic	intervals,
then	D	will	represent	the	derivative	of	T’,	dT’/dt.	T*	and	T’	are	8-bit
unsigned	 numbers,	 so	 the	 potential	 range	 of	 E	 varies	 from	 -255	 to
+255.	Errors	 beyond	±127	will	 be	 adjusted	 to	 the	 extremes	+127	 or
-128	without	loss	of	information.

int8_t	static	Subtract(uint8_t	N,	uint8_t	M){		
//	returns	N-M
uint32_t	N16,M16;
int32_t	Result16;
					N16	=	N;														//	Promote	N,M
					M16	=	M;
					Result16	=	N16-M16;			//	-255≤Result16≤+255
					if(Result16<-128)	Result16	=	-128;
					if(Result16>127)		Result16	=	127;
					return(Result16);}
Program	10.4.	Subtraction	with	overflow/underflow	checking.

These	 are	 the	 global	 definitions	 of	 the	 input	 signals	 and	 fuzzy	 logic
crisp	input,

uint8_t	Ts;					//	Desired	Speed	in	3.9	rpm	units
uint8_t	T;						//	Current	Speed	in	3.9	rpm	units
uint8_t	Told;			//	Previous	Speed	in	3.9	rpm	units
int8_t	D;						//	Change	in	Speed	in	3.9	rpm/time	units
int8_t	E;							//	Error	in	Speed	in	3.9	rpm	units



Program	10.5.	Inputs	and	crisp	inputs.

Common	error:	Neglecting	overflow	and	underflow	can	cause
significant	errors.	

The	need	for	the	special Subtract 	function	can	be	demonstrated	with
the	following	example:	E	=	Ts-T;		//	if	Ts=200	and	T=50	then	E	will
be	-106!!

	
This	 function	 can	 be	 used	 to	 calculate	 both	 E	 and	 D,	 void
CrispInput(void){

					E				=	Subtract(Ts,T);
					D				=	Subtract(T,Told);
					Told	=	T;}					//	Set	up	Told	for	next	time
Program	10.6.	Calculation	of	crisp	inputs.

Now,	 if Ts=200 and T=50 then E 	 will	 be	 +127.	 To	 control	 the
actuator,	we	 could	 simply	 choose	 a	 new	PWM	value	N	 as	 the	 crisp
output.	Instead,	we	will	select,	∆N	that	is	the	change	in	N,	rather	than
N	 itself	 because	 it	 better	 mimics	 how	 a	 “human”	 would	 control	 it.
Again,	 think	 about	 how	 you	 control	 the	 speed	 of	 your	 car	 when
driving.	 You	 do	 not	 adjust	 the	 gas	 pedal	 to	 a	 certain	 position,	 but
rather	make	small	or	large	changes	to	its	position	in	order	to	speed	up
or	 slow	 down.	 Similarly,	 when	 controlling	 the	 temperature	 of	 the
water	 in	 the	 shower,	 you	 do	 not	 set	 the	 hot/cold	 controls	 to	 certain
absolute	positions.	Again	you	make	differential	changes	 to	affect	 the
“actuator”	 in	 this	 control	 system.	 	Our	 fuzzy	 logic	 system	will	 have
one	crisp	output:	∆N	change	in	output,	N=N+∆N	in	PWM	units	Next
we	introduce	fuzzy	membership	sets	that	define	the	current	state	of	the
crisp	 inputs	 and	 outputs.	 Fuzzy	 membership	 sets	 are	 variables	 that
have	 true/false	 values.	 The	 value	 of	 a	 fuzzy	membership	 set	 ranges
from	 definitely	 true	 (255)	 to	 definitely	 false	 (0).	 For	 example,	 if	 a
fuzzy	membership	set	has	a	value	of	128,	you	are	stating	the	condition
is	 half	 way	 between	 true	 and	 false.	 	 For	 each	membership	 set,	 it	 is
important	to	assign	a	meaning	or	significance	to	it.	The	calculation	of
the	 input	 membership	 sets	 is	 called	 Fuzzification.	 For	 this	 simple
fuzzy	controller,	we	will	define	6	membership	sets	for	the	crisp	inputs:
Slow	True	if	the	motor	is	spinning	too	slow



OK	True	if	the	motor	is	spinning	at	the	proper	speed
Fast	True	if	the	motor	is	spinning	too	fast
Up	True	if	the	motor	speed	is	getting	larger
Constant	True	if	the	motor	speed	is	remaining	the	same
Down	True	if	the	motor	speed	is	getting	smaller.
	

We	will	define	3	membership	sets	for	the	crisp	output:
Decrease	True	if	the	motor	speed	should	be	decreased
Same	True	if	the	motor	speed	should	remain	the	same
Increase	True	if	the	motor	speed	should	be	increased
	

The	 fuzzy	 membership	 sets	 are	 usually	 defined	 graphically,	 but
software	 must	 be	 written	 to	 actually	 calculate	 each.	 In	 this
implementation,	 we	 will	 define	 three	 adjustable	 thresholds,	 TE,	 TD
and	TN.	These	are	software	constants	and	provide	some	fine	tuning	to
the	control	system.	We	will	set	each	threshold	to	20.	If	you	build	one
of	these	fuzzy	systems,	try	varying	one	threshold	at	a	time	and	observe
the	 system	 behavior	 (steady	 state	 controller	 error	 and	 transient
response.)	If	the	error,	E,	is	-5	(3.9rpm	units),	the	fuzzy	logic	will	say
that	 Fast	 is	 64	 (25%	 true),	 OK	 is	 192	 (75%	 true),	 and	 Slow	 is	 0
(definitely	 false.)	 If	 the	 error,	 E,	 is	 +21	 (in	 3.9rpm	units),	 the	 fuzzy
logic	 will	 say	 that	 Fast	 is	 0	 (definitely	 false),	 OK	 is	 0	 (definitely
false),	and	Slow	is	255	(definitely	true.)		TE	is	defined	to	be	the	error
(e.g.,	20	 in	3.9	 rpm	units	 is	78	 rpm)	above	which	we	will	definitely
consider	 the	speed	 to	be	 too	fast.	Similarly,	 if	 the	error	 is	 less	 than	-
TE,	then	the	speed	is	definitely	too	slow.

Figure	10.20.	Fuzzification	of	the	error	input.

In	this	fuzzy	system,	the	input	membership	sets	are	continuous	piece-
wise	linear	functions.	Also,	for	each	crisp	input	value,	Fast,	OK,	Slow
sum	to	255.	In	general,	it	is	possible	for	the	fuzzy	membership	sets	to



be	nonlinear	or	discontinuous,	and	the	membership	values	do	not	have
to	sum	to	255.	The	other	three	input	fuzzy	membership	sets	depend	on
the	crisp	input,	D.	TD	is	defined	to	be	the	change	in	speed	(e.g.,	20	in
3.9	 rpm/time	 units	 is	 78	 rpm/time)	 above	 which	 we	 will	 definitely
consider	the	speed	to	be	going	up.	Similarly,	if	the	change	in	speed	is
less	than	-TD,	then	the	speed	is	definitely	going	down.

Figure	10.21.	Fuzzification	of	the	acceleration	input.

	
In	C,	we	could	define	a	fuzzy	function	that	takes	the	crisp	inputs	and
calculates	 the	 fuzzy	 membership	 set	 values.	 Again	 TE	 and	 TD	 are
software	 constants	 that	 will	 affect	 the	 controller	 error	 and	 response
time.

#define	TE	20
uint8_t	Fast,	OK,	Slow,	Down,	Constant,	Up;
#define	TD	20
uint8_t	Increase,Same,Decrease;
#define	TN	20
void	InputMembership(void){
						if(E	<=	-TE)	{											//	E≤-TE
								Fast	=	255;
								OK	=	0;
								Slow	=	0;}
						else
								if(E	<	0){													//	-TE<E<0		
										Fast	=	(255*(-E))/TE;
										OK	=	255-Fast;
										Slow	=	0;}
								else
										if(E	<	TE){											//		0<E<TE		
												Fast	=	0;
												Slow	=	(255*E)/TE;



												OK	=	255-Slow;}
										else	{																//	+TE≤E				
												Fast	=	0;
												OK	=	0;
												Slow	=	255;}
						if(D	<=	-TD)	{												//	D≤-TD	
								Down	=	255;
								Constant	=	0;
								Up	=	0;}
						else
								if(D	<	0){														//	-TD<D<0		
										Down	=	(255*(-D))/TD;
										Constant	=	255-Down;
										Up	=	0;}
								else
										if(D	<	TD){											//	0<D<TD	
												Down	=	0;
												Up	=	(255*D)/TD;
												Constant	=	255-Up;}
										else{																//	+TD≤D				
												Down	=	0;
												Constant	=	0;
												Up	=	255;}

}

Program	10.7.	Calculation	of	the	fuzzy	membership	variables	in
C.

The	 fuzzy	 rules	 specify	 the	 relationship	 between	 the	 input	 fuzzy
membership	 sets	 and	 the	 output	 fuzzy	 membership	 values.	 It	 is	 in
these	rules	that	one	builds	the	intuition	of	the	controller.	For	example,
if	the	error	is	within	reasonable	limits	and	the	speed	is	constant,	then
the	output	should	not	be	changed.	In	fuzzy	logic	we	write:	If	OK			and
Constant	 then	Same	 If	 the	 error	 is	 within	 reasonable	 limits	 and	 the
speed	 is	 going	up,	 then	 the	output	 should	be	 reduced	 to	 compensate
for	the	increase	in	speed.	I.e.,	If	OK			and	Up							then	Decrease	If	the
motor	 is	 spinning	 too	 fast	 and	 the	 speed	 is	 constant,	 then	 the	output
should	be	reduced	to	compensate	for	the	error.	I.e.,



If	Fast	 and	Constant	 then	Decrease	 If	 the	 motor	 is	 spinning	 too	 fast	 and	 the
speed	is	going	up,	then	the	output	should	be	reduced	to	compensate	for	both	the
error	and	the	increase	in	speed.	I.e.,	If	Fast	and	Up							then	Decrease	If	the	error
is	within	reasonable	limits	and	the	speed	is	going	down,	then	the	output	should
be	increased	to	compensate	for	the	drop	in	speed.	I.e.,	If	OK			and	Down					then
Increase	If	the	motor	is	spinning	too	slowly	and	the	speed	is	constant,	then	the
output	should	be	increased	to	compensate	for	the	error.	I.e.,
If	Slow	and	Constant	then	Increase	If	 the	motor	 is	spinning	 too	slowly	and	 the
speed	is	going	down,	then	the	output	should	be	increase	to	compensate	for	both
the	error	and	the	drop	in	speed.	I.e.,	If	Slow	and	Down					then	Increase	These	7
rules	can	be	illustrated	in	a	table	form.

Figure	10.22.	Fuzzy	logic	rules	shown	in	table	form.

It	is	not	necessary	to	provide	a	rule	for	all	situations.	For	example,	we
did	not	specify	what	to	do	if	Fast&Down	or	for	Slow&Up.	Although
we	could	have	added	(but	did	not):	If	Fast	 	 	and	Down	 then	Same	 If
Slow	 	 	 and	Up	 	 then	Same	When	more	 than	 one	 rule	 applied	 to	 an
output	membership	set,	then	we	can	combine	the	rules:

Same=(OKandConstant)	 Decrease=
(OKandUp)or(FastandConstant)or(FastandUp)	 Increase=
(OKandDown)or(SlowandConstant)or(SlowandDown)	 In	 fuzzy	 logic,	 the	 and
operation	 is	 performed	 by	 taking	 the	 minimum	 and	 the	 or	 operation	 is	 the
maximum.	 Thus	 the	 C	 function	 that	 calculates	 the	 three	 output	 fuzzy
membership	sets	is	uint8_t	static	min(uint8_t	u1,uint8_t	u2){
					if(u1>u2)	return(u2);
					else	return(u1);}
uint8_t	static	max(uint8_t	u1,uint8_t	u2){
					if(u1<u2)	return(u2);
					else	return(u1);}



void	OutputMembership(void){
					Same					=	min(OK,Constant);
					Decrease	=	min(OK,Up)
					Decrease	=	max(Decrease,min(Fast,Constant));
					Decrease	=	max(Decrease,min(Fast,Up));
					Increase	=	min(OK,Down)
					Increase	=	max(Increase,min(Slow,Constant));
					Increase	=	max(Increase,min(Slow,Down));}
Program	10.8.	Calculation	of	the	output	fuzzy	membership
variables	in	C.

The	 calculation	 of	 the	 crisp	 outputs	 is	 called	Defuzzification.	 The
fuzzy	membership	sets	for	the	output	specifies	the	crisp	output,	∆N,	as
a	function	of	the	membership	value.	For	example,	if	 the	membership
set	Decrease	were	true	(255)	and	the	other	two	were	false	(0),	then	the
change	 in	 output	 should	 be	 -TN	 (where	 TN	 is	 another	 software
constant).	 If	 the	membership	set	Same	were	 true	 (255)	 and	 the	other
two	 were	 false	 (0),	 then	 the	 change	 in	 output	 should	 be	 0.	 If	 the
membership	set	Increase	were	true	(255)	and	the	other	two	were	false
(0),	then	the	change	in	output	should	be	+TN.

Figure	10.23.	Defuzzification	of	the	∆N	crisp	output.
	

In	general,	we	calculate	the	crisp	output	as	the	weighted	average	of	the
fuzzy	membership	sets:

∆N=(Decrease•(-TN)	+	Same•0	+Increase•TN)/(Decrease+Same+Increase)	The
C	compiler	will	promote	the	calculations	to	32	bits,	and	perform	the	calculation
using	32-bit	signed	math	that	will	eliminate	overflow	on	intermediate	terms.	The
output,	dN,	will	be	bounded	in	between	-TN	and	+TN.	Thus	the	C	function	that
calculates	the	crisp	output	is	int32_t	dN;

void	CrispOutput(void){
		dN=(TN*(Increase-



Decrease))/(Decrease+Same+Increase);

}

Program	10.9.	Calculation	of	the	crisp	output	in	C.

void	Timer0A_Handler(void){
		T	=	SE();												//	estimate	speed,	set	T,	0	to	255
		CrispInput();								//	Calculate	E,D	and	new	Told
		InputMembership();			//	Sets	Fast,OK,Slow,Down,Constant,Up
		OutputMembership();		//	Sets	Increase,Same,Decrease
		CrispOutput();							//	Sets	dN
		N	=	max(0,min(N+dN,255));
		PWM0A_Duty(N);							//	output	to	actuator,	Section	2.8
		TIMER0_ICR_R	=	0x01;	//	acknowledge	timer0A	periodic	timer

}

Program	10.10.	Periodic	interrupt	service	for	fuzzy	logic
controller.

Observation:	Fuzzy	logic	control	will	work	extremely	well	(fast,
accurate	and	stable)	if	the	designer	has	expert	knowledge	(intuition)
of	how	the	physical	plant	behaves.
	



10.8.	Exercises
10.1	For	each	term	give	a	definition	in	16	words	or	less.
a)	State	variable	b)	State	estimator	c)	Closed	loop
d)	Transient	response	e)	Stability	f)	Steady	state	accuracy
g)	Process	reaction	curve	h)	Process	reaction	rate	i)	Anti-reset	windup
10.2	For	each	control	algorithm	give	a	definition	in	16	words	or	less.
a)	Open	loop	b)	Bang-bang	c)	Incremental
d)	PID	e)	Input	PI	f)	Fuzzy	logic
	
10.3	For	each	Fuzzy	Logic	term	give	a	definition	in	16	words	or	less.
a)	Crisp	input	b)	Fuzzification	c)	Fuzzy	membership	set
d)	Fuzzy	logic	e)	Defuzzification	f)	Crisp	output
10.4	Briefly	explain	why	 it	 is	 important	 to	choose	 the	proper	update
rate	for	a	fuzzy	logic	controller.	In	particular,	explain	what	happens	to
a	fuzzy	 logic	controller	 if	 the	controller	 is	executed	 too	 infrequently.
Similarly,	 explain	 what	 happens	 to	 a	 fuzzy	 logic	 controller	 if	 the
controller	is	executed	too	frequently.
	
10.5.	Assume	 you	 have	 an	 8-bit	 fuzzy	 logic	 system	 like	 the	 ones
described	 in	 this	 chapter.	 Write	 formal	 descriptions	 for	 the
complement	 and	 exclusive	 or	 fuzzy	 logic	 operations.	 Show	 C	 code
implementations	for	these	two	functions.
	
10.6		 	The	objective	of	 this	problem	is	 to	use	the	Ziegler	and	Nichol
approach	 to	 develop	 the	 PI	 controller	 equations	 that	 allow	 an
embedded	system	to	control	a	DC	motor.	The	state	variable	is	speed,
which	is	measured	using	16-bit	input	capture	and	has	a	measurement
resolution	 of	 1	 RPM.	 The	 input	 capture	 device	 driver	 repeatedly
updates	a	global	variable,	called Speed .	This	16-bit	unsigned	variable
has	units	of	RPM	and	a	range	of	0	to	20000.		The	microcontroller	uses
pulse-width	modulation	to	control	power	to	the	motor.	The	controller
software	writes	to	a	global	variable,	called Duty ,	which	ranges	from	0
(0%)	 to	 10000	 (100%).	 The	 following	 plot	 shows	 an	 experimental
measurement	obtained	when Duty is	changed	from	2500	to	5000.	The
desired	speed	is	stored	in	the	global	variable, Desired ,	which	has	the
same	 units	 as Speed .	 Design	 a	 fixed-point	 PI	 controller	 that



takes Speed and Desired as	 inputs	and	calculates Duty 	 as	 an	output.
From	 the	 response	 graph	 in	 Figure	 10.24,	 estimate	 the	 L	 and
Rparameters	of	the	Ziegler	and	Nichol	method.	How	often	should	the
controller	 be	 executed?	 Show	 just	 the	 equations	 (no	 software	 or
hardware	 is	 required),	 calculating Duty as	 a	 function
of Speed and Desired .

Figure	10.24.		A	process	reaction	curve	for	the	DC	motor.

10.7	The	 objective	 of	 this	 problem	 is	 to	 use	 the	 Ziegler	 and	Nichol
approach	 to	 develop	 the	 PID	 controller	 equations	 that	 allow	 an
embedded	system	to	control	the	DC	motor	presented	in	Question	10.6.
I.e.,	work	through	the	steps	of	Question	10.6	for	a	PID	system.
	
10.8	Create	a	definition	for	Fuzzy	Logic	complement.	Let	~A	be	 the
complement	of	A.	Some	of	 these	logic	equations	are	valid	for	Fuzzy
Logic	 and	 some	 are	 not.	 For	 each	 valid	 equation,	 present	 a	 formal
proof	 of	 its	 correctness.	 For	 each	 invalid	 equation,	 give	 a	 counter
example.
a)	A*B	=	B*A	b)	A+B	=	B+A	c)	(A*B)*C	=	A*(B*C)	d)	(A+B)+C	=
A+(B+C)	e)	(A+B)*C	=	(A*C)+(B*C)	f)	A	+	~A	=	true	g)	A	*	~A	=
false	h)	(A*B)+A	=	A



Appendix	1.	Glossary
1/f	noise	A	fundamental	noise	in	resistive	devices	arising	from	fluctuating
conductivity.	Same	as	pink	noise.
2’s	complement	(see	two’s	complement).
60	Hz	noise	An	added	noise	from	electromagnetic	fields	caused	by	either
magnetic	field	induction	or	capacitive	coupling.
accumulator	 High-speed	 memory	 located	 in	 the	 processor	 used	 to
perform	 arithmetic	 or	 logical	 functions.	 The	 accumulators	 on	 the	 ARM
Cortex	M	are	Registers	R0	through	R12.
accuracy	A	measure	 of	 how	 close	 our	 instrument	 measures	 the	 desired
parameter	referred	to	the	NIST.
acknowledge	Clearing	the	interrupt	flag	bit	that	requested	the	interrupt.
active	thread		A	thread	that	is	in	the	ready-to-run	circular	linked	list.	It	is
either	running	or	is	ready	to	run.
actuator	 Electro-mechanical	 or	 electro-chemical	 device	 that	 allows
computer	commands	to	affect	the	external	world.
ADC	 	 Analog	 to	 digital	 converter,	 an	 electronic	 device	 that	 converts
analog	signals	(e.g.,	voltage)	into	digital	form	(i.e.,	integers).
address	bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O
devices,	 specifying	 the	 location	 to	 read	or	write	 for	each	bus	cycle.	 	See
also	control	bus	and	data	bus.
aging	 	A	 technique	used	 in	priority	schedulers	 that	 temporarily	 increases
the	 priority	 of	 low	 priority	 treads	 so	 they	 are	 run	 occasionally.	 (See
starvation)	aliasing	When	digital	values	 sampled	at	 fs	 contain	 frequency
components	above	½	fs,	then	the	apparent	frequency	of	the	data	is	shifted
into	the	0	to	½	fs	range.	See	Nyquist	Theory.
alternatives	 The	 total	 number	 of	 possibilities.	 E.g.,	 an	 8-bit	 number
scheme	 can	 represent	 256	 different	 numbers.	 	An	 8-bit	 digital	 to	 analog
converter	(DAC)	can	generate	256	different	analog	outputs.
anode	The	 positive	 side	 of	 a	 diode.	 Current	 enters	 the	 anode	 side	 of	 a
diode.	Contrast	with	cathode.
answer	modem	The	device	that	receives	the	telephone	call.
anti-reset-windup	Establishing	 an	upper	bound	on	 the	magnitude	of	 the
integral	term	in	a	PID	controller,	so	this	term	will	not	dominate,	when	the
errors	are	large.
arithmetic	 logic	 unit	 (ALU)	Component	 of	 the	 processor	 that	 performs
arithmetic	and	logic	operations.



arm	 Activate	 so	 that	 interrupts	 are	 requested.	 Trigger	 flags	 that	 can
request	 interrupts	will	have	a	corresponding	arm	bit	 to	allow	or	disallow
that	flag	to	request	interrupts.	Contrast	to	enable.
armature	 	The	moving	structure	in	a	relay,	the	part	that	moves	when	the
relay	is	activated.	Contrast	to	frame.
ASCII	American	Standard	Code	 for	 Information	 Interchange,	 a	 code	 for
representing	 characters,	 symbols,	 and	 synchronization	messages	 as	 7	 bit,
8-bit	or	16-bit	binary	values.
assembler		System	software	that	converts	an	assembly	language	program
(human	readable	format)	into	object	code		(machine	readable	format).
assembly	 directive	 Operations	 included	 in	 the	 program	 that	 are	 not
executed	 by	 the	 computer	 at	 run	 time,	 but	 rather	 are	 interpreted	 by	 the
assembler	during	the	assembly	process.	Same	as	pseudo-op.
assembly	 listing	 Information	 generated	 by	 the	 assembler	 in	 human
readable	 format,	 typically	 showing	 the	 object	 code,	 the	 original	 source
code,	assembly	errors,	and	the	symbol	table.
asynchronous	 bus	 A	 communication	 protocol	 without	 a	 central	 clock
where	 is	 the	 data	 is	 transferred	 using	 two	 or	 three	 control	 lines
implementing	 a	 handshaked	 interaction	 between	 the	 memory	 and	 the
computer.
asynchronous	protocol	A	protocol	where	 the	 two	devices	 have	 separate
and	distinct	clocks	atomic	 	Software	execution	 that	cannot	be	divided	or
interrupted.	Once	 started,	 an	 atomic	 operation	will	 run	 to	 its	 completion
without	interruption.	Most	assembly	language	instructions	are	atomic.	All
instructions	 on	 the	 Cortex-Mprocessor	 are	 atomic	 except	 store	 and	 load
multiple, STM	LDM .
autoinitialization	 The	 process	 of	 automatically	 reloading	 the	 address
registers	and	block	size	counters	at	the	end	of	a	previous	block	transfer,	so
that	DMA	transfer	can	occur	indefinitely	without	software	interaction.
availability	 The	 portion	 of	 the	 total	 time	 that	 the	 system	 is	 working.
MTBF	 is	 the	 mean	 time	 between	 failures,	 MTTR	 is	 the	 mean	 time	 to
repair,	and	availability	is	MTBF/(MTBF+MTTR).
bandwidth	 	 In	communication	systems,	 the	information	transfer	rate,	 the
amount	 of	 data	 transferred	 per	 second.	 Same	 as	 throughput.	 In	 analog
circuits,	 the	 frequency	 at	 which	 the	 gain	 drops	 to	 0.707	 of	 the	 normal
value.	For	a	 low	pass	system,	 the	 frequency	response	 ranges	 from	0	 to	a
maximum	value.	 	For	a	high	pass	system,	 the	 frequency	response	 ranges
from	a	minimum	value	 to	 infinity.	For	a	bandpass	 system,	 the	 frequency
response	 ranges	 from	 a	 minimum	 to	 a	 maximum	 value.	 Compare	 to



frequency	response.
bandwidth	coupling	Module	A	is	connected	to	Module	B,	because	data	flows
from	A	to	B.

bang-bang	A	control	system	where	 the	actuator	has	only	 two	states,	and
the	system	“bangs”	all	the	way	in	one	direction	or	“bangs”	all	the	way	in
the	other,	same	as	binary	controller.
bank-switched	memory	A	memory	module	with	two	banks	that	interfaces
to	two	separate	address/data	buses.	At	any	given	time	one	memory	bank	is
attached	to	one	address/data	bus	the	other	bank	is	attached	to	the	other	bus,
but	this	attachment	can	be	switched.
basis	 	Subset	 from	which	 linear	combinations	can	be	used	 to	 reconstruct
the	entire	set.
baud	 rate	 In	 general,	 the	 baud	 rate	 is	 the	 total	 number	 of	 bits
(information,	overhead,	and	idle)	per	time	that	are	transmitted.	In	a	modem
application	 it	 is	 the	 total	 number	 of	 sounds	 per	 time	 are	 transmitted
bidirectional	Digital	signals	that	can	be	either	input	or	output.
biendian	 The	 ability	 to	 process	 numbers	 in	 both	 big	 and	 little-endian
formats.
big	 endian	 Mechanism	 for	 storing	 multiple	 byte	 numbers	 such	 that	 the
most	 significant	 byte	 exists	 first	 (in	 the	 smallest	memory	 address).	 	 See
also	little	endian.
binary	A	system	that	has	two	states,	on	and	off.
binary	controller	Same	as	bang-bang.
binary	 recursion	 A	 recursive	 technique	 that	 makes	 two	 calls	 to	 itself
during	the	execution	of	 the	function.	See	also	recursion,	 linear	recursion,
and	tail	recursion.
binary	semaphore	 	A	semaphore	 that	can	have	 two	values.	The	value=1
means	OK	and	the	value=0	means	busy.	Compare	to	counting	semaphore.
bipolar	transistor	Either	a	NPN	or	PNP	transistor.
bipolar	stepper	motor	A	 stepper	motor	where	 the	current	 flows	 in	both
directions	(in/out)	along	 the	 interface	wires;	a	stepper	with	four	 interface
wires.	Contrast	to	unipolar	stepper	motor.
bit	Basic	unit	of	digital	information	taking	on	the	value	of	either	0	or	1.
bit	rate	The	 information	 transfer	 rate,	given	 in	bits	per	 second.	Same	as
bandwidth	and	throughput.
bit	time	The	basic	unit	of	time	used	in	serial	communication.	With	serial
channel	bit	time	is	1/baud	rate.
blind-cycle	 	 A	 software/hardware	 synchronization	 method	 where	 the
software	waits	 a	 specified	 amount	 of	 time	 for	 the	 hardware	 operation	 to



complete.	The	software	has	no	direct	 information	(blind)	about	 the	status
of	the	hardware.
block	correction	code	(BCC)	A	code	(e.g.,	horizontal	parity)	attached	to
the	end	of	a	message	used	to	detect	and	correct	transmission	errors.
blocked	thread	 	A	 thread	 that	 is	not	 scheduled	 for	 running	because	 it	 is
waiting	on	an	external	event.
blocking	semaphore		A	semaphore	where	the	threads	will	block	(so	other
threads	 can	perform	useful	 functions)	when	 they	 execute	wait	 on	 a	busy
semaphore.	Contrast	to	spinlock	semaphore.
Bluetooth	 A	 low-power,	 wireless	 personal	 area	 network	 that	 allows
pairing,	which	is	two	devices	communicating	with	each	other.
Board	Support	Package	(BSP)	A	set	of	software	routines	that	abstract	the
I/O	hardware	such	that	the	same	high-level	code	can	run	on	multiple
computers.
borrow	During	 subtraction,	 if	 the	difference	 is	 too	 small,	 then	we	use	 a
borrow	 to	 pass	 the	 excess	 information	 into	 the	 next	 higher	 place.	 For
example,	in	decimal	subtraction	36-27	requires	a	borrow	from	the	ones	to
tens	place	because	6-7	is	too	small	to	fit	into	the	0	to	9	range	of	decimal
numbers.
bounded	waiting	The	condition	where	once	a	thread	begins	to	wait	on	a
resource,	there	are	a	finite	number	of	threads	that	will	be	allowed	to
proceed	before	this	thread	is	allowed	to	proceed.
break-before-make	In	a	double-throw	relay	or	double-throw	switch,	there
is	 one	 common	 contact	 and	 two	 separate	 contacts.	 Break-before-make
means	 as	 the	 common	 contact	 moves	 from	 one	 of	 separate	 contacts	 to
another,	 it	will	 break	 off	 (finish	 bouncing	 and	 no	 longer	 touch)	 the	 first
contact	 before	 it	makes	 (begins	 to	 bounce	 and	 starts	 to	 touch)	 the	 other
contact.	A	form	C	relay	has	a	break-before-make	operation.
break	or	trap	 	A	break	or	a	trap	is	a	debugging	instrument	that	halts	the
processor.	 With	 a	 resident	 debugger,	 the	 break	 is	 created	 by	 replacing
specific	op	code	with	a	software	interrupt	instruction.	When	encountered	it
will	 stop	 your	 program	 and	 jump	 into	 the	 debugger.	 Therefore,	 a	 break
halts	the	software.		The	condition	of	being	in	this	state	is	also	referred	to	as
a	break.
breakdown	A	transducer	that	stops	functioning	when	its	input	goes	above
a	maximum	value	or	below	a	minimum	value.	Contrast	to	dead	zone.
breakpoint		The	place	where	a	break	is	inserted,	the	time	when	a	break	is
encountered,	or	the	time	period	when	a	break	is	active.
brushed	DC	motor		A	motor	where	the	current	reversals	are	produced



with	brushes	between	the	stator	and	rotor.	They	are	less	expensive	than
brushless	DC	motors.
brushless	DC	motor	(BLDC)	A	motor	where	the	current	reversals	are
produced	with	shaft	sensors	and	an	electronic	controller.	They	are	faster
and	more	reliable	than	brushed	DC	motors.
buffered	 I/O	 	 A	 FIFO	 queue	 is	 placed	 in	 between	 the	 hardware	 and
software	 in	an	attempt	 to	 increase	bandwidth	by	allowing	both	hardware
and	software	to	run	in	parallel.
burn	The	process	of	programming	a	ROM,	PROM	or	EEPROM.
burst	DMA	An	I/O	synchronization	scheme	that	transfers	an	entire	block
of	data	all	at	once	directly	from	an	input	device	into	memory,	or	directly
from	memory	to	an	output	device.
bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,
consisting	 of	 address	 signals,	 data	 signals	 and	 control	 signals.	 See	 also
address	bus,	control	bus	and	data	bus.
bus	bandwidth	The	number	of	bytes	 transferred	per	second	between	 the
processor	and	memory.
bus	 interface	 unit	 (BIU)	 Component	 of	 the	 processor	 that	 reads	 and
writes	data	from	the	bus.	The	BIU	drives	the	address	and	control	buses.
busy-wait	synchronization		A	software/hardware	synchronization	method
where	the	software	continuously	reads	the	hardware	status	waiting	for	the
hardware	operation	 to	 complete.	The	 software	usually	performs	no	work
while	waiting	for	the	hardware.	Same	as	gadfly.
byte	Digital	information	containing	eight	bits.
carrier	 frequency	 	 the	 average	 or	 midvalue	 sound	 frequency	 in	 the
modem.
cathode	The	negative	side	of	a	diode.	Current	exits	the	cathode	side	of	a
diode.	Contrast	to	anode.
causal	 The	 property	 where	 the	 output	 depends	 on	 the	 present	 and	 past
inputs,	but	not	on	any	future	inputs.
ceiling	Establishing	an	upper	bound	on	the	result	of	an	operation.	See	also
floor.
certification	A	process	where	a	governing	body	(e.g.,	FDA,	NASA,	FCC,
DOD	etc.)	gives	approval	for	the	use	of	the	device.	It	usually	involves
demonstrating	the	device	meets	or	exceeds	safety	and	performance	criteria.
channel	The	hardware	that	allows	communication	to	occur.
characteristic	 A	 Bluetooth	 functionalities	 that	 allows	 data	 to	 be
exchanged.
checksum	The	simple	sum	of	the	data,	usually	in	finite	precision	(e.g.,	8,



16,	24	bits).
closed-loop	 control	 system	 A	 control	 system	 that	 includes	 sensors	 to
measure	 the	 current	 state	 variables.	 These	 inputs	 are	 used	 to	 drive	 the
system	to	the	desired	state.
CMOS	 A	 digital	 logic	 system	 called	 complementary	 metal	 oxide
semiconductor.	It	has	properties	of	low	power	and	small	size.	Its	power	is
a	 function	 of	 the	 number	 of	 transitions	 per	 second.	 Its	 speed	 is	 often
limited	by	capacitive	loading.
cohesion	A	cohesive	module	is	one	such	that	all	parts	of	the	module	are
related	to	each	other	to	satisfy	a	common	objective.
common	mode	For	 a	 system	with	differential	 inputs,	 the	 common	mode
properties	 are	 defined	 as	 signals	 applied	 to	 both	 inputs	 simultaneously.	
Contrast	to	differential	mode.
common	mode	input	impedance	Common	mode	input	voltage	divided	by
common	mode	input	current.
common	mode	rejection	ratio	For	a	differential	amplifier,	CMRR	is	the
ratio	of	 the	common	mode	gain	divided	by	 the	differential	mode	gain.	A
perfect	CMRR	would	be	zero.
compiler	System	 software	 that	 converts	 a	 high-level	 language	 program
(human	readable	format)	into	object	code		(machine	readable	format).
complex	 instruction	 set	 computer	 (CISC)	 A	 computer	 with	 many
instructions,	 instructions	 that	 have	 varying	 lengths,	 instructions	 that
execute	 in	 varying	 times,	 many	 instructions	 can	 access	 memory,	 one
instruction	may	both	read	and	write	memory,	fewer	and	more	specialized
registers,	and	many	different	types	of	addressing	modes.	Contrast	to	RISC.
compression	ratio	The	ratio	of	the	number	of	original	bytes	to	the	number
of	compressed	bytes.
concurrent	programming	A	software	system	that	supports	two	tasks	to
be	active	at	the	same	time.	A	computer	with	interrupts	implements
concurrent	programming.	Compare	to	distributed	and	parallel.
condition	code	register	(CCR)	Register	in	the	processor	that	contains	the
status	 of	 the	 previous	 ALU	 operation,	 as	 well	 as	 some	 operating	 mode
flags	such	as	the	interrupt	enable	bit.

control	coupling	Module	A	is	connected	to	Module	B,	because	actions	in	A
affect	the	control	path	in	B.

control	 unit	 (CU)	 Component	 of	 the	 processor	 that	 determines	 the
sequence	of	operations.
cooperative	multitasking		A	scheduler	that	cannot	suspend	execution	of	a
thread	 without	 the	 thread's	 permission.	 The	 thread	 must	 cooperate	 and



suspend	itself.	Same	as	nonpreemptive	scheduler.
counting	 semaphore	 	 A	 semaphore	 that	 can	 have	 any	 signed	 integer
value.	The	value>0		means	OK	and	the	value≤0	means	busy.	Compare	to
binary	semaphore.
CPU	bound		A	situation	where	the	input	or	output	device	is	faster	than	the
software.	 In	other	words,	 it	 takes	 less	 time	 for	 the	 I/O	device	 to	process
data,	than	for	the	software	to	process	data.	Contrast	to	I/O	bound.
CPU	cycle	A	memory	bus	cycle	where	the	address	and	R/W	are	controlled
by	 the	processor.	On	microcontrollers	without	DMA,	all	 cycles	 are	CPU
cycles.	Contrast	to	DMA	cycle.
crisp	 inputAn	 input	 parameter	 to	 the	 fuzzy	 logic	 system,	 usually	 with
units	like	cm,	cm/sec, � C	etc.
crisp	 output	An	 output	 parameter	 from	 the	 fuzzy	 logic	 system,	 usually
with	units	like	dynes,	watts	etc.
critical	section		Locations	within	a	software	module,	which	if	an	interrupt
were	to	occur	at	one	of	these	locations,	then	an	error	could	occur	(e.g.,	data
lost,	corrupted	data,	program	crash,	etc.)		Same	as	vulnerable	window.
cross-assembler	 	 An	 assembler	 that	 runs	 on	 one	 computer	 but	 creates
object	code	for	a	different	computer.
cross-compiler	A	compiler	 that	 runs	on	one	 computer	 but	 creates	object
code	for	a	different	computer.
cycle	steal	DMA	An	 I/O	 synchronization	 scheme	 that	 transfers	data	one
item	at	a	time	directly	from	an	input	device	into	memory,	or	directly	from
memory	to	an	output	device.	Same	as	single	cycle	DMA.
cycle	stretch	The	action	where	some	memory	cycles	are	 longer	allowing
time	 for	 communication	 with	 slower	 memories,	 sometimes	 the	 memory
itself	 requests	 the	 additional	 time	 and	 sometimes	 the	 computer	 has	 a
preprogrammed	cycle	stretch	for	certain	memory	addresses	DAC	 	Digital
to	analog	converter,	an	electronic	device	that	converts	digital	signals	(i.e.,
integers)	to	analog	form	(e.g.,	voltage).
data	 acquisition	 system	 A	 system	 that	 collects	 information,	 same	 as
instrument.
data	bus	A	set	of	digital	 signals	 that	connect	 the	CPU,	memory	and	 I/O
devices,	 specifying	 the	 value	 that	 is	 being	 read	 or	 written	 for	 each	 bus
cycle.		See	also	address	bus	and	control	bus.
data	communication	equipment	(DCE)	A	modem	or	printer	connected	a
serial	communication	network.
data	 terminal	 equipment	 (DTE)	A	computer	or	 a	 terminal	 connected	 a
serial	communication	network.



deadline	The	time	when	a	task	should	complete.	Compare	to	slack	time.
dead	zone	A	condition	of	 a	 transducer	when	a	 large	change	 in	 the	 input
causes	little	or	no	change	in	the	output.	Contrast	to	breakdown.
deadlock		A	scenario	that	occurs	when	two	or	more	threads	are	all	blocked
each	waiting	for	the	other	with	no	hope	of	recovery.
defuzzification	 Conversion	 from	 the	 fuzzy	 logic	 output	 variables	 to	 the
crisp	outputs.
desk	 checking	 or	 dry	 run	 	 We	 perform	 a	 desk	 check	 (or	 dry	 run)	 by
determining	 in	 advance,	 either	 by	 analytical	 algorithm	 or	 explicit
calculations,	the	expected	outputs	of	strategic	intermediate	stages	and	final
results	 for	a	set	of	 typical	 inputs.	We	 then	 run	our	program	can	compare
the	actual	outputs	with	this	template	of	expected	results.
device	 driver	 	 A	 collection	 of	 software	 routines	 that	 perform	 I/O
functions.
differential	 mode	 For	 a	 system	 with	 differential	 inputs,	 the	 differential
mode	properties	are	defined	as	signals	applied	as	a	difference	between	the
two	inputs.		Contrast	to	common	mode.
differential	 mode	 input	 impedance	 Differential	 mode	 input	 voltage
divided	by	differential	mode	input	current.
digital	 signal	 processing	 Processing	 of	 data	 with	 digital	 hardware	 or
software	 after	 the	 signal	 has	 been	 sampled	 by	 the	 ADC,	 e.g.,	 filters,
detection	and	compression/decompression.
direct	memory	 access	 (DMA)	 the	 ability	 to	 transfer	 data	 between	 two
modules	 on	 the	 bus,	 this	 transfer	 is	 usually	 initiated	 by	 the	 hardware
(device	needs	service)	and	the	software	configures	the	communication,	but
the	 data	 is	 transferred	without	 explicit	 software	 action	 for	 each	 piece	 of
data	 direction	 register	 Specifies	 whether	 a	 bidirectional	 I/O	 pin	 is	 an
input	or	an	output.	We	set	a	direction	register	bit	to	0	(or	1)	to	specify	the
corresponding	 I/O	pin	 to	be	 input	 (or	output.)	disarm	Deactivate	 so	 that
interrupts	are	not	requested,	performed	by	clearing	the	arm	bit.
Discrete	Fourier	Transform	(DFT)	A	technique	to	convert	data	in	the
time	domain	to	data	in	the	frequency	domain.	N	data	points	are	sampled	at
fs.	The	resulting	frequency	resolution	is	fs	/N.
distributed	processing	A	system	implemented	across	separate	computers
connected	with	I/O	or	a	network,	so	that	two	or	more	programs	are
executed	at	the	same	time.	Compare	to	concurrent	and	parallel.
DMA	 	 Direct	 Memory	 Access	 is	 a	 software/hardware	 synchronization
method	where	 the	hardware	 itself	 causes	 a	data	 transfer	between	 the	 I/O
device	 and	 memory	 at	 the	 appropriate	 time	 when	 data	 needs	 to	 be



transferred.	The	software	usually	can	perform	other	work	while	waiting	for
the	hardware.	No	software	action	is	required	for	each	individual	byte.
DMA	 cycle	 A	 memory	 bus	 cycle	 where	 the	 address	 and	 R/W	 are
controlled	by	the	DMA	controller.	Contrast	to	CPU	cycle.
double	byte		Two	bytes	containing	16	bits.	Same	as	halfword.
double-pole	relay	Two	separate	and	complete	relays,	which	are	activated
together.	Contrast	to	single	pole.
double-pole	 switch	 Two	 separate	 and	 complete	 switches.	 The	 two
switches	 are	 electrically	 separate,	 but	mechanically	 connected.	 Such	 that
both	switches	are	activated	together.	Contrast	to	single	pole.
double-throw	relay	A	relay	with	three	contact	connections,	one	common
and	two	throws.	The	common	will	be	connected	to	exactly	of	one	the	two
throws	(see	single-throw).
double-throw	switch	A	switch	with	three	contact	connections.	The	center
contact	will	be	connected	exactly	one	of	the	other	two	contacts.		Contrast
with	single-throw.
double	word		Two	words	containing	64	bits.
download	The	process	of	transferring	object	code	from	the	host	(e.g.,	the
PC)	to	the	target	microcontroller.
drop-out	An	 error	 that	 occurs	 after	 a	 right	 shift	 or	 a	 divide,	 and	 the
consequence	is	that	an	intermediate	result	 loses	its	ability	to	represent	all
of	 the	values.	E.g.,	 I=100*(N/51)	can	only	result	 in	 the	values	0,	100,	or
200,	whereas	I=(100*N)/51	properly	calculates	the	desired	result.
dual	address	DMA	Direct	memory	access	that	requires	two	bus	cycles	to
transfer	 data	 from	 an	 input	 device	 into	memory,	 or	 from	memory	 to	 an
output	device.
dual	 port	 memory	 A	 memory	 module	 that	 interfaces	 to	 two	 separate
address/data	buses,	and	allows	both	systems	read/write	access	the	data.
duty	 cycle	 For	 a	 periodic	 digital	 wave,	 it	 is	 the	 percentage	 of	 time	 the
signal	 is	 high.	When	 an	LED	 display	 is	 scanned,	 it	 is	 the	 percentage	 of
time	each	LED	is	active.	A	motor	interfaced	using	pulse-width-modulation
allows	 the	 computer	 to	 control	 delivered	 power	 by	 adjusting	 the	 duty
cycle.
dynamic	 allocation	 	 Data	 structures	 like	 the	 TCB	 that	 are	 created	 at
runtime	 by	 calling	 malloc()	 and	 exist	 until	 the	 software	 releases	 the
memory	block	back	to	the	heap	by	calling	free().	See	static	allocation.
dynamic	RAM	 Volatile	 read/write	 storage	 built	 from	 a	 capacitor	 and	 a
single	 transistor	 having	 a	 low	 cost,	 but	 requiring	 refresh.	 Contrast	 with
static	RAM.



EEPROM	Electrically	 erasable	 programmable	 read	only	memory	 that	 is
nonvolatile	 and	 easy	 to	 reprogram.	 	 EEPROM	 can	 be	 erased	 and
reprogrammed	multiple	times.	Also	see	Flash	EEPROM.
embedded	computer	system	A	system	that	performs	a	specific	dedicated
operation	where	the	computer	is	hidden	or	embedded	inside	the	machine.		
emulator		An	in-circuit	emulator	is	an	expensive	debugging	hardware	tool
that	mimics	the	processor	pin	outs.	To	debug	with	an	emulator,	you	would
remove	the	processor	chip	and	attach	the	emulator	cable	into	the	processor
socket.	The	emulator	would	sense	the	processor	input	signals	and	recreate
the	processor	outputs	signals	on	the	socket	as	if	an	actual	processor	were
actually	there,	running	at	full	speed.	Inside	the	emulator	you	have	internal
read/write	access	to	the	registers	and	processor	state.	Most	emulators	allow
you	 to	 visualize/record	 strategic	 information	 in	 real-time	without	 halting
the	 program	 execution.	 You	 can	 also	 remove	ROM	 chips	 and	 insert	 the
connector	of	a	ROM-emulator.	This	type	of	emulator	is	less	expensive,	and
it	allows	you	to	debug	ROM-based	software	systems.
EPROM	Same	as	PROM.	Electrically	programmable	 read	only	memory
that	is	nonvolatile	and	requires	external	devices	to	erase	and	reprogram.	It
is	usually	erased	using	UV	light.
erase	The	process	of	 clearing	 the	 information	 in	 a	PROM	or	EEPROM,
using	 electricity	 or	UV	 light.	 The	 information	 bits	 are	 usually	 all	 set	 to
logic	1.
EVB	 Evaluation	 Board,	 a	 board-level	 product	 used	 to	 develop
microcontroller	systems.	Same	as	LaunchPad.
even	parity	 	A	communication	protocol	where	the	number	of	ones	in	the
data	plus	a	parity	bit	is	an	even	number.	Contrast	with	odd	parity.
event	thread	A	thread	that	is	executed	or	triggered	in	response	to	an	event.
They	are	similar	to	ISR,	but	scheduled	by	the	OS.	Typcially,	the	event	is	a
change	in	hardware	status,	such	as	input	ready,	output	idle,	or	periodically.
The	 trigger	 could	 also	 be	 a	 software	 event.	 Event	 threads	 cannot	 sleep,
block,	 or	 be	 killed.	Once	 they	 respond	 to	 the	 event,	 they	 simply	 return.
Compare	to	main	thread.
external	fragmentation	A	condition	when	the	largest	file	or	memory
block	that	can	be	allocated	is	less	than	the	total	amount	of	free	space	on
the	disk	or	memory.
fan	out		The	number	of	inputs	that	a	single	output	can	drive	if	the	devices
are	all	in	the	same	logic	family.
Fast	Fourier	Transform	(FFT)	A	fast	technique	to	convert	data	in	the
time	domain	to	data	in	the	frequency	domain.	N	data	points	are	sampled	at



fs.	The	resulting	frequency	resolution	is	fs	/N.	Mathematically,	the	FFT	is
the	same	as	the	DFT,	just	faster.
FET	Field	effect	transistor,	also	JFET.
filter	In	the	debugging	context,	a	filter	is	a	Boolean	function	or	conditional
test	used	to	make	runtime	decisions.	For	example,	if	we	print	information
only	if	two	variables	x,y	are	equal,	then	the	conditional	(x==y)	is	a	filter.
Filters	can	involve	hardware	status	as	well.
finite	impulse	response	filter	(FIR)	A	digital	filter	where	the	output	is	a
function	 of	 a	 finite	 number	 of	 current	 and	 past	 data	 samples,	 but	 not	 a
function	of	previous	filter	outputs.
Finite	State	Machine	(FSM)	An	abstract	design	method	to	build	a
machine	with	inputs	and	outputs.	The	machine	can	be	in	one	of	a	finite
number	of	states.	Which	state	the	system	is	in	represents	memory	of
previous	inputs.	The	output	and	next	state	are	a	function	of	the	input.
There	may	be	time	delays	as	well.
firm	real-time	A	system	that	expects	all	critical	tasks	to	complete	on	time.
Once	 a	 deadline	 as	 passed,	 there	 is	 no	 value	 to	 completing	 the	 task.
However,	 the	 consequence	 of	 missed	 deadlines	 is	 real	 but	 the	 overall
system	 operates	 with	 reduced	 quality.	 Streaming	 audio	 and	 video	 are
typical	examples.	Compare	to	hard	real-time	and	soft	real-time.
fixed-point	 A	 technique	 where	 calculations	 involving	 nonintegers	 are
performed	 using	 a	 sequence	 of	 integer	 operations.	 E.g.,	 0.123*x	 is
performed	in	decimal	fixed-point	as	(123*x)/1000	or	in	binary	fixed-point
as	(126*x)>>10.
flash	EEPROM	 Electrically	 erasable	 programmable	 read	 only	 memory
that	 is	 nonvolatile	 and	easy	 to	 reprogram.	Flash	EEPROMs	are	 typically
larger	than	regular	EEPROM.
floating	A	logic	state	where	the	output	device	does	not	drive	high	or	pull
low.	 The	 outputs	 of	 open	 collector	 and	 tristate	 devices	 can	 be	 in	 the
floating	state.	Same	as	HiZ.
floor	Establishing	 a	 lower	 bound	on	 the	 result	 of	 an	 operation.	 See	 also
ceiling.
fork	The	dynamic	action	of	creating	a	new	thread	or	process	at	run	time.
See	also	join.
frame	 	 A	 complete	 and	 distinct	 packet	 of	 bits	 occurring	 in	 a	 serial
communication	channel.
frame		The	fixed	structure	in	a	relay	or	transducer.	Contrast	to	armature.
framing	error	An	error	when	 the	 receiver	expects	a	stop	bit	 (1)	and	 the
input	is	0.



frequency	response	The	frequency	at	which	the	gain	drops	to	0.707	of	the
normal	value.	For	a	low	pass	system,	the	frequency	response	ranges	from	0
to	 a	 maximum	 value.	 	 For	 a	 high	 pass	 system,	 the	 frequency	 response
ranges	 from	 a	 minimum	 value	 to	 infinity.	 For	 a	 bandpass	 system,	 the
frequency	response	ranges	from	a	minimum	to	a	maximum	value.	Same	as
bandwidth.
frequency	 shift	 key	 (FSK)	A	modem	 that	modulates	 the	 digital	 signals
into	frequency	encoded	sine	waves.
friendly	Friendly	software	modifies	just	the	bits	that	need	to	be	modified,
leaving	the	other	bits	unchanged,	making	to	easier	to	combine	modules.
full	 duplex	 channel	 Hardware	 that	 allows	 bits	 (information,	 error
checking,	synchronization	or	overhead)	to	transfer	simultaneously	in	both
directions.	Contrast	with	simplex	and	half	duplex	channels.
full	 duplex	 communication	 A	 system	 that	 allows	 information	 (data,
characters)	to	transfer	simultaneously	in	both	directions.
functional	 debugging	 	 The	 process	 of	 detecting,	 locating,	 or	 correcting
functional	 and	 logical	 errors	 in	 a	 program,	 typically	 not	 involving	 time.
The	 process	 of	 instrumenting	 a	 program	 for	 such	 purposes	 is	 called
functional	debugging	or	often	simply	debugging.
fuzzification	 Conversion	 from	 the	 crisp	 inputs	 to	 the	 fuzzy	 logic	 input
variables.
fuzzy	 logic	Boolean	 logic	 (true/false)	 that	 can	 take	 on	 a	 range	of	 values
from	true	(255)	to	false	(0).	Fuzzy	logic	and	is	calculated	as	the	minimum.
Fuzzy	logic	or	is	the	maximum.
gadfly	 	A	software/hardware	synchronization	method	where	 the	software
continuously	reads	the	hardware	status	waiting	for	the	hardware	operation
to	complete.	The	software	usually	performs	no	work	while	waiting	for	the
hardware.	Same	as	busy	wait.
gauge	factor	The	sensitivity	of	a	strain	gauge	transducer,	i.e.,	slope	of	the
resistance	versus	displacement	response.

gibibyte	(GiB)	230	or	1,073,741,824	bytes.	Compare	to	gigabyte,	which	is
1,000,000,000	bytes.

half	 duplex	 channel	 Hardware	 that	 allows	 bits	 (information,	 error
checking,	synchronization	or	overhead)	 to	 transfer	 in	both	directions,	but
in	 only	 one	 direction	 at	 a	 time.	 Contrast	 with	 simplex	 and	 full	 duplex
channels.
half	duplex	communication	A	system	that	allows	information	to	transfer
in	both	directions,	but	in	only	one	direction	at	a	time.
halfword		Two	bytes	containing	16	bits.	Same	as	double	byte.



handshake	A	 software/hardware	 synchronization	 method	 where	 control
and	status	signals	go	both	directions	between	the	transmitter	and	receiver.
The	communication	 is	 interlocked	meaning	each	device	will	wait	 for	 the
other.
hard	real-time	A	system	that	can	guarantee	that	a	process	will	complete	a
critical	 task	within	a	certain	 specified	 range.	 In	data	acquisition	systems,
hard	real-time	means	there	is	an	upper	bound	on	the	latency	between	when
a	 sample	 is	 supposed	 to	 be	 taken	 (every	 1/fs)	 and	 when	 the	 ADC	 is
actually	 started.	 Hard	 real-time	 also	 implies	 that	 no	 ADC	 samples	 are
missed.	Compare	to	hard	real-time	and	firm	real-time.
heartbeat	A	debugging	monitor,	such	as	a	flashing	LED,	we	add	for	the
purpose	of	seeing	if	our	program	is	running.
hexadecimal		A	number	system	that	uses	base	16.
HiZ	A	logic	state	where	the	output	device	does	not	drive	high	or	pull	low.
The	 outputs	 of	 open	 collector	 and	 tristate	 devices	 can	 be	 in	 the	 floating
state.	Same	as	floating.
hold	time		When	latching	data	into	a	device	with	a	rising	or	falling	edge	of
a	clock,	the	hold	time	is	the	time	after	the	active	edge	of	the	clock	that	the
data	must	continue	to	be	valid.	See	setup	time.
hook	An	indirect	function	call	added	to	a	software	system	that	allows	the
user	to	attach	their	programs	to	run	at	strategic	times.	These	attachments
are	created	at	run	time	and	do	not	require	recompiling	the	entire	system.
horizontal	parity	 	A	parity	calculated	across	 the	entire	message	on	a	bit
by	bit	basis,	e.g.,	the	horizontal	parity	bit	0	is	the	parity	calculated	on	all
the	bit	0’s	of	 the	entire	message,	can	be	even	or	odd	parity	hysteresis	A
condition	when	the	output	of	a	system	depends	not	only	on	the	input,	but
also	 on	 the	 previous	 outputs,	 e.g.,	 a	 transducer	 that	 follows	 a	 different
response	 curve	 when	 the	 input	 is	 increasing	 than	 when	 the	 input	 is
decreasing.
I/O	bound		A	situation	where	the	input	or	output	device	is	slower	than	the
software.	In	other	words,	it	takes	longer	for	the	I/O	device	to	process	data
than	for	the	software	to	process	data.	Contrast	to	CPU	bound.
I/O	 device	 Hardware	 and	 software	 components	 capable	 of	 bringing
information	 from	 the	 external	 environment	 into	 the	 computer	 (input
device),	or	sending	data	out	from	the	computer	to	the	external	environment
(output	 device.)	 I/O	 port	 	 A	 hardware	 device	 that	 connects	 the	 internal
software	with	external	hardware.
IIH		Input	current	when	the	signal	is	high.



IIL		Input	current	when	the	signal	is	low.
immediate	 	 An	 addressing	 mode	 where	 the	 operand	 is	 a	 fixed	 data	 or
address	value.
impedance	loading	A	condition	when	the	input	of	stage	n+1	of	an	analog
system	affects	the	output	of	stage	n,	because	the	input	impedance	of	stage
n+1	is	too	small	and	the	output	impedance	of	stage	n	is	too	large.
impedance	The	ratio	of	the	effort	(voltage,	force,	pressure)	divided	by	the
flow	(current,	velocity,	flow).
incremental	 control	 system	 A	 control	 system	 where	 the	 actuator	 has
many	 possible	 states,	 and	 the	 system	 increments	 or	 decrements	 the
actuator	value	depending	on	either	in	error	is	positive	or	negative.
indexed	 	 An	 addressing	 mode	 where	 the	 data	 or	 address	 value	 for	 the
instruction	is	located	in	memory	pointed	to	by	an	index	register.
infinite	impulse	response	filter	(IIR)	A	digital	filter	where	the	output	is	a
function	of	an	infinite	number	of	past	data	samples,	usually	by	making	the
filter	output	a	function	of	previous	filter	outputs.
input	bias	current	Difference	between	currents	of	the	two	op	amp	inputs.
input	 capture	 A	 mechanism	 to	 set	 a	 flag	 and	 capture	 the	 current	 time
(TCNT	value)	on	 the	 rising,	 falling	or	 rising&falling	edge	of	an	external
signal.	The	input	capture	event	can	also	request	an	interrupt.
input	impedance	Input	voltage	divided	by	input	current.
instruction	register	 (IR)	Register	 in	 the	control	unit	 that	contains	 the	op
code	for	the	current	instruction.
instrument	 	 An	 instrument	 is	 the	 code	 injected	 into	 a	 program	 for
debugging	 or	 profiling.	 	 This	 code	 is	 usually	 extraneous	 to	 the	 normal
function	of	a	program	and	may	be	 temporary	or	permanent.	 	 Instruments
injected	during	interactive	sessions	are	considered	to	be	temporary	because
these	 instruments	 can	 be	 removed	 simply	 by	 terminating	 a	 session.	
Instruments	 injected	 in	 source	 code	 are	 considered	 to	 be	 permanent
because	removal	requires	editing	and	recompiling	the	source.	An	example
of	a	temporary	instrument	occurs	when	the	debugger	replaces	a	regular	op
code	 with	 a	 breakpoint	 instruction.	 This	 temporary	 instrument	 can	 be
removed	dynamically	by	restoring	the	original	op	code.	A	print	statement
added	 to	 your	 source	 code	 is	 an	 example	 of	 a	 permanent	 instrument,
because	removal	requires	editing	and	recompiling.
instrument	An	embedded	system	 that	collects	 information,	 same	as	data
acquisition	system.
instrumentation	 	 The	 debugging	 process	 of	 injecting	 or	 inserting	 an



instrument.
instrumentation	 amp	 A	 differential	 amplifier	 analog	 circuit,	 which	 can
have	 large	 gain,	 large	 input	 impedance,	 small	 output	 impedance,	 and	 a
good	common	mode	rejection	ration.
internal	fragmentation	Storage	that	is	allocated	for	the	convenience	of
the	operating	system	but	contains	no	information.	This	space	is	wasted.
interrupt	 	 A	 software/hardware	 synchronization	 method	 where	 the
hardware	causes	a	special	software	program	(interrupt	handler)	to	execute
when	 its	 operation	 to	 complete.	 The	 software	 usually	 can	 perform	 other
work	while	waiting	for	the	hardware.
interrupt	flag	A	status	bit	 that	 is	set	by	the	timer	hardware	to	signify	an
external	event	has	occurred.
interrupt	 mask	 A	 control	 bit	 that,	 if	 programmed	 to	 1,	 will	 cause	 an
interrupt	request	when	the	associated	flag	is	set.	Same	as	arm.
interrupt	 service	 routine	 (ISR)	 Program	 that	 runs	 as	 a	 result	 of	 an
interrupt.
interrupt	 vector	 32-bit	 values	 in	 ROM	 specifying	 where	 the	 software
should	execute	after	an	interrupt	request.	There	is	a	unique	interrupt	vector
for	each	type	of	interrupt	including	reset.
intrusive	 The	 debugger	 itself	 affects	 the	 program	 being	 tested.	 	 	 See
nonintrusive.
Inverse	Discrete	Fourier	Transform	(IDFT)	A	technique	to	convert	data
in	the	frequency	domain	to	data	in	the	time	domain.	If	there	are	N	data
points	and	the	sampling	rate	is	fs,	the	resulting	frequency	resolution	will	be
fs	/N.

invocation	coupling	Module	A	is	connected	to	Module	B,	because	A	calls	B.
I/O	mapped	I/O	A	configuration	where	the	I/O	devices	are	interfaced	to
the	computer	in	a	manner	different	than	the	way	memories	are	connected,
from	 an	 interfacing	 perspective	 I/O	 devices	 and	 memory	 modules	 have
separate	bus	 signals,	 from	a	programmer’s	point	of	view	 the	 I/O	devices
have	their	own	I/O	address	map	separate	from	the	memory	map,	and	I/O
device	 access	 requires	 the	 use	 of	 special	 I/O	 instructions	 IOH	 	 Output
current	when	 the	 signal	 is	 high.	This	 is	 the	maximum	current	 that	 has	 a
voltage	above	VOH.
IOL	 	Output	current	when	 the	signal	 is	 low.	This	 is	 the	maximum	current
that	has	a	voltage	below	VOL.
jerk		The	change	in	acceleration;	the	derivative	of	the	acceleration.
Johnson	noise	A	fundamental	noise	 in	 resistive	devices	arising	 from	 the



uncertainty	about	the	position	and	velocity	of	individual	molecules.	Same
as	thermal	noise	and	white	noise.
join	The	dynamic	action	of	combining	multiple	threads	or	processes	at	run
time.	The	fork	operation	will	 take	one	 thread/process	and	create	multiple
children.	The	 join	 operation	will	 take	 the	multiple	 threads/processes	 and
convert	it	back	to	one.	See	also	fork.

kibibyte	(KiB)	210	or	1024	bytes.	Compare	to	kilobyte,	which	is	1000	bytes.
latch	As	a	noun,	it	means	a	register.	As	a	verb,	it	means	to	store	data	into
the	register.
latched	input	port		An	input	port	where	the	signals	are	latched	(saved)	on
an	edge	of	an	associated	strobe	signal.
latency	 	 In	 this	 book	 latency	 usually	 refers	 to	 the	 response	 time	 of	 the
computer	 to	 external	 events.	 For	 example,	 the	 time	 between	 new	 input
becoming	 available	 and	 the	 time	 the	 input	 is	 read	 by	 the	 computer.	 For
example,	 the	 time	between	 an	output	 device	becoming	 idle	 and	 the	 time
the	input	is	the	computer	writes	new	data	to	it.	There	can	also	be	latency
for	 an	 I/O	device,	which	 is	 the	 response	 time	of	 the	 external	 I/O	device
hardware	to	a	software	command.
LCD		Liquid	Crystal	Display,	where	the	computer	controls	the	reflectance
or	transmittance	of	the	liquid	crystal,	characterized	by	its	flexible	display
patterns,	low	power,	and	slow	speed.
LED	 	 Light	 Emitting	 Diode,	 where	 the	 computer	 controls	 the	 electrical
power	 to	 the	diode,	characterized	by	 its	 simple	display	patterns,	medium
power,	and	high	speed.
lightweight	process		Same	as	a	thread.	
linear	filter	A	filter	where	the	output	is	a	linear	combination	of	its	inputs.
linear	recursion	A	recursive	 technique	 that	makes	only	one	call	 to	 itself
during	the	execution	of	the	function.	Linear	recursive	functions	are	easier
to	 implement	 iteratively.	We	 draw	 the	 execution	 pattern	 as	 a	 straight	 or
linear	path.	See	also	recursion,	binary	recursion,	and	tail	recursion.
little	endian	Mechanism	for	 storing	multiple	byte	numbers	 such	 that	 the
least	significant	byte	exists	first	(in	the	smallest	memory	address).	Contrast
with	big	endian.
loader	 	 System	 software	 that	 places	 the	 object	 code	 into	 the
microcontroller’s	 memory.	 If	 the	 object	 code	 is	 stored	 in	 EPROM,	 the
loader	is	also	called	a	EPROM	programmer.
Local	Area	Network	(LAN)	A	connection	between	computers	confined	to
a	small	space,	such	as	a	room	or	a	building.
logic	analyzer	 	A	 hardware	 debugging	 tool	 that	 allows	 you	 to	 visualize



many	digital	 logic	signals	versus	 time.	Real	 logic	analyzers	have	at	 least
32	 channels	 and	 can	 have	 up	 to	 200	 channels,	 with	 sophisticated
techniques	 for	 triggering,	 saving	 and	 analyzing	 the	 real-time	 data.	 In
TExaS,	 logic	 analyzers	 have	 only	 8	 channels	 and	 simply	 plot	 digital
signals	versus	time.
LSB	 	 The	 least	 significant	 bit	 in	 a	 number	 system	 is	 the	 bit	 with	 the
smallest	significance,	usually	 the	right-most	bit.	With	signed	or	unsigned
integers,	the	significance	of	the	LSB	is	1.
maintenance	 	Process	of	verifying,	changing,	correcting,	enhancing,	and
extending	a	system.
make	before	break	in	a	double-throw	relay	or	double-throw	switch,	there
is	 one	 common	 contact	 and	 two	 separate	 contacts.	 Make	 before	 break
means	 as	 the	 common	 contact	 moves	 from	 one	 of	 separate	 contacts	 to
another,	 it	 will	 make	 (finishing	 bouncing)	 the	 second	 contact	 before	 it
breaks	 off	 (start	 bouncing)	 the	 first	 contact.	A	 form	D	 relay	 has	 a	make
before	break	operation.
mailbox	A	formal	communication	structure,	similar	to	a	FIFO	queue,
where	the	source	task	puts	data	into	the	mailbox	and	the	sink	task	gets	data
from	the	mailbox.	The	mailbox	can	hold	at	most	one	piece	of	data	at	a
time,	and	has	two	states:	mailbox	has	valid	data	or	mailbox	is	empty.
main	thread	A	thread	runs	like	a	main	program.	If	it	is	static,	it	is	created
on	 startup	 and	 runs	 forever	 by	 the	 scheduler.	 It	 could	 also	 be	 dynamic,
created	at	run	time.	Main	threads	can	sleep,	block,	and	be	killed.	Compare
to	event	thread.
mark	A	digital	value	of	true	or	logic	1.	Contrast	with	space.
mask		As	a	verb,	mask	is	the	operation	that	selects	certain	bits	out	of	many
bits,	using	 the	 logical	 and	operation.	The	bits	 that	 are	not	being	 selected
will	be	cleared	to	zero.	When	used	as	a	noun,	mask	refers	to	the	specific
bits	that	are	being	selected.

Mealy	FSM	A	FSM	where	the	both	the	output	and	next	state	are	a	function	of
the	input	and	state

measurand	A	signal	measured	by	a	data	acquisition	system.
mebibyte	(MiB)	220	or	1,048,576	bytes.	Compare	to	megabyte,	which	is
1,000,000	bytes.

membership	sets	Fuzzy	logic	variables	that	can	take	on	a	range	of	values
from	true	(255)	to	false	(0).
memory	 A	 computer	 component	 capable	 of	 storing	 and	 recalling
information.
memory-mapped	 I/O	 A	 configuration	 where	 the	 I/O	 devices	 are



interfaced	to	the	computer	in	a	manner	identical	to	the	way	memories	are
connected,	 from	 an	 interfacing	 perspective	 I/O	 devices	 and	 memory
modules	shares	the	same	bus	signals,	from	a	programmer’s	point	of	view
the	 I/O	 devices	 exist	 as	 locations	 in	 the	 memory	 map,	 and	 I/O	 device
access	can	be	performed	using	any	of	the	memory	access	instructions.
microcomputer	 A	 small	 electronic	 device	 capable	 of	 performing
input/output	 functions	 containing	 a	 microprocessor,	 memory,	 and	 I/O
devices,	where	small	means	you	can	carry	it.
microcontroller	 A	 single	 chip	 microcomputer	 like	 the	 TI	 MSP430,
Freescale	9S12,	Intel	8051,	PIC16,	or	the	Texas	Instruments	TM4C123.
mnemonicThe	symbolic	name	of	an	operation	code,	likemov	str	push .
modem	 An	 electronic	 device	 that	 MOdulates	 and	 DEModulates	 a
communication	 signal.	 Used	 in	 serial	 communication	 across	 telephone
lines.
monitor	 or	 debugger	 window	 	 A	 monitor	 is	 a	 debugger	 feature	 that
allows	us	to	passively	view	strategic	software	parameters	during	the	real-
time	 execution	 of	 our	 program.	 An	 effective	 monitor	 is	 one	 that	 has
minimal	 effect	 on	 the	 performance	 of	 the	 system.	 When	 debugging
software	 on	 a	windows-based	machine,	 we	 can	 often	 set	 up	 a	 debugger
window	that	displays	the	current	value	of	certain	software	variables.
Moore	FSM	A	FSM	where	the	both	the	output	is	only	a	function	of	the
state	and	the	next	state	is	a	function	of	the	input	and	state	MOSFET	Metal
oxide	semiconductor	field	effect	transistor.
MSB	 The	 most	 significant	 bit	 in	 a	 number	 system	 is	 the	 bit	 with	 the
greatest	 significance,	 usually	 the	 left-most	 bit.	 If	 the	 number	 system	 is
signed,	then	the	MSB	signifies	positive	(0)	or	negative	(1).
multiple	 access	 circular	 queue	 MACQ	 A	 data	 structure	 used	 in	 data
acquisition	 systems	 to	 hold	 the	 current	 sample	 and	 a	 finite	 number	 of
previous	samples.
multithreaded	 	A	 system	with	multiple	 threads	 (e.g.,	main	program	and
interrupt	service	routines)	that	cooperate	towards	a	common	overall	goal.	
mutual	exclusion	 or	mutex	 	 Thread	 synchronization	where	 at	most	 one
thread	at	a	time	is	allowed	to	enter.	
negative	feedback	An	analog	system	with	negative	gain	 feedback	paths.
These	systems	are	often	stable.
negative	logic	A	signal	where	the	true	value	has	a	lower	voltage	than	the
false	value,	in	digital	logic	true	is	0	and	false	is	1,	in	TTL	logic	true	is	less
than	0.7	volts	and	false	 is	greater	 than	2	volts,	 in	RS232	protocol	 true	 is
-12	volts	and	false	is	+12	volts.	Contrast	with	positive	logic.



nibble		4	binary	bits	or	1	hexadecimal	digit.
nonatomic	 	 Software	 execution	 that	 can	be	divided	or	 interrupted.	Most
lines	of	C	code	require	multiple	assembly	language	instructions	to	execute,
therefore	 an	 interrupt	may	 occur	 in	 the	middle	 of	 a	 line	 of	C	 code.	The
instructionsstore	and	load	multiple, STM	LDM ,	are	nonatomic.
nonintrusive	 A	 characteristic	 when	 the	 presence	 of	 the	 collection	 of
information	 itself	 does	 not	 affect	 the	 parameters	 being	 measured.	 	
Nonintrusiveness	is	the	characteristic	or	quality	of	a	debugger	that	allows
the	 software/hardware	 system	 to	operate	normally	as	 if	 the	debugger	did
not	exist.	Intrusiveness	is	used	as	a	measure	of	the	degree	of	perturbation
caused	 in	 program	 performance	 by	 an	 instrument.	 For	 example,	 a	 print
statement	added	to	your	source	code	and	single-stepping	are	very	intrusive
because	they	significantly	affect	 the	real-time	interaction	of	 the	hardware
and	 software.	 When	 a	 program	 interacts	 with	 real-time	 events,	 the
performance	is	significantly	altered.	On	the	other	hand,	an	instrument	that
toggles	an	LED	on	and	off	(requiring	less	than	a	1	µs	to	execute)	is	much
less	 intrusive.	 A	 logic	 analyzer	 that	 passively	 monitors	 the	 address	 and
data	 by	 is	 completely	 nonintrusive.	 	 An	 in-circuit	 emulator	 is	 also
nonintrusive	 because	 the	 software	 input/output	 relationships	 will	 be	 the
same	with	and	without	the	debugging	tool.
nonlinear	filter	A	filter	where	the	output	is	not	a	linear	combination	of	its
inputs.	 E.g.,	 median,	 minimum,	 maximum	 are	 examples	 of	 nonlinear
filters.	Contrast	to	linear	filter.
nonpreemptive	scheduler		A	scheduler	that	cannot	suspend	execution	of	a
thread	 without	 the	 thread's	 permission.	 The	 thread	 must	 cooperate	 and
suspend	itself.	Same	as	cooperative	multitasking.
nonreentrant	 	 A	 software	 module	 which	 once	 started	 by	 one	 thread,
should	not	be	interrupted	and	executed	by	a	second	thread.	A	nonreentrant
modules	 usually	 involve	 nonatomic	 accesses	 to	 global	 variables	 or	 I/O
ports:	read	modify	write,	write	followed	by	read,	or	a	multistep	write.
nonvolatile	 A	 condition	 where	 information	 is	 not	 lost	 when	 power	 is
removed.	When	power	is	restored,	then	the	information	is	in	the	state	that
occurred	when	the	power	was	removed.
Nyquist	Theorem	 If	a	 input	signal	 is	captured	by	an	ADC	at	 the	regular
rate	of	 fs	 samples/sec,	 then	 the	digital	 sequence	 can	 accurately	 represent
the	0	to	½	fs	frequency	components	of	the	original	signal.
object	code		Programs	in	machine	readable	format	created	by	the	compiler
or	assembler.
odd	parity	A	 communication	 protocol	where	 the	 number	 of	 ones	 in	 the



data	plus	a	parity	bit	is	an	odd	number.	Contrast	with	even	parity.
op	amp	An	integrated	analog	component	with	 two	inputs,	 (V2,V1)	and	an
output	 (Vout),	 where	 Vout=K•(V2-V1).	 The	 amp	 has	 a	 very	 large	 gain,	 K.
Same	as	operational	amplifier.
op	code,	opcode,	or	operation	code	A	specific	instruction	executed	by	the
computer.	 The	 op	 code	 along	with	 the	 operand	 completely	 specifies	 the
function	to	be	performed.	In	assembly	language	programming,	the	op	code
is	represented	by	its	mnemonic,	like	MOV.	During	execution,	the	op	code
is	stored	as	a	machine	code	loaded	in	memory.
open	 collector	 	 A	 digital	 logic	 output	 that	 has	 two	 states	 low	 and	HiZ.
Same	as	open	drain	and	wire-or-mode.
open	drain		A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same
as	open	collector	and	wire-or-mode.
open	loop	control	system	A	control	system	that	does	not	include	sensors
to	measure	the	current	state	variables.	An	analog	system	with	no	feedback
paths.
operand	The	second	part	of	an	instruction	that	specifies	either	the	data	or
the	 address	 for	 that	 instruction.	An	assembly	 instruction	 typically	has	 an
op	code	(e.g.,	MOV)	and	an	operand	(e.g.,	R0,#55).	 Instructions	 that	use
inherent	addressing	mode	have	no	operand	field.
operating	system	System	software	for	managing	computer	resources	and
facilitating	common	functions	like	input/output,	memory	management,	and
file	system.
originate	modem	the	device	that	places	the	telephone	call.
oscilloscope		A	hardware	debugging	tool	that	allows	you	to	visualize	one
or	two	analog	signals	versus	time.
output	compare	A	mechanism	to	cause	a	flag	to	be	set	and	an	output	pin
to	 change	 when	 the	 timer	 matches	 a	 preset	 value.	 The	 output	 compare
event	can	also	request	an	interrupt.
output	 impedance	 Open	 circuit	 output	 voltage	 divided	 by	 short	 circuit
output	current.
overflow	An	error	that	occurs	when	the	result	of	a	calculation	exceeds	the
range	 of	 the	 number	 system.	 For	 example,	with	 8-bit	 unsigned	 integers,
200+57	will	yield	the	incorrect	result	of	1.
overrun	error	An	 error	 that	 occurs	when	 the	 receiver	 gets	 a	 new	 frame
but	the	receive	FIFO	and	shift	register	already	have	information.
paged	memory		A	memory	organization	where	logical	addresses	(used	by
software)	have	multiple	and	distinct	components	or	fields.	The	number	of



bits	 in	 the	 least	 significant	 field	 defines	 the	 page	 size.	 The	 physical
memory	 is	 usually	 continuous	 having	 sequential	 addresses.	 There	 is	 a
dynamic	address	translation	(logical	to	physical).
parallel	port		A	port	where	all	signals	are	available	simultaneously.	In	this
book	the	ports	are	8	bits	wide.
parallel	processing	A	system	that	supports	two	or	more	programs	being
executed	at	the	same	time.	A	computer	with	multiple	cores	implements
parallel	programming.	Compare	to	concurrent	and	distributed.
partially	asynchronous	bus		a	communication	protocol	that	has	a	central
clock	but	the	memory	module	can	dynamically	extend	the	length	of	a	bus
cycle	 (cycle	 stretch)	 if	 it	 needs	 more	 time	path	 expression	A	 software
technique	 to	 guarantee	 subfunctions	 within	 a	 module	 are	 executed	 in	 a
proper	 sequence.	 For	 example,	 it	 forces	 the	 user	 to	 initialize	 I/O	 device
before	attempting	to	perform	I/O.
PC-relative	addressing	An	addressing	mode	where	 the	effective	address
is	 calculated	 by	 its	 position	 relative	 to	 the	 current	 value	 of	 the	 program
counter.
performance	 debugging	 or	 profiling	 	 The	 process	 of	 acquiring	 or
modifying	timing	characteristics	and	execution	patterns	of	a	program	and
the	 process	 of	 instrumenting	 a	 program	 for	 such	 purposes	 is	 called
performance	debugging	or	profiling.
periodic	polling	 	 A	 software/hardware	 synchronization	method	 that	 is	 a
combination	of	 interrupts	and	busy	wait.	An	 interrupt	occurs	at	a	 regular
rate	 (periodic)	 independent	 of	 the	 hardware	 status.	The	 interrupt	 handler
checks	 the	 hardware	 device	 (polls)	 to	 determine	 if	 its	 operation	 is
complete.	The	software	usually	can	perform	other	work	while	waiting	for
the	hardware.
Personal	Area	Network	(PAN)	A	connection	between	computers
controlled	by	a	single	person	or	all	working	toward	for	a	well-defined
single	task.
phase	shift	key	 (PSK)	 a	 protocol	 that	 encodes	 the	 information	 as	 phase
changes	between	the	sounds.
photosensor	A	transducer	that	converts	reflected	or	transmitted	light	into
electric	current.
physical	plant	The	physical	device	being	controlled.
PID	controller	A	control	system	where	 the	actuator	output	depends	on	a
linear	combination	of	the	current	error	(P),	the	integral	of	the	error	(I)	and
the	derivative	of	the	error	(D).
pink	 noise	 A	 fundamental	 noise	 in	 resistive	 devices	 arising	 from



fluctuating	conductivity.	Same	as	1/f	noise.
pole	A	place	in	the	frequency	domain	where	the	filter	gain	is	infinite.
polling	A	software	function	to	look	and	see	which	of	the	potential	sources
requested	the	interrupt.
port	 External	 pins	 through	 which	 the	 microcontroller	 can	 perform
input/output.	Same	as	I/O	port.
positive	 feedback	An	 analog	 system	with	 positive	 gain	 feedback	 paths.
These	systems	will	saturate.
positive	logic	a	signal	where	the	true	value	has	a	higher	voltage	than	the
false	 value,	 in	 digital	 logic	 true	 is	 1	 and	 false	 is	 0,	 in	TTL	 logic	 true	 is
greater	than	2	volts	and	false	is	less	than	0.7	volts,	in	RS232	protocol	true
is	+12	volts	and	false	is	-12	volts.	Contrast	with	negative	logic.
potentiometer	A	transducer	that	converts	position	into	electric	resistance.
precision	A	 term	specifying	 the	degrees	of	 freedom	from	random	errors.
For	an	 input	 signal,	 it	 is	 the	number	of	distinguishable	 input	 signals	 that
can	be	reliably	detected	by	the	measurement.	For	an	output	signal,	it	is	the
number	of	different	output	parameters	that	can	be	produced	by	the	system.
For	 a	 number	 system,	 precision	 is	 the	 number	 of	 distinct	 or	 different
values	 of	 a	 number	 system	 in	 units	 of	 “alternatives”.	The	 precision	 of	 a
number	system	is	also	the	number	of	binary	digits	required	to	represent	all
its	numbers	in	units	of	“bits”.
preemptive	 scheduler	 	 A	 scheduler	 that	 has	 the	 power	 to	 suspend
execution	of	a	thread	without	the	thread's	permission.
priority		When	two	requests	for	service	are	made	simultaneously,	priority
determines	which	order	to	process	them.
private		Can	be	accessed	only	by	software	modules	in	that	local	group.
private	variable	A	global	variable	that	is	used	by	a	single	thread,	and	not
shared	with	other	threads.
process	 	 The	 execution	 of	 software	 that	 does	 not	 necessarily	 cooperate
with	other	processes.	
producer-consumer	 A	 multithreaded	 system	 where	 the	 producers
generate	new	data,	and	the	consumers	process	or	output	the	data.
profile	A	collection	of	services	implemented	by	Bluetooth.
profiling		See	performance	debugging.	
program	 counter	 (PC)	 A	 register	 in	 the	 processor	 that	 points	 to	 the
memory	containing	the	instruction	to	execute	next.
PROM	 Same	 as	 EPROM.	 Programmable	 read	 only	 memory	 that	 is
nonvolatile	 and	 requires	 external	 devices	 to	 erase	 and	 reprogram.	 It	 is
usually	erased	using	UV	light.



promotion	 Increasing	 the	 precision	 of	 a	 number	 for	 convenience	 or	 to
avoid	overflow	errors	during	calculations.
pseudo	interrupt	vector	A	secondary	place	for	the	interrupt	vectors	for
the	convenience	of	the	debugger,	because	the	debugger	cannot	or	does	not
want	the	user	to	modify	the	real	interrupt	vectors.	They	provide	flexibility
for	debugging	but	incur	a	run	time	delay	during	execution.
pseudo	op	Operations	included	in	the	program	that	are	not	executed	by	the
computer	at	run	time,	but	rather	are	interpreted	by	the	assembler	during	the
assembly	process.	Same	as	assembly	directive.
pseudo-code	A	shorthand	 for	describing	a	software	algorithm.	The	exact
format	is	not	defined,	but	many	programmers	use	their	favorite	high-level
language	 syntax	 (like	 C)	 without	 paying	 rigorous	 attention	 to	 the
punctuation.
public		Can	be	accessed	by	any	software	module.
public	variable	A	global	variable	 that	 is	shared	by	multiple	programs	or
threads.
pulse	width	modulation	A	technique	to	deliver	a	variable	signal	(voltage,
power,	 energy)	using	an	on/off	 signal	with	 a	variable	percentage	of	 time
the	signal	is	on	(duty	cycle).	Same	as	variable	duty	cycle.
Q	 The	 Q	 of	 a	 bandpass	 filter	 (passes	 fmin	 to	 fmax)	 is	 the	 center	 pass
frequency	 (fo=(fmax+fmin)/2)	 divided	 by	 the	 width	 of	 the	 pass	 region,
Q=fo/(fmax-fmin).	The	Q	of	a	bandreject	filter	(rejects	fmin	to	fmax)	is	the	center
reject	frequency	(fo=(fmax+fmin)/2)	divided	by	the	width	of	the	reject	region,
Q=fo/(fmax-fmin).
quadrature	 amplitude	 modem	 (QAM)	 a	 protocol	 that	 used	 both	 the
phase	and	amplitude	to	encode	up	to	6	bits	onto	each	baud.
qualitative	 DAS	 A	 DAS	 that	 collects	 information	 not	 in	 the	 form	 of
numerical	 values,	 but	 rather	 in	 the	 form	 of	 the	 qualitative	 senses,	 e.g.,
sight,	hearing,	smell,	 taste	and	 touch.	A	qualitative	DAS	may	also	detect
the	presence	or	absence	of	conditions.
quantitative	 DAS	 A	 DAS	 that	 collects	 information	 in	 the	 form	 of
numerical	values.
RAM	 Random	 Access	 Memory,	 a	 type	 of	 memory	 where	 is	 the
information	 can	 be	 stored	 and	 retrieved	 easily	 and	 quickly.	 Since	 it	 is
volatile	the	information	is	lost	when	power	is	removed.
range	 Includes	both	 the	 smallest	 possible	 and	 the	 largest	 possible	 signal
(input	 or	 output).	 The	 difference	 between	 the	 largest	 and	 smallest	 input
that	can	be	measured	by	 the	 instrument.	The	units	are	 in	 the	units	of	 the



measurand.	When	precision	is	in	alternatives,	range=precision•resolution.	
Same	as	span	read	cycle	data	 flows	from	the	memory	or	 input	device	 to
the	 processor,	 the	 address	 bus	 specifies	 the	 memory	 or	 input	 device
location	 and	 the	 data	 bus	 contains	 the	 information	 at	 that	 address	 read
data	available	The	time	interval	(start,end)	during	which	the	data	will	be
valid	during	a	read	cycle,	determined	by	the	memory	module	real-time	A
characteristic	of	a	system	that	can	guarantee	an	upper	bound	(worst	case)
on	latency.
real-time	 system	 A	 system	 where	 time-critical	 operations	 occur	 when
needed.
recursion	A	programming	technique	where	a	function	calls	itself.
reduced	 instruction	 set	 computer	 (RISC)	 A	 computer	 with	 a	 few
instructions,	 instructions	with	fixed	lengths,	 instructions	that	execute	in	1
or	2	bus	cycles,	only	load	and	store	can	access	memory,	no	one	instruction
can	both	read	and	write	memory,	many	identical	general	purpose	registers,
and	a	limited	number	of	addressing	modes.		Contrast	to	CISC.
reentrant	 	 A	 software	 module	 that	 can	 be	 started	 by	 one	 thread,
interrupted	 and	 executed	 by	 a	 second	 thread.	A	 reentrant	module	 allows
both	 threads	 to	 properly	 execute	 the	 desired	 function.	 	 Contrast	 with
nonreentrant.
registers	High-speed	memory	located	in	the	processor.	The	registers	in	the
ARM ® 	Cortex™-M	include	R0	through	R15.
relay		A	mechanical	switch	that	can	be	turned	on	and	off	by	the	computer.
reliability		The	ability	of	a	system	to	operate	within	specified	parameters
for	a	stated	period	of	time.	Given	in	terms	of	mean	time	between	failures
(MTBF).
reproducibility	(or	repeatability)	A	parameter	specifying	how	consistent
over	time	the	measurement	is	when	the	input	remains	fixed.
requirements	document	A	formal	description	of	what	the	system	will	do
in	a	very	complete	way,	but	not	including	how	it	will	be	done.	It	should	be
unambiguous,	complete,	verifiable,	and	modifiable.
reset	 vector	 The	 32-bit	 value	 at	 memory	 locations	 0x0000.0004
specifying	where	the	software	should	start	after	power	is	turned	on	or	after
a	hardware	reset.
resolution	 For	 an	 input	 signal,	 it	 is	 the	 smallest	 change	 in	 the	 input
parameter	that	can	be	reliably	detected	by	the	measurement.	For	an	output
signal,	 it	 is	 the	 smallest	 change	 in	 the	 output	 parameter	 that	 can	 be
produced	by	the	system,	range	equals	precision	times	resolution.		The	units
are	 in	 the	 units	 of	 the	 measurand.	 When	 precision	 is	 in	 alternatives,



range=precision•resolution.
response	time		Similar	to	latency,	it	is	the	delay	between	when	the	time	an
event	occurs	and	the	time	the	software	responds	to	the	event.
ritual	 	Software,	usually	executed	once	at	 the	beginning	of	 the	program,
that	defines	the	operational	modes	of	the	I/O	ports.
ROM	Read	Only	Memory,	a	type	of	memory	where	is	the	information	is
programmed	 into	 the	device	once,	but	 can	be	accessed	quickly.	 It	 is	 low
cost,	 must	 be	 purchased	 in	 high	 volume	 and	 can	 be	 programmed	 only
once.	See	also	EPROM,	EEPROM,	and	flash	EEPROM.

rotor	The	part	of	a	motor	that	rotates.
round	robin	scheduler		A	scheduler	that	runs	each	active	thread	equally.
roundoff	 The	 error	 that	 occurs	 in	 a	 fixed-point	 or	 floating-point
calculation	when	 the	 least	 significant	 bits	 of	 an	 intermediate	 calculation
are	discarded	so	the	result	can	fit	into	the	finite	precision.
sample	and	hold	A	circuit	used	to	latch	a	rapidly	changing	analog	signal,
capturing	its	input	value	and	holding	its	output	constant.
sampling	 rate	 The	 rate	 at	 which	 data	 is	 collected	 in	 a	 data	 acquisition
system.
saturation	A	device	that	is	no	longer	sensitive	to	its	inputs	when	its	input
goes	above	a	maximum	value	or	below	a	minimum	value.
scan	or	scanpoint	 	Any	instrument	used	to	produce	a	side	effect	without
causing	a	break	(halt)	is	a	scan.		Therefore,	a	scan	may	be	used	to	gather
data	 passively	 or	 to	 modify	 functions	 of	 a	 program.	 Examples	 include
software	 added	 to	 your	 source	 code	 that	 simply	 outputs	 or	 modifies	 a
global	 variable	 without	 halting.	 A	 scanpoint	 is	 triggered	 in	 a	 manner
similar	 to	 a	 breakpoint	 but	 a	 scanpoint	 simply	 records	 data	 at	 that	 time
without	halting	execution.
scheduler		System	software	that	suspends	and	launches	threads.
Schmitt	 Trigger	 	 A	 digital	 interface	 with	 hysteresis	 making	 it	 less
susceptible	to	noise.
scope		A	logic	analyzer	or	an	oscilloscope,	hardware	debugging	tools	that
allows	you	to	visualize	multiple	digital	or	analog	signals	versus	time.
select	signal	The	output	of	 the	address	decoder	 (each	module	on	 the	bus
has	 a	 separate	 address	 decoder);	 a	Boolean	 (true/false)	 signal	 specifying
whether	or	not	 the	current	address	of	 the	bus	matches	 the	device	address
semaphore	A	system	function	with	 two	operations	(wait	and	signal)	 that
provide	for	thread	synchronization	and	resource	sharing.
sensitivity	The	sensitivity	of	a	transducer	is	the	slope	of	the	output	versus
input	response.	The	sensitivity	of	a	qualitative	DAS	that	detects	events	is



the	percentage	of	actual	events	that	are	properly	recognized	by	the	system.
serial	communication	A	process	where	information	is	transmitted	one	bit
at	a	time.
serial	 peripheral	 interface	 (SPI)	 A	 device	 to	 transmit	 data	 with
synchronous	serial	communication	protocol.	Same	as	SSI.
serial	port	An	 I/O	port	with	which	 the	 bits	 are	 input	 or	 output	 one	 at	 a
time.
service	A	collection	of	Bluetooth	functionalities	that	 taken	together	solve
one	 coherent	 system	 function.	 Examples	 include	 blood	 pressure	monitor
and	human	interface	device	(mouse,	keyboard).
servo	A	DC	motor	with	built	in	controller.	The	microcontroller	specifies
desired	position	and	the	servo	adds/subtracts	power	to	move	the	shaft	to
that	position.
setup	time	When	latching	data	 into	a	register	with	a	clock,	 it	 is	 the	 time
before	an	edge	the	input	must	be	valid.	Contrast	with	hold	time.
shot	noise	A	fundamental	noise	that	occurs	in	devices	that	count	discrete
events.
signed	 two’s	 complement	 binary	 A	 mechanism	 to	 represent	 signed
integers	where	1	 followed	by	all	0’s	 is	 the	most	negative	number,	all	1’s
represents	the	value	-1,	all	0’s	represents	the	value	0,	and	0	followed	by	all
1’s	is	the	largest	positive	number.
sign-magnitude	binary	A	mechanism	to	represent	signed	 integers	where
the	most	significant	bit	is	set	if	the	number	is	negative,	and	the	remaining
bits	represent	the	magnitude	as	an	unsigned	binary.
simplex	channel	Hardware	 that	allows	bits	 (information,	error	checking,
synchronization	 or	 overhead)	 to	 transfer	 only	 in	 one	 direction.	 Contrast
with	half	duplex	and	full	duplex	channels.
simplex	communication	A	system	that	allows	information	to	transfer	only
in	one	direction.
simulator		A	simulator	is	a	software	application	that	simulates	or	mimics
the	operation	of	a	processor	or	computer	system.	Most	simulators	recreate
only	simple	I/O	ports	and	often	do	not	effectively	duplicate	 the	real-time
interactions	of	the	software/hardware	interface.	On	the	other	hand,	they	do
provide	 a	 simple	 and	 interactive	mechanism	 to	 test	 software.	 Simulators
are	especially	useful	when	learning	a	new	language,	because	they	provide
more	control	and	access	to	the	simulated	machine,	than	one	normally	has
with	real	hardware.
single	 address	 DMA	 Direct	 memory	 access	 that	 requires	 only	 one	 bus
cycle	to	transfer	data	from	an	input	device	into	memory,	or	from	memory



to	an	output	device.
single	cycle	DMA	An	I/O	synchronization	scheme	that	transfers	data	one
item	at	a	time	directly	from	an	input	device	into	memory,	or	directly	from
memory	to	an	output	device.	Same	as	cycle	steal	DMA.
single-pole	 relay	 A	 simple	 relay	 with	 only	 one	 copy	 of	 the	 switch
mechanism.	Contrast	with	double	pole.
single-pole	 switch	 A	 simple	 switch	 with	 only	 one	 copy	 of	 the	 switch
mechanism.	One	switch	 that	acts	 independent	 from	other	 switches	 in	 the
system.	Contrast	with	double-pole.
single-throw	 switch	 A	 switch	 with	 two	 contact	 connections.	 The	 two
contacts	may	be	connected	or	disconnected.		Contrast	with	double-throw.
slack	time	The	time-to-deadline	minus	the	how	long	it	will	take	to
complete	the	task.	For	example,	if	slack	time	is	zero,	then	you	could
complete	the	task	on	time	if	you	devoted	100%	of	your	resources.
slew	rate	The	maximum	slope	of	a	signal.	If	the	time-varying	signal	V(t)
is	in	volts,	the	slew	rate	is	the	maximum	dV/dt	in	volts/s.
soft	 real-time	 A	 system	 that	 implements	 best	 effort	 to	 execute	 critical
tasks	 on	 time,	 typically	 using	 a	 priority	 scheduler.	 Once	 a	 deadline	 as
passed,	the	value	of	completing	the	task	diminishes	over	time.	Compare	to
hard	real-time	and	firm	real-time.
software	interrupt	A	software	interrupt	is	similar	to	a	regular	or	hardware
interrupt:	 there	 is	 a	 trigger	 that	 invokes	 the	 execution	of	 an	 ISR.	On	 the
CortexTM-M,	there	are	two	software	interrupts:	supervisor	call	and	PendSV
(vectors	 at	 0x00000028	 and	 0x00000038	 respectively).	 The	 difference
between	 hardware	 and	 software	 interrupts	 is	 the	 trigger.	 Hardware
interrupts	are	 triggered	by	hardware	events,	while	software	 interrupts	are
triggered	 explicitly	 by	 software.	 For	 example,	 to	 invoke	 a	 PendSV,	 the
software	sets	bit	28	of	the	NVIC_INT_CTRL_R	register.	Same	as	trap.
software	 maintenance	 Process	 of	 verifying,	 changing,	 correcting,
enhancing,	and	extending	software.
solenoid	 	A	discrete	motion	device	(on/off)	 that	can	be	controlled	by	 the
computer	usually	by	activating	an	electromagnet.	For	example,	electronic
door	locks	on	automobiles.
source	code		Programs	in	human	readable	format	created	with	an	editor.
space	A	digital	value	of	false	or	logic	0.	Contrast	with	mark.
span		Same	as	range.
spatial	resolution	The	volume	over	which	 the	DAS	collects	 information
about	the	measurand.
specificity	The	specificity	of	a	transducer	is	the	relative	sensitivity	of	the



device	to	the	signal	of	interest	versus	the	sensitivity	of	the	device	to	other
unwanted	signals.	The	sensitivity	of	a	qualitative	DAS	that	detects	events
is	 the	 percentage	 of	 events	 detected	 by	 the	 system	 that	 are	 actually	 true
events.
spinlock	semaphore		A	semaphore	where	the	threads	will	spin	(run	but	do
no	useful	function)	when	they	execute	wait	on	a	busy	semaphore.	Contrast
to	blocking	semaphore.
stabilize		The	debugging	process	of	stabilizing	a	software	system	involves
specifying	all	its	inputs.	When	a	system	is	stabilized,	the	output	results	are
consistently	 repeatable.	 Stabilizing	 a	 system	 with	 multiple	 real-time
events,	 like	 input	devices	and	time-dependent	conditions,	can	be	difficult
to	accomplish.	 It	often	 involves	replacing	input	hardware	with	sequential
reads	from	an	array	or	disk	file.
stack	 Last	 in	 first	 out	 data	 structure	 located	 in	 RAM	 and	 used	 to
temporarily	save	information.
stack	 pointer	 (SP)	 A	 register	 in	 the	 processor	 that	 points	 to	 the	 RAM
location	of	the	stack.
start	bit	An	overhead	bit(s)	specifying	the	beginning	of	the	frame,	used	in
serial	 communication	 to	 synchronize	 the	 receiver	 shift	 register	 with	 the
transmitter	clock.		See	also	stop	bit,	even	parity	and	odd	parity.
starvation	 	A	 condition	 that	 occurs	with	 a	 priority	 scheduler	where	 low
priority	threads	are	never	run.
static	allocation		Data	structures	such	as	an	FSM	or	TCB	that	are	defined
at	assembly	or	compile	time	and	exist	throughout	the	life	of	the	software.
Contrast	to	dynamic	allocation.
static	RAM	Volatile	read/write	storage	built	from	three	transistors	having
fast	speed,	and	not	requiring	refresh.	Contrast	with	dynamic	RAM.

stator	The	part	of	a	motor	that	remains	stationary.	Same	as	frame.
stepper	motor		A	motor	that	moves	in	discrete	steps.
stop	bit		An	overhead	bit(s)	specifying	the	end	of	the	frame,	used	in	serial
communication	 to	 separate	 one	 frame	 from	 the	 next.	 See	 also	 start	 bit,
even	parity	and	odd	parity.
strain	 gauge	 A	 transducer	 that	 converts	 displacement	 into	 electric
resistance.	It	can	also	be	used	to	measure	force	or	pressure.
string	A	sequence	of	ASCII	characters,	usually	terminated	with	a	zero.
symbol	table	A	mapping	from	a	symbolic	name	to	 its	corresponding	16-
bit	 address,	 generated	by	 the	 assembler	 in	pass	one	 and	displayed	 in	 the
listing	file.
synchronous	bus	a	communication	protocol	that	has	a	central	clock;	there



is	no	feedback	from	the	memory	to	the	processor,	so	every	memory	cycle
takes	exactly	the	same	time;	data	transfers	(put	data	on	bus,	take	data	off
bus)	are	synchronized	to	the	central	clock	synchronous	protocol	a	system
where	the	two	devices	share	the	same	clock.
synchronous	 serial	 interface	 (SSI)	 A	 device	 to	 transmit	 data	 with
synchronous	serial	communication	protocol.	Same	as	SPI.
tachometer	a	sensor	that	measures	the	revolutions	per	second	of	a	rotating
shaft.
tail	 recursion	 A	 technique	 where	 the	 recursive	 call	 occurs	 as	 the	 last
action	 taken	 by	 the	 function.	 See	 also	 recursion,	 binary	 recursion,	 and
linear	recursion.
thermal	noise	A	 fundamental	 noise	 in	 resistive	devices	 arising	 from	 the
uncertainty	about	the	position	and	velocity	of	individual	molecules.	Same
as	Johnson	noise	and	white	noise.
thermistor	A	nonlinear	 transducer	 that	converts	 temperature	 into	electric
resistance.
thermocouple	A	transducer	that	converts	temperature	into	electric	voltage.
thread	 	The	 execution	of	 software	 that	 cooperates	with	other	 threads.	A
thread	embodies	the	action	of	the	software.	One	concept	describes	a	thread
as	the	sequence	of	operations	including	the	input	and	output	data.
thread	control	block	TCB		Information	about	each	thread.	
three-pole	relay	Three	separate	and	complete	relays,	which	are	activated
together	(see	single	pole).
three-pole	 switch	 	 Three	 separate	 and	 complete	 switches.	 The	 switches
are	 electrically	 separate,	 but	mechanically	 connected.	The	 three	 switches
turned	on	and	off	together	(see	single	pole).
throughput		The	information	transfer	rate,	the	amount	of	data	transferred
per	second.	Same	as	bandwidth.
time	constant	The	time	to	reach	63.2%	of	the	final	output	after	the	input	is
instantaneously	increased.
time	 profile	 and	 execution	 profile	 	 Time	 profile	 refers	 to	 the	 timing
characteristic	 of	 a	 program	 and	 execution	 profile	 refers	 to	 the	 execution
pattern	of	a	program.
time	to	deadline	The	time	between	now	and	the	deadline.
tolerance		The	maximum	deviation	of	a	parameter	from	a	specified	value.
total	harmonic	distortion	(THD)	A	measure	of	the	harmonic	distortion
present	and	is	defined	as	the	ratio	of	the	sum	of	the	powers	of	all	harmonic
components	to	the	power	of	the	fundamental	frequency.
transducer	A	device	that	converts	one	type	of	signal	into	another	type.



trap	A	trap	is	similar	to	a	regular	or	hardware	interrupt:	there	is	a	trigger
that	 invokes	 the	 execution	 of	 an	 ISR.	On	 the	CortexTM-M,	 there	 are	 two
software	 interrupts:	 supervisor	 call	 and	 PendSV	 (vectors	 at	 0x00000028
and	 0x00000038	 respectively).	 The	 difference	 between	 hardware	 and
software	 interrupts	 is	 the	 trigger.	 Hardware	 interrupts	 are	 triggered	 by
hardware	 events,	 while	 software	 interrupts	 are	 triggered	 explicitly	 by
software.	For	example,	to	invoke	a	PendSV,	the	software	sets	bit	28	of	the
NVIC_INT_CTRL_R	register.	Same	as	software	interrupt.
tristate		The	state	of	a	tristate	logic	output	when	off	or	not	driven.
tristate	logic		A	digital	logic	device	that	has	three	output	states	low,	high,
and	off	(HiZ).
truncation	The	act	of	discarding	bits	as	a	number	 is	converted	from	one
format	to	another.
two’s	complement	A	number	system	used	 to	define	signed	 integers.	The
MSB	defines	whether	the	number	is	negative	(1)	or	positive	(0).	To	negate
a	 two’s	 complement	 number,	 one	 first	 complements	 (flip	 from	0	 to	 1	 or
from	1	to	0)	each	bit,	then	add	1	to	the	number.
two-pole	 relay	 two	 separate	 and	 complete	 relays,	 which	 are	 activated
together	(same	as	double	pole).
two-pole	 switch	 Two	 separate	 and	 complete	 switches.	 The	 switches	 are
electrically	separate,	but	mechanically	connected.	The	two	switches	turned
on	and	off	together	which	are	activated	together,	same	as	double-pole.
ultrasound	A	 sound	with	 a	 frequency	 too	 high	 to	 be	 heard	 by	 humans,
typically	40	kHz	to	100	MHz.
unbuffered	I/O	 	 The	 hardware	 and	 software	 are	 tightly	 coupled	 so	 that
both	wait	for	each	other	during	the	transmission	of	data.
unipolar	stepper	motor	A	stepper	motor	where	the	current	flows	in	only
one	 direction	 (on/off)	 along	 the	 interface	 wires;	 a	 stepper	 with	 5	 or	 6
interface	wires.
universal	 asynchronous	 receiver/transmitter	 (UART)	 A	 device	 to
transmit	 data	with	 asynchronous	 serial	 communication	protocol,	 same	 as
ACIA.
unsigned	binary	 A	mechanism	 to	 represent	 unsigned	 integers	where	 all
0’s	 represents	 the	 value	 0,	 and	 all	 1’s	 represents	 is	 the	 largest	 positive
number.
vector	A	32-bit	 address	 in	ROM	containing	 the	 location	 of	 the	 interrupt
service	routines.	See	also	reset	vector	and	interrupt	vector.

velocity	factor	(VF)	The	ratio	of	the	speed	at	which	information	travels	relative
to	the	speed	of	light.



vertical	parity		The	normal	parity	bit	calculated	on	each	individual	frame,
can	be	even	or	odd	parity	VOH		The	smallest	possible	output	voltage	when
the	signal	is	high,	and	the	current	is	less	than	IOH.
VOL	 	The	 largest	 possible	 output	 voltage	when	 the	 signal	 is	 low,	 and	 the
current	is	less	than	IOL.
volatile	A	condition	where	information	is	lost	when	power	is	removed.
volatile	A	property	of	a	variable	in	C,	such	that	the	value	of	the	variable
can	change	outside	the	immediate	scope	of	the	software	accessing	the
variable.
voltage	 follower	 An	 analog	 circuit	 with	 gain	 equal	 to	 1,	 large	 input
impedance	and	small	output	impedance.	Same	as	follower.
vulnerable	 window	 	 Locations	 within	 a	 software	 module,	 which	 if	 an
interrupt	were	to	occur	at	one	of	these	locations,	then	an	error	could	occur
(e.g.,	 data	 lost,	 corrupted	 data,	 program	 crash,	 etc.)	 	 Same	 as	 critical
section.
white	 noise	 A	 fundamental	 noise	 in	 resistive	 devices	 arising	 from	 the
uncertainty	about	the	position	and	velocity	of	individual	molecules.	Same
as	Johnson	noise	and	thermal	noise.
wire-or-mode	 A	 digital	 logic	 output	 that	 has	 two	 states	 low	 and	 HiZ.
Same	as	open	collector.
word	Four	bytes	containing	32	bits.
workstation	A	powerful	general	purpose	computer	system	having	a	price
in	the	$3K	to	50K	range	and	used	for	handling	large	amounts	of	data	and
performing	many	calculations.
write	cycle	data	is	sent	from	the	processor	to	the	memory	or	output	device,
the	 address	 bus	 specifies	 the	memory	 or	 output	 device	 location	 and	 the
data	 bus	 contains	 the	 information	 write	 data	 available	 time	 interval
(start,end)	 during	 which	 the	 data	 will	 be	 valid	 during	 a	 write	 cycle,
determined	by	the	processor	write	data	required		time	interval	(start,end)
during	which	the	data	should	be	valid	during	a	write	cycle,	determined	by
the	memory	module	XON/XOFF	A	protocol	used	by	printers	to	feedback
the	 printer	 status	 to	 the	 computer.	 XOFF	 is	 sent	 from	 the	 printer	 to	 the
computer	in	order	to	stop	data	transfer,	and	XON	is	sent	from	the	printer	to
the	computer	in	order	to	resume	data	transfer.
Z	 Transform	 A	 transform	 equation	 converting	 a	 digital	 time-domain
sequence	 into	 the	 frequency	 domain.	 In	 both	 the	 time	 and	 frequency
domain	it	is	assumed	the	signal	is	band	limited	to	0	to	½fs.
zero	A	place	in	the	frequency	domain	where	the	filter	gain	is	zero.



Appendix	2.	Solutions	to	Checkpoints
Checkpoint	1.1:	A	characteristic	of	a	system	that	can	guarantee	 that	 important
tasks	get	run	at	the	correct	time.	We	define	latency	as	the	difference	between	the
time	a	task	is	scheduled	to	run,	and	the	time	when	the	task	is	actually	run.	A	real-
time	system	guarantees	the	latency	will	be	small	and	bounded.
Checkpoint	1.2:	An	embedded	system	performs	a	specific	dedicated	operation
where	the	computer	is	hidden	or	embedded	inside	the	machine.
Checkpoint	1.3:	Minimize	size,	minimize	weight,	minimize	power,	provide	for
proper	operation	in	harsh	environments,	maximize	safety,	and	minimize	cost.
Checkpoint	1.4:	Multiple	busses	allow	multiple	operations	to	occur	in	parallel,
resulting	in	higher	performance	(more	operations/sec).
Checkpoint	 1.5:	The	 system	 does	 not	 run	 slower	 during	 debugging,	 because
debugger	functions	occur	simultaneously	with	program	operation.
Checkpoint	1.6:	Variables,	 the	heap,	and	 the	stack	go	 in	RAM.	Constants	and
machine	code	go	in	ROM.	Basically,	items	that	can	change	over	time	go	in	RAM
and	items	that	do	not	change	go	in	ROM.
Checkpoint	 1.7:	 The	 ROM	 on	 our	 microcontroller	 is	 electrically	 erasable
programmable	read	only	memory	(EEPROM).	So	yes	the	software	can	erase	the
memory	and	reprogram	it.	Under	normal	conditions	however	software	does	not
write	 to	ROM.	However,	 you	 can	 create	 a	 file	 system	using	 a	 piece	 of	ROM,
where	your	software	will	be	writing	to	ROM..
Checkpoint	1.8:	0x2200.0000	+	32*n	+	4*b=0x2200.0000	+	32*0x1010	+4*3
=0x2200.0000	+0x20200	+	0x0C	=	0x2202.020C.
Checkpoint	1.9:	0x2200.0000	+	32*n	+	4*b=0x2200.0000	+	32*0x10000+4*22
=0x2200.0000	+0x200000	+	0x58	=	0x2220.0058.
Checkpoint	 1.10:	0x4200.0000	+	32*n	 +	 4*b=0x4200.0000	 +	 32*0x30	 +4*7
=0x4200.0000	+0x00600	+	0x1C	=	0x4200.061C.
Checkpoint	 1.11:	R13	 is	 the	 stack	 pointer,	 used	 to	 create	 temporary	 storage
(also	called	SP).	R14	is	the	link	register	(also	called	LR),	containing	the	return
address	when	 a	 function	 is	 called.	R15	 is	 the	 program	 counter,	 containing	 the
address	of	the	instruction	as	software	executes	(also	called	PC).
Checkpoint	1.12:	The	I	bit	in	bit	0	of	the	PRIMASK	register.	If	I=0	interrupts
are	enabled.	If	I=1	interrupts	are	disabled	(postponed).
Checkpoint	1.13:	A	pin	is	an	individual	wire	on	the	microcontroller,	pins	can	be
used	for	input,	output,	debugging,	or	power.	A	port	is	a	collection	of	input/output
pins	with	a	common	operation.
Checkpoint	1.14:	Parallel,	serial,	analog	and	time.
Checkpoint	1.15:	The	addressing	mode	 specifies	how	 the	 instruction	 accesses



data.
Checkpoint	 1.16:	Data	 are	 numbers	 and	 addresses	 are	memory	 locations	 that
point	to	data.	The	processor	does	not	know	if	a	value	in	R0	is	data	or	an	address.
It	 is	 the	 responsibility	 of	 the	 programmer	 (you)	 to	 use	 data	 as	 numbers	 and
addresses	as	pointers	in	the	way	you	write	your	programs.
Checkpoint	 1.17:	 Since	 this	 instruction	 pushes	 4	 registers,	 the	 SP	 is
decremented	by	16.
Checkpoint	1.18:	The	 return	 address	 is	 saved	 in	 the	 link	 register,	R14	or	LR.
However,	when	a	 first	 function	calls	a	 second	 function,	 the	 first	 function	must
save	the	LR	onto	the	stack.
Checkpoint	1.19:	Standards	 allows	 software	written	by	one	 company	 to	work
properly	with	software	written	by	another	company.	A	similar	concept	is	CMSIS,
which	 allows	 the	 standardization	 of	 I/O	 functions,	 see
http://www.keil.com/pack/doc/CMSIS/General/html/index.html.
Checkpoint	 1.20:	 A	 pointer	 is	 an	 address	 that	 points	 to	 data.	 Pointers	 are
important	because	they	allow	us	to	pass	large	amounts	of	data	with	a	single	32-
bit	entity.
Checkpoint	1.21:	An	array	of	10	elements	is	accessed	with	indices	from	0	to	9.
Checkpoint	 1.22:	 A	 linked	 list	 is	 a	 collection	 of	 nodes,	 where	 each	 node
contains	data	and	a	pointer	to	the	next	node.	The	advantage	of	linked	list	is	the
data	can	grow	and	shrink	in	size,	and	you	can	sort	the	order	dynamically.	In	real-
time	systems	we	must	guarantee	execution	of	important	tasks	occur	at	the	proper
time,	so	we	will	be	careful	when	implementing	flexible	behavior,	which	in	some
instances	may	not	finish.	Sometimes	we	sacrifice	flexibility	of	linked	lists	for	the
stability	and	simplicity	of	arrays.
Checkpoint	1.23:	This	 is	 internal	 fragmentation	because	 it	 is	wasted	space	for
efficiency	or	the	convenience	of	the	operating	system.
Checkpoint	1.24:	Search	 the	free	 list	 to	see	 if	 the	address &Heap[SIZE*i] 	 is
free.
Checkpoint	 1.25:	 Ignore	 size	 parameter,	 return	 100	 bytes	 regardless	 of	 the
request.
Checkpoint	1.26:	The	block	is	lost.	This	is	an	example	of	a	memory	leak.
Checkpoint	1.27:	Sort	 the	 free	blocks	by	size	using	a	binary	 tree.	This	way	 it
will	be	faster	to	search	for	the	best	free	block	during	allocation.
Checkpoint	 1.28:	 Each	 block	 has	 two	 counters.	 Dividing	 a	 block	 into	 two
creates	one	more	block.	There	needs	to	be	two	more	counters	for	the	new	block.
Checkpoint	1.29:	Weird	and	crazy	bugs	will	occur,	because	 that	memory	may
be	allocated	to	another	task.
Checkpoint	 1.30:	 The	 existence	 of	 the	 instrument	 has	 a	 small	 but



inconsequential	 effect	 on	 the	 system	 performance.	 The	 time	 to	 execute	 the
instrument	is	small	compared	to	the	time	between	executions	of	the	instrument.
There	are	three	advantages	of	leaving	the	instruments	in	the	final	system.	First,
the	system	was	 tested	with	 the	 instruments	and	works	 to	specification	with	 the
instruments.	There	is	no	guarantee	the	system	will	still	work	if	 the	 instruments
are	 removed.	 Second,	 the	 instruments	 could	 provide	 run	 time	 checks	 to	 catch
failures	 during	 operation.	 Third,	 the	 instruments	 could	 be	 used	 during	 system
checkup	(recalibration,	diagnostic	checkup	etc.)	Checkpoint	2.1:	Not	all	pins	of
a	 port	 must	 have	 the	 same	 direction.	 Some	 may	 be	 inputs	 while	 others	 are
outputs.	Furthermore,	some	pins	may	be	off,	meaning	neither	input	or	output.
Checkpoint	2.2:		If	we	activate	the	HFXT	to	run	the	microcontroller	at	48	MHz,
then	the	SysTick	counter	decrements	every	20.83	ns.	To	make	it	interrupt	every
10ms,	it	should	interrupt	every	480000	cycles.	Thus,	we	set	reload	to	479999.
Checkpoint	2.3:	Since	real-time	events	trigger	interrupts,	and	the	ISR	software
services	 the	 requests,	 disabling	 interrupts	 will	 postpone	 the	 response	 causing
latency	 or	 jitter.	 The	maximum	 jitter	will	 be	 the	maximum	 time	 running	with
interrupts	disabled.
Checkpoint	2.4:	Notice	there	are	two	disable	interrupt	and	two	enable	interrupt
functions,	 occurring	 in	 this	 order:	 1)	 disable,	 2)	 disable,	 3)	 enable,	 4)	 enable.
Interrupts	will	 be	 incorrectly	 enabled	 after	 step	 3).	 Since	 the	 1-4	 represents	 a
critical	section	and	2-3	is	inside	this	section,	a	bug	will	probably	be	introduced.
In	this	example Stuff1B 	runs	with	interrupts	enabled.
Critical1	Critical2
		Disable	//	1			Disable	//	2
		Stuff1A			Stuff2A
		Call	Critical2			Enable		//	3
		Stuff1B			return
		Enable	//	4
		return
Checkpoint	 2.5:	Negative	 logic	means	when	we	 touch	 the	 switch	 the	 voltage
goes	to	0	(low).	Formally,	negative	logic	means	the	true	voltage	is	lower	than	the
false	voltage.	Positive	logic	means	when	we	touch	the	switch	the	voltage	goes	to
+3.3	 (high).	Formally,	 positive	 logic	means	 the	 true	voltage	 is	 higher	 than	 the
false	voltage.
Checkpoint	2.6:	For	PF4,	we	need	input	with	pull-up.	DIR	bit	4	is	low	(input),
AFSEL	bit	4	is	low	(not	alternate),	PUE	bit	4	high	(pull-up)	and	PDE	bit	4	low
(not	pull-down).	For	PF0,	we	also	need	input	with	pull-down.	DIR	bit	0	is	low
(input),	AFSEL	bit	0	is	low	(not	alternate),	PUE	bit	0	high	(pull-up)	and	PDE	bit
0	low	(not	pull-down).



Checkpoint	2.7:	For	the	TM4C	one	interrupt	is	generated,	both	flags	are	set,	and
both	counts	will	be	 increments.	Compare	 this	 to	 the	MSP432	version	 that	will
generate	two	sequential	interrupts	and	each	interrupt	will	service	one	request.	In
both	cases,	no	events	are	lost.
Checkpoint	2.8:	There	is	1	byte	of	data	per	10	bits	of	transmission.	So,	there	are
11520	bytes/sec.
Checkpoint	2.9:	The	RxFifo	is	empty	when	there	is	no	input	data.	Software	is
waiting	 for	 hardware.	 We	 classify	 this	 condition	 as	 I/O	 bound,	 because	 the
system	bandwidth	is	limited	by	I/O	hardware.
Checkpoint	2.10:	The	TxFifo	is	empty	when	there	is	no	output	data.	Hardware
is	waiting	 for	 software.	We	classify	 this	 condition	 as	CPU	bound,	because	 the
system	bandwidth	is	limited	by	software	execution	speed.
Checkpoint	 2.11:	PWM:	 on	 the	 cycle	when	 the	 timer	 equals	 the	 value	 in	 the
Match	Register	or	the	Interval	Load	Register.
Checkpoint	2.12:	PWM:	output	pin	cleared	(set	if	inverting	mode)	on	match
or	set	(cleared	if	inverting	mode)	on	reload.
Checkpoint	2.13:	1V*16384/2.5V	=	6553	(or	6554)	.	The	TM4C	range	is	0	to
3.3V,	1V*4095/3.3V	=	1241.
Checkpoint	 2.14: P1OUT	 ^=	 0x08;	 	 GPIO_PORTA_DATA_R	 ^=	 0x08;
#define	PA3	(*((volatile	uint32_t	*)0x40000020))
#define	Debug_HeartBeat()	(PA3	^=	0x08)
	
Checkpoint	3.1:	A	program	is	a	list	of	commands,	while	a	thread	is	 the	action
cause	by	the	execution	of	software.	For	example,	there	might	be	one	copy	of	a
program	 that	 searches	 the	 card	 catalog	 of	 a	 library,	while	 separate	 threads	 are
created	 for	 each	 user	 that	 logs	 into	 a	 terminal	 to	 perform	 a	 search.	 Similarly,
there	might	 be	 one	 set	 of	 programs	 that	 implement	 the	 features	 of	 a	 window
(open,	minimize,	maximize,	etc.),	while	there	will	be	a	separate	thread	for	each
window	created.
Checkpoint	 3.2:	 Threads	 can’t	 communicate	with	 each	 other	 using	 the	 stack,
because	 they	 have	 physically	 separate	 stacks.	 Global	 variables	 will	 be	 used,
because	one	thread	may	write	to	the	global,	and	another	can	read	from	it.
Checkpoint	3.3:	It	is	hard	real	time	because	if	the	response	is	late,	data	may	be
lost.
Checkpoint	 3.4:	 It	 is	 firm	 real	 time	 because	 it	 causes	 an	 error	 that	 can	 be
perceived	but	the	effect	is	harmless	and	does	not	significantly	alter	the	quality	of
the	experience.
Checkpoint	3.5:	It	is	soft	real	time	because	the	faster	it	responses	the	better,	but
the	 value	 of	 the	 system	 (bandwidth	 is	 amount	 of	 data	 printed	 per	 second)



diminishes	with	latency.
Checkpoint	3.6:	With	 the	 flowchart	 in	Figure	3.8,	 the	Status	will	be	set	 twice
and	the	first	data	value	will	be	lost.	We	will	fix	this	error	in	the	next	using	a	first
in	first	out	(FIFO)	queue.
Checkpoint	3.7:	The	 system	will	not	work,	because	 there	 is	more	work	 to	do
than	there	are	processor	resources	to	accomplish	them.
Checkpoint	3.8:	The	system	will	work	some	of	the	time,	but	there	are	times	the
system	will	not	work.
Checkpoint	3.9:		The	function OS_Wait 	will	crash	because	it	is	spinning	with
interrupts	disabled.
Checkpoint	3.10:		The	function OS_Wait 	has	a	critical	section	around	the	read-
modify-write	 access	 to	 the	 semaphore.	 If	 we	 remove	 the	 mutual	 exclusion,
multiple	threads	could	pass.
Checkpoint	3.11:	Notice	this	function	discards	the	new	data	on	error

void	SendMail(uint32_t	int	data){
		if(Send){
				Lost++;	//	discard	new	data
		}else{
				Mail	=	data;
				OS_Signal(&Send);

}

}

	
	
Checkpoint	4.1:		Each	thread	runs	for	1ms,	so	each	thread	runs	every	5ms.	The
spinning	 thread	 will	 be	 run	 200	 times,	 wasting	 200ms	 while	 it	 waits	 for	 its
semaphore	to	be	signaled.	This	is	a	20%	waste	of	processor	time.
Checkpoint	 4.2:	 	Other	 threads	 run	 for	 1	ms	 each,	 the	 semaphore	 is	 checked
every	4	ms.	However,	the	amount	of	time	wasted	will	be	quite	small	because	the
spinning	thread	will	go	through	the	loop	once	and	suspend.	Obviously,	once	the
semaphore	goes	above	0,	the	OS_Wait	will	return.
Checkpoint	4.3:	 	The	worst	case	 is	you	must	 look	at	all	5	blocked	threads,	so
the	while	 loop	 executes	 5	 times.	This	 is	 a	waste	 of	 5*150	=	 750ns.	 Since	 the
scheduler	runs	every	1	ms,	this	waste	is	0.075%	of	processor	time.
Checkpoint	4.4:	Since	Signal	 increments	 and	Wait	 decrements,	we	 expect	 the
average	to	be	equal.		On	average,	over	a	long	period	of	time,	the	number	of	calls



to	Wait	equals	 the	number	of	calls	 to	Signal.	 If	Signal	were	called	more	often,
then	the	semaphore	value	would	become	infinite.	If	Wait	were	called	more	often,
then	all	threads	would	become	blocked/stalled.
Checkpoint	4.5:		Since	put	enters	data	and	get	removes,	we	expect	the	average
to	be	equal.		If	put	were	called	more	often,	then	the	FIFO	would	become	full	and
another	 call	 to	 put	 could	 not	 occur.	 If	 get	were	 called	more	 often,	 then	 FIFO
would	become	empty	and	another	successful	call	 to	get	could	not	occur.	 If	 the
FIFO	can	store	N	pieces	of	data,	then	the	total	number	of	successful	puts	minus
the	 total	 number	 of	 successful	 gets	 must	 be	 a	 value	 between	 0	 and	 N.	 On
average,	over	a	long	period	of	time,	the	number	of	calls	to	put	equals	the	number
of	calls	to	get.
Checkpoint	4.6:		If	CurrentSize	is	0,	the	FIFO	is	empty.	If	CurrentSize	is	equal
to	FIFOSIZE,	the	FIFO	is	full.
Checkpoint	 4.7:	 	Use	AND	 instead	 of	modulo	 divide	when	 incrementing	 the
index	because	it	is	faster
PutI	=	(PutI+1)&(FIFOSIZE-1);
GetI	=	(GetI+1)&(FIFOSIZE-1);
	
Checkpoint	5.1: 	This	priority	scheduler	must	look	at	them	all,	so	it	will	run	N
times	 through	 the	 loop.	 Looking	 at	 all	 the	 threads	 is	 ok	 if	 N	 is	 small,	 but
becomes	inefficient	if	I	is	large.
Checkpoint	5.2: 	The	maximum	 latency	 is	 20	ms,	 because	 the	 switch	will	 be
recognized	at	the	next	interrupt.	The	minimum	latency	is	0,	and	the	latencies	are
uniformly	distributed	from	0	to	20,	so	the	average	is	10	ms.
	
Checkpoint	6.1:		At	60	Hz,	f/fs	is	1/6.

Gain		=	0.5	
Checkpoint	 6.2:	 	 If	 the	 gain	 is	 larger	 than	 one,	 amplification	 occurs.	 For
example,	if	the	gain	is	1.2,	if	you	put	in	a	sinusoidal	wave	with	amplitude	100,
then	the	output	of	the	filter	will	be	a	sinusoidal	wave	with	amplitude	120.	This	is
important	because	a	filtered	signal	from	an	8-bit	ADC	will	not	fit	 into	an	8-bit
variable.
Checkpoint	6.3:		The	Q	is	much	higher	for	the	IIR	filter.	This	means	it	rejects
just	 60	 Hz,	 and	 passes	 most	 of	 the	 other	 frequencies.	 This	 greatly	 improved
performance	comes	with	only	a	modest	 increase	 the	computational	complexity.
The	additional	computation	 is	2	multiplies	and	a	 subtraction.	The	performance
for	the	IIR	filter	is	superior.
Checkpoint	6.4:	 	First,	 sum	all	 the	positive	 terms,	76050.	The	 largest	positive



value	will	 be	 if	 the	ADC	values	 for	 the	positive	 terms	are	4095	and	 the	ADC
values	for	the	negative	terms	is	0.	76050*4095	is	less	than	231.		Next,	sum	all	the
negative	terms,	-76048.	The	largest	negative	value	will	be	if	the	ADC	values	for
the	 negative	 terms	 are	 4095	 and	 the	 ADC	 values	 for	 the	 positive	 terms	 is	 0.
-76048*4095	is	greater	than	-231.	The	input	is	bounded	from	0	to	4095	because
the	data	comes	from	the	12-bit	ADC.	The	largest	gain	in	this	filter	is	5,	the	fixed-
point	 coefficient	 is	 16384.	 4095*5*16384	 will	 fit	 in	 the	 32-bit	 signed
intermediate	result,	sum.
Checkpoint	 6.5:	 	Because	 of	 the	 linear	 phase	 the	 h(n)	 filter	 coefficients	 are
symmetric.	Notice	that	h(k)	equals	h(50-k).	For	example,	4·x(n)+	4·x(n-50)	can
be	 replaced	 with	 4·(x(n)+x(n-50)).	 In	 general,	 h(k)·x(n‑k)+	 h(50-k)·x(n—50-k)
can	be	replaced	with	h(k)·(x(n-k)+x(n—50-k)),	saving	25	multiplies.
Checkpoint	 7.1:	Both	 refer	 to	 the	 speed	of	 communication.	Latency	 is	 the
response	time	to	a	question	and	bandwidth	is	the	information	transfer	rate.
Checkpoint	7.2:	If	we	do	not	meet	the	latency	requirement,	that	data	is	lost.	If	it
happens	every	 time	 the	system	doesn’t	work.	 If	 it	happens	occasionally,	 it	will
run	slow	because	we	will	have	to	wait	for	the	disk	to	spin	around	one	revolution
and	try	it	again.
Checkpoint	7.3:	A	portion	of	the	sound	is	lost,	and	it	will	sound	like	a	skip.	We
may	also	hear	a	click	because	the	waveform	is	discontinuous.	It	is	firm	real	time
because	 it	 causes	 an	error	 that	 can	be	perceived	but	 the	 effect	 is	harmless	 and
does	not	significantly	alter	the	quality	of	the	experience.
Checkpoint	7.4:	The	system	runs	slow,	because	the	transmitter	will	timeout	and
try	to	resend	the	packets.
Checkpoint	7.5:	The	bidirectional	driver	has	 three	possibilities,	determined	by
two	control	pins.	An	example	of	this	type	of	logic	is	the	74HC245.	It	can	drive
data	left	to	right,	making	the	left	input	and	right	output.		It	can	drive	data	right	to
left,	making	the	right	input	and	left	output.	The	third	possibility	is	that	the	device
can	be	off,	driving	neither	the	left	nor	the	right.	This	is	a	noninverting	driver,	so
the	output	equals	the	input.
Checkpoint	 7.6:	 Substitute	 the	 four	 bidirectional	 data	 bus	 drivers	 with	 four
unidirectional	tristate	drivers.	All	four	data	bus	drivers	operate	in	the	direction	of
the	 simplex	 transfer	 (left	 to	 right).	 The	 bank-switched	 memory	 looks	 like	 a
write-only	 memory	 to	 the	 computer	 and	 a	 read-only	 memory	 to	 the	 I/O
hardware.
Checkpoint	7.7:	The	maximum	latency	for	cycle	steal	DMA	is	one	bus	cycle,
assume	there	is	only	one	DMA	channel	active.	If	 there	is	more	than	one	DMA
channel	operating,	one	DMA	request	may	have	to	wait	for	another.
Checkpoint	7.8:	On	some	systems	the	latency	is	only	one	bus	cycle.	On	others	it



may	be	2	or	3	bus	cycles.	In	all	cases	it	is	very	short.
Checkpoint	 7.9:	On	most	 systems,	 the	 instruction	must	 finish,	 so	 the	 latency
will	 be	 the	maximum	 instruction	 length.	 In	 all	 cases	 burst	DMA	has	 a	 longer
latency	than	cycle	steal.
	
Checkpoint	8.1:	On	average,	each	file	wastes	½	n	bytes.	Since	this	is	inside	the
file,	this	wasted	space	is	classified	as	internal	fragmentation.
Checkpoint	8.2:	The	best	way	to	cut	the	wood	is	obviously	at	one	end	or	the
other,	generating	the	2-meter	piece	and	leaving	8	meters	free.	If	you	were	to	cut
at	the	4-meter	and	6-meter	spots,	you	would	indeed	have	the	2-meter	piece	as
needed,	but	this	cutting	would	leave	you	two	4-meter	leftover	pieces.	The	largest
available	piece	now	is	4	meters,	but	the	total	amount	free	would	be	8	meters.
This	condition	is	classified	as	external	fragmentation.
Checkpoint	8.3:	The	largest	contiguous	part	of	the	disk	is	8	blocks.	So	the
largest	new	file	can	have	8*512	bytes	of	data	(4096	bytes).	This	is	less	than	the
available	16	free	blocks,	therefore	there	is	external	fragmentation.
Checkpoint	8.4:	First	fit	would	put	the	file	in	block	1	(block	0	has	the
directory).	Best	fit	would	put	the	file	in	block	10,	because	it	is	the	smallest	free
space	that	is	big	enough.	Worst	fit	would	put	it	in	block	14,	because	it	is	the
largest	free	space.
Checkpoint	8.5:	A	gibibyte	is	230	bytes.	Each	sector	is	212	bytes,	so	there	are	218
sectors.	So	you	need	218		bits	in	the	table,	one	for	each	sector.	There	are	23	bits	in
a	byte,	so	the	table	should	be	215	(32768)	bytes	long.
Checkpoint	8.6:	2	Gibibytes	is	231	bytes.	512	bytes	is	29	bytes.	31-9	=	22,	so	it
would	take	22	bits	to	store	the	block	number.
Checkpoint	8.7:	2	Gibibytes	is	231	bytes.	32k	bytes	is	215	bytes.	31-15	=	16,	so	it
would	take	16	bits	to	store	the	block	number.
Checkpoint	8.8:	There	are	16	free	blocks,	they	can	all	be	linked	together	to
create	one	new	file.	This	means	there	is	no	external	fragmentation.
Checkpoint	8.9:	There	are	many	answers.	One	answer	is	you	could	store	a	byte
count	in	the	directory.	Another	answer	is	you	could	store	a	byte	count	in	each
block.
Checkpoint	8.10:	16+9=25.	225	is	32	Mebibytes,	which	is	the	largest	possible
disk.
Checkpoint	8.11:	There	are	231/210=221	blocks,	so	the	21-bit	block	address	will
be	stored	as	a	32-bit	number.	One	can	store	1024/4=256	index	entries	in	one
1024-byte	block.	So	the	maximum	file	size	is	256*1024	=	28*210	=	218	=	256
kibibytes.	You	can	increase	the	block	size	or	store	the	index	in	multiple	blocks.
Checkpoint	8.12:		There	are	15	free	blocks,	and	they	can	create	an	index	table



using	all	the	free	blocks	to	create	one	new	file.	This	means	there	is	no	external
fragmentation.
Checkpoint	8.13:		There	are	15	free	blocks,	they	can	create	FAT	using	all	the
free	blocks	to	create	one	new	file.	Each	block	is	512	bytes,	so	the	largest	file	is
15	time	512	bytes;	there	is	no	external	fragmentation.
Checkpoint	8.14:	Each	directory	entry	now	requires	10	bytes.	You	could	have
50	files,	leaving	some	space	for	the	free	space	management.
Checkpoint	8.15:	Change	the	1024	to	4096.
	
Checkpoint	9.1:	Most	people	communicate	in	half-duplex.	Normally,	when	we
are	talking,	the	sound	of	our	voice	overwhelms	our	ears,	so	we	usually	cannot
listen	while	we	are	talking.
Checkpoint	9.2:	Since	information	is	encoded	as	energy,	and	data	is	transferred
at	a	fixed	rate,	each	energy	packet	will	exist	for	a	finite	time.	Energy	per	time	is
power.
Checkpoint	9.3:	If	the	units	of	a	signal	x	is	something	like	volts	or	watts,	we
cannot	take	the	log10(x),	because	the	units	of	log10(x)	is	not	defined.	Whenever
we	use	the	log10	to	calculate	the	amplitude	of	a	signal,	we	always	perform	the
logarithm	on	a	value	without	dimensions.	In	other	words,	we	always	perform	the
logarithm	on	a	ratio	of	one	signal	to	another.
Checkpoint	9.4:	The	performance	measure	for	a	storage	system	is	information
density	in	bits/cm3.
Checkpoint	9.5:		With	open	collector	outputs,	the	low	will	dominate	over	HiZ.
The	signal	will	be	low.	
	
Checkpoint	10.1:	The	VOL	of	 the	7406	at	40	mA	will	be	0.7V.	This	means
there	will	be	4.3V	across	the	coil.
Checkpoint	10.2:		If	they	are	too	close,	then	the	system	can	turn	on-off-on-off-
…	very	quickly,	causing	 the	electromagnetic	 relays	 to	prematurely	 fail.	 If	 they
are	too	far	apart,	then	the	system	will	oscillate	with	large	positive	and	negative
errors.	
Checkpoint	 10.3:	 	 Every	 interrupt,	 the	 actuator	 would	 be	 increased	 or
decreased,	causing	a	lot	of	output	changes.	
Checkpoint	10.4:		If	the	interrupt	period	were	too	small,	the	actuator	would	be
increased	 to	 maximum	 or	 decreased	 to	 minimum,	 causing	 it	 to	 behave	 like	 a
bang-bang	 controller.	 Basically,	 the	 plant	 would	 not	 have	 time	 to	 react	 to
changes	in	the	actuator.	
Checkpoint	10.5:		The	output	will	saturate.	The	error	 increases	 to	a	very	large



positive	value	or	decreases	down	to	a	very	large	negative	value.	
Checkpoint	 10.6:	 	The	 limit	 of	 the	 discrete	 integral	 as	Δt	 goes	 to	 zero	 is	 the
continuous	integral.	
Checkpoint	10.7:		The	limit	of	the	discrete	derivative	as	Δt	goes	 to	zero	 is	 the
continuous	derivative.
Checkpoint	10.8:		Yes.	Let	watts	be	the	units	of	the	actuator	output	and	RPM
be	the	units	of	the	sensor	input.	The	units	of	the	lag	L	is	sec.	The	units	of	the	rate
R	is	cm/sec.	The	units	of	ΔU	is	watts.

Proportional	KP	 =	 1.2	 ΔU/(L*R)	watts/(sec*(RPM	 sec))	 =	watts/
RPM

Integral	KI	 	=	0.5	KP	/L	watts/(RPM-sec)	Derivative	KD	=	0.5	KP	L
(watts-sec)/RPM

Checkpoint	10.9:		E	=	X*-X,	so	the	error	is	very	negative,	causing	the	P	term	to
be	very	negative,	making	U=100.	This	removes	power	and	gravity	will	force	it
down.
Checkpoint	 10.10:	 	 SlowDown=WayTooFast+SpeedingUp*LittleBitFast=50+
(40*60)=50
	

The	true	engineering	experience	occurs	not	with	your	eyes	and	ears,	but
rather	with	your	fingers	and	elbows.	In	other	words,	engineering	education
does	not	happen	by	listening	in	class	or	reading	a	book;	rather	it	happens	by
designing	under	the	watchful	eyes	of	a	patient	mentor.	So,	go	build
something	today,	then	show	it	to	someone	you	respect!



Reference	Material
Vector
address

Number IRQ ISR	name	in	Startup.s NVIC Priority
bits

0x00000038 14 -2 PendSV_Handler NVIC_SYS_PRI3_R 23	–	21
0x0000003C 15 -1 SysTick_Handler NVIC_SYS_PRI3_R 31	–	29
0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7	–	5
0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15	–	13
0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23	–	21
0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31	–	29
0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7	–	5
0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15	–	13
0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23	–	21
0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31	–	29
0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7	–	5
0x00000064 25 9 PWMFault_Handler NVIC_PRI2_R 15	–	13
0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23	–	21
0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31	–	29
0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7	–	5
0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15	–	13
0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23	–	21
0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31	–	29
0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7	–	5
0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15	–	13
0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23	–	21
0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31	–	29
0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7	–	5
0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15	–	13
0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23	–	21
0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31	–	29
0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7	–	5
0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15	–	13
0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23	–	21
0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31	–	29
0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7	–	5
0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15	–	13
0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23	–	21
0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31	–	29
0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7	–	5
0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15	–	13
0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23	–	21
0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31	–	29
0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7	–	5
0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15	–	13



0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23	–	21
0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31	–	29
0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7	–	5
0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15	–	13
0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23	–	21
0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31	–	29
0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7	–	5
0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15	–	13
0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23	–	21
0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31	–	29

Table	2.6.	Some	of	the	interrupt	vectors	for	the	TM4C.
Memory	access	instructions
			LDR			Rd,	[Rn]							;	load	32-bit	number	at	[Rn]	to	Rd
			LDR			Rd,	[Rn,#off]	;	load	32-bit	number	at	[Rn+off]	to	Rd
			LDR			Rd,	[Rn,#off]!	;	load	32-bit	number	at	[Rn+off]	to	Rd,	preindex
			LDR			Rd,	[Rn],#off		;	load	32-bit	number	at	[Rn]	to	Rd,	postindex
			LDRT		Rd,	[Rn,#off]	;	load	32-bit	number	unprivileged
			LDR			Rd,	=value				;	set	Rd	equal	to	any	32-bit	value	(PC	rel)
			LDRH		Rd,	[Rn]							;	load	unsigned	16-bit	at	[Rn]	to	Rd
			LDRH		Rd,	[Rn,#off]	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd
			LDRH		Rd,	[Rn,#off]!	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd,	pre
			LDRH		Rd,	[Rn],#off	;	load	unsigned	16-bit	at	[Rn]	to	Rd,	postindex
			LDRHT		Rd,	[Rn,#off]	;	load	unsigned	16-bit	unprivileged
			LDRSH	Rd,	[Rn]							;	load	signed	16-bit	at	[Rn]	to	Rd
			LDRSH	Rd,	[Rn,#off]	;	load	signed	16-bit	at	[Rn+off]	to	Rd
			LDRSH	Rd,	[Rn,#off]!	;	load	signed	16-bit	at	[Rn+off]	to	Rd,	pre
			LDRSH	Rd,	[Rn],#off	;	load	signed	16-bit	at	[Rn]	to	Rd,	postindex
			LDRSHT	Rd,	[Rn,#off]	;	load	signed	16-bit	unprivileged
			LDRB		Rd,	[Rn]							;	load	unsigned	8-bit	at	[Rn]	to	Rd
			LDRB		Rd,	[Rn,#off]	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd
			LDRB		Rd,	[Rn,#off]!	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd,	pre
			LDRB		Rd,	[Rn],#off	;	load	unsigned	8-bit	at	[Rn]	to	Rd,	postindex
			LDRBT		Rd,	[Rn,#off]	;	load	unsigned	8-bit	unprivileged
			LDRSB	Rd,	[Rn]							;	load	signed	8-bit	at	[Rn]	to	Rd
			LDRSB	Rd,	[Rn,#off]	;	load	signed	8-bit	at	[Rn+off]	to	Rd
			LDRSB	Rd,	[Rn,#off]!	;	load	signed	8-bit	at	[Rn+off]	to	Rd,	pre
			LDRSB	Rd,	[Rn],#off	;	load	signed	8-bit	at	[Rn]	to	Rd,	postindex
			LDRSBT	Rd,	[Rn,#off]	;	load	signed	8-bit	unprivileged
		LDRD	Rd,Rd2,[Rn,#off]	;	load	64-bit	at	[Rn+off]	to	Rd,Rd2
		LDRD	Rd,Rd2,[Rn,#off]!;	load	64-bit	at	[Rn+off]	to	Rd,Rd2,pre



		LDRD	Rd,Rd2,[Rn],#off	;	load	64-bit	at	[Rn]	to	Rd,Rd2,	postindex
			LDMFD		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn
			LDMIA		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn
			LDMDB		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(dec),	!update	Rn
			STMIA		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(inc),	!update	Rn
			STMFD		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn
			STMDB		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn
			STR			Rt,	[Rn]							;	store	32-bit	Rt	to	[Rn]
			STR		Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]
			STR		Rt,	[Rn,#off]!	;	store	32-bit	Rt	to	[Rn+off],	pre
			STR		Rt,	[Rn],#off	;	store	32-bit	Rt	to	[Rn],	postindex
			STRT			Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]	unprivileged
			STRH	Rt,	[Rn]							;	store	least	sig.	16-bit	Rt	to	[Rn]
			STRH		Rt,	[Rn,#off]	;	store	least	sig.	16-bit	Rt	to	[Rn+off]
			STRH		Rt,	[Rn,#off]!	;	store	least	sig.	16-bit	Rt	to	[Rn+off],	pre
			STRH		Rt,	[Rn],#off	;	store	least	sig.	16-bit	Rt	to	[Rn],	postindex
			STRHT		Rt,	[Rn,#off]	;	store	least	sig.	16-bit	unprivileged
			STRB		Rt,	[Rn]							;	store	least	sig.	8-bit	Rt	to	[Rn]
			STRB		Rt,	[Rn,#off]	;	store	least	sig.	8-bit	Rt	to	[Rn+off]
			STRB		Rt,	[Rn,#off]!	;	store	least	sig.	8-bit	Rt	to	[Rn+off],pre
			STRB		Rt,	[Rn],#off		;	store	least	sig.	8-bit	Rt	to	[Rn],	postindex
			STRBT		Rt,	[Rn,#off]	;	store	least	sig.	unprivileged
		STRD	Rd,Rd2,[Rn,#off]	;	store	64-bit	Rd,Rd2	to	[Rn+off]
		STRD	Rd,Rd2,[Rn,#off]!;	store	64-bit	Rd,Rd2	to	[Rn+off],	pre
		STRD	Rd,Rd2,[Rn],#off	;	store	64-bit	Rd,Rd2	to	[Rn],	postindex
		PUSH		Reglist								;	push	32-bit	registers	onto	stack
			POP			Reglist							;	pop	32-bit	numbers	from	stack	into	registers
			ADR			Rd,	label						;	set	Rd	equal	to	the	address	at	label
			MOV{S}	Rd,	<op2>						;	set	Rd	equal	to	op2
			MOV				Rd,	#im16						;	set	Rd	equal	to	im16,	im16	is	0	to	65535			
			MOVT			Rd,	#im16						;	set	Rd	bits	31-16	equal	to	im16			
			MVN{S}	Rd,	<op2>						;	set	Rd	equal	to	-op2
	
Branch	instructions
			B				label			;	branch	to	label				Always
			BEQ		label			;	branch	if	Z	==	1			Equal
			BNE		label			;	branch	if	Z	==	0			Not	equal
			BCS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥
			BHS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥



			BCC		label			;	branch	if	C	==	0			Lower,	unsigned	<
			BLO		label			;	branch	if	C	==	0			Lower,	unsigned	<
			BMI		label			;	branch	if	N	==	1			Negative
			BPL		label			;	branch	if	N	==	0			Positive	or	zero
			BVS		label			;	branch	if	V	==	1			Overflow
			BVC		label			;	branch	if	V	==	0			No	overflow
			BHI		label			;	branch	if	C==1	and	Z==0		Higher,	unsigned	>
			BLS		label			;	branch	if	C==0	or		Z==1		Lower	or	same,	unsigned	≤
			BGE		label			;	branch	if	N	==	V			Greater	than	or	equal,	signed	≥
			BLT		label			;	branch	if	N	!=	V			Less	than,	signed	<
			BGT		label			;	branch	if	Z==0	and	N==V		Greater	than,	signed	>
			BLE		label			;	branch	if	Z==1	or	N!=V		Less	than	or	equal,	signed	≤								
			BX			Rm						;	branch	indirect	to	location	specified	by	Rm
			BL		label			;	branch	to	subroutine	at	label									
			BLX		Rm						;	branch	to	subroutine	indirect	specified	by	Rm										
			CBNZ	Rn,label									;	branch	if	Rn	not	zero
			CBZ	Rn,label										;	branch	if	Rn	zero
			IT{x{y{z}}}cond							;	if	then	block	with	x,y,z	T(true)	or	F(false)
			TBB	[Rn,	Rm]										;	table	branch	byte
			TBH	[Rn,	Rm,	LSL	#1]	;	table	branch	halfword
	
Mutual	exclusive	instructions
			CLREX																													;	clear	exclusive
			LDREX{cond}		Rt,[Rn{,#offset}]				;	load	32-bit	exclusive
			STREX{cond}		Rd,Rt,[Rn{,#offset}]	;	store	32-bit	exclusive
			LDREXB{cond}	Rt,[Rn]														;	load	8-bit	exclusive
			STREXB{cond}	Rd,Rt,[Rn]											;	store	8-bit	exclusive
			LDREXH{cond}	Rt,[Rn]														;	load	16-bit	exclusive
			STREXH{cond}	Rd,Rt,[Rn]											;	store	16-bit	exclusive
	
	
Miscellaneous	instructions
			BKPT			#imm					;	execute	breakpoint,	debug	state	0	to	255
			CPSIE	F								;	clear	faultmask	F=0
			CPSIE	I								;	enable	interrupts		(I=0)
			CPSID	F								;	set	faultmask	F=1
			CPSID	I								;	disable	interrupts	(I=1)
			DMB												;	data	memory	barrier,	memory	access	to	finish
			DSB												;	data	synchronization	barrier,	instructions	to	finish



			ISB												;	instruction	synchronization	barrier,	finish	pipeline
			MRS	Rd,SpecReg		;	move	special	register	to	Rd
			MSR	Rd,SpecReg		;	move	Rd	to	special	register
			NOP													;	no	operation
			SEV													;	Send	Event
			SVC	#im8								;	supervisor	call	(0	to	255)
			WFE													;	wait	for	event
			WFI													;	wait	for	interrupt
	
Logical	instructions
			AND{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&op2				(op2	is	32	bits)								
			BFC		Rd,#lsb,#width				;	clear	bits	in	Rn								
			BFI		Rd,Rn,#lsb,#width	;	bit	field	insert,	Rn	into	Rd							
			ORR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|op2				(op2	is	32	bits)
			EOR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn^op2				(op2	is	32	bits)									
			BIC{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&(~op2)	(op2	is	32	bits)
			ORN{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|(~op2)	(op2	is	32	bits)
			TST				Rn,	<op2>							;	Rn&op2				(op2	is	32	bits)
			TEQ				Rn,	<op2>							;	Rn^op2				(op2	is	32	bits)
			LSR{S}	Rd,	Rm,	Rs						;	logical	shift	right	Rd=Rm>>Rs		(unsigned)
			LSR{S}	Rd,	Rm,	#n						;	logical	shift	right	Rd=Rm>>n			(unsigned)
			ASR{S}	Rd,	Rm,	Rs						;	arithmetic	shift	right	Rd=Rm>>Rs	(signed)
			ASR{S}	Rd,	Rm,	#n						;	arithmetic	shift	right	Rd=Rm>>n	(signed)
			LSL{S}	Rd,	Rm,	Rs						;	shift	left	Rd=Rm<<Rs	(signed,	unsigned)
			LSL{S}	Rd,	Rm,	#n						;	shift	left	Rd=Rm<<n		(signed,	unsigned)
			REV				Rd,	Rn										;	Reverse	byte	order	in	a	word
			REV16		Rd,	Rn										;	Reverse	byte	order	in	each	halfword
			REVSH		Rd,	Rn										;	Reverse	byte	order	in	the	bottom	halfword,
																										;	and	sign	extends	to	32	bits
			RBIT		Rd,	Rn											;	Reverse	the	bit	order	in	a	32-bit	word
			SBFX	Rd,Rn,#lsb,#width	;	signed	bit	field	and	extract
			UBFX	Rd,Rn,#lsb,#width	;	unsigned	bit	field	and	extract
			SXTB	{Rd,}Rm{,ROR	#n}		;	Sign	extend	byte
			SXTH	{Rd,}Rm{,ROR	#n}		;	Sign	extend	halfword
			UXTB	{Rd,}Rm{,ROR	#n}		;	Zero	extend	byte
			UXTH	{Rd,}Rm{,ROR	#n}		;	Zero	extend	halfword
	
	
	



	
Arithmetic	instructions
			ADD{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	+	op2										
			ADD{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	+	im12,	im12	is	0	to	4095
			CLZ				Rd,	Rm										;	Rd	=	number	of	leading	zeros	in	Rm
			SUB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	-	op2										
			SUB{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	-	im12,	im12	is	0	to	4095
			RSB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	op2	-	Rn				
			RSB{S}	{Rd,}	Rn,	#im12	;	Rd	=	im12	–	Rn
			CMP				Rn,	<op2>							;	Rn	–	op2						sets	the	NZVC	bits
			CMN				Rn,	<op2>							;	Rn	-	(-op2)			sets	the	NZVC	bits
			MUL{S}	{Rd,}	Rn,	Rm				;	Rd	=	Rn	*	Rm							signed	or	unsigned								
			MLA				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	+	Rn*Rm				signed	or	unsigned
			MLS				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	-	Rn*Rm				signed	or	unsigned										
			UDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									unsigned
			SDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									signed
			UMULL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply	32by32	into	64
			UMLAL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply,	with	accumulate
			SMULL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply	32by32	into	64
			SMLAL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply,	with	accumulate
			SSAT		Rd,#n,Rm{,shift	#s}	;	signed	saturation	to	n	bits
			USAT		Rd,#n,Rm{,shift	#s}	;	unsigned	saturation	to	n	bits
	
Notes 	Ra	Rd	Rm	Rn	Rt	represent	32-bit	registers	value				any	32-bit	value:
signed,	unsigned,	or	address				
					{S}						if	S	is	present,	instruction	will	set	condition	codes										
					#im8				any	value	from	0	to	255				
					#im12			any	value	from	0	to	4095				
					#im16			any	value	from	0	to	65535
					{Rd,}				if	Rd	is	present	Rd	is	destination,	otherwise	Rn						
					#n							any	value	from	0	to	31							
					#off					any	value	from	-255	to	4095				
					label				any	address	within	the	ROM	of	the	microcontroller
					SpecReg		APSR,IPSR,EPSR,IEPSR,IAPSR,EAPSR,PSR,MSP,PSP,
														PRIMASK,BASEPRI,BASEPRI_MAX,FAULTMASK,	or
CONTROL.
			Reglist	is	a	list	of	registers.	E.g.,	{R1,R3,R12}
					op2					the	value	generated	by	<op2>				
	



Examples	of	flexible	operand 	<op2> 	creating	the	32-bit	number.	E.g., 	Rd	=
Rn+op2
			ADD	Rd,	Rn,	Rm									;	op2	=	Rm											
			ADD	Rd,	Rn,	Rm,	LSL	#n	;	op2	=	Rm<<n	Rm	is	signed,	unsigned				
			ADD	Rd,	Rn,	Rm,	LSR	#n	;	op2	=	Rm>>n		Rm	is	unsigned							
			ADD	Rd,	Rn,	Rm,	ASR	#n	;	op2	=	Rm>>n		Rm	is	signed							
			ADD	Rd,	Rn,	#constant		;	op2	=	constant , where 	X 	and 	Y 	are
hexadecimal	digits:

produced	by	shifting	an	8-bit	unsigned	value	left	by	any	number
of	bits
in	the	form 0x00XY00XY
in	the	form 0xXY00XY00
in	the	form 0xXYXYXYXY

	
	
	
Parameter

PN2222
(IC=150mA)
PN2907
(IC=150mA)

2N2222
(IC=500mA)
2N2907
(IC=500mA)

TIP120
(IC=3A)
TIP125
(IC=3A)

hfe 100 40 1000
VBEsat 0.6 2 2.5	V
VCE	 at
saturation

0.3 1 2	V

Design	parameters	for	the	2N2222	and	TIP120.
	

	
Chip Current Comment
L293D 0.6	A Dual,	diodes
L293 1	A Dual
DRV8848 2	A Dual,	fault

status
TPIC0107 3	A Direction,	fault

status
L6203 5	A Dual
H-bridge	drivers
	

Family Example IOH IOL IIH IIL



Standard	TTL 7404 0.4	mA 16	mA 40	µA 1.6
mA

Low	Power
Schottky

74LS04 0.4	mA 4	mA 20	µA 0.4
mA

High	Speed
CMOS

74HC04 4	mA 4	mA 1	µA 1	µA

Adv	High
Speed	CMOS

74AHC04 4	mA 4	mA 1	µA 1	µA

MSP432	regular
drive

MSP432 6	mA 6	mA 20	nA 20
nA

MSP432	high
drive

MSP432 20	mA 20	mA 20	nA 20
nA

TM4C	2mA-
drive

TM4C123 2	mA 2	mA 2	µA 2	µA

TM4C	4mA-
drive

TM4C123 4	mA 4	mA 2	µA 2	µA

TM4C	8mA-
drive

TM4C123 8	mA 8	mA 2	µA 2	µA

TM4C	12mA-
drive

TM4C1294 12	mA 12	mA 2	µA 2	µA

The	input	and	output	currents	of	various	digital	logic	families	and
microcontrollers.

Voltage	thresholds	for	various	digital	logic	families.
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